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Abstract

In this thesis we investigate a range of properties for spin ice under various perturbations

theoretically. Diluted spin ices, Dy2−xYxTi2O7 and Ho2−xYxTi2O7, where the magnetic

rare-earth ions Dy3+ and Ho3+ are replaced by the non-magnetic Y3+ ions, are modeled by

the random-site diluted dipolar spin ice Hamiltonians. It is found that the Monte Carlo

simulation results for the specific heat of the model Hamiltonians describe the experimental

measurements accurately up to x = 1.7 for a large temperature range. The experimentally

observed, and simulation-confirmed, non-monotonicities in the specific heat broad peak and

residual entropy are then rationalized theoretically by a numerical linked cluster expansion

to the first order, i.e., a single-tetrahedron approximation. The broad peak of the specific

heat of spin ice is shown to be related to the thermal defect monopole density. For a nearest-

neighbour spin ice, the paramagnetic phase is shown to be stable for all dilution levels at

finite temperatures through a random site-diluted Husimi tree Bethe-Peierls argument.

The loss of the projective equivalence in the presence of dilution is commented for the

problem.

Thin film spin ices, are studied for a film surface normal to the [001] direction. Cor-

rections to the Pauling’s residual entropy are derived for different surface states, and are

confirmed by Monte Carlo study. An important geometrical object on the [001] surface,

the orphan bond, is identified. By tuning the strength of the orphan bond, various surface

states emerge in the simulations. Most notably, in the dipolar spin ice thin film with an

antiferromagnetic orphan bond, a novel phenomenon of surface magnetic freezing is found

in the simulations. The transition to long-range order for the surface freezing is found to be

continuous. The mechanism for surface freezing is argued to be induced by a self-screening

of the dipolar interactions due to the pyrochlore structure below the surface.

The microscopic model of Dy2Ti2O7, is scrutinized for further neighbour exchange

interactions. A dimensionality reduction [112] field experiment is considered, which allows

for unambiguous determination for the constraints for the exchange interactions. With

such constraints we attempt to fit the microscopic model of Dy2Ti2O7, to three sets of

experiments. First is the specific heat measurement from the work of Pomaranski et al.

[1], second is the specific heat measurement from the work of Ke et al. [2], and third

is the neutron scattering measurement by Fennell et al. [3]. The second set of data is

in quantitative agreement with the majority of specific heat measurements for Dy2Ti2O7,

where a residual entropy plateau of Pauling’s value [4] is found. The first set of data,
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however, shows an absence of Pauling’s entropy, but it is believed to be better equilibrated

[1]. In this work, we show by fitting our model to the three sets of data, that the second

and third sets of data can be simultaneously fitted but not for the first and third sets

of data. Therefore our analysis exposes further inconsistencies in the measurements for

the compound Dy2Ti2O7, by relating specific heat and neutron scattering measurements

through the microscopic model.

We examine the pinch point singularity in the neutron scattering data of spin ice

through Monte Carlo simulations. It is found in simulations that pinch points exist up

to high temperatures in dipolar spin ice, where local ice-rule no longer applies. Such

observation is crucial in understanding experimental observed pinch points in spin ice

materials, such as in Ho2Ti2O7 [5], that the pinch point seen in neutron scattering may

be a deceptive signal when the system possesses large dipolar interaction. The thermal

broadening of the pinch points for a nearest-neighbour spin ice model is also considered.

The correlation length from fitting the broadening of the pinch point is compared with the

average thermal defect monopole distances.

The quantum spin ice candidate material Yb2Ti2O7 is regarded as a rare candidate for

spin liquid with a well parameterized Hamiltonian [6]. In the presence of a quantum micro-

scopic model, numerical methods are needed in calculating its properties with controllable

errors. For the Hamiltonian of the quantum spin ice Yb2Ti2O7, we demonstrate the capa-

bility of the numerical linked cluster method in calculating the neutron scattering intensity

patterns. These results open avenues for future works on the study of the quantum spin

ices.
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Chapter 1

Introduction

1.1 Geometrical frustration

Frustration in magnetism refers to the situation where not all the interactions can be

simultaneously satisfied. Consider the following example of an Ising antiferromagnet on a

triangular lattice, of which a triangular plaquette is shown in Fig. 1.1. It is clearly not

possible to satisfy all the pairwise interactions on a triangular plaquette.

?
Figure 1.1: Ising antiferromagnet on a triangular plaquette

An important consequence from frustration, as seen in this example, is the degeneracy

of the ground state, as there are different ways to choose which bond is frustrated. In

the thermodynamic limit, the degenerate ground states are not symmetry related, and the

number of them is macroscopic. Note that eventually the degeneracy will be lifted by weak
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perturbations in experimental systems, leading to a long range order transition or even a

glass transition [8] at a temperature much lower than the frustrated interaction energy

scale. In experiment, frustration is often characterized by the frustration index [9]

f ≡ ∣θCW∣
T ∗ (1.1)

where θCW is the Curie-Weiss temperature, which reflects the dominant interaction energy

scales in the problem and is determined from the inverse susceptibility at high tempera-

tures. T ∗ is the critical temperature where the system eventually develops long-range order

or, in the case of a thermodynamic spin-glass transition, the freezing temperature.

1.2 Rare earth pyrochlores

Spin ice materials, the subject of this thesis, belong to the cubic pyrochlore oxide family,

A2B2O7, where A and B represent two species of ions. Either or both of them can be

magnetic and they independently occupy two separate pyrochlore lattices [8]. Canonical

spin ice materials, Dy2Ti2O7 and Ho2Ti2O7, are the cases where the A site is a 4f rare-

earth trivalent ion (Dy3+ or Ho3+), which is magnetic, whereas the B site is a transition

metal, which is non-magnetic.

1.2.1 Pyrochlore lattice

The pyrochlore lattice consists of an FCC Bravais lattice, with a basis of four ions. It is a

network of corner-sharing tetrahedra, which makes the pyrochlore lattice an ideal structure

for geometrical frustration, as each tetrahedron consists of four triangular plaquette faces.

Fig. 1.2 shows the pyrochlore lattice in a conventional cubic unit cell.

1.2.2 Crystal field and single ion properties

For rare-earth ions, the spin-orbit interaction is large and J = L + S is a good quantum

number, with Hund’s rules determining the electronic ground state of an isolated ion [8].

For Dy3+, since the outer electronic configuration is 4f 9, we have S = 5/2 in maximizing S
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Figure 1.2: Pyrochlore lattice in a cubic unit cell

and L = 5 in maximizing L from Hund’s rules, thus J = 15/2 for Dy3+. For Ho3+, its outer

electronic configuration is 4f 10, thus we have S = 2 and L = 6 from Hund’s rules, leading

to J = 8 for Ho3+. For an isolated ion all the 2J + 1 states are degenerate.

The 2J +1 degeneracy is lifted by the crystal field (CF) Hamiltonian resulting from the

electrostatic and covalent bonding from the local environment of the rare-earth ions. In

terms of Steven’s operators [10], the CF Hamiltonian can be written as

HCF =∑
i

∑
l,m

Bm
l O

m
l (Ji) (1.2)

The Steven’s operators for some given symmetries can be found in existing tables [11].

For the pyrochlore structure, the immediate environment for the rare-earth ions are the

eight oxygens surrounding each of them. Two of the oxygens are in the center of the two

tetrahedra the rare-earth ion connects, therefore these two oxygens and the rare-earth ion

form a line in the direction of the local [111] axis of the rare earth ion. The other six oxygen

ions form a “puckered six-member ring” [8] in a plane normal to the local [111] direction.

Therefore for the A site rare-earth ion, its local [111] direction is special from the crystal
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field Hamiltonian. Depending on the details of the crystal fields, the magnetic anisotropy

for the rare-earth ground state can be either easy plane or easy axis with respect to the

local [111] direction.

It turns out that for Dy2Ti2O7 and Ho2Ti2O7, their respective crystal field Hamiltoni-

ans select ground state doublets for both rare-earth ions. The ground state doublets are

characterize by an easy-axis local susceptibility with respect to the local [111] directions

dictated by the symmetry of the surrounding oxygen atoms. Furthermore, these ground

state doublets are separated from their higher crystal field levels by an energy scale of

the order of hundred Kelvin [12, 13]. Therefore, at temperatures below tens of Kelvin,

they form an effective Hilbert space for the rare-earth ions, and the magnetic moments for

Dy2Ti2O7 and Ho2Ti2O7 can be described by classical Ising spins confined to point along

their local [111] direction.

1.3 Spin ice and residual entropy

1.3.1 Residual entropy and mapping to water ice

As we discussed in Section 1.2 the magnetic moments in spin ice have easy axes along

their local [111] direction. The neighbouring interactions between two spins on the same

tetrahedron are determined to be ferromagnetic [14]. Considering a spin pointing into a

tetrahedron, to satisfy the ferromagnetic interaction between this spin and the three other

spins, the three other spins need to be pointing out. However it is impossible to satisfy

all these interactions between the four spins on a tetrahedron. Thus spin ice is frustrated,

and the lowest energy configuration for a tetrahedron is that two of the spins point in and

the other two point out of each tetrahedron, as shown in Fig. 1.3. This is the so-called ice

rule, as the two-in-two-out spin constraint can be mapped to the Bernal-Fowler ice rule in

the hexagonal and cubic water ice for the proton disorder [4].

Shown in Fig. 1.3, the oxygen atoms (red circle) in water ice are located on a diamond

lattice, which are the centers of the tetrahedra of the pyrochlore lattice. Between two

neighbouring oxygens, there is exactly one proton (blue circles) in between and the proton

is closer to one oxygen than the other. The ice rule requires that there are exactly two

protons closer to an oxygen atom and the other two farther away [4]. Thus the proton

displacements can be mapped to the two-in-two-out spin configuration in spin ice.
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Figure 1.3: Left: ice rule on a tetrahedra; Right: ice rule for the proton displacement

In the work by Pauling [4], the residual entropy per proton is estimated to be (kB/2) ln(3/2).
The similar argument for spin ice goes as follows: Suppose we have N spins under con-

sideration, and the number of tetrahedra is thus N/2. If there is no ice rules, the total

number of spin configurations is 2N . However, out of the 16 spin configurations for a given

tetrahedron, only 6 of them satisfy the ice rule, thus the total number of ice-rule config-

urations is 2N(6/16)N/2 Thus we have the entropy of (kB/2) ln(3/2) per spin in spin ice.

The approximation made here is that we take the probability to satisfy the ice rule given

a random spin configuration to be independent among tetrahedra.

1.3.2 Spin ice materials

Besides the canonical spin ice materials Dy2Ti2O7 and Ho2Ti2O7 [15], recent years have seen

new compounds being synthesized and studied under this category. Some examples include

Dy2Sn2O7 [16], Ho2Sn2O7 [17]. Also high pressure has allowed researchers to make the

Dy2Ge2O7 and Ho2Ge2O7 compounds, and thermodynamic measurements have indicated

that these materials also belong to the spin ice class [18, 19, 20, 21].

1.4 Spin ice Hamiltonians

There are two types of spin ice models of interest in this thesis.
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The minimal model that describes the geometrical frustration in spin ices reads

Hnn = Jnn ∑⟨i,j⟩σiσj, (1.3)

where σi and σj are the Ising variables and Jnn > 0 is the effective antiferromagnetic

interaction. The sum is over all nearest neighbours rare-earth ions in the pyrochlore lattice.

Such a model, as originally suggested for spin ice compound Ho2Ti2O7 [22], enforces the

ice-rule at zero temperature, and therefore possesses the Pauling’s residual entropy.

It turns out that the spins in the spin ice compounds Dy2Ti2O7 and Ho2Ti2O7 possess

large magnetic moment of ∼ 10µB which can not be ignored [23, 24]. Thus, with the long

range dipolar interaction, the dipolar spin ice model (DSIM) Hamiltonian reads

HDSIM =∑
i>j σiσj{Ji,j ẑi ⋅ ẑj +D(rnn/rij)3[ẑi ⋅ ẑj − 3(ẑi ⋅ r̂ij)(ẑj ⋅ r̂ij)]}, (1.4)

where σi = ±1 are the Ising spin variables. The first term describes the Ising exchange

interaction between neighbouring spins up to third neighbouring distances, with J1, J2,

and J3 the exchange parameters for the first, second and third nearest neighbours. There

are two types of third neighbours which we consider later in Chapter 5, one type shares

a common nearest neighbour and the other type doesn’t. The sign convention here for

the neighbouring interactions is such that a positive J value indicates antiferromagnetic

interaction and a negative J value indicates ferromagnetic interaction. The second term

is the long-range magnetic dipole-dipole interaction, where rnn is the nearest neighbour

distance in the pyrochlore lattice. ẑi and ẑj are the local ⟨111⟩ directions of the spins.

Such a model forms the backbone of the discussions about experimental spin ice compounds

[23, 25, 26, 24]. The issue of consistency between experimental measurements within the

framework of this model is part of the discussion in Chapter 5 of this thesis.

1.5 Dipolar interaction in spin ice

An important aspect of this thesis, is the explanation of the properties of the dipolar

interaction on a pyrochlore lattice. One of the most important properties, the projective

equivalence [27] or self-screening [28], is the backbone of many discussions throughout the

thesis. We introduce these interesting concepts what follows.
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Between two spins, si and sj, at positions ri and rj, the form of the dipolar interaction

reads Hdip = si ⋅ sj
rij3

− 3(si ⋅ rij)(sj ⋅ rij)
rij5

. (1.5)

Thus the interaction between two spins, depends not only on the relative orientation of the

two spins, but also on the relative displacement between the two spins. Furthermore, the

dipolar interaction is long ranged, such that in a lattice system every spin is interacting

with every other spin. With all these complexity, the question is how the dipolar effects

can be efficiently understood.

It has been noted in previous works [23, 28] that the dipolar Hamiltonian Eq. (1.4)

for Dy2Ti2O7 and Ho2Ti2O7 has the same qualitative properties as the nearest-neighbour

Hamiltonian Eq. (1.3). From a mean-field perspective by Gingras et al. [28], the energy

spectrum for the largest eigenvalue for the nearest-neighbour model is found to be flat,

indicating zero-energy excitation modes in real space, which corresponds to the highly

degenerate ice-rule ground states. For the dipolar Hamiltonian restricted to only nearest-

neighbour and dipolar interactions, Eq. (1.4), the energy spectrum is found to be almost

flat, as the truncations of the dipolar interaction go to infinity [28]. This work shows that

the selection of a particular ordering due to the dipolar interaction is very week in the

ice-rule manifold.

Later, Isakov et al. [27] further show that by a “model” dipole interaction, the energy

spectrum in the q-space is completely flat, as in the nearest neighbour model, and the

correction from the true dipolar interaction to the “model” dipole interaction is of order

O(r−5). Isakov et al. termed the equivalence between the dipolar interaction and the

nearest-neighbour interaction “projective equivalence”.

Intuitively, projective equivalence can be understood by the dumbbell model of spin ice

introduced in Castelnovo et al. [29]. In the dumbbell model, the point dipole of a spin is

replaced by two monopoles of opposite charges at the centers of the two tetrahedra linking

the spin. Normally in the problem of electrostatics, we expand the charge distribution in

the far field in terms of multipole expansions. Now in the dumbbell model, the process

is reversed and we replace the point dipole by a distribution of two point charges. The

corrections from such a replacement is small when viewed from a long distance away, as

it only consists of higher multipole moments. Once the replacement is done, it follows

from the ice-rule on a tetrahedron that these charges cancel each other at the center of the
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tetrahedron. Thus we have the projective equivalence, or we say the dipolar interactions

are self-screened.

Thus the key to understand the dipolar interaction in Eq. (1.5) on a pyrochlore lattice

with Ising spins in their local ⟨111⟩ easy axes, is to approximate the dipole by a pair of

monopoles. The dominant physics at play is the cancellation of the monopole charges due

to the ice rule.

Note that the dumbbell model has found applications in other systems, such as dipolar

spin ice on a kagome ice, where a two-stage ordering is found for the monopole charges

and the spins, respectively [30].

1.6 Magnetic monopoles in spin ice

In this section we discuss the recent idea of magnetic monopoles in spin ice [29, 31, 32, 33].

The monopoles are defined as the ice-rule breaking excitations above the ice state.

Consider a lattice of ice-rule fulfilling tetrahedra, flipping a spin breaks the two-in-two-out

ice rules for the two tetrahedra connecting to that spin, and thus creates two tetrahedra

which are in the three-in-one-out and three-out-one-in configurations. In a coarse-grained

field description of the spins, these three-in-one-out or three-out-one-in configurations are

the “sinks” and “sources” of the coarse-grained field [31, 32], thus they are referred to as

the magnetic monopoles (of opposite signs) [29] in spin ice. The monopoles may diffuse by

further flipping spins on the ice-rule defected tetrahedra, which restores the ice-rule along

the path of the monopole diffusion [33].

The interaction between the monopoles turns out to be of the form of the Coulomb

interaction, with two origins. The first origin is the entropic force between the monopoles

when the underlying spin ice configurations are summed in the partition function. In

the nearest neighbour spin ice model, Eq. (1.3), the diffusion of the monopoles, once

created, does not cost energy. However, the number of ice-rule configurations underlying

two closer monopoles is larger than the number for two farther away monopoles, thus

inducing the entropic Coulomb potential between the two monopoles [32]. The second

origin is the energetic interaction between the monopoles in the dipolar spin ice [29]. In

the dumbbell model, as mentioned in Section 1.5, the three-in-one-out or three-out-one-in

configurations on a tetrahedron can be approximated by a monopole charge at the center of
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the tetrahedron. Thus the potential energy between these monopoles are of the Coulombic

form [29].

The monopole concept has motivated recent search of such exotic excitations in previous

experimental works [5, 34, 35]. In essence, the monopole concept provides an economic

language in describing excitations in the background of the ice-rule ‘vacuum’ states, where

the dipolar coupled spins are self-screened due to the monopole charge cancellation by the

ice rules.

1.7 Spin liquid and quantum spin ice

In an ideal frustrated magnet with no extra perturbations, there may be no transition to

long range order, implying a frustrated index, as defined in Section 1.1, to be f =∞. The

constituent spins remain disordered but are highly correlated down to zero temperature,

i.e., they are in a spin liquid state [36].

For spin ices, Dy2Ti2O7 and Ho2Ti2O7 can be viewed as examples of such spin liquids

[36], or in the context of the work by Villain [37], cooperative paramagnets. More precisely,

they should be called “classical spin liquid”, since quantum dynamics have been quenched

due to the strong Ising nature of the crystal-field ground state doublets for Dy3+ and Ho3+.

They are, however, “liquid” with extremely slow dynamics below T ∼ 1 K, due to the high

temperature barrier in breaking the ice rule in these materials [33].

On the other hand, we may have a quantum spin liquid state, where large zero-point

quantum mechanical spin fluctuations prevent the system from developing long range order.

Since the spin ice models already have a classical spin liquid state, one might ask whether

the addition of quantum dynamics can result in a quantum spin liquid phase. In the works

by Hermele et al. [38] and by Castro Neto et al. [39], it is found that within the constrained

ice-rule manifold, the addition of quantum dynamics may lead to a U(1) quantum spin

liquid.

On the material side, the search for quantum spin liquids seems most promising in the

Yb- based pyrochlores, as their microscopic Hamiltonians may be described by an effective

quantum pseudospin-1/2 model [40, 41]. For example, the Yb2Ti2O7 compound seems to

be the first quantum spin liquid candidate with a known Hamiltonian fitted with high field

inelastic neutron scattering experiments [6], however, with still unsolved complications in
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the highly sensitive sample dependence of the specific heat at low temperatures [42, 43].

The model was later confirmed through numerical linked cluster studies finding results in

agreement with bulk measurements [44, 45]. In Chapter 7, we further explore the numerical

linked cluster method in calculations of the neutron scatterings.

1.8 Outline of the thesis

In this thesis, we study different kinds of perturbations in spin ice, including random dilu-

tion, finite-size surface effects, further exchanges, and the addition of quantum dynamics.

In Chapter 2, we review the main methods we use in this thesis.

In Chapter 3, we study the effect of random site dilution on dipolar spin ice and near-

est neighbour spin ice. The microscopic models for Dy2−xYxTi2O7 and Ho2−xYxTi2O7 are

validated through Monte Carlo simulation studies. In the study of the diluted nearest-

neighbour model, we comment on the meaning of the broad peak of specific heat generic in

spin ice material, i.e., its relation to thermal monopole excitation populations. A simple,

yet extremely accurate approximation is presented and analyzed, which gives an explana-

tion for the observed non-monotonicities in the calorimetric measurements. Stability of

the paramagnetic phase in the presence of site dilution is explored through the perspective

of a Bethe-Peierls calculation. A comment is offered on the breakdown of the projective

equivalence in the presence of dilution.

In Chapter 4, we study spin ice in the form o a thin film. Surface corrections to the

Pauling’s residual entropy are derived due to the different conditions at the free surface.

For dipolar spin ice films, we find a surface freezing resulting by the tuning of surface

conditions. The reason for such surface freezing, as we argue in the chapter, arises from a

different screening property of the dipolar interaction than that found with the projective

equivalence considered in previous works.

In Chapter 5, we study the microscopic aspect of the dipolar spin ice model by trying

to examine both the calorimetric and neutron scattering experimental measurements. We

demonstrate, through parametric constraints provided by in-field experiments, bulk mea-

surements of the specific heat and correlation measurements of the neutron scattering can

be compared through the microscopic model.
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In Chapter 6, we turn to the study of pinch point singularities in the neutron scattering

intensity pattern in spin ice. Our Monte Carlo results show that the pinch point singu-

larities, viewed as a signature for the emergent gauge structures, can be deceptive in the

case for a system with long range dipolar interaction. We also study through Monte Carlo

simulations, how the pinch point singularities evolve as a function of temperature.

In Chapter 7, we investigate the capability of the numerical linked cluster (NLC)

method in the study of neutron scatterings for quantum spin ices. As a demonstration

of the method, neutron scatterings for Yb2Ti2O7 are calculated to various orders of the

cluster expansion.

Chapter 8 concludes the thesis.
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Chapter 2

Methods

In this chapter we review the main methods used in this thesis.

2.1 Monte Carlo method

In this section we give a brief summary of the Metropolis Monte Carlo method. Since such

a method has been one of the most commonly used in condensed matter physics, numerous

books and reviews can be found on the subject. The interested reader may refer to the

book by Binder and Heerman [46], or the one by Neumann [47] for a more detailed account.

In statistical mechanics, our goal is to calculate the thermal average of some quantity

⟨Q⟩ = ∑µQµe−Eµ/kBT∑µ e−Eµ/kBT , (2.1)

where the summation is over all possible states, µ, of the system.

However, the summation is usually impossible to carry out exactly. For example, for

an Ising model with N spins, the number of all possible states equals 2N , which is a huge

number even for a modest number of spins. Thus the best we can do is to sample only

a subset of all the possible states. Suppose we choose a subset of states, {µ1, µ2, ..., µM},

with a probability distribution p(µ), then our best estimate for the quantity ⟨Q⟩ is given

by

QE = ∑Mi Qµip(µi)−1e−Eµi/kBT
∑Mj p(µj)−1e−Eµj /kBT (2.2)
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Still another problem remains that, in Eq. (2.1), not all the states contribute the same

to the sum of the thermal average. In fact, for a typical thermal system, only a small

fraction of all possible states contribute significantly. Therefore, if we choose our subset of

states uniformly, chances are we might never “hit” the right states in that small fraction

which contribute to Eq. (2.1), and we end up summing over nearly zero values from our

choice of subsets. Thus we need the concept of importance sampling. One way of doing so

is to choose the probability distribution

p(µ) = e−Eµ/kBT
Z

. (2.3)

By doing so, our estimator Eq. (2.2) becomes

QE = 1

M

M∑
i

Qµi . (2.4)

The problem then becomes how the Boltzmann distribution, Eq. (2.3), can be realized.

The answer is to make use a Markov process to generate a random set of states according

to the distribution.

Suppose at time n the system is in state µ, then there is a fix probability, P (µ→ ν), that

at time n + 1 the system is in state ν. A Markov process means the transition probability

from state µ to state ν, P (µ → ν), only depends on the state µ, but not on any previous

states. It also requires ∑
ν

P (µ→ ν) = 1 (2.5)

for all possible states, ν, the Markov process can travel to.

For the generated states to acquire a Boltzmann probability distribution after equilib-

rium, two additional conditions need to be imposed on the Markov process: the ergodicity

condition and the detailed balanced condition.

The ergodicity condition requires that, starting from any state, the Markov process can

access any other state. In other words, all the phase space can eventually be visited by the

Markov process given the process is run long enough.

The detailed balanced condition requires

p(µ)P (µ→ ν) = p(ν)P (ν → µ) (2.6)
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where p(µ) is the probability distribution.

Therefore, from the detailed balanced condition, to generate the Boltzmann distribution

Eq. (2.3), the transition probabilities must satisfy

P (µ→ ν)
P (ν → µ) = p(ν)

p(µ) = e−(Eν−Eµ)/kBT . (2.7)

In practice, the transition probability consists of the selection probability, g(µ → ν),
and the acceptance probability, A(µ→ ν), such that

P (µ→ ν) = g(µ→ ν)A(µ→ ν). (2.8)

In a usual Monte Carlo algorithm, the selection probability is often the same for g(µ→
ν) and g(ν → µ). For example, in the “single-spin-flip” algorithm for an Ising model, they

both equal to 1/N , where N is the number of spins in the system.

The Metropolis algorithm is one which chooses

A(µ→ ν) = ⎧⎪⎪⎨⎪⎪⎩
e−(Eν−Eµ)/kBT if Eν −Eµ < 0

1 otherwise.
(2.9)

2.2 Closed and open loop updates

2.2.1 Closed loop algorithm

For spin ice at low temperatures, where the ice rule is enforced on each tetrahedron, single

spin flip updates are inefficient in maintaining ergodicity, as such updates violate the ice

rule and thus raise the energy of the system. For a nearest-neighbour spin ice with nearest-

neighbour interaction J , the raise in energy is ∆E = 4J for a single spin flip in the ice rule

state, and the acceptance rate drops as e−4J/kBT at low temperatures. On the other hand,

all the ice rule states, which have the same energy for the nearest-neighbour model, ought

to be sampled in a Monte Carlo simulation at equilibrium.

Therefore, we need an update to “tunnel” between different ice rule states. One way

to do so is to use the loop update algorithm developed for square ice models [47] and for

spin ices [48]. Here is a summary of the algorithm.
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The algorithm consists of first finding a loop of spins that is “flippable” and then flip

the spins that form the loop according to the Metropolis algorithm.

We depict the flow chart of the closed loop algorithm in Fig. 2.1. The algorithm

randomly chooses a loop that goes through two-in-two-out ice rule tetrahedra. Thus in the

step to determine whether the tetrahedron is defected, we reject thermally excited (not

two-in-two-out) tetrahedra, or in the presence of dilution, a diluted tetrahedron.

The loop algorithm closes on itself, which corresponds to the short loop algorithm in

Melko et al. [48]. Also, we refer to it as a closed loop algorithm to differentiate the open

loop algorithm discussed later.

2.2.2 Ergodicity of the closed loop algorithm

For spin ice in states satisfying the ice rules, the closed loop update is ergodic within the

ice manifold. This means starting with any ice-rule state, the loop updates can reach any

other ice-rule state within a finite number of steps.

The key to the proof relies on an important observation of the ice rule. In Fig. 2.2 we

plot the six possible ice rule states for a tetrahedron. By inspection it can be shown that

any two of six ice rule states differ each other by an even number of spins, and among those

spins that are different there are the same number of spins in and out of the tetrahedron.

Therefore, suppose we have two ice-rule states on a pyrochlore lattice and we consider

only the spins that are different between the two states, these spins have to form loops,

possibly intersecting at some tetrahedron, since by the property of the ice-rule the “chain”

of arrows can not end at any tetrahedron.

Thus, to get from one ice-rule state to another, we need to reverse the direction of

the different spins, which form loops, and there are only a finite number of loops. There-

fore our loop updates can reach any other ice-rule state starting from any ice-rule state.

Equivalently speaking, the loop update is ergodic within the ice-rule manifold.

Note 1

Notice that the proof only depends on the property of the ice rule, thus for 2D square ice,

the same argument holds.
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Figure 2.1: Flow chart for the closed loop algorithm.

Note 2

Note also that to achieve ergodicity, the loops need to be able to wrap around the system

(with periodic boundary condition), since any local loops do not change the total mag-
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Figure 2.2: Six possible ice rule states for a tetrahedron.

netization of the system. The loops that wrap around the system are referred to as a

topological fluctuation [49].

Note 3

The smallest loop consists of six spins on a hexagon. Clearly, these hexagon loops are not

ergodic as noted in Note 2. But it is still an interesting question to ask whether these

hexagon loops are ergodic within a topological sector, as defined by the constant magne-

tization. This question is of particular interest to the recent study of possible spin liquid

states for quantum spin ices, where the hexagonal flippable loops serve as the quantum

tunnelling among ice states. [38, 50]

In general the answer is no. For example, we consider the two states both in the

topological sector of zero magnetization. In Fig. 2.3, we plot two zero total magnetization

ice-rule states. One of the shown states is the magnetic ground state found in a previous
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Monte Carlo study of the dipolar spin ice, [48] and there is no flippable hexagon loops

in such a state. The other one, which we will encounter in later chapters, possesses a

zero total magnetization, and has within the state flippable hexagon loops, as shown by

the shaded green plaquettes. Therefore, it is impossible to connect the two states with

only hexagon loops even though they are of the same topological sector defined by zero

magnetization.

sc dc

Figure 2.3: Single chain vs. double chain. The green plaquette: six spins on a hexagon

forming a flippable loop.

2.2.3 Open loop algorithm

For the diluted spin ice problem, we also use an open loop algorithm to restore ergodicity

at low temperatures.

Dilution, as we will discuss further in Chapter 3 on diluted spin ices, “removes” the

Ising spins from the pyrochlore lattice. This creates tetrahedra in the lattice possibly with

three, two and one spins left.
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Consider the case for a tetrahedron with three spins left. With only nearest-neighbour

interaction present, the lowest energy states for the three-spin tetrahedron are the two-in-

one-out or two-out-one-in configurations. For convenience, we now refer to the two-in-one-

out configuration as charge +1 and the two-out-one-in configuration as charge −1. In Fig.

2.4 we depict a scenario with two spins diluted, thus with four three-spin tetrahedron. Also

it happens that the charges ±1 form two dipoles about the two diluted sites. However, the

energy of the system would be exactly the same regardless of the sign of the charges on

the three-spin tetrahedra.

L1

L2

Figure 2.4: Open loop schematic

For example, the ±1 charges on the left charge dipole object can be swapped by flipping

a chain of spins along path L1. Or two +1 charges can both appear on the left dipole and

two −1 charges can both appear on the right dipole by flipping a chain of spins along path
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L2. (The ice rule conditions along paths L1 and L2 are always satisfied.) To maintain

the ergodicity of the system, we require that all these degenerate states are sampled in the

Markov process even at low temperatures.

Clearly single spin flip updates suffer the same problem as we discussed in the closed

loop algorithm subsection. By creating a gapped excitation in the system, the acceptance

rate is doomed to vanish at low temperatures. The closed loop algorithms on the other

hand, do not change the sign of the above defined charges, even if we modify the algorithm

to allow trespassing defected tetrahedra.

Thus to restore the ergodicity of the diluted system at low temperatures, we implement

the open loop algorithm, which is exactly the same as the closed loop algorithm discussed

previously, except that the loop, by construct, starts and ends at charges of opposite signs.

2.3 Measurements in Monte Carlo simulations

In this section we discuss some of the quantities we can measure in a Monte Carlo simula-

tion.

Specific heat and residual entropy

One of the foremost quantities of interest in this thesis is the specific heat, C. It is measured

in Monte Carlo simulation by recording the fluctuations in the total energy E of the system

C = ⟨E2⟩ − ⟨E⟩2

kBT 2
. (2.10)

Through the measurement of the specific heat, we can determine the entropy, S, of the

system by doing a numerical integration of the specific heat

S(T2) − S(T1) = ∫ T2

T1

C(T )
T

dT. (2.11)

To calculate the absolute entropy for a given temperature, one of the temperatures in

the above equation is taken to be infinite. For example, in an Ising system of N spins, we
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know that S(T =∞) = kB ln(2), therefore the entropy at T1 is given by

S(T1) = kB ln(2) − ∫ ∞
T1

C(T )
T

dT (2.12)

The integration to infinity is achieved by first making a measurement to sufficiently high

temperatures, where the specific heat is expected to take the form

C(T ) = A/T 2 +B/T 3 (2.13)

from the perspective of a high temperature expansion. Then the parameters A and B of

the above form can be fitted. The integration is then separated into two parts:

∫ ∞
T1

C(T )
T

dT = ∫ Tmax

T1

C(T )
T

dT + ∫ ∞
Tmax

C(T )
T

dT (2.14)

where the second part can be analytically calculated using the A and B parameters fitted

above.

Structure factors

Another quantity that we calculate throughout the thesis is the structure factor of various

quantities, for example, the spin-spin correlation function and the neutron scattering. In

general we need to calculate quantities of the form

S(q⃗) = (1/N)∑
i,j

σiσje
iq⃗⋅r⃗ij (2.15)

With periodic boundary conditions for a cubic simulation box of linear size L, we have

eiqL = 1 (2.16)

thus

q = 2πn/L (2.17)

where n is an integer. Therefore the smallest interval in q-space for a system of linear size

L is

∆q = 2π/L (2.18)

We see that the resolution in the q-space is restricted by the size of the simulation box.
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Bootstrapping for error analysis

In order to evaluate the error bar for various quantities measured, we employ the boot-

strapping method [47]. The procedure of the method is the following.

Suppose we want to measure the error for the specific heat, C. Normally we would

use Eq. (2.10) for a set of n samplings of the energy from the Monte Carlo simulation{E1,E2, ...,En}.

However, in the bootstrap method, we choose randomly from the n samplings n elements

within. Note that the same element can be repeated. Thus we get a new set of n samplings

of the energy {E(1)1 ,E
(1)
2 , ...,E

(1)
n }. From this new set of sampling we can calculate the

specific heat using Eq. (2.10) to get C(1).
The process is then repeated and we get a series of specific heats from the generated

sets of samplings, C(1), C(2), C(3), ...

The estimate of the specific heat, is given by the average of these series of specific heats,

C̄.

The estimate of the error on the specific heat, is given by the standard deviation of the

above average value

σ = √
C̄2 − C̄2 (2.19)

For other quantities, the same procedure can be used.

2.4 Bethe tree calculation

In this Section, we summarize the procedure employed in the Bethe tree calculations. The

Husimi tree calculation, which we generalize to the case with random site dilution, is in

essence a Bethe tree calculation, but with the basic units of the tree structure replaced by

tetrahedra. The central idea of the Bethe tree calculation is the derivation of the recursive

relations between different layers of the tree structure, thus making the problem exactly

solvable. For more details of the method, the reader can refer to the book by Baxter. [51]

Consider the tree structure in Fig. 2.5. Starting from the central site 0, q (in the case

of the figure, q = 3) branches of sites are grown from shell 1. Then, at each site on shell 1,
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q − 1 branches of lattice sites are grown to form shell 2, and so on for shell 3. The number

of sites on each shell r is therefore

Nr = q(q − 1)r−1 (2.20)

Such a tree structure is referred to as the Cayley tree.

1
2

3

0

Figure 2.5: Cayley tree structure − numbers indicates the shell each site is on.

Internally for each site of the Cayley tree, there are q sites connected to it, and this is

taken as an approximation to a lattice structure with the coordination number q. In an

23



ordinary lattice, the ratio between the number of sites on the boundary and the number

of sites in the interior approaches zero as the size of the system increases. On the Cayley

tree, however, as can be seen from Eq. (2.20), this ratio does not go to zero. To avoid

the discussion of the boundaries, we consider the case where the number of shells defined

above goes to infinity. In this case, the Cayley tree becomes the Bethe tree. As noted in

the book by Baxter [51], the dimensionality of the Bethe tree (lattice) is infinite.

One important property of the Bethe tree is that its partition function can be calculated

exactly. The key idea is in the factoring of the partition function between neighbouring

shells. Here we show an example of an Ising Hamiltonian only with exchange interaction

on neighbouring sites on the Bethe tree, where the partition function can be written as

Z =∑{σ} eK∑<i,j> σiσj . (2.21)

For simplicity, consider the branch depicted in Fig. 2.6, where σ0 forms shell 1, σ1 and σ2

form shell 2, σ3 to σ6 form shell 3, and the rest of the shells (to infinity) attached to sites

on shell 3 are omitted in the figure.

�0

�1

�2

�3

�4

�5

�6

Figure 2.6: Branch of the Cayley tree structure.

The partition function can be written as

Z =∑
σ0

∑
σ1,σ2

∑{σ}−{σ0,σ1,σ2}
eKσ0σ1+Kσ0σ2eKσ1σ3+Kσ1σ4eKσ2σ5+Kσ2σ6eK∑<i,j>′ σiσj (2.22)

where {σ} − {σ0, σ1, σ2} means the spin configurations without σ0, σ1, and σ2.
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Now writing

Zσ0
0 = ∑

σ1,σ2

∑{σ}′ eKσ0σ1+Kσ0σ2eKσ1σ3+Kσ1σ4eKσ2σ5+Kσ2σ6eK∑<i,j>′ σiσj (2.23)

and

Zσ1
1 = ∑{σ}−{σ0,σ1,σ2}

eKσ1σ3+Kσ1σ4eK∑<i,j>′ σiσj (2.24)

and

Zσ2
1 = ∑{σ}−{σ0,σ1,σ2}

eKσ2σ5+Kσ2σ6eK∑<i,j>′ σiσj (2.25)

the partition function can be written as

Z =∑
σ0

Zσ0
0 (2.26)

with

Z0 = ∑
σ1,σ2

eKσ0σ1+Kσ0σ2Zσ1
1 Zσ2

1 . (2.27)

The last equation is in general true, i.e.,

Zσn+1
n+1 = ∑

σn1σn2

e−H(σn1,σn2∣σn+1)/kBTZσn1
n Zσn2

n (2.28)

where we have deliberately reversed the labeling of the shells, and σn1 and σn2 refer to the

two spins on the outer shell.

The magnetization on shell n is

mn = Z+
n −Z−

n

Z+
n +Z−

n

(2.29)

From Eq. (2.29) and Eq. (2.28), we have the recursive relation for the magnetization

mn+1 = f(mn) (2.30)

where the fixed point solution is defined by

m∗ = f(m∗) (2.31)

as the solution for the magnetization on the Bethe tree.

In Section 3.3, we extend the above recursive calculation to the problem of spin ice

with random site dilution.
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2.5 Numerical linked cluster expansion

In this section we review the numerical linked cluster (NLC) expansion [52, 53, 54, 55],

which is used in Chapter 7 to study the neutron scattering of the quantum spin ice can-

didate Yb2Ti2O7. For the same material, the numerical linked cluster expansion method

has been applied to study the specific heat and magnetization [44, 45].

The basic scheme for the method is to write the extensive quantity to be calculated,

P , in the from of

P /N =∑
c

L(c) ×W (c) (2.32)

where L(c) is the lattice constant and W (c) is the weight of the cluster c. The lattice

constant is defined as the number of ways cluster c can be embedded into the lattice,

divided by the number of sites in the lattice.

For the weight of a cluster, it is defined as

W (c) = P (c) −∑
s

W (s) (2.33)

where s is the “sub-clusters” that can be embedded in a cluster c.

Here we provide a simple example for the calculation of the weights. Suppose we want

to expand the quantity P in terms of the clusters listed in Fig. 2.7

1 2 3 4

...

Figure 2.7: Orders of linked clusters in a kagome lattice.

The weight for cluster 1 is just

W1 = P1. (2.34)
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To calculate the weight for cluster 2, we need to subtract the weight of cluster 1 from the

property of a cluster 2, i.e.,

W2 = P2 − 3W1. (2.35)

Carrying with the program, we have for cluster 3

W3 = P3 − 2W2 − 5W1, (2.36)

and for cluster 4

W4 = P4 − 2W3 − 3W2 − 7W1, (2.37)

and so on for higher order clusters.

The extensive properties of each cluster, P , can be calculated, from which weights for

each order of cluster can be obtained through the above program. Then, using the lattice

constants, through Eq. (2.32), we can obtain any property of the lattice systematically to

any order we want.

However, in most practical calculations, two technical difficulties prevent us from

achieving very high order of cluster calculation. First is that the calculation of the proper-

ties of a high order cluster becomes difficult. Suppose we want to calculate through exact

diagonalization for the cluster properties, the computer memory requirement grows expo-

nentially as a function of the number of sites in the cluster. Second is that the bookkeeping

of the lattice constants and the embedding of sub-clusters quickly becomes tediously com-

plicated as we reach for higher order clusters. Separate computer codes have to be written

to facilitate such bookkeeping. Some details of such computer codes can be found in the

book by Oitmaa et. al. [55]
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Chapter 3

Diluted Dipolar Spin Ice

Water ice, as discussed in Chapter 1, possesses Pauling’s residual entropy kB/2 ln(3/2),
which can be estimated from the proton (H+) disorder in a crystalized oxygen diamond

structure.[4] Interestingly it was found that as water ice is doped with alkali hydroxides,

K(Rb)OH, the residual entropy is eliminated through the latent heat associated with a

first order transition to a long-range proton-ordered ice state [56], i.e., the third law of

thermodynamics is recovered with added impurities in water ice. Such experiment suggests

that the proton disorder in the ice state is unstable against impurities. Yet it remains

unclear what is the precise mechanism via which alkali hydroxides in the water ice system

promotes the development of long-range order [57].

Such a phenomenon in water ice relates to one of the main questions in this thesis: how

perturbations (in water ice, doped impurities) affect the cooperative paramagnetic state

of a frustrated system. Particularly, how does the residual entropy of a frustrated ground

state depend on the added perturbations. It is interesting to ask whether the magnetic

spin ice analogue of water ice could also display some interesting behaviour when subjected

to the addition of random impurities.

In this chapter, we study the perturbation of magnetic site dilution of spin ice. Experi-

mentally, site dilution can be achieved in Dy2Ti2O7 and Ho2Ti2O7 through the replacement

of the rare earth ions Dy3+ and Ho3+ by non-magnetic Y3+ ions [2], with the general chemi-

cal formulae for both materials being Dy2−xYxTi2O7 and Ho2−xYxTi2O7, respectively. The

close ionic radius of Y3+ with that of Dy3+ and Ho3+ allows for a substitution that causes

negligible local lattice deformation and strain. As a first approximation, the dilution of
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Dy3+/Ho3+ by Y3+ can thus be viewed as the mere replacement of the Dy3+/Ho3+ magnetic

species by a magnetically inert substitute. This is the view that we shall confirm in Section

3.1.

A recent neutron scattering experiment [58] shows no sign of long-range ordering in

Ho2−xYxTi2O7 down to 30 mK for x = 0.3 and x = 1.0. On the other hand, specific

heat measurements have found that the low-temperature residual entropy, Sres, of diluted

Dy2−xYxTi2O7 and Ho2−xYxTi2O7 spin ices display a non-monotonic dependence on the

level of dilution [2]. A calculation generalizing Pauling’s argument [4] to the case of site

dilution of a nearest-neighbour spin ice model [22] was able to qualitatively account for

such a non-monotonic behaviour [2]. However, the apparent systematic departures between

the generalized Pauling’s argument and the experimental results as well as the differences

between Dy− and Ho− based materials [2] have so far remained unaddressed. It was

suggested in the previous work [2] that the residual entropy may be material-dependent and

have a more drastic non-monotonic dependence on the levels of dilution than the analytic

generalized Pauling’s argument does. The reason for these differences might be caused,

for example, by the extra complexities of the long-range dipolar interactions compared

with the nearest-neighbour model. These are the questions we attempt to answer in this

chapter of the thesis. Specifically, we address and rationalize quantitatively the origin of the

difference in residual low temperature entropy between Dy2−xYxTi2O7 and Ho2−xYxTi2O7

as well as with the generalized Pauling’s argument as originally presented by Ke et al. [2].

Besides these questions directly related to experimental observations, the theoretical

motivations for this work are the following. Firstly we find in our attempt to model the

diluted spin ices Dy2−xYxTi2O7 and Ho2−xYxTi2O7 that not only the residual entropy, but

also the magnetic specific heat, Cm(T ), exhibits non-monotonic behaviours. The non-

monotonicity of Cm(T ) was already present in the originally reported experimental results

[2] and is closely related to the non-monotonicity in the residual entropy. Thus we ask

why is there such a non-monotonicity of Cm(T )? In the pursuit of this question one may

ask a further underlying question: what causes the Schottky specific heat broad peaks in

spin ices, and how it relates to the microscopic quantities in the system? These are the

questions we will also address in this chapter.

It turns out that the physics involved in the problem of diluted spin ices is very rich. In

this chapter we revisit the concept of projective equivalence [27] or the self screening [28]

in diluted spin ice.
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The rest of the chapter is organized as follows:

In Section 3.1 of this chapter, we investigate the microscopic models of the diluted

spin ices Dy2−xYxTi2O7 and Ho2−xYxTi2O7, which lay the foundations for the subsequent

two sections devoted to problems regarding the interplay between dilution and frustration.

The model we study involves dipolar interaction and we subsequently refer it as the dipolar

spin ice model. Non-monotonicities in the specific heat and residual entropy are observed

as numerical facts, in good agreement with experiments by Ke et al. [2]. The open loop

algorithm is used in the Monte Carlo simulations.

In Section 3.2, we discuss in the simplest frustrated spin ice model, the one with solely

nearest-neighbour interactions, how the site dilution affects the calorimetric (specific heat

or entropy) observables. A simple approximation, the single tetrahedron approximation

(STA), or numerical linked cluster to the first order, is offered in the calculation of the

specific heat for all dilution levels. Such an approximation was found to be very accurate

in comparison with the Monte Carlo simulations of the corresponding site-diluted nearest-

neighbour spin ice model. We investigate the meaning of the broad specific heat peak

observed in spin ice C(T ) measurements and how it relates to the monopole defect densi-

ties. Non-monotonicities observed numerically in Section 3.1 and in experiments are thus

physically explained through the STA.

For the nearest-neighbour spin ice model, we also study the stability of the paramagnetic

solution through the Husimi cactus method in Section 3.3, which offers insight into why

the STA works and sheds light on the problem of absence of a spin glass phase in the

model.

In Section 3.4, we return to the discussion of the diluted dipolar spin ice model validated

in Section 3.1. One of the most important properties of dipolar spin ice, the self-screening of

the dipolar interaction, or projective equivalence, plays a central role in the understanding

of diluted dipolar spin ice. Deviations in calorimetric measurements from the dipolar spin

ice to the nearest-neighbour spin ice can be understood elegantly through the un-screening

of the dipolar interactions at the defect sites.

Section 3.5 concludes the chapter.
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3.1 Diluted dipolar spin ice

For the canonical spin ice materials Dy2Ti2O7 and Ho2Ti2O7, the experimental means to

achieve dilution is to replace the rare earth ions Dy3+ and Ho3+ by non-magnetic Y3+ ions.

The resulting chemical formulae are Dy2−xYxTi2O7 and Ho2−xYxTi2O7. On average, the

probability of a site being diluted, µ, relates to x as

µ = x/2. (3.1)

One of the first questions to be asked for the diluted chemical compounds Dy2−xYxTi2O7

and Ho2−xYxTi2O7 is whether the Ising nature of the rare earth ions Dy3+ and Ho3+ still

holds once they are replaced by the non-magnetic ion Y3+. Slight difference in the ionic

radius between the magnetic ions and the non-magnetic ion may result in local distortions

of the lattice, which leads to different crystal field environment at the side of the remaining

magnetic ions. An even worse possibility is whether the pyrochlore structure for the rare

earth ions endures the change of the chemical composition. In Ke et al. [2], the pyrochlore

structure was confirmed experimentally through X-ray diffraction, where the diluted sam-

ples were found to be in a single phase of the pyrochlore structure for all x ≥ 0. Without

resorting to ab initio calculations of the crystal fields for a diluted compound, one can

assert the Ising nature of the magnetic moment through measuring the saturated magnetic

moments, as reported in Ke et al. [2], where polycrystalline samples of Dy2−xYxTi2O7 and

Ho2−xYxTi2O7 were obtained for measurements. For high enough external magnetic fields

in which all the magnetic moments are polarized along the field to the maximum capac-

ity allowed by the ion’s anisotropy, one can theoretically calculate the average saturation

moment in the poly-crystal as

<m > = ∫ 2π

0
∫ π/2

0
∣m⃗ ⋅ ĥ∣ sin(θ)dθdψ/(4π)

= m/2, (3.2)

where m is the magnetic moment of the rare-earth ion and makes an angle, θ, with the

external field with a uniform distribution over the 4π sphere. From crystal field calculations

[24] and field experiments, [7] we know that for non-diluted Dy2Ti2O7 and Ho2Ti2O7

compounds, the magnetic moment m ∼ 10µB, with easy-axis direction along the local

[111] direction. Therefore, if the Ising nature of the rare-earth ions remains for the diluted

compounds, one would measure a saturated moment of about 5µB per moment Dy3+ or
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Ho3+ ion for a poly-crystal according to Eq. (3.2). Experimentally, in Ke et al. [2],

the saturation magnetization was found to be 5µB at 1.8 K in a magnetic field of 5.5 T.

Therefore the Ising nature of the spins was confirmed.

With the Ising nature of the spins intact, the question that follows is whether the model

for non-diluted spin ices Dy2Ti2O7 and Ho2Ti2O7, fitted in previous works [14, 22, 23, 24,

25, 26, 59, 60], can account for the diluted compounds Dy2−xYxTi2O7 and Ho2−xYxTi2O7,

respectively, with a mere random site dilution in the Hamiltonian. This is the question we

address in the rest of this Section. We approach this problem by performing Monte Carlo

simulations of the random site diluted dipolar spin ice models and compare simulated C(T )
curves with the ones obtained in the Ke et al. [2] experiment. Remarkable agreements are

found in the temperature-dependence of the magnetic specific heats, thus validating the

simple random site dilution models.

With the model validated, we can readily answer the following experimental question

posed by the previous works [2] as numerical facts. Experimentally [2] a significant ma-

terial dependence of the non-monotonicity of the residual entropy was found, and we find

at the end of this Section that the dependence can be traced to the differences of the rel-

ative exchange energy scales compared to dipolar energy scale between the Ho2Ti2O7 and

Dy2Ti2O7 in the Hamiltonian.

As a reminder to the reader, this section serves as establishing numerical facts against

experimental observations. The development of an understanding of the various physical

mechanisms involved are postponed to the latter sections of this chapter.

3.1.1 Microscopic models of diluted dipolar spin ice

In Dy and Ho based spin ice materials, the Dy3+ and Ho3+ ions carry a large magnetic

moment (∼ 10µB) [7, 24] and the long-range dipolar interactions cannot be ignored [23, 27,

28]. Given the symmetry of the crystal field ground state [13, 22], the magnetic moments

can be well described by vector spins constrained by the single-ion anisotropy to point along

their respective local [111] direction (i.e., along the line from the corners to the center of

each tetrahedron.) Taking the dipolar interaction and the essentially infinite local Ising

anisotropy into consideration, the dipolar spin ice model is defined by the Hamiltonian
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[24]:

HDSIM =∑
i>j σiσj{

3∑
υ=1

Jυδrij ,rυ ẑi ⋅ ẑj +D(rnn/rij)3[ẑi ⋅ ẑj − 3(ẑi ⋅ r̂ij)(ẑj ⋅ r̂ij)]} (3.3)

where σi = ±1 are Ising spin variables; ν = 1,2 or 3 refers to first, second or third nearest-

neighbours respectively. In the pyrochlore lattice, there are two distinct types of third

nearest-neighbours: one type of third-neighbours share a common (first) nearest-neighbour,

while the other type of third-neighbours do not. In this chapter, we do not differentiate the

two types of third-neighbours, as in the previous work of Yavors’kii et al. [24]. Jν is the

exchange interaction couplings for neighbouring spins and rν is distance between them. rnn

is the distance between nearest-neighbours. ẑi and ẑj are the local [111] directions of the

respective Ising spins. D is the strength of the dipolar interactions at nearest-neighbour

distance. Under such definition of the dipolar term, we have

D = µ0(⟨Jz⟩gµB)2/4πr3
nn (3.4)

where µ0 is the vacuum permeability, g⟨Jz⟩µB is the magnetic moment of the spin, and µB
is the Bohr magneton.

Using the most up-to-date values for Jν and D that we are aware of, we have with

our sign convention of the Jν ’s (Jν > 0 is antiferromagnetic; Jν < 0 is ferromagnetic):

J1 ≃ 3.41 K, J2 ≃ −0.14 K, J3 ≃ 0.025 K and D ≃ 1.32 K for Dy2−xYxTi2O7 [24], and

J1 ≃ 1.56 K, J2 ≃ 0 K, J3 ≃ 0 K and D ≃ 1.41 K for Ho2−xYxTi2O7 [25] For details of the

fitting procedures, the reader should refer to the references given. Unfortunately, because

of the complexity introduced by the large hyperfine coupling interactions in the Ho-based

materials [25], much less systematic calorimetric measurements, which provide many of the

constraints used to determine J1 and J2, have been carried out on Ho2Ti2O7 compared to

Dy2Ti2O7. Consequently, the J2 and J3 values for Ho2Ti2O7 have not yet been determined

[25] and we therefore set J2 = J3 = 0 for this compound. As we shall see below, it turns

out that this (J2 = J3 = 0) model describes reasonably well the magnetic specific heat of

Ho2−xYxTi2O7 for the x = 0,0.4,0.8 and 1.2 values considered in this work.

For the diluted samples, we assume that the non-magnetic diluting Y3+ ions are in-

troduced randomly while all other parameters of the material, and therefore those of the

model in Eq. (3.3), are assumed to be unchanged. This means that, until more accu-

rate microscopic ab-initio modeling of the effect of diamagnetic site-dilution in spin ice

33



compounds becomes available, we ignore local lattice strain effects that may result from

the substitution of Dy3+ or Ho3+ by Y3+. In practice, we thus ignore any changes that

may occur in the Jν exchange couplings and the rare-earth ion magnetic moment µ that

would result from variation of the single-ion crystal field ground state wavefunctions. This

would seem a reasonable first approximation given the close ionic radius of Y3+ with Dy3+
and Ho3+. We note in passing that such an approximation has been shown to describe

quantitatively quite well the variation of the critical ferromagnetic temperature in Ho3+
substituted by Y3+ in LiHo1−xYxF4 all the way to, [61, 62] and perhaps even including, the

dipolar spin glass regime [63, 64]. In practice, the microscopic Jν ’s and D in Eq. 3.3 are

kept to their pure Dy2Ti2O7 and Ho2Ti2O7 values while the Ising variables are redefined

as σi → θiσi, with θi = 0 if site i is occupied by non-magnetic Y3+ ion or θi = 1 if occupied

by a magnetic rare-earth ion. Thus, for [Dy,Ho]2−xYxTi2O7, the site-random probability

distribution of θi, P (θi), is given by P (θi) = (x/2)δ(θi) + (1 − x/2)δ(θi − 1), where δ(u) is

the Dirac delta function.

The final Hamiltonian reads

HDSIM =∑
i>j θiθjσiσj{

3∑
υ=1

Jυδrij ,rυ ẑi ⋅ ẑj +D(rnn/rij)3[ẑi ⋅ ẑj − 3(ẑi ⋅ r̂ij)(ẑj ⋅ r̂ij)]} (3.5)

3.1.2 Monte Carlo methods for the dilution problem

We carried out Monte Carlo simulations for the above dipolar spin ice model for Dy2−xYxTi2O7

and Ho2−xYxTi2O7 at various Y3+ concentrations x. We used a conventional cubic unit

cell containing 16 spins, with the system of linear size L having 16L3 spins. Dilution is

treated by randomly taking spins out of the system, and a disorder average over at least

50 different random dilution configurations was performed for each dilution level x. Peri-

odic boundary conditions are used, and we implement the infinite range dipole interactions

using the Ewald summation technique [65]. Most of the data production was done with

L = 4 while, for higher dilutions (x ≥ 1.5), we used L = 5 to have a reasonably large number

of spins remaining in the system. For most, if not all, of the results presented below, very

little system size dependence for the magnetic specific heat, Cm(T ), data was observed.

A conventional single spin-flip Metropolis algorithm was employed for the Monte Carlo

simulation. In addition, non-local close loop and open loop updates are used as well to

maintain ergodicity of the ice states, as discussed in Chapter 2. In order to further facilitate
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the equilibrium of the system, we have also employed the parallel tempering technique

which is commonly used in the study of spin glass models [66].

The magnetic specific heat was determined by performing a disorder average of the

energy fluctuations:

Cm(T ) = [⟨E2⟩ − ⟨E⟩2]
kBT 2

(3.6)

where ⟨...⟩ and [...] are thermal and disorder averages, respectively.

There are two sources of errors in our simulations. One is from the Monte Carlo

statistics for each disorder realization. The other is from the sample-to-sample fluctuations

for different realizations of the sample dilution level, since in the simulations we are dealing

with a finite-sized system. We checked that the error bars from the Monte Carlo statistics

are generally very small (less than one percent for all cases we checked). So we ignore this

type of error and only consider the error from sample-to-sample fluctuations. Therefore

our error bars are given by

σ =
√

1

n − 1
([C2] − [C]2) (3.7)

where n = 50 is the number of disorder realizations.

3.1.3 Specific heat for Dy2−xYxTi2O7 and Ho2−xYxTi2O7

We plot in Fig. 3.1 the magnetic specific heat versus temperature, Cm(T ), obtained from

Monte Carlo simulations of Eq. (3.5) (solid lines) for various levels of dilution in compar-

ison with experimental data (open black circles for Dy2−xYxTi2O7, open red squares for

Ho2−xYxTi2O7).

The agreement between our Monte Carlo simulation and the previous experiment [2] is

strikingly good for most dilution levels (up to and including x = 1.7 for Dy2−xYxTi2O7) and

over a rather wide temperature range T ∼ [0.4 K − 5 K]. This is particularly noteworthy

given that there is no adjustment of the microscopic parameters of the dipolar spin ice

Hamiltonian of Eq. (3.5), except for the dilution of spins in the system. From these results,

we can immediately conclude that a simple site-diluted version of the DSIM of Eq. (3.5)

does capture the dilution physics of both materials at a quantitative level. This constitutes

the main conclusion of this section.
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Figure 3.1: Comparison of the magnetic specific heat, Cm(T ), between Monte Carlo sim-

ulations and experiments. Black open circles are for Dy2−xYxTi2O7 experiment, solid

black curves are for Dy2−xYxTi2O7 simulations. Red open squares are for Ho2−xYxTi2O7

experiment, and solid red curves are for Ho2−xYxTi2O7 simulations. Insets show an en-

largement around the Schottky peak at Tp, arising from the formation of the spin ice state.

The horizontal blue arrows indicate location of Cm(T ) minima that may be occuring in

Ho2−xYxTi2O7. Error bars on the Monte Carlo data are included and for most cases smaller

than the width of the lines.
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Close inspection of Fig. 3.1 shows that there is a discrepancy in Cm(T ) between simula-

tion and experimental results for T ≳ 5 K. Also, the simulation results show a rise of Cm(T )
as T decreases below a temperature of approximately 0.4 K and 0.6 K for Dy2−xYxTi2O7

and Ho2−xYxTi2O7, respectively, while this behaviour is barely noticeable in the experi-

mental results. We address these two points in further detail in the following discussion,

mostly at the phenomenological level, postponing the discussion of the physical implica-

tions of these results for the determination of the residual entropy in Section 3.1.4.

High temperature regime

In the “high-temperature regime”, typically above 4 K ∼ 5 K, we observe that our simu-

lation results for Cm(T ) depart from the experimental results. Such a discrepancy needs

clarification since (i) a demonstration of the validity of the microscopic models considered

depends on achieving a good degree of agreement between experimental and Monte Carlo

Cm(T ) curves and since, (ii) as we shall see when discussing the residual entropy in the next

subsection, Cm(T ) for T ≳ 5 K contributes up to about 10% of the full R ln(2) magnetic

entropy.

From a high-temperature expansion perspective, the magnetic specific heat is expected

to follow a Cm(T ) ∼ 1/T 2 form at temperatures large compared to the typical temperature

scale Tp, the temperature at which the specific heat peaks, set by the interactions. This

form was indeed verified in all our simulation results. In contrast, all the experimental

Cm(T ) data decrease at T ≳ 5 K significantly faster and are obviously not in agreement

with this necessary 1/T 2 high-temperature form.

We believe this fast drop-off in experiment is likely due to an over-subtraction of the

lattice contribution to the total specific heat at these temperatures. The usual method for

carrying out such a subtraction relies on an estimated Debye contribution for the acoustic

phonons. For example, by considering the temperature range of 10 K ≤ T ≤ 20 K, one

might try to fit the total specific heat to the form Ctotal(T ) = A/T 2 +BT 3, where the 1/T 2

part comes from the aforementioned magnetic contribution while the T 3 part is the Debye

phonon contribution. Unfortunately, for T ≳ 10 K, background contributions from other

“components” of the experimental setup become significant. In particular, we note that

in order to facilitate thermal conduction in the measurements, Ag powder was mixed into

the spin ice powder. At these higher temperatures, the specific heat contribution from the
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Ag powder component becomes larger than the magnetic component that we are trying

to isolate. Fitting the phonon contribution with all these high temperature background

contributions embeds errors in the A and B fitting parameters, which then causes an

over-subtraction for the magnetic specific heat Cm(T ) for T ≥ 5 K.

Low temperature regime

We now turn to the low temperature regime of the Cm(T ) curves, below the prominent

peak at T = Tp, with Tp ∼ 1 K for Dy2−xYxTi2O7 and Tp ∼ 1.9 K for Ho2−xYxTi2O7. In

particular, we discuss the minima found in the simulation results for all dilution levels

(including x = 0, although in this case the minimum is more subtle [48, 67] ) in both

the Dy and Ho spin ices (see solid curves in insets of Fig. 3.1). As we shall discuss in

Section 3.1.4 below, the integrated entropy is highly dependent on the Cm(T ) results at

low temperatures since dS = Cm(T )
T dT .

It is known that in simulations of the non-diluted dipolar spin ice model [48, 67],

a Cm(T ) minimum arises from the development of extra correlations within the spin ice

state caused by the dipolar interactions, with the system eventually undergoing a transition

to long-range order at Tc ∼ 0.13D (Tc ∼ 0.18 K, for the J1, D parameters appropriate for

Ho2Ti2O7 [48, 67].) For such minima to be found in non-diluted spin ice simulations,

collective spin update algorithms such as the closed loop updates have to be included. On

the other hand, it is very difficult for experiments to display such a Cm(T ) minimum and

the long-range order transition, due to the freezing of spins below a temperature T ∼ 0.5

K [1, 68].

For the diluted systems, the existence of the minima in our simulation suggests that

a dynamical arrest similar to the one in the non-diluted systems does occur. Indeed, as

discussed in Section 2.4, equilibrium in simulations cannot be achieved without using col-

lective update algorithms, further supplemented by parallel tempering. For Dy2−xYxTi2O7,

having used a 3He cryostat in Ke et al. [2], the experiments stop at temperatures just above

the simulation-predicted minima. For Ho2−xYxTi2O7, the Cm(T ) minima are perhaps ex-

perimentally observed (see horizontal blue arrows in the insets of Fig. 3.1), although the

experimental data points below the minima do not agree very well with the simulation

results. In this case, one should be warned that there is a large nuclear contribution at

T ≲ 0.5 K for Hi2Ti2O7 [25] Even though this nuclear component has been subtracted, [2]
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its existence nevertheless complicates the possible experimental observation of the minima

in the magnetic-only part, Cm(T ), of the total specific heat C(T ).
While the present experimental data do not allow for a convincing observation of the

minima in Cm(T ), we unquestionably find them in the Monte Carlo simulations of the

microscopic dipolar spin ice models, Eq. 5.1. The minima observed in the specific heat

simulations of the diluted DSIMs acquires a significant value, as seen in Fig. 3.1, as

opposed to the very small values in the non-diluted variants [24, 48, 67]. Furthermore, the

broad specific heat peak at Tp(x), which signals the development of ice rule correlations

as in the non-diluted Dy and Ho spin ices, is less well defined in the diluted sample. For

example, for x = 1.7, the peak is more of a feature resulting from a slight drop at about

0.4 K on the rising Cm(T ) curve as T approaches zero, rather than a well-defined peak.

Indeed, at such a high dilution, the ice rules are marginally enforced and the Cm(T ) peak

associated with the development of ice rules fulfilling tetrahedra is not very prominent.

As discussed further in Section 3.1.4 regarding the determination of the residual entropy,

Sres(T0), at a low temperature T0, the behaviour of the Cm(T ) curves suggests that the

residual entropy concept employed for non-diluted spin ices cannot be readily discussed

without a specification of the lowest temperature T0 at which (equilibrated) experimental

data are obtained.

To sum up, there exist significant systematic experimental difficulties in determining

the magnetic-only contribution to the specific heat, Cm(T ), in the high temperature regime

(T ≳ 5 K). For the low temperature regime (T ≲ 0.5 K), in contrast to the non-diluted case,

the Cm(T ) curves from our simulations display clear minima with significant Cm(T ) values.

On the experimental front, these minima may be marginally observed in Ho2−xYxTi2O7

(x = 0.4,0.8,1.2), but are not observed in Dy2−xYxTi2O7. At the same time, the very good

agreement between the experimental and Monte Carlo Cm(T ) for both materials (for x up

to x = 1.8 for Dy2−xYxTi2O7) and for 0.5 K ≲ T ≲ 5 K seemingly vindicates the applicability

of a simple site-diluted version of the dipolar spin ice model to describe Dy2−xYxTi2O7

and Ho2−xYxTi2O7. We thus take the following approach. Having demonstrated good

agreement between experiments and models in the temperature range T ∼ [0.4 K − 5

K] for both Dy2−xYxTi2O7 and Ho2−xYxTi2O7, in order to remedy the aforementioned

experimental caveats, we henceforth only consider the simulation data of Eq. (3.5) to expose

accurately what is the x dependence of the low-temperature residual entropy, Sres(T0) of

the Dy2−xYxTi2O7 and Ho2−xYxTi2O7 diluted dipolar spin ice materials.
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3.1.4 Non-monotonic residual entropy

Since Eq. 3.5 describes an Ising model, the entropy at infinite temperature per mole of

spin is R ln 2. Thus the residual entropy at a given temperature T0 can be written as

Sres(T0) = R ln 2 − ∫ ∞
T0

Cm(T )
T

dT (3.8)

We plot Sres(T0) obtained from the Monte Carlo simulations for different choices of T0,

where the integration up to infinite temperature is done by fitting the Cm(T ) curves at

high temperatures (> 10 K) to the 1/T 2 form.

The results from these Monte Carlo determinations of the residual entropy, Sres(T0)
are shown in Fig. 3.2 for both Dy2−xYxTi2O7 and Ho2−xYxTi2O7. We confirm the previous

observation made by Ke et al. [2] that there does exist (i) a systematic non-monotonic

x dependence of Sres(T0) and (ii) that there is a difference in Sres(T0) between the two

materials. The main new result here is that, thanks to the ability of the Monte Carlo

simulations to provide accurate Cm(T ) data for T ≲ 0.5 K and T ≳ 10 K ranges, we

can now robustly expose both the x dependence and the specific material dependence of

Sres. Supplementing the previous report [2], we are now also uncovering the importance of

specifying the base temperature T0 used in the determination of Sres(T0). Such a need to

specify T0 does not arise in previous work on non-diluted Dy2Ti2O7 and Ho2Ti2O7 because

Cm(T ) practically drops to zero near T ∼ 0.4 K and Sres remains close to the Pauling value

for Cm(T )/T integrated upward anywhere from 0.4 K ± 0.1 K. In particular, as a final and

crucial observation, we note that for all values of x and for a given T0, Sres(x) is lower for

Ho2−xYxTi2O7 than for Dy2−xYxTi2O7, in contrast to the conclusion that was reached in

Ke et al. [2]. However, as a remark on the status of research of non-diluted Dy2Ti2O7, a

recent experiment [1] found non-vanishing Cm(T ) values near T ∼ 0.4 K, a point we shall

pick up in Chapter 5.

To reiterate, as seen in Fig. 3.2, the results of the residual entropy for the diluted

(x > 0) dipolar spin ice model depend strongly on the choice of T0, in contrast to the

non-diluted case (x = 0), in which the Sres(T0) for different T0 almost collapse onto the

calculation of the Pauling’s entropy, (R/2) ln(3/2). For x = 0, the collapse of the Sres(T0)
for different T0’s is the manifestation of the projective equivalence [27], which states that

the quasi-ground state properties of the dipolar spin ice model can be described by an

effective nearest-neighbour spin ice model up to corrections falling off as 1/r5. But for

x > 0, the T0 dependence suggests the failure of the projective equivalence upon dilution.
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Figure 3.2: Residual entropy determined from Monte Carlo simulations for both

Dy2−xYxTi2O7 and Ho2−xYxTi2O7 with different low temperature limits T0. The dotted

black curve shows Sres given by the generalized Pauling’s argument [2].

The overall non-monotonic trend of the entropy from the generalized Pauling’s argu-

ment being in rough qualitative agreement with the results for the real materials suggests

a remnant of the diluted nearest-neighbour spin ice model physics in the diluted dipolar

spin ice model. Yet, the two materials, because of their different magnetic interactions,

display distinct Sres(x,T0). Specifically, the two materials possess different energy scales

for their nearest-neighbour energy scale, J1, relative to the dipolar interactions, D (see

Eq. (3.5)). Thus, the higher overall temperature scale for the formation of the spin ice

state in Ho2−xYxTi2O7 compared to Dy2−xYxTi2O7 results in a residual entropy Sres(T0, x)
for Ho2−xYxTi2O7 lower than for Dy2−xYxTi2O7 for all x and for a given T0. However, a
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choice of T0 that varies for different values of x for a given compound will lead to a less

smooth Sres(T0, x) evolution than the one seen in Fig. 3.2.

Revisiting the task of comparing Sres from Monte Carlo and from the previous exper-

imental work [2], we offer a two-point summary of the above discussions for the origin

of the discrepancy between them. Firstly, the discrepancy arises from the experimental

uncertainties associated with high and low temperature regimes, as we discussed in the

Section 3.1.3. Secondly and more conceptually, it is the low temperature rising of the spe-

cific heat in diluted samples, which carries an indication of the physics induced by dipolar

interactions beyond nearest-neighbour spin ice upon dilution, and which is omitted in the

experimental work by Ke et. al.. The merit of this work is to quantitatively expose this

physics as far as the accuracy of the microscopic model goes.

3.1.5 Large level of dilution

It is perhaps remarkable that the nice agreement found between Monte Carlo simulations

and experiments shown in Fig. 3.1 for Dy2−xYxTi2O7 for 0 < x ≤ 1.7 disappears rather

abruptly and essentially completely going from x = 1.7 to x = 1.8 and x = 1.9 (see Fig. 3.1).

The only similarity left is that both Monte Carlo and experimental Cm(T ) data show a

small low-temperature hump at a temperature T ∼ 0.8 K that somewhat agrees between

Monte Carlo and experiments (see insets of Fig. 3.1 for x = 1.8 and x = 1.9, which are further

reproduced in Fig. 3.3). Figure 3.3 further illustrates that, despite the large dilution of

magnetic ions for x = 1.8 and x = 1.9, finite size effects remain negligible. We are thus

rather confident that the discrepancy between simulation and experimental results does

not arise from computational pitfalls, but is a genuine physical difference.

Presently, we do not have a good suggestion as to what may cause such a sudden (in

terms of “just” going from x = 1.7 to x = 1.8) and large discrepancy between experiments

and Monte Carlo data. A possible mechanism includes the development of a dipolar Ising

spin glass state [63, 64] inhibiting thermal equilibrium in the experiments, though that

should not be at play at temperatures as high as 1 K. Another possibility includes a

significant random local lattice distortion developing upon reaching large levels of dilution.

This would affect the Jν couplings and the crystal field, hence the magnetic moment µ and

the coupling D compared to the values determined for x = 0. A third possibility is that

of a highly uneven distribution of the magnetic ions as x → 2. These last two possibilities
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Figure 3.3: Comparison of Monte Carlo specific heat with experimental results for

Dy2−xYxTi2O7 for sizes L = 3,4,5 for x = 1.8 (top panel) and x = 1.9 (bottom panel).

seem rather unlikely given the close ionic radius of Y3+ with Dy3+ and Ho3+ and the solid

solution that exist in the whole x ∈ [0,2] range. More experiments are definitely required

to understand the x→ 2 behaviour of diluted spin ice materials.
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3.1.6 Error analysis

As shown in Section 3.1.5, there is a clear disagreement between the Monte Carlo results

and the experiments for the highly diluted samples of Dy2−xYxTi2O7 for x = 1.8 and

x = 1.9. One of the concerns about the Monte Carlo methods is that at such highly diluted

samples, we might not have enough disorder samples to achieve a good sample average.

Throughout our simulations, typically 40∼50 samples are used for the disorder average.

To address the concern of on insufficient number of disordered samples, we increased the

number of samples by 2500%, i.e., with 1000 disordered samples for the x = 1.8 and x = 1.9

dilution levels.

Some of the results from averaging over the 40 samples and averaging from the 1000

samples are listed in Table 3.1

Dil(x) T(K) L = 5, Ns = 40 L = 5, Ns = 1000 relative difference L = 4, Ns = 50

1.8 0.4408 1.265042 1.286582 1.67 % 1.265877

1.8 1.3224 0.983148 0.963335 2.06 % 0.970326

1.8 2.2040 0.516152 0.499696 3.29 % 0.512963

1.9 0.4408 0.851199 0.865990 1.71 % 0.844197

1.9 1.3224 0.543663 0.550485 1.24 % 0.525173

1.9 2.2040 0.272823 0.273045 0.08 % 0.264252

Table 3.1: Magnetic specific heat results, Cm(T ), from different number of samples for

L = 5. The relative differences are also calculated for L = 5. As a reference, Cm(T ) values

for the L = 4 are also listed.

It can be seen from the table that with 25 times more samples, the differences in the

specific heat are averages only a few percents. On the other hand, the discrepancy between

experimental Cm(T ) and Monte Carlo Cm(T ) is much more significant.

In addition, we plot the histogram of the specific heat from the 1000-sample simulations

in Fig. 3.4. The histograms show that the specific heat results for different realizations of

dilution disorder approximately follow a normal distribution.
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Figure 3.4: Specific heat histogram for different realizations of dilution disorder at large

dopings of x = 1.8 and x = 1.9

Error bars

There are two sources of errors in our simulations. One is from the Monte Carlo statistics

for each disorder realization. The other is from the sample-to-sample fluctuations for

different realizations of the sample dilution level, since in simulation we are dealing with a

finite-sized system.

We checked that the error bars from the Monte Carlo statistics are generally very

small. Such error bars can be calculated from the bootstrap method presented in Section

2.3. Here we consider a few examples (for one realization of each dilution level at various
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temperatures) for Dy2−xYxTi2O7 with a system size L = 4:

Dilution level(x) Temperature(K) Specific heat (C) Bootstrap error (σ)

0.2 0.5 0.657478 0.002475

0.2 1.0 1.941898 0.007017

0.2 1.5 1.950690 0.007584

0.2 2.0 1.581808 0.005756

0.2 2.5 1.320090 0.004446

1.0 0.5 1.100804 0.003977

1.0 1.0 2.019855 0.007193

1.0 1.5 1.988720 0.006108

1.0 2.0 1.657819 0.006050

1.0 2.5 1.318661 0.004542

1.7 0.5 1.462010 0.005824

1.7 1.0 1.683816 0.007273

1.7 1.5 1.320184 0.005308

1.7 2.0 0.914419 0.003614

1.7 2.5 0.636502 0.002418

Table 3.2: Monte Carlo specific heat and bootstrap errors for Dy2−xYxTi2O7, and for a

simulation box of size L = 4.

As illustrated in Table 3.2, the statistical errors from the Monte Carlo are very small

for the cases we checked. We therefore ignore this type of error and only consider the

sample-to-sample fluctuation error.

The sample-to-sample fluctuation error is given by

σ =
√

1

n − 1
([C2] − [C]2) (3.9)

over an ensemble of 50 samples for a given dilution level.

Generally, this type of error turns out to be small. In Table 3.3 we show some numerical

examples for Dy2−xYxTi2O7 for a simulation box size of L = 4.
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Dilution level(x) Temperature(K) Specific heat (C) Sample fluctuation error (σ)

0.2 0.2204 0.654985 0.004210

0.2 1.1020 2.044120 0.004781

0.2 2.2040 1.473623 0.001712

1.0 0.2204 1.266760 0.012628

1.0 1.1020 2.039623 0.011120

1.0 2.2040 1.494663 0.004633

1.7 0.2204 1.898602 0.027357

1.7 1.1020 1.534690 0.016225

1.7 2.2040 0.752040 0.008782

Table 3.3: Sample-to-sample fluctuation for Dy2−xYxTi2O7, with a simulation box of L = 4.

50 samples are considered.

We have therefore only considered sample-to-sample fluctuations in the specific heat

plots against experimental results in Fig. 3.1. In general, they are smaller than the size of

the line symbol used.

3.1.7 Conclusion

Spin ice is at the present time one of the best understood highly frustrated magnetic

systems, both from a microscopic model perspective [24] as well as from a field theory

one [31, 32, 69, 70]. Spin ices would thus appear to be an ideal system to investigate

quantitatively the effects of random disorder in a highly frustrated magnetic setting [69, 70].

The broad goal of this project was to perform such a quantitative comparison between

theoretical modeling and experimental measurements in a specific class of disordered highly

frustrated magnetic materials. As a first step, in this section we reported results from

Monte Carlo simulations of a site-diluted version of the dipolar spin ice model (DSIM)

given by Eq. 5.1 for Dy2−xYxTi2O7 and Ho2−xYxTi2O7. A close match between simulation

results and experiments in the temperature range 0.5 K ≲ T ≲ 5 K was found up to, and

including, x = 1.7 (85% magnetic ions diluted) for Dy2−xYxTi2O7. This good agreement

between simulations and experiments validates further the underlying dipolar spin ice

models for these two compounds [24, 25]
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The non-monotonicity of the residual entropy as a function of dilution levels, Sres(T0, x),
is confirmed to originate from the material-specific spin-spin interactions themselves, namely

the relative strength of (mostly) the nearest-neighbour exchange coupling J1 with respect

to the dipolar interactions. Furthermore, despite the importance of specifying the base

temperature, T0, from which thermodynamic integration of the magnetic specific heat

Cm(T )/T is carried out, Sres(T0, x) is nevertheless found to be roughly qualitatively de-

scribed by the generalized Pauling’s estimate, as shown by Ref. [2]. In summary, the

difference in the residual entropy Sres between Dy2−xYxTi2O7 and Ho2−xYxTi2O7, as well

as with the generalized Pauling’s argument, have been resolved in this Section.

3.2 Diluted nearest-neighbour spin ice

In the previous section, we explored the material versus microscopic model aspect of the

diluted spin ice problem. The validity of the random site diluted dipolar spin ice models was

demonstrated through the detailed comparison of the specific heat measurements between

Monte Carlo simulations and the experiment. Some salient features of the numerical and

experimental facts found so far await physical explanations that we address the following

in this chapter:

• origin of the specific heat broad peak observed for all dilution levels

• origin of the non-monotonicity of the residual entropy

• origin of the non-monotonicity of the specific heat peaks

Indeed, one of the most important signatures for identifying spin ice materials is the

observation of the broad specific heat peak and its integration yielding a Pauling entropy

[59]. In this Section, we offer a new insight into the meaning of the broad peaks in terms

of thermal defect populations in the system.

Features of the calorimetric measurements are readily explained through the approxi-

mation developed and detailed Monte Carlo simulations in this Section. Stability of the

nearest neighbour model Hamiltonian is also discussed in Section 3.3, which can be under-

stood through a Bethe-Peierls calculation.
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3.2.1 Model Hamiltonians

In this subsection, we consider two microscopic models for diluted spin ices. The first model

is the diluted nearest-neighbour spin ice model (NNSIM), defined by the Hamiltonian

HNNSIM = −∑⟨i,j⟩Jσiσjθiθj (3.10)

where the σi,j = ±1 are the Ising variables and the θi,j indicates whether a magnetic site

has been diluted, with θi = 0 when site i is diluted and θi = 1 otherwise. The probability

distribution of θi, therefore satisfies

p(θi) = µδ(θi) + (1 − µ)δ(θi − 1) (3.11)

where µ is the probability of a site being diluted with µ = x/2 for x in the chemical formu-

lae Dy2−xYxTi2O7 and Ho2−xYxTi2O7. J is the coupling between the Ising variables with

J < 0 for spin ice. The sum is carried over spins that are nearest-neighbours. The spins

represented by the Ising variables are on a pyrochlore lattice with corner-sharing tetra-

hedra, where the combination of triangular plaquettes and the effective antiferromagnetic

interactions leads to geometrical frustration in the undiluted case and random frustration

when diluted (µ ≠ 0).

The second model that we consider is the diluted dipolar spin ice model (DSIM), defined

in Eq. 3.5.

For the non-diluted spin ices, it first came as a puzzle why the dipolar model displays

similar spin ice behaviour as the nearest-neighbour model[22, 23, 67]. The resolution

was found in a later work [27] that the Ising pyrochlore system possesses the remarkable

property of projective equivalence, so that the long range parts of the dipolar interactions

are self-screened [28]. The eventual long-range order transition from the dipolar interaction

was shown numerically [48, 67] to happen at a much lower temperature compared to

Jeff = (5D − J1)/3, the nearest-neighbour energy scale of Eq. 3.5.

For diluted spin ices, we showed in Section 3.1 that for Dy2−xYxTi2O7 and Ho2−xYxTi2O7

[2], their specific heat can be accurately described by the dipolar spin ice model (DSIM)

with parameters fitted in the pure cases [24, 25].

In this section, we will largely focus on the NNSIM due to its simplicity as a natural

theoretical starting point. Yet, its physical relationship to the DSIM and experiments will

also be discussed.
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3.2.2 Single tetrahedron approximation

To understand the diluted NNSIM, we consider approximating the NNSIM by a collection

of non-interacting tetrahedra, where we term such an approach the single tetrahedron

approximation (STA). We will show later in this section that the STA is very accurate for

the diluted NNSIM, and provides new insights into the broad specific heat peak of the spin

ices. The rest of this subsection is a detailed account of the calculation.

The STA calculation consists of two parts. One part is to calculate the probabilities

for the occurence of each type of tetrahedron. The other part is to calculate the physical

properties associated with each type of diluted tetrahedron.

A tetrahedron can be diluted in different ways. In zero field, dilution on a single

tetrahedron can be characterized by the number of sites remaining. In this section we only

consider the zero field problem. Thus there are five dilution level on a tetrahedron, from

tetrahedron with zero sites remaining to tetrahedron with all four sites remaining.

The probabilities for each way of diluting a tetrahedron are given by

Pi(µ) = Ci
4(1 − µ)iµ4−i

2(1 − µ) (3.12)

where i = 0,1,2,3,4 indicates the number of spins remaining, and µ, as defined before, is

the probability of a site being diluted. Note that we have inserted the 1/2(1 − µ) factor

such that our weighting factors are for properties per undiluted spin, where the factor 2

here reflects the sharing of a spin between two tetrehdra.

With the probabilities for each type of dilution calculated, we can proceed to calculate

the physical observables from the STA as

OSTA(T,µ) = ∑
i∈{0,1,2,3,4}Pi(µ)Oi(T ) (3.13)

where Oi is the physical observable associated with the tetrahedron with i sites remaining.

We are particularly interested in two observables, the specific heat, C(T,µ), which is a

macroscopic quantity, and the charge densities, n±i(T,µ), which is a microscopic quantity.

Here the charges are defined as the sums of the Ising variables on each tetrahedron, with

the sum indicated by the subscript ±i. In particular, the ±2 charges defined here are the

magnetic monopoles defined in previous works [29, 33, 71].
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The energy spectrum for each type of dilution for a single tetrahedron is given in Table

3.4, along with the degeneracy of each energy level. From this table, the observables for

the specific heat and the charge densities can be calculated.

Charge 4-spin

tetra.

3-spin

tetra.

2-spin

tetra.

1-spin

tetra.±4 2, −8J - - -±3 - 2, −4J - -±2 8, −2J - 2, −2J -±1 - 6, GS - 2, -±0 6, GS - 2, GS -

Table 3.4: Degeneracy and energy above the ground state (GS) for each type of single

tetrahedron under dilution. The charge is defined as the sum of all Ising variables of the

tetrahedron. Note that for the nearest-neighbour spin ice model (NNSIM) of Eq. (3.10),

J < 0.

3.2.3 Single tetrahedron approximation compared with Monte

Carlo simulation

To test the validity of the STA, we compared the specific heat and the charge densities with

Monte Carlo simulations of the site-diluted NNSIM. The Monte Carlo algorithm we use here

is the same as in the previous section of the chapter, where besides the conventional single

spin flip updates, collective updates of spins on closed and open loops are performed. The

loops are designed to tunnel the system among spin ice states with no charge excitations

as explained in Section 2.4. For the data presented here, a system of 8192 (L = 8) sites is

used, with an average up to 200 samples considered for different realizations for a given

dilution level µ. Up to 200,000 MC sweeps along with the collective updates are used

in equilibration and data production. The error bars are produced from the sample-to-

sample fluctuations, where the MC error from each sample is checked to be very small and

therefore ignored.
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In Fig. 3.5, we plot the specific heat C(T ) results obtained from Monte Carlo simula-

tions and from the STA calculations. Notice that for all diluted levels the STA calculation

agrees very well with the Monte Carlo simulation over the whole temperature range. Note

that there are no adjustable fitting parameters here.
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Figure 3.5: Comparison between specific heat from Monte Carlo simulations of the nearest-

neighbour spin ice model (NNSIM) (dots) and single-tetrahedron approximation (STA)

(lines). Monte Carlo simulations are performed using a simulation box of size L = 8.

Temperature is in unit of ∣J ∣. ”MC” and ”STA” indicates whether the results are from

a Monte Carlo simulation or from a STA calculation, respectively. The numerical values

beside the ”MC” or ”STA” labels indicates the percentages of missing spins, i.e., µ.

For the NNSIM, the C(T ) curves do not develop a sharp first order transition peak
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below the specific heat broad peak, as opposed to the DSIM [48]. Therefore, from the

specific heat calculations, it seems that dilution defects in the NNSIM do not introduce a

long range order transition or a freezing into a spin glass state, which would be accompanied

by a specific heat peak. Later in this section, we will comment on the absence of magnetic

long range or spin glass order from the perspective of a Bethe-Peierls calculation method

discussed in Section 2.4.

For the charge densities, we also found an excellent agreement between the STA cal-

culation and the Monte Carlo simulation for all dilution levels and the whole temperature

range. For example, we plot in Fig. 3.6 n±4(T ), n±3(T ), and n±2(T ) for µ = 0, µ = 1/8,

µ = 1/2, and µ = 7/8. Note that for µ = 0.0 there is no charge ±3 since no tetrahedron is

diluted.

Therefore through direct comparison, we have shown that the STA calculation describes

the diluted NNSIM quantitatively, this is one of the main conclusions of this section.

3.2.4 Interpretation of the broad specific heat peak in spin ice

Having shown that the STA describes accurately the specific heat and the charge densities

for the diluted NNSIM, we point out in this subsection an interpretation of the dilution

dependence of the specific heat in diluted NNSIM, i.e., the following relation holds true

for all dilution levels µ and the whole temperature range

C(T,µ) = −8J
dn4(T,µ)

dT
− 4J

dn3(T,µ)
dT

− 2J
dn2(T,µ)

dT
(3.14)

The coefficients of Eq. (3.14) can be read from Table 3.4 with the assumption that

the excitation energy of the system equates the sum of energies of the non-interacting

charges. This equation relates a thermodynamic quantity, the specific heat, directly to

the microscopic charge densities in a many body system. For the pure spin ice, n3 is zero

and at low temperatures the n4 term is small compared with the n2 term. Therefore for

pure spin ice the specific heat at low temperatures can be interpreted as the temperature

derivative for the magnetic monopole [29] (charge ±2 objects) densities. With dilution and

for the whole temperature range, all three charge defect densities contribute to the specific

heat.

We believe that this result provides an interesting new insight into the physical inter-

pretation of the broad specific heat peak of spin ices.
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Figure 3.6: The average numbers of the thermally excited defects from Monte Carlo

simulations (symbols) and from the STA calculations (lines) for the site-diluted NNSIM.

Temperature is in unit of ∣J ∣. ”MC” and ”STA” indicates whether the results are from

a Monte Carlo simulation or from a STA calculation, respectively. The numerical values

beside the ”MC” or ”STA” labels indicates the percentages of missing spins, i.e., µ.
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3.2.5 Application: non-monotonicity of the specific heat

As an application of the STA interpretation for spin ices, we discuss in this subsection the

non-monotonicity in height and temperature location of the specific heat broad peak and

how the STA can explain it.

For diluted spin ices, we observe that the C(T,µ) curves evolve in a non-monotonic man-

ner as a function of µ in both their peak heights and their peak positions for Dy2−xYxTi2O7.

This is the case for the NNSIM, as can be seen from Fig. 3.5, and is also the case for the

DSIM and the experiments, as can be seen in Fig. 3.7. This non-monotonicity can be

explained as the shifting of the occurance probabilities and the differences in the specific

heat contributions from the three types of the single tetrahedron.

As discussed previously, the STA treats each tetrahedron independently and the final

result is given by Eq. 3.13, where the Pi(µ)’s are given by Eq. 3.12. Specifically, for

specific heat only the 4-spin, 3-spin and 2-spin tetrahedra contribute to the final result,

which can be written as

C(µ,T ) = 4∑
i=2

Pi(µ)Ci(T ) (3.15)

To explain the non-monotonicity, we plot in Fig. 3.8 the Ci(T )’s and Pi(µ)’s. As can

be seen, the C3(T ) curve is much lower in peak height and occurs at higher temperature

than C4(T ) and C2(T ). Therefore as µ increases from zero the dominance of the weighting

factor Pi(µ)’s shifts from i = 4 to i = 3, and thus the resultant peak height decreases and

the peak position of C(T ) moves to higher temperatures. At larger µ, as the dominance

shifts to i = 2, the resultant peak height increases and the peak position occurs at lower

temperatures again due to the higher C2(T ) curve relative to the C3(T ) curve.

In this way we show that the STA can be used to explain an observed experimental

phenomenon.

3.3 Discussion: stability of the paramagnetic solution

from a Bethe-Peierls calculation

The question we ask in this section is whether the diluted NNSIM, there is a phase transi-

tion out of the paramagnetic phase at some region of the T −µ phase diagram, into either
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Figure 3.7: Magnetic heat capacity of Dy2−xYxTi2O7 from experiment and Monte Carlo

simulation of the dipolar spin ice model. Non-monotonic trends of the Cpeak heights and

temperature location can be seen.

longe-range ordered state or spin-glass phase. We employ a Bethe-Peierls approximation

to explore this question. From this calculation we find that the diluted NNSIM remains a

paramagnet for all finite temperatures and dilution levels.

In this work, we adapt the same method as in the work by Mélin et al. [72] to our site-

diluted pyrochlore problem. The general idea of a Bethe-Peierls calculation is to replace
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the pyrochlore lattice by a Husimi cactus-like structure (Fig. 3.9). This enables an analytic

solution to the recursive relations for the physical properties of the spins on adjacent layers

of the tree structure. The thermodynamic limit is then taken by extending the recursive

relation to infinity and we are interested in the resultant fixed points in the probability

distribution of the physical properties. Usually, the physical property that we are interested

in is the magnetization m. Depending on the different fixed points in the probability

distribution of m, P ∗(m), we have a paramagnetic solution if P (m) = δ(m), ferromagntic

solution if P ∗(m) has a finite first moment, and a spin-glass solution if P ∗(m) is even. In
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the following, we show in detail that for our problem, the paramagnetic solution, P (m) =
δ(m), remains stable with respect to the first and second moment of the magnetization.

3.3.1 Model

The Hamiltonian that we study is the diluted NNSIM, defined by Eq. (3.10).

The pyrochlore lattice is now replaced by a Husimi cactus, as depicted in Fig. 3.9,

which is a tree structure of tetrahedra. Note that the outward tetrahedra from different

branches never re-connect.

x

y

z

w

Figure 3.9: The Husimi cactus of diluted magnet spin ice. The top spin x is attached to

the next layer’s spins y, z, and w. The spins are diluted with probability µ.

3.3.2 Recursive relation for the magnetization

Our first goal is to derive the recursive relation for the magnetization between two adjacent

layers (connecting tetrahedra). In Fig. 3.9, the “inner” layer (later subscripted with n+1)

is labeled by x, and the “outer” layer (later subscripted with n) are labeled by y, z, and

w. We are interested in how the magnetization mx is dependent on my, mz and mw,
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conditional on θx, θy, θz, and θw, i.e., the function

mx = f(my,mz,mw∣θx, θy, θz, θw) (3.16)

Consider the conditional partition function for the x layer spin having value of σx

Zσx
x = ∑

θy ,θz ,θw

WB
θy ,θz ,θw

(σy, σz, σw∣σx)Zσy
y Z

σz
z Z

σw
w (3.17)

where WB
θy ,θz ,θw

(σy, σz, σw∣σx) is the Boltzmann factor defined as

WB
θy ,θz ,θw

(σy, σz, σw∣σx) =
e(βσxσyθxθy+βσxσzθxθz+βσxσwθxθw)×
e(βσyσzθyθz+βσyσwθyθw+βσzσwθzθw) (3.18)

with β ≡ J/kBT .

Using the relation

mγ = Z+
γ −Z−

γ

Z+
γ +Z−

γ

(3.19)

for γ = x, y, z,w, we have

mx =
∑σy ,σz ,σw=±1(1 + σymy)(1 + σzmz)(1 + σwmw)×

sinh(β(θxσyθy + θxσzθz + θxσwθw))eβ(σyσzθyθz+σyσwθyθw+σzσwθzθw)∑σy ,σz ,σw=±1(1 + σymy)(1 + σzmz)(1 + σwmw)×
cosh(β(θxσyθy + θxσzθz + θxσwθw))eβ(σyσzθyθz+σyσwθyθw+σzσwθzθw)

(3.20)

Note that tanh(Kσ) = tanh(K)σ for σ = 0,±1, we have the recursion relation for the

magnetization
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mx =[pθxθw + p2θxθw(θ2
y + θ2

z) + 2p3θxθwθ2
yθ

2
z + p4θxθwθ2

yθ
2
z(θ2

w + θ2
x) + p5θ3

xθ
3
wθ

2
yθ

2
z]mw[pθxθy + p2θxθy(θ2

w + θ2
z) + 2p3θxθyθ2

wθ
2
z + p4θxθyθ2

wθ
2
z(θ2

y + θ2
x) + p5θ3

xθ
3
yθ

2
wθ

2
z]my+[pθxθz + p2θxθz(θ2

w + θ2
y) + 2p3θxθzθ2

wθ
2
y + p4θxθzθ2

wθ
2
y(θ2

z + θ2
x) + p5θ3

xθ
3
zθ

2
wθ

2
y]mz+[3p2θwθxθyθz + p3θxθwθyθz(θ2

x + θ2
y + θ2

z + θ2
w) + p6θ3

xθ
3
wθ

3
yθ

3
z]mwmymz

1 + p3θ2
x(θ2

wθ
2
y + θ2

wθ
2
z + θ2

yθ
2
z) + p3θ2

wθ
2
yθ

2
z + 3p4θ2

xθ
2
wθ

2
yθ

2
z[pθwθy + p2θwθy(θ2

x + θ2
z) + 2p3θ2

xθ
2
wθyθ

2
z + p4θwθ2

xθyθ
2
z(θ2

w + θ2
y) + p5θ2

xθ
3
wθ

3
yθ

2
z]mwmy[pθwθz + p2θwθz(θ2

x + θ2
y) + 2p3θ2

xθwθzθ
2
y + p4θwθzθ2

xθ
2
y(θ2

w + θ2
w) + p5θ2

xθ
3
wθ

3
zθ

2
y]mwmz[pθyθz + p2θyθz(θ2

x + θ2
w) + 2p3θ2

xθyθzθ
2
w + p4θyθzθ2

xθ
2
w(θ2

y + θ2
z) + p5θ2

xθ
3
yθ

3
zθ

2
w]mymz≡ f(my,mz,mw∣θx, θy, θz, θw) (3.21)

where p ≡ tanh(β).
3.3.3 Statibility of the paramagnetic solution

With the magnetization recursion relation Eq. (3.21), we can study the stability of the

paramagnetic solution for the first and second moment of the magnetization.

For the first moment, we have

⟪m⟫n+1 ≡ ∫ dmxPn+1(mx)mx

= ∫ dmx∫ dmydmzdmw ∑
θx,θy ,θz ,θw

p(θz)p(θy)p(θz)p(θw)×
Pn(mx)Pn(mz)Pn(mw)×
δ(mx − f(my,mz,mw∣θx, θy, θz, θw))mx

(3.22)
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To the lowest order in m, we have

⟪mx⟫n+1 ≈∑
θx,θy ,θz ,θw

p(θz)p(θy)p(θz)p(θw)×
pθxθw + p2θxθw(θ2

y + θ2
z) + 2p3θxθwθ2

yθ
2
z+

p4θxθwθ2
yθ

2
z(θ2

w + θ2
x) + p5θ3

xθ
3
wθ

2
yθ

2
z

1 + p3θ2
x(θ2

wθ
2
y + θ2

wθ
2
z + θ2

yθ
2
z)+

p3θ2
wθ

2
yθ

2
z + 3p4θ2

xθ
2
wθ

2
yθ

2
z

×
⟪mw⟫n × 3

= 3⟪Gwyz(θx, θy, θz, θw, p)⟫⟪mw⟫n (3.23)

≡ C1⟪mw⟫n (3.24)

where

Gwyz(θx, θy, θz, θw, p) ≡
pθxθw + p2θxθw(θ2

y + θ2
z) + 2p3θxθwθ2

yθ
2
z+

p4θxθwθ2
yθ

2
z(θ2

w + θ2
x) + p5θ3

xθ
3
wθ

2
yθ

2
z

1 + p3θ2
x(θ2

wθ
2
y + θ2

wθ
2
z + θ2

yθ
2
z)+

p3θ2
wθ

2
yθ

2
z + 3p4θ2

xθ
2
wθ

2
yθ

2
z

(3.25)

and we have defined

⟪Gn
wyz(θx, θy, θz, θw, p)⟫ ≡
∑

θx,θy ,θz ,θw

p(θx)p(θy)p(θz)p(θw)Gn
wyz(θx, θy, θz, θw, p) (3.26)

Similarly, for the second moment, to lowest order in the phase diagram where the first

moment vanishes, we have

⟪m2
x⟫n+1 =3⟪G2

wyz(θx, θy, θz, θw, p)⟫⟪m2
w⟫n (3.27)

≡ C2⟪m2
w⟫n (3.28)

The paramagnetic phase is stable with respect to perturbations in the first and second

moment if ∣C1∣ < 1 and ∣C2∣ < 1. (3.29)
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We plot C1 and C2 as functions of µ and p in Fig. 3.10. As can be seen from the

figure, Eq. (3.29) is always satisfied at any nonzero temperature and all dilution levels.

Therefore, the paramagnetic solution is shown to be stable with respect to the first and

second moment of the magnetization.

Figure 3.10: The C1 and C2 as functions of p(≡ tanh(β)) and dilution level µ. ∣C1∣ < 1 and∣C2∣ < 1 are always satisfied at any nonzero temperature and all dilution levels.

From Eq. (3.19), the conditional partition function in the paramagnetic region is unity.

Then, from Eq. (3.17) the properties of the “inner” spin do not depend on the properties

of the “outer” spin, or the effective field [51] on the “inner” spin is zero. Therefore, we

can consider only the innermost object of the Husimi cactus, which is just a single tetrahe-
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dron, in calculating the physical properties of the whole structure. The presence of dilution

allows for the possibility of having four spins to zero spin on a tetrahedron, and the thermo-

dynamic properties should then be calculated for each possibility and weighted according

to the probabilities of find each of them. Thus the single tetrahedron approximation in

Section 3.2 is justified through the Bethe-Peierls calculation.

In summary, we have shown using Bethe-Peierls calculation that the diluted NNSIM

remains paramagnetic, and consequently such calculation reduces to the calculation of a

single tetrahedron of the pyrochlore.

3.4 Lost of the projective equivalence in diluted spin

ice

In Section 3.2, we demonstrated that for the nearest-neighbour spin ice model, the broad

peak of the specific heat can be directly mapped to the changes of the thermal defect

densities via Eq. (3.14), with the mapping holding true at all dilution levels.

In this chapter, by applying Eq. (3.14) to the dipolar spin ice model, we provide a

concrete physical picture of how the projective equivalence works for the non-diluted spin

ices, while it fails in the presence of site dilution.

In Fig. 3.11, we plot the specific heat as a function of temperature as well as the “STA

specific heat” from the change of the thermal defect densities via Eq. (3.14). The STA

specific heat is rescaled by an overall factor for each dilution level x separately to match

the “real” specific heat at T = 3.5 K.

Consider the case of the non-diluted spin ice (x = 0.0). First, we face the problem of

the value of Jeff in Eq. (3.14). For a nearest-neighbour model, the energy spectrum of the

thermal excited defects has no ambiguities in units of exchange interaction. However, in the

dipolar spin ice model, the excitation energy has contributions not just from the nearest-

neighbours, but also from the texture of the “vacuum”, (magnetic charge neutral space)

and other monopole charge excitations present in the system. The last of the contributions

is part of the interesting topic of the Debye-Huckle theory of the magnetic charges in spin

ice [29, 71], which is the subject of Chapter 6. For the moment we are satisfied with just

a scale factor between the STA specific heat and the real specific heat, keeping in mind

63



 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.5  1  1.5  2  2.5  3  3.5  4

C
(J

/K
/K

/m
ol

)

T(K)

Specific heat x=0.0
STA x=0.0

Specific heat x=0.4
STA x=0.4

Specific heat x=1.6
STA x=1.6

Figure 3.11: An attempt to map the defect densities to the specific heat via Eq. 3.14.

Monte Carlo simulations for Dy2−xYxTi2O7 at three dilution levels. The density results

are marked by “STA” in the label and is scaled at T = 3.5 K to match the specific heat.

the scaling constant (if one scalar is at all sufficient) incorporates physics we have not

understood completely.
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As shown in Fig. 3.11, for the non-diluted spin ice, Eq. (3.14) works reasonably well,

and the small difference below the broad peak of the specific heat is most likely due to

the aforementioned neglects. Thus, this result provides a microscopic interpretation of the

specific heat broad peak of spin ice, in terms of the thermal defects (magnetic monopoles

in the language of the work by Castelnovo et al. [29]). The projective equivalence, or the

self-screening of the charges, is illustrated as the close match between the STA results and

the true specific heat results.

Next we consider the case for the diluted spin ices (x = 0.4 and x = 1.6 in Fig. 3.11). As

shown in the figure, the STA specific heat curves depart from the true specific heat below

the broad peak (while we suffer the same problem with the scaling factor). The departure

can be understood by an argument of the breakdown of the projective equivalence. One way

to understand the projective equivalence is through the dumbbell model of the magnetic

spins [29], where the dipole moment of the spins is replaced by two opposite charges at

the centres of the two tetrahedra linked by the spins. In the presence of the dilution, some

of the tetrahedra are no longer surrounded by four spins. Therefore, there is a surplus

of charges at the centres of these diluted tetrahedra. These unscreened charges interact

among themselves as well as with the “vacuum fluctuations” of the ice-rule states by the

magnetic field they generate. Therefore we have a much richer energy landscape than that

described by the STA. We thus have departures between the STA specific heat and the

true specific heat.

In this chapter, we have illustrated a breakdown of the projective equivalence in the

diluted dipolar spin ice. Relate back to Section 3.1, it is because of this breakdown in the

self-screening that there is no well defined residual entropy plateau at the Pauling’s value.

Only a remnant of the diluted nearest-neighbour spin ice persists in the dipolar spin ice,

notably the non-monotonic peak of the specific heat curves, as discussed in Section 3.2.

3.5 Conclusion and future works

In conclusion, in this chapter we studied the compounds of diluted spin ices Dy2−xYxTi2O7

and Ho2−xYxTi2O7. We found that the site-diluted dipolar spin ice model describes the

experimental observables very well. The meaning of the broad peak in specific heat, as we

discussed in Section 3.2, can be ascribed to the change of the thermal defect populations

in the nearest-neighbour spin ice. The single-tetrahedron approximation, which we use to
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describe the nearest-neighbour model, successfully describes the non-monotonicity of the

specific heat broad peak. The paramagnetic phase, as we argued in Section 3.3, survives

random site dilution in the nearest-neighbour model. We show in Section 3.4 that for

dipolar spin ice model, the breakdown of projective equivalence happens at finite dilutions.

3.5.1 Future work

Consider the low dilution limit, where magnetic site vacancies are sparse and well separated.

Due to the dumbbell description of spin ice, at the two tetrahedra linked to the magnetic

spin vacancy site, two magnetic charges appear. Due to their proximity they will form

dipoles at low temperatures. Therefore, at not so low a temperature where magnetic

ordering sets in for the charge “vacuum” (ice-rule fulfilling) spins, we have a dilute dipole

model. For a similar dilute dipolar model LiHoxY1−xF4 [64, 73, 74], glass transition remains

a controversial topic. Future directions of work would include the exploration of a possible

glass phase arising from these effective dipole moments.
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Chapter 4

Spin Ice Thin Films

Spin ice thin films constitute an emerging field of study. Several interesting questions

contribute to the surge of interest.

First is the question of restoration of the third law of thermodynamics. The defin-

ing feature of spin ice is its residual entropy of (kB/2) ln(3/2), due to the degeneracy of

the exponentially numbered (in the volume of the system) ice-rule fulfilling states. With

dipolar interaction, this degeneracy is slightly lifted, and the transition to long-range or-

der was predicted to be 0.18 K in a previous simulation study [48] but has never been

observed in experiment. In fact, for dipolar spin ice, the appearance of a quasi-degenerate

low temperature state is due to a remarkable property of the dipolar interaction on the

pyrochlore lattice. The dipolar interactions are self-screened [28] and, as studied by Isakov

et al. [27], they are projective equivalent to the nearest-neighbour interactions on the py-

rochlore. Therefore, for a dipolar spin ice thin film, we may ask if such an equivalence,

or self-screening of the dipolar interaction, still remains, thus allowing a quasi-degenerate

ground state, or if the opposite is true and eliminate all the residual entropy to restore the

third law of thermodynamics. On the other hand, since experimentally spin ice films are

usually grown on substrates of other chemical compounds [75], we may have a geometri-

cally distorted system, and maybe the strains induced by the surface can restore the third

law.

Second, is the prospect of realizing a magnetic equivalence of a spintronic device in a

thin film. Emergent magnetic monopoles and magnetricity have been proposed for spin

ice materials [29, 76]. Furthermore, it was noted by Khomskii [77] that for a magnetic
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monopole in spin ice, an electric dipole can be associated with it. Thus we have a complete

analogue between electrons and magnetic monopoles, and between spins of electrons and

electric dipole moments of the magnetic monopoles. Possibly, wisdom gained in the study

of spintronics may be eventually applied to spin ice film devices with reversed electric-

magnetic relations.

Third, is the question of surface freezing versus surface melting. For water ice, surface

melting, or premelting occurs and it has huge consequences in earth and planetary sciences.

An everyday example of why the concept of surface melting is important is that it is one of

the explanations why skating is possible (there is alway a thin film of water on ice due to

premelting). On the other hand, surface freezing is much rarer in nature, and one example

is in molten normal alkanes [78]. Therefore we ask if for spin ice thin films whether a

magnetic surface freezing or surface melting occurs

Experimentally, a couple studies of spin ice thin films have been reported. [75, 79]

Fabrication of Ho2Ti2O7 using pulsed laser deposition showing high quality of crystalization

is possible [79]. In the work of Bovo et al. [75], a restoration of the third law in spin ice

Dy2Ti2O7 was observed and was attributed to strain-induced ordering.

In this chapter, we will be studying dipolar spin ice thin films with the [001] surface. The

reason we only use a [001] surface as opposed to the other experimental reported surfaces

of [110] [75] and [111] [79] is mainly due to theoretical convenience. The conventional cubic

unit cell for the FCC lattice has the [001] surface when stacked periodically in the x and

y directions. In general an orthorhombic unit cell is needed, therefore the conventional

Ewald Eq. [65] has to be re-derived for such geometry. Eventually all these subtleties

should be considered and addressed. But for the scope of this work, we found the [001]

surface of spin ice thin film to already contain rich and fascinating physics that we are

presenting in what follows.

The microscopic Hamiltonians we are considering in this chapter are the following two.

The first one is the dipolar spin ice model, with the Hamiltonian

HDSIM = ∑
i>j σiσj{Ji,j ẑi ⋅ ẑj +D(rnn/rij)3[ẑi ⋅ ẑj − 3(ẑi ⋅ r̂ij)(ẑj ⋅ r̂ij)]} (4.1)

where the σi and σj are the Ising variables, ẑi and ẑj are the local ⟨111⟩ directions of the

rare-earth magnetic moments. rnn is the distance between nearest-neighbour ions. Ji,j is

the exchange interaction and Ji,j = J1 only when i and j are nearest-neighbours. D is
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the strength of the dipolar interaction. In this “thin film” study we take J1 = 3.72 K and

D = 2.35 K, corresponding to the parameters used for Dy2Ti2O7 by den Hertog et al. [23].

Such a choice of parameter is mainly for theoretical simplicity, since in a previous work by

Melko et al. [48] the ground state of this model is known through Monte Carlo simulations.

The second model we consider is the nearest-neighbour spin ice model with the Hamil-

tonian Hnn = J ∑<i,j>σiσj (4.2)

where J > 0 for interactions between neighbouring spins.

We start the chapter by considering the corrections to the Pauling’s residual entropy

due to constraints at the surface. As in Pauling’s original work on water ice [4], we assume

paramagnetic phases for different surface conditions. The significance of a geometrical

object pertinent to pyrochlore films along [001], the orphan bonds, is described in this

section.

Then, in Section 4.2, we present results for Monte Carlo simulations for the thin film

problem. We discuss especially how the film geometry is represented in Monte Carlo studies

using Ewald summations for the dipolar interactions.

In Section 4.3, we examine the specific heat results from the Monte Carlo simulations.

Specifically, we study how different surface conditions and long-range dipolar interactions

affect the residual entropy. Schemes developed in Section 4.1 to estimate the surface

corrections to the Pauling’s entropy are compared with the simulation results.

Next, in Section 4.4, we present the most important results of this Chapter. By tuning

the strength of the orphan bonds defined in Section 4.1, we can achieve a surface ordering

of the free (magnetic) charges while the bulk of the spins inside the film remain disordered.

Structure factors for the surface charges are presented. The ordering of the surface charges

is found to be second order, in the two-dimensional Ising universality class.

In Section 4.5, we explain why a surface ordering can be achieved.
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4.1 Surface corrections to the Pauling’s residual en-

tropy

4.1.1 Orphan bonds at the [001] surface

When a crystal of spin ice is cut to expose the [001] surface, one important structure of

the surface requires particular attention. As shown in Fig. 4.1 and Fig. 4.2, on the [001]

surface of the pyrochlore slab, a bond, which is defined as the line segment connecting

two nearest-neighbours, appears on the surface linking two neighbouring tetrahedra. Since

these bonds are not part of any tetrahedra, they are hereafter referred to as the orphan

bonds.

Symbol Z position

0.00

0.25

0.50

0.75

A

B

C

D

Figure 4.1: A conventional cubic unit cell viewed along the ẑ ([001]) direction. Sites A, B,

C, D are on the “bottom” surface. Bonds AB and CD are on the surface and still part of

tetrahedra. Bond BC is on the surface but no longer part of any tetrahedron. Bond BC is

referred to as the orphan bond.

The exchange interactions between neighbouring spins in spin ice ultimately depend on

the chemical environment which the rare-earth magnetic ions dwell in, especially the oxygen

atoms immediately surrounding the ions. On the surface, for the two neighbouring ions that
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Figure 4.2: A three-dimensional perspective graph of a film of one cubic layer thick. The

surface is normal to the [001] direction. Orphan bonds on the top and bottom of the film

are marked in blue and red respectively.

are not connected by an orphan bond (site A and site B in Fig. 4.1), the crystal environment

clearly differs from two neighbouring ions that are connected by an orphan bond (site B and

site C in Fig. 4.1). Although it is not obvious how the exchange interactions are modified,

we can argue that it is quite possible that the exchange interaction between site A and site

B might be quite different from the exchange interaction between site B and site C, due

to their different crystal environments. Of course the change of crystal field environments

on the surface may even destroy the Ising nature of the surface spins. However, from the

point of view of developing a first class of theories for spin ice thin films, we assume the

following:
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• the spins on the surface remain Ising like

• an extra exchange interaction, Jorphan, can be added to the exchange between the two

spins connected by an orphan bond, and we take the liberty of choosing the strength

and sign of the added interaction

Based on these two assumptions we develop our theory for the spin ice thin films. From

a model system point of view, we will later show in this chapter that interesting physics

such as surface freezing can emerge from this model, and we invite future experiments to

investigate predictions made in this study.

4.1.2 Surface corrections to Pauling’s entropy

Having established the model for the surface, we now investigate how the surface affects the

residual entropy. We will use approximations similar to those used in Pauling’s calculation

of the residual entropy for water ice [4], i.e., we will first assume a paramagnetic state, then

apply constraints independently to eliminate excessive number of states. The point being

approximated here, as well as in Pauling’s original work, is that the reduction factors

from the constraints are not independent. But as we will see in the following, such an

approximation works quite accurately for the thin film systems.

Suppose we have a surface normal to [001], and the whole system is composed of

stackings of the conventional cubic unit cells. For each conventional cubic unit cell, there

are 16 spins in it. Let the number of unit cells in the x, y and z directions being Lx, Ly
and Lz. Lz is the thickness of the film and it is considered to be finite, while Lx and Ly
are to be taken to be infinity. Periodic boundary conditions are applied in the x and y

directions.

The total number of spins

Ns = 16LxLyLz (4.3)

and the total number of tetrahedra

Nt = 8LxLyLz − 2LxLy (4.4)

where the minus sign term comes from the absence of periodic boundary along the z

direction. Furthermore, the number of orphan bonds, Nb, is given by

Nb = 4LxLy (4.5)
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contributed from the two sides of the film. We can now proceed to consider several [001]

surface conditions.

Connected surface

In this case we consider Jorphan ≠ −Jeff , where Jeff is the effective nearest-neighbour exchange

interaction. Depending on the overall sign of the combined exchange Jorphan +Jeff , the two

spins connected by the orphan bonds energetically prefer to align along or against each

other, in their respective local [111] directions. In this case we refer the surface to be a

connected surface, since neighbouring tetrahedra on the surface are still connected by a

non-zero orphan bond.

Assuming a paramagnetic phase, the total number of states would be 2Ns for Ising spins.

Since we need to satisfy the ice rule for every tetrahedron, and out of the 16 possible spin

states for the 4 spins surrounding a tetrahedron, only 6 of them satisfy the ice rule, we have

a factor of (6/16)Nt for the over-counting of the states. Then for the non-zero orphan bonds,

since whether it is ferromagnetic or anti-ferromagnetic, out of the 4 spin configurations for

the 2 spins surrounding the orphan bond, only 2 of them satisfy the bond, thus we have

a factor of (1/2)Nb for the over-counting. Therefore, the total number of states for the

connected surface reads

Wc = 2Ns ⋅ (6/16)Nt ⋅ (1/2)Nb (4.6)

Using Eq. 4.3, 4.4 and 4.5, we have the residual entropy per spin

Sc/Ns = (1

2
) ln(3

2
) − (1

8
) ln(3

2
)( 1

Lz
) (4.7)

for the connected surface.

Disconnected surface

In the case of Jorphan = −Jeff , the constraints from the orphan bonds are effectively dropped.

Thus we do not have the (1/2)Nb for over-counting from satisfying the orphan bonds.

Consequently the total number of states reads

Wd = 2Ns ⋅ (6/16)Nt (4.8)
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Using Eq. 4.3, 4.4 and 4.5, we have the residual entropy per spin

Sd/Ns = (1

2
) ln(3

2
) − [(1

8
) ln(3

2
) − (1

4
) ln(2)]( 1

Lz
) (4.9)

for the disconnected surface.

Checkerboard charge state

Consider the connected surface with an overall anti-ferromagnetic interaction for the or-

phan bonds (Jorphan + Jeff < 0), the two spins surrounding the orphan bond energetically

prefer to align head-to-head or tail-to-tail. From the monopole dumbbell model [29], there

are surplus of monopole charges from the head-to-head or tail-to-tail spin configurations

at the positions of the orphan bonds (right outside of the surface). Further suppose that

these charges are ordered such that neighbouring charges have opposite signs. Since the

midpoints of the orphan bonds on one surface form a square lattice 45 degree to the axis of

the cubic unit cell, the ordering required for the surface charges resembles a checkerboard

pattern. Therefore we refer to this pattern of surface ordering as the surface checkerboard

charge state.

By inspection, a pair of neighbouring spins on the surface, which are not connected

by the orphan bond, align in a head-to-tail configuration, dictated by the opposition of

the neighbouring charges. Thus, for any tetrahedron on the surface, one of the its two

spins touching the surface points into the tetrahedron, and the other one points out of the

tetrahedron. Therefore, for the other two spins of the surface tetrahedron that are not on

the surface, the ice rule enforces one of them to be pointing in and the other one pointing

out. But this is exactly the surface condition for the connected surface if we eliminate the

spins on the surface and consider the new surface starting at the one quarter of cubic unit

cell higher.

Therefore, in calculating the residual entropy we have the number of Ising degrees of

freedom

N ′
s = Ns − 8LxLy (4.10)

since there are 8LxLy spins on the surface which are ordered and do not contribute to the

residual entropy.
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Similarly the number of tetrahedra needed to be considered for obeying the ice rule

constraints becomes

N ′
t = Nt − 4LxLy (4.11)

As in the previously discussed connected surface state, the number of bonds to be

satisfied on the surface is

N ′
b = Nb (4.12)

Note that these new bonds are not solely from the ferromagnetic interaction of the orphan

bonds from the new effective surface (one quarter cubic unit cell from the surface), but

they rather follow from a requirement of the ice rule for the tetrahedra that are on the

surface.

As in the connected surface, the total number of states reads

Wcheckerboard = 2N
′
s ⋅ (6/16)N ′

t ⋅ (1/2)N ′
b (4.13)

Substituting in Eqs. (4.10), (4.11), (4.12) and (4.3), (4.4), (4.5), we have the residual

entropy per spins

Scheckerboard/Ns = (1

2
) ln(3

2
) + [−(1

2
) ln(2) − (3

8
) ln(3

8
) + (1

4
) ln(1

2
)] ( 1

Lz
) (4.14)

Uniform charge state

Consider the following scenario: the overall strength of the orphan bonds is anti-ferromangetic,

favouring free charges on the surface. But now instead of having alternative signs for neigh-

bouring charges, as in the case of the checkerboard charge state, we consider the case where

all charges on the same surface having the same sign, and we refer such surface condition

as the uniform charge state.

Requiring all charge on the surface having the same sign makes all the spins on the

surface pointing in the same direction, i.e., they all point into (or out of) the tetrahedra on

the surface. Thus enforcing ice rules on the surface tetrahedra in turn makes all the spins

a quarter cubic unit cell depth away from the surface point out of (or into) the surface

tetrahedra, thus they point into (or out of) the tetrahedra they are connected in the bulk.

This, in turn, makes all the spins a quarter layer above point in the same direction again.
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Therefore we can see that by requiring a uniform charge state, we end up with a complete

ordering throughout the film.

Suniform = 0 (4.15)

Furthermore, the charges on the other side of the film is enforced to be uniform and of the

opposite sign.

The above result for the zero entropy for a film with uniform charges is a reminder

of the emergent electrostatics in the spin ice phase. [31, 80] If we were treating ordinary

electric charges with opposite signs on two sides of the film, we would effectively have a

capacitor defined by the film. By Gauss’s law, the electric field inside an infinite capacitor

depends only on the density of the charges on the two sides but not on the separation of

the two plates. Similarly, the two plates of magnetic charges in our film system dictate the

flux of the spins inside the film. Interestingly there is genuine long-range interations from

these magnetic charges. The ice rule is all we need to create such a magnetic analogue of

the capacitor.

4.1.3 Summary

In summary, we have Eqs. (4.7), (4.9), (4.14), (4.15) for the surface corrections to the

Pauling’s residual entropy. We have, except for the uniform charge state, 1/Lz corrections

to the Pauling’s residual entropy.

S/Ns =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.2027 − 0.0507/Lz for connected surfaces

0.2027 + 0.1226/Lz for disconnected surfaces

0.2027 − 0.1520/Lz for checkerboard charge state

0 for uniform charge state

(4.16)

4.2 Monte Carlo simulations of spin ice thin films

The main method of investigation in this chapter is the Monte Carlo method on Hamilto-

nians of Eq. (4.1) and Eq. (4.2), with added orphan bonds Jorphan at the surfaces.

The simulation box is always a cubic of size L by L by L measured in units of the con-

ventional cubic unit cells. Periodic boundary conditions are applied in all three directions.
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The film geometry is achieved by emptying the space except for a slab layer of cubic unit

cells. The thickness of the slab is Lz in unit of cubic unit cells. By construction we have

thin films with surface normal to [001]. We illustrate in Fig. 4.3 the construction of our

simulation box.

L

L

L

Lz

Figure 4.3: Thin film of spin ice is achieved by removing spins in a cubic simulation

box of side length L. Only spins within the slab of thickness Lz are retained. Periodic

boundary conditions are assumed for the cubic simulation box in all three cubic directions.

The surface created is normal to the [001] direction.

For the nearest-neighbour spin ice model Eq. (4.2), there is no obvious reason for this

construction. Constructions of films with surface normal to other directions are straight-

forward by not using the conventional cubic unit cell, but any orthorhombic units with
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the desired surfaces, then periodic boundary conditions can be applied in other directions

perpendicular to the surface to create the film. On the other hand for the dipolar spin ice

model of Eq. (4.1), the use of a cubic simulation cell has the advantage that the ordinary

Ewald summation technique can still be used.

We have used up to L = 8 for the simulation box, and up to three layers (Lz = 3) of

thickness of films are studied, with single spin flip updates used in all simulations.

4.3 Residual entropies for thin films of spin ice

In this section, we present specific heat results from the Monte Carlo simulations for the

dipolar spin ice and nearest-neighbour spin ice with various orphan bond strengths.

4.3.1 Dipolar spin ice thin films

First we consider the C(T ) results for dipolar spin ice film with one layer thick (Lz = 1),

shown in Fig. 4.4. The specific heat results from the dipolar spin ice with J1 = 3.72 K and

D = 1.41 K are plotted for different strengths of the orphan bonds Jorphan. A simulation

box of L = 8 is used for the one layer thick film. As a reference, the simulation C(T ) for

the bulk dipolar spin ice with the same J1 and D is also plotted on the same figure. The

bulk simulation is done on a simulation box of L = 4 and loop updates are used.

For the J1 and D values of our model, the effective nearest-neighbour interaction is

Jeff = −J1/3 + 5D/3 = 1.11 K (4.17)

Therefore for Jorphan < −1.11 K, the overall strength of the orphan is antiferromagnetic,

otherwise we have a ferromagnetic orphan bond.

The specific heat results in Fig. 4.4 show for Jorphan = −2 K and Jorphan = −3 K (both

less than Jeff), the specific heat curves develop sharp peaks. The position of the peak

increases as Jorphan decreases. On the other hand, for other values of Jorphan, the specific

heat curves show broad peaks similar to the dipolar spin ice in bulk. Thus this is a strong

indication that by turning the overall strength of the orphan bond being from ferromagnetic

to antiferromagnetic, the low temperature physics of the film changes dramatically.
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Figure 4.4: Monte Carlo simulation of the specific heat of dipolar thin film spin ice.

J1 = 3.72 K and D = 1.41 K. L = 8 for the simulation box and the thickness of the film is

one cubic unit cell, i.e. Lz = 1.

Second, we look at the specific heat results for dipolar spin ice with more than one

cubic unit cell thickness. The results for a simulation box of L = 8 are plotted in Fig. 4.5.

For more than one layer of thickness and Jorphan > −1.11 K, the specific heat curves exhibit

similar broad peaks as in the bulk spin ice, as in the case for one layer of thickness. For

Jorphan < −1.11 K, specific heat curves for more than one layer thick film develop sharp

peaks, as in the one layer films. However, the broad peak slowly re-emerges as the size (L)

of the simulation box increases.
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Figure 4.5: Monte Carlo simulation of the specific heat of dipolar thin film spin ice.

J1 = 3.72 K and D = 1.41 K. L = 8 for the simulation box and the thicknesses (Lz) of the

film varies from one to three layers of cubic unit cells.

From the specific heat measurements, residual entropies for the films can be obtained.

In Fig. 4.6, we plot the residual entropy obtained at T = 0.15 K (the lowest temperature

in our simulation) as a function of the strength of the orphan bonds.

As can be seen from Fig. 4.6, the residual entropy displays a sharp decline as Jorphan

gets below −1.11 K, i.e., when the overall strength of the orphan bond becomes antiferro-

magnetic. The same figure also shows as the thickness of the film increases, the residual

entropies march back towards the Pauling’s entropy.
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Figure 4.6: Residual entropy for various thickness of the film, as a function of the strength

of the orphan bond. Jeff = 1.11 K in the dipolar Hamiltonian Eq. (4.1). A simulation box

of L = 8 was used.

In Fig. 4.7 we investigate how the residual entropy of the films returns to the Pauling’s

residual entropy. As already indicted by the specific heat data, a qualitative different

behaviour exists between the two sets of data of Jorphan > −1.11 K and Jorphan < −1.11 K.

For Jorphan > −1.11 K where the overall strength of the orphan bond remains ferromagnetic,

the 1/Lz corrections to the Pauling’s entropy can be well described by the connected surface.

For Jorphan < −1.11 K, where the overall strength of the orphan becomes antiferromagnetic,

the residual entropies fall onto the slope of the checkerboard charge state corrections.
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Therefore, from the residual entropy analysis, we have found indications of an antifer-

romagnetic orphan bond induced surface charge ordering ground state for thin films of spin

ice. Interestingly, the surface charge ordering does not eliminate all the remaining entropy

of the system, thus we have a situation where the surface freezes before the bulk, a point

we will discuss further in later sections.
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Figure 4.7: Residual entropy for various orphan bond strength of the film, as a function of

the inverse thickness, 1/Lz. Jeff = 1.11 K in the dipolar Hamiltonian Eq. 4.1. A simulation

box of L = 8 was used.
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4.3.2 Nearest-neighbour spin ice thin films

Monte Carlo calorimetric measurements have also been done for the nearest-neighbour

spin ice thin films, described by the Hamiltonian (4.2). Here we choose J1 = −3 K, making

Jeff = 1 K from Eq. (4.17). In Fig. 4.8, we plot the specific heat from the simulation for a

simulation box of L = 8, with various strength of the orphan bonds (Jorphan) and for one,

two and three layers of film thickness.
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Figure 4.8: Monte Carlo specific heat results for the nearest-neighbour Hamiltonian, Eq.

(4.2). The effective nearest-neighbour interaction between neighbouring spins is Jeff = 1 K.

Up to three layers of cubic unit cells thickness of films were simulated. Various strengths

of the orphan bonds, Jo (Jorphan), are used. A simulation box with size L = 8 was used.

Only single spin flip updates are used.

As can be seen in Fig. 4.8, tuning the strength of the orphan bond does not induce a
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qualitative change in the specific heat measurements. Whether the overall orphan bond

strength is antiferromagnetic (Jorphan < −1 K), ferromagnetic (Jorphan > −1 K), or exactly

zero (Jorphan = −1 K), only broad peaks of the specific heat appear, indicating that no

transition is induced by the orphan bonds.

We further look at the residual entropy obtained at T = 0.15 K, (the lowest temperature

in our simulations). In Fig. 4.9, we plot the residual entropy as a function of the orphan

bond strength, Jorphan.
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Figure 4.9: Residual entropy for various thickness of the film, as a function of the strength

of the orphan bond. Jeff = 1 K in the nearest-neighbour Hamiltonian Eq. (4.2). A

simulation box of L = 8 was used.

As can be seen in Fig. 4.9, for both overall strictly ferromagnetic or strictly antiferro-
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magnetic orphan bonds, the residual entropies remains below the Pauling’s entropy, while

for overall zero orphan bond (Jorphan = −1 K), the residual entropies are above the Pauling’s

entropy. As the thickness of the film increases, all entropies approaches the Pauling’s.

The feature that interests us the most is how the residual entropies scale as a function

of the thickness of the film. We plot in Fig. 4.10 the residual entropies as a function of

the inverse thickness. As can be seen in the figure, the residual entropies of the system

fall into two categories. One is the residual entropies for the overall ferromagnetic and

antiferromagnetic bonds, which can be described by the connected surface corrections to

the Pauling’s entropy, Eq. (4.7) The other is the residual entropies for the zero orphan

bond (Jorphan = −1 K), which can be described by the disconnected surface corrections, Eq.

(4.9).

Note that in the case of the antiferromagnetic orphan bonds, even though there are

free charges induced by the orphan bonds, a connected surface correction to the Pauling’s

entropy, Eq. (4.7), instead of a checkerboard charge state correction to the Pauling’s

entropy, Eq. (4.14), as seen in the case for the dipolar spin ice, suggests that these charges

are not ordered on the surface. In the case of nearest-neighbour spin ice model described

by the Hamiltonian Eq. (4.2), there is no energetic gain in ordering the charges when they

appear. It should be noted in Fig. 4.10 that at small 1/Lz, there is a small departure of the

MC integrated entropy to the connected surface correction. Such a problem is unsolved at

the writing of the thesis. One possible explanation is due to the entropy interaction of the

surface charges.

4.3.3 Summary

In summary, through the Monte Carlo investigations of the residual entropy of the films

and the analysis of how the residual entropy scales as a function of the inverse thickness

of the film, we deduce the following surface states for the film systems. For the dipolar

spin ice, we have checkerboard charge state for the antiferromagnetic orphan bonds and

connected surface state for the ferromagnetic orphan bonds. For the nearest-neighbour

spin ice, we have connected surface state for both ferromagnetic and antiferromagnetic

orphan bonds, and disconnected surface state for the zero orphan bonds.

Notice that for both Hamiltonians, the residual entropies all show inverse thickness,

1/Lz, corrections to the Pauling’s entropy. This is to be expected as Lz → ∞, the film
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Figure 4.10: Residual entropy of the film for various strengths of the orphan bond, as a

function of the inverse thickness 1/Lz. Jeff = 1 K in the nearest-neighbour Hamiltonian of

Eq. (4.2). A simulation box of L = 8 was used.

eventually becomes the bulk. While for the dipolar model the MC results can be better

described by the surface corrections, for the nearest-neighbour model with a connected

surface scenario, the description becomes less quantitative.
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4.4 Continuous phase transition at the surface

In this section, we study specifically the dipolar spin ice with an overall antiferromagnetic

orphan bond. In particular, we choose Jorphan = −2 K. As indicated in Section 4.3, such

a film system possesses a surface ordering (checkerboard charge state, Eq. (4.14)) while

the bulk remains disordered. Thus we have an unusual magnetic system capable of surface

freezing. In simple arguments, surface freezing may not be uncommon if the interaction

on the surface is much greater than the interactions in the bulk. However in our case, an

orphan bond strength of Jorphan = −2 K is quite comparable to the exchange and dipolar

interactions in the system. Thus the surface freezing in this system is a reminder of the

precarious balance in our dipolar frustrated system, a point we will further discuss in the

next section, Section 4.5, after we have studied in detail in this section the nature of the

surface ordering phase transition.

4.4.1 Specific heat sharp peak

From Section 4.3, the clear anomalies induced by the antiferromagnetic orphan bond are

the sharp peaks in the specific heat at about T = 0.7 K. In this section we study in detail

through simulation around this temperature.

We plot in Fig. 4.11 the specific heat versus temperature for various thickness of the

film in various sizes of simulation box. As seen in the figure, away from the peak of the

specific heat at about T = 0.7 K, that there is little finite size effects from the size of

the simulation box, indicating no complications from the multi-layer structure by design

of the simulation box when periodic boundary condition is applied along the direction

perpendicular to the film surface (z-direction). Around the peak of the specific heat,

curves from larger simulation box develop higher and sharper peaks.

4.4.2 Structure factor of the surface charges

Already indicated from the analysis of the residual entropy as a function of the inverse

thickness of the films, the calorimetric measurements are consistent with a checkerboard

charge ordered surface state discussed in Section 4.1 of this chapter. Now in this subsection
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Figure 4.11: Monte Carlo specific heat for Jorphan = −2 K of the dipolar Hamiltonian 4.1

around 0.7 K. Various thicknesses and simulation box sizes are used. In the label Lx − y
means a simulation box of size L = x and a film of thickness y cubic unit cells. There are

noticeable finite size effects (dependence on the simulation box size) at the peak of the

specific heat for all thicknesses.

we investigate directly through the structure factor of the charges induced on the surface

to confirm the charge ordered surface.

The charges, σ, are defined at the midpoints of the orphan bonds, and their values equal

to the sum of the two spin variables at the two ends of the orphan bonds. The locations

of the charges on one side of the surface form a square lattice with its edge along the
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[110] direction of the underlying pyrochlore lattice of the film. This distance between two

neighbouring charges equals to
√

2a/2. The structure factor for one surface is calculated

through

S(q⃗) = (1/N)∑
i,j

⟨σ(r⃗i)σ(r⃗j)⟩eiq⃗⋅r⃗ij (4.18)

where N is the number of orphan bonds (locations of the charges) on one surface, and r⃗’s

are the locations of the surface charges.

We plot in Fig. 4.12 the structure factor of the surface charges for one layer of dipolar

spin ice thin film. We observe bright peaks developing at (0,2π) and (2π,0) and reciprocal

lattice translated points below the sharp peak of the specific heat at around T = 0.7 K.

Since the primitive translation vectors for the surface charges are (1/2,1/2) and (1/2,−1/2),
in unit of the length of the cubic cell of the pyrochlore lattice, the observed bright peaks

in q-space indicate a change of sign for neighbouring charges. Therefore the q-space peaks

indicate a checkerboard pattern of the charges at the orphan bonds below about 0.7 K.

Thus we have a surface ordering for the dipolar spin ice thin films with antiferromagnetic

orphan bonds.

A snapshot of the spin configurations at T = 0.6 K is plotted in Fig. 4.13. Spin

configurations on the surface of the checkerboard state are indicated in Fig. 4.14

4.4.3 Order parameter of the surface checkerboard charge state

Having identified the surface charge ordering in the checkerboard pattern, we can define

the order parameter, s, for the surface ordering.

s = (1/2)∑
i

⟨σ(r⃗i)⟩eiq⃗⋅r⃗i (4.19)

with the ordering wave vector q⃗ = (2π,0). The 1/2 pre-factor comes from the definition

that the charges, once appeared, assume values of ±2.

We plot in Fig. 4.15 the root mean square of the order parameter [46], srms = √⟨s2⟩, as

a function of temperature, for different sizes of the simulation box. It can be seen from the

figure that once the temperature drops below about 0.7 K, the root mean square of the order

parameter approaches one. Note that above about 0.7 K, srms does not approach zero as

the temperature increases, but does so as the size of the system increases. This is expected
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Figure 4.12: Structure factor for the surface charges at various temperatures, for film of

one cubic unit cell thick. Jorphan = −2 K for the dipolar Hamiltonian, Eq. (4.1). Peaks at(0,2π) and (2π,0) are developed below about 0.7 K. A simulation box of size L = 8 was

used.
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Figure 4.13: Snapshot of the spin configurations for Jorphan = −2 K, dipolar Hamiltonian

Eq. (4.1), at T = 0.6 K. A simulation box of size L = 8 is used and the thickness of the film

is one cubic unit cell thick, both as shown in the figure. The orphan bonds at the top ad

bottom of the film are marked in blue and red, respectively. The green arrows represent

the magnetic spins. This is a surface checkerboard state, indicating by the alternation of

the head-to-head and tail-to-tail patterns of the two spins surrounding the orphan bonds.

for an order parameter defined this way [46]. For example, in an Ising system at infinite

temperature, ⟨SiSj⟩ = δij, which leads to the root mean square of the magnetization (order

parameter for a ferromagnetic transition for the example given here) being Mrms = 1/√N .

The same argument applies here to our order parameter, with the only difference being

the charge defined by the sum of the two spin variables surrounding the orphan bond at
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Figure 4.14: Spins on the surface of the checkerboard state.

infinite temperature will approach zero faster as the value of the charge itself may go to

zero.

4.4.4 Continuous phase transition for the surface charges

To distinguish whether the transition to the checkerboard charge state on the surface is

first order or continuous, we measure the 4th order energy cumulant quantity

VL = 1 − ⟨E4⟩
3⟨E2⟩2 (4.20)

In Fig. 4.16, we plot the VL quantity as a function of temperature for various sys-

tem sizes. The minima of VL approaches the value of 2/3, indicating a continuous phase

transition [46].
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Figure 4.15: The root mean square order parameter for the surface charges. Jorphan = −2

K for a dipolar Hamiltonian, Eq. (4.1). Different curves correspond to different size of

the simulation box, thus different sizes of the film. Film of one cubic unit cell thick is

considered here.

Therefore we measure the 4th order cumulant of the UL for the continuous phase tran-

sition [46].

UL = 1 − ⟨s4⟩
3⟨s2⟩2 (4.21)

We plot in Fig. 4.17 UL as a function of temperature for different system sizes. A

93



 0.6654

 0.6656

 0.6658

 0.666

 0.6662

 0.6664

 0.6666

 0.6  0.65  0.7  0.75  0.8  0.85  0.9  0.95  1

V L

T(K)

L5-1
L6-1
L7-1
L8-1

Figure 4.16: The 4th order energy cumulant, Eq. 4.20, defined in the text for one unit

cell thick film. Different curves correspond to different sizes of the simulation box. The

minima of the cumulant, approaches 2/3 as the size of the film increases.

crossing of the cumulant UL’s for different system sizes is found at

Tc = 0.675 ± 0.005K. (4.22)

For the continuous phase transition, near the phase transition, where the linear size

of the system, L, is much smaller than the correlation length, ξ, we have the following

standard finite size relations [46]:

⟨∣s∣⟩L = L−β/νM̃(L/ξ), (4.23)
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Figure 4.17: Fourth order cumulant, Eq. (4.21), for one cubic unit cell thick films with

different sizes of the simulation box.

and

χ′(L,T ) ≡ Ld(⟨s2⟩L − ⟨∣s∣⟩2
L)/kBT = Lγ/νχ̃(L/ξ). (4.24)

Under the two-dimensional Ising universality class critical exponents, β = 1/8, ν = 1,

γ = 7/4, and d = 2, collapses of the curves are shown in Fig. 4.18 and in Fig. 4.19. Thus

the continuous transition is of the two-dimensional Ising universality class.
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with the ordering wave vector �q = (2⇡,0). �(�ri), the charge defined at orphan bond (�ri), is the
sum of the Ising variables of the two linked spins. The transition was found to be of second order
at
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In this note we study the standard finite-size relations for the order parameter
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and for the susceptibility of the order paramter
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1
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2D Ising universality class:

Figure 4.18: Collapse of the order parameter s.

4.4.5 Surface freezing

As analyzed above, the surface of our film system orders into checkerboard charge state

for an antiferromagnetic orphan bond strength. From the entropy results we know there is

still residual entropy left for the film system, thus the spins that are not part of the top or

bottom surface of the film must remain disordered. To illustrate this point we investigate

the structure factors of the spin variables on the surface and in the bulk of film.

The structure factor for a given layer of depth z from the surface is defined as

S(q⃗, z) = (1/Nspin)∑
i,j

⟨sisj⟩δ(zi − z)δ(zj − z)eiq⃗⋅r⃗ij (4.25)
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Figure 4.19: Collapse of the order parameter χ′.

In Fig. 4.20, we plot the structure factor calculated for the spins on the surface of the

film. Similar to the structure factor of the surface charges, Bragg peaks are developed for

the surface spin-spin correlations.

In Fig. 4.21, we plot the structure factor calculated for the spins in the bulk of the

film. Diffuse intensities are found in the q-space. Therefore, the spins in the bulk of the

film, despite surface ordering, do not form long-range order at least down to 0.6 K.
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Figure 4.20: Monte Carlo results of the structure factors for the surface spins at various

temperatures. Jorphan = −2 K for a dipolar Hamiltonian. A simulation box of size L = 8

was used. The thickness of the film is one cubic unit cell.
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Figure 4.21: Monte Carlo results of the structure factors for the spins in the bulk (z = 0.25)

of the film. Jorphan = −2 K for a dipolar Hamiltonian. A simulation box of size L = 8 was

used. The thickness of the film is one cubic unit cell (Lz = 1).
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4.5 Why surface freezing: screening of the surface

charges

In this section we offer an explanation of why the surface charge ordering into checkerboard

pattern does not eliminate all the residual entropy of the spins in the bulk of the film.

We show in Fig. 4.22 a snapshot of the spin configurations with the surface ordered

into checkerboard charge state. For spin A, the orphan bonds adjacent to it are marked by

a, b, c, and d. As shown in Fig. 4.22, of the two symmetric positions with respect to spin

site A, the orphan bonds a and b possess charges of opposite signs. The same can be said

for orphan bonds c and d. From the dumbbell picture of the dipolar interaction [29], these

unscreened charges generate magnetic fields throughout the system. However, due to the

relative positions of these charges to the spin site, and the direction of the easy axis for the

spin, the net component of the magnetic fields in the direction of the spins is zero. We can

see from Fig. 4.22 that all the checkerboard charges have opposite signs at the symmetric

positions with respect to site A, and the same can be said to all spin sites in the bulk of the

film, regardless of the thickness of the film. Therefore, even though we have unscreened

charges on the surface, when these charges ordered into the checkerboard pattern as we

found in the simulation, the unscreened magnetic fields have no net component along the

direction of the spins in the bulk. Therefore even when the surface is ordered, we can still

have disordered states for the spins in the bulk, i.e., surface freezing.

Thus, in this work, we have discovered a further self-screening property for the py-

rochlore lattice. In the original self-screening scenario [27, 28], the screening happens as

we approximate the dipolar spins by two dumbbells of charges [29]: ice rule requires that

the charges at the center of each tetrahedron exactly cancel each other. In this work we

found that, in the film configuration we discussed, a different kind of self-screening hap-

pens even when we have unscreened charges and net magnetic fields from these charges,

but now the magnetic fields created have no component along the bulk spin directions. The

surface freezing results we found thus can be summarized as follows: it is the breakdown of

the original self-screening (of zero charges) that causes the surface ordering at the surface

orphan bond objects, and it is the screening of magnetic fields from the surface charge that

shields the spins in the bulk of the film from ordering.
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a

bc

d

Figure 4.22: A snapshot of the state with surface checkerboard charge ordering, view

along the z direction, normal to the film surface. The orphan bonds on the surface are

marked by the letters a, b, c, and d. One spin in the bulk of the film is marked by the

letter A.
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4.6 Discussion

4.6.1 Recovery of the third law of thermodynamics?

A remaining question from this chapter is the lack of long-range order for the dipolar spin

ice, even in the case of antiferromagnetic orphan bonds, surface ordering without bulk

ordering is found. Should the system eventually undergo a phase transition to long-range

order, thus eliminating all the remaining entropy for the bulk, if lower temperatures were

reached? In principle the answer should be yes, since the details of the dipolar interaction

should eventually choose one minimum energy spin configuration for the spins not on the

surface. In order to see the transition, collective updates need to be used in the Monte

Carlo simulations, such as the loop move algorithm, discussed in Chapter 2.

In bulk dipolar spin ice with only nearest-neighbour exchange and dipolar interaction,

the transition to long-range order due to the corrections to the projective equivalence

occurs at Tc = 0.18 K [48], an energy scale much lower than any energy or temperature

scale discussed in this chapter. Also, the ground state found in the bulk spin ice consists

of antiferromagnetic ordering of the magnetic moments for the tetrahedra, a ground state

inconsistent to the surface checkerboard charge ordering (a consistent surface state would

be one without free charges). Thus, if the spins inside the film were to order into the long-

range order found for bulk spin ice, a phase competition would occur, pushing the transition

to lower temperatures. Therefore it is unlikely that the lower temperature probable long-

range order state, whatever that may be, would affect the conclusions of the surface freezing

or various surface corrections to Pauling’s entropy made in this study.

Furthermore, the study of the long-range order may not be experimentally relevant.

First, the loop dynamics needed in Monte Carlo simulations may not be available in the

experimental system. Second, for Dy2Ti2O7 spin ice, further exchange interactions are

needed to correctly describe experimental measurements as we shall discuss in Chapter

5. Studying of the long-range order in the bulk of the film without first investigating the

microscopic model of Dy2Ti2O7, which we will do so in the next chapter, Chapter 5 would

appear, at least for the time being, to be solely of theoretical interest. Therefore we should

postpone the study of the fully long-range order state in the film until the microscopic

model of Dy2Ti2O7 has been re-visited and suitably established.
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4.6.2 Mapping to a square ice problem

Nevertheless, the long-range order transition within the bulk of the film after surface freez-

ing remains a theoretically interesting question. In Fig. 4.23, we plot a snapshot of the

spin configurations from the checkerboard surface order state for a one cubic unit cell thick

film. As we discussed in Section 4.1.2, the checkerboard surface state residual entropy, the

two neighbouring spins on the surface tetrahedra, which are not themselves on the surface,

need to have a head-to-tail configuration. Such constraints are illustrated in Fig. 4.23 as

yellow arrows. It turns out that, as indicated in the figure, the yellow arrows obeys the ice

rule when they meet at the tetrahedra indicated by the circles in the figure, for one layer

of cubic unit cell. (Of the four arrows presenting the head-to-tail constraint that meet at

a tetrahedron, marked by the yellow circle, two of the arrows come from the bottom layer

and the other two of them come from the upper layer.) Therefore the degrees of freedom

for the remaining spins not on the surface can be mapped to the problem of the square ice,

where the new “spins” are the ice rule constrained two-spin objects.

4.7 Conclusion

In this chapter we studied spin ice films along the [001] direction. For different surface

conditions, corrections to the Pauling’s entropy were derived. A geometric object, the

orphan bond, was identified. By tuning the orphan bonds, we can achieve different surface

conditions in the Monte Carlo simulations. Measured residual entropies are found to be in

agreement with the analytical derived corrections to the Pauling’s entropy. In particular,

for overall antiferromagnetic orphan bonds in the dipolar spin ice film, we discovered a

novel phenomenon of surface freezing, where the spins on the surface undergo a continuous

phase transition to long-range order while the spins in the bulk remain disordered. The

mechanism of the surface freezing is due to a self-screening of the induced magnetic charges.

For one cubic unit cell thick films, the possibility of realizing a square ice problem is also

discussed.
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Figure 4.23: A snapshot of the spin configurations for a one cubic unit cell thick film with

checkerboard charge state at the surface. The yellow arrows are the ice-rule constrained

head-to-tail spin configurations for the two spins in the bulk. As these yellow arrows meet

at the yellow circles, the ice rule requires two yellow arrows pointing in and the other

arrows pointing out. Thus for the yellow arrows, the problem maps to that of the square

ice.
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Chapter 5

Magnetic Ground States and Low

Temperature Properties of Spin Ice

Dy2Ti2O7

In the previous two chapters, we have studied the site dilution behaviour and thin film

properties of spin ice. One important common question for these two sets of systems is

the deviation from the projective equivalence due to geometrical defects. For the dilution

problem, the defects are scattered randomly in the bulk, whereas for the film problem,

the defects, corresponding to the orphan bonds, are periodically located on the surfaces.

The temperature range for the study of the above question, is the temperature range

where the projective equivalence would still work for the otherwise defect-less systems. In

other words, in the previous two chapters we departed from the projective equivalence not

because of the corrections in the projective equivalence but due to defect-induced charges.

However, some remaining questions motivated by the last two chapters require us to

investigate the lower temperature regimes. It remains unknown in the last two chapters

what the zero temperature magnetic ground state for spin ices is, diluted or in the form of

thin films. To answer the ground state questions, we need to answer a more fundamental

question: what is the magnetic ground state for spin ices in the pure and bulk samples.

For the spin ice model with only nearest neighbour and dipolar interactions, this ques-

tion was solved numerically by Melko et al. [48]. A zero magnetization ground state is

found with antiferromagnetic alignment of the tetrahedron magnetization. The ground
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state is solely induced by the dipolar interaction, specifically its corrections to the projec-

tive equivalence. But it remains unknown whether this is the true ground state of any real

spin ice compounds due to the lack of experimental evidence. At the time of writing this

thesis, we remain unaware of any experiment successfully finding the ground state for any

spin ice compounds. The lack of experimental information is due to the slow relaxation

time in equilibrating the sample and the glassiness of the compound at low temperatures

[1]. Furthermore, there are clearly indications in earlier works [24] that further neighbour

interactions are needed to correctly describe the low temperature correlations seen in neu-

tron scattering for Dy2Ti2O7[3]. With further neighbouring interactions, the answer to the

magnetic ground state problem may seem even more elusive.

Another motivation for revisiting the microscopic models of spin ice is from a recent

experimental measurement of Dy2Ti2O7[1]. In the work by Pomaranski et. al. [1], it was

found that the magnetic specific heat of Dy2Ti2O7 rises below about 0.6K, once the flow

of heat into and out of the material is tracked carefully. Surprisingly, from this new mea-

surement, there is no Pauling’s residual entropy observed as a clear plateau at the lowest

temperature. Thus such measurement is in qualitative contradiction with all all previous

specific heat measurements on Dy2Ti2O7 [2, 34, 35, 59, 81, 82, 83, 84, 85], and thus in

contradiction with either the simplest model with nearest neighbour and dipolar interac-

tion, with which the ground state has been found and which has a clear Pauling’s entropy

plateau at low temperatures, or the model with further neighbouring interaction, with

which the ground state is unknown yet but simulation results nevertheless show plateaus

of the Pauling’s entropy at low temperatures [24]. Thus a problem in the consistency of

the various experimental measurements arises. One way to solve or even fully expose the

problem is through theoretical investigation of the microscopic models of spin ice. By fit-

ting model Hamiltonians, we can assess not only the consistency of the various specific heat

measurements, but also other experimental observations such as the neutron scattering.

Thus for spin ice, the study for its magnetic ground state and its low temperature

properties consists of finding the microscopic model that accounts for the low temperature

experiments. The problem of ground state and low temperature properties is a consequence

of investigations of the correct microscopic Hamiltonian. This chapter is devoted to the

study of these problems, and we focus our attention to the compound Dy2Ti2O7.

Previous attempts in the search of a microscopic model for spin ice have converged into
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the so-called dipolar spin ice model for Dy2Ti2O7 [23, 24, 26], which reads:

HDSIM = ∑
i>j σiσj{Ji,j ẑi ⋅ ẑj +

D(rnn/rij)3[ẑi ⋅ ẑj − 3(ẑi ⋅ r̂ij)(ẑj ⋅ r̂ij)]} (5.1)

as already discussed in Chapter 1, Ji,j’s are the neighbouring exchange interactions and D

is the dipolar coupling. Currently the most comprehensive work is by Yavors’kii et al. [24],

where the parameters read J1 = 3.41 K, J2 = −0.14 K, J3 = 0.025 K, and D = 1.3224 K, the

same model we used in our study of the diluted dipolar spin ice Dy2Ti2O7 in Chapter 3.

Clearly in the presence of the new specific heat experiment [1], the validity of the above

dipolar model is doubted. Without resorting to more exotic explanations, such as stuffing

impurities reported by a previous work [86] (even if it turned out that the new specific heat

measurement was due to impurities, one still has to content the question of what the ground

state of the material should be, for an impurity-free sample), we approach the problem by

re-visiting the dipolar spin ice model with a systematic fitting method. In this chapter we

study up to fourth nearest neighbour interaction in Hamiltonian 5.1, and the scope of this

chapter is to infer the microscopic couplings of the above Hamiltonian through a series of

magnetic field, neutron scattering, and specific heat experimental measurements.

In considering the microscopic models for Dy2Ti2O7 we might be confronted with the

task of exploring on as high as a six-dimensional parameter phase space. Thus we must

identify settings in which these parameters are clearly exposed and easily quantified. One

important setting we have found is the magnetic measurement of Dy2Ti2O7 in a saturating

magnetic field along the [112] direction. We study in Section 5.1 of this chapter the

constraints on the parameters that we can extract from the magnetic measurement. Only

with these constraints, we are in a better shape in accessing the magnetic ground state

problems.

In Section 5.2, we use the sets of constraints identified in Section 5.1 to fit the new

specific heat measurement by Pomaranski et. al. Two distinct magnetic ground states

are observed in the best fits to the new specific heat measurement, with one of them

corresponding to the ground state previously reported by Melko et. al. [48].

In Section 5.3, we study the neutron scattering in the parameter space. It is found that

the neutron scattering a contradiction between the neutron scattering measurements and

the new specific heat measurement. While other specific heat measurements are consistent
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with the neutron, we encounter a puzzle in the newly found absence of Pauling’s entropy

in Dy2Ti2O7.

In Section 5.4, we discuss the inconsistency between the calorimetric and neutron scat-

tering measurements exposed by our analysis.

Section 5.5 concludes the chapter.

5.1 Parametric constraints for spin ice Dy2Ti2O7 in

magnetic fields near 112

In the first two subsecitons, we revisit the numerical work of Yavors’kii et al. [24] and the

experimental work by Sato et al. [7] for the spin ice compound Dy2Ti2O7, both of which

are important for the study in this chapter.

5.1.1 The work by Yavors’kii et al. revisited

We begin the chapter by first revisiting the current status of spin ice models. The most

recent (and comprehensive) work on the spin ice model for Dy2Ti2O7 was by Yavors’kii et.

al. [24]. In this work, up to third neighbour nearest neighbour exchanges are considered,

thus in Eq. (5.1) we have

Ji,j ≡
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J1, if i, j are nearest neighbours

J2, if i, j are 2nd nearest neighbours

J3a, if i, j are 3rd nearest neighbours of type a

J3b, if i, j are 3rd nearest neighbours of type b

0, otherwise.

(5.2)

Note that in the current notation, we differentiate the two types of third nearest neighbours,

referred to as type a and type b. For type a, the pair share a common nearest neighbour,

while it does not for type b. For any given spin, the numbers of type a and type b 3rd

neighbours are both 6.
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In the work by Yavors’kii et al. [24], the parameters for Dy2Ti2O7 were determined

to be: J1 ≃ 3.41 K, J2 ≃ −0.14 K, J3a ≡ J3b ≃ 0.025 K, D = 1.3224 K, with the magnetic

moment g⟨Jz⟩= 9.87. Here is a summary of how these numbers were obtained.

The magnetic moment g⟨Jz⟩= 9.87 was calculated based on the crystal field Hamilto-

nian of Dy2Ti2O7. The values J3a = J3b = J3 was assumed in the work, and the value was

estimated by the Monte Carlo critical temperature, obtained from the location of the max-

imum of the specific heat, of the ferromagnetic ordering of Dy2Ti2O7 in a magnetic field

near [112] direction. Experimentally, the specific heat [59], susceptibility [87], and magne-

tization [7] measurements give a critical temperature of 0.34, 0.28 and 0.26 K, respectively.

From these values, Yavors’kii et. al. concluded that 0.019 K ≲ J3 ≲ 0.026 K. Constraints

on J1 and J2 was determined from the root mean square deviation from the Monte Carlo

Cm(T ) to the specific heat measurement [83], based on the observation that the above

range for J3 only weakly affects the Cm(T ). In addition, the J1 − J2 constraint was also

examined through comparing the Monte Carlo critical field Hc for Dy2Ti2O7 in the [111]

field at T < 0.36K, to the empirical line Hc = 0.90+0.08 T in experiments [88, 89] Combin-

ing the two constraints, it was concluded that 3.26 K≲ J1 ≲ 3.53 K, and −0.20 K≤ J2 < 0

K. Further restrictions on J2 came from comparing the Monte Carlo neutron intensity to

measurement [3], at T = 300 mK. The concluded range for J2 becomes: −0.16 K≲ J2 ≲ −0.10

K. Finally the result J1 = 3.41 K, J2 = −0.14 K, J3a = J3b = 0.025 K, D = 1.3224 K falls into

the ranges determined above.

In essence, the Yavors’kii et al. [24] fitting procedure is the following: (a) J3 was deter-

mined from the critical temperature Tc of the ferromagnetic ordering of Dy2Ti2O7 in the

[112] field setting, and was found to be small compared to the first and second neighbour

exchange interactions. (b) Then J1, J2, and J3 are basically treated as independent vari-

ables in fitting the zero field Cm(T ), Hc in [111] field, and neutron scattering. (J3 was not

necessary in most of the fittings since it was found to be small in (a) compared with other

interactions.)

The problem with the above fitting procedure is that (a) as we will show in this work,

the [112] field experiment of Sato et al. [7] does not dictate J3 being small, if we consider

the situation of J3a ≠ J3b. Also in (b), in finding the optimal values of J1, J2, J3a, and

J3b, it is neither efficient nor even correct in assuming them to be independent valuables.

It turns out, as we will show in this work, that the [112] field experiment can be further

exploited in providing constraints on these exchange interactions.
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5.1.2 Spin ice near 112 field, the work by Sato et al. revisited

In the work of Sato et al. [7], the spin ice compound Dy2Ti2O7 was subject to the following

experimental conditions.

An approximate 2 T magnetic field was applied to a single crystal of Dy2Ti2O7 along

the [112] direction. Since the magnetic moment of the rare-earth ion is about 10µB (from

the crystal field calculation [24], and from this experiment itself, as we discuss soon), the

2 T field corresponds to about 13.4 K in energy scale and is therefore much larger than

the exchange and dipolar interactions in Dy2Ti2O7. From the geometry of the pyrochlore,

the [112] direction is perpendicular to the local [111] direction of only one sublattice of

the pyrochlore lattice. Therefore in the presence of a large 2 T field, all spins but the

ones on that particular sublattice are saturated by the applied field. The spins on that

particular sublattice form the triangular layers (an FCC lattice) of the pyrochlore, and the

spins frozen by the [112] field from the kagome layers of the pyrochlore, both specific layer

being apparent when the pyrochlore lattice is viewed along a local [111] direction.

Although the spins on the triangular plane do not experience the external 2 T magnetic

field, they nevertheless are influenced by the internal fields from the spins on the kagome

layer, while they interact with each other. In the work by Sato et al. [7], a weak field was

then applied along the local [111] direction of the triangular plane spins, so as to cancel

the internal field from the spins on the kagome planes. Thus at the exact cancellation by

the weak field, we have a dipolar Ising Hamiltonian on an FCC lattice. The direction of

the weak field is referred to as the transverse direction.

Measurements of the magnetization along the transverse direction, Mt, as a function

of the weak field along that direction, Ht, as well as the associated susceptibility, were

performed in the work. Such data are vital to our following analysis.

5.1.3 Parametric constraints from the 112 field experiment

Magnetic moment from the offset in magnetization

In measuring the magnetization along the transverse direction, Mt, it was found in the

work by Sato et al. [7] that Mt possessed an offset from zero by a constant of 0.82 µB. As

noted in their paper, the offset comes from the transverse component of the kagome plane
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magnetization. The local [111] direction of the Dy3+ Ising spins makes an angle of

ẑkagome ⋅ t̂ = −1/3 (5.3)

with respect to the transverse direction t̂. In the presence of the large saturation field

along the [112] direction, of the three sublattices of spins on the kagome plane, two of the

sublattices are along the transverse field, and one of them is against the transverse field.

Thus on average the magnetic moments of the Dy3+ ions contribute a quarter to the offset

of the transverse magnetization. Therefore we have

(1

3
)(1

4
) g⟨Jz⟩ = 0.82

which gives

g⟨Jz⟩ = 9.84 (5.4)

This is in excellent agreement with the calculated value in Yavors’kii et al. [24], g⟨Jz⟩ =
9.87.

J1 − J2 constraint from the cancellation field

Sato et al. [7] found that the critical or cancellation field applied perpendicular to the

saturation field is −0.28±0.02T. Since the cancellation field measures the internal fields on

the triangular plane spins from the influence of the frozen spins on the kagome plane, we

can extract a constraint on the exchange interaction from the cancellation field.

Under the definition of Eq. (5.1) for the Dy2Ti2O7 Hamiltonian, the internal field is

given by

hint = (2

3
)J1 + (4

3
)J2 + (4

3
)J4 + (8

3
)J5 + 2J7 + (4

3
)J8 − 2.972D (5.5)

up to eighth nearest neighbour exchange interactions. The last term is from numerical

calculations using Ewald summation for the dipolar interaction for a simulation box of size

L = 8. Note the absence of J3 and J6 in this equation, as they connect spins on the same

FCC sublattice and therefore do not contribute to the internal field originated from the

kagome layers.
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Using the above determined magnetic moment, and considering only up to second

nearest neighbour, we obtain, for a cancellation field of 0.28 T,

(2

3
)J1 + (4

3
)J2 = 2.073K (5.6)

J3a − J3b constraint from the susceptibility

The constraints on J3a − J3b can be extracted from the transverse magnetic susceptibility

measured in Sato et al. [7]. In the experiment, the transverse susceptibilities as a function

of the transverse field were measured at four temperatures, 0.29, 0.41, 0.70, and 1.08 K.

Since the susceptibility under such setting is determined by the third neighbour (and to

the next order, sixth neighbour, which we ignore) exchange and dipolar interactions, we

can fit the third neighbour exchanges through comparing Monte Carlo simulations and

experimental measurements.

When the transverse weak field is exactly at the value of the cancellation field, the spins

on the triangular layer undergo a transition to long range order at Tc ≃ 0.26 K. In our fitting

to the measured susceptibility, we need to be sufficiently away from the critical temperature,

since the finite size effect of our simulation introduces unwanted complications. However,

the higher the temperature, the less “structure” the susceptibility has, due to decreased

correlation lengths, and the fitting consequently becomes harder. Based on these two

concerns, we choose our fitting temperature to be 0.70 K.

We perform our Monte Carlo simulations for spins on the triangular planes with ex-

change interactions J3a and J3b and dipolar interactions. Simulation boxes of L = 4 are

used for the fitting. The goodness of the fit, σ, is calculated through

σ =∑
i

(χMC(Hi) − χEXP(Hi))2
(5.7)

where χMC(Hi) and χEXP(Hi) are the Monte Carlo and experimental susceptibility at

transverse field strength Hi, respectively.

We plot in Fig. 5.1 the goodness of fit as a function of J3a and J3b.

In Fig. 5.2, we plot the difference between the Monte Carlo susceptibility and experi-

mental susceptibility at cancellation field strength

∆ = χMC(H = 0) − χEXP(H = 0) (5.8)
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Figure 5.1: The goodness of fit for the susceptibility in the plane of J3a and J3b from

Eq. (5.7) for T = 0.7 K.

where both susceptibility are at their maxima.

As can be seen from the fittings, the optimal region of the fitting falls onto a slightly

bent line. A simple argument can be offered to the appearance of such a line: from the

mean-field perspective, the susceptibility is determined by a weighted summation of the

interactions. Thus on a line with negative slope, the loss of value for J3a is compensated
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Figure 5.2: The height difference for the susceptibility, Eq. (5.8), in the plane of J3a and

J3b at T = 0.7 K.

by the increase of value for J3b, therefore in the mean-field level keeping the susceptibility

the same.

We plot in Fig. 5.3 some of the susceptibility curves on the J3a and J3b to give a visual

notion of what the color represents in Fig. 5.1 and in Fig. 5.2. Note that in the Monte
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Carlo simulation of the susceptibility, there is no overall fitting parameter applied, and as

plotted for J3a and J3b close to the optimal fitting lines, a very good fit to the experimental

data was found.
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Figure 5.3: Some examples in the J3a−J3b plane for the Monte Carlo susceptibility curve,

compared with the experimental measurements of Sato et al. [7].
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From Fig. 5.1 and Fig. 5.2, we have the constraint for J3a − J33b

⎧⎪⎪⎨⎪⎪⎩
− (2/3)J3a + 0.03 = J3b for J3a < 0.1 K

−0.842J3a + 0.0474 = J3b for J3a > 0.1 K
(5.9)

5.1.4 Summary

In summary from the [112] field experiment, the parametric constraints we extracted are

given by Eqs. (5.4), (5.6) and (5.9). In later sections, we shall try to fit the specific heat

measurements and neutron scattering results under these constraints.

5.2 Fitting the specific heat measurements

5.2.1 Specific heat curves fitting

Using the parametric equations, Eqs. (5.4), (5.6), and (5.9), out of the five parameters of

J1, J2, J3a, J3b, and D, we are left with only two. Therefore we can examine the zero

magnetic field specific heat curves in the parameter plane of J1-J3a, with the rest of the

parameters obeying the constraints.

We plot in Fig. 5.4 two sets of experimental data for the specific heat for Dy2Ti2O7

in zero field. One is from the work by Pomaranski et al. [1], which shows a rise in the

specific heat curve below about 0.7 K. The other is from the work of Ke et al. [2], which

is consistent with most other specific heat measurements [34, 35, 81, 82, 83, 84, 85].

Three temperature ranges, R1, R2 and R3, are considered

• R1: [0.45, 1] K

• R2: [1, 4.5] K

• R3: [0.45, 4.5] K

R1 is chosen such that it includes the departure from the new experiment to the previ-

ous ones. R2 corresponds to the high temperature range where almost all experiments
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agree, yet not too high so that the experimental uncertainty associated with the lattice

phonon contribution to the total specific heat sets in (see Section 3.1.3). Finally R3 is the

combination of the two ranges R1 and R2.
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Figure 5.4: Specific heat data from the work by Pomaranski et al. [1] (red) and from the

work by Ke et al. [2] (blue). The two temperature ranges: R1, from 0.45 K to 1 K and

R2, from 0.45 K to 4.5 K, are used to in the fitting of the specific heat (see text).

The goodness of the fit, σR, for a temperature range R, is calculated through the

following equation

σR = ∑i∈R(CMC
i −CEXP

i )2

∑i∈R 1
(5.10)
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where the summation is over the temperature range R. CMC and CEXP refer to the Monte

Carlo and experimental specific heat values respectively.

First, we evaluate the goodness of the Monte Carlo specific heat results as a function

of J1 and J3a, for

• the Pomaranski data in the range R1

• the Ke data in the range R1

• the Ke data in the range R2

• the Ke data in the range R3

We plot in Fig. 5.5, Fig. 5.6, Fig. 5.7, and in Fig. 5.8 the goodness of fit, for the above

four ranges, respectively, for the two sets of experimental data.

First, we compare the goodness of fits for the Pomaranski et. al. data and Ke et. al.

data in the range R1, Fig. 5.5 and Fig. 5.6. For regions with the goodness below 0.05, the

two sets of fits barely overlap. For the Pomaranski data, the best fits are separated in two

distinct regions with J3a > 0 and J3a < 0, which we call the “upper” basin and the “lower”

basin. For the Ke et. al. data, the best fits are concentrated in the region with smaller

values of J3a and larger values of J1. The difference between the two regions, reflects the

difference in the specific heat data, namely that the Pomoranski data rises below about

0.7 K, as shown in Fig. 5.4.

Next, we look at the goodness of fits for the Ke et. al. data in the R2 range. This

is the temperature range where most experimental data agree (Fig. 5.7). In this range,

the restriction for low values of goodness is weak. This is anticipated, since at high tem-

perature where the ice-rule correlations are absent, the thermodynamic properties of the

paramagnetic state is largely determined by the strength of the exchanges and the coordi-

nation number. This can be seen as the most optimal region of the fit is roughly on a line

with a negative slope, where increase in J1 is compensated by the decrease in J3a. Overall

with J3a only varies with a few percent compared with J1, and J1 varies slightly, the whole

region has a low value of the goodness of the fit.

Therefore, as we turn to Fig. 5.8, for the fit for the R3 temperature range of the Ke et.

al. data, we see that the dominant features are almost the same as in Fig. 5.6. Therefore

the convenience of the argument, we can focus on the fitting in temperature range R1.
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Figure 5.5: Goodness of the Monte Carlo fit in the J1 − J3a plane in the R1 temperature

range for the Pomaranski et. al. data [1].

In summary, in this subsection we have found

• The temperature range needed to expose the experimental difference is R1 (0.45 ∼ 1

K).

• The optimal fitting to the Pomaranski data is separated into two regions: the “upper”

basin and the “lower” basin (see Fig. 5.5).

• The optimal fitting to the Ke et. al. data is concentrated in the region between the

two basins (see Fig. 5.6).
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Figure 5.6: Goodness of the Monte Carlo fit in the J1 − J3a plane in the R1 temperature

range for the Ke et. al. data [2].

5.2.2 Two possible magnetic ground states for Dy2Ti2O7

To shed light to the fittings of the specific heat in the last subsection, we investigate the

ground states in different regions of the J1 − J3a plane. We have identified two distinct

magnetic ground states for the “upper” and “lower” basin of the J1 − J3a map, a “single-

chain” and “double-chain” state, respectively. The following is a description of these two

different ground states.
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Figure 5.7: Goodness of the Monte Carlo fit in the J1 − J3a plane in the R2 temperature

range for the Ke et. al. data [2].

“Single-chain” magnetic ground state

Deep inside the upper basin, the magnetic ground state is found to be a “single-chain”

state. This is the same state found in the work by Melko et al. [48]. We plot in Fig. 5.9

and in Fig. 5.10 a single layers of cubic unit cell of the “single-chain” state. The cubic

symmetry of the lattice is broken and in the figures one ordering direction, ẑ, is selected.

One set of parallel neighbouring spin chains perpendicular to the ẑ axis are marked by

α, β, γ, δ, and ε. The characteristic of such a state is that the spins on the same chain
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Figure 5.8: Goodness of the Monte Carlo fit in the J1 − J3a plane in the R3 temperature

range for the Ke et. al. data [2].

of the set are aligned in the same direction, and the neighbouring chains of the set alter

their directions, thus the name “single-chain” state. As can be seen from Fig. 5.9 and

Fig. 5.10, the same spin-chain configuration holds for the other set of parallel spin chains

perpendicular to the set just discussed.
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Figure 5.9: Single-chain state viewed along one of the cubic direction, the neighbouring

chains are marked by α, β, γ, δ, and ε. Note that the spins on neighbouring chains point

in the opposite directions. A corresponding 3D figure of the state is shown in Fig. 5.10.

“Double-chain” magnetic ground state

Deep inside the “lower” basin, the magnetic ground state is found to be the “double-

chain” state. We plot in Fig. 5.11 and Fig. 5.12 one layer of cubic unit cell spins with

the double-chain state. As in the single-chain state, the cubic symmetry is broken and one

ordering direction, ẑ, is picked as shown in the figures. One set of parallel neighbouring

chains perpendicular to the ẑ axis are marked by α, β, γ, δ, ε and ζ in the figures. The

characteristics of the double-chain state is that spins on the above marked chains align

in the same direction, and for every two chains the direction of the spin chain alternates,

thus the name “double-chain” state. For the spins on the other set of parallel chains
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Figure 5.10: Single-chain state with neighbouring chains marked by α, β, γ, δ, and ε. A

corresponding 2D figure of the state is illustrated in Fig. 5.9

perpendicular to the z axis, the same spin chain configuration is found.

Note that for the double-chain state, the minimum conventional cell dimension to con-

tain the state is 2 by 2 in units of cubic unit cell perpendicular to the ordering direction,

ẑ. This is different from the case of the single-chain state where the whole state can be

constructed by repeating the same cubic unit cell. In the ordering ẑ direction, the double-

chain state can be stacked uniformly or with the layer above or below flipped completely
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for every spin. It turns out that the energy difference is quite small as we discuss in the

following.

dc

↵

�

�

�

✏

⇣

Figure 5.11: Double-chain state viewed along the z direction of the cubic unit cell, the

neighbouring chains are marked by α, β, γ, δ, ε and ζ. Note that the spin chain changes

direction for every two chains. A corresponding 3D figure of the state is plotted in Fig.

5.12.

Phase boundary between the two states

The ground state energies of the two proposed magnetic ground states can be expressed in

terms of the exchange and dipolar couplings, up to 4th order nearest neighbour, we have

for the single-chain state

Es−c = (1/3)J1 − (2/3)J2 − J3a − J3b + (2/3)J4 − 1.95D (5.11)
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Figure 5.12: Double-chain state for one cubic unit cell thick layer, with the neighbouring

chains are marked by α, β, γ, δ, ε and ζ. A corresponding 2D figure of the state is plotted

in Fig. 5.11.

and for the double-chain state

Ed−c = (1/3)J1 + J3a − J3b − (2/3)J4 − 1.91D (5.12)

For both equations the dipolar interaction contributed energy is calculated through an

Ewald summation for a simulation box of size L = 8. And for the double-chain state, the
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difference between different stacking along the order direction is smaller than the presented

digit in Eq. 5.12.

Using the constraints of Eq. (5.4), Eq. (5.6) and Eq. (5.9), the phase boundary between

these two states in the J1 − J3a plane can be determined to be

(1/3)J1 − 2J3a = 1.093K (5.13)

5.2.3 Summary

In summary, in this section we attempted to fit both the Pomaranski et. al. [1] and the Ke

et. al. [2] specific heat data using the Hamiltonian (5.1). Constraints extracted from the

[112] field experiment [7], Eq. (5.4), Eq. (5.6), Eq. (5.9), are applied to reduce the fitting

to be in the plane of two parameters, J1 and J3a. Optimal regions for both experiment in

the fitting of their data were found. In particular, in the fitting of the Pomaranski et. al.

data, two regions, the “upper basin” and the “lower basin” of optimal fitting were found.

In the “upper basin” the magnetic ground state was identified to be a single-chain state

while in the “lower basin” the magnetic ground state was identified to be a double-chain

state. We plot in Fig. 5.13 the main results of this section. As can be seen in Fig. 5.13,

the two regions of optimal fits to the Pomaranski data are away from the boundary of the

two proposed magnetic ground states (panel (a) of Fig. 5.13). This is in contrast with the

optimal fit region to the Ke et. al. data, where the best regions are around the boundary

of the two magnetic ground states (panel (b) of Fig. 5.13).

5.3 Fitting the neutron scattering measurement

In this section we turn to the study of neutron scattering experiment by Fennell et al. [3].

The neutron data provides us with an independent experiment other than the specific

heat measurements for fitting the Hamiltonian parameters for Dy2Ti2O7. In Fig. 5.14, we

reproduce the figure published by Fennell et al. [3], which we aim to fit with our model,

Eq. 5.1, within the J1-J3a plane.

We now examine some of the features in the experimental neutron scattering data.

First are the scattering intensities at the boundaries of the Brillouin zone, referred to as
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Figure 5.13: (a) Optimal fitting regions in the J1-J3a plane for the Pomaranski et. al.

data [1]. (b) Optimal fitting regions for the Ke et. al. data [2]. The lines in both panels

are the ground state energy boundary between the two proposed magnetic ground states

discussed in the text.

“zone boundary scattering” (ZBS) in Ref [3]. The appearance of the ZBS might indicate

the emergence of hexagonal excitations in the system [90], an idea not without controversy

[24]. The interpretation of the hexagonal excitations is following: scatterings in the zone

boundary (large q value) corresponds to short range real space correlations, and for the

pyrochlore the smallest collective excitations are the hexagonal loops (Section 2.4). How-

ever, in subsequent work by Yavors’kii et. al. [24], the hexagonal excitation interpretation

was questioned of being void of a real nature. Nevertheless, for the purpose of this work,

we are only interested in the experimental ZBS feature itself, and whether our microscopic

model can be fitted to produce numerically such feature. The debated origin of the ZBS

feature is avoided in this work.

In the process of fitting the ZBS feature in our J1 − J3a plane, we introduce a criterion

of the flatness, σflatness, along the line segments indicated in the left panel of Fig. 5.15 to

assess the existence of ZBS in the Monte Carlo neutron scattering data. The flatness is
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sorption cross section, usually tabulated for 2200 m s−1 neu-
trons, and ! is the neutron wavelength scaled to the value
used in " a) this makes a significant difference at long wave-
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A large high quality single crystal was grown using an

infrared double mirror image furnace.34 The crystal has a
diameter of !0.4 cm, length !1.5 cm, and is translucent
amber-red in color. It has a cylindrical form typical of image
furnace grown crystals. The crystal was varnished into a
large copper support to ensure good thermal contact.
Using a 3He sorption refrigerator insert in an Orange cry-

ostat, the h ,h , l plane of reciprocal space was mapped in zero
field at 20 and 0.3 K using the average scattering angle #
=48°. The same plane was mapped at 0.3 and 1.3 K using
the average scattering angle #=32°. Using a dilution refrig-
erator insert in an Oxford Instruments cryomagnet the h ,k ,0
and h ,h , l planes of reciprocal space were mapped in zero
field at 0.05 K. These maps are shown in Fig. 2. All parts of
the sample environment in the beam were made of alu-
minium (other than the copper support), which gives rise to
powder lines at "Q"=2.70, 3.12 and 4.40 Å−1.

Standard data reduction procedures were applied to trans-
form time of flight and angle information to reciprocal space,
to correct for absorption in the sample, and to normalize the
data to an absorption corrected vanadium run. The latter cor-
rects for the wavelength-dependent flux profile and detector
efficiency. Despite the fivefold reduction in absorption cross
section compared to natural dysprosium, the data analysis
procedure revealed that absorption by the Dy2Ti2O7 crystal
was still significant and needed to be taken into account. The
absorption correction was made by calculating an attenuation
coefficient #A$s ,#%& by which the data could be divided. The
coefficient for a cylinder of radius R was originally derived
by Sears35 and is

A$s,#% = #1 + 4bs2 − 0.5s2 cos2$#/2%& $ exp$− 2as% , $1%

where a= $8/3%%, b= $1−a2% /2, s=&R, and # is the scatter-
ing angle. In this formula, &, the absorption coefficient, de-
pends on both the scattering cross section and the wave-
length dependent absorption cross section.

FIG. 2. (Color online) Dy2Ti2O7: Diffuse scattering in the h ,h , l plane measured at 20 K (top left), 1.3 K (top right), and 0.3 K (bottom
left, with zone boundaries illustrated). The sharp, intense spots are nuclear Bragg reflections with no magnetic intensity. The map at 20 K
was recorded using an average scattering angle of #=48° which gives stronger arc-shaped artefacts for small "Q" values compared to #
=32°. The result of the Monte Carlo simulation of the dipolar spin ice model at 0.3 K is shown at bottom right.
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Figure 5.14: Neutron scattering at T = 0.3 K in the (hhl) plane of the reciprocal space.

Figure reproduced from the work of Fennell et al. [3]. Permission to reproduce this figure

has been granted by the American Physical Society.

defined as

σflatness =∑
i

(IMC(Qi) − IMC)2 (5.14)

where the summation is over the q-points on the line segments shown in Fig. 5.15, and

IMC is the average of the scattering intensity of the summation. The premise of choosing

such a flatness quantity in accessing the ZBS feature is that, an even intensity along the

L-shaped line segment in the left of panel of Fig. 5.15 creates the image perception of the
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ZBS. Thus under this simple criterion, the closer the number σflatness to zero, the more

certain we can say a neutron pattern has the ZBS.

Details of the Monte Carlo simulation can be found in Chapter 6, with the magnetic

form factor for Dy3+ ion presented in Appendix B.

We plot in the right panel of Fig. 5.15 the flatness criterion, σflatness, in the J1 − J3a

plane. As can be seen from the figure, the ZBS feature requires the J1 and J3a relation

to be near the phase boundary line. Note that in J1 − J3a plane, there are some scattered

points away from the phase boundary line. This is due to the development of intensity

Bragg peaks in the neutron scattering, which make the scattering elsewhere (on the zone

boundary) zero. Clearly this is not the desired feature. In summary, the requirement of

having the ZBS feature in the neutron scattering, simplified by our “flatness” quantity,

σflatness, constraints J1 and J3a being close to the boundary line between the two possible

magnetic phases.

Next we investigate the neutron scattering intensity along the line cut of l = 2.375, for

h from 0 to 3. The Monte Carlo data with different J1 and J3a, multiplied by the magnetic

form factor, are compared with the neutron scattering data from the work by Fennell et

al. [3]. The goodness of fit, is evaluated as

σ =∑
i

(IMC − IEXP)2 (5.15)

We plot in Fig. 5.16 the goodness of fit as a function of J1 and J3a. As can be seen from

Fig. 5.16, the optimal areas of the fitting is also near the phase boundary, similar to what

is found in the ZBS feature fitting.

A more qualitative feature from the line cut along l = 2.375 is revealed from some of

the MC results shown in Fig. 5.17, where for a fixed J1 = 3.32 K, different values of J3a

shows qualitatively different oscillations of the intensity as a function of h. The relative

heights for different q-points changes for different parameter values, and as seen clearly in

the experimental neutron scattering, we should have intensities that have peaks at about

half values and valleys at about integer values. Thus in Fig. 5.17 we plot whether the

criterion for having peaks at half values and valleys at integer values of h is satisfied, as

a function of J1 and J3a. As can be seen from the figure, most of the “upper basin” is

eliminated when considering such a criterion.

Lastly, a more subtle feature of the neutron scattering is considered. For the experi-

mental intensity peak near (0,0,3), the intensity is spread along the zone boundary across
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field at 20 and 0.3 K using the average scattering angle #
=48°. The same plane was mapped at 0.3 and 1.3 K using
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erator insert in an Oxford Instruments cryomagnet the h ,k ,0
and h ,h , l planes of reciprocal space were mapped in zero
field at 0.05 K. These maps are shown in Fig. 2. All parts of
the sample environment in the beam were made of alu-
minium (other than the copper support), which gives rise to
powder lines at "Q"=2.70, 3.12 and 4.40 Å−1.

Standard data reduction procedures were applied to trans-
form time of flight and angle information to reciprocal space,
to correct for absorption in the sample, and to normalize the
data to an absorption corrected vanadium run. The latter cor-
rects for the wavelength-dependent flux profile and detector
efficiency. Despite the fivefold reduction in absorption cross
section compared to natural dysprosium, the data analysis
procedure revealed that absorption by the Dy2Ti2O7 crystal
was still significant and needed to be taken into account. The
absorption correction was made by calculating an attenuation
coefficient #A$s ,#%& by which the data could be divided. The
coefficient for a cylinder of radius R was originally derived
by Sears35 and is

A$s,#% = #1 + 4bs2 − 0.5s2 cos2$#/2%& $ exp$− 2as% , $1%

where a= $8/3%%, b= $1−a2% /2, s=&R, and # is the scatter-
ing angle. In this formula, &, the absorption coefficient, de-
pends on both the scattering cross section and the wave-
length dependent absorption cross section.

FIG. 2. (Color online) Dy2Ti2O7: Diffuse scattering in the h ,h , l plane measured at 20 K (top left), 1.3 K (top right), and 0.3 K (bottom
left, with zone boundaries illustrated). The sharp, intense spots are nuclear Bragg reflections with no magnetic intensity. The map at 20 K
was recorded using an average scattering angle of #=48° which gives stronger arc-shaped artefacts for small "Q" values compared to #
=32°. The result of the Monte Carlo simulation of the dipolar spin ice model at 0.3 K is shown at bottom right.
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where a= $8/3%%, b= $1−a2% /2, s=&R, and # is the scatter-
ing angle. In this formula, &, the absorption coefficient, de-
pends on both the scattering cross section and the wave-
length dependent absorption cross section.

FIG. 2. (Color online) Dy2Ti2O7: Diffuse scattering in the h ,h , l plane measured at 20 K (top left), 1.3 K (top right), and 0.3 K (bottom
left, with zone boundaries illustrated). The sharp, intense spots are nuclear Bragg reflections with no magnetic intensity. The map at 20 K
was recorded using an average scattering angle of #=48° which gives stronger arc-shaped artefacts for small "Q" values compared to #
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L1

Figure 5.15: Left panel: Reproduction of the Fennell et al. [3] neutron scattering data

at T = 0.3 K. The presence of ZBS is exposed by the flatness of the data along the line

indicated by the purple shaped line segments L1 in the left panel. Right panel: the flatness

along the line segments as a function of J1 and J3a from the Monte Carlo simulated neutron

data in the J1−J3a plane, at T = 0.3 K. The phase boundary line between the double-chain

state and the single-chain state is drawn as the brown line in the right panel.

that point, and it is clear that the intensity is higher in the middle of that segment of

the zone boundary, than it is on the two ends. This provides us with another criterion to

consider in the J1 − J3a plane. In Fig. 5.18, we plot whether the criterion is satisfied as a

function of J1 and J3a. As can be seen from the figure, the criterion from the experimental

neutron data eliminates most of the “lower basin”

In summary, the optimal region of the parameters for the experimental neutron data,

as an overlap of Fig. 5.15, Fig. 5.16, Fig. 5.17, and Fig. 5.18, lies in the region close to the

phase boundary. Therefore, through fitting of the microscopic Hamiltonian 5.1 to various

experimental quantities, we find that the new specific heat measurement by Pomaranski

et al. [1] is inconsistent with the experimental neutron data by Fennell et al. [3].

131



More detailed analysis (2) - line cut at l = 2.375

sorption cross section, usually tabulated for 2200 m s−1 neu-
trons, and ! is the neutron wavelength scaled to the value
used in " a) this makes a significant difference at long wave-
lengths.
A large high quality single crystal was grown using an

infrared double mirror image furnace.34 The crystal has a
diameter of !0.4 cm, length !1.5 cm, and is translucent
amber-red in color. It has a cylindrical form typical of image
furnace grown crystals. The crystal was varnished into a
large copper support to ensure good thermal contact.
Using a 3He sorption refrigerator insert in an Orange cry-

ostat, the h ,h , l plane of reciprocal space was mapped in zero
field at 20 and 0.3 K using the average scattering angle #
=48°. The same plane was mapped at 0.3 and 1.3 K using
the average scattering angle #=32°. Using a dilution refrig-
erator insert in an Oxford Instruments cryomagnet the h ,k ,0
and h ,h , l planes of reciprocal space were mapped in zero
field at 0.05 K. These maps are shown in Fig. 2. All parts of
the sample environment in the beam were made of alu-
minium (other than the copper support), which gives rise to
powder lines at "Q"=2.70, 3.12 and 4.40 Å−1.

Standard data reduction procedures were applied to trans-
form time of flight and angle information to reciprocal space,
to correct for absorption in the sample, and to normalize the
data to an absorption corrected vanadium run. The latter cor-
rects for the wavelength-dependent flux profile and detector
efficiency. Despite the fivefold reduction in absorption cross
section compared to natural dysprosium, the data analysis
procedure revealed that absorption by the Dy2Ti2O7 crystal
was still significant and needed to be taken into account. The
absorption correction was made by calculating an attenuation
coefficient #A$s ,#%& by which the data could be divided. The
coefficient for a cylinder of radius R was originally derived
by Sears35 and is

A$s,#% = #1 + 4bs2 − 0.5s2 cos2$#/2%& $ exp$− 2as% , $1%

where a= $8/3%%, b= $1−a2% /2, s=&R, and # is the scatter-
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pends on both the scattering cross section and the wave-
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FIG. 2. (Color online) Dy2Ti2O7: Diffuse scattering in the h ,h , l plane measured at 20 K (top left), 1.3 K (top right), and 0.3 K (bottom
left, with zone boundaries illustrated). The sharp, intense spots are nuclear Bragg reflections with no magnetic intensity. The map at 20 K
was recorded using an average scattering angle of #=48° which gives stronger arc-shaped artefacts for small "Q" values compared to #
=32°. The result of the Monte Carlo simulation of the dipolar spin ice model at 0.3 K is shown at bottom right.
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FIG. 2. (Color online) Dy2Ti2O7: Diffuse scattering in the h ,h , l plane measured at 20 K (top left), 1.3 K (top right), and 0.3 K (bottom
left, with zone boundaries illustrated). The sharp, intense spots are nuclear Bragg reflections with no magnetic intensity. The map at 20 K
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=32°. The result of the Monte Carlo simulation of the dipolar spin ice model at 0.3 K is shown at bottom right.
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Figure 5.16: Left panel: Reproduction of the Fennell et al. [3] neutron scattering data

at T = 0.3 K. The line cut, l = 2.375, is marked by the purple line in the left panel. Right

panel: Goodness of fit for the line cut as a function of J1 and J3a from the Monte Carlo

simulated neutron data in the J1 − J3a plane, at T = 0.3 K. The phase boundary line

between the double-chain state and the single-chain state is drawn as a brown line in the

right panel.

5.4 Issue of inconsistencies in measurements for Dy2Ti2O7

In attempts to discover the microscopic model for Dy2Ti2O7 based on a classical dipolar

spin ice Hamiltonian with further exchange interactions, we have exposed several levels of

inconsistencies between the new measurement by Pomaranski et. al. [1] in specific heat

and older measurements by Ke et. al. [2] in specific heat and Fennell et. al. [3] in neutron

scattering. We summarize in the following.

Out attempt was to fit the experimental data through a dipolar spin ice Hamiltonian

with at least five parameters: up to third neighbour interactions, J1, J2, J3a, and J3b, where

we differentiate two types of third neighbours, and the dipolar coupling, D, between the

spins.

By studying the work by Sato et al., we extracted constraints on the relations of J1−J2,

J3a−J3b and value of D (by the size of the magnetic moment) in terms of Eq. (5.6), Eq. (5.9)
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erator insert in an Oxford Instruments cryomagnet the h ,k ,0
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field at 0.05 K. These maps are shown in Fig. 2. All parts of
the sample environment in the beam were made of alu-
minium (other than the copper support), which gives rise to
powder lines at "Q"=2.70, 3.12 and 4.40 Å−1.

Standard data reduction procedures were applied to trans-
form time of flight and angle information to reciprocal space,
to correct for absorption in the sample, and to normalize the
data to an absorption corrected vanadium run. The latter cor-
rects for the wavelength-dependent flux profile and detector
efficiency. Despite the fivefold reduction in absorption cross
section compared to natural dysprosium, the data analysis
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was still significant and needed to be taken into account. The
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coefficient #A$s ,#%& by which the data could be divided. The
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pends on both the scattering cross section and the wave-
length dependent absorption cross section.

FIG. 2. (Color online) Dy2Ti2O7: Diffuse scattering in the h ,h , l plane measured at 20 K (top left), 1.3 K (top right), and 0.3 K (bottom
left, with zone boundaries illustrated). The sharp, intense spots are nuclear Bragg reflections with no magnetic intensity. The map at 20 K
was recorded using an average scattering angle of #=48° which gives stronger arc-shaped artefacts for small "Q" values compared to #
=32°. The result of the Monte Carlo simulation of the dipolar spin ice model at 0.3 K is shown at bottom right.
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Figure 5.17: Left panel: Some intensity example along the line cut l = 2.375, for a fixed

J1 = 3.32 K and various values of J3a. Right panel: Whether or not the intensities satisfy

the criterion that the intensities have maxima at h = 0.5, h = 1.5 and have minima at

h = 1.0, and h = 2.0, along the line cut of l = 2.375. The color map value 1 indicates the

criterion is satisfied and the color map value 0 indicates the criterion is not satisfied.

and Eq. (5.4). From this, we were left with only two “free parameters”, J1 and J3a.

In the plane of J1 and J3a, we identified a phase boundary line, where the energy

difference between the single-chain and double-chain state is zero. In fact, for discussions

in this section, the origin of the line is irrelevant.

Globally, here is what we have found through the fitting of the specific heat by Po-

maranski et al. [1], the specific heat by Ke et al. [2], and the neutron scattering by Fennell

et al. [3]:

• The Pomaranski et al. data requires the (J1, J3a) to be away from the phase boundary

line, and be described by a model with (J1, J3a) parameters in either one of the two

separate regions we termed the “upper” and “lower” basin.

• The Ke et al. data requires the (J1, J3a) to be near the phase boundary line. (The Ke

et al. data quantitatively resembles the majority of the experimental data up-to-day

[1].)
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More detailed analysis (4) - intensity maximum of 
minimum around (0,0,3)

sorption cross section, usually tabulated for 2200 m s−1 neu-
trons, and ! is the neutron wavelength scaled to the value
used in " a) this makes a significant difference at long wave-
lengths.
A large high quality single crystal was grown using an

infrared double mirror image furnace.34 The crystal has a
diameter of !0.4 cm, length !1.5 cm, and is translucent
amber-red in color. It has a cylindrical form typical of image
furnace grown crystals. The crystal was varnished into a
large copper support to ensure good thermal contact.
Using a 3He sorption refrigerator insert in an Orange cry-

ostat, the h ,h , l plane of reciprocal space was mapped in zero
field at 20 and 0.3 K using the average scattering angle #
=48°. The same plane was mapped at 0.3 and 1.3 K using
the average scattering angle #=32°. Using a dilution refrig-
erator insert in an Oxford Instruments cryomagnet the h ,k ,0
and h ,h , l planes of reciprocal space were mapped in zero
field at 0.05 K. These maps are shown in Fig. 2. All parts of
the sample environment in the beam were made of alu-
minium (other than the copper support), which gives rise to
powder lines at "Q"=2.70, 3.12 and 4.40 Å−1.

Standard data reduction procedures were applied to trans-
form time of flight and angle information to reciprocal space,
to correct for absorption in the sample, and to normalize the
data to an absorption corrected vanadium run. The latter cor-
rects for the wavelength-dependent flux profile and detector
efficiency. Despite the fivefold reduction in absorption cross
section compared to natural dysprosium, the data analysis
procedure revealed that absorption by the Dy2Ti2O7 crystal
was still significant and needed to be taken into account. The
absorption correction was made by calculating an attenuation
coefficient #A$s ,#%& by which the data could be divided. The
coefficient for a cylinder of radius R was originally derived
by Sears35 and is

A$s,#% = #1 + 4bs2 − 0.5s2 cos2$#/2%& $ exp$− 2as% , $1%

where a= $8/3%%, b= $1−a2% /2, s=&R, and # is the scatter-
ing angle. In this formula, &, the absorption coefficient, de-
pends on both the scattering cross section and the wave-
length dependent absorption cross section.

FIG. 2. (Color online) Dy2Ti2O7: Diffuse scattering in the h ,h , l plane measured at 20 K (top left), 1.3 K (top right), and 0.3 K (bottom
left, with zone boundaries illustrated). The sharp, intense spots are nuclear Bragg reflections with no magnetic intensity. The map at 20 K
was recorded using an average scattering angle of #=48° which gives stronger arc-shaped artefacts for small "Q" values compared to #
=32°. The result of the Monte Carlo simulation of the dipolar spin ice model at 0.3 K is shown at bottom right.
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50

Figure 5.18: Whether or not the intensities at the zone boundary across (0,0,3), i.e. the

line segment from (−0.5,−0.5,3) to (0.5,0.5,3), have more intensities at h = 0.0 than at

h = 0.5. The color map value of 1 indicates the criterion is satisfied while the color map

value of 0 indicates the criterion is not satisfied.

• The Fennell et al. data requires the (J1, J3a) to be near the phase boundary line.

Here is an extra comment added to the parameter fitting: In fact, if we try to fit the

Ke et al. data and the Fennell et al. data, we would get parameters very close to what is

found in the work by Yavors’kii et al. ( J1 = 3.41 K , J2 = −0.14 K, J3a = J3b = 0.025, and

D = 1.3224 K ). Even though in Yavors’kii et al. there is no explicit requirement to satisfy

the constraints we identify from the [112] field experiment, the final fitted parameter does

lie in range of the constraints.

Thus, the present work shows that the Pomaranski et al. data is not only inconsistent

with the majority of the specific heat data for Dy2Ti2O7, which have a Pauling’s residual

entropy plateau, and represented by the Ke et al. data, but also inconsistent with the

Fennell et al. data through the microscopic dipolar spin ice model.
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One possibility is that the Fennell et al. data is also somewhat “faulted” due to the

same problem as in the majority of the specific heat measurements, namely, that it was

not fully equilibrated as well due to the long relaxation time [1], since the measurement

took place at T = 0.3 K. If this is the case, then what left is the puzzle why in thermally

“quenched” spin ice, the neutron experiment and the calorimetric measurements can be

described by the same Hamiltonian. Maybe there is an “effective” Hamiltonian for spin

ice out of thermal equilibrium? The best way to resolve this puzzle would be to have more

neutron experiment data obtained by taking into account the slow relaxation time noted

in Pomaranski et al. [1].

5.5 Conclusion

In conclusion, in this chapter we investigated the microscopic model for spin ice Dy2Ti2O7.

Parametric constraints on the model parameters were extracted from the [112] field exper-

iment. With these constraints, we tried to fit three set of the experiments: the specific

heat from Pomaranski et al. [1] and from Ke et al. [2] and the neutron scattering from

Fennell et al. [5]. We found the Pomaranski et al. data is inconsistent with the Fennell et

al. data, through the microscopic model we use, while the Ke et al. data and the Fennell

et al. data can be reconciled through our model. The inconsistency exposed in this work

may encourage interest in future experimental measurements in resolving the issue.
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Chapter 6

Pinch point singularities and

correlations in spin ice

In this chapter we turn to the discussion of spin-spin correlations in spin ices. As we

discussed previously, spin ice, as a highly frustrated magnet, possesses a macroscopic quasi-

ground state degeneracy, manifested in the Pauling’s residual entropy[4]. Such massive

degeneracy is due to the ice-rule constraints on an otherwise paramagnetic spin state,

i.e., a liquid phase of matter where degrees of freedom are strongly correlated but remain

disordered.

An interesting question to ask is what are the long distance consequences for the spins

in spin ice, given the local ice-rule constraint. From a coarse-grained point of view, we

denote M(r) as the averaged magnetization from the spins in a macroscopically small but

microscopically large volume. The ice-rule constraint on each tetrahedron requires that

the divergence of M(r) be zero: ∇ ⋅M(r) = 0. (6.1)

Thus in the Fourier space, we have

k ⋅M(k) = 0, (6.2)

meaning there is no longitudinal component of M(k).
By projecting out this component in the equipartition result for a paramagnet [32], we
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have ⟨Mµ(−k)Mν(k)⟩∝ (δµν − kµkν∣k∣2 ) (6.3)

which gives the so-called pinch point at k = 0. Experimentally, in neutron scattering, the

locations of the pinch points are moved to non-zero q-points [31]. Fourier transforming

back to the real space, we have

⟨Mµ(0)Mν(r)⟩∝ δµν − 3r̂µ ⋅ r̂ν
r3

, (6.4)

meaning the spins are correlated in the form of a dipole-dipole interaction. Therefore the

ice-rule state in spin ice is also refer to the Coulomb phase [32].

From an experimental point of view, the observation of the pinch points may seem as

a signature for the Coulomb phase [5]. However, as noted in previous works [27, 69], pinch

points exist beyond the ice-rule manifold, where the temperature dependence of the pinch

points are analyzed using the large-N approximation [69].

In this chapter, we investigate the existence of pinch points through Monte Carlo sim-

ulations. Both dipolar and nearest-neighbour spin ice models are studied, where the fate

of the pinch points are demonstrated through a comparative study of the two models. We

study specifically the spin-flip and non-spin-flip channels of the neutron scattering, thus

comparing results with the neutron scattering experiment.

For the nearest-neighbour model, ice-rule correlation lengths are extracted by studying

the thermal broadening of the pinch point singularities. The correlation length as a function

of temperature is compared with the average distance between thermal defects.

The chapter is organized as follows. In Section 6.1 we present Monte Carlo results for

the neutron scatterings at different temperatures for two types of spin ice models, i.e.,

models with and without dipolar interactions. Also we comment on the persistence of the

pinch point singularities in the dipolar spin ice model through a simple high temperature

expansion argument.

In Section 6.2 we analyze the nearest-neighbour spin ice model and study the evolution

of the ice rule correlation lengths extracted from the widths of the Lorentz peaks as a

function of temperature.
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6.1 A comparative study of the neutron scatterings

between dipolar spin ice and nearest neighbour

spin ice

6.1.1 Models of spin ice

The two models we study in this chapter for spin ices, as discussed in Chapter 1, are the

dipolar spin ice model and the nearest-neighbour spin ice model. Here are their Hamilto-

nians.

The dipolar spin ice Hamiltonian

Hdip =∑
i>j σiσj{J1δrij ,rnn ẑi ⋅ ẑj +D(rnn/rij)3[ẑi ⋅ ẑj − 3(ẑi ⋅ r̂ij)(ẑj ⋅ r̂ij)]} (6.5)

where J1 = 1.56 K is the exchange interaction when i and j are nearest neighbours, and D =
1.41 K is the dipolar coupling strength. These particular numbers are for Ho2Ti2O7, the

material we focus on in this chapter in comparison with its neutron scattering measurments

[5]. The Hamiltonian parameters were determined from a previous study [25]. The σ’s are

the Ising variables and the ẑ’s are the local [111] directions of the Ising spins. rnn is

the nearest-neighbour distance in the pyrochlore lattice. The effective nearest-neighbour

interaction between the Ising variables is Jeff = 1.8 K from this model for Ho2Ti2O7.

The nearest-neighbour spin ice Hamiltonian reads

Hnn = Jnn ∑⟨i,j⟩σiσj (6.6)

where the sum is over all neighbour neighbours. In this study we choose Jnn = 1.8 K, a

value corresponding to the effective nearest neighbour interaction, Jeff , in Ho2Ti2O7.

6.1.2 Pinch point singularity for the dipolar model at high tem-

peratures

We show, through a simple argument based on high temperature expansion that, for the

dipolar spin ice model, the spin-spin correlation function has a dipole-dipole form as a func-

tion of distance between them and thus pinch points in q-space, even at high temperature,

well above the formation of the spin ice manifold.
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Consider the spin-spin correlation function

C(σk, σl) ≡ ⟨σkσl⟩ − ⟨σk⟩⟨σl⟩ (6.7)

for the Ising variables σk and σl. In the paramagnetic phase,

⟨σ⟩ = 0. (6.8)

Thus in the canonical ensemble, we have for the correlation function

⟨σkσl⟩ = ∑{σ} σkσle−H/kBT
Z

(6.9)

where the summation is over all the possible spin configurations {σ}, and Z is the partition

function.

In general the energy H of the system can be written as

H =∑
i,j

σiσjJi,j. (6.10)

Therefore, if we expand the exponential in powers of inverse temperature, T , we have

⟨σkσl⟩ ≃∑{σ}σkσl[1 + (−∑
i,j

σiσjJi,j)/kBT ] (6.11)

Consider the first term in the numerator ∑{σ} σkσl, since when summed over all the

possible configurations, the term σkσl occurs the same number of times of being positive

as being negative, we have ∑{σ}σkσl = 0 (6.12)

Consider the second term in the numerator ∑{σ} σkσl(−∑i,j σiσjJi,j)/kBT . The sum-

mation over the spin configurations is not zero only when k = i and l = j (assuming k < l
and i < j).

Therefore we have for the correlation

⟨σkσl⟩ = −∑
i,j

δk,iδl,jJi,j/kBT (6.13)
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or ⟨σkσl⟩ = −Jk,l/kBT (6.14)

Therefore at high temperatures, the spin-spin correlation function is the interaction.

For the dipolar spin ice Hamiltonian, the interaction is of the dipole-dipole form, thus, at

high temperature, the spin-spin correlation is of the dipole-dipole form, and we have pinch

points for the dipolar spin ice model at high temperatures [5].

6.1.3 Spin flip and non spin flip channels in polarized neutron

scattering

Fennell et al. [5] performed polarized neutron scatterings for Ho2Ti2O7. Two channels

of the neutron scattering were measured separately, the spin-flip (SF) channel and the

non-spin-flip (NSF) channel.

For the neutron scattering plane (h,h, l), we re-summarize the definition of the SF

and NSF neutron scattering from Fennell et al. as follows. Define direction z1 = [11̄0],
which is perpendicular to the scattering plane. Define direction x1, which is parallel to

the scattering wave vector Q. Then, the direction y1 is defined as the cross product of

z1 and x1. The SF and NSF cross sections are then defined as the Fourier transform of

the spin-spin correlation function with only components along the y1 and z1 directions,

respectively, for SF and NSF.

For the SF channel,

SSF(Q) = (1/N)∣∑
i,j

σiσj(ẑi ⋅ ŷ1)(ẑj ⋅ ŷ1)eiQ⋅rij ∣2, (6.15)

while for the NSF channel,

SNSF(Q) = (1/N)∣∑
i,j

σiσj(ẑi ⋅ ẑ1)(ẑj ⋅ ẑ1)eiQ⋅rij ∣2, (6.16)

where in both equations, the ẑi and ẑj are the easy-axis directions of the Ising spins.

Note that the four easy axes for the Ising spins on different sublattices are along(1,1,1)/√3, (−1,−1,1)/√3, (−1,1,−1)/√3, and (1,−1,−1)/√3. Therefore, two of the sub-

lattices have no spin component along the NSF direction, z1 = [11̄0], i.e. the NSF neutron

scattering only probes half of the spins.

The total neutron scattering equals to the sum of the SF and NSF channels.
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6.1.4 Monte Carlo neutron scatterings for spin ices

We perform Monte Carlo simulations for the spin ice Hamiltonians of Eq. (6.5) and Eq. (6.6)

with parameters suitable for Ho2Ti2O7 [25]. SF and NSF channels are calculated. The

simulation box is of the size L = 8. We plot in Fig. 6.1 and Fig. 6.2 the SF neutron

scatterings for the dipolar model and the nearest-neighbour model at various temperatures.

The scattering wavevectors are in the (h,h, l) plane.

As can be seen from these figures, for the dipolar spin ice model, the pinch points

appear at the (0,0,2), (1,1,1) positions. At higher temperatures, the contrast between

different directions crossing the pinch points gets lowered, nevertheless, the pinch points

appear for all temperatures. As the temperature drops below 1.7 K, intensity develops at(0,0,1) and (0,0,3), foretelling the long range order developed at lower temperatures [48].

For the nearest-neighbour spin ice model, at low temperatures the pinch points appear

at the same locations as in the dipolar spin ice model. At higher temperatures, not only

the contrast between high intensity region and low intensity region gets lowered, but the

pinch points are also broadened. Eventually the pinch points become “rods” of scatterings.

The NSF neutron scattering for the dipolar spin ice is plotted in Fig. 6.3. As can be

seen in the figure, scattering intensity develops as a checkerboard pattern in the (h,h, l)
map. The contrast of the intensities gets lowered at higher temperatures, but at 5 K and

even barely at 10 K, the contrast can still be perceived on the scale of the contour plots.

No pinch point is seen for the NSF neutron scattering.

For the nearest-neighbour model, the NSF neutron scattering is completely flat at all

temperatures.

Thus our results show that pinch points are not a signature of the Coulomb phase for

dipolar spin ice. In a system with dipolar interactions, pinch point is merely a reflection

of the dipolar interaction itself, as we have seen from the high-temperature expansion

argument in Subsection 6.1.2.

6.2 Correlations for the nearest neighbour model

In this section we study the thermal broadening of the pinch points for nearest-neighbour

spin ice. In the vicinity of the pinch point at non-zero temperature, the SF signal acquires
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the form [5, 31, 91]

SSF(qh, qk, ql)∝ q2
l−2 + ξ2

ice
q2
l−2 + q2

h + q2
k + ξ2

ice
(6.17)

where the ice-rule correlation, ξice, is a function of temperature, and broadens the pinch

point singularities.

In this chapter, we perform Monte Carlo simulation to study the thermal broadening

of the pinch point through Eq. (6.17). Simulation boxes of up to size of L = 32 are used.

We plot in Fig. 6.4 the SF neutron scattering along the horizontal line cut across the pinch

point, where the symbols are for the simulation data points and the line are from the fitting

through Eq. (6.17).

The ice-rule correlation [5], ξice, extracted from the above Lorentz fit, as a function

of temperature, is plotted in Fig. 6.5. On the same figure, we also plotted the averaged

distance between thermal defects, defined as (1/ρ)1/3. It turns out that the correlation

lengths from the Lorentzian fits and the defect densities can be described by the exp(J/T )
and the exp(2J/3T ) functions, respectively.

From the Debye-Huckel theory in the work by Castelnovo et al. [71], we have

ξDebye ∝
√

T

ρ
(6.18)

This indicates the correlation length, ξice, extracted from the Lorentzian fit to the broan-

dening of the pinch point presented above, is the Debye screening length.

6.3 Conclusion

In this chapter, we have shown through Monte Carlo simulation that for a dipolar spin

ice, the pinch points exist at high temperatures where local ice-rule constraints do not

apply. This is in agreement with the high temperature expansion argument for a dipolar

system. For a nearest-neighbour spin ice model, we have shown that the correlation lengths

extracted from the thermal broadening of the pinch points agree with the Debye-Huckle

correlation length.
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Figure 6.1: Spin-flip channel of the neutron scattering in the (h,h, l) plane for the dipolar

Hamiltonian (6.5) at various temperatures. Monte Carlo method is used with a simulation

box of size L = 8. From top left, top right, to bottom right, bottom left, the temperatures

are T = 0.6 K, T = 1.7 K, T = 5 K, and T = 10 K. The pinch points persist up to the highest

temperature.
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Figure 6.2: Spin-flip channel of the neutron scattering, in the (h,h, l) plane for the nearest

neighbour Hamiltonian (6.6) at various temperatures. Monte Carlo method is used with

a simulation box of size L = 8. From top left, top right, to bottom right, bottom left, the

temperatures are T = 0.5 K, T = 1.7 K, T = 5 K, and T = 10 K. As temperature rises, the

pinch points broaden and disappear.

144



Figure 6.3: Non-spin-flip channel of the neutron scattering in the (h,h, l) plane for the

dipolar Hamiltonian (6.5) at various temperatures. Monte Carlo method is used with a

simulation box of size L = 8. From top left, top right, to bottom right, bottom left, the

temperatures are T = 0.6 K, T = 1.7 K, T = 5 K, and T = 10 K. There is no pinch point

in this channel of the neutron scattering, instead checkerboard patterns are seen with

intensity peaks at locations of (1,1,0), (0,0,1) and so on.
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Figure 1: Neutron intensity versus h in the line cut across the pinch point at (002) in the (hhl)

plane. The dots are Monte Carlo results and the lines are the Lorentzian fits.

The ⇠ice defined above can thus be extracted and ploted in Fig. 2. We also monitor the density

of the charge defects and consider the average distance between monopoles defined as (1�⇢)1�3
and plot it as a correlation length in Fig. 2.

The correlation lengths from the Lorentzian fits and the defect densities can be described by

the exp(J�T ) and the exp(2J�3T ) functions. And from the Debye-Huckel theory presented in

Castelnovo2011, we have

⇠Debye ∝
�

T

⇢
(2)

This indicates the correlation length, ⇠ice, extracted from the Lorentzian fit to the broandening of

2

Figure 6.4: Intensities along the l = 2 line across the pinch point for the nearest-neighbour

spin ice, Eq. (6.6), at various temperatures. Monte Carlo simulation is used with a simu-

lation box of size L = 32. Jnn = 1.8 K in Eq. (6.6). The symbols are the Monte Carlo data,

the lines are the fit to Eq. (6.17).

146



0.5 0.6 0.7 0.8 0.9 1 1.1
T(K)

0

2

4

6

8

10

12

� ic
e/a

exp(2J/3T) normalized to MC value at 1.0K
Corr_Length from defect density
exp(J/T) normalized to MC value at 1.0K
Corr_Length from Lorentzian fit

Figure 6.5: Length scales extracted from the Lorentz fit of the pinch points through

Eq. (6.17) (circle) and extracted from the average distance between thermal defects.
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Chapter 7

Numerical linked cluster study of

polarized neutron scattering for

quantum spin ice Yb2Ti2O7

As noted in the Introduction, quantum spin ice Yb2Ti2O7 may be a candidate for a quan-

tum spin liquid with a known Hamiltonian [6]. The question that interests us is then,

with this Hamiltonian, whether experimental observables can be calculated and compared

with measurements quantitatively. The numerical linked cluster expansion (NLC) method

[52, 53, 54], which has been used in calculating the specific heat and magnetization for

Yb2Ti2O7 in previous works [44, 45], is found to be quite successful and gives results with

controllable errors. The goal of this chapter, is to demonstrate the capability of the method

in calculating polarized neutron scattering signals for a quantum spin ice Hamiltonian.

7.1 Quantum spin ice model for Yb2Ti2O7

For the rare-earth pyrochlore Yb2Ti2O7, the magnetic ions Yb3+ reside on the pyrochlore

lattice and have anisotropic along their local ⟨111⟩ directions, as dictated by their crystal

field environments. Its microscopic Hamiltonian may be described by an effective quantum

pseudospin-1/2 model [40, 41].

148



In a previous work by Ross et al. [6], the model was fitted with high-field inelastic neu-

tron scattering and the parameters were found to be quantitatively accurate in previous

NLC works by Applegate et al. [44] and Hayre et al. [45] for specific heat and magnetiza-

tion, respectively. In this chapter, we adopt the same model for our NLC investigation for

the neutron scatterings.

The spin-1/2 model Hamiltonian from Ross et al. [6] reads

HQSI =∑⟨i,j⟩{JzzSzi Szj − J±(S+i S−j + S−i S+j ) + J±±[γijS+i S+j + γ∗ijS−i S+j ]+ Jz±[Szi (ζijS+j + ζ∗ijS−j + i↔ j]} −∑
i

h⃗ ⋅ g ⋅ Si, (7.1)

where Szi , Szj are for the local spin coordinates, and the summation is over all nearest

neighbours. ζ = −γ∗ is the 4 × 4 complex unimodular matrix, whose values can be found

in Appendix C. The couplings for Yb2Ti2O7 were determined to be [6, 44, 45] Jzz = 0.17,

J± = 0.05, J±± = 0.05, and Jz± = −0.14 all in meV, and gzz = 1.80 and gxy = 4.32 for the

g-tensor.

7.2 Numerical linked cluster expansion calculation

7.2.1 Linked cluster expansion for quantum spin ice

For spin ices, as noted in Chapter 1, the most important physics is incompassed in the

two-in-two-out ice-rule constraint on each tetrahedron. Therefore, in developing the cluster

expansions for a ice model, it is wise to build orders of the clusters by the whole tetrahedron

instead of by spins to avoid the problem of rapid oscillation in the presence of incomplete

tetrahedra.

Consider the general case with the possible presence of non-zero magnetic fields, the

cluster expansion consists of the following terms.

The zeroth order cluster, depicted in Fig. 7.1, consists of only one site. Since we are

focusing on the spin-spin correlation functions in this chapter, and the cluster with only

one site does not contribute to the two-point correlation functions for non-zero reciprocal

space vectors, we therefore ignore this term in the calculations presented here. (It was

pointed out during the submission stage of this thesis by my supervisor, Dr. Gingras, that
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for zero reciprocal space vector, the zeroth order cluster can not be omitted.) Note that

for the calculations of the magnetization or specific heat in a magnetic field, this 1-site

cluster cannot be ignored.

Figure 7.1: Linked cluster for the pyrochlore lattice, 0th order, which consists of a single

(isolated) site.

The first order cluster, depicted in Fig. 7.2, consists of a single tetrahedron. There is

only one such type of cluster, as the permutation of the sublattices on the four different sites

basically refers to the same tetrahedron. The corresponding lattice constant, as defined in

Chapter 2, is

L1 = 1/2, (7.2)

since the number of such cluster is the number of the tetrahedron (N/2) in the lattice.

AB

D

C

Figure 7.2: Linked cluster for the pyrochlore lattice, 1st order

The second order cluster, depicted in Fig. 7.3, consists of two tetrahedra connected

by a common site A. There are four types of second order cluster, depending on which

sublattice site A corresponds to. The lattice constant for each type is

L2 = 1/4, (7.3)
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since the number of such cluster can be counted by the number of site A on the lattice,

which is the number of one sublattice sites.

DAB

D

C

C

B

Figure 7.3: Linked cluster for the pyrochlore lattice, 2nd order. There are four distinct

clusters of this order based on the choice of the sublattice for site A.

The third order cluster, depicted in Fig. 7.4, consists of three tetrahedra connected by

two common sites A and B. The number of different third order cluster is 6, counted from

the choices of the sublattices for the common sites A and B. The lattice constant for each

type of third order cluster is

L3 = 1/4, (7.4)

as the cluster can be specified by its central tetrahedron.

For the fourth order cluster, three different topologies are possible for the connections

of the tetrahedra.

The first type, referred to as ABA type in previous works [44, 45], is depicted in Fig.

7.5. Within this type, there are 12 distinct clusters, counted by the choices of sublattices

for site A and site B. Then, for each distinct cluster, the lattice constant is

L4,ABA = 1/4, (7.5)

as the cluster can be specified by the choice of the site A in the lattice.

The second type of fourth order cluster, referred to as the ABC type in previous works

[44, 45], is depicted in Fig. 7.6. Within this type, there are 24 distinct clusters, counted
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DA B

D

C

A B

D

CC

Figure 7.4: Linked cluster for the pyrochlore lattice, 3rd order. There are six distinct

clusters of this order based on the choice of the sublattice for sites A and B.

DA B

C

D

A B

C

C

C

D
D

A

Figure 7.5: Linked cluster for the pyrochlore lattice, 4th order, type ABA. There are

twelve distinct clusters of this type based on the choice of the sublattices for sites A and

B.

by the choices of the sublattices for sites A, B, and C. Then for each distinct cluster, the

lattice constant is

L4,ABC = 1/4, (7.6)

as the cluster can be specified by the choice of site A in the lattice.
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D

C

D
AB

Figure 7.6: Linked cluster for the pyrochlore lattice, 4th order, type ABC. There are

twenty-four distinct clusters of this type based on the choice of the sublattices for sites A,

B, and C.

Finally, the third type of fourth order cluster, referred to as the Y type in previous

works [44, 45], is depicted in Fig. 7.7. For this type, there are 4 distinct clusters, counted

by the choices of the sublattices for site A. Then for each distinct cluster, the lattice

constant is

L4,Y = 1/2, (7.7)

as the cluster can be specified by the choice of the central tetrahedron in the lattice.

With all these clusters and their lattice constants, the numerical linked cluster program

can be carried out as described in Chapter 2. For the final results, it is often easier to write

out the contribution from different orders expressed in the form of the averaged properties

of each type of clusters. Denote C1, Cavg,2, Cavg,3, Cavg,4,ABA, Cavg,4,ABC, and Cavg,4,Y as

the averaged cluster properties from each of the above discussed clusters, respectively. We

have for the numerical linked cluster expansion

PNLC1 = (1/2)C1, (7.8)
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Figure 7.7: Linked cluster for the pyrochlore lattice, 4th order, type Y. There are 4

distinct clusters of this type based on the choice of the sublattice for site A.

PNLC2 − PNLC1 = Cavg,2 − 2C1, (7.9)

PNLC3 − PNLC2 = 3Cavg,3 − 6Cavg,2 + 3C1, (7.10)

and the contribution from the ABA cluster to the 4th order is

{PNLC4 − PNLC3}ABA = 3Cavg,4,ABA − 6Cavg,3 + 3Cavg,2, (7.11)

and the contribution from the ABC cluster to the 4th order is

{PNLC4 − PNLC3}ABC = 6Cavg,4,ABC − 12Cavg,3 + 6Cavg,2, (7.12)

and the contribution from the Y cluster to the 4th order is

{PNLC4 − PNLC3}Y = 2Cavg,4,Y − 6Cavg,3 + 6Cavg,2 − 2C1, (7.13)
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Combining the above three contributions, the total contribution from the 4th order

linked cluster expansion is

PNLC4 − PNLC3 = 3Cavg,4,ABA + 6Cavg,4,ABC + 2Cavg,4,Y − 24Cavg,3 + 15Cavg,2 − 2C1. (7.14)

7.2.2 Calculation of the observables

The quantities that we calculate in this chapter, are the spin-flip and non-spin-flip signals

of the neutron scattering, as defined in Chapter 6. The total scattering is equal to the sum

of the two channels.

For a polarized neutron intensity for spin components selected along a particular direc-

tion, Ŷ , the intensity is calculated by

ÎŶ (Q) =∑
i,j

e−iQ⋅R⃗i,j(Ŷ ⋅ g ⋅ S⃗i)(Ŷ ⋅ g ⋅ S⃗j), (7.15)

where S⃗ = Sxx̂ + Syŷ + Sz ẑ is the spin-1/2 quantum operator, and g is the g-tensor for the

magnetic moment.

For a given cluster and a given temperature, the property of the cluster is given by

IŶ (Q) =∑
n

⟨Ψn∣ÎŶ ∣Ψn⟩e−βEn
Z

(7.16)

where ∣Ψn⟩ are the eigenstates for the cluster the given cluster.

The procedure for performing the numerical linked cluster expansion goes as follows:

• Construct the Hamiltonian for each of the cluster ;

• Diagonalize the Hamiltonians and calculate the properties of each cluster using

Eq. (7.16) ;

• Use Eqs. (7.8), (7.9), (7.10) and (7.14) to calculate the numerical linked cluster

expansion quantities up to 4th order.

After this procedure, only properties that are converged as the order of the clusters

gets higher are physically relevant.
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In our study, the diagonalization is performed through the CLAPACK library. Note

that the matrices for the Hamiltonians and observables are large sparse matrices, therefore

in order to facilitate calculations for large clusters, compressed sparse row representation

is used in this work as the data structure for the matrices.

7.3 Neutron scattering results and discussions

7.3.1 Total neutron scattering

With the NLC method discussed above, we compute the polarized neutron scattering for

the quantum spin ice model. In Fig. 7.8, we plot the total neutron scattering signals for

the model at T = 1.4 K up to the fourth order in the (h,h, l) scattering plane. Also, in

order to check convergence between different orders, we plot in Fig. 7.9 the intensities

along different directions.

From Fig. 7.8, a clear rod of scattering feature can be seen in the neutron map. Such

a feature has been linked to the two-dimensional correlations in the Yb2Ti2O7 material

[43, 92]. As shown in Fig. 7.9, the convergence of the NLC method is quite good at T = 1.4

K for clusters bigger than two tetrahedra, except for q values near the intensity peak at(2,2,2).
We also calculated the neutron scattering at T = 0.8 K, where the thermodynamic

calculation indicates a failure of the convergence in the NLC [44, 45] for the specific heat

and the magnetization. We plot in Fig. 7.10 the neutron scattering maps at T = 0.8 K.

As shown in the figure, the peaks in the (h,h, l) map become more pronounced, while the

rod scattering feature remains.

We plot in Fig. 7.11 the intensities along different line cuts for the T = 0.8 K neutron

scattering. As can be seen from the figure, away from the intensity peaks, the NLC con-

verges very well. Thus we find that the usefulness of the NLC method in the spin-spin

correlation functions extends below the temperatures where for specific heat or magneti-

zation measurements the method fails to converge, at wavevectors away from the Bragg

peaks. Therefore we are allowed to look into some of the non-critical features of the cor-

relation in the lower-temperature correlated regime of the system. For example, as seen in

Fig. 7.9 and Fig. 7.11, the rod scattering evolves as a function of temperature only slightly

from T = 1.4 to T = 0.8, with its intensity slightly increasing.
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7.3.2 Spin-flip and non-spin-flip channels of the neutron scatter-

ing

The polarized neutron spin-flip and non-spin-flip [5] scatterings can be separately calcu-

lated.

We plot in Fig. 7.12 the spin-flip channel for the neutron scattering at T = 1.4 K. Also

as a check for the convergence, we plot the intensities along various line cuts as shown in

Fig. 7.13 From Fig. 7.12 we see that the rod feature from (0,0,0) to (2,2,2) is twisted in

the SF channel. Also the rod feature from (0,0,4) to (2,2,2) is gone all together.

Next we turn to the non-spin-flip channel for the neutron scattering at T = 1.4 K,

plotted in Fig. 7.14. Its linecuts are plotted in Fig. 7.15. It turns out that the NSF

channel is also highly structured. Comparing the scattering with the SF channel, it can

be seen that the rod feature from (0,0,4) to (2,2,2) in the total neutron scattering is

contributed entirely from the NSF channel.

7.4 Conclusion

In this chapter we reported calculations of the polarized neutron scattering through the

numerical linked cluster expansion for quantum spin ice Yb2Ti2O7. Down to at least 0.8

K, the NLC convergence is good except for q points near the intensity Bragg peaks.

The rod scattering in Yb2Ti2O7 [43, 92], the most salient feature in the neutron ex-

periment for the material, can be reproduced in our NLC calculation, thus showing the

robustness of the method.

Future progress in the quantum spin ice research could benefit from the NLC method

discussed in this chapter.
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Figure 7.8: Neutron scattering in the (h,h, l) map for Hamiltonian (7.1) at T = 1.4 K in

zero field. Top left, NLC 1st order; top right: 2nd order bottom left: 3rd order; bottom

right: 4th order.
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l=1

l=2

Figure 7.9: Line cuts in the neutron scattering in the (h,h, l) map for Hamiltonian (7.1)

at T = 1.4 K in zero field, for up to 4th order of NLC. Top left: Intensities along the line

h = 1; top right : intensities along the line l = 1; bottom left: intensities along the line

h = 2; bottom right: intensities along the line l = 2.
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Figure 7.10: Neutron scattering in the (h,h, l) map for Hamiltonian (7.1) at T = 0.8 K in

zero field. Top left, NLC 1st order; top right: 2nd order bottom left: 3rd order; bottom

right: 4th order.
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l=1

l=2

Figure 7.11: Line cuts in the neutron scattering in the (h,h, l) map for Hamiltonian (7.1)

at T = 0.8 K in zero field, for up to 4th order of NLC. Top left: Intensities along the line

h = 1; top right : intensities along the line l = 1; bottom left: intensities along the line

h = 2; bottom right: intensities along the line l = 2.
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Figure 7.12: Spin-flip channel of the neutron scattering in the (h,h, l) map for Hamilto-

nian (7.1) at T = 1.4 K in zero field. Top left, NLC 1st order; top right: 2nd order bottom

left: 3rd order; bottom right: 4th order.
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h=1

h=2

l=1

l=2

Figure 7.13: Line cuts in the spin-flip channel of the neutron scattering in the (h,h, l)
map for Hamiltonian (7.1) at T = 1.4 K in zero field, for up to 4th order of NLC. Top left:

Intensities along the line h = 1; top right : intensities along the line l = 1; bottom left:

intensities along the line h = 2; bottom right: intensities along the line l = 2.
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Figure 7.14: Non-spin-flip channel of the neutron scattering in the (h,h, l) map for

Hamiltonian (7.1) at T = 1.4 K in zero field. Top left, NLC 1st order; top right: 2nd order

bottom left: 3rd order; bottom right: 4th order.
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l=1
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Figure 7.15: Line cuts in the non-spin-flip channel of the neutron scattering in the (h,h, l)
map for Hamiltonian (7.1) at T = 1.4 K in zero field, for up to 4th order of NLC. Top left:

Intensities along the line h = 1; top right : intensities along the line l = 1; bottom left:

intensities along the line h = 2; bottom right: intensities along the line l = 2.
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Chapter 8

Conclusion and Future Works

In this thesis we studied a range of properties of spin ices when subject to different types of

perturbations to the system. These include random site dilution, finite-size surface effects,

weak exchange interactions, and quantum dynamics. The topic of pinch points in neutron

scattering in dipolar spin ice was also briefly discussed. All these problems are motivated

by recent experiments in the field of study.

In Chapter 3, we studied the dilution problem in spin ice. For Dy2−xYxTi2O7 and

Ho2−xYxTi2O7, we found that the Monte Carlo simulations of the site-diluted dipolar spin

ice models have a close match to the experiments in the temperature range of 0.5 K ≲ T ≲
5 K and with up to x = 1.7 levels of dilution. The good agreement between simulations

and experiments validated the dipolar spin ice models for the two compounds. On top

of the close match between simulations and experiments over a large temperature range,

the simulation results were void of the high temperature phonon noises and were better

equilibrated at low temperatures. This enables for a more accurate determination of the

residual entropy. Non-monotonicity of the residual entropy, as well as the rare-earth ion de-

pendence of the residual entropy [2], were confirmed in the simulations. The rare-earth ion

dependence was determined to originate from the material-specific spin-spin interactions,

particularly the relative strength of the dipolar interaction with respect to the nearest

neighbour exchange coupling. The importance of specifying the base temperature, T0, in

the determination of the residual entropy was also emphasized in the chapter.

Having established the model Hamiltonians for the diluted compounds Dy2−xYxTi2O7

and Ho2−xYxTi2O7, in Chapter 3 Section 3.2 we embarked on the study of the physics due
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to random dilution on the spin ice Hamiltonian. We started by asking what is the physical

meaning of the broad peak of specific heat observed in spin ice. For the minimal model,

the nearest-neighbour spin ice model, we found the single tetrahedron approximation to

be quite accurate in describing Monte Carlo simulations of specific heat. Through the ap-

proximation, we interpret the meaning of the specific heat broad peak in spin ice in terms

of the populations of the thermal defects. As an application of the single tetrahedron ap-

proximation, we used it in explaining the non-monotonicity seen in the specific heat curves.

For the problem of possible long-range order or glass order phase transition induced by

the random site dilution [37], we performed a Bethe-Peierls calculation for the site diluted

Husimi tree structure, and found that the paramagnetic solution is stable for all finite

temperatures and at all dilution levels. The lost of projective equivalence was commented

as the site dilution sites permits the appearance of unscreened monopole charges.

A future work following this project would be to investigate the interactions between the

unscreened monopole charges. Note that for every spin site diluted in the pyrochlore lattice,

two connecting tetrahedra are defected, which permit the appearance of the unscreened

monopole charges at their centers. It is most likely that the neighbouring monopole charges

form dipoles and it is interesting to ask whether such dipole objects undergo a glass tran-

sition as seen in a similar dilute spin system LiHoxY1−xF4 [64, 73, 74].

In Chapter 4 we study the problem of spin ice in a thin film geometry. Confining

ourselves to the film surface normal to the [001] direction, we discovered some interesting

surface effects due to the dipolar interaction. For the [001] surface, we identified the

orphan bonds objects as the lingering nearest-neighbour bonds on the surface that are

no longer part of any tetrahedron. By tuning the strength of the orphan bond, we can

achieve several surface conditions through Monte Carlo simulations, with residual entropy

well described by analytically derived surface corrections to the Pauling’s entropy. With

dipolar interaction, we discovered a novel phenomenon of surface freezing at AFM orphan

bond strength. The mechanism of surface freezing is due to the self-screening of the dipolar

interactions, even in the presence of monopole charges in the system.

Future directions on the “film problem” are very broad. Properties of the film normal

to other directions of the surface would be of great interest, and their calculation requires

a genuine redesign of the Ewald summation technique for the given geometry. Also, the

experimental puzzle of the recovery of the third law of the thermodynamics in film systems

is still an open question [75].
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In Chapter 5, we re-investigated the microscopic model for the spin ice material Dy2Ti2O7.

By turning to the [112] field experiment, parametric constraints were extracted for the

exchange interactions in microscopic model. Using these constraints we exposed an in-

consistency between the neutron scattering measurements by Fennell et al. [3], and the

specific heat measurements by Pomaranski et al. [1].

In Chapter 6, we turned to the pinch point neutron scattering in spin ice. For dipolar

spin ice, we showed through Monte Carlo simulations that the pinch points exist at high

temperatures where local ice-rule constraints no longer apply. For nearest-neighbour spin

ice, we extracted the correlation lengths from the thermal broadenings of pinch points and

compared its temperature dependence on the Debye-Huckel theory.

In Chapter 7, we demonstrated the numerical linked cluster method as an effective tool

in studying of the quantum spin ice. In particular, in this work we examined its capability

in the calculations of the neutron scattering.

We hope the work presented in this thesis will be able to stimulate further experimental

surveys into the spin ice systems. Two particular directions appear particularly promising.

Experimentally, as we exposed in Chapter 5, regarding the inconsistencies with existing

experiments, new neutron measurements on Dy2Ti2O7 at low temperatures should be very

interesting. For the thin film spin ice problem, it would be most interesting to detect in an

experimental system the phenomena of surface freezing that we exposed in our theoretical

model in Chapter 4.
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Appendix A

Pauling’s entropy through the strings

in spin ice

One of the fundamental problems in frustrated magnets is to label and navigate the highly

degenerate states within the constrained manifold [32]. For spin ice, the phase space

of interest is the macroscopically degenerate states with the ice rules fulfilled for every

tetrahedron. Therefore, one may ask if there is an alternative way enumerate all the ice-

rule fulfilling states, making possible to further categorize these states. One such idea was

introduced in the work of by Jaubert et al. [49], where string objects are introduced to

categorize ice-rule states into different topological sectors. In this subsection we summarize

the definition of such string objects and further explore the usefulness of such a concept.

By introducing further constraints on the strings, we can achieve in this work a one-to-one

mapping between the string configurations and the ice-rule spin configurations. Residual

entropy through approximation similar to Pauling’s can also be derived through the string

objects.

String objects in spin ice

Let us consider a cubic sample of spin ice of dimension L by L by L, which consists of a

stacking of the conventional cubic unit cells. As defined in Jaubert et al. [49], a string is

an oriented path starting from one end of the boundary (x, y, or z = 0) and ending at the

other end of the boundary (x, y, or z = L). The string lies on the diamond lattice bonds
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and goes monotonically in the x, y, or z direction, in such a way that spins along the path

of the string all point in the same direction.

With this definition, it is argued in Jaubert et al. [49] that it is always possible to find

a string in the ice-rule manifold. This is because the direction of the string propagation

is defined along the cubic axis and, as seen in Fig. A.1, of the two neighbouring spins

in the possible propagation direction of the string, at least one of them points in the

“right” direction to form a string, due to the two-in-two-out spin configurations for each

tetrahedron. In other words for any spin in the lattice, it is alway possible to grow the

string in the two opposite cubic directions. Therefore, we can always have a boundary-

to-boundary string. One subtle point here is if we are dealing with string propagating in

a particular direction, say along z, then for the other two directions, x and y, periodic

boundary condition is applied, meaning the string may go outside the side of the cubic

sample and immediately rejoin it in the opposite position corresponding to the same z

value.

z

Figure A.1: A spin (blue arrow) along the direction of the string in the z direction and its

two neighbours (red circles) the string may propagate.

The total number of spins on a string equals to 4L. This is because for each layer of

cubic unit cell the string propagates, it travels through 4 spin, a fact derived from the

construction of the conventional cubic unit cells.

The total number of distinct strings (they may overlap) of a particular propagation

direction equals to 4L2. This is because there are 4L2 spins on the boundary and as we

have proven for every such spin it is possible to grow a string out of it.

In fact the total number of strings, Ns, in the system may become larger than 4L2. For

example, in Fig. A.2, where the strings enter through spins a and c, and leave through ei-
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ther or both spins b and d. Thus there can be four different string configurations associated

with the spin configuration shown.

a b

cd

Figure A.2: A string enters through spins a and c and leaves through either or both of

spins b and d.

One-to-one mapping between the spins and the strings

To find the one-to-one mapping between the spin configuration and the string configuration,

we first ask whether given any ice-rule spin configuration, 4L2 strings can always be drawn

to visit all the spins, i.e., is there always (at least) a string configuration corresponding to

any ice-rule spin configuration.

To see this, we plot in the Fig A.3 the pyrochlore lattice viewed along the z direction,

and consider the strings growing from the bottom (z = 0) going up in the z direction.

At the boundary all the z = 0 spins (blue solid) are visited.

Then, as the strings climb up one step in the z direction we investigate whether all

z = 0.25 spins (blue open) can be visited. The z = 0.25 spins are connected to the z = 0 spins

through tetrahedra marked in yellow. There are only three different possible configurations

the entry (z = 0) spins can take, i.e., two-in, two-out, or one-in-one-out. By inspection, we

see for the three cases we can always visit both the two exit (z = 0.25) spins when drawing

the strings. (For the two-in or two-out cases, there is more than one way of choosing.)

Therefore all the z = 0.25 spins can be visited.

Next we consider the z = 0.50 spins as the strings climb up one further step. The

z = 0.50 spins are connected to the z = 0.25 spins through the green tetrahedra. Following

the same argument as for the yellow tetrahedra, all the z = 0.50 spins can be visited.
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0.00

0.25

0.50

0.75

Figure A.3: Pyrochlore lattice viewed along the z direction.

Therefore as we go one step at a time in the z direction, all the spins can be visted.

Clearly there is still ambiguity in arriving at a string configuration from a spin config-

uration (one to more mapping). The ambiguity comes from the tetrahedra where the two

entry spins are both in or out, as shown in Fig. A.4. Both the x and y configurations for

the strings are valid and visit every spin once given the spin configuration. The simple way

to eliminate such ambiguity is to always choose one configuration over the other when such

situation arrives. With this additional constraint, we have a unique string configuration

corresponding to any given ice-rule spin configuration.

On the other hand, given a string configuration we trivially have a unique spin con-

figuration. Therefore, in this sub-subsection we demonstrate that a one-to-one mapping

between the spin and string configuration can be achieved through the introduction of the

above additional constraint.

173



x y

Figure A.4: Two preferences of the string configurations.

Pauling’s residual entropy through the counting of the strings

In this sub-subsection, we count the number of string configurations using the x preference

discussed in the last sub-section and show that we can recover the Pauling’s approximation

for the entropy of the ice manifold.

Before counting, let us consider Fig. A.5, which shows how the six ice-rule fulfilling

spin configurations can be mapped to the string configurations, if we prefer the x strings.

Note that for the y-directed strings we can not have the one-string-up-one-string-down

configuration, since it will double count the same spin configuration for the one-string-left-

one-string-right configuration in the x-directed strings. So we have four x directed strings

and two y-directed strings.

Now we count the number of string configurations, W .

First, let us consider undirected strings. For every pair of undirected strings coming

into a tetrahedron, there are two ways of them choosing the exits. Since there are 8L3

tetrahedra in the system, we have

W = (2)8L3

(A.1)

Then, for each undirected string, there are two ways of choosing the direction of the string.

As the number of strings in the system is N = 4L2, the total number of configurations

becomes

W = (2)8L3(2)4L2

(A.2)

However, of the eight possible string configurations, only six of them are acceptable as in

Fig. A.5. Similar to the original Pauling’s approximation, we assume the probability of
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x

y

Figure A.5: Strings corresponding to the spin configurations using the x preference.

getting the right string configuration is six out of eight. Therefore the final total number

becomes

W = (2)8L3(2)4L2(6/8)8L3

(A.3)

which gives the entropy per spin

S/kB = (1/2) ln(3/2) + (1/4L) ln(2) (A.4)

And as L approaches thermodynamic limit, we recover the Pauling’s residual entropy by

dropping the second term.

This counting gives us a further insight into the Pauling’s residual entropy, i.e. it is

the configurational redistribution of the strings that contributes to the residual entropy in

the thermodynamic limit and the orientations of the strings are insignificant. Or, in terms

of the spin variables, it is how the spins are linked and form paths of strings in the system

that matters but not the orientation of each path.
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Appendix B

Magnetic Form Factors

The calculation for the magnetic form factors is adopted from Ref. [93].

The magnetic form factor is written as

f(s) = ⟨j0(s)⟩ + (1 − 2/g)⟨j2(s)⟩ (B.1)

where s is the value of sin(θ)/λ in Å−1, and it relates to the scattering vector q as

∣q∣ = 4π sin(θ)/λ = 4πs (B.2)

g is the Lande factor. For Dy3+, g = 4/3.

⟨j0(s)⟩ is given by

⟨j0(s)⟩ = A0 exp(−a0s
2) +B0 exp(−b0s

2) +C0 exp(−c0s
2) +D0 (B.3)

For Dy3+, we have A0 = 0.1157, a0 = 15.073, B0 = 0.3270, b0 = 6.799, C0 = 0.5821, c0 =
3.020, D0 = −0.0249.

⟨j2(s)⟩ is given by

⟨j2(s)⟩ = A2s
2 exp(−a2s

2) +B2s
2 exp(−b2s

2) +C2s
2 exp(−c2s

2) +D2s
2 (B.4)

For Dy3+, we have A2 = 0.2523, a2 = 18.517, B2 = 1.0914, b2 = 6.736, C2 = 0.9345, c2 =
2.208, D2 = 0.0250.
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Appendix C

Quantum spin ice model

As defined in Chapter 7, the spin-1/2 model Hamiltonian reads [6]:

HQSI =∑⟨i,j⟩{JzzSzi Szj − J±(S+i S−j + S−i S+j ) + J±±[γijS+i S+j + γ∗ijS−i S+j ]+ Jz±[Szi (ζijS+j + ζ∗ijS−j + i↔ j]} −∑
i

h⃗ ⋅ g ⋅ S⃗i, (C.1)

where Szi , Szj are for the local spin coordinates, and the summation is over all nearest

neighbours.

For the four sublattices of the pyrochlore lattice, we have the (âi, b̂i, êi) basis.

ê0 = 1√
3
(1,1,1), â0 = 1√

6
(−2,1,1),

ê1 = 1√
3
(1,−1,−1), â1 = 1√

6
(−2,−1,−1),

ê2 = 1√
3
(−1,1,−1), â2 = 1√

6
(2,1,−1),

ê3 = 1√
3
(−1,−1,1), â3 = 1√

6
(2,−1,1),

where ê is along the local ⟨111⟩ direction of the rare-earth ions and b̂i = êi × âi.

The ζ and γ are the 4 × 4 complex unimodular matrix given by
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ζ =
⎛⎜⎜⎜⎜⎝

0 −1 eiπ/3 e−iπ/3−1 0 e−iπ/3 eiπ/3
eiπ/3 e−iπ/3 0 −1

e−iπ/3 eiπ/3 −1 0

⎞⎟⎟⎟⎟⎠
, γ = −ζ∗,
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