
Biologically Plausible, Human-scale
Knowledge Representation

by

Eric Crawford

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2014

c© Eric Crawford 2014

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Several approaches to implementing symbol-like representations in neurally plausible models
have been proposed. These approaches include binding through synchrony, mesh binding, and
tensor product binding. Recent theoretical work has suggested that these methods will not scale
well; that is, they cannot encode human-sized structured representations without making implau-
sible resource assumptions. Here I present an approach that will scale appropriately, which is
based on the Semantic Pointer Architecture. Specifically, I construct a spiking neural network
composed of about 2.5 million neurons that employs semantic pointers to encode and decode the
main lexical relations in WordNet, a semantic network containing over 117,000 concepts. I ex-
perimentally demonstrate the capabilities of this model by measuring its performance on three
tasks which test its ability to accurately traverse the WordNet hierarchy, as well as its ability to
decode sentences involving WordNet concepts. I argue that these results show that this approach is
uniquely well-suited to providing a biologically plausible account of the structured representations
that underwrite human cognition. I conclude with an investigation of how the connection weights
in this spiking neural network can be learned online through biologically plausible learning rules.

iii

Acknowledgements

I first want to thank all the members of the Computational Neuroscience Research Group for their
support and friendship over the years, and for their patience during the dark undergrad period.
I’d especially like to thank Xuan Choo without whose patience and encyclopedic knowledge of
technical matters this thesis would never have seen the light of day. Also, thanks to Terry Stewart
for always having his door open, and for his boundless willingness to drop what he is working on
to help a labmate out. I also greatly appreciate Bryan Tripp and Jeff Orchard for agreeing to read
this thesis.

Huge thank you to my supervisor Chris Eliasmith for his gentle guidance and for the perfect
research topic, and to Jen Eliasmith for supporting the lab in so many ways.

Finally, thank you to my girlfriend Erika for everything.

iv

Dedication

To my mom and dad for their time, love and care.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

2 Past approaches 3

2.1 Binding through synchrony . 3

2.2 Mesh binding . 4

2.3 Tensor product binding . 4

3 Semantic pointers 6

4 Holographic Reduced Representations 8

4.1 Circular Convolution . 8

4.2 Vector addition . 9

4.3 Involution . 9

4.4 Semantic Pointers for Structured Representations 9

5 Encoding Structured Knowledge in Semantic Pointers 11

5.1 WordNet . 11

5.2 Semantic Pointers and WordNet . 12

5.3 Sentences . 13

5.4 Associative memory . 14

5.5 The statistics of decompressed vectors . 15

5.6 Extraction Algorithm . 16

vi

6 Neural implementation 20
6.1 Neural representation and transformation . 20

6.2 Circular convolution in spiking neurons . 26

6.3 Involution in spiking neurons . 26

6.4 Neural associative memory . 28

6.5 The complete neural model . 29

7 Experiments 31
7.1 Experiment 1 - Simple Extraction . 31

7.2 Experiment 2 - Hierarchical Extraction . 32

7.3 Experiment 3 - Extracting from Sentences . 34

7.4 Results . 35

8 Discussion 37
8.1 Scaling . 37

8.2 Theoretical Considerations . 38

8.3 Psychological plausibility . 39

8.4 Extensions and future work . 40

9 Alternate encodings 41
9.1 Doing away with ID-vectors . 41

9.1.1 The naive approach . 42

9.1.2 Unitary relation-type vectors . 44

9.1.3 Adding noise . 44

9.2 Including more relations . 45

9.3 Synsets with multiple relations of the same type 46

10 Learning associative memories 50
10.1 Training regime . 50

10.2 Network architecture . 51

10.3 General concept . 52

10.4 Prescribed Error Sensitivity: Storing vectors in connection weights 52

10.5 The Oja rule: Increasing neural selectivity . 55

10.6 Simulations . 57

10.7 Future direction: The Voja learning rule . 59

vii

11 Conclusion 61

A WordNet model details 62

B Selecting size of association population in learned associative memory 66

References 68

viii

List of Tables

7.1 Examples of instances and correct responses in the Hierarchical Extraction test. . . 32

7.2 Roles for sentence generation and their properties. 35

7.3 Numerical values for extraction performance . 36

A.1 Parameters used in the neural model. 64

ix

List of Figures

5.1 Decompressed vector distribtion. 17

5.2 Decompressed vector distribution including max dot-product against 100,00 ran-
dom vectors. 18

6.1 NEF Encoding. A population of four neurons encoding a 2-dimensional vector. . . 22

6.2 Using NEF-derived connection weights to compute functions between neural pop-
ulations. 25

6.3 Simulation and architecture of a neural circuit for computing circular convolution
of two 10-dimensional vectors. 27

6.4 The network of spiking neurons designed to implement the Extraction Algorithm. . 30

7.1 Results of a simulation during which the network was used to perform the Hierar-
chical Extraction test. 33

7.2 Extraction performance. Error bars are 95% confidence intervals. 35

9.1 Performance on WordNet encoding without ID-vectors 42

9.2 Histograms of dot products between address vectors under different encodings of
WordNet. 43

9.3 Performance on WordNet encoding without ID-vectors 44

9.4 Adding noise to semantic pointers, non-unitary relations. 45

9.5 Adding noise to semantic pointers, unitary relations. 46

10.1 Schematic diagram of the training process. 53

10.2 Network that learns associative memory. 53

10.3 The encoding vectors of a 2D association population on the unit circle. 54

10.4 Adding PES rule to the network. 54

10.5 Visualization of the PES learning rule applied to the output weights. 55

x

10.6 Demonstrating why the output weights are required to be 0 initially. 55

10.7 Demonstrating the need to move encoding vectors during training. 56

10.8 Demonstrating the benefits of moving encoding vectors during training. 57

10.9 Simulation performance with 64 dimensional vectors, varying the number of pairs
stored in the memory. 58

A.1 Firing-rate tuning curves from different sub-population types. 64

xi

Chapter 1

Introduction

One of the central challenges for contemporary cognitive modeling is scaling. As Geoff Hinton
recently remarked in his address to the Cognitive Science Society, “In the Hitchhiker’s Guide to
the Galaxy, a fearsome intergalactic battle fleet is accidentally eaten by a small dog due to a terrible
miscalculation of scale. I think that a similar fate awaits most of the models proposed by Cognitive
Scientists” [19, p. 7]. Whether or not we agree, this observation can at least be taken as a challenge
for cognitive modelers: Will the principles demonstrated in small-scale cognitive models scale up
to the complexity of a human-sized cognitive system?

This scaling problem has often been thought to be a special challenge for biologically inspired
approaches to cognitive modeling [22, 18]. This is because the basic principles employed in such
models do not provide a straightforward characterization of structured representations. Conse-
quently, it is reasonable to wonder how such principles will ultimately be able to account for
human-scale structured representations, which they clearly must do if they hope to provide con-
vincing explanations of cognitive behavior. This same concern is not as immediate for symbolic
approaches, which typically take structured representations to be primitive [42, 1].

In this paper we present a novel method for representing structured knowledge in biologically
plausible neural networks, and show that it alone is capable of scaling up to a human-sized lexicon.
This approach combines a method for encoding structured knowledge in vectors with a framework
for building biologically realistic neural models capable of representing and transforming those
vectors. In previous work, we have demonstrated that this approach meets many of the challenges
that have been posed for connectionist accounts of structured representation, including the ability
to account for the systematicity, compositionality and productivity of natural languages, as well as
the massive binding problem and the rapid variable creation problem [7]. That work has also given
theoretical reasons to think that this approach will scale better than others; here our focus is on
empirically demonstrating that claim. We achieve this by using our method to encode the human-
scale knowledge base known as WordNet in a spiking neural network, and show that, unlike past
approaches, this network places plausible neural resource demands given what is known about the
size of relevant brain areas.

The remainder of the paper is organized as follows. In Section 2 we review past connec-

1

tionist approaches to the problem of representing structure, and discuss recent criticisms of those
approaches which suggest that they will not scale. In Section 3 we introduce the concept of a
semantic pointer, the main type of representation employed by our approach. In Section 4 we
present Holographic Reduced Representations (HRRs), a vector algebra capable of encoding struc-
tured representations in vectors, which we use to create semantic pointers. In Section 5 we show
how to use these semantic pointers to encode WordNet and outline an algorithm for extracting
the relational information stored in the resulting encoding. In Section 6 we show how to build a
biologically realistic neural network based on this extraction algorithm, and show that it uses far
fewer neural resources than the previously discussed approaches.

In Section 7 we demonstrate the capabilities of both the abstract extraction algorithm and its
neural implementation by subjecting them to a number of experiments designed to confirm that
WordNet is accurately encoded. In particular, these experiments show 1) that structural informa-
tion can be extracted from arbitrary WordNet concepts, 2) that hierarchies of arbitrary depth within
WordNet are correctly represented, and 3) that the network can be used to extract the constituents
of sentences involving arbitrary WordNet concepts. In Section 8 we consider exactly how our
approach is able to achieve its superior scaling, and discuss how this work relates to theoretical
debates in the cognitive science literature. In Section 9 experimentally investigate the viability of
alternate techniques for encoding semantic networks in vectors. Finally, in Section 10 we make
preliminary investigations into how one of the central components in our model, the neural asso-
ciative memory, can be learned online from training data.

2

Chapter 2

Past approaches

There have been many approaches to representing structure in connectionist networks. We consider
three of the most successful: binding through synchrony, “mesh” binding, and tensor product
binding.

2.1 Binding through synchrony

The suggestion that structured cognitive representations could be constructed using binding through
synchrony [43] was imported into cognitive modeling from the earlier hypothesis that feature bind-
ing in vision can be accounted for by the synchronization of spiking neurons in visual cortex [55].

In their SHRUTI architecture, Shastri & Ajjanagadde [43] demonstrated that exploiting syn-
chrony can provide a solution to the variable binding problem in several simple examples. More
recently, binding through synchrony has seen a revival in the LISA [20] and DORA [5] architec-
tures, which focus on representing structures for analogical reasoning.

In all of these models, the temporal relationships between connectionist nodes are employed
to represent structured relations. In DORA and LISA specifically, a structured representation such
as bigger(Max, Eve) is constructed out of four levels of representation. The first level consists
of nodes representing “sub-symbols” (e.g. furry, female, etc.). The second level consists of units
connected to a set of sub-symbols relevant to defining the meaning of the second level term (e.g.
Max is connected to furry, Eve to female, etc.). The third level consists of “sub-proposition” nodes
that bind roles to objects (e.g. Max+larger, or Eve+smaller, etc.). The fourth level consists of
proposition nodes that bind sub-propositions to form whole propositions.

As has been argued in more detail elsewhere, this kind of representational scheme will not scale
well [51, 7] because the number of nodes needed to support arbitrary structured representations
over even small vocabularies (e.g. 2000 lexical items) is larger than the number of neurons in the
brain.1

1 Briefly, the calculation is as follows. Assume 1500 nouns and 500 verbs. The number of nodes needed to

3

Notably, this criticism is not problematic because of the use of synchrony per se, but rather be-
cause of the way binding has been mapped to network nodes. However, it has also been suggested
that synchrony itself will not scale well to binding complex structures [35, 51].

2.2 Mesh binding

A different approach to structure representation has been taken by van der Velde and de Kamps
[53] in their work on the Neural Blackboard Architecture (NBA). To avoid the exponential growth
in resources needed for structure representation in a DORA-like scheme, the NBA employs “neural
assemblies.” These assemblies are temporarily bound to particular symbols using a “mesh grid”
of neural circuits (e.g. bind(noun1, Max)). Larger structures are then built by binding these as-
semblies to roles using a gating circuit (e.g. gate(agent1, bind(noun1, Max))). Neural assemblies
that bind roles (and hence their gated word assemblies) are used to define higher level “structure
assemblies.” Such structure assemblies can be used to represent sentential structures.

The use of temporary binding in this manner significantly reduces the resource demands of this
approach compared to the synchrony-based approaches. However, it does not reduce the demands
sufficiently to make the NBA neurally plausible. As argued in [51], and demonstrated in more
detail in [7], in order to represent simple sentences of the form relation(agent, theme) from a
vocabulary of 60,000 terms, this approach requires roughly 480 cm2 of cortex, approximately one-
fifth of total cortical area.2 This is much larger than the combined sizes of “naming” cortex (about
7 cm2; 34), Wernicke’s and Broca’s areas (about 20 cm2 each; 24), and the remaining parts of the
language “implementation system” (supramarginal gyrus, angular gyrus, auditory cortex, motor
cortex, and somatosensory cortex, about 200 cm2; 6). Critically, these areas do far more than
represent structure; they account for phonological processing, oral motor control, grammatical
processing, sentence parsing and production, etc. Consequently, while the NBA has improved
scalability compared to DORA, it remains implausible.

2.3 Tensor product binding

The final approach we consider, first proposed by Paul Smolensky [46], is the earliest and best
known member of the class of proposals broadly called Vector Symbolic Architectures (VSAs; 15).
In general, these approaches represent symbols with vectors, and propose some kind of nonlinear

represent arbitrary structures of the form relation(noun, noun) is 500×1500×1500=1.1×109 nodes. Assuming 100
neurons per node, which provides a signal-to-noise ratio of 10:1 [8], results in 1.1×1011 neurons. There are about
20×106 neurons per cm2 [37], and 2500 cm2 of cortex [38] giving about 50×109 neurons in cortex, less than that
required for the assumed representation.

2Following the values used in ff1, the calculation is as follows. [53] notes that each connection between symbol
and word assemblies requires 8 neural groups, and that 100 assemblies per role should be sufficient. Assuming only
two grammatical roles (to be conservative) results in 60,000×200×8=96×106 groups needed. This suggests 96×108

neurons are needed, which works out to about 480 cm2 of cortex.

4

vector operation to bind two vectors together. Later, the constituents of the binding can be extracted
using an unbinding operation. Smolensky’s architecture employs the tensor product as the binding
operation, which has the advantage that it allows the constituents of a binding to be perfectly
extracted.

In terms of scaling, this approach has the benefit that symbols and propositions can be rep-
resented by patterns of neural activity, alleviating the need for devoted neural resources for each
proposition (as in the case of synchrony based approaches) and complex gating mechanisms (as
in the case of the mesh binding approaches). However, the use of the tensor product as a binding
operator creates a separate scaling issue. Because the tensor product of two n-dimensional vec-
tors is an n2-dimensional vector, this framework scales exponentially poorly as the depth of the
encoded structure increases. For example, [7] shows that encoding a two-level sentence such as
“Bill believes that Max is larger than Eve”, where lexical items may have hierarchical relations of
depth two or more, will require approximately 625 cm2 of cortex.3

We now present the details of our approach for connectionist structured representation, with
the aim of showing that, unlike the approaches explored here, it can encode a human-scale lexicon
using a plausible number of neurons.

3Briefly, the calculation is as follows. Conservatively assume that only 8 dimensions are needed to distinguish
the lowest-level concepts (e.g. mammal). Then the representation of Eve requires 8×8×8=512-dimensional vectors
(i.e. Eve = isA⊗person+... = isA⊗isA⊗mammal+...). Assuming at least one concept at each level of the sentence
requires such a representation means that 512×512×512=12.5×107 dimensions or 12.5×109 neurons are required,
which works out to 625 cm2 of cortex. Again, this is only for structure representation – not processing– and is
significantly larger than relevant language areas.

5

Chapter 3

Semantic pointers

Semantic pointers are neurally realized vector representations generated through a compression
method, and are typically of a high dimensionality [7]. In general, semantic pointers are con-
structed by compressing information from one or more high-dimensional vector representations,
which can be semantic pointers themselves. The newly generated semantic pointer has a dimen-
sionality that is less than or equal to the dimensionality of its constituents. Semantic pointers can
be subsequently decompressed (or dereferenced) to recover (much of) the original information.

Examples of compression that lowers dimensionality and loses information abound in the dig-
ital world. Jpegs, mp3s, and H.264 videos are all examples of lossy compression. These methods
are lossy because, from an information theoretic perspective, the decompression of the compressed
vector contains less information than the original pre-compressed vector. However, from a psy-
chophysical perspective, the pre-compressed and reconstructed vectors can be nearly indistinguish-
able. The reason such compression methods are ubiquitous is because they can massively decrease
the amount of data that must be manipulated or transmitted, while preserving the essential features
of that data. Semantic pointers are proposed to play an analogous role in our mental lives.

Because semantic pointers are compact ways of referencing large amounts of data, they func-
tion similarly to pointers as understood in computer science. Typically, in computer science a
pointer is the address of a large amount of data stored in memory. Unlike the data in memory,
pointers are easy to transmit, manipulate and store, because they occupy a small number of bytes.
Hence pointers can act as an efficient proxy for the data they point to. Semantic pointers are
proposed to provide the same kind of efficiency benefits in a neural setting.

Unlike pointers in computer science, however, semantic pointers are semantic. That is, they are
systematically related to the information that they reference, because they were generated from that
information via compression. This means that semantic pointers carry similarity information that
is derived from their source (unlike computer science pointers). If two uncompressed structures
are similar, then their compressed semantic pointers will also be similar, given an appropriate
compression method and similarity measure (e.g. dot product or cosine similarity).

The similarity relations between semantic pointers are best thought of as capturing shallow
semantics. That is, semantics that can be read off of the surface features of the semantic pointers

6

themselves. To get at deep semantics — e.g. semantics dependent on subtle structural relations
of the uncompressed data — it can be crucial to more directly compare the uncompressed states.
In many ways, this distinction between shallow and deep semantics is reminiscent of shallow and
deep processing proposed in dual-coding theory [36]. Typically, this older distinction is taken
to map onto the distinction between verbal and perceptual processing [17]. Recent fMRI and
behavioral experiments are supportive of this view [47, 44]. Semantic pointers can be thought of
as a computational specification of this distinction.

In sum, semantic pointers are neurally realized, compressed (and hence efficient) representa-
tions of higher dimensional data. They carry surface semantics, for which similarity can be cheaply
computed, and they can be decompressed to access deeper semantics with additional computation.

In the current paper, we primarily use semantic pointers for their deep semantics, and make
little use of the shallow semantics. However, the shallow semantics are nonetheless present, which
has important theoretical consequences and leaves open a number of interesting extensions that we
discuss in Section 8.

Use of semantic pointers requires the specification of both a compression algorithm and a
corresponding decompression algorithm. For example, in the vision system of the Spaun model,
both compression and decompression take the form of a generative, hierarchical vision model [9].
A semantic pointer for a visual scene is created by running the model “forward”, extracting a
relatively low-dimensional representation that captures the scene’s important features. The full
visual scene can later be approximately reconstructed by running the model “backward”, with
the top of the hierarchy clamped to the desired semantic pointer. In the current study, we use
compression algorithms that are better suited to structured representations. In particular, we use
the operations provided by Holographic Reduced Representations, a Vector Symbolic Architecture.

In Section 6, we show how to use the Neural Engineering Framework to build spiking neural
networks that represent and transform high-dimensional vectors, providing a neural implementa-
tion of this form of semantic pointer.

7

Chapter 4

Holographic Reduced Representations

Holographic Reduced Representations (HRRs) are a type of Vector Symbolic Architecture, and, as
such, constitute a means of representing structured knowledge in a vector format. HRRs have some
similarities to Smolensky’s tensor product technique, but use a compressive binding operator which
allows the dimensionality of the representations to remain constant as the depth of the encoded
structure increases. This is an important difference which lends HRRs superior scaling properties.
Here we briefly sketch the components of the HRR vector algebra. See [39] for a more complete
introduction to HRRs, and [40] for an in-depth treatment of the mathematics involved as well as a
number of applications.

To begin, the basic elements of the structure that we want to represent are each assigned a
random D-dimensional vector, where D is fixed ahead of time. We can then use the operations
specified by the HRR formalism to create vectors encoding structured combinations involving
those basic elements. Other operations can later be applied to the structured vectors to extract the
constituent vectors. In this section we discuss the necessary vector operations and their properties,
before going on to explicitly show how they can be used together to encode structured information.
The three vector operations specified by the HRR algebra are circular convolution, vector addition,
and involution.

4.1 Circular Convolution

Circular convolution, represented by the ~ symbol, plays the role of a binding operator. For two
vectors x = [x(0), . . . ,x(D−1)] and y = [y(0), . . . ,y(D−1)], and j ∈ {0, . . . ,D− 1}, the jth element of
x~y is:

(x~y)(j) =
D−1

∑
k=0

x(k)y(j−k)

where the indices are taken modulo D. The circular convolution of two vectors is dissimilar to both
of them, using the dot product as a measure of similarity.

8

4.2 Vector addition

Vector addition plays the role of a superposition operator. In particular, it allows multiple bindings
to be stored in a single vector. The jth element of x+y is:

(x+y)(j) = x(j)+y(j)

Vector addition returns a vector that is similar to both of its inputs, again using the dot product as
a measure of similarity. The exception is when x and y are close to being additive negatives of one
another; though if they are random vectors in a high-dimensional space, this situation is unlikely
to occur.

4.3 Involution

The third HRR operation, involution, is represented by an overbar (e.g. x). The jth element of x is
given by :

x(j) = x(− j)

where the indices are again taken modulo D. Put simply, the first element of the vector stays
in place, and the remaining elements are reversed. For example, if x = [1,2,3,4,5], then x =
[1,5,4,3,2]. Involution is the approximate inverse of a vector with respect to circular convolution.
Specifically, for two vectors x and y, we have x ~ y ~ y ≈ x. It can thus be thought of as
an unbinding operator, since it facilitates the extraction of the constituents of bindings. Circular
convolution does have an exact inverse but, for reasons outlined in detail in [40], it performs
poorly when x is noisy. Because we will later be concerned with neural representations of these
vectors, which are inherently noisy, throughout this work we employ involution rather than the
exact inverse.

The circular convolution, vector addition and involution operations can be thought of as vector
analogs of the familiar algebraic operations of multiplication, addition and taking the reciprocal,
respectively. Indeed, they have many of the same algebraic properties. For example, circular con-
volution is commutative, associative, and distributes over vector addition, similar to multiplication.
The mathematical details of these operations, and, in particular, why involution is the approximate
inverse of convolution, can be found in either of the above references on HRRs.

4.4 Semantic Pointers for Structured Representations

Together, these operations permit the construction of vectors that represent complex structure.
Most usefully for the current work, we can construct a vector which stores multiple pairs of other
vectors. Later, given some query vector, we can determine which vector it is paired with in the
structured vector. For example, suppose we have 6 elements in our vocabulary, each of which has

9

been assigned a vector, a,b,c,d,e, f and we want to store the pairs 〈a,b〉, 〈c,d〉 and 〈e, f〉. We can
use circular convolution and vector addition to do this as follows:

t = a~b+ c~d+ c~d (4.1)

t is typically then normalized to have a norm of 1. An important note is that t has dimensionality
D, the same as that of each of the vectors on the right-hand side of this equation. This is because
both circular convolution and vector addition return vectors with the same dimensionality as their
inputs. This feature is what sets HRRs apart from Smolensky’s tensor product technique. In
particular, it prevents the size of the vectors from undergoing a combinatorial explosion as the depth
of the encoded knowledge structure increases, permitting the efficient representation of hierarchical
structures. For instance, t itself could be included in another structured vector, which would also
have dimensionality D.

Given a query vector, we can then use circular convolution and involution to retrieve an ap-
proximation of the vector it is paired with in t. For example, to extract the vector that a is paired
with, we compute:

t~a
= (a~b+ c~d+ e~ f)~a
= a~b~a+ c~d~a+ e~ f~a
= b~a~a+d~ c~a+ e~ f~a
≈ b+d~ c~a+ e~ f~a (4.2)
= b+noise (4.3)

Here we have used both the commutative and distributive properties of circular convolution.

We can now see that these structured vectors can be treated as a special kind of compressed rep-
resentation. We can think of the original, uncompressed vector as the concatenation of a,b,c,d,e
and f, which has a dimensionality of 6D. t, which has only D dimensions, thus represents a sig-
nificantly compressed version of the original vector. We can then look at the process of circularly
convolving t with the involution of a query vector as lossy decompression, since we extract a vec-
tor that is similar but not identical to part of the original, uncompressed vector. But notice that
this is a type of decompression that is especially well-suited to structured representation, because
we do not have to reconstruct the entire original vector at once. Instead, we can choose which bit
of it to decompress by changing the query vector. Throughout this paper we refer to the neural
implementation of these structured vectors as semantic pointers.

10

Chapter 5

Encoding Structured Knowledge in
Semantic Pointers

Thus far we have seen how to vectorially encode structured representations at a small scale. In
this section we significantly scale up this technique. We first introduce WordNet, a human-scale
semantic network, and then show how to create a vector encoding of WordNet using semantic
pointers.

5.1 WordNet

In order to empirically demonstrate that our technique can scale up to the size of a human vocab-
ulary, we require a structured knowledge base of sufficient magnitude. One approach would be
to construct an arbitrary structured representation, perhaps using random graph techniques; how-
ever, there is no reason that such a representation would statistically resemble the structure of
human knowledge. A better approach is to choose a sufficiently large structured representation
constructed with human knowledge specifically in mind. Fortunately, there are projects that have
taken up the monumental task of encoding human knowledge in machine readable form. Two of
the most well-known such projects are Cyc and WordNet.

Cyc’s aim is ostensibly to codify the entirety of common-sense knowledge in a machine-usable
format, with potential applications ranging from medicine to machine learning. Cyc is truly a
marvel of perseverance; according to its creator Doug Lenat, more than a person-century of work
has gone into the manual construction of at least a million “common sense axioms” [26].

WordNet is another manually constructed database [32, 11], but with slightly more modest
goals. It aims to be a lexical database of the English language instead of a database of the entirety
of human knowledge. Due to its reduced scope and its much smaller set of basic relationships,
WordNet tends to have applied structural features more consistently than Cyc. As well, Cyc orga-
nizes concepts abstractly with logical assertions and microtheories, whereas WordNet’s design is

11

intended to reflect the organization of concepts in a psychologically plausible way using a hand-
ful of common relationships. In total, WordNet contains 117,659 concepts and a high degree of
hierarchical structure (e.g. entity can be reached from dog in 13 steps), suggesting it will be an
adequate test of the scalability of our technique. For these reasons, we have chosen WordNet as
the structured knowledge base that we will encode.

The basic unit in WordNet is a synset, a set of words that have the same meaning. Words that
have multiple meanings are listed in multiple synsets. Each synset possesses a number of relations,
each of which represents a semantic link between that synset and another synset. Relations are
unidirectional; each has a source and a target. Each relation also has a type, the most prominent
being hypernymy (roughly “isA”) and holonymy (roughly “partOf”). These relation types can
be further subdivided: hypernymy into instance and class, and partOf into part, member, and
substance. As a concrete example, we show a subset of the relational structure of the dog synset:

dog = class(canine) and member(pack) (5.1)

Here dog is the source of a class relation and a member relation. canine is the target of the class
relation, and pack is the target of the member relation. Only the 5 relation-types we have mentioned
are encoded in our model. The inverses of these relations are also implicitly included, although we
do not test their extraction as this requires more complex control of signal flow that is beyond our
present scope. The depiction of lexical relations found in WordNet is somewhat simplified, though
it is sufficient for our purposes; a complete description of the simplifications made can be found in
[11].

5.2 Semantic Pointers and WordNet

It is relatively straightforward to use semantic pointers to encode the relational structure of a Word-
Net synset as represented in Equation (5.1). The first step is to fix a dimension D for our vectors.
Previous investigations have shown that using 512 dimensions provides sufficient representational
capacity to accommodate human-scale knowledge bases [7], so D = 512 in all the work presented
here. We then assign each WordNet synset a D-dimensional vector called an ID-vector, chosen
uniformly at random from the D-dimensional unit hypersphere, which acts as a unique identifier
for that synset. Each relation-type (class, member, etc.) is also assigned a vector in the same way.

The next step is to encode the information about how synsets are related to one another. Each
synset is thus assigned a second D-dimensional vector storing the relational information about the
synset. In particular, this vector is a semantic pointer constructed using the technique from Section
4.4, where each pair stored in the vector corresponds to a relation belonging to the synset, and
consists of the vector for the relation-type and the ID-vector for the target of the relation. The
following equation demonstrates this process for the dog synset:

dogsp = class~ canineid +member~packid (5.2)

12

where all variables are D-dimensional vectors. We have disambiguated the two vectors assigned to
a synset by denoting ID-vectors with the id subscript, and semantic pointers with the sp subscript.
The semantic pointer is typically normalized thereafter.

We can now use the combination of circular convolution and involution to access the relations
that belong to dog. As an example, imagine we want to extract the synset that dog is related to via
the class relation-type. We could achieve this by circularly convolving dogsp with class:

dogsp ~ class
= (class~ canineid +member~packid)~ class
= class~ canineid ~ class+member~packid ~ class
= canineid ~ class~ class+member~packid ~ class
≈ canineid +member~packid ~ class
= canineid +noise (5.3)

yielding a vector that is similar to canineid.

One might wonder why we need ID-vectors at all; it might seem more straightforward to define
the semantic pointers for a synset directly in terms of semantic pointers for related synsets. For
example:

dogsp = class~ caninesp +member~packsp (5.4)

This is problematic for a number of reasons. The most prominent is that WordNet (and semantic
networks in general) have directed cycles, and thus some of the semantic pointers would have to
be defined in terms of one another, which has no obvious solution.

5.3 Sentences

We can also use this technique to create semantic pointers encoding sentences involving any of
the terms in WordNet. In this case, we pair up sentence roles and synsets filling those roles, and
store the corresponding vectors in a semantic pointer. This requires assigning random vectors to
the roles, just as we have done for relation-types. If we have the roles subject, verb and object with
assigned vectors subject, verb and object respectively, then the semantic pointer for the sentence
“dogs chase cats” would be:

sentencesp = subject~dogid +verb~ chaseid +object~ catid

Circular convolution and involution can later be used to extract the synset filling a given role in a
sentence, similar to Equation (5.3). For example, sentencesp ~ object will be a vector similar to
catid.

We can also encode sentences with multiple levels of recursive depth. To demonstrate, the

13

recursively structured sentence “mice believe that dogs chase cats” will have the semantic pointer:

deep sentencesp = subject~mouseid +verb~believeid +

object~ (subject~dogid +verb~ chaseid +object~ catid)

Top-level constituents (e.g. mouseid, believeid) can be extracted in the usual way, while con-
stituents of the embedded clause can be extracted by using a compound query vector. For example,
deep sentencesp ~ (object~verb) will be a vector similar to chaseid. Importantly, because we
are using circular convolution for binding, deep sentencesp still has the same dimensionality as all
its constituents.

5.4 Associative memory

The result of computing dogsp ~ class as in Equation (5.3) is insufficient in two ways. First,
because involution is only an approximate inverse, and because of the other terms present, dogsp~
class is only similar to canineid; in other words, there is noise that must be removed. Second,
canineid is not particularly useful on its own; it would be more useful to have caninesp, from
which we could recursively extract further structural information. These problems can be solved
simultaneously by an associative memory.

Associative memories store ordered pairs of vectors 〈ξ ,η〉. In an analogy with computer mem-
ory, the first vector ξ can be thought of as an address, and the second vector η can be thought of
as the information stored at that address. When the memory receives an input, if that input is
sufficiently similar to some ξ , then the memory outputs the corresponding η . It is easy to see
how this solves our problems if we let the ξ ’s be ID-vectors and the η’s be semantic pointers: the
associativity provides us with the semantic pointers instead of the ID-vectors, and the fact that the
input only has to be sufficiently similar to some ξ solves the denoising problem.

Given N pairs of vectors to associate, 〈ξk,ηk〉 for k ∈ 1 . . .N, the following simple algorithm
implements this associative memory recall functionality:

Algorithm 5.4.1: ASSOCIATE(input)

sum← 0
for k← 1 to N

sim← DOT PRODUCT(ξk , input)
scale← 1 if sim > threshold else 0
sum← sum+ scale∗ηk

return (sum)

If threshold is set correctly (we use 0.3), scale will be non-zero for at most one value of k, and
the output will be either the zero vector or ηk. For example, if we were using a vocabulary that

14

contained only the synsets dog, canine, and pack, then the pairs stored in the associative memory
would be 〈dogid,dogsp〉, 〈canineid,caninesp〉 and 〈packid,packsp〉. Now recall that:

dogsp ~ class≈ canineid +member~packid ~ class

Since canineid is contained in dogsp~class through vector addition, canineid and dogsp~class be
similar. On the other hand, dogid does not appear in this equation at all, and because two random
high-dimensional vectors have a low probability of being similar, dogsp ~ class is unlikely to be
similar to dogid. Finally, packid appears in dogsp ~ class through circular convolution, which, as
mentioned above, returns a vector that is dissimilar to its inputs. In short, dogsp ~ class will be
similar to canineid and dissimilar to the other ID-vectors. Thus, when dogsp ~ class is given as
input to the associative memory, scale will only be non-zero for the canine pair, and the output will
be caninesp.

5.5 The statistics of decompressed vectors

Until now two of the parameters in our model, the threshold in the associative memory and the
dimensionality of the vectors used in the encoding, have been given specific values without much
justification. Here we provide at least a glimpse of why these values work. Both are chosen to
make the associative memory work properly given that it has to store on the order of 100,000 pairs
of vectors.

In general the input to the associative memory will be a vector obtained through the result of
decompression (the combination of circular convolution and involution). For example, first let us
define:

SN = R1 ~ (x1)id +R2 ~ (x2)id + · · ·+RN ~ (xN)id (5.5)

where SN is a semantic pointer, x1 . . .xN are N distinct synsets, and R1, . . .RN are N distinct D-
dimensional random unit vectors which could be relation-type or role vectors. Then the input to
the associative memory will generally have the form SN ~Ri for arbitrary i ∈ 1 · · ·N. For the
associative memory to correctly map this input to (xi)sp, it must be the case that:

max
z6=xi

[(SN ~Ri) · zid]< threshold < (SN ~Ri) · (xi)id (5.6)

If the first condition is satisfied but not the second, then the output of the associative memory will
be the zero vector. If the second condition is satisfied but not the first, then other semantic pointers
will be incorrectly added into the output.

It should be clear from this requirement that the threshold is important to the success of the
associative memory, but it is perhaps not clear why the dimensionality matters. The short answer
is that the dimensionality of the vectors determines the statistics of the two quantities in Condition
(5.6). We will demonstrate this by sampling from the distributions of these two quantities.

15

We begin by sampling from the distribution of the right-most quantity in Condition (5.6) for
different values of N and different dimensionalities D. For each value of D, we begin by randomly
selecting 100,000 random D-dimensional unit vectors to play the role of ID-vectors, and then 10
more to play the role of relation-type vectors. Then for each value of N, we draw 1000 samples by
randomly selecting N ID-vectors and N relation-type vectors, constructing a semantic pointer SN
from them in the manner of Equation (5.5), and, finally, computing (SN ~R1) · (x1)id. Histograms
generated from this sampling procedure are given in Fig. 5.1. The most striking features of these
plots are that for fixed N, the mean stays constant as D increases, whereas the variance decreases.
Moreover, for fixed D, as N increases the variance stays constant while the mean decreases. Judg-
ing from this plot alone, we would seem to have a range of values for both the threshold and the
dimensionality: for any distribution, simply pick a threshold that is below all the samples. How-
ever, this will change once we take into account the other constraint on the threshold.

To do this we augment our plot with samples from the distribution of the left-most quantity in
Condition (5.6). For each value of N, we randomly select 250 of the semantic pointers generated
in the previous process and compute:

max
z6=x1

[(SN ~R1) · zid] (5.7)

These values are pooled and plotted in purple for each dimension. The augmented plots are shown
in Fig. 5.2. From that plot it is clear that only once D = 512 is there a value of a threshold that
separates the purple sample from the other samples with high-probability. Choosing D = 512
and threshold = 0.3 will give us very good performance with semantic pointers containing up to 7
terms, corresponding to WordNet synsets that are the source of up to 7 relations. We should also get
acceptable performance with semantic pointers containing even more terms. While WordNet does
contain synsets with more than 7 relations, they are rare and unlikely to affect overall performance
significantly.

5.6 Extraction Algorithm

To summarize, we encode WordNet by assigning every synset two vectors: a randomly chosen ID-
vector, and a semantic pointer encoding the synset’s structural relations. Later, given a semantic
pointer corresponding to a synset and some query vector corresponding to a relation-type, if the
synset has a relation of the given type, then we can extract the semantic pointer for the target of

16

0

200
F

re
q
.

D = 32 N = 1

N = 3

N = 5

N = 7

0

200

F
re

q
.

D = 64

0

200

F
re

q
.

D = 128

0

200

F
re

q
.

D = 256

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Dot Product

0

200

F
re

q
.

D = 512

Figure 5.1: Distribution of dot products between vectors obtained through decompression and the original pre-
compressed vector. D denotes the dimensionality of the involved vectors, and N denotes the number pairs in the
semantic pointer being decompressed.

that relation with the following algorithm:

Algorithm 5.6.1: EXTRACTION(sp, query)

inv query← INVOLUTION(query)
noisy id← CIRCULAR-CONVOLUTION(sp, inv query)
target sp← ASSOCIATE(noisy id)
return (target sp)

This exact same algorithm can also be used to extract the constituents of semantic pointers encod-

17

0

200
F

re
q
.

D = 32 N = 1

N = 3

N = 5

N = 7

Random

0

200

F
re

q
.

D = 64

0

200

F
re

q
.

D = 128

0

200

F
re

q
.

D = 256

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Dot Product

0

200

F
re

q
.

D = 512

Figure 5.2: Same as Fig. 5.1, but including samples obtained by computing the dot-product of each decompressed
vector with 100,000 random vectors and taking the maximum.

ing sentences composed of WordNet synsets.

One potential issue with this algorithm is the way in which it handles synsets that have multiple
relations of the same type (which is not uncommon in WordNet). For example, the synset lion is
related to both pride and panthera via the member relation-type. When the Extraction Algorithm
is run with lionsp and member as input, the output will be pridesp + pantherasp. This vector
still contains all the relational structure of both pride and panthera, and can be used in further
extractions without difficulty. Consequently, returning the sum of these two vectors in response to
a member query is considered correct in the experiments we run in Section 7. We also note that
the fact that this is an issue may be a quirk of WordNet; in human knowledge bases, concepts with
multiple relations of the same type may be rare or non-existent. For example, these two member
relations (lion→ panthera and lion→ pride) could be given two different relation types, reflecting

18

the two different domains of knowledge they are concerned with. We discuss this in further detail
in Section 9.3.

We now move on to neural implementation, and show that given a list of pairs of ID-vectors
and semantic pointers encoding WordNet, we can construct a spiking neural network that performs
the Extraction Algorithm.

19

Chapter 6

Neural implementation

Since our end goal is a scalable, biologically plausible system for representing and manipulating
structured knowledge, our next step is to show how the Extraction Algorithm we have been dis-
cussing can be implemented in realistic spiking neurons. We begin by presenting a framework
that provides a principled approach to constructing networks of spiking neurons that represent and
transform high-dimensional vectors. We then show how this technique can be applied to create a
network implementing both involution and circular convolution. Finally, we use a slightly more
advanced application of this method to construct a neural associative memory which is able to map
a noisy version of any ID-vector to the corresponding semantic pointer. These networks can be
composed into a single network implementing the Extraction Algorithm from the previous sec-
tion, permitting the representation and extraction of structured knowledge by biologically realistic
neurons.

6.1 Neural representation and transformation

For the purpose of neural representation and computation, we employ the Neural Engineering
Framework (NEF), a set of methods for building biologically plausible neural models [8]. These
methods have been broadly employed to generate detailed spiking neural models of a wide va-
riety of neural systems and behaviors, including the barn owl auditory system [12, 13], parts of
the rodent navigation system [3], escape and swimming control in zebrafish [23], tactile working
memory in monkeys [45], decision making in humans [28] and rats [25, 29], and the basal gan-
glia system [50, 48]. These methods also underlie the recent Spaun model, currently the world’s
largest functional brain model [9]. Here we present a brief discussion of the aspects of the NEF
that are required for neural structured representation using HRRs. In particular, we discuss the
NEF’s principles of neural representation and transformation. The NEF also provides principles
for dynamics, facilitating the implementation of arbitrary dynamical systems in recurrent neural
networks, though these are not required for the feedforward networks used in the present model.
All figures in this section were created using the Nengo neural simulation software package, which
is available online at http://nengo.ca/.

20

The core idea behind the NEF’s approach to neural representation is that the activity of a
population of neurons at any given time can be interpreted as representing a vector. Importantly, the
dimensionality of the represented vector is typically not equal to the size of the neural population.
A typical case would have the activity of a population of 40 neurons representing a 2-dimensional
vector. We now outline the details of the relationship between the activities of a neural population
and the vector those activities are taken to represent.

Let E denote the dimensionality of the vectors that a given neural population is capable of rep-
resenting. A basic assumption of the NEF is that each neuron in the population has a “preferred di-
rection vector” of dimensionality E, essentially a direction in the population’s “represented space”
which the neuron responds to most strongly. For instance, this is a useful way to characterize
the behavior of motor neurons. Georgopoulos found that neurons in motor cortex of rhesus mon-
keys have a preferred arm movement direction, the direction being different for each neuron [16].
These neurons become more active as the monkey’s current arm movement direction approaches
their preferred direction. The activities of these neurons, taken together, can be interpreted as
representing the direction of arm movement in 3-dimensional physical space. This idea is quite
intuitive in motor cortex, since the represented vector is directly observable; however, this notion
is useful in general, and the NEF extends it to all neural representation.

To formalize the notion of preferred direction vector, the NEF assumes that the activity of the
ith neuron in a neural population can be written:

ai(x) = Gi(eix) (6.1)

where ai is the activity of the neuron, Gi is the neuron’s activation function, ei is the neuron’s
preferred direction vector (a row vector) and x is the E-dimensional input to the neural population
(a column vector). eix is the dot product between the neuron’s preferred direction vector and the
input vector, and acts as a measure of similarity. The NEF works for arbitrary neural activation
functions, so, in accordance with our goal of biological realism, we choose Gi to be a spiking leaky
integrate-and-fire (LIF) activation function in all the work presented in this paper. The details of
the LIF activation function can be found in the Appendix A.

Equation (6.1) is referred to as the encoding equation because it describes how an input vector,
in this case x, is encoded into the activities of a neural population. Preferred direction vectors will
henceforth be called encoding vectors because of their central role in this process. When building
networks using the NEF, the encoding vectors for a neural population are typically chosen uni-
formly at random from the unit hypersphere in the population’s represented space. The encoding
process is depicted in Fig. 6.1 for a neural population capable of representing 2-dimensional vec-
tors. Note that while only 4 neurons are used for ease of presentation, it typically requires more
than 4 neurons to accurately represent 2-dimensional vectors.

So far we have shown how a vector can be encoded into neural activities. However, to fully
characterize neural representation, we also need to say something about decoding those neural
activities. In other words, given the activities of a neural population, how do we reconstruct the
vector that the population is representing? The NEF assumes that a linear decoding is sufficient
for capturing information transfer between neural populations. Given ai(x) for i ∈ 1 . . .N, the set

21

a) b)

c) d)

1

2

3

4

1

2
3

4

1 23

4

Time (s)

Fi
rin

g
ra

te
 (H

z)

Angle

Time (s)0 1.2 0 1.2

V
a
lu

e

Figure 6.1: NEF encoding. A population of four neurons encoding a 2-dimensional vector. a) Both dimensions of
the input to the neurons, plotted over a period of 1.2 seconds. The input vector is determined by x1 = sin(6t) and
x2 = cos(6t). b) Spikes generated by four neurons driven by the input in a), according to the encoding equation
(Equation (6.1)). c) A different visualization of the input in a). The input vector traces a clockwise path around a
unit circle. Older inputs are in lighter gray. The encoding vectors of all four neurons are also shown. Comparing
b) and c) shows that the neurons are most active when the input vector is closest to their encoding vectors. d) The
firing rate tuning curves of all four neurons as a function of the angle between the input vector and the encoding vector.
Parameters for Gi, the neural activation function, are randomly chosen for each neuron, which is why the tuning curves
are different heights and widths. (Reproduced from [9], with permission).

22

activities of a neural population, the vector represented by that population can be approximately
reconstructed as:

x̂ = ∑
i

ai(x)di (6.2)

where x̂ is a reconstruction of x, and the di are a set of appropriately chosen column vectors (one
for each neuron) called decoding vectors. These decoding vectors all have dimensionality E.

Decoding vectors that provide the best reconstruction can be found through a least-squares
optimization process, outlined in detail in Appendix A. Essentially, we find the di that minimize
the equation:

Error =
1
2

∫
(x− x̂)2dx

=
1
2

∫
(x−∑

i
ai(x)di)

2dx (6.3)

This optimization is typically performed offline, before the network is instantiated.

The decoding vectors found by minimizing Equation (6.3) produce the optimal linear recon-
struction of x from the activities of the neurons. In principle, however, we can also find decoding
vectors that reconstruct f (x), an arbitrary vector-valued function of x. We denote these decoding
vectors d f

i . The reconstruction of f (x) is then computed from the activity of the neural population
using the equation:

f̂ (x) = ∑
i

ai(x)d
f
i (6.4)

These decoding vectors are found by minimizing:

Error =
1
2

∫
(f (x)− f̂ (x))2dx

=
1
2

∫
(f (x)−∑

i
ai(x)d

f
i)

2dx (6.5)

with respect to d f
i . In this more general case, the dimensionality of the decoding vectors is equal

to the dimensionality of the range of the function f . The accuracy of the reconstruction depends
on the type of function and the tuning curves of the neurons. See [8, section 7.3] for a discussion
of this topic.

Thus far, we have primarily concerned ourselves with the question of neural representation,
that is, how can an input vector be encoded in the activities of a neural population, and how can
those activities be decoded to obtain a reconstruction of the encoded vector or a function thereof.
However, representation alone is not terribly useful; to perform interesting information processing,
we also need to be able to transform those representations. Fortunately, we’ve already defined the
concepts required to understand the NEF’s approach to neural transformation.

Suppose we have two neural populations A and B, and that there are all-to-all feedforward
connections from the neurons in A to the neurons in B. Further suppose that we want to set the

23

connection weights between A and B such that if, at a given time, A is representing some vector
x, then B will represent f (x), where f is some arbitrary vector-valued function. In other words,
we want to derive connection weights between the neurons in A and B such that f̂ (x) is first
decoded from the activities in population A, and then encoded into the activities of population B.
Conveniently, the NEF tells us that we can derive connection weights that achieve this in terms of
the encoding vectors of B and decoding vectors of A for function f . Formally, we substitute f̂ (x)
into Equation (6.1) (modified for population B):

b j(x) = G j(e j f̂ (x)) (6.6)

= G j(e j(∑
i

ai(x)d
f
i)) (6.7)

= G j(∑
i
(e jd

f
i)ai(x)) (6.8)

where ai is the activity of the ith neuron in A, and b j is the activity of the jth neuron in B. Thus
we have the activity of neuron j in B in terms of a weighted sum of the activities of the neurons in
A. Following the standard interpretation of connection weights, this indicates that the weight from
neuron i in population A to neuron j in population B should be:

ωi j = e jd
f
i (6.9)

which is simply the dot product, or similarity, between e j and d f
i .

As a final note on transformation, if we additionally want to perform a linear transformation,
represented by a matrix L, on f (x) (i.e. we want L f (x) to be represented in population B), then
we can simply include L in the weight equation as follows:

ωi j = e jLd f
i (6.10)

This is the general weight equation for computing any combination of linear and non-linear func-
tions between two neural populations.

To summarize, the process for creating two populations of neurons A and B, and deriving
connection weights from A to B such that L f (x) is represented by population B whenever x is
represented by population A, is as follows:

1. Create the neurons in populations A and B. For each neuron in each population, randomly
choose parameters for the neural activation function and an encoding vector from the unit
hypersphere.

2. Calculate decoding vectors for population A that minimize Equation (6.5).

3. Calculate the weight matrix between A and B using Equation (6.10).

Simulations of spiking neural networks with connection weights derived using this technique are

24

a)

b) input

input

Time(s)

Time (s) Time (s)

Time (s)

Time (s) Time (s)

V
a
lu

e

N
e
u
ro

n
 #

N
e
u
ro

n
 #

V
a
lu

e

Figure 6.2: Using NEF-derived connection weights (Equation (6.9)) to compute functions between neural populations
representing 2-dimensional vectors. a) Computing the identity function between A and B. b) Computing the element-
wise square between A and B. These simulations are 1.2 seconds long, and the input vector is determined by x1 =
sin(6t) and x2 = cos(6t). Both populations have 20 neurons, with randomly chosen encoding vectors and parameters
for the neural activation function Gi.

depicted in Fig. 6.2 for the identity function and the element-wise square function, with L set to
the identity matrix in both cases.

This brief discussion does not capture the generality of the NEF, although it is sufficient for
characterizing neural structured representation. Since we are concerned with scaling, an important
final note is that as more neurons are added to a population, the quality of its representation im-
proves. Specifically, the mean-squared-error goes down as 1/N [8]. Consequently, representations
and transformations can be implemented to any desired precision, as long as there is a sufficient
number of neurons. One of the main concerns of this paper is to determine whether the transfor-
mations and representations necessary for representing human-scale lexical structure can be done
with a reasonable number of neurons. We now show how the NEF can be applied to create spiking
neural networks that compute the operations required by the Extraction Algorithm.

25

6.2 Circular convolution in spiking neurons

Like any kind of convolution, circular convolution can be formulated as an element-wise multipli-
cation in the Fourier space. Since both the Fourier transform and its inverse are linear operators,
circular convolution can be written in terms of linear operators and an element-wise multiplication:

x~y = F−1(Fx�Fy)

where x and y are two arbitrary input vectors, � indicates an element-wise multiplication, and F and
F−1 are matrices computing the Fourier transform and its inverse, respectively. A neural network
that computes circular convolution using this formulation is shown in Fig. 6.3. Populations A
and B represent the two input vectors, and have feedforward connections to population C. These
connections are set up to compute the Fourier transform by multiplying by F, causing C to represent
the concatenation of the two Fourier transformed vectors. C is connected to population D, and these
connections simultaneously compute the element-wise product of the two Fourier transformed
vectors (using the appropriate decoding vectors), and take the inverse Fourier transform of the
result by multiplying by F−1. The result is that x~y is represented in D.

The weights for this network are found using Equation (6.10). Here and throughout the paper,
when showing connection weights, we will use i to index the neurons in the upstream (pre-synaptic)
population, and j to index neurons in the downstream (post-synaptic) population. The weights for
the convolution network are:

ω
A→C
i j = e jF1di

ω
B→C
i j = e jF2di

ω
C→D
i j = e jF−1d�i

where d�i are decoding vectors for the element-wise multiplication function for population C, and
F1 and F2 are Fourier transform matrices padded with 0’s so that Fx and Fy are concatenated in C,
rather than added.

Although this operation may seem complicated, it is surprisingly natural for neural computation
in several important respects. First, it has been shown to be learnable in a spiking network [49].
Second, for 512-dimensional vectors it has been shown to result in connection matrices that respect
known neural connectivity constraints [7].

6.3 Involution in spiking neurons

As we saw in our initial discussion of the HRR algebra, the involution of a vector is an approximate
inverse with respect to circular convolution. It can be computed by reversing all but the first
element of the vector, which stays in place. Since this is a permutation, it is a linear operation,
and therefore there exists a matrix V which computes it. Consequently, there is a straightforward

26

u
x

D (u v)

D (x y)

Time (s)

V
a
lu

e

Time (s)

v y

V
a
lu

e

b)

a)

c)

Input A

Input B

u
x

v y

Time (s)

A

B

u v x y

V
a
lu

e

Time (s)

D

S
im

il
a
ri

ty

D: Similarity

Figure 6.3: Simulation of a neural circuit for computing circular convolution of two 10-dimensional vectors. A, B, C
and D are populations of spiking neurons. Connection weights between populations are derived using the techniques
from Section 6.2 such that D represents the circular convolution of the two input vectors. Input vectors u,v,x and
y were randomly chosen from the 10-dimensional unit hypersphere. a) Graphs showing input vectors and vectors
represented by populations A, B and D over a 1.2 s simulation, where the inputs change after 600 ms. In each graph,
only 5 of the 10 dimensions are shown to reduce clutter. First column: the input vectors. Second column: vectors
represented by the populations A and B, neural representations of the input vectors. Third column: vector represented
by population D, which should be the circular convolution of the two input vectors. b) Architecture of the neural
circuit. The letters are populations of neurons and the arrows are all-to-all neural connections. c) Similarity between
the vector represented by population D and the vectors u~ v and x~ y over the 1.2 s simulation. If the circuit is
correctly computing circular convolution, we would expect the similarity to u~v to be near 1 before 600 ms, and the
similarity to x~y to be near 1 after 600 ms, which is clearly the case.

27

modification we can apply to our convolution network such that the second input is involuted
before the Fourier transform is applied, resulting in a network that computes x~ y rather than
x~y. Specifically, we change the connection weights between populations B and C to:

ω
B→C
i j = e jF2Vdi (6.11)

We now have a neural network computing 2 of the 3 operations required by the Extraction Algo-
rithm. The last component is a neural associative memory, which requires a slightly more nuanced
application of the NEF.

6.4 Neural associative memory

Recall that the aim of the associative memory is to associate pairs of vectors 〈ξ ,η〉, and for our
purposes the ξ ’s are the ID-vectors and the η’s are the semantic pointers. We now show how
the NEF can be applied to create a spiking neural network capable of efficiently implementing
the associative memory functionality. The approach we employ here was first demonstrated by
Stewart, Tang and Eliasmith in [52] to build an auto-associative memory (where for each stored
pair 〈ξ ,η〉, ξ = η), though it can be trivially extended to implement a general hetero-associative
memory. That paper demonstrated that networks built using this approach significantly outperform
linear associators, direct function approximators and standard multi-layer perceptrons in terms
of both accuracy and scalability. Such networks also have an advantage in terms of biological
plausibility, since they are implemented in spiking neurons.

This neural associative memory is essentially a neural implementation of the association al-
gorithm presented in Section 5.4. Each pair to be associated is assigned a small (∼20) neuron
population. The encoding vectors of this population are set equal to ξ , and the neurons are given
a high threshold so that they only spike when the input is sufficiently similar to ξ . The decoding
vectors of the population are chosen to approximate a thresholding function, and η is used as a
linear operator. The overall effect is that when a population is active, it outputs its assigned η ,
and a population is active if and only if the input is sufficiently similar to its assigned ξ . All these
populations converge on a single output population, where the inputs are summed by the dendrites.
In essence, each neural population computes, in parallel, one iteration of the loop in Algorithm
5.4.1. To be explicit, for sub-population k assigned the vector pair 〈ξk,ηk〉, the input and output
weights are:

ω
in
i j = ξkdi ω

out
i j = e jηkdthresh

i (6.12)

where dthresh are decoding vectors for the thresholding function f (x) = 1.0 if (x > 0.3) else 0.

We have described all of the techniques required to create a spiking neural network for ex-
tracting the constituents of semantic pointers. We claim that the network obtained by composing
these two networks, such that the output of the involution/convolution network is fed into a neural
associative memory, constitutes a neural implementation of the abstract Extraction Algorithm. In

28

what remains, we present the details of the neural model, and run experiments on it to determine
how it performs at scale.

6.5 The complete neural model

The model consists of a network of 2,506,980 spiking neurons constructed using the techniques
outlined above. Given a semantic pointer corresponding to a WordNet synset and a query vector
corresponding to a relation-type, the network returns the semantic pointer corresponding to the
target of the relation, implementing the Extraction Algorithm. The network can be used to traverse
the WordNet hierarchy by running it recursively, with the output of one run used as input on the
next run. Low-level details about the model and its parameters can be found in Appendix A.

A schematic diagram of the model is depicted in Fig. 6.4. The rectangles correspond to pop-
ulations of spiking neurons which represent and manipulate high-dimensional vectors. The dark
gray population, which represents the concatenation of the Fourier transforms of the two input
vectors, contains 51,400 neurons, and the 4 light gray populations contain 25,600 neurons each.
The associative memory contains a separate 20-neuron population for each of the 117,659 synsets
in WordNet. The grand total is thus 2,506,980 neurons, equivalent to approximately 14.7 mm2 or
0.147 cm2 of cortex (as there are about 170,000 neurons per mm2; 7). This is much smaller than
any of the approaches discussed in Section 2, all of which require on the order of 500 cm2 of cortex
or more. More significantly, our approach is the only one whose neural resource requirements do
not contradict our empirical knowledge about the size of relevant brain areas. Consequently, if our
experiments confirm that our network can accurately extract the relational structure from WordNet
synsets, it will constitute a significant advance in the study of biologically plausible representations
of structured knowledge.

The tasks of moving the output into the input for hierarchical traversals, controlling which vec-
tor is used as input to the query population, etc., are not neurally implemented here as they are
peripheral to our central concern of representing human-scale structured knowledge in a biologi-
cally plausible manner. However, Spaun, a large scale, functional brain model constructed using
the NEF, is evidence that it is possible to achieve this kind of control in a scalable spiking neural
network [9].

Our model is a significant departure from the majority of connectionist work in that no online
learning occurs; the connection weights implementing the required transformations are derived
offline before the network is instantiated, using the NEF techniques. While we will eventually
have to account for how our network could be learned in a biologically plausible manner, we
believe the problem of large-scale connectionist knowledge representation is difficult enough that
it is sufficient to focus on representation alone for now, and leave the question of learning for future
work. We do note that it has been shown that circular convolution can be learned in spiking neurons
using a biologically plausible learning rule [49], and later in this thesis we make some preliminary
investigations into the question of learning the type of associative memory used here.

29

Figure 6.4: The network of spiking neurons designed to implement the Extraction Algorithm from Section 5.6. Assume
Hsp = Q ~ Tid + R ~ Uid. The rectangles correspond to populations of spiking neurons, and are labeled with
the values we expect them to represent when the network is given Hsp and Q as input. Arrows represent all-to-all
feedforward connections between populations, and are labeled with the elements of the NEF-derived weight matrices
mediating them. In these weight matrices, i always indexes neurons of the upstream population, j always indexes
neurons of the downstream population, and k indexes pairs of vectors in our vector encoding of WordNet. Light gray
populations represent 512-dimensional vectors. The dark gray population represents the concatenation of two Fourier
transformed 512-dimensional vectors, and thus represents a 1028-dimensional vector.

30

Chapter 7

Experiments

We performed three experiments on both the abstract Extraction Algorithm and its neural imple-
mentation, to test whether WordNet is accurately encoded. For convenience, we will refer to both
implementations as “models”. A trial consists of using a model to answer a single question about
the WordNet graph (the question is different for each experiment). A run consists of a group of
trials. No information was added to or removed from either model’s associative memory between
experiments, demonstrating that both models are capable of performing all three tasks unmodified.

For each experiment we execute 20 runs, calculate the performance on each run as the percent-
age of trials on which the model answered correctly, and report the mean performance over all the
runs. To obtain distributional information about these results, we employ a bootstrapping method
to obtain 95% confidence intervals.

Each trial consists of using a model for one or more extraction operations, where a seman-
tic pointer and a query vector are presented as input and the algorithm outputs a vector (which
may or may not be a semantic pointer). In the neural case, for each extraction operation the
model was simulated for 100 ms with a simulation timestep of 1 ms, after which the vector rep-
resented by the rightmost population in Fig. 6.4 was taken to be the output of the model. Code
for constructing the models and running the experiments is hosted online in a github repository at
https://github.com/e2crawfo/hrr-scaling.

7.1 Experiment 1 - Simple Extraction

This experiment investigates the ability of a model to traverse a single edge in the WordNet graph.
We present the model with a semantic pointer corresponding to a randomly chosen synset and the
vector corresponding to a relation-type that the synset is known to possess, and see if the model
outputs the semantic pointer corresponding to the target of that relation. For example, we might
present the model with dogsp as the semantic pointer and class as the query vector, and expect the
model to return caninesp.

31

To be considered correct, the vector returned by the model must have a larger dot product with
the correct semantic pointer than with any incorrect semantic pointer in the vocabulary, and this
similarity must exceed a threshold of 0.7. The value of 0.7 is somewhat arbitrary, though it does
ensure that the output vectors have sufficient fidelity to be put to further use. In this experiment,
each run consists of 100 trials.

7.2 Experiment 2 - Hierarchical Extraction

The simple extraction experiment assesses the general accuracy of a model of knowledge represen-
tation, but it only tests individual relationship links. The hierarchy traversal experiment is designed
to test a model’s ability to traverse hierarchies of arbitrary depth in the WordNet graph.

To that end, we use the model to answer the following question: given a starting synset, a goal
synset and a relation-type, can the goal synset be reached from the starting synset by following
only links of the specified type? To have the model answer this question, we present it with the
semantic pointer corresponding to the starting synset as well as the vector for the given relation-
type. We then run the model and compare the output vector to the semantic pointer for the goal
synset. If they are the same (their dot product is above a fixed threshold), then the model responds
with a Yes. If not, we feed the output vector back into the model as the new semantic pointer and
run the model again using the same query vector. This process is repeated until the model returns
a vector with a norm below a fixed threshold, in which case the model responds with a No.

As an example, if the starting synset is dog and we follow only relations whose type is class,
we first get canine, which in turn yields carnivore, followed by placental mammal, and so on,
until the synset entity is finally reached in thirteen links. The correct answer is Yes if and only if
the goal synset is one of these synsets. Further concrete examples of possible queries and correct
responses are given in Table 7.1. Our tests were performed using only the class relation-type as it
is the most prominent in WordNet and permits the deepest traversals. Each run consists of 40 trials
with an even split between positive and negative instances. A positive instance is one in which the
goal synset can be reached from the starting synset in the WordNet graph, and the correct response
is Yes. Results of a simulation where we test the neural model on an instance of the Hierarchical
Extraction test are shown in Figure 7.1.

Starting Synset Target Synset Relationship Type Is Related?

dog vertebrate class Yes
vertebrate dog class No

dog entity class Yes
dog cat class No

Table 7.1: Examples of instances and correct responses in the Hierarchical Extraction test.

32

0.0

0.5

1.0
D

ot
P

ro
d

u
ct

a)

gorilla

great ape

anthropoid ape

ape

0.0

0.5

1.0

D
ot

P
ro

d
u

ct

b)

gorilla

great
ape

anthropoid
ape

ape

c)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Time (s)

0.0

0.5

1.0

D
ot

P
ro

d
u

ct

d)

Figure 7.1: Results of a simulation during which the network was used to perform the Hierarchical Extraction test.
The starting synset is gorilla, the relation type is class, and the target synset is ape. Every 100 ms we compute the
norm of the output vector and the dot product between the output vector and apesp. If the norm is below a threshold,
the network’s response is No. If the dot product is above a threshold, the network’s response is Yes. Otherwise, the
output vector is fed back in as input, and the simulation continues. a) Dot product between semantic pointers and
the vector represented by the input population. b) Dot product between ID-vectors and the vector represented by
the population that feeds into the associative memory. c) Spikes rasters for neurons in the association populations
corresponding to the synsets listed in the legend. Association populations for all other WordNet synsets were included
in the simulation, but had no spiking activity. d) Dot product between semantic pointers and the vector represented by
the output population. The network can be seen to traverse the WordNet graph, starting from gorilla and eventually
reaching ape. At 300 ms, the dot product of the output vector with apesp is above the threshold and the network
responds (correctly) with Yes.

33

7.3 Experiment 3 - Extracting from Sentences

The previous experiments have focused on relations included in WordNet. The current experiment
is designed to go further, and demonstrate that our representation is capable of encoding arbi-
trary sentence-like constructions possessing recursive structure, and that the models are capable of
extracting the constituents of such sentences without modification.

If each role is assigned a random vector, then sentences can then be encoded as semantic
pointers as we have done throughout the paper. One difference here is that role vectors are chosen
randomly from the class of so-called “unitary” vectors instead of from the unit hypersphere as
with relation-type vectors. Unitary vectors have the special property that involution is their exact
inverse [40], which permits the sentence constituents to be extracted with higher accuracy.

For instance, recall that the sentence “mice believe that dogs chase cats” can encoded as:

deep sentencesp = subject~mouseid +verb~believeid +

object~ (subject~dogid +verb~ chaseid +object~ catid) (7.1)

While this clearly leaves out many features of natural language sentences, the purpose of this
experiment is not to validate this particular structure as a basis for linguistics. Rather, the goal is to
confirm that the method of knowledge representation being tested is flexible enough to allow the
elements of the vocabulary to bind to arbitrary roles in recursively structured sentences while still
encoding the thousands of relationships between concepts.

Each trial begins by randomly generating a sentence in symbolic form. To generate the surface-
level construction, we randomly select roles for inclusion according to the probabilities in Table
7.2. One of the included roles is randomly chosen to be filled by an embedded clause, and the
rest are filled with randomly chosen WordNet synsets. The embedded clause is then generated in
the same manner, except now all roles are filled by WordNet synsets. Once the sentence has been
generated symbolically, the next step is to create a semantic pointer representing the sentence in
terms of ID-vectors for the chosen synsets and role vectors for the included roles, yielding a vector
similar in form to Equation (7.1). Finally, the resulting semantic pointer is normalized.

We then test the model’s ability to extract the constituents of the sentence. For the surface-
level constituents, we present the model with the semantic pointer representing the sentence, and
the appropriate role vector as the query vector. For example, if we present deep sentencesp and
verb, we should expect the model to return believesp. The process is similar for constituents of
the embedded clauses, except we use compound query vectors. If we present the model with
deep sentencesp and object ~ subject, we expect it to output dogsp. Each run consists of 30
trials, and on each trial the performance is measured as the percentage of queries that the model
responded to correctly, using the same correctness criteria as in Experiment 1. Results for surface
and embedded constituents are reported separately.

34

Role name Probability of occurrence Part of speech

subject 1.0 noun
object 0.8 noun
verb 1.0 verb

adverb 0.6 adverb
subject adjective 0.3 adjective
object adjective 0.3 adjective

Table 7.2: Roles for sentence generation and their properties.

Simple Hierarchical Sentence
(Surface)

Sentence
(Embedded)

0

20

40

60

80

100

%
 C

or
re

ct Abstract
Neural

Figure 7.2: Extraction performance. Error bars are 95% confidence intervals.

7.4 Results

Results of the experiments are presented numerically in Table 7.3 and graphically in Fig. 7.2.
Performance on all three tasks by both the abstract and neural implementations of the Extraction
Algorithm is near 100%. The success of the abstract algorithm shows that WordNet is accurately
stored in our vector encoding. The success of the neural implementation shows that no significant
penalty is incurred by implementing the algorithm in spiking neurons. More generally, it shows
that a spiking neural network is capable of extracting structure from any element of a human-scale
vocabulary. Combined with the fact that, unlike previous approaches, this network places neural
resource demands that are consistent with anatomical data, this constitutes the first biologically
plausible neural implementation of a human-scale structured knowledge base.

35

Experiment Type % correct
95% CI

Runs
Trials

lower upper (per run)

Simple
Abstract 99.0 98.6 99.4

20 100
Neural 99.2 98.9 99.3

Hierarchical
Abstract 96.5 95.0 97.8

20 40
Neural 98.5 97.8 99.3

Sentence (surface)
Abstract 94.3 93.3 95.3

20 30
Neural 97.2 96.3 97.9

Sentence (embedded)
Abstract 95.1 94.2 95.9

20 30
Neural 96.2 95.3 97.0

Table 7.3: Numerical values for extraction performance

36

Chapter 8

Discussion

8.1 Scaling

We have presented the details of our approach to encoding structured representation and demon-
strated empirically that it is capable of encoding a human-scale knowledge base with much more
modest resource requirements than its competitors. Specifically, our model uses roughly 2.5 mil-
lion neurons to encode a structured lexicon containing 117,659 words. Individual relations in the
lexicon can be traversed with 99% accuracy, hierarchies with up to 13 levels can be traversed with
98% accuracy, and the network can be used to extract constituents of recursively structured sen-
tences with 96% accuracy. Unlike past approaches, which use a minimum of 480 cm2 of cortex
to represent much simpler structures, the method as demonstrated here requires less than 1 cm2 of
cortex. Like past work, there are many aspects of linguistic processing that are not captured by
our model. However, its modest use of cortical resources makes it plausible that it may do so with
further development.

We believe that this improved scaling largely results from capturing structured representation
using compressed, temporary signal processing states (i.e. semantic pointers encoding sentences
or synsets), rather than using fixed neural resources. In contrast, synchrony-based approaches like
DORA and LISA require a fixed neural node for every proposition that we require the network to
be able to represent. The Neural Blackboard Architecture alleviates this need by allowing bindings
to be represented by the activation states of a neural “mesh”. However, the substantial complex-
ity required to implement this mesh results in scaling that is still implausible. Moreover, both
synchrony-based approaches and the NBA are capable of representing only a few propositions at
a time. This means that while they are capable of representing short-term bindings (such as the
sentences in our sentence experiment), the long-term storage and retrieval of relations in a large,
structured knowledge base is well-beyond their abilities. In particular, it is unclear how they would
accomplish the Hierarchical Extraction experiment.

Finally, our approach bears some resemblance to Smolensky’s tensor product vector symbolic
architecture. However, we make a different set of tradeoffs which result in significantly improved

37

scaling. In particular, we use a compressive binding operator, supported by an associative memory.
This avoids the explosion in neural resources required by Smolensky’s approach as the depth of
encoded structures increases. In particular, it permits us to encode and extract the constituents of
recursively structured sentences without making implausible neural resource demands.

Our approach is largely a distributed one, The representations of the vectors in all populations
other than the associative memory are distributed throughout the neurons in the population, and
the contents of each term in the HRR vectors is distributed throughout the elements of the vector;
the vector elements themselves are not semantically interpretable. Consequently, it inherits the
scaling advantages of distributed representations; the populations outside the associative memory
can represent any vector that is fed into them. The associative memory is significantly more lo-
calist, as we explicitly assign a group of neurons for every synset in WordNet. However, we are
able to avoid the explosive scaling of previous localist schemes because each localist population is
performing a simple job, that of comparing and thresholding, and thus each requires only a small
number of neurons (20 in our model). Perhaps more significantly, we do not represent relations
between synsets by explicit physical connections between the populations corresponding to those
concepts; rather, the relations between synsets are encoded in the HRR vectors.

8.2 Theoretical Considerations

Our model speaks to the long-standing debate regarding the relationship between classical, sym-
bolic theories of mind and connectionist research. On one side of the debate are researchers who
take an implementational view of connectionism. These researchers hold that human behavior is
best analyzed at a symbolic level, and that the role of connectionist research is to show how neurons
might implement classical symbolic representations [14, 22]. The past approaches we discussed
in Section 2 are all attempts to directly implement these classical symbols, where each element
(e.g. a word) in a composite symbol (e.g. a sentence) is explicitly represented. On the other side
of the debate are so-called eliminative connectionists who hold that human behavior can be ac-
counted for without implementing a classical symbol system [2, 41, 10]. Upon first inspection,
the approach we have presented here may appear implementational, since our neural network is
essentially an implementation of the abstract Extraction Algorithm. However, semantic pointers,
while possessing compositional properties, are not truly classical symbols, and consequently, we
take our approach and its scalability as evidence in favor of non-classical architectures.

One reason that our approach is non-classical is that it is not necessary to perform the extrac-
tion operation on semantic pointers in order to do useful things with them, thanks to the shallow
semantics that we mentioned in Section 3. For instance, semantic pointers that have similar rela-
tional structure will themselves be similar, which can be exploited to perform useful computation
without first extracting the elements in the representation [7]. This is a hallmark of eliminative
connectionism [2], and is, by definition, impossible in a classical symbolic architecture.

Another reason that we consider semantic pointers to be non-classical is that they are con-
structed through a lossy compression process. As a result, they do not contain complete infor-

38

mation about their constituents. In particular, the result of the decompression operation (i.e. the
involution/circular convolution combination) is only an approximation of a constituent vector. In
contrast, tensor product vectors representing complex structures contain explicit representations of
their constituents, and said constituents can be perfectly extracted. Consequently, McLaughlin’s
argument that tensor products are merely an implementation of a classical symbolic system [31]
does not carry over to semantic pointers.

We suspect that, in fact, the poor scaling of the past approaches is a direct result of their use
of classical representations. For instance, it is precisely because tensor products include complete
representations of every item in the structure being represented that they scale poorly with the depth
of the structure. On the other hand, because semantic pointers are created from their constituent
vectors through lossy compression, the dimensionality of the representation remains constant as
the depth of the encoded structure increases. This permits deep structures to be efficiently encoded,
as we saw in the sentence extraction experiment. We are able to correct for the information lost
through compression in a scalable manner using an associative memory.

One benefit of this kind of compressed representation is that models employing them have
natural limits on the depth of structure they can encode. Thus, there is no need to appeal to a
competence/performance distinction when theory and data differ. It is expected, rather, that the
performance of theoretical models will reflect the actual observed performance of human subjects.
For example, we have used these representations to capture human error rates as a function of list
length in serial working memory tasks [9]. However, much work remains to be done to demonstrate
that model and human performance will match across a wide variety of tasks.

8.3 Psychological plausibility

We do not believe that the model presented here is able to support significant claims of psycho-
logical plausibility, other than the very general observation that the our method can be used to
model lexical processing at a psychological scale. In short, this work is best interpreted as a proof
of principle, demonstrating that very large structured representations can be efficiently encoded in
a realistic neural network using our method. It is tempting to make more specific psychological
claims. However, our choice of WordNet as a lexical structure makes such claims implausible.
WordNet was chosen because it is a readily available human-scale, structured representation that
is intended as a lexical database of the English language, bearing a resemblance to the human
conceptual system.

However, we remain uncommitted to WordNet from a psychological perspective because of
its significant limitations. For instance, human conceptual systems likely employ relation-types
that do not appear in WordNet, may contain concepts that WordNet omits, and potentially has
high-degree concepts in WordNet broken down into intermediate concepts. In addition, there are
many concepts in WordNet that are unlikely to be in an average person’s conceptual system, either
because they are domain-specific (e.g. Gram’s Method, a staining technique used to classify bac-
teria) or culture-specific (e.g. eisteddfod, any of several annual Welsh festivals involving artistic

39

competitions). These limitations force the model to perform some of the tasks in ways that may
not be psychologically plausible. For instance, in performing a trial in the Hierarchical Extraction
experiment where the model has to decide whether dog has the type mammal (i.e. whether mammal
can be reached from dog via the class relation-type), the model must traverse canine, carnivore
and placental mammal along the way. It is unlikely that this same traversal would occur for most
human subjects.

In sum, we believe that the fact that our model is able to encode the WordNet semantic network
in a reasonable number of neurons lends support to our technique, but we are not convinced that
the specific lexical structure proposed by WordNet is psychologically plausible.

8.4 Extensions and future work

We have already mentioned a number of possible extensions to the present work. For instance, it is
natural to embed our model within a control algorithm, such as that used in the recent Spaun model
[9]. We could then make use of our network for cognitive tasks and bring it into better contact with
behavioral data. Additionally, we have acknowledged that it will be crucial to investigate how
this neural representation might be learned from training data while retaining its desirable scaling
properties.

There are number of avenues for improvement beyond these two. For instance, while we have
considered only lexical encoding here, semantic pointers are flexible enough to allow many types
of information to be encoded simultaneously [7]. To construct a representation more reminiscent of
a full-fledged concept, we could add perceptual, motor, or dynamics information to each semantic
pointer. For the visual modality, this could be accomplished by adding to each semantic pointer a
term of the form vision~ visualData where visualData is visual information about the concept,
and vision is a marker that is analogous to the relation-type vectors we have used throughout this
study. visualData could then be extracted from the semantic pointer by a modified version of our
model, with vision as the query vector. The model would have to be modified to use an associative
memory storing visual information instead of the lexical information we have used in the present
study. One could imagine a number of instances of our model in different cortical areas, each
with an associative memory storing the type of information relevant for that brain area. Further
modality-specific processing could then be performed on the extracted information. A similar
approach for a small scale vocabulary has been pursued in the Spaun model [9].

40

Chapter 9

Alternate encodings

9.1 Doing away with ID-vectors

Earlier we mentioned the possibility of freeing our method of ID-vectors. This would reduce the
complexity of the method, since we would only have to keep maintain one vector, the semantic
pointer, per WordNet synset. This would entail defining the semantic pointer for a synset directly
in terms of the semantic pointers for related synsets. For example, dog would be encoded as:

dogsp = class~ caninesp +member~packsp

The associative memory will also have to be modified, because now dogsp ~ class will be a vector
similar to caninesp rather than canineid. Consequently, both the address vectors and the stored
vectors are equal to the semantic pointers, and the associative memory becomes an auto-associative
memory.

The most obvious problem with this approach, as we previously mentioned, is that it does
not allow the encoding of semantic networks with directed cycles, because some of the semantic
pointers will be defined in terms of one another. However, we can free WordNet of directed cycles
by deleting a small number of relations, allowing us to at least test this encoding and see whether it
works in principle. Deleting the directed cycles allows us to define an ordering of the synsets such
that for any relation in the semantic network, the target synset of the relation occurs earlier than
the source synset. For example, canine would occur earlier than dog since there is a relation whose
target is canine and whose source is dog. In graph theory this is known as a topological ordering.
To assign semantic pointers to synsets, we begin by assigning random unit vectors to synsets that
are not the source of any relations (for example, the first synset in the ordering), and then assign
semantic pointers according to the topological ordering. The result is that whenever we assign a
semantic pointer to a synset, all the other synsets that it is related to have already been assigned
semantic pointers, and the process is consequently well-defined.

41

9.1.1 The naive approach

Simple Hierarchical Sentence
(Surface)

Sentence
(Embedded)

0

20

40

60

80

100

%
C

o
rr

e
c
t

ID-vectors

no ID-vectors

Figure 9.1: Performance on WordNet encoding without ID-vectors.

Fig. 9.1 shows the results of performing the experiments from Section 7 on this encoding.
We note that these results, and in fact all results in this section are obtained from the abstract
algorithm and not the neural implementation. As we can see, performance is much poorer than
the performance obtained using the ID-vector encoding. The primary reason for this is that the
semantic pointers are being used as the address vectors in the associative memory, but the semantic
pointers also have a high-degree of similarity to one another. The result is that many of the pairs
in the associative memory become active in response to any given input vector, and the output of
the associative memory is a useless sum of many semantic pointers.

We can see the high mutual similarity of the semantic pointers in this new encoding by simply
sampling a number of the semantic pointers that are created during this encoding, and taking their
dot product. This is shown in Fig. 9.2. We can see that in the encoding we have used throughout
the paper, the address vectors in the associative memory (the ID-vectors) have mutual similarity
near 0. In contrast, in the new encoding where we use semantic pointers as the address vectors, the
mutual similarity between the address vectors is often as high as 1.

The basic reason that the semantic pointers are similar to one another is that they are not
chosen purely randomly as the ID-vectors are; rather, they encode relational structure, and semantic
pointers that encode similar relational structure will themselves be similar (the “shallow semantics”
of semantic pointers). However, particular aspects of this encoding make this effect worse than is
strictly necessary. To see this, we expand out the semantic pointer for dog:

dogsp = class~ caninesp +member~packsp

= class~ (class~ carnivoresp +member~Canidaesp)+member~packsp

= class~ class~ carnivoresp + class~member~Canidaesp +member~packsp (9.1)

42

0

5000

10000
F

re
q
.

A

0

5000

10000

F
re

q
.

B

−1.0 −0.5 0.0 0.5 1.0

Dot product

0

5000

10000

F
re

q
.

C

Figure 9.2: Histograms of dot products between address vectors of the associative memory under different encodings
of WordNet. Data obtained by randomly sampling 100,000 pairs of distinct WordNet synsets (with replacement) and
taking the dot product of their address vectors. A. Original encoding, where the address vectors are the ID-vectors.
B. Encoding without ID-vectors, where the address vectors are the semantic pointers. C. Same as B, but with the
relation-type vectors chosen to be unitary vectors.

Equation (9.1) can be expanded out much further, until we have defined the semantic pointer for
dog in terms of the vectors assigned to leaf synsets. The full expansion is omitted for brevity. What
this shows is that the distributive property of circular convolution implies that semantic pointers
for non-leaf synsets will contain terms consisting of relation-type vectors convolved repeatedly
with themselves. In fact the full expansion of dogsp contains class13 ~ entity, where classn is
understood to mean class convolved with itself n times. This is a problem because taking the cir-
cular convolution of a vector with itself repeatedly results in the magnitude of the vector growing
rapidly. The effect is that other terms are largely lost when the semantic pointer is normalized.
Thus, long chains consisting of a single relation-type are given significantly more weight in the
semantic pointers. Consequently, even if two semantic pointers have quite distinct relational struc-
tures, if they share a long chain consisting of a single relation-type, they will end up being very

43

similar.

9.1.2 Unitary relation-type vectors

Fortunately, this behavior has already been investigated in [40](p. 118-119) and there is a technique
which addresses the problem. The proposed solution is to restrict the relation-types vectors to be
vectors whose Fourier transformed components have a magnitude of one. Such vectors are called
unitary, and we have seen them previously when we used them as the sentence-role vectors when
we created semantic pointers encoding sentences in Section 7. One of the many unique properties
of unitary vectors is that if u is unitary, then un has norm 1.0 for integers n > 0. When we create
the encoding under this constraint and perform the same sampling of the address vectors (semantic
pointers) as before, we see that the address vectors are, in general much less similar to one another.
This is shown in the bottom plot of Fig. 9.2. We also rerun the experiments to determine whether
this actually results in improved performance as we expect. The results are presented in Fig. 9.3,
where we can see that performance has indeed increased significantly.

Simple Hierarchical Sentence
(Surface)

Sentence
(Embedded)

0

20

40

60

80

100

%
C

o
rr

e
c
t ID-vectors

no ID-vectors,
non-unitary

no ID-vectors,
unitary

Figure 9.3: Performance on WordNet encoding without ID-vectors.

9.1.3 Adding noise

Restricting the relation-type vectors to be unitary has helped, though not as much as we might like;
the results are still quite far from the results obtained through the ID-vector encoding. Looking
again at the bottom plot of Fig. 9.2, its clear that even when we use unitary relation-type vectors,
there are still some synsets that have very similar semantic pointers. We can reduce this similarity
further by incorporating some of the strengths of the ID-vector approach. Specifically, we add
random noise to the semantic pointer vectors. For instance,

dogsp = class~ caninesp +member~packsp +N (9.2)

44

where N is a random unit vector which is different for each synset. This should make the semantic
pointers more dissimilar once they have been normalized, which should improve the performance
of the associative memory. In fact we can add in arbitrary amounts of noise by adding in multiple
noise vectors:

dogsp = class~ caninesp +member~packsp +N1 + · · ·+Nn (9.3)

The downside is that adding this noise makes decompression itself noisier and therefore more
prone to error. To find the optimal amount of noise to add, we can simply run our experiments
with different amounts of noise added. Fig. 9.4 shows the results of this manipulation when using
non-unitary relation-type vectors. We can see that it has helped somewhat, though is still nowhere
near the performance when using ID-vectors. On the other hand, Fig. 9.5 shows that performing
this same manipulation while using unitary relation-type vectors results in performance on par with
that of the ID-vector encoding when n = 5 noise vectors are added to the semantic pointers.

Simple Hierarchical Sentence
(Surface)

Sentence
(Embedded)

0

20

40

60

80

100

%
C

o
rr

e
c
t

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

n = 8

Figure 9.4: Encoding WordNet without ID-vectors, using non-unitary relations and noise added to the semantic point-
ers. n = 0 corresponds to the encoding with no noise added. Performance plateaus once n = 8 noise vectors have been
added, and performance is never as good as the encoding that uses ID-vectors.

So it is possible at least in principle to encode a large structured knowledge base without
resorting to ID-vectors. However, the constraint that graphs with directed cycles cannot, as of
yet, be represented under this encoding is still a major mark against it. However, we cannot rule
out that someone may come up with a systematic method for finding semantic pointers that can be
written in terms of one another.

9.2 Including more relations

We have only included a subset of the relations that occur in WordNet. Specifically, we have
included, class, instance, member, part, and substance, but have not included their inverses. Ex-

45

Simple Hierarchical Sentence
(Surface)

Sentence
(Embedded)

0

20

40

60

80

100

%
C

o
rr

e
c
t

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

n = 8

Figure 9.5: Encoding WordNet without ID-vectors, using unitary relations and noise added to the semantic pointers. n
= 0 corresponds to the encoding with no noise added. Performance plateaus once n = 4 noise vectors have been added
where it performs as well as the ID-vector encoding, and decreases thereafter, indicating that the semantic pointers
contain too much noise for decompression to be reliable. Notably, the performance on the Sentence Extraction test
never decreases, because noise is not added to the semantic pointers that encode sentences.

cluding these still allows complex inferences to take place, but including them would provide more
flexibility. However, there are several aspects of the WordNet graph, modified to include those in-
verse relations, that are difficult for our technique.

The most obvious problem is that nodes with very high out-degree become much more com-
mon. For instance, dog will now be related to all possible dog breeds via the inverse of the class
relation. When combined with the relations that we have already included in dog, this puts the
out-degree of dog at 23. The consequence is that dogsp will contain 23 terms. Extracting the con-
stituents of such a vector in the straightforward way we have done so far would have extremely
low fidelity. This is largely a result of the structure of WordNet, and may not be a problem in
real human-knowledge bases. To solve this problem in the context of WordNet, we can cluster the
synsets related to each high-degree synset and then create a new node for each cluster. For the case
of dog, we could cluster the dog breeds by color, and end up with new nodes for brown dog, white
dog, etc., resulting in a graph with more nodes, but fewer relations emanating from any given node.

9.3 Synsets with multiple relations of the same type

One mark against our approach, which we briefly noted above, is how it handles synsets that have
multiple relations of the same type. For example, the synset lion is related to both pride and
panthera via the member relation-type. The semantic pointer for lion :

lionsp = member~prideid +member~pantheraid + class~bigcatid

46

Consequently, lionsp ~member will be similar to both prideid and pantheraid. Then, when this
vector is fed into the associative memory, the association populations for both pride and panthera
will become active, and their outputs (the corresponding semantic pointers) will be summed in the
dendrites of the output population. In short, the output of the network will be pridesp+pantherasp.

For the experiments we have performed in this study, this is acceptable behavior. For the Simple
Extraction experiment, we take the dot product of the output vector with the semantic pointer we
expect to get out, and if this is above a threshold of 0.7, we judge it as correct. If the output
were pridesp +pantherasp, the dot product of this with pridesp would likely be greater than 0.7.
This highlights that fact that in the Simple Extraction test, we are testing for the presence of the
vector we expect to get as output, not whether the output and the expected semantic pointer are
identical. In the case of the Hierarchical Extraction experiment, the fact that the output is pridesp+
pantherasp is actually beneficial, as it effectively allows the network to simultaneously follow
multiple paths through the WordNet graph. Finally, for the Sentence Experiment, the randomly
constructed sentences never contain the same role twice, so this is not an issue.

However, in general one could see this behavior being a problem, and it would be desirable
to always get a single semantic pointer. For this to happen, either one of the synsets needs to be
chosen randomly, or the querier simply has to provide more information to disambiguate between
the possible synsets that could be returned. Below we address outline several ways that the latter
option could be implemented, leaving the former option for future work.

We first note that semantic pointers can be used to encode list-like structured representations.
Instead of relation-type vectors, we use “position” vectors. For example, to encode the list [’lion’,
’tiger’, ’bear’], we could create the following semantic pointer:

listsp = zero~ lionid +one~ tigerid + two~bearid

We can use this structure to solve our problem as follows. In place of the semantic pointer creation
process we have used up to this point, we instead convolve each relation-type vector with a seman-
tic pointer encoding a list which stores the ID-vectors of all synsets that are related to the original
synset by that relation-type. For example:

lionsp = member~ (zero~prideid +one~pantheraid)+ class~ (zero~bigcatid)

The benefit of this approach is that if one knows the position of the item of interest, then one
can use a compound query vector to extract exactly the desired semantic pointer. For example, to
extract only pantherasp, one would use member~ one as the query vector. If the querier does
not have any specific index in mind, it can always use member~ zero, and the returned vector
should be a semantic pointer corresponding to a single synset (if there are any synsets related by
the member relation, and the 0 vector otherwise). The disadvantage is that if the querier does have
a specific item in mind, but its position is not known, then a more complicated process will be
required in order to extract the desired item, such as iterating over all the position vectors starting
from zero.

There are yet more possibilities. Recall that lion is related to both panthera and pride via the

47

member relation. However, the sense of the word “member” in each of these relations is slightly
different. One refers to the genus to which the species lion belongs, and the other refers to the
name for a collection of lions. The idea, then, is to simply sidestep the issue by using a richer and
more finely grained set of relation-types across the whole knowledge base, making synsets with
multiple relations of the same type non-existent.

However, it is unlikely that this will work in all cases. Consider the case of dog when reciprocal
relations are included as we discussed in the previous section. Recall that dog is related to poodle,
corgi, dalmatian, and 15 other dog breeds through the inverse class relation. Here it is not clear
that the sense of the relation is different between each of these 18 uses, as was the case in the
lion example above; therefore we require some other means of singling one of them out. One
possibility is to have the relation vector include, or even be completely composed of, perceptual
information relevant to the target of the relation. For instance, we could encode dog as:

dogsp = dalmatianpercept ~dalmatianid +poodlepercept ~poodleid + spitzpercept ~ spitzid + . . .

where the xpercept vectors consist of perceptual information combined with the relevant relation-
type vector. Then dogsp~dalmatianpercept would be a vector similar to only dalmatianid, and the
output of the associative memory would be dalmatiansp.

Things get especially interesting if we consider that perhaps the querier does not have a com-
plete idea of the item it would like to extract. In other words, it uses a noisy version of the query
vector. This may even be the norm, because it is likely that the perceptual information at query
time, (perhaps a particular dalmatian), would differ somewhat from the stored perceptual informa-
tion (perhaps an amalgamation or average of many different dalmatians).

A scheme similar to this has been explored by Hunsberger et al. in [21]. The authors of that pa-
per created a semantic pointer from a number of labeled images, and later used it for classification.
To do this, they first compressed the images using a hierarchical vision model (specifically, a deep
autoencoder). Then each compressed image was circularly convolved with a vector marking the
label of the image. Finally, all vectors of this form were combined into a single semantic pointer
through addition. For instance:

classifiersp = label1 ~ img1,1 + label1 ~ img1,2 + label1 ~ img1,3 + . . .

+ label2 ~ img2,1 + label2 ~ img2,2 + label2 ~ img2,3 + . . .

+ label3 ~ img3,1 + label3 ~ img3,2 + label3 ~ img3,3 + . . .

= label1 ~ (img1,1 + img1,2 + img1,3 + . . .)

+ label2 ~ (img2,1 + img2,2 + img2,3 + . . .)

+ label3 ~ (img3,1 + img3,2 + img3,3 + . . .)

+ . . .

where label1, label2, . . . are the randomly chosen label vectors, and imgm,n is the compressed
version of the nth image belonging to the mth label. To classify a new image, they run the image
through the compression algorithm yielding imgnew, and compute classifiersp~ imgnew. The label

48

of the new image is estimated to be the label whose corresponding vector has the highest dot
product with this vector. In other words:

estimated label = argmax
c

[(classificationsp ~ imgnew) · labelc]

The model matched well with human data on several different tasks.

This setup is similar to our proposed solution, except for the notable difference that to get their
label, they take an argmax over dot products whereas, we would run classificationsp ~ imgnew
through an associative memory. Using an associative memory places more stringent demands on
the statistics of the input vectors than taking the argmax, but it is not clear that taking the argmax
in neurons will scale as well as an associative memory. Whether the decompressed vectors end up
having statistics that allow an associative memory to function well is unclear, and should be the
subject of further study.

We note that, since WordNet contains only lexical information, this solution is not available to
us. However, there exist newer databases that have perceptual information added in; for instance,
the creators of ImageNet have taken WordNet and annotated it with an average of 500 images per
concrete noun [4]. Moreover, this technique is unlikely to work at all for abstract nouns, for which
perceptual information is neither attainable nor useful. It seems more likely that a combination
for these techniques would be optimal, with perceptually-constructed relation vectors used those
synsets for which such information is available, and a richer set of relation-type vectors for the
more abstract concepts.

49

Chapter 10

Learning associative memories

All the weights in WordNet model were “hand-coded”. That is, weight matrices computing the
desired functions were derived offline using the Neural Engineering Framework. This is a contrast
to standard connectionist research, where a neural network is typically instantiated with random
weights, and those weights are subsequently adjusted throughout the course of a training process
according to some kind of learning rule, often Hebbian learning in the case of unsupervised learn-
ing or backpropogation in the case of supervised learning.

We have been satisfied with these “hand-coded” weights until now because merely represent-
ing large-scale structured knowledge bases, without worrying about how that representation is ob-
tained, was still an open question. However, if brains do encode semantic knowledge in a manner
that looks anything like the one we have presented, then there must be a way to derive these con-
nection weights through a biologically plausible learning process in response to experience in the
world. Thus, providing a biologically plausible account of how the weights were attained would
lend additional support to our to our technique. Here we investigate how this could be achieved.
Other work has demonstrated how the involution/circular convolution circuit can be learned in a
biologically plausible manner [49]. Consequently, in the current chapter we restrict our scope to
learning an associative memory.

10.1 Training regime

There is no clear-cut answer to the question of what form of data the network should be trained on.
Here we make a plausible assumptions, but acknowledge that other regimes are possible. Essen-
tially, we assume that there is some pre-defined list of pairs to be stored in the associative memory,
〈ξk,ηk〉 for k ∈ 1 . . .N, and that each of these pairs is presented to the memory one at a time, for
1 second each. As before, we call the ξk vectors the “address” vectors and the ηk vectors the
“stored” vectors. In our simulations, we will assume that the list of vector pairs encodes a seman-
tic network. That is, we assume that the address vectors are ID-vectors, randomly chosen from
the D-dimensional unit hypersphere, and the stored vectors are D-dimensional semantic pointers.

50

Once training is complete, we expect to be able to provide a noisy version of any address vector ξk
as input, and have the network output the corresponding stored vector ηk.

10.2 Network architecture

We start by defining a basic network architecture, to which we will subsequently add parts as we
show that they are necessary. This basic architecture consists of 3 neural populations connected in
a feedforward manner. Both the input and output populations are standard NEF populations which
represent D-dimensional vectors.

Essentially, we want to start with this basic network architecture, and, through the training pro-
cess, morph it into the same network that would result if we derived the connection weights offline
using the NEF associative memory construction technique from Section 6.4. Recall that in the
hand-coded associative memory, every pair of vectors is assigned a small neural population. The
collection of those small populations corresponds to the middle population in our current network.
Consequently, we call this middle population the association population. The difference between
the association population here and the collection of populations in the “hand-coded” network is
that, before training, none of the neurons in our association population will have been assigned
pairs of vectors to associate; the intent is that said assignment happens as part of the training
process. For convenience, we call the connections weights between the input population and the
association population the “input weights”, and the weights between the association population
and the output population the “output weights”

We make a number of assumptions on the form of input and output weight matrices to facilitate
learning. First, we assume that the input weight matrix is derived, in the usual NEF fashion, such
that it computes a communication channel; that is, it is the product of the encoding vectors of
the association population (which are chosen uniformly as random from the unit hypersphere) and
the decoding vectors of the input population for the identity function. The second assumption is
that the output weights are all initialized to be 0. The utility of this will become clear in Section
10.4 when we talk about modifying the output weights as part of the training process. These initial
assumptions are depicted in the untrained network in Fig. 10.1, which gives a schematic view of the
training process. The final assumption is that the neurons in the association population have high
firing thresholds. The purpose of this is to make it so that during both training and testing, only a
small number of association neurons will become active in response to any given vector presented
as input. This is also known as a sparse representation. Assuming the threshold of the association
neurons and the dimensionality of the vectors is fixed, we can choose the size of the association
population such that when this address vector is presented as input during training, on average a
small number of the neurons in the association population are activated. Steps for deriving the
appropriate size of the association population are given in Appendix B. The relationship between
the firing threshold, the number of neurons in the association population, and the number of active
neurons per input vector is visualized in Fig. 10.3.

51

10.3 General concept

During training, upon the presentation of a pair of vectors 〈ξk,ηk〉 to be stored, we will supply
the address vector of that pair ξk as input to the network. If the size of the association population
has been chosen appropriately with respect to the neural threshold and the dimensionality of the
vectors, a small number of neurons should be active. These active neurons will be thought of as
“assigned” to the current training pair, in the same way that a small association population was
assigned to each pair in the hand-coded associative memory. The goal of the training, then, is to
change both the input and output weights on these active neurons so that they perform similarly to
the populations in the hand-coded associative memory.

There are two components involved in making these assigned neurons perform the association
functionality for that pair. The first is to make it so that whenever those neurons are active, the
stored vector of that pair, ηk, gets sent to the output population. The second is to make it so that
this population of neurons is only active in response to noisy versions of the address vector, ξk,
and completely inactive in response to noisy versions of other address vectors in the memory. The
first component will be achieved by applying the Prescribed Error Sensitivity learning rule to the
output weight matrix during training, which has the effect of making the decoding vectors of the
active neurons equal to ηk. The second component is achieved by applying the Oja learning rule
to the input weight matrix during training, which has the effect of making the active neurons fire
preferentially for ξk. The network augmented with the components required for learning to occur
is shown in Fig. 10.2. We now outline the specifics of these two learning rules.

10.4 Prescribed Error Sensitivity: Storing vectors in connec-
tion weights

The Prescribed Error Sensitivity (PES) rule is an error-modulated learning rule that can be used
to modify the decoding vectors of a population of neurons online [30]. Effectively, the rule works
to modify a connection weight matrix such that some error signal is minimized. Fig. 10.4 show
the general form of a neural circuit employing the PES rule, as well as how the populations in that
general circuit map on to the populations in our basic learning architecture.

The PES learning rule can be most succinctly expressed in terms of a decoding vector update
equation:

∆di = κEai (10.1)

where ∆di is the additive change to the decoding vector of neuron i in the pre-synaptic population,
κ is a learning rate constant, E is the error signal decoded from the error population, and ai is the
activity of the ith neuron. This equation can be mapped to an equation that operates at the level
of connection weights and uses only values that are locally available at each synapse, making it
biologically plausible. For our present purposes, it is more convenient to work with the equation

52

AssociationNeurons OutputInput

AssociationNeurons OutputInput

Figure 10.1: Schematic diagram of the training process. Start with a 3 layer network of spiking neurons, where the
input weights are initialized in the usual NEF style, the output weights are set to 0, and the middle layer neurons have
relatively high thresholds. Training proceeds by presenting each pair to be associated exactly once, for one second.
Once the network has been trained, we should be able to give a noisy version of any address vector ξk as input, and
get the corresponding stored vector ηk as output.AssociationNeurons Error

OutputOja PESInput
Figure 10.2: Schematic diagram of the network during training, showing the presentation of a pair of training vectors
〈ξk,ηk〉. The learning rules that modify the connection weights of active neurons in response to the training vectors
are depicted in gray.

at the level of decoding vectors. Intuitively, this learning rule works by pushing the decoding
vectors of the pre-synaptic neurons towards the current desired output vector (which is part of E)
in proportion to how active the neuron is (hence the inclusion of ai).

During training on a pair of vectors 〈ξk,ηk〉, ξk will be fed into the population, causing a
small number of neurons in the association population to become active. We use the PES rule
to minimize the value represented in the Error population, which is just the difference between
the value represented in the Output population and ηk. This should have the effect of moving the

53

−1 0 1
−1

0

1 A

−1 0 1
−1

0

1 B

ξ1

−1 0 1
−1

0

1 C

ξ1

Figure 10.3: A. Visualization of the encoding vectors of an association population containing 50 neurons, before
training. Here we use an association population that will store 2D vectors because 2D space can be easily visualized.
However, we will typically want to store much higher-dimensional vectors B. Presentation of an address vector, in this
case ξ1 = (1.0, 0.0), to the network. Neurons have firing threshold of 0.9. All encoding vectors inside the red wedge
have a dot product with ξ1 that exceeds the firing threshold, and consequently the neurons to which they belong will
be active. C. Same as B, but the neurons have threshold 0.5. With lower neural thresholds, more neurons are active in
response to any given address vector. In contrast, if we kept the threshold fixed but added more neurons the number
of encoding vectors in each wedge, and thus the number of active neurons, would increase.

AssociationNeurons
Error

OutputPESInput ErrorOutputPES
Figure 10.4: A. The general form of a circuit using the PES rule. The PES rule works to drive the output of the Output
population closer to y, the desired output, by modifying the decoding vectors of the Input population (which are part of
the weight matrix between the Input and Output populations). B. Mapping the populations in A on to our associative
memory learning network. The desired output is ηk.

decoding vectors of the active neurons towards ηk. The idea, then, is that during testing, a noisy
version of ξk will activate roughly the same association neurons as ξk itself did, which will cause ηk
to be represented in the Output population. We can thus think of these neurons that have had their
decoding vectors altered as having been assigned to the pair 〈ξk,ηk〉. We visualize this assignment
in Fig. 10.5.

However, it is inevitable that during the presentation of a testing vector like ξk + noise, some
neurons will become active that were not assigned to 〈ξk,ηk〉. If those neurons have not been
assigned to any pair at all, it will not effect the output because the decoding vectors have been
initialized to 0. This is demonstrated in Fig. 10.6. On the other hand, it will often happen that
ξk + noise activates some neurons that have been assigned to other vector pairs (i.e. to 〈ξ j,η j〉
for j 6= k). The decoding vectors of those neurons will have been set to η j by the PES rule, and
consequently the activation of those neurons will introduced error into the result. This phenomenon
is visualized in Fig. 10.7.

54

−1 0 1
−1

0

1
A

−1 0 1
−1

0

1
B

ξ1

−1 0 1
−1

0

1
C

Figure 10.5: Visualization of the effects of applying the PES learning rule to the output weights while training on a
vector pair 〈ξ1,η1〉. A. The encoding vectors of the association population containing 50 neurons. B. Showing which
neurons are active while ξ1 is given as input and the threshold of the association neurons is 0.5. The PES rule takes
effect during the presentation, and all active neurons have their decoding vectors modified to η1. C. The neurons that
were active have been marked by a red circle. We can think of these neurons as having been assigned to the pair
〈ξ1,η1〉.

−1 0 1
−1

0

1
A

−1 0 1
−1

0

1
B

ξ1 + noise

Figure 10.6: Demonstrating why the output weights are required to be 0 initially. A. State of association neurons after
training on the pair 〈ξ1,η1〉. B. Presentation of a testing vector (striped) derived from η1. We can see that in the south
south-east direction, there are several neurons that are active but have not been assigned to any vector pair. If output
weights were not initially 0, then these unassigned neurons would affect the output and drive it away from η1.

10.5 The Oja rule: Increasing neural selectivity

We solve this issue by augmenting our training process. We add an additional learning rule, this
time on the input connection weights, whose purpose is to move the encoding vectors of active
neurons towards the current input vector. For example, while the network is training on the pair
〈ξk,ηk〉, we move the encoding vectors of all active neurons towards ξk. The beneficial effects of
this process are demonstrated in Fig. 10.8.

We add this to our model by using the well-known Oja learning rule [33]. This learning rule

55

−1 0 1
−1

0

1
A

−1 0 1
−1

0

1
B

ξ2

−1 0 1
−1

0

1
C

−1 0 1
−1

0

1
D

ξ1 + noise

Figure 10.7: Demonstrating the need to move encoding vectors during training. A. State of association neurons after
training on the pair 〈ξ1,η1〉. B. Training on a second pair 〈ξ2,η2〉. C. State of association neurons after training on
both pairs. Purple neurons in the south-east direction have had their decoding vectors modified during the training
of both pairs, and can therefore be thought of as having been assigned to both pairs; their decoding vectors will be a
mixture of η1 and η2. D. Presentation of a testing vector derived from ξ1. The testing vector can be seen to activate
several purple and several blue neurons, which will incorrectly pull the output away from η1.

operates directly at the level of connections weights, rather than at the level of encoding or de-
coding vectors as was the case with the PES rule. It is defined by the following weight update
equation:

∆ωi j = γb j(ai−b jωi j) (10.2)

where ωi j is the weight between the ith pre-synaptic neuron and the jth post-synaptic neuron, b j
is the activity of the jth post-synaptic neuron, and ai is the activity of the ith pre-synaptic neuron.
The Oja learning rule does not exactly move the encoding vectors towards the input vector; in
fact, it operates completely independently of encoding vectors. Moreover, once the Oja learning
rule has taken effect, it is generally not possible to decompose the connection weight matrix in
terms of encoding vectors and decoding vectors. However, it does have the effect of making
active neurons in the association population more selective for the address vector currently being
presented. That is, it makes these neurons more likely to respond to input vectors that are similar
to the address vector, and less likely to respond to input vectors that are dissimilar to the address
vector. This is similar to what would be achieved by directly moving the encoding vectors. We

56

−1 0 1
−1

0

1
A

−1 0 1
−1

0

1
B

ξ1

−1 0 1
−1

0

1
C

−1 0 1
−1

0

1
D

ξ2 −1 0 1
−1

0

1
E

−1 0 1
−1

0

1
F

ξ1 + noise

Figure 10.8: Demonstrating the benefits of moving encoding vectors during training. A-E. Similar training regime as
before, but encoding vectors of active neurons are moved towards address vectors during training. F. When the testing
vector is presented, it activates only neurons that have been assigned to the pair 〈ξ1,η1〉, which should result in η1
being the output.

use the Oja rule because it is a local learning rule, meaning all of the quantities on the right-hand
side of Equation (10.2) could plausibly be available at the synapse, which is where the weight
modification occurs. In Section 10.7 we discuss the Voja learning rule [54] which does work
in terms of encoding vectors, directly moving them towards the vector currently represented in
the pre-synaptic population. This simplifies analysis significantly, and generally results in better
performance. However, more work needs to be done to fully establish the biological plausibility
of the rule.

10.6 Simulations

To test the performance of this network, we run some simulations on it, first training it on prede-
fined list of vectors, and then testing it with noisy versions of the address vectors.

We are primarily interested in using this associative memory for traversing semantic networks,
so we use lists of vectors that encode semantic networks. We begin by randomly constructing

57

a number of directed graphs with labeled edges and a pre-specified number of nodes, and then
encode that graph in vectors using the same technique that we used to encode WordNet. We then
initialize a spiking neural network with the initial conditions we specified in Section 10.2, and
present the pairs of vectors in the encoding of the graph to the network one at a time for 1 second
each.

During testing, we turn both the PES and Oja learning rules off. We test the performance
of the network by randomly selecting a node in the graph, randomly selecting one of its edges,
and computing Ssp ~R, and feeding it to into the associative memory. Here Ssp is the semantic
pointer for the chosen node in the graph, and R is the vector corresponding to the label of the
chosen edge. As a measure of performance, we compare the similarity of Ssp ~R to the ID-vector
it is supposed to be similar to, to the similarity between the output of the associative memory
and the correct semantic pointer. The results of this experiment are shown in Fig. 10.9. Here we
have used only 64 dimensional vectors; the significant computational complexity of the Oja rule
has prevented us from simulating networks storing vectors with higher-dimensionalities. We can
see that the performance of the learned memories is far from perfect. This is largely due to that
fact that applying the Oja rule makes it impossible to analyze the input weight matrix in terms of
encoders and decoders, which complicates analysis. In the next section we discuss the primary
future direction of this project, the Voja rule, which, when used in place of the Oja rule, results in
memories that are significantly more accurate and can be simulated much more rapidly.

4 6 8 10 12 14 16
nodes in graph

0.0

0.2

0.4

0.6

0.8

1.0

Si
m

ila
rit

y

Output
Input

Figure 10.9: Simulation performance with 64 dimensional vectors, varying the number of pairs stored in the memory.
Red line is the mean similarity of the input vectors to their corresponding ID-vectors, and blue line is the mean
similarity of the output of the trained associative memory to correct semantic pointer. Clearly the associative memory
is having some positive effect, but not as much as hoped. Perfect performance would have the blue line at 1.0. The red
and blue used here have no relation to the red and blue used in the other plots in this section.

58

10.7 Future direction: The Voja learning rule

The primary difficulty with using the Oja learning rule is that once the rule has taken effect, it is,
in general, no longer possible to decompose the connection weight matrix in terms of decoding
vectors and encoding vectors. This complicates the analysis significantly, and results in associative
memories with sub-optimal performance. In response to this, a fellow member of the Computa-
tional Neuroscience Research Group, Aaron Voelker, has created the Voja (Vector Oja) learning
rule. This rule, inspired by the Oja rule, directly moves encoding vectors towards the vector cur-
rently being represented by the upstream, or pre-synaptic, population. Formally, the learning rule
has the form:

∆e j = γa j(x− e j) (10.3)

where γ is a learning rate constant, a j is the activity of the jth post-synaptic neuron (which will be
an association neuron in our use-case), e j is the encoding vector of the jth post-synaptic neuron,
and x is the vector currently represented in the pre-synaptic population (the input population in our
setup). Essentially, this is doing exactly what we were trying, somewhat unsuccessfully, to do with
the Oja rule: move the encoding vectors of active association neurons towards the current input
vector. Good large-scale associative memory performance has been obtained using this learning
rule [54]. Because Voja operates on encoding vectors rather than on weights, it is also significantly
more efficient to simulate than the Oja rule, permitting the learning of much larger associative
memories.

One slight tradeoff is in the biological plausibility of the rule. It is generally assumed that
in the brain, changes to connection weight matrices happen locally at the individual synapses,
and, consequently, that changes to connection weights must be in terms of quantities that could
plausibly be available at a synapse. For instance, recall that in the Oja rule, the weight update
equation was specified in terms of the current weight, the activities of the pre- and post-synaptic
neurons, and a learning rate constant, all of which are quantities that are generally assumed to be
available at the synapse.

The Voja rule is specified in terms of the encoding vectors, but since encoding vectors do
not have a simple physical correlate in the brain (they are part of the connection weight matrix),
changes to encoding vectors have to be mapped to changes at the level of individual synapses. In
other words, any learning rule that changes encoding vectors has to do so by modifying connection
weights. This is similar to the PES learning rule, which modifies decoding vectors, but can be
mapped to an equation that operates directly on connection weights. Calculating this mapping for
the Voja rule, we have a connection weight update equation that takes the form:

∆ωi j = γa j(x− e j)di

= γa j(xdi− e jdi) (10.4)

The right-most term in Equation (10.4) is proportional to the weight itself, and is thus likely to be
at a synapse. On the other hand, the left most term, xdi, or the dot product between the decoding

59

vector of the ith pre-synaptic neuron and the vector represented in the pre-synaptic population, is
not obviously available at the synapse. Thus further investigations will be required to establish
biological mechanisms by which the Voja rule could operate. However, given the success of the
Voja rule and its ability to create powerful, fast, efficient associative memories, it will undoubtedly
be worth the effort.

60

Chapter 11

Conclusion

We have provided empirical results demonstrating what we believe to be the first implementation
of a human-scale structured lexicon in a biologically plausible spiking neural network. We have
argued that this significant improvement in scaling over previously available approaches is a result
of employing the representational resources provided by the HRR vector algebra. We hope that by
providing a specific, large-scale, functioning model we will encourage theoretical disagreements
about structured representation to be replaced by implementations that can be quantitatively com-
pared. In short, we believe that it will advance the field to expect that proposals regarding neural
implementation of symbolic processing be implemented at scale. We have also provided a basic
framework for how one of the central components of this model, namely its associative memory,
can be learned online from training data in a biologically plausible manner.

61

Appendix A

WordNet model details

This appendix provides additional details related to the construction of the neural model which
traverses the WordNet graph.

Finding decoding vectors. To find decoding vectors that decode a function f from the activity
of neural population (denoted d f

i where i indexes the neurons in the population), we said we had
to minimize the expression:

1
2

∫
(f (x)−∑

i
ai(x)d

f
i)

2dx (A.1)

We minimize this numerically, using a finite number of evaluation points (values of x) in some
region of the represented space that we want our decoding vectors to perform well on. Let L denote
the number of evaluation points, let M denote the dimensionality of the range of the function f ,
and let N denote the number of neurons in our population. We now define matrices that will aid us
in the optimization. Let D denote the N x M matrix whose rows are the decoding vectors. Let A
denote the L x N matrix whose rows are the activities of the neurons at a given evaluation point. Let
f (X) denote the L x M matrix whose rows are the values of the function f at different evaluation
points. The jth row of AD is equal to the transpose of f̂ (x j) = ∑i ai(x j)d

f
i where x j is the jth

evaluation point. Minimizing Equation (A.1) is then equivalent to solving for D in the following
equation:

f (X)≈ AD
AT f (X)≈ AT AD

(AT A)−1AT f (X)≈ D (A.2)

Since some neurons in the population are likely to have similar tuning curves, the matrix AT A is
unlikely to be invertible. Thus, we typically take the Moore-Penrose pseudoinverse of AT A using
Singular Value Decomposition (SVD), which is guaranteed to provide the least-squares optimal
solution to Equation (A.2).

Sub-populations. This procedure for solving for the decoding vectors can be computationally

62

intractable. Consider that in our neural model, one of the populations contains 51,400 neurons.
The matrix AT A for that population would have dimensions 51,400 x 51,400. Taking the SVD of
a matrix this large is not feasible.

Instead, we can consider these populations to be made up of many sub-populations, each of
which represents a small subset of the dimensions of the overall population’s represented space.
The representational properties of the collection of sub-populations is very similar to that of a
single large population. However, the computational properties are different [8]. The light gray
populations from the Fig. 6.4 are split into 1-dimensional populations, whereas the dark gray pop-
ulation is split into 2-dimensional populations, each representing 1 dimension from each of the two
Fourier transformed input vectors and computing their product (i.e. the ability to performed the
required element-wise multiplication is retained).

This implementation allows for much more efficient computation of decoding vectors. For
example, each of the light gray populations, which represent 512-dimensional vectors, is taken
to be composed of 512 1-dimensional sub-populations of 50 neurons each instead of a single
population of 25,600 neurons. As a result, SVD on a 25,600 x 25,600 matrix is replaced by 512
SVD’s on 50 x 50 matrices which is computationally tractable. The only consequence of this is
sparsification of the connection weight matrices; the same number of neurons are used in both
cases.

Single Neuron Model and Parameters. All neurons are modeled as point-processes, and
employ the leaky integrate-and-fire (LIF) neuron model. The sub-threshold behavior of the ith LIF
neuron in a neural population is governed by the differential equation:

dVi

dt
=
−1
τRC

(Vi− Ji(eix)) (A.3)

The parameter τRC is a time constant governing the sub-threshold dynamics of the neuron. When
the voltage Vi exceeds a voltage threshold Vth = 1, a spike is emitted from the neuron, the voltage
is reset to zero, and a refractory period begins during which the voltage is fixed. The length of the
refractory period is given by a constant τre f .

In Equation (A.3), Ji(eix) is the input current of the ith neuron, and is given by Ji(eix) = αieix+
Jbias

i . The quantity eix is the dot product between the input vector x and the neuron’s encoding vec-
tor ei. The parameters αi and Jbias

i are uniquely determined by the neuron’s range, maximum firing
rate and firing threshold. The range specifies the interval of values of eix that a neuron is sensitive
to. In particular, the high end of the range picks out the value of eix for which the neuron fires most
frequently. If eix is larger than this value, then the neuron is largely saturated, and changes to this
value will not be significantly reflected in changes to the neuron’s firing rate until the value comes
back within the valid range. Maximum firing rate specifies how frequently a neuron is firing when
the neuron is saturated. Finally, the firing threshold specifies a lower bound on the values of eix for
which the neuron fires; the neuron is inactive in response to values of eix that are below its firing
threshold. Maximum firing rates and firing thresholds are chosen randomly for each neuron from a
distribution. Numerical values for the parameters used in the neural model, as well as distributions
for the values chosen randomly, are presented in Table 3.

63

For the synapse model, we take pre-synaptic spikes to evoke a post-synaptic current in the
dendrites of the stimulated neuron. The equation governing this current is:

hPSC(t) = e−t/τPSC (A.4)

The post-synaptic time constant, τPSC, controls the shape of this waveform; smaller values cause
it to decay faster. All connections between neurons are assumed to be mediated by either AMPA
or GABA neurotransmitters, so all post-synaptic time constants are set at 5 ms. The LIF activation
function, G, can thus be given by:

Gi(t) = ∑
i

hPSC(t− ti) (A.5)

where ti are times of the spikes generated by the sub-threshold dynamics in Equation (A.3).

Parameter Association Neurons Standard Neurons

τRC 34 ms 20 ms
τref 2.6 ms 2 ms
τPSC 5 ms 5 ms
Range (-1.0, 1.0) (−5√

512
, 5√

512
)

Max Firing Rate Dist. U(200, 350) spikes/s U(200, 400) spikes/s
Firing Threshold Dist. 0.3 U(−5√

512
, 5√

512
)

Table A.1: Parameters used in the neural model.

−1.0 −0.5 0.0 0.5 1.0
eix

0

100

200

300

400

F
ir

in
g

R
at

e
(s

p
ik

es
/s

)

Association

−0.2 −0.1 0.0 0.1 0.2
eix

Standard

Figure A.1: Firing-rate tuning curves from different sub-population types.

Examples of population tuning curves for both associative and standard (i.e. not in the as-
sociative memory) neural sub-populations are shown in Fig. A.1. The effects of several of the

64

parameters can be observed. In particular, the association neurons have firing thresholds above 0,
in contrast to the standard neurons. This contributes to the thresholding function of the association
populations. Also visible is the wider range for the associative neurons. This is a consequence of
the fact that the association populations have to represent dot products which fall roughly within
(-0.9, 0.9), whereas the range for the standard neurons is determined by the fact that represented
vectors are taken to be 512-dimensional unit vectors, so the expected maximum length along any
dimension is 1√

512
≈ 0.04. Finally, the wider spread of maximum firing rates for the standard

neurons, which are chosen from the distribution U(100, 200) spikes/s, is evident.

65

Appendix B

Selecting size of association population in
learned associative memory

In order to have a desired number of neurons assigned to any pair of vectors, we need to control
how many neurons any given address vector will activate during training. We do this by setting
the size of the association population (that is, the number of neurons it contains) as a function
of the threshold of the association neurons and the dimensionality of the vectors we are working
with. Let t f denote the firing threshold of the association neurons, let D denote the dimensionality
of the vectors we want to store (as well as the encoding vectors of the neurons), let ngoal be the
approximate number of neurons we want to assign to any given input vector, and let ntotal be the
total number of neurons in the association population.

We assume that both the address vectors and the encoding vectors of the association population
are chosen independently and uniformly at random. For an arbitrary address vector ξ , let X denote
the random variable that gives the number of neurons active in response to it. This is equal to the
number of neurons whose encoding vectors have a dot product with the address vector that exceeds
the firing threshold. To determine the probability distribution of X , we require the probability
that the dot product between two vectors chosen uniformly at random exceeds the threshold t f .
According to [27], this is given by:

p =

∫ arccos(t f)
0 sinD−2

θdθ

B(D−1
2 , 1

2)

where B is the beta function defined as B(α,β) =
∫ 1

0 tα−1(1− t)β−1dt.

Now since the encoding vectors of the neurons are chosen independently, the number of neu-
rons with encoding vectors whose similarity with ξ is greater than t f follows a binomial distribution
B(ntotal, p), with probability distribution:

P(x) =
(

ntotal

x

)
px(1− p)ntotal−x

66

Recall that controlling this probability distribution is our goal. In other words, we want to set ntotal
such that E[X] = ngoal . We know that E[X] = ntotal p, so we need ntotal =

ngoal
p .

67

References

[1] John Robert Anderson. How can the human mind occur in the physical universe? Oxford
University Press, 2007.

[2] David J. Chalmers. Why fodor and pylyshyn were wrong: The simplest refutation. In In
Proceedings of the 12th Annual Conference of the Cognitive Science Society, pages 340–347,
1990.

[3] John Conklin and Chris Eliasmith. An attractor network model of path integration in the rat.
Journal of Computational Neuroscience, 18:183–203, 2005.

[4] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[5] L. A. A. Doumas, J. E. Hummel, and C. M. Sandhofer. A theory of the discovery and
predication of relational concepts. Psychological Review, 115:1–43, 2008.

[6] N.F. Dronkers, S. Pinker, and A. Damasio. Language and the aphasias. In E.R. Kandel,
J. Schwartz, and T. Jessell, editors, Principles in Neural Science, pages 1169–1187. McGraw-
Hill, New York, New York, 4th edition, 2000.

[7] Chris Eliasmith. How to build a brain: A neural architecture for biological cognition. Oxford
University Press, New York, NY, 2013.

[8] Chris Eliasmith and Charles H Anderson. Neural engineering: Computation, representation
and dynamics in neurobiological systems. MIT Press, Cambridge, MA, 2003.

[9] Chris Eliasmith, Terrence Stewart, Xuan Choo, Trevor Bekolay, Travis DeWolf, Yichuan
Tang, and Daniel Rasmussen. A large-scale model of the functioning brain. Science,
338(6111):1202–1205, 2012.

[10] J L Elman. Distributed Representations, Simple Recurrent Networks, and Grammatical
Structure, pages 91–122. Connectionist approaches to language learning. Kluwer, Dordrecht,
1991.

[11] C. Fellbaum. Wordnet: an electronic lexical database. MIT Press, Cambridge, Mas-
sachusetts, 1998.

68

[12] Brian J Fischer. A model of the computations leading to a representation of auditory space
in the midbrain of the barn owl. Phd, Washington University in St. Louis, 2005.

[13] Brian J Fischer, José Luis Peña, and Masakazu Konishi. Emergence of multiplicative audi-
tory responses in the midbrain of the barn owl. Journal of neurophysiology, 98(3):1181–93,
September 2007.

[14] JA Fodor and ZW Pylyshyn. Connectionism and cognitive architecture: A critical analysis.
Cognition, 28:3–71, 1988.

[15] Ross W Gayler. Vector Symbolic Architectures answer Jackendoff’s challenges for cogni-
tive neuroscience. In P Slezak, editor, ICCS/ASCS International Conference on Cognitive
Science, pages 133–138, 2003.

[16] A P Georgopoulos, J T Lurito, M Petrides, A Schwartz, and J Massey. Mental rotation of the
neuronal population vector. Science, 243:234–236, 1989.

[17] W R Glaser. Picture naming. Cognition, 42:61–105, 1992.

[18] Robert F Hadley. The problem of rapid variable creation. Neural computation, 21(2):510–32,
March 2009.

[19] G Hinton. Where do features come from? In Outstanding questions in cognitive science: A
symposium honoring ten years of the David E. Rumelhart prize in cognitive science. Cogni-
tive Science Society, 2010.

[20] John E Hummel and Keith J Holyoak. A symbolic-connectionist theory of relational inference
and generalization. Psychological review, 110(2):220–264, 2003.

[21] Eric Hunsberger, Peter Blouw, James Bergstra, and Chris Eliasmith. A neural model of
human image categorization. In 35th Annual Conference of the Cognitive Science Society,
pages 633–638. Cognitive Science Society, 2013.

[22] R Jackendoff. Foundations of language: Brain, meaning, grammar, evolution. Oxford Uni-
versity Press, 2002.

[23] D Kuo and Chris Eliasmith. Integrating behavioral and neural data in a model of zebrafish
network interaction. Biological Cybernetics, 93(3):178–187, 2005.

[24] Sydney M Lamb. Pathways of the brain: the neurocognitive basis of language. 4. Current
issues in linguistic theory. John Benjamins Publishing Company, 1999.

[25] M. Laubach, M. S. Caetano, B. Liu, N. J. Smith, N. S. Narayanan, and Chris Eliasmith.
Neural circuits for persistent activity in medial prefrontal cortex. In Society for Neuroscience
Abstracts, page 200.18, 2010.

[26] D. B. Lenat. CYC: A Large-Scale Investment in Knowledge Infrastructure. Communications
of the ACM, 38(11), 1995.

69

[27] Shengqiao Li. Concise formulas for the area and volume of a hyperspherical cap. Asian
Journal of Mathematics & Statistics, 4:66–70, 2011.

[28] Abninder Litt, Chris Eliasmith, and Paul Thagard. Neural affective decision theory: Choices,
brains, and emotions. Cognitive Systems Research, 9:252–273, 2008.

[29] Benjamin Liu, Marcelo Caetano, Nandakumar Narayanan, Chris Eliasmith, and Mark
Laubach. A neuronal mechanism for linking actions to outcomes in the medial prefrontal
cortex. In Computational and Systems Neuroscience 2011, 2011.

[30] David MacNeil and Chris Eliasmith. Fine-Tuning and the Stability of Recurrent Neural Net-
works. PLoS ONE, 6(9):e22885, September 2011.

[31] Brian McLaughlin. Classical constituents in smolenskys ics architecture. In MariaLuisaDalla
Chiara, Kees Doets, Daniele Mundici, and Johan Van Benthem, editors, Structures and Norms
in Science, volume 260 of Synthese Library, pages 331–343. Springer Netherlands, 1997.

[32] G Miller, R Beckwith, C Fellbaum, G Gross, and K Miller. Introduction to WordNet: An
on-line lexical database. International Journal of Lexicography, 3:235–244, 1990.

[33] Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of Mathe-
matical Biology, 15(3), 1982.

[34] G Ojemann, J Ojemann, E Lettich, and M Berger. Cortical language localization in left, dom-
inant hemisphere. An electrical stimulation mapping investigation in 117 patients. Journal
Of Neurosurgery, 71(3):316–326, 1989.

[35] Randall C O’Reilly and Yuko Munakata. Computational Explorations in Cognitive Neuro-
science: Understanding the Mind by Simulating the Brain. The MIT Press, 1 edition, 2000.

[36] A Paivio. Mental representations: A dual coding approach. Oxford University Press, New
York, 1986.

[37] Bente Pakkenberg and Hans Jørgen G Gundersen. Neocortical neuron number in humans:
Effect of sex and age. The Journal of comparative neurology, 384(2):312–320, July 1997.

[38] A Peters and E G Jones. Cerebral Cortex, volume 1. Plenum Press, New York, 1984.

[39] Tony A Plate. Holographic reduced representations. Neural Networks, IEEE Transactions
on, 6(3):623–641, 1995.

[40] Tony A Plate. Holographic reduced representations. CSLI Publication, Stanford, CA, 2003.

[41] JB Pollack. Recursive distributed representations. Artificial Intelligence, 46(1-2):77–105,
1990.

[42] Z Pylyshyn. Computation and cognition: Toward a foundation for cognitive science. MIT
Press, Cambridge, MA, 1984.

70

[43] L Shastri and V Ajjanagadde. From simple associations to systematic reasoning: A con-
nectionist representation of rules, variables, and dynamic bindings. Behavioral and Brain
Sciences, 16:417–494, 1993.

[44] W Kyle Simmons, Stephan B Hamann, Carla L Harenski, Xiaoping P Hu, and Lawrence W
Barsalou. fMRI evidence for word association and situated simulation in conceptual process-
ing. Journal of physiology, Paris, 102:106–119, 2008.

[45] R Singh and Chris Eliasmith. Higher-dimensional neurons explain the tuning and dynamics
of working memory cells. Journal of Neuroscience, 26:3667–3678, 2006.

[46] Paul Smolensky. Tensor product variable binding and the representation of symbolic struc-
tures in connectionist systems. Artificial Intelligence, 46:159–217, 1990.

[47] K O Solomon and Lawrence W Barsalou. Perceptual simulation in property verification.
Memory and Cognition, 32:244–259, 2004.

[48] Terrence Stewart, T Bekolay, and Chris Eliasmith. Learning to select actions with spiking
neurons in the basal ganglia. Frontiers in Decision Neuroscience, 6, 2012.

[49] Terrence Stewart, Trevor Bekolay, and Chris Eliasmith. Neural representations of composi-
tional structures: Representing and manipulating vector spaces with spiking neurons. Con-
nection Science, 2011.

[50] Terrence Stewart, Xuan Choo, and Chris Eliasmith. Dynamic Behaviour of a Spiking Model
of Action Selection in the Basal Ganglia. In D. D. Salvucci and G. Gunzelmann, editors, 10th
International Conference on Cognitive Modeling, 2010.

[51] Terrence Stewart and Chris Eliasmith. Compositionality and biologically plausible models.
Oxford University Press, 2012.

[52] Terrence Stewart, Yichuan Tang, and Chris Eliasmith. A biologically realistic cleanup mem-
ory: Autoassociation in spiking neurons. Cognitive Systems Research, 12:84–92, 2011.

[53] Frank van der Velde and Marc de Kamps. Neural blackboard architectures of combinatorial
structures in cognition. Behavioral and Brain Sciences, 29(29):37–108, 2006.

[54] Aaron Voelker, Eric Crawford, and Chris Eliasmith. Learning large-scale heteroassocia-
tive memories in spiking neurons. In 13th International Conference, UCNC 2014. London,
Canada, July 2014 Poster Proceedings, 2014.

[55] Cristoph von der Malsburg. The correlation theory of brain function, 1981.

71

	List of Tables
	List of Figures
	Introduction
	Past approaches
	Binding through synchrony
	Mesh binding
	Tensor product binding

	Semantic pointers
	Holographic Reduced Representations
	Circular Convolution
	Vector addition
	Involution
	Semantic Pointers for Structured Representations

	Encoding Structured Knowledge in Semantic Pointers
	WordNet
	Semantic Pointers and WordNet
	Sentences
	Associative memory
	The statistics of decompressed vectors
	Extraction Algorithm

	Neural implementation
	Neural representation and transformation
	Circular convolution in spiking neurons
	Involution in spiking neurons
	Neural associative memory
	The complete neural model

	Experiments
	Experiment 1 - Simple Extraction
	Experiment 2 - Hierarchical Extraction
	Experiment 3 - Extracting from Sentences
	Results

	Discussion
	Scaling
	Theoretical Considerations
	Psychological plausibility
	Extensions and future work

	Alternate encodings
	Doing away with ID-vectors
	The naive approach
	Unitary relation-type vectors
	Adding noise

	Including more relations
	Synsets with multiple relations of the same type

	Learning associative memories
	Training regime
	Network architecture
	General concept
	Prescribed Error Sensitivity: Storing vectors in connection weights
	The Oja rule: Increasing neural selectivity
	Simulations
	Future direction: The Voja learning rule

	Conclusion
	WordNet model details
	Selecting size of association population in learned associative memory
	References

