
Integrating Observational and Microscopic 

Simulation Models for Traffic Safety 

Analysis 

by 

Usama Elrawy Shahdah 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Doctor of Philosophy 

in 

Civil Engineering 

Waterloo, Ontario, Canada, 2014 

© Usama Elrawy Shahdah 2014 

 



 

AUTHOR'S DECLARATION 

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any 

required final revisions, as accepted by my examiners. 

I understand that my thesis may be made electronically available to the public. 

ii 



 

Abstract 

In safety analysis, two questions typically need to be addressed: 1) how to identify unsafe sites 

for priority intervention? and 2) how to determine the effectiveness of  treatments introduced 

at these and other sites?  Two types of approaches have been considered in the literature to 

provide answers for these questions: (1) observational models based on historical crash data 

and (2) observed or simulated higher risk vehicle interactions or traffic conflicts.  

Observational crash-based  models are good at predicting higher severity crashes, but they tend 

to ignore higher risk vehicle interactions that compromise safety, that have not resulted in 

crashes (e.g. near misses).  Proponents of microscopic simulation argue that ignoring these 

higher risk interactions can severely understate the safety problem at a given site and lead to a 

misallocation of scarce treatment funds.  Another problem with observational crash prediction 

models is the need for sufficient crash data reported over an extended period of time to provide 

reliable estimates of “potential” lack of safety. This requirement can be a challenge for certain 

types of treatment and different sites or locations. Furthermore, observational approaches are 

not causal in nature, and as such, they fail to provide a sound “behavioural” rationale for “why” 

certain treatments affect safety. 

On the other hand, traffic conflicts occur more frequently than crashes and can provide 

a stronger experimental basis for estimating safety effects on a short-term basis.  This is 

especially important given the rare random nature of crashes for certain traffic conditions.  

Additionally, they provide a more rational basis for lack of safety than is normally available 

from crash occurrence data.  Basically, through the application of calibrated behavioural 

simulation, traffic conflicts can be linked to specific driver actions and responses at a given 

site, more so than conventional reported crashes.  As such, they permit a causal underpinning 

for possible treatment effects and this is important to decision-makers because it underscores 

why certain treatments act to enhance safety, rather than simply providing an estimate of the 

treatment effect itself. 
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Notwithstanding the usefulness of conflict-based measures,  observed crashes  remain 

the primary verifiable measure for representing failures in the transportation systems. 

Unfortunately traffic conflicts have not been formally linked to observed crashes, and hence 

their values as indicators for treatment effect have not been fully explored. This presents a 

challenge on how best to use both conflicts and observed crashes to better understand where 

safety is most problematic, where intervention is needed, and how best to resolve specific 

safety problems? 

In this thesis, the position is taken that a complete understanding of safety problems at 

a given site can only emerge from a more inclusive analysis of both observed crashes and 

traffic conflicts. This is explored by developing two integrated models: (1) An integrated 

priority ranking model is presented that combines estimates from observational crash 

prediction with an analysis of simulated traffic conflicts; (2) An integrated treatment model is 

presented that uses simulated traffic conflicts that are linked statistically to observed crashes 

to provide estimates of crash modification factor (CMF). The suitability of these integrated 

models has been evaluated using data for a sample of signalized intersections from Toronto for 

the period 1999-2006. 

In the absence of a benchmark (or true) priority ranking outcome, a number of 

evaluation criteria were considered, and the integrated ranking model was found to yield better 

results than both conventional observational crash-based models (including empirical 

Bayesian, potential for safety improvement methods) and conflict-based models (including 

conflict frequency and rate for different risk thresholds). For treatment effects, the results 

suggest that CMFs can be estimated reliably from conflicts derived from microsimulation, 

where the simulation platform has been sufficiently calibrated. The link between crashes and 

conflicts provides additional inferences concerning treatment effects, in those cases where 

treatments were not previously implemented (i.e., no after history). Since there is an absence 

of crash history, the treatment effect is based exclusively on simulated conflicts. Moreover, the 

integrated model has the added advantage of providing site-specific CMFs instead of applying 

a constant CMF across all sites considered for a potential treatment. 
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CHAPTER 1 

INTRODUCTION 

Traffic crashes make up a significant percentage of death and personal injuries reported in many 

developed countries. For example, in Canada, more than 2,700 persons were reported killed and 

about 200,000 people injured from traffic crashes in 2007 (Transport Canada, 2010). In the U.S. 

for the same year, over 41,100 persons were killed from traffic crashes, or about one death every 

15 minutes. For every one of these deaths, 60 injuries were reported in the US in a given year, or 

one injury every 15 seconds (U.S. Census Bureau, 2010). According to a World Health 

Organization (WHO, 2004), traffic crashes will become the fifth leading cause for death by 2030 

if the death rate due to vehicle crashes continues its current trend. The WHO (2004) reports an 

average of 1.20 million death annually globally as a result of road crashes. This provides strong 

justification for the development of efficient, objective guidelines for traffic safety analysis. 

1.1 PROBLEM STATEMENT 

The majority of crashes tend to occur with some consistency over time and, hence, are predictable. 

Consistent crashes are assumed to be caused by a specific failure in the transportation system, and 

hence by addressing this failure we expect to reduce these crashes. However, many crashes are 

purely random in nature and are therefore difficult to predict with respect to observed crash history. 

These crashes are not reflective of failures in the transportation system and are difficult to explain 

or predict. For example, if crashes occur with consistency then we would expect a measure of 

consistency in the priority ranking of sites over time, such that high crash sites in the past would 

likely be reflected as high crash sites in the future. However, if crashes occur in a random fashion, 

consistency of prediction will not provide a good metric for identifying high-risk sites in the future. 

The problem of consistency in crash occurrence over time becomes critically important in 

developing sound priority ranking models for safety intervention. 

Accurately predicting the likelihood of crashes and hence implementing effective 

treatments is one of the main concerns for traffic safety engineers (e.g., Lord and Mannering, 
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2010).  Crash prediction models are the primary tools to predict crashes and estimate treatment 

effects (e.g., El-Basyouny, 2006). These models provide answers to two fundamental safety 

questions: (1) what sites are unsafe (hazardous location identification), such that intervention is 

advised? and (2) what form should this intervention take so that crashes are reduced in a cost 

effective and practical manner? 

Two approaches have been proposed to provide answers for these questions: (1) crash 

prediction models based on reported crash data and (2) observed or simulated vehicle interactions 

and traffic conflicts. While these approaches have been shown to give good results, there are 

number of issues related to each of these approaches that need to be investigated. In addition, we 

need to understand how these approaches compare to each another in providing answers for safety 

analysis. There is also a need to explore an objective way to combine the strengths of both 

observational crash-based analysis with conflict-based analysis to better resolve problems of 

priority ranking of unsafe sites and estimation of treatment effects. 

1.1.1 Issues with crash-based analysis  

The main advantage of using observed crash data is that they provide measurable indicators of 

transportation system failures. Crash-based safety studies are based on police-reported crash data. 

Unfortunately, there are a number of problems associated with the use of these data in safety 

analysis such as, low reporting rates for low severity crashes, incomplete and misreported 

information, errors in the data entry and other statistical and methodological issues (Hauer and 

Hakkert, 1989; Elvik and Myssen, 1999; Blincoe, et al., 2002; Nicholson, 1985; Hauer, 2001; 

Farmer, 2003; Davis, 2004; Saunier and Sayed, 2007; Lord and Mannering, 2010). For example, 

in North America, only crashes involving personal injury or property damages over a set amount 

are reported in the database. In Ontario, only crashes that cause property damage more than $1,000 

may be reported to Ontario’s  collision reporting centres (MTO, 2011). 

It is worth noting that the rate of police reported crashes increases with the severity of the 

crash (Blincoe et al., 2002). Hauer and Hakkert (1989) reported that approximately 60% of 
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property-damage-only (PDO) collisions were not reported in the crash data. In addition, they 

observed that even for those crashes that resulted in serious injuries without hospitalization, around 

20% were unreported. Furthermore, Elvik and Myssen (1999) found that the probability of crashes 

being reported in the data ranges from 70% for serious injuries to 10% for minimal injuries crashes. 

Mills et al. (2011) compared precipitation-related motor vehicle collisions and injury using both 

police records and insurance claim data for Winnipeg, Canada (1999–2001). They reported that 

the insurance data has 64% more injury collisions and 74% more injuries than police records. 

Furthermore, since prediction is based on reported crashes, observational models tend to 

ignore unreported high-risk vehicle interactions or near misses that could lead to crashes. Hence, 

they can be viewed as being important in assigning lack of safety to a given site for a given set of 

traffic conditions. Vehicle interactions are expected to vary over time for different traffic 

conditions and geometric attributes. 

Since crashes are rare events, they do not manifest themselves over short time periods. The 

use of observational analysis for 5 to 10 years creates problems of too many zeroes in the 

observational crash data used in prediction models, and this results in errors in parameter estimates 

(Lord and Mannering, 2010). Zero-inflated models have been used to address the problem of too 

many zeroes in the data (Lord et al., 2005; Shankar et al., 1997).  The excess zero is accounted for, 

in the zero-inflated models, by having two models (i.e., zero-crash model versus a crash prone 

model). The probability of a given site to be perfectly safe (i.e., in the zero state) or in the non-

zero state can be obtained using binary logit or probit models. These models can create theoretical 

inconsistencies with crash data (Lord et al., 2005; Lord and Mannering, 2010). 

One of the major problems associated with observational crash data is presence of  

regression to the mean (RTM) bias.  RTM reflects a treatment selection bias that takes place when 

the assumptions of random selection is violated (Park and Saccomanno 2007). If the RTM bias is 

not resolved properly, then sites that happen to encounter a high number of crashes in a certain 

year will be ranked in the top list of unsafe sites that need treatment. This will give a misleading 

(over-estimation) of the treatment effect because extreme crash values (higher and lower than long 

3 



 

term average)  fluctuate around the true mean or tend to return to the average value for each site 

(Hauer, 1997; Hauer et al., 2004). 

The empirical Bayes (EB) approach can solve some of the statistical issues associated with  

RTM bias (Hauer, 1997; Hauer et al., 2002; Persaud and Lyon, 2007). It does so by estimating a 

long term average of crashes at each site by combining observed crash frequency at the site with 

expected number of crashes from similar sites (Safety Performance Function or SPF). It should be 

noted that EB models require a large sample of untreated reference sites from which to develop 

SPFs and this can be both costly and impractical (Lan, 2010). 

Recently, the full Bayesian (FB), has been proposed to overcome the shortcomings of the 

EB method (Li et al., 2013; El-Basyouny and Sayed, 2012; Lan and Persaud, 2010; Miaou and 

Song, 2005; Miranda-Moreno and Fu, 2007; Huang et al., 2009). The FB method tends to be 

computationally involved and hence unpopular with many practitioners (Persaud and Lyon, 2007). 

Using observational crash-based models to evaluate treatments can only be done after 

implementing treatment(s), and this can only be achieved if sufficient site-years of treatment data 

are available to ensure statistically meaningful results. As such, observational crash-based models 

for evaluating treatment effects are not proactive (e.g. Archer, 2005). In addition, crash-based 

prediction models can also be subject to lack of specification in the crash data. This results when 

too few years of crash experience data following treatment are available, or when treatments have 

not yet been applied. This can severely restrict the ability of observational prediction models to 

explain the potential for crash reduction resulting from specific treatments. This problem is 

rendered more complex when we wish to isolate the effect of a specific treatment on a given site, 

where this treatment is part of a mix of treatments introduced at the same time. The question 

becomes, how can the specific treatment effect be isolated from the group treatment effect?  (Cunto 

and Saccomanno, 2008). 
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The basic problem with observational crash-based studies in general is that they fail to 

account for the complex causal relationships affecting crashes at a given site. Thus, while we can 

estimate treatment effect for a given treatment, we cannot ascertain logically how this treatment 

acts to modify driver behavior such that safety is enhanced. As such, the approach becomes 

somewhat of a black box, where results are obtained, but where we are at odds to explain them.  

In the absence of some form of behavioral transparency, it, therefore, becomes difficult to justify 

the treatment. Furthermore, where several correlated treatments are considered at a given site, it is 

difficult for the crash-based approach to distinguish the effect of one treatment from that of 

another.  For example, we can estimate the effect on crashes of a permissive-protected left turn 

signal at a given intersection, but we cannot obtain reliable CMF estimates for such a treatment if 

it is introduced simultaneously with changes in signal timing at the same site. 

1.1.2 Potential of simulated conflict-based models 

Safety studies using high-risk vehicle interactions were initially proposed by Perkins and Harris 

(1968), researchers from the General Motors laboratory. These interactions, which are referred to 

as traffic conflicts when they exceed given thresholds, can provide an alternative metric to 

conventional crash-based analysis in traffic safety studies. 

Amundsen and Hyden (1977) defined traffic conflicts as “an observational situation in 

which two or more road users approach each other in space and time to such an extent that a 

collision is imminent if their movements remain unchanged”. The gist of safety studies using traffic 

conflicts is that conflicts occur more frequently than crashes (Cunto, 2008), and can provide a 

stronger experimental basis for estimating safety effects on a short-term basis.  This is especially 

important given the rare random nature of crashes for certain traffic conditions.  Additionally, they 

provide a more rational basis for explaining lack of safety than normally available in crash 

occurrence data.   

Observational conflicts can be achieved, for example, using video capture or tracking of 

the vehicle trajectories in real time (Saunier et. al, 2010; Guido et. al, 2010; Sayed et.al, 2012). 
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This approach is very costly and requires certain setup guidelines such as camera angle and 

elevation for accurate vehicle location. This method, like observational crash-based methods, is 

not proactive when it comes to estimate treatment effect prior to implementation. 

Recently, researchers have used microscopic traffic simulation to obtain high-risk vehicle 

interactions, or traffic conflicts for changing traffic conditions (Sayed and Zein, 1999; Archer, 

2005; Cunto, 2008; Archer, 2000, Gettman and Head, 2003, Barcelo et al., 2003, Huguenin et al., 

2005; Cunto and Saccomanno, 2008, Ghods et al., 2012).  

Basically, through the application of calibrated behavioural simulation, traffic conflicts can 

be linked to specific driver actions and responses at a given site, more so than conventional 

reported crashes.  As such, they permit a causal underpinning for possible treatment effects and 

this is important to decision-makers because it underscores why certain treatments act to enhance 

safety, rather than simply providing an estimate of the treatment effect itself. As such, they permit 

a causal underpinning to possible treatment effects. 

Hyden (1987) assumed that the shape of the severity hierarchy is a three-sided pyramid as 

shown in Figure 1.1. This Figure illustrates different levels of vehicle interactions or perturbation 

from undisturbed (base of Pyramid) to high risk or crashes at the apex.  As the risk level increases, 

the frequency of occurrence is reduced. Presumably, as conditions in the traffic stream progress 

from the base to the peak, the presence of a safety problem becomes more pronounced, as does the 

likelihood of crashes.   
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Figure 1.1: Hyden’s safety pyramid (Hyden, 1987) 

 

Arguments against using of traffic micro-simulation models in safety studies can be 

summarized as follows (Tarko and Songchitruksa, 2005; Saunier and Sayed, 2007): 

1. Traffic micro-simulation models are based on crash avoidance rules, and cannot fully 

explain high-risk driver behavior that leads to crashes. 

2. Results of a traffic micro-simulation model are only as good as the accuracy and 

reliability of the input parameters and the model’s ability to replicate actual (i.e., real 

world) driver behaviour and traffic conditions. 

3. Surrogate safety indicators are conceptual (i.e., abstract) measures of safety that are not 

linked to crashes (i.e., they are appropriate only within the context of verifiable crash 

occurrence).  

In addition, to estimate surrogate safety measures from simulation for different weather, 

road and traffic conditions, the models will need to be calibrated based on real-world observed 

traffic data for the full spectrum of conditions. 
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Simulated conflicts are usually targeting conflicts during good weather conditions (i.e., 

normal weather conditions and dry pavement conditions) because microscopic traffic simulation 

models are usually calibrated for good weather conditions (Rakha et al. 2010).  On the other hand, 

although observed crash data are representative of a wide range of weather conditions, most 

observational models do not consider seasonality when predicting the number of crashes at a given 

location. 

The motivation of this thesis research is that a better understanding, and hence better traffic 

safety analysis, can be obtained if the strengths of both the crash-based and the conflict-based 

models can be combined, and inference on lack of safety at a given site is drawn from both 

perspectives. 

1.2 RESEARCH OBJECTIVES 

Notwithstanding the usefulness of traffic conflicts in safety analysis, observed crashes remain as 

the primary verifiable measure for representing safety failures in transportation system. The 

challenge for safety analysis models is how best to integrate both conflicts and accidents to gain a 

better understanding of where safety is most problematic; what form of intervention should be 

considered to enhance safety at a given site, and what is the crash-reduction effect of such 

intervention or treatment. 

This study takes the position that a complete understanding of safety problem at a given 

site can only emerge if both crash potential and traffic conflicts are taken into account. 

Accordingly, the proposed research has the following specific objectives: 

1. Review current observational crash-based models and simulated traffic conflict-based 

models. 

2. Develop integrated approaches that combine observational crash-based and traffic 

conflict-based measures of safety performance, and apply these approaches to prioritize 

sites for safety intervention (priority ranking) and evaluating treatments. 
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3. Apply these integrated models to resolve the two fundamental safety analysis questions: 

priority ranking of unsafe sites and countermeasure evaluation. 

4. Assess the effect of key microsimulation factors (e.g., conflict definition threshold and 

number of runs) on the number and nature of simulated conflicts and the subsequent 

estimates of countermeasure effect. 

1.3 ORGANIZATION OF THESIS 

The reminder of this thesis has been organized into seven chapters. Chapter 2 presents a review 

on observational crash-based approach and how it can be used to answer the two fundamental 

traffic safety questions (i.e., priority ranking of unsafe sites and treatment effectiveness). Chapter 

3 presents a review on surrogate safety measures from microscopic simulation models and how 

traffic conflicts can be used to answer the traffic safety questions. 

Chapter 4 presents the proposed models for priority ranking of unsafe intersections and 

treatment effect. Chapter 5 presents the results of the application of the proposed priority ranking 

models for a sample of signalized intersections from Toronto. 

Chapter 6 presents a case study application of the proposed treatment model and compares 

treatment effects with estimates from empirical Bayes crash-based before-and-after analysis. 

Finally, Chapter 7 summarizes the major findings of the research and potential contributions for 

safety analysis. The Chapter also summarizes the major recommendations for further work to 

better enhance the integration of traffic conflicts and observed crashes in safety analysis. 
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CHAPTER 2 

REVIEW OF CRASH-BASED APPROACH 

This chapter presents the major features of a crash-based approach for crash prediction and safety 

analysis. Some of the fundamental shortcomings of these models are discussed with respect to 

their ability to rank sites with respect to priority intervention and to estimate the effects of 

intervention on potential crash reduction. 

2.1 CRASH PREDICTION MODELS 

Historically, crash frequency, the number of crashes that expected to occur at a given site during 

a specific period (Hauer, 1997), and crash rate (frequency divided by exposure), have been widely 

used to measure lack of safety at different sites.  

Expected crash frequency has nonlinear relationship with traffic flow, as shown in 

Figure 2.1 (based on unpublished report by Ezra Hauer (Kononov and Allery, 2003)). Accordingly, 

a non-linear relationship between crashes and traffic volume is more appropriate when conducting 

traffic safety analysis (Hauer, 1997; Persaud et al., 1999; Persaud, 2001). 

 
Figure 2.1. Relationship between traffic exposure and crashes [reproduced from Kononov 

and Allery, 2003] 
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Crash prediction models, which are statistical multiple- variable models, can be used to fit 

nonlinear relationships between crash counts as response variable and traffic, geometric and other 

site characteristics (traffic control type, speed limit, number of lanes, traffic volumes etc.) as 

independent confounding factors. Equation [2.1] shows a typical linear regression model, where 

E(y) is the expectation of crashes at a given site: 

 0 1 1 2 2( ) k kE y x x xβ β β β ε= + ⋅ + ⋅ + ⋅⋅⋅ + ⋅ +    [2.1] 

and y is the dependent or the response random variable (number of crashes), 1 2, , kx x x⋅ ⋅ ⋅ are 

set of independent variables, 0 1 2, , , ..., kβ β β β  are unkown coefficients and ε is the error term . 

An alternative nonlinear form can be used, such that: 

 0 1 1 2 2( ) ( )k kE y Exp x x xβ β β β ε= ⋅ ⋅ + ⋅ + ⋅⋅⋅ + ⋅ +   [2.2] 

Linear regression analysis can be used to fit the models in Equations [2.1] and [2.2], and 

the error term will be assumed to follow the normal distribution. Based on this assumption, the 

error variance is constant for each value of the independent variables. However, crashes are 

positive discrete values (i.e., y in the above equations) and as such do not follow a continuous 

normal distribution. As a result, most crash prediction models use Generalized Linear Model 

(GLM) structure, where the underlying distribution for crash frequency is a discrete and positive 

integer variable. 

2.1.1 Underlying distribution for crashes  

It is generally accepted that crash occurrences follow the Poisson process (Persaud et al., 1999; 

Kononov and Allery, 2003; etc.), such that: 

 ( )
!

i iy
i

i
i

eP X y
y

µµ −⋅
= =   [2.3] 
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Where ( )iP X y=  is the probability that the observed crash frequency equals y crashes 

during time period i, and iµ   is the expected number of crashes for the same time period i. 

For a random variable X follows Poisson distribution, its variance is assumed equal to its 

mean, or 

 , ( )X Poisson Var X µ=     

However, this assumption (i.e., variance = mean) may not hold for all crash data. For 

rare events like crashes the variance is usually greater than the mean (e.g., the crash data are 

over-dispersed) (Lord et al. 2005). This is mainly due to the unobserved differences across sites 

and unmeasured uncertainties associated with the observed and unobservable covariates (Hauer, 

1997; Washington et al., 2003; Mitra and Washington, 2007; Lord and Park, 2008, etc.). In such 

cases crash dataset are better represented by a long tail distribution, indicative of high variation 

(Boonsiripant, 2009). The negative binomial (NB) distribution can be used instead of the Poisson 

distribution to solve the problem of over-dispersion in the crash data n that it has the more 

flexible feature that variance is a non-linear function of the mean, as compared to the Poisson 

assumption of equality. The Negative Binomial has been the preferred distribution for crash 

prediction in recent years (Hauer, 1997). It is worth noting that the NB distribution is sometimes 

referred to as Poisson-Gamma distribution. The NB is of the form: 

 

1
,1

, ,
, , 1

, , ,

( ) 1( , , )
( ) ! 1 1

i ty

i t i t
i t i t

i t i t i t

y
P Y

y

φ
γ φ φµ

µ φ
γ φ φµ φµ

−
−

−

   +
=       ⋅ + +   

  [2.4] 

Or,  , ,( , )i t i tY NB µ φ   

with, 

 2
, ,( ) , and ( )i t i tE Y Var Yµ µ φµ= = +   [2.5] 
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 where 

,i tµ  = the expected number of crashes at site i in year t, which can be calculated from one 

of the SPFs 

  ,i ty  = the observed number of crashes at site i in year t, 

 𝛾𝛾(. )= gamma function 

 φ  = the dispersion parameter, NB distribution parameter 0φ > . 

 

The NB distribution can also be  expressed as: 

 [ ]( 1)!( , ( ), ) ( ) 1 ( )
( 1) ( )!

iyi
i i i i

i

yP Y P x P x P x
y

ϕϕϕ
ϕ

+ −
= −

− ⋅
  [2.6] 

With mean and variance as: 

 [ ] 21 ( )
(Y ) and ( )

( )
i i

i i i i
i

P x
E Var Y

P x
ϕ µµ µ

ϕ
−

= = = +   [2.7] 

where ϕ  = the inverse of the NB dispersion parameter; and P(xi) is the probability of  x 

crashes at site i (0≤ P(xi)≤1). The probability, P(xi), is assumed to follow the gamma distribution 

(Hauer, 1997; Lord et al., 2005; Miaou, 1996) with shape parameter ϕ  and scale parameter 

equals to ( )
( )1
i

i

P x
P x

 
  − 

 . 

When the dispersion parameter φ  in Equation [2.5] goes to zero or when the inverse of 

the dispersion parameter ϕ  in Equation [2.7] goes to infinity, both Equations [2.5] and [2.7] are 

equal to the  Poisson distribution with mean and variance µ . 
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2.1.2 Generalized linear models (GLM) 

Both Poisson and negative binomial distributions are from the exponential family that can be 

considered in GLM models. Parameter estimation in GLM makes use of the maximum likelihood 

(ML) techniques . Statistical software such as SAS ® software (SAS, 2014) and R-statistical 

software (R, 2012) can be used to obtain safety performance function (SPF) for crash prediction.  

Generalized Linear Modeling (GLM) consists of three components (Everitt, and Hothorn, 

2006; McCullagh and Nelder, 1989): 

1. Random component (the error distribution): This component represents the error 

distribution of the dependent variable (crash count). 

2. Systematic component: This component consists of the independent variables that will 

be used to develop the linear model that will serve as the predictor. 

3. Link component:  This component links the random component to the systematic 

component (i.e., how the linear function of the independent variables is related to the 

response value). The general form of the link function can be expressed as: 

 0 1 1 2 2( ) k kg x x xµ β β β β= + ⋅ + ⋅ + ⋅⋅⋅ + + ⋅   [2.8] 

For GLM models, the variance function that represents the relationship between the 

variance and its mean can be presented as: 

 ( ) ( )Var y Vφ µ= ⋅   [2.9] 

Where φ  is the dispersion parameter (estimated by statistical packages like SAS and R) 

and ( )V µ  is the variance of the model as a function of the mean. When ( ) 1V µ =  and 2ϕ φ σ=  

the error is normally distributed. When ( )V µ µ=  and 1ϕ φ= =  , we assume that the error is 

Poisson. 
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2.1.2.1 Tests of goodness of fit  

The goodness of fit of a Poisson or NB GLM models to crash data can involve:  

1. Statistical significance of model parameters at a given level of significance (usually 5%); 

2. Deviance / ( )n p−  test:  it tests the ratio of the deviance of the full model to the degree 

of freedom ( )n p− , and its value measures the degree of dispersion in crash data. 

For Poisson this deviance can be expressed as: 

 ( )
1

2 log( ) ( )i
i

n
y

i i i
i

D y yµ µ
=

= − −∑   [2.10] 

The term D in Equation [2.10]  follows the chi-squared distribution, with degrees of 

freedom. n is the number of observations and p is the number of parameters in the model. The 

value of  the Scaled  / ( )Deviance n p−  should be close to 1 for a model based on data that are not 

over-dispersed (McCullagh and Nelder, 1989). 

3. Akaike information criterion (AIC) (Akaike, 1973; Bozdogan, 2000): AIC penalizes 

extra parameters when the expected log likelihood is estimated by the maximum 

likelihood techniques, and is expressed as:  

 2 log ( ) 2AIC L kθ= − +


  [2.11] 

where 

( )L θ


= The maximized likelihood function of the parameters in model, at a value θ that 

maximizes the probability of the data given the model; and  

 k =  The number of free parameters in the model. 

n p−
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A model with a minimum AIC value is chosen as the best-fit model.  Other models have a 

lower ( )L θ


 and more parameters. 

2.1.3 Empirical Bayes model 

The EB approach has been examined and explored by several researchers (Hauer, 1992; Hauer, 

1997; Persaud et al., 1999; Hauer et al., 2002) and was found to provide valid results. Hauer et al. 

(2002) presented a simple systematic procedure on how to implement the EB method in traffic 

safety studies. 

The best estimate of expected crashes at a specific site is obtained by combining: 

1. The historical crash record (y) for a specific site (e.g., intersection), and  

2. The expected number of crashes ( )µ  for similar sites, which is usually obtained from a 

safety performance function (SPF). 

By combining the two sources of information regarding crash experience, a long term 

average (λ ) of crashes can be obtained. The EB expected crashes for a specific site can be 

estimated as: 

 ( | y ) (1 )i i i i i i iE yλ µ α µ α= = ⋅ + − ⋅   [2.12] 

with, ( ) , and ( ) (1 ) ( )i i i i iE Var Eλ λ λ α λ= = − ⋅   [2.13] 

where  

 iλ  = EB Expected number of crashes in n years at site i, 

iµ  = Expected number of crashes in n years at similar sites (i.e., from SPFs), 

 yi  = Observed crash frequency in n years at site i, and  
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 iα  = The weight factor. 

The weight factor ( )iα is usually estimated from the mean and variance of the SPF estimate 

[Equations [2.5] and [2.7]]. In the case of NB model, the weight factor can be estimated as follows: 

 
( )

( ) ( )
i

i
i i

E y
Var y E y

α =
+

  [2.14] 

or, i
i

ϕα
µ ϕ

=
+

  [2.15] 

or, 
1

1i
i

φ

φ

α
µ

=
+

  [2.16] 

and,  
1

1 i
i

i φ

µα
µ

− =
+

  [2.17] 

Once the weight factor has been estimated, the expected number of crashes ( )iλ at a given 

site can be estimated using Equation [2.12]. 

The use of EB method requires the specification of a safety performance functions (SPFs) 

for crashes at reference sites. The development of the SPFs needs a large sample size of 

representative site data (Lan, 2010). The negative binomial (or Poisson-Gamma model) 

distribution, due to its simplicity in computation, is almost the sole distribution that can be used to 

implement the EB model approach. However, for some datasets the use of the Poisson-Lognormal 

distribution provides a better fit because lognormal distribution tails is asymptotically heavier than 

those of the Gamma distribution (Kim et al., 2002). 

The EB model will serve as the basis of crash-based prediction results in this research. It 

is also worth noting that the treatment effects are also compared with sound EB results from other 

studies applied to the same dataset. 
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2.2 CRASH-BASED SAFETY ANALYSIS FOR PRIORITY RANKING 

Priority ranking of unsafe locations (known also as hazardous locations, black spots, hotspots, sites 

with promise, etc.) is the first step to improve the safety performance of roadway network. By 

successively identifying the correct unsafe location, resources can be allocated to treat sites that 

really need treatment. 

Priority ranking of unsafe sites results in a list of sites that are prioritized for detailed 

engineering evaluations to identify crash patterns, causes, and to select potential treatments that 

can implemented to reduce crashes (Hauer et al., 2002 and 2004; Montella, 2010). 

Crash counts (or accident frequency (AF)) have been used for some time as the main source 

to identify unsafe sites for further examination and possible treatment. Some European countries 

still use the crash count alone for ranking purposes such as Austria, Germany, and Norway (Elvik, 

2008b).  

One of the main problems in identifying certain sites as unsafe locations based on their 

high crash experience is what is known as the regression to the mean (RTM) treatment bias ( Elvik, 

2008a; Park and Saccomanno, 2007; Hauer et al., 2004; Persaud et al., 1999; Hauer, 1996). The 

empirical Bayes (EB) approach can be used to get rid of the RTM problem, as EB design is to 

estimate a long-term average at each site. 

In this research, two commonly applied observational crash-based priority-ranking 

methods will be discussed, namely: 

1. Empirical Bayesian estimate of expected crashes ( )iλ , and 

2. Potential for safety improvement (PSI). 
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2.2.1 EB expected number of crashes  

The expected number of crashes ( )iλ at each site i is obtained from Equation [2.12]. Sites are 

prioritized for intervention based on increasing values of ( )iλ or increasing expected number of 

crashes. 

2.2.2 Potential for safety improvement (PSI) 

Sites can be similarly ranked based on the potential for safety improvement (PSI) (Persaud et al., 

1999), which is the difference between the EB expected crash frequency and the crash frequency 

predicted from a safety performance functions (SPF), such that: 

 (1 )i i i i i i i iPSI yλ µ α µ α µ= − = ⋅ + − −   [2.18] 

iµ   represents the expected number of crashes on the basis of traffic volume alone from 

SPFs, and may not be reduced by treatments. 

2.3 CRASH-BASED SAFETY ANALYSIS FOR TREATMENT EFFECT 

In the EB approach, the effectiveness of a treatment is usually estimated as the difference between 

expected number of crashes  in the after period had the treatment not been applied with the 

observed crashes post-treatment in the after period at the same site. Before determining the 

effectiveness of a treatment, two estimates need to be obtained: 

1- An estimate of the expected number of crashes for the whole treatment group 

without treatment in the after period (i.e., Aλ ); and 

2- An estimate of the expected number of crashes for the whole treatment group 

with treatment in the after period (i.e., π  or [ ]AE Y ). 
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Crash reduction (usually refer to as δ ), Equation [2.19], and the index of treatment 

effectiveness (i.e., θ ), Equation [2.20], are the most common measures that used to estimate 

treatment effect (Hauer, 1997; Hauer and Harwood, 2002; Persaud and Nguyen, 1998). The 

estimates of δ and θ  can be determined using Equations [2.19] and [2.20]. 

 Aδ λ π= −   [2.19] 

 

2
( )1

A

A

A

Var

π
λθ
λ

λ

=
 
+ 

 

  [2.20] 

where 

δ  = Crash reduction in terms of number of crashes reduced in the period after 

implementation,  

θ   = Index of treatment effectiveness,  

Aλ = The expected crashes for the whole treatment group without treatment in the after 

period, and  

(Y )AEπ =  = The expected crashes for the whole treatment group with treatment in the 

after period, 

If the value of δ  is positive, it implies that treatment is effective in reducing likely crashes. 

On the other hand if δ   is negative, treatment has a harmful effect on safety (i.e., increases in 

crashes). Likewise, if θ is less than one, it implies that the treatment has been effective in reducing 

crashes, while if θ is greater than one, treatment is considered to be harmful. θ is also used to 

estimate the percentage increase or decrease in crashes after the introduction of treatment, such 

that: 

 % (1 ) 100change θ= − ×   [2.21] 
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For example, if the value of 0.80θ =  , this indicates a 20 percent reduction in crashes. The 

main issue in estimating treatment effect is how to obtain a reliable estimate of expected crashes 

at a given site in the after period had  treatment not been introduced ( Aλ ). In the EB approach, the 

expected number of crashes in the before period ( Bλ ) is estimated at each site using the expression 

as: 

 (1 ) yBi i i i iλ α µ α= ⋅ + − ⋅   [2.22] 

where  

 Biλ  = expected crash counts in n years at site i in the before period, 

iµ  = expected crashes in n years at similar sites (i.e., estimated from SPFs), 

 yi = observed crash counts in n years at site i, and  

 iα  = the weight given to the estimated expected crashes for similar entities. 

The expected number of crashes in the after period without the treatment requires the 

introduction of an adjustment term that reflects changes between the before and after periods in   

traffic volumes and other confounding attributes, notwithstanding the treatment itself. This factor 

is estimated as the ratio of the expected numbers of crashes in the after period to the expected 

number before as obtained from the SPF. 

The variances for δ and θ  can be computed as (Hauer, 1997): 

 ( ) ( ) ( )AVar Var Varδ λ π= +   [2.23] 

 and 
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  [2.24] 

The variances are usually used to validate the statistical significance of the estimates of δ

and .θ  

Equations [2.20] and [2.24] are applicable to individual sites for specific treatments. For 

multiple sites, λA is summed over all sites in the treated sample and compared to the sum of 

observed crashes for all the sites post-treatment. The variance of θ is also summed over all the sites 

in the treated group and the combined treatment effect is obtained by replacing λA and π  in 
Equations [2.20] and [2.24] by their respective summations. A more in depth discussion of the EB 

before-after method for estimating treatment effects has been provided by Hauer (1997), the 

Highway Safety Manual (AASHTO, 2010) and by Gross et al, 2010. 

The effectiveness of road safety treatments on crash reduction is frequently expressed in 

terms of a Crash Modification Factor (CMF), which is summed over all treated sites.   

“CMF is a multiplicative factor used to compute the expected number of crashes after 

implementing a given countermeasure at a specific site” (FHWA, 2014). Recommended values of 

CMF are provided by the FHWA Clearinghouse for different treatments and site attributes. 

(FHWA, 2014). The values are continually updated as more recent empirical information becomes 

available and is introduced into the Clearinghouse database. .  

2.4 CHAPTER SUMMARY 

This chapter presented the key points to develop the safety performance functions, which will be 

used later on in this research to develop both crash-volume models and crash-conflict models. 

Crash prediction models can be used to fit nonlinear relationships between crash count as response 

variable and traffic characteristics as independent variables. Generalized linear models (GLMs) 
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are the most common approaches to fit crash prediction models because they have the ability to 

use underlying crash frequency distributions (i.e., Poisson and Negative Binomial (NB) 

distributions).  Due to the over-dispersion in most crash datasets, the NB is the most common 

distribution to be used in GLM models. 

One of the major problems associated with observational crash data is presence of 

regression to the mean (RTM) bias. If the RTM bias is not resolved properly, then sites that happen 

to encounter a high number of crashes in a certain year will be ranked in the top list of unsafe sites 

that need treatment. This will give over-estimation of the treatment effect because extreme crash 

values (higher and lower than long-term average) fluctuate around the true mean or tend to return 

to the average value for each site. 

Due to the RTM treatment bias, the EB approach has been used to obtain a long-term crash 

frequency at a given site to avoid the RTM problem. The use of EB requires crash-predication 

models (i.e., SPFs) from similar untreated reference sites. 

Furthermore, the Chapter presented he most popular observational methods used in traffic 

safety analysis for both ranking of unsafe sites and estimating treatment effect. For priority 

ranking, the most used crash-based models are the EB and the PSI, as both can handle the RTM 

selection bias. EB is also the state of practice in estimating treatment effect. Observational before 

and after analysis are not proactive in nature. In other words, to determine treatment effects of a 

given countermeasure, the countermeasure will need to be implemented prior to the analysis and 

this may not always be possible.  
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CHAPTER 3 

REVIEW OF TRAFFIC CONFLICT-BASED APPROACH 

This chapter introduces the conflict-based approach for safety analysis and the use of microscopic 

traffic simulation in obtaining conflicts. The results of the traffic simulation are used as inputs into 

safety performance analysis, which can assist priority ranking of unsafe sites and the estimation of 

treatment  effects. 

3.1 TRAFFIC CONFLICTS AND SAFETY 

“Crashes represent a complex hierarchical process of inter-related causes and consequences for 

different driving situations, locations and time intervals. Therefore, a complete picture of lack of 

safety emerges following a detailed mechanistic analysis of the causes and consequences of 

crashes at a given location and point in time” (Cunto and Saccomanno, 2005). For complex 

crashes, different mechanistic structures can be explored to provide insights into how these crashes 

take place at a given site and how they can best be prevented from occurring in the future. For 

example, Mehmood et al.(2002) used Systems Dynamics to describe crashes, and  Cody (2005) 

used instrumented vehicles to evaluate drivers behaviours to better understand safety problems 

from left turns at intersections and hence provide appropriate treatments to prevent left-turn 

opposing crashes at these intersections. 

Although concerns have been raised regarding the use of traffic conflict technique in 

particular its reliability, validity and data collection costs (Hauer, 1978; Hauer and Garder, 1986), 

researchers have continued to support its use as a surrogate measure of safety. Migletz et.al. (1985) 

and Glauz et al. (1985) showed that traffic conflicts provide comparable estimates to expected 

accident frequencies. In addition, several studies (Risser, 1985; Archer, 2000) have shown that 

higher rates of traffic conflicts at a given site indicate lower levels of safety. Hyden (1987) 

concluded that conflicts and crashes shared  the same severity distribution based on time-to-

accident and speed values.  
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Sachi et al. (2013) used conflict-based analysis to evaluate a right turn treatment at 

signalized intersections, and El-Basyouny and Sayed (2013) and Guido (2010) who investigated 

the relationship between crashes and conflicts. These researchers consistently found that traffic 

conflicts provide useful insights into the failure mechanism that leads to crashes.  

A traffic conflict between two vehicles is assumed to be initiated by one of three possible 

actions: accepting a gap, changing lanes or braking (Ahmed, 1999; Gettman and Head, 2003). 

Once a vehicle initiates (i.e., stimulus vehicle) the conflict, the driver of the following vehicle (i.e., 

response vehicle) that affected by this maneuver should react with an appropriate to avoid a 

possible crash.  

Traffic conflict technique (TCT) was initially used to obtain surrogate safety measures. 

TCT requires field observers’ crews to collect the data and determine the potential number of 

conflicts along with their severities. This can be done either by collecting the data directly from 

the study site (e.g., an intersection) or by analysing videotaped data from the study site for a 

specific time. This process is expensive and subject to unreliable subjective observers (e.g., 

Archer, 2005; Brown, 1994; Sayed et al., 1994).  

This subjectivity issue with TCT can be solved by using tracking data from all vehicles at 

the study site. For example, image-processing methods can be used to track vehicles and hence to 

extract traffic conflicts from videotaped data using certain camera-setup guidelines such as camera 

angle and camera elevation (Saunier et. al, 2010; Guido et. al, 2010; Sayed et.al, 2012). In addition 

to the cost associated with the data collection, real-time vehicles’ tracking is not proactive for 

estimating treatment effect prior to implementation. Traffic microscopic simulation models can be 

used as cost-effective tools in determining vehicle trajectories, and as a proactive tool to evaluate 

effectiveness of treatments. 

When properly calibrated, traffic micro-simulation models can provide a less expensive 

approach and a useful platform from which to measure traffic conflicts and hence provide safety 

performance measures that can be used in identifying high-risk situations in the traffic stream and 

guide cost-effective intervention strategies (Gettman and Head, 2003). 
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3.1.1 Traffic conflicts from microscopic simulation 

Surrogate safety measures from microscopic simulation have been used lately to assess safety in 

transportation systems (Archer, 2000, Gettman and Head, 2003, Barcelo et al., 2003, Huguenin et 

al., 2005; Cunto and Saccomanno, 2008, Ghods et al., 2012). One of the unique features of 

microscopic traffic simulation models is that prospective alternatives can be tested before 

implementation, which is particularly interesting in the transportation scenario where geometric 

and operational changes are usually expensive and operationally troublesome (Cunto, 2008). 

The development of commercially available microscopic simulation platforms has been 

continuing over the past decade. Original applications focused on multi-model traffic planning and 

operation analysis. Effort has been spent on developing algorithms to model various traffic 

environments such as interchanges, roundabouts, transit priority, signalized and un-signalized 

intersection. Driving behaviour modules have also been added to better reflect traffic pattern and 

enhance the accuracy of traffic measures output. The movements of vehicles in the traffic network 

at each time stamp are represented by a pre-set of rules. User-friendly interfaces ease the network 

setup and model parameters input. The most commonly used simulation packages include 

PARAMICS (Quadstone, 2014), VISSIM (PTV, 2011), CORSIM (McTrans, 2014), 

INTEGRATION (Van Aerde and Associates, 2012), and AIMSUN (TSS, 2014).  

There are also some free open source microscopic traffic simulation models, such as 

SUMO (SUMO, 2014) and MITSIMLab (MIT, 2014), and self-developed programs, that were 

intended to be applied for certain situations. For example, TSS-SIM software (Sayed et al., 1994) 

was used specifically to simulate traffic conflicts at un-signalized intersections with three and four 

legs. Ghods and Saccomanno (2014) used an in-house simulation program to investigate unsafe 

vehicle interactions and passing movements for two-lane highway operations. 

According to the FHWA report by Gettman and Head (2003), “VISSIM microscopic traffic 

simulation software appears to support most of the modeling features required for obtaining 

surrogate measures at a reasonable level of fidelity.” 
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3.1.2 VISSIM micro-simulation platform 

VISSIM (PTV, 2011 and 2012) was used in this research to simulate the traffic interaction at 

intersection locations. The major advantage of VISSIM over other programs is its flexibility in 

manipulating the built in features such that users can easily remodel the logic to suit their needs. 

The sophisticated vehicle behaviour modeling captures driver decisions and reactions in different 

traffic situations. A small time step of 0.1 second provides a high resolution of vehicles trajectories, 

which provides detailed vehicle interactions. In addition, the VISSIM micro-simulation platform 

allows the use of different vehicle types and user-defined changes of driving behaviour (e.g. 

desired speed distribution  and car-following behaviour) to better replicate real-world site-specific 

characteristics (PTV, 2012). 

To ensure the validity and reliability of results from simulation programs the model 

parameters need to be calibrated and validated against real world conditions. Errors in simulated 

traffic characteristics (speed and volume) contribute to errors in the simulated surrogate safety 

measures. Most VISSIM calibration studies focused on the measures of effectiveness for the traffic 

operations, for example delay, speed, and traffic flow. Cunto and Saccomanno (2008) calibrated 

and validated driving parameters in VISSIM for a signalized intersection based on the surrogate 

safety measures as the objective function in both the calibration and the validation. 

The argument against using surrogate safety measures as the objective function when 

calibrating simulation models is that models, such as VISSIM, are traffic operation platforms and 

should be calibrated based on traffic parameters (e.g. speed, volume or density). On the other hand, 

when using simulation in safety studies, it is quite reasonable to use surrogate safety measures as 

the basis for calibration, but this should be used in parallel with other traffic parameters. Recently, 

researchers proposed using a multi-objective criteria approach based on both traffic attributes and 

traffic safety attributes when calibrating traffic simulation models for safety studies (Duong et al., 

2010). 
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3.1.3  Surrogate safety indicators 

The use of micro-simulation in safety studies requires the use of surrogate safety indicators that 

are a function of ‘vehicle-pair’ speeds and spacing. Several expressions of safety performance 

measures have been developed and described in the literature, for example, time-to-collision 

(TTC) (Hayward, 1972; Hyden, 1987), time exposed time-to-collision Indicator (TET) 

(Minderhoud and Bovy, 2001), time integrated time-to-collision indicator (TIT) (Minderhoud and 

Bovy, 2001), time to accident (TTA) (Hyden, 1987); the encroachment time (ET) (Allen et al., 

1978), the deceleration rate to avoid the crash (DRAC) (Cooper and Ferguson, 1976), the 

proportion of stopping distance (PSD) (Allen et al,, 1978; Archer, 2005), the crash potential index 

(CPI) (Cunto, 2008; Cunto and Saccomanno, 2008), etc. A full description of a wide spectrum of 

surrogate safety measures, their advantages and shortcomings can be found in Archer (2005) and 

Cunto (2008). 

Gettman and Head (2003) investigated potential surrogate measures of safety from existing 

traffic simulation models and suggested five safety indicators of relevance in simulation output, as 

summarized in Table 3.1. 
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Table 3.1: Surrogate safety indicators from microsimulation (Gettman and Head, 2003) 

Surrogate Safety Measure Description 

Time to Collision (TTC) The time required for two vehicles to collide if they 
continue at their present speed on the same path 

Post-Encroachment Time (PET) The time between the departure of the encroaching 
vehicle from the conflict point and the arrival of the 
vehicle with the right-of-way at the conflict point. 

Initial deceleration rate (DR) The deceleration rate applied by the driver taking 
the evasive action. 

Maximum Speed (MaxS) The Maximum speed of the two vehicles involved 
in the conflict event. 

Maximum relative speed 

(DeltaS) 

Maximum relative speed of the two vehicles 
involved in the conflict event. 

To extract the surrogate safety indicators from traffic micro-simulation models, the vehicle 

tracking output file needs to be converted to vehicle-pair then vehicle interactions can be classified 

based on the interaction type (e.g., rear-end, angled) and conflict threshold (e.g., TTC<1.50s). The 

surrogate safety assessment model (SSAM) (Pu and Joshi, 2008) has been used to extract conflicts 

with different thresholds. In this thesis, time-to-collision (TTC) and deceleration rate (DR) are used 

to reflect the risk associated with rear-end and angled conflicts at intersection sites. These two 

measures are discussed below in more detail. 

3.1.3.1 Time to collision (TTC) 

Hayward (1972) and Hyden (1987) were among the first researchers to use the Time to Collision 

(TTC) as a measure of safety performance. TTC is defined as the time required two vehicles to 

collide if they continue at their present speed on the same path. During the course of collision 

between two vehicles, the minimum TTC can be taken as an indicator for the severity. TTC has 
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been widely accepted due to its simple computation procedure and its ability to indicate the 

severity of a crash. 

Archer (2005) suggested that a TTC ≤ 1.50s is the critical value for road safety in urban 

areas. In addition, Van der Horst (1990) indicated that the likelihood of crashes becomes a concern 

when TTC≤1.50s 

 Table 3.2 shows the TTC values associated with the risk of collision (ROC) as suggested 

by Sayed and Zein (1999). Based on Table 3.2 lower values of TTC indicate higher crash severity. 

However, it is not necessary that lower TTC indicates higher severity of crashes, and this is because 

speed is not included in the measure of severity. The argument is that although a lower TTC could 

indicate a higher probability of crash, it fails to recognize the severity of the crash. 

Table 3.2. Time to collision and risk of collision (Sayed and Zein, 1999) 

TTC and ROC scores TTC Risk of collision (ROC) 

1 1.60s to 2.00s Low risk 

2 1.00s to 1.50s Moderate risk 

3 0.00s to 0.90s High risk 

In this thesis, the number of conflicts based on TTC was extracted using the Surrogate 

Safety Assessment Model (SSAM) (Pu and Joshi, 2008). A space-time diagram identifying TTC, 

for a conflict point event (e.g., LTOPP or crossing conflicts) is shown in Figure 3.1.  The conflict 

point reflects the potential for angle crashes when the accepted gap, by the encroaching vehicle, is 

too small. In Figure 3.1, the trajectories of the crossing vehicle and the through vehicle are 

represented by curve “A” and curve “B”, respectively. In such case, the TTC value can be 

estimated as (Gettman and Head, 2003a,b): 

  4 3TTC t t= −   [3.1] 
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where, 

t3 = the time when either corners of the crossing vehicle leaves the encroachment point 

(The encroachment end time), and  

t4 = the projected arrival time of the through-vehicle at the conflict point. 

SSAM uses a unique algorithm to define conflict events and hence to define different 

parameters (e.g. times t1 to t5, speed and acceleration/deceleration of vehicles in question) related 

to each conflict event. In this analysis, these parameters were estimated every tenth of a second, 

as we used a resolution of 10 simulations for each second. More information on how the 

computational algorithm works and how SSAM estimates different surrogate safety indicators and 

different conflict types can be found in Gettman and Head (2003b). Further, information on the 

nature of TTC can be found in Sayed and Zein (1999), Archer (2005) and Cunto (2008). 

 
Figure 3.1: Time to Collision (TTC) and Deceleration Rate Identified on Conflict Point 

Diagram (Modified from Gettman and Head, 2003 a,b) 
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3.1.3.2 Deceleration rate (DR) 

Cooper and Ferguson (1976) were among the first researchers to use the deceleration rate (DR) as 

a measure of safety. The initial DR can be defined as the deceleration rate applied by the driver 

taking the evasive action (Gettman and Head, 2003a,b). 

McDowell et al. (1983) used five severity levels according to the value of DR to classify 

the severity of a given conflict as shown from Table 3.3. Severity grade 1 is considered the lowest 

severity conflict while grade 5 is considered the highest severity conflict. 

Table 3.3: Severity and deceleration ranges (McDowell et al., 1983) 

Severity grade Deceleration rate Description 

1 Braking rate > -1.5 m/s2 Lowest Severe Conflict 

2 Braking rate -1.50 to -3.0 m/s2  

3 Braking rate -3.0 to -4.50 m/s2  

4 Braking rate -4.50 to -6.0 m/s2  

5 Braking rate < -6 m/s2 Highest Severe Conflict 

Hyden (1996) suggested another classification for traffic conflicts and severity associated 

with them based on DR, as shown from Table 3.4. Hyden’s (1996) classification is based on the 

expected driver reaction to achieve the required deceleration to avoid possible crash.  
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Table 3.4: DR severity levels suggested by Hyden (Archer, 2005) 

Conflict level Deceleration-to-safety Description 

No conflict Braking rate ≤ 0 m/s2 Evasive action not necessary 

No conflict Braking rate 0 to -1 m/s2 Adaptation necessary 

1 Braking rate -1 to -2 m/s2 Reaction necessary 

2 Braking rate -2 to -4 m/s2 Considerable reaction necessary 

3 Braking rate -4 to -6 m/s2 Heavy reaction necessary 

4 Braking rate < -6 m/s2 Emergency reaction necessary 

3.1.4 Simulated conflict estimation framework 

A general framework to estimate simulated traffic conflicts is shown in Figure 3.2. The estimation 

procedure starts with simulating vehicle movements (e.g., using VISSIM traffic micro-simulation 

model) at the sites of interest for a given period of time. This time-period can be limited to only 

the morning or the afternoon peak hours or other periods based on the nature of the countermeasure 

and the time of day that may be of interest. 

The inputs to the simulation platform are the geometry of the site under consideration, 

number of lanes, number of through and turning vehicles at each approach, signal times, signal 

plans, etc. In addition, a number of parameters that represent driving behavior need specification, 

such as, car-following, gap acceptance, lane change behaviors. The value of these inputs is 

obtained through calibration based on observed vehicle tracking data and simulated output error 

analysis. 
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After running the simulation for the pre-specified time and with the traffic and geometric 

features at the study location, the trajectories that shows locations of all vehicles entered the 

simulation network for every simulation resolution period (e.g., usually 0.10s) can be obtained.  

The next step is to convert individual vehicle trajectories to vehicle-pairs for a given type 

of interaction (i.e., lead and following vehicles in case of rear-end interactions). It is worth noting 

that most major micro-simulation models can output vehicles trajectories in formats (e.g., usually 

trj files) that can be used directly with conflict analysis software such as SSAM (Surrogate Safety 

Assessment Model). The output files from VISSIM can be then inputted to SSAM model to extract 

vehicles’ interactions. The processed VISSIM outputs in SSAM can be exported to allow further 

analysis (i.e., remove pedestrian-pedestrian conflicts). Furthermore, by selecting a surrogate safety 

indicator of interest and conflict threshold, the simulated conflicts can be estimated for the site 

under study. The simulated conflicts can be also estimated by type (e.g., rear-end conflicts). 
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Figure 3.2: Framework for estimating conflicts 
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3.2 CONFLICT-BASED PRIORITY RANKING OF UNSAFE LOCATIONS 

Similar to crash-based methods, conflict frequency (CF) can be used to prioritize unsafe sites for 

safety intervention. In a FHWA report (Gettman et al., 2008), the rank order of unsafe intersections 

using simulated conflict frequency was compared to the rank order using crash frequency over 

three years. The Spearman rank correlation coefficient between the two ranked lists was found to 

be of 0.463 (i.e., significant agreement).  

Another conflict-based ranking method called the average conflict rate (ACR) was 

introduced by El-Basyouny (2006) as follows: 

 Average hourly conflicts
hourly volumes from the major and the minor approaches

ACR =    [3.2] 

El-Basyouny (2006) compared the ranking estimates using ACR based on estimated 

conflicts from VISSIM and SSAM models with ranking estimates from PSI crash-based method 

for a sample of intersections. The Spearman rank correlation coefficient was found to be very weak 

(i.e., 0.132), which indicated minimal agreement in the ranking between the total conflict based-

method and the PSI rankings. The same was for the severe ACR conflicts when compared to the 

PSI (i.e., Spearman rank coefficient = 0.008). In addition, El-Basyouny (2006) conducted the same 

analysis using conflicts by type (i.e., crossing, rear-end and lane-change conflicts), and there was 

no significant agreement between ranking orders from conflict-based method and crash-based 

methods. Spearman rank coefficients were found to be less than 0.06 for the 3 conflict/crash 

rankings. 

3.3 CONFLICT-BASED TREATMENT EFFECT 

The change in the number of conflicts in the before and after treatment(s) has been used as an 

indication of treatment effect at given sites (e.g., Zhou et al., 2010; Sayed et al., 2012; Autey et 

al., 2012, etc.). To evaluate the safety effects of a treatment using simulation, the site is simulated 
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twice, once without the treatment (i.e., the before period) and the second time with the treatment 

(i.e., the after period). To account for the treatment only, both the traffic volume and the calibration 

parameters should be remained unchanged. 

Similar to the crash-based methods, the conflict reduction (ΔCF), the index of treatment 

effectiveness ( ρ ) and the percentage of change (% change) can be used to estimate the treatment 

effectiveness based on simulated conflicts as shown in Equations [3.3] - [3.5]: 

 A BCF CF CF∆ = −   [3.3] 

 A

B

CF
CF

ρ =   [3.4] 

 % (1 ) 100Change ρ= − ×   [3.5] 

where 

CF∆  = Conflict reduction in terms of number of conflicts reduced in the period after 

implementation of the countermeasure,  

ρ  = Index of treatment effectiveness,  

BCF = Number of conflicts without treatment,  

ACF = Number of conflicts with treatment, and   

%Change  = Percentage of increase or decrease in simulated conflicts after the 

implementation of the countermeasure. 

3.4  CHAPTER SUMMARY 

This Chapter presented the traffic conflict approach, which will be used later on in this thesis in 

developing the integrated crash-conflict models. Traffic conflicts can be observed in the field at a 

given site or they can simulated through the use of traffic microsimulation models (e.g., VISSIM). 
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There are different indicators that can be used as measures of safety. In this thesis research, the 

TTC and DR will be used to obtain simulated conflicts. 

This Chapter also presented how conflict-based methods can be used in ranking unsafe 

sites and in estimating treatment effects at a given site. The simulated conflict-based approach is 

proactive in nature in that treatment effects can be estimated prior to implementation. However, 

treatment effect is obtained as the percentage of simulated conflict reductions between the after 

and before can be used as exploratory indication of the treatment effectiveness.  This is because 

the reduction in crashes for a given countermeasure is not known. 
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CHAPTER 4 

PROPOSED CRASH-CONFLICT INTEGRATED MODELS 

 Chapter 4 presents integrated priority-ranking and treatment effect models that combine the 

expected crash frequency from observational models with simulated traffic conflicts.  The models 

are used to provide insights into two fundamental safety questions: Which sites should receive 

priority treatment?  And what is the crash-reduction benefit of the treatment being considered at a 

specific site? 

4.1 INTEGRATED PRIORITY RANKING MODEL 

The high cost of intersection crashes provides strong justification for the development of efficient, 

objective guidelines for safety intervention (NHTSA, 2012). These guidelines must be based on 

reliable priority ranking models. 

Observational models based on reported crash history are  commonly used  to identify 

unsafe sites for priority intervention. Recently, microscopic traffic simulation has been used to 

yield surrogate measures of safety performance to predict high-risk vehicle interactions for 

different traffic conditions. This can also be used as a basis for priority ranking.  Proponents of 

latter models argue that taking into account these higher risk interactions can help in gaining a 

better understanding of the safety problem. Reported crashes tend to underreport less severe 

crashes, and ignore near misses (Nicholson, 1985; Farmer, 2003; Davis, 2004; Saunier and Sayed, 

2007; Hauer and Hakkert, 1989). These low severity crashes and near misses may contain essential 

information concerning lack of safety that is important from the point of view of effective 

intervention. 

Combining the expected crash frequency with high-risk vehicles’ interaction (or traffic 

conflict) from microscopic traffic simulation models may help in obtain better priority rankings 

for unsafe sites.  
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4.2 INTEGRATED PRIORITY RANKING MODEL FORMULATION 

An integrated priority ranking measure is proposed based on the weighted sum of EB expected 

number of crashes and the number of simulated traffic conflicts. This weighted sum is referred to 

as a priority ranking safety score (SS), which is expressed, as:  

 i i iSafety Score CF W EB= + ×   [4.1] 

where 

iCF  = Number of simulated conflicts at site i, 

iEB   = Expected number of crashes at site i estimated by EB method, and 

W = Weight factor that represents the importance of EB. 

The weight factor in the above expression needs to be determined since we do not know 

how much importance should be placed on crashes as compared to conflicts. In this thesis, the 

weight factor value is determined iteratively by using a total score criterion introduced by Montella 

(2010).  

Montella’s total score measure combines the results of three evaluation criteria: 

1. Site consistency (C1): sum of observed crashes in succeeding time-periods (Cheng and 

Washington, 2008) 

2. Method consistency (C2): number of matching sites in both ranking periods (Cheng and 

Washington, 2008). 

3. Total rank difference (C3): sum of absolute rank differences between rankings in both 

ranking periods (Cheng and Washington, 2008). 

The total score measure  (C4) assumes that the three tests (C1, C2 and C3) have equal weights, such 

that:  
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   [4.2] 

where,   

maxj C1 = Maximum value of C1 among the compared methods, 

maxj C2 =Maximum value of C2 among the compared methods, 

maxj C3 = Maximum value of C3 among the compared methods, and 

minj C3 = Minimum value of C3 among the compared methods. 

If the performance of method j performed best for all evaluation criteria, the total score  

value (C4) is assigned 100%. The goal here is to find the weight W that maximizes the total score  

corresponding to the integrated safety score (SS) method. 

Figure 4.1 shows a suggested framework to estimate an appropriate weight factor as given 

in Equation [4.1]. First, different values of the weight factor (e.g., 10, 20, 30, 40, etc.) can be 

assumed and the total score value (C4) that corresponds to each assumed weight can be estimated. 

This process can be repeated until a satisfactory value of the total score test is achieved (e.g., larger 

than C4 associated with EB method). Alternatively, the results of different weight factors and the 

total score test values can be plotted, then W associated with the highest C4j can be used in the SS 

formula.  
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Figure 4.1: Framework to estimate weight factor 
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4.3 INTEGRATED TREATMENT EFFECT MODEL 

This section presents an integrated model for estimating treatment effectiveness at a given site. 

The method is based mainly on comparing the number of simulated conflicts with and without the 

countermeasure and then converting the conflict ratio to an equivalent crash modification factor 

(CMF). 

As noted in Chapter 1, observational before-and-after crash-based studies are the most 

common methods to estimate CMFs for assessing the implication of road safety treatments (Hauer, 

1997). Using observational crash-based models to evaluate treatments can only be determined after 

implementing treatment(s) and this can only be achieved if sufficient site-years of treatment data 

are available to ensure statistically meaningful results. As such, observational crash-based models 

for treatment effect are not proactive. In addition, the rationale underlying why certain treatments 

result in crash reduction remains unexplained because observational crash prediction models do 

not specify causes and consequences of the crashes and how these are affected by driver 

behavioural factors. 

Simulated traffic conflicts, as noted earlier, can be used to address these drawbacks in the 

crash-based models, but they have not been  formally linked to crashes. As such, traffic conflicts 

are viewed as abstract representations of lack of safety. The following sections presents a 

framework for addressing this limitation by integrating observed crash-based and simulated 

conflict-based indicators to obtain crash modification factors. 

4.3 PROPOSED CRASH –CONFLICT CMF FORMULATION 

A general framework to estimate a CMF from simulated traffic conflicts is illustrated in Figure 4.2. 

Estimates of simulated traffic conflicts are obtained for a representative sample of sites for relevant 

road geometry and traffic inputs. The simulation is carried out with and without a specific 

treatment, and the corresponding conflict modification factor is obtained. The conflicts are used 
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as inputs in a crash-conflict relationship based on observed crash and simulated conflict data. This 

relationship is then used to estimate the CMF with its corresponding mean and variance. 

From simulation, the estimates of conflicts with and without treatment can be summarized 

by their mean and variance, such that: 

Cb  = Summation of the mean number of conflicts without treatment (i.e., 

before) at all treated sites, 

Var(Cb)  = Summation of the variance of conflicts in the before period at all treated 

sites, 

Ca  = Summation of the mean number of conflicts with treatment (i.e., after) 

at all treated sites 

Var(Ca) = Summation of the variance of conflicts in the after period at all treated  

sites. 

It is worth noting that the mean value of conflicts in the before and  after periods can be 

obtain by dividing the total number of conflicts for all simulation runs divided by the number of 

simulation runs. 

The expected conflict ratio (ρ) is estimated as: 

 a

b

C
C

ρ =   [4.3] 

With a variance of: 

 ( ) ( )2 2 2( ) ( / ) ( ) / ( ) /a b a a b bVar C C Var C C Var C Cρ  = × +    [4.4] 
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Using a separate sample of data for which both conflicts and observed crashes are available, 

we can establish an empirical relationship between  expected crashes and simulated conflicts, such 

that:  

 

Figure 4.2: Integrated CMF estimation framework 
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 ( )Crashes Conflicts βα= ⋅   [4.5] 

The parameters in Equation [4.5] will need to be obtained empirically using generalized 

linear models (GLM). As given in Equation [4.6], θ  is expressed as the ratio of the expected 

number of crashes (after over before), such that: 

 ( )
( )

a

b

C
C

β

β

αθ
α
⋅

=
⋅

  [4.6] 

 ( )a

b

C
C

β
βθ ρ

 
= = 
 

  [4.7] 

The variance associated withθ can be estimated assuming that ρ is normally distributed. θ  

is a function of ρ such that, ( ) βθ ρ ρ= , which can be represented by the Taylor series: 

 
2 2

2

( ) ( )( )( )
2

m m m m mm
m m

β β β
β β ρ β β ρθ ρ − − −

= + + + ⋅⋅⋅   [4.8] 

where m is the expected value of ρ. Since m and β are assumed constant, new parameters 

a1 and a2 can be introduced, such that: 

 1
ma

m

β β⋅
=   [4.9] 

 
2

2 22
m ma

m

β ββ β⋅ − ⋅
=   [4.10] 

and ( )θ ρ  becomes: 

 2
1 2( ) ( ) ( m)m a m aβθ ρ ρ ρ= + − + − + ⋅⋅⋅   [4.11] 
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The expected value of θ can be estimated using the first term in the Taylor series, such 

that: 

 ( ) [ ( )] mE E βθ θ ρ= =   [4.12] 

 and the variance of θ can be estimated as: 

 [ ] [ ]2( ) [ ] ( )Var g E f dρθ ρ θ ρ ρ
∞

−∞

= −∫   [4.13] 

By substituting ( )θ ρ  and ( )E θ  from Equation [4.11] and Equation [4.12] in Equation 

[4.13] , the variance of θ can be expressed as: 

 [ ] 22
1 2( ) ( ) ( )Var a m a m f dρθ ρ ρ ρ ρ

∞

−∞

 = − + − ∫   [4.14] 

and Equation [4.14] becomes more simply as: 

 [ ] ( )2 2 2
1 2( ) 3 ( ( ))Var a Var a Varθ ρ ρ= ⋅ + ⋅ ×   [4.15] 

The parameters 1a and 2a can be estimated as: 

  1
1a βρ β−= ×   [4.16] 

 ( )2
2

1 1
2

a βρ β β−= × × × −   [4.17] 

The above procedure produces estimates of site specific CMF and its variance that are a 

function solely of the ratios of simulated conflicts (with and without treatment) and the parameter 

β whose value is established empirically from the fitted crash-conflict expression. 
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4.4 CHAPTER SUMMARY 

This Chapter presented a new priority ranking method that combined the expected crash frequency 

from observational models and simulated conflict frequency. In addition, it has presented a model 

for integrating observed crash-based and simulated conflict-based indicators to obtain treatment 

Crash Modification Factors (CMFs).  Once the link between simulated conflicts and crashes is 

established, the integrated treatment effect model will mainly depend on the simulated conflict 

ratio. The main advantage of a simulation approach is that it is proactive in nature, meaning that 

estimates of treatment effects can be determined before implementing the treatments. In addition, 

the integrated approach ensures that the value of the CMF applied is site specific. This is because 

CMF varies from site to site depending on the site and/or treatment characteristics. This is a big 

advantage since most conventional crash-based CMFs available are constant. 

This can help transportation engineers in estimating the countermeasure effectiveness of 

proposed treatments before implementation. In addition, the model has the added advantage of 

providing a causal underpinning for how vehicle movements and driver responses in the traffic 

stream act to alter safety at a specific site subject to treatment under an assumed set of geometric 

and traffic conditions. 
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CHAPTER 5 

CASE STUDY ONE: PRIORITY RANKING OF 

INTERSECTIONS 

Chapter 5 presents the results of two priority ranking case study applications: (1) comparing crash-

based priority ranking with conflict-based priority ranking for the same sample of intersections; 

and (2) applying the priority ranking from an integrated crash-conflict model to the same sample 

of intersections and comparing the results.  

For the first application, six different ranking procedures are used: 1) crash frequency (AF), 

2) empirical Bayes expected crash frequency (EB), 3) potential for safety improvement (PSI), 4) 

conflict frequency (CF) and 5) conflict rate (CR) (sum and cross product of traffic volume). To 

assess the merits of the resultant rankings, six different evaluation metrics are employed: site 

consistency, method consistency, total rank difference, total score, sensitivity and specificity 

(Cheng and Washington, 2008; Montella, 2010; Elvik, 2008a). 

For the second application, the integrated model is used to obtain rankings for the same 

intersection sample. The performance of the integrated model is then compared with crash-based 

and conflict-based ranking procedures. In this, traffic conflicts were obtained for the intersection 

sample as simulated from VISSIM 5.30 (PTV, 2011). The inputs into the simulation exercise are 

intersection approach volumes and turning movements. Furthermore, selected input parameter 

values in VISSIM were obtained from an intersection traffic study using VISSIM by Cunto and 

Saccomanno (2008). The selected parameters are desired deceleration, standstill distance (CC0) 

and headway time (CC1). 

5.1 CASE-STUDY DATA 

A sample of 58-signalized intersections from Toronto was used in this analysis.  All intersections 

are four legged and have no exclusive turning lanes. The sample intersections were observed to 
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experience 2,331 crashes (all severities combined) over an eight-year period from 1999 to 2006 or 

40 crashes per intersection. 

A different set of 35 four-leg signalized intersections, for which turning traffic volume 

movements were available, were simulated using VISSIM to estimate the expected number of 

traffic conflicts. The reason for using other intersections is that the turning movements are not 

available for the 58 sites. The 35-intersections are comparable in that they did consist of two lanes 

in each approach with no exclusive left-turn or right-turn lanes.  

Three of the six ranking procedures used in this analysis (EB, PSI and SS)  required the 

specification of a safety performance function (SPF). The data were separated into two time-

periods for the purpose of comparison: the first and the second ranking periods.  

The first ranking period used in this analysis was 3-years from 2002 to 2004 and the second 

ranking-period (i.e., evaluation period) was 2-years from 2005 to 2006, as shown in Figure 5.1. 

The time period 1999-2001 was used to calibrate the SPF and to estimate the EB expected number 

of crashes (i.e., prior) for the first analysis period (2002-2004). In addition, the period from 2002 

to 2004 was used to estimate the EB expected number of crashes (e.g., prior) in the second analysis 

period (2005-2006), as shown from Figure 5.1. 
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Figure 5.1: Data split diagram between SPFs, first and second ranking periods 

5.1.1 Safety performance functions for crashes 

Generalized linear modeling (GLM) techniques were used to fit the crash prediction expressions, 

with a negative binomial (NB) error structure. The model parameters and the dispersion parameter 

of the NB distribution were estimated by the maximum likelihood method using the PSSL library 

in R-statistical software (R, 2011). The selected SPF model forms are as follows (Hauer and 

Bamfo, 1997): 

Form (1):  min( ( )) 1 2 ( ) 3 ( )i majLN E y LN LN AADT LN AADTβ β β= + × + ×   [5.1] 

Form (2):  min( ( )) 1 2 ( )i majLN E y LN LN AADT AADTβ β= + × +   [5.2] 

Form (3):  
min

min

min

( ( )) 1 2 ( )

3

i maj

maj

LN E y LN LN AADT AADT

AADTLN
AADT AADT

β β

β

= + × + +

 
×   + 

  [5.3] 

Form (4):  min( ( )) 1 2 ( )i majLN E y LN LN AADT AADTβ β= + × ×   [5.4] 
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 E(yi) = Expected number of crashes at site i, 

i
majAADT  = Average annual daily traffic in the major approach at site i, 

 min
iAADT  = Average annual daily traffic in the minor approach at site i, 

 LN = Natural logarithm, and 

 β1, β2 and β3 = Calibration coefficients. 

The Akaike information criterion (AIC) was chosen to be the sole measure of goodness of 

fit, given that the values of "Residual Deviance/Degrees of Freedom" is close to 1 for a model to 

be considered adequate (McCullagh and Nelder, 1989). The model with a minimum AIC value 

was chosen to be the best-fitted model. 

The best fit models for 1999-2001 and 1999-2004 were found to have the form as in 

Equation [5.3]. With a larger database, other forms could have been investigated, but finessing the 

SPF was not necessary for achieving the aims of this analysis. The GLM model estimate and 

goodness of fit for data between 1999 and 2001 are as follows, with the standard error (SE) 

indicated in brackets []: 

 

min

min

maj min

( ( )) 6.4641[3.49] 1.0644[0.35] ( )

1.0094[0.15]

Dispersion parameter 0.443, Residual deviance 63.157 55
degrees of freedoms, 415.94 2

i majLN E y LN AADT AADT

AADTLN
AADT AADT

with
AIC and Loglikelih

= − + × +

 
+ ×   + 

= =
= × 407.938ood = −

  [5.5] 

The GLM model estimate and goodness of fit for data between 2002 and 2004 is as follows: 
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min

min

maj min

( ( )) 4.7668[3.18] 0.9596[0.31] ( )

0.9811[0.13]

Dispersion parameter 0.388, Residual deviance 63.05 55
degrees of freedoms, 484.89 2

i majLN E y LN AADT AADT

AADTLN
AADT AADT

with
AIC and Loglikeliho

= − + × +

 
+ ×   + 

= =
= × 476.890od = −

 [5.6] 

It is worth noting that the dispersion parameter reported in this thesis is the inverse of the 

term usually obtained by "R" statistical software. In this case, the variance of the NB distribution 

has the form of Equation [2.5]. 

5.2 ESTIMATION OF CONFLICTS 

The thirty-five intersection sample with turning movement counts was simulated using the 

VISSIM microscopic traffic simulation model (PTV, 2011). In this study, the parameters 

calibration results from Cunto (2008) for a signalized intersection were used.  Among all available 

driving parameters, Cunto (2008) revealed three parameters that were most sensitive, and the best, 

to represent traffic operation at a signalized intersection. Those factors are: 

1. Desired deceleration: used in achieving predefined desired speed or under Stop-and-Go 

condition (the calibrated value =-2.6 m/s2);  

2. CC0 (Standstill Distance): the desire distance between stopped cars (the calibrated value = 

3 m);  

3. CC1 (Headway Time): the time that the following vehicle wants to keep with the lead 

vehicle (the calibrated value = 1.50s).  

In this study only the AM peak hour (surrogate of the daily traffic volume) was considered 

for the VISSIM micro-simulation to estimate the number of conflicts. It is worth noting that the 

AM peak hour volumes were obtained for the years 2002 and 2003. For each intersection, 10-

simulation runs with 10- random seeds were used to capture the randomness in traffic operation. 

For each run, the trajectories of simulated vehicles at different times were saved. 
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The resulting trajectories from VISSIM were then processed using the Surrogate Safety 

Assessment Model (SSAM) (Pu and Joshi, 2008) to estimate the total number of conflicts (rear-

end, crossing and lane change) for different deceleration rate (DR) thresholds as suggested by 

Hyden (1996) [shown in Table 3.4]: 

 DR ≤ - 1.5 m/s2 (i.e., Low-risk conflict threshold), 

 DR ≤ - 4 m/s2, and 

 DR ≤ - 6 m/s2 (i.e., High-risk conflict threshold). 

The results of the simulation of the 35-sites were used to develop a model linking conflicts 

to selected traffic inputs such as volumes. This model provides information for potential traffic 

conflicts, which replaces the need for simulation at sites with known volumes and other traffic 

attributes.  

Generalized linear modeling (GLM) techniques were used to fit a number of models, and 

a NB distribution error structure was assumed. The model parameters are estimated in the same 

fashion as for observational models. The selected SPF  forms are the same as in Equations [5.1] to 

[5.4], with the exception that a) the hourly traffic volumes majV and minV  in the AM peak hour are 

used instead of majAADT and minAADT , for major and the minor approaches, respectively, and b) 

conflict frequency (CF) is used as the dependent variable instead of the expected number of crashes 

( ( ))iE y . Equations [5.7]-[5.9] were found to be the best models. 

 
min( 1 ) 19.5855[0.84] 3.1169[0.11] ( )

0.036, Re 32.425 33
deg , 337.29 2 331.289

i majLN CF LN V V
Dispersion parameter sidual Deviance with

rees of freedoms AIC and Loglikelihood

= − + × +

= =
= × = −

 [5.7] 

 

 
min( 2 ) 16.53[0.76] 2.626[0.10] ( )

0.0186, Residual Deviance 28.82 33
degrees , 271.48 2 265.476

i majLN CF LN V V
Dispersion parameter with

of freedoms AIC and Loglikelihood

= − + × +

= =
= × = −

 [5.8] 
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min

min

min

( 3 ) 14.525[0.92] 2.303[0.11] ( )

0.143[0.0.06]

0.00954, Re 28.939 32
deg , 227.52 2 219.516

i maj

maj

LN CF LN V V

VLN
V V

Dispersion parameter sidual Deviance with
rees of freedoms AIC and Loglikelihood

= − + × +

 
+ ×   + 

= =
= × = −

 [5.9] 

Where, 

CF(1)i =  Simulated number of conflicts for DR ≤ - 1.5 m/s2 at site i, 

CF(2)i =  Simulated number of conflicts for DR ≤ -4.0 m/s2 at site i, 

CF(3)i =  Simulated number of conflicts for DR ≤ -6 m/s2 at site i,  

Vmaj  = Hourly traffic volume in the major approach at site i, and 

Vmin  = Hourly traffic volume in the minor approach at site i. 

Equations [5.7]-[5.9] were then used to estimate the average number of conflicts at each of 

the 58-intersections. Before estimating the conflicts, the AADT had to be converted to hourly 

volume. This was because the traffic volumes for the 58-intersections were available in the form 

of daily traffic volumes (AADT), while the traffic variables in Equations [5.7]-[5.9] pertain to 

hourly volume in the AM peak. For this study, a factor of 0.09 was assumed in converting daily 

traffic volumes to hourly volumes. The average number of conflicts at the 53 sites was calculated, 

with the summary statistics of the estimated conflicts as given in Table 5.1. 
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Table 5.1. Summary statistics of the estimated number of hourly-simulated conflicts 

Period 
DR ≤ - 1.5 m/s2 

Average SD Maximum Minimum 

2002-2004 222.50 231.50 1246.44 29.37 

2005-2006 215.96 225.50 1225.75 26.36 

Period 
DR ≤ - 4 m/s2 

Average SD Maximum Minimum 

2002-2004 87.70 73.54 393.77 16.74 

2005-2006 85.57 71.66 388.26 15.29 

Period 
DR ≤ - 6 m/s2 

Average SD Maximum Minimum 

2002-2004 35.93 24.67 142.24 8.47 

2005-2006 35.20 24.08 140.50 7.82 

5.2.1 Traffic conflicts priority-ranking  

To facilitate the comparison between observational priority ranking methods  and simulated 

conflicts, two different conflict-based methods were used: first, conflict-based priority ranking 

methods based on simulated conflict frequency; and second, conflict-based rankings using 

simulated conflict rate based on the sum and the cross product of traffic volumes as shown in 

Equations [5.10]-[5.12]. 

For the conflict frequency methods, three different deceleration rate (DR) thresholds were 

used: 

DR ≤ - 1.5 m/s2, 

DR ≤ - 4 m/s2, and 

DR ≤ - 6 m/s2. 
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Similarly, three conflict rates were suggested: 

 
min

(1)(1) i
i i i

maj

CFCR
AADT AADT

=
+

  [5.10] 

 
min

(1)(2) i
i i i

maj

CFCR
AADT AADT

=
×

  [5.11] 

 
min

(3)(3) i
i i i

maj

CFCR
AADT AADT

=
×

  [5.12] 

Where, 

CF(1)i = Simulated number of conflicts for DR ≤ - 1.5 m/s2 at site i, 

 CF(2)i= Simulated number of conflicts for DR ≤ -4.0 m/s2 at site i, 

CF(3)i= Simulated number of conflicts for DR ≤ -6 m/s2 at site i, 

i
majAADT  = Average annual daily traffic in the major approach at site i, and 

min
iAADT  = Average annual daily traffic in the minor approach at site i. 

5.2.2 Evaluation criteria 

To evaluate and compare the performance of the ranking from the simulated conflict-based ranking 

methods with that obtained from the observational crash-based models, six evaluation criteria were 

used. These criteria relate to performance attributes, such as, how effective and efficient is the 

method in identifying sites that show consistently unsafe performance in both the ranking (i.e., 1st 

period) and the evaluation (i.e., 2nd period) time periods (Montella, 2010). These criteria are: 

1. Site consistency (C1): sum of observed crashes in succeeding time-periods. 

2.  Method consistency (C2): number of matching sites in both ranking periods. 

57 



 

3.  Total rank difference (C3): sum of absolute rank differences between rankings in 

both ranking periods. 

4.  Total score: (C4): combines the results of the three previous tests assuming that they 

have the same weight. 

5.  Sensitivity (C5-1): proportion of sites that continue to belong to the worst ranked list 

in the second period. 

6.  Specificity (C5-2): proportion of sites that continue not to belong to the worst ranked 

list in the second period. 

 

The nature of these evaluation criteria are now discussed in more depth.  

5.2.2.1 Site consistency test (Cheng and Washington, 2008) 

The basis of this test is that an untreated site identified as unsafe (i.e., high-risk) during the ranking 

period (i.e., time period i) should also reveal poor safety performance in the evaluation period (i.e., 

time period i+1). The method that identifies high-risk sites in the evaluation period with the highest 

number of crash frequency is the most consistent one. The test statistic is given as: 

 1 1
1 ,

1

n
i i

j j j K
k n n

C Y Y
α

+ +

= − +

= = ∑   [5.13] 

where, 

1 jC  = Site consistency test for method j, 

n = Total number of ranked sites, 

α  = Percentage of worst ranked high-risk sites (e.g., 1%, 2%, 5%, etc.), 

1i
jY +  = Sum of observed crashes in the second time period (i+1) for ranking method j, and 

58 



 

1
,
i
j kY +  = Observed crash counts at worst ranked nα  sites by method j for the second period i+1. 

5.2.2.2 Method consistency test (Cheng and Washington, 2008) 

This test evaluates a method’s performance by computing the number of the same sites identified 

as high risk in both the ranking and the evaluation time periods. The greater the number of sites 

identified in both periods the more consistent is the ranking method. The test statistic is given as: 

 1 1 1
2 1 2 1 2{k ,k ,..., k } {k ,k ,..., k }i i i i i i

j n n n n n j n n n n n jC α α α α
+ + +

− + − + − + − +=    [5.14] 

where, 

2 jC = Method consistency test for method j, 

1 2{k ,k ,..., k }i i i
n n n n n jα α− + − + = Worst ranked nα high-risk sites by method j during the first time 

period i, 

1 1 1
1 2{k ,k ,..., k }i i i

n n n n n jα α
+ + +
− + − + = Worst ranked nα high-risk sites by method j during the second 

time period i+1. 

5.2.2.3 Total rank differences test (Cheng and Washington, 2008) 

The absolute sum of total rank differences between the ranks of the high-risk sites identified in the 

first period i and ranks identified in the second period i+1 for the same group of sites is used to 

reflect the performance in terms of consistent rankings of sites across periods.  A ranking method 

is considered more consistent when the total rank difference is smaller and vise-versa. The test 

statistic is given as: 

 1
3

1
| ( ) ( ) |

n
i i

j j j
k n n

C Rank k Rank k
α

+

= − +

= −∑   [5.15] 

where, 
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3 jC  = Total rank differences test for method j, 

 n = Total number of sites 

α =  Percentage of worst ranked high-risk sites, 

( )i
jRank k =Rank order for site k by method j during period i, and 

1( )i
jRank k + =Rank order for site k for method j for period i+1. 

5.2.2.4 Total score test (Montella, 2010) 

This test combines the results of the three previous tests to give a more comprehensive index of fit 

(Montella, 2010). The test assumes that the three tests have the same weight. If the performance 

of method j is the best in all of the previous three tests, the C4 value is equal to 100. The test 

statistic is given as: 

 1 2 3 3
4

1 2 3

min100 1
3 max max max

j j j j
j

j j j

C C C C
C

C C C

      −
= × + + −                  

 [5.16] 

where,   

maxj C1 = Maximum value of C1 among the compared methods, 

maxj C2 =Maximum value of C2 among the compared methods, 

maxj C3 = Maximum value of C3 among the compared methods, and 

minj C3 = Minimum value of C3 among the compared methods. 

5.2.2.5 Sensitivity and specificity tests (Elvik, 2008a) 

This test employs a number of correct positives and correct negatives to assess the performance of 

various ranking criteria. The idea behind this criterion is that true positives will persist in having a 

bad safety record, whereas false positives will regress toward a more normal safety record in the 

second period and not be flagged. There are also false negatives (e.g., sites not detected in the first 
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time period, but which are detected in the second time period). Sensitivity refers to the sites with 

a safety problem identified in the first period and which have been identified in the second period 

as well. Specificity refers to sites with no safety problem in the first and the second time periods. 

The larger the sensitivity and the specificity evaluation measures, the more consistent the method 

is. Sensitivity and specificity can be calculated as follows: 

 5 1
Number of correct positives

total number of positivesC − =   [5.17] 

 5 2
Number of correct negatives

total number of negativesC − =   [5.18] 

where, 

C5-1 = Sensitivity, 

C5-2 = Specificity,  

Number of correct positives = Number of sites that continue to belong to the worst ranked nα  

in the second period i+1, 

Total number of positives = Number of correct (true) positives plus the number of false negatives 

(Number of new sites that enter the list nα in the time period 

i+1), 

Number of correct negatives = Number of sites that do not belong to the worst ranked list nα in 

both the time periods i and i+1, 

Total number of negatives = Number of correct negatives plus the number of false positives 

(Number of sites that drop out of the worst ranked list nα in 

the second period i+1) 
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5.3 COMPARISON OF PRIORITY RANKING PROCEDURES (1ST 

APPLICATION) 

The priority ranking methods from observational methods (EB, PSI and AF) and simulated traffic 

conflict methods (CF(1), CF(2), CF(3), CR(1), CR(2) and CR(3)) , as shown in Table 5.2, were 

calculated for the two time periods (2002-2004 and 2005-2006) for the 58-signalized intersections 

samples. 

Table 5.2: Conflict-based and crash-based priority ranking methods 

Method label Description 

EB empirical Bayesian expected number of crashes 

PSI potential of safety improvement 

AF crash frequency 

CF(1) simulated number of conflicts with DR ≤ - 1.5 m/s2 

CF(2) simulated number of conflicts for DR ≤ -4.0 m/s2  

CF(3) simulated number of conflicts for DR ≤ -6 m/s2  

CR(1) simulated conflict rate based on CF(1) and the sum of traffic volumes 
(Equation [5.10]) 

CR(2) simulated conflict rate based on CF(1) and the cross product of traffic 
volumes (Equation [5.11]) 

CR(3) simulated conflict rate based on CF(3) and the cross product of traffic 
volumes (Equation [5.12] 

The six evaluation criteria were applied to evaluate and compare the performance of these 

methods. The comparison results are shown in Table 5.3. 

For site-consistency, the AF and EB methods are the best for ranking the worst 5 and 10 

sites. The conflict methods performance is very poor compared with observational models. The 

CR(3) method is the worst among all other methods with a difference of 142 crashes when 
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compared to either AF or EB methods. PSI method is better than conflict methods in this test, but 

it is worse than AF and EB in ranking the worst sites. 

For method consistency and rank difference, the conflict methods are the best ones to 

identify the worst 5, 10 and 15 sites compared to observational methods. CR(3) method was the 

best to identify the worst 5, 10 and 15 sites. The PSI method was the worst to identify the worst 5, 

10 and 15 sites.  

For the total score, the EB method was the best to identify the worst 5 sites. AF was the 

second best to identify the worst 5 sites. For the worst 10 sites, the CF(3) method was the best, 

followed by the AF method, then by EB method. The difference between EB and CR(3) was only 

1.75%.  The AF method was the best to identify the worst 15 sites. The PSI method again was the 

worst to identify the worst 5, 10 and 15 sites. 

For sensitivity and specificity, the conflict methods were better than observational 

methods to identify the worst 5, 10 and 15 sites. CR(3) is the ideal method in terms of sensitivity 

and specificity tests. PSI method again was the worst to identify the worst 5, 10 and 15 sites in 

terms of the sensitivity test. 

As shown in Table 5.3 observational models (except for PSI) are superior to conflict 

methods in identifying the worst sites in terms of the site consistency test. On the other hand, 

conflict methods are much better than observational methods in terms of method consistency, rank 

difference and sensitivity and specificity tests. 

For the total score, the observational methods (except for PSI) are better than conflict 

methods in identifying the worst 5 and 15 sites. On the other hand, conflict methods perform well 

with respect to observational methods in identifying the worst 10 sites with CF(3). 
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Table 5.3. Evaluation results between crash-based and conflict-based ranking methods 

Ranking 
method 

(1) Site consistency test (2) Method consistency test 
Worst 5 Worst 10 Worst 15 Worst 5 Worst 10 Worst 15 

AF 158 226 287 3 7 12 
EB 158 226 283 3 7 12 
PSI 122 178 221 2 5 7 

CF(1) 35 96 123 5 9 15 
CF(2) 35 96 123 5 9 15 
CF(3) 64 101 133 4 10 12 
CR(1) 35 96 123 5 9 15 
CR(2) 20 45 73 5 10 14 
CR(3) 16 41 63 5 10 15 

Ranking 
method 

(3) Total rank differences test (4) Total score test 
Worst 5 Worst 10 Worst 15 Worst 5 Worst 10 Worst 15 

AF 11 56 69 82.93 78.11 82.48 
EB 10 53 79 83.27 78.75 80.45 
PSI 98 157 212 39.07 42.92 41.22 

CF(1) 0 7 12 74.05 76.01 79.07 
CF(2) 0 7 12 74.05 76.01 79.07 
CF(3) 1 8 21 73.16 79.86 72.15 
CR(1) 0 7 12 74.05 76.01 79.07 
CR(2) 2 4 5 70.21 72.45 72.14 
CR(3) 0 0 0 70.04 72.71 73.98 

Ranking 
method 

(5-1) Sensitivity (5-2) Specificity 
Worst 5 Worst 10 Worst 15 Worst 5 Worst 10 Worst 15 

AF 0.60 0.70 0.80 0.96 0.94 0.88 
EB 0.60 0.70 0.80 0.96 0.94 0.93 
PSI 0.40 0.50 0.47 0.96 0.94 0.93 

CF(1) 1 0.90 1 1 0.98 1 
CF(2) 1 0.90 1 1 0.98 1 
CF(3) 0.80 1 0.80 0.98 1 0.93 
CR(1) 1 0.90 1 1 0.98 1 
CR(2) 1 1 0.93 1 1 0.98 
CR(3) 1 1 1 1 1 1 
*Shaded cells represent the best method for a certain criterion 
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5.4 PRIORITY RANKING USING INTEGRATED MODEL (2ND 

APPLICATION) 

The same sample of 58 four-leg signalized intersections was used to compare the proposed 

integrated model rankings with those obtained using observational crash-based and conflict-

based methods. 

The priority ranking for unsafe sites based on the safety score (SS), given in Equation 

[4.1] with different weight factor (W), and observational methods (EB, PSI and AF) along with 

conflict methods (CF, CR(1) and CR(2)) was done for the two time periods (2002-2004 and 

2005-2006) for the 58 signalized intersections. The total score evaluation criterion (C4) was 

applied to evaluate and compare the SS method with weight factor (W=1, 10, 100 and 1000) 

for the observational and conflict methods. The weight (W=1) means that every expected crash 

has a safety score equivalent to one conflict, while the weight (W=1000) means that every 

expected crash has a safety score equivalent to 1000 conflicts. It is worth noting that as the 

weight increases, the safety score (SS) will regress towards the estimate from the EB method. 

5.4.1 Assessing the ranking criteria 

The comparison results are shown in Table 5.4. For the site consistency (C1), the AF method 

is the best method for ranking the worst 5, 10, 15  and 20 sites, while the EB method and the 

SS method with weights of 100 and 1000 perform the same as AF for the worst 5, 10 and 20 

sites. The conflict methods (CF and CR(1)) and the SS with W=1 are the worst for ranking the 

worst 5, 10 and 15 sites. 

For consistency (C2), all conflict-based methods performed best in identifying the 

worst 5, 10, 15 and 20 sites.  The SS with W=1 is the second best to identify the worst 5 and 

10 sites The SS with W=1 along with conflict methods (CF and CR(1)) are the best to identify 

the worst 15 sites. All of the observational methods and SS with W= 1000 performed worst in 

identifying  the worst 5, 10 and 15 sites. PSI performed the worst in identifying  the worst 5, 

10 and 15 sites.  
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Table 5.4. Evaluation results for the worst 5, 10, 15 and 20 sites 

Ranking 
method 

(1) Site consistency test (2) Method consistency Test 
Worst 

5 
Worst 

10 
Worst 

15 
Worst 

20 
Worst 

5 
Worst 

10 
Worst 

15 
Worst 

20 
EB 158 226 283 335 3 7 12 17 
PSI 122 178 221 230 2 5 7 9 
AF 158 226 287 335 3 7 12 18 
CR(1) 35 96 123 186 5 9 15 20 
CR(2) 20 45 73 102 5 10 14 20 
CF(3) 35 96 123 186 5 9 15 20 
SS(W=1) 35 96 123 232 4 9 15 18 
SS(W=10) 149 200 255 296 4 7 12 17 
SS(W=100) 158 226 280 331 4 8 12 15 
SS(W=1000) 158 226 283 335 3 7 12 17 

Ranking 
method 

(3) Total rank differences test (4) Total score test 
Worst 

5 
Worst 
10 

Worst 
15 

Worst 
20 

Worst 
5 

Worst 
10 

Worst 
15 

Worst 
20 

EB 10 53 79 101 83.27 79.60 81.23 83.06 
PSI 98 157 212 282 39.07 43.77 42.01 37.89 
AF 11 56 69 108 82.93 78.96 83.27 83.90 
CR(1) 0 7 12 22 74.05 76.86 79.85 82.57 
CR(2) 2 4 5 6 70.21 73.30 72.92 76.11 
CF(3) 0 7 12 36 74.05 76.86 79.85 80.92 
SS(w=1) 1 7 10 23 67.04 76.86 80.17 83.70 
SS(w=10) 3 20 47 81 90.41 82.77 83.01 81.54 
SS(w=100) 7 48 78 105 90.95 83.99 81.04 78.86 
SS(w=1000) 9 53 79 99 83.61 79.60 81.23 83.30 

Ranking 
method 

(5-1) Sensitivity (5-2) Specificity 
Worst 

5 
Worst 

10 
Worst 

15 
Worst 

20 
Worst 

5 
Worst 

10 
Worst 

15 
Worst 

20 
EB 0.60 0.70 0.80 0.85 0.96 0.94 0.93 0.92 
PSI 0.40 0.50 0.47 0.45 0.96 0.94 0.93 0.92 
AF 0.60 0.70 0.80 0.90 0.96 0.94 0.88 0.84 
CR(1) 1 0.90 1 1 1 0.98 1 1 
CR(2) 1 1 0.93 1 1 1 0.98 1 
CF(3) 1 0.90 1 1 1 0.98 1 1 
SS(w=1) 0.80 0.90 1 0.90 0.98 0.98 1 0.95 
SS(w=10) 0.80 0.70 0.80 0.85 0.98 0.94 0.93 0.92 
SS(w=100) 0.80 0.80 0.80 0.75 0.98 0.96 0.93 0.87 
SS(w=1000) 0.60 0.70 0.80 0.85 0.96 0.94 0.93 0.92 

*Shaded cells represent the best method for a certain criterion 
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For total rank difference (C3) the SS with W=1 is the second best method to identify 

the worst 5 and 10 and, along with conflict methods (CF and CR(1)), is the best to identify the 

worst 15 sites. Conflict methods are the best to identify the worst 5, sites while the PSI method 

is the worst to identify the worst 5, 10 and 15 sites. 

For total score (C4) the SS with W=100 is the best method to identify the worst 5 and 

10 sites, while AF is the best to identify the worst 15 sites. The PSI method is the worst to 

identify the worst 5, 10 and 15 sites. 

For sensitivity (C5-1) and specificity (C5-2), SS for (W=1) is the second best after 

conflict methods to identify the worst 5 and 10 sites. With the conflict methods, CF and CR(1) 

are the best at identifying the worst 15 sites.  All of the observational methods and SS for 

W=1000 are the worst at identifying the worst 5, 10 and 15 sites. 

From Table 5.4 the conflict-based methods perform the best in terms of the consistency 

criterion, total rank difference and sensitivity and specificity tests, while they perform the worst 

for site consistency.  On the other hand, the observational methods (AF and EB) perform the 

best only for the site consistency test.  Depending on the weight value, the SS method 

performance performed well for site consistency (W=100 and 1000).  For method consistency, 

total rank difference and sensitivity and specificity tests it also performed well for W =1. 

The SS method stands out as the best method in terms of the total score test. As a result, 

it may be concluded that using SS with an appropriate value for the weight factor can reveal 

good results compared to other ranking methods based on either observational crash data or 

conflicts. 

5.4.2 Examining the weight factors 

In an attempt to determine an appropriate value of the weight factor for the worst 5 (8.62%), 

10 (17.24%),15 (25.86%) and 20 (34.48%) sites, the relationship between the weight factor 

and the total score test value (C4) was established as shown in Figure 5.2. From Figure 5.2 for 
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weight factors W≥3 , the SS method performs better than observational and conflict methods 

for identifying the worst 10 sites.  For weight factors with W≥7 the SS method yields better 

results over other methods for identifying the worst 5 and 10 sites. The highest values of the 

total score test for identifying the worst 5 sites occur at  12≤W≤33,  as shown in Figure 5.2 and 

Figure 5.3. 

Table 5.5 shows the range of weights that gives better results than observational crash-

based methods and the weight ranges that results in the highest values for the total score test. 

The weight factor values change based on the number of sites. For the worst 5 and 10 sites, 

any weight factor larger than seven and three, respectively will yield better results than both 

crash-based and conflict-based methods. The weight factor range that yields the highest total 

score values moves from 12≤W≤33 for the worst 5 sites to 37≤W≤73 for the worst 10 sites. 

Table 5.5: Weight factor range for worst 5, 10, 15 and 20 sites 

Worst sites Weight range Best weight range 

Worst 5 (8.62%) ≥ 7 12 to 33 

Worst 10 (17.24%) ≥ 3 37 to 73 

Worst 15 (25.86%) 

2 to 13; 

23 to 38;  

52 to 54;and 

≥ 104 

3 to 8 

Worst 20 (34.48%) 1 to 8 1 to 8 

For the worst 15 sites, there are four weight ranges (not a continuous range) that yield 

total score values greater than crash-based and conflict-based methods. For the worst 20 sites, 

the weight range that produces better results is between one and eight. Table 5.5 suggests that 

if it desired to identify a large number of sites (i.e., greater than 17% of sites in this case) the 

advantages of using the integrated crash-conflict model become less pronounced. 
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Figure 5.2. Relationship between the weight factor value and the total score test value 
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Figure 5.3: SS Method with different weight factors compared to EB method for ranking the worst 5, 10, 15 and 20 sites 
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5.5 EVALUATION OF SS METHOD WITH AN APPROPRIATE 

WEIGHT 

To assess the SS ranking method, with an appropriate weight factor, compared to the crash-

based and conflict-based ranking methods, a weight factor W=30 was chosen  for the worst 5 

sites (for illustration purposes). The evaluation criteria for the SS method with weight factor 

W=30 is shown in Table 5.6. 

For site consistency, the SS method with W=30 is the second best method after EB and 

AF for identifying the worst 5 sites, with a difference of only 9 crashes in the evaluation period. 

It was also found to be the best method for identifying the worst 10 sites for the same test. For 

method consistency, the SS (W=30) and conflict methods were found to perform best for 

identifying the worst 5 sites. In method consistency, it was found that this method was second 

best after conflict methods, with a difference of two sites in the worst 10 list.  For the total rank 

difference method, SS (W=30) is the second best after conflict methods. SS (W=30) is found 

to be the best method to identify the worst 5, 10 and 15 sites based on the total score test. 

Furthermore, for sensitivity and specificity tests SS (W=30) and conflict methods are the best 

at identifying the worst 5 sites and the second best after conflict methods in identifying the 

worst 10 sites. 

Overall, it may be concluded that the SS (W=30) is the best method for identifying the 

worst 5 sites, since it performed well for all evaluation criteria. However, an appropriate weight 

factor should be used when ranking a different number of sites as summarized in Table 5.7  

For example, a weight factor of 30 produced better results for the worst 5 and 15 sites, but not 

for the worst 10 sites. Similarly, a weight factor of 50 yielded better rankings for the worst 10 

sites, but was not as good for ranking the worst 15 sites compared to EB method. 
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Table 5.6. Evaluation results for worst 5, 10 and 15 sites at weight = 30 

Ranking 
method 

(1) Site consistency test (2) Method consistency test 
Worst 5 Worst 10 Worst 15 Worst 5 Worst 10 Worst 15 

EB 158 226 283 3 7 12 
PSI 122 178 221 2 5 7 
AF 158 226 287 3 7 12 
CF 35 96 123 5 9 15 
CR(1) 35 96 123 5 9 15 
CR(2) 20 45 73 5 10 14 
SS(W=30) 149 228 274 5 8 13 

Ranking 
method 

(3) Total rank differences test (4) Total score test 
Worst 5 Worst 10 Worst 15 Worst 5 Worst 10 Worst 15 

EB 10 53 79 83.27 78.45 80.45 
PSI 98 157 212 39.07 42.69 41.22 
AF 11 56 69 82.93 77.82 82.48 
CF 0 7 12 74.05 76.73 79.85 
CR(1) 0 7 12 74.05 76.73 79.85 
CR(2) 2 4 5 70.21 73.25 72.92 
SS(W=30) 6 32 58 96.06 86.54 84.93 

Ranking 
method 

(5-1) Sensitivity (5-2) Specificity 
Worst 5 Worst 10 Worst 15 Worst 5 Worst 10 Worst 15 

EB 0.60 0.70 0.80 0.96 0.94 0.93 
PSI 0.40 0.50 0.47 0.96 0.94 0.93 
AF 0.60 0.70 0.80 0.96 0.94 0.88 
CF 1 0.90 1 1 0.98 1 
CR(1) 1 0.90 1 1 0.98 1 
CR(2) 1 1 0.93 1 1 0.98 
SS(W=30) 1 0.80 0.87 1 0.96 0.95 
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Table 5.7: Total score test value for weights of 30 and 50 

Ranking 
method 

Total score test value 
Notes 

Worst 5 Worst 10 Worst 15 

EB 83.27 78.45 80.45  

SS(W=30) 96.06 86.54 84.93 Better weight for worst 5 and 15 
sites 

SS(W=50) 90.95 90.72 77.69 Better weight for worst 10 sites 

Table 5.8 shows the rank orders for SS method for W = 30 and W=50, as well as EB, 

PSI, AF and CF(3) methods. The SS with W= 30 performed best among other ranking methods 

in identifying the worst 5 sites (i.e., the same sites identified in the 1st period are the same 

identified in the evaluation period).  The SS with W= 50 performed best in terms of identifying 

the worst 10 sites. It is worth noting that all the methods were correctly identified the worst 

site in the list of unsafe sites. Moreover, for other methods (rather than SS), at least two sites 

in the worst unsafe sites (i.e., for W=30) were found to be in the worst list of unsafe sites for 

both analysis periods. 
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Table 5.8: Comparison between rankings from SS with weights of 30 and 50 with other ranking methods 

Intersection 
number 

SS 
(W=30) 

SS 
(W=30) 

SS 
(W=50) 

SS 
(W=50) EB EB PSI PSI AF AF CF(3) CF(3) 

1st 
Period 

2nd 
Period 

1st 
Period 

2nd 
Period 

1st 
Period 

2nd 
Period 

1st 
Period 

2nd 
Period 

1st 
Period 

2nd 
Period 

1st 
Period 

2nd 
Period 

1747 1 2 1 1 1 1 1 1 1 1 26 26 
82 2 1 3 4 5 12 7 49 5 13 1 1 
203 3 5 2 3 2 2 2 2 2 2 23 21 
201 4 3 4 2 3 3 52 5 3 3 4 4 
130 5 4 8 5 31 29 22 15 27 25 2 2 
610 6 9 5 8 4 7 4 43 4 7 15 19 
819 7 6 6 6 6 4 39 37 7 4 17 12 
186 8 7 7 7 7 5 49 51 8 5 16 13 
1331 9 29 9 26 8 21 3 45 6 19 36 36 
292 10 11 10 9 9 6 15 21 9 6 34 31 
994 11 28 11 30 10 33 11 52 10 33 22 22 
715 12 10 12 10 11 9 27 12 11 7 21 23 
118 13 8 18 13 38 36 41 36 37 33 3 3 
176 14 15 13 12 12 10 56 55 12 11 24 25 
516 15 14 15 18 22 24 38 44 23 25 6 7 
661 16 33 14 36 15 34 57 58 16 39 25 24 
120 17 21 22 24 29 44 28 46 27 44 5 6 
500 18 20 16 15 13 11 9 4 13 10 32 35 
664 19 23 17 20 17 13 54 56 16 14 28 28 
504 20 12 28 16 41 27 25 6 37 19 7 9 
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5.6 PRACTICAL IMPLEMENTATION 

To implement the integrated model for a city like Toronto, representative sample intersections  

will need to be selected (i.e., not just intersections 4-leg intersection with 2-lanes per approach 

without exclusive left or right turn lanes, as used in this thesis). Then obtain simulated traffic 

conflicts by simulating the intersection samples (e.g., using VISSIM). A relationship between 

simulated conflicts and traffic volumes (i.e., with turning movements) will need to be 

established for different conflict thresholds (i.e., TTC≤1.50s, TTC≤0.50s, etc.). Similarly SPF 

functions between crashes (i.e., by type and severity) and traffic volumes and other 

confounding factors (e.g., number of lanes, number of legs, etc.) will need to be established. 

These models can be used to obtain EB expected number of crashes at all the sample 

intersections. 

The next step is to obtain the weight factor (i.e., W). This can be accomplished by 

plotting the total score test value (i.e., C4) for different weights (i.e., 1, 2, 3, 10, 20, etc.). Then 

choose the weight factor associated with the highest C4. This step should be repeated for 

different required rakings (e.g., top worst 1%, 2%, 5%, etc.). It is important to compare the 

value of C4 for the integrated model with C4 for the EB method, to determine whether to 

proceed with the integrated model or no. If the difference is large enough, so the integrated 

model will yield a better ranking results and vise-versa. 

The next step is to use the conflict-volume models to obtain the expected number of 

conflicts (i.e., by type for different thresholds) at all of Toronto intersections. The worst 

intersections can then be ranked for further investigation (i.e., or treatment). 

5.7 CHAPTER SUMMARY  

Chapter 5 presented a comparison between observational and traffic conflict methods in 

identifying unsafe sites using 58-signalized intersections from Toronto. The performance of 

the methods was evaluated and compared using several evaluation criteria: site consistency, 
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method consistency, rank difference, total score, and sensitivity and specificity tests. Based on 

the evaluation criteria used, observational and conflict ranking methods suggest different sets 

of the worst ranked unsafe sites. Low severity crashes and near misses are not usually included 

in the reported crashes that observational models relay on in estimating the expected number 

of crashes to identify the worst unsafe sites. These low severity crashes and near misses may 

contain essential information concerning lack of safety that is important from the point of view 

of effective intervention.  

After comparing both methods, Chapter 5 discussed the results of a case study ranking 

using an integrated crash-conflict model. This combines the results of a simulation of traffic 

conflicts with Empirical Bayes crash prediction. The integrated model was found to yield better 

results than conventional observational crash-based models or traffic conflicts alone. This 

confirms that higher risk interactions and near misses are important for a better understanding 

of the safety problem at a given site and hence, should be considered in priority ranking.  This 

should result in a more efficient allocation of scarce intervention funds to those sites most in 

need of treatment.  

The proposed safety score method is conceptually appealing in that it incorporates two 

partly independent clues about an intersection’s safety. Thus, it seems reasonable that future 

research could develop a theoretical, or at least a logical, basis for the weight used in much the 

same way that theoretically based weights are used for the empirical Bayes crash predictions. 

This will facilitate the transferability of methodology for application contexts without having 

to undertake a cumbersome, iterative, optimization of the weights, as was done for this 

research.  
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CHAPTER 6  

CASE STUDY TWO: ESTIMATING TREATMENT EFFECTS 

This chapter presents a case study application for evaluating the integrated treatment effect 

model presented in Chapter 4. A before and after analysis is carried out for a sample of treated 

Toronto intersections, for which left turn signal priority was changed from permissive to 

protected/permissive.  

During the “protected” mode, left-turning vehicles are given exclusive precedence and 

do not experience conflict with on-coming vehicles in the opposing traffic stream.  During the 

“permissive” mode, left-turning vehicles are permitted to turn on green if a suitable gap with 

on-coming vehicles takes place. Depending on driver behaviour, accepted gaps for left turn 

movements will vary.  

In this chapter, crash modification factors obtained from the integrated model are 

compared with values obtained from a conventional EB crash-based before-and-after 

evaluation for the same sample of intersections. 

6.1 CASE STUDY DATA 

A set of 47 treated signalized intersections from Toronto, Canada was analyzed to determine 

CMFs for a change in left turn signal priority from permissive to protected-permissive. The 

treated dataset consists of traffic volumes, observed crash history and geometric attributes for 

the period 1999 - 2007.  Traffic volumes (total, left turn and right turn) were reported for the 

major and minor approaches for the AM peak hour.  In addition, pedestrian counts and signal 

timing information are given for all periods with and without LT signal priority treatment.  The 

major, minor and turning volume data in the treated sample are summarized in Table 6.1. 

Crashes reported for the period 1999-2007 for the 47 intersections were classified into 

rear-end (RE) and left-turn opposing (LTOPP). These crash types are most likely to be affected 
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by a change in left turn priority.  LTOPP crashes refer to potential collisions between left-turn 

vehicles and on-coming vehicles proceeding through the intersection. Table 6.2 provides a 

summary of the crash data used in this analysis. 

Table 6.1: Traffic volume at treated sites 

Summary 
statistic 

Volume in 
major 

Volume 
in minor 

%RT 
major 

%RT 
minor 

%LT 
major 

%LT 
minor 

Mean 2549.43 1349.06 10.28 22.25 10.91 19.95 
SD 934.08 761.98 7.15 16.37 5.01 13.01 

Minimum 847 157 2 5 1 0 
Maximum 4742 3340 40 81 26 66 

 Table 6.2: Summary statistics for observed crashes before and after treatment 

Summary 
statistic 

Rear-end LTOPP 

Before After Before After 
Sum 1837 1383 558 314 
Mean 39.09 29.43 11.87 6.68 

SD 35.10 22.98 9.94 6.13 
Minimum 0 0 0 0 
Maximum 125 88 36 32 

6.2 SIMULATION OF CONFLICTS  

The signalized intersections were simulated to extract trajectories of vehicles using the 

VISSIM microscopic simulation platform (version 5.40) (PTV, 2012). The VISSIM 

parameters were selected to reflect more realistic driving behavior and to ensure that the 

observed vehicles during the peak-hours can enter the network within a specified simulation 

period, and these input parameters are summarized in Table 6.3. It is worth noting that the 

VISSIM simulation parameters were used in this analysis regardless of the number of conflicts 

generated, as the study focus was on the ratio of conflicts between the after and the before 

periods. 
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In this analysis, LTOPP signal priority for the sample intersections was introduced at 

the 47 treated sites for either AM or PM peak hours.  On the other hand only the AM peak hour 

was used for the untreated 53 sites. This will be discussed in more detail later in this Chapter.   

Traffic volume data for AM or PM period serve as inputs into the estimation of traffic 

conflicts in this study. For each intersection, 50-simulation runs with 50 random seeds were 

used to capture randomness in traffic. The simulation was carried out with a five-minute warm-

up period.  Although only one hour of traffic counts was used in this analysis (typically the 

AM/PM peak hours), a 2-hour simulation time was used to ensure that all vehicles have entered 

the simulation network. The assumption is that the ratio of peak-hour traffic to average daily 

traffic is approximately constant across sites and that peak hour volumes and conflicts can 

reasonably be used as "surrogates" for average daily traffic volumes and daily conflicts. 

For each simulation run, the number of conflicts was obtained from the individual 

vehicle simulated trajectories over time. The Surrogate Safety Assessment Model (SSAM) (Pu 

and Joshi, 2008) was used to extract the total number of conflicts using two TTC thresholds: 

≤ 1.50s and ≤ 0.50s. The 1.50s threshold reflects a lower level of risk that assumes vehicles are 

in potential conflicts if drivers have less than 1.50 seconds to perceive a danger and react 

accordingly. On the other hand, 0.50s threshold reflects a much higher risk wherein a driver 

only has 0.50 seconds or less in which to take appropriate action to avoid a crash. A time 

interval of 1.50s may be sufficient for an extreme driver perception and reaction response; 

however, an interval of 0.50s is too small to allow a driver to respond to a conflict in order to 

avoid a crash. The average number of conflicts at each site was estimated from the 50 

simulation runs. 
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Table 6.3: VISSIM parameters 

Behavioural Parameter Value 

Driving Behaviour Urban (Motorized) 

Car-Following 

Wiedemann 74 
ax = 2.00 m* 

bx_add = 2.00** 
bx_mult = 3.00*** 

Smooth close-up 

Lane Change 
Advanced merging 

Cooperative lane change 

Lateral Parameters 
Keep lateral distance to vehicles in on next lane(s) 

Consider next turning decision 

Signal Control Decision model: one decision 

Conflict Areas (left 
turn only) 

Front gap = 0.00s 

Rear gap = 0.00s 

Avoid Blocking = 0 for all cases and =1 in case of 2 
left-turn lanes 

*the average standstill distance with standard deviation of 0.30 m; 
**the additive part of safety distance; 
***the multiplicity part of safety distance. 
 

6.3 SIMULATED TRAFFIC CONFLICT RESULTS 

Table 6.4 summarizes the means and standard deviation of conflicts for different TTC types 

by threshold, as obtained from the simulation of the 47 treated intersection sample.  The 
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simulation was carried out for appropriate traffic conditions separately for the before and after 

treatment periods. 

 

Table 6.4: Simulated conflict results 

TTC 
threshold Treatment period Rear-end LTOPP 

≤ 1.50s 

Before 
[SD] 

1371.78 
[34.85] 

164.00 
[11.77] 

After 
[SD]* 

1296.42 
[34.77] 

118.70 
[10.13] 

ρ  ** 
[SD] 

0.95 
[0.04] 

0.72 
[0.11] 

≤ 0.50s 

Before 
[SD] 

12.28 
[3.59] 

19.18 
[4.49] 

After 
[SD] 

11.72 
[3.68] 

16.28 
[4.19] 

ρ  
[SD] 

0.95 
[0.41] 

0.85 
[0.33] 

*SD: Standard deviation; 
** ρ : Conflict ratio between the after and the before. 

Table 6.4 indicates that changes in conflicts (before and after treatment) are somewhat 

sensitive to TTC thresholds.  As expected, the lower the threshold, the fewer the number of 

conflicts. This is true for all conflict types. For LTOPP, ρ  equals 0.72 and 0.85, respectively 

for both TTC thresholds. 

The use of traffic conflicts alone to evaluate treatment effects can be influenced by both 

the measure of conflict (i.e., TTC) and by its corresponding thresholds.  It is worth noting that 

by increasing the conflict threshold, the level of uncertainty with the estimation of the conflict 

ratio increases correspondingly.  For example, for rear-end conflicts, the standard deviation for 

81 



 

the conflict ratio increases from 0.035 for TTC≤1.50s to 0.41 for TTC≤0.50s. The higher 

uncertainty for the latter case may be indicative of a higher number of required simulation runs. 

6.4 CALIBRATION OF CRASH-CONFLICT MODELS 

6.4.1 Data 

As noted earlier the sample of 53 untreated intersections was used to develop the empirical 

relationship between observed crashes and simulated conflicts. For this untreated sample, 

traffic volume inputs for simulation are summarized in Table 6.5, and the corresponding crash 

data for these intersections are summarized in Table 6.6. 

Table 6.5: Traffic volume and turning movements at untreated sites 

Summary 
statistic 

Volume 
in major 

Volume 
in minor 

%RT 
major 

%RT 
minor 

%LT 
major 

%LT 
minor 

Mean 1301.62 764.91 10.63 16.07 6.36 12.04 

SD 417.22 270.57 6.24 8.31 5.87 9.700 

Minimum 663 48 0 0 0 0 

Maximum 2246 1367 34 54 33 46 

Table 6.6: Crash data at untreated sites (2001-2004) 

Summary statistic Rear-end LTOPP 

Sum 915 309 

Mean 17.26 5.83 

SD 11.34 5.56 

Minimum 2 0 

Maximum 48 20 
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Table 6.7 and Table 6.8 summarize simulation results for TTC<=1.50s and TTC≤0.50s, 

respectively. In this analysis only vehicle-to-vehicle conflicts (i.e., no vehicle-to-pedestrian or 

vehicle-to-fixed object conflicts) were considered. This is because no calibrated VISSIM 

parameters for pedestrian were available and because the focus of our analysis was LTOPP 

vehicle interactions. 

Table 6.7: Simulated conflicts for the untreated sites for TTC≤1.50s  

Summary Statistic Rear-End LTOPP 

Sum 348.00 29.78 

Mean 6.57 0.56 

SD 5.58 0.44 

Minimum 0.36 0.00 

Maximum 23.98 1.82 

Table 6.8: Simulated conflicts for the untreated sites for TTC≤0.50s 

Summary statistic Rear-end LTOPP 

Sum 17.16 8.62 

Mean 0.32 0.16 

SD 0.37 0.17 

Minimum 0.00 0.00 

Maximum 1.98 0.90 

Crashes were filtered for normal weather (i.e., dry surface conditions and good 

visibility) conditions to match simulation assumptions in the input VISSIM parameters. This 

assumption is not expected to significantly affect the results because dry surface conditions 

and good visibility are the prevalent weather condition found in the input data used in this 
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analysis (i.e., crashes that took place subject to good weather accounted for about 78% of all 

crashes at these sites). 

In finalizing the crash-conflict models used for estimating CMF, it was necessary to 

explore how the decision to use normal weather crashes as well as key assumptions on TTC 

thresholds and simulation runs affected the model results. This investigation is discussed in the 

next section in presenting the models for LTOPP crashes. 

6.4.2 Crash-conflict model for LTOPP crashes 

6.4.2.1 Effect of excluding crashes during adverse weather conditions 

To explore the effect of weather, generalized linear (GLM) Negative Binomial (NB) LTOPP 

crash-conflict models were fitted separately for all weather conditions and good weather. The 

model form of the crash-conflict SPF is given in Equation [4.5]. 

Table 6.9 summarizes the calibration results.  For both models at TTC < 1.50s and 

0.50s, the AIC difference is greater than 30, which is large enough to indicate that models 

during good weather conditions produce a better fit. In addition, the dispersion parameters for 

good weather models (for both thresholds) were found to be lower than for all weather 

conditions, suggesting reduced variability in the empirical crash prediction. These results 

support the decision of using crashes for good weather conditions. 
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Table 6.9: Parameters for LTOPP crash-conflict model (all weather and good weather) 

Parameter 
estimates 

TTC<1.50s TTC<0.50s 

All weather 
conditions 

Good 
weather 

conditions 

All weather 
conditions 

Good weather 
conditions 

LN α 2.42 2.14 3.09 2.80 
[SE] [0.15] [0.14] [0.31] [0.30] 
β  0.56 0.58 0.55 0.56 
[SE] [0.12] [0.13] [0.14] [0.14] 
Dispersion 
parameter 0.49 0.42 0.58 0.53 

Residual 
deviance 59.93 59.51 59.45 58.76 

Degrees of 
freedom  51 51 51 51 

AIC 316.54 285.55 323.12 293.16 
2 log 
likelihood -310.54 -279.55 -317.12 -287.16 

* SE: standard error 

6.4.2.2 Effect of TTC Threshold and number of runs 

A sensitivity analysis was carried out to assess the effect of simulation runs on the LTOPP 

crash-conflict model.  Two simulations of 30 and 50 runs were carried out. Table 6.10 

summarizes the simulation results for LTOPP conflicts for the two TTC thresholds (≤ 1.5 and 

≤ 0.5 seconds). 

The results in Table 6.10 indicate that for the lower risk threshold of ≤1.50s, the number 

of runs (30 versus 50) has little or no effect on the number of conflicts. On the other hand, for 

the higher risk threshold (TTC ≤ 0.50s), the number of runs was found to have a significant 

effect on the resultant conflicts. This is reasonable since for the higher risk threshold fewer 

conflicts are expected and more runs would be needed to obtain stable long-term results. 
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Table 6.10: Simulated LTOPP conflicts for the 53 untreated sites for 30 and 50 runs 

Summary statistic 
TTC≤1.50s TTC≤0.50s 

30 runs 50 runs 30 runs 50 runs 
Average (per run) 
over all sites 30.37 29.78 3.20 8.62 

Mean per site (per 
run) 0.57 0.56 0.06 0.16 

SD 0.46 0.44 0.07 0.17 
Minimum 0.00 0.00 0.00 0.00 
Maximum 1.73 1.82 0.30 0.90 

Table 6.11 summarizes the results of the LTOPP crash-conflict model calibration for 

TTC ≤1.50s and ≤0.50s. For both thresholds, the AIC difference was found to be less than 10, 

which is small enough to indicate that there is no significant difference between the two 

models. 

Table 6.11: Parameter estimates for crash-conflict models for 30 and 50 Runs 

Parameter Estimates 
TTC≤1.50s TTC≤0.50s 

30 runs 50 runs 30 
runs 50 runs 

LN α 
[SE] 

2.09 2.14 2.69 2.80 
[0.14] [0.14] [0.41] [0.30] 

β 
[SE] 

0.50 0.58 0.34 0.56 

[0.12] [0.13] [0.14] [0.14] 

Dispersion parameter 0.46 0.42 0.63 0.53 
Residual deviance 59.46 59.51 59.34 58.76 

Degrees of freedom 51 51 51 51 
AIC 289.04 285.55 300.01 293.16 

2 log likelihood -283.04 -279.55 -
294.01 -287.16 

* SE: standard error 
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The value of the β parameter in Table 6.11 for the crash-conflict model differs 

significantly depending on whether 30 or 50 simulation runs were carried out. This is 

important, since it suggests that the number of runs has an effect on the crash-conflict model 

parameters. This suggests that care should be taken in choosing the appropriate number of 

simulation runs prior to linking conflicts to crashes.  For the higher risk threshold (TTC≤ 0.50s) 

the results are similar to the lower risk threshold (TTC≤ 1.50s) in that, the value of β in the 

crash-conflict expressions are also similar. 

6.4.3 Crash-conflict model for rear-end crashes 

Other GLM (NB) models were fitted to the rear-end crash-conflict data (i.e., non-target 

interactions) for the 53 untreated intersections for good weather. Table 6.12 summarizes the 

calibration results for rear-end crashes for TTC ≤ 1.50s and ≤ 0.50s.  TTC ≤ 1.50s yields a 

better model fit, in that AIC was found to be much lower as compared to its value for TTC ≤ 

0.50s. 

Table 6.12: Parameter estimates for rear-end crash-conflict models (50 runs) 

 

* SE: standard error 

Parameter estimates 
TTC threshold 

<1.50s  <0.50s  

 LN α 
[SE]* 

2.07 3.27 
 [0.15] [0.21] 

β  
[SE] 

0.46 0.22 
[0.08]  [0.10]  

Dispersion parameter  0.20 0.31  

Residual deviance 53.85 55.16  

Degrees of freedom   51 51  

AIC 370.52 391.58 
2 log likelihood -364.52  -385.58 
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6.5 CMF ESTIMATES FOR LTOPP AND REAR-END CRASHES 

In this section, the estimation of CMFs for the treatment introduced for the 47 treated 

intersection sample is discussed. As noted previously, the treatment considered in this case 

study is a change in left turn signal priority from permissive to protected-permissive.  The 

CMF was estimated as per Equation [4.7] in Chapter 4. The parameter β in this equation is 

indicated in Table 6.11 and Table 6.12 . 

The estimated CMFs are shown in Table 6.13. These results indicate that CMFs for 

LTOPP conflicts are statistically similar (P-value=0.85 for the difference in CMF estimates) 

to values in Table 6.14 obtained from EB before-and-after analysis for TTC≤0.50 seconds.  

The EB results were reported by Srinivasan et al. (2011 and 2012) for the same intersection 

data and treatment.  Both EB and integrated model findings are reasonable in that LTOPP 

crashes are a key target of left turn priority treatment.  For rear-end crashes, both sets of results 

suggest that there is no statistical effect on safety at 5% significance level.  
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Table 6.13: CMFs for LTOPP conflicts at treated intersections  

TTC 
Threshold  Parameter LTOPP Rear-end 

≤ 1.50s  

ρ  
[SD] 

0.72 
[0.11] 

0.95 
[0.04] 

β 0.58 0.46 
a1 0.67 0.48 
a2 -0.19 -0.14 

CMF 
[SE] 

0.83* 
[0.01] 

0.974* 
[0.002] 

≤ 0.50s  

 ρ  
[SD] 

0.85 
[0.33] 

0.95 
[0.41] 

β 0.56 0.22 
a1 0.60 0.22 
a2 -0.16 -0.09 

CMF 
[SE] 

0.91** 
[0.03] 

0.99* 
[0.01] 

*Statistically significantly different from EB estimate at 5% confidence level 
**Not statistically significantly different from EB estimate at 5% confidence level 

Table 6.14: EB before-and-after study of 47 treated intersections (reproduced from 

Srinivasan et al. (2011 and 2012)) 

Crash 
type 

Expected 
crashes after 

Observed 
crashes after CMF SE 

LTOPP  341 314 0.919 0.069 

Rear-end  1266 1383 1.091 0.046 
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6.6 SENSITIVITY OF CMF ESTIMATES TO THE NUMBER OF RUNS 

AND TTC THRESHOLDS 

The research provided an opportunity to investigate the sensitivity of the CMF estimates to the 

number of simulation runs and TTC thresholds. This section presents the results of that 

sensitivity analysis which complements the investigation in Section 6.4.2.2 of the effect of 

these parameters on the crash-conflict models used to generate the SMF estimates. 

Table 6.15 summarizes the CMF estimates for the two levels of simulation runs and 

two TTC thresholds. It is noted that increasing the TTC threshold from high to low risk reduces 

the effectiveness of treatment. This is expected since the higher threshold (TTC<1.50s) 

generates a higher number of conflicts. 

Table 6.15: Crash modification factors from LTOPP conflicts at treated sites 

TTC 
threshold Parameter 

Number of simulation runs 
30 runs  50 runs  

≤ 1.50s  

ρ 
[SD] 

0.72 
[0.11] 

0.72 
[0.11] 

β 0.50 0.58 
a1 0.59 0.67 
a2 -0.20 -0.19 

CMF 
[SE] 

0.85* 
[0.01] 

0.83* 
[0.01] 

≤ 0.50s  

 ρ 
[SD] 

0.85 
[0.33] 

0.85 
[0.33] 

Β 0.34 0.56 
a1 0.38 0.60 
a2 -0.15 -0.16 

CMF 
[SE] 

0.95** 
[0.02] 

0.91** 
[0.03] 

*Statistically significantly different from EB estimate at 5% confidence level 
**Not statistically significantly different from EB estimate at 5% confidence level 
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The CMF estimates for TTC≤0.50 seconds are closer to those obtained from the EB 

before-and-after analysis as compared to results for TTC ≤1.50s.  CMFs for TTC<0.50s with 

30 and 50 runs were not found to be statistically different at the 5% level from the CMFs  from 

the EB before-and-after analysis. It should be noted that CMFs for the 50 simulation runs were 

found to be closer to the values obtained from the EB analysis. 

As the conflict threshold is increased, (e.g. lower TTC), so too is the level of 

consistency in the results between conflict-based and crash-based models. This is expected 

since increasing the TTC thresholds reflects increased risk, and these are presumably the kind 

of conflicts that are most likely to result in crashes. 

Based on the results shown in Table 6.15, it can concluded that using higher severity 

thresholds (e.g., TTC≤0.50s) and higher number of simulation runs yield closer CMF estimates 

to those obtained from the EB crash-based before and after estimates. This is consistent with 

the results in Section 6.4.2.2 of the examination of the effect of these parameters on the crash-

conflict models used to generate the CMF estimates. 

6.7 SENSITIVITY ANALYSIS OF CMFS TO VISSIM INPUT 

PARAMETERS 

The following section presents further analysis for using microscopic simulation models for 

estimating CMFs. Specifically this section investigates the effect of the simulation input 

parameters on CMF-estimates. 

To examine the sensitivity of CMF estimates to the simulation input parameters, two 

sets of VISSIM (version 5.40) parameters were used Input1 and Input2. Input1 was obtained 

from calibrated values reported by Cunto and Saccomanno (2008) based on VISSIM 

application to NGSIM trajectory data for intersections (NGSIM, 2014). Cunto and 

Saccomanno (2008) used two safety performance measures in the simulation 

calibration/validation procedure: crash potential index (CPI), and number of vehicles in 
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conflict. Among all available driving parameters, they suggested three parameters needed to 

be specified for VISSIM simulation, namely: desired deceleration (DD), standstill distance 

(CC0) and headway time (CC1). The desired deceleration is considered the most sensitive and 

the best representation of traffic operations at signalized intersections. It can be used to achieve 

a predefined desired speed or under Stop-and-Go condition. The standstill distance is the 

desired distance between stopped cars and the headway time is the time the following vehicle 

wants to keep behind the lead vehicle (PTV, 2012). 

In addition to the above three parameters from Cunto and Saccomanno (2008), other 

inputs were used to ensure more realistic driving behavior, as given in Table 6.16. Cunto and 

Saccomanno (2008) used the Wiedemann 99 model for car following driving behavior in 

VISSIM because it gives more flexibility in the calibration process as Wiedemann 99 model 

has 10 car following parameters. 

The VISSIM manual suggested that the Wiedemann 99 model is suitable mainly for 

interurban motorways except for those having merging/weaving areas (PTV, 2012). In 

addition, it suggests that the Wiedemann 74 Model is mainly suitable for urban traffic areas. 

For this another set of parameters (Input 2 as in Table 6.16) was used to show to what extent 

the Wiedemann 99 and Wiedemann 74 car following models can affect the results. VISSIM 

default parameters (3 parameters) for Wiedemann 74 car following model were used. 
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Table 6.16: VISSIM parameters for Inputs 1 and 2 

Behavioral 
parameter Input 1 Input 2 

Driving behavior Urban (motorized) Urban (motorized) 

Car following 

Wiedemann 99 
DD = -2.60 m/Sec2 
CC0 = 3.00 meters 

CC1 = 1.50s 

Wiedemann 74 
ax = 2.00 m1 

bx_add = 2.002 
bx_mult = 3.003 

Smooth close-up 

Lane change 
Advanced merging 

Cooperative lane change 

Lateral parameters 
Keep lateral distance to vehicles in on next lane(s) 

Consider next turning decision 

Signal control Decision model: one decision 

Conflict areas (left 
turn only) 

Front gap = 0.00s 
Rear gap = 0.00s 

Avoid Blocking = 0 for all cases and =1 for 2 LT lanes 
1the average standstill distance with standard deviation of 0.30 m; 
2the additive part of safety distance; 
3the multiplicity part of safety distance. 
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In this exercise, only 10-simulation runs with 10 random seeds were used to capture 

the randomness in traffic with 5-minutes warming-up period. Although only one hour 

(typically the AM peak hour) was used in this analysis, a 2-hour simulation time was used to 

ensure that all vehicles have entered the simulation network. For each run, the number of 

conflicts for TTC was calculated from the trajectories of simulated vehicles at different times. 

The Surrogate Safety Assessment Model (SSAM) (Pu and Joshi, 2008) is used here to estimate 

the total number of conflicts with different conflict severity levels, typically for TTC ≤ 1.50s, 

TTC ≤ 1.00s, and TTC ≤ 0.50s. The average number of conflicts at each site is then calculated. 

Table 6.17 shows the simulated conflict results for the 47 Toronto treated intersections. 

The table shows the simulated conflicts in the before period without the treatment, the 

simulated conflicts in the after period with the treatment, and ρ, the ratio between the number 

of conflicts in the after period with the treatment divided by the number of conflicts in the 

before period without the treatment. Three levels of conflict severity based on TTC are used: 

TTC≤ 1.50s, TTC≤1.00s, and TTC≤ 0.50s. Only simulated conflicts similar to target crashes 

were presented in Table 6.17, i.e., rear-end conflicts for rear-end crashes, left turn opposing 

conflicts for LTOPP crashes, and total conflicts for total crashes. 
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Table 6.17: Simulated conflicts for parameter Inputs 1 and 2 

TTC 
threshold  Parameter 

Rear-end conflicts LTOPP conflicts Total conflicts 

Input 1 Input 2 Input 1 Input 2 Input 1 Input 2 

≤ 1.50s  

Before 277.80 1383.0 152.60 177.80 509.20 1857.60 

After 268.80 1328.00 110.80 130.50 461.00 1746.30 

ρ 0.97 0.96 0.73 0.73 0.91 0.96 

≤ 1.00s  

Before 44.60 45.20 105.30 116.90 174.80 189.60 

After 42.60 43.70 74.40 83.70 140.60 150.50 

ρ 0.96 0.97 0.72 0.72 0.80 0.79 

≤ 0.50s  

Before 20.30 12.30 17.80 21.90 48.90 43.20 

After 20.20 14.20 15.20 19.40 46.60 43.40 

ρ 1.00 1.15 0.85 0.89 0.95 1.00 

The results for both used VISSIM parameters (Inputs 1 and 2) indicate safety benefits 

(i.e., Conflict ratio <1) for LTOPP conflicts. Both models show a reduction in conflicts by 73% 

and 72% for TTC≤1.50s and TTC≤1.00s, respectively. For TTC≤0.50s, Input 1 shows a 

reduction of 15% while Input 2 shows a reduction of 11%. 

The change in simulated LTOPP conflicts for different VISSIM parameters (different 

car-following driving behaviors) show a reduction in the simulated conflicts, which is  in the 

same direction as the EB before-and-after results from Srinivasan et al (2011, 2012)  as shown 

in Table 6.14, which indicates CMF of 0.919. For the LTOPP conflicts, Input 2 shows higher 

conflict numbers than for Input 1. The difference between conflict estimates ranges is around 

25 conflicts for TTC≤ 1.50s and around 4 conflicts for TTC≤0.50s. For rear-end conflicts, the 

difference between both inputs is very large (more than 1000 conflicts) for TTC≤1.50s, while 

it is less than 1 for TTC≤1.00s and around 8 conflicts for TTC≤0.50s. 
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The conflict ratio (ρ) for rear end conflicts is similar in value to CMF of 1.091 obtained 

in the EB before-after analysis, although for the two larger thresholds ρ shows a modest 

increase.  For the total conflicts, both Input 1 and Input 2 results show change (e.g., decrease) 

in the total conflicts ranged between 79% to 96% for all ranges of TTC except for TTC ≤0.50s 

in Input 2 which shows no change in the total conflicts. 

Table 6.18: Crash modification factors from LTOPP conflicts 

TTC threshold Parameter 
LTOPP  Rear-end 

Input 1 Input 2 Input 1 Input 2 

≤ 1.50s 

ρ 0.73 0.73 0.97 0.960 

β 0.58 0.58 0.46 0.462 

CMF 0.83 0.83 0.99 0.98 

≤ 0.50s 

ρ 0.85 0.89 1.00 1.15 

β 0.56 0.56 0.22 0.22 

CMF 0.91 0.94 1.00 1.03 

As shown from Table 6.18, the CMF –estimates at TTC<1.50s are very similar for both 

LTOPP and rear-end conflicts for the two sets of parameters (Inputs 1 and 2). At TTC<0.50s, 

there is slight difference between CMF-estimates between the two models ( 0.023 for LTOPP 

compared to 0.031 for rear-end conflicts). This difference is expected to be smaller when more 

simulation runs are used (more than the 10-runs in this exercise). 

6.8 PRACTICAL IMPLEMENTATION 

To obtain CMFs using the integrated model for a city like Toronto, e.g., for different 

intersection treatments, representative untreated sample intersections will need to be selected 

(i.e., not just intersections 4-leg intersection with 2-lanes per approach without exclusive left 

or right turn lanes, as used in this thesis). Then obtain simulated traffic conflicts by simulating 
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the intersection samples (e.g., using VISSIM). A relationship between crashes (i.e., by type 

and severity) and simulated conflicts (i.e., by type) will need to be established for different 

conflict thresholds (i.e., TTC≤1.50s, TTC≤0.50s, etc.). These models will serve as the link 

function required (i.e., calibrated conflict coefficients) to obtain the integrated CMF. 

To obtain CMF values at a given site, the site will need to be simulated (i.e., using 

VISSIM) with (i.e., after) and without treatment (before). Then the simulated conflicts by type 

and threshold can be obtained using SSAM for the before and the after. Then the conflict ratio 

between the after and the before can be obtained. Finally CMF values and their associated 

variance can be obtained by applying Equations [4.7] and [4.15]. 

An important step to yield the best estimates of the CMF is to use an appropriate 

number of runs for the specified analysis period. This can be obtained simply using standard 

statistical inference expressions, where for a given error tolerance the minimum required 

number of runs is (Johnson, 2000): 
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  (6.1) 

where,  

N = minimum required number of simulation runs, 

σ =  the sample standard deviation of the number of simulated conflicts, 

t = student’s t-statistic for two-sided error of  α/2  (totals α percent) with N-1 degrees 

of freedom (for 10 runs, t=2.3), and  

E= allowed error range.  

The allowed error range can be taken as a percenatge of the mean value such that:  

 E ε µ= ×   (6.2) 
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where:  

μ = the mean of the number of simulated conflicts from initial simulations runs;  

ε  = the allowable error as a percentage from the mean value.  

6.9 CHAPTER SUMMARY 

This Chapter has presented a case study application to estimate crash modification factors 

(CMFs) using the integrated model developed in Chapter 5. A before and after conflict analysis 

was carried out for a sample of treated Toronto intersections, where left turn signal priority has 

been changed from permissive to protected-permissive. The CMFs estimates from the 

integrated model were compared with CMF estimates obtained from an earlier conventional, 

crash-based empirical Bayes (EB) before-and-after study for the same sample of intersections 

and treatment. 

The conflict-based analysis (the integrated model) presented in this analysis provides a 

good alternative to EB before-and-after analysis. It can be used to evaluate the safety of entity 

signalized intersections and the corresponding crash modification factor (CMF) can be 

reported in a similar way to the crash-based EB before-and-after analysis. The simulation 

method has a good advantage over the conventional observational methods in that it can be 

used to estimate countermeasure effectiveness before it is introduced or after a relatively short 

after period during which traffic volume changes can be observed. 

In addition, the results support the view that countermeasure effects can be estimated 

more dependably from conflicts derived from microsimulation, and more so when an 

appropriate number of simulation runs and conflict thresholds are used in the calibration of the 

crash-conflict relationship. Furthermore, as the threshold for conflict definition is increased 

(e.g. lower time-to-collision), so too is the consistency of the results between conflict-based 

and crash-based evaluations. This is expected since increased thresholds reflect higher risk 

conflicts, and these presumably are the events that are more likely to result in crashes. 
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The number of simulation runs and TTC thresholds were found to have a significant 

effect on CMF estimates as obtained from the integrated crash-conflict model. Moreover, 

although the 53 sites, used for to calibrate the crash-conflict model, seem to give reasonable 

results, more work is needed to investigate the appropriate sample size of reference sites when 

calibrating the crash-conflict relationship.  
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CHAPTER 7 

CONTRIBUTIONS AND FUTURE WORK 

The application of observational models based on reported crash history is the most common 

approach to identify unsafe sites for priority intervention and assessing treatment effects. 

Recently, however, microscopic traffic simulation has been used to model high-risk vehicle 

interactions or traffic conflicts for input into safety performance analysis. Taking into account 

higher risk interactions can help in gaining a better understanding of safety problems at a given 

site. 

Historically crash observations are considered to be the key verifiable metric for 

representing failures in the transportation system. One of the major challenges of safety 

analysis  is how to use both conflicts and observational crash history to better understand where 

safety is most problematic; where intervention is needed; and how best to resolve specific 

safety problems. In addressing this challenge, this study takes the position that a complete 

understanding of safety at a given site only emerges if both crash potential and traffic conflicts 

are taken into account. 

The primary objective of this thesis is to develop integrated safety models based on 

both observed crashes and simulated traffic conflicts, and to use these model to rank sites for 

priority intervention and to assess treatments at these sites. 

7.1 MAJOR CONTRIBUTIONS 

The two main contributions in this research are the development of integrated crash-conflict 

models for safety analysis, namely: (1) an integrated model for priority ranking of unsafe 

intersections, (2) an integrated model to estimate site-specific crash modification factors 

(CMFs) for evaluation.  
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7.1.1 Findings related to priority ranking 

An integrated priority ranking measure was established based on the weighted sum of the 

expected crashes from an Empirical Bayesian formulation and expected traffic conflicts from 

calibrated microscopic traffic simulation.  A weight factor linking crashes and conflicts was 

determined using six established comparison criteria, such as,  site consistency, method 

consistency, rank difference, total score, and sensitivity and specificity tests. 

Fifty-eight signalized intersections from Toronto were ranked using the integrated 

model. The ranking was compared to that obtained from other crash-based and simulated 

conflict-based methods. The integrated model was found to yield better priority ranking results 

than conventional observational crash-based models or conflict-based models alone. These 

results confirm that higher risk vehicle interactions (i.e., traffic conflicts) are important to gain 

a better understanding of the safety problems at a given site, that need to be considered in 

ranking these sites for safety intervention.  This should result in a more efficient allocation of 

scarce safety budgets, i.e., targeting those sites most in need of treatment.  

Since the integrated model has a conflict-based component, it is able to rank sites where 

the observation period could be insufficient to provide a reliable record for crash occurrence. 

Furthermore, the use of simulated conflicts is able to consider safety problems that have not 

been reflected in observed crashes, such as near misses. This means that the integrated model 

developed in this research provides a more comprehensive view of potential safety problems 

used to guide intervention strategies. 

7.1.2 Finding related to treatment effects 

To improve safety at a certain location, a suitable treatment should be used.  Before introducing 

such treatment, its net safety gain needs to be estimated for different geometric and traffic 

conditions, and this gain compared to associated implementation costs. The effectiveness of 

road safety treatments on crash reduction is frequently expressed in terms of a crash 
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modification factor (CMF), which is normally obtained through the application of 

observational before and after analysis. 

One of the main problems with the use of observational before and after analysis is the 

non-proactive nature of the procedure, i.e., to determine the effects of treatment, the treatment 

will need to be implemented prior to the analysis. Of course, this is not always  possible. The 

integrated model presented in this research provides an objective link between simulated traffic 

conflicts and observed crashes. In the absence of an established crash-history at a given site, 

treatment effects can only be inferred from changes in simulated traffic conflicts. This permits 

the estimation of potential treatment effects for those sites where the treatment has not been 

implemented. Moreover, the integrated model has the added advantage of providing site-

specific CMFs, avoiding the need to apply a constant CMF across all sites considered for a 

potential treatment, as is typical in conventional before and after safety analysis.  

 Where several correlated treatments are considered at a given site, the integrated 

treatment model, as it is based mainly on simulation, has the ability to obtain treatment 

estimates for each treatment separately from the others in addition of course to the combined 

effect of all treatments.   

The integrated model was applied to a sample of treated signalized intersections from 

Toronto, where left turn signal priority has been changed from permissive to protected-

permissive. This dataset was useful, in that we were able to compare the results with those 

obtained from a conventional crash-based EB before and after analysis for the same treatment 

and sites. 

The results of this comparison were found to be promising in that the crash-conflict 

integrated model yielded CMF estimates that were found to be consistent with those from  

conventional EB crash-based estimates. This demonstrated for the sample used,  that crashes 

at the sample sites took place with a fair degree of consistency as compared with traffic 

conflicts. Had crashes been purely random, it is unlikely the integrated model results would 

have yielded similar results to those obtained from the conventional EB analysis.  The 
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integrated model results would have been influenced more significantly by the pattern of 

resultant traffic conflicts than by historical crashes themselves.  

Since conflicts result from behavioral vehicle interactions, they reflect a more casual 

structure for explaining why certain treatments would improve safety at a given site. This is 

important to a safety analyst because it not only provides estimates of the treatment effect, but 

it is also explains why these effects may vary from site to site.  This is accomplished in the 

integrated models by examining vehicle interactions and driver behaviours associated with 

each treatment.  

7.2 FUTURE WORK 

The integrated models for priority ranking and treatment effect evaluation presented in this 

research can provide the basis for better traffic and safety analysis. However, a number of areas 

will need to be considered before these models can be systematically applied: 

1- The integrated priority ranking model is conceptually appealing in that it is essentially a 

framework that incorporates two partly independent clues about the lack of safety at a 

given site.  However, the formal link between simulated traffic conflicts and predicted 

crashes requires the specification of a weight factor. In this research, rather subjective  

weights were assumed to establish the link between crash potential and simulated traffic 

conflicts.  A more formal and scientific procedure for establishing these weights will 

need to be developed, such that information gains from various inputs (crashes and 

conflicts) is maximized.   

2- The integrated priority-ranking model was evaluated based on the total crashes and 

conflicts with all severities combined. It is recommended to evaluate the integrated 

model with crashes and conflicts by severity; 

3- For treatment effect evaluation, a key aspect is the link between simulated conflicts and 

crashes. In this thesis, the relationship was developed based on a small sample of 
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untreated signalized intersections without exclusive lanes. It is recommended that a 

larger sample of sites be used to obtain an improved crash-conflict relationship, and 

hence, the conflict coefficient, and the corresponding  treatment effects; 

4- For treatment effects evaluation, only crashes by type and simulated conflicts by type 

were investigated. It is recommended to consider the estimation of CMFs from the 

integrated model for different crash severities; 

5-  Only vehicle-vehicle conflicts during normal weather conditions were considered.. It is 

recommended that other weather conditions also be considered, such as,  wet pavement, 

restricted visibility, etc..  This will require the use of microscopic simulation parameters 

corresponding to each interaction and different weather conditions. Filling this void will 

require a calibration process to identify parameters that are sensitive to the change in 

weather and road surface conditions; 

6- In this research, the integrated models were applied to isolated signalized intersections. 

It is recommended to investigate the models to intersections (signalized and un-

signalized) that are a part of a larger related network.  

7- In using the integrated treatment model along with conflict-volume prediction models, it 

is recommended to develop traffic models (or integrate it with current models, such as 

SYNCHRO (Trafficware, 2014)) to assess safety benefits of changing the geometry, 

signal timing and/or the control type along with mobility benefits of such change. 
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Appendix A: Priority Ranking Data 

A.1- Total crashes per year at the 53 sites 

Intersection 
number 

Total crashes 

1999 2000 2001 2002 2003 2004 2005 2006 

53 2 0 0 0 0 0 2 1 

82 7 12 18 12 8 16 5 7 

84 3 3 3 3 1 5 6 1 

118 3 1 3 3 3 1 2 3 

120 2 1 1 4 3 3 1 2 

122 3 4 0 1 0 1 2 5 

130 2 4 4 2 3 5 4 3 

176 10 10 12 11 6 4 10 3 

186 15 9 20 9 10 11 6 12 

201 5 8 19 15 12 16 22 15 

203 32 31 24 26 18 16 18 23 

292 10 14 16 12 8 9 7 10 

307 4 3 1 1 3 6 5 4 

313 5 2 2 1 1 1 0 8 

368 5 10 17 4 7 6 8 8 

370 3 9 1 6 10 1 5 3 

371 1 4 4 4 3 3 4 6 

376 0 0 2 5 1 3 1 1 

500 8 14 8 5 11 4 11 3 

504 5 4 4 2 5 0 4 4 

516 2 3 1 5 4 5 5 2 

610 10 13 15 15 14 10 8 8 

657 6 4 1 5 3 3 1 5 
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Intersection 
number 

Total crashes 

1999 2000 2001 2002 2003 2004 2005 2006 

661 5 4 3 7 6 5 2 2 

664 5 7 8 5 7 6 4 6 

688 1 2 1 1 2 2 1 2 

715 7 5 14 5 10 8 7 9 

818 4 5 9 4 7 5 5 8 

819 12 3 13 17 9 5 11 9 

914 1 1 2 1 2 3 0 0 

976 0 2 1 2 0 0 1 1 

994 2 3 7 5 12 7 2 3 

1063 0 3 2 0 6 1 2 1 

1077 3 2 2 4 2 1 3 2 

1078 1 6 2 11 4 1 0 5 

1098 4 2 1 2 1 1 3 2 

1153 5 5 6 10 3 5 6 4 

1225 8 7 5 7 8 5 9 1 

1252 6 3 3 1 2 1 1 2 

1290 0 2 3 3 0 1 1 2 

1291 1 5 1 4 0 0 4 2 

1308 8 3 3 3 3 4 3 1 

1315 3 0 1 0 7 0 3 1 

1317 5 1 9 5 2 3 3 1 

1319 4 3 0 2 3 3 5 3 

1320 10 10 15 4 5 10 3 5 

1328 0 0 0 1 1 3 2 2 

1331 13 11 9 10 12 10 4 4 
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Intersection 
number 

Total crashes 

1999 2000 2001 2002 2003 2004 2005 2006 

1359 3 5 7 2 7 5 3 4 

1376 0 1 2 4 1 2 1 2 

1497 1 0 1 0 2 0 0 1 

1500 0 0 2 4 2 0 1 0 

1544 0 3 7 2 5 6 3 4 

1617 0 0 0 0 0 0 2 1 

1747 25 28 22 21 35 25 18 34 

1792 2 2 4 1 2 0 0 2 

1845 7 7 2 4 1 5 2 0 

1849 3 1 0 0 1 2 2 3 

SUM 292 305 343 303 304 264 254 266 

Mean 5.03 5.26 5.91 5.22 5.24 4.55 4.38 4.59 

Stdev 5.76 5.95 6.44 5.38 5.71 4.85 4.48 5.62 

MAX 32 31 24 26 35 25 22 34 

MIN 0 0 0 0 0 0 0 0 
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A.2- Average Annual Daily traffic at major approach at the 53 sites 

Intersectio
n Number  

Average Annual Daily Traffic (AADT) in the major approach 

1999 2000 2001 2002 2003 2004 2005 2006 

53 36818 36818 36818 36818 36818 36818 36818 36818 

82 48623 48799 48799 48559 48333 47927 47923 48109 

84 22882 23121 23278 23321 23369 23329 23483 23733 

118 44641 44285 43765 43030 42311 41438 40916 40552 

120 39574 39292 38866 38248 37644 36903 36474 36186 

122 37492 37654 37681 37522 37374 37086 37110 37281 

130 53902 53902 53902 53902 53902 53902 53902 53902 

176 18206 18097 17921 17657 17400 17079 16902 16790 

186 20303 20468 20560 20551 20548 20467 20557 20730 

201 21894 21918 21862 21699 21542 21306 21249 21275 

203 22478 22478 22478 22478 22478 22478 22478 22478 

292 18233 18500 18702 18811 18925 18966 19166 19443 

307 31312 31576 31728 31724 31728 31612 31761 32037 

313 36264 36021 35645 35094 34555 33891 33512 33264 

368 15883 15998 16055 16033 16016 15939 15994 16114 

370 13184 13137 13041 12881 12725 12523 12426 12378 

371 13598 13740 13833 13858 13887 13862 13954 14102 

376 17758 17855 17887 17830 17780 17662 17692 17793 

500 25781 25584 25292 24876 24470 23974 23681 23480 

504 41581 41316 40899 40281 39677 38929 38509 38239 

516 36087 35884 35549 35039 34542 33918 33581 33374 

610 24847 24672 24405 24018 23640 23176 22908 22729 

657 14923 14989 15001 14940 14883 14770 14781 14851 

661 17924 17903 17816 17642 17473 17240 17152 17132 
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Intersectio
n Number  

Average Annual Daily Traffic (AADT) in the major approach 

1999 2000 2001 2002 2003 2004 2005 2006 

664 16453 16532 16551 16489 16431 16312 16330 16413 

688 19593 19463 19262 18965 18675 18318 18115 17982 

715 25014 24965 24826 24565 24312 23969 23828 23780 

818 23700 23524 23261 22884 22516 22065 21801 21622 

819 21302 21659 21939 22111 22289 22380 22658 23028 

914 35700 35804 35780 35580 35390 35068 35040 35152 

976 23327 23505 23599 23577 23561 23457 23549 23735 

994 26408 26448 26392 26206 26029 25754 25696 25740 

1063 18410 18600 18724 18756 18792 18758 18880 19078 

1077 24988 24988 24988 24988 24988 24988 24988 24988 

1078 28118 28118 28118 28118 28118 28118 28118 28118 

1098 24479 24688 24808 24806 24810 24721 24839 25056 

1153 13352 13296 13191 13022 12856 12644 12538 12482 

1225 12768 12768 12768 12768 12768 12768 12768 12768 

1252 28338 28103 27765 27290 26825 26262 25922 25682 

1290 27970 27970 27970 27970 27970 27970 27970 27970 

1291 28602 28602 28602 28602 28602 28602 28602 28602 

1308 30880 30921 30850 30627 30413 30086 30012 30057 

1315 29412 29679 29840 29853 29875 29783 29941 30219 

1317 23491 23687 23799 23793 23793 23704 23813 24017 

1319 36861 36827 36658 36310 35973 35503 35332 35300 

1320 12872 12872 12872 12872 12872 12872 12872 12872 

1328 16189 16073 15897 15643 15395 15090 14913 14794 

1331 19619 19897 20106 20216 20330 20367 20573 20863 

1359 22610 22610 22610 22610 22610 22610 22610 22610 
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Intersectio
n Number  

Average Annual Daily Traffic (AADT) in the major approach 

1999 2000 2001 2002 2003 2004 2005 2006 

1376 16373 16479 16525 16490 16460 16368 16413 16523 

1497 29012 29392 29669 29799 29936 29959 30232 30628 

1500 24338 24338 24338 24338 24338 24338 24338 24338 

1544 26979 27200 27324 27314 27310 27204 27325 27556 

1617 18612 18620 18561 18410 18265 18052 17991 18001 

1747 25278 25278 25278 25278 25278 25278 25278 25278 

1792 38319 38205 37951 37511 37082 36518 36261 36147 

1845 20366 20382 20324 20166 20014 19788 19729 19747 

1849 13604 13765 13876 13919 13966 13959 14069 14236 

SUM 147752
5 

147926
2 

147680
4 

146865
5 

146086
1 

144882
9 

144627
5 

144817
3 

Mean 25474.
57 

25504.
52 

25462.
14 

25321.
64 

25187.
26 

24979.
81 

24935.
78 

24968.
49 

Stdev 9422.0
8 

9380.2
7 

9318.2
8 

9229.4
8 

9146.6
0 

9047.1
2 

8997.9
4 

8972.9
5 

MAX 53902 53902 53902 53902 53902 53902 53902 53902 

MIN 12768 12768 12768 12768 12724.
95 

12522.
61 

12425.
81 

12377.
6 
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A.3- Average Annual Daily Traffic (AADT) in the minor approach at the 53 sites 

 

Intersection 
Number  

Average Annual Daily Traffic (AADT) in the minor approach 

1999 2000 2001 2002 2003 2004 2005 2006 

53 2038 2038 2038 2038 2038 2038 2038 2038 

82 9752 9787 9787 9739 9693 9612 9611 9648 

84 13523 13665 13758 13783 13811 13787 13879 14026 

118 4250 4216 4167 4097 4028 3945 3896 3861 

120 4122 4093 4048 3984 3921 3844 3799 3769 

122 2588 2599 2601 2590 2580 2560 2562 2573 

130 3372 3372 3372 3372 3372 3372 3372 3372 

176 14248 14163 14025 13819 13617 13366 13228 13141 

186 12752 12856 12914 12909 12907 12856 12912 13021 

201 18347 18367 18320 18183 18052 17854 17806 17828 

203 9364 9364 9364 9364 9364 9364 9364 9364 

292 8442 8565 8659 8710 8762 8781 8874 9002 

307 3924 3957 3976 3975 3976 3961 3980 4015 

313 2954 2934 2904 2859 2815 2761 2730 2710 

368 8941 9006 9038 9026 9016 8973 9004 9072 

370 8054 8025 7966 7868 7773 7650 7591 7561 

371 3701 3739 3765 3772 3779 3773 3798 3838 

376 1857 1867 1871 1865 1860 1847 1850 1861 

500 5121 5082 5024 4942 4861 4762 4704 4664 

504 2768 2750 2722 2681 2641 2591 2563 2545 

516 6020 5986 5930 5845 5762 5658 5602 5567 

610 10914 10836 10719 10549 10383 10180 10062 9983 

657 4577 4598 4601 4583 4565 4530 4534 4555 
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Intersection 
Number  

Average Annual Daily Traffic (AADT) in the minor approach 

1999 2000 2001 2002 2003 2004 2005 2006 

661 13865 13848 13781 13646 13516 13336 13268 13252 

664 12396 12455 12470 12423 12380 12290 12304 12366 

688 2807 2788 2759 2717 2675 2624 2595 2576 

715 8254 8238 8192 8106 8022 7909 7862 7847 

818 3171 3147 3112 3062 3013 2952 2917 2893 

819 10862 11043 11186 11274 11365 11411 11553 11742 

914 1757 1762 1761 1751 1741 1726 1724 1730 

976 2699 2720 2731 2728 2727 2714 2725 2747 

994 6700 6710 6696 6649 6604 6534 6520 6531 

1063 3292 3326 3348 3354 3360 3354 3376 3411 

1077 2366 2366 2366 2366 2366 2366 2366 2366 

1078 2714 2714 2714 2714 2714 2714 2714 2714 

1098 2273 2292 2303 2303 2304 2295 2306 2327 

1153 5043 5022 4983 4918 4856 4776 4736 4715 

1225 4930 4930 4930 4930 4930 4930 4930 4930 

1252 8410 8340 8239 8098 7960 7794 7693 7622 

1290 2378 2378 2378 2378 2378 2378 2378 2378 

1291 5682 5682 5682 5682 5682 5682 5682 5682 

1308 1615 1617 1614 1602 1591 1574 1570 1572 

1315 2691 2715 2730 2731 2733 2725 2739 2765 

1317 3020 3045 3059 3059 3059 3047 3061 3087 

1319 4540 4536 4515 4472 4431 4373 4352 4348 

1320 7154 7154 7154 7154 7154 7154 7154 7154 

1328 2141 2125 2102 2068 2035 1995 1972 1956 

1331 5812 5895 5956 5989 6023 6033 6095 6180 
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Intersection 
Number  

Average Annual Daily Traffic (AADT) in the minor approach 

1999 2000 2001 2002 2003 2004 2005 2006 

1359 3562 3562 3562 3562 3562 3562 3562 3562 

1376 7782 7833 7855 7838 7824 7780 7801 7854 

1497 1706 1728 1744 1752 1760 1761 1777 1801 

1500 1514 1514 1514 1514 1514 1514 1514 1514 

1544 2559 2580 2592 2591 2590 2580 2592 2614 

1617 2871 2872 2863 2839 2817 2784 2775 2776 

1747 5942 5942 5942 5942 5942 5942 5942 5942 

1792 1994 1988 1974 1951 1929 1900 1887 1881 

1845 2459 2461 2454 2435 2417 2390 2382 2385 

1849 4126 4174 4208 4221 4235 4233 4267 4317 

SUM 32271
4 

323370 323041 321373 319787 317200 316848 317549 

Mean 5564.
04 

5575.34 5569.67 5540.91 5513.57 5468.96 5462.89 5474.98 

Stdev 3916.
64 

3927.36 3924.37 3902.52 3882.43 3848.43 3847.31 3861.99 

MAX 18346
.56 

18366.5
5 

18319.9
8 

18183.2
3 

18052.1
5 

17854.0
2 

17805.9
6 

17828.2
4 

MIN 1514 1514 1514 1514 1514 1514 1514 1514 
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A.4- AM peak hour traffic volume at the 35 sites 

Intersectio
n number  year 

AM peak hour traffic volume per approach 

NB EB SB WB 

LT TH RT LT TH RT LT TH RT LT TH RT 

1007 2003 24 641 22 53 23 46 28 734 50 37 17 48 

1009 2003 61 968 63 72 63 71 26 1262 84 102 83 89 

1012 2002 11 740 126 10 15 19 148 1283 0 159 0 108 

1017 2002 4 689 16 60 54 30 26 448 60 63 144 58 

1028 2002 1 1063 92 33 14 11 63 948 12 358 5 269 

1030 2003 5 1131 14 140 98 72 16 1299 14 82 33 90 

1050 2002 6 730 31 28 5 26 61 1284 20 95 17 60 

1051 2002 14 610 4 13 0 4 7 391 59 13 2 21 

1052 2002 21 500 58 87 267 79 101 646 101 155 231 111 

1060 2002 47 846 43 40 6 63 49 1188 49 155 1 98 

1065 2002 51 331 84 123 296 20 266 216 142 60 399 351 

1071 2003 11 707 14 6 15 29 41 1301 8 95 25 31 

1072 2003 150 983 62 122 279 93 163 1252 306 93 685 188 

1073 2003 22 248 18 32 43 46 52 628 34 27 19 58 

1077 2003 18 773 22 31 13 42 12 1091 40 37 36 37 
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Intersectio
n number  year 

AM peak hour traffic volume per approach 

NB EB SB WB 

LT TH RT LT TH RT LT TH RT LT TH RT 

1083 2002 21 1676 5 279 32 14 2 2133 294 8 15 213 

1085 2003 10 1325 210 38 40 41 64 1107 10 293 19 179 

1098 2003 19 829 46 85 11 27 56 926 42 88 10 55 

1100 2003 90 1272 133 70 91 60 67 1250 74 220 97 84 

1102 2003 24 17 14 42 1272 14 66 29 101 6 648 19 

1109 2003 168 695 64 81 527 70 106 1044 109 205 1264 118 

1111 2002 43 830 93 48 335 118 63 1471 46 194 537 54 

1112 2002 114 867 10 84 95 82 132 839 119 5 265 258 

1113 2002 46 596 22 199 38 54 11 744 28 38 35 31 

1124 2002 18 760 13 11 6 7 55 452 36 42 16 155 

1127 2002 22 609 22 8 24 37 32 722 13 64 21 49 

1129 2003 27 996 5 29 23 32 20 1402 36 25 12 40 

1131 2003 0 618 15 286 52 5 5 451 322 1 5 6 

1132 2002 166 442 37 33 90 186 47 827 50 66 94 47 

1140 2003 11 748 21 2 5 26 17 937 8 128 4 44 

1151 2003 107 1300 116 146 134 123 138 1671 191 126 136 455 
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Intersectio
n number  year 

AM peak hour traffic volume per approach 

NB EB SB WB 

LT TH RT LT TH RT LT TH RT LT TH RT 

1159 2002 78 533 29 79 47 51 66 1471 98 20 33 8 

1160 2002 154 1138 414 60 265 57 208 1065 167 243 258 63 

1161 2002 82 959 98 157 767 136 177 1389 74 160 488 128 

1164 2003 95 444 79 125 701 232 174 1033 163 213 470 131 

SUM 1741 27614 2115 2712 5746 2023 2565 34934 2960 3676 6124 3754 

Mean 49.74 788.97 60.43 77.49 164.17 57.80 73.29 998.11 84.57 105.03 174.97 107.26 

Stdev 50.80 330.34 76.93 70.39 272.50 50.69 64.76 436.17 84.75 88.65 275.70 100.34 

MAX 168 1676 414 286 1272 232 266 2133 322 358 1264 455 

MIN 0 17 4 2 0 4 2 29 0 1 0 6 
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A.5- Total hourly volume and total number of conflicts at the 35-sites 

 

Intersection 
number year 

Hourly Volume 
Extracted conflicts from SSAM for 

different  thresholds of deceleration rate 
(DR) 

VMaj VMin DR≤-1.5 
m/s2 

DR≤-4.0 
m/s2 

DR≤-6.0 
m/s2 

1007 2003 1375 40 40 22 12 

1009 2003 2230 146 187 87 41 

1012 2002 2023 15 119 56 21 

1017 2002 1137 198 26 16 9 

1028 2002 2011 19 167 77 35 

1030 2003 2430 131 124 63 28 

1050 2002 2014 22 91 45 16 

1051 2002 1001 2 14 9 5 

1052 2002 1146 498 89 34 18 

1060 2002 2034 7 123 60 29 

1065 2002 547 695 81 36 21 

1071 2003 2008 40 89 44 16 

1072 2003 2235 964 950 301 120 

1073 2003 876 62 18 10 5 

1077 2003 1864 49 76 38 15 

1083 2002 3809 47 523 193 77 

1085 2003 2432 59 276 117 52 

1098 2003 1755 21 89 43 20 

1100 2003 2522 188 341 128 62 

1102 2003 46 1920 85 41 18 
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Intersection 
number year 

Hourly Volume 
Extracted conflicts from SSAM for 

different  thresholds of deceleration rate 
(DR) 

VMaj VMin DR≤-1.5 
m/s2 

DR≤-4.0 
m/s2 

DR≤-6.0 
m/s2 

1109 2003 1739 1791 838 282 110 

1111 2002 2301 872 520 206 94 

1112 2002 1706 360 157 75 43 

1113 2002 1340 73 42 22 12 

1124 2002 1212 22 35 21 11 

1127 2002 1331 45 36 20 11 

1129 2003 2398 35 133 67 28 

1131 2003 1069 57 32 16 8 

1132 2002 1269 184 81 40 23 

1140 2003 1685 9 65 33 16 

1151 2003 2971 270 787 265 116 

1159 2002 2004 80 158 67 30 

1160 2002 2203 523 645 196 76 

1161 2002 2348 1255 807 264 104 

1164 2003 1477 1171 714 231 99 

Mean 1787.09 339.14 244.51 92.14 40.03 

Stdev 714.57 511.45 281.30 89.08 35.90 

MAX 3809 1920 950 301 120 

MIN 46 2 14 9 5 
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Appendix B: Treatment Effect Data 

 

B.1- Treated sites crash/conflict data 

In
te

rs
ec

tio
n 

nu
m
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T
re
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ed
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pp

ro
ac

h 
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ge
 y

ea
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Number 
of years 

LTOPP 
crashes 

Rear-end 
crashes 

number of 
LTOPP 
conflicts 

(TTC<=1.50s, 
50 runs) 

number of RE 
conflicts 

(TTC<=1.50s, 50 
runs) 

number of 
LTOPP 
conflicts 

(TTC<=0.5
0s, 50 runs) 

number of 
RE conflicts 
(TTC<=0.50
s, 50 runs) 

be
fo
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r 
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r 
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r 

be
fo
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59 wb 2002 3 5 1 5 11 27 1.06 0.76 17.20 21.28 0.18 0.10 0.12 0.08 

70 nb 2005 6 2 6 1 56 10 0.52 0.78 22.38 22.26 0.12 0.08 0.08 0.08 

129 sb 2004 5 3 20 8 34 27 2.06 1.82 26.56 26.16 0.18 0.18 0.24 0.22 

181 sb 2002 3 5 3 3 11 21 0.66 0.64 6.98 7.16 0.08 0.14 0.26 0.24 

190 sb 2002 3 5 3 5 11 33 0.40 0.40 6.82 6.82 0.06 0.06 0.20 0.20 

251 nb 2001 2 6 3 3 10 37 1.52 1.38 47.74 48.48 0.62 0.42 0.24 0.26 

320 wb 2006 7 1 22 4 125 13 2.04 2.04 67.86 67.86 0.34 0.34 0.62 0.62 

347 eb 2000 1 7 2 4 2 40 3.48 0.98 16.90 11.98 0.18 0.06 0.20 0.16 

355 eb 2001 2 6 5 14 21 59 1.30 1.04 21.34 17.70 0.22 0.30 0.38 0.26 

379 eb 2003 4 4 17 10 34 33 5.24 3.50 47.72 48.32 1.06 0.68 1.30 0.84 
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LTOPP 
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Rear-end 
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number of 
LTOPP 
conflicts 

(TTC<=1.50s, 
50 runs) 

number of RE 
conflicts 

(TTC<=1.50s, 50 
runs) 

number of 
LTOPP 
conflicts 

(TTC<=0.5
0s, 50 runs) 

number of 
RE conflicts 
(TTC<=0.50
s, 50 runs) 
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r 
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r 
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412 nb 2004 5 3 36 16 123 49 7.30 5.72 28.92 28.82 0.66 0.58 0.22 0.30 

452 sb 2001 2 6 12 32 27 88 5.42 6.62 25.64 22.82 0.92 1.14 0.24 0.30 

458 nb 2006 7 1 29 5 102 13 2.26 1.80 29.48 27.74 0.30 0.26 0.24 0.32 

461 sb 2006 7 1 28 4 116 15 2.62 2.52 39.16 38.40 0.40 0.40 0.40 0.34 

462 sb 2003 4 4 28 17 47 51 10.80 10.50 44.10 41.62 1.72 1.92 0.40 0.60 

474 eb 2002 3 5 15 6 23 35 0.92 1.06 41.82 33.08 0.20 0.16 0.22 0.24 

517 nb 2006 7 1 17 4 107 20 6.52 3.84 19.16 18.68 0.58 0.30 0.14 0.08 

534 wb 2003 4 4 34 12 89 81 9.16 6.92 18.38 16.44 0.72 0.66 0.02 0.04 

539 eb 2002 3 5 2 8 22 31 0.56 0.50 7.46 7.34 0.08 0.06 0.34 0.32 

564 nb 2001 2 6 4 10 30 87 1.22 1.04 50.64 52.16 0.26 0.16 0.56 0.64 

605 sb 2002 3 5 5 7 18 24 0.32 0.34 4.34 4.72 0.08 0.02 0.18 0.22 

619 sb 2004 5 3 34 13 106 59 2.66 0.90 51.26 51.82 0.34 0.16 0.56 0.60 

621 sb 2004 5 3 6 4 22 1 1.38 0.98 4.10 4.96 0.28 0.24 0.10 0.20 
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(TTC<=1.50s, 
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LTOPP 
conflicts 

(TTC<=0.5
0s, 50 runs) 

number of 
RE conflicts 
(TTC<=0.50
s, 50 runs) 
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631 nb 2006 7 1 2 1 31 3 4.92 3.78 64.22 60.26 0.54 0.26 0.80 0.84 

672 sb 2004 5 3 20 10 72 49 2.82 1.68 59.04 53.14 0.32 0.34 0.40 0.46 

698 sb 2002 3 5 15 17 37 65 3.18 3.16 47.14 44.88 0.52 0.48 0.68 0.44 

750 sb 2003 4 4 16 18 37 50 7.06 4.86 30.10 23.98 0.46 0.42 0.00 0.02 

781 eb 2005 6 2 15 3 62 16 2.84 2.20 22.76 21.34 0.20 0.34 0.14 0.12 

789 eb 2006 7 1 8 1 35 5 1.78 1.52 24.90 20.64 0.40 0.38 0.22 0.06 

829 sb 2004 5 3 8 2 34 13 0.60 0.80 18.66 18.50 0.04 0.08 0.20 0.18 

862 sb 2005 6 2 22 6 86 27 5.74 3.96 16.30 15.18 0.38 0.26 0.20 0.32 

926 nb 2002 3 5 11 2 25 67 12.74 2.54 128.38 122.06 1.12 0.66 0.56 0.50 

967 sb 2005 6 2 11 0 30 8 4.24 2.70 24.94 19.16 0.44 0.20 0.02 0.00 

1082 wb 2004 5 3 8 2 13 9 0.66 0.42 5.20 5.66 0.08 0.02 0.20 0.12 

1110 wb 2006 7 1 4 3 29 2 0.38 0.38 13.30 12.04 0.00 0.02 0.02 0.06 

1183 sb 2004 5 3 21 7 49 24 3.70 3.74 42.64 43.24 0.44 0.42 0.38 0.38 
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50 runs) 
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conflicts 
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LTOPP 
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RE conflicts 
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1186 eb 2003 4 4 2 0 2 6 2.44 1.70 11.58 11.30 0.30 0.26 0.04 0.10 

1222 wb 2004 5 3 16 9 41 36 6.00 4.88 10.54 8.76 0.66 0.60 0.10 0.02 

1243 wb 2001 2 6 7 3 14 39 5.26 5.32 49.90 49.52 0.56 0.74 0.12 0.24 

1264 wb 2003 4 4 2 7 18 19 4.12 2.40 21.30 18.86 0.52 0.34 0.12 0.08 

1300 eb 2006 7 1 11 3 27 7 1.06 0.50 24.68 23.22 0.20 0.08 0.12 0.10 

1486 eb 2003 4 4 11 9 24 20 3.38 2.52 7.56 7.68 0.20 0.32 0.06 0.04 

1619 eb 2001 2 6 8 9 5 20 7.60 6.34 14.74 10.12 0.70 0.80 0.10 0.22 

1641 eb 2000 1 7 2 3 3 19 2.08 0.60 55.24 52.74 0.10 0.02 0.42 0.10 

1710 eb 2000 1 7 0 3 0 10 11.24 5.96 8.50 6.42 1.20 0.72 0.04 0.04 

94 wb 2003 4 4 6 1 16 15 0.68 0.58 18.30 14.88 0.22 0.10 0.02 0.10 

1995 sb 2006 7 1 0 0 0 0 0.06 0.08 5.90 6.22 0.00 0.00 0.06 0.02 

Sum 20
3 

17
3 

558 31
4 

1837 1383 164.00 118.70 1371.78 1296.4
2 

19.1
8 

16.2
8 

12.28 11.7
2 
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Mean 4.3
2 

3.6
8 

11.8
7 

6.6
8 

39.09 29.43 3.49 2.53 29.19 27.58 0.41 0.35 0.26 0.25 

stdev 1.8
7 

1.8
7 

9.94 6.1
3 

35.10 22.98 3.13 2.26 22.95 22.30 0.35 0.34 0.25 0.21 

Max 7 7 36 32 125 88 12.74 10.5 128.38 122.06 1.72 1.92 1.3 0.84 

Min 1 1 0 0 0 0 0.06 0.08 4.1 4.72 0 0 0 0 
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B.2- Treated sites traffic volume data 

Intersection 
number 

NB EB SB WB 

LT TH RT LT TH RT LT TH RT LT TH RT 

59 57 425 92 99 818 95 211 419 60 130 299 6 

70 82 732 37 55 610 118 78 337 75 98 511 102 

129 100 1381 219 87 257 79 46 2507 57 103 232 28 

181 88 385 21 2 529 81 75 392 8 0 284 72 

190 13 313 55 61 703 41 61 241 20 6 302 68 

251 187 375 31 256 68 124 21 499 481 12 100 27 

320 230 920 72 186 677 415 233 1275 129 108 893 168 

347 0 0 0 232 443 0 100 0 194 0 1223 101 

355 108 347 178 157 770 107 63 463 158 135 538 68 

379 0 719 168 168 651 0 106 785 257 423 2417 92 

412 85 671 265 175 1223 72 243 867 143 167 893 254 

452 80 695 72 275 1868 43 144 423 100 151 1174 130 

458 70 794 111 123 2366 64 127 655 108 108 733 115 

461 209 523 29 186 889 114 61 441 322 32 1987 103 

462 150 530 46 322 1694 96 154 640 202 129 696 186 

474 186 422 57 109 669 147 99 334 158 61 2286 221 
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Intersection 
number 

NB EB SB WB 

LT TH RT LT TH RT LT TH RT LT TH RT 

517 100 1459 262 48 943 71 192 1194 24 179 427 154 

534 255 602 137 117 1224 164 195 765 115 106 969 84 

539 27 59 43 87 617 52 97 172 58 37 211 48 

564 86 180 352 115 880 220 112 390 141 277 483 35 

605 37 310 84 23 340 57 65 281 70 4 269 29 

619 97 1449 97 195 1638 53 97 1360 240 277 1354 209 

621 4 1472 39 2 0 0 39 1789 17 83 4 114 

631 371 558 391 95 667 334 63 551 105 312 972 125 

672 169 1148 267 328 995 172 173 1247 111 216 974 41 

698 144 1094 135 199 1359 206 90 942 158 116 549 158 

750 224 1494 115 146 1346 210 143 1162 48 327 1023 229 

781 72 575 88 61 1298 100 68 669 90 137 1393 56 

789 143 789 91 179 452 109 92 690 122 154 494 147 

829 5 504 74 0 413 52 114 576 108 0 766 116 

862 215 676 75 58 543 137 108 891 163 152 1128 88 

926 103 277 62 1154 946 900 84 580 349 74 656 1012 

967 42 539 178 54 135 51 357 803 21 96 53 33 
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Intersection 
number 

NB EB SB WB 

LT TH RT LT TH RT LT TH RT LT TH RT 

1082 81 163 44 0 574 110 136 193 9 16 144 88 

1110 47 510 52 23 184 83 52 787 95 119 419 34 

1183 116 237 24 218 877 173 261 358 414 44 1252 135 

1186 90 151 43 126 822 48 75 139 118 31 1002 89 

1222 217 911 78 62 205 103 58 928 32 20 872 72 

1243 201 998 403 86 270 92 39 1245 150 477 493 12 

1264 164 208 95 90 1416 110 155 149 71 105 1064 173 

1300 70 83 86 84 814 14 183 203 301 76 1425 48 

1486 85 171 80 52 1060 107 131 522 141 131 832 82 

1619 0 0 0 231 1102 0 138 0 70 0 1556 301 

1641 8 176 92 412 1140 16 10 94 424 7 1627 105 

1710 0 0 0 212 1226 0 30 0 127 0 2095 111 

94 122 199 119 141 820 121 72 162 60 140 848 96 

1995 0 1424 54 0 0 0 83 1641 0 22 0 15 

Sum 4940 27648 5113 7091 38541 5461 5334 30761 6424 5398 39922 5780 

Mean 105.11 588.26 108.79 150.87 820.02 116.19 113.49 654.49 136.68 114.85 849.40 122.98 

stdev 82.70 439.23 97.62 176.95 505.40 142.84 69.65 514.17 113.72 110.23 595.23 148.29 
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Intersection 
number 

NB EB SB WB 

LT TH RT LT TH RT LT TH RT LT TH RT 

Max 371 1494 403 1154 2366 900 357 2507 481 477 2417 1012 

Min 0 0 0 0 0 0 10 0 0 0 0 6 
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B.3- Untreated sites crash/conflict data 

Intersection 
number 

LTOPP veh-
veh crashes 
(2001-2004) 

RE veh-veh 
crashes 

(2001-2004) 

LTOPP conflicts (50 
runs) RE conflicts (50 runs) 

TTC≤1.5s TTC≤0.5s TTC≤1.5s TTC≤0.5s 

3 0 8 0.12 0.12 6.50 0.18 

6 3 12 0.02 0.02 5.44 0.08 

7 19 18 1.06 0.10 12.94 0.20 

8 4 40 0.28 0.06 7.78 0.12 

9 19 34 0.30 0.10 5.40 0.14 

10 10 35 0.32 0.08 11.54 0.08 

16 1 5 0.14 0.02 1.08 0.06 

19 2 13 0.28 0.06 2.10 0.16 

23 4 20 0.54 0.24 6.08 0.30 

34 1 6 0.00 0.00 0.68 0.00 

168 3 9 0.18 0.08 2.66 0.04 

180 5 17 1.14 0.32 8.70 0.64 

181 3 16 0.72 0.10 4.20 0.06 

182 1 9 0.18 0.12 1.16 0.20 

188 15 33 0.42 0.10 23.14 0.40 

190 6 20 0.46 0.10 3.94 0.26 

237 7 14 0.88 0.36 7.98 0.68 

245 0 4 0.36 0.08 2.12 0.12 

246 2 11 0.40 0.08 2.44 0.14 

248 3 17 0.36 0.12 1.94 0.18 

249 5 26 0.64 0.24 7.00 0.52 

265 1 3 0.24 0.06 1.64 0.22 

283 3 7 0.50 0.06 10.46 0.06 
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Intersection 
number 

LTOPP veh-
veh crashes 
(2001-2004) 

RE veh-veh 
crashes 

(2001-2004) 

LTOPP conflicts (50 
runs) RE conflicts (50 runs) 

TTC≤1.5s TTC≤0.5s TTC≤1.5s TTC≤0.5s 

285 3 9 0.16 0.02 2.32 0.12 

289 4 5 0.30 0.02 4.90 0.14 

292 6 18 0.22 0.02 2.24 0.02 

303 19 34 1.48 0.32 14.48 0.42 

321 4 44 0.02 0.04 4.14 0.04 

324 2 17 0.16 0.02 5.02 0.08 

341 12 19 1.02 0.36 18.40 0.46 

365 4 17 1.20 0.32 12.60 0.58 

369 0 10 0.72 0.10 4.10 0.06 

372 6 16 0.78 0.16 9.70 0.40 

442 10 13 1.08 0.90 8.74 1.98 

483 1 11 0.82 0.30 5.98 0.44 

492 15 48 0.80 0.38 23.98 1.12 

539 7 25 0.66 0.18 4.16 0.32 

543 3 10 0.28 0.08 0.96 0.20 

545 3 2 0.44 0.08 1.92 0.32 

556 5 11 0.52 0.04 1.82 0.00 

605 8 19 0.32 0.10 2.12 0.34 

610 15 40 1.62 0.30 10.88 0.62 

666 3 12 0.64 0.12 3.46 0.18 

669 2 18 0.52 0.10 3.64 0.24 

819 10 13 1.52 0.54 16.12 1.30 

829 4 25 0.14 0.06 3.28 0.16 

833 0 5 0.40 0.16 1.84 0.26 

140 



 

Intersection 
number 

LTOPP veh-
veh crashes 
(2001-2004) 

RE veh-veh 
crashes 

(2001-2004) 

LTOPP conflicts (50 
runs) RE conflicts (50 runs) 

TTC≤1.5s TTC≤0.5s TTC≤1.5s TTC≤0.5s 

842 14 14 1.22 0.18 10.08 0.14 

843 7 12 0.38 0.10 3.78 0.36 

844 20 39 1.82 0.32 14.70 0.52 

845 4 16 0.82 0.58 11.52 1.28 

913 1 12 0.18 0.10 3.84 0.22 

1273 0 4 0.00 0.00 0.36 0.00 

Sum 309 915 29.78 8.62 348.00 17.16 

Mean 5.83 17.26 0.56 0.16 6.57 0.32 

Stdev 5.56 11.34 0.44 0.17 5.58 0.37 

Max 20 48 1.82 0.90 23.98 1.98 

Min 0 2 0.00 0.00 0.36 0.00 
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B.4- Untreated sites traffic volume 

Intersection 
number VMajor VMinor Ped+bike %RTMajor %RTMinor %LTMajor %LTMinor %RT %LT %Turning 

3 1483 681 1359 15.31 22.91 2.02 4.11 17.70 2.68 20.38 

6 1694 735 198 8.09 12.79 0.06 0.27 9.51 0.12 9.63 

7 2041 797 250 5.14 10.54 5.24 12.42 6.66 7.26 13.92 

8 1977 942 562 6.37 13.06 2.12 7.96 8.53 4.01 12.54 

9 2172 865 548 9.35 9.25 2.72 0.35 9.32 2.04 11.36 

10 2246 1037 700 6.86 10.13 0.18 8.10 7.89 2.68 10.57 

16 844 607 276 5.57 6.43 2.37 4.61 5.93 3.31 9.24 

19 927 660 937 16.61 15.91 5.61 3.79 16.32 4.85 21.17 

23 1058 1053 621 8.98 18.99 6.24 6.36 13.97 6.30 20.27 

34 1114 715 2212 0.00 0.00 0.00 0.28 0.00 0.11 0.11 

168 857 628 249 8.28 14.01 4.55 10.19 10.71 6.94 17.64 

180 1156 1051 494 12.28 11.89 11.07 11.51 12.10 11.28 23.38 

181 969 968 397 2.99 15.81 9.08 0.21 9.40 4.65 14.04 

182 846 480 362 7.45 18.54 4.26 10.21 11.46 6.41 17.87 
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Intersection 
number VMajor VMinor Ped+bike %RTMajor %RTMinor %LTMajor %LTMinor %RT %LT %Turning 

188 1817 1249 236 2.97 10.09 0.06 6.73 5.87 2.77 8.64 

190 1181 703 403 9.23 10.67 5.67 2.70 9.77 4.56 14.33 

237 1412 385 326 16.15 29.61 14.16 20.78 19.03 15.58 34.61 

245 732 581 233 14.34 11.36 10.79 6.71 13.02 8.99 22.01 

246 817 736 499 18.36 13.86 7.34 2.04 16.23 4.83 21.06 

248 837 610 258 13.86 13.28 5.97 11.48 13.61 8.29 21.91 

249 1305 891 407 15.33 16.27 6.97 11.45 15.71 8.79 24.50 

265 927 422 806 11.22 22.27 4.96 14.93 14.68 8.08 22.76 

283 1194 999 93 22.28 5.71 9.88 11.91 14.73 10.81 25.54 

285 1006 597 299 5.77 19.60 5.77 3.18 10.92 4.80 15.72 

289 1129 887 168 5.49 17.70 8.86 12.97 10.86 10.66 21.53 

292 1533 464 418 2.28 17.67 1.89 5.82 5.86 2.80 8.66 

303 1654 1056 387 5.93 12.12 8.40 14.39 8.34 10.74 19.08 

321 1628 1107 730 21.81 9.94 0.06 0.18 17.00 0.11 17.11 

324 1364 796 601 9.02 13.82 0.07 5.15 10.79 1.94 12.73 

341 1713 1367 1262 10.68 10.24 0.41 7.46 10.49 3.54 14.03 
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Intersection 
number VMajor VMinor Ped+bike %RTMajor %RTMinor %LTMajor %LTMinor %RT %LT %Turning 

365 1416 1169 210 10.17 13.17 33.05 35.93 11.53 34.35 45.88 

369 895 746 440 10.06 18.77 13.41 11.39 14.02 12.49 26.51 

372 1111 1107 426 18.00 10.48 7.56 10.12 14.25 8.84 23.08 

442 1231 858 122 34.44 5.36 12.84 34.27 22.50 21.64 44.14 

483 1303 322 830 11.90 35.09 12.74 46.27 16.49 19.38 35.88 

492 1670 1001 342 20.00 25.07 6.59 16.28 21.90 10.22 32.12 

539 1052 456 528 9.51 22.15 11.79 14.04 13.33 12.47 25.80 

543 811 482 355 15.29 16.80 3.33 18.46 15.85 8.97 24.83 

545 663 589 323 11.61 24.45 21.87 19.19 17.65 20.61 38.26 

556 1084 380 169 8.03 24.47 4.52 17.11 12.30 7.79 20.08 

605 847 722 334 18.18 11.91 4.84 3.74 15.30 4.33 19.63 

610 1696 850 296 5.84 22.00 8.20 18.94 11.23 11.78 23.02 

666 1213 783 100 7.83 16.60 8.33 8.94 11.27 8.57 19.84 

669 1164 574 1000 8.25 17.42 4.21 17.77 11.28 8.69 19.97 

819 1957 1026 145 8.74 21.54 9.20 23.29 13.14 14.05 27.19 

829 1074 1001 371 9.59 10.59 0.28 1.20 10.07 0.72 10.80 
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Intersection 
number VMajor VMinor Ped+bike %RTMajor %RTMinor %LTMajor %LTMinor %RT %LT %Turning 

833 735 541 371 18.91 13.68 9.25 22.74 16.69 14.97 31.66 

842 1738 1036 93 6.96 6.18 3.91 11.58 6.67 6.78 13.45 

843 1465 541 180 5.12 13.49 3.89 9.43 7.38 5.38 12.76 

844 1846 1112 122 8.67 14.84 5.90 11.42 10.99 7.98 18.97 

845 1986 729 250 8.81 19.48 3.63 11.52 11.68 5.75 17.42 

913 1452 398 1397 9.44 19.60 1.17 28.89 11.62 7.14 18.76 

1273 944 48 349 0.00 54.17 0.00 27.08 2.62 1.31 3.93 

Sum 68986 40540 25044 563.33 851.78 337.30 637.86 636.15 424.14 1060.29 

Mean 1301.62 764.91 472.53 10.63 16.07 6.36 12.04 12.00 8.00 20.01 

Stdev 417.22 270.57 391.50 6.24 8.31 5.87 9.70 4.40 6.23 9.16 

Max 2246 1367 2212 34.44 54.17 33.05 46.27 22.50 34.35 45.88 

Min 663 48 93 0.00 0.00 0.00 0.18 0.00 0.11 0.11 
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