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Abstract

Measuring the magnetic moment of a single spin remains an experimental challenge.

Measuring such a moment at timescales relevant to relaxation in many small spin systems,

even more so. However, such a measurement would permit detailed studies of the physics

of these system and could probe new avenues of technology, such as real time use of single

molecule magnets for quantum information processing. This thesis presents work towards

realizing fast measurements of magnetic moments on the order of a single electron spin.

This will be achieved by using a suspended carbon nanotube (CNT) resonator and a CNT-

magnet coupling realized through nanoscale ferromagnets.

Fabricating high quality CNT resonators for this application requires combining high

quality, high throughput nanofabrication with carefully adapted growth of CNTs. The

first part of this thesis describes fabrication steps developed to create full wafer arrays of

CNT devices consisting of predefined contacts and fine local gates that will provide the

fine magnetic structure that will allow strong CNT-magnet coupling. The growth of CNTs

over these contacts is iterated to achieve long defect-free CNTs suspended over the trench

between contacts. Low temperature measurements of one such device allow identification

of potential fabrication improvements.

The second section of this thesis describes simulations of the proposed sensing technique.

Euler-Bernoulli beam models of the CNT allow extraction of resonant frequencies as a

function of device parameters, and in particular allow us to identify the impact of a single

Bohr magneton magnetic moment reversal. By mapping this frequency shift as a function

of the device design and operating conditions we identify favourable device designs and

optimal operating conditions to obtain maximum sensitivity. By comparing the achievable

frequency shifts with intrinsic resonator noise, we calculate the fundamental signal to noise

ratios of this sensing technique. By also considering transient response decay we extract

optimal measurement bandwidths. These calculations reveal that magnetic switching on

the order of a single Bohr magneton can be observed on timescales as short as 10 µs with

this technique.
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Chapter 1

Introduction

Understanding the physical behaviour of systems at the nanoscale is of great importance

for gaining a fundamental understanding of nanoscale physics and applying these systems

towards technological applications. Nanoscale phenomena are becoming increasingly rel-

evant to current electronics research, and as we look to new avenues of technology such

as quantum information processing, we seek to harness the quantum mechanical nature of

these systems to realize new capabilities. Towards these applications, significant interest

has been expressed in harnessing the magnetic degrees of freedom of nanoscale systems,

such as the spin states of single molecule magnets [1]. Such nanomagnetic systems would

have applications ranging from classical memory to quantum information processing.

One of the major challenges in determining the behaviour of nanomagnetic quantum

systems comes from the inability to observe at the level of a single quanta. Advances in

detectors such as quantum point contacts for charge sensing [2], and single photon detectors

in optics[3], have enabled great expansion in the understanding and application of quantum

behaviour in those fields. Magnetic sensing however, has thus far been primarily limited to

ensemble measurements. There have been a few demonstrations of measurements at single

Bohr magneton levels [4, 5, 6], however these each face unique limitations and are usually

long time-averaged measurements that do not permit single shot state observation.

The earliest demonstration of single Bohr magneton magnetic moment sensitivity was

achieved by magnetic resonance force microscopy (MRFM) [4]. In this technique, a small

ferromagnetic tip on a cantilever oscillates in close proximity to the magnetic object of

interest. The magnetic moment will be cyclically flipped, in phase with the resonator mo-
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tion, through adiabatic rapid passage. The phase-locked magnetic oscillation will shift the

resonant frequency of the cantilever via the force between the magnet and the ferromag-

netic tip. Under the right conditions this technique can measure single electron spins, with

magnetic moments of m = µB. While the sensing ability of this technique has been well

demonstrated, the need to drive resonance of the sample of interest and average over long

measurement times (eg, 13 hours per data point in reference [4]) mean that this technique

cannot be applied to real time sensing.

More recently developed techniques have been able to measure magnetic moments of

a few Bohr magnetons without driving resonance in those spins [5, 6]. In the first ex-

periment, a nanoscale superconducting quantum interference device (nanoSQUID) was

assembled on the apex of a pulled quartz tip, resulting in an effective diameter as small

as 46 nm. The small SQUID size allows it to measure magnetic flux generated by a single

spin within ∼ 10 nm of the nanoSQUID, with sensitivity down to 0.38µBHz−1/2. However,

the nanoSQUID sensitivity still requires ∼ 1 second measurement averaging in the ideal

case, and the allowable operating magnetic field is limited to B ∼ 1 T. The second exper-

iment (reference [6]) makes use of a carbon nanotube (CNT) resonator and torque exerted

on anisotropic nanomagnets. This experiment is discussed further in section 4.1, however

it can be noted here that the measurement uses non-linear resonance, thus limiting the

measurement bandwidth, and requires anisotropic nanomagnets that can be aligned per-

pendicular to the applied fields, properties that many systems of interest will not exhibit.

The desired realization of fast readout of nanomagnet transitions will require a signif-

icant boost in sensitivity over previously demonstrated techniques. Towards this goal, we

take a cue from other instances of large sensitivity improvements in mass [7, 8, 9, 10], and

force [11] sensing, as well as the CNT-torque technique above [6], and explore the CNT

resonator as a potential sensor for nanomagnets. The extremely small size of CNTs, com-

bined with their unique mechanical and electrical properties make them a very powerful

tool for high sensitivity measurements.

This thesis is organized as follows. Chapter 2 explains some of the relevant properties,

behaviour, and operation of CNT resonators. Chapter 3 discusses nanofabrication tech-

niques used to create suspended CNT devices, and presents measurements and analysis

of fabricated devices to guide future fabrication. Chapter 4 explains the proposed nano-

magnetic sensing technique and presents numerical simulations to quantify and optimize

design and operation of these devices.
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Chapter 2

Suspended Carbon Nanotubes

Nanoelectromechanical systems (NEMS) are devices combining mechanical and electrical

behaviour at the nanoscale. Within the field of NEMS, single-wall carbon nanotube res-

onators present a particularly intriguing technology. Due to their extremely low mass and

high Young’s modulus, carbon nanotube NEMS have been able to achieve multiple orders

of magnitude increases in sensitivities over similar NEMS in various sensing applications

as mentioned in the previous section.

In applying the CNT resonator towards magnetic moment sensing, we will use a

magnetic-moment dependent force to shift the resonant frequency of the CNT nanome-

chanical oscillations. This shift in resonant frequency will be observed as a change in the

CNT conductance, due to the electromechanical coupling of suspended CNTs. This sec-

tion describes the relevant behaviour of the CNT resonator, including electronic transport,

mechanical properties of the resonator, common CNT resonator readout techniques, and

how the noise of the CNT mechanical system will impact measurement limits.

2.1 CNT Electrical Transport

CNTs have unique transport properties, owing to both their 1D nature and the unique

electronic band structure inherited from graphene. This section discussed the basics of

CNT electrical transport and how it will play a role in our devices.

3



Figure 2.1: The direct lattice of graphene, including the primitive unit vector ~a1 and ~a2,

and the chiral vector ~C that is used to define CNTs. In this figure ~C = 3~a1 + 2~a2 = (3, 2)

2.1.1 Band structure of CNTs

Structurally, the CNT can be thought of as rolled sheet of graphene. Figure 2.1 shows

graphene lattice with unit vectors, ~a1 and ~a2, and the chiral vector ~C that will define the

CNT. The chiral vector represents the circumference of the CNT, such that the end points

of ~C are the same point of the CNT. The chiral vector is specified by the integer multiples

for each unit vector that make up ~C

~C = n~a1 +m~a2 ≡ (n,m) (2.1)

The CNT are categorized by their chiral vector. When n = m, the CNTs are armchair

nanotubes, while m = 0 gives zigzag nanotubes. Both armchair and zigzag nanotubes are

achiral, while any other (n, m) CNT is chiral.

The rolled graphene concept can also be used to estimate the band structure of CNTs,

using the zone folding approximation [12]. Figure 2.2a shows the energy dispersion of the

conduction band in graphene. The points K,K ′ are the points of the Dirac cones, at which

the valence and conduction bands meet and a linear dispersion leads to massless carriers

in graphene. The continuum of kx and ky values in graphene are a consequence of the

near-infinite lateral dimensions of graphene. When the graphene is rolled up into a finite

cylinder, periodic boundary conditions are imposed along the circumferential direction of

the CNT. As a result, the circumferential wave vector component, k⊥ will take discrete

values, while the component along the CNT axis, k|| will remain continuous.

The energy bands of the CNT correspond to the traces of these discrete k⊥ values in

4



Figure 2.2: a) The energy dispersion of the conduction band of graphene, with darker

regions being lower energy. The allowed ~k of the first Brillouin zone for a (b) (4,1) and (c)

(5,0) CNT, displayed on the graphene conduction band dispersion. The subband energies

of these CNTs are shown in (d) and (e), respectively.

the graphene energy dispersion. The electrical properties of the CNT will depend on how

these cuts align with the graphene dispersion. Figure 2.2b shows the case when (n−m) is

an integer multiple of 3, which results in some k⊥ aligning with the Dirac points. In this

case the conduction and valence bands of the CNT touch, as shown in figure 2.2d, and

unlike graphene there is a finite density of states at this point, resulting in a metallic CNT.

Figure 2.2c shows the case in which (n−m) is not a multiple of 3, which results in no k⊥
crossing through the dirac points. This leads to bandgap opening, as shown in figure 2.2e,

and the CNT behaves as a semiconductor with an approximate bandgap of Eg ≈ 0.9eV/d,

where d is the nanotube diameter in nm.

The exact band structure of the CNT will differ slightly from the zone-folding approx-

imation, primarily due to curvature effects of the CNT causing C-C bond elongation and

mixing between π and σ orbitals of the carbon atoms. The main effect of this mixing at the

low energies of interest to us, is an opening of a small bandgap in all metallic CNTs except

for armchair nanotubes. The non-armchair metallic CNTs are labeled ”quasi-metallic”, or

small-bandgap. The curvature induced bandgap is approximately 37 meV/d2[nm] · cos 3θ,
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where θ is the angle between ~C and ~a1 [13, 14]. There can be additional bandgap opening

in these small-bandgap CNTs due to strain that will further increase this bandgap by ∼ 50

meV [14, 15].

The small bandgap CNTs are especially interesting for low temperature experiments,

as the low effective carrier mass (m∗ ∼ 0.014me for 100meV bandgap CNT) leads to

large level spacing and allows quantum dots to be formed in ∼ 1 µm CNTs [14]. This,

as well as high gate-ability and higher conductance at low temperatures, will make the

small-bandgap CNTs the preferred type for our devices. Due to the probabilistic nature

of the CVD growth process used to fabricate the CNT devices, a nearly even distribution

of chiralities is created, and we expect ≈ 1/3 of the CNTs to be small-bandgap.

2.1.2 CNT-Metal Contacts

CNT-metal contacts are known to form Schottky barriers in the majority of cases. The

exact mechanism of the Schottky barrier formation is still debated [16]. One possible

explanation, that agrees well with observations, is described here to illustrate the role of

contact metal selection and treatment in CNT devices.

In normal metal-semiconductor interfaces, metal-induced gap states (MIGS) are created

at the metal-semiconductor interface. There is a charge transfer with these states that leads

to a dipole across the interface, and this dipole modifies the electrical potential, and thus

the Schottky barrier, of the interface. This effect is known as Fermi level pinning, and as a

result the Schottky barrier of metal-semiconductor interfaces is largely independent of the

metal work function, in contrast to what is naively expected from the Schottky-Mott rule,

in which the electron Schottky barrier is

Φ
(n)
B = Φmetal − ξsc (2.2)

where Φmetal is the metal work function and ξsc is the electron affinity of the semiconductor.

In metal-CNT interfaces, Fermi pinning is much weaker or absent [17]. In side-contacted

CNTs as we will use, this can be attributed to the extremely small dimension of the CNT

wall. The depletion region which transfers charge to the metal-CNT interface is very small

in the CNT, and thus only partial band realignment occurs. The partial realignment means

that the actual Schottky barrier will be somewhere between the midgap value (ΦB = Eg/2)

and the Schottky-Mott value of equation (2.2). One of the results of this behaviour is
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that the contact properties for CNT-metal contacts depends strongly on the metal work

function. High work function metals such as Pd have been experimentally shown to achieve

Ohmic p-type contacts [18], while lower work functions metals such as Sc and Y have

obtained Ohmic n-type contacts [19]. The Schottky barrier can also be effected by exposure

of the device to air [20], hydrogen [18], or other conditions that either shift the metal work

function or dope the CNT. Finally, the level of band realignment, and thus the size of the

Schottky barrier, is dependent on the CNT diameter. For example, CNTs with diameter

below 1.4nm are not expected to form ohmic contacts with Pd, while those of higher

diameter can [21, 22].

Additionally, there is often an extra tunneling barrier in series with the Schottky barrier.

This additional barrier is a result of an imperfect CNT-metal interface [20], possibly as a

result of oxidization or poor wetting of the CNT by the metal [23]. Platinum has a higher

work function than palladium, but makes more resistive contacts with similar fabrication

[18] due to poor CNT wetting [24].

2.1.3 Low temperature transport

At cryogenic temperatures, single electron transport and quantum confinement can be-

come relevant to CNT transport. The Schottky and additional tunneling barriers of a

Pt-contacted CNT will provide electron confinement that can lead to Coulomb blockade

within the CNT channel. The low effective mass of electrons in the CNT can lead to

quantum dot formation in micron long CNTs, as mentioned in section 2.1.1.

A quantum dot is comprised of an island connected to a source and drain electrode

through tunnel barriers, with the tunneling condition requiring that the contact resistance

satisfies Rc � h/e2 [25]. The potential of the island is tuned by a separate gate electrode

that is capacitively coupled to it. Due to the discrete nature of the electron charge, the

island charging energy is incremented by UC = e2/C, where e is the electron charge and

C = Cs + Cg + Cd is the total capacitance of the island-system. When UC � kBT , the

discrete charging energy spectrum leads to Coulomb blockade. Figure 2.3a and 2.3b shows

two distinct states of the quantum dot for small bias, Vsd. In 2.3a, the states below the

chemical potentials of the source and drain are filled while every unfilled state is above the

source/drain chemical potentials. In this case there are no available states for electrons to

tunnel into, and thus no current will flow through the island. In figure 2.3b, one of the

7



Figure 2.3: a) A quantum dot, in which the filled states of the leads (grey regions) are

tunnel coupled to the discrete energy states of the dot. This dot is in the Coulomb blockade

regime, in which no energy level (separated by Eadd) is available in the bias window, eVsd.

b) Conduction through the quantum dot occurs when one of the energy levels is within the

bias window. c) At low bias voltages a quantum dot exhibits Coulomb peaks in conduction.

In between these peaks the electron number on the island is fixed, denoted by the electron

occupation numbers, N and N + 1. d) The conduction of a quantum dot as a function of

Vsd and Vg shows Coulomb diamonds, regions of zero conductance.

discrete charging states is in the bias window. In this case, an electron in that state will

tunnel out to the drain, and electrons in the source can tunnel into the dot. This leads

to a finite current that will depend on the tunneling rates through the barriers, and the

characteristic peak in low bias conductance, shown in figure 2.3c, is called a Coulomb peak.

At higher bias, the window between contact potentials opens, and eventually will reach

a point where there will always be at least one allowed energy level, and thus current, for

any gate voltage. This dependence on bias and gate voltage lead to the Coulomb diamond

pattern shown in figure 2.3d. The Coulomb diamond size and edge slopes can be used to

determine the capacitances (Cs,Cd,Cg) and charging energy scales of the island [26].

When the quantum dot is small enough, quantum confinement can cause discrete elec-
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tron energy levels. When these energy levels become comparable to the thermal energy,

∆E & kBT , the energy required to add an electron to the dot, Eadd, will be a combination

of the charging and electron energy, Eadd = UC + ∆E, where ∆E = En+1−En is the elec-

tron energy level spacing for the next electron. When there are degeneracies in the electron

energy levels, such as a spin degeneracy, the Coulomb peaks can be unevenly spaced as ∆E

changes from 0 between degenerate states to a finite value once an energy level is filled. In

CNTs, there is both a spin and valley degeneracy, and thus a four-peak pattern is expected

for ideal CNT quantum dots. The four peak Coulomb diamond pattern has been observed

experimentally for clean individual CNTs[27].

2.2 Mechanical properties of suspended CNTs

One of the defining characteristics of the CNT NEMS is its extremely low mass. The

linear mass density of a 1 nm diameter CNT is ρA = ρGπd = 2.4 · 10−15 kg/m, where

ρG = 7.7 · 10−7 kg/m2 is the area density of graphene. Then, a 1 µm long CNT with a

1 nm diameter will have a mass of 2.4 · 10−21 kg, several orders of magnitude smaller than

the mass of other typical NEMS devices (m & 10−17 [28]). Critically for our applications,

the small mass means that a relatively soft spring constant device can still have a high

resonance frequency, approximating this relation by the simple harmonic oscillator relation

ω0 =
√

k
m

. This allows a high resonance frequency and a large response to applied forces.

The other commonly cited advantage of the CNT NEMS is its high Young’s modulus,

E ≈ 1 − 1.3 TPa [29, 30]. The high Young’s modulus allows the CNT to act as a beam

resonator despite its small diameter, as the bending rigidity D = EI remains high despite

the small area moment of inertia I = πr4/4. The combined high Young’s modulus and small

mass have allowed fabricated CNT devices to achieve fundamental resonance frequencies

as high as 280 GHz [31]. Furthermore, the high strength of the CNT allows a large tuning

of resonance frequencies by applying static forces to the CNT. In particular, the CNT can

be switched from beam-like bending in which intrinsic properties dominate the resonance

frequency, to string-like bending in which the applied tension dominates [32].

As a final note on the mechanical behaviour of the CNT resonator, it is typically a

very high aspect ratio device, with L : d ∼ 1000 : 1. One result of this is that it is often

possible to drive CNT resonance of a greater amplitude than the CNT diameter. At this
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oscillation amplitude non-linear effects become important and the CNT can be treated as a

Duffing oscillator with bistable resonances [32]. The non-linear oscillator behaviour can be

used to facilitate sensitive readout by tuning to a bistable point and looking for transitions

between the two stable oscillation amplitudes [6].

2.3 Mechanical-Electrical Coupling

The mechanical-electrical coupling to the bending mode of a CNT resonator is due to the

mechanical modulation of the gate capacitance causing changes of the induced charge on

the CNT [33]. The capacitance between the CNT and an adjacent gate is modelled as a

wire parallel to a plate

Cg(x) =
2πε0L

arccosh((h+ x)/r)
(2.3)

where L is the CNT length, h is the equilibrium CNT-gate separation, x is the CNT

displacement from equilibium, and r is the CNT radius. The gate induced charge on the

CNT is q = CgVg. The electrostatic attraction between this induced charge and the gate

gives the electrostatic force on the CNT [34]

Felec =
1

2
C ′gV

2
g (2.4)

where C ′g = ∂Cg
∂x
≈ − 2πε0L

(h+x)ln2(2(h+x)/r)
, with the approximation using (h+ x)/r � 1.

The electrostatic attraction is used to tune the mechanical resonance and simultane-

ously drive it. Applying a DC gate voltage will pull the CNT towards the gate, increasing

tension and thus resonant frequency (for further details see Chapter 4). In combination

with the DC voltage, a small AC component is applied to the gate so that the total gate

voltage is Vg = V dc
g + V ac

g (t), with the condition that
∣∣V ac
g

∣∣ � V dc
g . To first order, this

creates an AC force on the CNT, F ac(t) ≈ 1
2
C ′gV

dc
g V ac

g (t). The AC signal can be used to

drive mechanical resonance.

2.4 Readout of mechanical motion

The mechanical motion of a suspended resonator is measured by observing the electrical

conduction through the CNT in some manner, using the coupling described in the previous
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section. The conductance of the CNT will be proportional to the induced charge q = CgVg,

allowing mechanical modulation of Cg to be measured as conductance modulation.

Directly measuring the conductance oscillations in the CNT is challenging, as the high

resistance of the CNT channel, combined with realistic capacitances in the measurement

system will cause high-frequency signals to be too weak to measure. In particular, the

cut-off frequency of the system is given by [32]

ωc =
1

R‖Creadout
(2.5)

where R‖ = 1/(1/RCNT + 1/Rreadout) is the resistance of the CNT-readout system, with

Rreadout the readout circuit impedance, and Creadout the effective readout capacitance. Typ-

ical estimates of these values at room temperature are R ≈ 50 kΩ and Creadout ∼ 10pF ,

resulting in ωc ∼ 2 MHz, which is lower than the expected resonance frequencies of micron

long CNT resonators (ω0 ∼ 10− 100 MHz). Thus, readout of the CNT motion will require

some form of down-mixing or current rectification to be used.

The main readout techniques used for CNT resonators are presented below. First

we discuss common room-temperature techniques using various mixing methods, then we

discuss low temperature measurements that primarily rely on DC rectification. Finally

we discuss recent demonstration of room temperature readout with optimized cutoff fre-

quencies, ωc, that greatly improves the available measurement bandwidth, which will be

important for our desired magnetic moment sensing.

2.4.1 Two Source Mixing

The original method of sensing CNT mechanical motion [35] makes use of the CNT res-

onator as a two-source mixer. In the two-source mixing technique, the gate voltage has

an AC component that oscillates at frequency ω, and the bias voltage is an AC voltage

oscillating at offset frequency ω + δω.

Writing Vg = V dc
g + V ac

g (t) and Cg = Cdc
g + Cac

g (t), where Cac
g (t) is a result of the

mechanical motion of the CNT.

Cac
g (t) ≈ ∂Cg

∂x

∣∣∣∣
x=0

x(t) (2.6)
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where x(t) is the displacement of the CNT from equilibrium averaged along the CNT axis.

The conductance of the CNT can be written

G =
∂G

∂q
q =

∂G

∂q
CgVg ≈

∂G

∂q

(
Cdc
g V

dc
g + Cac

g V
dc
g + Cdc

g V
ac
g

)
(2.7)

≈ ∂G

∂q

(
Cdc
g V

dc
g +

∂Cg
∂x

∣∣∣∣
x=0

x(t)V dc
g + Cdc

g V
ac
g

)
(2.8)

where the first approximation is to first order in the small terms V ac
g and Cac

g . Note that

the conductance modulation can be calculated from experimentally accessible values as
∂G
∂q

= ∂G
∂Vg

1
Cg

.

Writing V ac
g (t) = V ac

g cos(ωt) and setting the source-drain voltage to be Vsd = V ac
sd cos((ω+

δω)t+ φsd), gives a current through the CNT of

I = GVsd =
∂G

∂q

(
Cdc
g V

dc
g +

∂Cg
∂x

∣∣∣∣
x=0

x(t)V dc
g + Cdc

g V
ac
g cos(ωt)

)
V ac
sd cos((ω + δω)t+ φsd)

(2.9)

For small amplitude oscillations, the CNT response can be approximated as a simple

harmonic oscillator response

x(t) =
Fd/m√

(ω2
0 − ω2)

2
+ ω2ω2

0/Q
2

cos(ωt+ φ) (2.10)

where Fd ≈ C ′gV
dc
g V ac

g is the AC driving force from the gate modulation, ω0 is the resonant

frequency, Q is the quality factor, and φ is a phase resulting from regular simple harmonic

oscillator phase response and the details of tunneling and charging of the CNT [36].

The current at the mixing frequency δω will then be

Iδω =
∂G

∂q
V ac
sd


 (V dc

g C ′g)
2V ac

g

2m
√

(ω2
0 − ω2)

2
+ ω2ω2

0/Q
2

(cos(δωt+ φsd) cos(φ) + sin(δωt+ φsd) sin(φ))

+
1

2
Cdc
g V

ac
g cos(δωt+ φsd)

)

(2.11)

The first term in equation (2.11) is the result of mechanical motion of the CNT, while

the second term is a purely electrical term that is present in the absence of CNT motion.
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Mechanical motion of the CNT is measured by distinguishing the sharp peak in I vs. ω

associated with the first term, which has a full-width half-maximum of ω0/Q.

Modified mixing techniques

There are a number of techniques similar to the two-source mixing, that make use of

modifications of the driving signal to obtain a simpler experimental setup or higher signal

to noise. For example, the amplitude modulation technique uses an amplitude modulated

signal at the source contact to obtain the same effect as equation (2.11) at the amplitude

modulation frequency, allowing only one high frequency signal to be required [36]. For a

full description and comparison of these techniques see reference [32].

2.4.2 Frequency Modulation

One important modification of the mixing technique that we will explicitly discuss is the

use of a frequency modulated driving signal. As mentioned above, the mixing technique has

a purely electrical component at the measurement frequency. This can make readout more

challenging, as it introduces an additional signal that doesn’t carry desired information,

and additional noise. Frequency modulation mixing eliminates this component, allowing

for a purely mechanical signal [37, 38].

In this technique, a frequency modulated source-drain voltage is given as

V fm
sd = V ac

sd cos

(
ωt+

∆ω

Ω
sin(Ωt)

)
(2.12)

where ∆ω is the modulation strength and Ω is the modulation frequency. The FM signal

can be decomposed in the Jacobi-Anger expansion, as an infinite sum of oscillations at

frequencies ω ± nΩ. The mixing current at Ω can then be calculated as[37]

IΩ =
1

2

∂G

∂Vg
V dc
g

C ′g
Cg
V ac
sd Ω

∂x

∂ω
(2.13)

which is only present when there is a mechanical response of the resonator. It should be

noticed that the FM modulation couples the current to ∂x
∂ω

, rather than directly to x, so

that |IΩ| is maximum on the edges of the resonant peak, ω = ω0 ± ω0/Q.
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Figure 2.4: a) A Coulomb peak of a stationary CNT. The oscillation of the CNT will

broaden the peak via averaging with respect to Vg. b) The broadened Coulomb peak due

to CNT motion. c) The change in DC conductance that occurs as a result of CNT motion.

2.4.3 Coulomb blockade enabled DC readout

Low temperature measurements of the CNTs can take advantage of Coulomb blockade in

the CNT to observe the mechanical CNT oscillations in a DC current measurement, as

originally proposed in Reference [39]. As described in section 2.1.3, at low temperature a

series of sharp Coulomb peaks will form in the CNT conductance, G, as a function of Vg.

The mechanical motion of the CNT will cause oscillations in the effective Vg. These oscil-

lations act to broaden the Coulomb peaks, as shown in figure 2.4a and 2.4b. By observing

the conductance at a fixed point on the Coulomb peak, the mechanical oscillations can

thus be seen as a change in the conductance, resulting from the peak broadening, shown

in figure 2.4c. The current through the CNT will be given by

Imotion = Istationary +

(
xmax

2

C ′g
Cg
Vg

)2
∂2I

∂V 2
g

+O(x4
max) (2.14)

where Istationary is the current in the absence of CNT motion, and xmax is the maximum

amplitude of the CNT motion.

2.4.4 Ultrasensitive correlation measurements

While basic DC rectification Coulomb blockade measurements can provide simple resonator

measurements at low temperatures, the noise caused by the required amplifiers does not
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allow maximum sensitivity of CNT resonator measurement. An ideal measurement scheme

for resonators would be limited only by the noise of the resonator itself. That is, the

measurement of the CNT resonator frequency or amplitude would be able to observe the

thermomechanical noise of the mechanical resonator (See section 2.5). A measurement at

the thermomechanical limit of a CNT resonator was recently demonstrated at 1.2 K [11],

and is described here.

This measurement scheme makes use of the same Cg modulation as the DC rectification

scheme, but uses cross-correlated electrical measurements to reduce electrical noise. The

electrical measurement scheme was originally presented in [40]. It uses two independent low

noise, high-impedance voltage amplifiers to measure the current through the CNT, which

is converted to voltage via resistor. The outputs of the independent amplifiers are then

input into a fast Fourier transform signal analyser to measure the cross-correlation of the

amplifier signals. This technique removes the voltage noise introduced by the amplifiers,

allowing much better signal to noise ratios. However, this measures the cross correlation

of the current signal, so it is used to extract the power spectral density of the current,

SI = 〈δI〉 /W , where W is the measurement bandwidth and 〈δI〉 is the mean square mea-

sured Fourier component at frequency ∼ |ωsd − ω| [11]. As shown in reference [11], this

can be used to measure the motion of the CNT at its thermomechanical limit. Addition-

ally, the extracted power spectrum can be analyzed to determine the separate broadening

mechanisms, and in particular the behaviour of resonant frequency fluctuations can be

extracted even in the presence of dominant thermomechanical noise [41].

2.4.5 High frequency two source mixing

As mentioned in the introduction of section 2.4, the CNT circuit acts as a low-pass filter

that does not permit current measurement at the CNT resonant frequency. One theoreti-

cally simple but practically challenging method to overcome this is to increase the cut-off

frequency by decreasing R‖ or Creadout. To permit measurable electrical signals, Rreadout

should be similar to RCNT , and thus R‖ is essentially fixed by the CNT itself. Thus, the

parameter of interest for optimizing ωc is the readout capacitance of the measurement

circuit. This optimization has been employed in one case to measure the resonant motion

response of a suspended CNT at sub-microsecond time scales at room temperature [42].

The measurement method is very similar to regular two-source mixing measurements,
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however the drain of the carbon nanotube is now converted to a voltage via a nearby

resistor and this voltage is applied to the gate of a nearby high electron mobility transistor

(HEMT) amplifier. The HEMT amplifier is located as close as possible to the CNT to

minimize the capacitance of the readout circuitry, thus permitting high frequency signals

to be transmitted to the HEMT gate. This allows the frequency offset of the two source

method, ∆ω to reach ∼ 10MHz, similar to the mechanical resonant frequency of the CNT.

In reference [42], the HEMT signal was fed into a lock-in amplifier and integrated over

timescale τ , with distinguishable measurements achieved for τ = 780ns. It should be

noted that while this measurement was performed at room temperature, the technique is

extendable to low temperature [42].

This fast readout could enable finer measurement of CNT noise processes, transient

decay of CNT motion, and most importantly for the present work it could enable CNT

resonators to be used to measure forces changing at submicrosecond timescales, thus per-

mitting observations of the spin dynamics of nanomagnets.

2.5 CNT Resonator Noise

The ultimate limit on electromechanical measurements of CNT resonators will be deter-

mined by the intrinsic noise of the resonator, which is dominated by thermomechanical

noise [43, 11]. As described above, the ultrasensitive measurement technique already allows

measurement at this intrinsic noise floor at 1.2 K. It should be noted that single-electron

tunnelling effects which often dominate low temperature CNT resonator damping [32] can

be reduced with improved tunnel coupling, and in particular, can be eliminated by working

in the hole transport regime of the CNT [44].

The thermomechanical noise in mechanical resonators is described by a stochastic force

acting on the resonator that results in thermal equilibrium satisfying [45, 43]

〈Ekin〉 =
1

2
kBT (2.15)

1

2
m′ω2

0

〈
x2
cm

〉
=

1

2
kBT (2.16)

where m′ is the effective mass of the resonator, ω0 is the resonant frequency of the funda-

mental mode, and 〈x2
cm〉 is the time average of the squared amplitude of the center of mass

displacement.
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This gives that the spectral density of the noise force is

SF (ω) =
4kBTm

′ω0

Q
(2.17)

where T is the temperature at the resonator and Q is the resonator quality factor.

The noise force will cause a fluctuating amplitude response with spectral density

Sx(ω) =
4kBTω0

m′Q ((ω2 − ω2
0)2 + ω2ω2

0/Q
2)

(2.18)

The amplitude response can be approximately represented as a frequency fluctuation,

with spectral power density [43]

Sω(ω) ≈
(
ω0

2Q

)2
Sx(ω)

〈v2
max〉

(2.19)

=
kBTω

3
0

m′Q 〈v2
max〉 (Q2(ω2 − ω2

0)2 + ω2ω2
0)

(2.20)

where ω0 is the resonant frequency, Q is the resonator quality factor, and 〈v2
max〉 is the

mean square amplitude of the oscillatory motion of the driven resonator at its point of

maximum displacement.

When using the CNT resonator as a magnetic force sensor, we will be interested in

distinguishing small frequency shifts. The minimum detectable frequency shift that can be

observed in the presence of the above frequency noise is given by [43]

δω0 =

√∫ ∞

0

Sω(ω)H(ω)dω (2.21)

where H(ω) is the transfer function of the measurement set-up. For simplicity we can

approximate H(ω) as a square transfer function which is equal to one within ω0 ± 1
2τ

, and

zero outside, where τ is the measurement averaging time. Then,

δω0 =

√∫ ω0+1/2τ

ω0−1/2τ

Sω(ω)dω (2.22)
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When the measurement averaging time satisfies τ � Q
ω0

, Sω(ω) is approximately equal

to its maximum value over the full integral range and we can approximate

δω0 =

√
kBT

m′ 〈v2
max〉 τω0Q

(2.23)

where the effective resonator mass is calculated as m′ = m
(

1
L

∫ L
0
v2dz

)
/v2

max. In the

limit that the measurement averaging time goes to zero, we can substitute H(ω) = 1 into

equation (2.21) and obtain

δω0|τ≈0 =

√
πkBT

2m′ 〈v2
max〉Q2

(2.24)

For later convenience we can also re-express these values in terms of natural frequency.

When τ � Q
2πf0

δf0 =
1

2π

√
kBT

2πm′ 〈v2
max〉 τf0Q

(2.25)

and for τ → 0

δf0|τ≈0 =
1

2π

√
πkBT

2m′ 〈v2
max〉Q2

(2.26)
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Chapter 3

Device Fabrication and Analysis

This chapter details cleanroom fabrication methods for realizing high quality suspended

CNT devices, for the goal of magnetic force sensing experiments. To realize the maximum

benefits of CNT NEMS, mechanical quality of the CNT devices is critical. To keep the

CNT free of any contaminants or defects, and thus maximize the resonator quality, the

CNTs must be grown as the last step in the fabrication process, removing any interaction

with processing chemicals and treatments [39]. In this method of fabrication, the required

gates, trenches, and contacts are defined, followed by patterning of the CNT catalyst, and

finally chemical vapor deposition(CVD) growth of the CNT on top of these features.

Due to the probabilistic nature of the CNT growth, including both the CNT location

and properties, the post-fabrication CVD technique does not in practice obtain high device

yields. We estimate a best-case yield for small-bandgap suspended devices of ∼ 5% on pre-

patterned devices, for the device geometry that will be described below [46]. To overcome

the low yield, a large number of pre-patterned devices are required. To allow fabrication

of a large number of potential devices, full wafer processing is used when feasible.

This chapter describes the overall device process, then details the techniques used in

fabrication. In particular, the CVD growth of CNTs is described and iterative improvement

of device growth is presented. Finally, low temperature measurements of some finished

devices are presented to obtain a preliminary indication of device quality.
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3.1 CNT Device Process

The suspended CNT device fabrication process is described below. The techniques used

in this fabrication will be discussed in 3.2 and 3.3. A fully detailed description of the

nanofabrication process is given in appendix A.

1. Start with a 4” intrinsic silicon (ρ > 5000 Ω/cm) wafer with 300 nm of thermal SiO2

2. Deposit 10 nm Ti/40 nm Pt source-drain contacts (Black pattern in figure 3.1a) using

bilayer photolithography and E-beam evaporation

3. Etch the trench between the source-drain contacts (Green pattern in figure 3.1a)

using monolayer photolithography and dry etching

4. Deposit 10 nm Ti/40 nm Pt gate pads (Red pattern in figure 3.1a) using bilayer

photolithography and E-beam evaporation

5. Deposit 10 nm Ti/40 nm Pt fine gate patterns, or a ferromagnetic metal in the case of

the actual device, using EBL (example device in figure 3.1c) and E-beam evaporation

6. Deposit catalyst islands (Blue pattern in figure 3.1a) using method described in

section 3.3.2

7. Grow CNTs via chemical vapor deposition (see section 3.3)

A finished device is shown in figure 3.1c.

3.2 Nanofabrication techniques

The following nanofabrication tools are used to define the CNT devices.
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Figure 3.1: a) The photomask patterns used for CNT device fabrication, where the scale

bar is 10 µm. b) A device with source-drain contacts, trench etching, and gate pads, where

the scale bar is 10 µm. c) A finished device, after CVD growth, showing the EBL-defined

fine gate and photolithography-defined catalyst islands, where the scale bar is 5 µm.

3.2.1 Photolithography

Large (> 2µm) device features can be readily patterned via contact photolithography. In

general photolithography, an ultraviolet(UV)-sensitive photoresist is deposited onto the

sample, often via spinning to achieve uniform thickness, followed by a patterning step.

The patterning step is done by placing a mask in contact with the sample, then exposing

the assembly to high levels of UV light. The masks serves to protect some regions of resist

from the UV light, thus forming a copy of the mask in the resist exposure levels. After

the exposure step, the pattern is developed in specially tailored solvents, such that the

exposed regions of resist are dissolved while the unexposed regions remain.

After the pattern is developed, the desired processing (eg, etching or metallization)

can be completed over the full wafer. The exposed sample regions will be subjected to

the processing, while the resist will protect the covered regions. After all processing is

complete, the remaining photoresist is dissolved in a lift-off solvent, leaving behind the

desired metal or etching patterns on the device substrate.

Bilayer Photolithography for Metallization

Standard single layer photolithography can have difficulties with lift-off processing. Figure

3.2a shows a cross section of a wafer after typical single layer resist development, high-

lighting that the positive photoresist walls usually have a slightly positive slope (85 ◦ to

89 ◦) [47]. Figure 3.2b shows the same cross section after metal is deposited. Even for
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Figure 3.2: a) A cross section of single layer photoresist after development, and b) after

metal deposition. c) A cross section of bilayer photoresist after development, and d) after

metal deposition

metal layers much thinner than the resist, there is the potential for semi-continuous metal

connections going up the sidewall of the pattern. This can result in the metal on the resist

not being removed during liftoff as desired, often leaving metal deposited on the sample

in undesired locations. Due to the fine photolithography resolution that will be used in

the CNT device fabrication and the need for high yield, we want to avoid these potential

lift-off difficulties.

To overcome this issue, a bilayer resist can be used, in which the underlying layer

develops more quickly than the top layer. Figure 3.2c shows a cross section of such a

bilayer after development. Figure 3.2d shows this cross section after metallization. The

step in the resist now eliminates the possibility of metal connection up the side wall, thus

allowing reliable liftoff.

3.2.2 Electron Beam Lithography

The resolution of photolithography is limited by Fresnel diffraction [47]. For the Suss-

Microtec MA6 mask aligner and resists used in our device fabrication, this limits the

spacing between adjacent patterns to approximately 1µm. The fine gates that will be

required for our CNT devices are on the order of several hundred nanometers wide, thus

electron beam lithography (EBL) is required. In EBL, the sample is first coated with an

electron-sensitive resist, such as polymethyl methacrylate (PMMA). Then, a focused beam
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of electrons is scanned over the sample in a desired pattern. The sample is then developed

to dissolve the resist regions which were subject to a high electron beam dose. Further

processing then follows as in photolithography. Bilayer processing is also available for EBL,

analogous to photolithography.

3.2.3 Metal Deposition

The metal films used in our devices are deposited using an IntlVac Nanochrome II-UHV

electron beam evaporation system. A crucible containing the metal to be deposited is

placed at the bottom of the chamber and the sample is placed inverted at the top of the

chamber. Then, under ultrahigh vacuum, an electron beam is focused on the metal in the

crucible, evaporating it. The evaporated metal atoms flow to the substrate where they

form a thin film. The typical depositions rates used in our devices are 3 Å/s for Ti and

1 Å/s for Pt, allowing for smooth thin films to be deposited to a desired thickness.

3.2.4 Dry Etching

For CNT resonator devices, we need to form a trench between the source and drain contacts.

To keep the CNT resonator from collapsing onto the substrate, we require the substrate

to be completely removed between the contacts. We also want to avoid removing the

substrate from below the contacts which can cause extra resonant signals due to contact

vibration. These requirements can be satisfied by using the source and drain contacts as a

mask for an etch with no lateral effect, such as a reactive ion (dry) etch.

The dry etching of these devices is performed by an Oxford Instruments ICP380 plasma-

based dry etching system. The etching is performed by exciting reactive gases with an

RF-field in a vacuum chamber[47]. The excited gas molecules are highly reactive and, in

the case of SiO2 etching as we are doing, the reactive molecules have stronger bonding than

the Si-O bonds, and are thus able to remove the oxide material. Additionally, the ionic

species generated during the etching procedure are accelerated by the RF field, bombarding

the surface at normal incidence and providing directional energy transfer, resulting in

anisotropic etching, and thus nearly vertical sidewalls of the resulting etch.
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Figure 3.3: The growth mechanism of CNTs in CVD, as described in [48]. a) The catalyst

nanopartical is shown on a supporting substrate. b) Catalytic decomposition and carbon

absorption results in carbon atoms on the outer shell of the catalyst. c) Eventually the

carbon over-saturates the particle and begins to grow off. d) The offshoot extends, forming

a CNT.

3.3 CVD Growth of Suspended CNTs

Chemical vapor deposition (CVD) is used to grow the CNTs for these devices. CVD

methods allow the CNTs to be grown in place, at intermediate temperatures (600 ◦C -

1000 ◦C). Growing the CNTs on the contacts, as enabled by CVD, allows very clean CNTs

to realize high quality resonator and electrical behaviour.

3.3.1 CVD of CNTs

In the basic CNT CVD process, a hydrocarbon precursor such as CH4 or C2H4 reacts with

a transition metal catalyst to preferentially form CNTs [48]. The catalyst nanoparticles

are deposited onto the sample to be grown. The sample is then placed in a CVD chamber

and heated to 600 ◦C - 1000 ◦C. The precursor, along with other gases as needed for the

particular process, are flowed into the chamber through mass flow controllers. The precur-

sor is chemically decomposed by the catalyst, and the resulting carbon atoms are absorbed

onto the nanoparticle. Eventually the nanoparticle surface saturates and additional carbon

nucleates and grows the CNT, as depicted in figure 3.3.
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A prime benefit of CVD is that thermal decomposition of the precursor is minimal, and

decomposition occurs primarily at catalysts [48]. This allows for catalyst-free sites that

are not active in the growth. This permits patterning of the CNT growth, to nominally

allow CNTs only in select locations. In the devices discussed in this thesis, this is used to

grow CNTs at the trench location while keeping the rest of the device free of both catalyst

material and CNTs.

The mechanisms governing CNT CVD, particularly those which permit long and aligned

(LA) CNT growth, are not universally agreed upon. Initial realizations of LA tubes used

either raised catalyst terraces [49] or “fast heating” of the growth samples [50], leading

to the hypothesis that local turbulence at the catalysts was required to grow long CNTs.

Subsequent studies showed that neither of these methods are sufficient for obtaining LA

tubes, and such CNTs can be achieved in regular CVD without terraces, provided the

right catalyst pretreatment and process gas combination are employed [51]. Many variables

have since been discovered to have a strong influences on the CVD process. These variables

include the composition of the catalyst, the supporting substrate, the process temperature,

and the process gases.

The transition metal nanoparticle catalysts used in the CVD have a major impact

on the resulting CNTs. The metal must have sufficient carbon solubility at the growth

temperatures to absorb the decomposed carbon atoms to begin the CNT growth process

[48]. The two metals which exhibit the best CNT growth are Fe and Co [52], which have

high carbon solubility at CVD temperatures. The catalyst-support interaction will also

affect the catalyst reactivity[53]. In particular, catalyst supported on metal will have

severely inhibited growth if bonding forms between the catalyst and metal support, which

would prevent catalyst-carbon bonds. The catalyst particle size will also play a crucial role

in the CVD process, as it will determine both the CNT growth rate and the resulting CNT

diameters [48]. Supporting the catalyst metals on silica or alumina nanobeads prevents

catalyst aggregation to maintain consistent particle sizes and provides a chemically known

supporting material, which is very important as our catalyst sites will be supported on

platinum contacts.

The chemical nature of the catalyst can also be improved by introducing a non-carbon-

reactive metal compound to tune the main metal. For example, adding molybdenum to

pure iron catalyst inhibits the formation of Fe3C carbides which “poison” the growth of

CNTs. These so called bimetal catalyst have been used to improve the CVD selectivity
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of single wall CNT growth [54, 48]. Our CVD growths are carried out with a Fe-Mo-Co

catalyst on silica nanobeads, to preferentially grow a high number of small single wall

CNTs.

The CVD process temperature will determine the various reaction rates in the growth.

If the temperature is too low the chemical decomposition of precursor at the catalyst will

be slow or completely absent and only low density, short CNTs will form. At high tem-

peratures the thermal decomposition of the precursor begins to occur, causing amorphous

carbon to be deposited on the CNTs and over the catalyst free regions of the devices.

The volume and balance of gases in the CVD process will control the decomposition

and absorption of the carbon atoms at the catalyst. The desired gas behaviour is for

the hydrocarbon gas to decompose completely, and for the carbon atom to absorb into

the catalyst while the non-carbon gases flow out of the CVD chamber. This requires the

carbon to be decomposed at the correct rate. If the carbon concentration is too high, the

carbon radicals will not all bond with the metal catalyst but will instead combine with each

other and form amorphous carbon [48]. If the carbon concentration is too low, the lack

of decomposition will result in very short or no CNTs, which will not permit suspended

growth as we desire. The decomposition rate of the hydrocarbons can be controlled by the

hydrogen levels present during growth [55] to achieve a clean growth of long CNTs.

3.3.2 CVD Process for Our Devices

As mentioned above, the catalyst solution we use for CVD growth combines the highly

carbon soluble Fe and Co, with Mo to selectively grow single wall CNTs. The catalyst

concentration and deposition techniques, as well as the CVD process settings have been

iterated towards high quality suspended CNTs. For individual high quality suspended

CNT devices we desire very low defect CNTs, grown with a moderate density, and we

want to avoid having a large number of short, random tubes growing near the catalyst site.

Catalyst deposition

The catalyst is patterned using a masked solution deposition, in which the catalyst ma-

terial is suspended in liquid and dispensed onto a masked sample, followed by drying and

liftoff of the mask. Acetate particles containing the desired catalyst metals are combined
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Figure 3.4: Dark field optical images of CNT catalyst material deposited using a) mono-

layer and b) bilayer photolithography. Scale bars are 5 µm.

with silica nanobeads as the catalyst support (full catalyst recipe in appendix B). The

acetate structure is broken down in a repeatable manner during CVD growth leaving small

metal particles as catalyst. The catalyst materials are sonicated into the suspension liquid,

with liquids being either distilled water, isopropanol, or acetone. It was found that the

silica particles do not disperse well in water and produce very uneven/missing catalyst

islands. The acetone solvent had very good dispersion, but was incompatible with the

photolithography resist we eventually used and would leave large catalyst deposits in un-

desired locations. The isopropanol had reasonable dispersion of the catalyst material and

minimal resist dissolving, and thus was the liquid used for the growths discussed below.

As mentioned, the catalyst material is dispensed onto a masked sample. Initially, a sin-

gle layer photolithography process was used, however this sometimes resulted in “smeared”

catalyst islands as shown in figure 3.4a that would create CNT films growing over the

contact edges. This was attributed to catalyst material building along the wall of the

photoresist island pattern, and then collapsing during liftoff. Thus, a bilayer photoresist

was used, as with metal deposition, to prevent a continuous catalyst film up the sidewall,

resulting in repeatably clean catalyst islands as shown in figure 3.4b.

Ethanol CVD

The initial growth attempts on these devices were carried out in a 2” CVD chamber using

ethanol precursor (the CVD recipe is given in appendix B). Figure 3.5a shows an example

Raman spectrum measured on CNT films obtained from this growth. The radial breathing

mode (RBM) peaks at 100 cm−1 to 300 cm−1 and the G peak at ∼ 1600cm−1 indicate
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Figure 3.5: Raman spectra of CNT catalyst regions on platinum resulting from a) ethanol

precursor CVD, b) ethylene precursor CVD, c) early methane precursor CVD recipe, and

d) final methane precursor CVD recipe.

the presence of CNTs, however the large D peak at ∼ 1320cm−1 indicates a large number

of defects in these CNTs [56]. Adjustments of process temperature, catalyst composition,

and gas flows were not able to significantly reduce this defect density.

Ethylene CVD

With the goal of reducing the defect density in the CNTs, we switched to an ethylene

precursor for the CVD in a 1” CVD chamber (full recipe in appendix B). Figure 3.5b

shows a typical Raman spectrum from these growths. While CNTs are again present,

the broad D peak indicates the presence of amorphous carbon [57]. This was confirmed

visually as dark deposits in many sample regions. The amorphous carbon was attributed
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to excess carbon decomposition during the growth, necessitating a large reduction in the

carbon balance.

Methane CVD

To reduce both the CNT defects and amorphous carbon deposition, a new methane CVD

process was used. These growths are performed in a 1” CVD chamber using methane

precursor.

The initial methane recipe was extracted from prior work by members of the Tang lab

on patterned catalyst. Figure 3.5c shows an example Raman spectrum from these growths,

showing a lack of amorphous carbon and an improvement in the CNT quality as evidenced

by the greatly reduced D peak over the non-methane CVD processes. However, these

CNTs were observed to be short (. 5 µm) and randomly oriented, making them unusable

for suspended devices. The short CNT growth was attributed to a scarcity of decomposed

carbon leading to growth termination, as a result of poor C-H ratio and volume.

The final CVD recipe was adapted from [51] to stimulate defect free growth of long

nanotubes. It also allows for the possibility of gas flow alignment of sufficiently long

CNTs. The gas flow settings are similar to reference [48], in which they used a similar

catalyst and were growing suspended CNTs on Pt contacts, although their CVD chamber

is a hot-load system with vacuum control. Our recipe is given in appendix B as methane

recipe #2. Figure 3.5d shows a Raman spectrum from this growth, showing an even further

reduced D peak intensity in comparison to the previous methane CVD. The lower defects

and higher carbon concentration in the gas flows should permit longer, defect-free growths

that will be capable of suspended growth over the trench between contacts.

To get an idea of the CNT diameters from our growths, figure 3.6 shows an expanded

view of the RBM range of the Raman spectrum from figure 3.5d. The RBM frequency is

proportional to the CNT diameter [58], where the relation can be expressed as

ωRBM =
c1

d
+ c2 (3.1)

with c1 = 215− 260 cm−1nm and c2 = 0− 20 cm−1. Using this equation, the strong peak

at 218 cm−1 is estimated to indicate ≈ 1− 1.3 nm diameter CNTs. The smaller peaks at

240 cm−1 and 260 cm−1 could represent CNT diameters as small as 0.8 nm. It should be
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Figure 3.6: The radial breathing mode range of the Raman spectrum of a CNT device

grown using the final methane CVD recipe.

noted that these spectra were taken over a catalyst dense region and thus include both long

tubes that would grow away from the catalyst and short random tubes between catalyst.

Therefore, the final diameter distribution of long tubes is not necessarily the same.

Finally, figure 3.7 shows atomic force microscopy (AFM) images of CNTs grown using

the final methane CVD recipe. These devices were test devices consisting of Ti/Pt contacts

on SiO2 with no trenches or fine gate patterns. For each device the gas flow was in the

direction from drain to source contact. Figure 3.7a shows an individual long, straight CNT

bridging the contacts, with the CNT direction aligned with the gas flow. Figure 3.7b and

3.7c both show a CNT bridging the gap as a long straight tube within ±15 ◦ of the gas

flow, and that same CNT curving back on the bottom Pt contact and recrossing the gap

as a curved tube (recrossing identified in AFM phase data and confirmed by equal CNT

height measurements). Figure 3.7c also shows an extra CNT looping off one Pt contact

and quickly returning to it. The measured CNT diameters are 2.4 nm for (a), 1.4 nm for

(b), and 1.0 nm and 1.1 nm for (c).
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Figure 3.7: AFM height measurements for three select CNT test devices, grown using the

final methane CVD process. The colorscale (black-to-white) is 100 nm for a, 20 nm for b,

and 15 nm for c. All scale bars are 0.5 µm. All images were taken using tapping mode

AFM, and have been horizontally line flattened via the AFM analysis software such that

each horizontal line has a zero average height.

3.4 Preliminary Device Characterization

302 potential devices, created with the fabrication process detailed in section 3.1 and the

last methane CVD recipe, were tested using a room temperature probe station. While 33

of these devices showed some connection between source and drain, most of these devices

also had connections from the source and drain to the gate. This could indicate either

extra CNTs contacting the gate directly from the source and/or drain, or it could indicate

the CNT between the source and drain had sagged into the trench. The former case was

identified in one of these devices, in which a metallic CNT contact was measured between

the source and gate, while a semiconducting contact was observed between the drain and

gate.

Five potentially suspended devices were identified from the 33 above device, which had

connection between source and drain and no source-drain connection to the gate. The

room temperature gate-dependence of the source-drain current was used to label these

tubes as semiconducting or quasi-metallic as described below. Figure 3.8 shows the gate-

dependence measurements of three of these devices. The semiconducting CNTs are pinched

off (I = 0) with Vg ∼ 1V, while the quasi-metallic CNT shows only weak gate dependence

at these gate voltages. Using this criteria, three of the five suspended CNTs were identified

as semiconducting, with room temperature source-drain resistances ranging from 480kΩ
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Figure 3.8: Room temperature gate dependence measurements of a,b) semiconducting

CNTs and c) a quasi-metallic CNT. All measurements were taken with 10 mV bias voltage.

Note there is a ≈ 250kΩ line resistance in this measurement set-up.

to 720kΩ, measured at 10mV bias voltage. The remaining two devices, identified as small

bandgap CNTs, had room temperature source-drain resistances of R ≈ 50kΩ.

It is expected that the semiconducting CNTs would have very low conductance at

cryogenic temperatures as a result of the high Schottky barriers (& 0.1 eV).This was

confirmed by attempts at DC transport measurements at 1.2K having no observable signal

in semiconducting CNTs. Low temperature transport measurements of one of the small

bandgap CNT devices are presented below.

In addition to the potentially suspended devices, a set of non-suspended field effect

transistor (FET) devices were fabricated. These used the same source-drain contacts as

the suspended devices, but no trench or gate patterning was performed and a doped silicon

wafer was used to act as the back gate. In these devices, the CNT is expected to lay across

the SiO2 substrate between the contacts. Figure 3.9a shows the conductance of a small-

bandgap CNT FET device measured at 1.2K. The main observation from this device is

that while measurable hole conductance (Vg < 0) is present, no electron conductance

(Vg > 0) can be observed, which was observed even when increasing current preamplifier

sensitivity. The suppression of electron transport in CNT FETs has been attributed by

other researchers to interactions with particles absorbed on the supporting substrate [59].
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Figure 3.9: Gate dependence of CNT FET conductance at 1.2K in a) a non-suspended

CNT on SiO2 (measured at Vsd = 10 mV), and b) an apparently suspended CNT (measured

at Vsd = 5 mV). Measurements were performed in a Janis 6T/2T-SVM-SV-20 pumped

4He cryostat with the sample in vacuum.
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Figure 3.9b shows a low bias gate sweep of a potentially suspended small-bandgap

CNT device at 1.2K. In this device, the electron transport was observed, which could

be attributed to a lack of interactions with SiO2 and surface absorbents. Note that the

electron conductance is still much lower than the hole conductance, as expected for CNT-

Pt contacts which are more transparent to holes [20]. Note that no current or thermal

annealing of either of these devices was performed, with each device having a maximum

applied bias voltage of 20 mV while under vacuum.

Figure 3.10 shows the conductance, G = ∂I
∂Vsd

for the suspended small-bandgap CNT

device, measured at 1.2K. The first observation is the high conductance in hole transport

as noted previously. We further note that the maximum magnitude of conductance in the

hole transport reaches ∼ 2e2

h
. Similar CNT devices have typically reached hole conductance

of ∼ e2

h
or less [60, 61]. This high conductance could be an indication that we have multiple

conduction channels, such as multiple CNTs, which will be discussed further below.

As described in section 2.1.3, at these temperatures we expect single electron tunneling

to describe electron transport in CNTs, resulting in Coulomb diamonds in the conductance.

Based on the device geometry, a quantum dot forming between the contacts should have

a Coulomb diamond with ∼ 10 mV gate voltage width and Uc ≈ 2 − 5 meV. The small

Coulomb diamonds are observed as expected, however there are additional, much larger

diamond patterns affecting the small diamonds. Within these larger diamonds the small

features are non-closing, indicating that the main quantum dot in the CNT is in series

with other features [62, 63].

Figure 3.11 shows a finer gate voltage range measurement of the same device. In

addition to the non-closing diamond pattern noted above, we observe a bright and separate

diamond pattern overlayed. The apparent independence of the two patterns provides

further indication that there are parallel conduction channels in this device.

Figure 3.12 shows the conductance for a small gate voltage range far into the electron

transport regime, at a point where the large diamond features have closed. From the

Coulomb peak spacing at zero bias we calculate a gate capacitance value of Cg ≈ e/∆Vg =

14.6 aF, where we have neglected electron confinement energies, as ∆E is approximately

0.2 − 0.4meV ∼ kBT for this length of CNT quantum dot [20]. The Coulomb diamond

edge slopes allow us to calculate the source and drain capacitances [26], Cs ≈ 24.5 aF and

Cd ≈ 23.1 aF, respectively. The quantum dot charging energy is Uc ≈ 2.58 meV. Using

equation (2.3) and typical parameters expected for these devices, h = 200 nm, d = 1.5 nm
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Figure 3.10: The conductance ∂I
∂Vsd

, in units e2/h, as a function of Vg and Vsd for the CNT

device from figure 3.9b, measured at 1.2K.

Figure 3.11: The conductance ∂I
∂Vsd

, in units e2/h, as a function of Vg and Vsd for electron

transport in the CNT device from figure 3.10, at 1.2K.

35



Figure 3.12: The conductance ∂I
∂Vsd

, in units e2/h, far into the electron transport regime

of the CNT device from figure 3.10, showing Coluomb diamonds of short period that

correspond to a spatially large dot, consistent with the size of the entire CNT channel.

and L = 1.5 µm, we calculate a theoretical capacitance of 14.9 aF, in close agreement with

the measured value, indicating that these small-period diamonds result from a dot along

the entire CNT formed by tunnel barriers near the source and drain contacts.

Given that we are in the single electron tunneling regime (kBT � Uc), the electron

tunneling rates can be estimated from the Coulomb peak amplitudes [64]. If we approx-

imate equal tunneling rates for both contacts (ΓR = ΓL ≡ Γ), the Coulomb peak height

at zero bias has a simple analytic expression in two limiting cases. When ∆E � kBT the

tunnel rate can be expressed as [11],

Γ = 2∆EGpeak/e
2 (3.2)

where Gpeak is the zero bias conductance peak amplitude. When ∆E � kBT ,

Γ = 8kBTGpeak/e
2 (3.3)

As noted above, ∆E ≈ 0.2 − 0.4meV = 2.3 − 4.6 K ∼ T , and thus we are between

these limits. Nevertheless, the tunnel rate will be in the range between the values given
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Figure 3.13: Circuit diagram of an arbitrarily connected double dot system with a single

gate electrode. The gate is capacitively coupled to each dot. The dots are connected to each

other and the source and drain reservoirs through tunnel junctions, which are effectively a

parallel resistor and capacitor. Based on [65].

by the above equations [64]. Extracting Gpeak = 0.016e2/h from fitting of the zero bias

conductance peaks (see appendix C), equation (3.2) gives Γ = 1.5 GHz and equation (3.3)

gives Γ = 4.3 GHz using T = 1.6 K as extracted from the same fitting. This tunnelling

rate is roughly an order of magnitude smaller than has been reported for similar devices

[60, 11], which could be a result of the sequential quantum dots that cause the non-closing

diamonds above.

3.4.1 Conductance fitting

To understand the source of the non-closing Coulomb diamond features in figure 3.11,

a simple model was created to estimate the conductance through arbitrarily connected

double quantum dot system controlled by a single gate electrode. The circuit diagram

of this model is shown in figure 3.13. The conductance is determined as a function of

gate voltage and bias by solving for the steady state tunnel rates through all barriers and

calculating the resulting current.
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The chemical potentials of the source and drain are µs = eVs and µd = eVd, respectively.

The chemical potentials of each dot are calculated with the constant interaction model,

neglecting orbital energies [65]

µk(N1, N2) =

(
Nk −

1

2

)
ECk +Nk̄Em −

1

|e|
(
CgkVgECk + Vgk̄VgEm

)
, k = 1, 2 (3.4)

where k̄ = 2 − k, Nk is the number of electrons on dot k, and the charging and coupling

energies are

ECk =
e2

Ck

(
1− C2

m

C1C2

) , Em =
e2

Cm

(
C1C2

C2
m
− 1
)

with Ck = Csk + Cdk + Cgk + Cm.

The tunneling rates between all possible states of the dots and leads are then calculated

as

Γα,β(N1, N2) =
Kα −Kβ

e2Rα,β

(
1− exp

(
−Kα−Kβ

kBT

)) (3.5)

where Rα,β is the resistance of the tunnel coupling between the two elements, Kα =

µα(Nα
1 , N

α
2 ) is the chemical potential before the tunneling of the element the electron

is tunneling from, and Kβ = µβ(Nβ
1 , N

β
2 ) is the chemical potential after tunneling of the

element the electron tunnels to.

The master equation for the electron occupation number of the double dot system is

then [63]

ρ̇N1,N2 = −Γout(N1, N2)ρN1,N2 + (Γs1(N1 − 1, N2) + Γd1(N1 − 1, N2))ρN1−1,N2

+(Γs2(N1, N2 − 1) + Γd2(N1, N2 − 1))ρN1,N2−1

+(Γ1s(N1 + 1, N2) + Γ1d(N1 + 1, N2))ρN1+1,N2

+(Γ2s(N1, N2 + 1) + Γ2d(N1, N2 + 1))ρN1,N2+1

+Γ12(N1 + 1, N2 − 1)ρN1+1,N2−1 + Γ21(N1 − 1, N2 + 1)ρN1−1,N2+1

(3.6)

where Γout is the sum of all tunneling rates with electron numbers (N1, N2). To determine

the current through the double dot system, the steady state of equation 3.6 is solved

numerically. The current is then calculated as the current through the source [63]

I = e
∑

N1,N2

(Γs1(N1, N2) + Γs2(N1, N2)− Γ1s(N1, N2)− Γ2s(N1, N2)) ρN1,N2 (3.7)
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To attempt to match conductance measured in the CNT device, the capacitances of the

system were extracted as was done for figure 3.12, for both the small diamond and large

diamond features. The interdot capacitance, Cm, was estimated at the order of magnitude

of the source-dot capacitance and was adjusted in finding a fit of the data. The tunnel

resistances were estimated starting from the above calculations and adjusted to fit. The

best fit results are shown in figure 3.14b, with the relevant segment of the conductance

shown in figure 3.14a for convenience (the data is equivalent to figure 3.11). The fit

shown uses temperature of 1.2K, capacitance values of Cs1 = 44 aF, Cd1 = 9.9 aF, Cg1 =

10 aF, Cs2 = 0.25 aF, Cd2 = 21 aF, Cg2 = 0.358 aF, Cm = 2 aF and tunnel conductance

ratios (G = 1/R) of Gs1 : Gd1 : Gs2 : Gd2 : Gm = 20 : 0.01 : 0 : 3 : 12. Note that the

experimental conductance through the system is higher for positive bias, which could be

due to bias-dependent tunnel barriers [44] which are not accounted for in our simple model.

Of particular interest from the fitting values is that one dot is strongly connected and

coupled to the drain and only weakly capacitively coupled to the gate and source, while

the other dot is connected as expected for a CNT bridging the source-drain but with a

much weaker drain connection. This situation can be explained as a physical gap or bump

near the edge of the drain contact causing both a mechanical kink in the CNT and a weak

connection to the primary dot. The mechanical kink would act as a tunnel barrier between

the dots within the CNT by either opening a local bandgap [66], or acting directly as a

tunnel barrier [67, 68, 69]. The gap or bump in the drain contact could be a result of large

grains forming in the Ti/Pt contacts, which can be seen in figure 3.7.

3.5 Discussion

The capacitance estimates from the fine Coulomb diamonds suggest that we have a CNT

forming a quantum dot of the size we expect, in the location we expect. However, the

conductance measurements also include unexpected and undesirable features. The parallel

Coulomb diamonds and high hole conductance indicate that we may have multiple CNT

channels. Additionally, the large period, non-closing Coulomb diamond patterns indicate

at that at least one additional dot is forming in series with the primary island. Fitting

to this non-closing pattern suggests that this confinement is due to a feature at the drain

contact, potentially from mechanical kinking and poor connection due to the grainy nature

of the Ti/Pt contacts after CVD growth.
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Figure 3.14: a) The measured conductance of the CNT device from figure 3.10 at 1.2K. b)

Numerically calculated conductance using the arbitrarily coupled double dot model and

parameters described in the text. The fitted model suggests that in addition to the dot

formed by the entire CNT channel, there is an additional small dot in series located near

the drain electrode.

3.5.1 Future Fabrication Improvements

To reduce the large grains observed in the Ti/Pt contacts after CVD growth of the CNTs,

a new metal stack could be employed. While the Ti/Pt stack was chosen to endure the

CVD process and be compatible with the available QNCFab facility, the grain size could

be causing both the above kinking issues and long CNT growth inhibition. It has been

found in similar processes that a W/Pt metal stack could greatly reduce the graining effect

[70, 61] and result in smoother contacts after CVD growth.

The low yield of suspended CNTs with usable gates could be attributed to low proba-

bility of growing suspended CNTs and/or a high number of extra CNTs growing between

the source/drain contacts and the gate. The first problem can be addressed by reducing

the source-drain separation, and by decreasing the trench aspect ratio by deepening the

trench. While a deeper trench is compatible with the current device process, the source-

drain separation is currently at the minimum line spacing possible with PMGI-S1805 bi-

layer photolithography before the bilayer collapses. Finer line spacing can be achieved by

employing surface-modification resist processing in which ∼ 100nm undercuts are created

in single layer photoresist by chemically treating the resist surface [71, 61]. Once higher
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Figure 3.15: a) The current photomask design, featuring one device per region. b) The

updated photomask design, featuring eight devices per equal-sized region. Scale bars are

20 µm.

suspension yields are realized, the process temperature and catalyst densities can be re-

duced to decrease the probability of CNTs growing off the contacts into the gates, and

reduce the possibility of too many CNTs bridging the contacts.

Even with design improvements to get more suspended CNTs, the suspension yield of

this fabrication is not expected to exceed ∼ 5%, and thus processing a large number of

devices will be important to obtain a useful number of devices. While we currently make

use of wafer-scale processing for the majority of the fabrication, both the electron beam

lithography and CVD chamber require smaller processing and samples, and as a result

the device fabrication process remains slow. The device throughput can be improved by

increasing the device density, allowing the smaller processing to handle a larger number of

devices. Figure 3.15b shows a new photomask design which increases the device density

by a factor of 8 over the current photomasks shown in figure 3.15a, while still using the

same fabrication steps and full wafer processing.

Finally, while our CVD process is capable of creating ≈ 1 nm diameter CNTs, as

evidenced by the ωRBM data, it also creates a large fraction of larger diameter CNTs. The

force sensitivity of our ultimate device will depend on the spring constant of the CNT,

and will be greatly improved for smaller diameter CNTs. To decrease the average CNT

diameter, and reduce the diameter distribution, we could make use of chemically well-

defined catalyst particles [72, 73, 74], or a different bimetal catalyst such as Fe-Ru that

promotes smaller CNT growth [48]. The chemically defined catalysts have exact numbers

of active catalyst metal atoms in a supporting structure that is broken down during the
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CVD process, leaving a metal island of known size. The Fe-Ru bimetal slows the carbon

decomposition rate of the catalyst metals, which then favors growth from smaller catalyst

particles, at the cost of growth density. In reference [48], Fe-Mo catalyst resulted in a 1.6 nm

average CNT diameter, while the equivalent process using Fe-Ru resulted in 1.1 nm average

CNT diameter. We would expect a similar shift in our CVD-grown CNT diameters.
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Chapter 4

Modelling magnetic moment sensing

with suspended carbon nanotubes

This chapter presents the magnetic force sensor concept, then derives and uses numerical

simulations to assess the sensor performance. Much of the work presented in this chapter

has been published in:

Willick K, Haapamaki C, Baugh J. Sensitive magnetic force detection with a

carbon nanotube resonator. J Appl Phys. 115 114501 (2014)

4.1 Proposed Sensing Technique

To make use of a CNT resonator for magnetic moment sensing, the magnetic moment of

interest needs to be coupled to an observable effect in the resonator. By making use of the

resonator readout methods in section 2.4, this coupling can be achieved by affecting the

resonant frequency of the CNT resonator. To generate a magnetic moment dependency

in the resonant frequency, we note the impact of applied forces in section 2.3, and aim

to generate a perpendicular force on the CNT that depends on the nanomagnet’s mag-

netic moment. By grafting the nanomagnet to the CNT, the required magnetic moment

dependent force can be accomplished by generating this force on the nanomagnet.

Reference [6] made use of a CNT resonator for studying a SMM through a related

mechanism. In that case, the SMM of interest had a uniaxial magnetic anisotropy that
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Figure 4.1: Schematic of the proposed device, showing the ferromagnetic gate combined

with a CNT resonator and attached nanomagnet.

could be engineered to align perpendicular to the CNT axis via control of the particular

SMM ligand structure. In the presence of an external magnetic field applied along the

CNT axis, a torque would be exerted on the anisotropic SMM moment, and this torque

would impact the resonance frequency of the CNT. This measurement technique requires

an anisotropic nanomagnet and finite grafting length for the torque to act upon. The

technique proposed in this chapter seeks to reduce these restrictions and greatly improve

sensitivity, to allow further studies of nanomagnetic behavior over a broader range of

nanomagnets.

To achieve a strong nanomagnet-CNT coupling and reduce restrictions on the nano-

magnet and grafting, we want to generate a force on any nanomagnet, that will act per-

pendicular to the CNT axis and depend on the magnetic moment. This can be achieved

by having a gradient in the magnetic field at the nanomagnet position. To achieve the

required magnetic field gradient, we can fabricate a localized magnetic structure using

the same nanofabrication used to create typical suspended CNT devices, as described in

chapter 3. In the proposed device, shown in figure 4.1, the metallic gate of a locally gated

suspended CNT is replaced with a ferromagnetic gate. When this gate is magnetized, it

will produce a localized field. Due to the small size of this gate and the proximity of it to

the CNT, there will be a strong gradient in this magnetic field at the nanomagnet position.

As shown in the next section, this force will act in the field gradient direction, thus giving

a magnetic moment dependent force acting perpendicular to the CNT axis.
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Figure 4.2: a) Magnetic field Bz along z generated by a 200 nm thick by 800 nm wide Cobalt

gate at saturation magnetization, 106 A/m, with the nominal CNT location depicted. b)

The field gradient ∂Bz
∂x

at the center of the suspended CNT channel as a function of the

distance from the gate.

4.2 Force on Nanomagnet

Figure 4.2a shows the z-component of the magnetic field generated by a 800 nm wide by

200 nm thick cobalt gate at saturation magnetization aligned along ẑ [75, 76]. Figure 4.2b

shows the derivative of this field component along the x-axis at the center of the CNT, the

nominal nanomagnet location.

The energy of a magnetic moment in a magnetic field is given by

U = −~m · ~B (4.1)
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The force due to the field potential is then

F = −∇U (4.2)

= ∇
(
~m · ~B

)
(4.3)

=
(

(~m · ∇) ~B +
(
~B · ∇

)
~m+ ~m×

(
∇× ~B

)
+ ~B × (∇× ~m)

)
(4.4)

=
(

(~m · ∇) ~B + ~m×
(
∇× ~B

))
(4.5)

=

((
mx

∂

∂x
+my

∂

∂y
+mz

∂

∂z

)
~B + ~m×

(
∇× ~B

))
(4.6)

where (4.4) to (4.5) comes from ~m being independent of position

Continuing component-wise

Fx =

((
mx

∂Bx

∂x
+my

∂Bx

∂y
+mz

∂Bx

∂z

)
+my

(
∂By

∂x
− ∂Bx

∂y

)
−mz

(
∂Bx

∂z
− ∂Bz

∂x

))

(4.7)

=

(
mx

∂Bx

∂x
+my

∂By

∂x
+mz

∂Bz

∂x

)
(4.8)

Similarly,

Fy = mx
∂Bx

∂y
+my

∂By

∂y
+mz

∂Bz

∂y
(4.9)

Fz = mx
∂Bx

∂z
+my

∂By

∂z
+mz

∂Bz

∂z
(4.10)

We can assume that the ferromagnet is much longer in the y-direction than our system

dimensions, then By = 0 and ∂ ~B
∂y

= 0, giving that Fy = 0 for any SMM position. If we

assume that the nanomagnet is approximately centered above the FM gate so that ∂Bx
∂x
≈ 0

and ∂Bz
∂z
≈ 0. Then the force on the SMM will be given by

Fx = mz
∂Bz

∂x
(4.11)

Fz = mx
∂Bx

∂z
(4.12)

The axial point force, Fz, will have negligible impact on the resonance of the CNT,

and we will be primarily interested in magnetic moments aligned along ẑ in which case

mx = 0⇒ Fz = 0. We will thus use the approximation that Fmag = Fx = mz
∂Bz
∂x

.
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4.3 Numerical Modelling

As mentioned in section 4.1, measuring the suspended CNT is achieved by monitoring its

resonant frequencies. To understand how the perpendicular force on the nanomagnet, Fmag,

will translate into resonant frequency signals, the suspended CNT is modelled as a Euler-

Bernoulli beam and numerically evaluated. This Euler-Bernoulli model has shown good

agreement with experimental data in similar CNT devices [77]. We model the electrostatic

gate as a uniform force along the entire CNT length, and the nanomagnet force is described

as a point force. The numerical calculation technique is motivated by a similar calculation

in reference [78], in which the Euler-Bernoulli model was solved with only uniform forcing.

The governing equation for the Euler-Bernoulli model with these forces is

− EI ∂
4x

∂z4
+ T

∂2x

∂z2
+Kelec + Fmagδ(z − z0)− η∂x

∂t
= ρA

∂2x

∂t2
(4.13)

where E is the Young’s modulus of the CNT, I = π
4
r4 is the moment of inertia, r is the CNT

radius, x is the vertical displacement of the CNT from equilibrium, T = T0+EA
2L

∫ L
0

(
∂x
∂z

)2
dz

is the tension in the CNT, T0 is the residual tension at zero applied force as a result of

fabrication, Kelec = 1
2
c′gV

2
g is the electrostatic force per unit length, c′g = 2πε0

h(ln(2h/r))2
is

the derivative of the CNT-gate capacitance per unit length with respect to x, z0 is the

nanomagnet position along the CNT, η is the damping factor per unit length, ρ is the

CNT mass density, and A is the cross-sectional area of the CNT.

As mentioned in section 2.3, the CNT is tuned and driven with DC and AC gate

voltages,

Vg = V dc
g + V ac

g cos(ωt) (4.14)

with V ac
g � V dc

g . The resulting force on the CNT can then be decomposed

Kelec =
1

2
c′g
(
V dc
g + V ac

g cos(ωt)
)2

(4.15)

=
1

2
c′g
(
(V dc

g )2 + V dc
g V ac

g cos(ωt) + (V ac
g )2 cos2(ωt)

)
(4.16)

≈ 1

2
c′g
(
(V dc

g )2 + V dc
g V ac

g cos(ωt)
)

(4.17)

The CNT displacement will have a similar decomposition x(z, t) = u(z)+v(z, t), where the

steady state response will be of the form v(z, t) = v(z) cos(ωt+φ), with phase φ depending
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on resonator and driving conditions. Finally, the tension in the CNT will also have a large

static component and an oscillatory component, which we approximate to first order as

T = Tdc + Tac,

Tdc = T0 +
EA

2L

∫ L

0

(
∂u

∂z

)2

dz (4.18)

Tac =

(
EA

L

∫ L

0

(
∂u

∂z

∂v

∂z

)
dz

)
(4.19)

where we have neglected the tension component proportional to
(
∂v
∂z

)2
.

Substituting these decompositions into Equation (4.13) gives separate governing equa-

tions for the DC and first-order AC components of the CNT motion.

−EI ∂
4u

∂z4
+ TDC

∂2u

∂z2
+Kdc

elec + Fmagδ(z − z0) = 0 (4.20)

−EI ∂
4v

∂z4
+ TDC

∂2v

∂z2
+ TAC

∂2u

∂z2
+Kac

elec cos(ωt)− η∂v
∂t

= ρA
∂2v

∂t2
(4.21)

To simplify notation, we can scale the parameters

z′ =
z

L
, u′ =

u

r
, v′ =

v

r
, T ′dc =

L2Tdc
EI

, k′ =
√
T ′dc, f

′
dc =

Kdc
elecL

4

rEI
, f ′ac =

Kac
elecL

4

rEI

f ′mag =
FmagL

3

rEI
, λ =

1

L2

√
EI

ρA
, η′ =

ηL4

λEI
, ω′ =

ω

λ
, t′ = tλ

The scaled DC and AC governing equations can then be written as

∂4u′

∂z′4
− T ′dc

∂2u′

∂z′2
= f ′dc + f ′magδ(z

′ − z′0) (4.22)

∂2v′

∂t′2
− η′∂v

′

∂t′
+
∂4v′

∂z′4
− T ′dc

∂2v′

∂z′2
− T ′ac

∂2u′

∂z′2
= f ′ace

iω′t′ (4.23)

To solve Equation (4.22), T ′dc is taken as a constant, and doubly clamped boundary
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conditions are applied (u′(0) = ∂u′

∂z′
(0) = u′(1) = ∂u′

∂z′
(1) = 0). The solution is then

u′(z′) =
f ′dc
2k′2

(
sinh(k′)

k′(cosh(k′)− 1)
(cosh(k′z′)− 1)− sinh(k′z′)

k′
− (z′

2 − z′)
)

+

f ′mag

k′3σ3

(σ1 (sinh(k′z′)− k′z′) + σ2 (cosh(k′z′)− 1)) +

f ′mag

k′3
(sinh(k′(z′ − z′0))− k′(z′ − z′0)) H(z′ − z′0) (4.24)

where H(z′) is the Heaviside step function, and

σ1 = cosh(k′)− cosh(k′z′0) + cosh(k′(1− z′0))− k′(1− z′0) sinh(k′)− 1

σ2 = sinh(k′z′0)− sinh(k′) + sinh(k′(1− z′0)) + k′z′0 + k′(1− z′0) cosh(k′)− k′ cosh(k′(1− z′0))

σ3 = k′ sinh(k′)− 2 cosh(k′) + 2

Equation (4.24) is used in Equation (4.18) to solve for a new value of T ′dc. The new T ′dc is

then substituted into Equation (4.24) again. This process is iterated until the T ′dc result

stabilizes.

To determine the resonant frequencies, we decompose the AC motion, v′(z′), into eigen-

states of (4.23),

v′(z′, t′) =
∑

n

v′nξ
′
n(z)eiω

′
nt
′

(4.25)

where ξ′n(z) is the amplitude profile of the nth eigenmode, which oscillates with frequency

ω′n. The decomposition can be inserted into Equation (4.23) to determine equations for

ξ′n(z) and ω′n. In general, T ′ac will couple ξ′m to ξ′n for m 6= n, making this difficult to

solve. However, for high Q resonators and near resonance excitation, v′m is very small for

all m 6= n. Therefore, the mode coupling caused by T ′ac can be neglected, and we get

v′n

[(
−ω′2 + iη′ω′

)
ξ′n(z′) +

∂4ξ′n
∂z′4

− T ′dc
∂2ξ′n
∂z′2

− T ′nac
∂2u′

∂z′2

]
= f ′ac (4.26)

where T ′nac = 4
∫ 1

0
∂u′

∂z′
∂ξ′n
∂z′
dz′ is the amplitude of the oscillatory T ′ac for mode ξ′n.

Noting that T ′nac is independent of v′n, it can be treated as a constant, in which case

(4.26) describes the amplitude response of a damped driven harmonic oscillator if we can

write
∂4ξ′n
∂z′4

− T ′dc
∂2ξ′n
∂z′2

− T ′nac
∂2u

∂z′2
= ω′

2
nξ
′
n (4.27)
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To identify resonant frequencies of the CNT resonator, we must find ω′n which have

solutions in Equation (4.27). The resonant mode shape ξ′n must be solved piecewise, due

to discontinuities introduced by the point force from the nanomagnet. The mode shape

will have homogeneous components (with T ′nac = 0) and a particular solution for finite T ′nac.

Away from the discontinuity at z′ = z′0, the homogeneous solution is of the form

ξ′
h
n = A1 cos(k′+z

′) + A2 sin(k′+z
′) + A3 cosh(k′−z

′) + A4 sinh(k′−z
′) (4.28)

where k′± = 1√
2

√√
T ′2dc + 4ω′n

2 ∓ T ′dc. The particular solution is

ξ′
p
n = A5

∂2u′

∂z′2
(4.29)

To simplify computation for z′ > z′0, we substitute (1− z′) for z′ in the homogeneous

solution. Thus, the full mode shape solution is

ξ′n =





A1 cos(k′+z
′) + A2 sin(k′+z

′) + A3 cosh(k′−z
′) + A4 sinh(k′−z

′) + A5
∂2u′

∂z′2
if z′ ≤ z′0

B1 cos(k′+ (1− z′))+B2 sin(k′+ (1− z′)) +B3 cosh(k′− (1− z′))

+B4 sinh(k′− (1− z′)) +B5
∂2u′

∂z′2
if z′ > z′0

(4.30)

To determine the coefficients, we make use of the doubly clamped boundary conditions,

matching conditions at z′ = z′0 and Equation (4.27). The boundary conditions are

ξ′n(0) = 0 =⇒ A1 + A3 + A5
∂2u′

∂z′2

∣∣∣∣
z′=0

∂ξ′n
∂z′

∣∣∣∣
z′=0

= 0 =⇒ k′+A2 + k′−A4 + A5
∂3u′

∂z′3

∣∣∣∣
z′=0

ξ′n(1) = 0 =⇒ B1 +B3 +B5
∂2u′

∂z′2

∣∣∣∣
z′=1

∂ξ′n
∂z′

∣∣∣∣
z′=1

= 0 =⇒ −k′+B2 − k′−B4 +B5
∂3u′

∂z′3

∣∣∣∣
z′=1

As the only force in Equation (4.23) is the uniform electric force, the AC modeshape and

its derivatives will be continuous up to and including the third derivative, providing four
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matching conditions. Finally, substituting Equation (4.30) into Equation (4.27), gives an

independent equation for both z′ < z′0 and z′ > z′0,

T ′
n
ac + ω2

nA5 = 0

T ′
n
ac + ω2

nB5 = 0

=⇒ A5 = B5

Thus the mode shape coefficients are given by the solutions to



1 0 1 0 0 0 0 0 ∂2u′

∂z′2

∣∣∣
z′=0

0 k′+ 0 k′− 0 0 0 0 ∂3u′

∂z′3

∣∣∣
z′=0

0 0 0 0 1 0 1 0 ∂2u′

∂z′2

∣∣∣
z′=1

0 0 0 0 0 −k′+ 0 −k− ∂3u′

∂z′3

∣∣∣
z′=1

c s ch sh −c− −s− −ch− −sh− 0

−k′+s k′+c k′−sh k′−ch −k′+s− k′+c− k′−sh− k′−ch− ∆3

−k′2+c −k′2+s k′2−ch k′2−sh k′2+c− k′2+s− −k′2−ch− −k′2−sh− 0

k′3+s −k′3+c k′3−sh k′3−ch k′3+s− −k′3+c− k′3−sh− k′3−ch− ∆5

T ′A1
ac T ′A2

ac T ′A3
ac T ′A4

ac T ′B1
ac T ′B2

ac T ′B3
ac T ′B4

ac T ′A5
ac + ω′2n





A1

A2

A3

A4

B1

B2

B3

B4

A5


=



0

0

0

0

0

0

0

0

0


(4.31)

where the following notation was used

c ≡ cos(k′+z
′
0), s ≡ sin(k′+z

′
0), ch ≡ cosh(k′−z

′
0), sh ≡ sinh(k′−z

′
0)

c− ≡ cos(k′+(1− z′0)), s− ≡ sin(k′+(1− z′0)), ch− ≡ cosh(k′−(1− z′0)), sh− ≡ sinh(k′−(1− z′0))

∆3 =
∂3u′

∂z′3

∣∣∣∣
z′=z−0

− ∂3u′

∂z′3

∣∣∣∣
z′=z+0

∆5 =
∂5u′

∂z′5

∣∣∣∣
z′=z−0

− ∂5u′

∂z′5

∣∣∣∣
z′=z+0
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and T ′Xac is the component of T ′nac with coefficient X,

T ′
A1

ac = −4k′+

∫ z′0

0

∂u′

∂z′
sin(k′+z

′)dz′

T ′
A2

ac = 4k′+

∫ z′0

0

∂u′

∂z′
cos(k′+z

′)dz′

T ′
A3

ac = 4k′−

∫ z′0

0

∂u′

∂z′
sinh(k′+z

′)dz′

T ′
A4

ac = 4k′−

∫ z′0

0

∂u′

∂z′
cosh(k′+z

′)dz′

T ′
B1

ac = 4k′+

∫ 1

z′0

∂u′

∂z′
sin(k′+(1− z′))dz′

T ′
B2

ac = −4k′+

∫ 1

z′0

∂u′

∂z′
cos(k′+(1− z′))dz′

T ′
B3

ac = −4k′−

∫ 1

z′0

∂u′

∂z′
sinh(k′+(1− z′))dz′

T ′
B4

ac = −4k′−

∫ 1

z′0

∂u′

∂z′
cosh(k′+(1− z′))dz′

T ′
A5

ac = 4

∫ 1

0

∂u′

∂z′
∂3u′

∂z′3
dz′

The resonant frequencies, ω′n, are those values which allow non-zero solutions to Equa-

tion (4.31). Thus, to determine the resonant frequencies of the CNT resonator, ω′n which

cause the 9x9 coefficient matrix in (4.31) to have zero determinant are found numerically.

In particular, the lowest such ω′n is found and assigned as ω′0, the fundamental frequency

of the CNT resonator. The effect of the nanomagnet on resonance frequency is determined

by independently solving for two values of Fmag.

4.4 Results

The readout of the nanomagnet state will be performed by monitoring the resonant fre-

quency of the CNT resonator. To benchmark the sensitivity of our technique, we calculate
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the frequency shift that will be induced by a magnetic moment reversal of a single Bohr

magneton magnitude (∆m = 2µB). As an initial demonstration we consider a particular

suspended CNT, called Device A, with: L = 1 µm, d = 1 nm, the nanomagnet centered

over the gate (z0 = L
2
), zero residual tension (T0 = 0), and a gate-CNT separation of

200 nm, which gives a field gradient of 3 ·105 T/m. The shift in resonance frequency due to

the ∆m = 2µB transition is found to be maximum for a DC gate voltage of 59 mV in this

device. The maximum frequency shift is ∆f0 = 6.3 kHz. For comparison, the CNT-torque

sensing technique achieves a theoretical maximum 4 kHz frequency shift for ∆m = 24µB,

using the same CNT device parameters and a CNT-nanomagnet grafting length of 0.5 nm

[79]. We can further optimize the device sensitivity by examining how it depends on the

device parameters.

4.4.1 Length and Diameter Dependence

The nanomagnet induced frequency shift will depend on many device parameters, including

length and CNT diameter. Figure 4.3(a) and (b) show the calculated frequencies and

frequency shifts, respectively, as a function of applied gate voltage for several resonator

lengths, L. For each fixed L, there is a maximum frequency shift at a small, finite DC gate

voltage, V max
g . As L increases, V max

g decreases while the magnitude of the frequency shift

increases linearly with L (for parameter dependence fitting see appendix E). Comparing

Figures 4.3(a) and (b), we see that a larger frequency shift corresponds to a lower resonance

frequency. This can be understood as a longer CNT device having a lower spring constant,

yielding both a lower resonance frequency and a larger displacement in response to an

applied force.

In general, CNT resonators are very sensitive to the CNT diameter, as the bending

rigidity is proportional to r4. Figure 4.3(d) shows the frequency shift response for a 1 µm

long CNT of three different diameters. Smaller CNTs produce much larger frequency

shifts that occur at lower gate voltages. The maximum frequency shift (∆f0 that occurs

at V max
g ) is proportional to r−7/2 (see appendix E for fitting). Figure 4.3(c) shows the

resonance frequency for the same devices plotted in 4.3(d), where we see similar lower

absolute frequencies for higher shifts as observed for length variation.

The gate voltage at which the maximum frequency shift occurs, V max
g , can be under-

stood by assessing the tension induced in the CNT by the gate voltage. Figures 4.3(e) and
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4.3(f) show the frequency shifts for the same devices as in (b) and (d), respectively, now

plotted as a function of the gate-induced tension scaled by the critical tension, Tcrit = EI
L2 .

At the critical tension, the restoring force from bending rigidity and tension, corresponding

to the first two terms in the Euler-Bernoulli governing equation (4.13), are of equal mag-

nitude. For the full range of CNT lengths and diameters considered here, the maximum

frequency shift is found to occur at approximately T ≈ 6.3Tcrit. Hence, the maximum

frequency shift occurs at a specific balance of restoring forces in the CNT, independent

of the length and diameter. This optimal force balance can be reached for a wide range

of devices by appropriate tuning of the DC gate voltage. Furthermore, this point can be

approximately identified in the resonant frequency response of the CNT resonator, as a

specific point along the transition between constant resonant frequency at low gate volt-

ages and linear gate voltage dependence at high gate voltages, thus permitting pre-tuning

of the magnetic force sensor.

4.4.2 Residual Tension

As briefly mentioned above, the fabrication and growth of suspended CNT devices can

result in residual tension built into the CNT. Until now we have considered zero resid-

ual tension, however a range of residual tensions have been observed in the experimental

literature, including [77, 39, 80] T ′0 ≡ T0/Tcrit = −26,−18, 0, 1, and additional device en-

gineering could permit other values. Figure 4.4(b) displays the frequency shift response

for various residual tensions. Large residual compressions, T ′0 < −4π2, would result in

buckling of the CNT [28] and are not considered here. However, residual compression

within the buckling limit (−4π2 < T ′0 < 0) results in a significantly increased frequency

shift compared to T ′0 = 0. Fitting the maximum frequency shift (see appendix E) as a

function of T ′0, for various lengths and diameters, with T ′0 ranging from −35 to 35, we find

that the maximum frequency shift is approximately proportional to (4π2 + T ′0)
−1

. Figure

4.4(a) shows the resonance frequency of the devices in 4.4(b). As before, a larger frequency

shift is again seen with a lower resonance frequency. However, at voltages above V max
g , the

effects of residual tension are reduced and the three curves join at high voltages.
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Figure 4.3: a) The resonance frequency versus gate voltage for various suspended CNT

lengths, using d = 1 nm, h = 200 nm, ∂Bz
∂x

= 3 · 105 T/m. Note that all resonator behaviour

is symmetric with respect to the sign of Vg. Numerical precision limits the range over which

some curves are displayed. b) The gate voltage dependence of the resonance frequency shift

produced by a nanomagnet magnetic transition of ∆m = 2µB, for the devices from (a).

c) The resonant frequency of CNTs with various diameters, using L = 1 µm, h = 200 nm,
∂Bz
∂x

= 3 · 105 T/m. d) The frequency shift of the devices in (c). e,f) The frequency shifts

from (b) and (d) respectively, versus tension scaled by the critical tension, Tcrit.
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Figure 4.4: a) Resonant frequency and b) frequency shift using three values for residual

CNT tension T0/Tcrit, and device parameters L = 1 µm, d = 1 nm, h = 200 nm, ∂Bz
∂x

=

3 · 105 T/m
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4.4.3 Dependence on Lateral Nanomagnet Position

As a final device parameter to consider, we note that the position of the nanomagnet on

the CNT will influence the sensitivity to changes in the magnetic moment. Firstly, the

force on the nanomagnet will change as a result of the changing magnetic field gradient.

Figure 4.5(a) shows the gradient of Bz as a function of the position along the CNT, for

Device A and the gate geometry used for figure 4.2. In this device, the force will increase

slightly as the nanomagnet is moved away from center, before decreasing rapidly near the

ferromagnet edge. In addition to the change in force, the resonator response will depend

on the position of the point force, via Equation 4.13. Figure 4.5(b) shows the maximum

frequency shift for ∆m = 2µB, as a function of position for the same device parameters

as 4.5a. A nanomagnet positioned anywhere in the central half of the CNT will have

a maximum frequency shift of at least 50% of the optimal value attained for a centered

nanomagnet (z0 = L/2). This illustrates the robustness of this measurement technique to

uncertainty in nanomagnet positioning.

4.5 Noise and readout bandwidth limits

To observe the frequency shifts calculated above, they will have to be observable in the

presence of the noise in a real frequency measurement. As discussed in section 2.5, the

ultimate limits on resonator noise will be determined by thermomechanical noise of the

CNT resonator, with the minimum detectable frequency shifts given by equation (2.25)

in the slow measurement regime (τ � Q
2πf0

) and equation (2.26) in the fast measurement

regime (τ → 0).

Using the high Q factors measured in previous experiments[39], Q = 105, along with

a device temperature of 100 mK, and 〈v2
max〉 = (0.25 nm)2, the minimum detectable fre-

quency shift signal of Device A at the optimal gate voltage (V dc
g = 59 mV), with a 1 Hz

measurement bandwidth is 5.4 Hz. In the infinite bandwidth limit, given by Equation

(2.26), the minimum detectable frequency shift for the same device and gate setting is

270 Hz. Thus, the ∆m = 2µB transition, which results in ∆f0 = 6.3 kHz, exceeds the

intrinsic thermomechanical resonator noise for arbitrarily short measurement times in this

device.

Another readout limiting factor for the CNT resonator will be given by the mechanical
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Figure 4.5: a) The absolute magnetic field gradient ∂Bz
∂x

as a function of position along the

CNT, for the 800 nm wide by 200 nm thick cobalt gate and 200 nm gate-CNT separation.

b) The maximum frequency shift of Device A for ∆m = 2µB, as a function of nanomagnet

position.
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response of the CNT to a resonant frequency shift. The observable mechanical state of the

CNT will have a transient response following the frequency shift. This transient response

is characterized by a ring down timescale, τm ∼ Q
4πf0

. For Device A, and Q = 105, the ring

down timescale is τm ∼ 300µs. The electrical measurement bandwidth for CNT resonators

should exceed this timescale through the use of fast readout [42] and cryogenic amplifiers,

which typically operate at MHz to GHz bandwidths. Thus, we expect the mechanical ring

down time to be the bandwidth limiting timescale in these devices.

Table 4.1 displays the ring down times and calculated signal to noise ratios for fast

readout of five example devices, where signal to noise is defined as

SNR∞ = max
Vg

∆f0

δf0|τ=0

(4.32)

and δf0|τ=0 is evaluated using 〈v2
max〉 =

(
QV dcg V acg C′g

4π2m′f20

)2

, m′ ≈ m/2 which is evaluated from

the calculated mode shapes, and V ac
g = 5 µV, which is chosen to keep these devices in

the linear regime. The Devices B-E each have one parameter altered with respect to

Device A. For each device, two quality factor models are considered. In one case, a fixed

value of Q = Q∗ is used, where Q∗ = 105 for Devices A-D. The other case uses a fixed

damping factor η = 2πf0
Q∗

. In both cases, increasing length and residual compression, and

decreasing diameter, improve signal to noise ratio. In the case of constant quality factor,

the increased signal to noise comes at the cost of increased mechanical ring down time.

Decreasing quality factor, as in Device E, decreases SNR∞ ∝ Q−1 while linearly decreasing

ring down time. The signal to noise ratio and ring down times may be adjusted through

device design to obtain sufficient signal at a desired time scale.

It should be noted that the above results are for linear resonator sensing. If additional

sensitivity is required, non-linear resonator behaviour can be used to measure the resonance

frequency shifts, as was done in reference [6]. Alternatively, as discussed in section 2.4.4, the

ultrasensitive measurement technique can be used to observe the frequency of parameter

modulation. This could be used in conjunction with external driving of the nanomagnetic

state (eg, via Rabi oscillations of single molecule magnet spin states) to measure the state

oscillation frequency and the related coupling strengths.
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Device Change SNR1
∞ SNR2

∞ τ 1
m (µs) τ 2

m (µs)

A None 62 31 320 160

B L = 2µm 700 86 1300 160

C d = 1.5nm 11 10 170 160

D T ′0 = −25 220 67 520 160

E Q∗ = 3000 1.9 0.9 9.6 4.8

Table 4.1: Infinite bandwidth signal to noise ratios for ∆m = 2µB, and ring down times,

for example CNT devices. Device A has L = 1 µm, d = 1 nm, T ′0 = 0, Q∗ = 105. Devices

B-E have one parameter changed with respect to Device A. SNR1
∞ and τ 1

m use Q = Q∗.

SNR2
∞ and τ 2

m use f0
Q

= 50 MHz
Q∗

.

4.6 Discussion

One of the motivating applications of this CNT magnetic force detection scheme is towards

the study of single molecule magnets (SMMs). The CNT-torque technique was used to

observe magnetic reversal in the S=6 TbPc2 SMMs [6]. Our measurement scheme would

permit similar measurements, over a wide range of SMMs. Beyond magnetic reversal

measurements, the improved sensitivity of our technique should enable single shot readout

of SMM magnetic states. The g-factors of SMM spins are approximately g ≈ 2, meaning

that ∆S = 1 transitions are approximately equivalent to the ∆m = 2µB transitions we

consider above. This could allow us to probe every state transition in the SMM spin,

including coherent spin dynamics that have been demonstrated in a number of SMMs

including V15 [81], Cr7Mn and Cr7Ni [82], and Fe8 [83, 84, 85]. Driving of the coherent

transitions with an external microwave field is compatible with our sensing, as long as

the driving frequencies are well separated from the CNT mechanical frequencies, allowing

these coherent transitions to be externally driven while being measured by our technique.

This would allow the coherent SMM spin rotations to be observed within the parameters

described in table 4.1.

As a particular example, at 1.2 K the Cr7Ni and Cr7Mn SMMs have spin relaxation

times (T1) on the order of 1 ms in bulk crystals [82]. If this relaxation timescale is main-

tained or exceeded for individual SMMs grafted to CNTs, the devices considered here

could enable single shot spin state measurements. This readout could be used to evalu-

ate spin decoherence and relaxation timescales of individual SMMs. These experiments
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could provide further exploration of relaxation mechanisms in the SMMs by observing the

dependence of the relaxation time on the applied magnetic field, and on the mechanical

resonator properties such as a 1D phonon density. Even beyond these applications, the

ring down time scale of Device E presented in table 4.1 is comparable to the 4 µs spin

decoherence time achieved with deuterated Cr7Ni [82], potentially permitting readout on

the timescale of decoherence.
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Chapter 5

Summary and Conclusion

CNT resonators have been developed into some of the most sensitive measurement devices

to date. In this thesis, we describe work towards applying CNT resonators to sensing of the

magnetic states of nanoscale magnetic objects, such as single molecule magnets. We have

developed fabrication of CNT resonators using a local fine gate, to both enable the strong

magnetic field gradient that will be used to couple the nanomagnet to the resonator and to

minimize crosstalk capacitances to the source and drain. We have developed a CVD process

capable of growing low-defect CNTs across the raised source and drain contacts. Analysis of

as-grown devices have identified some remaining device complications. Proposed methods

of correcting these issues have been discussed.

In addition to the nanofabrication of devices, numerical simulation of the proposed

sensing technique has been completed. Modelling of the CNT resonator and the magnetic

field gradient induced force on the nanomagnet enable extraction of the resonant frequency

and its dependence on nanomagnet state. By exploring the impact of device operating

and fabrication parameters, we have identified preferred device properties and optimal

operating conditions for maximum sensitivity. Our proposed technique presents at least an

order of magnitude improvement over the most recent magnetic moment sensing techniques.

This sensitivity should allow measurement of single electron spin flips at sub-millisecond

timescale, with the potential for ∼ 10 µs measurement times if ideal noise measurements

can be employed. This proposed sensing technique will enable novel studies of magnetic

systems at the nanoscale, such as single shot readout of single molecule magnet states.
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Appendix A

Suspended CNT Device Fabrication

Process

This appendix describes the details of the most recent suspended CNT device fabrication

process, using the QNCFab facilities for all but the CVD process. The standard lithography

recipes are described following the device recipe.

The devices are fabricated on a 4” Si wafer with 300 nm SiO2 thermal resist. The wafer

is intrinsic Si with resistivity ρ > 5000 Ω/cm, and 〈100〉 orientation.

1. Clean wafer as required by wafer condition

2. Source/Drain definition:

(a) Photolithography using PMGI-S1805 Bilayer Recipe and CNT Mask #1 (SD)

(b) Deposit 10nm Ti, followed by 40nm Pt, using the Ti/Pt recipe in the IntlVac

e-Beam evaporation system

(c) Liftoff in PG remover

(d) 2 minute descum in YES-CV200RFS PR Stripper

3. Trench Etching:

(a) Photolithography using S1811 Monolayer Recipe and CNT Mask #2 (Trench)
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(b) Partially etch SiO2 using Oxford III-V etcher. Use OPT-SiO2 for 40s to etch

∼ 240 nm

(c) Liftoff in acetone

(d) Main ash recipe (1000W RF, 180 ◦C) in YES-CV200RFS PR Stripper to remove

any remaining S1811

4. Gate Pad Definition:

(a) Photolithography using PMGI-S1805 Bilayer Recipe and CNT Mask #3 (Gate)

(b) Deposit 10nm Ti, followed by 40nm Pt, using the Ti/Pt recipe in the IntlVac

e-Beam evaporation system

(c) Liftoff in PG remover

(d) 2 minute descum in YES-CV200RFS PR Stripper

5. Fine gate definition:

(a) Electron beam lithography using the PMMA-PMMA bilayer recipe and CNTFineGate

pattern

(b) Deposit 10nm Ti, followed by 40nm Pt, using the Ti/Pt recipe in the IntlVac

e-Beam

(c) Liftoff in PG remover

6. CNT Catalyst Deposition:

(a) Photolithography using PMGI-S1805 bilayer recipe and CNT Mask #4 (Islands)

(b) 4 minutes of 50W descum in YES-CV200RFS PR Stripper

(c) Spin on 8X Catalyst Solution (see appendix B) using the following spin settings:

i. 100 RPM at 100 RPM/s for 25s

ii. 2000 RPM at 500 RPM/s for 45s

iii. 0 RPM at 500 RPM/s for 0s

(d) Bake sample at 120 ◦C for 5 minutes.

(e) Liftoff in PG remover. Use 30s PG remover soak, followed by separate 15 minute

PG remove soak to minimize catalyst re-adhesion.
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(f) 6 minutes of 50W descum in YES-CV200RFS PR Stripper, to remove any final

resist residues.

7. CVD growth of CNTs using methane recipe #2 (see Appendix B)

A.1 PMGI-S1805 Bilayer Photolithography Recipe

The basic recipe for our bilayer photolithography is:

1. Clean sample as required

2. Apply a hexamethyl disilazane (HMDS) coat using the YES-310-TA HMDS Oven

recipe #1.

3. Spin PMGI onto sample using the Wafer spinner, with the following spin settings

(a) 500 RPM at 100 RPM/s ramp for 5s

(b) 5000 RPM at 500 RPM/s ramp for 60s

(c) 0 RPM at 500 RPM/s ramp for 0s

4. Bake sample at 150 ◦C for 5 minutes. If slightly less undercut is desired after devel-

opment, this temperature can be increased to 190 ◦C.

5. Spin Shipley S1805 photoresist onto the sample, using the same spinning recipe as

the PMGI layer.

6. Bake sample at 120 ◦C for 90s

7. Expose sample using MA6 Mask Aligner and desired photomask. The nominal ex-

posure time is 4.0s, however the best resolution exposure settings will depend on

feature size, substrate, and lamp lifecycle.

8. Develop sample for 60s in MF-319 developer, followed by 60s DI water to stop devel-

opment. Rinse in DI water and blow dry with N2.

9. Clean sample with 2 minute, 50W descum recipe in YES-CV200RFS PR Stripper to

remove the HMDS layer in the developed regions.
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The nominal resist thicknesses are∼ 500 nm PMGI and∼ 500 nm S1805. The minimum

reliable line separation distance was found to be ≈ 2 µm, as narrower line separations would

often result in the PMGI layer being completely removed resulting in layer collapse and

subsequent liftoff issues.

A.2 S1811 Monolayer Photolithography Recipe

The basic recipe for our monolayer photolithography is:

1. Clean sample as required

2. Spin Shipley S1811 photoresist onto the sample, using the same spinning recipe as

the PMGI layer in A.1

3. Bake sample at 120 ◦C for 90s

4. Expose sample using MA6 Mask Aligner and desired photomask. The nominal ex-

posure time is 4.0s, however the best resolution exposure settings will depend on

feature size, substrate, and lamp lifecycle.

5. Develop sample for 60s in MF-319 developer, followed by 60s DI water to stop devel-

opment. Rinse in DI water and blow dry with N2.

The nominal resist thickness is 1 µm.

A.3 PMMA-PMMA Bilayer Electron Beam Lithog-

raphy Recipe

The basic recipe for our bilayer EBL is:

1. Clean sample as required

2. Spin PMMA 495k A3 resist onto sample using the Wafer spinner, with the following

spin settings
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(a) 500 RPM at 500 RPM/s ramp for 10s

(b) 2000 RPM at 2000 RPM/s ramp for 40s

(c) 0 RPM at 500 RPM/s ramp for 0s

3. Bake sample at 180 ◦C for 3 minutes.

4. Spin PMMA 950k A4 resist onto the sample, using:

(a) 500 RPM at 500 RPM/s ramp for 10s

(b) 2800 RPM at 2000 RPM/s ramp for 40s

(c) 0 RPM at 500 RPM/s ramp for 0s

5. Bake sample at 180 ◦C for 12 minutes.

6. Expose sample using RAITH 150TWO electron-beam direct-write lithography sys-

tem. Exposure settings will depend on sample. The nominal settings used in this

work are 20 kV accelerating voltage, 30 µm aperture, 280 C/µm2 area dose.

7. Develop sample for 45s in IPA:DI (7:3), followed by 45s in DI water.
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Appendix B

CNT CVD Recipes

This appendix details the primary CVD recipes tested for CNT growth. All growths were

performed in sealed quartz tube CVDs. The ethanol CVD was performed in a 2” quartz

tube. The ethylene and methane CVD were performed in a 1” quartz tube.

B.1 Catalyst Recipe

All CVD growths used a Fe-Co-Mo catalyst with silica supporting crystals. The support

liquid and concentrations were adjusted to affect catalyst distribution and density. The

final recipe for the catalyst solution, referred to as ”8X Catalyst Solution”, is:

1. In a small glass vial, combine:

(a) 1.4 mg of Molybdenum (II) acetate dimer (Mo2(OCOCH3)4)

(b) 9.2 mg of Cobalt (II) acetate ((CH3CO2)2Co)

(c) 6.0 mg of Iron (III) acetylacetonate (Fe(C5H7O2)3)

(d) 3.0 mL of IPA

2. In a separate glass vial, combine:

(a) 15.0 mg of fumed Silica 7nm nanobeads
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(b) 3.0 mL of IPA

3. Sonicate both vials for ∼ 1 hour

4. Combine 2mL of each solution into a separate glass vial

5. Sonicate the combined solution for ∼ 2 hours

B.2 Ethanol CVD

1. Ramp to 850 ◦C under 1200 sccm Ar and 36 sccm H2 (30 minutes)

2. At 850 ◦C, flow 36 sccm H2 through ethanol bubbler then to CVD, and flow 1200

sccm Ar normally

3. Cool to 80 ◦C under 1200 sccm Ar and 36 sccm H2 (60 minutes)

B.3 Ethylene CVD

1. Ramp to 850 ◦C, under 300 sccm Ar and 10 sccm H2 (20 minutes)

2. At 850 ◦C, flow 300 sccm Ar, 10 sccm H2 and 20 sccm C2H4 (20 minutes)

3. Cool to 80 ◦C under 300 sccm Ar and 10 sccm H2 (40 minutes)

B.4 Methane CVD

B.4.1 Recipe #1

1. Ramp to 850 ◦C under 40 sccm H2 (20 minutes)

2. At 850 ◦C, flow 200 sccm CH4 and 40 sccm H2 (20 minutes)

3. Cool to 80 ◦C under 40 sccm H2 (40 minutes)
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B.4.2 Recipe #2

1. Ramp to 850 ◦C under 440 sccm H2 and 600 sccm Ar (20 minutes)

2. At 850 ◦C, flow 1000 sccm CH4 and 440 sccm H2 (20 minutes)

3. Cool to 80 ◦C under 440 sccm H2 and 600 sccm Ar (40 minutes)

B.5 CVD Cleaning and Conditioning

Each CVD growth was preceded by a cleaning and conditioning process to ensure the tube

contamination was minimized. The process was similar for each growth. The exact process

used for the final methane CVD growths is included here:

1. Open quartz tube to ambient air

2. Ramp to 850 ◦C (20 minutes)

3. Wait 30minutes

4. Cool to 80 ◦C (∼40 minutes)

5. Reseal quartz tube

6. Ramp to 850 ◦C under 200 sccm H2 flow (20 minutes)

7. At 850 ◦C, flow 1000 sccm CH4 and 200 sccm H2 (30 minutes)

8. Cool to 80 ◦C under 200 sccm H2 flow (∼ 40 minutes)
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Appendix C

Zero Bias Conductance Peak Fitting

The Coulomb peaks broadening can be dominated by either tunneling or thermal effects.

Figure C.1 shows the results of fitting three of the experimentally measured zero bias

conductance peaks from figure 3.12. The tunneling limited conductance is fitted using[60]

Gtunnel

Gmax

=
(Γ/2α)2

(Vg − Vg,0)2 + (Γ/2α)2
(C.1)

where Γ is the tunnel coupling of the CNT, Gmax is the maximum conductance of the

conductance peak, Vg,0 is the central gate voltage of the peak, and

α =
1

1.32

Cg
Cs + Cd + Cg

(C.2)

The thermally limited conductance is fitted using [25]

Gthermal

Gmax

=
δ/kBT

2 sinh(δ/kBT )
≈ 1

2
cosh−2

(
δ

2.5kBT

)
(C.3)

where

δ = e
Cg

Cs + Cd + Cg
|Vg − Vg,0| (C.4)

As expected from the calculated tunneling rates in section 3.4 (Γ ∼ 2 GHz = 15mK), the

thermal limited fitting provides a much better fit for the Coulomb valleys. The thermal

fitting achieves the best fit using T = 1.6 K and Coulomb peak heights Gpeak ≈ 0.016 e2/h,

indicating that our sample was at a higher temperature than expected.
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Figure C.1: The measured zero bias conductance peaks for the suspended CNT device,

and fitting of these curves using tunneling and thermally limited conductance models.
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Appendix D

Magnetic field of ferromagnetic gate

This calculation is based on [86]. The magnetic field of the rectangular ferromagnetic gate

can be described by the scalar field Φ, where outside of the magnet the field relation is

~B(~r) = −µ0∇Φ(~r) (D.1)

The scalar field is calculated as

φ(~r) = − 1

4π
∇
∫

V

~M(~r′)∣∣∣~r − ~r′
∣∣∣
d~r′ (D.2)

where ~M(~r′) is the magnetization and V is the three-dimensional ferromagnet.

In our system of interest, M is constant along the z axis, so ~M(~r) = M0êz. The integral

then becomes

φ(~r) = −M0

4π

∂

∂z

∫ zc

−zc

∫ yc

−yc

∫ xc

−xc

[
1√

(x− x′)2 + (y − y′)2 + (z − z′)2

]
dx′dy′dz′ (D.3)

where 2xc is the gate thickness, 2yc is the gate length, and 2zc is the gate width.

The solution to (D.3) is given in [86]:

Bx =
µ0M0

4π

2∑

k,l,m=1

(−1)k+l+m ln
(
y + (−1)lyc +

√
(x+ (−1)kxc)2 + (y + (−1)lyc)2 + (z + (−1)mzc)2)

)

(D.4)
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By =
µ0M0

4π

2∑

k,l,m=1

(−1)k+l+m ln
(
x+ (−1)kxc +

√
(x+ (−1)kxc)2 + (y + (−1)lyc)2 + (z + (−1)mzc)2)

)

(D.5)

Bz =
µ0M0

4π

2∑

k,l,m=1

(−1)k+l+m (y + (−1)lyc)(z + (−1)mzc)

|y + (−1)lyc| |z + (−1)mzc|
·

atan

( ∣∣y + (−1)lyc
∣∣ (x+ (−1)kxc)

)

|z + (−1)mzc|
√

(x+ (−1)kxc)2 + (y + (−1)lyc)2 + (z + (−1)mzc)2)

)
(D.6)
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Appendix E

Parameter dependence of the

maximum frequency shift

To extract the relationship between device parameters and the maximum frequency shift,

we determined the maximum shift for a range of device values and used numerical fitting

to determine the corresponding relation. The calculations below used initial parameters

of L = 1 µm, r = 0.5 nm, z0 = L
2
,T0 = 0, h = 200 nm, and a magnetic field gradient of

3 · 105 T/m. All of the fittings shown below have R2 = 1.000 with respect to the displayed

data points.

The length dependence is shown in Figure E.1, using L from 600 nm to 2 µm. The

calculated fitting is

max(∆f) ∝ L1.000 (E.1)

The diameter dependence is examined with d ranging from 1 nm to 2.5 nm. The

maximum frequency shift relationship is shown in Figure E.2. The calculated fitting is

max(∆f) ∝ d−3.500 (E.2)

The maximum shift for residual tension ranging from −35L2/(EI) to 35L2/(EI) is

shown in Figure E.3. The calculated fitting is

max(∆f) ∝
(
T ′0 + 4π2

)−1.027
(E.3)

where T ′0 = T0L
2/(EI).
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Figure E.1: Calculated maximum frequency shift as a function of resonator length, L, and

the calculated fit.
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Figure E.2: Calculated maximum frequency shift as a function of CNT diameter, d, and

the calculated fit.
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Figure E.3: Calculated maximum frequency shift as a function of residual tension, T0, and

the calculated fit.
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Appendix F

Errata to J. Appl. Phys. 115 114501

The following corrections apply to

Willick K, Haapamaki C, Baugh J. Sensitive magnetic force detection with a

carbon nanotube resonator. J Appl Phys. 115 114501 (2014)

The coefficients of δf0 formula are incorrect. Equation (9) should read

δf0 =
1

2π

√
kBT

2πm′ 〈v2
max〉 τf0Q

(F.1)

and equation (10) should be

δf0|τ≈0 =
1

2π

√
πkBT

2m′ 〈v2
max〉Q2

(F.2)

In the paragraph following equation (10), the driving amplitude should be changed

from 〈v2
max〉 = (0.1 nm)2 to 〈v2

max〉 = (0.25 nm)2. The infinite bandwidth limit minimum

detectable frequency shift should be 270 Hz instead of 86 Hz.

In the line immediately following equation (11), it should read:

and δf0|τ=0 is evaluated using 〈v2
max〉 =

(
QV dcg V acg C′g

4π2m′f20

)2

, and V ac
g = 5 µV.

79



References

[1] W. Wernsdorfer. Molecular nanomagnets: towards molecular spintronics. Int. J.

Nanotechnol., 7(4/5/6/7/8):497–522, 2010.

[2] H. van Houten and C. Beenakker. Quantum point contacts. Physics Today, 49(7):22–

27, 1996.

[3] S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai. A single-photon

detector in the far-infrared range. Nature, 403:405, 2000.

[4] D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui. Single spin detection by

magnetic resonance force microscopy. Nature, 430(6997):329–332, July 2004.

[5] D. Vasyukov, Y. Anahory, L. Embon, D. Halbertal, J. Cuppens, L. Neeman, A. Fin-

kler, Y. Segev, Y. Myasoedov, M. L. Rappaport, M. E. Huber, and E. Zeldov. A

scanning superconducting quantum interference device with single electron spin sen-

sitivity. Nat. Nanotechnol., 8(9):639–44, September 2013.

[6] M. Ganzhorn, S. Klyatskaya, M. Ruben, and W. Wernsdorfer. Carbon nanotube

nanoelectromechanical systems as magnetometers for single-molecule magnets. ACS

nano, 7(7):6225–36, July 2013.

[7] K. Jensen, K. Kim, and A. Zettl. An atomic-resolution nanomechanical mass sensor.

Nat. Nanotechnol., 3(9):533–537, 2008.

[8] B. Lassagne, D. Garcia-Sanchez, A. Aguasca, and A. Bachtold. Ultrasensitive mass

sensing with a nanotube electromechanical resonator. Nano Lett., 8(11):3735–3738,

2008.

80



[9] H.-Y. Chiu, P. Hung, H. W. C. Postma, and M. Bockrath. Atomic-scale mass sensing

using carbon nanotube resonators. Nano Lett., 8(12):4342–6, December 2008.

[10] J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and a. Bachtold. A nanome-

chanical mass sensor with yoctogram resolution. Nat. Nanotechnol., 7(5):301–4, May

2012.

[11] J. Moser, J. Güttinger, A. Eichler, M. J. Esplandiu, D. E. Liu, M. I. Dykman, and

A. Bachtold. Ultrasensitive force detection with a nanotube mechanical resonator.

Nat. Nanotechnol., 8(7):493–496, July 2013.

[12] H.-S. P. Wong and D. Akinwande. Carbon Nanotube and Graphene Device Physics.

Cambridge University Press, 2011.

[13] W. Izumida, K. Sato, and R. Saito. SpinOrbit Interaction in Single Wall Carbon Nan-

otubes: Symmetry Adapted Tight-Binding Calculation and Effective Model Analysis.

J. Phys. Soc. Japan, 78(7):074707, July 2009.

[14] E. A. Laird, F. Kuemmeth, G. Steele, K. Grove-Rasmussen, J. Nyg̊ard, K. Flensberg,

and L. P. Kouwenhoven. Quantum transport in carbon nanotubes. 2014.

[15] M. Huang, Y. Wu, B. Chandra, H. Yan, Y. Shan, T. Heinz, and J. Hone. Direct

Measurement of Strain-Induced Changes in the Band Structure of Carbon Nanotubes.

Phys. Rev. Lett., 100(13):136803, April 2008.

[16] J. Svensson and E. E. B. Campbell. Schottky barriers in carbon nanotube-metal

contacts. J. Appl. Phys., 110(11):111101, 2011.

[17] Y.-C. Tseng and J. Bokor. Characterization of the junction capacitance of metal-

semiconductor carbon nanotube Schottky contacts. Appl. Phys. Lett., 96(1):013103,

2010.

[18] A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai. Ballistic carbon nanotube

field-effect transistors. Nature, 424(6949):654–7, August 2003.

[19] L. Ding, S. Wang, Z. Zhang, Q. Zeng, Z. Wang, T. Pei, L. Yang, X. Liang, J. Shen,

Q. Chen, R. Cui, Y. Li, and L.-m. Peng. Y-Contacted High Performance n-Type

Single-Walled Carbon Nanotube Field-Effect Transistors : Scaling and Comparison

with Sc-Contacted Devices. Nano Lett., 9(12):4209–4214, 2009.

81



[20] M. J. Biercuk, S. Ilani, C. M. Marcus, and P. L. Mceuen. Electrical Transport in

Single-Wall Carbon Nanotubes. In Carbon Nanotub. Adv. Top. Synth. Struct. Prop.

Appl., volume 493, pages 455–493. Springer Berlin Heidelberg, 2008.
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