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Abstract

Researchers have proposed models to predict the percentage of the selected regres-

sion test cases when a Regression Test Selection (RTS) technique is used. One of the

most successful and best performing RTS predictors is the Rosenblum and Weyuker (RW)

coverage-based prediction model. However, previous evaluation results on the RW predic-

tor show that although it performs well on some subject programs, it deviates from actual

percentage significantly on others. To understand the factors impacting he RW predictor’s

performance, this thesis presents a set of experiments on four factors that can potentially

impact the RTS prediction performance. We setup two different set of experiments on

several Java open-source test subjects and three RTS techniques. Our study on the effect

of each factor on the RW performance reveals that large amount of code changes and sig-

nificant code coverage overlaps between test cases are the two factors contributing to the

RW predictor’s prediction error. Based on the experimental results and through regression

analysis of the impacting factors, we propose a RW error estimator that can help testers

and developers to gain a better understanding of RW predictor’s confidence level and get

insight into the applicability of the RW predictor to different organizations products and

processes.

To further improve the RW predictor’s performance, we propose an improved RW

prediction model utilizing the error estimator to compensate the prediction error. We also

present a RTS technique-specific improvement to the RW predictor and evaluate Harrold

et al.’s weighted predictor which incorporates change history. Our experiments on these

improved RW predictors demonstrate that they can reduce the RW prediction error and

improve performance.
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Chapter 1

Introduction

Today, customers expect a reliable and up to date service anywhere, anytime. To meet
customers expectations, software organizations strive to update existing services or delivery
new features promptly and continuously. One of the new approaches in the industry
to deliver high-quality, low-cost software in a continuous pipeline is Continuous Delivery
(CD) [18]. The basic idea behind CD is to develop a software product through many small
cycles and the product must be in a high quality state to be released to customers at the
end of each cycle. CD is extended from Continuous Integration with rigorous testing on
each build. For organizations adopted CD practices, regression testing plays a critical role
in the software development process.

Regression testing is the process of running existing test suite to validate that the be-
haviours of software are not adversely impacted by software changes. Regression testing
is a frequently executed activity and can account for significant portion of software devel-
opment costs. In CD, regression testing is becoming more frequent and costly than ever.
Figure 1.1 depicts the regression testing cycle in a CD environment. Typically in CD, a new
build is created whenever there is a commit to the code repository and regression testing
is performed against the new build to confirm the new build has met the quality bar for
release. As depicted in Figure 1.1, there are test and development cycles run in parallel.
In the development cycle a new build is created as soon as code is committed, while in
the test cycle each new build is regression tested. The duration between two consecutive
commits is the maximum time allocated for regression testing.

The classic approach of regression testing is to execute entire regression test suite(retest-
all). However, CD practices pose new challenges to the retest-all approach. First, there are
typically many commits which produce many builds to be regression tested. As a result,
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Figure 1.1: The Regression Testing Cycle in Continuous Delivery Environment

the overall regression effort increases dramatically as the total number of builds increases.
Second, as the commit becomes more frequent, the allocated regression testing time gets
shorter. It could reach to a point that there isn’t enough time to execute entire regression
test suite between two commits. For example, Google has 6000 engineers work on the same
code base and there are over 20 commits per minute [22]. The allocated time for each build
is only 3 seconds which is challenging for completing any average size test suite.

One strategy to deal with these challenges is to choose an appropriate subset of test
cases from existing test suite. This strategy is called Regression Test Selection (RTS).
Most RTS techniques are modification-aware, which means test cases are selected based
on changes between program revisions. Empirical evaluation results of RTS techniques
indicate that these techniques can be very effective in reducing the size of the test suite
while maintaining the effectiveness of the original test suite. Thus, it is beneficial for the
organizations to adopt RTS techniques in their testing practices.

However, organizations adopted RTS techniques are facing a new challenge of estimat-
ing the regression testing effort. When retest-all approach is used, test teams can provide
reasonable estimate based on previous execution effort of the entire test suite. However,
with RTS techniques in place, the number of tests selected for regression is unknown until
the technique is applied to the test suite. Since most RTS techniques require code change
information, the number of tests selected for regression is unknown until the code change
is committed. Consequently, prior to commit, test managers would have to estimate the
regression testing effort without knowing how many tests need to be executed in the regres-
sion testing cycle. The accuracy of the estimation can greatly impact software project’s
success. Underestimating regression testing effort may force organizations to delay a com-
mitted release date; Overestimating regression testing effort may cause organizations to
miss invaluable market opportunities.

To help with the challenge of estimating the regression test effort, Rosenblum and
Weyuker proposed a coverage based prediction model to predict the percentage of test

2
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cases would be selected by a RTS technique[28]. Their case study demonstrated that the
predicted average selection percentage by the Rosenblum and Weyuker (RW) predictor is
very close to the actual average selection percentage. If the RW predictor consistently
produces accurate predictions, it can be used to predict percentage of tests selected for
regression by a RTS technique. Figure 1.2 shows an improved regression testing process
utilizing the RW predictor. In regression test planning phase when code change has not
yet been committed, test team could use the RW predictor to predict percentage of test
cases will be selected by a RTS technique. Based on the predicted selection percentage and
the total execution efforts of entire test suite in previous release, test team could come up
with a regression effort estimation. Once code change is committed, test team moves into
regression test execution phase to first apply RTS technique to the test suite and then run
selected test cases.

1.1 The Problem

We have shown in Figure 1.2 that if the RW predictor consistently performs well on all sub-
ject programs and all RTS techniques, it can be used to predict the test selection percentage
at the beginning of regression test planning phase. Test organizations can benefit from the
RW predictor to produce more accurate regression test effort estimations. Unfortunately,
empirical studies of the RW predictor shows inconsistent prediction performance.

Rosenblum and Weyuker evaluated the RW prediction model and the evaluation result
is shown in Figure 1.3. The study was performed on 31 versions of KronShell88 program

3
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Figure 1.3: RW Predictor Performance in the KornShell88 Study

with TestTube [10] as the RTS technique. Each bar in Figure 1.3 represents the actual
percentage of tests selected by TestTube on each version. A bar of 100% indicates all
test cases were selected for the version, while a bar of 0% (no bar) indicates no test case
was selected for the version. In average, TestTube selected 88.1% of the tests, which is
represented by the green solid line in Figure 1.3. The RW prediction model computed a
value of 87.3%, which is represented by the red dash line. Since the difference between blue
solid line (actual) and red dash line (predicted) is very small, clearly, the RW predictor
was very accurate in this study.

Later empirical studies conducted by Harrold et al. [15] evaluated the RW predictor
on one additional RTS technique and seven C programs. The study results suggested that
the RW predictor can yield acceptable accuracy for some subject programs but can deviate
significantly for others. The results of their study showed that deviation between the RW
predicted test selection percentage and actual percentage could be up to 40% for some
versions.
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The inconsistent performance of the RW predictor makes it unreliable to be used as
a generic solution for test effort estimation and hinders its industry adoption. The goal
of this thesis is to first identify the factors contributing to the RW prediction error and
estimate the error, then come up with models to improve the RW prediction performance.

1.2 Thesis Contributions

The focus of this thesis is to address the issue of RW predictor’s inconsistent performance.
We perform regression analysis to understand the contributing factors to the RW prediction
errors, and then try to come up with models to estimate the errors. We then propose
improved prediction models and compare the performance of improved models from the
original RW predictor. The contributions of this thesis are summarized as follows:

• Identify two major contributing factors to the RW prediction errors are the amount
of code changes between revisions and code coverage overlaps between test cases.

• Propose two linear models to estimate the RW prediction errors.

• Propose two improved RW prediction models and demonstrate their effectiveness
through case studies.

• Propose an extensible RTS Prediction Models Performance Evaluation Framework
(PRIME), which is used to evaluate the performance of prediction models.

• Realize three RTS techniques and four RTS prediction models, which are added into
the PRIME framework as plug-ins.

1.3 Thesis Organization

This thesis is organized as follows.

• Chapter 2 overviews related works on regression testing and regression test selec-
tion. It also covers related works on prediction models with focus on regression test
selection prediction models.

• Chapter 3 describes the Prediction Models Performance Evaluation Framework which
we implemented to evaluate the performance of prediction models.

5



• Chapter 4 lists the research questions and covers design of our experiments including
the procedures for our studies and the factors have potential impact to the RW
predictor’s performance.

• Chapter 5 presents the results of the two studies and the analysis of the results.

• Chapter 6 presents three improved prediction models and the performance compari-
son of the improved predictors from the original RW predictor.

• Chapter 7 concludes the thesis and highlights future works.

6



Chapter 2

Related Works

This chapter provides background knowledge and related works of two major research do-
mains closely related to this thesis work. The chapter starts with an overview of regression
testing and regression test selection. Then, it is followed by prediction models with focus
on Regression Test Selection prediction models.

2.1 Regression Test Selection

Regression testing is the process of running existing test suite to validate that the be-
haviours of software are not adversely impacted by software changes. Regression testing is
a costly activity due to two factors: i) regression test suite sizes tend to grow as software
becomes more complex. ii) regression testing is a recurring activity. The total regression
testing cost increases as the number of repetition increases.

There are three related research domains aiming at reducing regression testing cost: test
suite minimization, test case selection, and test case prioritization. Test suite minimization
seeks to eliminate redundant test cases in order to reduce the size of regression test suite.
Test case selection seeks to select an effective set of test case to cover changes in the current
revision. Test case prioritization seeks to order test cases in such a way that some testing
goals, such as fault detection or coverage of important features, are reached sooner. This
thesis work is closely related to Regression Test Selection which we discuss in more details
in this section.

Regression Test Selection (RTS) is a research area aimed at selecting a subset of test
cases from existing test suite for regression testing. In this section, we will start with some

7



background knowledge of notations and concepts then discuss RTS techniques.

2.1.1 Definitions

Following notation are used in the discussion of Regression Test Selection problem: Let P
be the current version of the program under test , and P ′ be the next version of P . Let S
be the current set of specification of P and S ′ be the set of specifications for P ′. T is the
set of existing test suite and t is the individual test case in T . P (t) represents execution
result of P with test case t. We define an execution trace ET (P (t)) for t on P to consist
of the sequence of code entities in P that are executed when P is executed with t.

Formally, Regression Test Selection problem is defined as follows -

Given the program, P , the modified version of P , P ′ and a test suite, T . Find a subset
of T , T ′, with which to test P ′.

Rothermel and Harrold defined RTS as a problem of choosing all modification-revealing [29]
test cases from T and gave the following definition of modification-revealing: A test case t
is modification-revealing for P and P ′ if and only if P (t) 6= P ′(t). Rothermel and Harrold
pointed out that unfortunately we cannot in general find an algorithm that will identify the
set of modification-revealing tests in T as it is an undecidable problem. Instead, authors
suggested to use a weaker criterion to select all modification-traversing test cases and gave
the following definition of modification-traversing:

A test ti ∈ T is modification-traversing if and only if:

1. it executes a new or modified code entity in P ′, or

2. it exectues a code entity in P that had been deleted in P ′

RTS techniques focusing on selecting all modification-traversing tests are called safe
techniques [33]. A safe RTS technique must not exclude any modification-traversing
test cases. Note that although modification-revealing tests are necessarily modification-
traversing, not all modification-traversing tests are modification-revealing. Therefore safe
techniques may not be precise, i.e. not all selected modification-traversing test case will
reveal fault.

8



2.1.2 RTS Techniques

There has been significant amount of research on Regression Test Selection techniques
in the recent years and many techniques have been proposed. Engström et al. [13] sys-
tematically reviewed 2923 papers published before 2008 and identified 32 different RTS
techniques. From a high level view, most RTS techniques consist of similar processes as
depicted in Figure 2.1 (adapted from [23]). A RTS technique typically has one process to
model and identify changes between two program versions, and another process to create
traceability linkage between test case and the program. Then test cases cover changed part
of the program are selected for regression testing.

Select tests

Create traceability Coverage 

matrix

Model and 
compute 

differences

Affected 

entties

T

T’

P

P’

P

Figure 2.1: A General Regression Test Selection Technique [23]

RTS techniques however vary on how they model the program and identify changes.
Examples include test case selection based on code changes [5, 16, 32], based on specifi-
cation changes [6, 9, 25], and based on test case similarities [8, 17]. As there is a large
set of RTS techniques available in the literature, we will not be able to discuss them all in
this section. Our focus here is to present some RTS techniques closely related to the RTS
techniques we implemented in our evaluation framework. A more comprehensive survey
of RTS techniques can be found in Engström et al.’s systematic review [13], or Yoo and
Harmna’s paper [43].

Textual Differencing Technique One of the RTS techniques used in our experiments is
the texture differencing technique proposed by Volkolos and Fankl [37, 38]. The technique
utilizes UNIX diff tool to compare source code of P and P ′ to identify modified program
statements. The source code is pre-processed into canonical forms to remove the impact
of cosmetic differences. Authors implemented the technique into a tool called Pythia.
Pythia is a safe RTS tool and capable of analyzing large software systems written in C.
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The empirical study results provided evidence that textual differencing technique is very
fast and can achieve substantial reductions in the size of the regression test suite. The
fact that Pythia is an integration of standard, well known UNIX programs makes it very
attractive for industry adoption. Although authors conducted analytical studies to show
that texture differencing technique is as precise as techniques using graph representations,
there was no empirical evaluation to support the claim.

Firewall Techniques Leung and White proposed the firewall concept in a serial of
papers [21, 20, 39, 40]. The firewall concept is basically that given a modified module,
draw a virtual firewall around the modules need to be retested so that defect should be
kept away from spreading into more modules if possible. Authors proposed approach
to identify the firewall based on call graph. Skoglund and Runeson implemented the
class firewall technique which adapted the firewall concept to the object-oriented paradigm
considering a Java class as a module [36]. By creating a class dependency diagram, any
classes dependent or transitively dependent on the modified class are considered inside
the firewall. Authors implemented the technique by integrating DependencyFinder1 tool
which operates on compiled Java byte codes. Their evaluation results shown that the class
firewall technique can reduce the regression suite and scale to large software systems. Since
the class firewall technique operates on binary code, it can be used even when source code
is not available, e.g., Commercial Off The Shelf(COTS) components. In our study, we
implemented the class firewall techniques based on Skoglund and Runeson’s paper.

Graph-walk Techniques Rothermel and Harrold et al. presented several closely related
RTS techniques based on different graph representation of the program [16, 30, 34, 32, 35].
These techniques are classified as graph-walk as their algorithms walk through a sequence
of vertices and edges of the graph in order to identify changes between program versions.
Similar to class firewall and textual differencing techniques, these techniques identify tests
that execute new or modified code. Different from class firewall and textual differencing,
these techniques use an intermediate program representation to identify modification in
the program. The algorithms presented in these techniques construct graph representation
G for P and G′ for its modified version P ′. The algorithms then synchronously traverse the
graphs that begin with the entry node of G and G′, looking for pairs of nodes N and N ′

whose labels are not lexicographically equivalent. This mismatch node pair represents the
modification point of the program. When such a pair (N ,N ′) is found, algorithms select
all tests in T that have reached N based on execution trace ET (P (t)).

1http://depfind.sourceforge.net/
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In [30], Control Dependence Graph (CDG) is constructed and in [34] Program De-
pendence Graph (PDG) is used. CDG is very similar to PDG but only captures control
dependency of the program. CDG algorithm does not address interprocedural programs.
PDG represents both control dependency and data dependency in a single graph. PDG
algorithm can be applied to single procedure and interprocedural level. Rothermle and Har-
rold later extended the graph traversing algorithm based on Control Flow Graph (CFGs)
program representation[32]. CFG is a simpler representation of the program. Therefore,
the algorithm is more efficient. Similar to CDG, CFG does not capture data dependency
information. If a variable definition is modified but never used, the modification cannot
contribute to any changes in the output. However, CFG/CDG based test selection tech-
niques may select test cases that have reached the variable definition modification, and
these test cases may not reveal fault.

Rothermal et al. extended the CFG based technique for C++ software using Interpro-
cedural Control Flow Graph(ICFG) and Class Control Flow Graph (CCFG) [35]. Beydeda
and Gruhn integrated black-box data flow information to the CCFG to test object ori-
entated software [5]. Harrold and Jones et al. [16] presented a safe technique for Java
that efficiently handles the features of Java language. Its an extension of [32] using Java
Interclass Graph (JIG) as program representation. JIG is suitable to efficiently handle
Java features such as exception-handling constructs, external libraries and polymorphism.
Orso et al. proposed two-phase approach in graph construction and traversing [24]. The
first phase performs initial analysis based on high-level Interclass Relation Graph (IRG)
to identify parts of the system to be further analyzed. The second phase performs in-
depth analysis based on JIG and select test cases based on modification. Under certain
assumptions, this technique is still safe and scalable for large software systems.

Specification-based Techniques Several researchers proposed RTS techniques based
on specification change. Briand et al. presented a black box design level test selection
technique based on UML [6]. Authors proposed approaches to identify changes between
two versions of class diagram, sequence diagrams and use case diagrams. Then based
on the traceability information between the UML design and test cases, regression test
cases can be classified into three categories: reusable, retestable and obsolete. Chen et al.
presented a RTS technique based on changes of activity diagram [9]. An activity diagram
is a UML model to describe requirements on customer features or behaviours. Since the
activity diagram is very similar to CFG, authors apply the CFG-base algorithm to identify
changes in activity diagram between two revisions. Then regression test cases are selected
based on traceability information.

Comparing to RTS techniques based on source code or an intermediate representation
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of the source code, these specification based techniques are efficient, scalable and can be
applied to Commercial Off-The-Shelf (COTS) software when source code is not available.
These techniques could potentially be applied to the test suite even before source code
is implemented. The disadvantage of specification change based techniques is that they
may not be as precise as code modification base techniques and these techniques require
accurate and up-to-date UML design models of every version of the program.

Defect Correction-based Techniques Wikstand et al. [41] proposed a test selection
technique that uses a cache to monitor fault-prone files and recommends test cases to rerun
to cover updated files. This technique requires source code of P and P, test suite T and
linkage information between defects, test cases found the defects and source files updated
to fix the defects. Empirical study on a large system with five digit number of source files
has shown effective selection of test cases covering fault-prone files.

Comparing to other code modification based techniques; this does not require execution
trace information. This technique can be used in practice when code coverage information
for each test case is not readily available, such as in real-time and embedded systems, or
any environment collecting coverage information is too expensive. Test case code coverage
information is instead computed from what files were updated to fix a fault found by the
test case. Its reasonable to believe this techniques fault detection effectiveness is lower
than graph-walk techniques as this technique is not safe. In practice, this may be used
as a test case recommendation system compliment to other fault detection approaches.
Authors have not completed evaluating the quality of the test cases recommend by this
technique, therefore the precision of the selection is unknown.

Techniques for Non-code Changes Nanda et al. [23] proposed a technique to address
the issue that most existing RTS techniques focus on changes made to code components and
completely ignore non-code elements. Non-code elements , such as configurations file and
databases, can also change and affect the system behaviour. Authors proposed a technique
to first build abstract models of configuration files and databases and perform differencing
on these models to identify the modifications made to these external entities. Second, the
technique creates traceability links from test cases to external entities by tracing code read
from or write to external entities. Finally, test cases linked to modified external entities
are selected for regression. Empirical evaluation results indicate that this technique can
select modification-traversing tests that are missed by code-centric RTS techniques. Haraty
et al. [14] proposed a RTS technique for selecting test cases in the presence of database
changes. Their technique is applicable to stored procedure only. Willmor and Embury [42]
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present a safe RTS technique for database-drive applications. Their technique considers
the scenario where code change happens on a database-interacting statement, which in
turn affect the behaviour of other statements that read the modified persistent state.

These techniques are nice complements to the existing code-centric RTS techniques, as
modern software systems often contains many complex database logic and configuration
files.

Techniques for Component-based Software Some researchers proposed techniques
to address challenges in RTS of component-based software. Component-based software
development often integrates black-box components developed by a third party. Applica-
tion developers may not have the access to the internal information of the components,
such source code and specifications, due to intellectual property issues. Orso et al. [25]
proposed code based and specification based techniques utilizing component meta data to
support regression test selection of component-based software. The code-based technique
assumes each software component was capable of providing structural coverage informa-
tion and change information as metadata. The specification-based technique assumes the
component specification is represented by UML state-chart diagrams, which were used by
the graph-walk techniques. The empirical results of the technique show that component
metadata can feasibly be used to produce savings in retesting cost. This technique built
upon existing graph-walk techniques and specification based techniques to solve specific
issues in component-based software.

Techniques for Different Testing Processes There are many researches focus on ap-
plicability of RTS techniques in industry environment, particularly applicability of RTS
techniques on different testing processes. These works generally use code modification
based techniques and are mainly concern with real-world challenges. Buchgeher et al.
presented experience of applying RTS technique in an industry manual testing process [7].
Authors implemented a tool to identify changed source code file based on information from
version control systems then select test cases based on test case to source file coverage in-
formation. The results showed that selecting test cases based on code coverage information
often leads to a large set of test cases being selected. Some preliminary study suggested
that performing RTS on method level may improve the precision. However, the version
control tools used in the study(Subversion or the Microsoft Team Foundation Server) only
provide information on modified lines of code, but not which methods these lines belong
to. As the result, they were not able to implement the RTS technique at method level.
Authors also discussed many challenges in their work which are relevant for implementing

13



RTS techniques in practice.

In addition to the papers present the original RTS techniques, there are significant
research efforts in conducting empirical evaluation of these RTS techniques on different
programming languages and applications. These research can be valuable resources to un-
derstand the effectiveness of RTS techniques and challenges in evaluating these techniques.

2.2 Prediction Models

Software engineering researcher have long been proposing prediction models to help with
defect prediction, software development efforts prediction and software performance pre-
diction etc. In this thesis work, our focus is on prediction models to predict the percentage
of test cases will be selected by a RTS technique. We discuss two closely related RTS
prediction models in this section.

2.2.1 Rosenblum and Weyuker Predictor

Rosenblum and Weyuker [28] presented a prediction model to support the determination
of the cost-effectiveness of RTS techniques. Using coverage information, the Rosenblum
and Weyuker(RW) model computes the percentage of test cases will be selected by a RTS
technique. Based on some simplified assumptions, the predicted percentage can then be
used to determine whether it is worthwhile to apply the RTS technique.

As in Rosenblum and Weyuker’s model, given a program P and its regression test suite
T , let M be the RTS technique used to choose a subset of TM from T . The RW predictor
predicts the value of |TM |/|T |, which is the percentage of test cases selected by technique
M .

Let E be the set of code entities of P that are considered by technique M for coverage
analysis. The type of code entity could be statement, method, class or basic block etc. It
is assumed that T and E are nonempty and that every syntactic element of P belongs to
at least one entity in E.

Let EC denote the set of covered entities, i.e. code entities exercised by at least one
test case during test execution. Formally, EC is defined as follows:

EC = {e ∈ E|∃t ∈ T (coversM(t, e))} (2.1)
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RW model defines coversM(t, e) as the coverage relation induced by technique M for
P and defined over T × E. coversM(t, e) is true if and only if the execution of test case
t on P causes entity e to be exercised at least once. This relation is represented by a 0-1
coverage matrix C, in which the rows represent test cases in T and the columns represent
entities in E. Then, element Ci,j of C is defined as:

Ci,j =

{
1 if coversM(i, j)
0 otherwise

(2.2)

and cumulative coverage CC is the sum of all ones in the coverage matrix C

CC =

|T |∑
i=1

|E|∑
j=1

Ci,j (2.3)

For a single entity change in P , assuming all entities are equally likely to be changed,
i.e. a uniform distribution, the expected number of test cases would have to be rerun can
be estimated simply as the average number of test cases that exercise an arbitrary entity.
RW model defines average number of test cases covers a single entity as NM :

NM =
CC

|E|
(2.4)

NM in fact is just the average number of ones of each column in the coverage matrix C.

A slightly refined variant of NM considers |EC | rather than |E| as the universe of
entities. RW model defines average number of test cases covers a single covered entity as
NC

M :

NC
M =

CC

|EC |
(2.5)

NC
M is the predicted number of test cases will be selected by technique M for a single entity

change in P .

Finally, the predicted percentage of test cases will be selected by technique M for a
single entity change in P is denoted πM , the predictor for |TM |/|T |:

πM =
NC

M

|T |
=

CC

|EC ||T |
(2.6)
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Rosenblum and Weyuker made two important assumptions in their model. One is the
RTS technique M is safe, the other is there is only single entity changed from program P
to P ′. Hereinafter, RW predictor is referring to the safe strategies single entity changed
model in equation 2.6.

Rosenblum and Weyuker conducted study of the RW model on 31 versions of Kron-
Shell88 program with TestTube as the RTS technique. The predictor reported an average
of 87.3% of the test cases would be selected while 88.1% was actually selected. Clearly,
the RW predictor was very accurate in this case.

2.2.2 Predictor Incorporating Change Frequency

Harrold and Rothermel joined by the two original authors of the RW predictor, Rosenblum
and Weyuker, conducted additional evaluation on the RW prediction model [15]. They
evaluated the RW predictor with seven C programs which had been used previously by
researchers at Siemens Corporate Research. The test cases of these programs are white-
box test cases created to cover every executable statement, edge and definition-use pair.
In addition to the TestTube RTS technique used in the original study, Harrold et al. used
one additional RTS technique DejaVu [31]. Their results shown that the RW prediction is
accurate for some test subjects, but deviates from actual selection percentages significantly
for others. Authors pointed out that RW predictor only accounts for test coverage but
does not account for the locations of the modifications. Therefore, authors proposed an
improvement to the original RW predictor by incorporating relative frequency of changes
to the covered entities. However, there were no experiment on the improved predictor due
to lack of change history information for their test subjects. We discuss Harrold et al.’s
prediction model below and present our evaluation results of the predictor in Section 6.3.

The improved predictor extends the RW predictor by adding weights that represent
the relative change frequency of the covered entities. For each element ej ∈ EC , wj is the

relative frequency with which ej is modified, and it is defined such that
∑|EC |

j=1 wj = 1.
The original unweighted RW predictor, discussed in Section 2.2.1, compute the predicted
number of test cases will be selected by technique M , NC

M , as

NC
M =

CC

|EC |
(2.7)

where CC is simply the number of ones in the Coverage Matrix and |EC | is the number of
covered entities.
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The weighted analogue of NC
M is a weighted average, WNC

M , which authors define it as
follows:

WNC
M =

|EC |∑
j=1

wj

|T |∑
i=1

Ci,j (2.8)

where

Ci,j =

{
1 if coversM(i, j)
0 otherwise

(2.9)

For this weighted predictor, the predicted percentage of test cases will be selected by
technique M for a single entity change, denoted by Πw

M , is given as follows:

Πw
M =

WNC
M

|T |
(2.10)

2.3 Summary

In this section, we presented necessary background knowledge and works from two research
domains closely related to this thesis. One is regression test selection with focus on regres-
sion test selection techniques. The other is prediction model with focus on RTS prediction
models. In the next section, we discuss the framework we implemented to evaluate RTS
prediction performance.
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Chapter 3

RTS Prediction Models Performance
Evaluation (PRIME) Framework

To evaluate the performance of the RW prediction model, we developed a RTS PRedIction
Models performance Evaluation framework (PRIME). The PRIME framework compares
the predicted test selection percentage with the actual test selection percentage in order to
evaluate the accuracy of prediction models. The PRIME framework, as it stands now, con-
tains implementation of three RTS techniques, four prediction models and factory classes
to create artifacts from Software-artifact Infrastructure Repository (SIR) [11], GitHub, and
Apache SVN. As depict in Figure 3.1, the PRIME framework consists of four major com-
ponents. Artifact Extractor component connects to test subject repositories and extracts
software artifacts; Test Selection Prediction component predicts test selection percentage
using prediction models; Regression Test Selection component applies RTS techniques to
test subjects to obtain the actual test selection percentage; Predictors Evaluation com-
ponent evaluates prediction models based on some performance metrics. We discuss each
component in more details in the following subsections.

3.1 PRIME Framework Component: Artifact Extrac-

tor

The purpose of the artifact extractor component is to act as a proxy to connect to various
repositories and deal with repository specific tasks. Artifact extractor component consists
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Figure 3.1: RTS PRIME Framework

of factory classes to extract artifacts and store them in a consistent format for other com-
ponents to use. In this section, we discuss what software artifacts are, how we extract them
from repositories, and how we model them once they are extracted into the framework.

3.1.1 Software Artifacts

Software artifacts are one of the many by-products built during the development of soft-
ware. Some artifacts such as source code, test cases, fault, and UML diagrams help describe
or develop the function of the software. Other artifacts are concerned with the process of
development itself - such as project plan, business case, and risk assessment [4]. The com-
position of all software artifacts not only represent the software system itself, but also
the development and evolution of the software system. Typically, software artifacts have
multiple versions and have one or many traceability links to or from other artifacts. For
example, most development organizations use version control systems to automatically
create a new version of a source file whenever there is a code check-in. A new source file
version may link to a new requirement specification version if the source file change is due
to a change in the requirement; A new source file version may link to a defect if the source
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file change was to fix the defect. As software evolves, there is a co-evolution of all of its
artifacts and the traceability links between them. In the context of this thesis, we consider
traceability links as an artifact.

Software artifacts such as source code, test suite, fault and execution trace are critical
input to RTS techniques and RTS prediction models. Some metadata in the software de-
velopment, such as time stamp of a commit, author of a commit, may also be of interest to
some RTS techniques or RTS predictors. However, there are many challenges exist with ar-
tifacts extraction. First, the availability of various artifacts varies by software development
process. For example, requirement specification is a common artifact in waterfall model,
but it is generally not available in Agile development process. Second, even when an arti-
fact is available, it may be stored in an array of different tools, therefore its format varies.
In some organizations, artifacts are managed in Application Lifecycle Management(ALM)
system. In other organizations, artifacts are managed in open source tools or just stored
as files on disk.

The difference in artifacts availability and format impose challenges to organizations
whom wish to adopt RTS techniques. For an organization wishes to implement a RTS
technique that requires code coverage, the first step would be collecting test case to code
traceability. If the traceability is not available in the current development process, it would
require significant process change and high upfront investment, which could become major
road block in adopting RTS techniques.

The PRIME framework tackles these challenges in two ways:

• It filters RTS techniques based on the availability of artifacts. This is discussed in
more details in Section 3.2.2

• It models artifacts so that all artifacts have consistent format regardless the tools and
processes organizations used. The framework provides an abstraction layer of all software
artifacts that are potentially used by RTS techniques or RTS predictors. In the next
subsection, we discuss this in more details.

3.1.2 Extracting Artifacts from Repository

Artifacts are generally stored in one or many repositories during software development.
A repository can be commercial ALM tools (e.g., HP Quality Center), open source tools
(e.g., Apache Subversion) or simply directories on disk with predefined structure (e.g.,
Software-artifact Infrastructure Repository [11]). The creation of artifacts objects is highly
dependent to the repository used. Any changes to the repository, e.g., API changes, tool
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version changes, directory structure changes, would impact extraction process. In the
PRIME framework, we use factory method pattern to provide an abstraction layer. There
is a factory class for each repository to handle specific details of that repository. Various
factory classes produce consistent artifact objects. For example, if test cases, requirements
and defects are stored in HP Quality Center(QC), then a QCFactory can be implemented
to extract all artifacts stored in QC. QCFactory understands all internal details for QC,
how each type of artifacts are stored and how the traceability links between artifacts are
managed. This factory class is the only place needs to be changes if there is a change in
HP QC.

3.1.3 Artifact Modelling

The goal of artifact modelling is to create a model that captures all artifacts available for
RTS techniques or RTS predictors to use. The artifact model in the PRIME framework
is independent of development process, program language, tools and techniques. In Fig-
ure 3.2, we depict the artifact model in a UML diagram. An application in the PRIME
framework contains the following artifacts:

• Specification is an artifact contains requirement specification, design specification
and architecture specification.

• Fault can be fault naturally occurred in the original program or fault seeded inten-
tionally.

• Program is an artifact represents all artifacts related to program code, including
Source File Entity, Class Entity, Method Entity and Statement Entity, binary, database
schema and configurations. A program could have several variants. A program variant is
an alternative copy of the original program. Seeded is a variant contains faults intention-
ally added into the program. Alternative is a variant semantically equivalent to original
program.

• Trace represents traceability links between artifacts. Trace contains code coverage
matrix, specification matrix and fault matrix. Code coverage matrix maintains all links
between each test case and its covered code entities when executed. Specification matrix
maintains all links between each specification and test cases cover that specification. Fault
matrix maintains links between each fault and test cases discover that fault.

• Test suite is an artifact contains test cases. A test case contains input, output, test
run and execution script. A test run contains a test result indicates pass or failure of the
test run.
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• Script is an artifact that contains build script or deployment script.

Each box in Figure 3.2 represents zero to n versions of the artifact. Note that artifacts
may not evolve at the same time. For example, program version m may be covered by
test case version m′ as code version increment may not trigger test case version increment.
This could happen when program is refactored to provide same functionality which does
not require any test case change to verify the program.

Once artifacts are extracted into the framework and modelled, the PRIME framework
performs the following traceability verification step to ensure the integrity of the data.

3.1.4 Traceability Verification

Maintaining software artifacts, especially maintaining traceability links among software
artifacts is a tedious and time consuming task. In industry where software development is
largely deadline driven, companies mostly focus on delivering the product and left software
artifacts poorly maintained [27]. The issue of poor traceability could due to a variety of
reasons such as human factor, use of heterogeneous tools or lack of visible benefit [3].

Unfortunately, RTS techniques and RTS predictors are highly dependent on the accu-
racy of traceability links. Poor traceability would result in poor test selection. Therefore,
in the PRIME framework, following traceability verifications are performed to assess and
improve the accuracy of traceability links:

• Verify that the total number of test cases in the test suite equals the total number
of test cases in the test execution script. This is to ensure every test is executed.

• Verify that the total number of test cases in the test suite equals the total number of
test cases in code coverage matrix. This is to ensure every test at least cover some
code entities.

• Verify that the total number of faults equals the total number of faults in fault matrix.
This is to ensure every fault has at least one test case associated with it.

• Verify that the total number of specifications equals the total number of specifications
in specification coverage matrix. This is to ensure every specification is covered by
at least one test case.

These verifications are basic sanity checks to ensure the integrity of input data for RTS
techniques or RTS predictors. More in-depth verifications can be defined and plugged into
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the framework as needed. For organizations using ALM tools to manage all artifacts in one
integrated environment, these verifications may not as critical. However, many companies
are still managing their software artifacts in a variety of tools. Artifact Verification is a
must in order to maintain the overall integrity of the data.

In addition to traceability verification, we could borrow techniques from traceability
recovery domain to reconstruct missing traceability links [2, 19]. The PRIME framework
does not currently have any traceability recovery capability but it is one of our future
works to recover missing traceability links.

In general, Artifact Extractor component in our framework is to provide consistent
context for all artifacts. It facilitates rich and accurate input data for RTS techniques or
RTS predictors. It also provides processes and models to integrate new applications or new
artifacts into the framework. Great care has been taken in this component to reduce test
subject setup cost and to improve input data quality.

3.2 PRIME Framework Component: Regression Test

Selection

Regression Test Selection is the component applying all RTS techniques on every test sub-
jects and on every versions. All implemented RTS techniques have one common interface
which can be used to select tests from regression test suite. Based on the actual tests
selected by RTS techniques, the actual selection percentage can be computed and used as
an input in Predictors Evaluation component. Other common shared tasks among RTS
techniques, such as analyzing code coverage, parsing source code or analyzing code changes
are also implemented in this component.

Regression Test Selection component consists of three subcomponents: technique mod-
elling, technique filtering and test case selection. We discuss each subcomponent in details
in the following sections.

3.2.1 Technique Meta-modelling

Regression test selection is a very active research area. Over the years, many RTS tech-
niques have been proposed. However, there is no clear definition of what constitutes a
technique and thus there is a problem in determining which regression test selection tech-
niques exist [13]. Some techniques proposed were considered novel and unique at the time
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of first presentation, but over time, many variants also proposed to adapt to different pro-
gramming languages, different program representations, or different analysis scope. This
lack of distinction of each technique is a challenge for test engineers to adopt RTS in
practice and for researchers to evaluate RTS techniques consistently.

Facing this challenge, we propose a technique meta-model to provide a consist repre-
sentation of various techniques exist in the literate. Our technique model in Figure 3.3
uniquely identifies a technique in the PRIME framework. The key point in our technique
model is the separation of techniques and their implementations. RTS technique is a
concept and sometimes described in a general manner. However, for a test engineer to
apply the technique to the application under test, it must be in a concrete form. Most
importantly, the performance of a RTS technique may be very sensitive to changes in the
implementation of the technique. Technique implementation on a different programming
language, on a different analysis scope or using different utilities would have different pre-
cision and cost. This sensitivity determined that in the PRIME framework we have to
separate a technique from its implementations. A RTS technique in the PRIME frame-
work is referring to a specific RTS technique implementation which can be applied to a
test suite directly.

Figure 3.3: RTS Technique Meta-model
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3.2.2 Techniques Filtering

In our experiment, we always select all techniques implemented in the framework and apply
them to all subject programs. As the number of implemented RTS techniques grow in the
framework, it may make sense for a test organization in the industry to select one or a
small subset of RTS techniques in the PRIME framework. In that case, techniques can be
filtered by the availability of required artifacts. For example, a UML design based RTS
technique requires UML diagram of each version of the program. If the subject program
does not contain UML diagrams, then the RTS technique should be filtered out. It is worth
noting that the technique filtering process is application specific, i.e. the availability of
artifacts of each application could be different. Therefore this process has to be repeated
for each application.

3.2.3 Test Case Selection

Test Case Selection is a subcomponent to apply the test selection algorithm of each RTS
technique on subject programs and versions. In the PRIME framework, all techniques
implement a Technique interface which contains a selectTests method. The selectTests
method takes two versions of the programs p and p′ and returns a list of test cases from
p that selected for regression test in p′. We have implemented selectTests for all three
techniques in the PRIME framework. A brief description of the test selection procedures
of each RTS techniques can be found in section 4.5.

3.3 PRIME Framework Component: Test Selection

Prediction

Test Selection Prediction component runs prediction models and predicts the percentage
of test cases will be selected if a RTS technique is applied to a test subject. In the PRIME
framework, we have implemented the RW predictor and three improved RW predictors.
The RW predictor only requires the Coverage Matrix and regression test suite as input.
The improved predictors require some additional data which are fetched from the the
Artifact Extractor component. Test Selection Prediction component runs all predictors
on all techniques and test subjects combination. The result is a set of predicted selection
percentages which is fed into the Predictors Evaluation component. Some performance
metrics, such as memory or time consumptions, are also measured in this component.
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Each predictor plug-in in the PRIME framework provides a predictSelectionPercentage
API. RTS techniques utilize the predictors by calling the API and supplying the code
coverage matrix and the entire regression test suite. The implementation details of each
predictor plug-in varies. We have discussed details of the RW predictor and an improved
RW predictor in Section 2.2. The details of the other two improved predictors will be
discussed in Chapter 6.

3.4 PRIME Framework Component: Predictors Eval-

uation

Predictors Evaluation component takes predicted selection percentages from predictors and
compare them with actual selection percentages from RTS techniques. It then uses some
metrics to evaluate the predictors performance. In our experiment, we use deviation to
evaluate the RW predictor and the improved predictors. The result of the evaluation is
formatted and exported to a csv file which can be analyzed offline.

3.5 Summary

In this chapter, we described four major components in the RTS Prediction Models Per-
formance Evaluation(PRIME) Framework. The framework is designed to be reusable and
extensible that new test subject repositories, RTS techniques, predictors and evaluation
metrics can be plugged into the frameworks with minimum efforts. This framework pro-
vides generic functions and major control flows which enables us and other researchers to
evaluate new predictors in future research.

It’s worth noting that our framework is focusing on evaluating the performance of RTS
prediction models, not RTS techniques. As a future work, we could expand it to also
evaluate RTS techniques based on some characteristics.

In the next chapter, we present the research questions and describe the design of ex-
periments. Utilizing the PRIME framework discussed in this chapter, we conduct the
experiments on three Java subjects, the results of the experiments are then discussed in
Chapter 5.
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Chapter 4

Design of Experiments

In the previous chapters, we pointed out the motivation of this thesis is the inconsistent
performance of the RW predictor. We discussed background knowledge and related works,
then presented the PRIME framework which is used to evaluate the RW predictors perfor-
mance. In this chapter, we report on the design of experiments performed to evaluate the
RW predictor’s performance and understand its prediction errors. The following research
questions are pursued through these experiments:

RQ1 : What are the factors impacting the RW predictor’s accuracy?

RQ2 : Does a model exist to estimate the RW predictor’s prediction error?

RQ3 : Can the RW predictor’s performance be improved by incorporating error estimation
model?

This chapter describes the design of two studies. In the first study, the RW predictor
is used as a general predictor; In the second study, the RW predictor is used as version-
specific predictor. The rest of the chapter describes the dependent variable and independent
variables used in the regression analysis. Finally, the test subjects and RTS techniques used
in the studies are presented.

4.1 Study 1

In this study, we use the RW predictor as a general predictor, i.e. we only predict the
test selection percentage once based on the Coverage Matrix of version 0 of the program.
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In Rosenblum and Weyuker’s study [28], authors found that the Coverage Matrix was
extraordinarily stable over the 31 versions of KornShell program they used in the study.
Since the RW predictor is computed solely based on the Coverage Matrix, there is no reason
to predict again if there is little change to the Coverage Matrix. For this reason, authors
argue that to save analysis cost, prediction value from the first version of the program is
good enough for all subsequent versions, i.e. use the RW predictor as a general predictor.

Following Harrold et al.’s paper [15], we use the following notations in both studies:

πMi
:
The predicted percentage of test cases selected by RTS technique M from Ti−1 when
an arbitrary change is made to create Pi

SMi
:
The percentage of test cases actually selected by RTS technique M from Ti−1 for the
change made to create Pi

Here, M is one of the three RTS techniques in our experiment. We will discuss these
techniques in details in Section 4.5.

The deviations, DMi
, of the actual percentage of test cases selected by technique M

from the predicted test selection percentage is computed by:

DMi
= SMi

− πM1 (4.1)

In Study 1, DMi
represents the RW predictor’s accuracy and it is the dependent vari-

able. To answer our research questions, we first use the procedure in Algorithm 1 to
compute DMi

and all factors listed in Table 4.1, then we perform regression analysis to ex-
plore the relationship between the deviation (dependent variable) and the potential factors
(independent variables).

4.2 Study 2

In Study 1, we treat the RW predictor as a general predictor. The RW predictor is
used only once at the beginning of the development cycle to predict the test selection
percentage of all future versions. In Study 2, we use the RW predictor as a version-specific
predictor. At the beginning of regression cycle of every version, we use the RW predictor
to predict the test selection percentage of the upcoming version. Obviously, this would
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Algorithm 1 Study 1 Procedure

1: for all subject programs do
2: for all release/snapshot build types do
3: for all test class/test method test suite types do
4: for all RTS techniques do
5: predict selection percentage πM1

6: for all versions do
7: compute actual selection percentage SMi

8: compute deviation DMi

9: compute values of all factors for version i
10: end for
11: end for
12: end for
13: end for
14: end for

Algorithm 2 Study 2 Procedure

1: for all subject programs do
2: for all release/snapshot build types do
3: for all test class/test method test suite types do
4: for all RTS techniques do
5: for all versions do
6: predict selection percentage πMi

7: compute actual selection percentage SMi

8: compute deviation DMi

9: compute values of all factors for version i
10: end for
11: end for
12: end for
13: end for
14: end for
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require more accumulated efforts as prediction is computed on every version. In situations
where the Coverage Matrix is not stable, this maybe necessary. Organizations may also
use the RW predictor as a version-specific predictor when recomputing the RW predictor
for each version would not cause significant overhead.

Similar to Study 1, we compute the deviation of the actual percentage of test cases
selected by technique M for each version Pi from the percentage of test cases predicted by
the RW predictor.

DMi
= πMi

− SMi
(4.2)

In study 2, DMi
represents the RW predictor’s accuracy and it is the dependent variable.

To answer our research questions, we first use the procedure in Algorithm 2 to compute
DMi

and all factors listed in Table 4.1, then we perform regression analysis on the results.

4.3 Impacting Factors (Independent Variables)

In order to answer our research questions, we first define a list of factors may impact the
RW predictor’s accuracy based on the nature of the predictor and our survey of existing
literature. These factors are summarized in Table 4.1. We describe details of each factor
and how it is computed in our experiment below.

Table 4.1: Summary of Potential Factors Impacting the RW Predictor’s Accuracy

Factor Name Description

f1 entity change percentage Percentage of covered entity changed

f2 element change percentage Percentage of elements changed in the Coverage Matrix

f3 num tests per entity Average number of tests covers each covered entity

f4 RTS technique RTS technique

• f1 entity change percentage is the percentage of covered code entity changed
between two consecutive versions of the program. It represents the amount of code changes.
Since changes on code entities not covered by any test cases would not impact regression
test selection, we measure code changes of covered entities only. This factor is computed
using number of covered code entity changed divided by total number of covered code
entities. Since each RTS technique may operate on different code entity levels (statement,
source, class or basic block etc.), the code entity level used in this factor matches the code
entity level of the RTS technique in factor f4 RTS technique.
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• f2 element change percentage is the percentage of elements changed in the Cov-
erage Matrix between two consecutive versions of the program. It represents the stability
of coverage relations between test case and its covered entities. Recall in Section 2.2.1, we
discussed Coverage Matrix Ci,j is a 0-1 matrix whose rows represent test cases of T whose
columns represent entities of program P . A change from a 0 to a 1 or from a 1 to a 0 be-
tween Ci,j of a pair of consecutive versions represents one change in the coverage relation.
The total number of changes in the coverage relation over total number of elements is the
percentage of elements changed. To simplify the analysis, the total number of elements
is the size of Cartesian product between the union of the sets of covered entities and the
union of the sets of test cases.

• f3 num tests per entity is the average number of test cases covers each covered
entity. It represents the degree of code coverage overlaps between test cases. If each entity
is covered by one and only one unique test case, then there is minimum coverage overlap.
One entity change would result in a selection of exactly one test case. On the other side of
the spectrum, if each entity is covered by all test cases in the test suite, then the coverage
overlap is at its maximum. One entity change would result in a selection of all test cases.
This factor is computed from the Coverage Matrix of each version and it is basically the
average number of ones in each column.

• f4 RTS technique is one of the RTS techniques used in the study. We discuss more
details of RTS techniques in section 4.5 and a list of implemented RTS techniques used in
our work can be found in Table 4.3.

The factors described above are the independent variables in the regression analysis.
Our dependent variable is the deviation between test case selection percentage predicted
by RW predictor and the actual percentage of test cases selected by the RTS technique.
The values of dependent variable is calculated differently for study 1 and study 2 based
on Algorithm 1 and 2 while the values of independent variables are the same for the two
studies.

4.4 Subject Programs

For our experiments, we have selected three Java subject programs that were developed in
recent years. Special interests have been given to subject programs developed using some
flavour of Continuous Delivery methodologies. Table 4.2 presents information about our
test subjects. For each subject, we list its name, a brief description, the number of lines
of code, the number of classes, which repository the subject program was extracted from,
the number of versions, and the number of test classes and test methods.
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Table 4.2: Summary of Test Subject Programs

Subject
Name

Description
Lines
of
Code

Num.
of
Classes

Repository
Num. of
Versions

Num. of
Test
Classes
(Methods)

apache-xml-
security

XML security
library

16,800 143 SIR 4 releases 13(84)

jacoco-core
Java code

5,067 78 Github
14 releases 61(736)

coverage tool 9 snapshots 62(746)

apache-solr-core search platform 80,039 568 Apache SVN
7 releases 166(667)

17 snapshots 169(691)

We have selected a well-known Java test subject from Software-artifact Infrastructure
Repository (SIR) [11]. The subject program has been used in many regression testing
empirical studies such as [26, 12]. We have directly used the source code and developer
supplied JUnit test cases without any modifications.

• apache-xml-security is a component library implementing XML signature and
encryption standards, supplied by the XML sub-project of the open source Apache project.
Versions used in this study map to XML-security original version v1.0.0 to v1.0.8 developed
between year 2000 and 2001.

In addition, we have selected two open source Java test subjects developed in recent
years using some flavour of Continuous Delivery methodology. Since we have access to
the version control system used in the development, in addition to major release builds,
we have also extract snapshot builds from the version control system. Snapshot builds
are created either on a regular interval (e.g., nightly) or created after each commit. For
the purpose of this study, we removed snapshot builds that do not have any code changes
(e.g. documentation changes or build configuration changes). For each build, we extracted
source code, build files and unit tests.

• JaCoCo is a free open source code coverage library for Java. It employs test driven
development approach and every commit will trigger a build and every build is considered
fully functional. As a code coverage library, its code coverage is very high. Most of the
packages in JaCoCo has achieved over 85% of statement coverage. Source code of JaCoCo
is maintained in a Git repository at GitHub. JaCoCo is under active development and
the release versions we extracted for our study were developed between October 2010 and
February 2013. The snapshot builds were taken from the development of version v0.6.2
and v0.6.3 between January 8, 2013 and March 22, 2013.

• Apache Solr is a open source search platform from the Apache Lucene project.
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Apache Solr uses Jenkins Continuous Integration system to produce nightly snapshot build.
Apache Solr project wiki page suggests contributors to run all unit tests prior to commit.
Its test suite contains functional and some performance tests. The core package we used in
our study has achieved 61% of statement coverage. Apache Solr is under active development
and the release versions we extracted for our study were developed between January 2012
and April 2013. The snapshot builds were taken from the development of version 4.2.0
between June 13, 2013 and May 29, 2013.

For each test subject, we first created a regression test suite including all JUnit test
classes supplied by original developers. Then, we created a second regression test suite by
adding every test methods in JUnit test classes. So in the first regression suite, each test
case is a JUnit test class, while in the second regression suite, each test case is a JUnit test
method. Since there is no standard of what is considered as a test case, we made sure that
our subject programs contain both test class test suite and test method test suite. Since
there are two regression suites for each test subjects, we list the number of test classes and
the number of test methods separately in Table 4.2.

For jacoco-core and apache-solr-core, we provide separate count for the number of
release versions and the number of snapshot versions. For apache-xml-security, SIR repos-
itory only provides release builds. Based on the time frame it was developed, we assume
there were no snapshot builds available for apache-xml-security.

4.5 Regression Test Selection Techniques

Table 4.3 lists three RTS techniques we have implemented based on two research papers [37,
36].

Table 4.3: RTS Techniques

Technique Description
td src Textual Difference on source file level
td stm Textual Difference on statement level
cf ext Extended Class Firewall on class level

As we presented in Section 2.1.2, there is a large set of RTS techniques proposed in
the literature. Initially, we hoped to find RTS techniques implemented into tools that
can be readily integrated into the PRIME framework. However, we did not find any RTS
technique implementation capable of analyzing Java program. So we decided to implement
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several RTS techniques by ourselves. In the process of determining which RTS techniques
to implement in the PRIME framework, we have considered following factors:

• Data Availability: Different RTS techniques require different set of input data. For
example, specification change based techniques like [6] and [9] require UML designs which
are generally not available in open source projects. Therefore, we most likely have to select
among code modification based techniques. The three techniques we chose to implement
only need source code, binary code and test cases, which are available in every open source
projects.

• Empirical Study Results: We’d like to implement well known RTS techniques
backed up by empirical studies. Vokolos and Frankl evaluated Textual Differencing tech-
nique with a test subject of 11,000 LOC. Skoglund and Runeson evaluated the Class Fire-
wall technique on an industry software with about 50,000 classes. Both evaluation results
shown the techniques are fast and effective.

• Implementation Effort: Textual Differencing technique utilizes UNIX diff tool to
perform the change analysis; Class Firewall technique utilizes DepedencyFinder tool to
perform dependency analysis. By integrating standard, well known programs, we reduce
the implementation effort and improve the overall quality of the framework.

We provide a description of the RTS techniques we implemented below with focus
on changes we made from the original paper. More information can be found from the
corresponding reference papers of the techniques.

4.5.1 Textual Differencing Technique

Textual Differencing [37] is a safe and scalable technique by comparing source files of two
versions of the program. Vokolos and Frankly implemented the technique in a tool named
Pythia, which is capable of analyzing C programs. We have implemented the technique
following the procedures described in the original paper but made several modifications
in order to analyze Java programs. Both td src and td stm RTS technqiues consist of
following high level steps:

• Beautify Source Files: Source files are first beautified to ensure syntax and style
consistency between versions. This would minimize irrelevant differences when comparing
source files of two versions. For our study, we use Jindent1 to beautify Java source files.

• Change Analysis: Similar to Pythia, we used Unix diff utility to compare source
files of program P and P ′ to identify program entities that have been modified. Modified

1http://jindent.com/
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entities include entities added, changed, or deleted in the new version of the program. For
td src, the results of the change analysis is a list of modified source files in P . For td stm,
the results of the change analysis is a list of modified statements in P .

• Coverage Analysis: We use Java code coverage tool JaCoCo2 to instrument Java
classes and collect execution trace ET (P (t)) of each individual test case on all versions of
program P . Coverage reports from JaCoCo are in HTML and XML format which contains
statements, methods and classes exercised by executing each test case. As in equation 2.9,
a Coverage Matrix is generated for each version of the test subject.

• Test Selection: Based on the output from previous steps, each modified entity (i.e.
source file for td src, statement for td stm) in P is used to lookup the Coverage Matrix of
P and retrieve all test cases that cover the modified entity. The union of all test cases that
cover the modified entities is selected for regression.

4.5.2 Class Firewall Technique

The Class Firewall concept assumes that only changed classes and its dependencies need to
be re-tested. Skoglund and Runeson [36] implemented a Class Firewall technique using Java
byte code in the analysis. Our cf ext technique follows the same procedure as Skoglund and
Runeson with the exception that in the coverage analysis step, instead of using EMMA, we
use JaCoCo for performance reasons. Details of EMMA performance issue are discussed
in Section 7.2.3. RTS technique cf ext consists of following high level steps:

• Extracting Dependency Information: We use DependencyFinder3 tool to ana-
lyze class dependency information. Command line interface of DependencyFinder is used to
extract every class’s inbound dependencies including transitively dependent classes. This
tool operates on compiled class files and extracted dependency information is reported in
XML format.

• Change Analysis: Changes are identified by comparing MD5 signature of class files
between two versions of the program. If MD5 hash value has changed between versions,
the class file must be changed. We use Google HashFunction in Google Guava library to
compute MD5 hash of class files.4

• Coverage Analysis: This step is very similar to the coverage analysis step in textual
difference technique. We use JaCoCo to instrument Java classes and collect execution trace

2http://www.eclemma.org/jacoco/index.html
3http://depfind.sourceforge.net/
4https://code.google.com/p/guava-libraries/
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ET (P (t)) of each individual test case on all versions of program P . A coverage matrix
between test cases and classes is generated for each version of the test subject.

• Test Selection: Based on the output from previous steps, each modified class in
P is used to query in the Coverage Matrix of P to retrieve all test cases that covered the
modified class. The union of all test cases that have exercised modified classes is selected
for regression.

4.6 Summary

In this chapter, we presented the design of experiments we followed in the two studies.
We introduced three research questions and the procedures to explore the answers of those
questions. We then discussed the dependent variable and the independent variables in
the experiments, following by three open source Java subject programs we have selected.
Finally, we presented the three RTS techniques implemented for the experiments.

Based on the experiments setup defined in this chapter, we discuss the results of inves-
tigating RQ1 and RQ2 in Chapter 5 and RQ3 in Chapter 6.
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Chapter 5

Results and Analysis

As the first step of our experiments, we focus on understanding the prediction error of the
original RW model. In this chapter, we present and discuss the results of pursuing the first
two research questions we presented in Chapter 4.

RQ1 : What are the factors impacting the RW predictor’s accuracy?

RQ2 : Does a model exist to estimate the RW predictor’s prediction error?

We start the chapter by discussing experiments results of Study 1 and Study 2, then
perform a causal relation analysis to gain further understanding of the results. At the end,
we discuss lessons learned from the two studies and threats to validity.

5.1 Study 1 - General Prediction

5.1.1 Obtained Results on Impacting Factors

Based on the procedures and equations outlined in Section 4.1, we computed the deviation,
DMi

, of the actual percentage of test cases selected by technique M from the predicted test
selection percentage. For the purpose of visually compare the prediction performance
between different test subjects, we calculated average absolute deviation DM as follows:

DM =

∑n
i=1 |DMi

|
n

(5.1)
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where i is the version number, n is the version number of the last version.

It’s noteworthy that the version number starts from 0 and all test cases in version 0 are
executed for the first time. Regression test selection only starts from version 1 therefore in
our equation above, i starts from 1. Also it’s worth mentioning that our dependent variable
is deviation, which has positive and negative values. The average absolute deviation is only
calculated for the purpose of presenting the results on a chart.
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Figure 5.1: Average Absolute Deviation - General Prediction

Figure 5.1 shows the results of average absolute deviation DM when the RW predictor
is used as a general predictor. The x-axis label of Figure 5.1 indicates the test subject,
build type, and test suite type combination. Test subject is one of the subject names listed
in Table 4.2; build type is either releases or snapshots build; test suite type is either TC
for test class or TM for test method. The y-axis is the average absolute deviation of each
test subject, build type and test suite type combination. For each combination, there are
three bars in the graph represent the average absolute deviation DM of the three RTS
techniques.

39



The prediction deviation in Figure 5.1 shows that, for some test subjects and techniques,
the RW predictor was quite successful. For example, for jacoco-core-snapshots-TM, the
average absolute deviations of all three RTS techniques are less than 10%. For jacoco-core-
snapshots-TC, the average absolute deviations of all three RTS techniques were are less
than 15%. Clearly for these test subjects, the RW predictor produced good enough predic-
tion on test selection percentages. However, Figure 5.1 also shows that absolute deviations
are high for some test subjects. The RW predictor was not successful with apache-solr-core-
releases on td stm technique and apache-xml-security-releases-TM on td stm technique as
the deviations are close to 70%. For these test subjects, the RW predictor’s prediction
values deviate from the actual values significantly.

To understand this performance difference of the RW predictor on different test subjects
and RTS techniques, we applied the procedure in Algorithm 1 to compute the values of all
dependent variable (i.e. deviation) and independent variables (i.e. impacting factors). The
result of Algorithm 1 is composed into a table to perform regression analysis in MATLAB.
The table consists of a unique row identifier as the first column, 4 columns for the factors we
defined in Table 4.1, then follow MATLAB’s convention, the dependent variable deviation
as the last column. We imported the table, which has total of 276 rows and 6 columns,
into MATLAB as a dataset array and then applied fitlm function to fit a linear regression
model to the data. We used robust fit method, which is little affected by outliers.

The result of the fitting model from MATLAB regression analysis is shown in Fig-
ure 5.2. More details to help with interpreting the regression analysis result are as follows:

Linear regression model (robust fit): 
    Deviation ~ [Linear formula with 5 terms in 4 predictors] 
 
Estimated Coefficients: 
                                    Estimate     SE        tStat      pValue     
    (Intercept)                       0.1128    0.0463     2.4378     0.0154 
    f1_entity_change_percentage       0.0052    0.0009     5.7019     3.1022e-08 
    f2_element_change_percentage     -0.0293    0.0173    -1.6948     0.0913 
    f3_Num_tests_per_entity           0.0011    0.0002     6.6585     1.5415e-10 
    f4_RTS_technique_td_src          -0.0948    0.0529    -1.7922     0.0742 
    f4_RTS_technique_cf_ext          -0.0630    0.0543    -1.1590     0.2475 
 
Number of observations: 276, Error degrees of freedom: 270 
Root Mean Squared Error: 0.28 
R-squared: 0.214, Adjusted R-Squared 0.2 

Figure 5.2: Fitting Model - General Prediction
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• Estimate Coefficient estimates of each corresponding term in the model. For exam-
ple, the estimate for the constant term (intercept) is 0.1128. It is an estimate because what
we really interested in is the coefficient values of the population. However, we don’t have
access to the entire population. In this case, population is all test subjects that the RW
predictor could be applied to, which is infinite. We must estimate the coefficient values
based on a sample, which is the three test subjects we selected in the experiment. The size
of the coefficient for each independent variable gives indication of the size of the effect that
each variable is having on the dependent variable. And the sign of the coefficient(positive or
negative) gives the direction of the effect. In Figure 5.2, factor f1 entity change percentage
has higher coefficient estimate than factor f3 Num tests per entity indicating f1 has higher
impact to the deviation than f3. Also factor f1 and f3 both have positive effects on the
independent variable, i.e. while other independent variables are hold constant, the higher
the entity change percentage that higher the deviation; the higher the Num tests per entity
the higher the deviation.

• SE Standard error of the coefficients. Because of sample variability, the coefficients
estimates may be too high or too low from the corresponding population parameters. The
standard error gives indication of the degree of variation. Larger SEs mean lower confidence
in coefficient estimate. In Figure 5.2, SE values for factor 1 and factor 3 are much less than
other factors which indicates good confidence in estimated coefficient values for f1 and f3.

• tStat t-statistic for each coefficient to test the null hypothesis that the corresponding
coefficient is 0 against the alternative which is different from 0. The null (default) hypoth-
esis is that each independent variable is having absolutely no effect, i.e. real coefficient is
0 and the coefficient estimates appear to be non-zero due to random chance. Note that
t-statistic is the coefficient divided by its standard error. i.e.
tStat = Estimate/SE. If the coefficient is large compared to its standard error, then it is
probably different from 0, i.e. we can reject the null hypothesis. In Figure 5.2, the t-
statistic for f1 and f3 are 5.7019 and 6.6585 which indicates that these two factors do have
impact on the deviation, and the non-zero coefficient estimates are not due to a random
chance.

• pValue p-value for the F-statistic of the hypotheses test that the corresponding co-
efficient is equal to 0 or not. Small p-value indicates strong evidence against the null
hypothesis (i.e. the independent variable has absolutely no effect), so you reject the
null hypothesis. The result shows that pValues for factor f1 entity change percentage
and f3 Num tests per entity are rather small, much smaller than 0.01. In fact, they
are a few orders of magnitude less than 0.01. This indicates that these two factors

41



are likely the impacting factors of the observed deviation. On the other hand, factor
f2 element change percentage and f4 RTS technique have pretty high pValues indicating
that these two are not the main factors impacting deviation and may not be necessary in
the regression model.

• Number of observations Number of rows without any NaN (i.e. Not a Number)
values. The total number of combinations between test subject, build type, test suite type
and RTS technique is 276, therefore we have 276 observations.

• Error degrees of freedom n− p, where n is the number of observations, and p is
the number of coefficients in the model, including the intercept. In the result, the model
has six coefficients, so the Error degrees of freedom is 276 - 6 = 270.

• Root mean squared error Square root of the mean squared error, which estimates
the standard deviation of the error distribution.

• R-squared and Adjusted R-squared R2 is a statistic that gives some information
about the goodness of fit of a model. In regression, the R2 coefficient of determination
is a statistical measure of how well the regression line approximates the real data points.
An R2 of 1 indicates that the regression line perfectly fits the data. In the result, the
R-squared value suggests that the model explains approximately 21.4% of the variability
in the dependent variable.

To visually understand the effects of factor f1 and f3, we plotted a colour coded scatter
plot in Figure 5.3. The x-axis of the graph is the percentage of entity changed (factor
f1), and y-axis of the graph is the average number of tests per entity (factor f3). The
absolute deviation is presented by colour, where red is high deviation, blue is low deviation.
Figure 5.3 contains entire 276 data points including data from all test subjects, versions
and techniques. Figure 5.3 shows that most of the blue markers are clustered at the left
bottom corner where both factors have small values. This suggests that the RW predictor
predicts closer to the actual value when the the percentage of entity changed is small and
the average number of tests per entity is also small. As either x or y increases, there are
more green and red markers which suggests increased deviation.

We have also plotted a scatter chart for Jacoco-core test subjects separately to visually
display an ideal case. Figure 5.4 shows the distribution for Jacoco test subjects only. It
contains data points from Jacoco-core releases and snapshots build for all RTS techniques.
We can see from Figure 5.4 that most of the markers are blue or blueish, indicating low
deviation values. In addition, we can also see clearly that as either x or y increases in
the plot, data point colours are getting closer to red, which strongly suggests the impact
of f1 and f3 to the deviation. The pattern in Figure 5.4 is not surprising as we known
Jacoco employed test driven development methodology and its code coverage is very high.
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Figure 5.3: Scatter Plot - All
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Figure 5.4: Scatter Plot - Jacoco-core
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Jacoco builds on every commit which may help to keep the percentage of entity changes
low. One hypothesis is that their development process may have encouraged developers to
write independent and well-decomposed unit tests which would keep the number of test
per entity low.

5.1.2 Obtained Results on Regression Functions

To obtain a simplified regression function, we excluded factor f2 and f4 from the input
table, and then created a linear regression model using stepwise regression with stepwiselm
function in MATLAB. The result of the analysis is a new fitting model. The new model
and its coefficients are presented in Figure 5.5.

Linear regression model: 
    y ~ 1 + x1 + x2 + x1^2 
 
Estimated Coefficients: 
                   Estimate      SE            tStat      pValue     
    (Intercept)      0.029922      0.024837     1.2048    0.22934 
    x1               0.011923     0.0022025     5.4136    1.3572e-07 
    x2             0.00086727    0.00015579     5.5669    6.2151e-08 
    x1^2           -9.887e-05    2.7214e-05    -3.6331    0.00033468 
 
Number of observations: 276, Error degrees of freedom: 272 
Root Mean Squared Error: 0.267 
R-squared: 0.207, Adjusted R-Squared 0.198 

Figure 5.5: Regression Function - General Prediction

The coefficient for x21 is very small so we removed it from the regression function. We
also round all coefficients to four decimal places. The simplified regression function is

ŷ = 0.0299 + 0.0119x1 + 0.0009x2

(5.2)

where ŷ is the estimated prediction error, x1 is the entity change percentage, x2 is the
average number of tests per entity.
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5.2 Study 2 - Version-specific Prediction

5.2.1 Obtained Results on Impacting Factors

Figure 5.6 shows the results of average absolute deviation DM based on procedures and
equations outlined in section 4.2 when the RW predictor is used as a version-specific pre-
dictor. Similar to the results of Study 1, the graph shows that for some test subjects and
techniques, e.g., jacoco-core-snapshots-TM and jacoco-core-snapshots-TC, the RW pre-
dictor was quite successful. However, for some other test subjects and techniques, e.g.,
apache-solr-core-release-TM on td stm technique, the RW predictor was not successful.

Figure 5.6: Average Absolute Deviation - Version-specific Prediction

Following the procedure in Algorithm 2, we computed the values of all factors and cre-
ated a table for further analysis in MATLAB. The table consists of a row identifier column,
4 columns for the factors we defined in table 4.1 and the dependent variable deviation as
the last column. The results from MATLAB fitlm function is shown in Figure 5.7.
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Linear regression model (robust fit): 
    Deviation ~ [Linear formula with 5 terms in 4 predictors] 
 
Estimated Coefficients:  
                                    Estimate     SE        tStat      pValue     
    (Intercept)                       0.1034    0.0460     2.2467    0.025467 
    f1_entity_change_percentage       0.0057    0.0009     6.2040    2.0598e-09 
    f2_element_change_percentage     -0.0296    0.0172    -1.7256    0.085571 
    f3_Num_tests_per_entity           0.0012    0.0002     7.1692    7.2314e-12 
    f4_RTS_technique_td_src          -0.0913    0.0526    -1.7352    0.083853 
    f4_RTS_technique_cf_ext          -0.0644    0.0540    -1.1923    0.23419 
 
Number of observations: 276, Error degrees of freedom: 270 
Root Mean Squared Error: 0.278 
R-squared: 0.242, Adjusted R-Squared 0.228 

Figure 5.7: Fitting Model - Version-specific Prediction

Figure 5.7 shows the pValues for f1 entity change percentage and f3 Num tests per entity
are quite small, much smaller than 0.01. This indicates that f1 and f3 are likely the impact-
ing factors to the deviation. Similarly, factor f4 RTS technique and f2 element change percentage
are likely not the factors impacting the deviation as their pValues are pretty high.

5.2.2 Obtained Results on Regression Functions

Similar to Study 1, we used stepwiselm function to get a simplified regression function.
The result is shown in Figure 5.8.

Linear regression model: 
    y ~ 1 + x1 + x2 + x1^2 
 
Estimated Coefficients: 
                   Estimate       SE            tStat      pValue     
    (Intercept)       0.021273      0.024778    0.85855       0.39135 
    x1                0.012823     0.0021973      5.836    1.5172e-08 
    x2              0.00091193    0.00015542     5.8675    1.2824e-08 
    x1^2           -0.00010489    2.7149e-05    -3.8637    0.00013971 
 
 
Number of observations: 276, Error degrees of freedom: 272 
Root Mean Squared Error: 0.267 
R-squared: 0.232, Adjusted R-Squared 0.224 

Figure 5.8: Regression Function - Version-specific Prediction
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After rounding the coefficients, the obtained regression function when the RW predictor
is used as version specific predictor is :

ŷ = 0.0213 + 0.0128x1 + 0.0009x2

− 0.0001x21 (5.3)

where ŷ is the estimated prediction error, x1 is the entity change percentage, x2 is the
average number of tests per entity.

5.3 Causal Relation Analysis

Linear regression analysis of the dependent variable and the independent variables in Study
1 and Study 2 revealed an interesting relationship between the RW predictor’s accuracy
and its impacting factors. Both studies suggested that f1 entity change percentage and
f3 Num tests per entity are impacting factors to the deviation. However, a correlation
between two variables does not directly imply cause and effect relationship. We perform
informal casual analysis below to reason the relationship we discovered in our studies.

• f1: percentage of entity changed. Recall in Section 2.2.1, we discussed that
Rosenblum and Weyuker made two important assumptions in the RW prediction model.
One of the assumptions is that there is only single entity changed between two versions.
It is reasonable to assume that the RW predictor works the best when there is exactly one
entity changed and the deviation increases as the percentage of changed entities increases.

• f2: average number of tests per entity. Average number of tests per entity
represents the degree of code coverage overlaps between test cases. In an ideal code coverage
relation, each entity is covered by one and only one unique test case and there is no coverage
overlap between test cases. In this situation, the Coverage Matrix can be arranged into
a diagonal matrix in which the elements on the main diagonal are all one and elements
outside of main diagonal are all zero. Element Ci,j of an ideal Coverage Matrix CI is
defined as

CI
i,j =

{
1 if i equals j
0 otherwise

(5.4)

In an ideal coverage relation, RTS technique will always select one test case if there is only
one entity changed, so the actual selection percentage is 1/|T |. Since there are only ones
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on the main diagonal of the Coverage Matrix, cumulative coverage CC, which is the sum
of all ones in the coverage matrix, equals number of covered entity |EC |. Given

CC = |EC | (5.5)

Predicted percentage can be simplified into

πM =
CC

|EC ||T |
(5.6)

=
1

|T |
(5.7)

which is exactly the actual selection percentage. So in an ideal code coverage relation,
the deviation between the RW predictor predicted percentage and actual percentage is
zero. As the coverage overlap between test cases increases, the predicted percentage starts
to deviate from actual and deviation increases.

5.4 Lessons Learned

The research results from the two studies suggest the following for the industry practition-
ers:

• RQ1 : Impacting Factors. In both studies, we have shown that the pValues of
factor 1 and 3 are very small which indicate that percentage of entity changed and average
number of tests per entity are the factors impacting the RW predictor’s accuracy. This
suggests that organizations already applied Continuous Delivery practices are likely to
find the RW predictor performs well on their projects, as Continuous Delivery practices
often result in small amount of code changes between revisions which improves the RW
predictor’s accuracy. On top of that, organizations have processes in place to promote
independent and well-decomposed tests should be encouraged to adopt the RW predictor,
as well-decomposed tests often result in low number of test per entity which improves the
RW predictor’s accuracy.

• RQ2 : Regression Functions. We have presented regression function 5.2 and 5.3
which model the RW’s prediction error. In practice, these regression functions can help
test mangers to gain a better understanding of the confidence level of the prediction. A
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low ŷ value indicates good confidence in RW’s prediction; A high ŷ value indicates that the
RW predictor may not perform well for the subject program and an alternative method
need to be pursued.

5.5 Threats to Validity

The section describes the threats to the validity of our study and the approaches we used
to limit their effects.

5.5.1 Construct Validity

The dependent variable deviation is not the only way to measure the difference between
predicted value and actual value. Future research should experiment with deviation and
mean squared error. Also, the RW prediction error is measured by the difference in actual
and predicted percentage which is relative to the size of the test suite. Care has been taken
to select experiments with different test suite size. Furthermore, there is no definitive way
to determine what is counted as a test case. We have experimented to use each test class
as a test case and each test method as a test case. However, random inspection reveals
that some unit test methods contain multiple assertions. Potentially each assertion could
also be count as a test case which will change the coverage relation and test suite size.

5.5.2 Internal Validity

Linear regression analysis of dependent and independent variables may reveal interesting
relationship between some factors and deviation. However, it may not indicate a cause
and effect relationship. We have taken the effort in section 5.4 to analyze the reasoning
behind the relationship we discovered in our study. Four potential factors are selected as
independent variables in our studies. However, the selection of factors is not systematic,
nor comprehensive. The factors we selected is biased on what we know about the internal
implementation of the RW predictor. Future studies with additional factors may help
validate our results.
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5.5.3 External Validity

We have selected test subjects from a range of size (5k-80k LOC), applications, development
processes, and different repositories. However these subjects do not represent the entire
range of size and complexity of real world software applications. Replicating this study on
real industry software may reveal different relationships between dependent variable and
independent variables.

Moreover, the RW predictor is highly dependent on the Coverage Matrix and the Cov-
erage Matrix is generated by executing test cases on test subjects. Special care must be
taken to ensure test cases are not created to generate a specific coverage pattern in the first
place. We have taken the effort to understand the test cases creation processes of our test
subjects. As far as we know by reading test subjects’ wiki pages, release notes and readme
files, these test cases are real function test cases developed by the original development
teams and they were not generated by any tools or for any special purpose other than
functional testing.

We have implemented three RTS techniques in our study and the test selection percent-
ages from these three implemented techniques are considered actual values. However, RTS
techniques rely on a range of tools to parse source code, collect code coverage, and analyze
change information. Same RTS technique implemented with different tools may produce
different “actual” values. To mitigate this risk, we designed the PRIME framework to be
extensible so that same RTS techniques implemented with different tools, same techniques
implemented by other researchers, or other RTS techniques can all be plugged into the
framework to further validate our experiments.

5.6 Summary

In this chapter, we presented and discussed experiment results around the first two research
questions raised in Chapter 4. Through the experiments, we identified two impacting
factors to the RW predictor’s accuracy and we successfully modelled the RW prediction
error with a linear function. We also reasoned that the correlation observed between
impacting factors and deviation is likely a cause and effect relationship. We then suggested
some actions for organizations in practice in order to improve the RW predictor’s accuracy.
Lastly, we discussed the threats to validity of our studies.

Since we have the functions to estimate the RW prediction error, the natural next
step is to use the error functions to estimate the RW prediction errors on other subject
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programs. In the next chapter, we present an improved RW predictor utilizing the error
estimation functions, alongside with two other improvements to the RW predictor.
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Chapter 6

Improved RW Prediction Models

In Chapter 5, we focused on studying the existing RW predictor’s performance by un-
derstanding its impacting factors and estimating its prediction errors. The purpose of
studying the RW predictor’s performance is to improve it. In this chapter, we present
three improved RTS prediction models extended from the original RW prediction model.
The first two improved models are proposed by us while the last model was originally
proposed by Harrold et al. [15] but it was never evaluated. Since we have implemented
the PRIME framework to evaluate RTS predictors, we take the opportunity to evaluate
Harrold’s improved predictor together with the predictors we proposed. In the following
sections, we discuss the improved prediction models then compare their performance with
the original RW prediction model.

6.1 Improved Predictor: Utilizing the Error Estima-

tor

In Chapter 5, we presented two linear functions modelling the RW prediction errors in
Equation 5.2 and 5.3. These models are the results of regression analysis of the RW
prediction errors on test subjects listed in Table 4.2. If these regression functions are good
estimation of the RW prediction errors, we can utilize them to estimate the RW prediction
errors of other programs. In this section, we present an improved predictor utilizing the
error estimators and conduct experiments to evaluate its effectiveness.
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6.1.1 The Improved Predictor

By performing regression analysis of the RW prediction errors, we have created the follow-
ing two error estimators:

• the RW prediction error when it is used as a general predictor can be estimated by:

ŷ = 0.0299 + 0.0119x1 + 0.0009x2

(6.1)

• the RW prediction error when it is used as a version-specific predictor can be estimated
by:

ŷ = 0.0213 + 0.0128x1 + 0.0009x2

− 0.0001x21 (6.2)

where ŷ is the estimated prediction error, x1 is the entity change percentage, x2 is the
average number of tests per entity.

Then we define the improved RW predictor utilizing the error estimator as:

Πe
M = πM + ŷ (6.3)

where

Πe
M is the percentage of test cases that the improved predictor predicts will be selected

by RTS technique M

πM is the percentage of test cases that the RW predictor predicts will be selected by RTS
technique M

ŷ is the estimated RW prediction error

The procedures to compute Πe are similar to the procedures outlined in Section 4.1
and 4.2 with some minor changes. Rather than computing values of all factors, we only
compute entity change percentage and num test per entity as the error estimators only
require these two factors as input. For entity change percentage, we simply use the average
of entity change percentage of all previous versions to predict the value of current version.
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For num test per entity, it is calculated using the Coverage Matrix of the previous version.
Detail description of these two factors can be found in Section 4.3.

Since the error estimators are created from the evaluation of test subjects listed in
Table 4.2, we can not use the same subjects to evaluate this improved predictor again. We
extract apache-ant from SIR repository and list it below in Table 6.1.

Apache-ant is a Java based build tool supplied by Apache project. Versions used in this
study map to Apache Ant original version 1.2 to 1.6 developed between Oct 2000 and Oct
2003. We use JUnit test cases supplied by original developers without any modification.

Table 6.1: Additional Test Subject Program

Subject
Name

Description
Lines
of
Code

Num.
of
Classes

Repository
Num. of
Versions

Num. of
Test Class
(Method)

apache-ant Java build tool 80,500 627 SIR 9 150(878)

In the next section, we present results of our evaluation on the improved predictor using
apache-ant as test subject.

6.1.2 Evaluation Results

Figure 6.1 shows results of comparing the average absolute deviation between the RW
predictor and the improved predictor when they used in general prediction. The average
absolute deviation of the RW predictor shows as purple bars in the chart; The average
absolute deviation of the improved predictor shows as blue bars in the chart. Figure 6.1
shows that blue bars are lower than purple bars in four out of six cases which indicates
that the improved predictor has less absolute deviation than the original RW predictor. In
the other two cases, the improved predictor’s performance is still as good as the original
RW predictor’s performance.

Similarly, Figure 6.2 shows results of comparing the average absolute deviation between
the RW Predictor and the improved predictor when they are used in version-specific predic-
tion. The results show that the improved predictor has less deviation than the original RW
predictor in five out of six cases. In the other case, the improved predictor’s performance
is still as good as the original RW predictor’s performance.

In general, we observe similar performance improvement of the improved predictor in
general prediction and version-specific prediction. The evaluation results demonstrate that
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Figure 6.1: Comparison of Average Absolute Deviation - RW Predictor vs. Improved
Predictor - General Prediction
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Figure 6.2: Comparison of Average Absolute Deviation - RW Predictor vs. Improved
Predictor - Version-specific Prediction
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by utilizing the error estimators, the prediction performance can be improved. The three
cases where the improved predictor does not perform better than the RW predictor are all
with the cf ext technique. In the next section, we present an improved predictor specific
for the cf ext technique.

6.2 Improved Predictor: Incorporating Class Depen-

dencies

In Section 2.2.1, we have presented the RW predictor equation as follows:

πM =
CC

|EC ||T |
(6.4)

where

πM is the RW predicted percentage of test cases will be selected by technique M

CC is the sum of all ones in the coverage matrix

|EC | is the number of covered entities

|T | is the size of the test suite.

In this RW predictor equation, both CC and |EC | are computed from the coverage
matrix. Since one test suite covers a fix set of entities, the coverage matrix of a particular
code entity level (e.g., statement, basic block, method and class) should remain constant.
Therefore, two RTS techniques operate on the same code entity level would have the same
predicted test selection percentage based on the RW predictor equation above. However,
in reality, different RTS techniques often select different test cases, therefore have different
test selection percentages. As we discussed in Section 4.5.2, Class Firewall technique
(cf ext) takes into consideration the dependency information between classes. In addition
to select test cases cover modified classes, cf ext also selects test cases cover classes directly
or transitively dependent on the modified classes. In this section, we present an improved
RW predictor tailored for cf ext technique. We then conduct experiments to demonstrate
that the improved RTS technique-specific predictor outperforms the original RW predictor
on cf ext technique.
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6.2.1 The Improved Predictor

Take a hypothetical Coverage Matrix in Figure 6.3a as an example, the Coverage Matrix
represents the coverage relation between program P , which contains 3 classes c0, c1, c2, and
test suite T , which contains 4 test cases t0, t1, t2, t3. Each one in the matrix indicates the
entity is covered by the test case of the corresponding column, while each zero indicates
the entity is not covered by the test case. Based on Equation 2.6, Cumulative Coverage
CC is 6, size of test suite |T | is 4 and the number of covered entity |EC | is 3. The original
RW predictor predicts the percentage of test cases will be selected is 6/(3 ∗ 4) which is
50%.

 c0 c1 c2 

t0 1 0 0 
t1 0 1 0 
t2 0 0 1 
t3 1 1 1 

 
(a) Original RW Predictor’s Coverage
Matrix

 c0 c1 c2 

t0 1 1 0 
t1 0 1 0 
t2 0 0 1 
t3 1 1 1 

 
(b) Coverage Matrix Combining De-
pendency Information

Figure 6.3: An Example Coverage Matrix

Now assume that based on class dependency analysis, we know c0 depends on c1
(c0 → c1). Since c0 depends on c1, change in c1 could potentially impact c0’s functionality.
When c1 is changed, cf ext technique would also select all test cases cover c0 for regression
test in order to make sure c0’s functionality is not negatively impacted by the change.
Therefore, the cf ext RTS technique would first select t1 and t3 to cover c1 , then select t0
and t3 which covers c0. So the total percentage of tests actually selected by cf ext is 3/4
which is 75%. In this case, the deviation between actual and RW predicted percentage is
25%.

To improve the RW predictor, we propose an algorithm to merge the class dependency
information into the Coverage Matrix. We copy all the ones from column c0 into column
c1 to create a new Coverage Matrix shows in Figure 6.3b. Cumulative Coverage CC of
the new Coverage Matrix is 7 and the predicted percentage by the improved predictor is
7/(3∗4) which is 58%. The deviation of the improved predictor is 17% which has improved
from the original RW predictor’s deviation of 25%.

Formally, we define Algorithm 3 to transform a Coverage Matrix to a new Coverage
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Matrix that merges all class dependency information. The predicted percentage of test
cases will be selected by cf ext technique is:

Πcf ext =
CCcd

|EC ||T |
(6.5)

where

Πcf ext is the percentage of test cases that the improved predictor predicts will be selected
by RTS technique cf ext

CCcd is the cumulative coverage of the Coverage Matrix combining dependency informa-
tion

|EC | is the total number of covered entities

|T | is the number of tests in the test suite

Algorithm 3 Merge dependency information into coverage matrix

1: for all class c in the columns of Coverage Matrix C do
2: Dependentc ← find all inbound dependencies of c including transitively dependent

classes
3: for all c′ ∈ Dependentc do
4: for all test case t in the rows of C do
5: if coversM(t, c′) = 1 then
6: coversM(t, c)← 1
7: end if
8: end for
9: end for

10: end for

Once the new Coverage Matrix combining dependency information is created, we follow
the same procedures as Study 1 and Study 2 to evaluate this improved predictor. The
results of our evaluation are presented in the next section.
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6.2.2 Evaluation Results

We have performed evaluation of the improved predictor incorporating class dependency
on test subjects listed in Table 4.2. Since the improvement is for Class Firewall technique
only, we compare the performance of the improved predictor with the RW predictor on
cf ext technique. Figure 6.4 shows the comparison of average absolute deviation between
the RW predictor and the improved predictor when both are used as general predictor.
The result shows that the improved predictor outperforms the RW predictor in nine out
of ten cases. Notable improvement is observed on apache-xml-security-releases-TC where
the deviation has been reduced from 26.3% to 5.7%.
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Figure 6.4: Comparison of Average Absolute Deviation - RW Predictor vs. Improved
Predictor Incorporating Class Dependency- General Prediction

Similarly, Figure 6.5 shows the the comparison of average absolute deviation between
the RW predictor and the improved predictor when both are used as version-specific pre-
dictor. The result shows that the improved predictor outperforms the RW predictor in
eight out of ten cases.

Note in Algorithm 3 that finding Dependentc for all classes is computationally expen-
sive. However, this is also the first step in the Class Firewall technique. In practice,
class dependencies only needs to be computed once and the results are first used by the
improved predictor then used by the Class Firewall technique. So there is no additional
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Figure 6.5: Comparison of Average Absolute Deviation - RW Predictor vs. Improved
Predictor Incorporating Class Dependency- Version-specific Prediction

overhead to apply this improved predictor. Based on our experimental results, we believe
incorporating class dependencies does improve the RW prediction performance. Moreover,
this experiment opens up a new direction of creating RTS technique-specific predictors. As
the field of Regression Test Selection evolves, new RTS techniques are being proposed and
evaluated. We believe there should be a co-evolvement of RTS predictors to incorporate
specific characteristic of individual RTS techniques.

6.3 Improved Predictor: Incorporating Change Fre-

quency

The last improvement on the RW predictor was proposed by Harrold et al. [15] which
we have discussed in Section 2.2.2. Authors proposed an improved prediction model to
incorporate relative frequency of changes to the covered entities. Due to the limitation in
SIR repository, test subjects in SIR do not have change history information therefore this
improved predictor was not evaluated.

Since we extracted apache-solr-core and jacoco-core directly from version control sys-
tem, we were able to get the change histories of entire development life time of these two
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subjects. We use git log and svn log command to fetch all the commits from the beginning
of the projects to the current revision. The output of the commands lists which file is
added, modified or deleted on each commit. We parse through the command outputs to
increment the change counter for a source file whenever the file is modified or deleted. The
change frequency of a source file entity is computed by its number of changes over the total
number of changes of all source entities. This guarantees that the sum of change frequency
of all source file entities is one.

Once we have the change frequency of each source file entity, similar to previous studies,
we conduct two studies to evaluate this improved predictor both as general predictor and
version-specific predictor. In the following section, we discuss the evaluation results of this
improved predictor.

6.3.1 Evaluation Results

Figure 6.6 shows the comparison of average absolute deviation between the original RW
predictor and the improved predictor incorporating change frequency when the predictor
is used as general predictor. The results show the improved predictor has less deviation
than the orignal RW predictor. The blue bars are lower than the purple bars in all cases.
However, the results also show that the improvement is insignificant. The performance
difference between the two predictors are less than 1% in all cases.

Similarly, Figure 6.7 shows the comparison of average absolute deviation between the
original RW Predictor and the improved predictor incorporating change frequency when
the predictor is used as version-specific predictor. We can see similar trend as in Figure
6.6 that the improved predictor performs better than the original RW predictor in all cases
though the performance improvement is not significant.

6.4 Summary

In this chapter we presented three improvements to the RW predictor and our evaluation
shows that all three improved predictors outperformed the original RW predictor in most
cases. This is very encouraging as, from research point of view, it opens up many research
directions. For example, we can evaluate more subject programs to improve the error
estimators; We can research RTS techniques to develop more technique-specific predictors;
Or we can take advantage of existing research on change location prediction to generate
more accurate weight values. In Section 7.2, we discuss our future works in more details.
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Figure 6.6: Comparison of Average Absolute Deviation - RW Predictor vs. Improved
Predictor Incorporating Change Frequency- General Prediction
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Our evaluation results of the improved predictors are also very encouraging to industry
practitioners. Depending on organizations development processes, test engineers may adopt
one of the improved predictors or a combination of the three. For an organization already
has experience with the RW predictor and has been tracking the deviation between actual
and predicted percentage over time, it is straightforward to build a regression model to
estimate the RW prediction error. Then the improved predictor utilizing the error estimator
is probably the best choice. For an organization using the Class Firewall RTS technique,
the improved predictor incorporating class dependencies is a good choice as we see visible
performance improvement from our evaluation results. For an organization develops a
product over a long period of time, the improved predictor incorporating change frequency
is also a good pick as change frequency can be extracted from configuration management
system fairly easily. Moreover, if an organization has history data with the RW predictor,
uses Class Firewall technique and maintains change history data, it can use the combination
of all three improved predictors. As one of the proposed future works suggests, we may
evaluate the effectiveness of such scenario and provide additional data for industry to adopt
these predictors.
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Chapter 7

Conclusions and Future Works

In this chapter, we first summarize this thesis and then we discuss potential future direc-
tions to extend this work.

7.1 Conclusions

In this thesis, we presented results from two set of experiments that were designed to study
the performance of the Rosenblum-Weyuker (RW) prediction model for predicting the per-
centages of test cases selected by RTS techniques. For this purpose, we implemented three
RTS techniques from the literature and evaluated the performance of the RW predictor
on a selected set of Java test subjects. In order to study the high deviation in the RW
prediction performance, we considered a set of four factors that could potentially impact
the prediction performance. Among the studied factors, we concluded that the amount
of code changes and code coverage overlaps between test cases are two factors that actu-
ally contribute to the RW performance. Through regression analysis on these factors, we
proposed two linear models to estimate the RW prediction errors.

The study of impacting factors and the RW prediction errors opens up opportunities to
come up with improved RTS prediction models. We proposed an improved RW predictor
utilizing the error estimator and an improved RW predictor incorporating class dependen-
cies. The evaluation results shown that both improved predictors perform better than the
original RW predictor. In addition, we evaluated the improved RW predictor incorporat-
ing change frequency which was proposed by Harrold et al. Our evaluation demonstrated
Harrold’s improved RW predictor also preform better than the original RW predictor.
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7.2 Future Works

“A journey of a thousand miles begins with a single step”. In our view, this work is just the
first step of a long journey. We looked at the cause of errors of existing prediction models
and proposed a few improvements. However, prediction is a hard problem and there are
still a lot more we can do to improve the prediction models. In this section, we discuss our
thoughts on several future directions.

7.2.1 RTS Predictors

In this work, we have demonstrated the effectiveness of three improved predictors based
on the RW predictor. There are continuing research we’d like to work on in the following
areas:

• Improved predictor: utilizing the error estimator Our error estimators are
built from the release and snapshot versions of three test subjects. We’d like to evaluate
additional test subjects to further enhance the accuracy of the error estimators. Evaluate
test subjects of different code size, test suite size and development process would further
improve the error estimators.

• Improved predictor: incorporating class dependencies We’d like to develop
more technique-specific RTS predictors to incorporate characteristics of individual RTS
techniques. As the field of Regression Test Selection evolves, new RTS techniques are being
proposed and evaluated. We believe there should be a co-evolvement of RTS predictors.

• Improved predictor: incorporating change frequency We have used the aver-
age change frequency as weight in this predictor. As a future work, we can take advantage
of existing research on change location prediction to generate more accurate weight values.
Ideally, the weight factor should reflex the likelihood of a particular entity being changed
in the next revision. In addition to the change history, weight factor could also incorporate
information such as code complexity, defect patterns and requirement changes.

• Combination of the three improved predictors As discussed in Section 6.4, it
is possible to combine several predictors. We’d like to evaluate such scenario by combining
all improved predictors and evaluate its performance.

The end goal of this research is to come up with more accurate RTS predictors. Rosen-
blum and Weyuker proposed the RW predictor with a constraint in mind that it should
be simple as it does not make economical sense if the cost of prediction is great than the
savings (i.e. execution cost of test cases not selected for regression). However, knowing is
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power. From project planning and management prospective, there is huge benefit of know-
ing how many test cases would be selected for regression therefore knowing how much effort
the regression testing would need. Also as the computing power increases and computing
cost decreases, even complex prediction models can be computed in short period of time
and low cost. In the future, we’d like to work on new RTS predictors taking advantage
of emerging techniques in prediction models domain. We definitely would like to develop
prediction models taking into account the amount of code changes and number of test cases
per entity, as these are the impacting factors we identified from this work.

Another future research work is to extend the RW prediction models by incorporating
techniques from software change prediction domain. Previous work such as one proposed
by Amoui et al. in [1] could help to predict the number of changes and the locations of
changes. Change prediction models would enable us to create new RTS predictors consider
multiple entity changes which would make the RTS predictors applicable to a wide range
of development processes.

7.2.2 Prediction Models Performance Evaluation Framework

Another line of future work is to utilize the RTS PRIME Framework to conduct more
studies. Here are several areas we could explore related to the framework:

• Test Subjects It’s fairly straightforward to add new test subjects from SIR, GitHub
or Apache SVN into the PRIME framework. With reasonable effort, the PRIME framework
can also extract test subjects from other repositories, including open source repositories and
proprietary repositories. Evaluate prediction models performance with more test subjects
could help us to confirm the factors impacting RW prediction accuracy and may also
improve our error estimators. Particularly, programs with long development history and
industry software applications would be very interesting test subjects.

• RTS techniques Regression Test Selection is an active research area. There are lots
of RTS techniques exist in the literature and there are also emerging RTS techniques. Our
framework contains implementation of three RTS techniques which build the foundation
of additional RTS techniques. Though the focus of our framework is to evaluate prediction
models performance, with some modification, it can be used to evaluate RTS technique’s
based on some different performance metrics.

• Impacting Factors In our study we considered four factors potentially contributing
to the RW prediction error and through regression analysis two factors were identified as
impacting factors. There are likely more factors could be considered. In the future, we’d
like to create an expanded list of factors and conduct similar studies on these factors.
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7.2.3 Framework Performance Improvements

The performance of PRIME framework has room of improvement. For example to evaluate
apache-ant-releases-TC, which has 80KLOC and 150 test cases, it takes about 2 hours to
complete the full evaluation on an Intel Core i7 machine with 8GB of RAM. This is mostly
because in the evaluation run, we apply all prediction models on all versions and on all
RTS techniques. With 4 prediction models, 17 version and 3 techniques, it is a combination
of 204 runs. If the framework were to use in real industry environment, it only needs to
predict once with one prediction model on one RTS technique. For example, in a regression
process similar to Figure 1.2, a general prediction model only need to be run once at the
beginning of the test cycle and that would dramatically reduce the time required to run
the prediction. Nevertheless, for the prediction models to be really useful in an industry
environment, the prediction is expected to take only seconds if not milliseconds to complete
so that it won’t add any delay to the existing processes. Here we outline several areas where
performance can be improved.

• Coverage Analysis In the PRIME Framework, we have tracked time spent on each
sub-process of the prediction. The results show that one of the major bottle necks is the
Coverage Analysis. In the Coverage Analysis step, the framework parses the coverage
reports generated by code coverage tool and builds the Coverage Matrix between test
cases and covered entities. In order to build the Coverage Matrix, we run each test case
separately and trigger a coverage dump after each individual test run. As a result, the
size of the coverage reports is a function of number of code entities multiplies the number
of test cases. In our study, we initially use EMMA code coverage tool1 to collect code
coverage. EMMA reports code coverage in plain text,XML or HTML format. However,
EMMA only reports statement coverage in HTML format which takes much more space
than the XML format. For apache-ant-releases-TC test subject, EMMA produces 700,000
HTML coverage reports files with total size over 11GB. Not only it consumes lots of disk
space but also it takes significant computing time to parse these files in order to create
Coverage Matrix. We later mitigate the problem by replacing EMMA with JaCoCo code
coverage tool which outputs statement coverage in XML format. The size of the coverage
report files has reduced to 1/5th of the size from EMMA and time taken to parse report
files has been reduced significant as well. However, ideally we’d like to extend JaCoCo code
to generate Coverage Matrix directly in memory which would eliminate the intermediate
step of generating and parsing XML files. We expect to change JaCoCo reporting module
so that it produces a binary list of zeros (not covered) and ones (covered) for the entire
entity set.

1http://emma.sourceforge.net/
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• Dependency Analysis In this thesis, we used Dependency Finder2 to extract in-
bound dependent and transitively inbound dependent classes of each covered class. Finding
transitive closure is a very expensive operation. In our study, Dependency Analysis takes
average of 91 seconds for each version of apache-ant-releases-TC. As a future work, we’d
like to explore other tools to reduce the computing time, memory consumption and improve
scalability.

Additionally, one area we’d like to explore in the future is to use GPU computing
to accelerate Coverage Analysis and Dependency Analysis on a single machine. Both
processes seem to consist of many independent processing tasks which are good candidates
for parallel programming.

7.2.4 Software Artifact Repository

Preparing test subjects for experiments is not a trivial task. It is very time consuming and
any minor mistake would invalidate the entire research work. Do, Elbaum and Rothermel’s
work on building an infrastructure to support controlled experiment of software testing
(SIR) has benefited many researchers over the years [11]. It is a great initiative to support
reproducible research. SIR contains many well known test subjects that have been used in
many RTS related experiments. Our initial plan was to take all test subjects from SIR but
due to some challenges, we eventually only used 2 test subjects from SIR and had to extract
other test subjects directly from GitHub and Apache SVN. We discuss our experience with
SIR below and outline future work in obtaining test subjects.

• Folder Structure: SIR repository is a collection of many test subjects and provides
valuable data for research. However, the repository is created and maintained manually.
Though artifacts of each test subjects are organized in a predefined folder structure, they
are not consistent and accurate enough for program to use. For example, versions di-
rectory exist in some test subjects but not in others; Compiled class files sometimes are
placed under build/classes directory, sometimes in build/ant/classes directory(various by
versions). These variation may be tolerated by a human user, but will cause errors in an
automated program.

• Test Execution Scripts: For each test subject, SIR contains a test plan file which
lists all test cases, and a test execution script(shell script) to run all tests. There are several
cases where a test case exists in the test plan file but not in the test execution script, or
vice versa. We assume these files are manually generated and there are human errors in
creating these files.

2http://depfind.sourceforge.net
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•Debug Information: SIR provides test subjects’ source code and compiled versions.
However, many subjects were not compiled with full debug data. For code coverage tool to
generate statement coverage report, it requires a mapping from byte code to statement line
number. And this data is only available if the source were compile with option debug=’true’.
We had to modify build script manually and then recompile every version of the test
subjects. Due challenges of dependency management in legacy software, compiling these
test subjects is nothing less than a nightmare.

• Dependency Management: Many test subjects in SIR are legacy software de-
veloped long time ago. There were no dependency management tool like Apache Maven
available at the time. Therefore, information such Java version, Ant version and external
libraries versions have to be dug out from release notes, readme files etc. When dependency
information is not documented, compile becomes a trial and error exercise.

•Metadata: SIR basically stores offline copies of subject programs. Though it seems
convenient to have a separate repository to keep all experiment subjects, some useful data
are lost when programs are downloaded from the original development environment. For
example, we compare two versions of the subject program to find out which entity is
changed, but we don’t know how many times the entity has been changed between the
two versions. The change frequency data is lost as soon as test subjects are taken away
from their development environment. Similarly, metadata such as who made the check in,
when, and commit notes etc are not available in SIR.

We believe the future direction of an infrastructure to support controlled experiment
is not to build another perfect repository, rather to build framework to extract programs
from their version control systems on the fly. The framework should act as a proxy to
various popular version control systems and code repositories. The framework provides
one common set of APIs to testing techniques which consume artifacts extracted from test
subject programs.
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