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Abstract

In risk theory, the time to ruin is one of the central quantities. The Laplace transform,

density and moments of the time to ruin have been studied by many authors under different

risk model assumptions. The Gerber-Shiu function proposed by Gerber and Shiu (1998)

provides an analytic tool in studying these quantities. For example, Dickson and Willmot

(2005) inverted the Gerber-Shiu function with respect to the Laplace transform parameter

of the time to ruin by Lagrange’s implicit function theorem, and hence obtained the density

of the time to ruin. The main focus of this thesis is to study the moments involving the

time to ruin by using Gerber-Shiu function as the analytic tool. An introduction on the

Gerber-Shiu function and different risk models is first given in Chapter 1.

In Chapter 2, the moments of the time to ruin are studied as generalized versions of the

Gerber-Shiu function in dependent Sparre Andersen models. It is shown that structural

properties of the Gerber-Shiu function hold also for the moments of the time to ruin. In

particular, the moments continue to satisfy defective renewal equations. These properties

are discussed in detail in Chapter 4 under the model of Willmot and Woo (2012) where

Coxian interclaim times and arbitrary time-dependent claim sizes are assumed. In Chapter

3, another very general class of dependent Sparre Andersen models with Coxian claim sizes

(e.g. Landriault et al. (2014)) is considered. An analytical form is provided for the moments

of the time to ruin under this class, which involves solving linear systems of equations.

In Chapter 5, the number of claims until ruin is taken into consideration under a

Sparre Andersen model with exponential claim sizes. The joint density of the time to ruin,

the number of claims until ruin and other ruin-related quantities is identified. The joint

moments of these quantities can then be obtained from this joint density.

In Chapter 6, the insurance surplus process is studied under a generalized MAP risk
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model introduced in Cheung et al. (2011). With Coxian claim sizes, the moments of the

time to ruin are in the form of a linear sum of Erlang densities. The associated coefficients

of this linear sum are shown to satisfy linear systems of equations.

Finally, a brief conclusion of this thesis and a discussion of future research are given in

Chapter 7.
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Chapter 1

Introduction and background

In this chapter, the insurance surplus process is first introduced. Details are given on the

dependent Sparre Andersen model and the MAP risk model. The Gerber-Shiu function

and the moments of ruin-related quantities are then discussed. Mathematical preliminaries

that are useful in this thesis are given at the end.

1.1 Dependent Sparre Andersen risk model

The insurance surplus process {Ut, t ≥ 0} is usually modelled by

Ut = u+ ct−
Nt∑
i=1

Yi, (1.1)

where u (u ≥ 0) is the initial surplus and c is the premium rate in one unit of time.

{Nt, t ≥ 0} is a claim number process which is defined through a sequence of independent

and identically distributed (iid) interclaim time random variables {Vi, i = 1, 2, . . .}, where

V1 is the time until first claim and Vi is the time between (i − 1)th and ith claim for
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i = 2, 3, . . .. {Yi, i = 1, 2, . . .} is a sequence of claim size random variables which is iid. The

pairs {(Vi, Yi), i = 1, 2, . . .} are iid, but Vi and Yi may be dependent. (1.1) is known as the

dependent Sparre Andersen model (and simply known as the Sparre Andersen model if Vi

and Yi are independent for all i = 1, 2, . . .). See for example Sparre Andersen (1957) and

Rolski et al. (1999) for references on this model.

Let the marginal probability density function (pdf) and cumulative distribution func-

tion (cdf) of the interclaim time V be k(t) and K(t) respectively, where V is any arbitrary

Vi. On the other hand, the marginal pdf and cdf of the claim size Y are denoted by p(y)

and P (y) respectively, where Y is any arbitrary Yi. Also, let f(t, y) be the joint pdf of

the pair (V, Y ) when V = t and Y = y. Finally, let us assume that the positive security

loading condition

E[cV ] > E[Y ] (1.2)

holds in (1.1).

The classical Poisson risk model is one of the well-known special cases of the dependent

Sparre Andersen model. In this model, the joint pdf of the interclaim time and claim size

is given by

f(t, y) = λe−λtp(y).

In other words, the classical Poisson risk model assumes that {Vi, i = 1, 2, . . .} are inde-

pendent of {Yi, i = 1, 2, . . .} and {Vi, i = 1, 2, . . .} follow exponential distribution. Readers

may refer to e.g. Gerber (1979), Grandell (1991) and Panjer and Willmot (1992) for a

complete introduction on the classical Poisson risk model. There are also studies on the

dependent Sparre Andersen model with more general interclaim times and claim sizes.

Recent examples include Albrecher and Teugels (2006), Boudreault et al. (2006), Cossette

et al. (2008), Zhang et al. (2012) and references therein.

2



1.2 Ruin-related quantities and Gerber-Shiu function

1.2.1 Gerber-Shiu function

Let T be the time to ruin for the process {Ut, t ≥ 0}, which is defined by

T = inf{t ≥ 0 : Ut < 0} (1.3)

and T = ∞ if Ut is non-negative for all t ≥ 0. The Gerber-Shiu function introduced in

Gerber and Shiu (1998) is defined as

mδ(u) = E[e−δTw(UT−, |UT |)I(T <∞)|U0 = u], (1.4)

where δ ≥ 0, the penalty function w(x, y) satisfies mild integrablility conditions and I(A)

is an indicator function which takes value 1 if the event A occurs and 0 otherwise. The

random variables UT− and |UT | represent the surplus before ruin and the deficit at ruin

respectively. Before the Gerber-Shiu function was introduced, the joint density of UT−

and |UT | had been studied in Dufresne and Gerber (1988) under the classical Poisson risk

model. The probability of ruin

m0(u) = E[I(T <∞)|U0 = u]

is a special case of (1.4) with δ = 0 and w(x, y) = 1.

Under the classical Poisson risk model, it was shown in Gerber and Shiu (1998) that

(1.4) follows a defective renewal equation. Lin and Willmot (1999) gave the solution to

this equation in the form of a compound geometric tail. The Gerber-Shiu function is

also considered in more general Sparre Andersen model. For example, Dickson and Hipp

(2001), Li and Garrido (2004) and Gerber and Shiu (2005) studied with Erlang interclaim
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time. Willmot (2007) and Landriault and Willmot (2008) further the studies with arbitrary

interclaim time.

There is also literature on the Gerber-Shiu function in dependent Sparre Andersen

model. Albrecher and Boxma (2004) assumed a Markovian claim arrival process. Badescu

et al. (2009) considered a bivariate phase-type distribution for the interclaim time and the

claim size. Albrecher et al. (2011) introduced dependence by mixing distribution.

Next, let us denote the number of claims until ruin by NT , which is also a widely studied

random variable in risk theory. Stanford et al. (2000) developed a recursive method through

the number of claims until ruin in order to calculate the probability of ruin. Egidio dos Reis

(2002) studied the distribution of the number of claims until ruin under the classical Poisson

risk model. In Landriault et al. (2011), the number of claims until ruin is introduced to

the Gerber-Shiu function as

mr,δ(u) = E[rNT e−δT−sUT−I(T <∞)|U0 = u], (1.5)

where r ∈ (0, 1] and s ≥ 0. With exponential claim sizes, closed form expression for (1.5)

is obtained in the paper.

In Cheung et al. (2010), another generalization of the Gerber-Shiu function that also

involves NT is proposed as

mδ(u) = E[e−δTw(UT−, |UT |, XT , RNT−1)I(T <∞)|U0 = u] (1.6)

for δ ≥ 0. Xt denotes the minimum surplus before time t, i.e. Xt = inf
0≤s<t

Us. Rn is defined

as R0 = u and Rn = u +
∑n

i=1(cVi − Yi) for n = 1, 2, . . .. Therefore, XT is the minimum

surplus before ruin. RNT−1 is equal to u if ruin occurs on first claim, and for ruin occurs

on claim subsequent to the first, it is the surplus immediately after the second last claim

before ruin.

4



Ruin-related quantities NT = 1 NT > 1

UT− UT− UT−

|UT | |UT | |UT |

T UT−−u
c

inf{t ≥ 0 : Ut < 0}

XT u inf
0≤s<T

Us

RNT−1 u u+
∑NT−1

i=1 (cVi − Yi)

Table 1.1: Value of ruin-related quantities when NT = 1 and NT > 1

1.2.2 Moments of ruin-related quantities

In Gerber-Shiu function (1.4), the (joint) moments of the surplus before ruin and the deficit

at ruin is easily obtained by considering the penalty function

w(x, y) = xkyn,

where k and n are non-negative integers. Lin and Willmot (2000) showed that the mo-

ments of the surplus before ruin and the deficit at ruin can be expressed analytically using

compound geometric tails in the classical risk model.

Next, consider the moments of the time to ruin which may be studied in two approaches.

The first approach is to determine the (defective) density of the time to ruin and obtain

the moments of the time to ruin by integration. To be specific, suppose the (defective)

density of the time to ruin given initial surplus u is g(t|u), then the kth moment of the

time to ruin can be calculated as

E[T kI(T <∞)|U0 = u] =

∫ ∞
0

tkg(t|u)dt
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for k = 0, 1, 2, . . .. The density of the time to ruin has been studied with different model

assumptions in the literature. Drekic and Willmot (2003) determined the density of the

time to ruin under the classical Poisson risk model with exponential claim sizes. In a

classical Poisson risk model with arbitrary claim sizes, Dickson and Willmot (2005) inverted

the Gerber-Shiu function to determine the density of the time to ruin by Lagrange’s implicit

function theorem (e.g. Good (1960) and Goulden and Jackson (1983)). This result was

generalized in Landriault and Willmot (2009) where the joint distribution of the time to

ruin, the surplus before ruin and the deficit at ruin was given. Recently, Landriault and

Shi (2013) assumed combination of n exponentials claim sizes and obtained the density of

T by multivariate Lagrange expansion.

The second approach to study the moments of the time to ruin is by noting that they

are closely related to the Gerber-Shiu function. To see this, let us consider

mδ(u) = E[e−δT I(T <∞)|U0 = u]

without loss of generality. (If joint moments of the time to ruin and other ruin quantities

are of interest, then consider mδ(u) with an appropriate penalty function). Define the

discounted kth moment of the time to ruin as

mk,δ(u) = E[T ke−δT I(T <∞)|U0 = u], (1.7)

where k = 0, 1, 2, . . ., then it is obvious that (1.7) can be obtained by differentiating the

Gerber-Shiu function kth times with respect to δ, i.e.

mk,δ(u) = (−1)k
∂k

∂δk
mδ(u). (1.8)

To show that the above differentiation is valid, one can apply the Lebesgue’s dominated

convergence theorem (e.g. Resnick (2005)). The Lebesgue’s dominated convergence theo-

rem can be applied when the integrand of mδ(u) = E[e−δT I(T < ∞)|U0 = u] is assumed
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to satisfy mild integrability conditions. These conditions implicitly follow from the tacit

assumption that all moments of the time to ruin considered in this thesis are finite. For

more general Gerber-Shiu functions, these integrability conditions impose restrictions on

the penalty functions involved. For evaluation of marginal moments of the time to ruin, it

may be assumed that the penalty function is 1.

Under the classical Poisson risk model, Lin and Willmot (2000) gave a recursive equa-

tion for the moments of the time to ruin. The equation was solved in Willmot (2002) by

using the compound geometric distribution and its higher-order equilibrium distributions.

These results were recursive in nature and hence involved complicated calculation. Hence,

Drekic et al. (2004) and Drekic and Willmot (2005) studied these results from a com-

putational point of view and provided numerical examples by assuming phase-type claim

sizes.

There are also studies on the moments of the time to ruin under more general risk

models. For example, Dickson and Hipp (2001) considered a Sparre Andersen model with

Erlang(2) interclaim times, and Li and Lu (2013) assumed a surplus process with interest.

1.3 MAP risk model

There are also studies on the risk model with a Markovian arrival process (MAP). Interested

readers may refer to Neuts (1979) and Latouche and Ramaswami (1999) for introduction

on MAP. Many papers, e.g. Ahn and Badescu (2007) and Cheung and Landriault (2010),

had analysis of the Gerber-Shiu function in a MAP risk model. In Yu et al. (2010), the

moments of the time to ruin were studied in a MAP risk model with phase type claim

sizes. A brief description of the MAP risk model, mainly based on Cheung et al. (2011),

is given in the following.
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For a MAP, it involves a homogeneous continuous-time Markov chain (CTMC). Let this

CTMC be Y = {Y (t), t ≥ 0} defined on a finite state space S = {1, . . . ,m}. In the context

of a risk model, CTMC Y may involve two kinds of transitions which are represented by

the transition rate matices D0 and D1 respectively. The (i, j)th entry of

1. D0, where i 6= j, is the transition rate the CTMC Y changes from state i to state j

with no claim happening;

2. D1 (i = j is also being considered), is the transition rate the CTMC Y changes from

state i to state j with a claim happening.

For convenience, either kind of transition will be referrred as a system change in this section

and in Chapter 6. The (i, i)th entry of D0 is negative and its absolute value is equal to

the rate of a system change given that the CTMC Y is in state i. The sum of the ith row

of D0 + D1 should add up to zero. For a MAP risk model, if the CTMC is in state i, the

waiting time of a system change follows an exponential distribution with mean equals to

the absolute value of the inverse of the (i, i)th entry of D0.

The MAP includes many well-known processes as special cases. When m = 1, D1 = (λ)

and D0 = (−λ), the MAP reduces to a homogeneous Poisson process with arrival rate λ.

When

D1 =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λm


with λi > 0 for all i = 1, 2, . . . ,m and D0 has non-negative off-diagonal entries, then it is

the Markov modulated Poisson process (MMPP). Readers can refer to e.g. He (2014) for

more on special cases and applications of the MAP.
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1.4 Mathematical notations and preliminaries

In this section, some mathematical notations and preliminaries used in the following chap-

ters are introduced. Also, note the notational convention
∑k

j=i = 0 for i > k in this

thesis.

1.4.1 Laplace transform

For an integrable function f(·) defined on (0,∞), denote its Laplace transform by

f̃(s) =

∫ ∞
0

e−sxf(x)dx,

where s can be any number with non-negative real part. Unless otherwise specified, this

notation of Laplace transform is used throughout the thesis.

For more about the properties of Laplace transform, please refer to Widder (2010).

1.4.2 Dickson-Hipp operator

Given an integrable function f(·) defined on (0,∞), its Dickson-Hipp operator is denoted

by

Trf(u) =

∫ ∞
u

e−r(y−u)f(y)dy, u ≥ 0,

where the parameter r can be any number with non-negative real part. One special case

is Trf(0) = f̃(r). For r1 6= r2,

Tr1Tr2f(u) = Tr2Tr1f(u) =
Tr1f(u)− Tr2f(u)

r2 − r1

. (1.9)

Readers can refer to Dickson and Hipp (2001) for details.
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Also, if the operator is applied n times with the same parameter r, where n = 1, 2, . . .,

then it is given in Li and Garrido (2004) that

T nr f(u) = TrTr · · ·Trf(u) =

∫ ∞
u

(y − u)n−1

(n− 1)!
e−r(y−u)f(y)dy. (1.10)

1.4.3 Initial value theorem

For a continuous function f(·) on (0,∞), if its derivative f(·) is piecewise continuous on

[0,∞), then

lim
s→∞

sf̃(s) = lim
x→0

f(x).

Readers can refer to Schiff (1999) for a complete introduction on the initial value theorem.

1.4.4 Coxian distribution

The class of Coxian distributions is now introduced, and it is one of the main classes of

distributions considered in later chapters. For a continuous distribution with pdf f(x), it

belongs to the class of Coxian-n distributions if its Laplace transform is given by

f̃(s) =
a(s)

m∏
i=1

(λi + s)ni
, (1.11)

where λi, ni > 0 for i = 1, . . . ,m, λi 6= λj for i 6= j and n =
∑m

i=1 ni. Moreover, a(s) is a

polynomial in s with a degree of at most n − 1. It follows from (1.11) that the Coxian-n

pdf has the form

f(x) =
m∑
i=1

ni∑
j=1

pij
λi(λix)j−1e−λix

(j − 1)!
.

For a detailed discussion on the properties and special cases of Coxian distributions,

see e.g. Klugman et al. (2013).
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1.4.5 Introduction to defective renewal equation

In this section, defective renewal equations which often arise in risk theory are reviewed.

Interested readers may refer to Ross (1996) for a complete introduction on renewal theory.

From e.g. Resnick (1992) and Willmot and Lin (2001), a non-negative function m(u)

is said to satisfy defective renewal equation if

m(u) = φ

∫ u

0

m(u− y)dF (y) + v(u), u ≥ 0, (1.12)

where 0 < φ < 1, F (y) is a distribution function such that F (0) = 0 and v(u) is a non-

negative continuous function. It was given in Willmot and Lin (2001) that (1.12) has

solution

m(u) =
1

1− φ

∫ u

0

v(u− y)dG(y) + v(u), (1.13)

where G(y) = 1− Ḡ(y) is a compound geometric distribution defined by

Ḡ(y) =
∞∑
n=1

(1− φ)φnF̄ ∗n(y), y ≥ 0

and F ∗n(y) = 1− F̄ ∗n(y) is the n-fold convolution of F (y).

There is also asymptotic solution to (1.12). If there exists an adjustment coefficient

ρ > 0 such that
∫∞

0
eρydF (y) = 1/φ where F (y) is a non-arithmetic distribution and

eρuv(u) is directly Riemann integrable, then (e.g. Willmot and Lin (2001))

m(u) ∼
∫∞

0
eρyv(y)dy

φ
∫∞

0
yeρydF (y)

e−ρu, u→∞, (1.14)

where f(x) ∼ g(x), x→∞, represents lim
x→∞

f(x)/g(x) = 1.
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Lower and upper bounds of m(u) in (1.12) are also given in the literature. For example,

Willmot et al. (2001) showed that

α1(u)e−ρu ≤ m(u) ≤ α2(u)e−ρu, (1.15)

where α1(u) = inf
0≤z≤u

α(z), α2(u) = sup
0≤z≤u

α(z) and

α(z) =
eρzv(z)

φ
∫∞
z
eρydF (y)

.

1.5 Outline of the thesis

In Chapter 2, the structural properties of the Gerber-Shiu function are generalized to the

moments of the time to ruin. In particular, the moments of the time to ruin are shown to

continue satisfy defective renewal equations, which is a useful result for the studies in later

chapters.

In Chapter 3, a dependent Sparre Andersen model with Coxian claim sizes is considered.

The associated coefficients of the Gerber-Shiu function is first studied as a follow-up of the

results in Landriault et al. (2014). Then the moments of the time to ruin are considered

and an analytical solution is given for the moments.

In Chapter 4, structural properties of the moments of the time to ruin are studied

under a dependent Sparre Andersen model with Coxian interclaim times. The structural

quantities needed to determine the moments are specified under this model.

In Chapter 5, the joint density of the time to ruin and other ruin-related quantities is

determined under a Sparre Andersen model with exponential claim sizes. Using this joint

density, the marginal and joint moments of these ruin-related quantities can be obtained

by integration.
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In Chapter 6, the moments of the time to ruin are considered under a generalized MAP

risk model. By assuming Coxian claim sizes, the moments are shown to be in the form of

a linear sum of Erlang densities.

Finally in Chapter 7, a conclusion of this thesis and a discussion of future research is

given.
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Chapter 2

Structural properties of the moments

of the time to ruin

In this chapter, structural properties of the Gerber-Shiu function in dependent Sparre An-

dersen models are first introduced. These properties are then generalized to the moments

of the time to ruin.

2.1 Introduction to structural properties of Gerber-

Shiu function

The Gerber-Shiu functions introduced in Section 1.2.1 are shown to satisfy defective re-

newal equations by many authors. For example, readers can refer to Gerber and Shiu

(1998), Cheung et al. (2010) and Landriault et al. (2011) for references. Based on these

references, a brief description of the argument is given in the following.
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Consider the generalized Gerber-Shiu function (1.6), i.e.

mδ(u) = E[e−δTw(UT−, |UT |, XT , RNT−1)I(T <∞)|U0 = u] (2.1)

under a dependent Sparre Andersen model introduced in section 1.1. Given initial surplus

u and for ruin occured on the first claim, let h1(x, y|u) be the joint defective density of the

surplus before ruin (x) and the deficit at ruin (y). Since ruin is on the first claim, the time

of ruin (t) is given by t = (x− u)/c and hence

h1(x, y|u) =


1

c
f

(
x− u
c

, x+ y

)
, x > u

0, otherwise.

(2.2)

Also, by definition, XT = u and RNT−1 = u if ruin is on the first claim. Given initial

surplus u and for ruin on claims subsequent to the first, let

h2(t, x, y, v|u) (2.3)

where v < x, be the joint defective density of the time of ruin (t), the surplus before ruin

(x), the deficit at ruin (y) and the surplus immediately after the second last claim before

ruin (v).

Then, define the discounted densities

h1,δ(x, y|u) = e−δ(
x−u
c )h1(x, y|u), (2.4)

h2,δ(x, y, v|u) =

∫ ∞
0

e−δth2(t, x, y, v|u)dt (2.5)

and

hδ(x, y|u) = h1,δ(x, y|u) +

∫ x

0

h2,δ(x, y, v|u)dv. (2.6)
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Cheung et al. (2010) showed that (2.1) satisfy the defective renewal equation

mδ(u) = φδ

∫ u

0

mδ(u− y)fδ(y)dy + vδ(u), (2.7)

where fδ(y) is the discounted ladder height density defined by

fδ(y) =
1

φδ

∫ ∞
0

hδ(x, y|0)dx (2.8)

with φδ =
∫∞

0

∫∞
0
hδ(x, y|0)dxdy, and

vδ(u) =

∫ ∞
u

∫ ∞
0

w(x+ u, y − u, u, u)h1,δ(x, y|0)dxdy

+

∫ ∞
u

∫ ∞
0

∫ x

0

w(x+ u, y − u, u, v + u)h2,δ(x, y, v|0)dvdxdy. (2.9)

According to (2.7) to (2.9), Cheung et al. (2010) noted that the discounted joint density

of (UT−, |UT |, RNT−1) characterizes the Gerber-Shiu function with (UT−, |UT |, XT , RNT−1),

so one can examine

mδ(u) = E[e−δTw(UT−, |UT |, RNT−1)I(T <∞)|U0 = u]

instead of (2.1) without loss of generality.

2.2 Structural properties of the moments of the time

to ruin

In this section, structural properties of the Gerber-Shiu function are generalized to the

moments of the time to ruin.

Under the Poisson risk model, Lin and Willmot (2000) showed that the mean time

to ruin E[Tw(UT−, |UT |)I(T < ∞)|U0 = u] and the higher moments of the time to ruin
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E[T kI(T < ∞)|U0 = u] for k = 2, 3, . . . satisfy defective renewal equations. This result

will now be generalized in dependent Sparre Andersen models with more general form of

the moments of ruin time. Consider the following generalized kth moment of the time to

ruin

mk,δ(u) = E[T ke−δTw(UT−, |UT |, XT , RNT−1)I(T <∞)|U0 = u], (2.10)

for k = 0, 1, 2, . . ., which includes a four variables penalty function as in (2.1). For repre-

sentation of the following results, define

h∗k1,δ(x, y|u) =

(
x− u
c

)k
h1,δ(x, y|u), (2.11)

h∗k2,δ(x, y, v|u) =

∫ ∞
0

tke−δth2(t, x, y, v|u)dt (2.12)

and

h∗kδ (x, y|u) = h∗k1,δ(x, y|u) +

∫ x

0

h∗k2,δ(x, y, v|u)dv (2.13)

for k = 0, 1, 2, . . .. In fact, (2.11) to (2.13) are functions related to (2.4) to (2.6) respectively

by a kth order differentiation with respect to δ.
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Theorem 2.2.1. Consider the dependent Sparre Andersen model as described in Section

1.1 with initial surplus u. The generalized kth moment of the time to ruin, i.e. mk,δ(u)

defined in (2.10), satisfies a defective renewal equation. For k = 0, 1, 2, . . .,

mk,δ(u) = φδ

∫ u

0

mk,δ(u− y)fδ(y)dy + vk,δ(u), (2.14)

where φδ =
∫∞

0

∫∞
0
hδ(x, y|0)dxdy, fδ(y) = 1

φδ

∫∞
0
hδ(x, y|0)dx and

vk,δ(u) =
k∑
j=1

(
k

j

)∫ u

0

mk−j,δ(u− y)

∫ ∞
0

h∗jδ (x, y|0)dxdy

+

∫ ∞
u

∫ ∞
0

w(x+ u, y − u, u, u)h∗k1,δ(x, y|0)dxdy

+

∫ ∞
u

∫ ∞
0

∫ x

0

w(x+ u, y − u, u, v + u)h∗k2,δ(x, y, v|0)dvdxdy. (2.15)

For k = 0, (2.14) reduces to (2.7).

Proof. First, rewrite (2.7) as

mδ(u) =

∫ u

0

mδ(u− y)f ∗∗δ (y)dy + vδ(u), (2.16)

where f ∗∗δ (y) = φδfδ(y) =
∫∞

0
hδ(x, y|0)dx.

Differentiate (2.16) k times with respect to δ, which yields

∂kmδ(u)

∂δk
=

k∑
j=0

(
k

j

)∫ u

0

∂k−jmδ(u− y)

∂δk−j
∂jf ∗∗δ (y)

∂δj
dy +

∂kvδ(u)

∂δk
. (2.17)

The first term on the right hand side of (2.17) is obtained by applying the generalized

product rule (General Leibniz rule).
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Then multiplying (−1)k on both sides of (2.17) gives

mk,δ(u) =

∫ u

0

mk,δ(u− y)f ∗∗δ (y)dy +
k∑
j=1

(
k

j

)∫ u

0

mk−j,δ(u− y)

{
(−1)j

∂jf ∗∗δ (y)

∂δj

}
dy

+ (−1)k
∂kvδ(u)

∂δk
. (2.18)

For j = 1, . . . , k,

∂jf ∗∗δ (y)

∂δj
=

∫ ∞
0

∂jhδ(x, y|0)

∂δj
dx

=

∫ ∞
0

{(
−x
c

)j
e−δx/ch1(x, y|0) +

∫ x

0

∫ ∞
0

(−t)je−δth2(t, x, y, v|0)dtdv

}
dx

and

∂kvδ(u)

∂δk
=

∫ ∞
u

∫ ∞
0

w(x+ u, y − u, u, u)

{(
−x
c

)k
e−δx/ch1(x, y|0)

}
dxdy

+

∫ ∞
u

∫ ∞
0

∫ x

0

w(x+ u, y − u, u, v + u)

×
{∫ ∞

0

(−t)ke−δth2(t, x, y, v|0)dt

}
dvdxdy,

which yields (2.14) and (2.15) by substituting into (2.18).

Given a dependent Sparre Andersen model, Theorem 2.2.1 shows that if the functions

h∗k2,δ(x, y, v|0) are known for all k = 0, 1, 2, . . ., then mk,δ(u) can be solved recursively in

k. The defective renewal equations (2.14) need to be solved recursively since the function

vk,δ(u) is defined by mj,δ(u) for j = 0, 1, 2, . . . , k − 1 as shown in (2.15).

Finally, if the defective renewal equation (2.14) is completely specified, then its solution

is given by

mk,δ(u) =
1

1− φδ

∫ u

0

vk,δ(u− y)gδ(y)dy + vk,δ(u), (2.19)
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where gδ(y) = d
dy
Gδ(y) and Gδ(y) = 1−Ḡδ(y) is a compound geometric distribution defined

by

Ḡδ(y) =
∞∑
n=1

(1− φδ)φnδ F̄ ∗nδ (y), y ≥ 0. (2.20)

In (2.20), F ∗nδ (y) = 1−F̄ ∗nδ (y) is the n-fold convolution of the distribution function Fδ(y) =∫ y
0
fδ(x)dx. Readers may refer to Section 1.4.5 for details on solution of defective renewal

equation. However, the asymptotic result in (1.14) is of limited applicability in the present

situation because the constant
∫∞

0
eρyv(y)dy/φ

∫∞
0
yeρydF (y) is often infinite.
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Chapter 3

Dependent Sparre Andersen model

with Coxian claim size assumption

In this chapter, a dependent Sparre Andersen model with Coxian claim sizes is considered.

The Gerber-Shiu function was shown in Landriault et al. (2014) that it is a linear sum of

exponential terms. The associated coefficients of these exponential terms are studied in

the first part of this chapter as a follow-up of the results in Landriault et al. (2014).

The moments of the time to ruin are considered in the second part of this chapter. The

moments are shown to be in the form of a linear sum. Numerical examples involving the

mean and variance of the time to ruin are discussed in detail. These results have been

submitted as Lee and Willmot (2014a).
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3.1 Background

3.1.1 Model introduction

Recall the dependent Sparre Andersen model introduced in section 1.1, where the interclaim

time V and claim size Y are dependent. In this chapter, assume the following joint pdf of

(V, Y )

f(t, y) =
m∑
i=1

ni∑
h=1

gih(t)eβi,h(y), t, y ≥ 0, (3.1)

with eβ,h(y) representing the Erlang pdf

eβ,h(y) =
β(βy)h−1e−βy

(h− 1)!
, y > 0.

It can be easily seen that the marginal pdf of Y is

p(y) =
m∑
i=1

ni∑
h=1

{∫ ∞
0

gih(t)dt

}
eβi,h(y), (3.2)

which is a Coxian-n pdf with n =
m∑
i=1

ni. The class of joint pdfs (3.1) includes a large class

of dependency models; interested readers may refer to Landriault et al. (2014) for special

cases of (3.1).

The Gerber-Shiu function considered in this chapter is of the form

mδ(u) = E[e−δTw(|UT |)I(T <∞)|U0 = u], (3.3)

where the penalty function involves the deficit at ruin only. Interested readers may refer

to Landriault and Willmot (2008) for a similar model but with a more general penalty

function which includes the surplus before ruin.
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3.1.2 Background result

The approach used and the result obtained in Landriault et al. (2014) will now be briefly

described as background.

First, Landriault et al. (2014) showed by using probabilistic arguments that (2.6) can

be expressed as

hδ(x, y|u) =
m∑
i=1

ni∑
h=1

ξδ,ih(x|u)eβi,h(y)

for some functions ξδ,ij(x|u), where i = 1, . . . ,m;h = 1, . . . , ni, and hence the discounted

ladder height density (2.8) becomes

fδ(y) =
m∑
i=1

ni∑
h=1

ξδ,iheβi,h(y) (3.4)

with ξδ,ih = φ−1
δ

∫∞
0
ξδ,ih(x|0)dx and φδ =

∫∞
0

∫∞
0
hδ(x, y|0)dxdy.

Then as shown in (2.7), it was given in Cheung et al. (2010) that (3.3) satisfies the

defective renewal equation

mδ(u) = φδ

∫ u

0

mδ(u− y)fδ(y)dy + vδ(u), (3.5)

where

vδ(u) = φδ

∫ ∞
0

w(y)fδ(u+ y)dy. (3.6)

Take Laplace transform of (3.5) yields

m̃δ(s) =
ṽδ(s)

1− φδf̃δ(s)
. (3.7)

Using the Laplace transform of (3.4), it follows that (3.7) can be expressed as

m̃δ(s) =
n∑
z=1

Cz,δ
s+Rz,δ

. (3.8)
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Hence, inversion of (3.8) gives

mδ(u) =
n∑
z=1

Cz,δe
−Rz,δu, u ≥ 0. (3.9)

Assume β1, β2, . . . , βm and R1,δ, R2,δ, . . . , Rn,δ are all distinct. It was proved in Theorem

1 of Landriault et al. (2014) that −R1,δ,−R2,δ, . . . ,−Rn,δ all have negative real parts and

are roots of Lundberg’s generalized equation (in s)
m∑
i=1

ni∑
h=1

(
βi

βi + s

)h
g̃ih(δ − cs) = 1. (3.10)

Moreover, C1,δ, C2,δ, . . . , Cn,δ satisfy the system of linear equations
n∑
z=1

Cz,δ

(
βi

βi −Rz,δ

)h
= E[w(Ei,h)] (3.11)

for i = 1, 2, . . . ,m and h = 1, 2, . . . , ni. For notational convenience, Ei,h in (3.11) denotes

the random variable with Erlang pdf eβi,h.

3.2 Explicit form of the associated coefficients

As shown in (3.9), the Gerber-Shiu function is characterized by the roots of Lundberg’s

generalized equation and the associated coefficients C1,δ, C2,δ, . . . , Cn,δ which satisfy the

system of linear equations (3.11). In this section, an approach is employed such that the

form for the coefficients C1,δ, C2,δ, . . . , Cn,δ can be determined, and an explicit expression

is possible for some special cases of the penalty function.

Theorem 3.2.1. The coefficient Cz,δ in (3.8), for z = 1, . . . , n, has the form

Cz,δ = ṽδ(−Rz,δ)

m∏
i=1

(βi −Rz,δ)
ni

n∏
j=1,j 6=z

(Rj,δ −Rz,δ)

. (3.12)
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Proof. Given the ladder height density (3.4), it follows that{
m∏
i=1

(s+ βi)
ni

}
f̃δ(s) =

{
m∏
i=1

(s+ βi)
ni

}
m∑
i=1

ni∑
h=1

ξδ,ih

(
βi

βi + s

)h
is a polynomial in s of degree n− 1 or less. Thus,{

m∏
i=1

(s+ βi)
ni

}{
1− φδf̃δ(s)

}
is a polynomial of degree n with the coefficient of sn equal to 1. In equation (20)

of Landriault et al. (2014), it was given that the equation 1 − φδf̃δ(s) = 0 has roots

−R1,δ,−R2,δ, . . . ,−Rn,δ (which can be found out from Lundberg’s generalized equation

(3.10)). Hence, {
m∏
i=1

(s+ βi)
ni

}{
1− φδf̃δ(s)

}
=

n∏
j=1

(s+Rj,δ) (3.13)

1− φδf̃δ(s)
s+Rz,δ

=

n∏
j=1,j 6=z

(s+Rj,δ)

m∏
i=1

(s+ βi)
ni

(3.14)

for z = 1, 2, . . . , n.

Now, equate (3.7) and (3.8), i.e.

m̃δ(s) =
n∑
h=1

Ch,δ
s+Rh,δ

=
ṽδ(s)

1− φδf̃δ(s)
. (3.15)

Then it follows from (3.15) that

Cz,δ = lim
s→−Rz,δ

(s+Rz,δ)m̃δ(s)

= lim
s→−Rz,δ

(s+Rz,δ)
ṽδ(s)

1− φδf̃δ(s)
(3.16)
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for z = 1, 2, . . . , n. Substitute (3.14) into (3.16) to get

Cz,δ = lim
s→−Rz,δ

ṽδ(s)

m∏
i=1

(s+ βi)
ni

n∏
j=1,j 6=z

(s+Rj,δ)

,

and hence (3.12) follows as a result.

The expression for the term ṽδ(−Rz,δ) in (3.12) is complicated in general, but a simple

result is possible with some particular choices of the penalty function w(y) as shown in the

following theorem.

Theorem 3.2.2. Given w(y) = yne−zy, where n = 0, 1, 2, . . . and Re z ≥ 0. Consider the

Laplace transform ṽδ(s) =
∫∞

0
e−suvδ(u)du and assume s 6= z, then it is given by

ṽδ(s) =
n!

(z − s)n+1

{
φδf̃δ(s)−

n∑
j=0

(s− z)j

j!

{
∂j

∂zj
φδf̃δ(z)

}}
(3.17)

with

φδf̃δ(s) = 1−

n∏
j=1

(s+Rj,δ)

m∏
i=1

(s+ βi)
ni

. (3.18)

Proof. To start with, rewrite (3.6) as

vδ(u) = φδ

∫ ∞
u

w(y − u)fδ(y)dy. (3.19)

If w(y) = yne−zy, then (3.19) becomes

vδ(u) = φδ

∫ ∞
u

(y − u)ne−z(y−u)fδ(y)dy. (3.20)
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Recall the definition of Dickson-Hipp operator in section 1.4.2. According to (1.10), one

can express (3.20) as

vδ(u) = n!φδT
n+1
z fδ(u). (3.21)

Take Laplace transform of (3.21) yields

ṽδ(s) = n!φδTsT
n+1
z fδ(0). (3.22)

Assume s 6= z, induction will be used to show that

TsT
n+1
z fδ(0) =

1

(z − s)n+1

{
f̃δ(s)−

n∑
j=0

(z − s)j
∫ ∞

0

yj

j!
e−zyfδ(y)dy

}
. (3.23)

First, TsTzfδ(0) = {f̃δ(s) − f̃δ(z)}/{z − s} by (1.9), and hence (3.23) is true for n = 0.

Next, by using (1.9) again,

TsT
n+2
z fδ(0) =

TsT
n+1
z fδ(0)− T n+2

z fδ(0)

z − s
. (3.24)

If (3.23) is assumed to be true and by (1.10), then (3.24) becomes

TsT
n+2
z fδ(0) =

1

z − s

{
1

(z − s)n+1

{
f̃δ(s)−

n∑
j=0

(z − s)j
∫ ∞

0

yj

j!
e−zyfδ(y)dy

}

−
∫ ∞

0

yn+1

(n+ 1)!
e−zyfδ(y)dy

}
=

1

(z − s)n+2

{
f̃δ(s)−

n+1∑
j=0

(z − s)j
∫ ∞

0

yj

j!
e−zyfδ(y)dy

}
.

Thus, (3.23) is proved by induction. By combining (3.22) and (3.23), one has (3.17) as a

result. Also, (3.18) follows directly from (3.13).
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3.3 Moments of the time to ruin

The moments of the time to ruin are the focus of study in this section. Let us define the

form of the kth moment of ruin time that will be considered in this chapter as

mk,δ(u) = E[T ke−δTw(|UT |)I(T <∞)|U0 = u], (3.25)

for k = 0, 1, 2, . . ., and from which it is obvious that m0,δ(u) = mδ(u). As shown in section

1.2.2, (3.25) is related to (3.3) by a kth-order differentiation, which is formally stated as

mk,δ(u) = (−1)k
∂k

∂δk
mδ(u). (3.26)

The following result is mainly based on this relation.

Theorem 3.3.1. Consider a dependent Sparre Andersen model introduced in section (1.1)

with the joint pdf of the interclaim time and the claim size given by (3.1). For k =

0, 1, 2, . . ., the kth moment of the time to ruin (3.25) can be expressed in the form

mk,δ(u) =
k∑
r=0

n∑
z=1

Bk,δ(r, z)ure−Rz,δu, u ≥ 0, (3.27)

where −R1,δ,−R2,δ, . . . ,−Rn,δ all have negative real parts and are roots of Lundberg’s gen-

eralized equation (3.10). Moreover, Bk,δ(r, z) for r = 0, 1, . . . , k and z = 1, 2, . . . , n are

coefficients with B0,δ(0, z) = Cz,δ in (3.9).
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Proof. For k = 0, (3.27) reduces to (3.9) with B0,δ(0, z) = Cz,δ for z = 1, 2, . . . , n. Now,

assume (3.27) is true for k. Then

mk+1,δ(u) =− ∂

∂δ
mk,δ(u)

=− ∂

∂δ

{
k∑
r=0

n∑
z=1

Bk,δ(r, z)ure−Rz,δu

}

=
k∑
r=0

n∑
z=1

Bk,δ(r, z)
∂Rz,δ

∂δ
ur+1e−Rz,δu −

k∑
r=0

n∑
z=1

∂Bk,δ(r, z)

∂δ
ure−Rz,δu

=−
n∑
z=1

∂Bk,δ(0, z)

∂δ
e−Rz,δu

+
k∑
r=1

n∑
z=1

{
Bk,δ(r − 1, z)

∂Rz,δ

∂δ
− ∂Bk,δ(r, z)

∂δ

}
ure−Rz,δu

+
n∑
z=1

Bk,δ(k, z)
∂Rz,δ

∂δ
uk+1e−Rz,δu

=
k+1∑
r=0

n∑
z=1

Bk+1,δ(r, z)ure−Rz,δu,

where Bk+1,δ(0, z) = −∂Bk,δ(0,z)

∂δ
for z = 1, 2, . . . , n, Bk+1,δ(r, z) = Bk,δ(r − 1, z)

∂Rz,δ
∂δ
−

∂Bk,δ(r,z)

∂δ
for r = 1, 2, . . . , k and z = 1, 2, . . . , n and Bk+1,δ(k + 1, z) = Bk,δ(k, z)

∂Rz,δ
∂δ

for

z = 1, 2, . . . , n. Hence, (3.27) is true by induction.

The approach used to show (3.11) in Landriault et al. (2014) can be applied here to

determine the systems of linear equations satisfied by the coefficients Bk,δ(r, z) in (3.27),

and this is given by the following result.
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Theorem 3.3.2. Suppose the conditions of Theorem 3.3.1 hold. In addition, assume that

β1, β2, . . . , βm and R1,δ, R2,δ, . . . , Rn,δ are all distinct, and also g̃ini(δ + cβi) is non-zero for

i = 1, 2, . . . ,m. Then for k = 1, 2, . . ., the coefficients Bk,δ(r, z) with r = 0, 1, . . . , k and

z = 1, . . . , n satisfy two sets of equations.

The first set is the following recursive system of linear equations

k−1∑
x=r

(
k

x

) x∑
y=r

Bx,δ(y, z)
m∑
i=1

ni∑
h=1

y∑
a=r

Qi,h,y,a,r,z,δNi,h,z,δ(k − x+ a− r)

+
k∑

y=r+1

Bk,δ(y, z)
m∑
i=1

ni∑
h=1

y∑
a=r

Qi,h,y,a,r,z,δNi,h,z,δ(a− r) = 0 (3.28)

for r = 0, 1, . . . , k − 1 and z = 1, . . . , n, where

Qi,h,y,a,r,z,δ = (−1)y−aca−r
y!

r!(a− r)!

(
y − a+ h− 1

h− 1

)
βhi

(βi −Rz,δ)y−a+h
, (3.29)

and

Ni,h,z,δ(k) =

∫ ∞
0

tke−(δ+cRz,δ)tgih(t)dt. (3.30)

Since (3.28) is true for r = 0, 1, . . . , k − 1 and z = 1, . . . , n, there are k × n equations in

total.

The second set of equations is

k∑
r=0

n∑
z=1

Bk,δ(r, z)
(−1)r(j + r − 1)!

(βi −Rz,δ)j+r
= 0 (3.31)

for i = 1, . . . ,m and j = 1, . . . , ni. There are in total n equations in (3.31).

Proof. From equation (26) of Landriault et al. (2014), the Gerber-Shiu function satisfies

(by conditioning on the time and the amount of the first claim)

mδ(u) =

∫ ∞
0

e−δt
∫ ∞
u+ct

w(y − u− ct)f(t, y)dydt

+

∫ ∞
0

e−δt
∫ u+ct

0

mδ(u+ ct− y)f(t, y)dydt. (3.32)
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According to (3.26), one can differentiate (3.32) k times with respect to δ to obtain

mk,δ(u) =

∫ ∞
0

tke−δt
∫ ∞
u+ct

w(y − u− ct)f(t, y)dydt

+
k∑
x=0

(
k

x

)∫ ∞
0

tk−xe−δt
∫ u+ct

0

mx,δ(u+ ct− y)f(t, y)dydt. (3.33)

Putting (3.1) and (3.27) into (3.33) yields

k∑
r=0

n∑
z=1

Bk,δ(r, z)ure−Rz,δu =

∫ ∞
0

tke−δt
∫ ∞
u+ct

w(y − u− ct)

{
m∑
i=1

ni∑
h=1

gih(t)eβi,h(y)

}
dydt

+
k∑
x=0

(
k

x

)∫ ∞
0

tk−xe−δt
∫ u+ct

0

{
x∑
r=0

n∑
z=1

Bx,δ(r, z)(u+ ct− y)r

× e−Rz,δ(u+ct−y)

}{
m∑
i=1

ni∑
h=1

gih(t)eβi,h(y)

}
dydt

=
m∑
i=1

ni∑
h=1

∫ ∞
0

tke−δt
{∫ ∞

0

w(y)eβi,h(y + u+ ct)dy

}
gih(t)dt

+
k∑
x=0

(
k

x

) m∑
i=1

x∑
r=0

n∑
z=1

Bx,δ(r, z)

ni∑
h=1

∫ ∞
0

tk−xe−δt

×
{∫ u+ct

0

(u+ ct− y)re−Rz,δ(u+ct−y)eβi,h(y)dy

}
gih(t)dt.

(3.34)

However,∫ ∞
0

w(y)eβi,h(y + u+ ct)dy =
1

βi

h∑
q=1

{∫ ∞
0

w(y)eβi,h−q+1(y)dy

}
eβi,q(u+ ct)

=
1

βi

h∑
q=1

E[w(Ei,h−q+1)]eβi,q(u+ ct),

where Ei,h denotes the random variable with Erlang pdf eβi,h as mentioned before. Also,
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it can be shown that for R 6= βi,∫ u

0

(u− y)re−R(u−y)eβi,h(y)dy =
r∑

a=0

(−1)r−a
r!

a!

(
r − a+ h− 1

h− 1

)
βhi

(βi −R)r−a+h
uae−Ru

+ (−1)r+1 1

βi

h∑
q=1

(h− q + r)!

(h− q)!
βh−q+1
i

(βi −R)h−q+r+1
eβi,q(u).

As a result, (3.34) can be rewritten as

k∑
r=0

n∑
z=1

Bk,δ(r, z)ure−Rz,δu

=
m∑
i=1

ni∑
h=1

∫ ∞
0

tke−δt

{
1

βi

h∑
q=1

E[w(Ei,h−q+1)]eβi,q(u+ ct)

}
gih(t)dt

+
k∑
x=0

(
k

x

) m∑
i=1

x∑
y=0

n∑
z=1

Bx,δ(y, z)

ni∑
h=1

∫ ∞
0

tk−xe−δt

{
y∑
a=0

(−1)y−a
y!

a!

×
(
y − a+ h− 1

h− 1

)
βhi

(βi −Rz,δ)y−a+h
(u+ ct)ae−Rz,δ(u+ct)

}
gih(t)dt

+
k∑
x=0

(
k

x

) m∑
i=1

x∑
r=0

n∑
z=1

Bx,δ(r, z)

ni∑
h=1

∫ ∞
0

tk−xe−δt

{
(−1)r+1

× 1

βi

h∑
q=1

(h− q + r)!

(h− q)!
βh−q+1
i

(βi −Rz,δ)h−q+r+1
eβi,q(u+ ct)

}
gih(t)dt. (3.35)

Note that when compared to (3.34), the index of summation for the second and third line
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of (3.35) is changed from r to y. Then, rearrange (3.35) to get

k∑
r=0

n∑
z=1

Bk,δ(r, z)ure−Rz,δu −
k∑
x=0

(
k

x

) m∑
i=1

x∑
y=0

n∑
z=1

Bx,δ(y, z)

ni∑
h=1

∫ ∞
0

tk−xe−δt

×

{
y∑
a=0

(−1)y−a
y!

a!

(
y − a+ h− 1

h− 1

)
βhi

(βi −Rz,δ)y−a+h

×

{
a∑
r=0

(
a

r

)
urca−rta−r

}
e−Rz,δ(u+ct)

}
gih(t)dt

=
m∑
i=1

ni∑
h=1

∫ ∞
0

tke−δt

{
1

βi

h∑
q=1

E[w(Ei,h−q+1)]eβi,q(u+ ct)

}
gih(t)dt

+
k∑
x=0

(
k

x

) m∑
i=1

x∑
r=0

n∑
z=1

Bx,δ(r, z)

ni∑
h=1

∫ ∞
0

tk−xe−δt

×

{
(−1)r+1 1

βi

h∑
q=1

(h− q + r)!

(h− q)!
βh−q+1
i

(βi −Rz,δ)h−q+r+1
eβi,q(u+ ct)

}
gih(t)dt. (3.36)

Next, since

1

βi

∫ ∞
0

e−δteβi,x(u+ ct)gih(t)dt =
x∑
j=1

eβi,j(u)

{
1

β2
i

∫ ∞
0

e−δteβi,x−j+1(ct)gih(t)dt

}
, (3.37)

it can be easily shown by differentiating (3.37) k times with respect to δ that

1

βi

∫ ∞
0

tke−δteβi,x(u+ ct)gih(t)dt =
x∑
j=1

eβi,j(u)Mi,h,x−j+1,δ(k) (3.38)

where

Mi,h,x,δ(k) =
1

β2
i

∫ ∞
0

tke−δteβi,x(ct)gih(t)dt.
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Therefore, using (3.29), (3.30) and (3.38), (3.36) becomes

k∑
r=0

n∑
z=1

Bk,δ(r, z)ure−Rz,δu −
k∑
x=0

(
k

x

) m∑
i=1

x∑
y=0

n∑
z=1

Bx,δ(y, z)

ni∑
h=1

y∑
r=0

ure−Rz,δu

×

{
y∑
a=r

Qi,h,y,a,r,z,δNi,h,z,δ(k − x+ a− r)

}

=
m∑
i=1

ni∑
h=1

h∑
q=1

E[w(Ei,h−q+1)]

q∑
j=1

eβi,j(u)Mi,h,q−j+1,δ(k)

+
k∑
x=0

(
k

x

) m∑
i=1

x∑
r=0

n∑
z=1

Bx,δ(r, z)

ni∑
h=1

(−1)r+1

×

{
h∑
q=1

(h− q + r)!

(h− q)!
βh−q+1
i

(βi −Rz,δ)h−q+r+1

q∑
j=1

eβi,j(u)Mi,h,q−j+1,δ(k − x)

}
. (3.39)

We further rearrange the summation signs in (3.39) to obtain

k∑
r=0

n∑
z=1

Bk,δ(r, z)ure−Rz,δu −
k∑
x=0

(
k

x

) m∑
i=1

x∑
r=0

ure−Rz,δu
x∑
y=r

n∑
z=1

Bx,δ(y, z)

×

{
ni∑
h=1

y∑
a=r

Qi,h,y,a,r,z,δNi,h,z,δ(k − x+ a− r)

}

=
m∑
i=1

ni∑
h=1

h∑
j=1

eβi,j(u)
h∑
q=j

E[w(Ei,h−q+1)]Mi,h,q−j+1,δ(k)

+
k∑
x=0

(
k

x

) m∑
i=1

x∑
r=0

n∑
z=1

Bx,δ(r, z)

ni∑
h=1

(−1)r+1

×

{
h∑
j=1

eβi,j(u)
h∑
q=j

(h− q + r)!

(h− q)!
βh−q+1
i

(βi −Rz,δ)h−q+r+1
Mi,h,q−j+1,δ(k − x)

}
,
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which finally results in

k∑
r=0

n∑
z=1

ure−Rz,δu

{
Bk,δ(r, z)

−
k∑
x=r

(
k

x

) x∑
y=r

Bx,δ(y, z)
m∑
i=1

ni∑
h=1

y∑
a=r

Qi,h,y,a,r,z,δNi,h,z,δ(k − x+ a− r)

}

=
m∑
i=1

ni∑
j=1

eβi,j(u)

ni∑
h=j

h∑
q=j

{
E[w(Ei,h−q+1)]Mi,h,q−j+1,δ(k)

+
k∑
x=0

(
k

x

) x∑
r=0

n∑
z=1

Bx,δ(r, z)(−1)r+1 (h− q + r)!

(h− q)!
βh−q+1
i

(βi −Rz,δ)h−q+r+1
Mi,h,q−j+1,δ(k − x)

}
.

(3.40)

Since (3.40) holds for all u ≥ 0, the coefficients of ure−Rz,δu for r = 0, 1, . . . , k; z =

1, . . . , n and eβi,j(u) for i = 1, . . . ,m; j = 1, . . . , ni should be zero. Therefore from the left

hand side of (3.40),

0 = Bk,δ(r, z)

−
k∑
x=r

(
k

x

) x∑
y=r

Bx,δ(y, z)
m∑
i=1

ni∑
h=1

y∑
a=r

Qi,h,y,a,r,z,δNi,h,z,δ(k − x+ a− r) (3.41)

for r = 0, 1, . . . , k; z = 1, . . . , n. Then by splitting the summation signs and with definitions

(3.29) and (3.30), (3.41) can be written as

0 = Bk,δ(r, z)

{
1−

m∑
i=1

ni∑
h=1

(
βi

βi −Rz,δ

)h
g̃ih(δ + cRz,δ)

}

−
k−1∑
x=r

(
k

x

) x∑
y=r

Bx,δ(y, z)
m∑
i=1

ni∑
h=1

y∑
a=r

Qi,h,y,a,r,z,δNi,h,z,δ(k − x+ a− r)

−
k∑

y=r+1

Bk,δ(y, z)
m∑
i=1

ni∑
h=1

y∑
a=r

Qi,h,y,a,r,z,δNi,h,z,δ(a− r) (3.42)
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for r = 0, 1, . . . , k; z = 1, . . . , n. In (3.42), the first term equals to zero according to (3.10),

and by notational convenience
∑k

i=j = 0 for j > k. Hence, (3.42) yields the result (3.28)

for r = 0, 1, . . . , k − 1; z = 1, . . . , n.

On the other hand, from the right hand side of (3.40),

0 =

ni∑
h=j

h∑
q=j

{
E[w(Ei,h−q+1)]Mi,h,q−j+1,δ(k)

+
k∑
x=0

(
k

x

) x∑
r=0

n∑
z=1

Bx,δ(r, z)

×(−1)r+1 (h− q + r)!

(h− q)!
βh−q+1
i

(βi −Rz,δ)h−q+r+1
Mi,h,q−j+1,δ(k − x)

}
(3.43)

for i = 1, 2, . . . ,m and j = 1, 2, . . . , ni. Take out the term x = 0 from the summation sign

in (3.43), i.e.

0 =

ni∑
h=j

h∑
q=j

{
E[w(Ei,h−q+1)]−

n∑
z=1

B0,δ(0, z)

(
βi

βi −Rz,δ

)h−q+1
}
Mi,h,q−j+1,δ(k)

+

ni∑
h=j

h∑
q=j

k∑
x=1

(
k

x

){ x∑
r=0

n∑
z=1

Bx,δ(r, z)

× (−1)r+1 (h− q + r)!

(h− q)!
βh−q+1
i

(βi −Rz,δ)h−q+r+1

}
Mi,h,q−j+1,δ(k − x),

where the first term is equal to zero by (3.11) and so it is left with

0 =

ni∑
h=j

h∑
q=j

k∑
x=1

(
k

x

){ x∑
r=0

n∑
z=1

Bx,δ(r, z)

× (−1)r+1 (h− q + r)!

(h− q)!
βh−q+1
i

(βi −Rz,δ)h−q+r+1

}
Mi,h,q−j+1,δ(k − x) (3.44)

for i = 1, 2, . . . ,m and j = 1, 2, . . . , ni. If we define

ξx,n,i,h(δ) =
x∑
r=0

n∑
z=1

Bx,δ(r, z)(−1)r+1 (h+ r)!

h!

βh+1
i

(βi −Rz,δ)h+r+1
,

36



then (3.44) can be rewritten as

0 =

ni∑
h=j

h∑
q=j

k∑
x=1

(
k

x

)
ξx,n,i,h−q(δ)Mi,h,q−j+1,δ(k − x)

=
k∑
x=1

(
k

x

) ni∑
q=j

ni∑
h=q

ξx,n,i,h−q(δ)Mi,h,q−j+1,δ(k − x)

=
k∑
x=1

(
k

x

) ni∑
q=j

ni−q∑
h=0

ξx,n,i,h(δ)Mi,h+q,q−j+1,δ(k − x)

=
k∑
x=1

(
k

x

) ni−j∑
h=0

ni−h∑
q=j

ξx,n,i,h(δ)Mi,h+q,q−j+1,δ(k − x)

=
k∑
x=1

(
k

x

) ni−j∑
h=0

ξx,n,i,h(δ)

{
ni−h−j∑
q=0

Mi,h+j+q,q+1,δ(k − x)

}

=
k−1∑
x=1

(
k

x

) ni−j∑
h=0

ξx,n,i,h(δ)

{
ni−h−j∑
q=0

Mi,h+j+q,q+1,δ(k − x)

}

+

ni−j∑
h=0

ξk,n,i,h(δ)

{
ni−h−j∑
q=0

Mi,h+j+q,q+1,δ(0)

}
. (3.45)

for i = 1, 2, . . . ,m and j = 1, 2, . . . , ni.

Fix any i ∈ {1, 2, . . . ,m}, our goal is to prove that

ξk,n,i,h(δ) = 0, h = 0, 1, 2, . . . , ni − 1 (3.46)

for k = 1, 2, 3, . . ., which yields (3.31).

Here is the proof. For k = 1, (3.45) reduces to

0 =

ni−j∑
h=0

ξ1,n,i,h(δ)

{
ni−h−j∑
q=0

Mi,h+j+q,q+1,δ(0)

}
(3.47)

for j = 1, 2, . . . , ni. When j = ni, (3.47) is

ξ1,n,i,0(δ)Mi,ni,1,δ(0) = 0,
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and hence ξ1,n,i,0(δ) = 0 since Mi,ni,1,δ(0) = g̃ini(δ + cβi)/βi is assumed to be non-zero. By

considering (3.47) in the reversing order of j = ni − 1, ni − 2, . . . , 1, it can be shown that

ξ1,n,i,h(δ) = 0, h = 0, 1, 2, . . . , ni − 1. (3.48)

It remains to show that (3.46) is true for k = 2, 3, . . .. Assume for x = 1, 2, . . . , k − 1,

ξx,n,i,h(δ) = 0, h = 0, 1, 2, . . . , ni − 1, (3.49)

then from (3.45),

0 =

ni−j∑
h=0

ξk,n,i,h(δ)

{
ni−h−j∑
q=0

Mi,h+j+q,q+1,δ(0)

}
. (3.50)

for j = 1, 2, . . . , ni. When j = ni, (3.50) gives

ξk,n,i,0(δ)Mi,ni,1,δ(0) = 0.

Again, since Mi,ni,1,δ(0) is assumed to be non-zero, we have ξk,n,i,0(δ) = 0. Next, choose

j = ni − s where s ∈ {1, 2, . . . , ni − 1} in (3.50), which yields

0 =
s∑

h=0

ξk,n,i,h(δ)

{
s−h∑
q=0

Mi,ni−s+h+q,q+1,δ(0)

}
. (3.51)

Assume

ξk,n,i,h(δ) = 0, h = 0, 1, 2, . . . , s− 1, (3.52)

then (3.51) gives

ξk,n,i,s(δ)Mi,ni,1,δ(0) = 0 (3.53)

and hence ξk,n,i,s(δ) = 0 by the non-zero assumption of Mi,ni,1,δ(0). Thus, if steps (3.51) to

(3.53) are repeated by choosing s in the order of s = 1, 2, . . . , ni − 1, it can be shown that

ξk,n,i,h(δ) = 0, h = 1, 2, . . . , ni − 1.
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Hence, (3.46) is true for k = 2, 3, . . . under assumption (3.49). Finally, since (3.46) is true

for k = 1 as shown in (3.48), it can be concluded that (3.46) is true for k = 1, 2, 3, . . .

which results in (3.31).

Theorem 3.3.2 shows that the associated coefficients of the moments, Bk,δ(r, z), can be

solved recursively in k. For example, one can first solve for the associated coefficients of

the Gerber-Shiu function, i.e. Cz,δ, using (3.11) or (3.12). Then this result can be used

to solve for the associated coefficients of the mean, i.e. B1,δ(0, z) and B1,δ(1, z). From

Theorem 3.3.2, the equations are

B1,δ(1, z) = −
Cz,δ

{
m∑
i=1

ni∑
h=1

Qi,h,0,0,0,z,δNi,h,z,δ(1)

}
m∑
i=1

ni∑
h=1

1∑
a=0

Qi,h,1,a,0,z,δNi,h,z,δ(a)

(3.54)

for z = 1, . . . , n and

n∑
z=1

B1,δ(0, z)
(j − 1)!

(βi −Rz,δ)j
=

n∑
z=1

B1,δ(1, z)
j!

(βi −Rz,δ)j+1
(3.55)

for i = 1, . . . ,m and j = 1, . . . , ni. Next, with Cz,δ, B1,δ(0, z) and B1,δ(1, z), the equations

satisfied by the associated coefficients of the second moment are completely specified. From

Theorem 3.3.2, the equations to solve for B2,δ(0, z), B2,δ(1, z) and B2,δ(2, z) are

B2,δ(2, z) = −
2B1,δ(1, z)

{
m∑
i=1

ni∑
h=1

y∑
a=r

Qi,h,1,1,1,z,δNi,h,z,δ(1)

}
m∑
i=1

ni∑
h=1

2∑
a=1

Qi,h,2,a,1,z,δNi,h,z,δ(a− 1)
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for z = 1, . . . , n;

B2,δ(1, z)

= − 1
m∑
i=1

ni∑
h=1

1∑
a=0

Qi,h,1,a,0,z,δNi,h,z,δ(a)

{
Cz,δ

m∑
i=1

ni∑
h=1

Qi,h,0,0,0,z,δNi,h,z,δ(2)

+ 2
1∑
y=0

B1,δ(y, z)
m∑
i=1

ni∑
h=1

y∑
a=0

Qi,h,y,a,0,z,δNi,h,z,δ(1 + a)

+ B2,δ(2, z)
m∑
i=1

ni∑
h=1

2∑
a=0

Qi,h,2,a,0,z,δNi,h,z,δ(a)

}
for z = 1, . . . , n and

n∑
z=1

B2,δ(0, z)
(j − 1)!

(βi −Rz,δ)j
=

n∑
z=1

B2,δ(1, z)
j!

(βi −Rz,δ)j+1
−

n∑
z=1

B2,δ(2, z)
(j + 1)!

(βi −Rz,δ)j+2

for i = 1, . . . ,m and j = 1, . . . , ni. The above approach can be continued to solve for the

associated coefficients of higher moments.

3.4 Numerical Example

In this section, the mean and variance of the time to ruin will be studied under different

joint distributional assumption on the interclaim time and the claim size.

First, two cases which have independent interclaim times and claim sizes are considered.

The joint pdf of the interclaim time (V) and claim size (Y) are given by

f(t, y) = e−t
(

2

3
e−

2
3
y

)
and f(t, y) = 4te−2t

(
2

3
e−

2
3
y

)
respectively in case 1 and case 2. Note that two cases with the same expected interclaim

time and expected claim size are chosen (E[V ] = 1 and E[Y ] = 3/2). In both cases, let
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us assume the premium rate of the insurance surplus process c = 5/2 (which satisfies the

positive loading condition (1.2)).

f(t, y)

Case 1 e−t
(

2
3
e−

2
3
y
)

Case 2 4te−2t
(

2
3
e−

2
3
y
)

Table 3.1: Joint pdf of interclaim times and claim sizes: independent cases

Given case 1 and case 2, two graphs involving the expected value and variance of the

time to ruin are plotted as follows.
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Figure 3.1: Comparison of the expected time to ruin in independent cases
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Figure 3.2: Comparison of the variance of time to ruin in independent cases

In Figure 3.1, the y-axis represents the quantity m1,0(u) = E[TI(T <∞)|U0 = u] and

the x-axis is the initial surplus u. Two observations can be made from the figure. First, the

expected time to ruin increases slightly and then decreases fast when initial surplus gets

larger. One possible explanation can be obtained from the two factors affecting E[TI(T <

∞)|U0 = u], namely the time to ruin and the probability of ruin. With larger initial

surplus, it should take longer time for the insurance process to become ruin. However, the

probability of ruin becomes small if initial surplus is large. Therefore, these two factors are

offsetting. According to Figure 3.1, except when initial surplus is small, the probability

of ruin should be the dominating factor and therefore the expected time to ruin decreases
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quickly when initial surplus gets larger. The other observation is that the expected time

to ruin in case 2 is shorter than that in case 1 for a given initial surplus u.

In Figure 3.2, the variance of the time to ruin is considered. The quantity m2,0(u) −

{m1,0(u)}2 = E[T 2I(T < ∞)|U0 = u] − {E[TI(T < ∞)|U0 = u]}2 is plotted against the

initial surplus u. Again, in either case 1 or case 2, the variance of the time to ruin increases

first and then decreases fast as initial surplus gets larger. Also, the variance of the time

to ruin is smaller in case 2 as compared to case 1. These observations are similar to those

made from Figure 3.1 which plots the expected time to ruin.

Next, let us study cases where interclaim time and claim size are dependent as another

example. Consider two cases with the following joint pdf of the interclaim time (V) and

claim size (Y)

f(t, y) =
3

4
e−t
(

2

3
e−

2
3
y

)
+

1

4
(2e−2t)

(
2

3

)2

ye−
2
3
y

and

f(t, y) =
3

4
e−t
(

2

3
e−

2
3
y

)
+

1

4
(2e−2t)

(
1

3
e−

1
3
y

)
,

which are referred to as case 3 and 4 respectively (E[V ] = 7/8 and E[Y ] = 15/8 in both

cases). Let us assume the premium rate c = 5/2 in both case 3 and case 4.

f(t, y)

Case 3 3
4
e−t
(

2
3
e−

2
3
y
)

+ 1
4
(2e−2t)

(
2
3

)2
ye−

2
3
y

Case 4 3
4
e−t
(

2
3
e−

2
3
y
)

+ 1
4
(2e−2t)

(
1
3
e−

1
3
y
)

Table 3.2: Joint pdf of interclaim times and claim sizes: dependent cases

As in the above independent example, the mean and variance of the time to ruin are

plotted against the initial surplus in the following.
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Figure 3.3: Comparison of the expected time to ruin in dependent cases
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Figure 3.4: Comparison of the variance of time to ruin in dependent cases

The observations from figure 3.3 and figure 3.4 are similar to those in the independent

cases. First, in either figure 3.3 or figure 3.4, the curves are concave. Second, the curves

for case 3 are below that for case 4, which may be explained by the lower variance of each

increment, i.e. V ar(cV − Y ), in case 3. For detailed explanation of these observations,

readers can refer to the analysis in the independent cases.
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Chapter 4

Laplace transform of the moments of

ruin time and analysis under Coxian

interclaim time

In the first part of this chapter, the Laplace transform of the moments of time to ruin is

studied in general under dependent Sparre Andersen models. The result generalizes the

properties of the Laplace transform of the Gerber-Shiu function shown in Cheung et al.

(2010). In the second part, the model of Willmot and Woo (2012) is considered which

assumes that the interclaim times are Coxian and the claim sizes are time-dependent. The

Laplace transform of the moments of time to ruin and the function h∗k2,δ(x, y, v|0) defined

in (2.12) are specified under this model.

The results in this chapter are submitted as Lee and Willmot (2014b).
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4.1 Laplace transform of the moments of the time to

ruin

Assume an arbitrary dependent Sparre Andersen model introduced in Section 1.1, with the

joint pdf of the interclaim time and claim size denoted by f(t, y). In this chapter, consider

the Gerber-Shiu function

mδ(u) = E[e−δTw(UT−, |UT |, RNT−1)I(T <∞)|U0 = u], (4.1)

which includes the surplus before ruin UT−, the deficit at ruin |UT | and the surplus im-

mediately after the second last claim before ruin RNT−1 in the penalty function. For

k = 0, 1, 2, . . ., consider the generalized kth moment of the time to ruin

mk,δ(u) = E[T ke−δTw(UT−, |UT |, RNT−1)I(T <∞)|U0 = u]. (4.2)

By definition, m0,δ(u) = mδ(u).

Cheung et al. (2010) and Willmot and Woo (2012) showed that the Laplace transform

of the Gerber-Shiu function (4.1) satisfies

{1− f̃(δ − cs, s)}m̃δ(s) = β̃0,δ(s)− σ0,0,δ(s), (4.3)

where

f̃(r, s) =

∫ ∞
0

∫ ∞
0

e−rt−syf(t, y)dtdy (4.4)

is the joint Laplace transform of the interclaim time and the claim size and β̃0,δ(s) =∫∞
0
e−suβ0,δ(u)du with

β0,δ(u) =

∫ ∞
0

e−δt
∫ ∞
u+ct

w(u+ ct, y − u− ct, u)f(t, y)dydt.
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Also,

σ0,0,δ(s) =

∫ ∞
0

e−sxϕ0,0,δ(x, δ − cs)dx

with

ϕ0,0,δ(x, h) =

∫ ∞
x/c

e−ht
∫ x

0

mδ(x− y)f(t, y)dydt.

As mentioned in Cheung et al. (2010),

1− f̃(δ − cs, s) = 0 (4.5)

is Lundberg’s equation (in s).

The above result can be generalized to the Laplace transform of the kth moment of the

time to ruin (4.2) for k = 0, 1, 2, . . ., as follows.

Theorem 4.1.1. Consider an arbitrary dependent Sparre Andersen model as introduced

in Section 1.1. The Laplace transform of (4.2) satisfies

{1− f̃(δ−cs, s)}m̃k,δ(s) = β̃k,δ(s)+
k∑
r=1

(
k

r

)
f̃r(δ−cs, s)m̃k−r,δ(s)−

k∑
r=0

(
k

r

)
σk,r,δ(s), (4.6)

where f̃r(δ − cs, s) = (−1)r ∂
r

∂δr
f̃(δ − cs, s) and β̃k,δ(s) =

∫∞
0
e−suβk,δ(u)du with

βk,δ(u) =

∫ ∞
0

tke−δt
∫ ∞
u+ct

w(u+ ct, y − u− ct, u)f(t, y)dydt. (4.7)

Also, for r = 0, 1, . . . , k,

σk,r,δ(s) =

∫ ∞
0

e−sxϕk,r,δ(x, δ − cs)dx (4.8)

with

ϕk,r,δ(x, h) =

∫ ∞
x/c

tre−ht
∫ x

0

mk−r,δ(x− y)f(t, y)dydt. (4.9)
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Proof. To prove (4.6), rewrite (4.3) as

m̃δ(s)− f̃(δ − cs, s)m̃δ(s) = β̃0,δ(s)− σ0,0,δ(s). (4.10)

Then differentiate (4.10) k times with respect to δ, which yields

m̃k,δ(s)−
k∑
r=0

(
k

r

)
f̃r(δ − cs, s)m̃k−r,δ(s) = β̃k,δ(s)−

k∑
r=0

(
k

r

)
σk,r,δ(s),

and hence (4.6) follows by rearrangement.

Note that when (4.6) equals zero, the left hand side also yields Lundberg’s equation

(4.5). Thus, (4.6) is a generalization of (4.3).

4.2 Coxian interclaim time assumption

In this section, the model of Willmot and Woo (2012) is considered. It is a dependent

Sparre Andersen model with the joint pdf of the interclaim time (t) and the claim size (y)

f(t, y) =
m∑
i=1

ni∑
j=1

τij(t)bij(y), t, y ≥ 0, (4.11)

where τij(t) is Erlang pdf, i.e.

τij(t) =
λi(λit)

j−1e−λit

(j − 1)!
, t ≥ 0. (4.12)

The marginal pdf of the interclaim time is

k(t) =
m∑
i=1

ni∑
j=1

{∫ ∞
0

bij(y)dy

}
τij(t),
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which is a Coxian-n pdf with n =
m∑
i=1

ni. Moreover, given (4.11), Willmot and Woo (2012)

noted that (4.5) becomes

1−
m∑
i=1

ni∑
j=1

(
λi

λi + δ − cs

)j
b̃ij(s) = 0. (4.13)

In (4.11), if bij(y) = b(y) for all i, j, then it reduces to a Sparre Andersen model with

Coxian interclaim times and time-independent claim sizes. This independent case has been

considered in Li and Garrido (2005) with Gerber-Shiu function (1.4), and in Willmot and

Woo (2010) with the generalized form (4.1).

4.2.1 Laplace transform of the moments

By assuming that n distinct roots with nonnegative real parts exist for (4.13), Willmot and

Woo (2012) specified the Laplace transform of the Gerber-Shiu function. The result will

be generalized here to the Laplace transform to the moments of the time to ruin by the

approach in Willmot and Woo (2012). In other words, the form of the Laplace transform

of the moments will be determined.

Theorem 4.2.1. Consider a dependent Sparre Andersen model introduced in Section (1.1)

with joint pdf of the claim size and interclaim time given by (4.11). Furthermore, assume n

distinct roots with nonnegative real parts, ρ1, ρ2, . . . , ρn, exist for (4.13). For k = 0, 1, 2, . . .,
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the Laplace transform of the kth moment of the time to ruin (4.2) is given by

m̃k,δ(s) =
1

1−
m∑
i=1

ni∑
j=1

(
λi

λi + δ − cs

)j
b̃ij(s)

×

{
β̃k,δ(s) +

k∑
r=1

(
k

r

){ m∑
i=1

ni∑
j=1

λji j(j + 1) · · · (j + r − 1)

(λi + δ − cs)j+r
b̃ij(s)

}
m̃k−r,δ(s)

−
k∑
r=0

(
k

r

)
σk,r,δ(s)

}
, (4.14)

where β̃k,δ(s) =
∫∞

0
e−suβk,δ(u)du with

βk,δ(u) =

∫ ∞
0

tke−δt
∫ ∞
u+ct

w(u+ ct, y − u− ct, u)

{
m∑
i=1

ni∑
j=1

τij(t)bij(y)

}
dydt. (4.15)

Moreover,

σk,0,δ(s) =

n∑
h=1

Qk,δ(ρh)
n∏

j=1,j 6=h

(
s− ρj
ρh − ρj

)
m∏
i=1

(λi + δ − cs)ni
, (4.16)

where

Qk,δ(ρh) =

{
β̃k,δ(ρh) +

k∑
r=1

(
k

r

){ m∑
i=1

ni∑
j=1

λji j(j + 1) · · · (j + r − 1)

(λi + δ − cρh)j+r
b̃ij(ρh)

}
m̃k−r,δ(ρh)

−
k∑
r=1

(
k

r

)
σk,r,δ(ρh)

}
m∏
x=1

(λx + δ − cρh)nx

for h = 1, 2, . . . , n.

Proof. First, with assumption (4.11), it follows that

f̃(δ − cs, s) =
m∑
i=1

ni∑
j=1

(
λi

λi + δ − cs

)j
b̃ij(s) (4.17)
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and

f̃r(δ − cs, s) = (−1)r
∂r

∂δr

m∑
i=1

ni∑
j=1

(
λi

λi + δ − cs

)j
b̃ij(s)

=
m∑
i=1

ni∑
j=1

λji j(j + 1) · · · (j + r − 1)

(λi + δ − cs)j+r
b̃ij(s). (4.18)

Substitute (4.17) and (4.18) into (4.6) gives{
1−

m∑
i=1

ni∑
j=1

(
λi

λi + δ − cs

)j
b̃ij(s)

}
m̃k,δ(s)

= β̃k,δ(s) +
k∑
r=1

(
k

r

){ m∑
i=1

ni∑
j=1

λji j(j + 1) · · · (j + r − 1)

(λi + δ − cs)j+r
b̃ij(s)

}
m̃k−r,δ(s)

−
k∑
r=0

(
k

r

)
σk,r,δ(s), (4.19)

which is (4.14) after rearrangement. Moreover, (4.15) follows easily from (4.7) with as-

sumption (4.11).

There is still σk,0,δ(s) which needs to be determined. To start with, substitute (4.11)

into (4.9) which yields

ϕk,r,δ(x, h) =

∫ ∞
x/c

tre−ht
∫ x

0

mk−r,δ(x− y)

{
m∑
i=1

ni∑
q=1

τiq(t)biq(y)

}
dydt

=
m∑
i=1

ni∑
q=1

αk−r,δ,iq(x)

∫ ∞
x/c

tre−htτiq(t)dt, (4.20)

where

αk,δ,iq(x) =

∫ x

0

mk,δ(x− y)biq(y)dy. (4.21)
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The integral in (4.20) can be simplified as∫ ∞
x/c

tre−htτiq(t)dt =

∫ ∞
x/c

tre−ht
{
λi(λit)

q−1e−λit

(q − 1)!

}
dt

=
(q + r − 1)!

(q − 1)!

λqi
(λi + h)q+r

∫ ∞
x/c

(λi + h)q+rtq+r−1e−(λi+h)t

(q + r − 1)!
dt

=
(q + r − 1)!

(q − 1)!

λqi
(λi + h)q+r

q+r−1∑
j=0

{
(λi + h)

(
x
c

)}j
e−(λi+h)x

c

j!

=
(q + r − 1)!

(q − 1)!
λqi e
−(λi+h)x

c

q+r∑
j=1

xq+r−j(λi + h)−j

cq+r−j(q + r − j)!
,

and hence (4.20) can be rewritten as

ϕk,r,δ(x, h) =
m∑
i=1

ni∑
q=1

αk−r,δ,iq(x)

q+r∑
j=1

(q + r − 1)!

(q − 1)!
λqi e
−(λi+h)x

c
xq+r−j(λi + h)−j

cq+r−j(q + r − j)!
. (4.22)

Substitute (4.22) into (4.8), which yields

σk,r,δ(s) =

∫ ∞
0

e−sx

{
m∑
i=1

ni∑
q=1

αk−r,δ,iq(x)

q+r∑
j=1

(q + r − 1)!

(q − 1)!
λqi e
−(λi+δ−cs)xc

× xq+r−j(λi + δ − cs)−j

cq+r−j(q + r − j)!

}
dx

=
m∑
i=1

ni∑
q=1

q+r∑
j=1

(q + r − 1)!

(q − 1)!

λqi (λi + δ − cs)−j

cq+r−j(q + r − j)!

∫ ∞
0

xq+r−je−
λi+δ

c
xαk−r,δ,iq(x)dx

=
m∑
i=1

ni∑
q=1

q+r∑
j=1

(q + r − 1)!

(q − 1)!

λqi (λi + δ − cs)−j

(−c)q+r−j(q + r − j)!
α̃

(q+r−j)
k−r,δ,iq

(
λi + δ

c

)
, (4.23)

for r = 0, 1, . . . , k, where

α̃
(r)
k,δ,iq(s) =

∫ ∞
0

(−x)re−sxαk,δ,iq(x)dx. (4.24)
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Specifically, for r = 0 in (4.23),

σk,0,δ(s) =
m∑
i=1

ni∑
q=1

q∑
j=1

λqi (λi + δ − cs)−j

(−c)q−j(q − j)!
α̃

(q−j)
k,δ,iq

(
λi + δ

c

)

=
m∑
i=1

ni∑
j=1

(λi + δ − cs)−j
ni∑
q=j

λqi α̃
(q−j)
k,δ,iq

(
λi+δ
c

)
(−c)q−j(q − j)!

=
m∑
i=1

ni∑
j=1

θij,k,δ
(λi + δ − cs)j

(4.25)

with

θij,k,δ =

ni∑
q=j

λqi α̃
(q−j)
k,δ,iq

(
λi+δ
c

)
(−c)q−j(q − j)!

.

Equivalently, (4.25) can be expressed as

σk,0,δ(s) =
Qk,δ(s)

m∏
x=1

(λx + δ − cs)nx
(4.26)

with

Qk,δ(s) =

{
m∏
x=1

(λx + δ − cs)nx
}

m∑
i=1

ni∑
j=1

θij,k,δ
(λi + δ − cs)j

.

Next, recall the assumption that (4.13) has n distinct roots ρ1, ρ2, . . . , ρn. For h =

1, 2, . . . , n, put s = ρh in (4.19) yields

σk,0,δ(ρh) = β̃k,δ(ρh) +
k∑
r=1

(
k

r

){ m∑
i=1

ni∑
j=1

λji j(j + 1) · · · (j + r − 1)

(λi + δ − cρh)j+r
b̃ij(ρh)

}
m̃k−r,δ(ρh)

−
k∑
r=1

(
k

r

)
σk,r,δ(ρh). (4.27)

Again, recall that σk,r,δ(ρh) actually depends on mk−r,δ(u). Therefore for r = 1, 2, . . . , k,

σk,r,δ(ρh) is a function of mx,δ(u) for at most x = k − 1. And hence in theory, σk,0,δ(ρh) in
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(4.27) can be identified recursively in k, with σ0,0,δ(ρh) = β̃0,δ(ρh). Substitute (4.27) into

(4.26) gives

Qk,δ(ρh) =

{
β̃k,δ(ρh) +

k∑
r=1

(
k

r

){ m∑
i=1

ni∑
j=1

λji j(j + 1) · · · (j + r − 1)

(λi + δ − cρh)j+r
b̃ij(ρh)

}
m̃k−r,δ(ρh)

−
k∑
r=1

(
k

r

)
σk,r,δ(ρh)

}
m∏
x=1

(λx + δ − cρh)nx . (4.28)

Since Qk,δ(s) is a polynomial with at most degree n − 1, it can be expressed in Lagrange

polynomial form as

Qk,δ(s) =
n∑
h=1

Qk,δ(ρh)
n∏

j=1,j 6=h

(
s− ρj
ρh − ρj

)
. (4.29)

Substitute (4.29) into (4.26) results in (4.16).

On the right hand side of (4.14), it involves m̃k−r,δ(s) and σk,r,δ(s) for r = 1, 2, . . . , k.

From definition (4.8), σk,r,δ(s) is a function of mk−r,δ(u) which can be obtained by inversion

of m̃k−r,δ(s) in theory. Thus, (4.14) shows that m̃k,δ(s) can be determined recursively in k.

4.2.2 Structural quantities related to the moments

Inversion of (4.14) with respect to s gives the kth moment of the time to ruin mk,δ(u),

but it is complicated to invert in general. In this section, an alternative way is provided

to solve for mk,δ(u). The function h∗k2,δ(x, y, v|0) defined in (2.12) will be determined under

the Coxian interclaim time assumption, and hence mk,δ(u) can be solved recursively in k

by the defective renewal equations shown in Theorem 2.2.1.

Theorem 4.2.2. Suppose the conditions of Theorem 4.2.1 holds. For k = 0, 1, 2, . . ., the
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function h∗k2,δ(x, y, v|0) defined in (2.12) is given by

h∗k2,δ(x, y, v|0)

=
n∑
h=1

ξh,δ

{
e−ρhvh∗k1,δ(x, y|v)

+
k∑
r=1

(
k

r

){{ m∑
i=1

ni∑
j=1

λji j(j + 1) · · · (j + r − 1)

(λi + δ − cρh)j+r
b̃ij(ρh)

}

×
{
e−ρhvh∗k−r1,δ (x, y|v) +

∫ ∞
0

e−ρhzh∗k−r2,δ (x, y, v|z)dz

}
−

m∑
i=1

ni∑
q=1

q+r∑
j=1

(q + r − 1)!

(q − 1)!

λqi (λi + δ − cρh)−j

(−c)q+r−j(q + r − j)!
γ
k−r,δ,iq,q+r−j,λi+δ

c

(x, y, v)

}}

−
k∑
r=1

(
k

r

) m∑
i=1

ni∑
q=1

λqi
(q − 1)!(−c)q+r

γ
k−r,δ,iq,q+r−1,

λi+δ

c

(x, y, v), (4.30)

where h∗k1,δ(x, y|u) is as defined in (2.11),

ξh,δ =

m∏
i=1

(
λi + δ

c
− ρh

)ni
n∏

j=1,j 6=h

(ρj − ρh)
(4.31)

and

γk,δ,iq,r,s(x, y, v) =

∫ ∞
v

(−a)re−sah∗k1,δ(x, y|v)biq(a− v)da

+

∫ ∞
0

∫ z

0

(−z)re−szh∗k2,δ(x, y, v|z − a)biq(a)dadz. (4.32)

Proof. First, with definition (2.11), note that (4.7) can be written as

βk,δ(u) =

∫ ∞
u

∫ ∞
0

w(x, y, u)h∗k1,δ(x, y|u)dydx (4.33)

=

∫ ∞
0

∫ ∞
u

w(x+ u, y − u, u)h∗k1,δ(x, y|0)dydx.

56



For the moment of the time to ruin (4.2), Theorem 2.2.1 shows that

mk,δ(u) = φδ

∫ u

0

mk,δ(u− y)fδ(y)dy + vk,δ(u) (4.34)

for k = 0, 1, 2, . . ., where

vk,δ(u) =
k∑
j=1

(
k

j

)∫ u

0

mk−j,δ(u− y)

∫ ∞
0

h∗jδ (x, y|0)dxdy

+ βk,δ(u) +

∫ ∞
u

∫ ∞
0

∫ x

0

w(x+ u, y − u, v + u)h∗k2,δ(x, y, v|0)dvdxdy.

For u = 0, (4.34) becomes

mk,δ(0) = βk,δ(0) +

∫ ∞
0

∫ ∞
0

∫ x

0

w(x, y, v)h∗k2,δ(x, y, v|0)dvdxdy. (4.35)

On the other hand, the initial value theorem can be applied to (4.14). To be specific,

multiply both sides of (4.14) by s and let s→∞, which yields

lim
s→∞

sm̃k,δ(s)

= lim
s→∞

sβ̃k,δ(s)

+
k∑
r=1

(
k

r

){
lim
s→∞

{
m∑
i=1

ni∑
j=1

λji j(j + 1) · · · (j + r − 1)

(λi + δ − cs)j+r
b̃ij(s)

}}{
lim
s→∞

sm̃k−r,δ(s)
}

−
k∑
r=0

(
k

r

)
lim
s→∞

sσk,r,δ(s). (4.36)

By the initial value theorem, lim
s→∞

sm̃k,δ(s) = mk,δ(0) and lim
s→∞

sβ̃k,δ(s) = βk,δ(0). Thus,

(4.36) reduces to

mk,δ(0) = βk,δ(0)−
k∑
r=0

(
k

r

)
lim
s→∞

sσk,r,δ(s). (4.37)

By comparing (4.35) and (4.37) yields∫ ∞
0

∫ ∞
0

∫ x

0

w(x, y, v)h∗k2,δ(x, y, v|0)dvdxdy = −
k∑
r=0

(
k

r

)
lim
s→∞

sσk,r,δ(s). (4.38)
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To further study (4.38), the terms lim
s→∞

sσk,r,δ(s) for r = 0, 1, 2, . . . , k need to be identified.

For r = 1, 2, . . . , k, (4.23) shows that

σk,r,δ(s) =
m∑
i=1

ni∑
q=1

q+r∑
j=1

(q + r − 1)!

(q − 1)!

λqi (λi + δ − cs)−j

(−c)q+r−j(q + r − j)!
α̃

(q+r−j)
k−r,δ,iq

(
λi + δ

c

)
, (4.39)

where

α̃
(r)
k,δ,iq(s) =

∫ ∞
0

(−z)re−sz
∫ z

0

mk,δ(z − a)biq(a)dadz. (4.40)

However, by definitions of h∗k1,δ(x, y|u) and h∗k2,δ(x, y, v|u) in (2.11) and (2.12), one has

mk,δ(u) =

∫ ∞
0

∫ ∞
u

w(x, y, u)h∗k1,δ(x, y|u)dxdy

+

∫ ∞
0

∫ ∞
0

∫ x

0

w(x, y, v)h∗k2,δ(x, y, v|u)dvdxdy. (4.41)

Put (4.41) into (4.40), which gives

α̃
(r)
k,δ,iq(s) =

∫ ∞
0

(−z)re−sz
∫ z

0

{∫ ∞
0

∫ ∞
z−a

w(x, y, z − a)h∗k1,δ(x, y|z − a)dxdy

+

∫ ∞
0

∫ ∞
0

∫ x

0

w(x, y, v)h∗k2,δ(x, y, v|z − a)dvdxdy

}
biq(a)dadz

=

∫ ∞
0

∫ ∞
a

∫ ∞
0

∫ ∞
z−a

w(x, y, z − a)(−z)re−szh∗k1,δ(x, y|z − a)biq(a)dxdydzda

+

∫ ∞
0

∫ z

0

∫ ∞
0

∫ ∞
0

∫ x

0

w(x, y, v)(−z)re−szh∗k2,δ(x, y, v|z − a)biq(a)dvdxdydadz

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
v

w(x, y, v)(−v − a)re−s(v+a)h∗k1,δ(x, y|v)biq(a)dxdydvda

+

∫ ∞
0

∫ ∞
0

∫ x

0

w(x, y, v)

∫ ∞
0

∫ z

0

(−z)re−szh∗k2,δ(x, y, v|z − a)biq(a)dadzdvdxdy

=

∫ ∞
0

∫ ∞
0

∫ x

0

w(x, y, v)

∫ ∞
0

(−v − a)re−s(v+a)h∗k1,δ(x, y|v)biq(a)dadvdxdy

+

∫ ∞
0

∫ ∞
0

∫ x

0

w(x, y, v)

∫ ∞
0

∫ z

0

(−z)re−szh∗k2,δ(x, y, v|z − a)biq(a)dadzdvdxdy

=

∫ ∞
0

∫ ∞
0

∫ x

0

w(x, y, v)γk,δ,iq,r,s(x, y, v)dvdxdy (4.42)
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with γk,δ,iq,r,s(x, y, v) given by (4.32). Hence, (4.39) becomes

σk,r,δ(s) =
m∑
i=1

ni∑
q=1

q+r∑
j=1

(q + r − 1)!

(q − 1)!

λqi (λi + δ − cs)−j

(−c)q+r−j(q + r − j)!

×
∫ ∞

0

∫ ∞
0

∫ x

0

w(x, y, v)γ
k−r,δ,iq,q+r−j,λi+δ

c

(x, y, v)dvdxdy, (4.43)

and thus for r = 1, 2, . . . , k,

lim
s→∞

sσk,r,δ(s)

= lim
s→∞

{
s

m∑
i=1

ni∑
q=1

q+r∑
j=1

(q + r − 1)!

(q − 1)!

λqi (λi + δ − cs)−j

(−c)q+r−j(q + r − j)!

×
∫ ∞

0

∫ ∞
0

∫ x

0

w(x, y, v)γ
k−r,δ,iq,q+r−j,λi+δ

c

(x, y, v)dvdxdy

}
= lim

s→∞

m∑
i=1

ni∑
q=1

λqi
(
λi+δ
s
− c
)−1

(q − 1)!(−c)q+r−1

∫ ∞
0

∫ ∞
0

∫ x

0

w(x, y, v)γ
k−r,δ,iq,q+r−1,

λi+δ

c

(x, y, v)dvdxdy

+ lim
s→∞

{
m∑
i=1

ni∑
q=1

q+r∑
j=2

(q + r − 1)!

(q − 1)!

λqi
(
λi+δ
s
− c
)−1

(λi + δ − cs)−(j−1)

(−c)q+r−j(q + r − j)!

×
∫ ∞

0

∫ ∞
0

∫ x

0

w(x, y, v)γ
k−r,δ,iq,q+r−j,λi+δ

c

(x, y, v)dvdxdy

}
=

m∑
i=1

ni∑
q=1

λqi
(q − 1)!(−c)q+r

∫ ∞
0

∫ ∞
0

∫ x

0

w(x, y, v)γ
k−r,δ,iq,q+r−1,

λi+δ

c

(x, y, v)dvdxdy. (4.44)
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Next, from (4.26) and (4.29),

lim
s→∞

sσk,0,δ(s) = lim
s→∞

s

n∑
h=1

Qk,δ(ρh)
n∏

j=1,j 6=h

(
s− ρj
ρh − ρj

)
m∏
i=1

(λi + δ − cs)ni

= lim
s→∞

n∑
h=1

Qk,δ(ρh)
n∏

j=1,j 6=h

(
1− ρj

s

ρh − ρj

)
m∏
i=1

(
λi + δ

s
− c
)ni

=
1

(−c)n
n∑
h=1

Qk,δ(ρh)
n∏

j=1,j 6=h

(
1

ρh − ρj

)
. (4.45)

Substitute (4.28) into (4.45) gives

lim
s→∞

sσk,0,δ(s)

= −
n∑
h=1

ξh,δ

{
β̃k,δ(ρh)

+
k∑
r=1

(
k

r

){ m∑
i=1

ni∑
j=1

λji j(j + 1) · · · (j + r − 1)

(λi + δ − cρh)j+r
b̃ij(ρh)

}
m̃k−r,δ(ρh)

−
k∑
r=1

(
k

r

)
σk,r,δ(ρh)

}
, (4.46)

where ξh,δ is given by (4.31). Let us study (4.46) term by term. First, it follows from (4.33)

that

β̃k,δ(ρh) =

∫ ∞
0

e−ρhv
∫ ∞
v

∫ ∞
0

w(x, y, v)h∗k1,δ(x, y|v)dydxdv

=

∫ ∞
0

∫ ∞
0

∫ x

0

w(x, y, v)e−ρhvh∗k1,δ(x, y|v)dvdxdy. (4.47)
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Second, by (4.41),

m̃k−r,δ(ρh) =

∫ ∞
0

e−ρhv
∫ ∞

0

∫ ∞
v

w(x, y, v)h∗k−r1,δ (x, y|v)dxdydv

+

∫ ∞
0

e−ρhz
∫ ∞

0

∫ ∞
0

∫ x

0

w(x, y, v)h∗k−r2,δ (x, y, v|z)dvdxdydz

=

∫ ∞
0

∫ ∞
0

∫ x

0

w(x, y, v)

×
{
e−ρhvh∗k−r1,δ (x, y|v) +

∫ ∞
0

e−ρhzh∗k−r2,δ (x, y, v|z)dz

}
dvdxdy. (4.48)

Thus, by (4.47), (4.48) and (4.43), it follows that (4.46) can be expressed as

lim
s→∞

sσk,0,δ(s)

= −
n∑
h=1

ξh,δ

{∫ ∞
0

∫ ∞
0

∫ x

0

w(x, y, v)

{
e−ρhvh∗k1,δ(x, y|v)

+
k∑
r=1

(
k

r

){ m∑
i=1

ni∑
j=1

λji j(j + 1) · · · (j + r − 1)

(λi + δ − cρh)j+r
b̃ij(ρh)

}

×
{
e−ρhvh∗k−r1,δ (x, y|v) +

∫ ∞
0

e−ρhzh∗k−r2,δ (x, y, v|z)dz

}
−

k∑
r=1

(
k

r

) m∑
i=1

ni∑
q=1

q+r∑
j=1

(q + r − 1)!

(q − 1)!

× λqi (λi + δ − cρh)−j

(−c)q+r−j(q + r − j)!
γ
k−r,δ,iq,q+r−j,λi+δ

c

(x, y, v)

}
dvdxdy

}
. (4.49)

Finally, substitute (4.44) and (4.49) into (4.38). Let w(x, y, v) = e−s1x−s2y−s3v in (4.38)

and (4.30) follows by inversion with respect to s1, s2 and s3.

Theorem 4.2.2 generalizes the result

h∗02,δ(x, y, v|0) =
n∑
h=1

ξh,δe
−ρhvh∗01,δ(x, y|v),
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which is shown in Willmot and Woo (2012). According to Theorem 2.2.1, the defective

renewal equation satisfied by m0,δ(u) is completely specified if h∗02,δ(x, y, v|0) is given, i.e.

m0,δ(u) = φδ

∫ u

0

m0,δ(u− y)fδ(y)dy + v0,δ(u) (4.50)

with

v0,δ(u) =

∫ ∞
u

∫ ∞
0

w(x+ u, y − u, u)h∗01,δ(x, y|0)dxdy

+

∫ ∞
u

∫ ∞
0

∫ x

0

w(x+ u, y − u, v + u)h∗02,δ(x, y, v|0)dvdxdy.

Moreover, from (2.19), the solution to (4.50) is

m0,δ(u) =
1

1− φδ

∫ u

0

v0,δ(y)gδ(u− y)dy + v0,δ(u). (4.51)

On the other hand, it is given in (4.41) that

m0,δ(u) =

∫ ∞
0

∫ ∞
u

w(x, y, u)h∗01,δ(x, y|u)dxdy

+

∫ ∞
0

∫ ∞
0

∫ x

0

w(x, y, v)h∗02,δ(x, y, v|u)dvdxdy. (4.52)

Equate (4.51) and (4.52) with the penalty function w(x, y, v) = e−s1x−s2y−s3v and it can

be shown by inversion with respect to s1, s2 and s3 that h∗02,δ(x, y, v|u) is a function of

h∗02,δ(x, y, v|0). Readers can refer to Cheung et al. (2010) for detailed steps and results.

In Theorem 4.2.2, it shows that h∗k2,δ(x, y, v|0) is a function of h∗r2,δ(x, y, v|u) for u ≥ 0

and r = 0, 1, . . . , k − 1. Moreover, h∗r2,δ(x, y, v|u) for u ≥ 0 can be expressed in terms

of h∗r2,δ(x, y, v|0) with the approach described in last paragraph. Thus, h∗k2,δ(x, y, v|0) can

be solved recursively in k by (4.30). For example, given that h∗02,δ(x, y, v|u) for u ≥ 0 is

obtained as discussed above, (4.30) can be used to determine h∗12,δ(x, y, v|0). To continue,

by equating (2.19) and (4.41) with k = 1 yields h∗12,δ(x, y, v|u) for u ≥ 0, and (4.30) may be

used again to obtain h∗22,δ(x, y, v|0), etc.
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4.2.3 Numerical example

In this section we present two examples to illustrate the use of the results in Section 4.2.2.

In the first example, we choose a model for which we can compare our results with those

obtained by using the results in Chapter 3. The second example illustrating the use of the

methodology in situations where other approaches appear not to be readily available. In

particular, we assume a claim size distribution which is not of Coxian form.

Example 1 Consider a Sparre Andersen model where the joint pdf of the interclaim

time and the claim size is given by

f(t, y) = 4te−2t
(
ye−y

)
. (4.53)

By assuming δ = 0 and c = 3, Lundberg’s equation (4.13) has non-negative roots 0 and 1.

Hence, ρ1 = 0 and ρ2 = 1.

Suppose that the expected time to ruin, i.e. E[TI(T < ∞)|U0 = u], is of interest.

According to Theorem 2.2.1, the functions h∗11,0(x, y|0) and h∗12,0(x, y, v|0) are needed to

solve for E[TI(T <∞)|U0 = u].

First, one has from (2.11) that

h∗k1,0(x, y|u) =
4

3k+2
(x− u)k+1(x+ y)e−

5
3
x−y+ 2

3
u, x > u (4.54)

for k = 0, 1, 2, . . ..
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Next, h∗02,0(x, y, v|u) for u ≥ 0 is necessary to specify h∗12,0(x, y, v|0). Note that h∗02,0(x, y, v|u)

can be obtained from h∗02,0(x, y, v|0) as follows. To start with, put k = 0 in (4.30) and one

has

h∗02,0(x, y, v|0) =
2∑

h=1

{ (
2
3
− ρh

)2∏2
j=1,j 6=h(ρj − ρh)

}
e−ρhvh∗01,0(x, y|v), (4.55)

where h∗01,0(x, y|v) is given in (4.54). Then consider the Gerber-Shiu function

m0,0(u) = E[e−s1UT−−s2|UT |−s3RNT−1I(T <∞)|U0 = u]. (4.56)

According to Theorem 2.2.1, m0,0(u) in (4.56) satisfies

m0,0(u) = φ0

∫ u

0

m0,0(u− y)f0(y)dy + v0,0(u), (4.57)

where φ0 =
∫∞

0

∫∞
0

{
h∗01,0(x, y|0) +

∫ x
0
h∗02,0(x, y, v|0)dv

}
dxdy,

f0(y) =
1

φ0

∫ ∞
0

{
h∗01,0(x, y|0) +

∫ x

0

h∗02,0(x, y, v|0)dv

}
dx

and

v0,0(u) =

∫ ∞
u

∫ ∞
0

e−s1(x+u)−s2(y−u)−s3uh∗01,0(x, y|0)dxdy

+

∫ ∞
u

∫ ∞
0

∫ x

0

e−s1(x+u)−s2(y−u)−s3(v+u)h∗02,0(x, y, v|0)dvdxdy

=

∫ ∞
0

∫ ∞
u

e−s1x−s2y−s3uh∗01,0(x− u, y + u|0)dxdy

+

∫ ∞
0

∫ ∞
u

∫ x

u

e−s1x−s2y−s3vh∗02,0(x− u, y + u, v − u|0)dvdxdy.
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From (2.19), the solution to (4.57) is

m0,0(u) =
∞∑
n=1

φn0

∫ u

0

v0,0(z)f ∗n0 (u− z)dz + v0,0(u)

=
∞∑
n=1

φn0

∫ u

0

{∫ ∞
0

∫ ∞
z

e−s1x−s2y−s3zh∗01,0(x− z, y + z|0)dxdy

+

∫ ∞
0

∫ ∞
z

∫ x

z

e−s1x−s2y−s3vh∗02,0(x− z, y + z, v − z|0)dvdxdy

}
× f ∗n0 (u− z)dz

+

∫ ∞
0

∫ ∞
u

e−s1x−s2y−s3uh∗01,0(x− u, y + u|0)dxdy

+

∫ ∞
0

∫ ∞
u

∫ x

u

e−s1x−s2y−s3vh∗02,0(x− u, y + u, v − u|0)dvdxdy. (4.58)

On the other hand, from (4.41),

m0,0(u) =

∫ ∞
0

∫ ∞
u

e−s1x−s2y−s3uh∗01,0(x, y|u)dxdy

+

∫ ∞
0

∫ ∞
0

∫ x

0

e−s1x−s2y−s3vh∗02,0(x, y, v|u)dvdxdy. (4.59)

Equate (4.59) and (4.58), then it can be shown by inverting with respect to s1, s2 and s3

that

h∗02,0(x, y, v|u) =
∞∑
n=1

φn0

{
h∗01,0(x− v, y + v|0)f ∗n0 (u− v)

+

∫ v

0

h∗02,0(x− z, y + z, v − z|0)f ∗n0 (u− z)dz

}
for 0 ≤ v ≤ min(x, u); 0 ≤ x <∞; y ≥ 0 and

h∗02,0(x, y, v|u) =
∞∑
n=1

φn0

∫ u

0

h∗02,0(x− z, y + z, v − z|0)f ∗n0 (u− z)dz

+ h∗02,0(x− u, y + u, v − u|0)
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for u < v ≤ x; u ≤ x <∞; y ≥ 0.

Now with h∗02,0(x, y, v|u), we can determine h∗12,0(x, y, v|0) from (4.30). Finally, with all

the quantities calculated in this example and (2.19), the solution for E[TI(T <∞)|U0 = u]

is given by

E[TI(T <∞)|U0 = u] =
∞∑
n=1

φn0

∫ u

0

v1,0(y)f ∗n0 (u− y)dy + v1,0(u), (4.60)

where

v1,0(u) =

∫ u

0

E[I(T <∞)|U0 = u− y]

×
∫ ∞

0

{
h∗11,0(x, y|0) +

∫ x

0

h∗12,0(x, y, v|0)dv

}
dxdy

+

∫ ∞
u

∫ ∞
0

{
h∗11,0(x, y|0) +

∫ x

0

h∗12,0(x, y, v|0)dv

}
dxdy. (4.61)

The solution for E[TI(T < ∞)|U0 = u] in (4.60) involves an infinite sum, so an approx-

imation is obtained using a finite number of terms, say α. In Figure 4.1, the conditional

expected time to ruin E[T |T <∞, U0 = u] = E[TI(T <∞)|U0 = u]/E[I(T <∞)|U0 = u]

is approximated with different chosen values of α.

For comparison to the approximation, the exact value of E[T |T < ∞, U0 = u] is also

given in Figure 4.1. Note that the exact value of E[T |T <∞, U0 = u] is obtained by using

the results in Lee and Willmot (2014a), which are applicable for a different class of models

than those considered here.
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Figure 4.1: Approximate and exact values of E[T |T <∞, U0 = u]

Example 2 In this example, we consider Erlang(2) interclaim times and Erlang(1/2)

claim sizes, i.e. let

f(t, y) = 4te−2t

(
1
2
y−

1
2 e−

y
4

√
π

)
.

Furthermore, assume that δ = 0 and c = 3. The value of E[T |T < ∞, U0 = u] is

approximated in Figure 4.2 by using the method in Example 1.
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Figure 4.2: Approximation of E[T |T <∞, U0 = u]
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Chapter 5

Joint density of the time to ruin and

other ruin quantities in Sparre

Andersen models with exponential

claims

In Chapter 1, it was mentioned that the joint moments of ruin-related quantities can be

obtained through their joint densities by integration. Therefore in this chapter, the joint

density of the time to ruin, the number of claims until ruin and other ruin-related quantities

is considered under a Sparre Andersen model with the exponential claim sizes.
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5.1 Introduction

Consider the dependent Sparre Andersen model described in section 1.1. Recall that the

marginal pdfs of interclaim time and claim size are denoted by k(t) and p(y) respectively.

Also, the joint pdf of the interclaim time and the claim size is denoted by f(t, y).

Consider also the ruin quantities introduced in Section 1.2.1 which are defined through

the time to ruin T and the number of claims until ruin NT . These include the surplus before

ruin UT−, the deficit at ruin |UT | and the minimum surplus before ruin XT . Moreover,

there is RNT−1 which denotes the surplus immediately after the second last claim before

ruin if ruin occurs on claim subsequent to the first, and RNT−1 is equal to u if ruin occurs

on first claim. In this chapter, the joint distribution of these quantities is studied through

the following generalized Gerber-Shiu function proposed in Shi (2013). For r ∈ (0, 1] and

δ ≥ 0, define

mr,δ(u) = E[rNT e−δTw(UT−, |UT |, XT , RNT−1)I(T <∞)|U0 = u]. (5.1)

5.2 Structural properties of the generalized Gerber-

Shiu function

In order to study (5.1), let us first define the following densities involving the ruin quantities

in (5.1).

For ruin occuring on the first claim, define

g1(x, y|u) =


1

c
f

(
x− u
c

, x+ y

)
, x > u

0, otherwise

(5.2)
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as the joint density of the surplus before ruin (x) and deficit at ruin (y). For ruin occuring

on the nth claim, where n = 2, 3, . . ., define

gn(t, x, y, v|u), v < x, (5.3)

as the joint defective density of the time to ruin (t), the surplus before ruin (x), the

deficit at ruin (y) and the surplus immediately after the second last claim before ruin

(v). By definition, g1(x, y|u) is equivalent to h1(x, y|u) in (2.2) and
∑∞

n=2 gn(t, x, y, v|u) is

equivalent to h2(t, x, y, v|u) in (2.3).

Based on (5.2) and (5.3), define also the discounted densities

g1,r,δ(x, y|u) = re−δ(
x−u
c )g1(x, y|u), (5.4)

g2+,r,δ(x, y, v|u) =
∞∑
n=2

rn
∫ ∞

0

e−δtgn(t, x, y, v|u)dt (5.5)

and

gr,δ(x, y|u) = g1,r,δ(x, y|u) +

∫ x

0

g2+,r,δ(x, y, v|u)dv.

Theorem 5.2.1. Consider the dependent Sparre Andersen model introduced in Section

1.1. The generalized Gerber-Shiu function (5.1) satisfies the defective renewal equation

mr,δ(u) = φr,δ

∫ u

0

mr,δ(u− y)fr,δ(y)dy

+

∫ ∞
u

∫ ∞
0

w(u+ x, y − u, u, u)g1,r,δ(x, y|0)dxdy

+

∫ ∞
u

∫ ∞
0

∫ x

0

w(u+ x, y − u, u, v + u)g2+,r,δ(x, y, v|0)dvdxdy, (5.6)

where

φr,δ =

∫ ∞
0

∫ ∞
0

gr,δ(x, y|0)dxdy (5.7)
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and

fr,δ(y) =
1

φr,δ

∫ ∞
0

gr,δ(x, y|0)dx (5.8)

is the ladder height density.

Proof. By conditioning on the first drop of the insurance surplus process below initial

surplus u,

mr,δ(u) =

∫ u

0

mr,δ(u− y)

∫ ∞
0

gr,δ(x, y|0)dxdy

+

∫ ∞
u

∫ ∞
0

w(u+ x, y − u, u, u)g1,r,δ(x, y|0)dxdy

+

∫ ∞
u

∫ ∞
0

∫ x

0

w(u+ x, y − u, u, v + u)g2+,r,δ(x, y, v|0)dvdxdy,

from which (5.6) follows with definitions (5.7) and (5.8).

Theorem 5.2.1 generalizes the results in Cheung et al. (2010) and Landriault et al.

(2011) where special cases of (5.1) were studied.

For the rest of this chapter, consider the Sparre Andersen model where the interclam

times and the claim sizes are assumed to be independent, i.e. f(t, y) = k(t)p(y). Then

(5.4) becomes

g1,r,δ(x, y|u) = re−δ(
x−u
c ) 1

c
k

(
x− u
c

)
p(x+ y) (5.9)

=
p(x+ y)

P̄ (x)

{
re−δ(

x−u
c ) 1

c
k

(
x− u
c

)
P̄ (x)

}
=
p(x+ y)

P̄ (x)

∫ ∞
0

g1,r,δ(x, y|u)dy,

where P̄ (x) =
∫∞
x
p(y)dy. Moreover, as argued in Cheung et al. (2010), (5.3) can be written

as

gn(t, x, y, v|u) =
p(x+ y)

P̄ (x)

∫ ∞
0

gn(t, x, y, v|u)dy,

72



for n = 2, 3, . . .. Thus, it follows that (5.5) has the form

g2+,r,δ(x, y, v|u) =
∞∑
n=2

rn
∫ ∞

0

e−δt
{
p(x+ y)

P̄ (x)

∫ ∞
0

gn(t, x, y, v|u)dy

}
dt

=
p(x+ y)

P̄ (x)

∫ ∞
0

g2+,r,δ(x, y, v|u)dy

=
p(x+ y)

P̄ (x)
g2+,r,δ(x, v|u), (5.10)

where

g2+,r,δ(x, v|u) =

∫ ∞
0

g2+,r,δ(x, y, v|u)dy.

Hence,

gr,δ(x, y|u) =
p(x+ y)

P̄ (x)

{∫ ∞
0

g1,r,δ(x, y|u)dy +

∫ x

0

g2+,r,δ(x, v|u)dv

}
and the ladder height density (5.8) becomes

fr,δ(y) =
1

φr,δ

∫ ∞
0

p(x+ y)

P̄ (x)

{∫ ∞
0

g1,r,δ(x, y|0)dy +

∫ x

0

g2+,r,δ(x, v|0)dv

}
dx. (5.11)

5.3 Joint density of the time to ruin and other ruin

quantities under exponential claims

In this section, further assume that the claim sizes follow exponential distribution, i.e.

p(y) = βe−βy, y ≥ 0. (5.12)

Then (5.11) becomes

fr,δ(y) = βe−βy, (5.13)

which means that the ladder height density is also exponential. Moreover, Landriault et al.

(2011) showed that φr,δ defined in (5.7) satisfy

φr,δ = rk̃(δ + cβ(1− φr,δ)). (5.14)
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Now, consider

Ḡr,δ(u) = E[rNT e−δT I(T <∞)|U0 = u]. (5.15)

In Landriault et al. (2011), it was shown that

Ḡr,δ(u) = φr,δ

∫ u

0

Ḡr,δ(u− y)βe−βydy + φr,δe
−βu (5.16)

and Ḡr,δ(u) can be expressed explicitly as

Ḡr,δ(u) = φr,δe
−β(1−φr,δ)u, (5.17)

where φr,δ is given by (5.14). By these results for Ḡr,δ(u) and Lagrange’s expansion theorem,

Landriault et al. (2011) further showed that the joint density of the time to ruin (t) and

the number of claims until ruin (n) given initial surplus u is given by

h(t, n|u) =

e
−β(u+ct)k(t), t ≥ 0, n = 1,

nu+ct
n(n−1)

{
βn−1(u+ct)n−2e−β(u+ct)

(n−2)!

}
k∗n(t), t ≥ 0, n = 2, 3, . . . ,

(5.18)

where k∗n(t) =
∫ t

0
k∗(n−1)(t − x)k(x)dx with k∗1(t) = k(t). (Note that in this chapter,

the term ”joint density” is used even though the number of claim until ruin is discrete.)

The joint density (5.18) was also obtained in Borovkov and Dickson (2008) by a duality

argument.

The above results introduced for Ḡr,δ(u) are useful in studying the Gerber-Shiu function

mr,δ,1234(u) = E[rNT e−δT e−s1UT−−s2|UT |−s3XT−s4RNT−1I(T <∞)|U0 = u]. (5.19)

Theorem 5.3.1. Consider the Sparre Andersen model described in section 1.1 which has

independent interclaim times and claim sizes, i.e. f(t, y) = k(t)p(y). Furthermore, assume

that the claim sizes have pdf (5.12). With φr,δ and Ḡr,δ(u) given by (5.14) and (5.17) re-

spectively, the Gerber-Shiu function (5.19) can be explicitly expressed as
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mr,δ,1234(u) = Θr,δ(s1, s2, s3, s4)
{

(s1 + s3 + s4)e−(s1+s3+s4+β)u + βḠr,δ(u)
}
, (5.20)

where

Θr,δ(s1, s2, s3, s4) =
β

β + s2

{
βφr,δ + s1 + s4

βφr,δ + s1 + s3 + s4

}
×

{
rk̃(δ + c(s1 + β))

s1 + s4 + rβk̃(δ + c(s1 + s4 + β))

}
.

Proof. With (5.12), the discounted densities (5.9) and (5.10) with u = 0 are given by

g1,r,δ(x, y|0) = re−δ(
x
c ) 1

c
k
(x
c

)
βe−β(x+y) (5.21)

and

g2+,r,δ(x, y, v|0) = βe−βyg2+,r,δ(x, v|0). (5.22)
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Substitute (5.13), (5.21) and (5.22) into (5.6), which yields

mr,δ,1234(u) = φr,δ

∫ u

0

mr,δ,1234(u− y)βe−βydy

+

∫ ∞
u

∫ ∞
0

e−s1(u+x)−s2(y−u)−s3u−s4u
{
re−δ(

x
c ) 1

c
k
(x
c

)
βe−β(x+y)

}
dxdy

+

∫ ∞
u

∫ ∞
0

∫ x

0

e−s1(u+x)−s2(y−u)−s3u−s4(v+u)

{
βe−βyg2+,r,δ(x, v|0)

}
dvdxdy

= φr,δ

∫ u

0

mr,δ,1234(u− y)βe−βydy

+

∫ ∞
0

∫ ∞
0

e−s1(u+ct)−s2y−s3u−s4u
{
re−δtk(t)βe−β(ct+y+u)

}
dtdy

+

∫ ∞
0

∫ ∞
0

∫ x

0

e−s1(u+x)−s2y−s3u−s4(v+u)

{
βe−β(y+u)g2+,r,δ(x, v|0)

}
dvdxdy

= φr,δ

∫ u

0

mr,δ,1234(u− y)βe−βydy

+
β

β + s2

re−(s1+s3+s4+β)uk̃(δ + c(s1 + β))

+
β

β + s2

e−(s1+s3+s4+β)u

∫ ∞
0

∫ x

0

e−s1x−s4vg2+,r,δ(x, v|0)dvdx

= φr,δ

∫ u

0

mr,δ,1234(u− y)βe−βydy +
β

β + s2

e−(s1+s3+s4+β)uξr,δ(s1, s4), (5.23)

where

ξr,δ(s1, s4) = rk̃(δ + c(s1 + β)) +

∫ ∞
0

∫ x

0

e−s1x−s4vg2+,r,δ(x, v|0)dvdx.

Take Laplace transform on both sides of (5.23), i.e.

m̃r,δ,1234(z) = φr,δm̃r,δ,1234(z)
β

β + z
+

β

β + s2

{
1

s1 + s3 + s4 + β + z

}
ξr,δ(s1, s4). (5.24)

By rearranging and partial fraction, (5.24) gives

m̃r,δ,1234(z) =
β

β + s2

ξr,δ(s1, s4)

{
1

s1 + s3 + s4 + β + z

}{
β + z

β(1− φr,δ) + z

}
=

β

β + s2

{
ξr,δ(s1, s4)

βφr,δ + s1 + s3 + s4

}{
s1 + s3 + s4

s1 + s3 + s4 + β + z
+

βφr,δ
β(1− φr,δ) + z

}
.

(5.25)
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Then invert (5.25) with respect to z results in

mr,δ,1234(u) =
β

β + s2

{
ξr,δ(s1, s4)

βφr,δ + s1 + s3 + s4

}{
(s1 + s3 + s4)e−(s1+s3+s4+β)u + βḠr,δ(u)

}
,

(5.26)

where Ḡr,δ(u) is given by (5.17).

To completely specify (5.26), it remains to identify ξr,δ(s1, s4). The approach used in

Cheung et al. (2010) can be applied here for this purpose. Define

mr,δ,14(u) = E[rNT e−δT e−s1UT−−s4RNT−1I(T <∞)|U0 = u].

From (5.26) with s2 = s3 = 0,

mr,δ,14(u) =
ξr,δ(s1, s4)

βφr,δ + s1 + s4

{
(s1 + s4)e−(s1+s4+β)u + βḠr,δ(u)

}
. (5.27)

On the other hand, by conditioning on the time and amount of the first claim gives

mr,δ,14(u) =

∫ ∞
0

re−δt
{∫ u+ct

0

mr,δ,14(u+ ct− y)βe−βydy

+

∫ ∞
u+ct

e−s1(u+ct)−s4uβe−βydy

}
k(t)dt. (5.28)

77



Using (5.27) and (5.16), it follows that (5.28) can be simplified as

mr,δ,14(u) =

∫ ∞
0

re−δt
∫ u+ct

0

ξr,δ(s1, s4)

βφr,δ + s1 + s4

{
(s1 + s4)e−(s1+s4+β)(u+ct−y)

+ βḠr,δ(u+ ct− y)

}
βe−βydyk(t)dt

+

∫ ∞
0

re−δt
∫ ∞
u+ct

e−s1(u+ct)−s4uβe−βydyk(t)dt

=

∫ ∞
0

re−δt
βξr,δ(s1, s4)

βφr,δ + s1 + s4

{
e−β(u+ct)[1− e−(s1+s4)(u+ct)]

+
Ḡr,δ(u+ ct)

φr,δ
− e−β(u+ct)

}
k(t)dt

+

∫ ∞
0

re−δt
{
e−(β+s1)(u+ct)−s4u

}
k(t)dt

=
βξr,δ(s1, s4)

βφr,δ + s1 + s4

∫ ∞
0

re−δt
{
Ḡr,δ(u+ ct)

φr,δ
− e−(s1+s4+β)(u+ct)

}
k(t)dt

+ e−(s1+s4+β)urk̃(δ + c(s1 + β)). (5.29)

By (5.14) and (5.17), (5.29) becomes

mr,δ,14(u) =
βξr,δ(s1, s4)

βφr,δ + s1 + s4

{∫ ∞
0

re−δte−β(1−φr,δ)(u+ct)k(t)dt

− e−(s1+s4+β)urk̃(δ + c(s1 + s4 + β))

}
+ e−(s1+s4+β)urk̃(δ + c(s1 + β))

=
βξr,δ(s1, s4)

βφr,δ + s1 + s4

{
φr,δe

−β(1−φr,δ)u − e−(s1+s4+β)urk̃(δ + c(s1 + s4 + β))

}
+ e−(s1+s4+β)urk̃(δ + c(s1 + β))

=
βξr,δ(s1, s4)

βφr,δ + s1 + s4

{
Ḡr,δ(u)− e−(s1+s4+β)urk̃(δ + c(s1 + s4 + β))

}
+ e−(s1+s4+β)urk̃(δ + c(s1 + β)). (5.30)
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Then equate (5.27) and (5.30) to get

ξr,δ(s1, s4)

βφr,δ + s1 + s4

(s1 + s4)e−(s1+s4+β)u

=

{
rk̃(δ + c(s1 + β))− βξr,δ(s1, s4)

βφr,δ + s1 + s4

rk̃(δ + c(s1 + s4 + β))

}
× e−(s1+s4+β)u. (5.31)

Since (5.31) is true for all u ≥ 0, the coefficients of e−(s1+s4+β)u on both sides are equal,

which gives

(s1 + s4)ξr,δ(s1, s4)

βφr,δ + s1 + s4

= rk̃(δ + c(s1 + β))− βξr,δ(s1, s4)

βφr,δ + s1 + s4

rk̃(δ + c(s1 + s4 + β))

ξr,δ(s1, s4) =
(βφr,δ + s1 + s4)rk̃(δ + c(s1 + β))

s1 + s4 + rβk̃(δ + c(s1 + s4 + β))
. (5.32)

Finally, (5.20) follows by substituting (5.32) into (5.26).

Theorem 5.3.1 provides a generalization to the results in Cheung et al. (2010) and

Landriault et al. (2011).

In the following theorem, the joint density of the ruin-related random variables is iden-

tified. As mentioned in section 2.1, the joint density of (NT , T, UT−, |UT |, RNT−1) instead

of (NT , T, UT−, |UT |, XT , RNT−1) can be considered without loss of generality.

Theorem 5.3.2. Suppose the conditions of Theorem 5.3.1 hold. The joint densities defined

in (5.2) and (5.3) are given by

g1(x, y|u) =
1

c
βe−β(x+y)k

(
x− u
c

)
, x > u,

y ≥ 0, (5.33)
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g2(t, x, y, v|u) =
β2e−β(u+ct+y)

c
k

(
t− x− v

c

)
k

(
x− v
c

)
, t, y ≥ 0,

x ∈ [0, u+ ct],

v ∈ [max(x− ct, 0), x] (5.34)

and

gn(t, x, y, v|u) =
β2e−β(x−v+y)

c
k

(
x− v
c

)
h

(
t− x− v

c
, n− 1|u

)
+

n−2∑
j=1

∫ v−max(x−ct,0)
c

0

(cz − v)j

j!

βj+2e−β(x−v+y+cz)

c
k

(
x− v
c

)
× k∗j(z)h

(
t− z − x− v

c
, n− j − 1|u

)
dz, t, y ≥ 0,

x ∈ [0, u+ ct],

v ∈ [max(x− ct, 0), x],

n = 3, 4, . . . , (5.35)

where h(t, n|u) is given by (5.18).

Proof. Let

mr,δ,124(u) = E[rNT e−δT e−s1UT−−s2|UT |−s4RNT−1I(T <∞)|U0 = u].

From (5.20),

mr,δ,124(u) =
β

β + s2

×

{
rk̃(δ + c(s1 + β))e−(s1+s4+β)u s1 + s4

s1 + s4 + rβk̃(δ + c(s1 + s4 + β))

+
rβk̃(δ + c(s1 + β))

s1 + s4 + rβk̃(δ + c(s1 + s4 + β))
Ḡr,δ(u)

}
. (5.36)
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In the following, invert (5.36) with respect to r, δ, s1, s2 and s4. To start with, it is

obvious that
β

β + s2

=

∫ ∞
0

e−s2yβe−βydy. (5.37)

Next, using the identity
1

1 + x
=
∞∑
n=0

(−1)nxn, |x| < 1,

it can be shown that when s1 + s4 > β,

s1 + s4

s1 + s4 + rβk̃(δ + c(s1 + s4 + β))

=
∞∑
n=0

(−1)n

{
rβk̃(δ + c(s1 + s4 + β))

s1 + s4

}n

= 1 +
∞∑
n=1

(−1)nrnβn
∫ ∞

0

e−δt
e−c(s1+s4)t

(s1 + s4)n
e−cβtk∗n(t)dt. (5.38)

By applying the equation given in Landriault et al. (2011), i.e.

e−cst

sn
=

∫ ∞
ct

(x− ct)n−1

(n− 1)!
e−sxdx (5.39)

for n = 1, 2, . . ., (5.38) becomes

s1 + s4

s1 + s4 + rβk̃(δ + c(s1 + s4 + β))

= 1 +
∞∑
n=1

(−1)nrnβn
∫ ∞

0

e−δt
{∫ ∞

ct

(x− ct)n−1

(n− 1)!
e−(s1+s4)xdx

}
e−cβtk∗n(t)dt

= 1 +
∞∑
n=1

(−1)nrnβn
∫ ∞

0

∫ ∞
ct

e−δte−(s1+s4)x (x− ct)n−1

(n− 1)!
e−cβtk∗n(t)dxdt. (5.40)
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Using (5.40), the term on the second line of (5.36) can be inverted as

rk̃(δ + c(s1 + β))e−(s1+s4+β)u

{
s1 + s4

s1 + s4 + rβk̃(δ + c(s1 + s4 + β))

}
=

{
r

∫ ∞
0

e−δte−s1(u+ct)−s4ue−β(u+ct)k(t)dt

}
×

{
1 +

∞∑
n=1

(−1)nrnβn
∫ ∞

0

∫ ∞
ct

e−δte−(s1+s4)x (x− ct)n−1

(n− 1)!
e−cβtk∗n(t)dxdt

}

= r

∫ ∞
0

e−δte−s1(u+ct)−s4ue−β(u+ct)k(t)dt

+
∞∑
n=1

(−1)nrn+1βn
∫ ∞

0

e−δt
∫ t

0

{
e−s1(u+cv)−s4ue−β(u+cv)k(v)

}
×
{∫ ∞

c(t−v)

e−(s1+s4)x (x− c(t− v))n−1

(n− 1)!
e−cβ(t−v)k∗n(t− v)dx

}
dvdt

= r

∫ ∞
u

e−δ(
x−u
c )e−s1x−s4u

1

c
e−βxk

(
x− u
c

)
dx

−
∞∑
n=2

rn
∫ ∞

0

e−δt
∫ t

0

∫ ∞
c(t−v)

e−s1(x+u+cv)e−s4(x+u)

× βn−1(c(t− v)− x)n−2

(n− 2)!
e−β(u+ct)k(v)k∗(n−1)(t− v)dxdvdt

= r

∫ ∞
u

e−δ(
x−u
c )e−s1x−s4u

1

c
e−βxk

(
x− u
c

)
dx

−
∞∑
n=2

rn
∫ ∞

0

∫ ∞
u+ct

∫ x

x−ct
e−δt−s1x−s4v

× βn−1(u+ ct− x)n−2

c(n− 2)!
e−β(u+ct)k

(
x− v
c

)
k∗(n−1)

(
v + ct− x

c

)
dvdxdt. (5.41)
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Consider next the term on the last line of (5.36). From (5.38) and (5.39), one has

1

s1 + s4 + rβk̃(δ + c(s1 + s4 + β))

=
1

s1 + s4

{
1 +

∞∑
n=1

(−1)nrnβn
∫ ∞

0

e−δt
e−c(s1+s4)t

(s1 + s4)n
e−cβtk∗n(t)dt

}

=
1

s1 + s4

+
∞∑
n=1

(−1)nrnβn
∫ ∞

0

e−δt
{∫ ∞

ct

(v − ct)n

n!
e−(s1+s4)vdv

}
e−cβtk∗n(t)dt

=

∫ ∞
0

e−(s1+s4)xdx+
∞∑
n=1

rn
∫ ∞

0

e−δt
∫ ∞
ct

e−(s1+s4)vβ
n(ct− v)n

n!
e−cβtk∗n(t)dvdt.

Moreover, by definition of Ḡr,δ(u) in (5.15),

Ḡr,δ(u) =
∞∑
n=1

rn
∫ ∞

0

e−δth(t, n|u)dt,

where h(t, n|u) is given by (5.18). Thus, the term on the last line of (5.36) can be written

as

rβk̃(δ + c(s1 + β))

s1 + s4 + rβk̃(δ + c(s1 + s4 + β))
Ḡr,δ(u)

=

{
rβ

∫ ∞
0

e−δte−c(s1+β)tk(t)dt

}
×

{
∞∑
n=1

rn
∫ ∞

0

e−δth(t, n|u)dt

}

×

{∫ ∞
0

e−(s1+s4)xdx+
∞∑
n=1

rn
∫ ∞

0

e−δt
∫ ∞
ct

e−(s1+s4)vβ
n(ct− v)n

n!
e−cβtk∗n(t)dvdt

}

=

{
∞∑
n=2

rn
∫ ∞

0

e−δt
∫ t

0

e−c(s1+β)xβk(x)h(t− x, n− 1|u)dxdt

}

×

{∫ ∞
0

e−(s1+s4)xdx+
∞∑
n=1

rn
∫ ∞

0

e−δt
∫ ∞
ct

e−(s1+s4)vβ
n(ct− v)n

n!
e−cβtk∗n(t)dvdt

}
.

(5.42)
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Let us study (5.42) as a sum of two terms. The first term is{
∞∑
n=2

rn
∫ ∞

0

e−δt
∫ t

0

e−c(s1+β)xβk(x)h(t− x, n− 1|u)dxdt

}{∫ ∞
0

e−(s1+s4)xdx

}

=

{
∞∑
n=2

rn
∫ ∞

0

e−s1x
∫ ∞
x
c

e−δt
βe−βx

c
k
(x
c

)
h
(
t− x

c
, n− 1|u

)
dtdx

}{∫ ∞
0

e−(s1+s4)xdx

}
=
∞∑
n=2

rn
∫ ∞

0

e−s1x

×
∫ x

0

{∫ ∞
x−v
c

e−δt
βe−β(x−v)

c
k

(
x− v
c

)
h

(
t− x− v

c
, n− 1|u

)
dt

}
e−s4vdvdx

=
∞∑
n=2

rn
∫ ∞

0

∫ ∞
0

∫ x

max(x−ct,0)

e−δt−s1x−s4v

× βe−β(x−v)

c
k

(
x− v
c

)
h

(
t− x− v

c
, n− 1|u

)
dvdxdt

= r2

∫ ∞
0

∫ ∞
0

∫ x

max(x−ct,0)

e−δt−s1x−s4v
βe−β(u+ct)

c
k

(
t− x− v

c

)
k

(
x− v
c

)
dvdxdt

+
∞∑
n=3

rn
∫ ∞

0

∫ ∞
0

∫ x

max(x−ct,0)

e−δt−s1x−s4v

× βe−β(x−v)

c
k

(
x− v
c

)
h

(
t− x− v

c
, n− 1|u

)
dvdxdt. (5.43)
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The second term is{
∞∑
n=2

rn
∫ ∞

0

e−δt
∫ t

0

e−c(s1+β)xβk(x)h(t− x, n− 1|u)dxdt

}

×

{
∞∑
n=1

rn
∫ ∞

0

e−δt
∫ ∞
ct

e−(s1+s4)vβ
n(ct− v)n

n!
e−cβtk∗n(t)dvdt

}

=

{
∞∑
n=2

rn
∫ ∞

0

e−δt
∫ ct

0

e−s1x
βe−βx

c
k
(x
c

)
h
(
t− x

c
, n− 1|u

)
dxdt

}

×

{
∞∑
n=1

rn
∫ ∞

0

e−δt
∫ ∞
ct

e−(s1+s4)vβ
n(ct− v)n

n!
e−cβtk∗n(t)dvdt

}

=
∞∑
n=3

rn
n−2∑
j=1

{∫ ∞
0

e−δt
∫ ∞
ct

e−(s1+s4)vβ
j(ct− v)j

j!
e−cβtk∗j(t)dvdt

}
×
{∫ ∞

0

e−δt
∫ ct

0

e−s1x
βe−βx

c
k
(x
c

)
h
(
t− x

c
, n− j − 1|u

)
dxdt

}
=
∞∑
n=3

rn
n−2∑
j=1

∫ ∞
0

e−δt
∫ t

0

{∫ ∞
cz

e−(s1+s4)vβ
j(cz − v)j

j!
e−cβzk∗j(z)dv

}

×

{∫ c(t−z)

0

e−s1x
βe−βx

c
k
(x
c

)
h
(
t− z − x

c
, n− j − 1|u

)
dx

}
dzdt

=
∞∑
n=3

rn
∫ ∞

0

∫ ∞
0

∫ x

max(x−ct,0)

e−δte−s1xe−s4v

{
n−2∑
j=1

∫ v−max(x−ct,0)
c

0

βj+1(cz − v)j

j!c

× e−β(x−v+cz)k

(
x− v
c

)
k∗j(z)h

(
t− z − x− v

c
, n− j − 1|u

)
dz

}
dvdxdt. (5.44)
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Hence, with (5.43) and (5.44), (5.42) becomes

rβk̃(δ + c(s1 + β))

s1 + s4 + rβk̃(δ + c(s1 + s4 + β))
Ḡr,δ(u)

= r2

∫ ∞
0

∫ ∞
0

∫ x

max(x−ct,0)

e−δt−s1x−s4v
βe−β(u+ct)

c
k

(
t− x− v

c

)
k

(
x− v
c

)
dvdxdt

+
∞∑
n=3

rn
∫ ∞

0

∫ ∞
0

∫ x

max(x−ct,0)

e−δt−s1x−s4v

×

{
βe−β(x−v)

c
k

(
x− v
c

)
h

(
t− x− v

c
, n− 1|u

)
+

n−2∑
j=1

∫ v−max(x−ct,0)
c

0

βj+1(cz − v)j

j!c

× e−β(x−v+cz)k

(
x− v
c

)
k∗j(z)h

(
t− z − x− v

c
, n− j − 1|u

)
dz

}
dvdxdt. (5.45)
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Finally, substitute (5.37), (5.41) and (5.45) into (5.36), which yields

mr,δ,124(u) = r

∫ ∞
u

∫ ∞
0

e−δ(
x−u
c )−s1x−s2y−s4u1

c
βe−β(x+y)k

(
x− u
c

)
dydx

−
∞∑
n=2

rn
∫ ∞

0

∫ ∞
0

∫ ∞
u+ct

∫ x

x−ct
e−δt−s2y−s1x−s4v

× βn(u+ ct− x)n−2

c(n− 2)!
e−β(u+ct+y)k

(
x− v
c

)
k∗(n−1)

(
v + ct− x

c

)
dvdxdydt

+ r2

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ x

max(x−ct,0)

e−δt−s2y−s1x−s4v

× β2e−β(u+ct+y)

c
k

(
t− x− v

c

)
k

(
x− v
c

)
dvdxdydt

+
∞∑
n=3

rn
∫ ∞

0

∫ ∞
0

∫ ∞
0

∫ x

max(x−ct,0)

e−δt−s2y−s1x−s4v

×

{
β2e−β(x−v+y)

c
k

(
x− v
c

)
h

(
t− x− v

c
, n− 1|u

)

+
n−2∑
j=1

∫ v−max(x−ct,0)
c

0

βj+2(cz − v)j

j!c
e−β(x−v+y+cz)k

(
x− v
c

)

× k∗j(z)h

(
t− z − x− v

c
, n− j − 1|u

)
dz

}
dvdxdydt. (5.46)
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For a given time to ruin t, the surplus before ruin must be less than or equal to u+ ct.

Therefore, (5.46) reduces to

mr,δ,124(u) = r

∫ ∞
u

∫ ∞
0

e−δ(
x−u
c )−s1x−s2y−s4u1

c
βe−β(x+y)k

(
x− u
c

)
dydx

+ r2

∫ ∞
0

∫ ∞
0

∫ u+ct

0

∫ x

max(x−ct,0)

e−δt−s2y−s1x−s4v

× β2e−β(u+ct+y)

c
k

(
t− x− v

c

)
k

(
x− v
c

)
dvdxdydt

+
∞∑
n=3

rn
∫ ∞

0

∫ ∞
0

∫ u+ct

0

∫ x

max(x−ct,0)

e−δt−s2y−s1x−s4v

×

{
β2e−β(x−v+y)

c
k

(
x− v
c

)
h

(
t− x− v

c
, n− 1|u

)

+
n−2∑
j=1

∫ v−max(x−ct,0)
c

0

(cz − v)j

j!

βj+2e−β(x−v+y+cz)

c
k

(
x− v
c

)

× k∗j(z)h

(
t− z − x− v

c
, n− j − 1|u

)
dz

}
dvdxdydt. (5.47)

Inversion of (5.47) with respect to r, δ, s1, s2 and s4 yields (5.33), (5.34) and (5.35).

5.4 Numerical example

In Theorem 5.3.2, the joint density of (NT , T, UT−, |UT |, RNT−1) is given. As mentioned at

the beginning of this chapter, this joint density can be used to obtain the marginal and

joint moments of NT , T , UT−, |UT | and RNT−1 by integration. As an example, the following

shows how the expected time to ruin may be obtained by using the result in Theorem 5.3.2.
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Consider a Sparre Andersen model where the joint pdf of the interclaim time and the

claim size is given by

f(t, y) = (te−t)2e−2y. (5.48)

Note that (5.48) is a model with Erlang(2) interclaim times (k(t) = te−t) and exponential

claim sizes (p(y) = 2e−2y). Assume the premium rate c = 1 such that the positive loading

condition (1.2) is satisfied.

Given (5.48) and c = 1, it first follows from (5.33) that

g1(x, y|u) = 2e−2(x+y)(x− u)e−(x−u)

= 2(x− u)e−3x−2y+u (5.49)

for x > u and y ≥ 0. Next, (5.34) gives

g2(t, x, y, v|u) = 4e−2(u+t+y)(t− x+ v)e−(t−x+v)(x− v)e−(x−v)

= 4(t− x+ v)(x− v)e−3t−2y−2u (5.50)

for t, y ≥ 0; x ∈ [0, u+ ct] and v ∈ [max(x− ct, 0), x]. Finally, (5.35) gives

gn(t, x, y, v|u) = 4e−2(x−v+y)(x− v)e−(x−v)h (t− (x− v), n− 1|u)

+
n−2∑
j=1

∫ v−max(x−t,0)

0

(z − v)j

j!
2j+2e−2(x−v+y+z)(x− v)e−(x−v)

× z2j−1e−z

(2j − 1)!
h (t− z − (x− v), n− j − 1|u) dz

= 4(x− v)e−3x−2y+3v

{
h (t− (x− v), n− 1|u)

+
n−2∑
j=1

2j

j!(2j − 1)!

∫ v−max(x−t,0)

0

(z − v)jz2j−1e−3z

× h (t− z − (x− v), n− j − 1|u) dz

}
(5.51)
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for t, y ≥ 0; x ∈ [0, u+ ct]; v ∈ [max(x− ct, 0), x] and n = 3, 4, . . ., where

h(t, n|u) =

e
−2(u+t)te−t, t ≥ 0, n = 1,

nu+t
n(n−1)

{
2n−1(u+t)n−2e−2(u+t)

(n−2)!

}
t2n−1e−t

(2n−1)!
, t ≥ 0, n = 2, 3, . . . .

Given (5.49), (5.50) and (5.51), the expected time to ruin can be calculated as

E[TI(T <∞)|U0 = u]

=

∫ ∞
u

∫ ∞
0

{
x− u
c

}
g1(x, y|u)dydx

+
∞∑
n=2

∫ ∞
0

∫ ∞
0

∫ u+ct

0

∫ x

max(x−ct,0)

{t}gn(t, x, y, v|u)dvdxdydt. (5.52)

Note that the summation index n on the last line of (5.52) takes values up to ∞. For

computational purpose, (5.52) can be approximated as

E[TI(T <∞)|U0 = u]

≈
∫ ∞
u

∫ ∞
0

{
x− u
c

}
g1(x, y|u)dydx

+
r∑

n=2

∫ ∞
0

∫ ∞
0

∫ u+ct

0

∫ x

max(x−ct,0)

{t}gn(t, x, y, v|u)dvdxdydt (5.53)

where r is a finite integer greater than or equal to two. Furthermore, it can be shown

numerically that the integral∫ ∞
0

∫ ∞
0

∫ u+ct

0

∫ x

max(x−ct,0)

{t}gn(t, x, y, v|u)dvdxdydt

gets sufficiently small when n > 55 in this example. This is because gn(t, x, y, v|u) is a

function of h(t, n|u) which tends to zero when n gets large. In Table 5.1, the value of

E[TI(T <∞)|U0 = u] when u = 0, 2, 5, 10, 20 is approximated using (5.53) with different

values of r.
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For comparison to the approximate values, the exact value of E[TI(T < ∞)|U0 = u]

can be obtained using the results in Chapter 3 as follows. From (3.27), one has

E[TI(T <∞)|U0 = u] = B1,0(0, 1)e−Ru +B1,0(1, 1)ue−Ru, (5.54)

where −R is the negative root of the equation (in s)(
2

2 + s

)(
1

1− s

)2

= 1. (5.55)

By solving (5.55), R = 1.73205. Moreover, from (3.54) and (3.11),

B1,0(1, 1) =

−C1,0

{
2

2−R

}{∫ ∞
0

te−Rt(te−t)dt

}
−
{

2

(2−R)2

}{∫ ∞
0

e−Rt(te−t)dt

}
+

{
2

2−R

}{∫ ∞
0

te−Rt(te−t)dt

} (5.56)

with

C1,0

(
2

2−R

)
= 1.

Finally, from (3.55),
B1,0(0, 1)

(2−R)
=
B1,0(1, 1)

(2−R)2
. (5.57)

By solving (5.56) and (5.57), B1,0(0, 1) = 0.122009 and B1,0(1, 1) = 0.032692. Hence,

(5.54) becomes

E[TI(T <∞)|U0 = u] = 0.122009e−1.73205u + 0.032692ue−1.73205u. (5.58)

The values of (5.58) when u = 0, 2, 5, 10, 20 are given in Table 5.1, which can be compared

to the approximate values of E[TI(T <∞)|U0 = u] obtained by (5.53).
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u r = 25 r = 30 r = 55 Exact value

0 0.1219 0.1220 0.1220 0.1220

2 0.5865× 10−2 0.5866× 10−2 0.5866× 10−2 0.5866× 10−2

5 4.9482× 10−5 4.9483× 10−5 4.9483× 10−5 4.9484× 10−5

10 1.3486× 10−8 1.3487× 10−8 1.3487× 10−8 1.3489× 10−8

20 7.0020× 10−16 7.0033× 10−16 7.0036× 10−16 7.0046× 10−16

Table 5.1: Approximate and exact values of E[TI(T <∞)|U0 = u] by (5.53) and (5.58)

In Table 5.1, it is shown that the approximate values are close to the exact values.
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Chapter 6

A generalized MAP risk model with

combination of exponentials claim

sizes

In Section 1.3, the MAP risk model was reviewed. The waiting times of system changes

in the model are exponentially distributed. In this chapter, a generalization of the MAP

risk model proposed by Cheung et al. (2011) is introduced, and the moments of the time

to ruin are studied under this model.
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6.1 Introduction

6.1.1 Generalized MAP risk model

In Cheung et al. (2011), the MAP risk model introduced in Section 1.3 can be generalized as

follows. With a homogeneous discrete-time Markov chain (DTMC) Z = {Zi, i = 0, 1, 2, . . .}

defined on finite state space S = {1, 2, . . . ,m}, the waiting time of a system change is

arbitrarily distributed. Note that Zi denotes the state of the DTMC immediately after the

ith system change. The DTMC Z is assumed to have the one-period transition probability

matrix P + Q. The (i, j)th entry, where i, j = 1, 2, . . . ,m, of

1. P is denoted as pi,j. It represents the probability that the DTMC Z changes from

state i to state j with no claim happening, and therefore pi,i is defined as zero;

2. Q is denoted as qi,j. It represents the probability that the DTMC Z changes from

state i to state j with a claim happening.

Let the waiting time of the first system change be V1 and the waiting time between the

(i− 1)th and ith system changes be Vi for i = 2, 3, . . .. For Vi|Zi−1 = j, where i = 1, 2, . . .,

let kj(t) be its probability density function, Kj(t) be its cumulative distribution function,

k̃j(s) =
∫∞

0
e−sxkj(t)dt be its Laplace transform and κj be its mean.

Moreover, let the size of the claim that occurs at the ith system change be Yi for

i = 1, 2, . . .. If no claim occurs at the ith sytem change, then Yi = 0. On the other

hand, if the ith system change is from state j to state k with a claim occuring, then let

fj,k(y), Fj,k(y), f̃j,k(s) =
∫∞

0
e−syfj,k(y)dy and µj,k be the probability density function, the

cumulative distribution function, the Laplace transform and the mean of Yi respectively.
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Assume mutual independence of Y1, Y2, . . ., V1, V2, . . . when conditioned on {Zi, i =

0, 1, 2, . . .}. The distribution of the DTMC Z is completely specified as

Pr(Yi ≤ y, Vi ≤ v, Zi = k|Zi−1 = j) = Kj(v)(pj,k + qj,kFj,k(y)), y, v ≥ 0.

Consider the insurance surplus process {Ut, t ≥ 0} defined by

Ut = u+ ct−
Nt∑
i=1

Yi, (6.1)

where u is the initial surplus, c is the premium rate, Yi is the claim size involved in the ith

system change and Nt is the number of system changes up to time t. Furthermore, assume

that the positive security loading condition

c
m∑
i=1

πiκi >
m∑
i=1

πi

m∑
j=1

qi,jµi,j (6.2)

holds, where the DTMC Z is assumed to be in state i with a long-run probability of πi.

The long-run probabilities {πi, i = 1, 2, . . . ,m} satisfy the system
πj =

m∑
i=1

πi(pij + qij), j = 1, 2, . . . ,m

m∑
i=1

πi = 1.

6.1.2 Gerber-Shiu function

For the rest of this chapter, consider the generalized MAP risk model in Section 6.1.1.

Define

T = inf{t ≥ 0 : Ut < 0} (6.3)

and T =∞ if Ut is non-negative for all t ≥ 0. Cheung et al. (2011) studied the Gerber-Shiu

function

mi,δ,s(u) = E[e−δT e−sUT−w(|UT |)I(T <∞)|U0 = u, Z0 = i] (6.4)
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for i = 1, 2, . . . ,m and δ, s ≥ 0, where w(·) is a function that satisfies mild integrable

conditions. By assuming that the claim sizes follow combination of exponentials distribu-

tion, it was shown in the paper that (6.4) can be completely specified as a linear sum of

exponential terms.

Moreover, it was mentioned in concluding remarks of Cheung et al. (2011) that the

above result can be extended to more general claim size densities as follows. Assume that

the claim sizes are Coxian distributed, i.e. for j, k = 1, 2, . . . ,m,

fj,k(y) =

nj,k∑
l=1

νj,k,l∑
γ=1

πj,k,l,γ
(βj,k,l)

γyγ−1e−(βj,k,l)y

(γ − 1)!
, y > 0, (6.5)

where βj,k,l > 0 and
∑nj,k

l=1

∑νj,k,l
γ=1 πj,k,l,γ = 1. In this case, the Gerber-Shiu function (6.4)

has the form

mi,δ,s(u) =
n∑
x=1

ai,δ,s,x{e(ρδ,x)u}+
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
h=1

bi,δ,s,j,z,ξ,h
{
uh−1e−(s+βj,z,ξ)u

}
(6.6)

for i = 1, 2, . . . ,m and δ, s ≥ 0, where

n =
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ.

In (6.6), ρδ,x and s+ βj,z,ξ are assumed to be all distinct. In particular, when s = 0, (6.6)

reduces to

mi,δ,0(u) =
n∑
x=1

ai,δ,0,x{e(ρδ,x)u}, (6.7)

or equivalently, bi,δ,0,j,z,ξ,h = 0 for all i, j, z = 1, 2, . . . ,m; ξ = 1, 2, . . . , nj,z; h = 1, 2, . . . , νj,z,ξ

and δ ≥ 0.
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6.2 Moments of the time to ruin

The result introduced in last section will now be generalized to the moments of the time

to ruin. First define

mi,α,δ,s(u) = E[Tαe−δT e−sUT−w(|UT |)I(T <∞)|U0 = u, Z0 = i] (6.8)

for α = 0, 1, 2, . . .; δ, s ≥ 0 and i = 1, . . . ,m, where mi,0,δ,s(u) = mi,δ,s(u). The following

theorem gives an explicit form of mi,α,δ,s(u).

Theorem 6.2.1. Consider the generalized MAP risk model as described in Section 6.1.1

and assume that the claim sizes are distributed as (6.5). The generalized αth moment of

the time to ruin (6.8) has the form

mi,α,δ,s(u) =
α∑
y=0

n∑
x=1

Θi,α,δ,s,x,y {uyeρδ,xu}+
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
h=1

Λi,α,δ,s,j,z,ξ,h

{
uh−1e−(s+βj,z,ξ)u

}
(6.9)

for α = 0, 1, 2, . . .; δ, s ≥ 0 and i = 1, . . . ,m. When s = 0, Λi,α,δ,0,j,z,ξ,h = 0 for α =

0, 1, 2, . . .; δ ≥ 0; i, j, z = 1, . . . ,m; ξ = 1, . . . , nj,z and h = 1, . . . , νj,z,ξ, and therefore (6.9)

simplifies to

mi,α,δ,0(u) =
α∑
y=0

n∑
x=1

Θi,α,δ,0,x,y {uyeρδ,xu} . (6.10)

Proof. First, consider the case s > 0. For α = 0, it follows from (6.6) that (6.9) holds with

Θi,0,δ,s,x,0 = ai,δ,s,x and Λi,0,δ,s,j,z,ξ,h = bi,δ,s,j,z,ξ,h. Now assume (6.9) is true for a chosen α,
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then

mi,α+1,δ,s(u)

= − ∂

∂δ
mi,α,δ,s(u)

= −

{
α∑
y=0

n∑
x=1

∂Θi,α,δ,s,x,y

∂δ
uyeρδ,xu +

α∑
y=0

n∑
x=1

Θi,α,δ,s,x,yu
y+1eρδ,xu

∂ρδ,x
∂δ

+
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
h=1

∂Λi,α,δ,s,j,z,ξ,h

∂δ
uh−1e−(s+βj,z,ξ)u

}

= −

{
n∑
x=1

∂Θi,α,δ,s,x,0

∂δ
eρδ,xu +

α∑
y=1

n∑
x=1

(
∂Θi,α,δ,s,x,y

∂δ
+ Θi,α,δ,s,x,y−1

∂ρδ,x
∂δ

)
uyeρδ,xu

+
n∑
x=1

Θi,α,δ,s,x,α
∂ρδ,x
∂δ

uα+1eρδ,xu +
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
h=1

∂Λi,α,δ,s,j,z,ξ,h

∂δ
uh−1e−(s+βj,z,ξ)u

}

=
α+1∑
y=0

n∑
x=1

Θi,α+1,δ,s,x,y {uyeρδ,xu}+
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
h=1

Λi,α+1,δ,s,j,z,ξ,h

{
uh−1e−(s+βj,z,ξ)u

}
with Θi,α+1,δ,s,x,0 = −∂Θi,α,δ,s,x,0

∂δ
, Θi,α+1,δ,s,x,y = −

(
∂Θi,α,δ,s,x,y

∂δ
+ Θi,α,δ,s,x,y−1

∂ρδ,x
∂δ

)
for y =

1, . . . , α, Θi,α+1,δ,s,x,α+1 = −Θi,α,δ,s,x,α
∂ρδ,x
∂δ

and Λi,α+1,δ,s,j,z,ξ,h = −∂Λi,α,δ,s,j,z,ξ,h
∂δ

. Thus by

induction in α, it can be concluded that (6.9) holds when s > 0.

Next, consider the case s = 0. Since (6.7) is true, one can use induction in α as shown

above to show that (6.10) holds. However, (6.10) can also be expressed in the form of

(6.9) with Λi,α,δ,0,j,z,ξ,h = 0 for α = 0, 1, 2, . . .; δ ≥ 0; i, j, z = 1, . . . ,m; ξ = 1, . . . , nj,z and

h = 1, . . . , νj,z,ξ.

Finally, from the two cases above, one can conclude that (6.9) is true for all s ≥ 0.

In order to completely specify the generalized moments of the time to ruin, the unknown

constants in (6.9) need to be determined. The following theorem gives the sets of equations

satisfied by these constants.
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Theorem 6.2.2. Suppose the conditions of Theorem 6.2.1 hold. The constants

ρδ,1, ρδ,2, . . . , ρδ,n in (6.9) and (6.10) are the n roots with negative real parts of the equation

(in z)

det(I −Υ(z)) = 0, (6.11)

where det(I −Υ(z)) is the determinant of I −Υ(z), I is a m × m identity matrix and

Υ(z) is a m×m matrix. The (i, σ)th element of Υ(z) in (6.11) is given by

Pi,σ,0,0,0,0,z +Qi,σ,0,0,0,0,z,

where

Pi,σ,α,a,g,y,z = pi,σki,α,a,g,y,δ−cz (6.12)

and

Qi,σ,α,a,g,y,z = qi,σ

g∑
h=y

g!(−1)g−h

h!(g − h)!
ki,α,a,h,y,δ−cz

ni,σ∑
l=1

νi,σ,l∑
γ=1

(g − h+ γ − 1)!πi,σ,l,γ(βi,σ,l)
γ

(γ − 1)!(z + βi,σ,l)g−h+γ
(6.13)

with

ki,r1,r2,t1,t2,s =

(
r1

r2

)(
t1
t2

)
ct1−t2

∫ ∞
0

tr1−r2+t1−t2e−stki(t)dt, (6.14)

and c is the premium rate of the insurance process (6.1). For notational convenience,

(6.12), (6.13) and (6.14) are used throughout this theorem. In the following, the results are

given in two cases, which are s > 0 and s = 0.

Case 1: Given s > 0, δ ≥ 0 and α = 0, 1, 2, . . . in (6.8)

The coefficients Θi,α,δ,s,x,y satisfy

Θi,α,δ,s,x,y =
m∑
σ=1

α∑
a=y

a∑
g=y

{
Pi,σ,α,a,g,y,ρδ,x +Qi,σ,α,a,g,y,ρδ,x

}
Θσ,a,δ,s,x,g (6.15)
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for i = 1, 2, . . . ,m; x = 1, 2, . . . , n and y = 0, 1, 2, . . . , α. Also, the coefficients Λi,α,δ,s,j,z,ξ,h

satisfy

Λi,α,δ,s,j,z,ξ,h =
m∑
σ=1

α∑
a=0

νj,z,ξ∑
r=h

{
h

r

(
Pi,σ,α,a,r,h,−(s+βj,z,ξ) +Qi,σ,α,a,r,h,−(s+βj,z,ξ)

)}
Λσ,a,δ,s,j,z,ξ,r

+ I(i = j)qi,z

νi,z,ξ∑
γ=h

γ∑
g=h

hπi,z,ξ,γ(βi,z,ξ)
γ

g!(γ − g)!
wγ−g,(βi,z,ξ)ki,α,0,g,h,δ+c(s+βi,z,ξ) (6.16)

for i, j, z = 1, 2, . . . ,m; ξ = 1, 2, . . . , nj,z and h = 1, 2, . . . , νj,z,ξ, where

wr,β =

∫ ∞
0

yre−βyw(y)dy. (6.17)

Note that for y = α, (6.15) gives

Θi,α,δ,s,x,α =
m∑
σ=1

{
Pi,σ,α,α,α,α,ρδ,x +Qi,σ,α,α,α,α,ρδ,x

}
Θσ,α,δ,s,x,α (6.18)

for i = 1, 2, . . . ,m and x = 1, 2, . . . , n. Given α, δ and s, (6.18) gives a system of m

linearly dependent equations in {Θi,α,δ,s,x,α}mi=1 for each x = 1, 2, . . . , n. Hence for each

fixed x = 1, 2, . . . , n, one of the m equations in {Θi,α,δ,s,x,α}mi=1 should be removed from

(6.18). As a result, n more equations needed to solve for the coefficients Θi,α,δ,s,x,y are

given by

α∑
a=0

νi,σ,l∑
γ=h

γ∑
g=h

{
a∑
b=0

n∑
x=1

Θσ,a,δ,s,x,b
(−1)b(b+ γ − g)!

(ρδ,x + βi,σ,l)b+γ−g+1

−
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
r=1

Λσ,a,δ,s,j,z,ξ,r
(−1)γ−g(r − 1 + γ − g)!

(s+ βj,z,ξ − βi,σ,l)r+γ−g

}

× hπi,σ,l,γ(βi,σ,l)
γ

g!(γ − g)!
ki,α,a,g,h,δ+cβi,σ,l = 0 (6.19)

for i, σ = 1, 2, . . . ,m; l = 1, 2, . . . , ni,σ and h = 1, 2, . . . , νi,σ,l.
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Case 2: Given s = 0, δ ≥ 0 and α = 0, 1, 2, . . . in (6.8)

The coefficients Θi,α,δ,0,x,y satisfy

Θi,α,δ,0,x,y =
m∑
σ=1

α∑
a=y

a∑
g=y

{
Pi,σ,α,a,g,y,ρδ,x +Qi,σ,α,a,g,y,ρδ,x

}
Θσ,a,δ,0,x,g (6.20)

for i = 1, 2, . . . ,m; x = 1, 2, . . . , n and y = 0, 1, 2, . . . , α. For y = α, (6.20) gives

Θi,α,δ,0,x,α =
m∑
σ=1

{
Pi,σ,α,α,α,α,ρδ,x +Qi,σ,α,α,α,α,ρδ,x

}
Θσ,α,δ,0,x,α (6.21)

for i = 1, 2, . . . ,m and x = 1, 2, . . . , n. Given α and δ, (6.21) gives m equations in

{Θi,α,δ,0,x,α}mi=1 for each x = 1, 2, . . . , n. Again, one of the m equations in {Θi,α,δ,0,x,α}mi=1

should be removed from (6.21) for each fixed x = 1, 2, . . . , n. Therefore, n more equations

to solve for Θi,α,δ,0,x,y are

νi,σ,l∑
γ=h

γ∑
g=h

{
α∑
a=0

a∑
b=0

n∑
x=1

Θσ,a,δ,0,x,b
(−1)b(b+ γ − g)!

(ρδ,x + βi,σ,l)b+γ−g+1
ki,α,a,g,h,δ+cβi,σ,l

− wγ−g,(βi,σ,l)ki,α,0,g,h,δ+cβi,σ,l

}
πi,σ,l,γ(βi,σ,l)

γ

g!(γ − g)!
= 0 (6.22)

for i, σ = 1, 2, . . . ,m; l = 1, 2, . . . , ni,σ and h = 1, 2, . . . , νi,σ,l.

Proof. In this proof, the analytic approach used in Cheung et al. (2011) is applied.

By conditioning on the time and amount of the first system change and the state of the

insurance surplus process after the system change, Equation (26) of Cheung et al. (2011)
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showed that

mi,0,δ,s(u) =

∫ ∞
0

e−δtki(t)

{
m∑
σ=1

pi,σmσ,0,δ,s(u+ ct)

+
m∑
σ=1

qi,σ

∫ u+ct

0

mσ,0,δ,s(u+ ct− ϕ)fi,σ(ϕ)dϕ

}
dt

+ e−su
∫ ∞

0

e−(δ+cs)tki(t)

{
m∑
σ=1

qi,σ

∫ ∞
0

w(ϕ)fi,σ(u+ ct+ ϕ)dϕ

}
dt (6.23)

for i = 1, 2, . . . ,m and δ, s ≥ 0. To study the moment of the time to ruin, differentiate

(6.23) α times with respect to δ, which gives

mi,α,δ,s(u) =
α∑
a=0

(
α

a

)∫ ∞
0

tα−ae−δtki(t)

{
m∑
σ=1

pi,σmσ,a,δ,s(u+ ct)

+
m∑
σ=1

qi,σ

∫ u+ct

0

mσ,a,δ,s(u+ ct− ϕ)fi,σ(ϕ)dϕ

}
dt

+
m∑
σ=1

qi,σe
−su
∫ ∞

0

tαe−(δ+cs)tki(t)

∫ ∞
0

w(ϕ)fi,σ(u+ ct+ ϕ)dϕdt (6.24)

for α = 0, 1, 2, . . .. Next, substitute the claim size distribution (6.5) and the general form
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of the moment (6.9) into (6.24). Thus, (6.24) becomes

α∑
y=0

n∑
x=1

Θi,α,δ,s,x,y{uyeρδ,xu}+
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
h=1

Λi,α,δ,s,j,z,ξ,h{uh−1e−(s+βj,z,ξ)u}

=
m∑
σ=1

pi,σ

α∑
a=0

(
α

a

)∫ ∞
0

tα−ae−δtki(t)

{
a∑
g=0

n∑
x=1

Θσ,a,δ,s,x,g(u+ ct)geρδ,x(u+ct)

+
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
r=1

Λσ,a,δ,s,j,z,ξ,r(u+ ct)r−1e−(s+βj,z,ξ)(u+ct)

}
dt

+
m∑
σ=1

qi,σ

α∑
a=0

(
α

a

)∫ ∞
0

tα−ae−δtki(t)

×
∫ u+ct

0

{
a∑
g=0

n∑
x=1

Θσ,a,δ,s,x,g(u+ ct− ϕ)geρδ,x(u+ct−ϕ)

+
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
r=1

Λσ,a,δ,s,j,z,ξ,r(u+ ct− ϕ)r−1e−(s+βj,z,ξ)(u+ct−ϕ)

}

×

{
ni,σ∑
l=1

νi,σ,l∑
γ=1

πi,σ,l,γ
(βi,σ,l)

γϕγ−1e−βi,σ,lϕ

(γ − 1)!

}
dϕdt

+
m∑
σ=1

qi,σe
−su
∫ ∞

0

tαe−(δ+cs)tki(t)

∫ ∞
0

w(ϕ)

×

{
ni,σ∑
l=1

νi,σ,l∑
γ=1

πi,σ,l,γ
(βi,σ,l)

γ(u+ ct+ ϕ)γ−1e−βi,σ,l(u+ct+ϕ)

(γ − 1)!

}
dϕdt. (6.25)
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Let us simplify the right hand side of (6.25) term by term. The first term is

m∑
σ=1

pi,σ

α∑
a=0

(
α

a

)∫ ∞
0

tα−ae−δtki(t)

{
a∑
g=0

n∑
x=1

Θσ,a,δ,s,x,g(u+ ct)geρδ,x(u+ct)

+
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
r=1

Λσ,a,δ,s,j,z,ξ,r(u+ ct)r−1e−(s+βj,z,ξ)(u+ct)

}
dt

=
m∑
σ=1

pi,σ

α∑
a=0

(
α

a

) a∑
g=0

n∑
x=1

Θσ,a,δ,s,x,g

∫ ∞
0

tα−ae−δtki(t)

{
g∑
y=0

(
g

y

)
uy(ct)g−y

}
eρδ,x(u+ct)dt

+
m∑
σ=1

pi,σ

α∑
a=0

(
α

a

) m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
r=1

Λσ,a,δ,s,j,z,ξ,r

∫ ∞
0

tα−ae−δtki(t)

×

{
r∑

h=1

(
r − 1

h− 1

)
uh−1(ct)r−h

}
e−(s+βj,z,ξ)(u+ct)dt

=
α∑
y=0

n∑
x=1

{
m∑
σ=1

α∑
a=y

a∑
g=y

Pi,σ,α,a,g,y,ρδ,xΘσ,a,δ,s,x,g

}
uyeρδ,xu

+
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
h=1

{
m∑
σ=1

α∑
a=0

νj,z,ξ∑
r=h

(
h

r
Pi,σ,α,a,r,h,−(s+βj,z,ξ)

)
Λσ,a,δ,s,j,z,ξ,r

}
uh−1e−(s+βj,z,ξ)u.

(6.26)
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Next, the second term on the right hand side of (6.25) is

m∑
σ=1

qi,σ

α∑
a=0

(
α

a

)∫ ∞
0

tα−ae−δtki(t)

×
∫ u+ct

0

{
a∑
g=0

n∑
x=1

Θσ,a,δ,s,x,g(u+ ct− ϕ)geρδ,x(u+ct−ϕ)

+
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
r=1

Λσ,a,δ,s,j,z,ξ,r(u+ ct− ϕ)r−1e−(s+βj,z,ξ)(u+ct−ϕ)

}

×

{
ni,σ∑
l=1

νi,σ,l∑
γ=1

πi,σ,l,γ
(βi,σ,l)

γϕγ−1e−βi,σ,lϕ

(γ − 1)!

}
dϕdt

=
m∑
σ=1

qi,σ

α∑
a=0

(
α

a

)∫ ∞
0

tα−ae−δtki(t)

×
∫ ∞

0

{
a∑
g=0

n∑
x=1

Θσ,a,δ,s,x,g(u+ ct− ϕ)geρδ,x(u+ct−ϕ)

+
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
r=1

Λσ,a,δ,s,j,z,ξ,r(u+ ct− ϕ)r−1e−(s+βj,z,ξ)(u+ct−ϕ)

}

×

{
ni,σ∑
l=1

νi,σ,l∑
γ=1

πi,σ,l,γ
(βi,σ,l)

γϕγ−1e−βi,σ,lϕ

(γ − 1)!

}
dϕdt

−
m∑
σ=1

qi,σ

α∑
a=0

(
α

a

)∫ ∞
0

tα−ae−δtki(t)

×
∫ ∞

0

{
a∑
b=0

n∑
x=1

Θσ,a,δ,s,x,b(−ϕ)be−ρδ,xϕ

+
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
r=1

Λσ,a,δ,s,j,z,ξ,r(−ϕ)r−1e(s+βj,z,ξ)ϕ

}

×

{
ni,σ∑
l=1

νi,σ,l∑
γ=1

πi,σ,l,γ
(βi,σ,l)

γ(u+ ct+ ϕ)γ−1e−βi,σ,l(u+ct+ϕ)

(γ − 1)!

}
dϕdt. (6.27)
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Using binomial expansion and∫ ∞
0

(−ϕ)ne−sϕdϕ =
dn

dsn

∫ ∞
0

e−sϕdϕ

=
−n!

(−s)n+1
, n = 0, 1, 2, . . . ,

(6.27) becomes

m∑
σ=1

qi,σ

α∑
a=0

(
α

a

)∫ ∞
0

tα−ae−δtki(t)

×
∫ u+ct

0

{
a∑
g=0

n∑
x=1

Θσ,a,δ,s,x,g(u+ ct− ϕ)geρδ,x(u+ct−ϕ)

+
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
r=1

Λσ,a,δ,s,j,z,ξ,r(u+ ct− ϕ)r−1e−(s+βj,z,ξ)(u+ct−ϕ)

}

×

{
ni,σ∑
l=1

νi,σ,l∑
γ=1

πi,σ,l,γ
(βi,σ,l)

γϕγ−1e−βi,σ,lϕ

(γ − 1)!

}
dϕdt

=
α∑
y=0

n∑
x=1

{
m∑
σ=1

α∑
a=y

a∑
g=y

Qi,σ,α,a,g,y,ρδ,xΘσ,a,δ,s,x,g

}
uyeρδ,xu

+
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
h=1

{
m∑
σ=1

α∑
a=0

νj,z,ξ∑
r=h

(
h

r
Qi,σ,α,a,r,h,−(s+βj,z,ξ)

)
Λσ,a,δ,s,j,z,ξ,r

}
uh−1e−(s+βj,z,ξ)u

−
m∑
σ=1

ni,σ∑
l=1

νi,σ,l∑
h=1

{
qi,σ

α∑
a=0

a∑
b=0

n∑
x=1

Θσ,a,δ,s,x,b
(−1)b(b+ γ − g)!

(ρδ,x + βi,σ,l)b+γ−g+1

×
νi,σ,l∑
γ=h

γ∑
g=h

hπi,σ,l,γ(βi,σ,l)
γ

g!(γ − g)!
ki,α,a,g,h,δ+cβi,σ,l

}
uh−1e−βi,σ,lu

+
m∑
σ=1

ni,σ∑
l=1

νi,σ,l∑
h=1

{
qi,σ

α∑
a=0

m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
r=1

Λσ,a,δ,s,j,z,ξ,r
(−1)γ−g(r − 1 + γ − g)!

(s+ βj,z,ξ − βi,σ,l)r+γ−g

×
νi,σ,l∑
γ=h

γ∑
g=h

hπi,σ,l,γ(βi,σ,l)
γ

g!(γ − g)!
ki,α,a,g,h,δ+cβi,σ,l

}
uh−1e−βi,σ,lu. (6.28)
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Finally, simplify the last term on the right hand side of (6.25), which is

m∑
σ=1

qi,σe
−su
∫ ∞

0

tαe−(δ+cs)tki(t)

∫ ∞
0

w(ϕ)

×

{
ni,σ∑
l=1

νi,σ,l∑
γ=1

πi,σ,l,γ
(βi,σ,l)

γ(u+ ct+ ϕ)γ−1e−βi,σ,l(u+ct+ϕ)

(γ − 1)!

}
dϕdt

=
m∑
σ=1

qi,σe
−su
∫ ∞

0

tαe−(δ+cs)tki(t)

∫ ∞
0

w(ϕ)

×

{
ni,σ∑
l=1

νi,σ,l∑
γ=1

πi,σ,l,γ(βi,σ,l)
γ

(γ − 1)!

{
γ∑
h=1

γ∑
g=h

(γ − 1)!

(h− 1)!(g − h)!(γ − g)!
uh−1(ct)g−h(ϕ)γ−g

}

× e−βi,σ,l(u+ct+ϕ)

}
dϕdt

=
m∑
σ=1

ni,σ∑
l=1

νi,σ,l∑
h=1

{
qi,σ

νi,σ,l∑
γ=h

γ∑
g=h

hπi,σ,l,γ(βi,σ,l)
γ

g!(γ − g)!

× wγ−g,(βi,σ,l)ki,α,0,g,h,δ+c(s+βi,σ,l)

}
uh−1e−(s+βi,σ,l)u. (6.29)
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Substitute (6.26), (6.28) and (6.29) into (6.25), which yields

α∑
y=0

n∑
x=1

Θi,α,δ,s,x,y{uyeρδ,xu}+
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
h=1

Λi,α,δ,s,j,z,ξ,h{uh−1e−(s+βj,z,ξ)u}

=
α∑
y=0

n∑
x=1

{
m∑
σ=1

α∑
a=y

a∑
g=y

Pi,σ,α,a,g,y,ρδ,xΘσ,a,δ,s,x,g

}
uyeρδ,xu

+
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
h=1

{
m∑
σ=1

α∑
a=0

νj,z,ξ∑
r=h

(
h

r
Pi,σ,α,a,r,h,−(s+βj,z,ξ)

)
Λσ,a,δ,s,j,z,ξ,r

}
uh−1e−(s+βj,z,ξ)u

+
α∑
y=0

n∑
x=1

{
m∑
σ=1

α∑
a=y

a∑
g=y

Qi,σ,α,a,g,y,ρδ,xΘσ,a,δ,s,x,g

}
uyeρδ,xu

+
m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
h=1

{
m∑
σ=1

α∑
a=0

νj,z,ξ∑
r=h

(
h

r
Qi,σ,α,a,r,h,−(s+βj,z,ξ)

)
Λσ,a,δ,s,j,z,ξ,r

}
uh−1e−(s+βj,z,ξ)u

−
m∑
σ=1

ni,σ∑
l=1

νi,σ,l∑
h=1

{
qi,σ

α∑
a=0

a∑
b=0

n∑
x=1

Θσ,a,δ,s,x,b
(−1)b(b+ γ − g)!

(ρδ,x + βi,σ,l)b+γ−g+1

×
νi,σ,l∑
γ=h

γ∑
g=h

hπi,σ,l,γ(βi,σ,l)
γ

g!(γ − g)!
ki,α,a,g,h,δ+cβi,σ,l

}
uh−1e−βi,σ,lu

+
m∑
σ=1

ni,σ∑
l=1

νi,σ,l∑
h=1

{
qi,σ

α∑
a=0

m∑
j=1

m∑
z=1

nj,z∑
ξ=1

νj,z,ξ∑
r=1

Λσ,a,δ,s,j,z,ξ,r
(−1)γ−g(r − 1 + γ − g)!

(s+ βj,z,ξ − βi,σ,l)r+γ−g

×
νi,σ,l∑
γ=h

γ∑
g=h

hπi,σ,l,γ(βi,σ,l)
γ

g!(γ − g)!
ki,α,a,g,h,δ+cβi,σ,l

}
uh−1e−βi,σ,lu

+
m∑
σ=1

ni,σ∑
l=1

νi,σ,l∑
h=1

{
qi,σ

νi,σ,l∑
γ=h

γ∑
g=h

hπi,σ,l,γ(βi,σ,l)
γ

g!(γ − g)!

× wγ−g,(βi,σ,l)ki,α,0,g,h,δ+c(s+βi,σ,l)

}
uh−1e−(s+βi,σ,l)u (6.30)

for i = 1, 2, . . . ,m; α = 0, 1, 2, . . . and δ, s ≥ 0. Let us study (6.30) in two cases.
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Case 1: Given s > 0, δ ≥ 0 and α = 0, 1, 2, . . .

Since (6.30) is true for all u ≥ 0, the coefficients of uyeρδ,xu should be equal on both

sides, which yields (6.15).

In particular, for y = α, (6.15) gives (6.18). Given α, δ and s, (6.18) gives a system

of m linear equations in {Θi,α,δ,s,x,α}mi=1 for each x = 1, 2, . . . , n. For each x = 1, 2, . . . , n,

assume that a non-trivial solution exist for {Θi,α,δ,s,x,α}mi=1. Then it can be concluded from

(6.18) that

det(I −Υ(ρδ,x)) = 0 (6.31)

for x = 1, 2, . . . , n, where Υ(z) is a m × m matrix with its (i, σ)th element equal to

Pi,σ,α,α,α,α,z + Qi,σ,α,α,α,α,z or Pi,σ,0,0,0,0,z + Qi,σ,0,0,0,0,z equivalently. There are two points to

note from (6.31). First, since (6.31) holds, (6.18) in {Θi,α,δ,s,x,α}mi=1 for each fixed x =

1, 2, . . . , n are m linearly dependent equations. Second, using the argument in Theorem 1

of Cheung et al. (2011), it can be proved that there are n roots with negative real parts to

the equation det(I −Υ(z)) = 0. This fact together with (6.31) lead to (6.11).

Furthermore, one can equate the coefficients of uh−1e−(s+βj,z,ξ)u on both sides of (6.30)

which results in (6.16). Finally, (6.19) follows by equating the coefficients of uh−1e−βi,σ,lu

in (6.30).
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Case 2: Given s = 0, δ ≥ 0 and α = 0, 1, 2, . . .

For s = 0, Λi,α,δ,0,j,z,ξ,h = 0 as given in (6.10), and thus (6.30) reduces to

α∑
y=0

n∑
x=1

Θi,α,δ,0,x,y{uyeρδ,xu}

=
α∑
y=0

n∑
x=1

{
m∑
σ=1

α∑
a=y

a∑
g=y

Pi,σ,α,a,g,y,ρδ,xΘσ,a,δ,0,x,g

}
uyeρδ,xu

+
α∑
y=0

n∑
x=1

{
m∑
σ=1

α∑
a=y

a∑
g=y

Qi,σ,α,a,g,y,ρδ,xΘσ,a,δ,0,x,g

}
uyeρδ,xu

−
m∑
σ=1

ni,σ∑
l=1

νi,σ,l∑
h=1

{
qi,σ

α∑
a=0

a∑
b=0

n∑
x=1

Θσ,a,δ,0,x,b
(−1)b(b+ γ − g)!

(ρδ,x + βi,σ,l)b+γ−g+1

×
νi,σ,l∑
γ=h

γ∑
g=h

hπi,σ,l,γ(βi,σ,l)
γ

g!(γ − g)!
ki,α,a,g,h,δ+cβi,σ,l

}
uh−1e−βi,σ,lu

+
m∑
σ=1

ni,σ∑
l=1

νi,σ,l∑
h=1

{
qi,σ

νi,σ,l∑
γ=h

γ∑
g=h

hπi,σ,l,γ(βi,σ,l)
γ

g!(γ − g)!

× wγ−g,(βi,σ,l)ki,α,0,g,h,δ+cβi,σ,l

}
uh−1e−βi,σ,lu. (6.32)

Since (6.32) holds for all u ≥ 0, the coefficients of uyeρδ,xu on both sides are equal and

this leads to (6.20). For y = α, (6.20) gives (6.21). Similarly as in the case s > 0, it can

be argued that (6.21) represents m linearly dependent equations in {Θi,α,δ,0,x,α}mi=1 for each

fixed x = 1, 2, . . . , n. Moreover, this argument can show that (6.11) also holds in this case

when s = 0.

Finally, equate the coefficients of uh−1e−βi,σ,lu on both sides of (6.32) yields (6.22).
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In Theorem 6.2.2, it is shown that the coefficients Θ’s and Λ’s need to be solved

recursively in α, starting with α = 0. To see this, consider

mi,1,0,0(u) = E[TI(T <∞)|U0 = u, Z0 = i] as an example, i.e. let α = 1, δ = 0, s = 0 and

w(·) = 1. From (6.10),

mi,1,0,0(u) =
n∑
x=1

{
Θi,1,0,0,x,0 {eρ0,xu}+ Θi,1,0,0,x,1 {ueρ0,xu}

}
.

for i = 1, 2, . . . ,m. It is given in (6.20) and (6.21) that the coefficients Θ’s satisfy

Θi,1,0,0,x,0 =
m∑
σ=1

1∑
a=0

a∑
g=0

{
Pi,σ,1,a,g,0,ρ0,x +Qi,σ,1,a,g,0,ρ0,x

}
Θσ,a,0,0,x,g (6.33)

for i = 1, 2, . . . ,m; x = 1, 2, . . . , n and

Θi,1,0,0,x,1 =
m∑
σ=1

{
Pi,σ,1,1,1,1,ρ0,x +Qi,σ,1,1,1,1,ρ0,x

}
Θσ,1,0,0,x,1 (6.34)

for i = 1, 2, . . . ,m; x = 1, 2, . . . , n. In (6.34), the m equations in {Θi,1,0,0,x,1}mi=1 for each

fixed x = 1, 2, . . . , n are linearly dependent. Thus, n more equations to solve for Θ’s are

given by (6.22), which are

νi,σ,l∑
γ=h

γ∑
g=h

{
1∑

a=0

a∑
b=0

n∑
x=1

Θσ,a,0,0,x,b
(−1)b(b+ γ − g)!

(ρ0,x + βi,σ,l)b+γ−g+1
ki,1,a,g,h,cβi,σ,l

− wγ−g,(βi,σ,l)ki,1,0,g,h,cβi,σ,l

}
πi,σ,l,γ(βi,σ,l)

γ

g!(γ − g)!
= 0 (6.35)

for i, σ = 1, 2, . . . ,m; l = 1, 2, . . . , ni,σ and h = 1, 2, . . . , νi,σ,l. Note that (6.33) and (6.35)

involve Θi,0,0,0,x,0 for i = 1, 2, . . . ,m and x = 1, 2, . . . , n. According to (6.10), these are

coefficients for mi,0,0,0(u) = E[I(T <∞)|U0 = u, Z0 = i], i.e.

mi,0,0,0(u) =
n∑
x=1

Θi,0,0,0,x,0 {eρ0,xu}
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for i = 1, 2, . . . ,m. Thus, in order to solve for the associated coefficients Θ’s of mi,1,0,0(u),

the associated coefficients Θ’s of mi,0,0,0(u) need to be solved first. This simple example

gives an idea on how the coefficients should be solved recursively in α using Theorem 6.2.2.

6.3 Numerical Example

In this section, a numerical example is considered by applying the results in section 6.2.

The probability of ruin and the conditional mean time to ruin will be studied under different

distributional assumption on the time of a system change.

This example is a two-state generalized MAP risk model given as follows. Let the

transition probability matrices be

P =

 0 1
2

1
6

0

 and Q =

 1
4

1
4

2
3

1
6

.

Also, assume the following claim size densities

f1,1(y) =
1

2
e−y +

1

2
(
2

3
e−

2
3
y), f1,2(y) =

3

4
e−

3
4
y, f2,1(y) = 6e−6y and f2,2(y) = 9ye−3y.

Therefore, the mean claim sizes are µ1,1 = 5/4, µ1,2 = 4/3, µ2,1 = 1/6 and µ2,2 = 2/3.

As for the waiting time of a system change, assume three different cases of distribution

and each case will be considered together with the model assumption described in last

paragraph. The first case is

k1(t) = e−t and k2(t) = 2e−2t,
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where exponential waiting time is assumed in both states. For the second case, the waiting

time in state 1 is changed to be gamma distributed while the waiting time distribution in

state 2 is kept unchanged, i.e.

k1(t) = 4te−2t and k2(t) = 2e−2t.

As for the third case, the waiting time distribution in state 2 is changed to gamma while

that in state 1 is kept unchanged as compared to the first case, i.e.

k1(t) = e−t and k2(t) = 108t2e−6t.

Note that in any of the three cases, the mean time in state 1 and state 2 are κ1 = 1 and

κ2 = 1/2 respectively. The variances of the waiting time in state 1 (state 2) are 1 (1/4),

1/2 (1/4) and 1 (1/12) for the first, second and third case respectively.

k1(t) k2(t)

Case 1 e−t 2e−2t

Case 2 4te−2t 2e−2t

Case 3 e−t 108t2e−6t

Table 6.1: Waiting time distributions in different cases

Moreover, let the premium rate be c = 2 which satisfies the positive loading condition

(6.2).
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In the following graph, the y-axis gives the probability of ruin, i.e.

E[I(T <∞)|U0 = u, Z0 = i] = mi,0,0,0(u)

for i = 1, 2 and the x-axis is the initial surplus U0 = u.
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Figure 6.1: Probability of ruin in different cases
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In Figure 6.1, the probability of ruin decreases with larger initial surplus. Given Z0 = 1

or Z0 = 2, the probability of ruin is higher in cases with larger variances of the waiting

time. This observation is the same as that made in Cheung et al. (2011).
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Next, the following graph considers the conditional expected time to ruin. The y-axis

represents

E[T |T <∞, U0 = u, Z0 = i] =
mi,1,0,0(u)

mi,0,0,0(u)

for i = 1, 2. The x-axis represents the initial surplus U0 = u.
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Figure 6.2: Conditional expected time to ruin in different cases
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There are several observations made from Figure 6.2. First, the curves are all strictly

increasing. In other words, the conditional expected time to ruin increases with the initial

surplus. Second, given any of the three cases and the same initial surplus, the expected

time to ruin when Z0 = 1 is shorter than that when Z0 = 2. Finally, comparison among

cases can be made. For either Z0 = 1 or Z0 = 2, the expected time to ruin is longer in case

1 than that in case 2 except when initial surplus is very small. There is similar observation

when comparing case 1 and case 3.
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Chapter 7

Conclusion and future research

In this thesis, the generalized moments of the time to ruin are the main focus of study.

In dependent Sparre Andersen models, structural properties of the Gerber-Shiu function

are shown to continue hold for the moments of the time to ruin in Chapter 2. These

properties are useful in further research of the moments of the time to ruin. For example,

the bounds for the moments can be studied by using the result introduced in Section 1.4.5.

Moreover, it is also of interest to provide good approximation results for the moments since

the analytical results usually involve a lot of recursion. There have been approximation

results in the classical Possion risk model, readers may refer to e.g. Egidio dos Reis (2000),

Dickson and Waters (2002) and Pitts and Politis (2008).

In Chapter 3, dependent Sparre Andersen model with Coxian claim sizes is considered

and the form of the moments of the time to ruin is identified as a linear sum of Erlang den-

sities. The coefficients in this sum can be obtained by solving linear systems of equations.

Numerical examples are provided for the mean and variance of the time to ruin.

Intuitively, the expected time to ruin and the variance of the time to ruin should be
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related to the marginal distribution of each increment of the insurance surplus process.

The marginal distribution of the interclaim times and the claim sizes, and in particular

their dependence structure, will affect the marginal distribution of each increment. Further

research is needed as to the manner in which the moments of the time to ruin are related

to the dependency between the interclaim times and the claim sizes.

In Chapter 4, structural properties of the moments of the time to ruin are discussed in

dependent Sparre Andersen models with Coxian interclaim times. The numerical example

shows how the results in Chapter 2 are used recursively in order to determine the expected

time to ruin. However, the computation for higher moments of the time to ruin can be

intensive due to recursive nature of the method. It appears that the techniques derived in

Chapter 4 are applicable primarily to the calculation of lower moments of the time to ruin.

In Chapter 5, the joint density of the time to ruin, the number of claims until ruin and

other ruin-related quantities is identified under a Sparre Andersen model with exponential

claim sizes. The marginal and joint moments of these quantities can then be obtained by

integration. The joint density of these quantities may be considered under more general

claim sizes, e.g. Coxian or phase-type claim sizes, in the future. Multivariate Lagrange

expansion may be used to obtain the density involving the time to ruin as in Landriault

and Shi (2013).

Apart from the dependent Sparre Andersen model, the moments of the time to ruin

are also considered in the generalized MAP risk model in Chapter 6. By assuming Coxian

claim sizes, the moments are in the form of a linear sum of Erlang densities. The numerical

example provided in Chapter 6 has exponential waiting times. More general waiting time

distributions are not considered since these models involve intensive computation.

We remark that the penalty functions considered in this thesis are functions of the
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deficit at ruin (as well as other variables in some cases). Thus, the joint moments of the

time to ruin and the deficit at ruin (and in particular their covariance) may be obtained by

appropriate choice of the penalty function. This was done in the classical Poisson model by

Lin and Willmot (2000). It would be interesting to further study the relationship between

the time to ruin and the deficit at ruin in this manner.

By definition, the time to ruin is the first passage time that the insurance surplus process

drops below zero. In the literature, the time to absolute ruin has also been considered by

many authors. It is the first passage time that the insurance surplus process drops below

the level −c/r, where c > 0 is the premium rate of the insurance surplus process and r > 0

is the borrowing rate when the insurance surplus process drops below zero. In fact, both

the time to ruin and the time to absolute ruin are special cases of the first passage time

that the insurance surplus process drops below an arbitrary level in a risk model with

interests and/or dividends.

Topics related to this first passage time have been considered in many papers under

the compound Poisson risk model where the interclaim times and claim sizes are assumed

to be independent. Interested quantities include the absolute ruin probability, the Laplace

transform of the first passage time and generalized Gerber-Shiu functions defined with the

first passage time. For example, see Lin et al. (2003), Zhu and Yang (2008), Cai et al.

(2009) and Li and Lu (2013).

In future research, the time to absolute ruin and hence the first passage time of the

insurance surplus process may be studied in more general risk models with interests and/or

dividends. For example, Mitric et al. (2012) considered the Gerber-Shiu function defined

with the time to absolute ruin under a Sparre Andersen renewal risk model and Yang and

Sendova (2014) studied the time to ruin under a dual risk model. Thus, one may continue

the studies of the first passage time in more general risk models, e.g. to consider a renewal
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claim number process instead of the Poisson claim number process. Moreover, dependency

between the interclaim times and the claim sizes may be assumed. Also, the first passage

time of the insurance surplus process may be studied in models with jumps. Under these

model assumptions, the Laplace transform and the density of this first passage time can

be considered.
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