
The Best of Both Worlds: Combining
Information-Theoretic and

Computational Private Information
Retrieval for Communication

Efficiency

by

Casey Devet

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2014

c© Casey Devet 2014

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The goal of Private Information Retrieval (PIR) is the ability to query a database
successfully without the operator of the database server discovering which record(s) of
the database the querier is interested in. There are two main classes of PIR protocols:
those that provide privacy guarantees based on the computational limitations of servers,
called computational PIR or CPIR, and those that rely on multiple servers not colluding
for privacy, called information-theoretic PIR or IT-PIR. These two classes have different
advantages and disadvantages that make them more or less attractive to designers of PIR-
enabled privacy enhancing technologies.

We present a hybrid PIR protocol that combines two PIR protocols: one CPIR protocol
and one IT-PIR protocol. Our protocol inherits many positive aspects of both classes and
mitigates some of the negative aspects. For example, our hybrid protocol maintains partial
privacy when the security assumptions of one of the component protocols is broken, miti-
gating the privacy loss in such an event. We have implemented our protocol as an extension
of the Percy++ library so that it combines a PIR protocol by Aguilar Melchor and Gaborit
with one by Goldberg. We show that our hybrid protocol uses less communication than
either of these component protocols and that our scheme is particularly beneficial when the
number of records in a database is large compared to the size of the records. This situa-
tion arises in applications such as TLS certificate verification, anonymous communications
systems, private LDAP lookups, and others.

The server-side computation involved in the PIR protocols that we discuss in this
thesis all lend themselves to parallelization. As an extension to the Percy++ library we
have implemented parallelized server computation for each of these protocols using both
multithreading and distributed computation. We show that using parallelization allows
the servers to reduce the latency involved in serving PIR queries.

iii

Acknowledgements

Thank you to all of the people who were a constant support while writing this thesis.
I would especially like to thank Ian Goldberg for sticking with me and for his constant
support and guidance. My wife Laura also deserves thanks for pushing me and always
being there to help out.

A huge thank you to Ryan Henry for the idea that inspired me to explore this new type
of Hybrid PIR.

This work benefited from the use of the CrySP RIPPLE Facility at the University of
Waterloo.

iv

Table of Contents

List of Figures vii

List of Tables viii

List of Algorithms ix

Nomenclature x

1 Introduction 1

1.1 Private Information Retrieval . 1

1.2 Notation . 3

2 Background 5

2.1 Computational PIR . 5

2.1.1 Aguilar Melchor and Gaborit’s Protocol 6

2.2 Information-Theoretic PIR . 10

2.2.1 Chor et al.’s Protocol . 10

2.2.2 Goldberg’s Protocol . 12

3 Hybrid PIR 17

3.1 Our Hybrid PIR Protocol . 17

3.1.1 Notation . 17

v

3.1.2 Protocol . 18

3.2 Analytical Evaluation . 20

3.2.1 Inner Protocols . 20

3.2.2 Communication . 21

3.2.3 Computation . 24

3.2.4 Privacy . 26

3.2.5 Robustness . 26

3.3 Implementation and Empirical Evaluation 27

3.3.1 Communication . 27

3.3.2 Computation . 28

3.3.3 Total Query Time . 30

3.4 Summary . 32

4 Parallelized Server Computation 34

4.1 Parallelizing PIR . 34

4.1.1 More Than One Way to Split Computation 34

4.1.2 More Than One Way to Split a Request 35

4.2 Parallelizing Recursive PIR . 39

4.3 Empirical Evaluation . 41

4.3.1 Multithreading . 41

4.3.2 Distributed Computation . 43

4.3.3 A Combination . 46

4.4 Summary . 46

5 Conclusion 47

5.1 Future Work . 48

References 49

vi

List of Figures

3.1 Comparison of Communication Costs . 28

3.2 Comparison of Request Encoding Times 29

3.3 Comparison of Server Computation Times 29

3.4 Comparison of Response Decoding Times 30

3.5 Comparison of Total Query Times over 9/2 Mbsp Connection 31

3.6 Comparison of Total Query Times over 20/5 Mbsp Connection 31

3.7 Comparison of Total Query Times over 100/100 Mbsp Connection 32

4.1 Server computation for G07, C95 . 36

4.2 G07 and C95 when partitioning queries . 36

4.3 G07 and C95 when partitioning database records 37

4.4 G07 and C95 when partitioning the words of records 38

4.5 Server-side computation for AG07. 39

4.6 AG07 when partitioning queries . 39

4.7 AG07 when partitioning database records 40

4.8 AG07 when partitioning words of records 40

4.9 Multithreading on G07 . 42

4.10 Multithreading on G07 and Hybrid . 42

4.11 Distributed Computation on G07 . 44

4.12 Distributed Computation on G07 and Hybrid 44

4.13 Combination Parallelization on G07 (per thread) 45

4.14 Combination Parallelization on G07 (per thread) 45

vii

List of Tables

3.1 Comparison of Communication Costs . 23

3.2 Useful range of hybrid protocol . 24

viii

List of Algorithms

2.1 AG07 Query Generation . 7

2.2 AG07 Server Computation . 8

2.3 AG07 Response Decoding . 9

2.4 C95 Query Generation . 11

2.5 C95 Server Computation . 11

2.6 C95 Response Decoding . 12

2.7 G07 Query Generation . 14

2.8 G07 Server Computation . 14

2.9 G07 Response Decoding . 15

3.1 Hybrid Query Generation . 18

3.2 Hybrid Server Computation . 19

3.3 Hybrid Response Decoding . 20

ix

Nomenclature

d Depth used for a recursive PIR protocol (p. 6)

D The database (p. 3)

Di The ith record of the database D (p. 3)

δu In the hybrid protocol, the number of actual records contained in each virtual record
at iteration u (p. 18)

F Field used for arithmetic; exact definition depends on protocol begin used (p. 13)

γu In the hybrid protocol, the database is split into γu virtual records at iteration u
(p. 18)

i0 Index of the database record that a client wants to retrieve (p. 4)

iu For the hybrid protocol, the index of record i0 in the result of iteration u (p. 18)

k Number of PIR servers that respond in a multiserver protocol (p. 13)

` Number of PIR servers in a multiserver protocol (p. 11)

L In AG07, each record is a matrix of size L×N ; L depends on N (p. 6)

m In G07, Number of wG-bit words per record (p. 13)

N AG07 security parameter: Each record is a matrix of size L×N ; typically N = 50
(p. 6)

n Number of records in the database (p. 4)

p Modulus of the AG07 field: p ≈ 23wAG (p. 6)

x

Φ The single-server CPIR protocol used in the hybrid protocol (p. 17)

πu In the hybrid protocol, the index of the virtual record containing the record the
client wants (record i0) at iteration u (p. 18)

Ψ The multiserver IT-PIR protocol used in the hybrid protocol (p. 17)

q AG07 hard noise constant: q ≈ 22wAG (p. 6)

s Size of each database record in bits (p. 4)

t G07 privacy level: queries are private if at most t servers collude (p. 13)

v Number of Byzantine PIR servers that may respond incorrectly in a multiserver
protocol (p. 13)

wAG AG07 word size in bits; typically wAG = 20 (p. 6)

wG G07 word size in bits; typically wG = 8 (p. 13)

xi

Chapter 1

Introduction

One major goal of privacy enhancing technologies (PETs) is to give control over the dissem-
ination of personal information to the users that the information pertains to. PETs rely on
underlying primitives to provide a guarantee of privacy to users; these are often primitives
from fields such as cryptography and information theory, but may also use secure hardware
or a trusted third party. Many PETs protocols use cryptographic primitives, relying on
assumptions about the infeasibility of solving a specific problem with a limited amount
of computing resources. Other PETs are built on information-theoretic primitives which,
under non-computational assumptions such as limited collustion, have the advantage of
providing a guarantee that no amount of computing resources will allow an adversary to
discover the user’s private information. However, using information-theoretic primitives in-
stead of cryptographic ones requires some alternative assumption to support the protocol’s
privacy guarantees. An assumption used in many PETs, including mix networks [DDM03],
secret sharing [Sha79], onion routing [DMS04] and some voting protocols [CCC+09,RS06],
is that no more than some threshold of agents are colluding against the user to discover
the private information.

1.1 Private Information Retrieval

Private Information Retrieval (PIR) [CGKS95, CKGS98] is a PET that allows a user to
query a database for some records without letting the operator of the database server
learn anything about the query or the retrieved records. The most trivial form of PIR is
for the client to download the entire database from the server and do the query herself.
This is private because the user has not revealed any information about which record she

1

is interested in, yet she still retrieves the record by finding it in the content of the en-
tire database. In a 2007 study, Sion and Carbunar concluded that no single-server PIR
protocol would likely outperform this trivial download PIR protocol [SC07]. However,
more recent work has shown that there are indeed non-trivial PIR protocols that per-
form better than downloading the entire database [OG11]. PIR has applications in many
privacy-sensitive applications, including patent databases [Aso01], domain name registra-
tion [OG10], anonymous email [SC05], anonymous communication networks [MOT+11],
and electronic commerce [HOG11].

As a PET, a PIR protocol gets its privacy guarantees from its underlying primitives.
One class of PIR protocols, called computational PIR (CPIR), encodes the query in such a
way that the database server can serve records, while learning nothing about the queries or
retrieved records. The privacy guarantees of CPIR protocols are based on the assumption
that some problem is hard or impossible to solve given a limit on computational power.
Olumofin and Goldberg [OG11] showed in 2011 that it is possible for a CPIR protocol
to outperform the trivial download protocol. In particular, they showed using empirical
results that the CPIR protocol by Aguilar Melchor and Gaborit [AG07] is faster than
trivial download when using typical network connections. One advantage of many CPIR
protocols is the ability to use recursion to reduce the communication costs, a technique
that is illustrated by Aguilar Melchor and Gaborit with their CPIR protocol [AG07].

The other class of PIR protocols, called information-theoretic PIR (IT-PIR), does not
rely on the assumption that a cryptographic primitive is hard to solve with limited com-
puting resources. In 1995, Chor et al. showed that non-trivial IT-PIR is impossible when
there is only a single database server [CGKS95]. To combat this result, they designed
a multi-server IT-PIR protocol that guarantees privacy as long as not all of the servers
are colluding together against the user. Several IT-PIR protocols have since been pro-
posed [BIM04, GGM98, Gol07, HOG11] that use similar non-collusion assumptions. Olu-
mofin and Goldberg [OG11] also showed that a number of these multi-server IT-PIR pro-
tocols perform better than the trivial download PIR.

There are five contributing factors to the speed of a PIR query for a particular protocol:

1. the time for the client to generate a private query;

2. the communication time required to send the query to the server(s);

3. the time for the server(s) to apply the query to the database;

4. the communication time required for the response from the server to the client; and

2

5. the time for the client to decode the response(s).

Over time, proposed PIR protocols have incrementally improved some or all of these time
factors. This thesis begins by comparing three PIR protocols, one CPIR and two IT-PIR.
We observe that the CPIR protocol we discuss uses recursion to improve its communi-
cation efficiency and that the IT-PIR protocols we discuss are very communication and
computation efficient.

Our main contribution is a novel hybrid PIR protocol that incorporates aspects
of both classes, including the recursive property of single-server CPIR and the low com-
munication and computation costs of IT-PIR. Our hybrid protocol has lower costs, while
incorporating the positive properties of the CPIR and IT-PIR protocols of which it is
composed.

Our protocol is particularly well suited for databases that consist of a large number
of relatively small records. As a practical example of where PIR over databases of this
shape would be beneficial, consider the problem of determining the validity of web server
certificates for Transport Layer Security (TLS), the ubiquitous mechanism used to pro-
tect secure websites. A web client, on receiving a TLS certificate from a server, must
check to see whether the certificate is revoked, typically with the Online Certificate Sta-
tus Protocol (OCSP) [SMA+13], or with the recently proposed Certificate Transparency
(CT) Protocol [LLK13]. However, doing these lookups will reveal the site the client is
visiting to the OCSP or CT servers. PIR has been proposed [Kik04] as a way for clients
to privately determine the validity of these certificates. Other applications of PIR over
databases of this shape could include sensor network data retrieval [Xiv14], private LDAP
lookups [Ser06], and efficient retrieval of network information in anonymous communica-
tions systems [MOT+11].

In an effort to improve the server-side computation time of PIR, we implement parallel
computation for all of the protocols discussed in this thesis. The growing use of cloud
computing and multiprocessing computers provides the opportunity to perform computa-
tionally intensive procedures quicker and easier. We show that by making use of these
types of resources, large-scale PIR is not just possible, but practical.

1.2 Notation

For clarity, we will use the following notation throughout the thesis:

• D denotes the database.

3

• Di denotes the ith record of the database D.

• n is the number of records in the database.

• s is the size of each record in bits.

• i0 is the index of the database record that a client wants to retrieve.

Additional notation will be introduced in Sections 2.1.1, 2.2.2 and 3.1.1 to support the
protocols presented in those sections.

4

Chapter 2

Background

2.1 Computational PIR

One class of PIR contains all protocols that assume that the server(s) are computationally
bounded to make their privacy guarantees. These protocols are built so that breaking the
security of their system would require an adversary to solve a problem that is believed to
be hard. These types of assumptions are often used in cryptography, security and privacy;
for example, the RSA public-key cryptosystem assumes that factoring large numbers is
hard when an adversary has limited resources.

Computational PIR was first introduced by Chor et al. in 1997 [CGN97]. They showed
that weakening the adversary to a computationally bounded entity improves the commu-
nication costs of PIR. Their work was soon followed by a protocol by Kushilevitz and
Ostrovsky [KO97] that used the same computationally bounded adversary in their model,
but did not require multiple servers as previous CPIR protocols did. This protocol relied
on the assumption that the Quadratic Residuosity problem [McC90] is difficult to solve.

One advantage of single-server CPIR protocols is that they can be used recursively
to improve the communication cost of PIR. This idea was introduced by Kushilevitz and
Ostrovsky in addition to their new single-server CPIR protocol [KO97]. To apply recursion,
we evenly split our database into a set of virtual records, each one containing an equal
number of the actual records. The client then queries the server for a particular virtual
record, but instead of returning the result to the client, the server holds on to it. The
result of the first query is treated as a virtual database containing smaller virtual records.
The client then queries for one of the virtual records of this virtual database. The scheme

5

continues in this fashion until we are left with the response for a single (actual) record,
which is sent to the client. This idea will be further explored in the next section.

2.1.1 Aguilar Melchor and Gaborit’s Protocol

Without being faster than the trivial download protocol for modest-sized databases, a
PIR protocol is not very useful. The main problem with the CPIR protocols already
discussed is that they do not generally perform queries faster than the trivial protocol. In
2007, Aguilar Melchor and Gaborit introduced a lattice-based single-server CPIR scheme
with promising results [AG07]; we denote this protocol as AG07. In 2011, Olumofin and
Goldberg [OG11] empirically showed that this protocol outperforms the trivial protocol,
thus suggesting that CPIR may indeed be practical.

The idea behind their protocol is to add noise to the query in a way that the server
cannot discover which record the client is interested in, but with the secret information
that the client has, she can remove the noise from the server’s response.

Notation

For this protocol we add the following notation:

• Each record in the database is encoded as an L×N matrix of wAG-bit words, where

N is a security parameter and L =
⌈

s
wAG·N

⌉
.

• q ≈ 22·wAG is the hard noise constant.

• p ≈ 23·wAG is the prime modulus of the field used for arithmetic. All matrices in the
protocol are over Zp; the entries in the above database record matrices just happen
to have relatively small values (< 2wAG) in Zp.

• d is the number times that the protocol is used recursively.

Aguilar Melchor and Gaborit [AG07] suggest the values wAG = 20, N = 50, q = 240,
and p = 260 + 325 for the above parameters.

6

Algorithm 2.1 AG07 Query Generation

Input: Desired record index: i0

1: Generate two uniform random N ×N matrices A and B such that A is invertible.

2: For each i ∈ {1, . . . , n} generate uniform random invertible N ×N matrix Pi.

3: Generate the uniform random scrambling matrix ∆, a diagonal invertible N×N matrix.

4: For each i ∈ {1, . . . , n} generate soft noise matrix Ci, an N ×N matrix over {−1, 1}.
5: Convert Ci0 to a hard noise matrix by setting all diagonal terms to q.

6: For each i ∈ {1, . . . , n} compute the disturbed N × 2N matrices

M ′
i = [PiA|PiB + Ci∆].

7: Choose uniform random column permutation P and for each i ∈ {1, . . . , n} compute
Mi = P(M ′

i).

8: Send M1, . . . ,Mn to the server.

Protocol

A client wants to retrieve record i0 from the database. For each database record, she
generates two matrices, one that has been made noisy and one that has not. For the query
matrices corresponding to record i0 she adds hard noise (relatively large disturbances) and
for the others she adds soft noise (small disturbances). The privacy of this protocol relies
on the assumption that the server cannot distinguish between query matrices with hard
noise and soft noise. For details, see Algorithm 2.1.

When the client sends the query to the server, the amount of communication (in bits)
is 6N2wAG · n.

To process the query, each record in the database is represented as an L × N matrix
whose terms are words of size wAG bits. When the server receives the query, it multiplies
each database record Di by the corresponding query matrix Mi and adds the results to get
R. For details, see Algorithm 2.2.

The server sends the response R back to the client. The amount of communication (in
bits) for this step is six times the size of each record, or 6s.

Finally, when the client receives the response, she removes the soft noise to reveal the
database record Di0 that she requested (see Algorithm 2.3).

The privacy of this protocol relies on the assumption that the Hidden Lattice Problem

7

Algorithm 2.2 AG07 Server Computation

Input: Query from the client: matrices M1, . . . ,Mn

Database records represented as L×N matrices with wAG-bit elements: D1, . . . , Dn

1: Compute response matrix

R =
n∑
i=1

DiMi (mod p).

2: Send R to the client.

and the Differential Hidden Lattice Problem are hard to solve by computationally bounded
adversaries [AG07]. Aguilar Melchor and Gaborit use related problems in coding theory
to justify these assumptions.

Recursive AG07

As stated above, this CPIR protocol can be performed recursively to improve the commu-
nication cost of the scheme. We get optimal communication for a given recursive depth d
if we split our database into d

√
n virtual records at each iteration.

For example, if we have a database with 125 records and we are performing this recursive
protocol with depth 3, then in the first iteration we separate the database into 3

√
125 = 5

virtual records, each one a matrix of size 25L × N with wAG-bit entries, thus containing
25 actual records. This client will query the server for the virtual record that her wanted
record belongs to, but instead of sending the result R1, a 25L× 2N matrix with 3wAG-bit
words, back to the client, the server will hold onto it. In the second iteration, the server
transforms the result R1 from the first iteration into 5 virtual records, each one a 6 ·5L×N
matrix with wAG-bit entries encoding 5 actual records. The client will query the server
for the virtual record that contains her desired record and again the server holds onto the
result R2. Finally, for the last iteration, the server transforms the result R2 from the second
iteration into 5 virtual records, each one a 62 ·L×N matrix with wAG-bit entries encoding
one actual record. The client queries the server for the record that she is interested in
and the server sends the result R3 of this last iteration to the client. The client must then
perform the decoding algorithm (Algorithm 2.3) 3 times, once for each iteration, to recover
the database record.

By using recursion we improve the client-to-server communication cost of AG07 to
d · 6N2wAG · d

√
n bits. However, each iteration of the protocol increases the size of the

8

Algorithm 2.3 AG07 Response Decoding

Input: Response from the server: R
Random values generated in Algorithm 2.1: A,B,∆,P

1: Undo the column permutation

R′ = P−1(R) = [VU |VD]

where VU and VD are L×N matrices

2: Compute scrambled noise matrix

E ′ = VD − VUA−1B.

3: Compute the unscrambled noise matrix

E = E ′∆−1.

4: For each term ex,y of E remove noise by computing

fx,y = ex,y − εx,y
with

εx,y =

{
ex,y mod q : ex,y mod q < q

2

(ex,y mod q)− q : otherwise

5: Recover database record Di0 by computing words

dx,y = fx,y · q−1.

result by a factor of 6. This makes the server-to-client communication cost 6ds bits. Thus,
it is important to find the appropriate recursive depth to balance out this decrease in
client-to-server communication and the increase in server-to-client communication.

Advantages and Disadvantages

One advantage of this protocol is that it only requires a single server. As shown later in
Section 2.2, multi-server protocols generally assume that some threshold of the servers are
not colluding. CPIR protocols, however, remain secure even if all servers (or the one server
in the single-server case) are trying to discover the client’s private query.

The AG07 protocol also has the advantage that it can be used recursively, with a
relatively low compounding overhead factor (6). As shown above, we can use this property
to significantly improve the communication cost incurred by the protocol.

9

The main disadvantage of this scheme is that the security is based on lattice problems
that are not well understood. Because of this, some clients may not completely trust the pri-
vacy of their queries. As stated by Aguilar Melchor et al. in a subsequent paper [ACG+08]
and by Olumofin and Goldberg [OG11], the protocol resists known lattice-based attacks,
but the protocol and its privacy assumptions are new and may not be secure.

Another disadvantage of the AG07 protocol is that it is considerably slower than many
IT-PIR schemes [OG11]. This is due to the amount of computation involved in encoding
the queries and because the server is performing a matrix-by-matrix multiplication (as
compared to a vector-by-matrix multiplication used by some IT-PIR schemes).

2.2 Information-Theoretic PIR

The other class of PIR protocols, information-theoretic PIR (IT-PIR), includes all PIR
schemes whose privacy guarantees hold no matter how computationally powerful and ad-
versarial the server(s) may be. In 1995, Chor et al. [CGKS95] showed that any single-server
IT-PIR scheme must have communication cost at least that of the trivial protocol. To avoid
this problem, they developed IT-PIR protocols that used multiple servers. Since then, a
variety of multiple-server IT-PIR schemes have been formulated [BIM04, GGM98, Gol07,
HOG11], making improvements on Chor et al.’s protocols. One of these improvements
is robustness—the ability to retrieve the correct database records even when some of the
servers are down or return incorrect or malicious responses.

An advantage to multiple-server IT-PIR is that it generally incurs smaller communica-
tion and computation costs. Like CPIR protocols, multiple-server IT-PIR protocols also
need to make some assumptions to guarantee privacy; a commonly used assumption is that
at most some threshold of the servers are colluding to discover the contents of a client’s
query.

2.2.1 Chor et al.’s Protocol

A basic multiple-server IT-PIR protocol developed by Chor et al. requires that there are
` ≥ 2 database servers, each with a copy of the same database. This protocol requires that
all servers respond and do so correctly for the client to be able to accurately recover the
desired database record. We will use C95 to denote this protocol.

10

Algorithm 2.4 C95 Query Generation

Input: Desired record index: i0

1: Create n-length elementary vector

ei0 = 〈0, 0, . . . , 1, . . . , 0〉
where all terms of ei0 are zero except the term at index i0 is a one.

2: For j ∈ {1, . . . , `− 1} generate a uniform random n-length binary vector vj ∈ {0, 1}n.

3: Compute
v` = v1 ⊕ v2 ⊕ · · · ⊕ v`−1 ⊕ ei0 .

4: For each j ∈ {1, . . . , `}, send vj to server j.

Algorithm 2.5 C95 Server Computation

Input: Query from client: vj

1: Compute response vector
rj = vj ·D (mod 2).

2: Send rj to the client.

Notation

For this protocol we add the following notation:

• ` is the number of servers.

Protocol

To query the database for record i0, a client creates an elementary vector ei0 for index
i0 (See Algorithm 2.4). She then creates a uniform random query vector vj for each server
j such that when all such vectors are XOR’d, we get the elementary vector ei0 .

The communication cost from the client to each server is n bits.

For this protocol, the servers treat the database as a binary matrix D whose rows Di

are the records. Each server simply multiples their query vector by the database to get a
response rj, which is sent to the client (see Algorithm 2.5).

11

Algorithm 2.6 C95 Response Decoding

Input: Responses from the servers: r1, . . . , r`

1: Recover database record Di0 by computing

Di0 = r1 ⊕ · · · ⊕ r`.

The communication cost from each server to the client is s bits.

Finally, after the client receives all of the responses, she simply XORs them to get
the database record Di0 . This is correct because of the distributive property of the XOR
operation.

This protocol is private as long as not all of the servers are colluding. This is be-
cause without all query vectors vj we are not able to find out any information about ei0 .
Therefore, for this protocol we assume that at most t = `−1 servers are allowed to collude.

Advantages and Disadvantages

The main advantages of this protocol are that it is very fast, has very low communication
cost and is easy to implement. It is fast because the server-side computation can be
implemented as the XOR of a subset of the database records, which is an inexpensive
operation.

This protocol can also handle a very high level of collusion between servers. As long
as not all servers are colluding together the privacy of the client’s query will hold. This
privacy level is high compared to other multiple-server IT-PIR protocols [Gol07].

The downfall of this protocol is that it is not robust: if any of the servers do not respond
to the query, the client would not have enough information to recover the database record.
Similarly, if any of the servers respond to the query incorrectly (either maliciously or
erroneously), the client will incorrectly decode the database record and she will have no
clear way of knowing that what she decoded is incorrect or which server was responsible
for the failure. This deficiency has been addressed in more recent protocols, including one
by Goldberg [Gol07].

2.2.2 Goldberg’s Protocol

In 2007, Goldberg introduced a multiple-server IT-PIR protocol that was both efficient and
provided for greater robustness than previous schemes. The idea is to use Shamir secret

12

sharing [Sha79] to split the client’s query across multiple servers, and error-correcting codes
to combine the responses. We denote this protocol by G07.

Notation

For this protocol we add the following notation:

• The database is laid out as an n×m matrix of wG-bit words. Each record is one row

of this matrix, and m =
⌈

s
wG

⌉
.

• ` is the number of servers.

• k is the number of servers that respond to the query.

• t is the privacy level—no coalition of t or fewer servers can learn the query.

• v is the number of Byzantine servers—these are servers that may give incorrect
responses.

• F is the field used for arithmetic (|F| ≥ 2wG). All vectors and matrices in the protocol
are over F.

Typically, wG = 8, F = GF (28), and records are an integer number of bytes, so that s
is a multiple of 8, and m · wG = s exactly.

Protocol

To query the server for record i0, a client creates the elementary vector ei0 with a 1 in the
i0

th place, and 0 everywhere else. She then creates ` Shamir secret shares v1, . . . ,v` for ei0

in the field F. Algorithm 2.7 details how these shares are created.

Each server is then sent one of these shares. The communication cost from the client
to each server is then n · wG bits.

The server simply multiplies their query vector vj by the database D to get a response
vector rj, and sends it back to the client. This makes the communication cost from each
server to the client mwG = s bits.

In this protocol, we assume that some number of servers k ≤ ` respond to the query.
Even if k 6= `, meaning that not all servers responded, the client may still be able to recover

13

Algorithm 2.7 G07 Query Generation

Input: Desired record index: i0

1: Choose ` distinct non-zero elements

α1, . . . , α` ∈ F.

2: Generate n uniform random degree-t polynomials

f1, . . . , fn ∈ F[x]

such that fi0(0) = 1 and fi(0) = 0 for all i 6= i0.

3: For each j ∈ {1, . . . , `} compute

vj = 〈f1(αj), . . . , fn(αj)〉 .

4: For each j ∈ {1, . . . , `}, send vj to server j.

Algorithm 2.8 G07 Server Computation

Input: Query from client: vector vj

1: Compute (over F) the response vector

rj = vj ·D.

2: Send vector rj to the client.

the database record. This is because the use of Shamir secret sharing in the query makes
the server responses Shamir secret shares for the database record Di0 . This implies that
the client only needs k > t of the responses (where t < `) to successfully recover the record.

Similarly, we also do not need to assume that all of the servers are behaving correctly.
The client can treat the responses as Reed-Solomon error correction codewords and use a
Reed-Solomon decoding algorithm to recover the database record Di0 . As shown by Devet
et al. [DGH12], the client can decode the database record in polynomial time as long as
the number of Byzantine servers v is bounded by v < k− t−1; this result holds in the PIR
setting because queries can be randomized, and clients can make multiple queries. They
also show that this bound is the optimal bound on the number of tolerable Byzantine
servers.

The Shamir secret shares are generated from a degree-t polynomial where t < k. By
the properties of Shamir secret sharing, any coalition of at most t servers will not gain any

14

Algorithm 2.9 G07 Response Decoding

Input: Responses from the servers: r1, . . . , rk

1: For h ∈ {1, . . . ,m}, form the codeword

ch = 〈r1[h], . . . , rk[h]〉 .

2: Perform Reed-Solomon decoding on each codeword c1, . . . , cm to yield polynomials
F1, . . . , Fm.

3: Output the database record Di0 = 〈F1(0), . . . , Fm(0)〉.

information about the secret ei0 . However, if at least t + 1 of the servers collude, they
will be able to discover ei0 ; that is, the query is information-theoretically private assuming
that at most t servers are allowed to collude. We note that there is a trade off between the
level of robustness and the privacy level—the client can chose a value of t to provide the
wanted privacy up to and including t = ` − 1 (all but one of the servers colluding), but
then there is no robustness.

Advantages and Disadvantages

As discussed above, the main advantage of the G07 protocol over other protocols is that
is it robust and can handle missing and/or incorrect server responses. This allows us
to combat some stronger adversarial servers that maliciously alter their responses in an
attempt to block the client from recovering the database record. We note that the AG07
single-server CPIR scheme has no robustness since there is only one server and missing or
incorrect responses from that server can not be overcome.

The G07 protocol has low communication cost and computation time. It is also very
simple to implement on the server side. A series of works since 2011 have shown that
Goldberg’s protocol is faster than the trivial protocol [OG11] and have added improvements
to the performance by using distribution of computation [Dev13] and advanced error-
correction algorithms [DGH12].

This protocol sacrifices some level of privacy to gain robustness. Because of this we need
to assume that there is no collusion between some number of servers. In some settings, it
is unclear how this requirement can be enforced or detected. This uncertainty may make
this protocol less desirable than others with different privacy guarantees.

15

Adaptation for Hybrid Security

When he introduced his IT-PIR scheme in 2007 [Gol07], Goldberg proposed an extension
to create a scheme whose privacy relied on a hybrid of information-theoretic and compu-
tational primitives. This extended scheme provides information-theoretic protection of the
query as long as no more than t servers collude, but retains computational protection when
any number of the servers collude.

This is accomplished by encrypting the query with an additive homomorphic crypto-
system—G07 used the Pailler cryptosystem. The client will encrypt the query before it is
sent to the servers. When the servers receive the query, they multiply it by the database,
but use the homomorphic property. In the case of the Pailler cryptosystem, the server
would use multiplication in the place of addition and exponentiation in the place of scalar
multiplication. The response that the client receives is decrypted before the regular G07
decoding operations are performed.

Though this hybrid scheme relies on two assumptions for privacy (the information-
theoretic assumption that no more than t servers collude and the assumption that ad-
versaries do not have the computational resources to break the additive homomorphic
cryptosystem used), as long as one of them holds, the protocol still guarantees perfect
privacy of the query.

This added protection comes at an extreme cost, however: the hybrid version of G07 is
3–4 orders of magnitude slower [Gol07] than the pure information-theoretic version. In the
next section, we will introduce a new approach to hybrid PIR that combines the benefits
of CPIR and IT-PIR without the overhead of previous proposals.

16

Chapter 3

Hybrid PIR

3.1 Our Hybrid PIR Protocol

In this chapter, we propose a hybrid protocol that combines a multiple-server IT-PIR
protocol with a single-server CPIR protocol. Our goal is to incorporate the positive aspects
of each protocol into our hybrid protocol, while mitigating the negative aspects of each.
In particular, we want to join the low communication and computation cost of multiple-
server IT-PIR schemes with the recursion of single-server CPIR schemes to improve the
communication cost of PIR queries relative to both classes of protocols.

Our scheme will use a recursive depth of d as in the AG07 CPIR scheme. However, the
first layer of recursion will be performed using the chosen multiple-server IT-PIR protocol.
On each server, the remainder of the recursive steps will be done on the result of each
previous step using the chosen recursive single-server CPIR scheme.

3.1.1 Notation

Our hybrid protocol will use the notation outlined in Sections 1.2, 2.1.1, and 2.2.2 as well
as:

• Ψ is the multiple-server IT-PIR protocol being used.

• Φ is the single-server recursive CPIR protocol being used.

17

• d is the recursive depth. We will do one iteration of Ψ followed by d− 1 iterations of
Φ.

• γu (1 ≤ u ≤ d) is the number of virtual records that the database is split into for the

uth step of recursion of the hybrid scheme. It is required that n ≤
d∏

u=1

γu.

• δu (1 ≤ u ≤ d) is the number of actual records in each virtual record at the uth step of
recursion of the hybrid scheme. If the database does not evenly split, dummy records
are appended to the end of the database to make each virtual record the same size.

• πu (1 ≤ u ≤ d) is the index of the virtual record that the client’s desired actual
record i0 is in at the uth step of recursion.

• iu (1 ≤ u ≤ d) is the index of record i0 in the result of iteration u.

We show how to calculate πu and iu in Section 3.1.2 and we outline how to optimally
choose the values for γu and δu in Section 3.2.2.

3.1.2 Protocol

Our protocol is generalized to use the implementer’s choice of inner protocols. We use Ψ
to denote the multiple-server IT-PIR inner protocol and use Φ to denote the single-server
recursive CPIR inner protocol. We use this notation because our protocol is very well
suited for a modular implementation. That is, an implementation of this scheme could
easily swap inner protocols for other suitable protocols.

Algorithm 3.1 Hybrid Query Generation

Input: Desired record index: i0

1: For each recursive step u ∈ {1, . . . , d} find the index of the virtual record πu that record
i0 belongs to.

2: Generate a multiple-server Ψ-query Q1 for index π1 and send each server its part of
the query.

3: for u = 2→ d do
4: Generate a single-server Φ-query Qu for index πu and send each server a copy of the

query.

18

Algorithm 3.2 Hybrid Server Computation

Input: Query from client: Q1, . . . , Qd

1: Split the database D into D(1), a virtual database of γ1 consecutive virtual records,
each containing δ1 actual records.

2: Apply the Ψ-query Q1 to database D(1) using the Ψ server computation algorithm.
The result is R1 which will be used as the database for the next recursive step.

3: for u = 2→ d do
4: Split the result Ru−1 into D(u), a virtual database of γu consecutive virtual records,

each containing the encoding of δu actual records

5: Apply the Φ-query Qu to database D(u) using the Φ server computation algorithm
to get result Ru.

6: Send the final result Rd to the client.

Algorithm 3.1 outlines how to generate a query for this protocol. To query the database
servers, the client must determine the index πu of the virtual record that her desired record
i0 is contained in, at each step u of the recursion. This is done for u = {1, . . . , d} using
the mutually recursive formulas

πu =
⌊
iu−1

δu

⌋
iu = iu−1 mod δu

where i0 is the desired record and the δu are predetermined constants (see 3.1.1 for more
details). She then creates a multiple-server IT-PIR Ψ-query for index π1 and sends each
server its part of the query. Then for each remaining recursive step u ∈ {2, . . . , d}, she
creates single-server CPIR Φ-queries for index πu and sends this same query to each of the
servers.

Algorithm 3.2 outlines the server-side computations for this protocol. In each recursive
step u, the server splits the database into γu virtual records, each containing δu actual
records. For the first step, the server uses the IT-PIR Ψ server computation algorithm.
For the remainder of the steps, the server uses the CPIR Φ server computation algorithm.
The result of the last recursive step is sent back to the client.

We note that we can somewhat improve the performance of this scheme by starting the
server-side computations for each recursive step before reading the queries for subsequent
recursive steps, thus overlapping computation and communication.

19

Algorithm 3.3 Hybrid Response Decoding

Input: Responses from the servers: X
(d)
1 , . . . , X

(d)
k

1: for u = d→ 2 do
2: for j = 1→ k do
3: Decode X

(u)
j from server j using the Φ single-server decoding algorithm to get

result X
(u−1)
j .

4: Decode X
(1)
1 , . . . , X

(1)
k simultaneously using the Ψ multiple-server decoding algorithm

to recover the database record Di0 .

When the client receives the servers’ responses, she applies the corresponding decoding
algorithms using the information stored during query generation in reverse order. That is,
she first uses the information from query Qd to decode the received responses. Treating the
results of that decoding as virtual responses themselves, she uses information from Qd−1 to
decode those, and so on until she uses information from Q1 to decode the final step. This
yields the desired record. The procedure for decoding server responses for this protocol is
outlined in Algorithm 3.3. We note that for all but the last step of decoding, the result
from each server must be decoded separately using the single-server decoding algorithm
for protocol Φ. In the last step of decoding, all server results are decoded simultaneously
using the multiple-server decoding algorithm for protocol Ψ.

3.2 Analytical Evaluation

3.2.1 Inner Protocols

Our hybrid scheme is very well suited to a modular implementation. That is, an implemen-
tation of this protocol could could easily swap the inner protocols with other suitable PIR
schemes. Our protocol can be implemented simply as a wrapper to other non-recursive
PIR implementations.

This evaluation of the hybrid scheme uses the G07 IT-PIR scheme for Ψ and the AG07
CPIR scheme for Φ.

20

Why G07?

We chose to evaluate our hybrid scheme using the G07 IT-PIR scheme as Ψ because it
has very good communication and computation costs that are used to improve an iteration
of the recursion. The Goldberg scheme is also robust and its robustness properties are
completely inherited by our hybrid scheme.

One alternative to the G07 scheme is the C95 scheme presented in Section 2.2.1. The
main difference between it and G07 is that C95 does not have the same robustness proper-
ties. However, it is faster and has less communication than the Goldberg scheme. Therefore
using C95 as the first iteration of the hybrid protocol would be more beneficial in situa-
tions where servers are not expected to be down or where there is little threat of servers
maliciously altering their responses.

Why AG07?

The choice of the AG07 CPIR protocol for Φ is because of previous work that has shown
that it outperforms the trivial protocol [OG11], a rare quality for CPIR schemes. It should
be noted that the security of AG07 is not well understood and further work needs to be
done to prove that this protocol is indeed as private as advertised.

3.2.2 Communication

The communication cost of the response from the server to the client is simply

Cdown = 6d−1s.

If we combine the communication costs for the queries at each recursive step, we get
the following total cost for the query (in bits) from the client to each server:

Cup = γ1wG +
d∑

u=2

(
6N2wAG · γu

)
.

To optimize Cup, we first find the optimal choices for the γu values for any given d.

After the first recursive step the result will encode δ1 = d n
γ1
e records. We can optimize

the CPIR query sizes by splitting the database at each remaining step into γu = (d−1)
√
δ1

21

virtual records. The cost becomes:

Cup = γ1wG +
d∑

u=2

(
6N2wAG ·

(
n

γ1

) 1
d−1

)
= γ1wG + (d− 1) · 6N2wAG ·

(
n
γ1

) 1
d−1

.

We then find the value of γ1 that minimizes Cup to be:

γ1 =

(
6N2wAG
wG

(d−1)
√
n

) d−1
d

.

Therefore, at recursive step u, we split the database as follows:

γu =


(

6N2wAG

wG

(d−1)
√
n
) d−1

d
: u = 1(

n
γ1

) 1
d−1

: 2 ≤ u ≤ d

δu =

(
n

γ1

) d−u
d−1

With these values, our query communication cost simplifies to:

Cup = d
(
6N2wAG

) d−1
d d
√
wG

d
√
n.

We observe that both the query and response cost functions (Cup and Cdown) are concave
up in d. Therefore, the combined communication cost can be minimized for some depth d.
Since d is an integer, we evaluate the cost functions at each d starting at 1 and incrementing
until we find a value for d such that the cost at d is less than the cost at d+ 1. This value
of d is our optimal depth.

Note that the combined cost function should ideally, if such information is available,
take the bandwidths of both directions of our connection into account and that the differ-
ent directions may have different bandwidths. This is accomplished with a simple linear
weighting, such as 4Cdown + Cup if the downstream bandwidth is 4 times that of the up-
stream.

Table 3.1 shows a comparison of the communication cost for each of the protocols in
this thesis.

22

Table 3.1: A comparison of the communication costs (in bits) for the PIR protocols dis-
cussed in this thesis.

Protocol Query Cost Response Cost

AG07 [AG07] (6N2wAG)n 6s
Recursive AG07 [AG07] d (6N2wAG) d

√
n 6ds

G07 [Gol07] `wGn `s

Our hybrid (with AG07 and G07) `d (6N2wAG)
d−1
d d
√
wG d
√
n `6d−1s

If we use our hybrid protocol with a depth of d = 1, then we are simply using the
G07 protocol (with no CPIR component) and so will clearly have the same amount of
communication as the G07 protocol. Since we choose the value of d that minimizes the
communication cost for our hybrid protocol, we only use d > 1 if doing so results in a
lower communication cost. Hence when we use a depth of d > 1, we will have a lower
communication cost than the G07 scheme. Therefore, our hybrid scheme will not have a
higher communication cost than G07 for any depth.

Consider the difference between the per-server cost of our hybrid protocol and G07:

∆(d) = d(6N2wAG)
d−1
d d
√
wGn+ 6d−1s− wGn− s.

Note that ∆(1) = 0 since the hybrid protocol with depth d = 1 is the same as G07. By
finding the second derivative, we can conclude that ∆ is concave up for d > 1 since

∆′′(d) =
1

d3
(6N2wAG)

d−1
d d
√
wGn(ln(C)− ln(wGn))2 + s ln(6)26d−1 > 0

on this range. Therefore, for some n and s, either ∆(2) ≥ 0 and so ∆(d) ≥ 0 for all integers
d ≥ 2, or ∆(2) < 0, which occurs if and only if there exists an integer d ≥ 2 such that
our hybrid protocol with depth d costs less than G07. Therefore, our protocol outperforms
G07 if and only if

d(2) = 2
√

6N2wAGwG
√
n+ 6s− wGn− s < 0

⇐⇒ wGn− 2
√

6N2wAGwG
√
n− 5s > 0,

which occurs when
√
n >

2
√

6N2wAGwG+
√

4·6N2wAGwG+4·5s
2wG

=

√
6N2wAG+

√
6N2wAG+5s

√
wG

,

23

Table 3.2: The minimum number of blocks needed to make using the hybrid protocol more
communication efficient than G07 for the given block sizes and the typical values for our
security parameters.

Block Size Minimum Blocks for Hybrid to Outperform G07

1 KB 159,844 blocks
10 KB 239,565 blocks
100 KB 858,946 blocks
1 MB 5,944,267 blocks

or

n >
12N2wAG + 5s+ 2

√
36N4wAG2 + 30N2wAGs

wG
.

Table 3.2 shows the minimum number of blocks needed to make using the hybrid protocol
more communication efficient than G07 for a given block size when using the typical values
for N , wAG and wG. Notice that the minimum number of blocks grows more slowly than
the block size.

Comparing the formulas in Table 3.1, we see that the upstream cost of our hybrid
protocol is no worse than that of Recursive AG07 when `d ≤ 6N2wAG

wG
(= 37500 for the

recommended parameters), and similarly for the downstream cost when ` ≤ 6. For many
reasonable PIR setups, these inequalities are easily satisfied. Even if they are not, however,
the computational savings of our scheme over Recursive AG07 (see below) more than make
up for the difference. A slight complication in the analysis arises in cases in which the
optimal recursive depth d differs between the Recursive AG07 scheme and our hybrid
scheme; however, we will see in Section 3.3 that our scheme nonetheless outperforms the
Recursive AG07 scheme.

3.2.3 Computation

Unlike our analysis of communication, we do not have simple expressions for our com-
putation costs. In this section we reason about the computational cost of our protocol
compared to others; in Section 3.3.2, below, we directly measure the computation costs
of our scheme using empirical experimentation. The key observation, however, is that the
slower CPIR protocol is being performed over a much smaller database than the original.

24

The protocol effectively consists of IT-PIR over the whole database of n records, followed
by recursive CPIR over a sub-database of δ1 records.

Query Encoding

AG07 is expensive when generating the query because it involves matrix multiplications.
However, G07 is relatively cheap because it is essentially just generating random values and
evaluating polynomials. We expect the hybrid scheme will be better than AG07 for this
step because it replaces one iteration with the cheap G07 scheme encoding. Our hybrid
scheme may also be faster in this stage than G07 because of the addition of recursion. As
when recursion is added to the AG07 protocol, we change the request from one large (size
n) query into d much smaller (size proportional to d

√
n) queries.

Server Computation

The AG07 scheme is also expensive compared to the G07 scheme for server-side computa-
tion. This is because AG07 uses matrix-by-matrix multiplication for the bulk of its work,
whereas G07 uses vector-by-matrix multiplication. Our hybrid scheme will use the rela-
tively cheap server computation of G07 for the first iteration where the database is its full
size. The subsequent iterations will use a much smaller subset of the database, so using
AG07’s server computation will not add much additional expense.

Response Decoding

The last recursive step of decoding for our hybrid scheme will take the same amount of
computation as the G07 scheme. Since we have d− 1 steps of AG07 decoding as well, our
hybrid protocol will not outperform G07 in the decoding step. Our hybrid protocol will
also need to do any AG07 decoding once for every server at every recursive step. However,
the response being decoded at each recursive step is smaller than that of the recursive
AG07 protocol by a factor of 6 in our hybrid scheme. Therefore, when d > 1, the decoding
for our hybrid protocol will be comparable to that of recursive AG07.

If there are a significant number of Byzantine servers—those that attempt to maliciously
alter the result of the query—then the decoding time will be increased for the G07 iteration
of our hybrid scheme, though this increase will not be very significant compared to the
server computation of the G07 scheme [DGH12].

25

3.2.4 Privacy

The AG07 scheme keeps the client’s query private as long as the servers are computationally
bounded and as long as the Hidden Lattice Problem and the Differential Hidden Lattice
Problem are indeed hard to solve. Our hybrid scheme also relies on these assumptions for
perfect privacy.

The G07 scheme keeps the query private as long as no more than t servers are colluding
to find the contents of the query. Our hybrid scheme also relies on this non-collusion
assumption for perfect privacy.

One advantage of our hybrid scheme is that if the privacy assumptions for one of
the inner protocols is broken, then the query will still be partially private as long as we
use depth d > 1. For example, if the G07 non-collusion assumption is broken, then the
colluding servers will be able to find out a subset of the database that the desired record is
in, but they will not find out which record in that subset is the wanted one as long as the
AG07 assumptions still hold. We similarly have partial privacy if the AG07 computational
assumptions are broken and the G07 non-collusion assumption still holds.

This “defence in depth” is a benefit because it may dull some of the fears about using
a scheme that a user thinks does not adequately enough guarantee privacy. For example,
if someone does not feel that the non-collusion assumption is adequate enough for the G07
scheme, they may be more comfortable using this hybrid scheme because they know that
even in the event that too many servers collude, they will still maintain some privacy.

Unlike the hybrid protection extension to G07 (Section 2.2.2), our protocol does not
provide perfect privacy if one of the two privacy assumptions fails. The advantages of using
our protocol over hybrid G07 are a significant reduction (more than 3 orders of magnitude)
in computation time and, as will be illustrated in Section 3.3.1, improved communication
cost.

3.2.5 Robustness

As stated previously, the G07 scheme has the ability to correct for servers not responding
or responding incorrectly. The single-server AG07 scheme, however, does not have any
robustness.

In 2012, Devet et al. [DGH12] observed that the G07 protocol can be slightly modified
to be able to withstand up to v < k−t−1 misbehaving servers, with no extra computation
or communication cost over the original protocol, in a typical setting where clients aim to

26

fetch multiple records from the database. (The original G07 bound [Gol07] is v < k−
√
kt

when only one record is retrieved.)

An advantage of using G07 as the first iteration of our scheme is that the hybrid protocol
retains exactly the same robustness properties as G07: any misbehaviour will be detected
and corrected for at the Ψ IT-PIR multiple-server decoding step.

3.3 Implementation and Empirical Evaluation

We have implemented these protocols as an extension to the Percy++ [GDHH13] library,
an implementation of Goldberg’s scheme from Section 2.2.2. We incorporated both the
AG07 CPIR scheme and our hybrid scheme. Our implementation will be available in the
next release of Percy++.

The implementation of our hybrid PIR system combines the implementations of the
two inner protocols (G07 and AG07), using them as black boxes. Given all of the other
parameters, our implementation will find the optimal depth (d) and the best way to split the
database for the first (IT-PIR) iteration of the scheme (γ1) to minimize the communication
cost.

All of our multi-server queries were run on ` = 4 servers and we used t = 1 for the G07
privacy parameter. For our client machine, we used a 2.4 GHz Intel Xeon 8870, and each
server machine was a 2.0 GHz Intel Xeon E5-2650. All computations reported here were
done in a single thread, so that the reported times reflect total CPU time. However, all
of the computations are almost completely parallelizable [Dev13], and as we will show in
Chapter 4, using multiple cores would greatly reduce end-to-end latency, though not total
CPU time.

3.3.1 Communication

The plots in Figure 3.1 illustrate the amount of communication needed for our hybrid
scheme and the schemes of which it is comprised. We see that our hybrid protocol uses less
communication than that of AG07, and no more than that of G07, verifying the analysis
in Section 3.2.2, above.

27

Figure 3.1: Comparison of communication used by each scheme. Plot (a) shows the com-
munication used for queries on a 1 GB database for different database shapes. In plot (b),
the record size is fixed at 1 KB and we see the communication for different numbers of
records. Non-recursive AG07 imposes a limit of approximately 10,000 records so we do not
have data points for larger numbers of records. Error bars are present for all data points,
but may be too small to see. The datapoint labels for the Hybrid and Recursive AG07
schemes indicate the recursive depth used.

(a)

10
5

10
6

10
7

10
8

10
9

1
0

3
 x

 1
0

6

1
0

4
 x

 1
0

5

1
0

5
 x

 1
0

4

1
0

6
 x

 1
0

3

1
0

7
 x

 1
0

2

1
0

8
 x

 1
0

C
o

m
m

u
n

ic
a

ti
o

n
 C

o
s
t

(B
)

Number of Records x Record Size (B)

Communication Cost by Database Shape

AG07
Recursive AG07

1

2
3 4 5

6

G07
Hybrid

1

1 1

3

5

6

(b)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 1
0

1
0

2

1
0

3

1
0

4

1
0

5

1
0

6

1
0

7

C
o

m
m

u
n

ic
a

ti
o

n
 C

o
s
t

(B
)

Number of 1 KB Records

Communication Cost by Number of Records

AG07
Recursive AG07

2
2

3
3

3 4
4

G07
Hybrid

1 1
1

1

1

3
4

3.3.2 Computation

Query Encoding

Our experimental results show us that the encoding time is very much related to the size
of a PIR request. This is evidenced by how similar Figure 3.2b is to Figure 3.1b (the
communication associated with the same tests). The query encoding time for G07 is linear
in the number of records. On the other hand, the query encoding time for the AG07 scheme
is dominated by the dth root of the number of records. Because of this, for larger numbers
of records, the hybrid protocol encodes queries faster than G07.

Server Computation

As expected, Figure 3.3 shows that the server computation time of our hybrid PIR system
is very comparable to that of the G07 protocol. The figures also show that our hybrid

28

Figure 3.2: Comparison of the time used by the client to encode the request for each
protocol. Plot (a) shows the encoding time for queries on a 1 GB database for different
database shapes. In plot (b), the record size is fixed at 1 KB and we see the computation
time for different numbers of records. Non-recursive AG07 imposes a limit of approximately
10,000 records so we do not have data points for larger numbers of records. Error bars are
present for all data points, but may be too small to see.

(a)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

1
0

3
 x

 1
0

6

1
0

4
 x

 1
0

5

1
0

5
 x

 1
0

4

1
0

6
 x

 1
0

3

1
0

7
 x

 1
0

2

1
0

8
 x

 1
0

E
n

c
o

d
e

 T
im

e
 (

s
)

Number of Records x Record Size (B)

Encode Time by Database Shape

AG07
Recursive AG07

G07
Hybrid

(b)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

 1
0

1
0

2

1
0

3

1
0

4

1
0

5

1
0

6

1
0

7

E
n

c
o

d
e

 T
im

e
 (

s
)

Number of 1 KB Records

Encode Time by Number of Records

AG07
Recursive AG07

G07
Hybrid

Figure 3.3: Comparison of the time used by the server(s) to process the client request for
each protocol. For further details see the caption for Figure 3.2.

(a)

10
-1

10
0

10
1

10
2

10
3

10
4

1
0

3
 x

 1
0

6

1
0

4
 x

 1
0

5

1
0

5
 x

 1
0

4

1
0

6
 x

 1
0

3

1
0

7
 x

 1
0

2

1
0

8
 x

 1
0

S
e

rv
e

r
T

im
e

 (
s
)

Number of Records x Record Size (B)

Server Time by Database Shape

Recursive AG07
AG07

Hybrid
G07

(b)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 1
0

1
0

2

1
0

3

1
0

4

1
0

5

1
0

6

1
0

7

S
e

rv
e

r
T

im
e

 (
s
)

Number of 1 KB Records

Server Time by Number of Records

Recursive AG07
AG07

Hybrid
G07

29

Figure 3.4: Comparison of the time used by the client to decode the server response for
each protocol. For further details see the caption for Figure 3.2.

(a)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

1
0

3
 x

 1
0

6

1
0

4
 x

 1
0

5

1
0

5
 x

 1
0

4

1
0

6
 x

 1
0

3

1
0

7
 x

 1
0

2

1
0

8
 x

 1
0

D
e

c
o

d
e

 T
im

e
 (

s
)

Number of Records x Record Size (B)

Decode Time by Database Shape

Recursive AG07
AG07

Hybrid
G07

(b)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 1
0

1
0

2

1
0

3

1
0

4

1
0

5

1
0

6

1
0

7

D
e

c
o

d
e

 T
im

e
 (

s
)

Number of 1 KB Records

Decode Time by Number of Records

Recursive AG07
AG07

Hybrid
G07

system performs its server computation approximately 2 orders of magnitude faster than
Recursive AG07. As noted above, this time is also highly parallelizable; the times reported
in the figure use only a single thread, and so represent total CPU time.

Response Decoding

Figure 3.4 shows us that when we have a depth of at least 2 for the hybrid PIR system (i.e.,
we have at least one iteration of AG07) , the decoding time approaches that of recursive
AG07. This is because, unlike the server computation where the cheap G07 computation
is being done on the first iteration when the database is large, the cheap G07 decoding
is happening on the last iteration, when the response has been reduced in size by d − 1
iterations of AG07 decoding. For this reason, the decoding step of our hybrid PIR system
is comparable to that of recursive AG07 and not the quicker G07. Even so, we note that
the time of the decoding step is quite insignificant compared to the server computation
step of a query.

3.3.3 Total Query Time

In Figures 3.5, 3.6, and 3.7 we plot the total time for a query on our hybrid PIR system
as well as its component protocols. We show the total time for three different connection

30

Figure 3.5: Comparison of total query time for each scheme over a connection with 9 Mbps
download bandwidth and 2 Mbps upload bandwidth. Plot (a) shows the time for a 1 GB
database with different database shapes. In plot (b), the record size is fixed at 1 KB and
we see the time for different numbers of records. Non-recursive AG07 imposes a limit of
approximately 10,000 records so we do not have data for larger numbers of records. Error
bars are present for all data points, but may be too small to see.

(a)

10
-1

10
0

10
1

10
2

10
3

10
4

1
0

3
 x

 1
0

6

1
0

4
 x

 1
0

5

1
0

5
 x

 1
0

4

1
0

6
 x

 1
0

3

1
0

7
 x

 1
0

2

1
0

8
 x

 1
0

T
o

ta
l
T

im
e

 (
s
)

Number of Records x Record Size (B)

Total Time Over 9/2 Mbps Connection

AG07
Recursive AG07

G07
Hybrid

(b)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 1
0

1
0

2

1
0

3

1
0

4

1
0

5

1
0

6

1
0

7

T
o

ta
l
T

im
e

 (
s
)

Number of 1 KB Records

Total Time Over 9/2 Mbps Connection

AG07
Recursive AG07

G07
Hybrid

Figure 3.6: Comparison of total query time for each scheme over a connection with 20 Mbps
download bandwidth and 5 Mbps upload bandwidth. For further details see the caption
for Figure 3.5.

(a)

10
-1

10
0

10
1

10
2

10
3

10
4

1
0

3
 x

 1
0

6

1
0

4
 x

 1
0

5

1
0

5
 x

 1
0

4

1
0

6
 x

 1
0

3

1
0

7
 x

 1
0

2

1
0

8
 x

 1
0

T
o

ta
l
T

im
e

 (
s
)

Number of Records x Record Size (B)

Total Time Over 20/5 Mbps Connection

AG07
Recursive AG07

G07
Hybrid

(b)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 1
0

1
0

2

1
0

3

1
0

4

1
0

5

1
0

6

1
0

7

T
o

ta
l
T

im
e

 (
s
)

Number of 1 KB Records

Total Time Over 20/5 Mbps Connection

AG07
Recursive AG07

G07
Hybrid

31

Figure 3.7: Comparison of total query time for each scheme over a connection with
100 Mbps download bandwidth and 100 Mbps upload bandwidth. For further details see
the caption for Figure 3.5.

(a)

10
-1

10
0

10
1

10
2

10
3

10
4

1
0

3
 x

 1
0

6

1
0

4
 x

 1
0

5

1
0

5
 x

 1
0

4

1
0

6
 x

 1
0

3

1
0

7
 x

 1
0

2

1
0

8
 x

 1
0

T
o

ta
l
T

im
e

 (
s
)

Number of Records x Record Size (B)

Total Time Over 100 Mbps Connection

AG07
Recursive AG07

G07
Hybrid

(b)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

 1
0

1
0

2

1
0

3

1
0

4

1
0

5

1
0

6

1
0

7

T
o

ta
l
T

im
e

 (
s
)

Number of 1 KB Records

Total Time Over 100 Mbps Connection

AG07
Recursive AG07

G07
Hybrid

speeds between the client and server(s). Figure 3.5 shows tests using a connection with
9 Mbps download and 2 Mbps upload. This connection was used by Olumofin and Gold-
berg [OG11] to represent a home user’s connection in 2010. Using the same source [Ook14],
we represent a home user in 2014 in Canada or the U.S. with 20 Mbps download and 5 Mbps
upload in Figure 3.6. Figure 3.7 models a connection over 100 Mbps Ethernet.

Our results show us that the total query time needed for our hybrid PIR system is
similar or better than that of G07. We also see that the total query time of recursive AG07
is approximately 2 orders of magnitude larger than that of our system.

These plots also illustrate that our hybrid PIR system does not use much communi-
cation time. This is because the total query time of the hybrid system does not improve
much when the network capacity is increased. Contrast this with G07 when there are a
large number of records—in this case we see a significant improvement in total query time
as the network capacity increases.

3.4 Summary

In this chapter, we introduced a hybrid PIR protocol that combines the recursive property
of CPIR protocols with the communication and computation efficiency of IT-PIR protocols.

32

We showed that our hybrid protocol is more communication efficient than the CPIR and
IT-PIR protocols of which it is composed and that it inherits other desirable properties
including robustness. We have implemented our hybrid protocol as an extension to the
Percy++ [GDHH13] library and show empirical evidence of these benefits.

33

Chapter 4

Parallelized Server Computation

4.1 Parallelizing PIR

For each of these protocols, the computation required of each server is a significant portion
of the total query time. A common approach to decreasing the time needed for computa-
tion is parallelization: splitting the job into parts that are not dependent on each other,
computing these parts at the same time on different resources and putting the results to-
gether to form the result of the entire job. As shown in the sections above, the server-side
computation for all of these PIR protocols is a matrix multiplication operation, which lends
itself quite naturally to parallelization.

Previous work [Dev13] has shown that the G07 protocol can be parallelized effectively.
We expand on this work by parallelizing all of the PIR protocols that we have outlined and
providing different methods of parallelization to suit the resources available to those using
our system. We have implemented this work as part of Percy++ [GDHH13] and present
the results produced by our implementation.

Please note that for any of the multiserver protocols, it is likely that the client will not
experience a speedup from parallelization of server-side computation unless all servers (or
at least the slowest servers) use parallelization.

4.1.1 More Than One Way to Split Computation

To perform parallelization, we need to have the ability to process multiple parts of a job at
once. We outline two methods of parallel execution and discuss when each is appropriate.

34

Multithreading

If a machine has multiple processors, we can use multithreading to perform different parts
of the matrix multiplication at once over the machine’s cores. The advantage of using mul-
tithreading is that worker threads use shared memory and will not need to use significant
resources to communicate to each other.

Distributed Computation

Another method of parallel execution is to distribute computation to a group of worker
processes on different machines. We note that these processes could be on the same ma-
chine, however if that is the case, using multithreading would be preferable. The main
process will need to send part of the request to each of the workers and, after doing their
portion of the work, the workers send their results back to the main process.

A Combination

We could also use a combination of both methods: Our main processes splits the com-
putation up between workers on separate machines. Each of these workers will then use
multithreading to split their portion computation between the processors on their machine.

Our implementation provides all of these methods of parallel execution. From this
point we will use the term worker to refer to either a worker thread or worker process.

4.1.2 More Than One Way to Split a Request

To simplify things, we will first consider a non-recursive PIR scheme (i.e. G07, C95 or non-
recursive AG07). In all of our protocols, the servers are performing a matrix multiplication
of two matrices: a request matrix and a database matrix. Figure 4.1 illustrates the server-
side computation for the G07 and C95 algorithms. Note that the given dimensions are the
dimensions of the matrices in the field F used for computation. In G07 and C95, each row
of the request matrix is a query for one record, each row of the database matrix is a record
and each row of the response matrix is the server response for one record. We will use m
to denote the number of words in F each record is made up of and use Q to denote the
number of records the client has requested.

35

Figure 4.1: Server-side computation for G07 and C95.

Figure 4.2: Server-side computation for G07 and C95 when partitioning the record queries.

Partitioning the Queries

One approach to parallelizing the server-side computation is that each worker performs
the computation for a subset of the record queries that the client has made. Figure 4.2
illustrates the part of the computation for one worker for G07 or C95. A worker gets a
portion of the request matrix that corresponds to a subset of the requested records. It
applies its part of the request matrix to the entire database and comes up with a portion
of the response matrix. To complete the computation, all of the worker responses must be
concatenated together to get the full response.

An advantage to this approach is that there is very little overhead involved in parti-
tioning the request or combining the worker responses. However, the parallelization is not
effective unless the client queries for multiple records.

36

Figure 4.3: Server-side computation for G07 and C95 when partitioning the records of the
database. Note that the responses from the workers must be added together to get the full
response for the client.

Partitioning the Database Records

Another approach is to give each worker a portion of the database. That is, we partition
the records and assign some to each worker. Figure 4.3 illustrates the computation for one
worker using this approach. The request matrix is partitioned so that each worker gets the
part of every query that corresponds to its part of the database. It applies its part of the
request matrix to its part of the database matrix and comes up with a response matrix.
To complete the computation, all of the worker responses must be added together to get
the full response to send to the client.

This approach is particularly useful for the case where the database is distributed
between a set of machines in a cluster as each machine can do the computation for the
part of the database which it possesses and the parts of the database will not need to be
sent across the network for another machine to process. The main disadvantage is that the
matrix addition of worker responses involves more overhead than the other approaches use
for their combination step.

Partitioning the Words of Each Record

One more approach to parallelizing the computation is to partition the database matrix so
that a worker is assigned a portion of each record. Figure 4.4 illustrates the computation
for one worker. The worker is given the entire request matrix and applies it to its portion
of the database matrix. To complete the computation, the worker responses must be joined
together as shown in the figure.

37

Figure 4.4: Server-side computation for G07 and C95 when partitioning the words of each
record of the database.

It is important that our partition assigns whole columns of the database matrix to each
worker (or whole rows in the case of AG07; see Figure 4.8). If the partitioning is done
incorrectly the response-combining step is not as straightforward as concatenating parts of
the worker responses.

This approach is similar to partitioning the queries in that there is very little overhead
in the combination step. A disadvantage is that, in the case of distributed worker processes,
more communication is necessary since each worker needs the entire request matrix.

The first two approaches have been implemented as part of Percy++ [GDHH13], how-
ever this third approach has not been implemented. This may be part of a future release
of Percy++.

A Combination

A final possibility is to combine two, or even all three, of the above approaches to paral-
lelizing the server-side computation.

* * *

Figures 4.5, 4.6, 4.7 and 4.8 illustrate the approaches to parallel server-side computation
for AG07. Note that the database matrix is on the left of the multiplication operation and
the request matrix is on the right (the opposite of the order of G07 and C95). The database
matrix is made up of n side-by-side submatrices of size L×N where each submatrix is a
record. The request matrix is made up of Q (number of records requested) side-by-side
submatrices of size N · n× 2 ·N where each submatrix is the query for one record.

38

Figure 4.5: Server-side computation for AG07.

Figure 4.6: Server-side computation for AG07 when partitioning the record queries.

4.2 Parallelizing Recursive PIR

We will now apply parallelization to our recursive PIR protocols: recursive AG07 and our
hybrid protocol.

Partitioning the Queries

Since the queries for each record are independent, we can simply partition the recursive
query requests. That is, if some worker is assigned query i, the response will be correct as
long as that worker computes all iterations of query i.

39

Figure 4.7: Server-side computation for AG07 when partitioning the records of the
database. Note that the responses from the workers must be added together to get the full
response for the client.

Figure 4.8: Server-side computation for AG07 when partitioning the bytes of each record
of the database.

Partitioning the Database Records

It is not so easy applying parallelization to recursive PIR when we assign a subset of the
records to each worker. Consider a case where we are using recursive AG07 with a depth
of at least two. We can split the records of the original database among our workers and
have them do the computation for the first iteration of the protocol. After one iteration of
the protocol, each word of the result will be split into six pieces, each of which is a word
in the subdatabase for iteration two. However, if we do not combine (add) the workers’
responses before this splitting operation, we will not get the correct subdatabase needed for
iteration two. That is, the matrix addition modulo p does not commute with the database
preparation operations between iterations one and two. So we can only parallelize in this

40

way if we do the worker response combining step between each iteration, adding more
overhead.

This is especially troublesome when the work is being distributed over multiple worker
processes because they will need to send their result back to the master server between
each iteration and then wait for the new subdatabase to be sent back to them. This
adds a significant amount of overhead and may not be worth the hassle. One way to
mitigate this is to do distributed computation for the first iteration and allow the master
server to compute all the following iterations. This way, the largest iteration, the first,
will be parallelized and the amount of extra communication between workers is reduced.
Our implementation includes an option to do distributed computation for only the first
iteration when each worker gets a subset of the database records.

4.3 Empirical Evaluation

We have implemented parallelized server computation for all of the PIR protocols discussed
in this thesis as an extension to the Percy++ [GDHH13] library. Our implementation will
be available in the next release of Percy++.

All of our servers and worker servers were run on a 2.0 GHz Intel Xeon E5-2650 which
has 16 cores and is able to provide 32 simultaneous threads using hyperthreading. Our
measurements are of just the server computation time; we do not include the time the
server takes reading a request or sending a response.

Each test queried the server(s) for 50 records. The plots show the number of records
that can be retrieved per second based on the number of threads and/or worker processes
being used for the computation. In these plots, highly parallelized computation is evidenced
by a near-linear relation.

4.3.1 Multithreading

G07 and our Hybrid Protocol

Figures 4.9 and 4.10 show the results of using multithreading with G07 and our hybrid
scheme. Note that Figure 4.9 only shows results for G07 because with this size of database,
our hybrid protocol will simply be running G07 and has the same results.

The near-linear relations seen for G07 confirm that its server computations are highly
parallizable. We see that as the number of threads becomes very large, the effects of

41

Figure 4.9: The number of queries possible per second given the number of threads. The
1 GB database used was a square 32768 records each of 32768 B.

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30 35

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

Number of Threads

Multithreading by Partitioning Records

G07

(b)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30 35

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

Number of Threads

Multithreading by Partitioning Queries

G07

Figure 4.10: The number of queries possible per second given the number of threads. The
1 GB database used was 1048576 records each of 1024 B.

(a)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20 25 30 35

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

Number of Threads

Multithreading by Partitioning Records

G07
Hybrid

(b)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 5 10 15 20 25 30 35

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

Number of Threads

Multithreading by Partitioning Queries

G07
Hybrid

42

the overhead of parallelization start be seen. Notice that when partitioning records (Fig-
ure 4.10a), our hybrid protocol is affected by overhead much more than G07. This is
because we need to combine the results from each thread at the end of every iteration (in
this case d = 3).

Also when partitioning the records (Figures 4.9a and 4.10a), we see a blip in the perfor-
mance at around 16 threads. We suspect this is because the servers can handle 32 threads
at a time using hyperthreading, but they only have 16 actual cores.

Note that there are a few plateaus in the data when partitioning the queries. This is
because the tests only requested 50 records. For example, for all t ∈ [17, 24], if there are
t threads, then some thread will need to do the computation for three of the fifty queries,
and so for these values of t we expect the computation time to be approximately the same.
If we query for more than 50 records, we expect these plateaus to smooth.

4.3.2 Distributed Computation

G07 and our Hybrid Protocol

Figures 4.11 and 4.12 show the number of queries that can be processed per second given
the number of worker processes for G07 and our hybrid protocol. We can see that paral-
lelization is having the desired effect: the number of queries possible is increasing by nearly
a factor of the number of workers.

When partitioning records, as in Figure 4.12a, we see that overhead is affecting our
hybrid protocol more than G07. As with the same case using multithreading, we need
to combine worker results between each iteration. Since we are using distributed worker
processes, this means that the master server needs to receive all of the worker responses
between each iteration, add the responses and send the subdatabase for the next iteration
to all of the workers. The workers cannot continue their computation until they receive
this new subdatabase.

Figure 4.12a includes tests where only the first iteration of the hybrid protocol is dis-
tributed and the other iterations are computed by the master. We see that there is some
improvement in the computation time, however, it is not very significant. This is likely
because the hybrid protocol does not have very large databases after iteration one and this
means there is not much computation after iteration one.

43

Figure 4.11: The number of queries possible per second given the number of worker pro-
cesses. The 1 GB database used was a square 32768 records each of 32768 B.

(a)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 1 2 3 4 5 6 7 8

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

Number of Worker Processes

Distributed Computation by Partitioning Records

G07

(b)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 1 2 3 4 5 6 7 8
Q

u
e

ri
e

s
 P

e
r

S
e

c
o

n
d

Number of Worker Processes

Distributed Computation by Partitioning Queries

G07

Figure 4.12: The number of queries possible per second given the number of worker pro-
cesses. The 1 GB database used was 1048576 records each of 1024 B. Plot (a) contains
results for Hybrid when only the first iteration is distributed (and the rest are computed
on the master server).

(a)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 1 2 3 4 5 6 7 8

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

Number of Worker Processes

Distributed Computation by Partitioning Records

G07
Hybrid (Only First Iter. Distributed)

Hybrid

(b)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 1 2 3 4 5 6 7 8

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

Number of Worker Processes

Distributed Computation by Partitioning Queries

G07
Hybrid

44

Figure 4.13: The number of queries possible per second given the number of worker pro-
cesses using G07. Each line corresponds to the number of threads used on each worker.
The 1 GB database used was 32768 records each of 32768 B. In both plots the workers’
records are split between worker threads.

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

Number of Worker Processes

Combinination Parallelization by Partitioning Records

4 threads
3 threads
2 threads
1 thread

(b)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

Number of Worker Processes

Combinination Parallelization by Partitioning Queries

4 threads
3 threads
2 threads
1 thread

Figure 4.14: The number of queries possible per second per worker thread for a given
number of worker processes using G07. Each line corresponds to the number of threads
used on each worker. The 1 GB database used was 32768 records each of 32768 B. In both
plots the workers’ records are split between worker threads.

(a)

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1 2 3 4 5 6 7 8Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

 P
e

r
W

o
rk

e
r

T
h

re
a

d

Number of Worker Processes

Combinination Parallelization by Partitioning Records

4 threads
3 threads
2 threads
1 thread

(b)

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1 2 3 4 5 6 7 8Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

 P
e

r
W

o
rk

e
r

T
h

re
a

d

Number of Worker Processes

Combinination Parallelization by Partitioning Queries

4 threads
3 threads
2 threads
1 thread

45

4.3.3 A Combination

The tests in Figure 4.13 combine the use of distributed workers and multithreading for
G07. There are a number of worker servers and each server is doing computation over a
number of threads. Each line in the plot corresponds to a certain number of threads. In
Figure 4.14 we show the queries per second per worker thread for the same tests. Our lines
have a slight downward slope, signifying that as we add workers there is more effect from
the overhead of splitting the request between workers and combining the results. There
is a similar trend as the number of threads increases. However, the effects of overhead
are not very significant when error and the scale of the plot are taken into consideration.
As expected, the improvement in performance is approximately the number of workers
multiplied by the number of threads on each worker.

Using parallel server computation makes it possible to use PIR on very large databases.
To show this, we tested G07 on a 1 TB database using 8 worker machines, each running 16
threads. The database records were split evenly between workers and on each worker the
database records were again split evenly between the threads. The server computation for
PIR queries of this database took 7.9± 0.8 s. We also ran G07 with no parallelization on
a database of size 7.82 GB, approximately the size of the subdatabases that the threads
owned in the pervious test, and the server computation took 7.3± 0.8 s. This shows that,
even at such a large scale, parallel server computation is effective. We conclude that,
through parallel computation, PIR is not just feasible on large databases, but practical.

4.4 Summary

In this chapter, we showed how we can use multithreading and/or distributed computation
to parallelize the server-side computation of a variety of PIR protocols, including a CPIR
protocol by Aguilar Melchor and Gaborit [AG07], an IT-PIR protocol by Goldberg [Gol07],
and the hybrid PIR protocol introduced in Chapter 3 of this thesis. We have implemented
parallelization for these protocols as an extension to the Percy++ [GDHH13] library and
showed that these protocols are indeed highly parallelizable. We showed that by using
parallelization, PIR is possible on large-scale databases and that private queries of such
databases can be performed in a reasonable amount of time.

46

Chapter 5

Conclusion

We introduce a hybrid Private Information Retrieval protocol that combines the low com-
munication and computation costs of multiple-server IT-PIR protocols with the ability of
single-server CPIR protocols to do recursion. We show that our protocol inherits several
positive aspects of both types of protocols and mitigates the negative aspects. In par-
ticular, our protocol maintains partial privacy of client query information if the security
assumptions made by one of the inner protocols is broken.

We have implemented this hybrid protocol as part of the open-source Percy++ library
for PIR, and using this implementation, demonstrated that our protocol performs as well
or better than PIR schemes by Aguilar Melchor and Gaborit and by Goldberg. Our hybrid
scheme is particularly effective when the number of records in a database is large relative to
the size of each record—a situation that arises naturally in a number of network scenarios,
including TLS certificate checking, private LDAP lookups, sensor networks, and more.

We have also implemented parallelized server-side computation for a number of PIR
protocols as an extension to the Percy++ library. We show that by using multithreading or
distributed worker processes we can greatly reduce the server computation time, allowing
requests to be served much more quickly. In most cases, we can increase the number
of queries possible in some time period by a factor of the number of worker threads or
processes, achieving perfect scalability.

47

5.1 Future Work

AG07 using GPUs

Aguilar Melchor et al. [ACG+08] demostrate how the AG07 scheme can be made much
faster by implementing the server-side computations on GPUs instead of CPUs. Our
implementation does not include this feature, but we plan on implementing it in the future
and investigating how much this will speed up our hybrid protocol.

Security of AG07

AG07’s privacy guarantees rely on the hardness of the Hidden Lattice Problem and the
Differential Hidden Lattice Problem, as specified by Aguilar Melchor and Gaborit [AG07].
According to Aguilar Melchor et al. [ACG+08] and Olumofin et al. [OG11] the security of
this scheme is not well understood. Future work could involve investigating the security
of the scheme and either developing a security proof or altering the scheme to make it
provably secure.

48

References

[ACG+08] Carlos Aguilar Melchor, Benôıt Crespin, Philippe Gaborit, Vincent Jolivet, and
Pierre Rousseau. High-Speed Private Information Retrieval Computation on
GPU. In SECURWARE, pages 263–272, 2008.

[AG07] Carlos Aguilar Melchor and Philippe Gaborit. A Lattice-Based
Computationally-Efficient Private Information Retrieval Protocol. In WE-
WORC 2007, July 2007.

[Aso01] Dmitri Asonov. Private Information Retrieval: An overview and current trends.
In ECDPvA Workshop, 2001.

[BIM04] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the Servers’ Computa-
tion in Private Information Retrieval: PIR with Preprocessing. J. Cryptology,
17(2):125–151, 2004.

[CCC+09] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan
Popoveniuc, Ronald L. Rivest, Peter Y. A. Ryan, Emily Shen, Alan T. Sher-
man, and Poorvi L. Vora. Scantegrity II: End-to-end verifiability by voters
of optical scan elections through confirmation codes. IEEE Transactions on
Information Forensics and Security, 4(4):611–627, 2009.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private
Information Retrieval. In 36th Annual Symposium on Foundations of Computer
Science, pages 41–50, 1995.

[CGN97] Benny Chor, Niv Gilboa, and Moni Naor. Private Information Retrieval by
Keywords. Technical Report TR CS0917, Department of Computer Science,
Technion, Israel, 1997.

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private
information retrieval. J. ACM, 45(6):965–981, 1998.

49

[DDM03] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design
of a Type III Anonymous Remailer Protocol. In IEEE Symposium on Security
and Privacy, pages 2–15, 2003.

[Dev13] Casey Devet. Evaluating Private Information Retrieval on the Cloud. Techni-
cal Report 2013-05, CACR, 2013. http://cacr.uwaterloo.ca/techreports/
2013/cacr2013-05.pdf.

[DGH12] Casey Devet, Ian Goldberg, and Nadia Heninger. Optimally Robust Private
Information Retrieval. In 21st USENIX Security Symposium, 2012.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-
Generation Onion Router. In 13th USENIX Security Symposium, 2004.

[GDHH13] Ian Goldberg, Casey Devet, Paul Hendry, and Ryan Henry. Percy++ project on
SourceForge. http://percy.sourceforge.net, 2013. Version 0.9.0. Accessed
February 2014.

[GGM98] Yael Gertner, Shafi Goldwasser, and Tal Malkin. A Random Server Model
for Private Information Retrieval. In 2nd International Workshop on Random-
ization and Approximation Techniques in Computer Science, pages 200–217,
1998.

[Gol07] Ian Goldberg. Improving the Robustness of Private Information Retrieval. In
2007 IEEE Symposium on Security and Privacy, pages 131–148, 2007.

[HOG11] Ryan Henry, Femi G. Olumofin, and Ian Goldberg. Practical PIR for Electronic
Commerce. In ACM Conference on Computer and Communications Security,
pages 677–690, 2011.

[Kik04] Hiroaki Kikuchi. Private Revocation Test using Oblivious Membership Evalu-
ation Protocol. In 3rd Annual PKI R&D Workshop, 2004.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication Is Not Needed: Single
Database, Computationally-Private Information Retrieval. In FOCS, pages
364–373, 1997.

[LLK13] Ben Laurie, Adam Langley, and Emilia Kasper. Certificate Transparency. RFC
6962, June 2013.

50

http://cacr.uwaterloo.ca/techreports/2013/cacr2013-05.pdf
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-05.pdf
http://percy.sourceforge.net

[McC90] Kevin S. McCurley. Odds and Ends from Cryptology and Computational Num-
ber Theory. In Cryptology and Computational Number Theory, volume 42 of
Proceedings of Symposia in Applied Mathematics, pages 145–166, 1990.

[MOT+11] Prateek Mittal, Femi Olumofin, Carmela Troncoso, Nikita Borisov, and Ian
Goldberg. PIR-Tor: Scalable Anonymous Communication Using Private In-
formation Retrieval. In 20th USENIX Security Symposium, pages 475–490,
2011.

[OG10] Femi Olumofin and Ian Goldberg. Privacy-preserving Queries over Relational
Databases. In 10th International Privacy Enhancing Technologies Symposium,
pages 75–92, 2010.

[OG11] Femi Olumofin and Ian Goldberg. Revisiting the Computational Practicality of
Private Information Retrieval. In 15th International Conference on Financial
Cryptography and Data Security, pages 158–172, 2011.

[Ook14] Ookla. Net Metrics for Canada and the United States. http://www.netindex.
com, 2014. Accessed February 2014.

[RS06] Peter Y. A. Ryan and Steve A. Schneider. Prêt à Voter with Re-encryption
Mixes. In ESORICS, pages 313–326, 2006.

[SC05] Len Sassaman and Bram Cohen. The Pynchon Gate: A Secure Method of
Pseudonymous Mail Retrieval. In In Proceedings of the Workshop on Privacy
in the Electronic Society (WPES 2005), pages 1–9, 2005.

[SC07] Radu Sion and Bogdan Carbunar. On the Computational Practicality of Pri-
vate Information Retrieval. In Proceedings of the Network and Distributed
Systems Security Symposium, 2007.

[Ser06] Jim Sermersheim. Lightweight Directory Access Protocol (LDAP): The Proto-
col. RFC 4511, June 2006.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22:612–613, November
1979.

[SMA+13] Stefan Santesson, Michael Myers, Rich Ankney, Ambarish Malpani, Slava
Galperin, and Carlisle Adams. X.509 Internet Public Key Infrastructure Online
Certificate Status Protocol - OCSP. RFC 6960, June 2013.

51

http://www.netindex.com
http://www.netindex.com

[Xiv14] Xively. Public Cloud for the Internet of Things. http://www.xively.com,
2014. Accessed February 2014.

52

http://www.xively.com

	List of Figures
	List of Tables
	List of Algorithms
	Nomenclature
	Introduction
	Private Information Retrieval
	Notation

	Background
	Computational PIR
	Aguilar Melchor and Gaborit's Protocol

	Information-Theoretic PIR
	Chor et al.'s Protocol
	Goldberg's Protocol

	Hybrid PIR
	Our Hybrid PIR Protocol
	Notation
	Protocol

	Analytical Evaluation
	Inner Protocols
	Communication
	Computation
	Privacy
	Robustness

	Implementation and Empirical Evaluation
	Communication
	Computation
	Total Query Time

	Summary

	Parallelized Server Computation
	Parallelizing PIR
	More Than One Way to Split Computation
	More Than One Way to Split a Request

	Parallelizing Recursive PIR
	Empirical Evaluation
	Multithreading
	Distributed Computation
	A Combination

	Summary

	Conclusion
	Future Work

	References

