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Abstract

In safety analysis, two questions typically need to be addressed: 1) how to identify unsafe sites
for priority intervention? and 2) how to determine the effectiveness of treatments introduced
at these and other sites? Two types of approaches have been considered in the literature to
provide answers for these questions: (1) observational models based on historical crash data
and (2) observed or simulated higher risk vehicle interactions or traffic conflicts.
Observational crash-based models are good at predicting higher severity crashes, but they tend
to ignore higher risk vehicle interactions that compromise safety, that have not resulted in
crashes (e.g. near misses). Proponents of microscopic simulation argue that ignoring these
higher risk interactions can severely understate the safety problem at a given site and lead to a
misallocation of scarce treatment funds. Another problem with observational crash prediction
models is the need for sufficient crash data reported over an extended period of time to provide
reliable estimates of “potential” lack of safety. This requirement can be a challenge for certain
types of treatment and different sites or locations. Furthermore, observational approaches are
not causal in nature, and as such, they fail to provide a sound “behavioural” rationale for “why”

certain treatments affect safety.

On the other hand, traffic conflicts occur more frequently than crashes and can provide
a stronger experimental basis for estimating safety effects on a short-term basis. This is
especially important given the rare random nature of crashes for certain traffic conditions.
Additionally, they provide a more rational basis for lack of safety than is normally available
from crash occurrence data. Basically, through the application of calibrated behavioural
simulation, traffic conflicts can be linked to specific driver actions and responses at a given
site, more so than conventional reported crashes. As such, they permit a causal underpinning
for possible treatment effects and this is important to decision-makers because it underscores
why certain treatments act to enhance safety, rather than simply providing an estimate of the
treatment effect itself.



Notwithstanding the usefulness of conflict-based measures, observed crashes remain
the primary verifiable measure for representing failures in the transportation systems.
Unfortunately traffic conflicts have not been formally linked to observed crashes, and hence
their values as indicators for treatment effect have not been fully explored. This presents a
challenge on how best to use both conflicts and observed crashes to better understand where
safety is most problematic, where intervention is needed, and how best to resolve specific

safety problems?

In this thesis, the position is taken that a complete understanding of safety problems at
a given site can only emerge from a more inclusive analysis of both observed crashes and
traffic conflicts. This is explored by developing two integrated models: (1) An integrated
priority ranking model is presented that combines estimates from observational crash
prediction with an analysis of simulated traffic conflicts; (2) An integrated treatment model is
presented that uses simulated traffic conflicts that are linked statistically to observed crashes
to provide estimates of crash modification factor (CMF). The suitability of these integrated
models has been evaluated using data for a sample of signalized intersections from Toronto for
the period 1999-2006.

In the absence of a benchmark (or true) priority ranking outcome, a number of
evaluation criteria were considered, and the integrated ranking model was found to yield better
results than both conventional observational crash-based models (including empirical
Bayesian, potential for safety improvement methods) and conflict-based models (including
conflict frequency and rate for different risk thresholds). For treatment effects, the results
suggest that CMFs can be estimated reliably from conflicts derived from microsimulation,
where the simulation platform has been sufficiently calibrated. The link between crashes and
conflicts provides additional inferences concerning treatment effects, in those cases where
treatments were not previously implemented (i.e., no after history). Since there is an absence
of crash history, the treatment effect is based exclusively on simulated conflicts. Moreover, the
integrated model has the added advantage of providing site-specific CMFs instead of applying
a constant CMF across all sites considered for a potential treatment.
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CHAPTER 1
INTRODUCTION

Traffic crashes make up a significant percentage of death and personal injuries reported in many
developed countries. For example, in Canada, more than 2,700 persons were reported killed and
about 200,000 people injured from traffic crashes in 2007 (Transport Canada, 2010). In the U.S.
for the same year, over 41,100 persons were Killed from traffic crashes, or about one death every
15 minutes. For every one of these deaths, 60 injuries were reported in the US in a given year, or
one injury every 15 seconds (U.S. Census Bureau, 2010). According to a World Health
Organization (WHO, 2004), traffic crashes will become the fifth leading cause for death by 2030
if the death rate due to vehicle crashes continues its current trend. The WHO (2004) reports an
average of 1.20 million death annually globally as a result of road crashes. This provides strong

justification for the development of efficient, objective guidelines for traffic safety analysis.

1.1 PROBLEM STATEMENT

The majority of crashes tend to occur with some consistency over time and, hence, are predictable.
Consistent crashes are assumed to be caused by a specific failure in the transportation system, and
hence by addressing this failure we expect to reduce these crashes. However, many crashes are
purely random in nature and are therefore difficult to predict with respect to observed crash history.
These crashes are not reflective of failures in the transportation system and are difficult to explain
or predict. For example, if crashes occur with consistency then we would expect a measure of
consistency in the priority ranking of sites over time, such that high crash sites in the past would
likely be reflected as high crash sites in the future. However, if crashes occur in a random fashion,
consistency of prediction will not provide a good metric for identifying high-risk sites in the future.
The problem of consistency in crash occurrence over time becomes critically important in

developing sound priority ranking models for safety intervention.

Accurately predicting the likelihood of crashes and hence implementing effective

treatments is one of the main concerns for traffic safety engineers (e.g., Lord and Mannering,
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2010). Crash prediction models are the primary tools to predict crashes and estimate treatment
effects (e.g., EI-Basyouny, 2006). These models provide answers to two fundamental safety
questions: (1) what sites are unsafe (hazardous location identification), such that intervention is
advised? and (2) what form should this intervention take so that crashes are reduced in a cost

effective and practical manner?

Two approaches have been proposed to provide answers for these questions: (1) crash
prediction models based on reported crash data and (2) observed or simulated vehicle interactions
and traffic conflicts. While these approaches have been shown to give good results, there are
number of issues related to each of these approaches that need to be investigated. In addition, we
need to understand how these approaches compare to each another in providing answers for safety
analysis. There is also a need to explore an objective way to combine the strengths of both
observational crash-based analysis with conflict-based analysis to better resolve problems of
priority ranking of unsafe sites and estimation of treatment effects.

1.1.1 Issues with crash-based analysis

The main advantage of using observed crash data is that they provide measurable indicators of
transportation system failures. Crash-based safety studies are based on police-reported crash data.
Unfortunately, there are a number of problems associated with the use of these data in safety
analysis such as, low reporting rates for low severity crashes, incomplete and misreported
information, errors in the data entry and other statistical and methodological issues (Hauer and
Hakkert, 1989; Elvik and Myssen, 1999; Blincoe, et al., 2002; Nicholson, 1985; Hauer, 2001;
Farmer, 2003; Davis, 2004; Saunier and Sayed, 2007; Lord and Mannering, 2010). For example,
in North America, only crashes involving personal injury or property damages over a set amount
are reported in the database. In Ontario, only crashes that cause property damage more than $1,000

may be reported to Ontario’s collision reporting centres (MTO, 2011).

It is worth noting that the rate of police reported crashes increases with the severity of the
crash (Blincoe et al., 2002). Hauer and Hakkert (1989) reported that approximately 60% of

2



property-damage-only (PDO) collisions were not reported in the crash data. In addition, they
observed that even for those crashes that resulted in serious injuries without hospitalization, around
20% were unreported. Furthermore, Elvik and Myssen (1999) found that the probability of crashes
being reported in the data ranges from 70% for serious injuries to 10% for minimal injuries crashes.
Mills et al. (2011) compared precipitation-related motor vehicle collisions and injury using both
police records and insurance claim data for Winnipeg, Canada (1999-2001). They reported that

the insurance data has 64% more injury collisions and 74% more injuries than police records.

Furthermore, since prediction is based on reported crashes, observational models tend to
ignore unreported high-risk vehicle interactions or near misses that could lead to crashes. Hence,
they can be viewed as being important in assigning lack of safety to a given site for a given set of
traffic conditions. Vehicle interactions are expected to vary over time for different traffic

conditions and geometric attributes.

Since crashes are rare events, they do not manifest themselves over short time periods. The
use of observational analysis for 5 to 10 years creates problems of too many zeroes in the
observational crash data used in prediction models, and this results in errors in parameter estimates
(Lord and Mannering, 2010). Zero-inflated models have been used to address the problem of too
many zeroes in the data (Lord et al., 2005; Shankar et al., 1997). The excess zero is accounted for,
in the zero-inflated models, by having two models (i.e., zero-crash model versus a crash prone
model). The probability of a given site to be perfectly safe (i.e., in the zero state) or in the non-
zero state can be obtained using binary logit or probit models. These models can create theoretical
inconsistencies with crash data (Lord et al., 2005; Lord and Mannering, 2010).

One of the major problems associated with observational crash data is presence of
regression to the mean (RTM) bias. RTM reflects a treatment selection bias that takes place when
the assumptions of random selection is violated (Park and Saccomanno 2007). If the RTM bias is
not resolved properly, then sites that happen to encounter a high number of crashes in a certain
year will be ranked in the top list of unsafe sites that need treatment. This will give a misleading

(over-estimation) of the treatment effect because extreme crash values (higher and lower than long

3



term average) fluctuate around the true mean or tend to return to the average value for each site
(Hauer, 1997; Hauer et al., 2004).

The empirical Bayes (EB) approach can solve some of the statistical issues associated with
RTM bias (Hauer, 1997; Hauer et al., 2002; Persaud and Lyon, 2007). It does so by estimating a
long term average of crashes at each site by combining observed crash frequency at the site with
expected number of crashes from similar sites (Safety Performance Function or SPF). It should be
noted that EB models require a large sample of untreated reference sites from which to develop

SPFs and this can be both costly and impractical (Lan, 2010).

Recently, the full Bayesian (FB), has been proposed to overcome the shortcomings of the
EB method (Li et al., 2013; El-Basyouny and Sayed, 2012; Lan and Persaud, 2010; Miaou and
Song, 2005; Miranda-Moreno and Fu, 2007; Huang et al., 2009). The FB method tends to be

computationally involved and hence unpopular with many practitioners (Persaud and Lyon, 2007).

Using observational crash-based models to evaluate treatments can only be done after
implementing treatment(s), and this can only be achieved if sufficient site-years of treatment data
are available to ensure statistically meaningful results. As such, observational crash-based models
for evaluating treatment effects are not proactive (e.g. Archer, 2005). In addition, crash-based
prediction models can also be subject to lack of specification in the crash data. This results when
too few years of crash experience data following treatment are available, or when treatments have
not yet been applied. This can severely restrict the ability of observational prediction models to
explain the potential for crash reduction resulting from specific treatments. This problem is
rendered more complex when we wish to isolate the effect of a specific treatment on a given site,
where this treatment is part of a mix of treatments introduced at the same time. The question
becomes, how can the specific treatment effect be isolated from the group treatment effect? (Cunto

and Saccomanno, 2008).



The basic problem with observational crash-based studies in general is that they fail to
account for the complex causal relationships affecting crashes at a given site. Thus, while we can
estimate treatment effect for a given treatment, we cannot ascertain logically how this treatment
acts to modify driver behavior such that safety is enhanced. As such, the approach becomes
somewhat of a black box, where results are obtained, but where we are at odds to explain them.
In the absence of some form of behavioral transparencyi, it, therefore, becomes difficult to justify
the treatment. Furthermore, where several correlated treatments are considered at a given site, it is
difficult for the crash-based approach to distinguish the effect of one treatment from that of
another. For example, we can estimate the effect on crashes of a permissive-protected left turn
signal at a given intersection, but we cannot obtain reliable CMF estimates for such a treatment if

it is introduced simultaneously with changes in signal timing at the same site.

1.1.2 Potential of simulated conflict-based models

Safety studies using high-risk vehicle interactions were initially proposed by Perkins and Harris
(1968), researchers from the General Motors laboratory. These interactions, which are referred to
as traffic conflicts when they exceed given thresholds, can provide an alternative metric to

conventional crash-based analysis in traffic safety studies.

Amundsen and Hyden (1977) defined traffic conflicts as ““an observational situation in
which two or more road users approach each other in space and time to such an extent that a
collision is imminent if their movements remain unchanged™. The gist of safety studies using traffic
conflicts is that conflicts occur more frequently than crashes (Cunto, 2008), and can provide a
stronger experimental basis for estimating safety effects on a short-term basis. This is especially
important given the rare random nature of crashes for certain traffic conditions. Additionally, they
provide a more rational basis for explaining lack of safety than normally available in crash

occurrence data.

Observational conflicts can be achieved, for example, using video capture or tracking of
the vehicle trajectories in real time (Saunier et. al, 2010; Guido et. al, 2010; Sayed et.al, 2012).
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This approach is very costly and requires certain setup guidelines such as camera angle and
elevation for accurate vehicle location. This method, like observational crash-based methods, is

not proactive when it comes to estimate treatment effect prior to implementation.

Recently, researchers have used microscopic traffic simulation to obtain high-risk vehicle
interactions, or traffic conflicts for changing traffic conditions (Sayed and Zein, 1999; Archer,
2005; Cunto, 2008; Archer, 2000, Gettman and Head, 2003, Barcelo et al., 2003, Huguenin et al.,
2005; Cunto and Saccomanno, 2008, Ghods et al., 2012).

Basically, through the application of calibrated behavioural simulation, traffic conflicts can
be linked to specific driver actions and responses at a given site, more so than conventional
reported crashes. As such, they permit a causal underpinning for possible treatment effects and
this is important to decision-makers because it underscores why certain treatments act to enhance
safety, rather than simply providing an estimate of the treatment effect itself. As such, they permit

a causal underpinning to possible treatment effects.

Hyden (1987) assumed that the shape of the severity hierarchy is a three-sided pyramid as
shown in Figure 1.1. This Figure illustrates different levels of vehicle interactions or perturbation
from undisturbed (base of Pyramid) to high risk or crashes at the apex. As the risk level increases,
the frequency of occurrence is reduced. Presumably, as conditions in the traffic stream progress
from the base to the peak, the presence of a safety problem becomes more pronounced, as does the

likelihood of crashes.
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Figure 1.1: Hyden’s safety pyramid (Hyden, 1987)

Arguments against using of traffic micro-simulation models in safety studies can be
summarized as follows (Tarko and Songchitruksa, 2005; Saunier and Sayed, 2007):

1. Traffic micro-simulation models are based on crash avoidance rules, and cannot fully
explain high-risk driver behavior that leads to crashes.

2. Results of a traffic micro-simulation model are only as good as the accuracy and
reliability of the input parameters and the model’s ability to replicate actual (i.e., real

world) driver behaviour and traffic conditions.

3. Surrogate safety indicators are conceptual (i.e., abstract) measures of safety that are not
linked to crashes (i.e., they are appropriate only within the context of verifiable crash

occurrence).

In addition, to estimate surrogate safety measures from simulation for different weather,
road and traffic conditions, the models will need to be calibrated based on real-world observed

traffic data for the full spectrum of conditions.



Simulated conflicts are usually targeting conflicts during good weather conditions (i.e.,
normal weather conditions and dry pavement conditions) because microscopic traffic simulation
models are usually calibrated for good weather conditions (Rakha et al. 2010). On the other hand,
although observed crash data are representative of a wide range of weather conditions, most
observational models do not consider seasonality when predicting the number of crashes at a given

location.

The motivation of this thesis research is that a better understanding, and hence better traffic
safety analysis, can be obtained if the strengths of both the crash-based and the conflict-based
models can be combined, and inference on lack of safety at a given site is drawn from both

perspectives.

1.2 RESEARCH OBJECTIVES

Notwithstanding the usefulness of traffic conflicts in safety analysis, observed crashes remain as
the primary verifiable measure for representing safety failures in transportation system. The
challenge for safety analysis models is how best to integrate both conflicts and accidents to gain a
better understanding of where safety is most problematic; what form of intervention should be
considered to enhance safety at a given site, and what is the crash-reduction effect of such

intervention or treatment.

This study takes the position that a complete understanding of safety problem at a given
site can only emerge if both crash potential and traffic conflicts are taken into account.
Accordingly, the proposed research has the following specific objectives:

1. Review current observational crash-based models and simulated traffic conflict-based

models.

2. Develop integrated approaches that combine observational crash-based and traffic
conflict-based measures of safety performance, and apply these approaches to prioritize

sites for safety intervention (priority ranking) and evaluating treatments.
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3. Apply these integrated models to resolve the two fundamental safety analysis questions:

priority ranking of unsafe sites and countermeasure evaluation.

4. Assess the effect of key microsimulation factors (e.g., conflict definition threshold and
number of runs) on the number and nature of simulated conflicts and the subsequent

estimates of countermeasure effect.

1.3 ORGANIZATION OF THESIS

The reminder of this thesis has been organized into seven chapters. Chapter 2 presents a review
on observational crash-based approach and how it can be used to answer the two fundamental
traffic safety questions (i.e., priority ranking of unsafe sites and treatment effectiveness). Chapter
3 presents a review on surrogate safety measures from microscopic simulation models and how

traffic conflicts can be used to answer the traffic safety questions.

Chapter 4 presents the proposed models for priority ranking of unsafe intersections and
treatment effect. Chapter 5 presents the results of the application of the proposed priority ranking

models for a sample of signalized intersections from Toronto.

Chapter 6 presents a case study application of the proposed treatment model and compares
treatment effects with estimates from empirical Bayes crash-based before-and-after analysis.
Finally, Chapter 7 summarizes the major findings of the research and potential contributions for
safety analysis. The Chapter also summarizes the major recommendations for further work to

better enhance the integration of traffic conflicts and observed crashes in safety analysis.



CHAPTER 2
REVIEW OF CRASH-BASED APPROACH

This chapter presents the major features of a crash-based approach for crash prediction and safety
analysis. Some of the fundamental shortcomings of these models are discussed with respect to
their ability to rank sites with respect to priority intervention and to estimate the effects of

intervention on potential crash reduction.

2.1 CRASH PREDICTION MODELS

Historically, crash frequency, the number of crashes that expected to occur at a given site during
a specific period (Hauer, 1997), and crash rate (frequency divided by exposure), have been widely

used to measure lack of safety at different sites.

Expected crash frequency has nonlinear relationship with traffic flow, as shown in
Figure 2.1 (based on unpublished report by Ezra Hauer (Kononov and Allery, 2003)). Accordingly,
a non-linear relationship between crashes and traffic volume is more appropriate when conducting
traffic safety analysis (Hauer, 1997; Persaud et al., 1999; Persaud, 2001).

8
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Figure 2.1. Relationship between traffic exposure and crashes [reproduced from Kononov
and Allery, 2003]
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Crash prediction models, which are statistical multiple- variable models, can be used to fit
nonlinear relationships between crash counts as response variable and traffic, geometric and other
site characteristics (traffic control type, speed limit, number of lanes, traffic volumes etc.) as
independent confounding factors. Equation [2.1] shows a typical linear regression model, where
E(y) is the expectation of crashes at a given site:

EV)=B+B X+ B X+ + [ X +¢& [2.1]

and y is the dependent or the response random variable (number of crashes), x,, X,,---X, are

set of independent variables, 4,, £, f,, .... B, are unkown coefficients and ¢ is the error term .

An alternative nonlinear form can be used, such that:
E(Y)=8, EXp(B % + B, Xy +-+ B X ) +& [2.2]

Linear regression analysis can be used to fit the models in Equations [2.1] and [2.2], and
the error term will be assumed to follow the normal distribution. Based on this assumption, the
error variance is constant for each value of the independent variables. However, crashes are
positive discrete values (i.e., y in the above equations) and as such do not follow a continuous
normal distribution. As a result, most crash prediction models use Generalized Linear Model
(GLM) structure, where the underlying distribution for crash frequency is a discrete and positive

integer variable.

2.1.1 Underlying distribution for crashes

It is generally accepted that crash occurrences follow the Poisson process (Persaud et al., 1999;
Kononov and Allery, 2003; etc.), such that:

P(X=Yy,) =”y—e,ﬂ [2.3]
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Where P(X = yi) is the probability that the observed crash frequency equals y crashes

during time period i, and £; is the expected number of crashes for the same time period i.

For a random variable X follows Poisson distribution, its variance is assumed equal to its

mean, or
X ~ Poisson, Var(X)=u

However, this assumption (i.e., variance = mean) may not hold for all crash data. For
rare events like crashes the variance is usually greater than the mean (e.g., the crash data are
over-dispersed) (Lord et al. 2005). This is mainly due to the unobserved differences across sites
and unmeasured uncertainties associated with the observed and unobservable covariates (Hauer,
1997; Washington et al., 2003; Mitra and Washington, 2007; Lord and Park, 2008, etc.). In such
cases crash dataset are better represented by a long tail distribution, indicative of high variation
(Boonsiripant, 2009). The negative binomial (NB) distribution can be used instead of the Poisson
distribution to solve the problem of over-dispersion in the crash data n that it has the more
flexible feature that variance is a non-linear function of the mean, as compared to the Poisson
assumption of equality. The Negative Binomial has been the preferred distribution for crash
prediction in recent years (Hauer, 1997). It is worth noting that the NB distribution is sometimes

referred to as Poisson-Gamma distribution. The NB is of the form:

o) () e
or, Y, ~ NB(,, 4)
with,
E(Y,,) =4 and Var(Y, ) = u+gu’ [2.5]
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where

;. = the expected number of crashes at site i in year t, which can be calculated from one

of the SPFs

y;, = the observed number of crashes at site i in year t,

y(.)=gamma function

¢ = the dispersion parameter, NB distribution parameter ¢ >0.

The NB distribution can also be expressed as:

(y+¢_l)| Yi
P(Y.,P(x),0) =2~ pP(x)*[1- P(x 2.6
04, PO)0) = g PO 1-P(6)] [26]

With mean and variance as:

(0[1_ P(Xi)]

E(Y)=u= P(x)

2
and Var(Y,) = 1 +% [2.7]

where ¢ = the inverse of the NB dispersion parameter; and P(x;) is the probability of x

crashes at site i (0< P(xj)<I). The probability, P(xi), is assumed to follow the gamma distribution

(Hauer, 1997; Lord et al., 2005; Miaou, 1996) with shape parameter ¢ and scale parameter

equals to (%] .

When the dispersion parameter ¢ in Equation [2.5] goes to zero or when the inverse of
the dispersion parameter ¢ in Equation [2.7] goes to infinity, both Equations [2.5] and [2.7] are

equal to the Poisson distribution with mean and variance .
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2.1.2 Generalized linear models (GLM)

Both Poisson and negative binomial distributions are from the exponential family that can be
considered in GLM models. Parameter estimation in GLM makes use of the maximum likelihood
(ML) techniques . Statistical software such as SAS ® software (SAS, 2014) and R-statistical
software (R, 2012) can be used to obtain safety performance function (SPF) for crash prediction.

Generalized Linear Modeling (GLM) consists of three components (Everitt, and Hothorn,
2006; McCullagh and Nelder, 1989):

1. Random component (the error distribution): This component represents the error
distribution of the dependent variable (crash count).

2. Systematic component: This component consists of the independent variables that will

be used to develop the linear model that will serve as the predictor.

3. Link component: This component links the random component to the systematic
component (i.e., how the linear function of the independent variables is related to the

response value). The general form of the link function can be expressed as:
9() =B+ B X+ By Xyt + S - X, [2.8]

For GLM models, the variance function that represents the relationship between the

variance and its mean can be presented as:

Var(y) =¢-V (u) [2.9]

Where ¢ is the dispersion parameter (estimated by statistical packages like SAS and R)

and V (u) is the variance of the model as a function of the mean. When V () =1 and ¢ =¢ o
the error is normally distributed. When V (u) = and p=¢=1 , we assume that the error is

Poisson.
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2.1.2.1 Tests of goodness of fit
The goodness of fit of a Poisson or NB GLM models to crash data can involve:

1. Statistical significance of model parameters at a given level of significance (usually 5%);

2. Deviance /(n— p) test: it tests the ratio of the deviance of the full model to the degree

of freedom (n— p), and its value measures the degree of dispersion in crash data.

For Poisson this deviance can be expressed as:
DZZZ(Yi Iog(%)_(yi _/Ui)) [2.10]
i=1

The term D in Equation [2.10] follows the chi-squared distribution, with N —p degrees of

freedom. n is the number of observations and p is the number of parameters in the model. The

value of the Scaled Deviance/(n— p) should be close to 1 for a model based on data that are not

over-dispersed (McCullagh and Nelder, 1989).

3. Akaike information criterion (AIC) (Akaike, 1973; Bozdogan, 2000): AIC penalizes
extra parameters when the expected log likelihood is estimated by the maximum

likelihood techniques, and is expressed as:
AIC =-2log L(6) + 2k [2.11]
where

L(@) = The maximized likelihood function of the parameters in model, at a value 4 that

maximizes the probability of the data given the model; and

k= The number of free parameters in the model.
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A model with a minimum AIC value is chosen as the best-fit model. Other models have a

lower L(@) and more parameters.

2.1.3 Empirical Bayes model

The EB approach has been examined and explored by several researchers (Hauer, 1992; Hauer,
1997; Persaud et al., 1999; Hauer et al., 2002) and was found to provide valid results. Hauer et al.
(2002) presented a simple systematic procedure on how to implement the EB method in traffic

safety studies.
The best estimate of expected crashes at a specific site is obtained by combining:

1. The historical crash record (y) for a specific site (e.g., intersection), and

2. The expected number of crashes (x) for similar sites, which is usually obtained from a

safety performance function (SPF).

By combining the two sources of information regarding crash experience, a long term
average (A ) of crashes can be obtained. The EB expected crashes for a specific site can be

estimated as:
A =EQly)=a - u+QA-a)-y, [2.12]
with, E(L)=4, and Var(4)=(1-«)-E(4) [2.13]

where

A = EB Expected number of crashes in n years at site i,

M, = Expected number of crashes in n years at similar sites (i.e., from SPFs),

yi = Observed crash frequency in n years at site i, and
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&; = The weight factor.

The weight factor (ai) is usually estimated from the mean and variance of the SPF estimate

[Equations [2.5] and [2.7]]. In the case of NB model, the weight factor can be estimated as follows:

o —— W) [2.14]
Var(y;) +E(Y;)

or, a=-2 [2.15]
M+

or, a, :i [2.16]
M+ %

and, 1-¢, = A [2.17]

M+ 7

Once the weight factor has been estimated, the expected number of crashes (/l,)at a given

site can be estimated using Equation [2.12].

The use of EB method requires the specification of a safety performance functions (SPFs)
for crashes at reference sites. The development of the SPFs needs a large sample size of
representative site data (Lan, 2010). The negative binomial (or Poisson-Gamma model)
distribution, due to its simplicity in computation, is almost the sole distribution that can be used to
implement the EB model approach. However, for some datasets the use of the Poisson-Lognormal
distribution provides a better fit because lognormal distribution tails is asymptotically heavier than
those of the Gamma distribution (Kim et al., 2002).

The EB model will serve as the basis of crash-based prediction results in this research. It
is also worth noting that the treatment effects are also compared with sound EB results from other

studies applied to the same dataset.
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2.2 CRASH-BASED SAFETY ANALYSIS FOR PRIORITY RANKING

Priority ranking of unsafe locations (known also as hazardous locations, black spots, hotspots, sites
with promise, etc.) is the first step to improve the safety performance of roadway network. By
successively identifying the correct unsafe location, resources can be allocated to treat sites that

really need treatment.

Priority ranking of unsafe sites results in a list of sites that are prioritized for detailed
engineering evaluations to identify crash patterns, causes, and to select potential treatments that
can implemented to reduce crashes (Hauer et al., 2002 and 2004; Montella, 2010).

Crash counts (or accident frequency (AF)) have been used for some time as the main source
to identify unsafe sites for further examination and possible treatment. Some European countries
still use the crash count alone for ranking purposes such as Austria, Germany, and Norway (Elvik,
2008b).

One of the main problems in identifying certain sites as unsafe locations based on their
high crash experience is what is known as the regression to the mean (RTM) treatment bias ( Elvik,
2008a; Park and Saccomanno, 2007; Hauer et al., 2004; Persaud et al., 1999; Hauer, 1996). The
empirical Bayes (EB) approach can be used to get rid of the RTM problem, as EB design is to

estimate a long-term average at each site.

In this research, two commonly applied observational crash-based priority-ranking

methods will be discussed, namely:

1. Empirical Bayesian estimate of expected crashes (4,), and

2. Potential for safety improvement (PSI).
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2.2.1 EB expected number of crashes

The expected number of crashes (A4 )at each site i is obtained from Equation [2.12]. Sites are
prioritized for intervention based on increasing values of (4,)or increasing expected number of

crashes.

2.2.2 Potential for safety improvement (PSI)

Sites can be similarly ranked based on the potential for safety improvement (PSI) (Persaud et al.,
1999), which is the difference between the EB expected crash frequency and the crash frequency

predicted from a safety performance functions (SPF), such that:
PSIi =4 —p = 14+ (1—a) Y, — 4 [2.18]

4 represents the expected number of crashes on the basis of traffic volume alone from

SPFs, and may not be reduced by treatments.

2.3 CRASH-BASED SAFETY ANALYSIS FOR TREATMENT EFFECT

In the EB approach, the effectiveness of a treatment is usually estimated as the difference between
expected number of crashes in the after period had the treatment not been applied with the
observed crashes post-treatment in the after period at the same site. Before determining the
effectiveness of a treatment, two estimates need to be obtained:

1-  An estimate of the expected number of crashes for the whole treatment group

without treatment in the after period (i.e., 4,); and

2-  An estimate of the expected number of crashes for the whole treatment group

with treatment in the after period (i.e., 7 or E[Y,]).
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Crash reduction (usually refer to as o), Equation [2.19], and the index of treatment
effectiveness (i.e., @), Equation [2.20], are the most common measures that used to estimate
treatment effect (Hauer, 1997; Hauer and Harwood, 2002; Persaud and Nguyen, 1998). The
estimates of ¢ and @ can be determined using Equations [2.19] and [2.20].

S=i -7 [2.19]
g n [2.20]
(1+Va;(j’A)J

where

o = Crash reduction in terms of number of crashes reduced in the period after

implementation,

¢ = Index of treatment effectiveness,

A, = The expected crashes for the whole treatment group without treatment in the after

period, and

T = E(YA) = The expected crashes for the whole treatment group with treatment in the

after period,

If the value of & is positive, it implies that treatment is effective in reducing likely crashes.
On the other hand if ¢ is negative, treatment has a harmful effect on safety (i.e., increases in
crashes). Likewise, if @ is less than one, it implies that the treatment has been effective in reducing
crashes, while if @ is greater than one, treatment is considered to be harmful. @ is also used to
estimate the percentage increase or decrease in crashes after the introduction of treatment, such
that:

% change = (1-6)x100 [2.21]
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For example, if the value of 8 =0.80 , this indicates a 20 percent reduction in crashes. The
main issue in estimating treatment effect is how to obtain a reliable estimate of expected crashes

at a given site in the after period had treatment not been introduced (4, ). In the EB approach, the
expected number of crashes in the before period ( 4; ) is estimated at each site using the expression

as:
Asi =0+ (=) -y, [2.22]
where
As = expected crash counts in n years at site i in the before period,
L. = expected crashes in n years at similar sites (i.e., estimated from SPFs),
yi = observed crash counts in n years at site i, and

a; = the weight given to the estimated expected crashes for similar entities.

The expected number of crashes in the after period without the treatment requires the
introduction of an adjustment term that reflects changes between the before and after periods in
traffic volumes and other confounding attributes, notwithstanding the treatment itself. This factor
is estimated as the ratio of the expected numbers of crashes in the after period to the expected

number before as obtained from the SPF.
The variances for 6 and @ can be computed as (Hauer, 1997):

Var (o) =Var(4,)+Var(r) [2.23]

and
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The variances are usually used to validate the statistical significance of the estimates of &
and @.

[2.24]

Equations [2.20] and [2.24] are applicable to individual sites for specific treatments. For
multiple sites, Aa is summed over all sites in the treated sample and compared to the sum of
observed crashes for all the sites post-treatment. The variance of 6 is also summed over all the sites
in the treated group and the combined treatment effect is obtained by replacing Aa and 7 in
Equations [2.20] and [2.24] by their respective summations. A more in depth discussion of the EB
before-after method for estimating treatment effects has been provided by Hauer (1997), the
Highway Safety Manual (AASHTO, 2010) and by Gross et al, 2010.

The effectiveness of road safety treatments on crash reduction is frequently expressed in

terms of a Crash Modification Factor (CMF), which is summed over all treated sites.

“CMF is a multiplicative factor used to compute the expected number of crashes after
implementing a given countermeasure at a specific site” (FHWA, 2014). Recommended values of
CMF are provided by the FHWA Clearinghouse for different treatments and site attributes.
(FHWA, 2014). The values are continually updated as more recent empirical information becomes

available and is introduced into the Clearinghouse database. .

2.4 CHAPTER SUMMARY

This chapter presented the key points to develop the safety performance functions, which will be
used later on in this research to develop both crash-volume models and crash-conflict models.
Crash prediction models can be used to fit nonlinear relationships between crash count as response

variable and traffic characteristics as independent variables. Generalized linear models (GLMs)
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are the most common approaches to fit crash prediction models because they have the ability to
use underlying crash frequency distributions (i.e., Poisson and Negative Binomial (NB)
distributions). Due to the over-dispersion in most crash datasets, the NB is the most common

distribution to be used in GLM models.

One of the major problems associated with observational crash data is presence of
regression to the mean (RTM) bias. If the RTM bias is not resolved properly, then sites that happen
to encounter a high number of crashes in a certain year will be ranked in the top list of unsafe sites
that need treatment. This will give over-estimation of the treatment effect because extreme crash
values (higher and lower than long-term average) fluctuate around the true mean or tend to return

to the average value for each site.

Due to the RTM treatment bias, the EB approach has been used to obtain a long-term crash
frequency at a given site to avoid the RTM problem. The use of EB requires crash-predication
models (i.e., SPFs) from similar untreated reference sites.

Furthermore, the Chapter presented he most popular observational methods used in traffic
safety analysis for both ranking of unsafe sites and estimating treatment effect. For priority
ranking, the most used crash-based models are the EB and the PSI, as both can handle the RTM
selection bias. EB is also the state of practice in estimating treatment effect. Observational before
and after analysis are not proactive in nature. In other words, to determine treatment effects of a
given countermeasure, the countermeasure will need to be implemented prior to the analysis and

this may not always be possible.
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CHAPTER 3
REVIEW OF TRAFFIC CONFLICT-BASED APPROACH

This chapter introduces the conflict-based approach for safety analysis and the use of microscopic
traffic simulation in obtaining conflicts. The results of the traffic simulation are used as inputs into
safety performance analysis, which can assist priority ranking of unsafe sites and the estimation of

treatment effects.

3.1 TRAFFIC CONFLICTS AND SAFETY

“Crashes represent a complex hierarchical process of inter-related causes and consequences for
different driving situations, locations and time intervals. Therefore, a complete picture of lack of
safety emerges following a detailed mechanistic analysis of the causes and consequences of
crashes at a given location and point in time” (Cunto and Saccomanno, 2005). For complex
crashes, different mechanistic structures can be explored to provide insights into how these crashes
take place at a given site and how they can best be prevented from occurring in the future. For
example, Mehmood et al.(2002) used Systems Dynamics to describe crashes, and Cody (2005)
used instrumented vehicles to evaluate drivers behaviours to better understand safety problems
from left turns at intersections and hence provide appropriate treatments to prevent left-turn

opposing crashes at these intersections.

Although concerns have been raised regarding the use of traffic conflict technique in
particular its reliability, validity and data collection costs (Hauer, 1978; Hauer and Garder, 1986),
researchers have continued to support its use as a surrogate measure of safety. Migletz et.al. (1985)
and Glauz et al. (1985) showed that traffic conflicts provide comparable estimates to expected
accident frequencies. In addition, several studies (Risser, 1985; Archer, 2000) have shown that
higher rates of traffic conflicts at a given site indicate lower levels of safety. Hyden (1987)
concluded that conflicts and crashes shared the same severity distribution based on time-to-

accident and speed values.
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Sachi et al. (2013) used conflict-based analysis to evaluate a right turn treatment at
signalized intersections, and El-Basyouny and Sayed (2013) and Guido (2010) who investigated
the relationship between crashes and conflicts. These researchers consistently found that traffic

conflicts provide useful insights into the failure mechanism that leads to crashes.

A traffic conflict between two vehicles is assumed to be initiated by one of three possible
actions: accepting a gap, changing lanes or braking (Ahmed, 1999; Gettman and Head, 2003).
Once a vehicle initiates (i.e., stimulus vehicle) the conflict, the driver of the following vehicle (i.e.,
response vehicle) that affected by this maneuver should react with an appropriate to avoid a
possible crash.

Traffic conflict technique (TCT) was initially used to obtain surrogate safety measures.
TCT requires field observers” crews to collect the data and determine the potential number of
conflicts along with their severities. This can be done either by collecting the data directly from
the study site (e.g., an intersection) or by analysing videotaped data from the study site for a
specific time. This process is expensive and subject to unreliable subjective observers (e.g.,
Archer, 2005; Brown, 1994; Sayed et al., 1994).

This subjectivity issue with TCT can be solved by using tracking data from all vehicles at
the study site. For example, image-processing methods can be used to track vehicles and hence to
extract traffic conflicts from videotaped data using certain camera-setup guidelines such as camera
angle and camera elevation (Saunier et. al, 2010; Guido et. al, 2010; Sayed et.al, 2012). In addition
to the cost associated with the data collection, real-time vehicles’ tracking is not proactive for
estimating treatment effect prior to implementation. Traffic microscopic simulation models can be
used as cost-effective tools in determining vehicle trajectories, and as a proactive tool to evaluate

effectiveness of treatments.

When properly calibrated, traffic micro-simulation models can provide a less expensive
approach and a useful platform from which to measure traffic conflicts and hence provide safety
performance measures that can be used in identifying high-risk situations in the traffic stream and

guide cost-effective intervention strategies (Gettman and Head, 2003).
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3.1.1 Traffic conflicts from microscopic simulation

Surrogate safety measures from microscopic simulation have been used lately to assess safety in
transportation systems (Archer, 2000, Gettman and Head, 2003, Barcelo et al., 2003, Huguenin et
al., 2005; Cunto and Saccomanno, 2008, Ghods et al., 2012). One of the unique features of
microscopic traffic simulation models is that prospective alternatives can be tested before
implementation, which is particularly interesting in the transportation scenario where geometric

and operational changes are usually expensive and operationally troublesome (Cunto, 2008).

The development of commercially available microscopic simulation platforms has been
continuing over the past decade. Original applications focused on multi-model traffic planning and
operation analysis. Effort has been spent on developing algorithms to model various traffic
environments such as interchanges, roundabouts, transit priority, signalized and un-signalized
intersection. Driving behaviour modules have also been added to better reflect traffic pattern and
enhance the accuracy of traffic measures output. The movements of vehicles in the traffic network
at each time stamp are represented by a pre-set of rules. User-friendly interfaces ease the network
setup and model parameters input. The most commonly used simulation packages include
PARAMICS (Quadstone, 2014), VISSIM (PTV, 2011), CORSIM (McTrans, 2014),
INTEGRATION (Van Aerde and Associates, 2012), and AIMSUN (TSS, 2014).

There are also some free open source microscopic traffic simulation models, such as
SUMO (SUMO, 2014) and MITSIMLab (MIT, 2014), and self-developed programs, that were
intended to be applied for certain situations. For example, TSS-SIM software (Sayed et al., 1994)
was used specifically to simulate traffic conflicts at un-signalized intersections with three and four
legs. Ghods and Saccomanno (2014) used an in-house simulation program to investigate unsafe

vehicle interactions and passing movements for two-lane highway operations.

According to the FHWA report by Gettman and Head (2003), “VISSIM microscopic traffic
simulation software appears to support most of the modeling features required for obtaining

surrogate measures at a reasonable level of fidelity.”
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3.1.2 VISSIM micro-simulation platform

VISSIM (PTV, 2011 and 2012) was used in this research to simulate the traffic interaction at
intersection locations. The major advantage of VISSIM over other programs is its flexibility in
manipulating the built in features such that users can easily remodel the logic to suit their needs.
The sophisticated vehicle behaviour modeling captures driver decisions and reactions in different
traffic situations. A small time step of 0.1 second provides a high resolution of vehicles trajectories,
which provides detailed vehicle interactions. In addition, the VISSIM micro-simulation platform
allows the use of different vehicle types and user-defined changes of driving behaviour (e.g.
desired speed distribution and car-following behaviour) to better replicate real-world site-specific
characteristics (PTV, 2012).

To ensure the validity and reliability of results from simulation programs the model
parameters need to be calibrated and validated against real world conditions. Errors in simulated
traffic characteristics (speed and volume) contribute to errors in the simulated surrogate safety
measures. Most VISSIM calibration studies focused on the measures of effectiveness for the traffic
operations, for example delay, speed, and traffic flow. Cunto and Saccomanno (2008) calibrated
and validated driving parameters in VISSIM for a signalized intersection based on the surrogate

safety measures as the objective function in both the calibration and the validation.

The argument against using surrogate safety measures as the objective function when
calibrating simulation models is that models, such as VISSIM, are traffic operation platforms and
should be calibrated based on traffic parameters (e.g. speed, volume or density). On the other hand,
when using simulation in safety studies, it is quite reasonable to use surrogate safety measures as
the basis for calibration, but this should be used in parallel with other traffic parameters. Recently,
researchers proposed using a multi-objective criteria approach based on both traffic attributes and
traffic safety attributes when calibrating traffic simulation models for safety studies (Duong et al.,
2010).
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3.1.3 Surrogate safety indicators

The use of micro-simulation in safety studies requires the use of surrogate safety indicators that
are a function of ‘vehicle-pair’ speeds and spacing. Several expressions of safety performance
measures have been developed and described in the literature, for example, time-to-collision
(TTC) (Hayward, 1972; Hyden, 1987), time exposed time-to-collision Indicator (TET)
(Minderhoud and Bovy, 2001), time integrated time-to-collision indicator (TIT) (Minderhoud and
Bovy, 2001), time to accident (TTA) (Hyden, 1987); the encroachment time (ET) (Allen et al.,
1978), the deceleration rate to avoid the crash (DRAC) (Cooper and Ferguson, 1976), the
proportion of stopping distance (PSD) (Allen et al,, 1978; Archer, 2005), the crash potential index
(CPI) (Cunto, 2008; Cunto and Saccomanno, 2008), etc. A full description of a wide spectrum of
surrogate safety measures, their advantages and shortcomings can be found in Archer (2005) and
Cunto (2008).

Gettman and Head (2003) investigated potential surrogate measures of safety from existing
traffic simulation models and suggested five safety indicators of relevance in simulation output, as

summarized in Table 3.1.
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Table 3.1: Surrogate safety indicators from microsimulation (Gettman and Head, 2003)

Surrogate Safety Measure Description

Time to Collision (TTC) The time required for two vehicles to collide if they
continue at their present speed on the same path

Post-Encroachment Time (PET) The time between the departure of the encroaching
vehicle from the conflict point and the arrival of the
vehicle with the right-of-way at the conflict point.

Initial deceleration rate (DR) The deceleration rate applied by the driver taking
the evasive action.

Maximum Speed (MaxS) The Maximum speed of the two vehicles involved
in the conflict event.

Maximum relative speed Maximum relative speed of the two vehicles

(Deltas) involved in the conflict event.

To extract the surrogate safety indicators from traffic micro-simulation models, the vehicle
tracking output file needs to be converted to vehicle-pair then vehicle interactions can be classified
based on the interaction type (e.g., rear-end, angled) and conflict threshold (e.g., TTC<1.50s). The
surrogate safety assessment model (SSAM) (Pu and Joshi, 2008) has been used to extract conflicts
with different thresholds. In this thesis, time-to-collision (TTC) and deceleration rate (DR) are used
to reflect the risk associated with rear-end and angled conflicts at intersection sites. These two

measures are discussed below in more detail.
3.1.3.1 Time to collision (TTC)

Hayward (1972) and Hyden (1987) were among the first researchers to use the Time to Collision
(TTC) as a measure of safety performance. TTC is defined as the time required two vehicles to
collide if they continue at their present speed on the same path. During the course of collision
between two vehicles, the minimum TTC can be taken as an indicator for the severity. TTC has
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been widely accepted due to its simple computation procedure and its ability to indicate the

severity of a crash.

Archer (2005) suggested that a TTC < 1.50s is the critical value for road safety in urban
areas. In addition, VVan der Horst (1990) indicated that the likelihood of crashes becomes a concern
when TTC<1.50s

Table 3.2 shows the TTC values associated with the risk of collision (ROC) as suggested
by Sayed and Zein (1999). Based on Table 3.2 lower values of TTC indicate higher crash severity.
However, it is not necessary that lower TTC indicates higher severity of crashes, and this is because
speed is not included in the measure of severity. The argument is that although a lower TTC could

indicate a higher probability of crash, it fails to recognize the severity of the crash.

Table 3.2. Time to collision and risk of collision (Sayed and Zein, 1999)

TTC and ROC scores

TTC Risk of collision (ROC)
1 1.60s to 2.00s Low risk
2 1.00s to 1.50s Moderate risk
3 0.00s t0 0.90s High risk

In this thesis, the number of conflicts based on TTC was extracted using the Surrogate
Safety Assessment Model (SSAM) (Pu and Joshi, 2008). A space-time diagram identifying TTC,
for a conflict point event (e.g., LTOPP or crossing conflicts) is shown in Figure 3.1. The conflict
point reflects the potential for angle crashes when the accepted gap, by the encroaching vehicle, is
too small. In Figure 3.1, the trajectories of the crossing vehicle and the through vehicle are
represented by curve “A” and curve “B”, respectively. In such case, the TTC value can be
estimated as (Gettman and Head, 2003a,b):

TTC =t, -, [3.1]
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where,

t3 = the time when either corners of the crossing vehicle leaves the encroachment point
(The encroachment end time), and

t4 = the projected arrival time of the through-vehicle at the conflict point.

SSAM uses a unique algorithm to define conflict events and hence to define different
parameters (e.g. times t: to ts, speed and acceleration/deceleration of vehicles in question) related
to each conflict event. In this analysis, these parameters were estimated every tenth of a second,
as we used a resolution of 10 simulations for each second. More information on how the
computational algorithm works and how SSAM estimates different surrogate safety indicators and
different conflict types can be found in Gettman and Head (2003b). Further, information on the
nature of TTC can be found in Sayed and Zein (1999), Archer (2005) and Cunto (2008).
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Figure 3.1: Time to Collision (TTC) and Deceleration Rate Identified on Conflict Point

Diagram (Modified from Gettman and Head, 2003 a,b)
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3.1.3.2 Deceleration rate (DR)

Cooper and Ferguson (1976) were among the first researchers to use the deceleration rate (DR) as
a measure of safety. The initial DR can be defined as the deceleration rate applied by the driver

taking the evasive action (Gettman and Head, 2003a,b).

McDowell et al. (1983) used five severity levels according to the value of DR to classify
the severity of a given conflict as shown from Table 3.3. Severity grade 1 is considered the lowest

severity conflict while grade 5 is considered the highest severity conflict.

Table 3.3: Severity and deceleration ranges (McDowell et al., 1983)

Severity grade  Deceleration rate Description
1 Braking rate > -1.5 m/s? Lowest Severe Conflict
2 Braking rate -1.50 to -3.0 m/s?
3 Braking rate -3.0 to -4.50 m/s?
4 Braking rate -4.50 to -6.0 m/s?
5 Braking rate < -6 m/s? Highest Severe Conflict

Hyden (1996) suggested another classification for traffic conflicts and severity associated
with them based on DR, as shown from Table 3.4. Hyden’s (1996) classification is based on the

expected driver reaction to achieve the required deceleration to avoid possible crash.
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Table 3.4: DR severity levels suggested by Hyden (Archer, 2005)

Conflict level Deceleration-to-safety Description
No conflict Braking rate < 0 m/s? Evasive action not necessary
No contlict Braking rate 0 to -1 m/s? Adaptation necessary
1 Braking rate -1 to -2 m/s? Reaction necessary
2 Braking rate -2 to -4 m/s? Considerable reaction necessary
3 Braking rate -4 to -6 m/s? Heavy reaction necessary
4 Braking rate < -6 m/s? Emergency reaction necessary

3.1.4 Simulated conflict estimation framework

A general framework to estimate simulated traffic conflicts is shown in Figure 3.2. The estimation
procedure starts with simulating vehicle movements (e.g., using VISSIM traffic micro-simulation
model) at the sites of interest for a given period of time. This time-period can be limited to only
the morning or the afternoon peak hours or other periods based on the nature of the countermeasure

and the time of day that may be of interest.

The inputs to the simulation platform are the geometry of the site under consideration,
number of lanes, number of through and turning vehicles at each approach, signal times, signal
plans, etc. In addition, a number of parameters that represent driving behavior need specification,
such as, car-following, gap acceptance, lane change behaviors. The value of these inputs is
obtained through calibration based on observed vehicle tracking data and simulated output error

analysis.
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After running the simulation for the pre-specified time and with the traffic and geometric
features at the study location, the trajectories that shows locations of all vehicles entered the

simulation network for every simulation resolution period (e.g., usually 0.10s) can be obtained.

The next step is to convert individual vehicle trajectories to vehicle-pairs for a given type
of interaction (i.e., lead and following vehicles in case of rear-end interactions). It is worth noting
that most major micro-simulation models can output vehicles trajectories in formats (e.g., usually
trj files) that can be used directly with conflict analysis software such as SSAM (Surrogate Safety
Assessment Model). The output files from VISSIM can be then inputted to SSAM model to extract
vehicles’ interactions. The processed VISSIM outputs in SSAM can be exported to allow further
analysis (i.e., remove pedestrian-pedestrian conflicts). Furthermore, by selecting a surrogate safety
indicator of interest and conflict threshold, the simulated conflicts can be estimated for the site

under study. The simulated conflicts can be also estimated by type (e.g., rear-end conflicts).
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3.2 CONFLICT-BASED PRIORITY RANKING OF UNSAFE LOCATIONS

Similar to crash-based methods, conflict frequency (CF) can be used to prioritize unsafe sites for
safety intervention. In a FHWA report (Gettman et al., 2008), the rank order of unsafe intersections
using simulated conflict frequency was compared to the rank order using crash frequency over
three years. The Spearman rank correlation coefficient between the two ranked lists was found to

be of 0.463 (i.e., significant agreement).

Another conflict-based ranking method called the average conflict rate (ACR) was

introduced by El-Basyouny (2006) as follows:

Average hourly conflicts

ACR =
\/hourly volumes from the major and the minor approaches

[3.2]

El-Basyouny (2006) compared the ranking estimates using ACR based on estimated
conflicts from VISSIM and SSAM models with ranking estimates from PSI crash-based method
for a sample of intersections. The Spearman rank correlation coefficient was found to be very weak
(i.e., 0.132), which indicated minimal agreement in the ranking between the total conflict based-
method and the PSI rankings. The same was for the severe ACR conflicts when compared to the
PSI (i.e., Spearman rank coefficient = 0.008). In addition, EI-Basyouny (2006) conducted the same
analysis using conflicts by type (i.e., crossing, rear-end and lane-change conflicts), and there was
no significant agreement between ranking orders from conflict-based method and crash-based
methods. Spearman rank coefficients were found to be less than 0.06 for the 3 conflict/crash

rankings.

3.3 CONFLICT-BASED TREATMENT EFFECT

The change in the number of conflicts in the before and after treatment(s) has been used as an

indication of treatment effect at given sites (e.g., Zhou et al., 2010; Sayed et al., 2012; Autey et

al., 2012, etc.). To evaluate the safety effects of a treatment using simulation, the site is simulated
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twice, once without the treatment (i.e., the before period) and the second time with the treatment
(i.e., the after period). To account for the treatment only, both the traffic volume and the calibration

parameters should be remained unchanged.

Similar to the crash-based methods, the conflict reduction (4CF), the index of treatment

effectiveness (o) and the percentage of change (% change) can be used to estimate the treatment

effectiveness based on simulated conflicts as shown in Equations [3.3] - [3.5]:

ACF =CF, —-CF, [3.3]
CF,

= 3.4

P CF, [3.4]

% Change = (1— p) x100 [3.5]

where

ACF = Conflict reduction in terms of number of conflicts reduced in the period after

implementation of the countermeasure,

£ = Index of treatment effectiveness,
CF; = Number of conflicts without treatment,
CF, = Number of conflicts with treatment, and

%Change = Percentage of increase or decrease in simulated conflicts after the

implementation of the countermeasure.

3.4 CHAPTER SUMMARY

This Chapter presented the traffic conflict approach, which will be used later on in this thesis in
developing the integrated crash-conflict models. Traffic conflicts can be observed in the field at a

given site or they can simulated through the use of traffic microsimulation models (e.g., VISSIM).
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There are different indicators that can be used as measures of safety. In this thesis research, the

TTC and DR will be used to obtain simulated conflicts.

This Chapter also presented how conflict-based methods can be used in ranking unsafe
sites and in estimating treatment effects at a given site. The simulated conflict-based approach is
proactive in nature in that treatment effects can be estimated prior to implementation. However,
treatment effect is obtained as the percentage of simulated conflict reductions between the after
and before can be used as exploratory indication of the treatment effectiveness. This is because

the reduction in crashes for a given countermeasure is not known.
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CHAPTER 4
PROPOSED CRASH-CONFLICT INTEGRATED MODELS

Chapter 4 presents integrated priority-ranking and treatment effect models that combine the
expected crash frequency from observational models with simulated traffic conflicts. The models
are used to provide insights into two fundamental safety questions: Which sites should receive
priority treatment? And what is the crash-reduction benefit of the treatment being considered at a
specific site?

4.1 INTEGRATED PRIORITY RANKING MODEL
