
Large-Scale Emulation of Anonymous
Communication Networks

by

Sukhbir Singh

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2014

c© Sukhbir Singh 2014

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Tor is the most popular low-latency anonymous communication system for the Internet,
helping people to protect their privacy online and circumvent Internet censorship. Its low-
latency anonymity and distributed design present a variety of open research questions
related to — but not limited to — anonymity, performance, and scalability, that have
generated considerable interest in the research community. Testing changes to the design
of the protocol or studying attacks against it in the live network is undesirable as doing so
can invade the privacy of users and even put them in harm’s way. Traditional Tor research
has been limited to emulating a few hundred nodes with the ModelNet network emulator,
or, simulating thousands of nodes with the Shadow discrete-event simulator, both of which
may not accurately represent the real-world Tor network. We present SNEAC (Scalable
Network Emulator for Anonymous Communication; pronounced “sneak”), a large-scale
network emulator that allows us to emulate a network with thousands of nodes. Our hope
is that with such large-scale experimentation, we can more closely emulate the live Tor
network with half a million users.

iii

Acknowledgements

I would like to thank my supervisors, David Taylor and Ian Goldberg for their guidance,
support, and patience. In spite of their busy schedules, David and Ian were always available
to guide me and share their knowledge. I feel fortunate that I had the chance to work with
them, and truly, I could not have wished for better supervisors.

I would also like to thank my thesis readers, Martin Karsten and Bernard Wong, for
their time and feedback.

Finally, to the Cryptography, Security, and Privacy (CrySP) research group at the
University of Waterloo, for all the wonderful discussions about security and privacy.

iv

Dedication

To my father, who taught me everything. To Mom, KB, Shifa, for all the love.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Anonymity on the Internet and the Tor Network 1

1.2 Tor Research . 2

1.3 Our Contributions . 4

2 Related Work 6

2.1 ModelNet . 6

2.2 Shadow . 8

2.3 PlanetLab . 10

3 Design 11

3.1 Design Goals . 11

3.2 Architecture . 11

3.3 The Emulator Core . 13

3.3.1 Mininet . 14

3.3.2 Mininet Turbo . 16

3.3.3 LXC-Based Routing . 17

3.3.4 Link Attributes: tc and netem . 18

3.4 Edge Nodes . 19

vi

4 Implementation 21

4.1 Emulator Core . 21

4.2 Edge Nodes . 24

5 Experiments 25

5.1 Experimental Setup . 25

5.1.1 Comparison with ModelNet and Mininet 26

5.2 Large-Scale Tor Experimentation: Botnets 28

6 Future Work 33

7 Conclusion 34

References 35

vii

List of Tables

3.1 Startup and Shutdown Time for Various Mininet Topologies 14

3.2 Comparison between Host-Based and Switch-Based Routing 15

viii

List of Figures

1.1 The Tor Network . 2

1.2 Increase in Number of Tor Users in Turkey post Internet Censorship 3

1.3 Components of a SNEAC Setup . 4

2.1 Architecture of a ModelNet Setup . 7

3.1 Architecture of SNEAC . 12

3.2 Comparison of Mininet’s and SNEAC’s Architecture 16

3.3 Different Links of a Client Node . 18

4.1 Layout of a Client Node . 22

4.2 Open vSwitch Bridge Setup . 23

5.1 Comparison between SNEAC and ModelNet 26

5.2 Comparison between SNEAC and Mininet 27

5.3 Comparison between SNEAC, ModelNet, and Mininet 27

5.4 Number of Tor Users after a Botnet Attack 29

5.5 Number of ntor Circuits Before and After a HS C&C Shutdown 30

5.6 Number of TAP Circuits Before and After a HS C&C Shutdown 31

5.7 Change in Performance after a HS C&C Shutdown 31

ix

Chapter 1

Introduction

1.1 Anonymity on the Internet and the Tor Network

The Internet serves as a platform for various forms of communication and activism allowing
citizens to get their message across to a global audience almost instantly. The free flow of
information and ideas made possible by the Internet has proved to be an effective medium
for social change in many societies around the world [LGA+11].

Totalitarian regimes that were engaging in propaganda to further their own cause
started realizing the threat the Internet posed to their rule — it was a decentralized and
distributed system that connected people across the world who were sharing information
over which governments had no control. To restrict the freedom of their citizens in the
virtual world, many regimes started spying on the online activities of their citizens, while
others started censoring the Internet by restricting access to or publication of content that
they deemed inappropriate. Fortunately for the people, such attempts were unsuccess-
ful and many systems for anonymous communication were developed that helped people
maintain their privacy online and circumvent Internet censorship.

The most effective and widely used such system is called Tor (The Onion Router), which
is based on a technique called onion routing [SGR97] designed at the U.S. Naval Research
Laboratory in 1998. In onion routing, messages are repeatedly encrypted and sent across
the network through several nodes called onion routers. Analogous to removing the layers
of an onion, each onion router strips a layer of encryption and forwards the message to
the next router; this process is repeated until the message reaches its final destination (see
Figure 1.1). Tor is the most prominent implementation of onion routing [DMS04] and

1

Entry Guard (I)

Middle Relay (II) Exit Relay (III)

Client

Destination

Relay

Entry
Middle
Exit

Figure 1.1: The Tor Network

has been in development since 2002 with about half a million users using it to protect
their privacy on the Internet or to resist state-sponsored Internet censorship. Tor has
thus far proved resilient to government attempts to de-anonymize its users or block its
usage, even though the Tor developers and totalitarian regimes regularly engage in an
arms race [Din11, Din12] to outdo each other. Figure 1.2 shows an increase in the number
of users connecting to the Tor network from Turkey after the Turkish government censored
Twitter in March 2014.

1.2 Tor Research

Tor’s low-latency anonymity and distributed design present a variety of open research ques-
tions related to — but not limited to — anonymity, performance, and scalability, which
have generated considerable interest in the research community, particularly among net-
work and security researchers [Tor13]. As Tor is under active development, the research
community frequently proposes design changes to the protocol, which may focus on im-
proving the performance of the network or work towards implementing defences for the
possible attacks against it. Testing these changes on the live network itself is undesirable
as doing so can invade the privacy of users and in some cases, even put them in harm’s
way — any change made to the live network may impact all half a million users, some of
whom trust Tor with their lives to keep them hidden under a cloak of anonymity as they
access the Internet while living under the shadow of oppressive regimes.

2

Figure 1.2: The number of users connecting to the Tor network from Turkey doubled after
websites like Twitter were censored by the Turkish government in March 2014.

The two main critical points in the network for carrying out research are the volunteer-
operated relays (onion routers) and the clients (onion proxies). Testing changes at either
point presents different but related problems of putting users at risk or affecting the per-
formance: relay operators are usually wary of running untested research code unless they
feel assured that it brings a tangible benefit for the network, while for the clients, any
change that may leak their identity puts them in harm’s way.

As a workaround to this problem, Tor research has been performed outside the live net-
work by setting up private offline Tor networks. Traditional ways of doing this involve set-
ting up a local cluster with the ModelNet network emulator [BSMG11, VYW+02], running
Tor on a single machine by simulating it with the Shadow discrete-event simulator [JH12],
or by carrying out experiments on distributed testbeds like PlanetLab [CCR+03]. These
approaches have their own strengths and weaknesses: while ModelNet provides for an emu-
lated Tor network, it does not scale beyond a thousand nodes; Shadow scales to thousands
of nodes [Sha14b] but it is a simulator and makes certain assumptions in order to simplify
its simulation model; PlanetLab experiments also do not scale beyond a few hundred nodes
and are difficult to reproduce. For the lack of a better tool, most literature on Tor has used
one of these testing platforms to evaluate new design proposals or analyze attacks against
the network, while being aware of their shortcomings and limitations. (We elaborate more

3

SNEAC Core

Edge Nodes

IP Network Emulation

IP-Based Applications

Figure 1.3: The two components of a SNEAC setup: the core and edge nodes.

on this in Chapter 2.)

An experimentation platform can usefully substitute for the real Tor network if it
allows for the emulation of thousands of Tor nodes while ensuring that the results are
independently verifiable and reproducible. ModelNet offers the realism of a live deployment
of Tor, but falls short on scalability as it is not possible to run thousands of Tor nodes
because of the limitations imposed by its FreeBSD-based emulator.

1.3 Our Contributions

We present SNEAC, the Scalable Network Emulator for Anonymous Communication, a
network emulation testbed for Tor that runs real, unmodified Tor code and can scale to
thousands of nodes. SNEAC is the only large-scale network emulation-based testbed that
comes close to the real Tor network in both scale and realism of the experiments. This
thesis makes the following contributions:

• The design and implementation of a scalable network emulator that derives from
ModelNet’s architecture but replaces its FreeBSD-based emulator with lightweight
Linux Containers [LXC14] for the virtual routers and the Linux kernel’s netem [Lin09]
(network emulation) module for emulating link properties such as bandwidth, latency,
packet loss, and jitter.

4

• A demonstration of the emulator’s scalability by performing a large-scale experiment
on the CrySP RIPPLE [Wat14] facility in which we run thousands of Tor nodes to
study the mitigation of botnets using the Tor network — an experiment that could
have only been performed by the emulation of a large number of nodes.

• Making a general-purpose, large-scale emulator available for the research community
that can perform emulation of unmodified TCP- and UDP-based applications running
on unmodified operating systems.

A SNEAC setup involves two components: the core and edge nodes (see Figure 1.3). The
core machine performs the IP-level emulation while the edge node machines run unmodified
IP-based applications. The functionality of both of these components is separated by
design such that the core is oblivious to the applications running on the edge nodes —
this modularization allows the SNEAC core to emulate any IP-based application, though
in this thesis we will focus our attention on emulating Tor. To that end, we will discuss
configuring and running an emulated Tor network on the edge nodes though the underlying
process is the same for any other application.

SNEAC is open source, easy to configure (single-click setup), and runs on major Linux
distributions without requiring modifications to the kernel. It can be downloaded from
https://crysp.uwaterloo.ca/software/sneac and comes with documentation for set-
ting it up on a cluster or running it on a single machine using virtual machines. We will
be announcing SNEAC to the Tor research community and have plans to maintain and
support its further development; our goal is to make SNEAC the de facto research platform
for Tor experimentation.

The remainder of the thesis is organized as follows: in Chapter 2, we discuss related
work in the field of Tor emulation and simulation. In Chapter 3, we describe the design of
SNEAC followed by a discussion of its implementation in Chapter 4. We then demonstrate
its scalability and efficacy in Chapter 5 by performing a large-scale experiment to study
the effects of botnets using the Tor network. We conclude the thesis by discussing future
work in Chapter 6 and summarizing our contributions in Chapter 7.

5

https://crysp.uwaterloo.ca/software/sneac

Chapter 2

Related Work

In this chapter we discuss the related work in the realm of Tor experimentation, which
includes the ModelNet emulator, the Shadow simulator, the PlanetLab distributed testbed,
and the ns-3 network simulator.

2.1 ModelNet

ModelNet [VYW+02] is a network emulation testbed that allows distributed networks to be
evaluated in Internet-like environments. A typical ModelNet setup consists of the emulator
machine (called the core), which loads a network topology and emulates link characteristics
like bandwidth, latency, packet loss, and jitter. One or more machines called edge nodes
run the unmodified TCP- or UDP-based applications that have to be emulated and are
connected to the core. The routing for the edge nodes is set up such that when a process on
a given edge node wants to communicate with another process on the same or a different
edge node, it goes through the core and experiences the link characteristics described above,
thus emulating the transmission of a packet as it would travel across a real-world network.
The emulator core is based on a custom FreeBSD 6.3 kernel running an improved version of
dummynet [Riz97] to perform the emulation, while the edge nodes can run any unmodified
operating system (typically Linux or FreeBSD).

The core is oblivious to the emulated applications running on the edge nodes since its
job is to just emulate the network and route packets to their destinations. As such, the
configuration of the processes on the edge nodes is independent of the core’s configuration
(except for the maximum number of processes that can be run, which we discuss later) but

6

Edge Node 1

10
.0

.1
.0

/2
4

Edge Node 2

10
.0

.2
.0

/2
4

Em
ul

at
or

 C
or

e Pipes

FreeBSD

Figure 2.1: A ModelNet/ExperimenTor setup with one core and two edge nodes. Multiple
Tor processes run on each edge node and the packets get routed through the core. The
pipes in the core denote emulated links with each of them having an associated packet
queue and queuing discipline.

is tailored to the application that has to be emulated. Bauer et al. [BSMG11] designed
ExperimenTor, a toolkit for emulation of the Tor network on the ModelNet testbed that
sets up the Tor processes on the edge nodes by configuring the directory authorities, relays,
and clients, and comes with tools that automate testing the emulated network.

ModelNet supports multiple cores and multiple edge nodes, though most ExperimenTor
deployments involve a single core and a single edge node which can run at most a thousand
Tor nodes. The scalability of the testbed is restricted both by the resource constraints of
the FreeBSD 6.3 kernel and by the complexity involved in setting up a ModelNet cluster.

• ModelNet runs (only) on a custom FreeBSD 6.3 kernel, which has limitations on the
amount of resources it can access, such as the number of CPU cores it supports, the
physical memory it can address, and the supported capacity of the NICs (network
interface cards).

7

• It is also no longer maintained — the last release was in 2005 [Mod05] and the
modified FreeBSD 6.3 kernel it runs on reached its end-of-life in 2010 [Fre14].

• The software has some critical bugs, such as loading an incorrect topology induces
kernel panics, which makes it problematic to use for running even the simplest of
experiments.

• The original documentation is lacking and even though attempts have been made to
document the installation and configuration process [GB13], setting up and running
an experiment on ModelNet is difficult to get right because of the various complexities
involved, such as compiling a FreeBSD kernel and making configuration changes, all
in the absence of any diagnostic messages.

For the reasons discussed above, most experiments performed with ModelNet have been
restricted to a single edge node and a single core, running approximately a thousand Tor
nodes. Other researchers have used simulators such as Shadow (Section 2.2) to get around
the scalability limits and intricacies involved in running an experiment on ModelNet, at
the cost of sacrificing the realism ModelNet offers by virtue of its emulation of unmodified
Tor processes running in real time.

2.2 Shadow

Shadow [JH12] is a discrete-event simulator that runs a private Tor network on a single
machine and scales to thousands of nodes. It simulates the network layer but links to and
runs real application code by encapsulating it in plug-in wrappers (library shims) that
provide the necessary functions for Shadow to interact with the application.

Shadow runs multiple virtual nodes by keeping a copy of all variable application state
for each node in the simulation and, when it has to execute an event in the application,
it does a context switch that copies the state information from its memory to the physical
memory location where the application expects the state to exist. The control then passes
to the application and when it returns, the updated state is copied back into Shadow’s
memory and the context is switched back to it. For library calls such as socket, Shadow
intercepts and re-routes them to their simulated counterparts using function interposition
(LD PRELOAD), allowing applications to run in a simulated environment without requiring
changes to their code.

8

Shadow can simulate large and diverse Tor networks (thousands of nodes) on a single
machine [Sha14b], thus overcoming the limitations of the ModelNet emulator. These scal-
ability benefits that Shadow offers come at a cost — by virtue of its being a simulator,
the validity of the results depends on the abstract model it is based on, which may not
accurately represent or encompass all low-level system interactions.

• Simulation is less accurate than emulation as simulators make assumptions about
various system processes in order to simplify their simulation model and they also
reinvent the wheel for the most basic primitives.

• Shadow implements its own version of the socket library and network protocols like
TCP and UDP. While this allows Shadow to simulate unmodified applications (by
re-routing standard library calls to their virtual counterparts), it creates an extra
layer of complexity, as rewriting networking stacks from scratch is difficult to get
right; indeed, Shadow has seen bugs in its TCP implementation [Sha14a] that can
drastically affect its experimental results.

• To save CPU cycles and simulation time, Shadow preloads (function interposition)
certain cryptographic functions (AES encrypt, AES decrypt, EVP Cipher). When
preloading these functions, Shadow does not perform encryption and decryption as
it assumes that applications running during simulation do not require confidentiality.
While doing this saves CPU cycles and simulation time, performing cryptographic
processing is an important part of Tor’s functionality and skipping any such primitive
should be avoided.

• Shadow’s scalability is restricted to the resources available on a single machine as it
is not possible to run a single instance of Shadow across multiple machines. While
this is ideal for running experiments that scale within the available resource limits,
Shadow cannot make efficient use of computing resources (such as an experimentation
cluster) beyond what it can access from the machine it runs on.

As compared to ModelNet, Shadow offers benefits such as scalability and ease of setup,
but experiments run on Shadow offer less accuracy than the ones run on ModelNet. In
spite of that, much of the recent research on Tor has used Shadow for experimentation
because of the benefits it offers and for the lack of a better emulation platform.

9

2.3 PlanetLab

PlanetLab [CCR+03] is a global, distributed testbed for network and distributed systems
research with nodes spread all across the globe. Even though a substantial amount of Tor
research has been carried out on PlanetLab, recent work has moved towards using Shadow
or ModelNet for a variety of reasons.

• The most common issue with running experiments on PlanetLab is that the results
are generally not reproducible [SPBP06] because they depend on the condition of
the PlanetLab network, which may vary over time. To generate statistically valid
results, experiments have to be run for long periods of time while ensuring availability
of sufficient resources, which may not be always possible.

• The scalability of experiments is restricted as PlanetLab has around twelve hundred
available nodes (at the time of writing) out of which not all are usable because they
are shared with researchers from all over the world.

• PlanetLab deployments are difficult to control and it is not possible to adapt them
to the network characteristics of the live Tor network.

Other related distributed emulation testbeds, such as DETER [DET14] and Emu-
lab [Emu14], are subject to the same limitations — shared resources which may skew
experimental results and limited scalability because of a small number of available nodes.

10

Chapter 3

Design

3.1 Design Goals

The decisions behind the design of SNEAC were influenced by the goal of developing an
experimentation platform for network research that would allow for the emulation of a large
number of application nodes limited only by the physical resources of the experimentation
platform. The design satisfies the following requirements:

• Emulation: Emulation-based testbed that runs real, unmodified application code.

• Scalability: Scales to thousands of application nodes.

• Accuracy: Experimental results are independently reproducible and verifiable.

• Usability: Open source, easy to manage and control with single-click setup.

3.2 Architecture

The design and architecture of SNEAC is based on that of ModelNet — one or more
machines called edge nodes run the unmodified TCP- or UDP-based applications that
have to be emulated and are connected to a single machine called the core, which loads
a network topology and emulates link characteristics like bandwidth, latency, packet loss,
and jitter. The routing for the edge nodes is set such that when a process on a given

11

Linux Container

Edge Node 1 Edge Node 2 Edge Node 3

10
.0

.0
.0

/1
6

10
.1

.0
.0

/1
6

10
.2

.0
.0

/1
6

Em
ul

at
or

 C
or

e

Open vSwitch
netem

Figure 3.1: Architecture of a SNEAC setup being used to emulate Tor.

12

edge node wants to communicate with another process on the same or a different edge
node, it goes through the core and experiences the link characteristics described above,
thus emulating a real-world network. Figure 3.1 shows the architecture of a SNEAC setup
with one core machine and three edge nodes.

The SNEAC core runs an unmodified Linux installation with lightweight LXCs (Linux
Containers) acting as virtual routers, netem performing the link emulation, and Open
vSwitch [PPA+09] routing packets to and from the edge nodes. For setting up the contain-
ers and configuring the link characteristics, we use a custom version of Mininet [LHM10],
described below.

An alternative to the SNEAC core is the ns-3 [ns-14] discrete-event network simulator.
Even though it is primarily intended for network simulation, it is possible to use ns-3 as a
real-time network emulator by connecting its simulation core to a device operating in real
time; thus, applications running on a real device connected to the core will run in real time
but the network layer will still be simulated. However, we do not use ns-3 for the core and
base our implementation on Mininet using LXCs.

The edge nodes run any unmodified operating system such as Linux or FreeBSD and
the applications that have to be emulated also run unmodified.

It is important to note that even though the focus of this thesis is on emulating Tor
relays and clients, SNEAC can emulate any TCP- or UDP-based application, unmodified.
This is because the emulation core is oblivious to the configuration of the applications on
the edge nodes — its job is simply to emulate the network and re-route the packets.

We will now discuss the various components of the emulator and the edge nodes.

3.3 The Emulator Core

The emulator performs two main tasks: emulation, handled by the Linux kernel’s netem

module, and routing, which involves LXCs acting as virtual routers and Open vSwitch
routing packets between the edge nodes and the LXCs. Before it can do any of that,
however, it needs to load and set up a virtual topology with routers and links and their
associated characteristics such as bandwidth, latency, packet loss, and jitter. We do this
using our custom version of the Mininet emulator with many scalability enhancements,
which we discuss in detail below.

13

Topology Hosts Switches Links Startup (sec) Shutdown (sec)
Linear (100) 100 100 199 48 ± 4 20 ± 2
Linear (200) 200 200 399 100 ± 30 30 ± 10
Linear (300) 300 300 599 180 ± 7 49 ± 2
Linear (400) 400 400 799 330 ± 6 70 ± 2
Linear (500) 500 500 999 890 ± 50 220 ± 20

Table 3.1: Startup and shutdown time for various topologies on Mininet 2.1.0+ with Open
vSwitch kernel switches (version 2.1.0) and the POX 0.2.0 controller running on a Linux
3.11.0 installation.

3.3.1 Mininet

Mininet [LHM10] is a network emulator for rapid prototyping of software-defined networks
(SDN) that sets up a collection of end-hosts, switches (or routers), and links on a single
machine, allowing users to quickly deploy custom networks with hundreds of nodes. A
Mininet-based network is made up of the following components:

• Hosts: Hosts are lightweight LXCs and are essentially a group of user-level processes
(bash) moved into a network namespace that provides them with their own network
devices, routing tables, and firewall rules.

• Links: A link is a virtual Ethernet pair (veth pair) which connects two virtual
interfaces and is bidirectional in nature. The data rate of the link is enforced by
Linux Traffic Control (tc) and other characteristics such as latency, packet loss, and
jitter are handled by the netem module.

• Switch: Mininet uses either the default Linux bridge or Open vSwitch (running in
kernel space) to switch packets across interfaces.

• Controller: A controller manages the flow of packets between switches in a software-
defined network. Mininet supports local as well as remote controllers.

While Mininet is ideal for emulating small networks with a few hundred nodes, it has
serious scalability issues when emulating networks with thousands of nodes, partly because
of its reliance on components such as Open vSwitch and partly because of design choices
that were not made with scalability in mind. One such limitation is that the Mininet
process is single-threaded : all operations, such as adding the LXCs or creating the veth
pairs are performed sequentially. While this hardly makes a difference for running small

14

Startup (sec) Shutdown (sec)
Node LXC Switch LXC Switch

Linear (100) 7.8 ± 0.8 19 ± 1 1.9 ± 0.2 6.1 ± 0.4
Linear (200) 17 ± 1 90 ± 4 4.7 ± 0.5 18 ± 1
Linear (300) 26 ± 1 220 ± 10 7.9 ± 0.5 28 ± 1
Linear (400) 36.5 ± 0.4 420 ± 40 11.1 ± 0.2 39 ± 1
Linear (500) 54 ± 4 800 ± 100 17 ± 1 40 ± 5

Table 3.2: Startup and shutdown time comparison between host-based and switch-based
routing for vanilla Mininet. The topologies include nodes of only a particular type (either
LXC or switch) with an equal number of links for a given topology.

topologies, as the network size increases, it becomes apparent that this is an inefficient
approach especially since the parallel creation of hosts and interfaces is supported by the
kernel.

By far the biggest bottleneck, however, comes from Open vSwitch, which Mininet uses
for the virtual routers: as the number of Open vSwitch switches increases, the performance
decreases and the startup/shutdown time increases, with this aggravated further as more
and more ports are added to the switches; these limitations are documented in the Open
vSwitch manual [Ope14] which puts an upper limit on the supported number of switches
per OVS instance at 256.

These scalability issues arise because Open vSwitch was not designed to support a
large number of switches on a single machine; indeed, it is a virtual switch that is used in
hardware virtualization environments but finds its use in Mininet (even though it was not
designed for that specific purpose) because it supports OpenFlow [MAB+08] and because
its kernel-space switching provides better performance than the other available options.
Table 3.1 benchmarks the startup and shutdown times (repeated 50 times) for various
topologies on a Mininet 2.1.0+ installation with Open vSwitch kernel switches (version
2.1.0) running on Linux 3.11.0. As we can observe, running a topology with thousands
of nodes is likely not feasible as the startup time increases superlinearly in the number of
switches or links, though starting hosts is sufficiently fast as it is being done inside the
kernel. Even assuming that a topology finishes setting up, it is unlikely that Mininet and
hundreds of Open vSwitch switches will be able to handle the traffic without affecting the
performance and validity of the experiment.

15

controller

switch

host host

host host

Figure 3.2: Architecture of a Mininet setup (left) compared with that of SNEAC (right).

3.3.2 Mininet Turbo

To scale Mininet to thousands of nodes, we make performance improvements to its code and
architecture and call our fork Mininet Turbo. We make the following changes to Mininet:

• LXC-Based Routing: As the link characteristics are set on the veth pairs and not
the switches or hosts, it is possible to replace the Open vSwitch switches with hosts
for the virtual routers. A host (LXC) in this case acts as a simple packet forwarder,
routing packets based on its routing table. As shown in Table 3.2, hosts scale better
than switches, are faster to start up and shut down (repeated 50 times), and by
doing this we remove the Open vSwitch bottleneck as LXC creation, configuration,
and routing (described below) are handled by the kernel. Also, there is no artificial
scalability limit as the number of LXCs is effectively limited only by the physical
resources of the machine.

• Static Routing: Another advantage of using LXCs for routing is that we do not
have to use any controller — static routing is set up between LXCs using the ip

route command as each LXC has its own routing table. Mininet uses a controller
to do software-defined networking while the SNEAC core is only concerned with IP-
level network emulation and therefore does not need a controller. Using static routing
results in a significant improvement in performance as the routing is now handled by
the kernel, as compared to using a controller or setting Open vSwitch flow rules for
each switch.

• Threading: Instead of creating hosts and links sequentially, we use threads, which
significantly speeds up the time it takes to set up a topology.

16

At this stage, a significant difference between Mininet and our implementation can be
explained: unlike Mininet, in our emulator, no traffic is generated on the emulator machine.
This is different from Mininet where hosts that generate the packets and switches that route
them all share the resources of a single machine. In SNEAC, the hosts that generate the
traffic run on the edge nodes and consume the resources (such as CPU, physical memory)
of their respective edge node machines, while the emulator only performs the emulation
and routing, which not only helps us gain in performance but also allows us to leverage
the resources of multiple machines.

3.3.3 LXC-Based Routing

In SNEAC, there are two types of nodes: client and non-client. A client is a node analogous
to a user connecting to a gateway router (ISP) while a non-client node is modeled after an
autonomous system (AS). This gives rise to an important distinction in the way they are
set up — a client node can receive packets from the outside world (edge nodes) as they
are connected to a node in the root network namespace, a namespace to which physical
devices can be assigned.

We need to handle multiple links for a client node because veth pairs are intrinsically
bidirectional and it is not possible to have asymmetric link characteristics like bandwidth,
which is not an accurate representation of a node connecting to an ISP in the real world.
Such a node may have different up/down bandwidths and packets sent between the node
and the ISP will have lower latency than the packets sent to other networks. We model
this behaviour by using multiple links between the client and the root node.

Figure 3.3 shows a client node connected to a root node with three different types
of links: down, up, and self. Packets that are incoming to a host (with a specific down
bandwidth) traverse through the down link while outgoing packets (with an up bandwidth)
traverse the up link. The self link is for packets that have the same source and destination
as that of the host, such as for packets sent between a client and its gateway router (ISP).

Taking the above example again, assume that the host will handle all packets in the
10.0.0.0/16 address space. Packets from the 10.1.0.0/16 network destined to this host
will come through the down link and go back through the up link, with varying bandwidths
and other characteristics. However, packets sent with the same destination as that of the
host (10.0.0.0/16) will traverse the self link and only experience latency and packet loss.

To route packets between the root node and the other nodes, we use Open vSwitch
which acts as a bridge connecting all client nodes to the root node. (We point out that this
is the proper use case of Open vSwitch since this is what it was designed to do — function

17

down up self

client

root

Figure 3.3: A client node connected to a node in the root network namespace has three
different types of links to handle asymmetric bandwidth and latency.

as a virtual switch.) An Open vSwitch bridge is created to which all the interfaces (all
client node links) and a given physical interface are attached. Flow rules are then installed
based on the source and destination fields so that packets can be routed to the appropriate
nodes where their own routing table routes them further to other client nodes. Open
vSwitch handles the flow of packets only at the edges of the emulator and ensures that
incoming and outgoing packets respect the down and up links.

3.3.4 Link Attributes: tc and netem

The actual emulation of the network is performed by Linux Traffic Control (tc) and the
netem module, which set link characteristics for the veth pairs like bandwidth, latency,
packet loss, and jitter. For a link, the bandwidth is set in Mbits/sec, latency and jitter in
ms, and the packet loss in percentage.

With LXC-based routing and using kernel modules like tc and netem, we move away
from external dependencies and closer to the kernel, which not only helps us scale better
but assures us of the validity of our emulator as the emulation is performed by standard
Linux network emulation kernel modules.

18

3.4 Edge Nodes

The edge nodes run unmodified TCP- or UDP-based applications that have to be emulated
on unmodified operating systems, which are typically Linux or FreeBSD. Though the edge
nodes require no special configuration, applications have to be configured so that we can run
multiple applications on a single machine while ensuring that all of their routing takes place
through the emulator. The general configuration process applies to any application, with
some difference in application-specific details. Here, we focus our attention on emulating
Tor.

We start by creating an interface alias for each application we want to run (such as
eth0:1, eth0:2) and then binding applications to these interface aliases. This is done by
intercepting the bind() and connect() calls to use the IP address of an alias as the local
address; before launching an application, we call LD PRELOAD on it and set its source IP
to be one of the IP addresses of the aliases. This way, we can bind multiple processes to
multiple IP addresses all running on the same machine, such that packets destined for a
particular IP address reach the right process.

Another related issue is that for two processes running in the same subnet, the kernel
routes the packets between them through the loopback interface instead of sending them
out through the default gateway. As an example, if two applications are running on
10.0.0.1 and 10.0.0.2 respectively, packets from 10.0.0.1 to 10.0.0.2 will go through
the loopback interface and not through the default route for 10.0.0.0/8. To fix this, we
flip the 23rd bit of the destination IP address field using LD PRELOAD (a hack borrowed
from ModelNet), so that the destination address of 10.0.0.2 becomes 10.128.0.2; the
kernel sees that this packet is destined for another subnet and it sends it out through the
default route for 10.0.0.0/8, which is set to be the emulator. The emulator then flips the
bit back and sets the bits in the source address so that the routing process is seamless and
the applications remain unaware of this.

To set up the Tor processes on the edge nodes, we use Chutney [Tor14a], which sets
up and configures a private, test network by configuring Tor directory authorities, relays,
and clients. Our changes to Chutney include adding support for configuring the nodes so
that they route their packets through the emulator (using the LD PRELOAD trick described
above) instead of doing it through the loopback interface, and scaling it to work with more
than 255 Tor nodes. To emulate a live Tor network, we have one set of directory authorities
(usually three) running for the entire experiment on a given edge node, while the relays
and clients are spread across all edge nodes. We use a Tor controller [Tor14b], which is
a program used for interacting with a locally running Tor process, to control the nodes

19

once they have been set up, allowing us to manage our experiments locally and easily. It
is possible to emulate any version of Tor, unmodified, just by installing a local copy of it.

As we have mentioned before, the SNEAC core is a general-purpose network emulator
that can emulate any TCP- or UDP-based application; the only configuration requirement
is that the applications are started with the LD PRELOAD library discussed above, which
binds the applications to a specific IP address and flips the required bits.

20

Chapter 4

Implementation

The core implementation of SNEAC is in Python because we use the Python API provided
by Mininet to create and configure a virtual network. We base SNEAC on a custom
version of Mininet which we call Mininet Turbo (as described in Section 3.3.2), which adds
support for multi-threading, LXC-based routing, and configuring Mininet to talk to the
outside world. There are various other components involved in setting up an experiment
which we describe below.

4.1 Emulator Core

We start by loading a network topology from a GraphML file that has information about
nodes (vertices) and links (edges) with related attributes such as bandwidth, latency, packet
loss, and jitter. We follow the format used by Shadow for our experiments but it is possible
to use other topologies such as those provided by the Internet Topology Zoo [KNF+11].

Using this topology information, we create a virtual network by calling Mininet Turbo,
which configures the LXCs, creates the links (veth pairs) and applies the link attributes.
This is a multi-step process:

• Once the topology has been loaded into memory, Mininet creates the LXCs and sets
up the veth pairs between them, applying tc and netem. At this stage, the topology
is isolated with links only between the LXCs and no communication with the outside
world.

21

root

client

down

up

self

non-client

client

Figure 4.1: Layout of client and non-client nodes with their respective links in a SNEAC
setup. The links between client and non-client nodes are symmetric.

• We then create a node in the root network namespace to which client nodes can
be attached and physical devices can be assigned. For each node in the topology
that is a client node, we create three links between it and the root node to handle
asymmetric bandwidths as described in Section 3.3.3.

• At this stage, all client and non-client nodes have been configured and the links
between them and the root node have been created. Now we can set up the routing
among all nodes, whether client or non-client, taking into consideration that traffic
can only enter or exit from the client nodes.

• Static routing is set up between the LXCs based on shortest path using the latency
as the weight (configurable). We start by associating each node in the network to a
particular subnet; the node will only handle packets that have the destination address
within the subnet the node is configured to handle the packets for. We then pairwise
iterate over all nodes and calculate the shortest path between them, setting up the
routing table for each node in the path.

The routing is configured using the ip route command for each LXC as LXCs have
their own routing table. An example routing entry looks like

ip route add 10.0.0.0/16 via 192.168.0.1 dev h1-eth0

This tells an LXC that packets it receives destined for the 10.0.0.0/16 address space
should be sent to the gateway at 192.168.0.1 through the h1-eth0 interface.

22

root

ethX Open vSwitch

client

client

Figure 4.2: Open vSwitch creates a bridge between the physical interface (ethX) and the
root node, allowing packets to be delivered to the client nodes.

• To handle packets incoming to the client nodes, we have to configure the routing at
the root node. This routing should respect the three different links a client node has
by making sure that incoming traffic goes through the down link, outgoing through
the up link, and packets having the same source and destination traverse the self
link (see Figure 4.1).

To do this, we create an Open vSwitch bridge to which we attach all the client node
links and a given physical interface, such as eth0, as shown in Figure 4.2. We then
install flow rules that send the packets to the appropriate interface based on their
source and destination addresses and also perform other tasks such as rewriting the
MAC addresses to match that of the edge node from which the packets are coming
and to the client node they will first talk to. An example flow rule looks like

ovs-ofctl add-flow br0 \

"in_port=1, ip, \

nw_src=10.0.0.0/22, nw_dst=10.128.0.0/22,

actions=load:1->NXM_OF_IP_SRC[23], load:0->NXM_OF_IP_DST[23], \

mod_dl_dst:3a:21:d6:df:b1:87, \

output:4"

This flow rule routes IP packets coming into port 1 (the physical interface, ethX)
of the bridge br0 with the source address of 10.0.0.0/22 and destination address
of 10.128.0.0/22 to port 4 (down link for the first LXC). The 23rd bits of the
source and destination fields (refer to Section 3.4 for the bit flipping) are flipped, and
the destination MAC address of the packets is changed to match that of the down
interface (port 4) of the first LXC, to which the packets are delivered. The LXC
then accesses its routing table and forwards the packets to the appropriate router.

After the above steps have finished, the core is ready to emulate the network and route

23

the packets; Mininet Turbo has set up the topology and is no longer relevant at this stage
because all emulation and routing is handled by the kernel and Open vSwitch.

4.2 Edge Nodes

The configuration of the edge nodes involves starting the application processes (Tor) and
configuring the routing for them. The core needs a list of the edge nodes (their IP addresses)
that will be running so that it can configure the routing. There is no limit on the number
of edge node processes that can be run provided the emulator can handle the traffic,
and that the number stays within the address space the emulator is configured to handle
packets from — if an emulator is configured to support the 10.0.0.0/16 address space, the
maximum number of supported edge node processes will be 65534. It is important to note
that this is different from ModelNet where the maximum number of supported edge node
processes is equal to the number of routers in the topology; there is no such restriction in
SNEAC and it is possible to run a network with a few hundred routers but thousands of
edge node processes.

We use Chutney to configure the Tor nodes; it creates the directory authorities’, relays’,
and clients’ configuration files and starts the Tor processes. This step also creates an equal
number of interface aliases to which we bind the Tor processes using LD PRELOAD library
libipaddr (shipped with ModelNet), which binds the Tor processes to the interface aliases
and flips the bits when sending out packets (refer to Section 3.4).

Once the Tor nodes have started, no further configuration is required and the nodes can
be controlled using a Tor controller. To monitor the performance of the network, one can
start an HTTP server and use the Tor client to download files from it or, for fine-grained
information about the Tor processes, one can monitor them as one normally would by
using a controller.

24

Chapter 5

Experiments

We will now demonstrate SNEAC’s scalability by emulating thousands of Tor nodes run-
ning on multiple edge nodes. We also show its fidelity by comparing it against ModelNet,
showing that for smaller experiments (limited by ModelNet), SNEAC’s performance is
statistically equivalent to that of ModelNet.

5.1 Experimental Setup

We deployed SNEAC on the CrySP RIPPLE facility [Wat14], which is an experimentation
platform for research into large-scale privacy enhancing technologies.

• Hardware: For our experiments, we used seven edge node machines (called ticks ;
tick[0-6]) connected to a single emulator core machine (called tock). Each tick

machine has 80 CPU cores (160 Hyper-Threaded), 1 TB of physical memory, and
four 40 Gigabit Ethernet NICs. The tock machine has 80 CPU cores (160 Hyper-
Threaded), 2 TB of physical memory, and four 40 Gigabit Ethernet NICs. On all the
machines, we use interface bonding to bond the 40 GbE NICs into a single interface
for a combined speed of 160 Gbps for each bonding interface per machine, limited to
128 Gbps by the system bus.

• Software: All machines in the cluster run Ubuntu 12.04.4 LTS with Linux ker-
nel 3.13.0. The core machine runs Open vSwitch version 2.1.0 and our improved
version of Mininet (Mininet Turbo) based on Mininet 2.1.0+. On the edge nodes,
we run tor-0.2.5.1-alpha which uses the newer ntor handshake [Pro11], and

25

0.0

0.2

0.4

0.6

0.8

1.0

 0 50 100 150 200 250 300 350

C
um

ul
at

iv
e

Fr
ac

tio
n

1 MiB Download Time (s)

SNEAC
ModelNet

Figure 5.1: Download times for a 1 MiB file over Tor on SNEAC and ModelNet.

tor-0.2.3.25 which uses the older TAP handshake [DMS04]. (We will talk more
about the difference between these handshakes in Section 5.2.)

5.1.1 Comparison with ModelNet and Mininet

We start by comparing the performance of SNEAC with ModelNet and Mininet by running
a Tor performance test and an iperf TCP throughput test.

ModelNet

Our experimental testbed consists of a single core machine (Linux for SNEAC; FreeBSD for
ModelNet) connected to one edge node (Linux for both SNEAC and ModelNet). We use
a network topology consisting of 36 nodes (routers) and 40 edges (links); each link in the
topology has a bandwidth of 500 Kbps, latency of 10 ms, and queue length of 10 packets.
We then configure a Tor network with three directory authorities, four relays, and seven
clients using Chutney. To measure the performance of the network, we start the seven
clients concurrently and download a 1 MiB file from a local HTTP server (a standard Tor
performance test [Kar09]); we note the time it takes for all clients to download the file with

26

0.0

0.2

0.4

0.6

0.8

1.0

 0 250 500 750 1000 1250 1500 1750 2000

C
um

ul
at

iv
e

Fr
ac

tio
n

iperf TCP Throughput (Kbits/s)

SNEAC
Mininet

Figure 5.2: Network performance tests with iperf on SNEAC (with LXC-based routing)
and Mininet (with Open vSwitch switch-based routing).

0.0

0.2

0.4

0.6

0.8

1.0

 0 50 100 150 200 250 300 350 400 450

C
um

ul
at

iv
e

Fr
ac

tio
n

iperf TCP Throughput (Kbits/s)

SNEAC
Mininet

ModelNet

Figure 5.3: Performance comparison between SNEAC, Mininet, and ModelNet.

27

the experiment repeated 25 times. Figure 5.1 shows the download times for all seven clients
on the given topology, from which we note that experiments run with SNEAC produce the
same results as those run with ModelNet for the majority of the test runs. We found in our
experiments that the performance of ModelNet varies between subsequent runs, making it
difficult to accurately compare it with SNEAC.

Mininet

Mininet uses Open vSwitch switches for the routing, which we replace with lightweight
LXCs in SNEAC. This is possible because link attributes such as bandwidth, latency,
packet loss, and jitter are set on the links (veth pairs) instead of the switches or LXCs that
connect them.

To confirm the validity of this change, we ran three iperf [ipe14] clients and one server
(concurrently; repeated 100 times) on a topology of thirty nodes (same topology used in the
ModelNet comparison) to compare Mininet (using Open vSwitch kernel-based switches)
and SNEAC’s emulator core (using LXCs as the routers). iperf measures the rate at which
TCP streams can be sent from multiple iperf clients (that generate traffic) to an iperf

server. Figure 5.2 shows that the performance of Mininet using Open vSwitch switches and
the SNEAC core using LXCs is statistically equivalent (using the Kolmogorov-Smirnov test;
p > 0.5) and that virtual routers can be replaced with LXCs without affecting the validity
of the experiment. We note that we do not use Tor for this comparison because vanilla
Mininet has no support for running Tor or other applications without custom modifications.

ModelNet and Mininet

Finally, we compare all three emulators together. Figure 5.3 shows the results of an iperf

test on the SNEAC core, Mininet, and ModelNet, with the same network topology and link
characteristics as used in the ModelNet comparison (repeated 100 times). We note two
things: the TCP throughput is equivalent for the SNEAC core and Mininet and that they
are able to handle the load of concurrent iperf clients without affecting the performance.
ModelNet again suffers from variable performance, even dropping all packets in some cases.

5.2 Large-Scale Tor Experimentation: Botnets

In August 2013, the Tor network witnessed an unexpected spike in the number of users
connecting to the network. As Figure 5.4 shows, the number of clients increased from

28

Figure 5.4: Number of users connecting to the Tor network after the botnet attack.

about a million to more than six million in a few days. While early explanations ranged
from an increased interest in Tor to political situations in some parts of the world, the
sudden and rapid increase was pinned down to the Mevade click-fraud botnet which was
running its C&C (command-and-control) server as a Tor Hidden Service [Din13].

Fortunately, the network was able to withstand this attack because the clients were not
actually adding traffic to the network, but were instead building millions of circuits, which
was draining the resources of the relays since building circuits is an expensive operation
involving public-key cryptography. This was further aggravated by two factors: botnet
clients were connecting to a hidden service, a process that requires building up to six
circuits, and, most of the botnet clients were using an older version of Tor, tor-0.2.3,
which uses the TAP circuit-level handshake that requires more computational overhead
than the current ntor handshake.

Because the Mevade botnet was the first known incident of a botnet using the Tor
network, it presented an interesting research problem of protecting Tor and its hidden
services from botnet abuse. Hopper discussed potential approaches including resource-
based and guard-node throttling, reusing failed partial circuits, and hidden service circuit
isolation [Hop14], and also evaluated some of these proposals using the Shadow simulator.

For our experiment, we investigate the following problem: consider a botnet that is

29

0.0

0.2

0.4

0.6

0.8

1.0

 0 2 4 6 8 10 12 14 16

C
um

ul
at

iv
e

Fr
ac

tio
n

Number of Circuits Per ntor Client

Before HS Shutdown
After HS Shutdown

Figure 5.5: The number of Tor circuits per ntor client before and after a hidden service is
shut down.

using a hidden service as its C&C, with the botnet clients running an older Tor version
with the TAP handshake, while the other clients in the network use the ntor handshake.
We then analyze the network state when the hidden service goes away and the botnet
clients start thrashing, trying to reach it.

Our experimental testbed on the CrySP RIPPLE facility consists of five edge nodes
connected to a single core machine. The edge nodes are running Tor clients with both TAP
(450; representing botnet clients) and ntor (2000; representing regular clients) handshakes.
Our Tor network consists of three directory authorities, 30 relays, and 2450 clients, spread
across five edge node machines. We configure a Tor hidden service on one of the relays to
which the botnet clients are connected and periodically fetching data from. The network
topology consists of 50 virtual routers (nodes) with 1275 links (edges), with varying node
and link characteristics.

We start by taking measurements for the network state in which a hidden service is
running and serving TAP clients. To analyze the state of the network, we observe the
network characteristics (number of circuits and file download times) for both TAP and
ntor clients while the hidden service is running. We then turn off the hidden service and
as the botnet clients start thrashing the network trying to reach it, we again make a note
of the network state. The changes we observe between these two states will help us to

30

0.0

0.2

0.4

0.6

0.8

1.0

 0 10 20 30 40 50 60 70

C
um

ul
at

iv
e

Fr
ac

tio
n

Number of Circuits Per TAP Client

Before HS Shutdown
After HS Shutdown

Figure 5.6: The number of Tor circuits per TAP client before and after a hidden service is
shut down.

0.0

0.2

0.4

0.6

0.8

1.0

 0 50 100 150 200 250 300

C
um

ul
at

iv
e

Fr
ac

tio
n

Download Time for a 1 MiB File (s)

Before HS Shutdown
After HS Shutdown

Figure 5.7: The number of seconds it takes to download a 1 MiB file increases after the
hidden service is turned off due to an increase in the number of circuits being handled by
the relays.

31

better understand the fluctuation in the Tor network when a busy hidden service in the
real world disappears or is shut down.

Figure 5.5 shows the number of circuits per client for 250 randomly sampled ntor

clients from the network before and after the hidden service is shut down. We note that
the number of active circuits of ntor clients remains the same. Figure 5.6 shows the
number of circuits per TAP client from the network before and after the hidden service is
shut down. We notice that the number of circuits doubles as the clients start thrashing the
network trying to connect to the hidden service which was shut down. This increase in the
number of circuits affects the performance of the network, which we measure by the time
it takes for a 1 MiB file to be downloaded by the ntor clients. Figure 5.7 shows that the
number of seconds it takes to download the file increases after the hidden service is shut
down.

These results confirm our hypothesis that if a hidden service that is acting as a C&C
or servicing a large number of TAP clients is taken down, the performance of the network
is affected because of the increase in the number of circuits being constructed by the TAP
clients as they try to connect to the hidden service. This load is borne by the relays which
have to handle more TAP-based circuits after the hidden service shutdown than they were
when the hidden service was running. (We recall that TAP clients require more overhead
than ntor clients.)

32

Chapter 6

Future Work

To the best of our knowledge, SNEAC is the only emulation-based testbed that allows
for the emulation of thousands of Tor nodes, limited only by the physical resources of the
experimentation cluster. While a good first step, there are some parts of SNEAC that we
will work on improving:

• Startup Time: For larger topologies with thousands of nodes and hundreds of
thousands of links, setting up and starting an experiment can run into hours because
of the time it takes to load and configure the topology. Our threading-based support
for Mininet (discussed in Section 3.3.2) decreases the setup time but its Python-
based implementation still poses a significant bottleneck. While the time it takes
to create LXCs is reasonable (see Table 3.2), creating veth pairs and calling tc

and netem can take hours for thousands of links. Because Mininet is just calling
standard Linux commands to create the LXCs (a shell process moved into the network
namespace) and links (ip route and tc/netem), it is possible to speed up the process
by reimplementing SNEAC in a language like C (which will make it easier to load
and manage a topology with hundreds of thousands of links) while at the same time
making design decisions that focus on scalability from the very start.

• Validation for Larger Experiments: While we have shown that experiments
run with SNEAC produce the same results as those with ModelNet (section 5), we
would like to validate our emulator for larger topologies with thousands of nodes,
comparisons which cannot be made against ModelNet or any other emulator because
of their scalability limitations. We should also investigate the scale at which the
experimental results get skewed because of lack of CPU resources for the emulation,
in which case packets might be dropped and invalidate our results.

33

Chapter 7

Conclusion

In this thesis, we presented SNEAC, a network emulation testbed for Tor that runs real,
unmodified Tor code and can scale to thousands of nodes. SNEAC is based on ModelNet’s
architecture and uses standard Linux components such as Linux Containers (LXCs), and
the tc and netem modules — this not only helps it to scale better but assures us of the
validity of our platform as the emulation is performed by the kernel. As compared to
simulators such as Shadow, which also scales to thousands of nodes, SNEAC offers the
benefits of emulation: run real Tor code on real operating systems using system libraries,
and scalability: leverage all resources of an experimentation cluster by running across
multiple machines.

Our implementation is based on an improved version of the Mininet network emulator
with many scalability and architectural improvements, and Open vSwitch, a production-
quality multilayer virtual switch. The configuration of the virtual routers and network
emulation is handled exclusively by the Linux kernel.

We have demonstrated SNEAC’s efficacy by comparing it with ModelNet and Mininet,
and its scalability by running a large-scale Tor experiment with thousands of nodes to
study the effects of a botnet using the Tor network. Even though our focus has been on
emulating Tor, SNEAC can be used as a general-purpose network emulator to run any
TCP- or UDP-based application, unmodified, on real operating systems in real time. Our
emulator is available as open-source software.

34

References

[BSMG11] Kevin Bauer, Micah Sherr, Damon McCoy, and Dirk Grunwald. ExperimenTor:
A Testbed for Safe and Realistic Tor Experimentation. In Proceedings of the
USENIX Workshop on Cyber Security Experimentation and Test (CSET 2011),
August 2011.

[CCR+03] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson,
Mike Wawrzoniak, and Mic Bowman. PlanetLab: An Overlay Testbed for
Broad-Coverage Services. ACM SIGCOMM Computer Communication Re-
view, 2003.

[DET14] DETER. The DETER Project. http://deter-project.org/, 2014. [Online;
accessed 10-June-2014].

[Din11] Roger Dingledine. Iran blocks Tor; Tor releases same-day fix. https://blog.
torproject.org/blog/iran-blocks-tor-tor-releases-same-day-fix,
2011. [Online; accessed 10-June-2014].

[Din12] Roger Dingledine. Obfsproxy: the next step in the cen-
sorship arms race. https://blog.torproject.org/blog/

obfsproxy-next-step-censorship-arms-race, 2012. [Online; accessed
10-June-2014].

[Din13] Roger Dingledine. How to handle millions of new Tor clients. https://blog.
torproject.org/blog/how-to-handle-millions-new-tor-clients, 2013.
[Online; accessed 10-June-2014].

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-
Generation Onion Router. In Proceedings of the 13th USENIX Security Sym-
posium, August 2004.

35

http://deter-project.org/
https://blog.torproject.org/blog/iran-blocks-tor-tor-releases-same-day-fix
https://blog.torproject.org/blog/iran-blocks-tor-tor-releases-same-day-fix
https://blog.torproject.org/blog/obfsproxy-next-step-censorship-arms-race
https://blog.torproject.org/blog/obfsproxy-next-step-censorship-arms-race
https://blog.torproject.org/blog/how-to-handle-millions-new-tor-clients
https://blog.torproject.org/blog/how-to-handle-millions-new-tor-clients

[Emu14] Emulab. Emulab.Net - Emulab - Network Emulation Testbed Home. http:

//www.emulab.net/, 2014. [Online; accessed 10-June-2014].

[Fre14] The FreeBSD Project. Unsupported FreeBSD Releases. http://www.freebsd.
org/security/unsupported.html, 2014. [Online; accessed 10-June-2014].

[GB13] Ian Goldberg and Kevin Bauer. ModelNet Setup. https://cs.uwaterloo.ca/
twiki/view/CrySP/ModelNetSetup, 2013. [Online; accessed 10-June-2014].

[Hop14] Nicholas Hopper. Challenges in Protecting Tor Hidden Services from Botnet
Abuse. Financial Cryptography and Data Security, 2014.

[ipe14] iperf. Iperf - The TCP/UDP Bandwidth Measurement Tool. https://iperf.
fr/, 2014. [Online; accessed 10-June-2014].

[JH12] Rob Jansen and Nicholas Hopper. Shadow: Running Tor in a Box for Accurate
and Efficient Experimentation. In Proceedings of the Network and Distributed
System Security Symposium - NDSS’12. Internet Society, February 2012.

[Kar09] Karsten Loesing. Performance of Requests over the Tor Network. 2009.

[KNF+11] Simon Knight, Hung X. Nguyen, Nick Falkner, Rhys Bowden, and Matthew
Roughan. The Internet Topology Zoo. IEEE Journal on Selected Areas in
Communications, October 2011.

[LGA+11] Gilad Lotan, Erhardt Graeff, Mike Ananny, Devin Gaffney, Ian Pearce, and
danah boyd. The Revolutions Were Tweeted: Information Flows During the
2011 Tunisian and Egyptian Revolutions. International Journal of Communi-
cation, 2011.

[LHM10] Bob Lantz, Brandon Heller, and Nick McKeown. A Network in a Laptop:
Rapid Prototyping for Software-Defined Networks. In Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, page 19. ACM, 2010.

[Lin09] Linux Foundation. netem — The Linux Foundation. http://www.

linuxfoundation.org/collaborate/workgroups/networking/netem, 2009.
[Online; accessed 10-June-2014].

[LXC14] LXC. LXC - Linux Containers. https://linuxcontainers.org/, 2014. [On-
line; accessed 10-June-2014].

36

http://www.emulab.net/
http://www.emulab.net/
http://www.freebsd.org/security/unsupported.html
http://www.freebsd.org/security/unsupported.html
https://cs.uwaterloo.ca/twiki/view/CrySP/ModelNetSetup
https://cs.uwaterloo.ca/twiki/view/CrySP/ModelNetSetup
https://iperf.fr/
https://iperf.fr/
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
https://linuxcontainers.org/

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow:
Enabling Innovation in Campus Networks. ACM SIGCOMM Computer Com-
munication Review, 2008.

[Mod05] ModelNet. ModelNet Release. http://modelnet.ucsd.edu/release.html,
2005. [Online; accessed 10-June-2014].

[ns-14] ns-3. The ns-3 Network Simulator. http://www.nsnam.org/, 2014. [Online;
accessed 10-June-2014].

[Ope14] Open vSwitch. ovs-vswitchd. http://openvswitch.org/cgi-bin/ovsman.

cgi?page=vswitchd%2Fovs-vswitchd.8, 2014. [Online; accessed 10-June-
2014].

[PPA+09] Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen, and
Scott Shenker. Extending Networking into the Virtualization Layer. In Hot-
Nets, 2009.

[Pro11] The Tor Project. ntor-handshake. https://gitweb.torproject.org/

torspec.git/blob/HEAD:/proposals/216-ntor-handshake.txt, 2011. [On-
line; accessed 10-June-2014].

[Riz97] Luigi Rizzo. Dummynet: A simple Approach to the Evaluation of Network
Protocols. ACM SIGCOMM Computer Communication Review, 1997.

[SGR97] Paul F. Syverson, David M. Goldschlag, and Michael G. Reed. Anonymous
Connections and Onion Routing. In IEEE Symposium on Security and Privacy,
1997.

[Sha14a] Shadow. Pull Request #197 from jdgeddes/master. https://github.com/

shadow/shadow/commit/613778d64bc9ebcc93d2a61aa37a803a20cf47da,
2014. [Online; accessed 10-June-2014].

[Sha14b] Shadow. Using the Scallion Plugin. https://github.com/shadow/shadow/

wiki/Using-the-scallion-plug-in, 2014. [Online; accessed 10-June-2014].

[SPBP06] Neil Spring, Larry Peterson, Andy Bavier, and Vivek Pai. Using PlanetLab for
Network Research: Myths, Realities, and Best Practices. SIGOPS Operating
Systems Review, 2006.

37

http://modelnet.ucsd.edu/release.html
http://www.nsnam.org/
http://openvswitch.org/cgi-bin/ovsman.cgi?page=vswitchd%2Fovs-vswitchd.8
http://openvswitch.org/cgi-bin/ovsman.cgi?page=vswitchd%2Fovs-vswitchd.8
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/216-ntor-handshake.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/216-ntor-handshake.txt
https://github.com/shadow/shadow/commit/613778d64bc9ebcc93d2a61aa37a803a20cf47da
https://github.com/shadow/shadow/commit/613778d64bc9ebcc93d2a61aa37a803a20cf47da
https://github.com/shadow/shadow/wiki/Using-the-scallion-plug-in
https://github.com/shadow/shadow/wiki/Using-the-scallion-plug-in

[Tor13] The Tor Project. Tor Research. https://research.torproject.org/, 2013.
[Online; accessed 10-June-2014].

[Tor14a] The Tor Project. Chutney. https://git.torproject.org/chutney.git,
2014. [Online; accessed 10-June-2014].

[Tor14b] The Tor Project. TC: A Tor Control Protocol. https://gitweb.torproject.
org/torspec.git?a=blob_plain;hb=HEAD;f=control-spec.txt, 2014. [On-
line; accessed 10-June-2014].

[VYW+02] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kostić, Jeff
Chase, and David Becker. Scalability and Accuracy in a Large-Scale Network
Emulator. ACM SIGOPS Operating Systems Review, 2002.

[Wat14] Waterloo, University of. CrySP RIPPLE Facility. https://ripple.

uwaterloo.ca/, 2014. [Online; accessed 10-June-2014].

38

https://research.torproject.org/
https://git.torproject.org/chutney.git
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=control-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=control-spec.txt
https://ripple.uwaterloo.ca/
https://ripple.uwaterloo.ca/

	List of Tables
	List of Figures
	Introduction
	Anonymity on the Internet and the Tor Network
	Tor Research
	Our Contributions

	Related Work
	ModelNet
	Shadow
	PlanetLab

	Design
	Design Goals
	Architecture
	The Emulator Core
	Mininet
	Mininet Turbo
	LXC-Based Routing
	Link Attributes: tc and netem

	Edge Nodes

	Implementation
	Emulator Core
	Edge Nodes

	Experiments
	Experimental Setup
	Comparison with ModelNet and Mininet

	Large-Scale Tor Experimentation: Botnets

	Future Work
	Conclusion
	References

