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Abstract

Emissions from fossil fuel based energy sources is a global concern with respect to environmen-
tal degradation. Thus, a diversification of energy sources in the supply mix of power systems to
include renewable sources of energy has become necessary in order to reduce emissions. In ad-
dition to renewable integration, the incorporation of energy conservation also helps in emissions
reduction, thereby, becoming an increasingly important aspect of generation expansion planning
(GEP). However, the relatively high cost of renewable energy sources (RES) is a hindrance in
achieving a cleaner and more diverse energy supply mix. Therefore, it is imperative to develop
and analyze a system planning model for determining optimal incentives that will encourage both
renewable integration and conservation, while allowing investors to make optimal investment de-
cisions on RES projects.

In recent years, solar energy, particularly solar photovoltaic (PV), based generation has be-
come one of the fastest growing energy sources in the electricity sector. Hence, the first part
of this thesis presents a novel sensitivity analysis framework, based on duality theory (DT), to
examine the sensitivity of an investor’s profit to changes in parameters of a solar PV investment
planning model previously proposed. The computed sensitivity indices are utilized for assessing
the risk of a specific solar PV investment project for a realistic model of the Ontario grid. The
results demonstrate that sensitivity indices obtained using DT-based method are very close to the
true sensitivities obtained using a finite difference (FD) approach and also those obtained using
Monte Carlo simulations, but at lower computational costs. Furthermore, a novel interpretation
of the sensitivity indices is developed, by proposing mathematical formulas that help to evaluate
the risk indices of a solar PV investment project.

In the second part of this thesis, a novel holistic GEP model, from a system planner’s perspec-
tive, has been proposed to enable a central planning authority (CPA) or a regulator to determine
optimal incentives for renewable energy integration and energy conservation, while considering
investors’ constraints. The proposed GEP model is also designed to determine the siting, sizing,
timing, and technology of the new capacities required to adequately supply the demand over
the planning horizon. Various case studies relevant to Ontario and based on realistic data, com-
prising presence/absence and variations in RES penetration and/or energy conservation targets,
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variations in maximum payback-period limits of RES, and other input parameter changes are
presented and discussed. Furthermore, Monte Carlo simulations are performed to understand the
effects that uncertainties on non-dispatchable wind and solar generation availabilities have on the
GEP outcome, particularly on the optimal RES incentives.
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Chapter 1

Introduction

1.1 Motivation

Traditional fossil fuel based power generation facilities contribute significantly to climatic con-
cerns by emitting substantial amount of greenhouse gases, particularly CO2. The resulting en-
vironmental degradation is prompting the electric power industry to search for sustainable so-
lutions. Hence, considering the ever increasing demand for electricity, entities responsible for
generation, transmission and distribution of electrical energy, are facing a difficult task in se-
lecting new generation technologies to supply the growing energy demand, while reducing the
carbon emission levels.

The power industry realized in the last decade that the introduction of relatively low carbon
emitting energy sources in the generation portfolio, coupled with a reduction in energy con-
sumption, is the best solution to meet the climate challenge while addressing the perennial en-
ergy challenge. Thus, the impact of energy demand and generation sources on emissions can be
evaluated based on the following empirical relation quantifying total CO2 emission for a given
population PP of any jurisdiction [1]:

CO2 = PP × (E/PP) × (CO2/E) (1.1)
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where E/PP is the per capita energy consumption, and CO2/E is the emission per unit energy
generation.

Electricity generated from renewable energy sources (RES), particularly sun and wind, are
attractive since they are non-polluting and freely available. However, because of their high capital
cost, these are not the preferred options for private investors who seek to maximize their profit,
as these projects do not accrue acceptable levels of rate of return. Hence, in order to encourage
investments in capital intensive RES-based projects, there is a need to compensate the investors
so as to render these projects financially feasible. This is achieved through various financial
instruments, such as the following [2]:

• Enhanced Feed-in-Tariff (FIT): This is an explicit monetary reward for producing electric-
ity using RES, paid at a rate per kWh somewhat higher than the retail electricity rate.

• Capital Subsidies: These are direct financial subsidies aimed at tackling the up-front cost
barrier, either for specific equipment or total installed RES system cost.

• Green Electricity Certificates: These allow customers to purchase electricity based on RES
from the electricity authority, usually at a premium price.

• Renewable Portfolio Standards (RPS): These are mandated requirements that the electricity
utility (often the electricity retailer) includes a portion of renewable energy in its electricity
supply.

Of the RES technologies, solar photovoltaic (PV) based generation capacity has achieved a
global average yearly growth rate in excess of 50% in the last decade [3], making it one of the
fastest growing at present. The global capacity additions grew from 7.2 GW in 2009 to more
than 25 GW in both 2011 and 2012 [4], for a total installed capacity of nearly 96.6 GW, with a
capability of producing around 150 TWh of electrical energy every year. The cumulative global
installed solar PV capacity, as presented in the International Energy Agency’s (IEA) PV Power
Systems (PVPS) program survey report [4], is shown in Figure 1.1. The cumulative installed
solar PV capacity in Canada, as of December 2012, in off-grid domestic/non-domestic and grid-
connected centralized/distributed sectors is shown in Figure 1.2 [5].
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Figure 1.1: Global cumulative installed solar PV capacity, as per IEA-PVPS [4].
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Figure 1.2: Cumulative installed solar PV capacity in Canada (OGD: Off grid domestic; OGND:
Off grid non-domestic; GCD: Grid connected distributed; GCC: Grid connected centralized) [5].

The levelized cost of electricity from solar PV has decreased by more than 55% in the most
competitive solar PV investment markets (from being over 300 $/MWh in 2010 to less than 150
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Figure 1.3: Global cumulative installed wind capacity [8].

$/MWh in 2012) [6]. This reduction in cost can be attributed to the declining cost of technology
from innovations in design and manufacture of solar cells. The IEA-PVPS survey reports that
solar PV module prices have decreased by more than 60% in the last 10 years [4]. This reduction
in price renders solar PV technology more acceptable to RES investors, and thus has served as
the primary motivating factor for the development and growth of this industry.

In the case of wind energy, as reported by the World Wind Energy Association (WWEA),
the global installed capacity reached 318 GW in 2013 for 100 jurisdictions, with the ability to
supply almost 3.5% of the world’s electricity demand [7]. The cumulative installation of wind
capacity, as per WWEA, is shown in Figure 1.3, which depicts a growth of more than 700% in the
last decade [8]. In 1993, Canada’s first commercial windfarm was installed in Alberta (Cowley
Ridge) [9], and the present installed capacity, as of Dec. 2013, is 7.8 GW. This represents 3%
of the country’s electricity demand, and places it as the ninth largest market for wind energy
in the world with a 2.5% share of global installed capacity. In 2013 alone, about 1.6 GW of
wind capacity was installed in Canada, which represents a global share of 4.5%, or the fifth
largest, of new capacity additions in the world [8]. The province of Ontario leads Canada with
almost 2.5 GW of installed wind capacity, which is more than 30% of the country’s total wind
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installations [10].

Worldwide RES based cumulative capacity has increased by 8.5% to reach 1500 GW in Dec.
2012 [11], where about one-third of it is non-hydro based, e.g., solar, wind, bio, geothermal,
ocean. Bio-based power generation achieved a growth of 12% to reach an annual energy produc-
tion capacity of 350 TWh globally, with a capacity of about 83 GW and an annual consumption
of more than 22 million tonnes of wood pellets. Geothermal, on the other hand, has attained an
annual energy production level of 223 TWh, of which one-third is electricity generation from
11.7 GW of total plant capacity; the rest is delivered as direct heat. Finally, energy from the
oceans, mostly tidal, remained around 530 MW of installed capacity, while hydro power in-
stalled capacity increased by 3% to about 1000 GW, generating near 4000 TWh of electricity.

This upsurge in investments in renewable projects, particularly solar and wind, calls for re-
search on analyzing their techno-economic feasibility. Of particular interest is the case of On-
tario, Canada, where investments in RES capacities have been accorded high incentives through
the FIT and micro-FIT programs [12]. An investment plan on renewable generation projects
is required to maximize the investors’ profit by providing the optimal sizing, siting, and tim-
ing of new installations. Subsequently, it is necessary to analyze and examine the sensitivity of
investors’ profit to various plan parameters as well as the investment risks associated with the
projects.

Most jurisdictions that have initiated or are going to initiate RES support mechanisms are
either presently offering or planning to offer FIT for RES projects [11]. The province of On-
tario, Canada, has initiated a FIT program [12], which is North America’s first comprehensive
guaranteed pricing structure for electricity production from RES [13]. The program targets small,
medium and large renewable energy projects generating more than 10 kW of electricity. A subset
of the FIT program, referred to as the micro-FIT Program, targets very small renewable energy
projects generating 10 kW of electricity or less, such as home or small business installations.
Prices paid for renewable energy generation under FIT and micro-FIT programs vary by energy
source [12]. Under the program, RES projects enter into a 20 year contract to receive a fixed
price for the electricity they generate, as detailed in Table 1.1 [12]. The FIT incentives have
successfully driven RES investments in Ontario.
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Table 1.1: FIT rates for renewables, other than hydro, in Ontario, Canada [12].

Type of Installation Contract Price [¢/kWh] Revised
Application Size (in 2009) Established in 2009 Revised in 2012 Size (in 2012)

Rooftop
≤ 10 kW 80.2 54.9 ≤ 10 kW

mounted
10 – 250 kW 71.3 54.8 10 – 100 kW

solar PV
250 – 500 kW 63.5 53.9 100 – 500 kW
> 500 kW 53.9 48.7 > 500 kW

Ground
≤ 10 kW 64.2 44.5 ≤ 10 kW

mounted
> 10 kW

44.3
38.8 10 – 500 kW

solar PV
(Revised in 2010) 35.0 500 kW – 5 MW
10 kW – 10 MW 34.7 > 5 MW

Onshore wind
Any size

13.5
11.5 Any size

Offshore wind 19.0
Renewable ≤ 10 MW 13.8 ≤ 10 MW

biomass > 10 MW 13.0 > 10 MW

The FIT scheme has been reported to be the most efficient financial instrument in use today
[14], [15], that is effectively promoting RES based electricity generation. It is being utilized in
nearly 100 jurisdictions (as of 2012) to promote RES integration [11], with varying degrees of
success. It has been observed in recent years that in some jurisdictions, either the initial FIT
rates offered were reduced or the scheme was terminated within a few years of its introduction
(Tables 1.1 and 1.2). This is mainly because of the extensively high initial FIT rates, which
attracted significant RES investment and development, but had a negative impact on electricity
prices [19], [20], [21].

Similar to the FIT scheme for investors, local distribution companies (LDC) or DISCOs
also need to be encouraged to adapt energy conservation measures through suitable incentive
schemes, since the LDCs are, for obvious reasons, more inclined to sell energy than reduce their
consumption. Thus, there is a need to design suitable incentives for RES integration and energy
conservation, since the design of these incentives is usually driven more by the socio-political
factors than techno-economic criteria. Therefore, it is necessary to develop a comprehensive
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Table 1.2: Timeline of FIT implementation and reduction/termination in some jurisdictions.

Jurisdiction FIT Implemented FIT Reduced FIT Terminated
Australian Capital Territory [16] March 2009 July 2013 –
New South Wales, Australia [16] October 2010 – December 2011

Queensland, Australia [16] July 2008 June 2012 July 2014
South Australia [16] August 2010 September 2011 September 2013

Victoria, Australia [16] November 2009 January 2013 –
Ontario, Canada [12] February 2009 2012 –

Spain [17] February 2007 – January 2012
United Kingdom [18] April 2010 August 2011 –

and generic mathematical modeling approach to design the incentives for renewable integration
and energy conservation simultaneously, based on techno-economic reasoning used in traditional
integrated planning procedures.

1.2 Literature Review

This section presents a critical review of the research reported in the area of generation expansion
planning (GEP) considering RES and energy conservation.

1.2.1 Power System Planning

Deterministic approaches, with scenario analysis, have generally been used in power system
planning studies in the past [22], [23], [24]. The GEP problem are essentially of linear inte-
ger programming type, and traditionally solved using linear, dynamic, and integer programming
techniques. Research literature pertaining to modifications and improvements to the traditional
GEP model and their solution methodologies have been reviewed in [25], where the application
of artificial neural network, analytic hierarchy process (AHP), network flow theory, decomposi-
tion techniques, and heuristic optimization techniques, particularly genetic algorithm (GA) and
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simulated annealing, to the GEP problem is discussed.

A dynamic programming based approach to long-term planning of power systems is pre-
sented in [26] considering uncertainty. The paper suggests a flexible decision-making methodol-
ogy, where future investment decisions are based on the latest estimates of uncertain parameters.
However, the work considers only demand uncertainties, while uncertainties in cost estimates,
generation availabilities, etc., are neglected.

In [27], the effect of optimal spot pricing on GEP is examined using an integrated planning
framework and socially optimal investment conditions are derived. Optimal spot price forecasts
are integrated with direct load control and central dispatch, which produces socially acceptable
investment decisions for independent profit maximizing investors. It is suggested that spot pric-
ing can dampen the impact of load and price forecast uncertainties on the GEP.

Reference [28] examines generation investment decisions under time-of-use (TOU) rates, and
their relationship to power system planning for an electric utility. Using a non-linear dynamic
optimization model, considering social welfare maximization, the optimal capacity additions
in base and peaking plants and the optimal TOU pricing structure are determined. However,
investor-owned generation is not considered in this work, and thus the effect of a given TOU rate
on the investor’s profit cannot be analyzed.

Reference [29] assesses the impact of the deviation from least-cost GEP philosophy, resulting
from the restructuring of the power industry and the presence of GENCOs, on long-term planning
strategy. The work examines the effect this deviation has on electricity prices and suggests trade-
off methods for system planners, as it is argued that the investment decisions that are even non-
optimal from the planner’s point of view may need to be considered.

In [30], a modified GA is presented to solve the least-cost GEP problem. The modified
GA incorporates a stochastic crossover technique and an artificial initial population scheme to
achieve a faster search mechanism. It is noted that the modified GA achieves a faster execution
time than the simple GA and achieves a lower cost solution. However, the main shortcoming of
this paper is that the developed model is only applied to test systems, and thus implementation
on real power systems needs to be investigated.

Reference [31] presents a planning-cum-production simulation model that determines the
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optimal generation mix including distributed resources (DR), transmission upgradation, and in-
vestments in demand side management (DSM), while evaluating all central and local investments
simultaneously. The model is developed as a coordination of three optimization models: a local
area planning model that determinies DR and DSM, an investment model that looks after central-
ized generation and transmission investments, and a system operation model based on DC load
flow with stochastic load and generator availability.

A multi-period, multi-objective, GEP model that minimizes system cost, environmental im-
pact and incorporates risk of fuel price fluctuations is presented in [32]. The model is imple-
mented on the Mexican power system and solved using multi-criteria programming in the first
phase to determine a set of non-dominated solutions, and ranked using AHP in the second phase
to determine the best solution. However, the best outcome would depend on the decision maker’s
preference scale of the model objectives, and may result in a non-optimal or socially unaccept-
able final GEP solution.

A security constrained multi-GENCO GEP model is presented in [33], which includes loca-
tional marginal prices (LMP), transmission security, and a capacity payment from the regulator
as an incentive to GENCOs for adding new units. The model is based on an iterative framework
that combines inter-GENCO competition, simulated by LMP signals derived from an optimal
power flow (OPF), and the GENCO-planner coordination, simulated by security signals. The
main shortcoming of this paper is that the model is implemented only on test systems and its
performance on a real power system needs to be investigated.

An analytical approach, combining conceptual elements of classical capacity planning mod-
els and Mean-Variance Portfolio (MVP) theory, is presented in [34], to derive the efficient port-
folio structure comprising an arbitrary number of plant technologies, given uncertain fuel prices.
A static optimization model is presented to capture the fuel price risks in an MVP framework,
where the optimality conditions are derived from a societal point of view. However, no com-
parison of welfare optimum, investor optimum or market equilibrium is considered in this work.
Furthermore, although variance is used as a risk measure, a comparison with other risk indices,
such as, lower partial moments or value-at-risk, would be interesting to analyze.

The Ontario Power Authority (OPA) presented an Integrated Power System Plan (IPSP) in
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2007 [35]. The IPSP is designed to achieve Ontario’s energy goals, such as conservation, phase-
out of coal-fired generation, renewable integration, and realization of the smart grid. An inte-
grated planning criterion is applied to prioritize conservation and supply resources, and develop
the sequence of installation of resources to determine necessary transmission enhancements.
This document is used in this thesis to develop the Ontario system models used in all examples
presented throughout this work.

The shortcomings identified in the literature on GEP with RES are, in particular, the lack of
real system applications of GEP with proper modeling of RES. Hence, these issues are addressed
in the thesis by implementing the proposed GEP model on a realistic model of the power system
of the province of Ontario, Canada, with RES technologies modelled appropriately in the context
of GEP.

1.2.2 System Planning from Investor’s Perspective

In [36], a generation investment planning problem is formulated for a decentralized and profit-
maximizing investor, operating in a competitive market. The optimization model analyzes the
power plant profitability and optimal timing of new investments under different market designs.
However, the model considers a single plant only and assumes that the capacity and location of
the plant are given.

In [37], the socio-economic effects, such as social cost, pollution, and investor’s return from
Ontario’s standard offer program (SOP), and an emission cap and tax scheme are examined for
renewable energy projects, using an appropriate investment planning model. Various scenarios
are considered, such as minimizing social cost, guaranteeing a minimum acceptable rate of re-
turn (MARR) to investors, implementing a distributed generation (DG) penetration limit, LDC
purchasing of all the energy produced by DGs, and LDC paying for the emission tax. The work
observes that the considered SOP prices are quite high, resulting in an internal rate of return
(IRR) for investors significantly higher than their MARR. It also reports that the emission taxes
are rendered ineffective in reducing pollution when the LDC purchases all the energy produced
by the DGs, and the only benefit of implementing these taxes are the influence they may have
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in future capital investments. The paper, however, models the wind and solar PV generations as
dispatchable sources and does not consider any capacity limits for the feeders and substations.

A coordination framework is proposed in [38], which introduces an approval process for
investor-owned DG proposals submitted to the LDC. The framework consists of five modules,
one pertaining to investors and the rest to the LDC’s DG coordination algorithm. The module
for the investors maximizes their individual profits, while deriving the site, size, and time of DG
investments. It is demonstrated that the implementation of this framework enables more DG
selections, which in turn reduces emission and power losses and improves the voltage profile.
However, this work does not consider more than one DG to be installed at a bus, and approves
any DG proposal directly whose production is less than the bus demand.

A sensitivity analysis of the IRR of a solar PV investment project with respect to economic
factors, such as annual loan interest, normalized initial investment, unit price of electricity from
solar PV, etc., are presented in [39]. The project is implemented in three economic scenarios,
closely representing the PV markets of Europe, Japan and USA. However, the parameter per-
turbation approach employed in this work for sensitivity analysis is highly cumbersome and
computationally expensive, and there is a need to explore other methods.

Reference [40] proposes an investment planning model to determine the optimal investments
in large-scale solar PV projects, from an investor’s perspective. The model determines the op-
timal siting, sizing and timing of investments in solar PV projects, while maximizing the Net
Present Value (NPV) of profit for the investor. However, the work considers solar PV generation
as a dispatchable source. Moreover, the sensitivity analysis presented in this work to assess the
sensitivities of investor’s profit to model parameters is cumbersome and computationally expen-
sive.

From the previous discussion, identified shortcomings in the current literature studies on in-
vestor planning are the lack of realistic modeling of RES, the lack of consideration of investor’s
perspective, and the complexity of the risk analysis procedures proposed so far. Thus, this thesis
addresses these concerns by modeling the non-dispatchable RES appropriately from both the in-
vestor’s and central planner’s perspective, and the use of a Duality Theory (DT) based parametric
sensitivity analysis procedure to simplify the computation of risk indices.
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1.2.3 Centralized System Planning considering Renewable Energy Inte-
gration

The traditional planning process begins with the forecasting of energy demand and an associ-
ated forecast of peak load growth. Renewable generation is included as available during system
operation, and the output from committed thermal units is reduced to accommodate this RES en-
ergy [41], [42], [43]. The end result is a sub-optimal system planning and operation, because the
thermal units are operated below their economic dispatch, resulting in lower efficiency, higher
emissions, and higher operating costs.

The emerging practice is to include RES early in the planning process and consider them
within the energy growth forecast models, viewing them as negative loads, e.g. [44]. The plan-
ning process is thus based on the net load, which is the forecasted peak load less the renewable
generation penetration from existing and planned new installations. This renewable generation
is obtained from historical renewable resource data. However, a new dimension has been intro-
duced into GEP in [45], with the need for explicitly evaluating generation flexibility, vis-á-vis
the variability of net load, on the time-scale of system load following operations. Increased pen-
etration of intermittent renewable generation renders the operational flexibility of the generation
portfolio strategically important. This evaluation of flexibility is an important step, as it has a
direct impact on the system operating costs.

A flexible capacity planning tool is developed in [46], which determines the most economical
mix of capacities from renewable generation units, particularly solar, as well as storage capaci-
ties, while meeting reliability requirements against fluctuating demand profiles and weather con-
ditions. The capacity planning tool is based on hybrid (system dynamic model and agent-based
model) simulation and a meta-heuristic based optimization algorithm. The main concerns with
this work are that only a single-year snapshot plan is obtained, and dynamic capacity addition
plans are not discussed. Furthermore, the planning model only considers the cost aspects and
ignores the revenues.

In [47], a stochastic chance-constrained planning model to incorporate large-scale grid-connected
solar PV power stations is proposed, where solar irradiance is modeled as a stochastic time se-
ries. The planning model can directly obtain the peak capacity limits of the solar PV generating
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systems. However, the work concentrates on the determination of optimal capacity of solar PV
without any consideration to PV cost components.

Reference [48] examines the impact of wind power generation on system operation cost,
reliability and utility expansion plans. The capacity factors of wind generation are computed
for two configurations: the individual wind farm model and the dispersed wind power system
model. However, the transmission system is not considered; thus, the studies on the impact of
wind power integration on reliability and utility expansion plans are inconclusive.

In [49], an optimization method is proposed for the optimal expansion planning of fast-
response generating capacity (e.g., gas-fired units) in order to accommodate the uncertainty of
wind generation. The study utilizes a mixed integer programming based, security constrained
unit commitment for analyzing operational and reliability issues. The model is implemented on
a six-bus test system only, and consequently its performance on a real test system is not verified.

In [50], the impact of emission mitigation and incentive schemes, such as FITs, RES quota,
emission trade, and carbon tax on GEP is studied from a GENCO’s perspective. The traditional
model for investor’s profit maximizing capacity expansion plan is augmented by introducing
constraints pertaining to RES quotas, emission limits, FITs, and cash flows resulting from green
certificate trading. The uncertainty associated with RES is taken care of by a suitable capac-
ity factor, demonstrating that there is a need for proper incentive mechanisms to render RES
economically sustainable. However, the model, implemented for a hypothetical GENCO in the
Italian electricity market, does not consider a transmission system and its corresponding power
flow bounds.

The issue of uncertainties in GEP with integration of RES (particularly wind) is discussed
in [51], where an offline flexibility index is proposed to evaluate the variability of wind generation
and examine its effect on GEP and market operation. However, a deterministic approach, similar
to unit commitment, is used in this work to consider the uncertainties of wind generation, which
is otherwise inherently stochastic.

Reference [52] presents a bi-level optimization approach that designs efficient incentive poli-
cies to encourage investments in RES based generation. The optimization model’s effectiveness
is demonstrated by the incentives’ capability to achieve the target RPS. The lower level of the
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model is the traditional central planner making decisions on capacity expansion based on cost
minimization, while the upper level involves the policy maker designing RES incentives that
influences the lower level planner’s decision.

The research literature has addressed the GEP problem extensively, as discussed in [53],
tackling the inherent uncertainties of integrating non-dispatchable sources (e.g., wind and solar)
as well as developing multi-level, multi-criteria models to consider the conflicting objectives of
profit maximization of the investor and system cost minimization of the planner. However, little
work has been reported addressing the design of optimal incentives to attract investment in RES
by GENCOs, which is one of the objectives of this thesis.

1.2.4 Integrated Resource Planning

The traditional power system planning problem considers demand side activities as external fac-
tors, i.e., parameters, to the planning model, and renewable generation is incorporated at the
operational stage. Hence, to achieve the objectives of incentive design for RES integration and
energy conservation, the classical Integrated Resource Planning (IRP) philosophy needs to be
re-visited.

IRP takes into account the supply-side and demand-side resources as a whole and uses them
in an efficient, economic, and rational way, so as to reduce the investment in new capacity in-
stallations and operating expenses while providing adequate energy supply at lowest cost. The
resource choices for IRP are conventional and renewable power plants, owned by either large
utilities or independent power producers, improvements in the transmission and distribution sys-
tems, and DSM [54]. The IRP philosophy was a new approach in the 1990s, evolving alongside
electricity industry deregulation, and faced several implementational issues at its developmental
stage [55]. The revenue loss of the utilities due to reduced demand, and their failure to consider
environmental and social factors were some of the barriers. Thus, it is suggested in [55] that
proper financial incentives to LDCs could improve the delivery of DSM services, and environ-
mental and social factors need be incorporated in the IRP.

A multi-objective framework, using compromise programming technique, to simultaneously
integrate various DSM options in electric utilities’ IRP is presented in [56]. The paper char-
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acterizes the DSM options as supply side resources (e.g., efficient lighting as non-dispatchable
source, direct load control programmes as thermal generating units) and examines their inter-
action among themselves along with their simultaneous vis-à-vis sequential integration in the
IRP.

Restructuring of the electricity industry and the resulting competitive environment influenced
modifications in the classical IRP strategy. From cost minimization and system reliability max-
imization approach, IRP evolved to a stage where capacity additions are considered as invest-
ments toward profitability. Such a modified IRP procedure is proposed in [57], which takes
into account the associated uncertainties of production-costing through a segmentation method
based, dynamic programming formulation. The work suggests that modified IRP procedures are
tailored to match the uniquely specified goals decided by the problem at hand, and a general
purpose, universal IRP optimization model does not exist.

A holistic GEP model, based on the classical IRP philosophy, is therefore needed, which
is not only able to provide the traditional optimal solution to GEP problems, but is also de-
signed to determine the optimal incentives for both RES integration and energy conservation.
Such a model, from the perspective of the central planning authority (CPA) that includes all the
economic transactions between itself with GENCOs and LDCs, is developed in this thesis to
determine the optimal incentives for the integration of RES, accounting for the investor interests.

1.3 Research Objectives

The main objectives of the research presented in this thesis are as follows:

• Develop an investment planning model for ground-mounted solar PV generation projects in
a large inter-connected power system. The planning model, which is from the perspective
of a private investor, seeks to determine the optimal size, location, and timing of new solar
PV projects while maximizing the investor’s profit.

• Apply Duality Theory (DT) based sensitivity techniques to examine the sensitivity of the
NPV of investor’s profit to changes in parameters of the solar PV investment planning
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model. This is used to formulate a novel mathematical relationship to obtain appropriate
risk indices for the investment projects.

• Develop a novel holistic GEP model from the perspective of the CPA to determine the
optimal incentive rates for RES integration and energy conservation. The proposed GEP
model is envisaged to achieve targeted penetration level of RES technologies over a certain
time frame, as well as a targeted energy conservation and corresponding demand reduc-
tion. In addition, the new model is also designed to perform the traditional task of a GEP
framework, i.e., to determine the optimal siting, sizing, timing and technology of new in-
stallations. The investor’s interests are also represented in this model to be able to obtain
adequate incentives.

All the research presented in the thesis considers the Ontario power system as the test case.
Hence, a comprehensive modeling of the Ontario grid has been carried out based on real system
data.

1.4 Outline of the Thesis

The rest of the thesis is structured as follows: Chapter 2 discusses the background pertaining to
the methodologies and techniques used to carry out the presented research. Thus, power system
generation planning methodologies from both the CPA’s and investor’s perspective, along with
the determination of sensitivity indices using the DT-based method, FD approach, and Monte
Carlo simulations, are presented. This chapter also provides a brief description of optimization
problems with appropriate linearization techniques, as well as risk assessment indices.

In Chapter 3, a DT-based method of computing sensitivity indices for a solar PV investment
planning model is discussed, and the results of applying this technique to an Ontario planning
model are presented and compared with those computed using an FD approach and Monte Carlo
simulations. A novel method for computing investor’s risk indices for solar PV projects using the
DT-based sensitivity indices and its application to the Ontario planning model is also presented.
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In Chapter 4, a new holistic GEP model which determines the optimal incentives required
to achieve a targeted penetration level of RES and energy conservation over the plan horizon is
presented. The model is implemented and demonstrated for Ontario’s grid, discussing various
scenarios of RES penetration target variations, conservation target variations, fossil-fuel price
variations, and others.

Finally, Chapter 5 presents a summary of the research and its major contributions, with brief
outline of possible future research directions in this area.
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Chapter 2

Background Review

A review of the background topics pertaining to the research presented in this thesis and the tools
used for analysis are presented in this chapter. The GEP problem is discussed from both the
central planner’s and investor’s perspective. Sensitivity analysis procedures based on DT, Monte
Carlo simulations and FD methods are explained, and a review of risk assessment measures, such
as Pay-back-period (PBP), IRR, Value-at-Risk (VaR), are also presented. Finally, Mixed Integer
Non-Linear Programing (MINLP) and Mixed Integer Linear Programing (MILP) problems are
briefly discussed, describing a linearization technique that is employed here to transform MINLP
into MILP problems.

2.1 Traditional GEP

The traditional power system planning problem seeks a least-cost strategy for long-term expan-
sion planning of the generation (GEP), transmission and distribution systems, in order to ade-
quately meet the load forecast under a set of technical and economic constraints [58]. A generic
GEP framework is presented in Figure 2.1. The initial step is to choose a planning horizon, with
the total budget allocation for executing the plan, with annual budget constraints, and existing
related policies framing the plan being usually specified.
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Optimal Plan

Sizing, siting, and 
timing of new 
capacity additions

Power System 
Planning

Least-cost Optimization

Parameter Inputs:
Discount rate
Inflation rate
Others...

Resource Constraints:
Hydro availability
Fossil-fuel supply
Transmission availability

Portfolio of Options:
Generation 
resources

Load Forecast

Plan Conditions:
Available budget
Existing policy
Targeted horizon

Figure 2.1: Generic framework of traditional GEP.

The next step in the GEP exercise is determining the load forecast over the plan period, which
is effectively the main driving parameter. Since inaccurate load forecast may lead to capacity
shortages or surplus, which are both undesirable and non-optimal, it is the general practice to
create long-term load forecast for three scenarios: base, high and low load growths, where the
base case is selected as the basis for the GEP, while the other two define the possible variability
of the plan outcome. The load forecast is updated continuously, sometimes on an annual basis,
in order to adjust, if possible, the outcome of the initial GEP exercise.

Load forecast is carried out using load duration curves, which are constructed by re-arranging
the chronological load curve in descending order of magnitude, as shown in Figure 2.2. A load
duration curve determines the number of hours per year when the load is greater or lesser than any
particular amount. The load duration curves from previous years provide the past trend of load
growth, which, along with the economic growth trends of past years, helps to determine the load
forecast. The base, intermediate, and peak load blocks are determined from the approximated
load duration curve, as shown in Figure 2.2a, where base load is considered to be present 100%
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(a) Theoretical concept of base, intermediate, and peak loads.
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(b) Defining base, intermediate, and peak loads for mathematical modeling.

Figure 2.2: Load duration curve [58].

of time. It is to be noted that, in mathematical models, the load blocks are computed by the time
duration of these three load levels, i.e., vertical blocks instead of the horizontal ones [56], as
shown in Figure 2.2b. This is done to ensure that the computed power flow, more particularly
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energy flow, in a transmission line is unidirectional in each of these base, intermediate, and peak
load conditions.

The portfolio of options module in Figure 2.1 include the assessment of supply-side re-
sources, i.e., generation requirements determined primarily from peak demand forecasts [58].
An adequate peak capacity requirement is determined by assuming a minimum generation re-
serve margin (GRM) beyond the forecasted peak demand [58], [59], so as to ensure high system
reliability standards for catering to un-anticipated demand growth, equipment failure, or other
unforeseen events. The GRM is defined in [58] as:

GRM(%) =
Generation capacity − Peak load

Peak load
× 100 (2.1)

The constraints on resources primarily involve availability of water for existing and potential
hydro plants; availability of coal, gas or oil supply linkages for fossil-fuel based power plants;
and the transmission availability between new installations and load centers. These constraints,
in conjunction with the budgetary and policy conditions, significantly influence plan decisions.

Some other external factors, such as discount rate and inflation rates, are included as para-
metric inputs to the GEP model. A least-cost optimization is carried out then with inputs from
all of the components described earlier, followed by the selected plan’s implementation, which
is then monitored to make changes in the assumed or forecasted states of the power system.

2.1.1 Central Planner’s Perspective

Traditional GEP has been driven by the CPA’s perspective. In this context, the GEP takes into
account the economic and technical characteristics of existing generation units and resources
available for expansion, and also considers the predictable trends of cost variations and technical
developments of the available technologies. The economics of GEP primarily include the cap-
ital cost, fuel cost, and operation and maintenance (O&M) cost, and the CPA’s objective is to
minimize the total discounted cost of implementing the plan.

The objective function of the mathematical model for a GEP problem, from the CPA’s per-
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spective, is the minimization of the total discounted costs, as given by:

Min. NPV of CS T =
∑

plan horizon

CST DF =
∑

plan horizon

(CI + COM + CFL) DF (2.2)

where all variables in this and other equations are defined in the Nomenclature section. The total
annual cost CI to install new generation is computed as the product of capital cost, given by CC,
and the new capacity of the unit NC, as follows:

CI = NC CC (2.3)

The annual O&M cost is generally divided in two components, the annual fixed O&M cost OMF

and the annual variable O&M cost OMV, computed using the annual installed capacities Cap and
annual energy generation E, respectively, as follows:

COM = OMF Cap + OMV E (2.4)

The CPA, in addition to the above, may have an emissions minimization objective incorpo-
rated in the GEP, with emissions being computed as:

Total Emission =
∑

plan horizon

Em E (2.5)

The primary technical constraints from the CPA’s perspective are the traditional, annual en-
ergy supply-demand balance, given by:

EGen − EExp + EImp = EDem (2.6)

and the annual capacity adequacy constraint, as follows:

Cap ≥ (1 + b0)PD (2.7)

The total annual energy generated by a power plant can be estimated using an annual average
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capacity factor CF of the generator. By definition, the CF of a generator is the ratio of its actual
energy output over one year to its potential output if it operated at rated capacity the entire time,
as follows:

CF =
Annual energy generation in MWh

Name plate or rated capacity in MW × 8760 hours
(2.8)

2.1.2 Investor’s Perspective

Modern investment evaluation techniques, such as cost-benefit analysis, NPV of profit, IRR, etc.,
are generally employed to evaluate an investment project [60]. The cost-benefit analysis looks
at the project cost components and project revenue generation over the plan horizon. For an
investor’s profit maximization model, the NPV of profit is computed as:

NPV of Profit = NPV of REV − NPV of CS T (2.9)

where REV is the annual revenue realized from selling energy generated at market-price ν, and
RES incentive ρ based capacities, i.e.:

REV = ν EMP + ρ EICV (2.10)

and CST is defined in (2.2).

The most important project cost component, from an investor’s perspective, is the capital
cost CC, which is the cost of installing and commissioning new units. It incorporates the cost
of equipment UC, the cost of labour LbC to install and commission, the cost of the land LdC

required to place the unit, and the cost TC of transporting the unit from its point of purchase to
the site where it is installed. All these cost components are computed on the basis of the dollar
amount required to install a unit with generation capacity 1 kW, i.e., all these costs have a unit of
$/kW. Mathematically, the CC is represented as follows:

CC = UC + LbC + LdC + TC (2.11)

The following constraint related to the annual budget ABG can be included, restricting the
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amount of money available per year to install new capacities:

CI ≤ ABG (2.12)

and a limit on total available budget TBG is also imposed, as follows:

NPV of CS T ≤ T BG (2.13)

2.2 Sensitivity Analysis

2.2.1 Duality Theory (DT) Method

Sensitivity analysis is of great importance in any mathematical modeling, especially economic
modeling. A local sensitivity analysis based on DT is proposed in [61] and [62], which is a
perturbation based approach to compute the sensitivities in optimization based models. These
sensitivity expressions use the dual variables (Lagrangian multipliers) at the optimal solution and
the properties of the Karush-Kuhn-Tucker (KKT) optimality conditions. The DT approach is an
alternative to the Monte Carlo simulation [63] and Finite Difference (FD) approaches [64], and
it has the ability to determine all the parameter sensitivities simultaneously. A description of
the DT based method for obtaining all local sensitivities is discussed next based on [61]. Let
consider a primal Non-Linear Programming (NLP) problem as follows:

Min. z = f (x, a) (2.14)

s.t. h(x, a) = b (2.15)

g(x, a) ≤ c (2.16)
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where h(x, a) = [h1(x, a), · · · , hL(x, a)]T and g(x, a) = [g1(x, a), · · · , gM(x, a)]T . This primal
problem has an associated dual problem which can be defined as follows:

Max. zD = In fx
[
L (x, λ, γ, a, b, c)

]
(2.17)

s.t. γ ≥ 0

where
L (x, λ, γ, a, b, c) = f (x, a) + λT [h(x, a) − b] + γT [

g(x, a) − c
]

(2.18)

is the Lagrangian function associated with the primal problem. The primal and dual problems
are solved by applying the KKT first order optimality conditions as follows:

∇x f (x∗, a) + λ∗T∇xh (x∗, a) + γ∗T∇xg (x∗, a) = 0 (2.19)

h (x∗, a) = b (2.20)

g (x∗, a) ≤ c (2.21)

γ∗T
[
g (x∗, a) − c

]
= 0 (2.22)

γ∗ ≥ 0 (2.23)

where x∗ and (λ∗, γ∗) are the primal and dual optimal solutions, respectively. Conditions (2.20)
and (2.21) are the primal feasibility conditions, while the complementary slackness conditions,
referred to as the dual feasibility conditions, are given by (2.22) and (2.23).

In order to simplify the DT method mathematical derivation, the above mentioned parameters
a, b, and c are assumed to form a set p, i.e., p = [a b c]T . The DT method allows determining
all the sensitivities at once, i.e., the sensitivities of the optimal solution (x∗, λ∗, γ∗, z∗) to local
changes in the parameters p. This is achieved by introducing a small perturbation ∆p in p,
which results in a shift of the optimal solution ∆x. Mathematically, this can be represented by
differentiating the objective function (2.14) and the KKT conditions (2.19) – (2.23) as follows:

∇T
x f (x∗, p) dx + ∇T

p f (x∗, p) dp − dz = 0 (2.24)
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∇xx f (x∗, p) +

L∑
l=1

λ∗l ∇xx hl (x∗, p) +

M∑
m=1

γ∗m ∇xx gm (x∗, p)

 dx

+

∇xp f (x∗, p) +

L∑
l=1

λ∗l ∇xp hl (x∗, p) +

M∑
m=1

γ∗m ∇xp gm (x∗, p)

 dp

+∇x h (x∗, p) dλ + ∇x g (x∗, p) dγ = 0n (2.25)

∇T
x h (x∗, p) dx + ∇T

p h (x∗, p) dp = 0L (2.26)

∇T
x gm (x∗, p) dx + ∇T

p gm (x∗, p) dp = 0 ∀ γ∗m , 0 ; m ∈ J (2.27)

∇T
x gm (x∗, p) dx + ∇T

p gm (x∗, p) dp ≤ 0 ∀ γ∗m = 0 ; m ∈ J (2.28)

− dγm ≤ 0 ∀ γ∗m = 0 ; m ∈ J (2.29)

dγm

(
∇T

x gm (x∗, p) dx + ∇T
p gm (x∗, p) dp

)
= 0 ∀ γ∗m = 0 ; m ∈ J (2.30)

where J is the set of all indices m for which gm (x∗, p) = 0, i.e., only the active inequality
constraints are taken into consideration.

Defining the set of all feasible perturbations as:

dq =
[
dx dp dλ dγ dz

]T (2.31)

Equations (2.24) – (2.30) can be written as:

Y1 dq =


Fx Fp 0 0 −1
Fxx Fxp HT

x GT
x 0

Hx Hp 0 0 0
G1

x G1
p 0 0 0





dx

dp

dλ

dγ

dz


= 0 (2.32)
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Y2 dq =

G0
x G0

p 0 0 0
0 0 0 −I0

mJ
0




dx

dp

dλ

dγ

dz


≤ 0 (2.33)

where the sub-matrices of Y1 and Y2 are expressed as follows:

Fx =
[
∇T

x f (x∗, p)
]

(1×n)
(2.34)

Fp =
[
∇T

p f (x∗, p)
]

(1×P)
(2.35)

Hx =
[
∇T

x h(x∗, p)
]

(L×n)
(2.36)

Hp =
[
∇T

p h(x∗, p)
]

(L×P)
(2.37)

Gx =
[
∇T

x g(x∗, p)
]

(mJ×n)
(2.38)

Gp =
[
∇T

p g(x∗, p)
]

(mJ×P)
(2.39)

Fxx =

∇xx f (x∗, p) +

L∑
l=1

λ∗l ∇xx hl (x∗, p) +

mJ∑
m=1

γ∗m ∇xx gm (x∗, p)


(n×n)

(2.40)

Fxp =

∇xp f (x∗, p) +

L∑
l=1

λ∗l ∇xp hl (x∗, p) +

mJ∑
m=1

γ∗m ∇xp gm (x∗, p)


(n×P)

(2.41)

and G0
x and G0

p refer to the sub-matrices of Gx and Gp, respectively, associated with the null
γ-multipliers of the active constraints; G1

x and G1
p refer to the sub-matrices of Gx and Gp, re-

spectively, associated with the non-null γ-multipliers of the active constraints; and −I0
mJ

is the
negative of a unity matrix after removing all rows m ∈ J for which γ∗m , 0.

Re-arranging (2.32) – (2.33) to separate the input perturbation parameters dp and the output
perturbation variables from the composite perturbation vector dq, one gets:

U
[
dx dλ dγ dz

]T
= S dp (2.42)
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V
[
dx dλ dγ dz

]T
≤ T dp (2.43)

where the matrices U, S , V and T are given by:

U =


Fx 0 0 −1
Fxx HT

x GT
x 0

Hx 0 0 0
G1

x 0 0 0

 (2.44)

S = −


Fp

Fxp

Hp

G1
p

 (2.45)

V =

G0
x 0 0 0

0 0 −I0
mJ

0

 (2.46)

T = −

G0
p

0

 (2.47)

The optimization solution generally identifies the active and inactive inequality constraints,
i.e., non-zero and zero valued Lagrange multipliers respectively, for a non-degenerate regular
case. Matrix U in (2.40) is generally invertible as the solution to the optimization problem
(x∗, λ∗, γ∗, z∗) is typically a regular non-degenerate point. If any degenerate constraint, i.e., a zero-
valued Lagrange multiplier of an active constraint, is present, this is removed for computational
simplicity, as proposed in [65]. If the degenerate constraints are not removed for constructing U,
alternative procedures that are more computationally involved are proposed in [61], [62]. For the
computation of sensitivity indices, the non-degenerate inequality constraints are also converted
to equality constraints [61], thus reducing the matrices U and S to the following form:

U =


Fx 0 −1
Fxx HT

x 0
Hx 0 0

 (2.48)
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S = −


Fp

Fxp

Hp

 (2.49)

It is to be noted here that all the non-basic variables are to be eliminated as well, so as to achieve
an invertible matrix Hx. Thus, the matrix U becomes invertible and the solution to (2.42) is
unique and is given by: [

dx dλ dγ dz
]T

= U−1S dp (2.50)

while (2.43) is satisfied trivially as V does not exist. Hence, replacing the vector dp in (2.48) by
a matrix including several vectors (columns) with the corresponding unit directions, the matrix
with all derivatives, i.e., the sensitivity indices, is given by:[

dx
dp

dλ
dp

dγ
dp

dz
dp

]T

= U−1 S (2.51)

2.2.2 Monte Carlo Simulations

A deterministic problem is shown in Figure 2.3a, in which all the information required (input
variables u) for a system f is available, and, therefore, all the output variables y can be computed
with certainty. For this deterministic problem, if the input variables are probabilistic in nature,
i.e., defined by probability density functions (p.d.f.s) with a mean equal to their respective deter-
ministic values, the output variables will also be p.d.f.s, as shown in Figure 2.3b [66].

Uncertain input variables of f that are represented by their p.d.f.s, can be represented as a set
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Figure 2.3: (a) Deterministic approach and (b) Monte Carlo simulation [66].
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of randomly selected values, generally numbering in thousands, to generate a set of values for
each output variable, which in turn define the output p.d.f.s, by applying the deterministic model
f to each of these input variable values. This is referred to as the Monte Carlo simulation method,
which is useful for simulating a model with uncertainty in the inputs, and thereby can be used to
perform sensitivity analysis of the model with respect to its parameters.

For sensitivity analysis, Monte Carlo simulation can be applied to an optimization model on
an OAT (One-factor-at-A-Time) basis. Thus, each parameter under consideration as an input (in)
is assigned a normally distributed p.d.f., since the parameters need to be perturbed symmetrically
around their base values in order to obtain unskewed and unbiased sensitivity indices. The latter
is due to the fact that in a normally distributed p.d.f. of a parameter, the expected value or mean
is the same as the median of the distribution, which allows for a symmetrical variation of the
parameter for various standard deviations; additionally, for normally distributed p.d.f., the mode
of the variation is also equal to its median, which enables equal perturbation of a parameter
around its deterministic value. Therefore, all the parameters in this thesis, are considered to be
normally distributed for probabilistic studies with the standard deviation being 1% of its mean
value, i.e.,

σ%
in = 100

(
σin

µin

)
(2.52)

where µin is the original value of the parameter. The standard deviation of the resulting output
(out) can then be computed as a percentage of its mean value, as follows.

σ%
out = 100

(
σout

µout

)
(2.53)

Then, the ratio of the standard deviations in percentage of output and input can be considered a
sensitivity index computed by the Monte Carlo method, as follows:

ξ%
MC =

(
σ%

out

σ%
in

)
(2.54)

Thus, for 1% standard deviation in input parameter, ξ%
MC = σ%

out.
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2.2.3 Finite Difference (FD) Method

The FD approach discussed in [64], is in essence an individual parameter perturbation method.
In this approach, each parameter is increased by an x% (1% in this thesis) of its base value, and
the output is computed from the optimization model. The difference between the optimization
output with a perturbed parameter (OnewFD) and the original output without perturbation (Obase)
denotes the change in the output for a 1% increase in a given parameter, while other parameter
values remain un-altered. This change is the “true” sensitivity index of the system optimization
output with respect to the parameter in consideration, i.e.:

ξFD = OnewFD − Obase (2.55)

This sensitivity index can also be represented as a percentage of Obase using the following ex-
pression:

ξ%
FD = 100

(
OnewFD − Obase

Obase

)
(2.56)

2.3 Risk Assessment Tools

2.3.1 Investment Assessment [60]

Discounted cash flow techniques, such as the NPV of profit and the IRR, are standard measures
for comparative appraisal of long-term investment projects. The NPV of profit from a project is
described mathematically as:

Ω =

N∑
t=1

REV t −CS T t

(1 + α)t (2.57)

A positive NPV indicates that a value is being added to the investment while a negative one
signifies loss. A higher value of NPV reflects more return on investment, but this measure fails
to compare similar projects with different initial investments. To overcome this downside of NPV
analysis, a percentage gain relative to the investment, the IRR, is used as a complement measure
to NPV.
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Figure 2.4: IRR example: (a) annual cash flow and (b) NPV of profit vs. discount rate.

The IRR on an investment is the annualized, compounded rate of return that renders the NPV
of the net cash flow from a particular investment to zero. In more specific terms, the IRR of an
investment is the discount rate at which the NPV of costs (negative cash flows) equals the NPV
of the benefits (positive cash flows), and is given as:

N∑
t=1

REV t

(1 + αirr)t =

N∑
t=1

CS T t

(1 + αirr)t (2.58)

A project having IRR values greater than the discount rate is assessed to be economically feasi-
ble, and a higher difference between these rates result in a lower financial risk for the investor;
projects with IRR less than the discount rate are either deferred or discarded entirely. The IRR
of a project, whose annual cash flows are shown in Figure 2.4a, is explained in Figure 2.4b by
plotting the variation of NPV of profit with respect to the discount rate.

The simple PBP method usually refers to the number of years required to recover the initial
investment cost. It is computed by adding the annual net cash flows until the sum becomes equal
to or greater than the initial investment, which is also known as the break-even point, and the year
in which this occurs is the simple PBP. As this procedure does not incorporate the time value of
money, a discounted PBP is calculated with the NPV of the annual net cash flows, discounted to
the year of initial investment. For the cash flow shown in Fig. 2.4a, the simple PBP is 10 years,
and the discounted PBPs are shown in Table 2.1 with variation in the discount rate. For an 8%
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Table 2.1: Discounted PBPs with discount rate variations.

α [%] 0 1 2 3 4 5 6 7 8
PBP [Years] 10 11 12 13 14 15 16 18 No PBP

discount rate, which is greater than the IRR of this project, there is no PBP, as the investment is
not recovered over the project duration (negative NPV in Fig. 2.4b).

2.3.2 Risk Indices [60]

In risk management, VaR is a widely used risk metric that measures and quantifies the level of
financial risk within an investment portfolio over a specific time frame. It is computed using the
cumulative distribution function (c.d.f.) of the investment profit or loss portfolio, as shown in
Figure 2.5. It gives the measure of the amount of potential profit or loss (depending on whether
the c.d.f. is of profit or loss), the probability of occurrence of that amount of profit or loss, and the
considered time frame. For example, as shown in Figure 2.5, if the c.d.f. for the NPV of profit Ω0
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  (  )      
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Ω0 [$]     $120 Million 
0 
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Figure 2.5: Definition of VaR.
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in an investment has a value of $100 million at 5% cumulative probability, i.e., CP(Ω0) = 0.05,
in financial terms it results in a VaR of $20 million with 5% probability (as µΩ = $120 Million);
this signifies that a minimum profit of $100 million is predicted with a confidence level (CL) of
95%, or, in other words, a 5% probability that the expected profit will reduce by $20 Million.

2.4 Mathematical Programming [67]

An optimization problem or mathematical programming problem is a mathematical technique
that maximizes or minimizes a real function in order to determine the best outcome (such as
maximum profit or least cost) of a given mathematical model while satisfying a set of con-
straints. A typical representation of the optimization problem is expressed in (2.14)–(2.16). An
optimization problem with all functions f, h, and g being represented by linear relationships is
called a Linear Programming (LP) problem. Its feasible region is a convex polyhedron, which
is a set defined by the intersection of several finite half spaces, each of which is defined by a
linear inequality. The objective function is a real-valued function defined on this polyhedron. An
LP solution algorithm seeks the point on the polyhedron where this objective function has the
smallest (or largest) value, if such a point exists. If all the variables in the vector x are integers,
then the problem is referred to as an Integer Programming problem and if one or more variables
are integers, then the problem becomes a Mixed Integer Linear Programming (MILP) problem.

If there exists at least one non-linear equation in (2.14) to (2.16), then it is termed as a
non-linear optimization or Non-Linear Programming (NLP) problem. In addition, if at least one
element of the vector x is an integer variable, then the optimization is a Mixed Integer Non-Linear
Programming (MINLP) problem. The latter class of optimization problem is the most difficult
to solve and is generally tackled in two stages; thus, initially an MINLP is turned into an NLP
by relaxing the integer constraints and a solution is derived, and in the next step, the non-integer
variables of the NLP solutions are plugged in and the integer constraints are switched on. If
the integer constraints are linear, then the second stage becomes an MILP problem, otherwise a
linearization technique, like the one described next, may be applied to remove the non-linearity
of the integer constraints. If linearization is not possible, then heuristic approaches can be incor-
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porated to solve the MINLP problem.

2.4.1 Linearization

If the non-linearity of an MINLP or NLP is quadratic in nature, as is the case of one of the
models proposed in this thesis, there are linearization techniques available to render the problem
an MILP or LP [68]. Thus, the quadratic term can be a product of any two binary or integer or
continuous variables. If the product is given by:

y = x1 x2 (2.59)

where both x1 and x2 are continuous positive variables, and are bounded by:

xMIN
1 ≤ x1 ≤ xMAX

1 (2.60)

xMIN
2 ≤ x2 ≤ xMAX

2 (2.61)

then, with the necessary conditions of xMIN
1 ≥ 0 and xMIN

2 ≥ 0, the product y can be expressed in
a linear form by the following two equations:

y ≤ xMAX
1 x2 (2.62)

y ≥ xMIN
1 x2 (2.63)

The value of x1 can be deduced from the optimization solution using x1 = y/x2 for x2 , 0, with
a further necessary condition that the variable x1 is not used in any other equation in the model.

2.4.2 Mathematical Programming Tools

The General Algebraic Modeling System (GAMS) [69], designed to solve linear, nonlinear, and
mixed integer optimization problems, contains an integrated development environment (IDE)
and uses a group of third party optimization solvers. One such solver is CPLEX [70], which is
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used in this research work to solve MILP problems. It uses either the simplex method or the
branch and cut algorithm; the latter is suitable for MILP problems, which involves running the
branch and bound algorithm for the relaxed LP optimization, using cutting planes to tighten the
relaxations.

2.5 Summary

This chapter presented a review of the background relevant to the research presented in the next
two chapters. The chapter described the basic formulations of the GEP procedure from both an
investor’s and central planner’s perspective. The methods to determine the sensitivities of the
objective function to various input parameters of a model were also discussed. The DT based
method is the primary procedure applied here to determine sensitivity indices of the solar PV
investment model, and is also compared with respect to the indices obtained with the Monte
Carlo simulations and the FD approaches. A short discussion on various risk metrics applicable
to investment projects was presented next, and the chapter is concluded with a brief background
on optimization problems and linearization techniques relevant to the solar PV investment model
described in the Chapter 3 and the GEP model of Chapter 4.
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Chapter 3

Risk Assessment of Solar PV Investment
Projects

3.1 Introduction

In this chapter, the DT-based method discussed in Chapter 2 is applied to a solar PV investment
planning model to determine the sensitivity indices of the NPV of profit with respect to the
model input parameters. The DT-based method is used to determine how sensitive the NPV is
to perturbations of input parameters for a multi-year investment planning model of the Ontario
grid. The computed sensitivities are compared with those obtained with Monte Carlo simulation
and the FD based approaches. A novel relationship is proposed between the sensitivity indices
and investor’s profit for a certain confidence level to determine the risk indices for an investor in
solar PV projects.

3.2 Solar PV Investment Model

The solar PV investment planning model is based on [71], and is an MILP problem comprising
continuous and binary variables, with the objective of maximizing the NPV of the investor’s
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profit to determine the optimal set of solar PV investment decisions. Thus, the NPV is defined
as:

ΩP f t =

NP f t∑
k=1

∑Z
i=1 (REVk,i −CS Tk,i)

(1 + α)k (3.1)

where
REVk,i = ρICV

PV EPV
k,i (3.2)

CS Tk,i = CCPV
k,i NCPV

k,i + OMPV
k EPV

k,i (3.3)

Here, the Capital Cost CC is defined, based on (2.11), as:

CCPV
k,i = UCPV

k + LbCPV
k,i + TCPV

k,i + LdCPV
k,i (3.4)

and NCPV
k,i , an integer variable constructed using binary variables Wq and an assumed installation

step size of 5 MW, is given by:

NCPV
k,i = 5

Q∑
q=1

Wq (3.5)

The various operational, planning and financial constraints of the model are as follows:

• Supply-Demand Balance: The zonal power demand is met from the power generated by the
conventional and solar PV sources, with the inter-zonal transmission network represented
by a dc power flow model for any surplus/deficit power transfer from/to the zone as follows:

PConv
k,i + PPV

k,i − PDEk,i =

Z∑
j=1

Bk,i, j

(
δk,i − δk, j

)
(3.6)

• Conventional Energy Generation Limit: The annual energy available from conventional
sources, which are assumed to be dispatchable sources only, is constrained by the annual
average capacity factor applied to the installed generation capacity as follows:

EConv
k,i ≤ 8760 CapConv

k,i CFConv
i (3.7)
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• Solar PV Energy Generation Limit: The annual energy availability from the solar PV
generation, i.e., a non-dispatchable source, is specified by its installed capacity and annual
average capacity factor as follows:

EPV
k,i = 8760 CapPV

k,i CFPV
i (3.8)

• Transmission Line Flow Limits: The power transfer capability between zones is limited by
the maximum transfer capacity, depending on the impedances of the transmission lines, as
follows:

Bk,i, j

(
δk,i − δk, j

)
≤ PT MAX

k,i, j (3.9)

• Bus Angle Limits: In order to ensure system stability, the power angles at the zonal buses
are bounded as follows:

δMIN ≤ δk,i ≤ δMAX (3.10)

• Annual Budget Limit: Annual expenditure of the investor on new solar PV installations is
constrained as follows:

Z∑
i=1

CCPV
k,i NCPV

k,i ≤ ABGk (3.11)

• Total Budget Limit: Total investment budget of the investor on solar PV installations is
constrained as follows:

NP f t∑
k=1

Z∑
i=1

(
CCPV

k,i NCPV
k,i + OMPV

k EPV
k,i

)
≤ T BG (3.12)

• Dynamic Constraint on Solar PV Capacity Addition: This ensures cumulative capacity
addition updates as new solar PV installations are implemented, and can be defined by:

CapPV
k+1,i = CapPV

k,i + NCPV
k,i ∀ k = 1, 2, · · · , (NP f t − 1) (3.13)

• Initial Year Investment Constraint: This constraint ensures no new solar PV capacity ad-
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ditions takes place in the initial years in order to account for budgetary delays, policy
changes, etc. This can be represented as follows:

CapPV
k+1,i = 0 ∀ k = 1, 2, · · · ,DB (3.14)

• Terminal Year Investment Constraint: This constraint ensures that no investment decisions
are made after the planning period (N), as follows:

CapPV
k+1,i ≤ CapPV

k,i ∀ k ≥ NP f t (3.15)

• Solar PV Lifetime Constraint: The following constraint ensures the decommissioning of
installed solar PV capacity after completion of their useful life:

CapPV
k+LT+1,i = CapPV

k+LT ,i − NCPV
k,i ∀ k = 1, 2, · · · , (NP f t − 1) (3.16)

3.3 Application of DT Based Method to Solar PV Investment
Model

In order to apply the DT-based method to the solar PV investment model and hence determine
the desired sensitivities, the variables x and parameters p need to be defined in the context of
the problem. From the model discussed in Section 3.2, the vector x of model variables can be
defined as:

x =
[
CapPV

k,i EConv
k,i EPV

k,i NCPV
k,i δk,i

]T
(3.17)

And the vector of model parameters can be defined as:

p =
[
ABGk Bk,i, j CapConv

k,i CFConv
i CFPV

i LbCPV
k,i LdCPV

k,i OMPV
k

PT MAX
k,i, j PDEk,i T BG TCPV

k,i UCPV
k α ρICV

PV δMIN δMAX

]T
(3.18)
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The objective function of the optimization model given by (3.1) – (3.3) can be represented as
a function z = f (x, p) for the x and p defined in (3.17) and (3.18), respectively. Furthermore,
assuming active and non-zero Lagrange multipliers for all inequality constraints, g(x, p) can be
defined as:

g(x, p) =



γ1k,i

(
EConv

k,i − 8760 CapConv
k,i CFConv

i

)
γ2k,i, j

(
Bk,i, j (δk,i − δk, j) − PT MAX

k,i, j

)
γ3k,i

(
δMIN − δk,i

)
γ4k,i

(
δk,i − δMAX

)
γ5k

(∑Z
i=1 CCPV

k,i NCPV
k,i − ABGk

)
γ6

{∑NP f t

k=1

∑Z
i=1

(
CCPV

k,i NCPV
k,i + OMPV

k,i EPV
k,i

)
− T BG

}


(3.19)

and similarly the equality constraints h(x, p) can be written as:

h(x, p) =

λ1k,i

(
PConv

k,i + PPV
k,i −

∑Z
j=1 Bk,i, j (δk,i − δk, j) − PDEk,i

)
λ2k,i

(
EPV

k,i − 8760 CapPV
k,i CFPV

i

)  (3.20)

First, for inactive and active zero-valued Lagrange multipliers of inequality constraints, and for
zero valued Lagrange multipliers of equality constraints, the corresponding equations are re-
moved from g(x, p) and h(x, p), respectively. Then, the remaining part of g(x, p) is merged with
the remnant of h(x, p) by transforming the inequalities to equalities. The matrices U (2.48) and
S (2.49) can then be determined (these were determined here using MATLAB’s Symbolic Math
Toolbox [72]).

The DT method provides the sensitivity indices denoted by ξDT = dΩP f t/dp , as well as
the sensitivities of the primal (dx/dp) and dual variables (dλ/dp and dγ/dp) with respect to
the model parameters. The computed indices ξ$

DT are indicative of the local sensitivities of the
objective function with respect to the model input parameters. Hence, for a small perturbation
of the input parameter(s), the resulting change in ΩP f t can be calculated using the following
expression:

dΩP f t =
∑

r

(
∂ΩP f t

∂pr

)
dpr �

∑
r

ξ$
DTpr

dpr (3.21)

The units of ξDT are $/(unit of the parameter p0), which can be appropriately modified to be
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represented in terms of $/(1% change in p0). Thus, the sensitivity indices can all be transformed
to the same base and scaled appropriately in order to compare and rank them as per their severity.
Additionally, the dollar value of ξDT can be represented as a percentage of ΩP f tbase, i.e.,

ξ%
DT = 100

 ξ$
DT

ΩP f tbase

 (3.22)

If a linear relationship exists between an input parameter and the output variable, the p.d.f.
of the output is the same as the input p.d.f., and the mean of the input distribution generates the
mean of the output distribution. In this work, the MILP model behaved linearly with respect to
p.d.f.s for most parameters, with a few exceptions, as shown in Appendix A. Hence, considering
that the mean of a normally distributed parameter is the base value of the parameter p0, the
mean of ΩP f t from every Monte Carlo simulation output can be generally assumed to be equal to
ΩP f tbase, i.e.,

µ$
ΩP f t

= ΩP f tbase (3.23)

The sensitivity index computed using Monte Carlo simulation based approach, can also be
represented as follows:

ξ$
MC =

σ$
out

σ%
in

=
σ$

ΩP f t

σ%
p

(3.24)

Thus, the relationship between the sensitivity indices (2.54) and (3.24) is given by:

ξ%
MC = 100

ξ$
MC

µ$
out

 = 100

 ξ$
MC

µ$
ΩP f t

 (3.25)

Then, from (3.22) and (3.25), the following can be obtained:

ξ%
MC

ξ%
DT

=
ξ$

MC

ξ$
DT

ΩPftbase

µ$
ΩP f t

 (3.26)
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Thus, using (3.23) in (3.26), the following relations are proposed:

ξ$
MC �

∣∣∣ξ$
DT

∣∣∣ (3.27)

and
ξ%

MC �
∣∣∣ξ%

DT

∣∣∣ (3.28)

3.3.1 Computation of Standard Deviation

The standard deviation of the output of a Monte Carlo simulation can be calculated using the DT-
based sensitivity indices, when the inputs are normally distributed p.d.f.s and assuming a linear
behavior of the model. Hence, substituting (3.22) and (3.25) in (3.28), the following relation
holds:

σ%
ΩP f t

σ%
p

= ξ%
MC �

∣∣∣ξ%
DT

∣∣∣ = 100


∣∣∣ξ$

DT

∣∣∣
ΩPftbase

 (3.29)

From (2.53), substituting ‘out’ with ΩP f t, and (3.29), and rearranging the terms, one has:

100

σ$
ΩP f t

µ$
ΩP f t

 = 100 σ%
p


∣∣∣ξ$

DT

∣∣∣
ΩPftbase

 (3.30)

Substituting (3.23) in (3.30), a relationship between the standard deviation of the output variable
with the sensitivity index of the perturbed parameter can be obtained:

σ$
ΩP f t

= σ%
p

∣∣∣ξ$
DT

∣∣∣ (3.31)

If more than one input parameters are perturbed, the first term of the product on the right
hand side of (3.31), i.e., the standard deviation of the input parameter perturbation in percentage,
can be represented by the equivalent standard deviation of the parameters perturbed using a well-
known expression from multivariate normal distributions [73]. On the other hand, the second
term of the product in (3.31) can be replaced by the weighted average of the sensitivity indices
of the parameters that are perturbed. Hence, the computation of standard deviation of the output
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using DT-based sensitivity indices, for a generic multi-parameter perturbation, can be obtained
as follows:

σ$
ΩP f t

=

√∑
w

(
σ%

w
)2


∑
w
σ%

w

∣∣∣ξ$
DT w

∣∣∣∑
w
σ%

w

 (3.32)

It is evident that (3.31) is the specific case of (3.32) when w = 1, i.e., when only one input
parameter is perturbed. The relationship described in (3.32) is important, as it allows computing
the standard deviation of a normally distributed output variable resulting from the input of one or
more normally distributed parameter(s), without the need to carry out computationally expensive
Monte Carlo simulations.

3.3.2 Application to Risk Analysis

In risk analysis, Value-at-Risk (VaR) is a measure that estimates how much a portfolio could
lose because of market movements for a given probability of occurrence, which is referred to
as Confidence Level (CL), of that portfolio variable [74]. VaR and CL are computed from the
cumulative distribution function (c.d.f.) constructed from the p.d.f. of the output quantity. In
the context of this work, the output is ΩP f t and the portfolio is the normally distributed p.d.f. of
ΩP f t. Thus, from the c.d.f. of ΩP f t, a given profit Ω0 with a corresponding cumulative probability
CP (Ω0) yields a confidence level of c0 = 1 −CP (Ω0). This means that there is a c0% likelihood
that ΩP f t ≥ Ω0, and the VaR from the expected profit µ$

ΩP f t
is given by:

VaR = µ$
ΩP f t
− Ω0 (3.33)

Monte Carlo simulations are typically used to compute the VaR and CL of the investment
portfolio. However, this is computationally costly due to the large number of simulations re-
quired to obtain the c.d.f. of the investment portfolio. Therefore, it is demonstrated next, through
mathematical derivations, that the proposed sensitivity index ξ$

DT can be directly utilized to com-
pute the risk parameters VaR and CL, and thus reduce the computational effort required to deter-
mine these values.

A c.d.f. of a normally distributed p.d.f. of ΩP f t is shown in Figure 3.1. Although the c.d.f.
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 Figure 3.1: Typical c.d.f. plot of NPV of profit depicting the proposed linear approximation.

extends to the left asymptotically, it is assumed that CP (ΩMIN) = 0, neglecting the asymp-
totic nature of the curve in that region. Then, for a linear approximation of the c.d.f., Ω0 ∈[
ΩMIN , µ

$
ΩP f t
− σ$

ΩP f t

]
can be represented by:

Ω0 = ΩMIN +

(
µ$

ΩP f t
− σ$

ΩP f t

)
− ΩMIN

CP
(
µ$

ΩP f t
− σ$

ΩP f t

) (
1 −

c0

100

)
(3.34)

A standard normal p.d.f. has µ = 0 and σ = 1; hence, assuming a variable range [−τ, τ],
where CP(−τ) ≈ 0, a relationship between µ$

Ω
and ΩMIN can then be obtained as follows:

ΩMIN = µ$
ΩP f t
− τ σ$

ΩP f t
(3.35)

From the Standard Normal Cumulative Distribution Function Table [73], one has that for τ = 4,
CP(−4) ≈ 0. The value of µ$

ΩP f t
− σ$

ΩP f t
corresponds to one standard deviation below the mean
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and thus, the value of CP
(
µ$

ΩP f t
− σ$

ΩP f t

)
can be defined as follows:

CP
(
µ$

ΩP f t
− σ$

ΩP f t

)
= CP(−1) = c1 (3.36)

Using the table given in [73], it follows that c1 = 0.1587. Thus, replacing (3.23), (3.35) and
(3.36) in (3.34) yields:

Ω0 = ΩPftbase − τ σ
$
ΩP f t

+ σ$
ΩP f t

(
τ − 1

c1

) (
1 −

c0

100

)
(3.37)

For τ = 4 and c1 = 0.1587, one has:

Ω0 = ΩP f tbase − 4 σ$
ΩP f t

+ 18.904 σ$
ΩP f t

(
1 −

c0

100

)
(3.38)

The proposed equations (3.32), (3.33) and (3.38) show that, for a linear optimization problem
and normal distributions, the VaR for a given CL can be closely estimated using the DT-based
sensitivity analysis without actually running the computationally expensive Monte Carlo simu-
lations.

3.4 Application to Ontario, Canada

The solar PV investment model presented in Section 3.2 is implemented for the province of
Ontario, where some of the input parametric data (e.g., LbC, LdC, TC) are taken from [71] and
extrapolated for a project life span (NP f t) of 35 years (2009 – 2043). The reduced-order Ontario
transmission system model and the input parameters used here are explained next.

3.4.1 Ontario Transmission System Model and Input Parameters

The simplified ten-zone transmission system model for Ontario used here is shown in Figure
3.2 [75]; this model is adequate for investment planning studies. Other parameters relevant to
the transmission system, such as the maximum inter-zonal power transfer limits (PT MAX

k,i, j ) and the
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Figure 3.2: Ten-zone transmission model of Ontario [75].

Table 3.1: Maximum zonal power transfer limits of the 10-bus Ontario system [76].

Zones PT MAX
‘2009′,i, j PT MAX

‘2009′, j,i PT MAX
‘2043′,i, j PT MAX

‘2043′, j,i Changes in
i j [MW] [MW] [MW] [MW] year

NW NE 325 350 325 550 2013
NE Essa 1400 1900 1400 2400 2017

Essa Toronto 1000 2000 1000 2500 2017
Toronto SW 3212 5212 2012

SW Bruce 2560 4560 2012
Bruce West 1940 2440 2015
Essa SW 2488 –

Ottawa East 1900 –
East Toronto 9000 –

Niagara SW 1750 –
West SW 1560 –

transmission system resistances and reactances to compute the susceptance- or B-matrix (Bk,i, j),
are obtained from [76], and shown in Tables 3.1 and 3.2, respectively.
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Table 3.2: Resistances and reactances of the 10-bus Ontario transmission system [76].

Zones Resistance [p.u.] Reactance [p.u.] Changes in
i j 2009 2043 2009 2043 year

NW NE 0.051985 0.033270 0.50737 0.32472 2013
NE Essa 0.004032 0.003185 0.04680 0.03700 2017

Essa Toronto 0.002352 0.001882 0.02730 0.02180 2017
Toronto SW 0.002352 0.001458 0.02730 0.01690 2012

SW Bruce 0.001904 0.001662 0.02210 0.01240 2012
Bruce West 0.003024 0.002419 0.03510 0.02810 2015
Essa SW 0.003584 0.04160 –

Ottawa East 0.001120 0.01300 –
East Toronto 0.003808 0.04420 –

Niagara SW 0.002352 0.02730 –
West SW 0.002025 0.02350 –
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Figure 3.3: Zonal capacity factors of solar PV (CFPV
i ) in % [77].

The capacity factors of ground-mounted large-scale solar PV generation for the ten zones of
Ontario are presented in Figure 3.3, as per [77]. The annual average capacity factors of the ex-
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Figure 3.4: Zonal capacity factors of conventional generation (CFConv
i ) in % [78].
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Figure 3.5: O&M cost of solar PV installations over the plan study horizon [79].

isting conventional generations are shown in Figure 3.4, which were calculated using previous 10
years generation data from the Independent Electricity System Operator (IESO) of Ontario [78].

The O&M cost of the solar PV installations is determined to be 1.267 ¢/kWh in the first year
of the plan horizon for all the transmission zones in Ontario, based on [79] and the solar PV
capacity factors. Figure 3.5 shows the escalation of this O&M cost over the plan study horizon
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Figure 3.6: Land cost LdCPV
k,i of solar PV installations over the plan study horizon [71].
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Figure 3.7: Labour cost LbCPV
k,i of solar PV installations over the plan study horizon [71].

with an assumed inflation of 4%.

The capital cost of solar PV installation comprises the land, labour, transportation and the
PV unit costs. The land cost, shown in Figure 3.6 [71], reflects the cost of land required to
set up the installation, and the labour cost corresponds to the wages paid to the installation and
commissioning workers (see Figure 3.7 [71]). For the transportation cost, shown in Figure 3.8,
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Figure 3.8: Transportation cost TCPV
k,i of solar PV units over the plan study horizon [71].
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Figure 3.9: Solar PV equipment cost UCPV
k,i over the plan study horizon [79].

it is assumed that all solar PV units are purchased in the Toronto zone and transported to other
zones. The equipment cost is the cost of a solar PV panel, the inverter cost, and the balance-
of-system cost. Decreasing costs of solar cells and inverters are driving the cost of solar PV
equipment down, as shown in Figure 3.9 [79]. Note that the equipment cost makes up the largest

51



 

B
ru

ce

N
ia

g
ar

a

N
W N

E

E
as

t

E
ss

a

O
tt

aw
a

W
es

t
S

W
T

o
ro

n
to

0

2500

5000

7500

10000

13 5 7 911131517192123252729
31

33
35

Transmission Zones 

E
ff

ec
ti

v
e 

P
ea

k
 D

em
an

d
 [

M
W

] 

Plan Horizon [Years] 

Figure 3.10: Zonal effective peak demand PDEk,i over the plan study horizon [78].
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Figure 3.11: Forecast of zonal conventional generation capacity CapConv
k,i over the plan period.

share of the capital cost, while the transportation cost is the least.

The forecasted effective zonal peak demand over the planning horizon, shown in Figure 3.10,
is computed using previous 10 years hourly load data for each zone, from [78], minus an assumed
1500 GWh/Year of energy conservation [35]. The forecasted zonal conventional generation ca-
pacity is shown in Figure 3.11, based on assumed refurbishment/shutdown of some nuclear units
coupled with anticipated new installations of various types of non-solar generation capacities.
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Table 3.3: Other input parametric data.

Feed-in-Tariff (ρICV
PV ) Discount Rate (α) Total Budget (TBG)

¢/kWh % Million $

44.3 8 500

Other model input parameters, relevant to the computation of sensitivity indices, are: the FIT
rate or the solar PV incentive ρICV

PV (prescribed by OPA [12]); the total investor’s budget, and the
discount rate used to compute the NPV. These are given in Table 3.3.

3.4.2 Base Case Optimization Results and Sensitivity Indices

The optimization model, described in Section 3.2 is solved using the CPLEX solver in the GAMS
environment [69] [70], with a relative optimality tolerance of 0.1%. The model determines that
all new solar PV generation units are to be installed in the Ottawa zone, as shown in Figure
3.12, which is consistent with the solar PV capacity factors depicted in Figure 3.3. Observe that
the total new installations of solar PV are 80 MW, spread over 5 years. The resulting NPV is
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Figure 3.12: New solar PV capacity addition (NCPV
k,i ).
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Table 3.4: Sensitivity indices of parameters using the DT based method.

Parameters
ξ$

DT ξ%
DT

($)/(1%p0) (%o f Ωbase)/(1%p0)
Feed-in-Tariff 3,283,803 6.8307

Capacity Factor PV (Ottawa) 3,113,538 6.4765
Equipment Cost -2,354,756 -4.8982
Discount Rate -2,316,900 -4.8194
Labour Cost -185,564 -0.3860
O& M Cost -170,265 -0.3542
Land Cost -85,686 -0.1782

Transportation Cost -6786 -0.0141
Total Budget 0 0

Capacity Factor Conv. (Ottawa) 0 0
Annual Budget 0 0
Power Demand 0 0

ΩP f tbase = $48.074 million. The IRRs and PBPs of these new installations are 10.098% and 9
years, respectively.

The obtained optimal solution identifies both zero and non-zero Lagrange multipliers asso-
ciated with both equality and inequality constraints. The constraints pertaining to non-zero La-
grange multipliers are taken into consideration for computing the sensitivities using the DT-based
method; the inactive constraints and those active constraints with zero values for their Lagrange
multipliers are not considered in building the U and S matrices, as mentioned in Section 2.2.1.
In this example, only one set of Lagrange multipliers associated with the active constraints (3.8)
is found to have non-zero values; hence, the final h(x, p) relevant to (2.48) and (2.49) consists
of only the set of equations associated with λ2k,i , as λ1 and γ1 to γ6 are all zero. The matrices U

(2.48) and S (2.49) are computed symbolically in MATLAB, and then the numerical values of
parametric data and active Lagrange multipliers are used to compute the sensitivity indices.

The sensitivity indices obtained with the DT method are ranked as per their severity in Table
3.4. The parameter ξ$

DT denotes the dollar amount by which ΩP f tbase will change for a 1% increase
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Table 3.5: Sensitivity indices of parameters using the FD approach.

Parameters
ξ$

FD ξ%
FD

($)/(1%p0) (%o f Ωbase)/(1%p0)
Feed-in-Tariff 3,283,802 6.8307

Capacity Factor PV (Ottawa) 3,113,537 6.4765
Equipment Cost -2,354,756 -4.8982
Discount Rate -2,295,530 -4.7750
Labour Cost -185,564 -0.3860
O& M Cost -170,265 -0.3542
Land Cost -85,686 -0.1782

Transportation Cost -6786 -0.0141
Total Budget 0 0

Capacity Factor Conv. (Ottawa) 0 0
Annual Budget 0 0
Power Demand 0 0

in the base value of a parameter, with the initial state of parametric values being defined in
Section 3.4.1, and ξ%

DT denotes the percentage change in ΩP f t for a 1% increase in the parameter.
This table also includes four more parameters for which the objective function is not sensitive.
Note that the sensitivity index (ξDT ) corresponding to total budget (TBG) turned out to be zero;
this is due to the fact that TBG appears in only one expression of the mathematical model for
investment planning, inequality (3.12), which incidentally has a zero-valued Lagrange multiplier
(γ6), thereby not affecting the DT-based sensitivity values.

Table 3.5 presents the results of applying the FD method to find the “true” sensitivities, i.e.,
the actual change in ΩP f t for a specific perturbation in an input parameter, and Table 3.6 presents
the sensitivity indices computed using the Monte Carlo simulation approach. Observe that the
sensitivity indices computed using DT and FD approaches are practically the same, illustrating
the accuracy of the DT-based method. The sensitivity indices obtained using the Monte-Carlo-
based method are also quite comparable to the absolute values of sensitivity indices obtained
from the DT and FD procedures; however, this method fails to provide the correct signs, due to
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Table 3.6: Sensitivity indices of parameters using Monte Carlo simulations.

Parameters
ξ$

MC ξ%
MC

($)/(1%σp0) (%o f Ωbase)/(1%σp0)
Feed-in-Tariff 3,283,902 6.8295

Capacity Factor PV (Ottawa) 3,092,003 6.4317
Equipment Cost 2,584,392 5.3889
Discount Rate 2,315,874 4.8244
Total Budget 557,136 1.1663
Labour Cost 185,555 0.3867
O& M Cost 170,568 0.3548
Land Cost 86,539 0.1803

Transportation Cost 6785 0.0141
Capacity Factor Conv. (Ottawa) 0 0

Annual Budget 0 0
Power Demand 0 0

the fact that the sensitivities computed in this case are a ratio of the output and input standard
deviations, and standard deviations always have positive values. ***From Tables 3.4 to 3.6,
observe that the profit of an investor is most sensitive to the incentive rate or FIT, followed by
the solar PV capacity factor in the zone of installation, i.e., Ottawa, the equipment cost, and the
discount rate, in the order of reducing severity.

An important point to note is that the sensitivity indices pertaining to the total budget TBG

are zero for ξDT and ξFD, while ξMC has a non-zero value. It has been discussed earlier regarding
the effect of the absence of the associated Lagrange multiplier for TBG. This is reasonable as
the inequality (3.12) contains the integer variable NC, which renders the left hand side of the
inequality (the summation) to be discrete; as illustrated by the plot of ΩP f t versus TBG perturba-
tions in % using the FD method shown in Figure 3.13. Observe that in the vicinity of the base
case solution the NPV of profit is independent of small (e.g., 1%) increments in total budget;
thus, small perturbations in TBG fail to produce a non-zero γ6, which is why ξDT for TBG is
zero. On the other hand, the non-zero value of ξMC obtained using the Monte Carlo simulations
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Figure 3.13: NPV of profit ΩP f t vs % perturbation in total budget TBG, using FD method.

can be attributed to the fact that a normally distributed p.d.f. usually has a ±4σ range, and thus
a TBG perturbation in that range results in changes to ΩP f t, as evident in Figure 3.13. This il-
lustrates the non-linear nature of the optimization model, as discussed in more detail in Section
3.4.3.

The DT-based method for computing sensitivity indices is validated by calculating the per-
centage errors between ξDT and sensitivities computed using the other two methods, as follows:

ErrDT−FD =
ξDT − ξFD

ξFD
× 100 (3.39)

ErrDT−MC =
| ξDT | − ξMC

ξMC
× 100 (3.40)

Since the Monte Carlo simulation approach does not provide the direction of change in ΩP f t, the
negative sign of ξDT is removed in (3.40). Table 3.7 shows the resulting errors, demonstrating that
the sensitivities obtained with the DT-based method are fairly accurate compared to the values
obtained with the FD method. These values also show that, for most cases, (3.27) and (3.28)
are valid; as long as the model behaves linearly with respect to the parameter changes, which is
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Table 3.7: Percentage error calculations of sensitivity indices.

Parameters
ErrDT−FD ErrDT−MC

Using ξ$ or ξ% Using ξ$ Using ξ%

Feed-in-Tariff 1.0309×10−5 -0.00302 0.01757
Capacity Factor PV (Ottawa) 1.1651×10−5 0.69647 0.69647

Equipment Cost -9.864×10−6 -8.8855 -9.1058
Discount Rate 0.9309 0.04430 -0.1044
Labour Cost -9.514×10−5 0.00485 -0.1753
O& M Cost -1.423×10−5 -0.1776 -0.1776
Land Cost -8.548×10−4 -0.9857 -1.1645

Transportation Cost -2.792×10−3 0.01474 -0.1768

not always the case, as demonstrated by the equipment cost variations and the already discussed
TBG variations. This issue is discussed in more details next.

It should be mentioned that the DT-based approach is computationally less expensive than
the Monte Carlo simulation based approach. It is also computationally more advantageous than
the FD approach, as it accurately determines all the parameter sensitivities simultaneously, for
small variations of the parameters.

3.4.3 Range of Validity of DT Approach

In order to understand the range of perturbations for which the sensitivity indices computed
using the DT-based method is valid, parameters are individually perturbed in a range of ±10%
of their p0 value, computing ΩP f t for each case; sensitivities are then determined using the FD
approach for each parameter. Figures 3.14, 3.15, and 3.16 plot the percentage errors between
the computed DT and FD sensitivities. Observe that, for the parameters perturbed in Figure
3.14, the error is close to zero; thus, one can conclude that the relation between these parameters
and the NPV of profit ΩP f t is linear in nature. In Figure 3.15, the error lies between -50%
and 10%, thus demonstrating the nonlinearity of the solar PV investment model with respect to
these parameters. In Figure 3.16, note that for the capacity factor of PV at Ottawa, the error is
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Figure 3.14: Percentage error versus range of parameter perturbation for FIT ρICV
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k , and Equipment cost UCPV
k .
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Figure 3.16: Percentage error versus range of parameter perturbation for PV capacity factor
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Figure 3.17: Actual NPV of profit versus range of parameter perturbation for PV capacity factor
CFPV

‘Ottawa′ at Ottawa.

quite low for positive perturbations, but for negative perturbations below -2%, the error increases
significantly. This is due to the NPV variations with respect to PV capacity factor at Ottawa, as
shown in Figure 3.17, which depicts the actual ΩP f t when the CFPV at Ottawa is perturbed by
±10% of its base value; observe that for perturbations below -2%, the ΩP f t is constant, and thus

60



the error depicted in Figure 3.16 increases continuously. This is because when the capacity factor
of PV at Ottawa is reduced below the capacity factor value of PV of another zone, the new PV
installations are shifted to that zone, and hence the ΩP f t remains unchanged, creating the high
percentage errors shown in Fig. 3.16.

3.4.4 Standard Deviation Computation

The standard deviation of the output variable ΩP f t when any number of input parameters is per-
turbed with σ%

p can be determined using (3.32). A comparison between the calculated standard
deviation of ΩP f t versus the actual value obtained from Monte Carlo simulations is presented
in Table 3.8 (all histograms of NPV of profit ΩP f t, for all parameter perturbations are presented

Table 3.8: Comparison of calculated and actual standard deviations.

Input Perturbation
(
σ%

p

)
Actual σ$

Ω
Calculated σ$

Ω
Error

%
ρICV

PV α CFPV
‘Ottawa′ UCPV

k Million $ Million $ %
1 0 0 0 3.2508 3.2838 1.0151
2 0 0 0 6.5016 6.5676 1.0154
3 0 0 0 9.7524 9.8514 1.0154
0 1 0 0 2.2926 2.3169 1.0596
0 2 0 0 4.5863 4.6338 1.0348
0 3 0 0 6.8848 6.9507 0.9577
0 0 1 0 3.0566 3.1135 1.8616
0 0 2 0 5.5129 6.2271 12.955
0 0 3 0 7.4471 9.3406 25.427
1 1 0 0 3.9071 3.9603 1.3627
1 1 1 0 4.9366 5.0312 1.9152
1 1 1 1 5.5299 5.5345 0.0833
3 2 1 0 10.982 10.975 -0.0643
4 3 2 1 15.774 15.702 -0.4579
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in Appendix A). Observe that the calculated σ$
ΩP f t

values are very close to the actual values ob-
tained from Monte Carlo simulations, for all parameter variations not affected significantly by
the non-linear nature of the model. This validates the proposed expression (3.32) for various
combinations of input parameter perturbations, justifying the use of (3.38) to compute the VaR
for various CLs.

3.4.5 Risk Analysis

Table 3.9 presents a comparison of the calculated Ω0 using (3.38) versus the actual ΩP f t obtained
from Monte Carlo simulations (ΩMC

0 ) for a selected set of perturbed parameters (those with high
sensitivity indices), and for various values of CL. Note that the relation in (3.38) provides a
more conservative estimate of Ω0, but allows solar PV investors to adequately evaluate their risk

Table 3.9: Comparison of NPV of profit for various CLs.

Parameter Perturbed by 1% c0
ΩMC

0 Ω0

Million $ Million $

ρICV
PV

99% 40.422 35.560
95% 42.706 38.043
90% 43.985 41.147
85% 44.838 44.251

α

99% 42.767 39.245
95% 44.182 40.997
90% 45.074 43.187
85% 45.611 45.377

CFPV
Ottawa

99% 40.896 36.209
95% 42.899 38.563
90% 44.112 41.506
85% 44.919 44.449

UCPV
k

99% 40.775 39.101
95% 43.054 40.881
90% 44.735 43.107
85% 45.634 45.333
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Figure 3.18: Percentage error versus CL with parameters perturbed by a 1% standard deviation.

strategies based on their VaR and the expected rate of return, and thus arrive at an appropriate
decision on the investment.

The percentage errors between the Ω0 obtained with (3.38) and the actual values ΩMC
0 de-

termined from the c.d.f. plots resulting from the Monte Carlo simulations with respect to c0 is
shown in Figure 3.18 for four parameters, namely, ρICV

PV , α, UCPV
k,i and CFPV in Ottawa, indi-

vidually perturbed by 1% standard deviation from their base values
(
σ%

p = 1%
)
. Note that the

error values lie in the range of -2% to -12% for 95% or more CL values, and improves as the CL
decreases, i.e., as the risk averseness of an investor decreases.

Figure 3.19 plots the error for various CLs for the same set of parameters, simultaneously
perturbed in various combinations, by 1% standard deviations from their base values. Observe
that the error is higher in these cases, but are still all negative values ranging between -13% and
-23% for 95% or more CL, and improves as the CL decreases. This demonstrates that the sensi-
tivity indices computed using the DT-based method yields more conservative risk parameters for
the investor, for the given solar PV model, but has significant computational advantages over the
Monte Carlo simulation approach.

The input parameters are perturbed with different percentages of their base values and the
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Figure 3.19: Percentage error versus CL when parameters are perturbed simultaneously by a 1%
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resulting error graphs are plotted in Figure 3.20. The figure shows the error of computing CL
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when the FIT and the Discount Rate are perturbed with standard deviation of various percentages
of their base values. Note that the error increases as the standard deviation of the input parameter
in consideration increases.

3.5 Summary

This chapter presented the application of the DT-based method of computing sensitivity indices
for a solar PV planning model from the perspective of an investor. The sensitivity indices were
directly computed from the solar PV optimization model, and only involved the computation of a
set of Jacobian matrices and some matrix operations. In the context of this model, the sensitivity
indices represent the change in the NPV of investor’s profit when model parameters such as the
FIT, discount rate, total budget, etc., are varied from their respective base values, one at a time.

The results demonstrated that the sensitivity indices obtained using the DT-based method
are very close to those obtained using the Monte Carlo approach, and are the same as the true
sensitivity indices obtained using the FD approach. Furthermore, contrary to the Monte-Carlo-
simulation-based approach for determining the sensitivity of parameters, which involves a large
number of simulations of the solar PV model (in the order of thousands), this approach computes
the indices directly at once, thus reducing the computational burden significantly. Moreover, the
Monte Carlo simulation approach does not provide any information on the direction of change
of the NPV when a parameter is perturbed, contrary to the DT-based method, which is valuable
information for the investor. However, the DT-based method, like the FD method, is not able to
capture the non-linear nature of the model.

A novel use of the sensitivity indices was also proposed to evaluate the investor’s risk indices.
Using an approximation of the cumulative distribution function of investor’s profit, a linear rela-
tion was developed between the sensitivity indices and investor’s profit for a certain confidence
level. The proposed method to determine the risk parameters provides valuable information
on investment risks for an investor, at significantly reduced computational costs, as long as the
model behaves approximately linearly.
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Chapter 4

Optimal Incentive Design for Targeted
Penetration of Renewable Energy Sources

4.1 Introduction

In the previous chapter, a DT-based method was proposed to determine the risk indices for solar
PV investment projects from the perspective of investors. In this chapter, a comprehensive GEP
model is proposed from the CPA’s perspective by considering all capital and O&M costs of new
and existing generation plants, as well as incentives and other market price based payments made
to investors. In addition, the proposed GEP model considers the incentive payments made by the
CPA to LDCs to encourage energy conservation and demand reduction. Also, emissions from
generation plants are considered within the proposed model via environmental penalty costs,
which can be seen as an indirect incentive. Thus, the overall objective of the proposed holistic
GEP is to seek a minimum overall cost considering all the above components, providing the
optimal incentives that encourage integration of RES, while achieving targeted levels of RES
penetration and demand reduction, and determining the optimal site, size, time, and technology
of new generation capacity additions.
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Figure 4.1: Framework of the proposed holistic GEP.

4.2 Proposed Holistic GEP Model

4.2.1 Assumptions

The framework of the proposed holistic GEP model is shown in Figure 4.1, where the main
inputs and outputs of the model are highlighted. The assumptions made to develop the proposed
model are the following:

• The system is modelled using several transmission zones to adequately represent the main
transmission corridors, load variations in different locations, and regional availabilities of
solar, wind, and/or hydro generation.

• A DC load flow model is used to determine the power flows between zones, and thus
account for the main transmission system constraints and bottlenecks.

• A typical pre-specified loss factor for the transmission system is considered as in other
planning studies [31], [80].
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• The main input parameters that must be defined and are independent of the grid under study
are: the discount rate α; cost of emission per unit energy ζ; generation reserve margin b0;
gestation period gs; installation plan period N1; minimum capacity factor for dispatchable
sources CFMin

s6 ; RES incentive rates limits ρNew
Max and ρNew

Min ; payback-period limits φMax and
φMin; and unit size of installation for new capacity additions ϑs.

4.2.2 Planning Objective

The objective of the GEP model (ΩS ys) is to minimize the total system cost and incentive pay-
ments from the perspective of the CPA, and is given by:

ΩS ys =
∑

s

NS ys∑
k=1

Z∑
i=1

Rs,k,i + Cs,k,i + EC s,k,i

(1 + α)k +

NS ys∑
k=1

Z∑
i=1

ECPk,i

(1 + α)k (4.1)

where R is the total payment made by the CPA to GENCOs (which in effect is their revenue),
and is divided into two categories, namely, existing and new, as per:

Rs,k,i = REx
s1,k,i + REx

s2,k,i + REx
s3,k,i︸                     ︷︷                     ︸

REx
s,k,i

+ RNew
s1,k,i + RNew

s2,k,i + RNew
s3,k,i︸                     ︷︷                     ︸

RNew
s,k,i

(4.2)

These payments may be based on the market price νMP or regulated price νRP or incentives ρ, and
are computed as follows:

REx
s,k,i =

3∑
b=1

νMP
k,b EEx

s1,k,i,b︸           ︷︷           ︸
REx

s1,k,i

+

3∑
b=1

νRP
s2,kEEx

s2,k,i,b︸            ︷︷            ︸
REx

s2,k,i

+ ρEx
s3,i

3∑
b=1

EEx
s3,k,i,b︸            ︷︷            ︸

REx
s3,k,i

(4.3)

RNew
s,k,i =

3∑
b=1

νMP
k,b ENew

s1,k,i,b︸           ︷︷           ︸
RNew

s1,k,i

+

3∑
b=1

νRP
s2,kENew

s2,k,i,b︸            ︷︷            ︸
RNew

s2,k,i

+ ρNew
s3,i

3∑
b=1

ENew
s3,k,i,b︸             ︷︷             ︸

RNew
s3,k,i

(4.4)

where s1 ∪ s2 ∪ s3 = s, and the energy E can be written as:

Es,k,i,b = EEx
s,k,i,b + ENew

s,k,i,b (4.5)
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The decision variables ρNew
s3,i in (4.4) are the zonal incentive rates for the corresponding technolo-

gies, which are determined from the model solution.

The total cost of generation C in (4.1), similar to CST in (2.2), is the sum of the costs per-
taining to installation (CI), fuel (CFL), and O&M (COM) of new and existing facilities:

Cs,k,i = CI s,k,i + CFLEx
s,k,i + CFLNew

s,k,i + COMEx
s,k,i + COMNew

s,k,i (4.6)

where CI for all generation technologies are computed using:

CI s,k,i = NC s,k,i CC s,k (4.7)

The CFL of existing and new facilities are dependent on respective fuel prices β, and is given by:

CFLEx
s,k,i + CFLNew

s,k,i = βs,k

 3∑
b=1

EEx
s,k,i,b +

3∑
b=1

ENew
s,k,i,b

 (4.8)

and the COM for existing and new technologies is given by:

COMEx
s,k,i + COMNew

s,k,i = OMF s,k

(
CapEx

s,k,i + CapNew
s,k,i

)
+ OMV s,k

 3∑
b=1

EEx
s,k,i,b +

3∑
b=1

ENew
s,k,i,b

 (4.9)

where the generation capacities are obtained as follows:

Caps,k,i = CapEx
s,k,i + CapNew

s,k,i (4.10)

The emission cost in (4.1), given by (EC), is obtained as follows:

ECs,k,i = ζ Ems

3∑
b=1

Es,k,i,b (4.11)

and the incentive payments (ECP) on energy conservation (CN) and demand reduction (DR),
given in (4.1), are calculated as:

ECPk,i = a0

3∑
b=1

CNk,i,b +

3∑
b=1

abDRk,i,b (4.12)

69



where DR is related to CN as follows:

CNk,i,b = DRk,i,b∆tb (4.13)

assuming that ab = a0∆tb, since this ensures equal weight for CN and DR in ECP, by equating
their corresponding incentive payments. The incentive rates for energy conservation (a0) and
demand reduction (ab) are adjustable parameters which need to be tuned optimally to achieve
targeted energy conservation levels, as explained in details in Section 4.3.2.

4.2.3 Model Constraints

Energy Balance

This constraint ensures zonal energy demand-supply balance and also takes into account the
energy transfer between transmission zones, as follows:

∑
s5

Es5,k,i,b −

Z∑
j=1

ET k,i, j,b +

Z∑
j=1

ET k, j,i,b(1 − LF) =

EDk,i,b −
∑

s4

Es4,k,i,b

 −CNk,i,b (4.14)

where s4 ∪ s5 = s, and ET, a positive decision variable, is related to bus voltage angles by the dc
power flow equations:

ET k,i, j,b = Bk,i, j(δk,i,b − δk, j,b)∆tb (4.15)

Power Transfer and Bus Angle Limits

The following limits ensure the operational security of the transmission system, as follows:

ETk,i, j,b ≤ PT Max
k,i, j ∆tb (4.16)

δMin ≤ δk,i,t ≤ δ
Max. (4.17)
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Adequacy Limit

The following constraint ensures that the proposed GEP considers the system reliability by guar-
anteeing that a specified generation reserve margin (GRM), as defined in [59], is maintained in
the system, while taking into account the peak demand reduction resulting from energy conser-
vation measures, and where b0 (GRM) is a given percentage of peak demand:

∑
s

Z∑
i=1

Caps,k,i ≥ (1 + b0)
Z∑

i=1

PDk,i −

Z∑
i=1

DRk,i,“3” (4.18)

Dynamic Constraint on Capacity Addition

This is incorporated as follows:

CapNew
s,k+1,i = NC s,k,i + CapNew

s,k,i (4.19)

where the timing for new installations are bounded by gs and N1 as follows:

NC s,k,i = 0 ∀ k = 1, . . . , gs, (N1 + 1), . . . ,N for N1 > gs (4.20)

Here, it is assumed that, if a given capacity is commissioned in year k, the total investment and
installation takes place in year k–1, instead of being distributed over the typical gestation period
gs. Since commissioning takes gs years from the initiation of the plan, (4.20) is used to defer the
commissioning by a minimum of gs years, as shown in Figure 4.2; and N1 is assumed to be the
year in the planning horizon after which there is no new installations.

1k sgk  Nk 1Nk 

0,, iksNC0,, iksNC 0,, iksNC

Time [years]

Figure 4.2: Dynamic new capacity additions.

71



Energy Dispatchability Constraint

The annual maximum energy generation capability of dispatchable sources is given by:

3∑
b=1

Es6,k,i,b ≤ 8760 CF s6Caps6,k,i (4.21)

while, for non-dispatchable sources, the annual energy generation should satisfy the following:

3∑
b=1

Es7,k,i,b = 8760 CF s7,iCaps7,k,i (4.22)

where s6 ∪ s7 = s. Note that (4.22) is an equality constraint, and provides an appropriate rep-
resentation of non-dispatchable RES in the plan, as these sources do not have the flexibility to
adjust their generation and will generate as per their assumed annual capacity factor, whereas
non-dispatchable sources in (4.21) have the flexibility to adjust their generation as required.

Power and Minimum Energy Generation Limits

The following constraint is imposed on existing dispatchable capacities, so that the new plan
does not shut them down before their usual end of life, in favour of less costly alternatives:

3∑
b=1

EEx
s6,k,i,b ≥ 8760 CFMin

s6 CapEx
s6,k,i (4.23)

And the power generated at different time blocks is limited by the available capacity as follows:

Es,k,i,b/∆tb ≤ Caps,k,i (4.24)

In addition, the price regulated capacities have a minimum power generation limit (ψ) at base
load, given by:

Es2,k,i,b/∆tb ≥ ψs2 Caps2,k,i (4.25)
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Discounted Pay-Back-Period (PBP) Constraint

The following constraint ensures that the PBP is bounded by specified periods, with a lower limit
imposed so that the incentives are not too high:

φMin
s3,i ≤ φs3,i ≤ φ

Max
s3,i (4.26)

Here, φ is computed using the following non-linear equation:

φs3,i




NS ys∑
k=1

RNew
s3,k,i −

(
COMNew

s3,k,i + CFLNew
s3,k,i

)
(1 + α)k

 θ
 =

NS ys∑
k=1

CI s3,k,i

(1 + α)k (4.27)

where the right hand side of (4.27) is the NPV of installation costs, and the left hand side is the
product of PBP and levelized cash flow, with the latter being distributed evenly over the planning
horizon N from the NPV of cash flow, using a capital recovery factor θ.

Integer Constraint

Binary variables are used to obtain integer solutions for the new capacity additions as follows:

NC s,k,i =

Qs∑
q=1

ϑsWs,k,i,q (4.28)

RES Penetration Target

This is achieved as follows:

∑
s8

Z∑
i=1

Caps8,k,i ≥ $
∑

s

Z∑
i=1

Caps,k,i f or k = N1 (4.29)

If the target applies to incentive based technologies only, then s8 will be replaced by s3 and $
by $s3.

73



Energy and Power Potentials

Annual energy generation potential or zonal new capacity addition potential, as applicable, are
given by:

Z∑
i=1

3∑
b=1

Es,k,i,b ≤ Υs,k (4.30)

NS ys∑
k=1

NC s,k,i ≤ Γs,i (4.31)

Equations (4.1) to (4.29) describe the nonlinear mathematical optimization model (MINLP)
of the holistic GEP, with nonlinearities in (4.4) and (4.27) only. Constraints (4.30) and (4.31) are
included in the optimization model only when applicable.

4.2.4 Model Linearization

The linearization technique described in Section 2.4.1 is applied to the proposed holistic GEP
model to transform it into an MILP problem, and thus allow for simpler and well-tested solution
approaches.

Optimal RES Incentives

The nonlinear part of (4.4) can be rewritten as:

RNew
s3,k,i = ρNew

s3,i

3∑
b=1

ENew
s3,k,i,b (4.32)

Thus, the nonlinearity can be removed by the linearization approach as follows:

RNew
s3,k,i ≤ ρ

New
Max

3∑
b=1

ENew
s3,k,i,b (4.33)
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RNew
s3,k,i ≥ ρ

New
Min

3∑
b=1

ENew
s3,k,i,b (4.34)

Hence, replacing (4.4) by the following:

RNew
s,k,i =

3∑
b=1

νMP
k,b ENew

s1,k,i,b +

3∑
b=1

νRP
s2,kENew

s2,k,i,b + RNew
s3,k,i (4.35)

together with (4.33) and (4.34), removes the nonlinearity.

The zonal values of ρNew
s3,i for the incentive-driven sources can later be calculated from the

model solution using:

ρNew
s3,i

NS ys∑
k=1

3∑
b=1

ENew
s3,k,i,b

 =

NS ys∑
k=1

RNew
s3,k,i (4.36)

and the province-wide values of ρNew
s3 can later be computed as follows:

ρNew
s3

NS ys∑
k=1

Z∑
i=1

3∑
b=1

ENew
s3,k,i,b

 =

NS ys∑
k=1

Z∑
i=1

RNew
s3,k,i (4.37)

Pay-Back Period

The PBP computation is linearized by replacing (4.26) and (4.27) with:

NS ys∑
k=1

CI s3,k,i

(1 + α)k ≤ φ
Max
s3,i

NS ys∑
k=1

RNew
s3,k,i −

(
COMNew

s3,k,i + CFLNew
s3,k,i

)
(1 + α)k

 θ (4.38)

NS ys∑
k=1

CI s3,k,i

(1 + α)k ≥ φ
Min
s3,i

NS ys∑
k=1

RNew
s3,k,i −

(
COMNew

s3,k,i + CFLNew
s3,k,i

)
(1 + α)k

 θ (4.39)

Then, φ can later be computed from the optimization solution using (4.27).

The final linearized holistic GEP model in MILP form thus comprises equations (4.1) to
(4.3), (4.5) to (4.25), (4.28), (4.29), (4.33) to (4.35), (4.38) and (4.39), with (4.30) and (4.31)
being included when applicable, as shown in Figure 4.3.
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𝐵, 𝑏0,𝐶𝑎𝑝𝐸𝑥 ,𝐶𝐶,𝐶𝐹,𝐸𝐷,𝐸𝑚, 𝐿𝐹,𝑂𝑀𝐹,𝑂𝑀𝑉,  

𝑃𝐷,𝑃𝑇𝑀𝑎𝑥 ,𝛼,𝛽, 𝛿𝑀𝑎𝑥 , 𝛿𝑀𝑖𝑛 ,𝜃,𝜗, 𝜇, 𝜈,  

𝜌𝐸𝑥 ,𝜙𝑀𝑎𝑥,𝜙𝑀𝑖𝑛 ,𝜓,𝛶, Γ, ζ 

Inputs GEP Model 

(4.1) – (4.3), (4.5) – (4.25), 

(4.28) – (4.31), 

(4.33) – (4.35), (4.38), (4.39) 

𝑁𝐶,𝜌 

𝐶,𝐶𝑎𝑝𝑁𝑒𝑤 ,𝐶𝐹𝐿,𝐶𝐼,𝐶𝑁,𝐶𝑂𝑀, 

𝐷𝑅,𝐸,𝐸𝐶,𝐸𝐶𝑃,𝐸𝑇,𝑅,𝑊, 𝛿 

Outputs 

Figure 4.3: Inputs and output variables and equations of the proposed GEP model.

4.3 Application to Ontario, Canada

The holistic GEP model is implemented for the province of Ontario, Canada, with a plan horizon
(NS ys) of 25 years, i.e., 2011 to 2035. A simplified ten-zone transmission system model for
Ontario is used, as shown in Figure 3.2 [75], where the relevant transmission data (PT Max

k,i, j , Bk,i, j)
is given in Tables 3.1 and 3.2 [76], along with an assumed transmission loss factor (LF) of 5%.

The set of market price based technologies (s1) are COAL, GAS, OIL, and some hydro
units (HNR). Similarly, some hydro and nuclear generators receiving regulated prices (HR and
NR, respectively) and nuclear generators with contracted prices (NCP) form the set s2. The
incentive-driven technologies (s3) are biomass (BIO), ground-mounted PV (GPV), rooftop PV
(RPV), wind onshore (WON) and wind offshore (WOF) generation. Furthermore, only RPV is
considered to be a distribution connected resource (s4), and all types of wind and solar generation
are considered non-dispatchable (s6).

4.3.1 Input Parameters

The base-line generation capacities, i.e., the capacity in the system at the start of the planning
horizon, and how it changes over the plan period, are shown in Figure 4.4 [35], [78], which
depicts the shutdown of coal based plants in 2014, as per the IPSP [35], with the objective
of reducing emissions; the end-of-life shutdown of one NR generation facility in 2020 is also
shown (Pickering, in TORONTO zone). It is further assumed that other existing technologies
will not reach their end of life during the plan horizon.

The capital cost CC for all technologies considered in the GEP model is the equipment cost
(UC) portion only in (2.11), neglecting the labour (LbC), land (LdC), and transportation (TC)
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Figure 4.4: Base-line capacities and their continuity over the plan horizon [35], [78].

Table 4.1: Cost components of generation technologies and CO2 emission [81].

s
CCs,1 O&M Ems

Cost Increment OMFs,1 OMVs,1 [Kg of eqCO2

[$/kW] [%] [$/kW] [$/MWh] per MWh]
BIO 3859 -0.18 100.55 5.0 107

COAL 3804 -0.14 49.29 6.39 1100
GAS 820 -0.16 6.84 12.29 610
GPV 4755 -0.21 16.7 0 58

HNR, HR 2347 -0.07 14.27 2.55 17.5
NR, NCP 5335 -0.18 88.75 2.04 13.4

OIL 1347 -0.15 30.25 6.45 850
RPV 6050 -0.21 26.04 0 58
WON 2437 -0.11 28.07 0 19
WOF 5974 -0.15 53.33 0 14

costs. The CC and the O&M cost (OMV, OMF) data for the first year is shown in Table 4.1 [81].
The annual increments in CC are calculated using last 10-year data [81], [82], while for O&M
costs, the annual increment is assumed to be 4% (inflation rate). Table 4.1 also includes the
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Table 4.2: Zonal capacity factors and potentials of non-dispatchable sources.

i
GPV RPV WON WOF

CFi Γi CFi Γi CFi Γi CFi Γi

[%] [MW] [%] [MW] [%] [MW] [%] [MW]
NW 13.70 130 14.27 7 29.21 107 34.62 0
NE 13.13 203 13.70 12 33.40 935 38.83 1495

ESSA 13.13 218 13.70 15 32.16 0 37.57 0
OTTAWA 15.84 21 15.98 19 30.92 0 0 0

EAST 15.13 167 15.70 24 34.36 0 40.04 0
TORONTO 13.70 30 13.98 104 31.40 0 35.70 0
NIAGARA 13.13 129 13.70 9 24.22 0 28.18 0

SW 13.13 462 13.70 50 26.91 200 31.31 2030
BRUCE 13.13 173 13.70 2 36.05 0 41.53 405
WEST 15.13 464 15.70 23 36.97 33 42.63 1945

ONTARIO - 1997 - 265 - 1275 - 5875

eqCO2 emission per unit energy produced [83].

Capacity factors of all non-dispatchable resources, i.e., solar PV and wind, computed from
[77] and [78] respectively, are shown in Table 4.2, which also includes the zonal power generation
potentials (Γs,i) for these technologies. The GPV generation potential is computed by assuming
the zonal land availability and considering a 5 kWh/m2 energy density. For RPV, the number of
households in each zone is estimated based on [84], and it is assumed that a maximum of 1% of
them will have installed rooftop panels. It is further assumed that the average rated capacity of
rooftop panels is 5 kW. The potential for wind generation is based on the most favourable sites
available [35]. The maximum value of CFi attainable by dispatchable sources are assumed to be
100% for all except BIO (70%), HNR (85%), and HR (90%), based on last 10-years data from
[78], while a CFMin is imposed for existing capacities based on data available at the IESO [78],
resulting in minimum averages of 30% for BIO, COAL and HNR, and 20% for GAS and OIL.
Additionally, for HR, NCP and NR, a minimum generation (ψ) of 60% at all times is assumed.

The average annual electricity market price is computed using price duration curves of Hourly
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Figure 4.5: Long-term market-price νMP estimates [78].

Ontario Energy Price (HOEP) [78], yielding νMP
1,b = [5.08 22.61 299.54] $/MWh and corre-

sponding growth rates of 8.8%, 8.4% and 8.1% for the respective time blocks, as depicted in
Figure 4.5. It is to be noted that the peak market prices are expected to increase and reach
significantly high values in the coming years as compared to the base and intermediate prices.

The FIT rates offered by the OPA in 2009 are the existing incentives (ρEx) used for BIO
(151.29 $/MWh), GPV (443 $/MWh), RPV (672.25 $/MWh), WON (135 $/MWh), and WOF
(190 $/MWh) [12]. Regulated prices (νRP) of HR (35 $/MWh), NR (55 $/MWh) and NCP (60
$/MWh) are from [85], [86]. Additionally, all the regulated/contract prices are assumed to have
an annual growth rate equal to the base (b = 1) growth rate of the HOEP, i.e., 8.8%.

The annual fuel cost (βk) for COAL, OIL and GAS is taken from [81], shown in Figure 4.6,
and it is assumed to be 12 $/MWh for BIO [87], 7.5 $/MWh for NR and NCP [88], and zero for
other technologies.

The IPSP forecasts a demand growth rate over the period 2007–2027 for base (23%), in-
termediate (38%) and peak (21%) load [35]. Using this information, and the zonal energy and
power demands for 2011 [78], the annual growth rates are obtained and depicted in Table 4.3,
where PD growth rate is assumed to be the same as the peak energy growth rate. The IPSP also
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Figure 4.6: Long-term fuel cost β estimates for fossil fuel sources [81].

Table 4.3: Zonal energy and power demand and their annual growth rates.

i
ED1,i,b [GWh] Growth Rate [%] PD1,i

Base Int. Peak Base Int. Peak [MW]
NW 3066 1298 62 0.05 0.26 0.18 728
NE 7139 3265 126 −0.28 −0.36 −0.27 1710

ESSA 4888 3350 201 0.86 1.41 0.93 1612
OTTAWA 6412 3110 272 0.93 1.74 1.55 1874

EAST 5772 2771 227 0.56 0.99 0.47 1647
TORONTO 33585 16133 1692 1.11 1.73 1.02 10285
NIAGARA 3101 1433 172 0.56 0.88 0.51 970

SW 18930 8198 562 1.11 1.7 0.89 4873
BRUCE 131 534 46 0.48 0.85 0.63 210
WEST 9408 4538 474 1.05 1.47 0.99 2886

specifies a target of 1500 GWh of Ontario-wide energy conservation per year, with 10,700 MW
of total capacity target for s3 technologies by 2018, and 15,700 MW of s8 technologies by 2025.
Hence, (4.29) in the GEP model is redefined as:
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Table 4.4: Generation input parameters assumed for the GEP model.

s gs [years] CFs6 [%] CFMin
s6 [%] ϑs [MW]

BIO 3 70 30 1
COAL N 100 30 0
GAS 2 100 20 20
HNR 4 85 30 1
HR 4 90 60 50

NCP 6 100 60 500
NR 6 100 60 500

GPV 2

Not Applicable

1
RPV 1 1
WON 3 1
WOF 4 5

Table 4.5: Additional input parameters assumed for the GEP model.

b0 LF N N1 α ψs2 δMax

10% 5% 25 years 15 years 8% 60% +π

φMax
s3,i φMin

s3,i ζ ρNew
Max ρNew

Min δMin

10 years 2 years $100/ton of eqCO2 $1000/MWh $1/MWh −π

∑
s3

Z∑
i=1

Caps3,“2018”,i ≥ 10, 700 (4.40)

∑
s8

Z∑
i=1

Caps8,“2025”,i ≥ 15, 700 (4.41)

The duration of load blocks for the base (b = 1), intermediate (b = 2) and peak (b = 3) are
estimated from [78] to be 43%, 51% and 6% of 8760 hrs, respectively. (Zonal load duration
curves are shown in Appendix B.) Other relevant input parameters are the discount rate α = 8%,
GRM b0 = 10%, and emission penalty ζ = 100 $/ton of eqCO2. A summary of all assumed main
input parameters required for the model are given in Tables 4.4 and 4.5.
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4.3.2 Base Case Scenario

Selection of Energy Conservation Incentive Rate

The proposed holistic GEP model is solved using CPLEX [69] in the GAMS environment [70].
The initial task is to determine the appropriate value of a0 for a given energy conservation target.
Thus, Figure 4.7 shows the effect of varying a0 on attaining the desired energy conservation
target. The results demonstrate that for 1 ≤ a0 ≤ 35 $/MWh, 100% of the targeted energy
conservation is achieved even when the targets and discounted PBPs vary. By increasing a0

above 35 $/MWh, the plan fails to achieve the targeted level of annual energy conservation,
since from the planner’s perspective, energy generation and supply becomes cheaper than the
incentive payment.

The energy conservation target CN of the base case scenario (Case–0) is varied from 0 to
3000 GWh/year, i.e., from no conservation to twice the desired target. Figures 4.8 and 4.9 show
that variations in a0 has no significant effect on new s3 installations NCs3 or their corresponding
incentives ρNew

s3 , respectively. This is important for the central planner, as it renders the deci-
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Figure 4.9: Effect of a0 on incentives for new s3 capacity additions ρNew
s3 .

sion making on a0 basically independent from the optimal decision on ρNew
s3 . Therefore, a0 =

35 $/MWh is selected for all the studies reported in this thesis, so that LDCs are encouraged to
implement energy conservation. On the other hand, new installations of GAS declined steadily
(see Figure 4.10a) for an increasing energy conservation target, signifying a reduction in the
peak serving GAS plants, as the CN measures incorporated in this GEP model reduces the peak
demand. It is also found (see Figure 4.10b) that the total system costs and payments, i.e., ΩS ys,
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Figure 4.10: Effect of variation in energy conservation target (CN) on new capacity additions
(NCs1) and NPV of system costs and payments, with φMax = 10 years.

reduces by $21 billion, along with a similar reduction in the NPV of R, while the NPV of cost of
generation (C) drops by nearly $4 billion, which gets nullified by the incentive payments made
to LDCs for introducing conservation. Thus, Figure 4.10 suggests that adoption of conservation
measures is not only beneficial for the LDCs (receives incentives) and GENCOs (cost reduc-
tion), but also less costly from the system planner’s point of view, which may as well result in a
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reduction in the consumers’ electricity bill.

The Holistic Plan and Optimal Incentive Design

The holistic plan results are based on an energy conservation target of 1500 GWh/year and φMax

= 10 years. Figure 4.11 presents the optimal generation capacity plan obtained from the proposed
holistic GEP model. Note that the main capacity additions are from wind (WON and WOF) and
GAS technologies with small support from BIO, PV and HNR. The effective peak demand PD

in Figure 4.11 is essentially the right-hand-side of (4.18), and corresponds to the annual Ontario
demand with specified GRM, minus the demand reduction target. Similarly, the optimal annual
energy supply-demand balance is shown in Figure 4.12, where the effective energy demand is
the actual provincial energy demand minus of the energy conservation achieved. Observe that
the optimal energy supply mix results in a reduced contribution from nuclear generation in order
to accommodate energy generation from non-dispatchable resources.

The holistic GEP solution suggests, as shown in Tables 4.6 and 4.7, that only incentive driven
and market price based technologies are economically viable for future installations. Table 4.7
shows the optimal incentive rates with respective IRR for s3 technologies, along with the sizing,
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Figure 4.11: Optimal generation capacity plan to supply the effective peak demand.
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Figure 4.12: Energy supply-demand balance including energy conservation.

Table 4.6: Size (NC), site (i), time (k) and PBP (φ) of new νMP–based Technologies.

s1 i→ ESSA OTTAWA EAST TORONTO NIAGARA SW

GAS
k

-
13 14 15

-
14 15

- -NC [MW] 40 260 1000 1000 1000
φ [years] 2 2

HNR
k 10 5 10 10 10

NC [MW] 39 41 85 - 16 9
φ [years] 6 4 5 9 7

siting and timing of their new installations. It should be noted that the provincial ρNew
s3 are higher

than ρEx
s3 , which indicates that the existing incentives have higher PBPs and, consequently, lower

IRRs than the proposed ones. Also, from Figure 4.12), it can be observed that energy generation
from gas increases continuously since the installation of new capacities in year 13, which is also
reflected in their very small PBPs, as shown in Table 4.6.

It is observed from the GEP solution that the total capacity of s3 technologies increased from
1975 MW in 2011 to the target of 10,700 MW in 2035, and the penetration of incentive-based
technologies reached 25.87% from a mere 5.79%. Consequently, in the case of s8 technologies
(s3 group plus hydro), the penetration changed from 29.15% (9939 MW) to 45.59% (18,854
MW), exceeding the target s8 penetration of 15,700 MW.
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Table 4.7: Provincial and zonal incentives (ρNew) and IRRs, with optimal sizing (NC),
siting (i) and timing (k) of new capacity additions for s3 technologies.

s3 i→ NW NE ESSA OTTAWA EAST TORONTO NIAGARA SW BRUCE WEST ONTARIO

BIO

k

- -

7 7 7 7

-

7

- -

7
NC [MW] 200 15 150 25 58 448

ρNew [¢/kWh] 27.60 18.20 26.86 27.77 28.08 27.10
IRR [%] 22.03 14.65 24.29 25.24 21.57 22.66

GPV

k 7 7 7 7 7 7 7 7 5 7 7 5,7
NC [MW] 129 202 217 20 167 29 129 461 16 1 463 1834

ρNew [¢/kWh] 62.54 56.96 53.48 55.49 57.60 62.57 64.80 56.96 48.38 50.49 55.75
IRR [%] 14.90 12.65 11.68 15.35 15.20 14.90 14.78 12.65 10.22 12.99 13.21

RPV

k 7 7 7 7 7 7 6 7 7

- -

6,7
NC [MW] 1 1 14 18 24 103 1 2 49 213

ρNew [¢/kWh] 69.59 71.08 61.29 51.83 55.54 59.25 70.28 62.78 59.25
IRR [%] 13.18 12.96 10.68 10.40 11.15 10.40 12.66 12.68 10.95 10.14

WON

k 7 7

- - - - -

7

-

5 5,7
NC [MW] 107 935 200 33 1275

ρNew [¢/kWh] 18.78 17.07 21.75 12.17 17.65
IRR [%] 17.62 18.45 19.03 13.84 18.51

WOF

k

-

7

- - - - -

5 6 7 7 6 7 5,6,7
NC [MW] 995 30 995 995 405 540 995 4955

ρNew [¢/kWh] 27.10 33.47 25.72 24.70 28.33
IRR [%] 13.21 13.25 13.38 13.33 13.67 13.45 13.41 13.39
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4.3.3 Case Studies

Presence/Absence of Targets

The following case studies are set up, in addition to base case (Case0), to examine the effect of
inclusion or exclusion of plan targets on the GEP results:

1. No energy conservation target.
2. No capacity target for s3 technologies.
3. No capacity target for RES (s8) technologies.
4. No capacity or energy conservation targets, i.e., business-as-usual (BAU) case.

Figure 4.13 shows that minimum emissions occur in Case0, increasing gradually as the tar-
gets are progressively removed (from Case1 to Case3), and reaching maximum when both targets
are excluded from the GEP model (Case4), thereby confirming the need for introduction of RES
and energy conservation. A comparison of the optimal costs and payments, i.e., R, C, EC and 
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Figure 4.13: Variation in annual emission from all technologies.
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Table 4.8: Capacity additions, PBPs, incentives and costs for all case studies.

Case Studies
Case0 Case1 Case2 Case3 Case4

GAS
NC [MW] 3300 3860 6320 6340 6960
φ [years] 2 2 2 2 2

HNR
NC [MW] 190 190 2148 190 190
φ [years] 4 4 21 4 4

HR
NC [MW] - - 1900 - -
φ [years] - - 7 - -

BIO
NC [MW] 448 448 - - -

ρNew [¢/kWh] 27.10 26.48 - - -

GPV
NC [MW] 1834 1825 - - -

ρNew [¢/kWh] 55.75 54.48 - - -

RPV
NC [MW] 213 217 - - 4

ρNew [¢/kWh] 59.25 64.89 - - 52.90

WON
NC [MW] 1275 1275 1275 1275 1275

ρNew [¢/kWh] 17.65 17.49 15.85 15.85 18.06

WOF
NC [MW] 4955 4960 440 - -

ρNew [¢/kWh] 28.33 28.98 28.82 - -
Excess capacity [%] 21.18 22.82 20.79 8.26 10.09

NPV of R [Billion $] 200.95 211.31 198.16 198.56 208.98
NPV of C [Billion $] 85.85 86.39 67.21 63.20 64.36

NPV of EC [Billion $] 22.08 22.25 25.12 25.34 25.86
NPV of ECP [Billion $] 1.12 0 1.12 1.12 0

ΩS ys [Billion $] 310 319.95 291.61 288.22 298.68

ECP, depicted in Table 4.8, shows that Case0 is not the cheapest option from the CPA’s point of
view; it also indicates that forceful integration of RES using incentives is more expensive than
the BAU (Case4) scenario. The difference in the plan cost (ΩS ys) is not only due to the relatively
higher than market-price values of the incentives, but also due to the excess capacity addition
decisions (with respect to PD) made in cases with RES capacity targets, due to the relatively low
RES capacity factors.
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Variation in RES Penetration Targets

Since RES based generation technologies are categorized in two sets, given by s3 and s8, their
penetration targets are varied separately here. The total installed capacity of s3 technologies
in 2011 is 1975 MW; thus, s3 penetration is varied from 2000 MW upwards to the maximum
capacity that can return a feasible GEP solution. The corresponding new capacity additions
are shown in Figure 4.14, demonstrating that offshore wind is the most economic choice from
the CPA’s perspective among s3 technologies after onshore wind. Observe that onshore wind
achieves its maximum installation potential of 1275 MW (see Table 4.2) for any given RES target,
and that s3 technologies are introduced in the order WON, WOF, GPV, BIO, and RPV, since
WON has already reached its penetration potential. Note that WOF provides the major share of
the RES target, and GPV and RPV installations (1990 MW and 261 MW, respectively) approach
their given capacity addition potentials as the s3 target increases. Since hydro is not included
in s3 technologies, it is not sensitive to the variation in s3 targets. The variation in optimal
incentives resulting from the variation in RES targets is shown in Figure 4.15, demonstrating
that increase in s3 penetration targets do not have a significant effect on their incentives.
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Figure 4.14: Effect of variation in s3 RES targets on new capacity additions NC.
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Figure 4.15: Optimal RES incentives for variation in s3 RES targets.
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Figure 4.16: New capacity additions for variation in s8 RES targets.

When the penetration target of s8 technologies, which include s3 and hydro, are varied, the
resultant variations in new capacity additions and optimal incentives are shown in Figures 4.16
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Figure 4.17: Optimal RES incentives for variation in s8 RES targets.

and 4.17, respectively. Comparing Figures 4.14 and 4.16, a significant increase in new capacity
additions of HNR and the introduction of HR is observed, which is due to the fact that the per
unit capital cost of hydro is lower than s3 technologies (see Table 4.1), with similar low rate
of carbon emission. Observe that the bulk of RES installations still consists of WOF (Figure
4.16), because, along with BIO, GPV, and RPV, hydro (HNR and HR) also reaches their capacity
addition potentials. Comparison of Figures 4.15 and 4.17 show that the optimal incentives for s3

technologies are affected significantly when hydro is included in the RES penetration target, as
installations of s3 technologies get delayed in time due to hydro being a cheaper option.

Variation in the Maximum PBP of Incentive Driven Technologies

The maximum PBP φMax of incentive driven s3 technologies was considered to be 10 years in
the Base Case (Case0); hence, to study its impact on the optimal GEP, this is varied here from
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Figure 4.18: Effect of varying φMax on new capacity additions NCs3.
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Figure 4.19: Effect of varying φMax on the NPV of system costs and payments.
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Figure 4.20: Effect on optimal RES incentives for variation in φMax of s3 technologies.

5 to 20 years. Figures 4.18 and 4.19 show the effect of varying φMax on new capacity additions
of s3 technologies and the corresponding NPV of system costs and payments, respectively. Note
that φMax has little effect on capacities of new s3 technology installations, and thus has almost no
effect on the costs of generation. Only the system payments (NPV of R) are reduced, signifying
that there is a reduction in the optimal incentives obtained for s3 technologies.

Figure 4.20 shows the variation in the RES incentives due to variations in their corresponding
φMax, demonstrating that φMax is a key factor in determining the optimal incentives. It is inter-
esting to note that the values of maximum PBP φMax

s3 corresponding approximately to Ontario’s
existing RES incentives (ρEx

s3 ) are 23, 13, 11, 11, and 17 years for BIO, GPV, RPV, WON, and
WOF, respectively.

Variation in Fossil-fuel Prices

Fossil-fuels GAS and OIL are assumed here to have high and low price growths, as shown in
Figure 4.21. Hence, the following four cases can be defined by combining these price variations:
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Figure 4.21: Assumed high and low fuel price growths of (a) GAS and (b) OIL with respect to
base prices [81].
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Table 4.9: Effect of fossil-fuel price variations on new capacity additions and RES incentives.

Case0 Case4

HGHO HGLO LGHO LGLO HGHO HGLO LGHO LGLO

Total planned
capacity additions

[MW]

BIO 448 448 448 465 0 0 0 0

GPV 1489 1486 1990 1990 1 1 0 0

RPV 233 217 217 208 4 4 4 4

WON 1275 1275 1275 1275 1275 1275 1275 1275

WOF 5280 5300 4795 4790 0 0 0 0

GAS 2560 1520 3700 3000 6960 6940 6960 6960

HNR 190 190 190 190 190 190 190 190

RES incentives
[¢/kWh]

BIO 276.58 276.93 269.19 276.87 – – – –

GPV 575.55 583.50 572.61 580.07 508.53 508.53 – –

RPV 605.49 605.47 605.93 602.90 529.02 529.02 529.02 529.02

WON 179.12 177.56 176.48 176.48 181.89 181.89 180.63 180.63

WOF 280.47 280.51 289.50 284.77 – – – –

• HGHO: High prices for both GAS and OIL.
• HGLO: High price for GAS and low price for OIL.
• LGHO: Low price for GAS and high price for OIL.
• LGLO: Low prices for both GAS and OIL.

These are then applied to the Base case (Case0) and BAU (Case4) scenarios, yielding Table 4.9
to show the effect of these fossil-fuel price scenarios on the outcome of the GEP. Note that there
is almost no effect of fossil-fuel price variations on the optimal RES incentives determined by
the GEP. With respect to new capacity additions, observe that OIL remains totally absent in all
the studied cases, as previously noted for the Base Case and BAU scenarios (Table 4.8), from the
set of technologies selected for new installations. This can be attributed to the fact that the high
price of OIL renders this technology more expensive than offshore wind and solar PV.
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Table 4.10: Effect of fossil-fuel price variations on energy generation over the plan horizon.

Total energy [TWh] BIO GPV RPV WOF GAS HNR HR NCP NR OIL

Case0–HGHO 62.50 32.00 5.23 319.10 598.10 919.82 390.21 881.12 760.61 91.98

Case0–HGLO 62.43 31.94 4.86 320.25 530.14 919.85 390.18 885.12 760.60 158.89

Case0–LGHO 63.76 43.41 4.88 283.82 717.92 914.95 382.98 848.43 702.43 91.98

Case0–LGLO 63.92 43.41 4.68 283.53 712.03 915.75 382.79 848.35 699.80 102.46

Case0 (Base) 63.32 40.22 4.79 295.26 687.05 916.22 384.83 855.24 717.94 91.98

Table 4.11: Effect of fossil-fuel price variations on emissions and system costs and payments.

Case0 (Base Case)
Case0

Case4
HGHO HGLO LGHO LGLO (BAU)

ΩSys [Billion $] 319 315 309 305 310 299
NPV of R [Billion $] 204 204 200 200 201 209
NPV of C [Billion $] 92.8 88.1 85.3 81.5 85.8 64.4

Emissions [million tonne of eqCO2] 208 210 226 227 221 259

The effect that price variations of OIL and GAS has on the total energy generation over
the plan horizon by a particular technology is shown in Table 4.10. Observe that for both high
and base oil prices, the energy generation from OIL is forced to its lowest limit, based on its
minimum capacity factor of 20%, with the variations in energy generation from OIL and GAS
being supplemented by WOF and NR. It should be mentioned that the energy generation over
the plan horizon for COAL and WON are 35.18 and 194.44 TWh, respectively, for all the cases,
and thus are not included in Table 4.10.

The variations in energy generation from fossil-fuel-based technologies have a significant
effect on system costs and payments and the total emission over the plan horizon, as shown in
Table 4.11. Note that reductions in the fuel-prices of OIL and GAS result in decreased system
costs and payments, but the total emissions over the plan horizon increase, as expected from the
energy values of fossil-fuel-based generation capacities in Table 4.10.
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4.3.4 Uncertainty Analysis

A Monte Carlo simulation procedure was carried out and the results are presented here, to exam-
ine the effect of uncertainties in solar and wind generation availabilities on plan decisions. Thus,
the annual average CFs of GPV, RPV, WON, and WOF for each zone are perturbed simultane-
ously, considering a normal distribution with standard deviations of 20% for each, and means
corresponding to the deterministic values previously used. Note that this results in significant
broad range of variations in CFs, as shown in Table 4.12.

The results of Monte Carlo simulations are shown in Table 4.13, which includes the range,
standard deviation, mean, and percentage standard deviation of the probability density function
of target output variables NC and ρNew; the table also includes the NPV of costs and payments
and total emissions. Observe that the percentage standard deviations of plan costs and payments
(R, C, EC, and ΩS ys) are low, as depicted in Figure 4.22, showing that significant CF variations
do not have a large impact on the system costs and payments. Note as well that the CF variations
have little effect on the resulting capacity addition or optimal incentive design for BIO (see Figure
4.23a). Thus, one can conclude that the uncertainties in solar and wind energy availability affect

Table 4.12: Range of solar and wind zonal CF perturbations.

CFs,i [%]
GPV RPV WON WOF

Min. Max. Min. Max. Min. Max. Min. Max.
NW 5.79 23.24 5.59 25.32 8.23 49.89 6.86 51.80
NE 4.35 22.76 3.85 21.66 14.21 55.78 6.69 55.35

ESSA 5.31 23.04 4.63 23.46 11.00 53.47 11.66 53.28
OTTAWA 6.26 27.82 6.00 27.09 8.71 59.94 0.00 0.00

EAST 5.45 25.31 2.90 28.21 9.44 57.55 10.05 57.76
TORONTO 4.59 22.18 4.23 23.12 8.37 56.72 9.81 53.08
NIAGARA 4.16 21.99 3.55 22.29 8.29 42.75 8.82 41.27

SW 4.95 21.58 3.73 23.27 5.97 47.06 9.83 46.44
BRUCE 4.45 21.59 1.31 23.39 11.22 60.99 9.52 60.15
WEST 5.39 26.96 6.05 26.05 13.48 61.37 11.85 62.14
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Table 4.13: Main output variables of Monte Carlo simulations.

Minimum Standard Expected Maximum Percent
Value Deviation (Mean) Value Std. Dev. [%]

Total planned
capacity additions

[MW]

BIO 447 7.78 452.26 589 1.72
GPV 1242 185.10 2064.62 2806 8.96
RPV 18 35.92 216.74 261 16.57
WON 1275 8.19×10−14 1275 1275 6.42 ×10−15

WOF 4015 207.59 4733.54 5505 4.39
GAS 3000 322.39 4421.15 6000 7.29
HNR 190 1.75×10−13 190 190 1.0×10−13

RES incentives
[¢/kWh]

BIO 21.54 0.53 26.89 32.69 1.97
GPV 44.95 4.22 57.60 72.92 7.32
RPV 43.09 5.45 59.89 87.47 9.10
WON 12.73 2.25 17.75 29.31 12.69
WOF 22.48 3.19 31.69 44.91 10.06

NPV of R [Billion $] 196.01 8.64 199.38 202.49 0.433
NPV of C [Billion $] 84.01 0.74 86.78 91.01 0.849

NPV of EC [Billion $] 22.33 0.40 23.74 24.99 1.68
ΩS ys [Billion $] 304.66 1.69 311.02 316.52 0.543
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Figure 4.22: Histograms of system costs and payments from Monte Carlo simulations.
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Figure 4.23: Histograms of RES incentives for bio and wind generation from Monte Carlo sim-
ulations.
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Figure 4.24: Histograms of solar PV incentives from Monte Carlo simulations.

the capacity addition and incentive design for mostly solar and wind technologies. Observe
also that WON capacity additions remain unaltered at its maximum province-wide potential, not
decreasing at lower capacity factors, and thereby establishing itself as a techno-economically
proven RES. On the other hand, the optimal incentive design for WON varies with a log-normal
distribution (see Figure 4.23b), indicating that for lower CF values, high incentive rates are
required to maintain the same amount of capacity additions. Finally, note that capacity additions
of PV technologies, particularly RPV, vary significantly with changes in their CFs, as shown in
Figure 4.24. (The rest of the histograms pertaining to this Monte Carlo simulation are given in
Appendix C.)
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4.4 Summary

This chapter presented the mathematical model of a novel holistic GEP problem that is designed
to determine the optimal incentives for targeted penetration of RES, considering optimally cho-
sen incentives for energy conservation, while determining the optimal site, size, and time of new
capacity additions. The proposed GEP model was designed to be used by a CPA, such as a reg-
ulator or a regional planning authority, to minimize the costs for GENCOs while minimizing the
CPA’s payments to GENCOs and LDCs, thereby considering both GENCOs’ profits and system
costs. Furthermore, GENCO’s investment constraints were considered by including a maximum
limit on the PBP of RES investments.

The proposed GEP approach was applied to a model of Ontario’s grid with realistic data,
and the results obtained are similar to the existing incentives, demonstrating the feasibility and
usefulness of the approach. An array of case studies was presented for this practical grid to aide
in understanding the sensitivities of the model outcome with respect to some important input
parameter variations. Finally, a Monte Carlo simulation procedure was presented to show the
effect of solar and wind generation uncertainties on the optimal plan outcome of the proposed
GEP model in the case of Ontario, with the results demonstrating that solar and wind capacity
factor variations affect the new capacity additions and corresponding incentives of solar and wind
only, and not other RES.
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Chapter 5

Conclusions

5.1 Summary

The research presented in this thesis has focused on the integration of RES in the generation
planning procedure; in particular, determining the parameter sensitivities and risk indices from
a solar PV investor’s perspective, and determining the optimal incentive rates for RES from the
perspective of a CPA. The main content of this thesis is summarized next.

Chapter 1 presented the motivation behind this research, discussing the capacity expansion
planning problem from both central planner’s and investor’s perspectives, while considering en-
ergy conservation and emissions. A critical literature review of related works on traditional GEP,
investor oriented and centralized planning, considering RES integration, and IRP was presented,
to determine and justify the main research objectives proposed in this chapter.

The background topics relevant to the proposed research were presented in Chapter 2. Thus,
mathematical modeling related to capacity planning considering investor’s and planner’s per-
spective, and sensitivity analysis procedures using DT, FD, and Monte Carlo simulation ap-
proaches were discussed. A brief overview of investment risk assessment tools, mathematical
programming, and a linearization technique used in this research, were also presented in this
chapter.
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Chapter 3 discussed the novel application of various approaches of the computation of sen-
sitivity indices for a solar PV investment planning model, with the sensitivities representing the
change in the NPV of investor’s profit with respect to changes in model parameters such as RES
incentives or FIT, discount rate, equipment cost, and total budget. A new application of the DT-
based sensitivity indices to determine the risk parameters of an investment planning model was
presented in this chapter. The results of applying the techniques proposed in this chapter to a
detailed investment model for Ontario demonstrated that the DT-based approach computes sen-
sitivity indices accurately for a small perturbation in the model parameters one at a time, as the
values were the same with the “true” sensitivities obtained using the FD approach, and were very
close to those obtained using Monte Carlo simulations, at low computational costs. The compu-
tation of investment risk parameters in the same Ontario model demonstrated that the proposed
mathematical formulations provide fairly accurate standard deviations, and more conservative
VaR values.

In Chapter 4, a novel holistic GEP model was proposed to determine the optimal RES incen-
tive rates to be offered to GENCOs, along with the incentives for LDCs’ energy conservation, in
order to achieve desired renewable penetration targets. The application of the proposed model to
the Ontario grid, based on available realistic data, demonstrated the feasibility and benefits of the
developed model. The results showed the importance of proper incentive design for RES pen-
etration and energy conservation, indicating that the determined optimal incentives for various
RES technologies were insensitive to most input parameter variations, except the ones directly
related to the technology under consideration. This work is an important step toward designing
suitable incentives and targets for RES capacity penetration and energy conservation to achieve
reduced emissions at minimal system costs, demonstrating that energy conservation and optimal
RES incentives are uncorrelated, thus allowing the system planner to select the corresponding
desired targets independently.

103



5.2 Contributions

The main contributions of the research presented in this thesis are the following:

• A novel mathematical formulation has been proposed to compute the standard deviation
of the output of an optimization model using DT-based sensitivity indices, for a set of
normally distributed input parameters of the model. The relation can compute the standard
deviations fairly accurately, particularly for input parameters that are linearly related to the
output.

• A new mathematical formulation has been proposed to evaluate the risks of an investment
portfolio for a given confidence level, based on the standard deviations obtained from the
proposed DT-based sensitivity indices.

• A novel holistic GEP framework has been proposed to determine the optimal incentive
rates for RES integration and energy conservation. The holistic GEP model amalgamates,
for the first time, cost minimization of GENCOs with minimization of CPA’s payments to
GENCOs and LDCs, while also considering cost of emissions; this ensures that the de-
signed RES incentives are optimal, accounting for both GENCOs’ investment constraints
and system costs. The GEP model determines the optimal sizing, siting, and timing of new
capacity additions, simultaneously with the optimal RES incentives, considering both RES
penetration and energy conservation targets.

• Application of all the proposed formulas and models to the Ontario grid, based on realistic
data, obtains relevant results such as investment risks, and RES and energy conservation
incentives and targets for Ontario investors and the OPA.

The main contents and contributions of Chapter 3 have been published in the IEEE Transactions
on Sustainable Energy [89], and the contents and contributions of Chapter 4 have been accepted
for publication to the IEEE Transactions in Sustainable Energy [90].
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5.3 Future Work

Some possible future directions for the presented research are the following:

• An investment planning model for a prospective investor examining a combination of solar
and wind generation portfolios, followed by sensitivity and risk analyses of the investment,
is an important issue that should to be investigated.

• The proposed GEP model needs to be augmented by a better representation of spinning
reserve requirements within the GRM. This will help better address the variations in RES
generations, and capture adequacy and reliability aspects in a more comprehensive manner.

• A sensitivity analysis of the holistic GEP model should be performed using the DT-based
approach, which may provide important information regarding the relationship and be-
haviour of the input and output variables of the model.

• The proposed GEP model could be modified to consider the stochastic nature of variables,
so as to capture the uncertainties of various model parameters, in particular capacity fac-
tors, load and price forecasts, cost components of different technologies, and renewable
energy resource potentials.
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Appendix A

Results of Monte Carlo Simulations
applied to the Solar PV Investment Model

Probability distributions of perturbed input parameters and the corresponding histograms of ΩP f t,
used for the Monte Carlo Simulation results presented in Chapter 3, are shown here. The labour
(LbC), land (LdC), and transportation (TC) costs are perturbed with the help of a multiplier,
which has a mean value µ = 1 and a standard deviation σ = 0.01. This ensures that the different
zonal values of these parameters vary collectively for the whole province of Ontario instead of
varying individually for different zones.
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Figure A.1: Perturbing UCPV
k with σ=1% and resulting ΩP f t: Table 3.6.
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Figure A.2: Perturbing ρICV
PV with σ=1% and resulting ΩP f t: Tables 3.6 and 3.8.
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Figure A.3: Perturbing ρICV
PV with σ=2% and resulting ΩP f t: Table 3.8.
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Figure A.4: Perturbing ρICV
PV with σ=3% and resulting ΩP f t: Table 3.8.
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Figure A.5: Perturbing CFPV
Ottawa with σ=1% and resulting ΩP f t: Tables 3.6 and 3.8.
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Figure A.6: Perturbing CFPV
Ottawa with σ=2% and resulting ΩP f t: Table 3.8.
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Figure A.7: Perturbing CFPV
Ottawa with σ=3% and resulting ΩP f t: Table 3.8.
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Figure A.8: Perturbing α with σ=1% and resulting ΩP f t: Tables 3.6 and 3.8.
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Figure A.9: Perturbing α with σ=2% and resulting ΩP f t: Table 3.8.
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Figure A.10: Perturbing α with σ=3% and resulting ΩP f t: Table 3.8.
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Figure A.11: Perturbing OMPV
k with σ=1% and resulting ΩP f t: Table 3.6.
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Figure A.12: Perturbing TBG with σ=1% and resulting ΩP f t: Table 3.6.
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Figure A.13: Perturbing CFConv
Ottawa with σ=1% and resulting ΩP f t: Table 3.6.
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Figure A.14: Perturbing LbCPV
k,i , LdCPV

k,i , and TCPV
k,i using a multiplier with σ=1% and resulting

ΩP f t: Table 3.6.
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Figure A.15: Resulting probability distribution of ΩP f t for various combinations of ρICV
PV , α,

CFPV
Ottawa, and UCPV

k perturbed with individual σ=1%: Table 3.8.
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Figure A.16: Resulting probability distribution of ΩP f t for various combinations of ρICV
PV , α,

CFPV
Ottawa, and UCPV

k perturbed with different σ values: Table 3.8.
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Appendix B

Zonal Load Forecasts for Ontario, Canada
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Figure B.1: Actual load duration curves in 2011 for the highly loaded zones.
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Figure B.2: Actual load duration curves in 2011 for the medium loaded zones.
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Figure B.3: Actual load duration curves in 2011 for the lightly loaded zones.
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Figure B.4: Load forecast for the NW zone.
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Figure B.5: Load forecast for the NE zone.
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Figure B.6: Load forecast for the ESSA zone.
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Figure B.7: Load forecast for the OTTAWA zone.
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Figure B.8: Load forecast for the EAST zone.
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Figure B.9: Load forecast for the TORONTO zone.
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Figure B.10: Load forecast for the NIAGARA zone.
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Figure B.11: Load forecast for the SW zone.
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Figure B.12: Load forecast for the BRUCE zone.
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Figure B.13: Load forecast for the WEST zone.
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Appendix C

Effect of Solar and Wind Capacity Factor
Uncertainties on the Holistic GEP
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Figure C.1: Resulting (a) Total emissions and (b) System costs and payments variations.
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Figure C.2: Resulting new capacity additions NC of solar PV.
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Figure C.3: Resulting new capacity additions NC of (a) offshore wind and (b) gas.
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Figure C.4: Perturbing solar and wind CFs with σ=20% and resulting NC of (a) WOF and (b)
GAS.
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