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Abstract

Path integration is a process by which an animal obtains its location by integrating its

velocity over time. Evidence shows that path integration may contribute to certain neural

activity patterns in the entorhinal cortex and the hippocampus, which probably serves

important function in the animal’s navigation system. Such neurons include place cells,

firing only when the animal is at a certain region of the environment, and grid cells, which

fire when the animal is at locations organized in a hexagonal grid pattern. Various models

try to explain the neural mechanism of path integration and how the path integration

system serves as the input to grid cells and place cells. Among the best results is the one

given by our previous work [28]. The model links Welday et al.’s bank-of-oscillators model

[39] with Fourier theory, implements path integration with spiking leaky integrate-and-

fire (LIF) neurons, and generates neurons with the desired activity patterns. However,

the model depends on a regular placement of its parts. We extend our previous work

into a generalized framework by allowing arbitrary placement and introducing a coupling

approach that employs an iterative least-squares method. We build a neural network

under the new framework with LIF neurons, conduct experiments with various parameter

combinations, and evaluate the network’s performance with new quantitative measures.

Results show clear trends of the performance varying with some of the parameters, which

may shed some light on the direction to a more effective path integration system.

v





Acknowledgments

I would like to express the deepest appreciation to my supervisor, Professor Jeff Or-

chard. He continually and convincingly conveyed a spirit of adventure in regard to research,

and an excitement in regard to teaching. Without his guidance and persistent help this

thesis would not have been possible.

I would like to thank the readers of my thesis, Professor Matthijs van der Meer and

Professor Gladimir Baranoski, for being willing to spend time and efforts on reviewing my

work. Their advice is very important to me.

A thank you to Professor Chris Eliasmith, who laid the foundation of computational

neuroscience research in University of Waterloo. His team first proposed the Neural Engi-

neering Framework, on which this thesis is based.

Also, thank my parents, girlfriend and all friends for always supporting me.

vii





Dedication

This is dedicated to my grandfather and maternal grandmother. May they rest in

peace.

ix





Table of Contents

List of Tables xv

List of Figures xvii

1 Introduction 1

1.1 Spatial Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Cognitive Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Path Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7

2.1 Velocity-Controlled Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Previous Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Oscillatory Interference and Fourier Theory . . . . . . . . . . . . . . . . . 13

3 Generalized Models 19

3.1 Path Integration with Arbitrarily Placed VCOs . . . . . . . . . . . . . . . 19

3.2 Phase Coupling on Arbitrarily Placed VCOs . . . . . . . . . . . . . . . . . 22

3.3 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xi



3.3.1 Network Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.2 Velocity Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.3 VCO Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.4 Coupler Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.5 Slope Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Experiments 35

4.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Quality Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Observations 43

5.1 VCO Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Coupling Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Long-range Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Coupling Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 Comparison with the 3-propeller Model . . . . . . . . . . . . . . . . . . . . 49

5.6 Reconstruction Error Versus Phase Variance . . . . . . . . . . . . . . . . . 51

5.7 Place Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Conclusions 55

APPENDICES 59

A Neural Engineering Framework . . . . . . . . . . . . . . . . . . . . . . . . 59

A.1 Population Encoding and Decoding . . . . . . . . . . . . . . . . . . 59

A.2 Neural Transformations . . . . . . . . . . . . . . . . . . . . . . . . 62

A.3 Neural Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

B Experiment Python Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xii



References 71

xiii





List of Tables

4.1 Test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xv





List of Figures

1.1 Morris water maze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Phase vector update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Our previous model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 VCO coupling with phase-step nodes . . . . . . . . . . . . . . . . . . . . . 12

2.4 Demonstration of Fourier basis functions . . . . . . . . . . . . . . . . . . . 15

2.5 Example of firing field reconstruction . . . . . . . . . . . . . . . . . . . . . 16

2.6 Example grid cell firing patterns . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Network architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Network parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Discontinunity distortion in neural modeling . . . . . . . . . . . . . . . . . 26

3.4 Phase vector update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Demonstration of phase wrapping . . . . . . . . . . . . . . . . . . . . . . . 31

3.6 Local coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7 Network details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 VCO arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Coupling schemes and densities . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Simulated tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xvii



5.1 Reconstruction error vs. VCO count . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Phase variance vs. VCO count . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Reconstruction error vs. coupling density . . . . . . . . . . . . . . . . . . . 47

5.4 Phase variance vs. coupling density . . . . . . . . . . . . . . . . . . . . . . 48

5.5 Reconstruction error vs. coupling scheme . . . . . . . . . . . . . . . . . . . 49

5.6 Phase variance vs. coupling scheme . . . . . . . . . . . . . . . . . . . . . . 50

5.7 Reconstruction error sorted in descending order . . . . . . . . . . . . . . . 50

5.8 Phase variance sorted in descending order . . . . . . . . . . . . . . . . . . 51

5.9 Reconstruction error vs. phase variance . . . . . . . . . . . . . . . . . . . . 52

5.10 Place cells from different models . . . . . . . . . . . . . . . . . . . . . . . . 54

A1 Population encoding and decoding in the NEF . . . . . . . . . . . . . . . . 61

xviii



Chapter 1

Introduction

1.1 Spatial Navigation

Spatial navigation, defined as “the process or activity of accurately ascertaining one’s

position and planning and following a route” [34], is an essential skill of humans and many

animals. Examples range from rats exploring mazes [23] to taxi drivers calculating routes

to destinations [18].

As the definition implies, spatial navigation is a complex process that involves various

sensory input and intricate brain activities. Thus, although the neural mechanisms of

spatial navigation have been a hot research topic for years, we still do not thoroughly

understand how spatial navigation works. However, experiments and models have shed

some light on the neural activities during the spatial navigation process, so that we can

speculate on a part of the procedure. The following sections will discuss how space is likely

to be represented in the brain, how they velocity input may be incorporated in spatial

navigation, and what are the possible approaches to simulate the process from velocity

input to spatial representation.

1.2 Cognitive Map

Evidence supports that spatial navigation usually needs some internal representation of the

external environment, generally called a “cognitive map” or a “spatial map”. The concept
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was raised as early as the 1930s, when Edward Tolman argued that an animal can form

such a map in its brain when it explores the space [36]. However, the argument was more

of a guess until we obtained enough knowledge about related neural activities.

Initial evidence was found in the hippocampus. O’Keefe et al. [23] first discovered some

special neurons in the rat hippocampus, dubbed place cells. A place cell fires only when

the animal is located in a specific small area called the firing field. They then argued that

the hippocampus is where the internal cognitive map is used for navigation [25].

Findings of other cell types reveal possible origins of such cognitive maps. Hafting et

al. [12] reported cells in the rat medial entorhinal cortex (MEC) that fire when a rat is in

areas forming a hexagonal grid pattern. These cells are usually called grid cells. Sargolini

et al. [31] found cells in the MEC that fire when the animal’s head is oriented toward

a certain direction relative to the environment (head direction cells). In the same brain

region, Solstad et al. [32] discovered neurons that react when the animal is near the border

of the environment (border cells). Considering the strong association between these cell

activities and the animal’s position and direction, as well as the MEC being a main cortical

input to the hippocampus [14], it is believed that these cells may play important roles in

the animal’s internal spatial representation.

Details of place cells and grid cells continue to be discovered. Muller et al. [21] first

reported that place cell firing patterns change with the environment. It was observed that

different subsets of place cells are involved in different surroundings. O’Keefe et al. [26]

discovered that the spike timing of place cells is related to the phase of the theta wave (a

strong oscillation that can be observed in the hippocampal region), forming a phenomenon

called phase precession. The firing usually begins at a particular phase when the rat enters

a place field, moving forward on each theta cycle during the traversal. It was argued that

phase precession is used to achieve more accurate place encoding [26], and may reflect

interference among neural oscillators [10, 17]. It is also found that place cell firing fields

persist when the rat is in darkness, indicating that the input to place cells should contain

more than just visual information [30]. Grid cells show a similar ability to continue their

firing patterns in dark surroundings [12]. Unlike place cells, however, the same set of grid

cells keep firing in different environments, with grid patterns rescaled when surrounded

walls are relocated [33]. Moreover, Stensola et al. [33] showed that grid cells are clustered,

forming anatomically overlapping modules with distinct grid patterns. The firing patterns

of cells within each module are similar. It was also reported that grid size increases in
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general from dorsal to ventral MEC [12].

1.3 Path Integration

The spatial navigation system utilizes various information as input, among which the

animal’s velocity serves as an important part. Even without sensory input, an animal can

estimate how far it has moved by integrating its velocity, a process called path integration

[38]. The fact that many animals are able to locate the goal sites only by relying on self-

motion cues makes it convincing that path integration serves as an import factor in the

navigation system [8]. An famous experiment that demonstrates path integration is the

Morris water maze [20], in which a rat is placed in a circular pool and is supposed to find an

invisible platform that allows it to escape the water (Figure 1.1 (a)). Evidence shows that

the rat is able determine the position of the platform using the information of its velocity,

which shows the existence of path navigation in the navigation process (Figure 1.1 (b)).

While the space-related firing patterns may also be generated from other mechanisms like

cue associations, triangulation or landmark vector navigation [22], evidences support that

the path integration system serves as an important input to place cells and grid cells, since

these neurons are able to keep their firing patterns even in dark surroundings [12, 19].

1.4 Models

Quite a few models have been raised, trying to explain how path integration happens and

how those position-related cell activities can be generated from path integration. These

models shed some light on how to achieve the path integration function while preserving

the biological plausibility, so that they provide persuasive hypotheses about how path

integration is actually performed in the animal’s brain. Successful models basically fall

into two categories. One category is called attractor network models, in which neural

activity patterns exhibit stable states (attractors), corresponding to local minima of an

energy function. Noise helps the system settle into a global minimum energy state. With

appropriate design, the global minimum energy state can be a function of the animal’s

position, while superimposing different global minima gives different position-related firing

patterns [9]. The other category is called oscillatory interference models. These models
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Invisible platform
Starting point

(a) (b)

Figure 1.1: A Morris water maze experiment. (a) A rat is put in a circular water pool

(black ellipse), so that it needs to keep swimming until it reaches a platform that is hidden

under water (white ellipse). An example trajectory is shown as the dashed line. (b) The

rat may sum up velocity vectors (black) in order to keep track of its current location

(orange), exhibiting a path integration process.

employ velocity-controlled neural oscillators (VCOs), composed of either single neuron

membrane oscillations [24] or neuron ensemble activities [41]. The oscillating frequency of

a VCO is related to the animal’s velocity, thus the animal’s position can be encoded in the

VCO phase. Position-related cell activities emerge from the interference of certain VCO

oscillations.

Both classes of models have explanations for some experimental findings, and keep

evolving as more facts are reported. My collaborators and I recently published a frame-

work [28], which links Fourier theory to oscillatory interference models. Based on Welday

et al.’s work [39], we suggested that by arranging VCOs on a 2-D plane according to their

velocity gains, the VCO phases should constitute a linear relationship, of which the slope

indicates the animal’s position. We found that it has a similar form to the Fourier Shift

Theorem, and assigning weights to different VCOs is like assigning Fourier coefficients to

different Fourier basis functions. Thus we argued that by using weighted VCO phases as

input, we can build neurons with any shape of firing fields. We then raised a model using

three arrays of VCOs with coupling mechanisms that reduce the influence of noise. The

model successfully served as the input to various place cells, grid cells and border cells, as

well as exhibited theta phase precession.
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1.5 Thesis Objectives

Working well in experiments, though, our previous model still leaves space for improvement.

In our previous model, both VCOs and coupling neurons need to be set up in a rather

contrived manner. While such structures may actually exist in brains, it is interesting

to study models with a more generalized VCO arrangement and coupling scheme. By

easing some of the restrictions, our work expands the choice of parameters in oscillatory

interference models, which allows further studies on how parameter change could possibly

affect the models’ behavior. Those studies aiming at understanding how the entorhinal

cortex and the hippocampus encode and compute with space would add to our emerging

understanding of how the brain works.

In the following chapters, we will explain our previous model in detail, reform the

theory to allow arbitrary VCO placement, and raise a network with random VCO arrange-

ment and corresponding coupling mechanisms, followed by experimental results and further

discussions.
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Chapter 2

Background

2.1 Velocity-Controlled Oscillator

An oscillator is a system in which a phase vector

s(t) =

[
sx(t)

sy(t)

]
, (2.1)

usually with the magnitude of 1, keeps rotating over time (Figure 2.1). We refer to the angle

between the phase vector and the x-axis as the phase of an oscillator. The relationship

between the phase φ(t) and the phase vector (written as a complex number) is,

eiφ(t) = cosφ(t) + i sinφ(t) = sx(t) + isy(t) . (2.2)

We call an oscillator a “velocity-controlled oscillator” (VCO) when its frequency is mod-

ulated by the animal’s velocity. Here we use linear VCOs, whose frequency is a linear

function of the animal’s velocity.

In 2-D environments, the frequency of a linear VCO can be modeled as

ωi(t) = ci,xvx(t) + ci,yvy(t) + ωb . (2.3)

Here i ∈ {1, 2, . . . , n} indicates the index of the VCO (suppose we have n VCOs). The

oscillating frequency of VCO i at time t is represented by ωi(t). The animal’s velocity
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si(t)

φi(t) 

si,y(t)

si,x(t)
1

1

0

Figure 2.1: Demonstration of a phase vector. The encoded values are si,x(t) and si,y(t),

while the angle between the phase vector and the x-axis represents the VCO phase.
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components along the x- and y-axis at time t are vx(t) and vy(t). Parameters ci,x and ci,y
determine how the velocity affects ωi(t). We name the 2-D vector[

ci,x ci,y
]

(2.4)

the VCO’s address, so that each VCO can be represented as a point in an 2-D address

space. The base oscillating frequency of VCOs is ωb, remaining invariant among different

VCOs.

From Equation 2.3 we can see that the frequency of a VCO is a linear combination

of the velocity’s x-component and y-component. Because of this, we can prove that VCO

phases are also linear with the animal’s position. Since phase is the integral of frequency

over time, we have

φi(t) =

∫ t

0

ωi(τ) dτ , (2.5)

in which φi(t) is the phase of VCO i at time t. Considering the expansion of ωi(τ) and

integrating the terms separately, we have

φi(t) = ci,xx(t) + ci,yy(t) + φb(t) , (2.6)

in which 

x(t) =

∫ t

0

vx(τ) dτ

y(t) =

∫ t

0

vy(τ) dτ

φb(t) =

∫ t

0

ωb dτ

. (2.7)

Here we notice that x(t), the integral of vx(τ) over time, is the current x-position. In the

same way, the current y-position is indicated by y(t), which indicates that VCO phases

relate linearly to positions.

That is, the phase of each VCO is dictated by Equation 2.6, according to its address in

the space, and the animal’s location. Consider the address space, the 2-D domain of [cx cy]

coordinates. From Equation 2.6, we can see that VCO phase is a linear function over that

domain, and forms a plane. We call this the phase ramp. Notice that the slope (gradient)

of the phase ramp is [x(t) y(t)]. In this way, the slope of the phase ramp represents the

animal’s position in space.
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2.2 Previous Model

If we have perfect VCOs, we can simply use them for path integration without extra effort.

However, this is not the case. When modeling VCOs with neurons, the intrinsic neural

noise tends to cause VCO phases to drift from their ideal values, which often confounds

the path integration process. In our previous paper [28] (as well as in [13, 29]), we raise a

model that can effectively perform path integration tasks despite this noise.

The model contains four levels (Figure 2.2 (a)). The bottom level is a velocity node,

providing input to all VCOs. The second level incorporates three VCO propellers, each

containing 17 VCOs. Their arrangement in the address space is shown in Figure 2.2 (b).

The VCO phases in each propeller should form a linear ramp. The propellers are arranged

at angles 0◦, 120◦ and 240◦ in the address space. The 9th VCO in each propeller is placed

at the origin. The distance between adjacent VCOs in each propeller is equal. VCOs

receive input from the velocity node, so that their phases encode the animal’s position as

described in the previous section.

The third level includes three propellers, each with 16 phase-step nodes. As previously

discussed, neural activities tend to be noisy, so when we build VCOs using neurons, the

VCO phases will deviate from their ideal values. However, the deviation can be inhibited

with multiple VCOs. If the VCO phase drifts are uncorrelated, we should still be able to

get an accurate estimate of the slope of the phase ramp, which should deviate less from

the ideal than the phase of a single VCO. Using that slope, we then suppress the VCO

phase noise by forcing the phases to approach the estimated phase ramp. In this model, we

achieve this coupling by using the three propellers of phase-step nodes in the third level.

Phase-step nodes can keep VCO phases near a linear ramp in each propeller. Each

phase-step propeller corresponds to a VCO propeller, so that each phase-step node couples

two adjacent VCOs (Figure 2.2 (c)). Since VCOs are evenly distributed in each propeller,

the phase difference of any two adjacent VCOs should be equal. To ensure the equality,

each phase-step node computes the phase difference for the corresponding VCO pair and

broadcasts it to all the other phase-step nodes for that propeller, so that they can reach a

consensus. Finally each phase-step node compares the consensus with the local version of

the phase difference, and sends the correction back to its VCO pair (Figure 2.3).

Even if the phases of VCOs in each propeller form a nice linear ramp, the three pro-

pellers might not be coplanar. We need another level of coupling to keep VCOs in phase

10



(b) (c) (d)

phase-step node

(a)

VCO node

VCO node

phase-step node

coplanar 
coupling node

Figure 2.2: Our previous model. (a) Network layers. (b) Arrangement of VCOs (circles

with centered dots) in the address space. Three propellers are shown, each with 17 VCOs.

(c) Phase-step node coupling. The phase-step propeller at angle 0◦ (filled circles) is shown

as an example. Each phase-step node connects to two adjacent VCOs. Phase step nodes

in the same propeller are randomly connected with each other, which is not displayed in

the figure. (d) Coplanar coupling. The coplanar coupling propeller at angle 0◦ (trian-

gles) is shown as an example. Each coplanar node connects with three phase-step nodes,

equidistant from the origin.
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90°

135° 45°

60°

90°

135° 45°

adjustment 
= (90°-60°)/2 = 15°

60°

60°

60°120°

(a) (c)(b)

VCO node 1 VCO node 2

phase-step node

(consensus) (consensus)

Figure 2.3: VCO coupling with phase-step nodes. (a) Two VCOs are at phase 135◦ and

45◦. The phase-step node computes their phase difference. (b) All phase step nodes reach

a consensus that the average phase difference should be 60◦. It infers that the adjustment

to each VCO should be 15◦. (c) The adjustment is sent back to VCOs.

across propellers. A coplanar coupling node in this level connects with three phase-step

nodes, as shown in Figure 2.2 (d). The three phase-step nodes have an interesting property;

since they are equidistant from the origin at angles 0◦, 120◦ and 240◦, the sum of the three

phase differences should be 0. Because of this, a coplanar coupling node can keep the three

phase-step nodes in a plane by adding up the three phase differences, comparing the value

with 0, and sending the correction back to the phase-step node it corresponds to. The

fourth level comprises three propellers, each with 16 such coplanar coupling nodes. Each

coplanar coupling propeller corresponds to a phase-step propeller. Inside the propeller,

each coplanar coupling node maps to a different phase-step node.

Experiments show that this model is able to perform effective path integration for

several seconds when implemented with spiking leaky integrate-and-fire (LIF) neurons

[5, 9, 15].

To achieve long-lasting path integration, real organisms seem to use sensory input

to combat phase drift in the path integration system [3, 40]. Inspired by other models

incorporating sensory input [3, 5], we also previously proposed a mechanism for sensory

input to correct the oscillator phases, which exhibits effective inhibition of VCO phase drift

[13].
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2.3 Oscillatory Interference and Fourier Theory

The VCOs oscillate, so various combinations of them can result in complex interference

patterns. Since VCO phases encode the animal’s position, an interference pattern can be

seen as a function of the animal’s position laid out over the animal’s environment. When

using a VCO combination as the input to a certain neuron, that neuron’s activity should

also be a function of the animal’s position, so that it is possible to generate cells with

different firing fields by connecting it to different VCOs with different connection weights.

But how can we determine the connection scheme to obtain a neuron with a desired firing

field? Our previous work [28] gives a possible answer by linking Fourier theory to the

oscillatory interference model.

Fourier theory tells us that, under appropriate conditions, an arbitrary function f(x)

can be mapped to a function f̂(x̂) in a different parameter space with the help of a group

of complex Fourier basis functions. The mapping takes the form

f̂(x̂) =

∫ ∞
−∞

f(x)e2πix̂x dx , (2.8)

in which e2πix̂x = cos(2πx̂x) + i sin(2πx̂x) is a Fourier basis function. The mapping is

called the Fourier transform (FT). We can also map f̂(x̂) back to f(x) through the inverse

Fourier transform (IFT),

f(x) =

∫ ∞
−∞

f̂(x̂)e−2πix̂x dx̂ . (2.9)

In 2-D, the FT and IFT can be written as

f̂(x̂, ŷ) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e2πi(x̂x+ŷy) dxdy , (2.10)

f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

f̂(x̂, ŷ)e−2πi(x̂x+ŷy) dx̂dŷ . (2.11)

How can we link firing fields to VCO phases using the Fourier transform? First we argue

that VCO phases can be transformed into a group of Fourier basis functions. Setting the

phase of the VCO at the origin as the frame of reference, denoted φb, Equation 2.6 tells

us that the relative VCO phase φ− φb is a function of both the animal’s position and the

VCO address, namely

φ− φb = cxx+ cyy . (2.12)
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Given that relative phase, the corresponding phase vector can be written as a Fourier basis

function (complex exponential),

e2πi(φ−φb) = e2πi(cxx+cyy) . (2.13)

Figure 2.4 shows one component of the phase vector as a function of (x, y) location.

Then we note that a firing field can be treated as a scalar function in the animal’s spatial

environment by representing neural activity levels with numeric values. On the other hand,

with a read-out node receiving the output from each VCO, the connection weights from

VCOs to the read-out node can be considered as a function in the address space. Denoting

the firing field function as a(x, y), we can find the corresponding connection weight function

w(cx, cy) in the address space following Equation 2.11, namely

a(x, y) =

∫ ∞
−∞

∫ ∞
−∞

w(cx, cy)e
2πi(φ−φb) dcxdcy , (2.14)

and

w(cx, cy) =

∫ ∞
−∞

∫ ∞
−∞

a(x, y)e−2πi(φ−φb) dxdy . (2.15)

Notice that in Equation 2.14, the firing field function is represented exactly by adding up a

weighted sum of all the VCO phase vectors. Now we are able to theoretically construct an

arbitrary firing field using VCO phases and the corresponding connection weight function.

It is just the IFT of the firing field function.

In practice, instead of integrating over the whole address space, we can approximate the

firing field by sampling the address space with n VCOs, so that Equation 2.14 is replaced

by

a(x, y) ≈
n∑
j=1

w(cj,x, cj,y)e
2πi(φj−φb) . (2.16)

By connecting a readout node to the set of all VCOs using weights w(cj,x, cj,y), j ∈
{1, · · · , n}, the node should exhibit an activity pattern similar to a(x, y) (Figure 2.5). In

this approach, experiments successfully generated the activation patterns of grid cells using

spking LIF neurons, as shown in Figure 2.6.
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(a) (b)

Figure 2.4: Demonstration of Fourier basis functions. The top row shows two examples

in the address space. (a) The address is at 30◦, 4 units from the origin. (b) The address is

at 170◦, 7 units from the origin. The bottom row shows the real part of the corresponding

Fourier basis function with cx and cy set as the address above. Taken with permission from

[28].
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(a) (b) (c)

Figure 2.5: Example of firing field reconstruction. (a) The ideal firing field a(x, y). (b)

The modulus of w(cx, cy), overlaid with VCO locations (18 propellors, 9 rings). (c) The

firing field resulting from combining all the weighted Fourier basis functions corresponding

to the VCOs in (b). Taken with permission from [28].
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(a) (b)

(c) (d)

Figure 2.6: Example grid cell firing patterns. Different connection weights result in

different grid sizes. Taken with permission from [28].
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Chapter 3

Generalized Models

3.1 Path Integration with Arbitrarily Placed VCOs

Based on our previous work, we realize that the 3-propeller model is a special case to achieve

oscillatory interference path integration. The placement of the VCOs in the address space

is highly regular, and the coupling scheme is rather contrived. We wish to establish a

more generalized framework that eases some of the restrictions, and to observe how this

liberalization will affect the system’s behavior.

Different from what is stated in our previous work, we do not specify how VCOs are

arranged in the address space. Instead, we choose ci,x and ci,y arbitrarily.

As in the 3-propeller model, we start from the relationship between VCO phases and

the animal’s position (Equation 2.6), namely

φi(t) = ci,xx(t) + ci,yy(t) + φb(t) .

We can express this phase-position relation for multiple VCOs using matrix notation,
φ1(t)

φ2(t)
...

φn(t)

 =


c1,x c1,y 1

c2,x c2,y 1
...

...
...

cn,x cn,y 1


 x(t)

y(t)

φb(t)

 . (3.1)
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In short, we have

φ(t) = Cp(t) , (3.2)

in which

φ(t) =


φ1(t)

φ2(t)
...

φn(t)

 , (3.3)

C =


c1,x c1,y 1

c2,x c2,y 1
...

...
...

cn,x cn,y 1

 , (3.4)

and

p(t) =

 x(t)

y(t)

φb(t)

 . (3.5)

Noticing that the animal’s position, x(t) and y(t), are two components contained in vector

p(t), we find that Equation 3.2 relates the animal’s position to VCO phases over time.

The equation illustrates that, as the animal moves around, the phases reflect that motion

through a linear relationship. In fact, when drawn in the 2-D address space, where each

VCO is drawn at its address (cx, cy), the phases form a plane, and the slope (gradient) of

that plane is numerically equal to the animal’s location, (x(t), y(t)).

Here, we derive a universal approach that estimates the slope of the phase ramp for

arbitrarily arranged VCOs. Suppose that we have m VCO pairs selected from n VCOs, in

which pair k contains VCOs with indices ik and jk (k ∈ {1, 2, . . . ,m}, ik, jk ∈ {1, 2, . . . , n},
ik 6= jk). Then the phase difference in pair k can be denoted as

∆φk(t) = φik(t)− φjk(t)

=
(
cik,xx(t) + cik,yy(t) + φb(t)

)
−
(
cjk,xx(t) + cjk,yy(t) + φb(t)

)
= (cik,x − cjk,x)x(t) + (cik,y − cjk,y)y(t)

= ∆ck,xx(t) + ∆ck,yy(t) , (3.6)
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in which

∆ck,x = cik,x − cjk,x , (3.7)

∆ck,y = cik,y − cjk,y . (3.8)

Here we notice that we can use the phase differences and the VCO addresses to estimate

the slope. Similar to previous matrix representation, we have

∆φ(t) = ∆Cp′(t) , (3.9)

in which

∆φ(t) =


∆φ1(t)

∆φ2(t)
...

∆φm(t)

 , (3.10)

∆C =


∆c1,x ∆c1,y
∆c2,x ∆c2,y

...
...

∆cm,x ∆cm,y

 , (3.11)

and

p′(t) =

[
x(t)

y(t)

]
. (3.12)

Reconstructing the slope, or position, from phase differences is equivalent to computing

p′(t) when ∆φ(t) and ∆C are known. However, the linear system in Equation 3.9 is over-

determined (more equations than unknowns). We can find the least-squares solution of

this system by multiplying the pseudo-inverse of ∆C on both sides of Equation 3.9, which

gives

p′(t) = (∆CT∆C)−1∆CT∆φ(t) . (3.13)

Using this method, we are able to decode the animal’s position from the phase differences

among a collection of VCO pairs and their relative displacements in the address space. We

will discuss how this solution is implemented into our neural network later in the thesis.
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3.2 Phase Coupling on Arbitrarily Placed VCOs

With arbitrarily arranged VCOs, we still need to solve the problem that imperfect os-

cillators tend to drift out of phase. A coupling scheme is necessary, but it should be

different from that in our previous work, since we do not expect equal phase differences

from arbitrarily placed VCOs.

Looking back at Equation 3.9, we notice that drift in a single VCO will cause ∆φ(t)

to deviate from ∆Cp′(t). In other words, a coupling scheme that suppresses drift needs to

correct ∆φ(t) and p′(t) so that the difference between ∆φ(t) and ∆Cp′(t) is reduced.

Naturally, we evaluate their difference using the 2-norm of the residual, namely

E
(

∆φ(t), p′(t)
)

=
∣∣∣∣∣∣∆φ(t)−∆Cp′(t)

∣∣∣∣∣∣2
=

(
∆φ(t)−∆Cp′(t)

)T(
∆φ(t)−∆Cp′(t)

)
. (3.14)

To minimize E (∆φ(t), p′(t)), we consider employing the gradient descent method. First

we compute gradient vectors of E (∆φ(t), p′(t)) with respect to both ∆φ(t) and p′(t). The

gradient vector with respect to ∆φ(t) is

∂E
(

∆φ(t), p′(t)
)

∂∆φ(t)
= 2∆φ(t)− 2∆Cp′(t)

= 2
(

∆φ(t)−∆Cp′(t)
)
, (3.15)

while the gradient vector with respect to p′(t) is

∂E
(

∆φ(t), p′(t)
)

∂p′(t)
= −2∆CT∆φ(t) + 2∆CT∆Cp′(t)

= −2∆CT
(

∆φ(t)−∆Cp′(t)
)
. (3.16)

We reduce E (∆φ(t), p′(t)) by shifting ∆φ(t) and p′(t) in the direction opposite to the

gradient vector. We update ∆φ(t) using

∆φ(t) ← ∆φ(t)− γ

2

∂E
(

∆φ(t), p′(t)
)

∂∆φ(t)

= ∆φ(t)− γ
(

∆φ(t)−∆Cp′(t)
)
. (3.17)
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We define the error vector e(t) as

e(t) = ∆φ(t)−∆Cp′(t) . (3.18)

Then we can write the update rule as

∆φ(t)← ∆φ(t)− γe(t) . (3.19)

Similarly, we update p′(t) as

p′(t) ← p′(t)− γ

2

∂E
(

∆φ(t), p′(t)
)

∂p′(t)

= p′(t) + γ∆CT
(

∆φ(t)−∆Cp′(t)
)

= p′(t) + γ∆CTe(t) . (3.20)

Here γ is the parameter controlling the step size.

Equations 3.19 and 3.20 give the basic idea of how to update VCO phases and the

phase ramp slope to reduce drifts with arbitrarily arranged VCOs. Three vectors need

to be stored by neurons, namely ∆φ(t), p′(t) and e(t). In the following sections we will

discuss how to practically encode these values using spiking neurons.

3.3 Network Architecture

In this section we present a design of a path integration system following the theory above

that exhibits good performance when simulated with spiking LIF neurons. Implementing

neural networks using spiking LIF neurons needs extra consideration to overcome the real-

ities, like spiking noise and the limited range of neural firing rates. Appendix A describes

the Neural Engineering Framework (NEF) that our network is based on, and how spiking

neurons can be used to encode and transform data, and model dynamic processes. In this

section, we discuss the details of implementing our path-integration system using the NEF.

3.3.1 Network Overview

The whole network is composed of four types of nodes: a velocity node, VCO nodes,

coupler nodes and a slope node. Typcically such a network contains one velocity node and
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coupler 1 coupler 2 coupler 3 coupler 4

VCO 1 VCO 2 VCO 3 VCO 4

velocity

slope

VCO 5

Figure 3.1: An example network architecture. The network contains a velocity node, five

VCO nodes, four coupler nodes and a slope node. The velocity node connects to all VCO

nodes. Each coupler node connects with two VCO nodes, and a VCO node can be linked

to any number of coupler nodes. All coupler nodes are connected with the slope node. All

VCO nodes and the slope node have recurrent connections.

one slope node, but multiple VCO nodes and coupler nodes. Figure 3.1 shows a network

with a velocity node, five VCO nodes, four coupler nodes and a slope node.

3.3.2 Velocity Node

The velocity node serves as the input of the system. It has two dimensions, corresponding

to vx(t) and vy(t), as shown in Figure 3.2 (a). It connects to all VCO nodes, each with

different weights. For example, VCO i will receive the input

vi(t) = ci,xvx(t) + ci,yvy(t) , (3.21)

which is the velocity controlled part of the VCO frequency ωi(t), as shown in Equation 2.3

ωi(t) = ci,xvx(t) + ci,yvy(t) + ωb .

Recall from Equation 2.6 (repeated below as Equation 3.22) that these frequencies result

in the linear relationship between VCO phases and the animal’s position,

φi(t) = ci,xx(t) + ci,yy(t) + φb(t) . (3.22)
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si,x(t)

si,y(t)

vi(t)

 θi(t)

VCO i

from velocity

to couplers

from couplers

recurrent connection

velocity

vx(t)

vy(t)

to VCOs

delta k

si,x(t)

si,y(t)

sj,x(t)

sj,y(t)

error k

ek(t)

from VCO i

from VCO j

to slope

to VCO i

to VCO j

slope

x(t)

y(t)

from / to couplers

recurrent connection

(a) (b)

(c) (d)

coupler k

Figure 3.2: Network decomposed into parts. (a) a velocity node, (b) a VCO node, (c)

a coupler node and (d) a slope node. The connections to/from the node and the values

stored in the node are displayed.
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Figure 3.3: Discontinuity distortion in neural modeling. Left. Neural simulation (green)

of a 10 Hz sawtooth wave (blue). Severe distortion happens when the value jumps from 1

to -1. Right. Neural simulation (green) of a 10 Hz sine wave (blue).

3.3.3 VCO Node

The VCO nodes embody the system’s core function of encoding the animal’s position into

phases. In addition, they receive inputs from couplers to combat drift.

A VCO has four dimensions, so that VCO i stores si,x(t), si,y(t), vi(t) and θi(t), as

shown in Figure 3.2 (b).

The first two elements (si,x(t), si,y(t)) serve as the phase vector. Here we choose to

encode the phase vector because other representations do not perform as well in neural

network modeling. Encoding the phase angle is not possible, since it increases infinitely

(because of φb(t)), and neural ensembles have a limited coding range. It is also inade-

quate to encode φi(t) mod 2π, because encoding the jump-discontinuity from 0 to 2π is

problematic using neuron ensembles. Figure 3.3 illustrates the difficulties of decoding this

discontinuity. In contrast, si,x(t) and si,y(t) are bounded and smooth, which makes them

ideal variables for neural encoding.

The third dimension vi(t) is the modulated velocity, as shown in Equation 3.21. In

essence, vi(t) is the frequency adjustment (from baseline ω(b)) induced by the animal’s

motion. Movement in the direction (cx, cy) will increase the VCO’s frequency, while move-

ment in the opposite direction will decrease it.
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The last element θi(t) is the adjustment sent from the couplers, which will be discussed

in the next section.

Apart from connections from the velocity node and coupler nodes, VCO nodes have

recurrent connections that result in their oscillating function. Representing the phase with

φi(t), we wish the recurrent connection to implement the phase update

φi(t+ δt) = φi(t) + ωi(t)δt+ θi(t)

= φi(t) +
(
vi(t) + ωb(t)

)
δt+ θi(t) , (3.23)

which basically adds the coupling adjustment to Equation 2.3. We use δt to represent

a very short time period. As a normal theta-wave frequency [37] , ωb(t) is set at 8 Hz.

Noticing that φi(t+ δt)− φi(t) is relatively small (typically between -0.1 and 0.1 radians),

we can update the phase vector with a first-order approximation, namely

si,x(t+ δt) = cosφi(t+ δt)

≈ cosφi(t) +
((
vi(t) + ωb(t)

)
δt+ θi(t)

)
cos′ φi(t)

= cosφi(t)−
((
vi(t) + ωb(t)

)
δt+ θi(t)

)
sinφi(t)

= si,x(t)−
((
vi(t) + ωb(t)

)
δt+ θi(t)

)
si,y(t) , (3.24)

si,y(t+ δt) = sinφi(t+ δt)

≈ sinφi(t) +
((
vi(t) + ωb(t)

)
δt+ θi(t)

)
sin′ φi(t)

= sinφi(t) +
((
vi(t) + ωb(t)

)
δt+ θi(t)

)
cosφi(t)

= si,y(t) +
((
vi(t) + ωb(t)

)
δt+ θi(t)

)
si,x(t) . (3.25)

Figure 3.4 illustrates this approximation. This system is essentially the Euler’s method

solution for the simple harmonic oscillator.

After updating the phase vector as shown above, we divide both elements in the vector

by the vector’s magnitude, in order to prevent the oscillating radius from over expanding

or shrinking.

The VCO nodes pass both components of their phase vectors as input to coupler nodes.
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si(t)

si,y(t)

si,x(t)

si(t+δt)

ωi(t)δt

si,x(t+δt)

si,y(t+δt)

1

-1

first-order
approximation

Figure 3.4: A first-order approximation of phase vector update. The incremental phase

angle is approximated by the black linear segment, following Equation 3.25.
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3.3.4 Coupler Node

Each coupler node connects two VCOs, computes their phase difference and sends back

the phase adjustment.

A coupler node can be divided into two parts: a delta node and an error node, as shown

in Figure 3.2 (c). The 4-dimensional delta node assembles the phase vectors from the two

VCOs. For example, if coupler node k connects VCO nodes ik and jk (k ∈ {1, 2, . . . ,m},
ik, jk ∈ {1, 2, . . . , n}, ik 6= jk), the four dimensions of delta node k will be sik,x(t), sik,y(t),

sjk,x(t) and sjk,y(t).

Delta node k computes the phase difference ∆φk(t) between VCO nodes ik and jk, and

sends it to error node k. We can derive the complex form of ∆φk(t) by

exp
(
i∆φk(t)

)
= exp

(
i
(
φik(t)− φjk(t)

))
= exp

(
iφik(t)

)
exp

(
− iφjk(t)

)
=

(
cosφik(t) + i sinφik(t)

)(
cosφjk(t)− i sinφjk(t)

)
=

(
sik,x(t)sjk,x(t) + sik,y(t)sjk,y(t)

)
+ i
(
sik,y(t)sjk,x(t)− sik,x(t)sjk,y(t)

)
. (3.26)

When the phase difference is small, we can approximate ∆φk(t) by the imaginary part of

exp
(
i∆φk(t)

)
,

so that

∆φk(t) ≈ sik,y(t)sjk,x(t)− sik,x(t)sjk,y(t) . (3.27)

Error nodes store and update e(t) as described in Equation 3.18,

e(t) = ∆φ(t)−∆Cp′(t) ,

which, when expanded, yields
e1(t)

e2(t)
...

em(t)

 =


∆φ1(t)

∆φ2(t)
...

∆φm(t)

−


∆c1,x ∆c1,y
∆c2,x ∆c2,y

...
...

∆cm,x ∆cm,y


[
x(t)

y(t)

]
. (3.28)
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Each error node encodes a single component in e(t), so error node k stores

ek(t) = ∆φk(t)−
(

∆ck,xx(t) + ∆ck,yy(t)
)
, (3.29)

in which

∆ck,x = cik,x − cjk,x
∆ck,y = cik,y − cjk,y ,

as shown in Equation 3.8. The phase difference ∆φk(t) comes from delta node k as men-

tioned above, and the other part ∆ck,xx(t) + ∆ck,yy(t) comes from the slope node, which

will be discussed in the next section.

The output of the error nodes provide updates to both VCO nodes and the slope node,

following rules given by Equations 3.19 and 3.20, which can also be written as

∆φ(t+ δt) = ∆φ(t)− γe(t)

p′(t+ δt) = p′(t) + γ∆CTe(t) .

Error node k corrects ∆φk(t) by sending feedback to its corresponding VCOs, adjusting

their phase vectors to get closer to the desired phase difference. It sends half of the

correction to each VCO, so that
−γek(t)

2
goes to θik(t), and

γek(t)

2
goes to θjk(t). Hence, φik(t)− φjk(t) is reduced by γek(t).

Regarding the correction to the slope node, error node k sends a 2-dimensional vector,

δp′k(t) = γek(t)

[
∆ck,x
∆ck,y

]
, (3.30)

to the slope node. Since all error nodes are connected to the slope node, the input from

error nodes to the slope node is the sum of δp′k(t) for k ∈ {1, 2, . . . ,m}, which gives

δp′(t) =
m∑
k=1

γek(t)

[
∆ck,x
∆ck,y

]
= γ∆CTe(t) , (3.31)

matching the adjustment described in Equation 3.20. We set γ to 0.5, which enables fast

enough convergence while preventing the gradient descent process from oscillating.
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address
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Figure 3.5: Demonstration of phase wrapping. VCOs are arranged in 1-D, and their

phases form a 1-D ramp (blue). Due to their periodicity, the phase vectors can also be

translated into “wrapped” phases (red). Five example VCOs are shown at (a) 0, (b) 0.125,

(c) 0.5, (d) 0.625 and (e) 0.875.

Coupling scheme. Given that we have n VCOs that can be coupled two at a time,

we are faced with the decision of which pairs of VCOs to couple. Phase vectors can only

represent angles in a 2π range. Thus, we cannot represent phase differences greater than

2π. The further apart two VCOs, the bigger their phase difference for a given phase ramp.

Hence, coupling VCOs that are far apart is only useful if the slope of the phase ramp is

small (thus avoiding phase differences larger than 2π). Coupling nearby VCOs gives us a

wider range of ramp slopes, while still avoiding the phase-wrapping problem.

Consider a 1-D phase ramp as shown in blue in Figure 3.5. With an address radius of

1, the phases reach a maximum of 2π and a minimum of −2π. Suppose we have five VCOs,

positioned as shown in the figure. We are able to couple VCOs (a) and (b), or VCOs (c)

and (d), because they are close enough so that we can compute the phase differences only

by looking at their phase vectors. But for VCOs (a) and (c), for example, from their phase

vectors we cannot determine whether their phase difference should be −π or π. Another

example is VCO pair (a) and (e), since the difference in phase vector indicates a small

negative angle, but the actual phase difference is almost 2π.

This restriction affects our design in two directions. To ensure that only VCOs with a

phase difference less than 2π are connected by a coupler, we can either limit the phase ramp

slope, or limit the distance between coupled VCOs. We explore both limitations in our
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Figure 3.6: Local coupling. (a) Demonstration of local coupling with 50 randomly placed

VCOs following a uniform distribution (blue) and 200 couplers (green). (b) Minimum

distance coupling (MDC) with five VCOs (blue) and five couplers (green). Couplers are

added one by one, ordered by number 1 to 5. The new coupler always connects the closest

uncoupled VCO pair. (c) Connected minimum distance coupling (CMDC) with five VCOs

(blue) and five couplers (green). Couplers are added one by one, ordered by number 1 to

5. The scheme traverses VCOs ordered by i, ii, iii, iv and v. The new coupler connects the

current VCO to its closed uncoupled VCO.

system. For the latter one, we implement it by always preferring to couple nearby VCOs

than to couple distant ones, an approach named local coupling. Local coupling avoids phase

wrapping by only coupling VCOs that are close to each other (Figure 3.6 (a)).

We raise two different local coupling schemes. The first one, called Minimum Distance

Coupling (MDC), looks at all uncoupled pairs, and couples the two VCOs that are closest

to each other. Hence, this method achieves the minimum global coupling distance (Figure

3.6 (b)). The other coupling scheme is called Connected Minimum Distance Coupling

(CMDC). It visits the VCOs in order, coupling each to the nearest VCO that it is not

already coupled to (Figure 3.6 (c)). While sacrificing some locality, CMDC tries to spread

couplers evenly among VCOs. This is different from the MDC, since the MDC scheme
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makes it possible to have VCOs not coupled to anything.

To study whether local coupling affects the system’s behavior, we can also limit the

phase ramp slope to an extent that some long-range couplings can be added into the system.

We restrict the animal’s movement to a unit circle, so that the magnitude of the phase

ramp slope cannot exceed 1. With VCO addresses also in a unit circle, the largest phase

difference between any two VCOs should be less than 2. In this way, we are able to make

couplings between any two VCOs.

Chapters 4 and 5 give more details about how different coupling schemes and long-range

couplings will affect the system’s behavior.

3.3.5 Slope Node

The slope node maintains the current estimate of the phase ramp slope, accepting correc-

tions sent from all error nodes. It contains two dimensions

p′(t) =

[
x(t)

y(t)

]
as shown in Equation 3.12, which, as mentioned before, are numerically equivalent to the

coordinates of the animal’s location. The slope node is also recurrently connected to itself,

so that it behaves like a leaky integrator. Working together with the input from error

nodes, the slope is updated following Equation 3.20, namely

p′(t+ δt) = p′(t) + γ∆CTe(t) .

The slope node sends output to all error nodes to help compute e(t). Error node k receives

the input from the slope node as

−∆ck,xx(t)−∆ck,yy(t) ,

so that the total input to the error node becomes

∆φk(t)−
(

∆ck,xx(t) + ∆ck,yy(t)
)
,

as described in Equation 3.29.

A detailed view of the network architecture is shown in Figure 3.7.
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Chapter 4

Experiments

A series of experiments are conducted to characterize the performance of this generalized

framework. The purpose is twofold: one is to test the framework’s behavior with different

arguments, and the other is to compare the performance of the new network with that of

the 3-propeller model [28].

4.1 Environment

All experiments were run on a PC with Intel i5-4670 processor, 16GB RAM, and Windows

8.1 64-bit operating system. They all used Nengo 1.4 for neuron modeling and neural

network simulation. Data analysis and graph plotting was on the same machine and

operating system with Matlab R2014a 64-bit.

4.2 Quality Measures

We propose two quantitative quality measures to evaluate the models’ performance.

Reconstruction error. Reconstruction error is defined as the Euclidean distance be-

tween the animal’s perceived position, reconstructed from the VCO phase ramp, and the
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animal’s actual position. More specifically, reconstruction error at time t, denoted as Er(t),

can be represented as

Er(t) =

√(
xr(t)− x(t)

)2
+
(
yr(t)− y(t)

)2
, (4.1)

in which xr(t) and yr(t) are the coordinates of the estimated (perceived) position stored

in the plane node, and x(t) and y(t) are the coordinates of the actual position. Since it is

essential for a path integration system to encode positions accurately, smaller Er(t) reflects

better performance of a model.

Phase variance. As we mentioned above, VCOs tend to drift out of phase because of

the inherent noise of neural oscillators. Notice that even for a fixed phase ramp slope,

there is still a degree of freedom for the VCO phases: their variance. They could tightly

adhere to the ramp, or could be dispersed more widely, deviating above and below the

ramp. With the same reconstruction error, the further away VCO phases are from the

ramp, the bigger the variance is, which makes the system less stable. Thus, it is important

to measure to what extent VCO phases adhere to (or deviate from) the phase ramp. We

define phase variance at time t, denoted as Ec(t), as

Ec(t) =

√√√√ 1

n

n∑
i=1

(
ci,xxr(t) + ci,yyr(t) + φb(t)− φi(t)

)2
, (4.2)

in which ci,xx(t), ci,yy(t), φb(t) and φi(t) are related as mentioned in Equation 2.6, namely

φi(t) = ci,xx(t) + ci,yy(t) + φb(t) .

Notice that Equation 2.6 only stands in ideal situations, where Ec(t) must be zero. In fact,

Equation 4.2 exactly measures the disagreement between the left and right of Equation

2.6 caused by neural noise. In other words, Ec(t) is the root mean square of the difference

between actual VCO phases and what they should be according to the fitted ramp. We

also use the term coplanarity, defined as the reciprocal of phase variance. Smaller Ec(t)

indicates better coplanarity and more robustness of the system.

4.3 Model Parameters

Several parameters may affect the network’s performance.
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Figure 4.1: VCO arrangement in different models. Plots show VCOs (blue) in the 2-D

address space with (a) 50, (b) 100 and (c) 200 randomly placed VCOs with a uniform

distribution. (d) The VCO arrangement of the 3-propeller model in the address space.

Dashed circles are centered at (0, 0) and have a radius of 1, marking the boundary of VCO

addresses.

VCO count. We define the VCO count as the number of VCOs we use in our network.

We tested networks with 50, 100 and 200 VCOs, all randomly placed in the address space

inside the unit circle following a uniform distribution. How the VCOs are exactly arranged

can be seen in Figure 4.1.

Coupling density. We define coupling density as the number of couplers divided by the

number of VCOs. We tested 4 different coupling densities: 1, 2, 3, and 4. For example,
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when using 100 VCOs, we ran experiments with 100, 200, 300, and 400 couplers. A

demonstration of different coupling densities with 50 VCOs is shown in Figure 4.2 (a).

Long-range coupling. We also include a modified condition when coupling density is

equal to 1, substituting 10% of the couplers with long-range couplers. These couplers

are set up in a way that each of them connects two groups of VCOs that did not have

any couplers between them. Figure 4.2 (b) shows a comparison between models with and

without long-range coupling.

Coupling scheme. Both Minimum Distance Coupling (MDC) and Connected Minimum

Distance Coupling (CMDC) schemes are used in the experiments, in conjunction with

different VCO counts and coupling densities. Examples of the two schemes are shown in

Figure 4.2 (c).

We tested combinations of different VCO counts, coupling densities, and coupling

schemes. All test cases are listed in Table 4.1, together with number of neurons used

in each.

Table 4.1: Test cases

VCO Coupling Coupler Coupling Neurons

amount scheme amount density used

50 MDC 50 1 46000

50 MDC 45 + 5 long-range 1 48500

50 MDC 100 2 71000

50 MDC 150 3 96000

50 MDC 200 4 121000

50 CMDC 50 1 46000

50 CMDC 45 + 5 long-range 1 48500

50 CMDC 100 2 71000

50 CMDC 150 3 96000

50 CMDC 200 4 121000

Continued on next page
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Table 4.1 – Continued from previous page

VCO Coupling Coupler Coupling Neurons

amount scheme amount density used

100 MDC 100 1 91000

100 MDC 90 + 10 long-range 1 96000

100 MDC 200 2 141000

100 MDC 300 3 191000

100 MDC 400 4 241000

100 CMDC 100 1 91000

100 CMDC 90 + 10 long-range 1 96000

100 CMDC 200 2 141000

100 CMDC 300 3 191000

100 CMDC 400 4 241000

200 MDC 200 1 181000

200 MDC 180 + 20 long-range 1 191000

200 MDC 400 2 281000

200 MDC 600 3 381000

200 MDC 800 4 481000

200 CMDC 200 1 181000

200 CMDC 180 + 20 long-range 1 191000

200 CMDC 400 2 281000

200 CMDC 600 3 381000

200 CMDC 800 4 481000

51 Propeller 48 0.94 63300

We ran 10 trials for each test case. Each trial is a simulation of the subject moving for

5 seconds, following a randomly generated track. The same 10 tracks are used across test

cases for the purpose of comparison (Figure 4.3). The tracks are limited to the unit circle,

imitating the Morris water maze as mentioned in Section 1.3. The simulated speed when

following the track varies with time, with an average of 0.3 units per second.
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Figure 4.2: Coupling schemes and densities in different models. All plots show VCOs (blue

circles with dots) and couplers (green or red lines) in the 2-D address space. (a) Coupling

densities of 1, 2, 3 and 4 with 50 VCOs are shown in order from left to right. (b) Compar-

ison between models with and without long-range coupling. Green lines indicate normal

couplers, while red lines correspond to long-range couplers. (c) Comparison between MDC

(left) and CMDC (right) with 50 VCOs and coupling density 1.

The reconstruction error Er(t) and phase variance Ec(t) are recorded once per millisec-

ond for every trial. The first 1 second is discarded because the system is not in a stable

state. For every test case we can get 4 ∗ 1000 ∗ 10 = 40000 data points. The mean and

variance of Er(t) and Ec(t) are computed from those 40000 points.

In addition, we connect a readout node to the VCOs, simulating a place cell. We ran

experiments on a 120-second random track with 50, 100 and 200 VCOs, and a coupling

density of 2. The spiking activity of the readout node was also recorded.

40



−1 1

−1

1

−1 1

−1

1

−1 1

−1

1

−1 1

−1

1

−1 1

−1

1

−1 1

−1

1

−1 1

−1

1

−1 1

−1

1

−1 1

−1

1

−1 1

−1

1

Figure 4.3: The 10 simulated tracks (blue) used in experiments. All tracks start at (0, 0),

last 5 seconds, and are limited in the unit circle.

4.4 Hypotheses

We raise several hypotheses about the relationship between parameters and model perfor-

mance measures.

VCO count. Seeing VCOs as samples in the address space, and hence samples in the

Fourier spectrum, we expect that increasing the number of VCOs provides more data

for fitting, decreasing the reconstruction error. We hypothesize that phase variance is

unrelated to VCO count.

Coupling density. We argue that denser coupling decreases the deviation of VCO phases

from the fitted ramp, providing better coplanarity. Hence, we expect phase variance to

decrease with increasing coupling density. Reconstruction error will also be reduced due

to better robustness.

Long-range coupling. Targeted to increase the global connectivity, we believe that

adding long-range couplers will result in better coplanarity (lower phase variance) and

smaller reconstruction error.
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Coupling scheme. Noticing that MDC makes more local couplings than CMDC, which

leads to decreased global connectivity, we expect higher reconstruction error and higher

phase variance when using MDC.

Reconstruction error versus phase variance. Since better coplanarity makes the

system more robust, it is likely that the two quality measures are positively correlated.

Tests of these hypotheses are in the following chapter.
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Chapter 5

Observations

The reconstruction error and phase variance for each test case is listed in Table 5.1. We

supply this table for reference, but all the data is displayed in graph form in this chapter.

All results are averaged over 10 trials with 4000 data points in each trial.

To make statistically meaningful comparisons between a pair of random variables, we

look for their means to be significantly different from each other. We ran Wilcoxon signed-

rank tests on all pairs of trials, and all the means were different at a statistical significance

level of p = 0.05.

Table 5.1: Results

VCO Coupling Coupler Reconstruction Phase

amount scheme amount error variance

50 MDC 50 0.428 0.385

50 MDC 45 + 5 long-range 0.204 0.183

50 MDC 100 0.112 0.152

50 MDC 150 0.083 0.113

50 MDC 200 0.080 0.097

50 CMDC 50 0.242 0.308

50 CMDC 45 + 5 long-range 0.161 0.206

Continued on next page
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Table 5.1 – Continued from previous page

VCO Coupling Coupler Reconstruction Phase

amount scheme amount error variance

50 CMDC 100 0.089 0.141

50 CMDC 150 0.079 0.116

50 CMDC 200 0.075 0.105

100 MDC 100 0.374 0.373

100 MDC 90 + 10 long-range 0.170 0.170

100 MDC 200 0.151 0.142

100 MDC 300 0.062 0.117

100 MDC 400 0.070 0.075

100 CMDC 100 0.246 0.299

100 CMDC 90 + 10 long-range 0.154 0.187

100 CMDC 200 0.079 0.184

100 CMDC 300 0.060 0.132

100 CMDC 400 0.081 0.094

200 MDC 200 0.490 0.375

200 MDC 180 + 20 long-range 0.213 0.163

200 MDC 400 0.101 0.127

200 MDC 600 0.049 0.109

200 MDC 800 0.057 0.068

200 CMDC 200 0.202 0.274

200 CMDC 180 + 20 long-range 0.119 0.161

200 CMDC 400 0.062 0.171

200 CMDC 600 0.058 0.115

200 CMDC 800 0.048 0.093

51 Propeller 48 0.361 0.194

44



0

0.1

0.2

0.3

0.4

0.5

0.6

1.0
MDC

1.0(LRC)
MDC

2.0
MDC

3.0
MDC

4.0
MDC

1.0
CMDC

1.0(LRC)
CMDC

2.0
CMDC

3.0
CMDC

4.0
CMDC

Coupling density and scheme

R
ec

on
st

ru
ct

io
n 

er
ro

r

 

 
50 VCOs
100 VCOs
200 VCOs

Figure 5.1: Reconstruction error vs. VCO count. Each bar corresponds to the recon-

struction error averaged over ten 4-second trials in each test case. Bars are grouped by

coupling densities and schemes. The rightmost bar shows the mean reconstruction error

of the 3-propeller model. Grey error bars indicate one standard deviation. “LRC” stands

for long-range coupling.

5.1 VCO Count

Reconstruction error is plotted in Figure 5.1 for a variety of different VCO counts. The

corresponding phase variance is shown in Figure 5.2. Cases with the same coupling density

and scheme are grouped together for comparison.

We cannot observe any obvious relationship between quality measures and VCO count.

Although in many cases the reconstruction error and phase variance decrease when VCO

count increases, other cases do not follow this pattern.

The amount of difference between cases is also limited. Among cases with the same

coupling density and scheme, the maximal difference of reconstruction error is 23.6% of

the larger one, while typically the difference lies around 15%. For phase variance, the

difference is maximally 23.4%, and the majority of cases are between 5% and 15%.
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Figure 5.2: Phase variance vs. VCO count. Each bar corresponds to the phase variance

averaged over ten 4-second trials in each test case. Bars are grouped by coupling densities

and schemes. The rightmost bar shows the mean phase variance of the 3-propeller model.

Grey error bars indicate one standard deviation. “LRC” stands for long-range coupling.

5.2 Coupling Density

We can see substantial trends when reconstruction error (Figure 5.3) and phase variance

(Figure 5.4) are plotted over various coupling densities. Cases with the same VCO count

and coupling scheme are grouped together for comparison.

Increasing coupling density from 1 to 2 greatly reduces reconstruction error. As shown

in Figure 5.3, the reconstruction error for coupling density of 2 (red) is typically only

about 30% to 40% of that for coupling density of 1 (blue). Increasing coupling density

from 2 to 3 (cyan) also results in lower reconstruction error in all cases. The effect is

comparatively weak, normally around 15%. There is no obvious trend in reconstruction

error when increasing coupling density from 3 to 4 (purple).

Phase variance exhibits a similar pattern (Figure 5.4). It is greatly reduced when

coupling density goes from 1 to 2, normally by 40% to 60%. Increasing coupling density

from 2 to 3 and from 3 to 4 each yield further decreases in phase variance.

This observation broadly matches our expectation, which argues that denser coupling

suppresses noise more effectively, bringing both less reconstruction error and better copla-

narity. The fact that reconstruction error stops deceasing when coupling density increases
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Figure 5.3: Reconstruction error vs. coupling density. Each bar corresponds to the re-

construction error averaged over ten 4-second trials in each test case. Bars are grouped

by VCO counts and coupling schemes. The rightmost bar shows the mean reconstruction

error of the 3-propeller model. Grey error bars indicate one standard deviation. “LRC”

stands for long-range coupling.

from 3 to 4 is possibly because when coupling density grows beyond 3, the coupling is so

strong that little noise is left for further inhibition.

5.3 Long-range Coupling

Reconstruction error and phase variance with long-range coupling are indicated in Figure

5.3 and Figure 5.4 by green bars. We observe that using long-range coupling improves

models’ performance. With the same coupling density of 1, reconstruction error for cases

with long-range coupling is reduced to only about 50% to 70% of those for cases without

long-range coupling. A similar pattern exists for phase variance. With long-range coupling,

phase variance decreases by 40% to 60%. Models with coupling density of 1 and long-range

coupling give similar phase variance to those with a coupling density of 2. The results

imply that, apart from increasing coupling density, making VCOs more globally coupled

is another effective approach to enhance coupling strength.

47



0

0.1

0.2

0.3

0.4

0.5

0.6

50 VCOs,
MDC

50 VCOs,
CMDC

100 VCOs,
MDC

100 VCOs,
CMDC

200 VCOs,
MDC

200 VCOs,
CMDC

VCO count and coupling scheme

P
ha

se
 v

ar
ia

nc
e

 

 

1.0
1.0(LRC)
2.0
3.0
4.0

Coupling 
 density

Figure 5.4: Phase variance vs. coupling density. Each bar corresponds to the phase

variance averaged over ten 4-second trials in each test case. Bars are grouped by VCO

counts and coupling schemes. The rightmost bar shows the mean phase variance of the

3-propeller model. Grey error bars indicate one standard deviation. “LRC” stands for

long-range coupling.

5.4 Coupling Scheme

Regarding reconstruction error (Figure 5.5), the difference between MDC and CMDC is

obvious with a coupling density of 1 (group 1). Reconstruction error with CMDC tends to

be only 40% to 60% of that with MDC. The trend is not distinguishable when long-range

coupling exists or coupling density goes beyond 2.

A similar situation happens with phase variance. Phase variance with CMDC is smaller

with a coupling density of 1 (group 1), usually around 80% of that with MDC. There is

also no obvious trend in other cases.

We infer from the results that increasing global connectivity reduces both reconstruction

error and phase variance. We observe that clusters of nearby VCOs are often coupled to

form locally-connected subgraphs. When coupling density is low, while VCOs in each

subgraph may be well coupled, VCOs in different subgraphs can drift out of phase since

there is no connection between them. This may account for the fact that CMDC gives

better results, since CMDC tends to connect VCOs more globally than MDC. However, this

effect is only obvious when coupling density is small and without long-range coupling (which

increases global connectivity). As Figure 4.2 (a) shows, VCOs are connected globally in
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Figure 5.5: Reconstruction error vs. coupling scheme. Each bar corresponds to the re-

construction error averaged over 10 4-second trials in each test case. Bars are grouped

by coupling densities. The rightmost bar shows the mean reconstruction error of the

3-propeller model. Grey error bars indicate one standard deviation. “LRC” stands for

long-range coupling.

either scheme when coupling is dense enough. This can explain why there is no noticeable

difference between MDC and CMDC with long-range couplers or higher coupling density.

5.5 Comparison with the 3-propeller Model

We compare the performance of our previous model with that of models under the new

framework. Figure 5.7 and Figure 5.8 show the reconstruction error and the phase variance

of different test cases sorted in descending order.

Results show that three models exhibit larger reconstruction error than our previous

model, all with MDC scheme and a coupling density of 1. Regarding phase variance, all

models with a coupling density of 1 behave worse than the 3-propeller model, while all

other models show better performance except the one with 50 VCOs, CMDC scheme, and

a coupling density of 1 with long-range coupling. The results suggest that, with certain

parameters, our new network is capable of giving better performance than our previous

model. We should notice, though, that not all networks used the same number of neurons.
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Figure 5.6: Phase variance vs. coupling scheme. Each bar corresponds to the phase

variance averaged over 10 4-second trials in each test case. Bars are grouped by coupling

densities. The rightmost bar shows the mean phase variance of the 3-propeller model.

Grey error bars indicate one standard deviation. “LRC” stands for long-range coupling.
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Figure 5.7: Reconstruction error sorted in descending order. Each bar corresponds to the

reconstruction error averaged over 10 4-second trials in each test case. The red bar shows

the reconstruction error of the 3-propeller model, while blue bars correspond to other cases.

Grey error bars indicate one standard deviation. “LRC” stands for long-range coupling.
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bars indicate one standard deviation. “LRC” stands for long-range coupling.

5.6 Reconstruction Error Versus Phase Variance

In Figure 5.9 we see that reconstruction error and phase variance are positively correlated,

with R2 = 0.79. This is within our expectation, as phase variance is negatively related

with the stability of the estimated phase ramp, so that high phase variance correlates with

high phase ramp slope variance, which may result in larger reconstruction error.

5.7 Place Cell

Apart from the quantitative measures, we are also interested in whether the model functions

well as a generator of place cells. As an example, suppose we want to create a place cell

with a firing field at the location with coordinates (0.3, 0.4), as shown in Figure 5.10 (a).

We connect a readout node to the VCOs to generate place cells. Following Equation 2.15,

namely

w(cx, cy) =

∫ ∞
−∞

∫ ∞
−∞

a(x, y)e−2πi(φ−φb) dxdy ,

we can determine the connection weights using the Fourier transform [28].
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Figure 5.9: Reconstruction error vs. phase variance. Each mark corresponds to a test

case, averaged over ten 4-second trials. The line gives the least-squares linear regression

fit. The equation of the regression line and R2 are shown at the top left.
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We examined neurons in the readout node, and successfully found neurons that fire only

when the animal is near (0.3, 0.4), exhibiting the pattern of a place cell. Example place cells

are shown in Figure 5.10. We also notice that increasing the VCO count generates a more

centralized distribution of spikes, exactly as one would expect from a more densely-sampled

Fourier spectrum.
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Figure 5.10: Place cells in different models. (a) Theory. The place shown by a white

point (middle) corresponds to a set of Fourier coefficients in the frequency domain (top).

The brightness shows the modulus of these weights, grey for 0 and white for 1. If we use

the whole domain as the input of the readout node, in an ideal situation, the place cell

should only fire at the exact place (bottom). The grey line shows the 120-second track,

while the red dot gives the place where the cell fires. (b)-(d) Experiment results. The

frequency domain is sampled by randomly distributed VCOs, indicated by black circles

(top). Following an inverse Fourier transform, different VCO arrangements result in dif-

ferent spatial patterns, approximating the original firing field (middle). Experiments with

these VCOs demonstrate that neurons firing in similar patterns exist (bottom).

54



Chapter 6

Conclusions

Our previous work argues that VCO phases form a linear ramp when VCOs are arranged

in the address space. The slope of the phase ramp encodes the animal’s position. We

also suggest that we can obtain a neuron with an arbitrary firing field by connecting

it to the VCOs with weights specified by Fourier theory. We constructed a prototype

implementing the theory with restricted VCO arrangement. A rather contrived coupling

scheme is involved to keep VCO phases from drifting.

In this thesis, we extend that previous work in various ways. First, we reform the

theory to allow non-regular VCO arrangements. There exists a linear relationship between

the VCO phases and the corresponding VCO address. The animal’s position can be recon-

structed as a least-squares solution of this linear relationship. VCO phase coupling can be

achieved through iteratively minimizing the deviation of VCO phase differences from the

estimated phase ramp slope.

Second, we implement a generalized path integration network using spiking LIF neu-

rons. We incorporate randomly arranged VCOs, and employ local coupling schemes to

avoid the ambiguity caused by the periodicity of phase vector oscillations.

Third, we test how parameter changes may affect the network’s behavior. We propose

two quantitative measures to evaluate the network’s performance: reconstruction error,

which measures how much the estimated (perceived) position deviates from the actual po-

sition, and phase variance, describing how much VCO phases deviate from the fitted phase

ramp. We state various hypotheses about how VCO count, coupling density, long-range
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coupling and coupling scheme may affect the network’s performance, evaluated by these

two quality measures. The performance of our previous model is included for comparison.

We also study the relationship between the two measures, as well as test the network’s

ability to serve as the input to place cells.

Our results show that some parameters have substantial influence on the network’s

behavior. Increasing coupling density greatly reduces reconstruction error and phase vari-

ance, especially when coupling density is small. Adding long-range coupling also notably

improves the network’s performance. Regarding coupling scheme, CMDC reduces recon-

struction error and phase variance when coupling density is 1. The effect is slight with

higher coupling density. On the other hand, VCO count does not seem to have an obvious

influence on either quality measure. In addition, we observe that reconstruction error is

positively related with phase variance. We also successfully generate a place cell receiving

input from our path integration network. The data suggests that, although VCO count

does not affect reconstruction error and coupling scheme, having more VCOs enables firing

fields with higher spatial resolution. The results validate our generalized framework as a

functional path integration system.

Some of the results above may shed light on how to implement a more effective path

integration network.

One observation is that increasing coupling density greatly reduces reconstruction error

and phase variance, but only up to a coupling density around 3. This may suggest an

upper limit to effective coupling density. Moreover, considering a grid cell firing pattern

can be generated by connecting to 3 VCOs, this coupling density limit might become some

indirect evidence suggesting that grid cells themselves can be used as couplers. In fact,

several recent models raised similar ideas about how grid cells may be used to stabilize VCO

phases. Bush et al. [4] suggest that by connecting grid cells to form a continuous attractor

network, grid cells are able to provide relative stability to VCO activities. Burgess et al. [2]

gives a similar idea by connecting three evenly distributed VCOs to a grid cell. They show

that the grid cell can be used to maintain relatively constant VCO phases. Likewise, the

work by Blair et al. [1] suggests reciprocal connections between grid cells and some specific

“theta cells” might control phase noise to correct the error in path integration. They also

propose that a primary function of spatially tuned neurons might be to couple the phases

of neural oscillators in a manner that allows them to encode spatial locations as patterns

of neural synchrony.
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Another observation is that CMDC behaves much better than MDC with low coupling

density, which implies that the degree of global coupling has a substantial impact on the

network’s performance.

Apart from these possibilities, we suggest several extensions to our current work that

may lead to future studies.

The first concern is about how properties of neurons may affect the system’s behavior.

By using the NEF we are able to focus on the high level structure of neural networks, but

those “hidden” parameters used by the NEF to simulate neurons are still worth attention.

For example, there exists a temporal delay when a signal is passed between neurons through

synapses, which is modeled in the NEF by a post synaptic time constant (PSTC). In our

implementation we chose biological realistic PSTC values (10 milliseconds) that enables

the system to function properly, while it should be interesting to see if the behavior will

change when the PSTC values follow a distribution that is similar to the distribution that

exists in real neurons.

Another example is neural noise, which is implemented in our model in a way that

each neuron possesses independent noise following the same distribution. However, in real

neural networks neural noise comes from many sources [35], so that noise in each neuron

contains both independent and dependent components, and it is possible that noise in

different neurons does not follow the same distribution. Considering that the coupling

mechanism in our work is designed to inhibit independent noise, it should be important

to investigate if the coupling mechanism is still effective when the noise is following the

model of the real neural noise.

The second task is to study how other VCO arrangements may affect the system’s

behavior. Our experiments only employ random VCO distributions, but we guess that

certain VCO arrangements may either improve or worsen the network’s performance.

Next is to have couplers that connect to more than two VCOs. Considering that the

interference pattern of three VCOs may result in a grid cell [39], it is possible that these

multi-way couplers themselves contain neurons with interesting firing fields.

The last extension is about long-range couplers. They seem to help with accuracy,

but the fact that we can only encode phase differences modulo 2π limits their usage.

There are, however, phase relationships for which the absolute phase drops out of the

equation. For example, two VCOs arranged diametrically opposite each other (so that
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they are reflections of each other across the origin) are expected to have opposite phase

offsets from the reference phase. Thus, their actual phase does not matter; we can assess

their compliance simply by enforcing that their phase offsets be opposites. Similarly, our

original model took advantage of the fact that adding the phase vectors of a triad of phase-

step nodes (see Figure 2.2 (d)) should give a total phase angle of zero. With randomly-

distributed VCOs, though, there is no guarantee that we will have such relationships.

However, what if the VCOs could shift within the address space in an effort to optimize

the phase coding? It seems possible that VCOs could adapt their velocity gains to reach

an optimal solution for a path integration system.
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APPENDICES

A Neural Engineering Framework

Our network is built on the Neural Engineering Framework (NEF) [6], a platform capable of

large-scale neural network modeling [7]. In the NEF, we store values in neuron populations,

where each population serves as a “node” in the neural network. A population is composed

of a group of neurons with different responses to a certain input, so that their responses can

be used as a group of basis functions to construct a variety of different output functions.

The NEF is comprised of three main principles: (1) population encoding and decoding,

(2) neural transformations, and (3) neural dynamics.

A.1 Population Encoding and Decoding

In this framework, data is stored in the collective activities of a population of leaky

integrate-and-fire (LIF) neurons. A population of N neurons (a node) can encode a vector

x in its neural activities using

an(t) = Gn (x(t) · enαn + βn) , n ∈ {1, 2, · · · , N} (1)

where en is the encoding vector (preferred direction vector), and αn and βn are scalar gain

and bias terms that account for the neural climate of the neuron. The input to the function

Gn(·) can be thought of as the input current driving neuron n. The function Gn translates

the input current to neural activity, either in the form of a firing rate, or a series of spikes.

In the case of firing rate, Gn gives the steady-state firing rate, known as the tuning curve,
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mapping the input current to the neuron firing rate,

Gn(J) =


1

τref−τm ln
(
1−Jth

J

) for J > Jth

0 otherwise

where τref is the refractory period, τm is the membrane time constant, and Jth is the

threshold current, below which the neuron has a firing rate of zero (Figure A1 (a)). On the

other hand, if using spikes, then the output of Gn is represented as a sum of time-shifted

Dirac delta functions [27],

Gn(Jn(t)) =
∑
p

δ(t− tnp) ,

where tnp is the time of the pth spike from neuron n. In this case, we model the membrane

potential, v, using the differential equation,

τm
dv

dt
= RJn(t)− v ,

where Jn(t) is the input current, and R is the membrane resistance. Once the membrane

potential reaches its threshold of vth (which equals RJth), the neuron spikes, the timing of

the spike is recorded, and the membrane potential is reset to zero.

If we wish to decode the neural activities of a population of neurons, we can compute

the optimal linear decoders. We do this by collecting a sampling of inputs, X, and corre-

sponding neural activities, A. That is, each row of matrix X stores a sample input, and

each row of matrix A stores the corresponding neural activities for all N neurons (usually

stored as firing rates). To decode from our population, we seek the linear weights D that

solve

min
D
‖AD −X‖22 .

Thus, the weights in D perform a linear transformation from the space of neural activities

to the space of input values. This is a linear least-squares problem, and there are multiple

ways to compute D numerically. Once we have D, we can decode neural activities to get an

estimate of the value being encoded (Figure A1 (b)). Moreover, we can decode arbitrary

functions of our encoded data by finding the decoders that solve

min
D
‖AD − f(X)‖22 ,

where f(X) is a function of the encoded values.
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Figure A1: Population encoding and decoding in the NEF. (a) Tuning curves of five

different neurons. The input value (x-axis) is encoded as firing rates (y-axis). (b) Decoding

the input value from firing rates. Tuning curves are weighted so that adding the weighted

firing rates gives a least-squares estimation (solid black line) of the encoded value. The

ideal identity line is also shown (dashed red line).

61



A.2 Neural Transformations

We can use our neural encoders and decoders to transform data from one population P , to

another population Q. To do this, we essentially decode the desired function from P and

re-encode the result into Q. Collapsing those processes together gives the N ×M weight

matrix

W = DPEQαQ ,

where DP is the matrix that decodes the neural activities from the N neurons in P , and

EQαQ is the matrix of M encoders for the neurons in Q. The weight matrix simply

combines the linear decoders and encoders into a single matrix.

A.3 Neural Dynamics

The neural coding and transformation principles above can be built into a dynamic frame-

work by including the temporal action of synapses. When a spike arrives at a synapse, it

induces a current on the post-synaptic neuron. We model this post-synaptic current using

exponential decay1. That is, we convolve an incoming spike train with the post-synaptic

filter, h(t),

h(t) =
1

τs
exp

(
−t
τs

)
, (2)

where τs is the decay time constant for the synapse. The total current entering a neuron

is a weighted sum over all incoming spike trains so that the total input current arriving at

neuron m is

Jm(t) = h(t) ?

[∑
n

wnm
∑
p

δ(t− tnp)

]
,

where ? represents convolution, and ωnm is the connection weight from neuron n to neuron

m.

We can use a recurrently-connected population of neurons to implement a dynamic

model of the form
dx

dt
= f(x)

1The NEF offers other post-synaptic filters.
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by choosing the recurrent connection weights so that they decode and feed back τsf(x)+x,

where τs is the post-synaptic time constant [6].

With these three principles in place, we can implement a dynamical system using spiking

LIF neurons by assigning populations to state variables, and connecting them with the

appropriate transformations and time constants. A good example of such a dynamical

system is the neural velocity-controlled oscillator, described in section 3.3.3.
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B Experiment Python Code

1 import ne f

2 import math

3 import random

4

5 tau = 0.005 #post−s ynap t i c time cons tant

6 tau osc = 0.01 #post−s ynap t i c time cons tant f o r OSC

7 gamma = 0.5

8 s t a t u s = ’ d e f a u l t ’

9

10 # t e s t case s e t t i n g s

11 t r i a l = 10

12 n osc = 200

13 n ne ib = 400

14 mode neib = ’ uniform ’

15

16 # f i l e paths

17 f i l e r o o t = ’D: / Dropbox/ random coupler /Python/ ’

18 f i l e o s c = f i l e r o o t + ’ osc / ’

19 f i l e p a t h = f i l e r o o t + ’ path/ ’

20 f i l e l o g = f i l e r o o t + ’ l o g s / ’ + ’ ’ . j o i n ( [ str ( n osc ) , mode neib , str (

↪→ n ne ib ) ] ) + ’ / ’

21

22 # ge t addres se s

23 def rand addre s s e s ( f i l ename ) :

24 f = open( f i l e o s c + f i l ename )

25 r e s = [ ]

26 for l i n e in f :

27 numbers = [ f loat ( x ) for x in l i n e . s p l i t ( ’ , ’ ) ]

28 r e s . append ( numbers )

29 f . c l o s e ( )

30 return r e s

31 addr = rand addre s s e s ( ’ addr ’ + str ( n osc ) + ’ . csv ’ )

32

33 # ge t ne i ghbors
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34 def n e a r e s t n e i g h b o r s ( f i l ename ) :

35 f = open( f i l e o s c + f i l ename )

36 r e s = [ ]

37 for l i n e in f :

38 numbers = [ int ( x ) for x in l i n e . s p l i t ( ’ , ’ ) ]

39 r e s . append ( numbers )

40 f . c l o s e ( )

41 return r e s

42 neib = n e a r e s t n e i g h b o r s ( ’ ’ . j o i n ( [ ’ ne ib ’ , str ( n osc ) , mode neib , str (

↪→ n ne ib ) ] ) + ’ . csv ’ )

43

44 # ge t pa i r s

45 p a i r s = [ ]

46 for i in range ( n osc ) :

47 for j in range ( n osc ) :

48 i f neib [ i ] [ j ] == 1 :

49 p a i r s . append ( [ i , j ] )

50

51 # ge t counts

52 counts = [ 0 for x in range ( n osc ) ]

53 for p in p a i r s :

54 counts [ p [ 0 ] ] += 1

55 counts [ p [ 1 ] ] += 1

56

57 # ge t C

58 def get C ( addr , neib , nosc , nneib ) :

59 r e s = [ [ 0 . 0 , 0 . 0 ] for x in range ( nneib ) ]

60 index = 0

61 for i in range ( nosc ) :

62 for j in range ( nosc ) :

63 i f neib [ i ] [ j ] == 1 :

64 r e s [ index ] [ 0 ] = addr [ i ] [ 0 ] − addr [ j ] [ 0 ]

65 r e s [ index ] [ 1 ] = addr [ i ] [ 1 ] − addr [ j ] [ 1 ]

66 index += 1

67 return r e s

68 C = get C ( addr , neib , n osc , n ne ib )
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69

70 # NETWORK SETUP

71

72 # network

73 net = ne f . Network ( ’Random addressed VCOs ’ , seed =7)

74

75 # ensembles

76 osc = net . make array ( ’ osc ’ , neurons =400 , l ength=n osc , d imensions =4,

↪→ rad iu s =2, mode=s t a t u s )

77 d e l t a = net . make array ( ’ d e l t a ’ , neurons =400 , l ength=n neib , dimensions

↪→ =4, rad iu s =1, mode=s t a t u s )

78 e r r o r = net . make array ( ’ e r r o r ’ , neurons =100 , l ength=n neib , dimensions

↪→ =1, rad iu s =1, mode=s t a t u s )

79 plane = net . make array ( ’ p lane ’ , neurons =200 , l ength =1, dimensions =2,

↪→ rad iu s =2, mode=s t a t u s )

80

81 # input

82 class Rat ( ne f . SimpleNode ) :

83 def i n i t ( s e l f ) :

84 # se t t r i a l s t r i n g

85 t r i a l s t r i n g=’ path−140205− ’ + str ( t r i a l ) . z f i l l ( 2 ) + ’ . csv ’

86 f = open( f i l e p a t h + t r i a l s t r i n g , ’ r ’ )

87 # read f i l e

88 s e l f . data = [ ]

89 for l i n e in f :

90 va lue s = [ f loat ( v ) for v in l i n e . s p l i t ( ’ , ’ ) ]

91 s e l f . data . append ( va lue s )

92 f . c l o s e ( )

93 # se t v a r i a b l e s

94 s e l f . n = len ( s e l f . data )

95 [ s e l f . vx , s e l f . vy , s e l f . x , s e l f . y ] = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

96 def t i c k ( s e l f ) :

97 index = int (round( s e l f . t ∗ 1000) )

98 i f index >= s e l f . n :

99 index = s e l f . n − 1

100 [ s e l f . vx , s e l f . vy , s e l f . x , s e l f . y ] = s e l f . data [ index ]
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101 def o r i g i n v e l o c i t y ( s e l f ) :

102 return [ s e l f . vx , s e l f . vy ]

103 def o r i g i n p o s ( s e l f ) :

104 return [ s e l f . x , s e l f . y ]

105 ra t = Rat ( ’ Rat ’ )

106 net . add ( ra t )

107

108 # VCO i n i t i a l i z a t i o n

109 net . make input ( ’ Impulse ’ , [ 1 ] , z e r o a f t e r t i m e =0.005)

110

111 # log g e r

112 class Logger ( ne f . SimpleNode ) :

113

114 def i n i t ( s e l f ) :

115 t i t l e o s c = [ str ( x ) + ’ ’ + str ( y ) for x in range ( n osc ) for y in

↪→ range (4 ) ]

116 f o s c = open( s e l f . g e t f i l e n a m e ( ’ osc ’ ) , ’w ’ )

117 f o s c . wr i t e ( ’ , ’ . j o i n ( t i t l e o s c ) + ’ ,\n ’ )

118 f o s c . c l o s e ( )

119 t i t l e e r r o r = [ str ( x ) + ’ ’ + str ( y ) for x in range ( n ne ib ) for y

↪→ in range (2 ) ]

120 f e r r o r = open( s e l f . g e t f i l e n a m e ( ’ e r r o r ’ ) , ’w ’ )

121 f e r r o r . wr i t e ( ’ , ’ . j o i n ( t i t l e e r r o r ) + ’ ,\n ’ )

122 f e r r o r . c l o s e ( )

123 f p l a n e = open( s e l f . g e t f i l e n a m e ( ’ plane ’ ) , ’w ’ )

124 f p l a n e . wr i t e ( ’ x , y ,\n ’ )

125 f p l a n e . c l o s e ( )

126

127 def g e t f i l e n a m e ( s e l f , name) :

128 return f i l e l o g + str ( t r i a l ) . z f i l l ( 2 ) + ’ ’ + name + ’ . csv ’

129

130 def t i c k ( s e l f ) :

131 f o s c = open( s e l f . g e t f i l e n a m e ( ’ osc ’ ) , ’ a ’ )

132 for i in range ( n osc ) :

133 o = osc . getNodes ( ) [ i ] . g e tOr ig in ( ’X ’ ) . va lue s . va lue s

134 f o s c . wr i t e ( ’ , ’ . j o i n ( [ str ( x ) for x in o ] ) + ’ , ’ )
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135 f o s c . wr i t e ( ’ \n ’ )

136 f o s c . c l o s e ( )

137 f e r r o r = open( s e l f . g e t f i l e n a m e ( ’ e r r o r ’ ) , ’ a ’ )

138 for i in range ( n ne ib ) :

139 a = e r r o r . getNodes ( ) [ i ] . g e tOr ig in ( ’X ’ ) . va lue s . va lue s

140 f e r r o r . wr i t e ( ’ , ’ . j o i n ( [ str ( x ) for x in a ] ) + ’ , ’ )

141 f e r r o r . wr i t e ( ’ \n ’ )

142 f e r r o r . c l o s e ( )

143 f p l a n e = open( s e l f . g e t f i l e n a m e ( ’ plane ’ ) , ’ a ’ )

144 p = plane . getNodes ( ) [ 0 ] . g e tOr ig in ( ’X ’ ) . va lue s . va lue s

145 f p l a n e . wr i t e ( str (p [ 0 ] ) + ’ , ’ + str (p [ 1 ] ) + ’ ,\n ’ )

146 f p l a n e . c l o s e ( )

147

148 l o g g e r = Logger ( ’ Logger ’ )

149 net . add ( l o g g e r )

150

151 # CONNECTION SETUP

152

153 # input−osc
154 input2osc = ze ro s ( ( n osc ∗ 4 , 2) , typecode=’ f ’ )

155 for i in range ( n osc ) :

156 input2osc [ i ∗ 4 + 2 ] [ 0 ] = addr [ i ] [ 0 ]

157 input2osc [ i ∗ 4 + 2 ] [ 1 ] = addr [ i ] [ 1 ]

158 net . connect ( ra t . ge tOr ig in ( ’ v e l o c i t y ’ ) , osc , trans form=input2osc , ps tc=

↪→ tau )

159

160 # impulse−osc
161 impulse2osc = ze ro s ( ( n osc ∗ 4 , 1) , typecode=’ f ’ )

162 for i in range ( n osc ) :

163 impulse2osc [ i ∗ 4 ] = 1

164 net . connect ( ’ Impulse ’ , osc , trans form=impulse2osc , ps tc=tau )

165

166 # osc−osc
167 def osc2osc ( x ) :

168 dt = 1e−2

169 f r e q = 10 + x [ 2 ]
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170 newx = x [ 0 ] − dt∗x [ 1 ] ∗ f r e q − x [ 1 ] ∗ x [ 3 ] + 0 .5 ∗ ( random . random ( ) −
↪→ 0 . 5 )

171 newy = x [ 1 ] + dt∗x [ 0 ] ∗ f r e q + x [ 0 ] ∗ x [ 3 ] + 0 .5 ∗ ( random . random ( ) −
↪→ 0 . 5 )

172 # Radius shou ld be 1

173 rad iu s = s q r t ( x [ 0 ]∗∗2 + x [ 1 ]∗∗2 )

174 i f rad iu s > 1e−8:

175 newx = newx / rad iu s

176 newy = newy / rad iu s

177 return newx , newy , 0 . 0 , 0 . 0

178 net . connect ( osc , osc , func=osc2osc , ps tc=tau osc )

179

180 # osc−d e l t a
181 o s c 2 d e l t a = ze ro s ( ( n ne ib ∗ 4 , n osc ∗ 4) , typecode=’ f ’ )

182 for i in range ( n ne ib ) :

183 o1 = p a i r s [ i ] [ 0 ]

184 o2 = p a i r s [ i ] [ 1 ]

185 o s c 2 d e l t a [ i ∗ 4 + 0 ] [ o1 ∗ 4 + 0 ] = 1

186 o s c 2 d e l t a [ i ∗ 4 + 1 ] [ o1 ∗ 4 + 1 ] = 1

187 o s c 2 d e l t a [ i ∗ 4 + 2 ] [ o2 ∗ 4 + 0 ] = 1

188 o s c 2 d e l t a [ i ∗ 4 + 3 ] [ o2 ∗ 4 + 1 ] = 1

189 net . connect ( osc , de l ta , trans form=osc2de l ta , ps tc=tau )

190

191 # de l ta−error
192 def d e l t a 2 e r r o r ( input ) :

193 x1 = input [ 0 ]

194 y1 = input [ 1 ]

195 x2 = input [ 2 ]

196 y2 = input [ 3 ]

197 r e s = 1 ∗ ( x2 ∗ y1 − x1 ∗ y2 )

198 return r e s

199 net . connect ( de l ta , e r ro r , func=d e l t a 2 e r r o r , ps tc=tau )

200

201 # error−p lane
202 e r r o r2p l ane = ze ro s ( ( 2 , n ne ib ∗ 1) , typecode=’ f ’ )

203 for i in range ( n ne ib ) :
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204 e r r o r2p l ane [ 0 ] [ i ] = C[ i ] [ 0 ] ∗ gamma

205 e r r o r2p l ane [ 1 ] [ i ] = C[ i ] [ 1 ] ∗ gamma

206 net . connect ( e r ror , plane , trans form=error2p lane , ps tc=tau )

207

208 # error−osc
209 e r r o r 2 o s c = ze ro s ( ( n osc ∗ 4 , n ne ib ∗ 1) , typecode=’ f ’ )

210 for i in range ( n ne ib ) :

211 o1 = p a i r s [ i ] [ 0 ]

212 o2 = p a i r s [ i ] [ 1 ]

213 e r r o r 2 o s c [ o1 ∗ 4 + 3 ] [ i ] = −0.4 / counts [ o1 ]

214 e r r o r 2 o s c [ o2 ∗ 4 + 3 ] [ i ] = 0 .4 / counts [ o2 ]

215 net . connect ( e r ror , osc , trans form=erro r2osc , ps tc=tau )

216

217 # plane−error
218 p lane2e r r o r = ze ro s ( ( n ne ib ∗ 1 , 2) , typecode=’ f ’ )

219 for i in range ( n ne ib ) :

220 p lane2e r r o r [ i ] [ 0 ] = −1 ∗ C[ i ] [ 0 ]

221 p lane2e r r o r [ i ] [ 1 ] = −1 ∗ C[ i ] [ 1 ]

222 net . connect ( plane , e r ro r , trans form=plane2er ror , ps tc=tau )

223

224 # plane−p lane
225 plane2plane = ze ro s ( ( 2 , 2) , typecode=’ f ’ )

226 plane2plane [ 0 ] [ 0 ] = 1

227 plane2plane [ 1 ] [ 1 ] = 1

228 net . connect ( plane , plane , trans form=plane2plane , ps tc=tau )

229

230 # START

231

232 net . releaseMemory ( )

233 net . add to nengo ( )

234 net . run ( 5 . 1 )
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