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Abstract

In risk theory, the time to ruin is one of the central quantities. The Laplace transform,
density and moments of the time to ruin have been studied by many authors under different
risk model assumptions. The Gerber-Shiu function proposed by Gerber and Shiu (1998)
provides an analytic tool in studying these quantities. For example, Dickson and Willmot
(2005) inverted the Gerber-Shiu function with respect to the Laplace transform parameter
of the time to ruin by Lagrange’s implicit function theorem, and hence obtained the density
of the time to ruin. The main focus of this thesis is to study the moments involving the
time to ruin by using Gerber-Shiu function as the analytic tool. An introduction on the

Gerber-Shiu function and different risk models is first given in Chapter 1.

In Chapter 2, the moments of the time to ruin are studied as generalized versions of the
Gerber-Shiu function in dependent Sparre Andersen models. It is shown that structural
properties of the Gerber-Shiu function hold also for the moments of the time to ruin. In
particular, the moments continue to satisfy defective renewal equations. These properties
are discussed in detail in Chapter 4 under the model of Willmot and Woo (2012) where
Coxian interclaim times and arbitrary time-dependent claim sizes are assumed. In Chapter
3, another very general class of dependent Sparre Andersen models with Coxian claim sizes
(e.g. Landriault et al. (2014)) is considered. An analytical form is provided for the moments

of the time to ruin under this class, which involves solving linear systems of equations.

In Chapter 5, the number of claims until ruin is taken into consideration under a
Sparre Andersen model with exponential claim sizes. The joint density of the time to ruin,
the number of claims until ruin and other ruin-related quantities is identified. The joint

moments of these quantities can then be obtained from this joint density.

In Chapter 6, the insurance surplus process is studied under a generalized MAP risk
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model introduced in Cheung et al. (2011). With Coxian claim sizes, the moments of the
time to ruin are in the form of a linear sum of Erlang densities. The associated coefficients

of this linear sum are shown to satisfy linear systems of equations.

Finally, a brief conclusion of this thesis and a discussion of future research are given in

Chapter 7.
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Chapter 1

Introduction and background

In this chapter, the insurance surplus process is first introduced. Details are given on the
dependent Sparre Andersen model and the MAP risk model. The Gerber-Shiu function
and the moments of ruin-related quantities are then discussed. Mathematical preliminaries

that are useful in this thesis are given at the end.

1.1 Dependent Sparre Andersen risk model

The insurance surplus process {U;,t > 0} is usually modelled by

Ny
Ut:u+ct—ZYi, (1.1)

i=1
where u (u > 0) is the initial surplus and ¢ is the premium rate in one unit of time.
{N;,t > 0} is a claim number process which is defined through a sequence of independent
and identically distributed (iid) interclaim time random variables {V;,i = 1,2, ...}, where

V1 is the time until first claim and V; is the time between (i — 1)th and ith claim for
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i=2,3,....{Y;,i=1,2,...} is a sequence of claim size random variables which is iid. The
pairs {(V;,Y;),i = 1,2,...} are iid, but V; and Y; may be dependent. (1.1) is known as the
dependent Sparre Andersen model (and simply known as the Sparre Andersen model if V;
and Y; are independent for all i = 1,2,...). See for example Sparre Andersen (1957) and
Rolski et al. (1999) for references on this model.

Let the marginal probability density function (pdf) and cumulative distribution func-
tion (cdf) of the interclaim time V' be k(t) and K (t) respectively, where V' is any arbitrary
V;. On the other hand, the marginal pdf and cdf of the claim size Y are denoted by p(y)
and P(y) respectively, where Y is any arbitrary Y;. Also, let f(¢,y) be the joint pdf of
the pair (V,Y) when V =t and Y = y. Finally, let us assume that the positive security
loading condition

E[cV] > E[Y] (1.2)
holds in (1.1).

The classical Poisson risk model is one of the well-known special cases of the dependent
Sparre Andersen model. In this model, the joint pdf of the interclaim time and claim size
is given by

flty) = e p(y).

In other words, the classical Poisson risk model assumes that {V;,i = 1,2,...} are inde-
pendent of {Y;,7=1,2,...} and {V;,i = 1,2,...} follow exponential distribution. Readers
may refer to e.g. Gerber (1979), Grandell (1991) and Panjer and Willmot (1992) for a
complete introduction on the classical Poisson risk model. There are also studies on the
dependent Sparre Andersen model with more general interclaim times and claim sizes.
Recent examples include Albrecher and Teugels (2006), Boudreault et al. (2006), Cossette
et al. (2008), Zhang et al. (2012) and references therein.



1.2 Ruin-related quantities and Gerber-Shiu function

1.2.1 Gerber-Shiu function

Let T be the time to ruin for the process {U;, ¢t > 0}, which is defined by
T=inf{t >0: U, <0} (1.3)

and T = oo if U; is non-negative for all ¢ > 0. The Gerber-Shiu function introduced in

Gerber and Shiu (1998) is defined as
ms(u) = Ele™*Tw(Up_, |Up|) (T < 00)|Uy = u, (1.4)

where § > 0, the penalty function w(z,y) satisfies mild integrablility conditions and I(A)
is an indicator function which takes value 1 if the event A occurs and 0 otherwise. The
random variables Ur_ and |Ur| represent the surplus before ruin and the deficit at ruin
respectively. Before the Gerber-Shiu function was introduced, the joint density of Up_
and |Ur| had been studied in Dufresne and Gerber (1988) under the classical Poisson risk

model. The probability of ruin
mo(u) = E[I(T < 00)|Uy = u]

is a special case of (1.4) with 6 =0 and w(z,y) = 1.

Under the classical Poisson risk model, it was shown in Gerber and Shiu (1998) that
(1.4) follows a defective renewal equation. Lin and Willmot (1999) gave the solution to
this equation in the form of a compound geometric tail. The Gerber-Shiu function is
also considered in more general Sparre Andersen model. For example, Dickson and Hipp

(2001), Li and Garrido (2004) and Gerber and Shiu (2005) studied with Erlang interclaim



time. Willmot (2007) and Landriault and Willmot (2008) further the studies with arbitrary

interclaim time.

There is also literature on the Gerber-Shiu function in dependent Sparre Andersen
model. Albrecher and Boxma (2004) assumed a Markovian claim arrival process. Badescu
et al. (2009) considered a bivariate phase-type distribution for the interclaim time and the

claim size. Albrecher et al. (2011) introduced dependence by mixing distribution.

Next, let us denote the number of claims until ruin by Ny, which is also a widely studied
random variable in risk theory. Stanford et al. (2000) developed a recursive method through
the number of claims until ruin in order to calculate the probability of ruin. Egidio dos Reis
(2002) studied the distribution of the number of claims until ruin under the classical Poisson
risk model. In Landriault et al. (2011), the number of claims until ruin is introduced to

the Gerber-Shiu function as
mys(u) = ErNTe TV~ [(T < o0)|Uy = ], (1.5)

where 7 € (0,1] and s > 0. With exponential claim sizes, closed form expression for (1.5)

is obtained in the paper.

In Cheung et al. (2010), another generalization of the Gerber-Shiu function that also

involves N is proposed as
ms(u) = Ele™ w(Up_, |Up|, X7, Ryp—1) (T < 00)|Uy = (1.6)

for 0 > 0. X; denotes the minimum surplus before time ¢, i.e. X; = Oi<r;f< tUs. R,, is defined
as Ro =wand R, =u+Y ;. ,(cV; =Y;) for n = 1,2,.... Therefore, X7 is the minimum
surplus before ruin. Ry, _; is equal to u if ruin occurs on first claim, and for ruin occurs
on claim subsequent to the first, it is the surplus immediately after the second last claim

before ruin.



Ruin-related quantities | Ny =1 Nr>1
Ur_ Ur— Ur_
|Ur| |Ur |Ur|
T Yr——v | inf{t > 0: U, < 0}
Xr b ogirsliTUs
Ry 1 u a2 V- Y)

Table 1.1: Value of ruin-related quantities when Ny = 1 and Ny > 1

1.2.2 Moments of ruin-related quantities

In Gerber-Shiu function (1.4), the (joint) moments of the surplus before ruin and the deficit

at ruin is easily obtained by considering the penalty function
w(z,y) = a*y",

where k and n are non-negative integers. Lin and Willmot (2000) showed that the mo-
ments of the surplus before ruin and the deficit at ruin can be expressed analytically using

compound geometric tails in the classical risk model.

Next, consider the moments of the time to ruin which may be studied in two approaches.
The first approach is to determine the (defective) density of the time to ruin and obtain
the moments of the time to ruin by integration. To be specific, suppose the (defective)
density of the time to ruin given initial surplus u is g(t|u), then the kth moment of the
time to ruin can be calculated as

E[T*I(T < 00)|Uy = u] = /oo g (¢ |u)dt



for k =0,1,2,.... The density of the time to ruin has been studied with different model
assumptions in the literature. Drekic and Willmot (2003) determined the density of the
time to ruin under the classical Poisson risk model with exponential claim sizes. In a
classical Poisson risk model with arbitrary claim sizes, Dickson and Willmot (2005) inverted
the Gerber-Shiu function to determine the density of the time to ruin by Lagrange’s implicit
function theorem (e.g. Good (1960) and Goulden and Jackson (1983)). This result was
generalized in Landriault and Willmot (2009) where the joint distribution of the time to
ruin, the surplus before ruin and the deficit at ruin was given. Recently, Landriault and
Shi (2013) assumed combination of n exponentials claim sizes and obtained the density of

T by multivariate Lagrange expansion.

The second approach to study the moments of the time to ruin is by noting that they

are closely related to the Gerber-Shiu function. To see this, let us consider
ms(u) = Ele T I(T < 00)|Uy = ]

without loss of generality. (If joint moments of the time to ruin and other ruin quantities
are of interest, then consider mgs(u) with an appropriate penalty function). Define the

discounted kth moment of the time to ruin as
mis(u) = B[T*e™TI(T < 00)|Uy = ], (1.7)

where k = 0,1,2,..., then it is obvious that (1.7) can be obtained by differentiating the
Gerber-Shiu function kth times with respect to 4, i.e.

i) = (1) i (). (18)

To show that the above differentiation is valid, one can apply the Lebesgue’s dominated
convergence theorem (e.g. Resnick (2005)). The Lebesgue’s dominated convergence theo-

rem can be applied when the integrand of ms(u) = Ele °TI(T < 00)|Uy = u] is assumed
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to satisfy mild integrability conditions. These conditions implicitly follow from the tacit
assumption that all moments of the time to ruin considered in this thesis are finite. For
more general Gerber-Shiu functions, these integrability conditions impose restrictions on
the penalty functions involved. For evaluation of marginal moments of the time to ruin, it

may be assumed that the penalty function is 1.

Under the classical Poisson risk model, Lin and Willmot (2000) gave a recursive equa-
tion for the moments of the time to ruin. The equation was solved in Willmot (2002) by
using the compound geometric distribution and its higher-order equilibrium distributions.
These results were recursive in nature and hence involved complicated calculation. Hence,
Drekic et al. (2004) and Drekic and Willmot (2005) studied these results from a com-
putational point of view and provided numerical examples by assuming phase-type claim

sizes.

There are also studies on the moments of the time to ruin under more general risk
models. For example, Dickson and Hipp (2001) considered a Sparre Andersen model with

Erlang(2) interclaim times, and Li and Lu (2013) assumed a surplus process with interest.

1.3 MAP risk model

There are also studies on the risk model with a Markovian arrival process (MAP). Interested
readers may refer to Neuts (1979) and Latouche and Ramaswami (1999) for introduction
on MAP. Many papers, e.g. Ahn and Badescu (2007) and Cheung and Landriault (2010),
had analysis of the Gerber-Shiu function in a MAP risk model. In Yu et al. (2010), the
moments of the time to ruin were studied in a MAP risk model with phase type claim
sizes. A brief description of the MAP risk model, mainly based on Cheung et al. (2011),

is given in the following.



For a MAP, it involves a homogeneous continuous-time Markov chain (CTMC). Let this
CTMCbe Y = {Y(t),t > 0} defined on a finite state space S = {1,...,m}. In the context
of a risk model, CTMC Y may involve two kinds of transitions which are represented by

the transition rate matices Dy and D; respectively. The (i, j)th entry of

1. Dyg, where 7 # j, is the transition rate the CTMC Y changes from state i to state j

with no claim happening;

2. D, (i = j is also being considered), is the transition rate the CTMC Y changes from

state 7 to state j with a claim happening.

For convenience, either kind of transition will be referrred as a system change in this section
and in Chapter 6. The (i,7)th entry of Dy is negative and its absolute value is equal to
the rate of a system change given that the CTMC Y is in state . The sum of the ¢th row
of Dy + Dy should add up to zero. For a MAP risk model, if the CTMC is in state i, the
waiting time of a system change follows an exponential distribution with mean equals to

the absolute value of the inverse of the (i,7)th entry of Dy.

The MAP includes many well-known processes as special cases. When m = 1, Dy = ()
and Do = (=), the MAP reduces to a homogeneous Poisson process with arrival rate A.

When

M O - 0
0 X -+ 0
D1 ==
0 0 - A\p
with \; > 0 for all = 1,2,...,m and Dy has non-negative off-diagonal entries, then it is

the Markov modulated Poisson process (MMPP). Readers can refer to e.g. He (2014) for

more on special cases and applications of the MAP.
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1.4 Mathematical notations and preliminaries

In this section, some mathematical notations and preliminaries used in the following chap-
ters are introduced. Also, note the notational convention Zf:l = 0 for 7 > k in this

thesis.

1.4.1 Laplace transform

For an integrable function f(-) defined on (0, c0), denote its Laplace transform by

oo
fs) = [ e ptayan,
0
where s can be any number with non-negative real part. Unless otherwise specified, this
notation of Laplace transform is used throughout the thesis.

For more about the properties of Laplace transform, please refer to Widder (2010).

1.4.2 Dickson-Hipp operator

Given an integrable function f(-) defined on (0, 00), its Dickson-Hipp operator is denoted
by
L) = [T )y, uzo

where the parameter r can be any number with non-negative real part. One special case

is T,.f(0) = f(r). For ry # ry,

T T f(0) = T, T, f(u) = 22/ W) = T () (19)

o —T

Readers can refer to Dickson and Hipp (2001) for details.



Also, if the operator is applied n times with the same parameter r, where n = 1,2,.. .,

then it is given in Li and Garrido (2004) that

)n—l

Tff(u) - TTTT U Trf(u) - / (y — e_r(y_U)f(y)dy' (1'10)

(n—1)!

1.4.3 Initial value theorem

For a continuous function f(-) on (0, 00), if its derivative f(-) is piecewise continuous on
[0,00), then
lim sf(s) = lim f(z).

5§—00 x—0

Readers can refer to Schiff (1999) for a complete introduction on the initial value theorem.

1.4.4 Coxian distribution

The class of Coxian distributions is now introduced, and it is one of the main classes of
distributions considered in later chapters. For a continuous distribution with pdf f(z), it

belongs to the class of Coxian-n distributions if its Laplace transform is given by

. a(s
f(s) = —"— (5) , (1.11)
[T+ )™
i=1
where \;,n; > 0fori=1,...,m, \; # \jfor i # jand n =" n;. Moreover, a(s) is a

polynomial in s with a degree of at most n — 1. It follows from (1.11) that the Coxian-n

pdf has the form

B m. n; H/\i()\ixyflef/\ix

i=1 j=1
For a detailed discussion on the properties and special cases of Coxian distributions,

see e.g. Klugman et al. (2013).
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1.4.5 Introduction to defective renewal equation

In this section, defective renewal equations which often arise in risk theory are reviewed.

Interested readers may refer to Ross (1996) for a complete introduction on renewal theory.

From e.g. Resnick (1992) and Willmot and Lin (2001), a non-negative function m(u)

is said to satisfy defective renewal equation if

m(u) = qﬁ/ou m(u —y)dF(y) +v(u), u>0, (1.12)

where 0 < ¢ < 1, F(y) is a distribution function such that F'(0) = 0 and v(u) is a non-

negative continuous function. It was given in Willmot and Lin (2001) that (1.12) has

solution
1 u
miw) = = [ olu=9)dG) + olw), (113
—9Jo
where G(y) = 1 — G(y) is a compound geometric distribution defined by
Gly)=> (1=¢)¢"F™"(y), y=>0
n=1

and F*(y) = 1 — F*(y) is the n-fold convolution of F(y).

There is also asymptotic solution to (1.12). If there exists an adjustment coefficient
p > 0 such that [;~e”dF(y) = 1/¢ where F(y) is a non-arithmetic distribution and
e”v(u) is directly Riemann integrable, then (e.g. Willmot and Lin (2001))

o ey,
¢ [, yervdF (y)

where f(x) ~ g(z), © — oo, represents lim f(x)/g(x) = 1.
T—00

u — 00, (1.14)

11



Lower and upper bounds of m(u) in (1.12) are also given in the literature. For example,

Willmot et al. (2001) showed that

aj(u)e ™™ < m(u) < as(u)e ™, (1.15)
where a;(u) = Oinf a(z), as(u) = sup a(z) and
<z<u 0<z<u
B eP*u(z)
O ety

1.5 Outline of the thesis

In Chapter 2, the structural properties of the Gerber-Shiu function are generalized to the
moments of the time to ruin. In particular, the moments of the time to ruin are shown to
continue satisfy defective renewal equations, which is a useful result for the studies in later

chapters.

In Chapter 3, a dependent Sparre Andersen model with Coxian claim sizes is considered.
The associated coefficients of the Gerber-Shiu function is first studied as a follow-up of the
results in Landriault et al. (2014). Then the moments of the time to ruin are considered

and an analytical solution is given for the moments.

In Chapter 4, structural properties of the moments of the time to ruin are studied
under a dependent Sparre Andersen model with Coxian interclaim times. The structural

quantities needed to determine the moments are specified under this model.

In Chapter 5, the joint density of the time to ruin and other ruin-related quantities is
determined under a Sparre Andersen model with exponential claim sizes. Using this joint
density, the marginal and joint moments of these ruin-related quantities can be obtained

by integration.

12



In Chapter 6, the moments of the time to ruin are considered under a generalized MAP
risk model. By assuming Coxian claim sizes, the moments are shown to be in the form of

a linear sum of Erlang densities.

Finally in Chapter 7, a conclusion of this thesis and a discussion of future research is

given.
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Chapter 2

Structural properties of the moments

of the time to ruin

In this chapter, structural properties of the Gerber-Shiu function in dependent Sparre An-
dersen models are first introduced. These properties are then generalized to the moments

of the time to ruin.

2.1 Introduction to structural properties of Gerber-

Shiu function

The Gerber-Shiu functions introduced in Section 1.2.1 are shown to satisfy defective re-
newal equations by many authors. For example, readers can refer to Gerber and Shiu
(1998), Cheung et al. (2010) and Landriault et al. (2011) for references. Based on these

references, a brief description of the argument is given in the following.

14



Consider the generalized Gerber-Shiu function (1.6), i.e.
ms(u) = Ele T w(Up_, |Up|, X7, Rny—1)I(T < 00)|Uy = u] (2.1)

under a dependent Sparre Andersen model introduced in section 1.1. Given initial surplus
w and for ruin occured on the first claim, let hq(z, y|u) be the joint defective density of the
surplus before ruin (z) and the deficit at ruin (y). Since ruin is on the first claim, the time
of ruin (¢) is given by t = (x — u)/c and hence

1 r—u
Ef< ,x+y), T >u

C

ha(z, ylu) = (2:2)

0, otherwise.

Also, by definition, X7 = w and Ry,_1 = u if ruin is on the first claim. Given initial

surplus « and for ruin on claims subsequent to the first, let
h2(t7$797U|U) (23)

where v < z, be the joint defective density of the time of ruin (¢), the surplus before ruin
(x), the deficit at ruin (y) and the surplus immediately after the second last claim before

ruin (v).

Then, define the discounted densities

Iy o, ylu) = e ST )y (2, ylu), (2.4)
s (. vlt) = / e hy(t, ,y, vlu)dt (2.5)
0
and
b, yle) = I aCoyle) + [ has(o.y. ol (2.6)
0

15



Cheung et al. (2010) showed that (2.1) satisfy the defective renewal equation

ma(u) = é5 [ mal — ) fay)dy + i) (2.7
0
where f5(y) is the discounted ladder height density defined by
1 (o]
fiw = [ hsteslopds (28)
?s Jo

with ¢s = [° [, hs(x,y|0)dazdy, and
i) = [ [ e+ = v o, yj0)dady
u 0

+ / / / w(r+u,y —u,u, v+ u)hy s(z, y,v|0)dvdrdy. (2.9)
U 0 0

According to (2.7) to (2.9), Cheung et al. (2010) noted that the discounted joint density
of (Ur—, |Ur|, Rn,—1) characterizes the Gerber-Shiu function with (Ur_, |Ur|, X1, Rn;—1),

SO One can examine
ms(u) = Ele™*Tw(Ur_, |Ug|, Ryp—1) (T < 00)|Uy = u

instead of (2.1) without loss of generality.

2.2 Structural properties of the moments of the time

to ruin

In this section, structural properties of the Gerber-Shiu function are generalized to the

moments of the time to ruin.

Under the Poisson risk model, Lin and Willmot (2000) showed that the mean time
to ruin E[Tw(Ur—, |Ur|)I(T < o0)|Uy = u| and the higher moments of the time to ruin

16



E[TFI(T < 00)|Uy = u] for k = 2,3, ... satisfy defective renewal equations. This result
will now be generalized in dependent Sparre Andersen models with more general form of
the moments of ruin time. Consider the following generalized kth moment of the time to
ruin

mys(u) = E[T e Tw(Ur_, |Up|, X1, Ryp—1) (T < 00)|Uy = ul, (2.10)

for k =0,1,2,..., which includes a four variables penalty function as in (2.1). For repre-

sentation of the following results, define

k
Tr— U
h;mx,mu):( ) hns(sylu), (2.11)
B (e, g, o) = / theDhy(t, 2,y olu)dt (2.12)
0
and

Bk (e, yl) = B, ylu) + / B (g, olu)do (2.13)

0

for k=0,1,2,.... Infact, (2.11) to (2.13) are functions related to (2.4) to (2.6) respectively

by a kth order differentiation with respect to d.
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Theorem 2.2.1. Consider the dependent Sparre Andersen model as described in Section

1.1 with initial surplus w. The generalized kth moment of the time to ruin, i.e. mys(u)

defined in (2.10), satisfies a defective renewal equation. For k =0,1,2,.. .,

() = 6 /0 s — ) f5(y)dy + ves(w),

where QS(S = fOOO fOOO hg(l’,y|0)dl'dy, fé(y) = é fooo h5(1‘7y|0)dI and
k k u o
Vks(u) :Z (]) / my—js(u— y)/ hs’ (x,y|0)dxdy
=1 0 0

J

[ et wy = v nt e 0)dedy
u 0

+/ / / w($+u,y—u,u,v+u)h§f%(x,y,v|0)dvd:ndy.
u 0 0

For k =0, (2.14) reduces to (2.7).

Proof. First, rewrite (2.7) as
ma(w) = [ il = )55 (0)dy + i),
0

where fi*(y) = ¢5f5(y) = [, hs(z, y|0)dz.

Differentiate (2.16) k times with respect to d, which yields

0" ms(u) —Z(k) / O Iyl —y) O[5 (), Des(u)

oot 2\ 5% 251 YT ok

(2.14)

(2.15)

(2.16)

(2.17)

The first term on the right hand side of (2.17) is obtained by applying the generalized

product rule (General Leibniz rule).
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Then multiplying (—1)* on both sides of (2.17) gives

) = [ gt = >g*<y>dy+j§;( ) [ st {2 g,

R0 v(;(u).

+ (D s (2.18)
Forj=1,... k,
Vi) _ [ el
007 0 007

:/ {( ) 6:v/6h (x,y]0) / / 6th2 t y,v|0)dtdv}d
0

and
OFvs 5
= —bz/c
85k / / w(z+u,y— uuu){( c> ha(z, y|0)}dacdy
+/ / / w(x 4+ u,y — u,u, v+ u)
U 0 0
X {/ (—t)keéthg(t,x,y,v\O)dt} dvdzdy,
0

which yields (2.14) and (2.15) by substituting into (2.18). O

Given a dependent Sparre Andersen model, Theorem 2.2.1 shows that if the functions
h”(x y,v|0) are known for all £k = 0,1,2,..., then mys(u) can be solved recursively in
k. The defective renewal equations (2.14) need to be solved recursively since the function

vy s(u) is defined by m;s(u) for j =0,1,2,...,k — 1 as shown in (2.15).

Finally, if the defective renewal equation (2.14) is completely specified, then its solution

is given by
1

1 — s

ms(u) =

/O s — 9)g(y)dy + vis(), (2.19)
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where gs(y) = din(;(y) and Gs(y) = 1—Gj5(y) is a compound geometric distribution defined
by

o0

Gs(y) = (1= ¢s)d3 F3"(y), y>0. (2.20)

n=1

In (2.20), Fy™(y) = 1— F;™(y) is the n-fold convolution of the distribution function F3(y) =
Iy fs(z)dx. Readers may refer to Section 1.4.5 for details on solution of defective renewal
equation. However, the asymptotic result in (1.14) is of limited applicability in the present

situation because the constant [ e?v(y)dy/¢ [;° yedF (y) is often infinite.
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Chapter 3

Dependent Sparre Andersen model

with Coxian claim size assumption

In this chapter, a dependent Sparre Andersen model with Coxian claim sizes is considered.
The Gerber-Shiu function was shown in Landriault et al. (2014) that it is a linear sum of
exponential terms. The associated coefficients of these exponential terms are studied in

the first part of this chapter as a follow-up of the results in Landriault et al. (2014).

The moments of the time to ruin are considered in the second part of this chapter. The
moments are shown to be in the form of a linear sum. Numerical examples involving the
mean and variance of the time to ruin are discussed in detail. These results have been

submitted as Lee and Willmot (2014a).
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3.1 Background

3.1.1 Model introduction

Recall the dependent Sparre Andersen model introduced in section 1.1, where the interclaim
time V' and claim size Y are dependent. In this chapter, assume the following joint pdf of

(V.Y) |
) =D gntesn(y), ty>0, (3.1)

i=1 h=1

with eg p,(y) representing the Erlang pdf

h—1_,—pBy
cants) = P o

It can be easily seen that the marginal pdf of Y is

ply) = f S { [ st} esato (32)

h=1

which is a Coxian-n pdf with n = Z n;. The class of joint pdfs (3.1) includes a large class
i=1
of dependency models; interested readers may refer to Landriault et al. (2014) for special

cases of (3.1).

The Gerber-Shiu function considered in this chapter is of the form
ms(u) = Ele”"Tw(|Ur|) (T < 00)|Up = ul, (3.3)

where the penalty function involves the deficit at ruin only. Interested readers may refer
to Landriault and Willmot (2008) for a similar model but with a more general penalty

function which includes the surplus before ruin.
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3.1.2 Background result

The approach used and the result obtained in Landriault et al. (2014) will now be briefly

described as background.

First, Landriault et al. (2014) showed by using probabilistic arguments that (2.6) can

be expressed as

ha o) = 303 & m(lu)es ()

i=1 h=1

for some functions &, (x|u), where ¢ = 1,...,m;h = 1,...,n;, and hence the discounted

ladder height density (2.8) becomes

Js) =D &Gancsn(y) (34)
i=1 h=1
with &san = ¢5 ' [y Esan(2[0)dz and ¢s = [° [7° hs(z, y|0)dzdy.
Then as shown in (2.7), it was given in Cheung et al. (2010) that (3.3) satisfies the

defective renewal equation

ms(u) = 05 [ ms(u= ) o)y + vs(w), (3.5)
where
ws(10) = 05 [ wfolu+ )iy (3.6)
Take Laplace transform of (3.5) yields
s(s) = #ﬁfi(s). (3.7)

Using the Laplace transform of (3.4), it follows that (3.7) can be expressed as

~ = Cz6
ms(s) = . 3.8
CRD e (38)
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Hence, inversion of (3.8) gives

ms(u) = Z C,se B0ty > 0. (3.9)

z=1
Assume 1, B2, ..., By and R4, Ras, ..., Ry 5 are all distinct. It was proved in Theorem
1 of Landriault et al. (2014) that — Ry 5, —Ray, ..., —R,s all have negative real parts and

are roots of Lundberg’s generalized equation (in s)

Xm:i (Bﬁs)hém@—w) =L (3.10)

i=1 h=1
Moreover, (' 5,Coy, . .., Cy 5 satisty the system of linear equations
n B h
> Ces <—1) = Elw(E;p)] (3.11)
—1 ﬁz - Rz,(s
fori=1,2,...,mand h =1,2,...,n;. For notational convenience, E;} in (3.11) denotes

the random variable with Erlang pdf eg, 5.

3.2 Explicit form of the associated coefficients

As shown in (3.9), the Gerber-Shiu function is characterized by the roots of Lundberg’s
generalized equation and the associated coefficients Cs,Css, ..., Cp s which satisfy the
system of linear equations (3.11). In this section, an approach is employed such that the
form for the coefficients C 5,Csy, ..., Cy s can be determined, and an explicit expression

is possible for some special cases of the penalty function.

Theorem 3.2.1. The coefficient C, 5 in (3.8), for z=1,...,n, has the form

H(ﬁz - Rz,é)ni
C.5 = 5(—R.5)—=" . (3.12)
I Bis—R-»)
=142
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Proof. Given the ladder height density (3.4), it follows that

{ﬁ(ww} fi(s) = {ﬁ ot B }zzm (2

i=1 =1 i=1 h=1

)h
is a polynomial in s of degree n — 1 or less. Thus,
{H<5 + 51)”} {1 - ¢5f5(5)}
i=1
is a polynomial of degree n with the coefficient of s equal to 1. In equation (20)
of Landriault et al. (2014), it was given that the equation 1 — ¢sfs(s) = 0 has roots

—Ris5,—Ras,...,—R,s (which can be found out from Lundberg’s generalized equation

(3.10)). Hence,

{H(3+5z‘)m}{1—¢5f5 } HS+RJ5 (3.13)

=1 7j=1
3 IT s+ Ris)
1—¢5fs(s) _j=1i#= (3.14)
S + RZ75 m n ’
H(S + Bi)"™
i=1
forz=1,2,...,n
Now, equate (3.7) and (3.8), i.e
n C ~
fs(s) = h = Ols) (3.15)
— s+ Rns 11— ¢sfs(s)
Then it follows from (3.15) that
0375 = lim (S + RZ’5)T7Z(;(S>
S%*Rzy(;
= lim (s+ Rz,é)%—({) (3.16)
s> Ras 1 — @5 fs(s)
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for z=1,2,...,n. Substitute (3.14) into (3.16) to get

m

H(S + B@)m
C.o= lim B(s)—5" :
S—>—R27§
[T s+ Rjs)
i=Lj#e
and hence (3.12) follows as a result. ]

The expression for the term 05(—R. ) in (3.12) is complicated in general, but a simple
result is possible with some particular choices of the penalty function w(y) as shown in the

following theorem.

Theorem 3.2.2. Given w(y) = y"e_zy, where n =0,1,2,... and Re z > 0. Consider the

Laplace transform vs(s fo uw)du and assume s # z, then it is given by
- n! “(s—z) (O -
vs(s) = ! {%fa( =Y ( j! ) {ﬁ%fa(z)}} (3.17)
=0
with

¢sfs(s) =1~ ];1— (3.18)

Proof. To start with, rewrite (3.6) as

vs(u) = 5 / T wly — ) fily)dy. (3.19)

If w(y) = y"e Y, then (3.19) becomes
wsl) = 65 [ (= u)e 0 )y (320)
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Recall the definition of Dickson-Hipp operator in section 1.4.2. According to (1.10), one

can express (3.20) as

vs(u) = nlos T f5(u). (3.21)
Take Laplace transform of (3.21) yields
Us(s) = nlosT, T £5(0). (3.22)

Assume s # z, induction will be used to show that

(z —s)ntl

TSTZ"HJC(S(U) = ; {ﬁ;(s) — Z(z —5)J /000 %G_ny5<y)dy} . (3.23)

=0
First, T,T.f5(0) = {fs(s) — fs5(2)}/{z — s} by (1.9), and hence (3.23) is true for n = 0.
Next, by using (1.9) again,

r2gy(0) = BECLO - TR0 (3.24)

zZ— S

If (3.23) is assumed to be true and by (1.10), then (3.24) becomes

LI (0) = { o {fa<s> - [ %ezyfa<y>dy}

0 n+1 -
_ /0 (ny+1)!e ny5<y>dy}
n+1 j
T LLCE R

Thus, (3.23) is proved by induction. By combining (3.22) and (3.23), one has (3.17) as a
result. Also, (3.18) follows directly from (3.13). O
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3.3 Moments of the time to ruin

The moments of the time to ruin are the focus of study in this section. Let us define the

form of the kth moment of ruin time that will be considered in this chapter as
mys(u) = E[T* e w(|Ur|) (T < 00)|Uy = ul, (3.25)

for k =0,1,2,..., and from which it is obvious that mg s(u) = ms(u). As shown in section

1.2.2, (3.25) is related to (3.3) by a kth-order differentiation, which is formally stated as

my.s(u) = (—l)k%mg(u). (3.26)

The following result is mainly based on this relation.

Theorem 3.3.1. Consider a dependent Sparre Andersen model introduced in section (1.1)
with the joint pdf of the interclaim time and the claim size given by (3.1). For k =
0,1,2,..., the kth moment of the time to Tuin (3.25) can be expressed in the form

E n
mys(u) = Z Z By s(r, 2)u"e =0ty >0, (3.27)

r=0 z=1
where —Ry 5,—Ras, ..., — R, s all have negative real parts and are roots of Lundberg’s gen-
eralized equation (3.10). Moreover, By s(r,z) for r = 0,1,...,k and z = 1,2,...,n are

coefficients with By (0, z) = C,s in (3.9).
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Proof. For k = 0, (3.27) reduces to (3.9) with Bys5(0,2) = C,s for 2 = 1,2,... ,n.

assume (3.27) is true for k. Then

0

Miy1s(u) = — —<mys(u)

)

{ZZBHM zé“}

r=0 z=1

EY _ 831“5 7“ Z _
— g g Bk(5 r, Z Z 7’""1 R, su __ E E u"e R, su

r=0 z=1 r=0 z=1

_ i aBL(O’Z)efRz,&u
o)

z=1

k n
OR,, 0By 5(r, 2 T
—i—ZZ{Bk,a(T—LZ) 865_ k(;é >}ue Rz

r=1 z=1

& OR.
+ Z Bk,5<k’a Z) 65,6 uk—l—le—Rz,au
z=1

k+1 n

= Z Z Biy15(r, 2)u"e” Fedt

r=0 z=1

where Biy15(0,2) = M

E)B%&(m)forr—IZ S kand z =1,2,...,n and Byi1s5(k + 1,2) = Bys(k, z)
z=1,2,...,n. Hence, (3.27) is true by induction.

Now,

for = = 1,2,...,n, Bry1s(r,2) = Bps(r — 1,2)31;;’5 —

z‘s for

O

The approach used to show (3.11) in Landriault et al. (2014) can be applied here to

determine the systems of linear equations satisfied by the coefficients By s(r, z) in (3.27),

and this is given by the following result.
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Theorem 3.3.2. Suppose the conditions of Theorem 3.3.1 hold. In addition, assume that
B, Bas -y Bm and Ry 5, Ros, ..., Rys are all distinct, and also Gin, (0 + ;) is non-zero for
i=1,2,...,m. Then for k = 1,2,..., the coefficients By s(r,z) with r = 0,1,...,k and

z=1,...,n satisfy two sets of equations.

The first set is the following recursive system of linear equations

Z( )ZBx‘Sy’ ZZZQZ,h,y,aw,ZﬁNzhzd(k’_IL"FGJ—T)

=1 h=1 a=r

+ Z Brs(y, 2) Z Z Z QinyarzsNin-sla—1)=0 (3.28)

y:r+1 =1 h=1 a=r
forr=0,1,....k—1and z=1,...,n, where

Qinyarzs = (1) """ T'(ay_lr)' (y - ZJ—F }f - 1) . Rﬁi)y“h’ (3.29)
and
Nip-s(k) = /OO tke’(‘”CRz";)tgih(t)dt. (3.30)
Since (3.28) is true forr =0,1,....k —01 and z = 1,...,n, there are k X n equations in
total.

The second set of equatz’ons 18

ZZBH r 2) ) U H);}) —0 (3.31)

r=0 z=1 Z

fori=1,... mand j=1,...,n;. There are in total n equations in (3.31).

Proof. From equation (26) of Landriault et al. (2014), the Gerber-Shiu function satisfies

(by conditioning on the time and the amount of the first claim)

[T [ wty - ety
0 u+tct

00 u+ct
+ / e 0 / ms(u+ ct — y) f(t,y)dydt. (3.32)
0 0
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According to (3.26), one can differentiate (3.32) k times with respect to 0 to obtain

mys(u) = tke&/ w(y —u—ct)f(t,y)dydt

0 +ct

k
k o0 u+ct
+ Z (x) /0 h—a —6t /0 mys(u+ ct —y) f(t,y)dydt. (3.33)

z=0

Putting (3.1) and (3.27) into (3.33) yields

ZZBM” zau:/ tke_at/ wly — 1 — cf)
0 u—+ct

r=0 z=1

gzh 651 } dydt

=1 h=1

+ i (i) /OO thre=ot /Oum {i i By s(r,z)(u+ct —y)

r=0 z=1

X e ““*Cty}{izgm es,.n(y }dydt

i=1 h=1

= Z / theot {/ w(y)eg, n(y +u+ ct)dy} gin(t)dt
i=1 h=1"0 0

x n

(TSt [

i=1 r=0 z=1

X

u+ct
/ (u+ ct —y)e Reslutet=ve, 1 (y )dy} Gin(t)dt.
0
(3.34)

However,

h

/OOO w(y)es, n(y +u+ct)dy = ;1 Z {/OO w(y)egi,h_ﬁl(y)dy} es,.q(u + ct)

/BZ ZE zh q+1 ]65 q(U+Ct)

where E;j, denotes the random variable with Erlang pdf es, 5, as mentioned before. Also,
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it can be shown that for R # (;,

T

“ r_—R(u— rfa! —a+h-1 Bzh a_—Ru
[ emvremenmar =3 =g (7T g
1 (h—q+r)! ph-att
+ (=)= YRR
0 i (T ey

As a result, (3.34) can be rewritten as
k n
Z By 5(r, z)u" e f=ov
r=0 z=1
00 1 h
Z/ koot {6 ZE Ein—qgi1)]ep q(u+ ct)} gin(t)dt
1 0 L=

= =1

Z(i)iii&ay, i/ t’”—ét{zy: yayf

i=1 y=0 2=1 a=0

k
y—a+h—1 ﬂh . e
X( h—1 )(ﬁl R gy ()" e g ()
k m T n n;
k T
—I—Z(x)zlzolemgrz Z/ tkmét{ (—1)r+!

h

1~ (h—q+7) gt

“ B =) (B = Rogyomri ol Ct>} gin(t)dt. (3.35)

q=1

Note that when compared to (3.34), the index of summation for the second and third line
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of (3.35) is changed from r to y. Then, rearrange (3.35) to get

St 5 ()5S S [

i=1 y=0 z=1 h=1

Y (y—a+h-1 Jois
Z(_l)y J( h—1 ) (ﬁz _ Rz’(s)y—a—s—h

r=0
= Z / tke—& {E Z E[W(Ezh q+1)]€51 (U + Ct)} gzh( )dt
i=1 h=1"0 v =1
k k m T n ng 00
Bx tk*ﬂ? —ot
() EE Y Bty Mo
=0 i=1 r=0 z=1 h=1
h h—q+1
1 (h—q+r)! B
_1\r+1l = ? .
A e G ot 530
Next, since
1T g N
Bi,x (u + Ct gzh Z €8i,j 2 € 65i7$—3+1(0t)gzh(t)dt ) (3'37)
Bi Jo = B Jo
it can be easily shown by differentiating (3.37) k times with respect to ¢ that
1 [ -
3 /0 the e, o (u+ ct)gin(t)dt =) ep j(w)Mipo—jirs(k) (3.38)

j=1

where

1 o0
Mi,h,x,5<k) = ?/0 tke_&egi,x(ct)gih(t)dt.
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Therefore, using (3.29), (3.30) and (3.38), (3.36) becomes

m oz n;g Yy
ZZBk(STZ zau_z< )ZZZBM% ul e~ Resu

i=1 y=0 z=1 h=1 r=0

X {Z Qi,h,y,a,r,z,éNi,h,z,S(k —r+ta— 7”)}

q

> Elw(Bin-gr)] Y €5, (u)Mipg_ji1s(k)

i=1 h=1 g=1 j=1
k L m oz
534D 30 3) SLRE) S
=0 z i=1 r=0 z=1 h=1
h h—gq+1
(h—q+r)! B 1
X Z (h—q)! (52_ h g+r+1 Zeﬁz th ]+15<k_x) . (3'39)
q=1
We further rearrange the summation signs in (3.39) to obtain
k n
) SLRUETAEED S (D 9D ZRED 9 LR
r=0 z=1 i=1 r=0 y=r z=1
ni Yy
X {Z Z Qi,h,y,a,r,z,(SNi,h,z,(S(k —r+a— T)}
h=1 a=r
m o ng h h
=223 enslw) D B0 EBunmrr) Mo (k)
1=1 h=1 j=1
k m T n
k
3 (1) XY Bt
. i=1 r=0 z=1 h=1
h h h—q+1
(h—q+7)! B
S DIREIED Dy e ey e )
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which finally results in

k n
Z Z u e Best {Bm(r, z)

k z m.o nyg Y
k
DD FUE)3) 3) SIS r>}
r=r y=r i=1 h=1 a=r
mo T n;y h
- Z Z 65”(%) Z Z {E[w(Eivh—q-I—l)]Mz‘,h,q—j+175(k)
=1 j=1 h=j q=j
k T n ——
k (h—q+1)! gh—a
B, —1)+! i My o '
+ g .I') = 75(7“, Z)( ) (h _ Q)' (ﬁz o Rz7é)h7q+r+1 ,h,q ]+1,6( ZB)

(3.40)

Since (3.40) holds for all u > 0, the coefficients of u"e %% for r = 0,1,....k; 2 =

1,...,nand eg, j(u) fori=1,...,m; j =1,...,n,; should be zero. Therefore from the left
hand side of (3.40),

0= Bkjg(’l“, Z)

k T
N Z (];) Z va‘s(y’ Z) Z Z l,h,y,a,r,z,éNz h,z 6(]{5 —Tr+a— ’f’) (341)
T=r y=r .

forr=0,1,...,k; z=1,...,n. Then by splitting the summation signs and with definitions
(3.29) and (3.30), (3.41) can be written as

0= Bys(r, 2 {1 —ijz (@ Z6>h§ih(5+ch,a)}

s
Il
N
>
Il
—
H

i=1 h=1
k—1
Z ( ) Z Baaly.2 Z Z Z QinyarzsNipzs(k —x+a—r)
i=1 h=1 a=r
_ Z Bk,é (y, Z) Z Z Z Qi,h,y,a,r,z,éNLh’Z’g(a — 'r) (342>
y=r+l1 i=1 h=1 a=r
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forr=0,1,...,k; z=1,...,n. In (3.42), the first term equals to zero according to (3.10),
and by notational convenience % ;=0 for j > k. Hence, (3.42) yields the result (3.28)
forr=0,1,...;k—1;,2=1,...,n

On the other hand, from the right hand side of (3.40),

0= ZZ{ Eih—q+1)IMipg—j+1,6(k)

h=j q=j
k
> ()Y e
=0 r=0 z=1
r (h —q + T) 6@h_q+1
X(—]_) +1 (h — q)' (/81 )h p——) Mi,h,q—j-i—l,(s(k — ,I‘) (343)
fori=1,2,...,mand j =1,2,...,n;. Take out the term z = 0 from the summation sign

n (3.43), i.e

(2

h n 5 h—q+1
0= Z {E[w(Ei,h—q-I—l)] - Z Bo,5(0, 2) (6——}25) } M pg-j+1.5(k)
h=j a=j =1 -
n; h k k T n
DO WEPWICE
h=j q=7 z=1 r=0 z=1

h—q+r)! g
(h—=q)! (B — R.5)h—atr+l

X (—1)T+1( } M;pg—ji15(k — ),

where the first term is equal to zero by (3.11) and so it is left with

=333 ({3 mun

h=j g=j z=1 r=0 z=1
1 (h=q+r Bhf‘”l
« (=1) 11 (h_q>!) e Mipg—je1s(k — @) (3.44)

fori=1,2,...,mand j=1,2,... n; If we define

_ - . r+1 (h+T)‘ Bzh—i_l
gac,n,i,h((s) - ; ; Bw,(s(fr’ Z)(_l) h' (62 _ sz(s)h+r+l ’
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then (3.44) can be rewritten as

-3 Y (5 emineal6)Minasosllc = 2

h=j q=j z=1

:zk:(];)izgxnzh d(O)Mipg—jy15(k — )

q=j h=q
k n; M;—
z () SO )Mo snslh )
= q=j h=0
k L —Jjni—h
(D35 SILIIETE
=1 h=0 q=j
k k n;—jJ —h—j
S () S { S Moapsrlh - x>}
z=1 h=0 q=0
k—1 k,’ n;—j —h—j
= (m) Z Eamih (0 { Z M hyjtrqqr1,5(k — x)}
z=1 h=0 q=0
n;—j —h—j
+ ka,n,ih { Z Mz ,h+74+q,9+1, 5(0)}
h=0 q=0
fort=1,2,....mand j=1,2,...,n

Fix any 7 € {1,2,...,m}, our goal is to prove that

fk,n,i,h(é) :0, h:O,l,Q,...,ni— 1
for k =1,2,3,..., which yields (3.31).

Here is the proof. For k = 1, (3.45) reduces to

ni—j n;—h—j
0= &nin(d) { > Mi7h+j+q,q+1,5(0)}
h=0 q=0

for j =1,2,...,n;. When j =n;, (3.47) is

fl,n,i,O((S)Mi,ni,l,zS(O) = 0,
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and hence &; ,;0(0) = 0 since M, ,, 1,6(0) = Gin, (0 + ¢B;)/B; is assumed to be non-zero. By

considering (3.47) in the reversing order of j =n; — 1,n; —2,...,1, it can be shown that

E1nin(0)=0, h=0,1,2,...,n; — 1. (3.48)

It remains to show that (3.46) is true for k = 2,3,.... Assume for x =1,2,... k — 1,
Comin(0) =0, h=0,1,2,...,n;—1, (3.49)

then from (3.45),
ni—j n;—h—j
0="> &nin(d { > Mz‘,h+j+q,q+1,6(0)} : (3.50)
h=0

q=0

for j=1,2,...,n;. When j =n;, (3.50) gives
kn,i0(0) M, 1,5(0) = 0.

Again, since M, ,, 1,(0) is assumed to be non-zero, we have & ,,;0(0) = 0. Next, choose

j=mn; — s where s € {1,2,...,n; — 1} in (3.50), which yields

s s—h
0= Z Eemyin(0) {Z Mi,ni—s+h+q,q+1,6(0>} ) (3.51)

h=0 q=0
Assume

Eemin(0) =0, h=0,1,2,...,8—1, (3.52)
then (3.51) gives

Ekynis (0) M, 1,6(0) =0 (3.53)

and hence &, s(6) = 0 by the non-zero assumption of M; ,, 15(0). Thus, if steps (3.51) to
(3.53) are repeated by choosing s in the order of s =1,2,...,n; — 1, it can be shown that

fkm’i,h(a) :0, h: 1,2,...,ni— 1
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Hence, (3.46) is true for k = 2,3,... under assumption (3.49). Finally, since (3.46) is true
for k = 1 as shown in (3.48), it can be concluded that (3.46) is true for k = 1,2,3,...
which results in (3.31). O

Theorem 3.3.2 shows that the associated coefficients of the moments, By, 5(r, z), can be
solved recursively in k. For example, one can first solve for the associated coefficients of
the Gerber-Shiu function, i.e. C, s, using (3.11) or (3.12). Then this result can be used
to solve for the associated coefficients of the mean, i.e. Bjs(0,2) and Bys(1,2). From

Theorem 3.3.2, the equations are

Cz,& {Z Qi,h,O,O,O,z,éNi,h,zﬁ(1)}
Bis(l,2) = ——— (3.54)
Z Qi,h,l,a,O,z,éNi,h,z,é(a)
=1 h=1 a=
for z=1,...,n and
=D g
ZBM (0,2) . ZBM (1,2) B R (3.55)

fori=1,...,mand j=1,...,n; Next, with C, 5, By 5(0,2) and By 5(1, 2), the equations
satisfied by the associated coeflicients of the second moment are completely specified. From

Theorem 3.3.2, the equations to solve for By (0, z), Bas(1, 2) and Bss(2, z) are

2315 1 z {ZZZQz,h,l,l,l,z,éNzhzzS(l)}
B2’5(2,Z) = —

i=1 h=1 a=r
m  n;
5 E Qz,h,Z,a,l,z,éNzhz§<a - 1)
i=1 h=1 a=1
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forz=1,...,n;

Bg’g(l, Z)
1 m  ng
= - m 1 {Cz,é Z Z Qi,h,O,O,O,z,&Ni,h,z,é(2)
Z Z Qi,h,l,a,O,z,zSNi,h,z,é(a) =th=l
i=1 h=1 a=0
1 m  n; Yy
+2 Bl,é(g/?z)z Zth,y,aOzéNzhz6(1+a)
y=0 i=1 h=1 a=0
m  ng 2
+ By s(2, 2 Z Z Qi h2,0,0,2 6Ni,h,z,6(a)}
i=1 h=1 a=
for z=1,...,n and
G-t G+
ZBz(SOZ l 232612 J+1 232622 R5)3+2
fori=1,...,mand j =1,...,n;. The above approach can be continued to solve for the

associated coefficients of higher moments.

3.4 Numerical Example

In this section, the mean and variance of the time to ruin will be studied under different

joint distributional assumption on the interclaim time and the claim size.

First, two cases which have independent interclaim times and claim sizes are considered.

The joint pdf of the interclaim time (V) and claim size (Y) are given by

flty) =e (%e—iy) and  f(t,y) = dte™ (ge—iy)

respectively in case 1 and case 2. Note that two cases with the same expected interclaim

time and expected claim size are chosen (E[V] = 1 and E[Y] = 3/2). In both cases, let
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us assume the premium rate of the insurance surplus process ¢ = 5/2 (which satisfies the

positive loading condition (1.2)).

f(ty)

Case 1| et (%6_%y>

Case 2 | 4te2t <§e‘§y>

Table 3.1: Joint pdf of interclaim times and claim sizes: independent cases

Given case 1 and case 2, two graphs involving the expected value and variance of the

time to ruin are plotted as follows.
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Figure 3.1: Comparison of the expected time to ruin in independent cases
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Figure 3.2: Comparison of the variance of time to ruin in independent cases

In Figure 3.1, the y-axis represents the quantity m o(u) = E[TI(T < 00)|Uy = u] and
the x-axis is the initial surplus u. Two observations can be made from the figure. First, the
expected time to ruin increases slightly and then decreases fast when initial surplus gets
larger. One possible explanation can be obtained from the two factors affecting E[TI(T <
00)|Up = wu, namely the time to ruin and the probability of ruin. With larger initial
surplus, it should take longer time for the insurance process to become ruin. However, the
probability of ruin becomes small if initial surplus is large. Therefore, these two factors are
offsetting. According to Figure 3.1, except when initial surplus is small, the probability

of ruin should be the dominating factor and therefore the expected time to ruin decreases
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quickly when initial surplus gets larger. The other observation is that the expected time

to ruin in case 2 is shorter than that in case 1 for a given initial surplus w.

In Figure 3.2, the variance of the time to ruin is considered. The quantity mgg(u) —
{mio(u)}?* = E[T*I(T < 00)|Uy = u] —{E[TI(T < 00)|Uy = u]}?* is plotted against the
initial surplus u. Again, in either case 1 or case 2, the variance of the time to ruin increases
first and then decreases fast as initial surplus gets larger. Also, the variance of the time
to ruin is smaller in case 2 as compared to case 1. These observations are similar to those

made from Figure 3.1 which plots the expected time to ruin.

Next, let us study cases where interclaim time and claim size are dependent as another

example. Consider two cases with the following joint pdf of the interclaim time (V) and
ft,y) = §e’t ge%y + 1(26’%) 2 de%y
’ 4 3 4 3

3 2 1 1
ft,y) = Ze_t (ge_gy) + Z<26_2t) (ge_éy) :

which are referred to as case 3 and 4 respectively (E[V] = 7/8 and E[Y] = 15/8 in both

claim size (Y)

and

cases). Let us assume the premium rate ¢ = 5/2 in both case 3 and case 4.

Case 3 %e*t <§6—§y> + i(26—2t) (%
Case 4| 2et <§e*§y> +1(2e72) <

Table 3.2: Joint pdf of interclaim times and claim sizes: dependent cases

As in the above independent example, the mean and variance of the time to ruin are

plotted against the initial surplus in the following.
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Figure 3.3: Comparison of the expected time to ruin in dependent cases
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Figure 3.4: Comparison of the variance of time to ruin in dependent cases

The observations from figure 3.3 and figure 3.4 are similar to those in the independent
cases. First, in either figure 3.3 or figure 3.4, the curves are concave. Second, the curves
for case 3 are below that for case 4, which may be explained by the lower variance of each
increment, i.e. Var(cV —Y), in case 3. For detailed explanation of these observations,

readers can refer to the analysis in the independent cases.
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Chapter 4

Laplace transform of the moments of
ruin time and analysis under Coxian

interclaim time

In the first part of this chapter, the Laplace transform of the moments of time to ruin is
studied in general under dependent Sparre Andersen models. The result generalizes the
properties of the Laplace transform of the Gerber-Shiu function shown in Cheung et al.
(2010). In the second part, the model of Willmot and Woo (2012) is considered which
assumes that the interclaim times are Coxian and the claim sizes are time-dependent. The
Laplace transform of the moments of time to ruin and the function h3%(z,y,v|0) defined

in (2.12) are specified under this model.

The results in this chapter are submitted as Lee and Willmot (2014b).
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4.1 Laplace transform of the moments of the time to

ruin

Assume an arbitrary dependent Sparre Andersen model introduced in Section 1.1, with the
joint pdf of the interclaim time and claim size denoted by f(¢,y). In this chapter, consider
the Gerber-Shiu function

ms(u) = Ele”*Tw(Up_, |Up|, Ry,—1)I(T < 00)|Uy = u], (4.1)

which includes the surplus before ruin Ur_, the deficit at ruin |Up| and the surplus im-
mediately after the second last claim before ruin Ry,_; in the penalty function. For

k=0,1,2,..., consider the generalized kth moment of the time to ruin
mys(u) = BE[T* e Tw(Ur_, |Ur|, Ry, 1) 1(T < 00)|Uy = 1. (4.2)

By definition, mgs(u) = ms(u).

Cheung et al. (2010) and Willmot and Woo (2012) showed that the Laplace transform
of the Gerber-Shiu function (4.1) satisfies

{1- f(5 —cs,8)}pms(s) = Bgvfg(s) — 00,04(9), (4.3)

where
f = TTESY£(t ) dtd 4.4
f(r,s) /0 /0 e f(t,y)dtdy (4.4)

is the joint Laplace transform of the interclaim time and the claim size and 50,5(5) =

Jo" e Bo,s(u)du with

ost) = [ e [ wlunt ety —u— et (e y)dude.
0 u+ct
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Also,
00.05(8) = /000 e pos(x,0 —cs)dx
with
©wo00(x, h) = /;: e~ /; ms(z —y) f(t,y)dydt.
As mentioned in Cheung et al. (2010),

1—f(0—cs,5)=0 (4.5)

is Lundberg’s equation (in s).

The above result can be generalized to the Laplace transform of the kth moment of the

time to ruin (4.2) for £ =0,1,2,..., as follows.

Theorem 4.1.1. Consider an arbitrary dependent Sparre Andersen model as introduced
in Section 1.1. The Laplace transform of (4.2) satisfies

k

{1—F(6—cs,5) i s(s) = Brols +Z( )fr (6 —cs, s)my—rs(s Z( )Ukr6 (4.6)

r=

where f,(6 — cs,s) = (—1) & f(6—cs,s) and Brs(s) = I € Brs(w)du with

Brs(u) = /00 theot /00 w(u+ ct,y —u — ct,u) f(t,y)dydt. (4.7)
0 utet
Also, forr=0,1,...,k,
Okro(s) = /000 e op,s(x,0 —cs)dx (4.8)
with
Vrrs(x,h) = /;)O tre~ /Ox My—rs(x —y) f(t,y)dydt. (4.9)
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Proof. To prove (4.6), rewrite (4.3) as
s(s) — F(6 — s, s)ms(s) = Bos(s) — 0004(5). (4.10)

Then differentiate (4.10) k times with respect to ¢, which yields

k

Mps5(s) — Z (I:) ]Er(é — €8, 8)Mp_r5(8) ﬁk 5 i (r) Okrs(s

r=0 r=0

and hence (4.6) follows by rearrangement. O

Note that when (4.6) equals zero, the left hand side also yields Lundberg’s equation
(4.5). Thus, (4.6) is a generalization of (4.3).

4.2 Coxian interclaim time assumption

In this section, the model of Willmot and Woo (2012) is considered. It is a dependent

Sparre Andersen model with the joint pdf of the interclaim time (t) and the claim size (y)
=D mtb(y), Ly =0, (4.11)
i=1 j=1
where 7;;(t) is Erlang pdf, i.e.

)\Z‘(/\it)j_le_)‘it
G- 7

The marginal pdf of the interclaim time is

iZ{/ }Tz’j(t),

i=1 j=1

t>0. (4.12)

7ij(t) =
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which is a Coxian-n pdf with n = Z n;. Moreover, given (4.11), Willmot and Woo (2012)
i=1

noted that (4.5) becomes

m  ng

\ I
1— ————— ) by(s) =0. 4.13
2.3 (=) o w1
In (4.11), if b;;(y) = b(y) for all i, j, then it reduces to a Sparre Andersen model with
Coxian interclaim times and time-independent claim sizes. This independent case has been
considered in Li and Garrido (2005) with Gerber-Shiu function (1.4), and in Willmot and
Woo (2010) with the generalized form (4.1).

4.2.1 Laplace transform of the moments

By assuming that n distinct roots with nonnegative real parts exist for (4.13), Willmot and
Woo (2012) specified the Laplace transform of the Gerber-Shiu function. The result will
be generalized here to the Laplace transform to the moments of the time to ruin by the
approach in Willmot and Woo (2012). In other words, the form of the Laplace transform

of the moments will be determined.

Theorem 4.2.1. Consider a dependent Sparre Andersen model introduced in Section (1.1)
with joint pdf of the claim size and interclaim time given by (4.11). Furthermore, assume n

distinct roots with nonnegative real parts, p1, pa, ..., pn, exist for (4.13). Fork =0,1,2, ..

*)
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the Laplace transform of the kth moment of the time to ruin (4.2) is given by

ikals) =
1_22 —M(;_CS) biy(s)
X {Bk(s(s) +Z (f) {ZZ )\j (i;i)é_(js;—z;_ 1)5 ( )}mk—r,é(s)
k
- Z (fj) Uk,r,zi(s)}7 (4'14)

where Pis(s) = I° e By s(u)du with

Br.s(u) = / tke‘%/ w(u+ct,y —u—ct,u {
0 u+ct

ZTU }dydt (4.15)
1 j=1

1=

Moreover,
S2auten 11 (=)
h=1 j=1jzh NPh TP
Ok05(8) = m : (4.16)
H()\i +d—cs)™
i=1
where
m Ty + 1 . + r— 1 5 ~
Qus(pn) = {@w pn) + Z ( ) {ZZ ‘])\ . ij e )bij(ph)} Mk—r.6(Pn)
r=1 =1 j=1 Ph

k m
_Z(fj)(ﬂm«g Ph }H)\ +(5—Cph>
r=1 =1

forh=1,2,....n

Proof. First, with assumption (4.11), it follows that

s =3 (s M_cs)jgij(s) (4.17)

=1 j5=1
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and

Jr(8 = cs,5) a&zz(x +5—cs)j5”(s>

M( (G+r—1)-
_Zzl /\+5 (j )j+T )bw<8)

=1

Substitute (4.17) and (4.18) into (4.6) gives

{1—i ()\ +5_Cs)j5ij(3)}mk,6(3)

(4.18)

i

(4.19)

which is (4.14) after rearrangement. Moreover, (4.15) follows easily from (4.7) with as-

sumption (4.11).

There is still 0y 04(s) which needs to be determined. To start with,

into (4.9) which yields

gOkrg(ZL’ h // the” / Myp— T(; r—y {ZZTM

i=1 g=1
— Z Z Wk r5.iq(T) / h t"e M, (t)dt,
i=1 gq=1 /e
where
Uk, 5,iq (T / mys(x big(y)dy.

o2

substitute (4.11)

} dydt

(4.20)

(4.21)



The integral in (4.20) can be simplified as

) 0 )\z >\zt q—1_,—\;t
/ tre M (t)dt = / t’”eht{ () 6' }dt

(g+r—1) N /°° (N + h)q+’"tq+’"_1e_()‘i+h)tdt
(g1 ()\Z-—|—h)q+’“ / (¢+r—1)!
B e N
(g—1! (N + h atr J!
+r i .
N CEnt) VR qz 2N A 1)
(g-=1! e i(gr =)t
and hence (4.20) can be rewritten as
q+r i i
(@+7 =Dy _name 279N\ + )
Okrs(z, h) Okr.si —/\ c A —. 4.22
k 5 ZZI; k— 5q ]Zl (q—]_) Cq+r—]<q+7“—j)! ( )
Substitute (4.22) into (4.8), which yields
1 @
Gns(s) = / Zzak il ZM e Oto-eo)z
i=1 ¢=1 j=1 (¢ —1)!
=i\, + 0 — —J
T ( + cs) e
AT+ )
n; q+r ]
(q+r—IN(Ni+d—cs)™ [ . s,
B piias B LELESURA QR R
i=1 g=1 j=1 (4 ¢ gTr—27)Jo

m ng Q+7’

(q+r—11 NN +0—cs)™ _(grrg) (N +0
- Z Z Z C)q—l—r—j(q L — j)!ak—r,(s,iq T ) (423>

—1)!
i=1 g=1 j=1 q

forr=0,1,...,k, where

Gy (5) = /0 (=) e ag54(v)dx. (4.24)
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Specifically, for » = 0 in (4.23),

OV 5— " taei) [N+ 0
ors(s) = 3303 MO g (M)

i=1 g=1 j=1
- - )‘q@ké (ﬁé)
= (N +0 — a2 <
2; qz_;( ¢)17(q = j)!
o “ zgk&
ZZ (N + 06 —cs) (4.25)
i=1 j=1

with

/\q (/\ +6)
Oijks = Z - Mlq S
= (=) (g —))!

Equivalently, (4.25) can be expressed as

0k06(8) = - Qis(s) (4.26)

with

Qro(s) = {H()\ +d—cs)" }Zz/\—i—%—k—écs

x=1

Next, recall the assumption that (4.13) has n distinct roots py, pa,...,pn. For h =
1,2,...,n, put s = pp, in (4.19) yields

Uk,O,é(ph) = Bk,é(ph) + Z <f) {Z Z A i j)\++ 5 it ;:: 1)5@'(,0}1)} Thk—r,a(Ph)

=1 j=1

— Z ( )am on)- (4.27)

Again, recall that oy, s(pn) actually depends on my_,s(u). Therefore for r = 1,2,... k,

Okro(pn) is a function of my, s(u) for at most © = k — 1. And hence in theory, o4 5(pn) in
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(4.27) can be identified recursively in k, with oo s(pn) = BQg(,Oh). Substitute (4.27) into
(4.26) gives

. R\ [ SN (G —1)- i
Qr.s(pn) = {ﬁk,a(Ph) + Z (T> { - Z g J/\ . iﬁ) 7 )bij(ph)} T—r.5(Pn)

7j=1

_ Z ( )UM oh } zﬁl(xx + 86— cpp). (4.28)

Since Qks(s) is a polynomial with at most degree n — 1, it can be expressed in Lagrange

polynomial form as

Qrs(s ZQk& ) f[ (ﬂ) (4.29)

i=1j2h Pr — Pj
Substitute (4.29) into (4.26) results in (4.16). O

On the right hand side of (4.14), it involves my_,s(s) and oy . 5(s) for r = 1,2, ... k.
From definition (4.8), o, s(s) is a function of my_, s(u) which can be obtained by inversion

of my_,s(s) in theory. Thus, (4.14) shows that 7y s(s) can be determined recursively in k.

4.2.2 Structural quantities related to the moments

Inversion of (4.14) with respect to s gives the kth moment of the time to ruin my s(u),
but it is complicated to invert in general. In this section, an alternative way is provided
to solve for my,s(u). The function h35(x,y,v|0) defined in (2.12) will be determined under
the Coxian interclaim time assumption, and hence my s(u) can be solved recursively in k

by the defective renewal equations shown in Theorem 2.2.1.

Theorem 4.2.2. Suppose the conditions of Theorem 4.2.1 holds. For k = 0,1,2,..., the
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function h25(az y,v|0) defined in (2.12) is given by
h2 6(‘%‘ Y, U|0)

= ;&,a{e”h”h’{fis(x, ylv)
"k NiGG4+1) - (+r—1):
+; (7") {{ZZ (Ai+ 0 —cpp)™" bij(ph)}

i=1 j=1
00
0
m  n; ‘I‘H"

a-r 0 A )
ZZZ (q_l C)q+r—j(q+r j>'7k T6qu+7’ ‘7>\+6(Q] y’ )

=1 g=1 j=1

PR S A
_ Z (T) ZZ (q — 1)'2 )q+T’yk rbiigatr—1,2 +5 (LC Y,V ), (4.30)

Ehs = = (4.31)

and
Vk,6,iq,r,s (ZL’, Y, U) = / (_a)'r‘e—sahi%(x’ y|v)biq(a - U)da
+/ / (=2)"e Rk (x, y, v]z — a)by(a)dadz. (4.32)
o Jo

Proof. First, with definition (2.11

e
[

~—

, note that (4.7) can be written as

8

——

o

w(z,y, w)hi(z, ylu)dyds (4.33)

Br,s(u

o0

w(x + u,y — u, u)h’{fﬁ;(m, y|0)dydzx.
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For the moment of the time to ruin (4.2), Theorem 2.2.1 shows that

() = b / it — ) f5(y)dy + v s (u) (4.34)

for k =0,1,2,..., where

k “ ®
e Z ( ) | mecsstu=u) [ o)y
/ / / (z +u,y — u, v+ w)h35(x,y,v|0)dvdzdy.

For u = 0, (4.34) becomes
my5(0) = Brs(0 / / / (x,y,v 25 x,y,v|0)dvdzdy. (4.35)

On the other hand, the initial value theorem can be applied to (4.14). To be specific,
multiply both sides of (4.14) by s and let s — oo, which yields

lim smk 5( )
S$—00

= lim SBk’g(S)
S— 00

+ Z <I;> {Sli_glo {ii Ai](](;i)é_(] ;;Ir_ 1)5”(5)}} {Slgglosmk rs(s )}

r=1 i=1 j=1 i s
"k
— z_; (7’) sli{g)SUk’r’é(S). (4.36)

By the initial value theorem, lim s s(s) = mys(0) and lim s3;5(s) = Brs(0). Thus,
s—00 §—00
(4.36) reduces to

Mis(0) = Bis(0 ij(r) lim 507,.5(5). (4.37)

§—00
r=0

By comparing (4.35) and (4.37) yields

k
(e o] (0.9] x k
/ / / w(z,y, V)% (2, y, v|0)dvdrdy = — E (r) lim soy . 5(5). (4.38)
o Jo Jo ’ 5700
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To further study (4.38), the terms lim soy, 5(s) for » =0,1,2, ...,k need to be identified.
S$—00
For r =1,2,...,k, (4.23) shows that
n; q+r

q+7"— 1 )\ZI(/\l—f-(S—CS)i] ~ (g+7r—7) )\Z—i—é
Tk ( Z Z Z (gt — j)!oz,c_n&iq — ) (4.39)

—1)!
i=1 g=1 j=1 q

where
a0, (s) = /0 (—2)re /0 s (2 — a)big(a)dads. (4.40)

However, by definitions of h{%(z, y|u) and h3%(z,y,v|u) in (2.11) and (2.12), one has

my.s(u / / w(z,y, )b (z, ylu)dedy

/// w(z, y,v)hyls(x, y, v|u)dvdzdy. (4.41)

Put (4.41) into (4.40), which gives

—z)e sz/ {/ / w(x,y,z — a)hff}(x,y\z — a)dxdy

w(x y,v)hy Mz, y,v]z — a)dvdxdy} biy(a)dadz

+
3
\8’“

2 e (2, y|z — a)bi(a)dzdydzda
1,6 q

o\
8
8
S— \
8
K\\
8
=}
&
<
N
|
3

"e S hik (v, v|z — )by (a)dvdzdydadz
2,6 q

8

I
0\8 ﬁ
3
c\\c\\c\
S
£}
‘F

_l_
S
°\8
S—

8

S

H

j@

/ w(z,y,v)(—v — a)re_s(”“)h’{ff;(x,y|v)biq(a)dxdydvda

_l_
3
3

w(x Y, v / / )'e **h} 5(x y,v|z — a)biy(a)dadzdvdxdy

—v —a) e CFIRE (1 y|0)by, (a)dadvdrdy
1,8 q

+
T3
3

w(z,y,v / / )" e RS (x, y, v]z — a)by(a)dadzdvdzdy

w(xaya )’Yk,ﬁ,zq,r,s(xay7 )d'l}dl'dy (442)

[
=
ﬁ
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with Yy 5i0.r5(%, y, v) given by (4.32). Hence, (4.39) becomes
m  n; q+T

(q+r—11 NN\ +d—cs)™
Thrals) =2 D0 o ilg v r— )]

- 1!
i=1 g=1 j5=1 q

></ / / W, Yy V)V g ig.qiry 2o (T, Y, v)dvdzdy, (4.43)
0 0 0 o Toe

and thus for r = 1,2

g ey 5

sli_}m SOkr5(8)

m  n; q+r o
g+r—100 MNX\+d—cs)
=1 : .
SLI&{SZZZ c)q+rfj(q+7n_j)!

i=1 g=1 j=1 q_ 1
x / / / w(x,y,v)vk_r5iqq+r_jw(x,y,v)dvdzdy}
m g >\+5
ZSIHEOZZ q—l q+r 1/ / / x YU Vk 7,0,iq,q+r— IA”(x yv )dvdxdy
=1 ¢=1
o ii(Hr g+ — 1 ')\q (Airé —C)i ()\i—I—(S—CS)_(j_l)
1m - -
oo | A s (¢g—1)! (—c)atr=i(q +r — j)!

></ / /w(x,y,v)vkT(;iqq+rjw($,y,v)dvdwdy}
O Eb - B 9

_ZZ q_l q—l—r/ / / x y Y,V 'Yk 8,iq,q-+r— 1>\+5($ Y, v )dvd:vdy (444)

i=1 g=1
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Next, from (4.26) and (4.29),

[T +6—cs)™
=1
> o 5<ph>j£[¢h (ph - p])

Substitute (4.28) into (4.45) gives

lim soy 0,5(s)
S—00

= - Z Ens {5k,5(ﬂh>

h=1

~ (k 1) +r—1)- .
" ; (7“) {Z Z j/\++ 5 — 4 J)errr )bij(Ph)} Mk—r.6(P)

=1 j5=1

(et}

(4.45)

(4.46)

where &, 5 is given by (4.31). Let us study (4.46) term by term. First, it follows from (4.33)

that

Buato) = [ e [T [ w0l e ylodydsdo
0 v 0
:/ / / w(z,y,v)e " hi%(z, ylv)dvdady.
o Jo Jo
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Second, by (4.41),

o0

Mi—r5(pn) = e ph”/ / T, Y,V hf’% "(z, y|v)dzdydv
0

w(
_phz/ / / w(x,y,v )h;g‘r(x,y,ﬂz)dvdxdydz

OO/OOO/O w(z,y,v)

_"h”h*k "(z,ylv) + / e phzh;f’%_’"(a:,y,v\z)dz}dvda:dy. (4.48)

0

_|_
N\N

X

ka—/H

Thus, by (4.47), (4.48) and (4.43), it follows that (4.46) can be expressed as

hm 1 50,0 s(8)

:_thé{/ // w(z,y,v {e_phvh’f%(%m“)

+2;Q){§:Z: jG+ 1) @+¢—n%@w}

+r
P (Ni + 06 —cpp)’

0
k m ng q-‘r?”
k Q+T—1
>y
r=1

i=1 g=1 j=1 (¢ — 1
)\3()\2 + (5 — Cph>
“(Cori(g o — )l herdigatr—i (z,y,v) ¢ dvdady . (4.49)

Finally, substitute (4.44) and (4.49) into (4.38). Let w(x,y,v) = e~ *1*7%2¥7%3% in (4.38)

and (4.30) follows by inversion with respect to s, so and ss. O

Theorem 4.2.2 generalizes the result

h? 5('%. y,fU‘O) = Zghﬁeiphvhi%(xa y‘v)a
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which is shown in Willmot and Woo (2012). According to Theorem 2.2.1, the defective

renewal equation satisfied by mgs(u) is completely specified if h3%(x,y,v|0) is given, i.e.
o) = 65 [ st = ) i)y +vos(u) (1.50)
with
e /’/' Wz + u,y — u,w)hi (e, yl0)dady
/ / / (z +u,y — u, v+ w)h3%(x,y, v|0)dvdzdy.

Moreover, from (2.19), the solution to (4.50) is

1
L — s
On the other hand, it is given in (4.41) that

mosu) = [ [ wle i lodsdy
/ / / w(z,y,v h”(a: y, v|u)dvdxdy. (4.52)

Equate (4.51) and (4.52) with the penalty function w(z,y,v) = e *1*7%2¥7%" and it can

mos(u) = /Ou v0,6(Y)gs(uw — y)dy + vo s(u). (4.51)

be shown by inversion with respect to si, sy and sz that hj %(x,y,v|u) is a function of

h5%(x,y,v]0). Readers can refer to Cheung et al. (2010) for detailed steps and results.

In Theorem 4.2.2, it shows that h3%(z,y,v|0) is a function of h3's(x,y, vlu) for u > 0
and r = 0,1,...,k — 1. Moreover, hy’s(x,y,v[u) for u > 0 can be expressed in terms
of h3’s(z,y,v|0) with the approach described in last paragraph. Thus, h3%(x,y,v[0) can
be solved recursively in k by (4.30). For example, given that h3%(x,y,v|u) for u > 0 is
obtained as discussed above, (4.30) can be used to determine h3%(z,y,v|0). To continue,
by equating (2.19) and (4.41) with k = 1 yields h3'5(x,y, v|u) for u > 0, and (4.30) may be

used again to obtain h3%(z,y,v|0), etc.
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4.2.3 Numerical example

In this section we present two examples to illustrate the use of the results in Section 4.2.2.

In the first example, we choose a model for which we can compare our results with those
obtained by using the results in Chapter 3. The second example illustrating the use of the
methodology in situations where other approaches appear not to be readily available. In

particular, we assume a claim size distribution which is not of Coxian form.

Example 1 Consider a Sparre Andersen model where the joint pdf of the interclaim

time and the claim size is given by

f(t,y) = 4te™™ (ye‘y) ) (4.53)

By assuming 6 = 0 and ¢ = 3, Lundberg’s equation (4.13) has non-negative roots 0 and 1.

Hence, p; =0 and py = 1.

Suppose that the expected time to ruin, i.e. E[TI(T < o00)|Uy = ul, is of interest.
According to Theorem 2.2.1, the functions hi%y(z,y[0) and A3} (x,y,v|0) are needed to
solve for E[TI(T < o0)|Uy = ul.

First, one has from (2.11) that
*k 4 k+1 —3r—y+2u
o) = (o — w4 e B s (454)

for k=0,1,2,....
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Next, h3% (2, y, v|u) for u > 0is necessary to specify h3(z,y,v[0). Note that h3(z,y, v|u)
can be obtained from h3%(z, y,v|0) as follows. To start with, put k& = 0 in (4.30) and one

has

2 2 2
* 3P — PRV 1 *
hyo(z,y,v]0) = Z {H2 (G=) } e " hiY(x, ylv), (4.55)

h=1 j=1,j;éh(pj — Pn)

where hi%(z,ylv) is given in (4.54). Then consider the Gerber-Shiu function
moo(u) = Ele~1Vr-—s2lUrl=ssbing—1 [(T < 00)|Uy = . (4.56)
According to Theorem 2.2.1, mqo(u) in (4.56) satisfies

mo,o(u %/ moo(u —y) fo(y)dy + voo(u), (4.57)

where ¢o = [ [ {hi% (@, y|0) + [ kS (z,y,v|0)dv} dady,

1 o0 T
o) =+ | {hi?o<x,y|o>+ / h;?o<x,y,v|o>dv}dx

and

(e 9]

e~ s1(ztu)—s2(y—u)— S’Wh*o (x,y|0)d9€dy

o
Uoo /

|
+/ / / 6—51(z+u)752(y7u)783(v+u)h;?()(x’y’U’O)dvdﬂf‘dy
0 0
/ / 6—31:5 S2yY— sauh*O( _u7y+u|0)dl’dy
0
[T e o oy,
0
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From (2.19), the solution to (4.57) is

Moo (u Z o8 / vo,0(2) fo" (u — 2)dz + v o(u)

= Z¢8/ {/ / efsmfsz*ssthfJO(x —zy+ Z‘O)dl‘dy

+ / / / e (o — 2,y + 2,0 — z|0)dvdxdy}
0 z z

(u—z)dz
/ [ ——
+ / / / e TSR (@ — w, y + u, v — u|0)dvdxdy. (4.58)
0 u u

On the other hand, from (4.41),

Moo / / 731%82%33“11??0(& ylu)dzdy
+ / / / e‘slx_s?y_swh;?o(z, Y, v|u)dvdxdy. (4.59)
o Jo Jo

Equate (4.59) and (4.58), then it can be shown by inverting with respect to s1, sy and s3
that

hZ% (2, y,vlu) = Z¢n{h>{00 — v,y +0[0)f5"(u —v)

+ / h;?o(x —z,y+z,0—z|0)f§" (u — z)dz}
0

for 0 <v < min(z,u); 0 <z < oo; y >0 and
h;o x,y,v|u) = Zqﬁ”/ h;oo —z,y+2z,v—z[0)f;"(u— z)dz
+ h3% (@ — u,y + u, v — ul0)
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foru<v<zy;u<zr<oo;y>0.

Now with R34 (z,y, v|u), we can determine h3(z,y,v|0) from (4.30). Finally, with all
the quantities calculated in this example and (2.19), the solution for E[TI(T < o0)|Uy = u|

is given by

E[TI(T < 00)|Uy = u] Z% / v10(y) f" (w—y)dy + v1o(u), (4.60)

where
v1o(u) = / E[I(T < 00)|Uy = u — 9]
0

< [ {bion+ [ ahte. polods f asay
0

/ / {h*{loxym) /h310($ ?J»U|0)d?f}d:vdy (4.61)

The solution for E[TI(T < 00)|Uy = u| in (4.60) involves an infinite sum, so an approx-
imation is obtained using a finite number of terms, say «. In Figure 4.1, the conditional
expected time to ruin E[T|T < oco,Uy = u] = E[TI(T < 00)|Uy = u]/E[I(T < o0)|Uy = u]
is approximated with different chosen values of «.

For comparison to the approximation, the exact value of E[T|T < oo,Uy = u] is also
given in Figure 4.1. Note that the exact value of E[T|T < oo, Uy = u] is obtained by using

the results in Lee and Willmot (2014a), which are applicable for a different class of models

than those considered here.
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Figure 4.1: Approximate and exact values of E[T|T < oo, Uy = u]

Ezample 2 In this example, we consider Erlang(2) interclaim times and Erlang(1/2)

O
ft,y) = 4te™ (yT) |

Furthermore, assume that 6 = 0 and ¢ = 3. The value of E[T|T < oo,Uy = u] is

claim sizes, i.e. let

approximated in Figure 4.2 by using the method in Example 1.
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Figure 4.2: Approximation of E[T|T < oo, Uy = u]
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Chapter 5

Joint density of the time to ruin and
other ruin quantities in Sparre
Andersen models with exponential

claims

In Chapter 1, it was mentioned that the joint moments of ruin-related quantities can be
obtained through their joint densities by integration. Therefore in this chapter, the joint
density of the time to ruin, the number of claims until ruin and other ruin-related quantities

is considered under a Sparre Andersen model with the exponential claim sizes.
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5.1 Introduction

Consider the dependent Sparre Andersen model described in section 1.1. Recall that the
marginal pdfs of interclaim time and claim size are denoted by k(t) and p(y) respectively.

Also, the joint pdf of the interclaim time and the claim size is denoted by f(t,y).

Consider also the ruin quantities introduced in Section 1.2.1 which are defined through
the time to ruin 7" and the number of claims until ruin N7. These include the surplus before
ruin Ur_, the deficit at ruin |Ur| and the minimum surplus before ruin X;. Moreover,
there is Ry,_1 which denotes the surplus immediately after the second last claim before
ruin if ruin occurs on claim subsequent to the first, and Ry,_; is equal to w if ruin occurs
on first claim. In this chapter, the joint distribution of these quantities is studied through
the following generalized Gerber-Shiu function proposed in Shi (2013). For r € (0, 1] and
0 > 0, define

mys(u) = BN e Tw(Ur_, |Up|, X7, Ryp—1) (T < 00)|Uy = ). (5.1)

5.2 Structural properties of the generalized Gerber-

Shiu function

In order to study (5.1), let us first define the following densities involving the ruin quantities

in (5.1).

For ruin occuring on the first claim, define

1 T — U
—f( ,x+y), T >u
c

C

g1(z,ylu) = (5.2)

0, otherwise
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as the joint density of the surplus before ruin (x) and deficit at ruin (y). For ruin occuring

on the nth claim, where n = 2,3, ..., define
gn(t,z,y,vlu), v <, (5.3)

as the joint defective density of the time to ruin (¢), the surplus before ruin (z), the
deficit at ruin (y) and the surplus immediately after the second last claim before ruin
(v). By definition, g;(z, ylu) is equivalent to hy(z, ylu) in (2.2) and > 7, g,(t, z,y, v|u) is
equivalent to ha(t, z,y,v|u) in (2.3).

Based on (5.2) and (5.3), define also the discounted densities

1rs(@,ylu) = re ") gy (2, ylu), (5.4)

st = Yo" [0 55

and

gr,(s(xvylu) = gl,r,5<x7y|u> + / g2+,7‘,5(x7 y,v|u)dv.
0

Theorem 5.2.1. Consider the dependent Sparre Andersen model introduced in Section

1.1. The generalized Gerber-Shiu function (5.1) satisfies the defective renewal equation

my.s(u @5/ mys(u— 1Y) frs(y)dy
+/ / w(u—i—.x,y—u,u, u)gl,r,(s(x?y‘())dxdy
u 0
+ / / / U)(U + T,y —u,u, v+ u)92+,'r,§('r7 Y, U|O)d’0d$dy, (56)
u 0 0

where

¢r,6 == / / gr,5($7y|0)dmdy (57)
0 0
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and
1

fr,é(y) = (br,é

/000 grs(x,y|0)dx (5.8)

15 the ladder height density.

Proof. By conditioning on the first drop of the insurance surplus process below initial

surplus u,
mr,&(u) :/ mr,é(u - y) / gr,é(xu y|0)dl’dy
0 0
+/ / w(u+x,y—u,u, u)gl,rﬁ(x?y‘o)dxdy
u 0

o0 o T
+/ / / %%+%y—wmv+Wm£w@wmeMmm
u 0 0

from which (5.6) follows with definitions (5.7) and (5.8). O

Theorem 5.2.1 generalizes the results in Cheung et al. (2010) and Landriault et al.
(2011) where special cases of (5.1) were studied.

For the rest of this chapter, consider the Sparre Andersen model where the interclam
times and the claim sizes are assumed to be independent, i.e. f(t,y) = k(t)p(y). Then
(5.4) becomes

o) = re O T (T o (5.9)

D s Ly (22 )

p(z +y) /°°
= - r s Ci7
F) Oﬁhﬁ@yW)y

where P(z) = [ p(y)dy. Moreover, as argued in Cheung et al. (2010), (5.3) can be written

as

plz+y) [
gn(t7x7yav‘u> = g/ gn(ta'fayavlu)dy’
P(z) Jo
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for n =2,3,.... Thus, it follows that (5.5) has the form

p(z +
92452, Y, v|u) = Z / {—)y)/ gn(t,:c,y,vw)dy}dt
0

plr+vy
= g/‘ 92+,r,5<x7y7v‘u)dy
0

P(z)
plz+y
= %92+,7‘,5($7U|u>» (510)
where
92+,T,5(x7 U’u) = / 92+,r,6(x7 Y, U|U)dy
0
Hence,

gT,(;(LC,’y"LL) = % {/0v gl,r,ts(xu y|u)dy +/0 g2+,r,5('x7 UlU)dU}

and the ladder height density (5.8) becomes

Foaly) = qﬁia/w%{/Ooogl,r,s(x,y|o>dy+/Oxgmé(x,uyom}dx. (5.11)

5.3 Joint density of the time to ruin and other ruin

quantities under exponential claims

In this section, further assume that the claim sizes follow exponential distribution, i.e.

ply) = pe=™, y>0. (5.12)

Then (5.11) becomes
froly) = Be™, (5.13)

which means that the ladder height density is also exponential. Moreover, Landriault et al.

(2011) showed that ¢, s defined in (5.7) satisfy
¢r,6 = 7’]%((5 + Cﬁ(l - ¢r,5))' (514)
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Now, consider

Grs(u) = EfrNte T (T < 00)|Uy = u]. (5.15)

In Landriault et al. (2011), it was shown that

u

Grs(u) = @,5/ Grs(u—y)Be ™ dy + ¢ 5e~"" (5.16)
0
and G, s(u) can be expressed explicitly as
Gro(u) = gppe/70m00, (5.17)

where ¢, 5 is given by (5.14). By these results for G, 5(u) and Lagrange’s expansion theorem,
Landriault et al. (2011) further showed that the joint density of the time to ruin (¢) and

the number of claims until ruin (n) given initial surplus w is given by

e~ Blute o(¢), t>0,n=1,

it nfu) = S (5.18)
nu+c B (utct)r—2e— Blutet n o
n(ntlt) { ( (7372)! } k (t); t> 0, n = 2, 3, cey

where k*(t) = [0 k*™D(t — 2)k(x)da with k*'(t) = k(t). (Note that in this chapter,
the term ”joint density” is used even though the number of claim until ruin is discrete.)
The joint density (5.18) was also obtained in Borovkov and Dickson (2008) by a duality

argument.

The above results introduced for G, s(u) are useful in studying the Gerber-Shiu function
My g1234(1) = BT e 0T ems1Ur-—salUrl=ssXo=salinp—1 [(T' < 00)|Uy = ). (5.19)

Theorem 5.3.1. Consider the Sparre Andersen model described in section 1.1 which has
independent interclaim times and claim sizes, i.e. f(t,y) = k(t)p(y). Furthermore, assume
that the claim sizes have pdf (5.12). With ¢,5 and G, 5(u) given by (5.14) and (5.17) re-
spectively, the Gerber-Shiu function (5.19) can be explicitly expressed as
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mr,5,1234(u) = @r,5(817 S2, 83, 54) {(81 + s3 + 84)67(81“3““’8)” + 5@7«,5(7«0)} ) (520)
where

rs +S81+ S
(—)7’,5(817 S9, S3, 84) = 5 { B¢ 0 1 4 }

C B+sy Brs + S1+ 53+ 54

" { rl;:(é +c(s1+P9)) } ‘

$1+ 544 rBE + c(s1 + 54+ B))

Proof. With (5.12), the discounted densities (5.9) and (5.10) with u = 0 are given by

2\ 1
s, y|0) = re(F) 2k (E) Be Pty) (5.21)
c \c
and
92+,T,5<x7 Y, U‘O) = 5eiﬁyg2+,r,(5 ($7 U|O> (522)
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Substitute (5.13), (5.21) and (5.22) into (5.6), which yields

mr51234 ¢r6/ mr§1234 u— )56 6ydy
[ e [ L (2) e
” 0 C &
+/ / / esl(uﬂ:)32(?"“)33"s4(v+u){ﬁ€Bygg+,r,5(x,v|0)}dvdxdy
u 0 0
= ¢r,§/ My 51234 (U — y)ﬁefﬁydy
0
+/ / e—sl(u+ct)—52y—53u—54u{ &k( )ﬁ B(ct+y+u) }dtdy
0 0
+ / / / esl(“”)‘”2“3“4(””){56B(W’gﬂ,r,a(fc,vIO)}dvd:vdy
0 0 0

= ¢r,é/ mr,5,1234(u - y)ﬂefﬁydy
0

et st (5 4+ ofs) + )

B+ 5o
4 553 e(s1+33+54+,8)u/ / 6781x784vg2+’r75($,U|O>dvd$
2
ﬁ S S: S u
= Cbré/ My 51234(u — y)Be Pdy + ——— B+t 5 em(srtsstatiue s(s)s,),  (5.23)

where
&r5(s1,81) = rl%(é +c(s1+ 6)) + / / e T goy s, v]0)dude.
o Jo

Take Laplace transform on both sides of (5.23), i.e

_ . o4 B 1
Mys1234(2) = ¢r,5mr,5,1234(2)5+z + Bt | s tsst st Ate &ro(s1,84).  (5.24)

By rearranging and partial fraction, (5.24) gives

i) = e ){ 1 }{ B2 }
Mnanza(2) = ool )\ S e T B — ) 7 2

B 5 { &r5(51,54) }{ 51+ 83+ 84 . Bors }
C B+sy | Bbrstsitsztsa) \sitsstsatB+z Bl—gus)+2)°

(5.25)
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Then invert (5.25) with respect to z results in

6 { &ro(51, 84) } (s1+53+54+8) ~
. — b + + S1 83 S4 u_"_ Gr ,
Mro1234(t) = G20 Gor t s+ 55 F 51 {(o1 455+ s)e BGira(u)}
(5.26)

where G, s(u) is given by (5.17).

To completely specify (5.26), it remains to identify &, 5(s1,s4). The approach used in
Cheung et al. (2010) can be applied here for this purpose. Define

M gia(u) = E[rire ?Tems0r=—ssfixe 1 [(T < o0)|Uy = ul.

From (5.26) with sy = s3 = 0,

fr,&(sh 84)

= 5¢ TR {(51 4 34)6—(81+s4+5)u + BGT,CS(U)} . (527)

mr,6,14(u)
On the other hand, by conditioning on the time and amount of the first claim gives
[ee] u+-ct
measa(w) = et { [ gttt = )y
0 0

i / 6—31(“+Ct)_54“ﬁe_5ydy} k(t)dt. (5.28)

+ct
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Using (5.27) and (5.16), it follows that (5.28) can be simplified as

My s, 14 / re /u+Ct gré o1 84) (51 + 84)3*(81+84+5)(u+ct7y)
" ﬁ¢r§ + 81+ 54

+ BGs(u + ct — y)}ﬂe_ﬁydyk(t)dt

+ / Te—&t / 6—81(u+ct)—s4u56—ﬁydyk,(t)dt
0 u4-ct

= /OO re,ét ﬁgﬁé(sla 34) {eﬁ(u+6t) [1 _ 67(81+S4)(u+ct)]
0 Bors + 51+ 54

GT 5(“ + Ct) u+ct)} ( )
9257“,5

00
_|_/ 7’6&{ (B+s1)(utct)— 34u}
0

_ B&s(s1,84) / R { Grolutet) | (s1+84+ﬂ)(u+ct)} k(t)dt
6¢r76 + 81+ 84 ¢r,6

+ e—(81+84+ﬁ)u7q];;(6 + C<S1 + ﬁ)) (529)

_|_

By (5.14) and (5.17), (5.29) becomes

B&r5(51,54) /°° 6t —B(1—6p.5) (u-tet)
- — 2 ™ uTe k t dt
m ,6,14(“) ﬁ¢r,5 + 81 + 84 0 re € ( )

6—(s1+84+5)u7~];;(5 + 0(81 + 84+ ﬂ))}

+ e_(51+54+6)“7“/~f(5 +c(s1+pB))

_ 551:5(81, 54)
Bbrs + 51+ 54

+ e_($1+84+ﬂ)"7“l;;(5 +c(s1+ B))

= B€T76(817 84) g _ = (s1+sa+B)u,.T. }
- 6¢r,5 + 81 + 84 {Gr,6(u) € 7‘/{:(5 + C(Sl + s4+ 5))

+ e~ rrsatBup(§ 4 ¢(sy + B)). (5.30)

{QST’ée_B(l_(bT’é)u _ 6_(51+54+’8)u7"]~€((5 + C(Sl + 54+ B))}
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Then equate (5.27) and (5.30) to get

&r5(s1,54) —(s1451+B)u
’ S1+ 84)e 1T
Bprs + 51+ 84( ! !
_ {r/;(5+ (1 + B)) — Deral18) b5k st /3))}
Bors + 51+ 54
x e~ (srFsatBu, (5.31)

Since (5.31) is true for all u > 0, the coefficients of e~(*1754+5% on both sides are equal,

which gives

(s1+ 54)&r5(51, 54)
Bors + 51+ 5S4

_ 555;*13;’ Sj)84rz;(5 o5y + 51+ B))

_ (Bbrs 51+ 54)7%(6 +c(s1+5))
&r5(51,54) = ot T BT Tt B (5.32)

= 1k(0 + c(s1 + )

Finally, (5.20) follows by substituting (5.32) into (5.26). O

Theorem 5.3.1 provides a generalization to the results in Cheung et al. (2010) and

Landriault et al. (2011).

In the following theorem, the joint density of the ruin-related random variables is iden-
tified. As mentioned in section 2.1, the joint density of (Np,T,Ur_,|Ur|, Ry, —1) instead

of (Np,T,Ur_,|Ur|, X7, Rn,—1) can be considered without loss of generality.

Theorem 5.3.2. Suppose the conditions of Theorem 5.5.1 hold. The joint densities defined
in (5.2) and (5.3) are given by

1 _
g1, ylu) = Lge P, ( ) -
C

y >0, (5.33)
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2 ,—B(u+tct+y) — —
g2(tax7yﬂv|u):ﬁe—k (t_x U)k<x U) ) tayzoa
C

x € [0,u+ct],

v € [max(z — ct,0),z] (5.34)

and

2,—B(z—v+y) — —
gult, 2,0l = 2 k(w ”)h(t—'?” “,n—1|u)
C

C Cc

v—max(x—ct,0)

n—2 c (CZ _ v)] ﬂj+26—5($—v+y+cz) k (:L- _ U)

+Z/0 J! c c

i=1

€ —

xk*j(z)h(t—z— v,n—j—1|u)dz, t,y >0,

x € [0,u+ ct],
v € [max(z — ct,0),x],

n=34..., (5.35)
where h(t,n|u) is given by (5.18).
Proof. Let
My s124(1) = B[N e T ems1Ur-—s2lUrl=safar—1 [(T < o0)|Uy = ).

From (5.20),

_ B
B+ s2

mr,5,124(u)

81+ 84
S1 + Sy + T’,Bl;?((s + C(Sl + Sq + 6))

X rl;;(é + (s + /8))6_(81+84+6)“

—N—

rﬂ/;((z-i- c(s1+ ) Gys(u) (5.36)
$1+ 544+ rBk(6 4 c(s1+ 54+ B) . |
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In the following, invert (5.36) with respect to 7,4, s1, s2 and s4

obvious that

s / =52y B,—P
= e "2 Be  dy.
B 82 0
Next, using the identity

1 o0
= —1)"z" <1
g = 2 <,

it can be shown that when s; + s4 > f3,

S1+ 84
s1 + 84+ rﬁfc(é +c(s1+s4+0))

- rBk(S + c(s1 + 84+ B
Y { ( >>}

s1+ s
e 1+ 54

(81 4+ s4)"

0 00 e—c(s1+54)t
=14 (~1)""p" / e ——— e BTV
n=1 0

By applying the equation given in Landriault et al. (2011), i.e

—cst 0o _ tnfl
[Ty,

s" . (n—1)!

forn=1,2,..., (5.38) becomes

S1 + S4
S1 + Sq + rﬁfc@ + C(81 + S4 + ﬂ))

fo n..man > —6t > (l‘ B Ct>n_1 —(s1+s4)T —cBt.xn
ct :
+)n— 1
=1+ E n nﬁn/ / —6t —(s1+s4)z ( ( —C ) _C'Btk*n(t)d$dt.

n—1)!

81

. To start with, it is

(5.37)

(5.38)

(5.39)

(5.40)



Using (5.40), the term on the second line of (5.36) can be inverted as

) - + 84
k(8 + c(sy + B))es1tsatBu { L }
( (s14+8)) s1+ 84+ 1Bk(6 + c(sy +s4+ )

_ {T /oo efétefsl (u+ct)54ueﬁ(u+ct)k(t)dt}
0
L Z )t B / / R ) e ’Cﬁtk*”(t)dxdt
(-1
_ r/oo 6_51: —51(u+ct)—34u€—ﬁ(u+ct)k< )d
Z n n+1ﬁn/ /{ —s1(utcv)—sau 7,8(u+cv)k( )}
% {/ e —(s1+s4)x (x (t_v)) efcﬁt v k*n( . )d }dvdt
) (n—1)!
= r/ 6_5($;u)67811 84“1 *lhk <$ u> dax
— Z / / / —81(x+u+cv) —54(x+u)
t—v)

ﬁ" 1 (t — v2))— x)"" e Pt o () D (¢ — o) dadudt

- / el oo (L1
C
_Z / / / —6t S$1T—84V
u+tct J x—ct

n— 1 _ -2 -
ﬁ (u+ct — )" o Blutet) . < ) E*(n—=1) (m) dvdzdt. (5.41)
c(n —2)! ¢ ¢
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Consider next the term on the last line of (5.36). From (5.38) and (5.39), one has

1
$1+ sS4+ 1Bk(5 + c(s1 + s+ )

R R DN CA L R
— 4 1) 3" et e 1) dt
S1 4 84 0 (s1+ s4)"

n=1

_ Z n nﬁn/ 6_6t {/ (U - Ct) _(81+S4)vdv} e—cﬂtk*n(t)dt
81 + 84 — n!

— / _(51+54)xdx + Z / / —(s1+s4)v 5 ( ct — U) _Cﬁtk*n(t)dvdt.
0

n!

Moreover, by definition of G s(u) in (5.15),

i:: /OO “Oth(t, n|u)dt

where h(t,n|u) is given by (5.18). Thus, the term on the last line of (5.36) can be written

as

rﬁl;:((S + c(s1+ B)) G, s(u)
S1 4 84+ rﬁff(é +c(sy+s4+0)) "

{rﬁ/ “ote el At (1) d} {Z / “htn\udt}

t —
sl+s4):z:d‘r + Z,’ﬁn/ e&t/ e(S1+S4)”(C—'U)605tk*"(t>dvdt}
0 ct n:

{Z / / —e B2 gL (2)h(t — z,n — 1|u)dxdt}

n t . n
sl+34):vdl, + Zrn/ 6&/ e(51+54)vMecﬁt/§*n(t>dvdt} .
n=1 0 ct n

(5.42)
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Let us study (5.42) as a sum of two terms. The first term is

oo o t oo
{Z r”/ 6_&/ e_c(sl+ﬂ)$5k(a:)h(t —x,n— 1|u)d1‘dt} {/ e_($1+$4)””dx}

— 0 0 0
= Z / —Slf/ —&66 M ( ) (t— z ,n— 1u )dtda? /OO e~ (s1tsa)z gy

c c’ 0
_ Z 7“”/ it
0
T 0o —B(x—v) _ —

></ {/ e"”ﬂ6 k(I U)h(t—l‘ U,n—l]u) dt} e **dudx

0 c c
— i T'fl /00 /00/ —6t—slx—54v

0 max(z—ct,0)

x—v) ( xgv,n—l\u> dvdzdt

> / —(5t—slac—54v Be—B(U-FCt) k. (t _ L /U) ]g (33 _ U) dl}dl’dt
0 mazx(x—ct,0) ¢ ¢ ¢

oo
+ Tn / / / 75t731:1:734v
0 0 mazx(z—ct,0)

& (”’ ”) h ( Tl - 1|u> dvdzdt. (5.43)
C

o
N
/\

O\g
S~
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The second term is

{Z / / 7c(sl+6)xﬁk (2)h(t —z,n — 1\u)dxdt}
[e%e] t _
o {Z THA 6&/ (31+s4)vw Cﬁtk*n(t>dvdt}
n=1 .
[eS) 00 ﬁac
n=2 0 C
oo 0o 0o t —
Zrn/ / 7(s1+34)v <C p U) *Cﬁtk*n( )dvdt
—1 0
/ / —(51+84)U Ct — U) —cﬁtk*]( )dl}dt}
Bx
_5t —s1x 56 f — E -7 —
[N E N
o0 n—2 o0 t o0 _7 — ] .
— Z rn / eiét / {/ 6(31+S4)vMeCﬁZk*j <Z>dv}
- 0 0 cz ‘7
c(t—z) » xﬁe—ﬁx T x .
A O T R e R DA

v— maz(z ct,0) /8]"!‘1(62 . v)

S ‘““{Z/o

 e—Bla—vte2). (m ) k9 (2)h (t L,z ptl —j— 1|u) dz} dvdzdt. (5.44)

X
o\
Q ﬂ
3
® ) 3
[ 1\3
—N

C
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Hence, with (5.43) and (5.44), (5.42) becomes

rBk(8 + c(s1 + B))
51+ 544+ 1Bk + c(s1 + 54+ B))

B(uct) _ _
/ / / —5t s1T— 841}66 ( _ x U) k (.Z' U) dvudzdt
mazx(z—ct,0)

C
+ / / / 76t751x754v
Z max(z—ct,0)
j+1 — )
= 1le) + Z / B ez vy
0

—B(x—v) o
x {56 2 (x ”) h (t -
c c jle

 o—Bla—vtez) ), (B) k9 (2)h (t Lotz U,n —j— 1\u) dz}dvdwdt. (5.45)
c c

Grs(u)

v— maz(z ct,0)
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Finally, substitute (5.37), (5.41) and (5.45) into (5.36), which yields

My 5124(0) = 7"/ / TSy ﬁe Aty (I — u) dydx
C
_Z / / / / —§t S2Y—81T—S4V
u+ct J x—ct

n _ n—2 -
" ﬁ (u+ct ) o Blutctty) L. (“T )k*n 1 (m) dvdxdydt

n—2 c

/ / / / —6t S2Y—S1T—S4V
max(z—ct,0)

2 —,B(u+ct+y _ _
x 5—k (t 7 “) k (x ) dvdzdydt

C

+ / / / / —6t—52y—slr—34v
Z max(z—ct,0)
2,—B(z—v+y) _ —
x{ﬁe k(x 2})h(t—m U,n—1|u>
C & &

n—2 v—maz(z—ct,0)

¢ B2z = 0)  pamvryren; [TV
A A r—v cz k -
> e :

!
= Jo Jle

— v,n —j— 1|u) dz}dvdmdydt. (5.46)
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For a given time to ruin ¢, the surplus before ruin must be less than or equal to u + ct.

Therefore, (5.46) reduces to

1 T —Uu
Mg 124 (U —7‘/ / —51Z—82y— 84U 66 5(m+y)k( - )dyda:
u-+ct
4y / / / / fét 8$2Y—S1T—S4V
max(z—ct,0)

2 _B(U+Ct+y) T — v T —
X ﬁ—k’ <t — ) k ( ) dvdxdydt
C C C
o0 o) 0o u—+ct T 5
+ Tn/ / / / e~ t—S2Yy—812—540
nzzg 0 0 0 max(z—ct,0)
2 ,—B(z—v+y) _ —
x{ﬁe k(x U)h(t—x v,n—l]u)
C C C
v—mazx(x—ct,0)

. ”22/ : (cz - V)i Bit2e—Bla—vty+es) By (x _ v>
= Jo J! c c

x k™ (2)h (t—z—x_

U,n —Jj- 1|u> dz}dvdxdydt. (5.47)

Inversion of (5.47) with respect to r,d, s1, s2 and s, yields (5.33), (5.34) and (5.35). O

5.4 Numerical example

In Theorem 5.3.2, the joint density of (Nr,T,Ur_, |Ur|, Rn,—1) is given. As mentioned at
the beginning of this chapter, this joint density can be used to obtain the marginal and
joint moments of Np, T', Ur_, |Ur| and Ry, by integration. As an example, the following

shows how the expected time to ruin may be obtained by using the result in Theorem 5.3.2.
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Consider a Sparre Andersen model where the joint pdf of the interclaim time and the
claim size is given by

f(t,y) = (te")2e 2, (5.48)

Note that (5.48) is a model with Erlang(2) interclaim times (k(¢) = te™") and exponential
claim sizes (p(y) = 2e~%). Assume the premium rate ¢ = 1 such that the positive loading

condition (1.2) is satisfied.
Given (5.48) and ¢ = 1, it first follows from (5.33) that
01(2, ylu) = 267X (g — ) e

= 2(x — u)e HA Ty (5.49)
for x > w and y > 0. Next, (5.34) gives

g2(t, xT,y, v|u) = 46*2(u+t+y) (t —r+ U)ef(tfachv) (l’ B U)ei(va)

=4t —x+v)(z —v)e T (5.50)
for t,y > 0; z € [0,u + ct] and v € [max(z — ct,0),z]. Finally, (5.35) gives

Gults 2, 0]u) = 4e=25= 4 (5 — w)e eI (¢ — (& = v), 0 — 1]u)
n—2  y—maz(z—t,0) (Z . U)j )
+ / . 23+26—2(m—v+y+z)<x _ U)e—(x—v)
]Zl 0 J!

e, i 1ju)d
xm (t—z—(x—v),n—7j—1lu)dz

=4(x — v)e_gx_2y+3”{h (t—(xr—v),n—1u)

nZQ 9 v—maa:(x—t,O)( ) il s

+ —_— / z—v) 2z e

et 3125 =D Jo

Xh(t—z—(:c—v),n—j—1|u)dz} (5.51)
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for t,y > 0; x € [0,u + ct]; v € [maz(x — ct,0),z] and n = 3,4, ..., where

e~2(utt) o=t t>0,n=1,
h(t7 n|u) == it 2n—1(u+t)n—2€—2(u+t) t27l*167t > B
n(n—1) { (n—2)! } ety t=20m=23,....

Given (5.49), (5.50) and (5.51), the expected time to ruin can be calculated as

E[TI(T < 00)|Uy = ul

T —u
/ / { }gl (x,y|u)dydx
u—+-ct
+ Z/ / / / {t}gn(t, x,y, v|u)dvdzdydt. (5.52)
n=2o 0 0 0 mazx(z—ct,0)

Note that the summation index n on the last line of (5.52) takes values up to oo. For

computational purpose, (5.52) can be approximated as

E[TI(T < 00)|Uy = u]

r—u
/ / { }91(93 ylu)dydx
u+ct
+ Z/ / / / {t}gn(t, z,y, viu)dvdxdydt (5.53)
n=o Y0 0 0 max(z—ct,0)

where r is a finite integer greater than or equal to two. Furthermore, it can be shown

numerically that the integral

00 o) u-+ct T
L[] ety dnddedyd
0 0 0 mazx(z—ct,0)

gets sufficiently small when n > 55 in this example. This is because g,(t,z,y,v|u) is a
function of h(t,n|u) which tends to zero when n gets large. In Table 5.1, the value of
E[TI(T < o0)|Uy = u| when u = 0,2,5,10, 20 is approximated using (5.53) with different

values of r.
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For comparison to the approximate values, the exact value of E[TI(T < o0)|Uy = u]

can be obtained using the results in Chapter 3 as follows. From (3.27), one has
E[TI(T < o0)|Uy = u] = B1o(0,1)e ™ + By (1, 1)ue ™, (5.54)
where —R is the negative root of the equation (in s)

(Qis) (1;)2 1 (5.55)

By solving (5.55), R = 1.73205. Moreover, from (3.54) and (3.11),

—Chp {%} {/OOO teRt(tet)dt}

B e B e LA
with
o (525) -1
Finally, from (3.55),
Bio(0,1) _ Bio(1,1) (5.57)

(2—R) (2— R)?

By solving (5.56) and (5.57), B1o(0,1) = 0.122009 and B;(1,1) = 0.032692. Hence,
(5.54) becomes

E[TI(T < o0)|Uy = u] = 0.122009¢ 17329 4 0.032692ue 72205 (5.58)

The values of (5.58) when u = 0,2, 5,10, 20 are given in Table 5.1, which can be compared
to the approximate values of E[TI(T < 00)|Uy = u| obtained by (5.53).
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u r =25 r =30 7 =55 Exact value
0 0.1219 0.1220 0.1220 0.1220

2 | 0.5865 x 1072 | 0.5866 x 1072 | 0.5866 x 1072 | 0.5866 x 1072
5 | 4.9482 x 1075 | 4.9483 x 1075 | 4.9483 x 1075 | 4.9484 x 10~°
10 | 1.3486 x 1078 | 1.3487 x 1078 | 1.3487 x 1078 | 1.3489 x 1078
20 | 7.0020 x 10716 | 7.0033 x 10716 | 7.0036 x 10716 | 7.0046 x 106

Table 5.1: Approximate and exact values of E[TI(T < c0)|Uy = u| by (5.53) and (5.58)

In Table 5.1, it is shown that the approximate values are close to the exact values.
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Chapter 6

A generalized MAP risk model with
combination of exponentials claim

S1ZES
In Section 1.3, the MAP risk model was reviewed. The waiting times of system changes
in the model are exponentially distributed. In this chapter, a generalization of the MAP

risk model proposed by Cheung et al. (2011) is introduced, and the moments of the time

to ruin are studied under this model.
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6.1 Introduction

6.1.1 Generalized MAP risk model

In Cheung et al. (2011), the MAP risk model introduced in Section 1.3 can be generalized as
follows. With a homogeneous discrete-time Markov chain (DTMC) Z = {Z;,i =0,1,2,...}
defined on finite state space S = {1,2,...,m}, the waiting time of a system change is
arbitrarily distributed. Note that Z; denotes the state of the DTMC immediately after the
1th system change. The DTMC Z is assumed to have the one-period transition probability
matrix P + Q. The (¢, j)th entry, where 7,5 = 1,2,...,m, of

1. P is denoted as p; ;. It represents the probability that the DTMC Z changes from

state ¢ to state j with no claim happening, and therefore p;; is defined as zero;

2. @ is denoted as ¢; ;. It represents the probability that the DTMC Z changes from

state 7 to state j with a claim happening.

Let the waiting time of the first system change be V; and the waiting time between the
(¢ — 1)th and ith system changes be V; for i = 2,3,.... For V;|Z;_; = j, where i = 1,2, ..,
let k(t) be its probability density function, K;(t) be its cumulative distribution function,

fo e **k;(t)dt be its Laplace transform and x; be its mean.

Moreover, let the size of the claim that occurs at the ¢th system change be Y; for

= 1,2,.... If no claim occurs at the ¢th sytem change, then Y; = 0. On the other
hand, if the ith system change is from state j to state k& with a claim occuring, then let
fin(y), Fir(y) , fin gk fo Y f; k(y)dy and 1, be the probability density function, the

cumulative distribution function, the Laplace transform and the mean of Y; respectively.
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Assume mutual independence of Yy, Ys, ..., Vi, V5, ... when conditioned on {Z;,i =

0,1,2,...}. The distribution of the DTMC Z is completely specified as

Pr(Y; <y,Vi<w,Z; =k|Zi1 = j) = K;(v)(pjr + GxFjx(y)), y,v>0.
Consider the insurance surplus process {Uy,t > 0} defined by

Ny
Uy=u+ct—>» Y, (6.1)

i=1
where u is the initial surplus, ¢ is the premium rate, Y; is the claim size involved in the ith

system change and NN, is the number of system changes up to time ¢. Furthermore, assume

that the positive security loading condition

CZ ik > Z T Z qi,j i, j (62)
i=1 =1 j=1

holds, where the DTMC Z is assumed to be in state ¢ with a long-run probability of ;.
The long-run probabilities {m;,i = 1,2,...,m} satisfy the system

m

i :Zm<pij+%j>> j=12,....m
=1

iﬂ-i =1.
i=1

6.1.2 Gerber-Shiu function

For the rest of this chapter, consider the generalized MAP risk model in Section 6.1.1.
Define

T=inf{t >0:U; <0} (6.3)
and T' = oo if U, is non-negative for all £ > 0. Cheung et al. (2011) studied the Gerber-Shiu

function

Miss(u) = Ele™Te™Vr=w(|Ur|) (T < o0)|Uy = u, Zy = 1] (6.4)
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for i = 1,2,...,m and §,s > 0, where w(-) is a function that satisfies mild integrable
conditions. By assuming that the claim sizes follow combination of exponentials distribu-
tion, it was shown in the paper that (6.4) can be completely specified as a linear sum of

exponential terms.

Moreover, it was mentioned in concluding remarks of Cheung et al. (2011) that the

above result can be extended to more general claim size densities as follows. Assume that

the claim sizes are Coxian distributed, i.e. for j,k =1,2,...,m,
Lk Ykl Lo=(Bjk0)y
(Bir) "y~ h
Fie@) =)0 ki T .y >0, (6.5)
=1 =1 7 ’

where 3, > 0 and 2,7 S0 w0, = 1. In this case, the Gerber-Shiu function (6.4)

has the form

N,z Vj,z,€

m;s.s(u Z 5501750} + Z Z bissgmen (U e Az (6.6)

j=1 z=1 ¢£=1 h=1

fori=1,2,...,m and 9,s > 0, where

Nj,z

m  m
=222 Viee

o

In (6.6), ps and s+ G, ¢ are assumed to be all distinct. In particular, when s = 0, (6.6)

reduces to

myg, 50 Zazéﬂz{e(pégc } (67)

or equivalently, b; 50,.¢n = Oforalls, j,z2=1,2,... m;§=1,2,...,n;,; h=1,2,... V¢
and 6 > 0.
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6.2 Moments of the time to ruin

The result introduced in last section will now be generalized to the moments of the time

to ruin. First define
Miass(U) = E[Tae_5Te_8UT—w(|UT|)I(T < 00)|Uy = u, Zy = i] (6.8)

fora =0,1,2,...;0,s > 0and i = 1,...,m, where m;oss(u) = m;ss(u). The following

theorem gives an explicit form of m; 4 55(u).

Theorem 6.2.1. Consider the generalized MAP risk model as described in Section 6.1.1
and assume that the claim sizes are distributed as (6.5). The generalized ath moment of

the time to ruin (6.8) has the form

m m M,z Vjz¢

u h—1_—(s+p3; u
mzaés E E @zaésxy{uyepéx }+ E E za,é,s,j,z,&,h {U € (s+Bize) }

y=0 z=1 1 z=1 (=1 h=1
(6.9)

fora=0,1,2,...;0,s > 0andi =1,...,m. When s =0, Ajos0jzen = 0 for a =
0,1,2,..;6>0;4,j,z=1,....m; {=1,...,nj, and h =1,...,v;,¢, and therefore (6.9)
simplifies to

mza50 ZZ@za(SOxy{uyepMCU} (610)

y=0 z=1

Proof. First, consider the case s > 0. For a = 0, it follows from (6.6) that (6.9) holds with

77777777777
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then

mi a+1,6 s(u>
0
)

6mza65

_ {Zza@zaésw,y yepaz“+ZZ@zaésmyuy+16pMU8§gx

y=0 z=1 y=0 z=1

m m mz”MaAmas,], G b1~ (s
DD

j=1 2=1 ¢£€=1 h=1

& a@i,a,&s,x,O u - & 892’,01,6,5,:0,34 8p6,x u

y=1 z=1

m m  MNjz Vjz¢
o ap6:r a—i—l 05,2U § : 2 < aA’laéS,], &R h 1 —(s—l—B]Zg)u
+ E 1,00,0,8,L, " 8(5 € +§

j=1 2=1 £&=1 h=1

a+l n m m Mz Vjz¢
2U h— 1 —(s+B8j,2.¢)u
- E E @z ,a+1,4,s,2,y {uy€p6 } + E E E Aza+153,yz§h {U Bize) }
y=0 z=1 7j=1 2=1 £&=1 h=1
: a@i,a,é,s,z,o 891 «,d,s,x 806 x
with @i,a+1,6,s,x,0 = - 98 5 ®i,a+1 6,8,y — T ( 95 S 610153 2Y—17595 for Yy =
dps, OMi a,5,5,5,2,6,h
17 o0 @i,a—i-l,é,s,m,a—l—l - _@i,a,é,s,z «a 3596 and Az ,a+1,8,8.5,2,6h — _% Thus by

induction in «, it can be concluded that (6.9) holds when s > 0.

Next, consider the case s = 0. Since (6.7) is true, one can use induction in a as shown
above to show that (6.10) holds. However, (6.10) can also be expressed in the form of
(6.9) with Aj 0 50426n =0fora=0,1,2,..;6>0;4,7,z=1,....m;{=1,...,n;, and
h=1,... V¢

Finally, from the two cases above, one can conclude that (6.9) is true for all s > 0. O

In order to completely specify the generalized moments of the time to ruin, the unknown
constants in (6.9) need to be determined. The following theorem gives the sets of equations

satisfied by these constants.
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Theorem 6.2.2. Suppose the conditions of Theorem 6.2.1 hold. The constants

P51 P62y Psn 1 (6.9) and (6.10) are the n roots with negative real parts of the equation

(in z)
det(I — Y (z)) =0, (6.11)

where det(I — Y(z)) is the determinant of I — Y (z), I is a m x m identity matriz and
Y(2) is a m x m matriz. The (i,0)th element of X (z) in (6.11) is given by

P; 50,000, + Qi,0,0,0,0,0,25

where
B,a,a,a,g,y,z = pi,aki,a,a,g,y,d—cz (612)
and
Ni,o Vi,o,l
o g- ( 1)g g h+7—1) Wza,l,’y(ﬁzal)
Qi,o,a,a,g,y,z =i h‘( h ' z ,a,a,hy,0—cz lzl ; Z i 6 )g hy (613)
with

t 0o
ki,rl,rz,tl,tz,s = (:;) (t;) Ct1—t2 / tr1—r2+t1—t26—stki(t)dt’ (614)
0

and ¢ is the premium rate of the insurance process (6.1). For notational convenience,
(6.12), (6.13) and (6.14) are used throughout this theorem. In the following, the results are

given in two cases, which are s >0 and s = 0.

Case 1: Given s > 0,6 >0 and a« =0,1,2,... in (6.8)

The coefficients ©; 4 5,524 Satisfy

l a 57871.7 7’ Cr «@ 0‘7 6 x —"_ Ql 0 « a7 6 x @Uia’757s7z7 (6.15>
v = 9:Y5P 959, 9

o=1 a=y g=y
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fori=1,2,... m;x=12,....,nandy =0,1,2,...,a. Also, the coefficients N; o 5s;-¢n

satisfy
m o Vjzg A
Ai7a76737j7Z7£’h = : : ; PI:,O',CX,CL,T’,]’L,—(S-FBLZ,{) + ing7a)a7rzh7_(s+ﬁj,z,f) AU,CL,(S,S,]’,Z,&,T
o=1 a=0 r=h
Vizg
hﬂ-z z f 6 )
’7 ? ng
I(i= )= ) Wy—g.(8; . ) Fio0ghote(stpi.e)  (6.16)
y=h g=h

fori g,z =1,2,....m; {=1,2,...,n;, and h =1,2,...,v; ¢, where

wTﬁ:/ y e P (y)dy. (6.17)
0

Note that for y = «, (6.15) gives

®i,a,5,s,m,a = Z{Pi,a,a,a,a,a,p(s,z + Qiﬁ,a,a,a,mp&z }@U,a,(s,s,x,a (618)

o=1
fori=1,2,....m and x = 1,2,...,n. Given «, § and s, (6.18) gives a system of m
linearly dependent equations in {©; assz.0 ey for each x = 1,2,...,n. Hence for each
fized x = 1,2,...,n, one of the m equations in {O; 4550}ty should be removed from

(6.18). As a result, n more equations needed to solve for the coefficients ©; o550y are

given by

a Viel 7 ZZ 1)b<b+,.)/_g)|
Uazssa:b p x"’ﬁi,a,l)bJr’Yingl

=0 y=h g=h \ b=0 z=1
n

S

— FOOSIEET (5 4 B — Bioa) 1

7j=1 2=1 &=1 r=1

hﬂ—i,a,l,'y(ﬁi,a,l)w
g'(y —g)!

kiaazaagvh75+cﬁi,d,l = O (619>

fori,o=1,2,....m;l=1,2,....,n, and h=1,2,... V.
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Case 2: Given s =0,0 >0 and a« =0,1,2,... in (6.8)

The coefficients ©; 4,60,y Satisfy

m (07 a
@i,omin,Lmy = § , E § Pi,o,oc,ayg,yvpa,z + Qi,ma,avg,y,pa,z @a,a,&o,x,g (6-20)

o=l a=y g=y

fori=1,2... m;x=1,2,.... nandy=0,1,2,...,a. Fory=a, (6.20) gives

m

@i7a76707x’a = : :{H7G7a7a7a7a7p5,z + Qi707a7a7a7a7p5,z }@O’,O{,J,O,.’L‘,a (6'21)

o=1
fori = 1,2,....m and x = 1,2,...,n. Given a and 9§, (6.21) gives m equations in
{Oias0zatity for each x = 1,2,...,n. Again, one of the m equations in {O; 500}

should be removed from (6.21) for each fized x = 1,2,...,n. Therefore, n more equations

to solve for ©; 450z, are

Vol a a n 1 b b oy |
Z Z { Z Z Z @a,a,5,0,w,b (p(57$ ‘)f’(ﬁi7g71;+’y_gg)+l ki,a,a,g,h,é—&-cﬁiml

v=h g=h (a=0 b=0 z=1

Tio,ly (ﬁi,o,l)’y

Ay =) =0 (6.22)

- w’y_ga(ﬁi,o,l)kiva’ozg,hzé'i'cﬁi,o',l }
fori,o=1,2,....m;1=1,2,....,n, and h=1,2,... V.

Proof. In this proof, the analytic approach used in Cheung et al. (2011) is applied.

By conditioning on the time and amount of the first system change and the state of the

insurance surplus process after the system change, Equation (26) of Cheung et al. (2011)
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showed that

mio.6s(U) = / e Ok (t {Z PioMe0.6,s(u+ ct)
0

o=1

m u+ct
+ Z Gi.c / mg707575(u +ct — (p)fz7g((,0)d90} dt
o=1 0
1 esu / —(Ftes)tp, {Z i / ©) fio(u+ct+ go)dgo} dt (6.23)
0

fori =1,2,...,m and d,s > 0. To study the moment of the time to ruin, differentiate

(6.23) a times with respect to d, which gives

< (6]
mm,(s,s(U) = Z (a> /0 to—a —5tk {Zpl ocMoa JS(U + Ct)

a=0
m u+-ct
+ Z Qi / ma,a,&s(u +ct — @)fz,a(gp)dgp dt
o=1 0
+ Z gioe " / oot (t) / w(p) fio(u+ ct + @)dpdt (6.24)
o=1 0 B
for  =0,1,2,.... Next, substitute the claim size distribution (6.5) and the general form

102



of the moment (6.9) into (6.24). Thus, (6.24) becomes

m  Njz Vjz.¢

Zz@laésxy{uyepézu}—i_x ZZA'LQJSJ,zgh{U/h ! s+,BJZ§)u}

y=0 z=1 j=1 z=1 &=1 h=1
m «a a
:ZPWZ (a> / e 7&]{ { Z@o’aésxg U+Ct) 6p51(u+0t)
o=1 a=0 a 0 g=0 x=1
mm Nz Vjzg
+ Z Z Z Ao,a,&,s,j,z,g,r(u 4 Ct)Tle(S+6j,z,§)(U+Ct)} dt
=1 z=1 £&=1 r=1

+ ; Gi,o Z% (Z) /000 e 0 (t)

a
DY Orasmglu et — ) erssliei=e)
g=0

=0 =1

3

Gz Vj,z,€

Z Ad,a,é,s,j,z,f,r (U +ct — W)r_le_(s+ﬁi,z,é)(U+Ct—<ﬂ)}

j=1 z=1 5—1 r=1
yOy

J
0 53D DY N CEOL s G
S I 7

NNgE
ANgE
iing

=1 y=1
+que “/ g (o+es %()/ w(e)
0 0
Ni,o Vi,o,l
Bz gl (U +ct+ SO)’Y_le_ﬁi,a,l(u'f‘Ct-‘rgo)
{ 2 ot (v - 1) dipdt. (6.25)
=1 =1
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Let us simplify the right hand side of (6.25) term by term. The first term is

i
o=1 a=0 0

g=0 z=1

T zm: Zm: Zji f Aa,a,é,s,j,zf,r(u + ct)’"_le—(s-l—ﬁj,z,g)(u—i-ct)} dt

j=1 z=1 ¢=1 r=1

- E pza
m m Njz Vj 26

+ z:lpi,a - <Z ZZZ Z Aaaésjzfr/ ta_ae_étki(t)

Jj=1 z=1 £&=1 r=1

" r—1
X {Z (}: B 1)uh—1(ct)r—h} o (s HB).z.0) (utet) gy

h=1

m a a
_ -
— Z Z Z Z Z Pi,o,a,a,g,%p&z ®U,a,5,s,:p,g uYePox

y=0 z=1 o=1 a=y g=y

m m  Njz Vjz¢ m a Vjse
h=1_—(s+pj,z.¢)u
+ E : § : Z < ua,oua,r,h, (s+6125)) Agga’(;’s’j%g’r whle=(5+Pize)u

Jj=1 2=1 £&=1 h=1 oc=1 a=0 r=h

n

(%) 53 Onsnns [ e {z ()<>}
)

g=0 z=1 =0

>
>

Q
3

(6.26)
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Next, the second term on the right hand side of (6.25) is
m o a -
1,0 tOL—a _5tk‘z t
2 e 2 (&) [T
o= aio
u+ct a n
X / Z Z Ga,a,cs,s,x,g(u + ct — 90)96’)5’90(“'*‘“—50)
0

g=0 z=1

Nj,z Vj,z,&

j=1 z=1 £&=1 r=1
Ni,o Vi,o,l
(Bioa) ) Lo Pioie
{Z To,0,y s _1) d(,Ddt
=1 =1 ’7 .

m « -
- Z Yi,o (a) / ta_“e_étki(t)
- —\a/ Jo
o=1 a=0
X / {Z Z @a,a,&s,x,g (U +ct — (}0)9695,1 (utct—p)
0 9—0
m nj

=0 z=1
m iz Vi z,€
+ Z Z Z A07a76757j7z,€,7’(u _l_ Ct - (p)r_l6_(8+ﬁ],z,€)(u+()t—gp)
=1 z=1 ¢£&=1 r=1

Ni,o Vi,o,

5

l v 1 ﬁi,o,l@
T,y 5101 L4 dg&dt
(v— 1)

v=1
(0%

Yned (a> / 0
o=1 a=0 0
X ) {Z Z @a,a,é,s,m,b<_¢)b€7%vmw
b=0
m m N

0 P
z

1
v

+ Z Z Z Z Ao,a,é,s,j,z,g,r(—go)"le(”ﬁj,z,g)«p}
z=1 ¢=1 r=1

e

(y—1)!

7=1
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+iiZZAaaas“5r U+ct—¢) e~ (5+8j,2,) (utet— 50)}

J
Ni,o Vi,o,l
i,0, + et + )7 e Bio(utette)
5 SR B »
1

(6.27)



Using binomial expansion and

& d’I’L oo
— n 7550d _ 7590d

—n!
:W) TL:O,LQ,...,

(6.27) becomes
m ey o - o
ZQi,oZ( )/ e k(1)
o=1 a=0 a 0
u+-ct a n
X / Z Z @U,a,ﬁ,s,x,g (u + ct — gO)gep‘;vl'(uJFCt*go)
0

g=0 z=1

+ i i i f Agva,&s,j,z,&,r(u +ct — (p)rle(3+ﬁj,z,§)(u+ct¢)}

j=1 z=1 £€=1 r=1

Nio Vio,l .

—1)!
=1 v=1 ’Y

(0% n m o a
= Z Z § : § § Qi,o,a,a,g,%p&z@U’a’&&x’g uYePox®

y—O rx=1 o=1 a=y g=y

m m Mz Vjz¢ m o Vise

h—1 —(s+ - m

+ E E E E Q’LO’O&GT"L (S+ﬁjyz’€) Ao—’a’&&j’z’g’r u e ( :8], ,g)

j=1 2=1 ¢é=1 h=1 o—1 a=0 r—h

m_ e Mol o a_ n —1)’(b+~ —9)!
=D 2D (e > DD @Ma”b [

Psz+ Bigt)tTI971
o=11=1 h=l a=0 b=0 z=1
VZ N 0%
hﬂ-IUZW ﬁzal k o

X Z Z i,0,a,9,h,6+¢B; 0.1 6 o,

y=h g=h g

U o mm My Vi (1) 9(r =1+~ —g)!
Yy %2222 > Avasnier

| ive — Biogy) 9
o=1 I=1 h=1 =1 z=1 ¢=1 r=1 (s + Bjee = Biod)
Vig,l 7y
hﬂ-’bal ﬁ 7
Y zal hel B

X ZZ ki7a’a79’h75+cﬂz‘,g,z u e Bi,o 1 . (628)

y=h g=h
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Finally, simplify the last term on the right hand side of (6.25), which is

Z%’,ae_su / te” T (1) / w(ep)
o=1 0
n 1Z 1
g Vi - b 1+ o)1 le—Bimi(utette)
{ZZW@O’Z’V 5 l (u+c +90)1 |€ ngdt
— (y— D!
_ Z qiﬂe—su/ tae—(5+cs)tki(t)/ 'lU(gO)
o=1 0 0
Ni,o Vi,o,l T ; /6 l vy vy ’y 1)'
% Doy oLl ) . h—1 t g—h Y—g
{Z (- {ZZ ERTEDCErIEE

w ¢ Bioi(utctte) }d(pdt

m MNi,oc Vio,l Vio,l 7y
o hﬂ-za’l’y Blo'l
O NRTEID

o=1 l=1 h=1 y=h g=h

X w’Y*g:(ﬂi,a,l)ki,a,0,97h,5+c(s+5i,o,z) }uh_le_(s—’_ﬂi’g’l)u‘ (629)
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Substitute (6.26), (6.28) and (6.29) into (6.25), which yields

m m  Njz Vjz.¢€
§ § ’ 2 U 2 § § § : h— 1 —(s+Bj.»
®1a65xy{uyep5 }+ Azaésgz&h{u B E }
y=0 z=1 j=1 z=1 £&=1 h=1

« n m « a
- PivU:Olya:!]vnyé,z @Uva76757xvg uyep *

y=0 z=1 o=1 a=y g=y

m m MNjz Vjze¢ o Vjze
SYTSYS {z D) D (LT AE} e

j=1 2=1 (=1 h=1 \o=1 a=0 r=h

(03 n m (63 a
5.z
+ : : : : : : : : : :Qiﬂ»aﬂ»gyy:[)&z6070@5’3@,9 uyep “
ns

y=0 z=1 o=1 a=y g=y
z

m m g,z Vi, z,€ a Vjz¢

j=1 z=1 £=1 h=1 oc=1 a=0 r=h

m  MNio Vio,l « a n

1)b(b+7—g)!

- qi, @ 0, b

Vigdl 7y hﬂ' (/8 )
% Z zalv zc)rl kz,a,a,g,h,&rcﬁzgz} h—1 fﬁlalu

—h g—h (vy—yg

m  Ni,o Vio,l @ m m Mjz Vjze¢

—1)79(r -1+

Y { 133 B S

o=1 =1 h=1 a=0 j=1 z=1 ¢=1 r=1 3,28 0,0l

Vig,l 7Y

hm v ,

% Z zal’y Bzal) kz,a,a,g,hﬁ—l—cﬂzgl} —ﬂw,ylu

y=h g=h

m  MNi,o Vio,l Vig,l 7y hﬂ' /6

I z

Y {qwzz el

o=1 |=1 h=1 y=h g=h
X w’)’—g»(ﬂi,a,z)ki,a,O,g,h,§+c(s+5¢,a,z) }uhle(SJrﬁi’ml)u (630)

fori=1,2,...,m; «=0,1,2,... and 0, s > 0. Let us study (6.30) in two cases.
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Case 1: Given s > 0,0 > 0and o« =0,1,2,...

Since (6.30) is true for all u > 0, the coefficients of u¥e”*=" should be equal on both

sides, which yields (6.15).

In particular, for y = «a, (6.15) gives (6.18). Given «, § and s, (6.18) gives a system

of m linear equations in {0©; 4540}, for each x = 1,2,...,n. For each z = 1,2,...,n,

assume that a non-trivial solution exist for {©; 45sx.a}ir;. Then it can be concluded from
(6.18) that

det(I — Y (psz.)) =0 (6.31)

for x = 1,2,...,n, where Y(z) is a m x m matrix with its (i,0)th element equal to
Piooaaaz: T Qiocaaaaz O Pis0000,: 1+ Qie0000: equivalently. There are two points to
note from (6.31). First, since (6.31) holds, (6.18) in {©; 45101y for each fixed z =
1,2,...,n are m linearly dependent equations. Second, using the argument in Theorem 1
of Cheung et al. (2011), it can be proved that there are n roots with negative real parts to

the equation det(I — Y(z)) = 0. This fact together with (6.31) lead to (6.11).

Furthermore, one can equate the coefficients of u"~1e=(**/.=¢)% on both sides of (6.30)
which results in (6.16). Finally, (6.19) follows by equating the coefficients of u~le=Fieiu
in (6.30).
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Case 2: Given s =0,0 > 0and o« =0,1,2,...

For s =0, Aias0j.2¢n =0 as given in (6.10), and thus (6.30) reduces to

o n
Z Z 61}0&,6,0,3;,3/ {uy epé,ch}

y=0 z=1

- { Pzaaagyp(;z 0,a,0,0,z,9 u?ef?

y=0 z=1 o=1 a=y g=y

+ZZ {ZZZQWQMWM aa50x7g}uyep““
—1)°
+

y=0 z=1 \o=1 a=y g=y
m  MNi,o Vio,l
b+7 9)!
- Qi,o aaéOxb( >b+'y g+l
o=1 I=1 h=1 a=0 b=0 z=1
Vig,l 7y
hﬂ—zo‘l’y 6101 L 5101“
X l7a9a’g7h75+cﬁi,a !
y=h g=h
m  Ni,o Vio,l Vio,l 7
hﬂ-@o’l,’y ﬁzdl)7
NI
o=1 =1 h=1 y=h g=h
h—1_-B;.0,1u
X w'yfg:(/gi,o,l)kivo‘70797h76+cﬁi,o,l }u € hd ° <632)

Since (6.32) holds for all u > 0, the coefficients of u?e”=" on both sides are equal and
this leads to (6.20). For y = «, (6.20) gives (6.21). Similarly as in the case s > 0, it can
be argued that (6.21) represents m linearly dependent equations in {©; 4.6.0.4.q 1, for each

fixed x = 1,2,...,n. Moreover, this argument can show that (6.11) also holds in this case

when s = 0.

Finally, equate the coefficients of u"*~le=#i=i" on both sides of (6.32) yields (6.22). [
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In Theorem 6.2.2, it is shown that the coefficients ©’s and A’s need to be solved
recursively in «, starting with o = 0. To see this, consider
mi100(u) = E[TI(T < 00)|Uy = u, Zy = i| as an example, i.e. let a =1, =0, s =0 and
w(-) = 1. From (6.10),

r=1

mi00(u) = Z{@i,l,0,0,x,O {e”"} + 051001 {ue™"} }

fori=1,2,...,m. It is given in (6.20) and (6.21) that the coefficients O’s satisfy

a

m 1
©i 1,000 = E E E S Piotiagope. + Qiolag0p0. (Ona0oag (6.33)

oc=1 a=0 g=0

fori=1,2,...,m;x=1,2,...,n and
m
©i 10021 = E S Pioiitig. T Qiciiiip. ©Oo1,00a1 (6.34)
o=1

fori=1,2,...,m; x =1,2,...,n. In (6.34), the m equations in {0,101}/, for each
fixed x = 1,2,...,n are linearly dependent. Thus, n more equations to solve for ©’s are

given by (6.22), which are

Vi, 7y 1 a n
’ (—1(b+~ — g)!

v=h g=h (a=0 b=0 z=1

To,0,y (/Bi,U,l)fy

adly—gl ! (6:35)

- w’y_gv(ﬁi,n,l)kizl’ozg»hycﬁi,a,l }

fori,o =1,2,....m;l=1,2,...,n;, and h =1,2,...,1;,;. Note that (6.33) and (6.35)
involve ©;00020 for i = 1,2,...,m and x = 1,2,...,n. According to (6.10), these are

coefficients for m; 000(u) = E[I(T < 00)|Uy = u, Zy = 1], i.e.
n
mioo00(u) = Z ©i.0.00z0 {7}
=1
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for i =1,2,...,m. Thus, in order to solve for the associated coefficients ©’s of m; 1 00(u),
the associated coefficients ©’s of m;0,0(u) need to be solved first. This simple example

gives an idea on how the coefficients should be solved recursively in a using Theorem 6.2.2.

6.3 Numerical Example

In this section, a numerical example is considered by applying the results in section 6.2.
The probability of ruin and the conditional mean time to ruin will be studied under different

distributional assumption on the time of a system change.

This example is a two-state generalized MAP risk model given as follows. Let the

transition probability matrices be

0 L 11
P = 2 landQ=1[ * *
1y 2 1
6 3 6
Also, assume the following claim size densities
1 _ 1.2 2 3 _s _ _
fialy) = € Y+ 5(56 Y, fia(y) = 1€ 9 fo1(y) = 6e~% and faa(y) = 9ye .

Therefore, the mean claim sizes are py 1 = 5/4, p12 =4/3, po1 = 1/6 and peo = 2/3.

As for the waiting time of a system change, assume three different cases of distribution
and each case will be considered together with the model assumption described in last

paragraph. The first case is
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where exponential waiting time is assumed in both states. For the second case, the waiting
time in state 1 is changed to be gamma distributed while the waiting time distribution in

state 2 is kept unchanged, i.e.
ki(t) = 4te™" and ko(t) = 2~ 2.

As for the third case, the waiting time distribution in state 2 is changed to gamma while

that in state 1 is kept unchanged as compared to the first case, i.e.
ki(t) = et and ky(t) = 108t%e 5.

Note that in any of the three cases, the mean time in state 1 and state 2 are k; = 1 and
Ko = 1/2 respectively. The variances of the waiting time in state 1 (state 2) are 1 (1/4),

1/2 (1/4) and 1 (1/12) for the first, second and third case respectively.

Ei(t) ko(t)

Case 1| et Qe 2t

Case 2 | 4te™2 Qe 2t

Case 3| et | 10825

Table 6.1: Waiting time distributions in different cases

Moreover, let the premium rate be ¢ = 2 which satisfies the positive loading condition

(6.2).
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In the following graph, the y-axis gives the probability of ruin, i.e.

E[[(T < OO)‘UO =u, Zo = Z] = mi7070,0(U)

for i = 1,2 and the x-axis is the initial surplus Uy = u.

Probability of ruin

0.05 0.10 0.15 0.20 0.25

0.00

Figure 6.1: Probability of ruin in different cases
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In Figure 6.1, the probability of ruin decreases with larger initial surplus. Given Z; = 1
or Zy = 2, the probability of ruin is higher in cases with larger variances of the waiting

time. This observation is the same as that made in Cheung et al. (2011).
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Next, the following graph considers the conditional expected time to ruin. The y-axis

represents
E[TIT < 00, Uy = u, Z — i] — "e100(®)
mi,O,O,O(U)

for ¢+ = 1, 2. The x-axis represents the initial surplus Uy = u.

15

10

Conditional expected time to ruin

0 20 40 60 80 100

Figure 6.2: Conditional expected time to ruin in different cases
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There are several observations made from Figure 6.2. First, the curves are all strictly
increasing. In other words, the conditional expected time to ruin increases with the initial
surplus. Second, given any of the three cases and the same initial surplus, the expected
time to ruin when Z; = 1 is shorter than that when Z; = 2. Finally, comparison among
cases can be made. For either Zy = 1 or Z, = 2, the expected time to ruin is longer in case
1 than that in case 2 except when initial surplus is very small. There is similar observation

when comparing case 1 and case 3.
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Chapter 7

Conclusion and future research

In this thesis, the generalized moments of the time to ruin are the main focus of study.
In dependent Sparre Andersen models, structural properties of the Gerber-Shiu function
are shown to continue hold for the moments of the time to ruin in Chapter 2. These
properties are useful in further research of the moments of the time to ruin. For example,
the bounds for the moments can be studied by using the result introduced in Section 1.4.5.
Moreover, it is also of interest to provide good approximation results for the moments since
the analytical results usually involve a lot of recursion. There have been approximation
results in the classical Possion risk model, readers may refer to e.g. Egidio dos Reis (2000),

Dickson and Waters (2002) and Pitts and Politis (2008).

In Chapter 3, dependent Sparre Andersen model with Coxian claim sizes is considered
and the form of the moments of the time to ruin is identified as a linear sum of Erlang den-
sities. The coefficients in this sum can be obtained by solving linear systems of equations.

Numerical examples are provided for the mean and variance of the time to ruin.

Intuitively, the expected time to ruin and the variance of the time to ruin should be
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related to the marginal distribution of each increment of the insurance surplus process.
The marginal distribution of the interclaim times and the claim sizes, and in particular
their dependence structure, will affect the marginal distribution of each increment. Further
research is needed as to the manner in which the moments of the time to ruin are related

to the dependency between the interclaim times and the claim sizes.

In Chapter 4, structural properties of the moments of the time to ruin are discussed in
dependent Sparre Andersen models with Coxian interclaim times. The numerical example
shows how the results in Chapter 2 are used recursively in order to determine the expected
time to ruin. However, the computation for higher moments of the time to ruin can be
intensive due to recursive nature of the method. It appears that the techniques derived in

Chapter 4 are applicable primarily to the calculation of lower moments of the time to ruin.

In Chapter 5, the joint density of the time to ruin, the number of claims until ruin and
other ruin-related quantities is identified under a Sparre Andersen model with exponential
claim sizes. The marginal and joint moments of these quantities can then be obtained by
integration. The joint density of these quantities may be considered under more general
claim sizes, e.g. Coxian or phase-type claim sizes, in the future. Multivariate Lagrange
expansion may be used to obtain the density involving the time to ruin as in Landriault

and Shi (2013).

Apart from the dependent Sparre Andersen model, the moments of the time to ruin
are also considered in the generalized MAP risk model in Chapter 6. By assuming Coxian
claim sizes, the moments are in the form of a linear sum of Erlang densities. The numerical
example provided in Chapter 6 has exponential waiting times. More general waiting time

distributions are not considered since these models involve intensive computation.

We remark that the penalty functions considered in this thesis are functions of the
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deficit at ruin (as well as other variables in some cases). Thus, the joint moments of the
time to ruin and the deficit at ruin (and in particular their covariance) may be obtained by
appropriate choice of the penalty function. This was done in the classical Poisson model by
Lin and Willmot (2000). It would be interesting to further study the relationship between

the time to ruin and the deficit at ruin in this manner.

By definition, the time to ruin is the first passage time that the insurance surplus process
drops below zero. In the literature, the time to absolute ruin has also been considered by
many authors. It is the first passage time that the insurance surplus process drops below
the level —c¢/r, where ¢ > 0 is the premium rate of the insurance surplus process and r > 0
is the borrowing rate when the insurance surplus process drops below zero. In fact, both
the time to ruin and the time to absolute ruin are special cases of the first passage time
that the insurance surplus process drops below an arbitrary level in a risk model with

interests and /or dividends.

Topics related to this first passage time have been considered in many papers under
the compound Poisson risk model where the interclaim times and claim sizes are assumed
to be independent. Interested quantities include the absolute ruin probability, the Laplace
transform of the first passage time and generalized Gerber-Shiu functions defined with the
first passage time. For example, see Lin et al. (2003), Zhu and Yang (2008), Cai et al.
(2009) and Li and Lu (2013).

In future research, the time to absolute ruin and hence the first passage time of the
insurance surplus process may be studied in more general risk models with interests and /or
dividends. For example, Mitric et al. (2012) considered the Gerber-Shiu function defined
with the time to absolute ruin under a Sparre Andersen renewal risk model and Yang and
Sendova (2014) studied the time to ruin under a dual risk model. Thus, one may continue

the studies of the first passage time in more general risk models, e.g. to consider a renewal
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claim number process instead of the Poisson claim number process. Moreover, dependency
between the interclaim times and the claim sizes may be assumed. Also, the first passage
time of the insurance surplus process may be studied in models with jumps. Under these
model assumptions, the Laplace transform and the density of this first passage time can

be considered.
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