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Abstract

This thesis examines the security of performing quantum key distribution (QKD) with
a simplified trusted relay (STR). The protocol carries out the quantum phase of a con-
ventional trusted relay, however, reduces the required complexity of the nodes by carrying
out an altered classical phase. Rather than announcing the parity of the final keys, the
simplified trusted relay announces the parity of the keys before error correction and privacy
amplification. As a result, the majority of the post-processing is left to the end users.

Specifically, we examine the security of an STR protocol which carries out the quantum
phase of the BB84 protocol. Through two different methods, we derive qubit key rates.
For the first method, we require that the basis choice is equally weighted. Furthermore, we
limit the relay to a single node. This proof has the benefit that it easily generalizes to an
alternate protocol where a node may generate error correcting information. In the second
security proof, we derive a key rate for an arbitrary number of nodes with an arbitrary
basis weighting.

We further extend our analysis to realistic scenarios in which the legitimate parties
use weak coherent pulses to transmit signal states over a lossy channel. We provide a
framework for generalizing decoy state methods to STR protocols.
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Chapter 1

Introduction

The emergence of quantum cryptography marks a shift in cryptographic paradigm. The
security of most pre-quantum (or classical) cryptography stems from assumptions about
the limited computational power of an adversary. Within a reasonable timespan, certain
computational tasks are assumed to be outside the reach of an adversary. Quantum cryp-
tography, on the other hand, offers provable security in the presence of a computationally
unbounded adversary. The security of quantum cryptography arises from the fundamental
principles of quantum mechanics.

While the first hints of quantum cryptography were published in 1983 [56], it was
not until the development of quantum computing that the field attracted considerable
attention. A number of computational problems which appear to be infeasible on classical
computers, such as finding the prime factors of a large integer, have been shown to be
feasible on a quantum computer. Quantum algorithms (such as Shor’s factoring algorithm
[46]) threaten to break several widely used classical cryptographic protocols (such as RSA
public-key encryption). While quantum computing grows as a field, so does the need for
quantum-safe cryptographic protocols.

Quantum key distribution (QKD) is a quantum-safe protocol that aims to establish
two identical secret keys between spatially separated parties. Secret keys (strings of bits
that are unknown to an adversarial party) are a valuable resource for many cryptographic
tasks. One well-known example is the one-time pad, a classical protocol for unconditionally
secure communication. The sender generates a maximally-entropic cryptogram by taking
the bitwise parity of the original message and the secret key. The receiver similarly decodes
the cryptogram. The one-time pad offers information-theoretic secure privacy,1 provided

1Note that the one-time pad fails at other cryptographic objectives such as preserving data integrity.
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two parties initially share a secret key. Given that QKD provides an information-theoretic
secure method for establishing such a key, QKD in principle allows for the highest level of
private communication.

QKD encompasses a variety of different protocols, all linked by their utilization of
quantum mechanics to generate secret keys. In a typical QKD protocol, a legitimate party
(conventionally called Alice) prepares non-orthogonal signal states and sends them over a
quantum channel to a second legitimate party (Bob), who performs measurements on the
states. Using an authenticated classical channel, Alice creates an asymmetry between Bob
and any eavesdropper (Eve). This asymmetry is exploited to generate a secret key. The
authenticated classical channel is not private; Eve can listen to any messages sent over the
authenticated channel. However, the authenticated channel is assumed to preserve the in-
tegrity and authenticity of these messages. The security of QKD arises from Eve’s inability
to distinguish the quantum signals perfectly. By interacting with the signal states in a use-
ful fashion, Eve has a non-zero probability of disturbing the states. Unlike protocols that
exchange classical signals, Eve cannot acquire a complete transcript of the communication
between the legitimate parties due to the quantum component of the communication. This
is a direct result of the no-cloning theorem [57]. Disturbances introduced by Eve can be
used by Alice and Bob to bound the correlation Eve may have with the key. Alice and Bob
may then reduce Eve’s correlation using classical privacy amplification, or simply abort
the protocol entirely if the error rate is too high.

Note that QKD protocols require an authenticated classical channel between the le-
gitimate parties. This prevents a man-in-the-middle attack. Message authentication is
generally regarded as a distinct task from QKD; conventionally, an authenticated classical
channel is simply treated as a resource required for the protocol.2

While other quantum-safe methods for key distribution have been suggested, they either
rely upon unproven mathematical assumptions [10], or restrict the resources of an adversary
[3]. If future developments in algorithms and computing power break these assumptions,
the privacy of any historical communications that have relied upon these methods will be
compromised. QKD, however, provides information-theoretic security, even in the presence
of a computationally unbounded adversary; therefore, QKD remains secure in consideration
of future advances.

The benefits of QKD are clear; however, several technical hurdles lie in the way of
practical and wide-spread implementation. One challenge is achieving long-distance QKD.

2There exist unconditionally secure methods for message authentication which rely upon the legitimate
parties sharing initial secret keys. Alternatively, public key authentication offers a practical method for
message authentication in the presence of realistic eavesdroppers [49].

2



The limiting factor proves to be loss along the quantum channel connecting Alice and
Bob. For point-to-point protocols the key rate is approximately upper-bounded by the
single-photon transmittance of the channel [51]. The security of most implementations
rely upon low-intensity signals; if signals are transmitted over an optical fibre, this leads
to an exponential reduction in the number of detected signals. At long distances, the
rate of dark counts surpasses the rate of signal counts, causing an apparent disturbance in
the signal states. Unable to distinguish the disturbance from an eavesdropper, Alice and
Bob necessarily abort the protocol. A second consequence of loss comes into play when
considering small imperfections in the signal states. High loss may allow Eve additional
leeway when exploiting these imperfections.

Both trusted quantum relays and quantum repeaters have been posited as methods
for implementing long distance QKD. In the long term, quantum repeaters promise long-
distance QKD by allowing the creation of entangled particles at arbitrary distances using
a series of intermediate operations [1, 11]. However, practical quantum repeaters are still
under development on a fundamental level and remain outside the reach of current tech-
nology.

Trusted relays [17] offer a more immediate method for implementing long-distance
QKD. Trusted relays use a series of trusted nodes, each of which takes the role of two
legitimate parties. Each node acts as both a pseudo-Alice, by preparing and sending
signals, and a pseudo-Bob, by making measurements. In this manner, each node carries
out a full QKD protocol with its nearest neighbours. If every node then publicly announces
the bitwise parity of the two keys it holds, Bob can recover Alice’s key by adding each
parity announcement (bit-wise modulo) to his own. These announcements are of no use
to Eve, as each node effectively encrypts one of the keys it holds using a one-time pad
protocol. Trusted relays benefit from their simplicity; they are well within the reach of
current technology, and have been demonstrated in several QKD network implementations
[18, 37, 42]. However, trusted relays exhibit two major drawbacks. First, every node must
be trusted, as any node could recover the final key held by Alice and Bob. Second, it is not
always practical to carry out a full QKD protocol between every neighbour in a relay; most
QKD protocols require significant computational resources and communication bandwidth.

This thesis examines an alternative version of the trusted relay that does not require
a full QKD protocol to be carried out in each link of the relay [32]. For the remainder of
this thesis, we will refer to this as the simplified trusted relay (STR). Rather than carrying
out a full QKD protocol between adjacent nodes, each node simply carries out the first few
steps of the QKD protocol, i.e. signal preparation, distribution and measurement. After
some limited post-processing, the nodes map their raw measurements into bit strings and
perform a parity announcement. If the error rate is low enough, Alice and Bob may distill
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secret keys from the protocol using standard techniques — without further aid from the
nodes. This reduces the required complexity of each node. Computationally cumbersome
tasks (such as error correction and privacy amplification) are left to Alice and Bob.

How does the use of simplified nodes affect the security of a trusted relay? This thesis
addresses this question. In the following pages, we review the principles in quantum in-
formation theory that are necessary for our analysis (Chapter 2). Further background on
QKD, including the formalism behind security proofs, is detailed in Chapter 3. In Chapter
4 we examine the details of the STR protocol. As well, we present a rigorous examination
of the security of the STR protocol.
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Chapter 2

Background

The security of QKD arises from fundamental principles in quantum mechanics. In order
to examine the security of an STR protocol, it is helpful to review several notions that lie
at the heart of quantum mechanics. Equally important is the framework behind cryptog-
raphy — information theory [15]. The intersection of these two scientific pillars, quantum
information theory, provides the ideal structure for a rigorous examination of QKD.

2.1 Fundamental Principles in Quantum Mechanics

2.1.1 Basic Properties of Quantum States

Quantum systems are described by Hilbert spaces (H). A quantum state, which is a
particular physical realization of a quantum system, is described by an operator acting
on that Hilbert space. Any normalized positive semidefinite operator, known as a density
matrix (ρ), corresponds to a valid physical state of a quantum system. Quantum states
with a two-dimensional Hilbert space play a special role in quantum information theory,
as they represent the quantum analog of classical bits, known as qubits.

Quantum states can be categorized as pure or mixed. A finite-dimensional pure quan-
tum state is most readily described by a complex unit vector, typically represented in
ket-notation (|φ〉). For a pure state, the density matrix can be constructed by taking the
product of the corresponding unit vector with its own complex conjugate transpose,

|φ〉 −→ ρpure = |φ〉〈φ| (2.1)
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where conventional notation defines 〈φ| := (|φ〉)†. Pure states therefore correspond to
rank-one density matrices. For a given orthonormal basis spanning a finite-dimensional
Hilbert space, {|a1〉, . . . , |an〉}, any pure state on that Hilbert space may be expressed as

|φ〉 =
n∑

i=1

ci|ai〉 (2.2)

where ci = 〈ai|φ〉 is a complex scalar. Normalization ensures that
∑n

i=1 |ci|2 = 1. The
state |φ〉 is said to be in a superposition of the basis states {|ai〉}.

Any density operator which cannot be represented as a pure state is known as mixed.
Intuitively, it may help to think of mixed states representing incomplete knowledge of a
quantum state. As the name suggests, mixed states can be described by probabilistic
mixtures of pure states, although they lack a unique representation.

It is natural to pose questions involving numerous quantum systems. The tensor prod-
uct operation (⊗) gives us a mathematical approach for forming composite quantum sys-
tems. We define D(H) to be the set of all density operators on the Hilbert space H. If
ρA and ρB are quantum states on D(HA) and D(HB) respectively, the joint state ρAB

exists on D(HA ⊗ HB). The state ρAB is said to be bipartite, while a state existing on
more than two Hilbert spaces is generally said to be multipartite. If {|a1〉, . . . , |an〉} and
{|b1〉, . . . , |bm〉} are two sets of orthonormal basis states spanning HA and HB, respectively,
then the set {|ai〉 ⊗ |bj〉}, where 1 ≤ i ≤ n and 1 ≤ j ≤ m, forms a basis for the joint
Hilbert space HA⊗HB. Note that when referring to the tensor product of two pure states
in ket-notation, it is common to use the shorthand notation |a〉|b〉 := |a〉 ⊗ |b〉.

In contrast to the tensor product, the partial trace function allows us to consider
subsystems of a larger quantum system. Examining the bipartite state ρAB, the reduced
state ρA is found by taking the partial trace over system B, i.e. trB{ρAB} = ρA. Similarly,
ρB is obtained by taking the partial trace over system A.

It is useful to note that any mixed state may be expressed as a pure state on a larger
Hilbert space. The quantum state ρAB ∈ D(HA ⊗ HB) is said to be a purification of
ρA ∈ D(HA) if ρAB is pure and trB{ρAB} = ρA.

2.1.2 Entanglement and Bell States

Entanglement is a quantum phenomenon in which multipartite quantum states exhibit
stronger correlations than allowed clasically. Entanglement is fundamental to quantum
information theory, and lies at the heart of many quantum technologies.
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Similar to mixed states, entangled states are defined by what they are not. Specifically,
an entangled state is any state that cannot be expressed as a probabilistic mixture of
product states. On the contrary, states which can be expressed this way are known as
separable states. For two Hilbert spaces HA and HB, a general separable state can be
represented as

ρseparable
AB =

n∑
i=1

piρ
i
A ⊗ ρiB (2.3)

for some set of states {ρ1
A, ρ

1
B, . . . , ρ

n
A, ρ

n
B}, a probability distribution p = {p1, . . . , pn}, and

some n. Any state that cannot be written in this manner is said to be entangled.

The Bell states are an important set of entangled two-qubit quantum states. For
qubits, it is common to represent the canonical basis with the orthonormal vectors |0〉 and
|1〉 (reminiscent of classical bits “0” and “1”). Adopting this notation, the four Bell states
are explicitly given by

|Φ+〉 :=
1√
2

(|0〉|0〉+ |1〉|1〉) (2.4)

|Φ−〉 :=
1√
2

(|0〉|0〉 − |1〉|1〉) (2.5)

|Ψ+〉 :=
1√
2

(|0〉|1〉+ |1〉|0〉) (2.6)

|Ψ−〉 :=
1√
2

(|0〉|1〉 − |1〉|0〉). (2.7)

The Bell states form an orthonormal basis for two-qubit states. It is useful to express the
Bell states using a compact notation:

|Φa,b〉 :=
1√
2

1∑
k=0

(−1)ak|k〉|k ⊕ b〉 (2.8)

where a, b ∈ {0, 1}. Here ⊕ denotes modulo-2 addition. For the remainder of this thesis,
|Φa,b〉 will denote the four Bell states.

2.1.3 Quantum Channels

A quantum channel is a general description of any discrete change in a quantum state.
Formally, quantum channels are linear mappings from one Hilbert space, HA, to another
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Hilbert space, HB. In order for the channel to be physically realizable, the mapping must
be completely positive and trace preserving. These two conditions ensure that density
operators are mapped to density operators.

There exist several useful characterizations of a quantum channel. For the purpose of
this thesis, we introduce both the Stinespring representation and the Kraus representation.
Any quantum system, ρA, may be viewed as part of a composite pure quantum system,
ρAE, where ρE = trA{ρAE} represents the environment. The dynamics of the entire system
are described by unitary evolution; however, the dynamics of ρA are described by a more
general quantum channel.

This intuition motivates the Stinespring dilation theorem, which states that any quan-
tum channel may be expressed as a linear isometry on a dilated Hilbert space. Recall
that unitary mappings are a special case of linear isometries. Let us denote the set of
operators on a Hilbert space H by L(H). If ψ(X) is a quantum channel of the form
ψ : L(HA) → L(HB), then there exists a pure state |e〉 on another Hilbert space HE and
a linear isometry U : HAE → HBE such that

ψ(ρ) = trE{U(ρ⊗ |e〉〈e|)U †} (2.9)

for all ρ ∈ L(HA). The Stinespring representation is useful for QKD when considering the
action of Eve on a quantum channel between Alice and Bob.

We may wish to consider the action of a channel without considering a larger Hilbert
space. In this case, the Kraus representation provides an alternate but equivalent descrip-
tion of a quantum channel. If we trace out system E in Eq. 2.9, we find that the channel
is equivalently described by a set of linear operators {A1, . . . ,An}, where Ai : HA → HB:

ψ(ρ) =
n∑

i=1

AiρA†i . (2.10)

The operators Ai are known as Kraus operators. In consideration of the Stinespring rep-
resentation, the Kraus operators can be written in terms of U and |e〉 from Eq. 2.9:

Ai = (11B ⊗ 〈ei|)U(11A ⊗ |e〉) (2.11)

where {|e1〉, . . . , |en〉} is an orthonormal basis state spanning HE. We use 11 to denote the
identity operator. Note that the choice of basis |ei〉 is not unique, therefore the Kraus
operators do not have a unique representation.

The trace preserving property of quantum channels enforces the condition
∑

iA†iAi =
11A. Any set of Kraus operators satisfying this condition corresponds to a physical channel.

8



2.1.4 Measurements

In quantum mechanics, a quantum state is not directly accessible to an observer. Instead,
an observer may interact with a quantum system through an external system (such as a
measurement device) in order to derive classical information. Intuitively, and formally,
measurements may be understood as a quantum channel in which the measurement out-
come is stored in a classical register. For the purpose of this thesis, we introduce a different
but equivalent formalization, known as the measurement operator formalism.

Any measurement may be described by a collection of measurement operators, {A1,
. . . , An}, each associated with a particular measurement outcome. Measuring a quantum
state ρ, we find that the outcome ρx with probability px, where ρ and px are given by

px = tr{AxρA†x} = tr{A†xAxρ} (2.12)

ρx =
1

px
AxρA†x. (2.13)

In order to be physical, the measurement operators must satisfy the completeness relation∑
iA†iAi = 11. This ensures

∑
x px = 1.

Often, the final state of the quantum system is of little interest. Rather, our interest
lies in the probability that each measurement outcome is observed. In this case Positive
Operator-Valued Measure (POVM) formalism proves to be a useful tool. By considering
the product of measurement operators, Mi := A†iAi, we may define a set of positive
semidefinite operators, {M1, . . . ,Mn}. Mi is referred to as a POVM element, while the set
{M1, . . . ,Mn} is a POVM. Note that the completeness relation for measurement operators
enforces

∑
iMi = 11. In this case, the probability of outcome x is simply px = tr{Mxρ}.

2.2 Information Theory

2.2.1 Shannon Entropy

Shannon entropy is an important notion in information theory, providing a method to
quantify uncertainty. Consider a source emitting a random variable X ∈ {x1, . . . , xn} with
probability distribution p = {p1, . . . , pn}. The Shannon entropy of the source is given by

H(X) = H(p) := −
n∑

i=1

pi log pi. (2.14)
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Note that the Shannon entropy is a function only of the probability distribution, and
not of the values of the random variable. Shannon entropy may be interpreted as the
average information content of X, i.e. a measure of how much information is gained, on
average, when the value of X is revealed. Conventionally, Shannon entropy is measured
in bits and the above logarithm is understood to be base two. For the remainder of
this thesis, we will adopt this convention. When n = 2, the Shannon entropy is also
known as the binary entropy function. We define this case as a special function, h(p) :=
−p log p− (1− p) log(1− p).

Considering two random variables X and Y with a joint probability distribution pX,Y =
{pi,j}, we can consider the conditional Shannon entropy, defined by

H(X|Y ) := −
∑
i,j

pi,j log
pi,j
pj
. (2.15)

The conditional Shannon entropy plays an important role in error correction. Consider
two different strings of length n, arising from X and Y . There exists a lower bound on
the amount of information that must be exchanged in order to correct differences between
the strings. Explicitly, this bound is given nH(X|Y ) [45]. Note that this limit is only
achievable as the length of each string approaches infinity. Stricter bounds exist for the
case of finite strings [52].

From the Shannon entropy and the conditional Shannon entropy, we can define a mea-
sure of the correlation between X and Y , known as the mutual information. The mutual
information is defined as

I(X : Y ) = I(pX,Y ) := H(X)−H(X|Y ) = H(Y )−H(Y |X). (2.16)

2.3 Quantum Information Theory

2.3.1 Von Neumann Entropy

The von Neumann entropy serves as a generalization of the Shannon entropy. While the
Shannon entropy was limited to classical variables, the von Neumann entropy acts as an
entropic measure for quantum states. The von Neumann entropy of a state ρ is given by

S(ρ) := −tr{ρ log ρ}. (2.17)
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When considering the eigenvalues of ρ, denoted by λ1, . . . , λn, the von Neumann entropy
more closely resembles the Shannon entropy:

S(ρ) = −
n∑

i=1

λi log λi. (2.18)

2.3.2 Holevo Bound

In cryptography, it is natural to ask how correlated two systems are. In quantum cryp-
tography, this question typically arises when Alice holds a classical system (X), and Eve
holds a quantum system (E). We refer to such a state as a cq-state. A general cq-state
can be written as

ρXE =
n∑

i=1

pi|i〉〈i| ⊗ ρiE (2.19)

for some probability distribution p = {p1, . . . , pn} and an orthonormal basis {|1〉, . . . , |n〉}
spanning HA. Here we use {ρ1

E, . . . , ρ
n
E} to denote an arbitrary set of quantum states on

HE.

The Holevo bound provides a useful limit on the correlation between the classical system
X and the quantum system E. More precisely, let us imagine Eve chose to measure her
system, obtaining the variable Z. For any choice of Eve’s measurement,

I(X : Z) ≤ χ(X : E) := S

(
n∑

i=1

piρ
i
E

)
−

n∑
i=1

piS
(
ρiE
)
. (2.20)

The quantity on the right hand side is known as the Holevo quantity. In this thesis,
the Holevo quantity is considered largely for its cryptographic implications; however, the
Holevo quantity plays a vital role in many areas of quantum information theory.
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Chapter 3

Quantum Key Distribution

Since the first QKD protocol was published in 1984, QKD has grown to encapsulate a
variety of protocols — all linked by their exploitation of quantum mechanics to derive a
secret and shared key. In this chapter, we will review a class of QKD protocols known as
prepare-and-measure protocols. We will further review a common framework for dealing
with the security of these schemes. Finally, we examine the prototypical QKD scheme, the
BB84 protocol [8].

3.1 Prepare and Measure Protocols

The most common class of QKD protocol is known as a prepare-and-measure protocol.
Alice, with some probability, chooses a signal state from a predetermined set of signal
states. Over a public quantum channel, Alice sends the signal state to Bob, who performs
a measurement on the system. This process is repeated until Alice and Bob have a suit-
ably large data set. Alice and Bob then perform post-processing using an authenticated
classical channel to distill secret keys. Given this structure, prepare-and-measure schemes
are typically divided into a quantum phase (signal preparation and measurement) followed
by a classical phase (post-processing).

The security of QKD protocols relies on several assumptions about Alice, Bob and
Eve. In Section 3.2 we will mention assumptions about Eve; however, let us first list
the assumptions that are commonly made about Alice and Bob in a prepare-and-measure
protocol:

12



• In addition to the quantum channel, the legitimate parties have access to an authen-
ticated classical channel.

• Alice and Bob’s labs are inaccessible to Eve.

• The source and measurement apparatus are completely characterized.1

With these assumptions in mind, let us look in detail at the steps of a typical prepare-
and-measure protocol:

Quantum Phase

1. State Preparation: Let HS be a d-dimensional Hilbert space. Alice chooses a signal
state |φx〉 ∈ HS from a predetermined set of signal states, {|φ1〉, . . . , |φn〉}, with
probability px. Alice then sends the signal state to Bob, using an untrusted quantum
channel. Alice repeats this process N times.

2. Measurement: Bob measures each signal state independently, corresponding to
a POVM MB = {MB,y}, and records the result. This results in an overall joint
probability distribution, px,y.

Classical Phase

1. Parameter Estimation: While the quantum phase of prepare-and-measure protocols
has a clear ordering, the ordering of the classical phase is less definitive. Most proto-
cols begin with some form of parameter estimation and end with error correction and
privacy amplification. Parameter estimation is a critical step as it allows Alice and
Bob to detect the presence of an eavesdropper. Alice and Bob choose a random sub-
set of their measurement events and publicly reveal the results over an authenticated
channel. This allows Alice and Bob to faithfully estimate px,y.

2. Continuation Decision: Given the observed probability distribution, Alice and Bob
abort the protocol if it is possible that an eavesdropper is significantly correlated with
their data. Otherwise they continue with the protocol. Typically, the full probability
distribution px,y is not considered here. Instead, some linear combination of observed
quantities (such as error rates) is used to simplify the analysis.

1Generally speaking, this is not a reasonable assumption. Realistic implementations vary significantly
from theoretical models. Locating security loopholes introduced by the physical implementation of a
protocol (known as side channels) is an active subject in QKD [27, 33, 43]. Currently, robust theoretical
frameworks for incorporating general side channels into a security proof have not been developed; however,
several QKD protocols have been developed which reduce their reliance upon device characterization
[2, 9, 28].
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3. Data Processing: This step includes any two-way post-processing. A common exam-
ple of data processing is sifting. During sifting, Alice and Bob postselect on highly
correlated data. (We will examine sifting in Sections 3.3 and 3.6.) Another common
example of data processing is the removal of events in which Bob’s detector did not
detect an event.

4. Key Map: Alice and Bob locally map their data into strings of bits, known as a raw
key.

5. Error Correction: At this point, Alice and Bob each hold a bit-string. In general, we
must assume that the strings differ due to errors introduced in the protocol. In order
to correct the strings, Alice and Bob carry out error correction, or reconciliation,
over the public channel. The most common choice for error correction uses one-way
communication. If Alice sends error correcting information to Bob, this is known
as direct reconciliation, while Bob sending information to Alice is known as reverse
reconciliation. Alternatively, Alice and Bob may use two-way communication for
error correction. This approach can tolerate higher error rates [22] but the security
of such protocols is less well understood. Any realistic error correction protocol comes
with a finite probability of failure. In this case the protocol aborts.

6. Privacy Amplification: If error correction has succeeded, Alice and Bob hold identical
keys; however, the keys are still potentially correlated with a third party. If the
potential correlation is weak enough, Alice and Bob may locally map their keys into
shorter keys, cutting any correlation with a third party. If privacy amplification fails,
the protocol is aborted.

3.2 An Eavesdropper’s Interaction

QKD offers provable security in the presence of a computationally unbounded eavesdropper.
However, the proof of such security relies on several assumptions about an eavesdropper:

• Eve is assumed to be bound by the laws of quantum mechanics. This prohibits Eve
from implementing attacks such as a perfect quantum cloner [57]. Eve is allowed any
physical interaction with the quantum channel.

• In adherence to Kerckhoff’s principle, all aspects of the protocol are assumed to be
known by Eve, including a full characterization of the experimental apparatus. Eve,
however, does not have the power to alter the devices.
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• Eve receives a perfect transcript of any classical communication sent over the au-
thenticated channel but cannot alter the message.

Note that these assumptions are not common to all QKD protocols (for example, see
Ref. [4]). For the purpose of this thesis, we will work with these assumptions.

The characterization of Eve’s attack is motivated by the Stinespring representation of
quantum channels. In the worst case scenario, Eve has complete control of the quantum
channel linking Alice and Bob. This is realized by allowing Eve to attach an ancilla system
E ′ to the n signal states. Eve then applies a unitary map taking S⊗NE ′ to B⊗NE, keeping
the system E for herself and delivering B⊗N to Bob. This is referred to as a coherent attack
or a general attack.

Often, it is convenient to consider a weaker form of attack, known as a collective attack.
Rather than performing one large unitary, Eve attaches an individual ancilla to each signal
state. Eve then applies the same unitary to each signal/ancilla pair. At the end of the
protocol, after Eve has received any classical communication exchanged between Alice and
Bob, Eve may perform a collective measurement on her systems. If a protocol is proven to
be secure against collective attacks, methods exist for extending the security to coherent
attacks [13, 14].

3.2.1 Source-Replacement Picture

The source-replacement picture is a common technique used to simplify the security anal-
ysis of prepare-and-measure protocols [9]. The technique provides a simple method for
characterizing the action of an eavesdropper’s attack.

In Section 3.1, we did not specify how Alice prepares the signal states. Let us imagine a
hypothetical protocol where Alice generates the signal states by first creating the bipartite
entangled state

|Φ〉AS =
n∑

x=1

√
px|ix〉A|φx〉S. (3.1)

Here {|ix〉} denote an orthonormal basis on an n-dimensional Hilbert space, HA. Alice
could now prepare the signal state |φx〉 by measuring system A. Given that the channel
does not act on system A, Alice may in fact delay her measurement until after sending the
system S along the channel. Due to the fact that Alice’s measurement commutes with the
action of the channel, this hypothetical protocol is functionally equivalent to the original
protocol.
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Figure 3.1: A depiction of a collective attack on a prepare-and-measure protocol. The
figure shows the source-replacement picture in which Alice generates a bipartite state ρAS

on the joint system AS. Eve applies the operation U : ρAS ⊗ ρE′ → ρABE.

After distributing N signal states, Alice and Bob share a large multipartite state, ρNAB,
consisting of 2N systems. If we consider only collective attacks, this state takes a product
form, ρNAB = ρ⊗NAB . If Bob’s measurements also adhere to a tensor product structure, this
effectively allows us to consider each signal state individually. If Alice and Bob hold the
bipartite state ρAB, Eve’s control over the unitary channel allows her to generate any
purification |Φ〉ABE, subject to the restriction that trBE{|Φ〉〈Φ|ABE} = trS{|Φ〉〈Φ|AS}.
Note that when considering a lossy channel, Eve has access to strategies that preferentially
block certain signal states, potentially altering the probability distribution of the detected
signals. If Alice and Bob postselect on detected events, the above restriction cannot be
applied to the detected events. Eve’s ability to alter the probability distribution of the
detected events can be accounted for by updating the original probability distribution px
in Eq. 3.1, or by recasting the source-replacement picture (see Section 3.6.2 for example).

A collective attack in the source-replacement picture is depicted in Figure 3.1.

3.2.2 Limiting an Eavesdropper’s Attack

In theory, by specifying the precise form of the tripartite state, |Φ〉ABE, Alice and Bob could
fully characterize Eve’s attack. Considering the source-replacement picture, the observed
probability distribution between Alice and Bob is given by

px,y = trAB{|ix〉〈ix| ⊗MB,y ρAB}. (3.2)
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Note that this is not enough to uniquely specify Eve’s attack; it merely classifies which
attacks were possible and which were not. Considering the Hilbert space shared by the
three parties, HABE, we make the following definition,

Definition 1. Let Γ0 be the set of all tripartite states |Φ〉ABE ∈ HABE that are consistent
with the probability distribution px,y, and have the reduced state ρA = trBE{|Φ〉〈Φ|ABE}.

Intuitively, if Alice and Bob can show that their protocol is secure against all attacks
in the set Γ0, they can prove that their protocol is secure. In Section 3.4 we address how
this is done in practice.

3.3 Announcements and Postselection

In the data processing step of a QKD protocol, it is common for Alice and Bob to discard
subsets of their data. This process of postselection is aided by public announcements. A
common example is basis sifting (for example, see the BB84 protocol in Section 3.6). In
such protocols, Alice typically prepares basis states from two or more bases. Bob randomly
picks a measurement basis. During the data processing step, the corresponding basis for
each signal state is announced. Whenever Alice and Bob’s basis choices do not coincide,
the data are discarded. By doing so, Alice and Bob increase correlations in their data
sets. Public announcements and postselection have non-trivial effects on the security of
a protocol. To analyze these effects, we will adopt the announcement and postselection
formalism presented in Ref. [19].

Conventionally, announcements and postselection are dealt with simultaneously. For
illustrative purposes, let us first deal with announcements. Let us look at an announcement
model where Alice and Bob’s announcements are related to their data, x and y, by a
function ξ such that ξ(x) = uA and ξ(y) = uB are publicly announced. In the case of basis
sifting, uA and uB are simply Alice and Bob’s basis choice.

During announcements, Alice and Bob measure the joint state ρABE with the POVMs
MA and MB, then make the corresponding public announcement. This process may be
equivalently described by first applying a map Ψann. to ρABE, then performing new basis
dependent measurements (Mu

A and Mu
B) on the state. The announcements are represented

by a classical register C, held by Alice, Bob and Eve. Specifically, the map has the form

Ψann.(ρABE) =
∑
uA,uB

puA,uB
ψuA,uB

ann. (ρABE)⊗ |uA, uB〉〈uA, uB|C . (3.3)
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Here ψuA,uB
ann. (ρAB) is the state conditioned on each announcement combination, and puA,uB

is the associated probability.

By announcing particular values of u, the legitimate parties effectively partition the
original POVMs into subsets containing the POVM elements corresponding to u. Let us
denote these subsets by muA := {MA,x : ξ(x) = uA} and muB := {MB,y : ξ(y) = uB}. New
measurements, MuA

A and MuB
B are made on the conditional states ψuA,uB

ann. (ρAB), where the
conditional state is given explicitly by the mapping

ψuA,uB
ann. (ρABE) =

AA,uA
⊗AB,uB

⊗ 11EρABE(AA,uA
⊗AB,uB

⊗ 11E)†

trAB{AA,uA
⊗ AB,uB

ρAB(AA,uA
⊗AB,uB

)†} , (3.4)

where the AA,uA
and AB,uB

are Kraus operators given by

AA,uA
:=

√∑
muA

MA,x (3.5)

AB,uB
:=

√∑
muB

MB,x. (3.6)

This formalism yields the interpretation that Alice and Bob first measure ρABE to
ascertain the basis information, then perform updated measurements on the conditional
states. The new measurements ensure that measuring ρAB with the original POVMs yields
the same results, as measuring ψuA,uB

ann. (ρAB) with the updated POVMs MuA
A and MuB

B . The
updated POVMs are given by

MuA
A := {MuA

A,x} = {A−1
A,uA

MuA
A,xA−1†

A,uA
: MuA

A,x ∈muA} (3.7)

MuB
B := {MuB

B,x} = {A−1
B,uB

MuB
B,xA−1†

B,uB
: MuB

B,x ∈muB}. (3.8)

Note that the inverses of AA,uA
and AB,uB

are defined for non-zero subspaces only.

The process of postselection follows simply from the announcement structure. As an
example, let us examine basis sifting, where data are only kept when u := uA = uB.
In practice, the effect of announcements and postselection on the original state ρABE are
described by a single mapping

Ψ(ρABE) :=
∑
u

puψ
u(ρABE)⊗ |u〉〈u|C (3.9)

where for simplicity we have defined ψu(ρABE) := ψuA=u,uB=u(ρABE), and

pu =
puA=u,uB=u∑
i

puA=i,uB=i

. (3.10)
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3.4 Security

The description of a typical protocol in Section 3.1 should leave a skeptical reader wanting.
What does it mean for a protocol to be secure, and how do we quantify this? What
condition triggers Alice and Bob to abort their protocol? How likely is a protocol to fail?
These questions are all addressed by a thorough security analysis. In this thesis, we use
the security framework developed by Refs. [38, 26, 39]. As before, we consider collective
attacks. Additionally, we examine the limit where the number of signals approaches infinity.

3.4.1 Security Definition

The final product of any QKD protocol is either two keys, held by legitimate parties, or a
null string, signifying the protocol has aborted. A protocol is considered to have failed if
the protocol did not abort and the keys are not ideal. (By ideal, we specifically mean the
keys are identical, secret and evenly distributed.)

We can formalize this notion. If a protocol does not abort, the final state held between
Alice, Bob and Eve can be described by two classical registers (held by Alice and Bob)
and a quantum register (held by Eve). This state is referred to as a ccq-state. Any general
output can be written as

ρccq =
∑
kA,kB

pkA,kB |kA〉〈kA| ⊗ |kB〉〈kB| ⊗ ρkA,kB
E . (3.11)

The ideal output is uncorrelated with an eavesdropper (ρkA,kB
E = ρE for all kA, kB) and

produces evenly distributed and identical keys (pkA,kB = δkA,kB/|K|):

ρideal =
1

|K|

(∑
k

|k〉〈k| ⊗ |k〉〈k|
)
⊗ ρE. (3.12)

Here |K| is the size of the key space.

With these tools, we introduce the security definition given in Ref. [38]:

Theorem 1. A QKD protocol is said to be ε-secure if there exists a density matrix ρideal
of the form of Eq. 3.12 such that

1

2

∥∥ρccq − ρideal∥∥1
≤ ε (3.13)

where
∥∥.∥∥

1
denotes the trace norm.
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The security parameter ε represents the probability that the protocol will not abort and
the key will not be ideal. Importantly, the security definition provides composability [36].
This ensures that if the final key is used in another cryptographic protocol, or if a QKD
protocol relies upon a message authentication protocol, the total protocol remains secure.
Note that an ε-secure protocol is not necessarily a useful protocol. A protocol that aborts
every time has ε = 0. Perhaps worse, a protocol with ε ≈ 0 may produce an insecure key
every time it does not abort.

In the limit of an infinite number of signal states, ε can be made to approach zero;
however, for a finite number of signal states ε is generally finite. How a protocol’s security
is affected by using a finite number of signals (known as finite size effects) is an active area
of research in QKD (see for example Ref. [44]).

3.4.2 Key Rate Formula

The final step in most QKD protocols is to perform privacy amplification, where n raw
key bits are mapped into a shorter string of l key bits, using two-universal hash functions
[38]. In order to cut correlations with a third party, l must be sufficiently small. Let us
define the key rate to be

r = lim
n→∞

l

n
. (3.14)

Note that the key rate will be dependent both on the protocol employed, and an eaves-
dropper’s attack. For clarity, let us define l to be the maximum length of the final key for
which any correlation with a third party is removed. In practice, proof techniques only
lower bound the key rate. Any protocol operating at or below this bound is known to be
ε-secure.

For a given collective attack, the key rate formula derived by Refs. [26, 38, 39] is given
by

r ≥ H(KA)− δEC
leak − χ(KA : E). (3.15)

From left to right, H(KA) is the entropy of Alice’s key data, δEC
leak is an upper bound on

the amount of information leaked during error correction, and χ(KA : E) is the Holevo
quantity between Alice’s key data and Eve’s quantum states. Typically, Eve’s attack is
not uniquely specified by Alice and Bob’s measurements. In this case, a common method
for lower bounding Eq. 3.15 is to maximize the Holevo quantity with respect to the set Γ0

(introduced in Section 3.2.2). The Holevo quantity is given by

χ(KA : E) = S

(∑
k

pkρ̃
k
E

)
−
∑
k

pkS(ρ̃kE), (3.16)
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where ρ̃kE is Eve’s total state (after the announcement and postselection map Ψ) conditioned
on the key bit k.

We introduce two theorems for simplifying the above expression. For ease, let us use the
notation presented in Ref. [19]. Recall that we previously introduced Mu in Section 3.3,
denoting a measurement conditioned on some public announcement u. For most protocols,
each outcome in the conditional measurement Mu is associated with a definite key bit.
For this thesis, we will assume that this is the case. This provides a natural interpretation
for the definition χ(Ψ(ρABE),Mu

A) := χ(KA : E), and allows us to define the following
theorems. Note that the form of the key map is now implicit in χ(Ψ(ρABE),Mu

A); for more
general key maps, the following theorems cannot be assumed to hold.

Theorem 2. Consider the set of bipartite density matrices ρuAE and the probability distri-
bution pU = {pu}. If the measurements Mu

A result in the probability distribution pU,K =
{pu,k}, it holds that

χ

(∑
u

puρ
u
AE ⊗ |u〉〈u|,Mu

A

)
=
∑
u

puχ(ρuAE,M
u
A) + I(pU,K) (3.17)

where |u〉 denotes an orthonormal basis, and I(pU,K) is the mutual information between
the announcement and the final key bit.

The proof for this theorem is found in Appendix A.1. The mutual information can be
expressed in terms of Shannon entropies:

I(pU,K) = H(KA)−
∑
u

puH(Ku
A). (3.18)

whereH(Ku
A) := −∑k pk|u log pk|u. Using Thm. 2 and the specific form of the postselection

mapping Ψ, it follows that

H(KA)− χ(Ψ(ρABE),Mu
A) =

∑
u

pu

(
H(Ku

A)− χ(ψu(ρABE),Mu
A)
)
. (3.19)

Next, we introduce a theorem which can be used to upper bound the Holevo quantity:

Theorem 3. Consider a measurement MA acting on system A of the tripartite pure state
|Φ〉AEE′, resulting in the conditional state ρkAEE′ with probability pk. If the conditional
states ρkAEE′ are pure, it holds that

χ(ρAE,MA) ≤ S(ρA)−
∑
k

pkS(ρkA). (3.20)
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The proof for this theorem is found in Appendix A.2. Note that if the measurement
in the above theorem is a rank-one projective measurement, the condition required for
Theorem 3 is satisfied. If Theorem 3 is satisfied, the above two theorems can often be used
to express the key rate without explicit reference to Eve’s conditional states.

3.5 Symmetry in Security Proofs

In this section, we review a method that may be used to maximize the Holevo quan-
tity [19, 26]. The method utilizes symmetries within a protocol to show that, in specific
circumstances, Eve’s optimal attack belongs to a symmetric subset of attacks.

In order to limit the form of Eve’s interaction, the legitimate parties may use the set
Γ0 (Def. 1). In general, optimizing over the set Γ0 is difficult due to the large number
free parameters. The number of free parameters may be reduced if the legitimate parties
relax the constraints on Γ0. For this purpose, the legitimate parties instead rely on a set
of linear functions of the probability distribution, denoted by ei. Let use define Γ to be
the set of all states consistent with ei that have the same reduced density matrix ρA. In
practice, the quantities ei are often error rates.

The process of deriving a key rate may be simplified, if a set of states {ρ1, . . . , ρN} can
be found that satisfy the following properties:

1. The states result in the same quantities ei.

2. The states have the same postselected Holevo quantity as the original state:2

χ(Ψ(ρABE),Mu
A) = χ(Ψ(ρi),M

u
A) ∀i. (3.21)

3. The composition of the postselection map and the Holevo quantity is concave:

1

N

∑
i

χ(Ψ(ρi),M
u
A) ≤ χ

(
Ψ

(
1

N

∑
i

ρi

)
,Mu

A

)
(3.22)

2Strictly speaking, it is only required that χ(Ψ(ρABE),Mu
A) ≤ χ(Ψ(ρi),M

u
A) for all i; however, in

practice the case of equality is typically proven.
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Given the above properties, it follows that

max
Γ

χ(Ψ(ρABE),Mu
A) ≤ max

Γ
χ

(
Ψ

(
1

N

∑
i

ρi

)
,Mu

A

)
. (3.23)

In practice, it is often possible to find such a set of states that drastically reduces the
number of free parameters involved in maximizing the Holevo quantity. These states are
commonly found by exploiting symmetries inherent in the protocol. We will make use of
this approach in Section 4.4.

3.6 An Example: the BB84 Protocol

The BB84 protocol [8] is the prototypical QKD protocol. Published in 1984, the BB84
protocol, and variations thereof, are still implemented and studied. In this section, we
will review the fundamental steps of the BB84 protocol, and provide basic results on the
security of the protocol.

3.6.1 Protocol Outline

The BB84 protocol follows the basic steps of a prepare-and-measure protocol, outlined in
Section 3.1. With some probability, pu, Alice selects a basis, uA ∈ {X,Z}. Alice then
chooses a bit value r ∈ {0, 1} with equal probability. She then follows one of two encoding
rules:

X-basis: Alice creates a qubit from the X-basis {|+〉, |−〉}, using r → 1√
2
(|0〉+ (−1)r|1〉).

Z-basis: Alice creates a qubit from the Z-basis {|0〉, |1〉}, using r → |r〉.

For the remainder of this thesis, we will define the states |±〉 := 1√
2
(|0〉± |1〉). Making note

of the basis and bit value, Alice sends the state to Bob.

Upon receiving the state, Bob carries out the following POVM measurement

MB := {pu=Z |0〉〈0|, pu=Z |1〉〈1|, pu=X |+〉〈+|, pu=X |−〉〈−|}. (3.24)
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Using the postselection formalism from Section 3.3, Bob could equivalently select a basis
uB ∈ {X,Z} with probability pu, then measure the quantum state with the corresponding
POVM, Mu=X

B or Mu=Z
B :

Mu=X
B := {Mu=X

B,y=0,M
u=X
B,y=1} = {|+〉〈+|, |−〉〈−|} (3.25)

Mu=Z
B := {Mu=Z

B,y=0,M
u=Z
B,y=1} = {|0〉〈0|, |1〉〈1|}. (3.26)

For the BB84 protocol, the new measurement POVM elements are simply rescaled ver-
sions of the old POVM elements. Similarly, it can be shown that the postselected states
ψu(ρAB) = ρAB. This is typical when announcements are based solely on local randomness.
Alice and Bob continue the preparation and measurement process until they have built up
a sufficient set of data.

If the protocol is not aborted during parameter estimation, Alice and Bob carry out
sifting during the data processing step. Sifting provides Alice and Bob a method to increase
correlations in their data by postselecting on events where they have respectively prepared
and measured in the same basis. In order to do this, Alice and Bob first announce their
basis choice over the authenticated channel. Any events in which Alice and Bob did not
measure in the same basis are discarded.

Alice and Bob then reverse the original encoding process to derive a raw key. This
process is known as a key map. The basis information is no longer needed; only the bit
value r is kept. Using error correction and privacy amplification, Alice and Bob refine their
raw keys to produce two identical secret keys.

3.6.2 Source-Replacement for the BB84 Protocol

For the BB84 protocol, it is helpful to recast the canonical source-replacement technique,
as introduced in Section 3.2.1. In order to generate the signal states, let us imagine that
Alice generates the Bell state

|Φ0,0〉AS :=
1√
2

(|00〉+ |11〉). (3.27)

In order to prepare the signal states for Bob, Alice measures |Φ0,0〉AS with the POVM
measurement, defined by

MA := {pu=Z |0〉〈0|, pu=Z |1〉〈1|, pu=X |+〉〈+|, pu=X |−〉〈−|}. (3.28)

Note that MA and MB have the same POVM elements. Importantly, by recasting the
source-replacement picture, it turns out we no longer require that Alice’s reduced density
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matrix ρA be kept constant. Instead, the restrictions are accounted for in Alice’s POVM
measurement.

3.6.3 Security of the BB84 Protocol

Recall that the key rate formula introduced in Section 3.4.2 (Eq. 3.15) is given by

r ≥ H(KA)− δEC
leak −max

Γ0

χ(Ψ(ρABE),Mu
A). (3.29)

In practice, the entropy of Alice’s key data, H(KA), and the information lost during error
correction, δEC

leak, are easily bounded from observed quantities.

The maximization of the Holevo quantity proves difficult to analytically calculate, even
for basic protocols. Conventional approaches place a lower bound on the key rate by
loosening restrictions on the shared state |Φ〉ABE. For the BB84 protocol, only the error
rates in the Z- and X-basis are typically considered.

Definition 2. Let Γ̄ be the set of all tripartite states |Φ〉ABE ∈ HABE that are consistent
with the basis dependent error rates eu=X and eu=Z.

Note that Γ0 is a subset of Γ̄. The error rates place restrictions upon the joint state
ρAB. The relation is given explicitly by

eu =
∑
x 6=y

trAB{Mu
x ⊗Mu

y ρAB}. (3.30)

Using the techniques outlined in Ref. [47], an upper bound can be placed on the Holevo
quantity:

max
Γ0

χ(Ψ(ρABE),Mu
A) ≤ max

Γ̄
χ(Ψ(ρABE),Mu

A) (3.31)

≤ pu=Zh(eu=X) + pu=Xh(eu=Z). (3.32)

Here h(x) is the binary entropy function. If error correction is carried out in the Shannon
limit, the above key rate becomes independent of pu. Explicitly,

r ≥ H(KA)− h(eu=X)− h(eu=Z). (3.33)
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Chapter 4

Simplified Trusted Relays

Most point-to-point QKD protocols (in which Alice sends quantum signals directly to Bob)
are severely limited by distance. For any protocol in which signals are sent over a lossy
channel, the infinite key rate is approximately bounded by the single-photon transmittance
[51]. For optical fibre, this results in an exponential reduction of the key rate, limiting useful
key rates to a few hundred kilometres. In free space, dispersion places similar limitations
on the distance between Alice and Bob. The maximum distance is ultimately limited by
detector dark counts. If the rate of dark counts is equal to or greater than the rate of
signal counts, Alice and Bob cannot establish a secret key, due to the possibility of an
intercept-resend attack.

Practical methods for implementing long-distance QKD are an active area of research.
In this chapter, we review a simple approach that allows QKD to be extended to arbitrary
distances, provided Alice and Bob have access to a series of trusted intermediate nodes.
This approach is known as a trusted quantum relay [17], or simply a trusted relay. Trusted
relays form the basis for a number of quantum networks [18, 37, 42] and satellite-based
QKD implementations [34, 53, 58].

The focus of this chapter (and this thesis) is a novel variation of the trusted quantum
relay which seeks to simplify the intermediate nodes (a simplified trusted relay, or an STR)
[32, 48]. As we will show, STRs cannot naively be extended to an arbitrary distance;
however, they are promising tools for realistic QKD networks. We focus on a particular
STR protocol which implements the quantum phase of the BB84 protocol. Two separate
security proofs for the protocol are provided. The first proof (Section 4.4) follows a con-
ventional method for calculating the key rate, however, fails to generalize to an arbitrary
number of nodes. Our second proof (Section 4.5) can be generalized to any number of

26



B A 

T1 Tn 

k1

k2 kn

kn+1

b1 = k1 � k2 bn = kn � kn+1

Figure 4.1: A trusted relay with n nodes. In the first link, the node (T1) acts as a pseudo-
Bob. Quantum signals (black arrows) are used to establish raw data {dA, dT1}, which is
transformed into the secret key k1 using classical post-processing (white arrows). In the
second link, the same node takes the role of Alice, establishing the secret key k2 with the
second node (T2). Bob corrects his key by adding the parity announcements to his key.

nodes but requires the protocol to be stricter in how error correction is accomplished.

4.1 Trusted Relays

If Alice and Bob are spatially separated by a long distance, loss prohibits most naive point-
to-point QKD implementations. Other times, it is simply impractical to connect Alice and
Bob with a quantum channel. Trusted relays provide a simple method to overcome distance
limitations, without significantly increasing the complexity of the QKD architecture. The
primary drawback of trusted relays is their reliance upon a series of intermediate nodes.
Importantly, these nodes must be trusted. In a basic implementation, if any one node in
a relay is compromised, the entire relay is compromised. The number of trusted nodes
required for a relay increases linearly with the distance between Alice and Bob.

Each node in a trusted relay functions as a pseudo-Alice and a pseudo-Bob, and carries
out a point-to-point QKD protocol with its nearest neighbours. Each link in the relay runs
a protocol in parallel, generating a secret key. Note that any QKD protocol may be run in
each link, so long as a secure key is generated. The specific manner in which the keys are
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established is irrelevant, so long as each pair of neighbours shares a secret key. A protocol
involving n nodes will generate n+ 1 secret keys; each node possesses two secret keys (see
Figure 4.1). Bob recovers Alice’s key with two final steps:

1. Parity Announcement: Each node publicly announces the parity (bitwise modulo) of
the two keys in its possession (denoted by bn).

2. Parity Announcement Processing: Bob recovers Alice’s key by adding each parity
announcement (bitwise modulo) to his own key.

It is simple to show that by carrying out the parity announcement processing step, Bob
recovers Alice’s key:

(b1 ⊕ b2 ⊕ · · · ⊕ bn)⊕ kn+1 = (k1 ⊕ k2)⊕ (k2 ⊕ k3)⊕ · · · ⊕ (kn ⊕ kn+1)⊕ kn+1

= k1 ⊕ (k2 ⊕ k2)⊕ · · · ⊕ (kn+1 ⊕ kn+1) (4.1)

= k1.

Despite generating n+ 1 secret keys, n keys are consumed during the parity announce-
ment. Effectively, each key in the relay is encrypted using the next key in the relay in
the fashion of a one-time pad. After carrying out the parity announcement and processing
steps, Alice and Bob are left with a single secret and shared key.

4.2 Simplified Trusted Relay Protocols

Simplified trusted relays (STRs) are an alternative to trusted relays. In the case of a trusted
relay, it may not always be practical to carry out a full QKD protocol between each node.
Error correction and privacy amplification have large computation and communication
overheads, typically requiring substantial computational power and communication band-
width. STR protocols have the advantage that they do not require the nodes to participate
in error correction and privacy amplification. Instead, these tasks are left to Alice and Bob.
In situations where computational power or communication bandwidth are limited (such
as satellites or network hubs) STRs have the potential to outperform conventional trusted
relays.

The primary difference between trusted relays and STRs is the timing of the parity
announcement and processing steps. For a trusted relay, these are the final two steps
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b1 = dT1 � dT 0
1

bn = dTn � dT 0
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Figure 4.2: An STR with n nodes. For ease of notation alone, we have split each node into
two parties (pseudo-Alice and pseudo-Bob). The legitimate parties establish a set of raw
data using quantum signals (black arrows). From this raw data, they perform a key map
to establish raw keys, d. Each node announces the parity (bitwise modulo) of the two keys
that it holds. Bob adds each parity announcement to his own key to derive a new raw key
d′B. In the absence of errors the raw keys match in each link (i.e. dA = dT1) and d′B = dA.
Alice and Bob carry out the majority of the classical post-processing (white arrow).

in the protocol. In an STR, the nodes perform the parity announcement directly after
sifting. In general, the nodes are not required to participate in error correction or privacy
amplification. These tasks are performed by Alice and Bob, after Bob has corrected his
data using the parity announcements. We visually depict the protocol in Figure 4.2. Note
the two main differences to the conventional trusted relay: 1) the nodes announce the
parity of raw keys, not secret keys, and 2) Alice and Bob carry out the majority of the
classical post-processing.

Recall that STRs (and conventional trusted relays) require the intermediate nodes
to be trusted. Any malicious node can obtain the final key shared by Alice and Bob.
Methods exist for relaxing this trust assumption [5, 41]; however, the basic framework of
trusted relays requires a minimal level of trust in the intermediate nodes. If the nodes are
assumed to be honest-but-curious1 the final key can be protected by encrypting the public
announcements.

1An honest-but-curious adversary (also known as a passive adversary) is a party that faithfully carries
out the protocol, however, attempts to learn as much as possible from any exchange of communication
during the protocol.
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There are many possible variations of the general STR protocol. In this thesis, we will
examine an STR protocol in which the individual links carry out the quantum phase of
the BB84 protocol. To avoid confusion with the general class of STR protocols, we will
refer to this specific implementation as the BB84 STR protocol. Note that our analysis will
directly apply to many variations of this protocol. Moreover, the analysis may be extended
in a straightforward manner to include protocols such as the 6-state protocol [12, 7]. For
clarity, let us list the individual steps below:

Quantum Phase — All Parties

1. State Preparation & Distribution: Alice chooses a basis uA ∈ {Z,X} with probability
pu, then selects a bit value x ∈ {0, 1} with uniform probability and prepares the
corresponding BB84 qubit state |φua

x 〉. Alice records the state she created, then
sends the signal to the nearest trusted node. Alice carries out this process N times,
where N is suitably large. Similarly, each node prepares signals and sends them to
the next node in the relay. The last node sends signals to Bob.

2. Measurement: Each node (and Bob) locally select a basis u ∈ {Z,X} with probabil-
ity pu and perform a projective measurement in that basis, denoted by the positive
operator valued measure (POVM) Mu. To distinguish between the two roles each
node plays, we use uTj

to denote the j-th node’s measurement basis, while uT ′
j

denotes
the j-th node’s state preparation basis. The choice of basis in each link is indepen-
dent, i.e. uTj

is independent of uT ′
j
. Bob and the nodes record their measurement

outcome, as well as the basis in which they measured.

Classical Phase Part I — All Parties

1. Sifting: The legitimate parties reveal their measurement and preparation bases. In
each link, data are kept only when an event was detected and the basis choices
coincided. All other data are discarded, reducing the data strings from size N to m.
The basis in the first link is then u1 := uA = uT1 . Similarly, we define the basis in
the i-th link to be ui.

2. Key Map: The legitimate parties map their data into classical bit strings (raw
keys, d), by mapping the BB84 states they have sent and/or measured into raw
bits using the rule |φu

x〉 → “x”, where x ∈ {0, 1}. Alice now holds the raw key
dA = {x1, . . . , xm}. For clarity, we denote Bob’s raw key as dB = {y1, . . . , ym}, where
y denotes Bob’s measurement outcome. Similarly, the j-th node holds the raw keys
dTj

= {tj,1, . . . , tj,m} and dT ′
j

= {t′j,1, . . . , t′j,m}.
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3. Parity Announcement & Processing: Each node announces the bitwise parity of the
two raw keys that it holds, bj = {tj,1 ⊕ t′j,1, . . . , tj,m ⊕ t′j,m}. Bob adds each parity
announcement to his own raw key to obtain a new raw key d′B. In the absence of
errors, d′B = dA and Bob recovers Alice’s raw key.

Classical Phase Part II — End Users

1. Parameter Estimation & Continuation Decision: Alice and Bob determine the error
rate for each basis combination (analogous to calculating the X- and Z-basis error
rates in the BB84 protocol). If the error is suitably low, they continue the protocol.
Otherwise, they abort. We will define the exact meaning of suitably low in the
following sections.

2. Error Correction & Privacy Amplification: If the protocol is not aborted, Alice and
Bob carry out one-way error correction and privacy amplification to obtain secure
keys.2

Again, the primary difference between the STR protocol and the conventional trusted relay
is the timing of the parity announcement and processing step. Note that after the parity
announcement, the nodes are no longer required to participate in the protocol.

4.3 Motivating the Security of the BB84 STR Proto-

col

In this section, we apply the security proof formalism from Chapter 3 to the BB84 STR
protocol in order to derive the key rate for the protocol. In further sections, we examine
different methods to analytically bound this key rate.

We begin our analysis by examining the ideal case where qubit signal states are ex-
changed over lossless channels. Furthermore, we examine the asymptotic limit where the
legitimate parties exchange a large number of signals. In this limit, we can consider Eve
to make collective attacks without loss of generality [14]. In this context, collective attacks
are defined for each group of signals that are matched by the parity announcements. We

2In order to extend our security analysis from collective to general attacks, we require that privacy
amplification is executed in a permutation invariant fashion (see Section 4.6.1). It remains an open
question whether this restriction is necessary.
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will justify this definition is Section 4.6.1. For simplicity, we begin by examining the case
where the BB84 STR protocol contains a single node. In Section 4.5.3, the case of multiple
nodes is examined.

The source-replacement scheme can be extended to the STR protocol. In this thought
set-up, each source generates the Bell state |Φ0,0〉 ∈ HSS′ , where |Φ0,0〉 = (1/

√
2)(|00〉 +

|11〉).3 Instead of sending a signal state, the source then sends the second half of the en-
tangled system (S ′). Using a POVM Mu chosen with probability pu, the legitimate party
which has prepared the entangled state, performs a projective measurement on the remain-
ing system S, preparing S ′. The source-replacement picture reveals an important property:
in each link the roles of state creation and measurement may be interchanged without af-
fecting the qubit-level security. Alternatively, the parties could carry out an entanglement-
based protocol (in which all parties perform measurements) [9] or a measurement-device
independent protocol (in which all parties send signal states) [28].

4.3.1 Announcements and Postselection

In the STR protocol, the legitimate parties in each link postselect on data where the basis
choices (u) matched. In order to do so, they publicly announce the basis in which states
were prepared or measured. Any events in which the basis choice did not coincide are
discarded. Additionally, the node announces the parity of the raw keys that it holds.
Given that we are examining collective attacks on a single node, the parity announcement
is given by a single bit, b := b1 ∈ {0, 1}.

After distributing the signal states, the legitimate parties hold the joint system ρATB.
Due to the fact that the node sends and receives signal states, the system T is described
by the tensor product of two qubit spaces. In order to ensure that Eve is limited only
by the laws of quantum mechanics, we allow Eve complete control over the purification
|Φ〉ATBE. As outlined in Section 3.3, the quantum treatment of postselection is represented
by a completely positive trace-preserving map. The announcements are represented by a
classical register C held by the legitimate parties and Eve. The postselected state is
therefore block-diagonal, given explicitly by

Ψ(ρATBE) =
∑

u1,u2,b

pu1pu2pb|u1,u2ψ
u1,u2,b(ρATBE)⊗ |u1, u2, b〉〈u1, u2, b|C . (4.2)

Here pu represents the probability of each basis announcement and pb|u1,u2 is the conditional
probability associated with the parity announcement. Furthermore, ψu1,u2,b(ρATBE) is the

3Note that we change the labelling of the subsystems from Section 3.2.1 to reflect that each source in
the relay generates a Bell state, not just Alice.
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state held by the legitimate parties, conditioned on a given combination of announcements.
Note that the basis announcements are determined by local randomness. As a result,
the state conditioned on u1 and u2 alone is the same as the original state. The parity
announcement is determined by a measurement outcome. Using the previously outlined
postselection formalism, the effect proves to be non-trivial. Explicitly,

ψu1,u2,b(ρATBE) :=
1

pb|u1,u2

(
11A ⊗Fu1,u2,b

T ⊗ 11BE

)
ρATBE

(
11A ⊗Fu1,u2,b

T ⊗ 11BE

)†
(4.3)

Fu1,u2,b
T :=

1∑
t=0

Mu1
T,t ⊗Mu2

T,t⊕b (4.4)

where Mu
T,t denote the node’s POVM elements. For the BB84 STR protocol, these are the

same as Alice and Bob’s POVM elements (see Eqs. 3.25-3.26).

The key rate is

r ≥ H(KA)− δEC
leak −max

Γ0

χ(Ψ(ρATBE),Mu1
A ) (4.5)

where Γ0 is defined to be the set all states ρATBE consistent with all observables measured
by the legitimate parties.

4.3.2 Parameter Estimation and Error Rates

In order to derive an analytic key rate, we do not consider all possible observables. Con-
ventionally, error rates are used. For each basis combination, the error rate between Alice’s
raw key, dA, and Bob’s corrected raw key, d′B, is given by

eu1,u2 =
∑
b

pb|u1,u2

∑
x6=y⊕b

trATBE(Mu1
A,x ⊗ 11T ⊗Mu2

B,y ⊗ 11Eψ
u1,u2,b(ρATBE)) (4.6)

=
∑
b

∑
x6=y⊕b

trATB{Mu1
A,x ⊗Fu1,u2,b

T ⊗Mu2
B,yρATB} (4.7)

where Mu1
A,x and Mu2

B,y denote Alice and Bob’s POVM elements.

From the above quantities, we can define a superset of Γ0:

Definition 3. Let Γeu be the set of all states ρATBE consistent with the set of basis-
dependent error rates eu1,u2.

Given that Γ0 ⊆ Γeu , we may safely lower-bound the key rate by replacing the maxi-
mization over Γ0 in Eq. 4.5, with a maximization over Γeu . In the following section, we
will use symmetries to reduce the size of Γeu .
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Figure 4.3: By relaxing the restrictions on the joint state ρATB the set of possible attacks
is increased; however, the complexity of the key rate calculation is reduced. By considering
only the basis-dependent error rate, Γ0 is expanded to Γeu . In Section 4.4.1, symmetries
are then used to restrict Γeu . This process is repeated in Section 4.4.2; the set ΓBell

eu is first
expanded to ΓBell

e , then restricted to Γ̃Bell
eu .

4.4 BB84 STR Key Rate: a Canonical Approach

In this section, we derive a key rate for the BB84 STR protocol using a single node.
By restricting the implementation to a single node, we can use the canonical techniques
outlined in Refs. [19, 43] to derive an analytic key rate. This method has two primary
drawbacks: 1) it does not easily scale to multiple nodes, and 2) it requires that the basis
weighting pu is uniform. However, we can use this framework to examine a variant of the
BB84 STR protocol where the trusted node participates in error correction (see Section
4.4.3).

The proof proceeds as follows: we first reduce the restrictions on the joint state by
considering only the basis-dependent error rates between Alice and Bob. Effectively, this
changes the maximization over Γ0 to a maximization over the superset Γeu . Signal state
symmetries are then exploited to show that the optimal attack lies in the subset ΓBell

eu ⊂ Γeu

(Section 4.4.1). Furthermore, we relax our restrictions by considering only the average error
rate between Alice and Bob. This allows us to use permutations of the eigenvalues of the
joint state to further specify the form of the optimal attack (Section 4.4.2). The proof is
visually depicted in Figure 4.3.
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4.4.1 Applying Signal State Symmetries

Symmetries may be used to simplify the maximization of the Holevo quantity. Recall in
Section 3.5 we outlined criteria that, if met, simplify the form of ρATB. Drawing inspiration
from Ref. [19], let us examine the action of Pauli matrices on the joint state. For our
purposes, we define the Pauli matrices as:

Ur,s :=
1∑

k=0

(−1)ks|k + r〉〈k| (4.8)

where r, s ∈ {0, 1}. Note that the BB84 signal states exhibit an invariance with respect
to the Pauli matrices. The application of a Pauli matrix permutes the signal states within
their basis — but does not switch between bases.

Let us examine the set of states where the same Pauli matrix is applied to both parties
in each link:

ρ
Ur,sUr′,s′

ATB := Ur,s ⊗ Ur,s ⊗ Ur′,s′ ⊗ Ur′,s′ρATB(Ur,s ⊗ Ur,s ⊗ Ur′,s′ ⊗ Ur′,s′)
†. (4.9)

for r, s, r′, s′ ∈ {0, 1}. Importantly, each state ρ
Ur,sUr′,s′

ATB has the same basis-dependent
error rates eu1,u2 as the original state ρATB (see Appendix A.3). Therefore, we may utilize
symmetries if the following properties hold: 1) the states are invariant with respect to the
Holevo quantity and 2) the states are concave with respect to the Holevo quantity. These
properties can be shown to hold if we assume that the probability associated with the key
bits is uniform as shown in Ref. [19]; however, this is not necessarily true when considering
loss. This assumption can be avoided by first rearranging the key rate formula in Eq. 4.5.
Using Theorem 2 if follows that

r ≥H(KA)− δEC
leak −max

Γ0

χ(Ψ(ρATBE),Mu1
A ) (4.10)

≥
∑
u1,u2

pu1pu2H(Ku1,u2

A )− δEC
leak (4.11)

−max
Γ0

∑
u1,u2

pu1pu2χ

(∑
b

pb|u1,u2ψ
u1,u2,b(ρATBE)⊗ |b〉〈b|C ,Mu1

A

)
≥
∑
u1,u2

pu1pu2H(Ku1,u2

A )− δEC
leak (4.12)

−max
Γeu

∑
u1,u2

pu1pu2χ

(∑
b

pb|u1,u2ψ
u1,u2,b(ρATBE)⊗ |b〉〈b|C ,Mu1

A

)
.
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Above H(Ku1,u2

A ) := −∑k pk|u1,u2 log pk|u1,u2 . With regards to local Pauli-operations in
each link, the Holevo quantity in Eq. 4.12 can be shown to be invariant (see Appendix
A.4). Additionally, the composition of the mapping in Eq. 4.12 and the Holevo quantity
can be shown to be concave. This follows directly from the fact that the mapping is linear,4

and the Holevo quantity is concave [19]. As outlined in Section 3.5, these properties, along
with the invariance of the basis-dependent error rates, are enough to show that

max
Γeu

∑
u1,u2

pu1pu2χ

(∑
b

pb|u1,u2ψ
u1,u2,b(ρATBE)⊗ |b〉〈b|C ,Mu1

A

)
≤ (4.13)

max
Γeu

∑
u1,u2

pu1pu2χ

(∑
b

pb|u1,u2ψ
u1,u2,b

(
1

16

∑
r,s,r′,s′

ρ
Ur,sUr′,s′

ATBE

)
⊗ |b〉〈b|C ,Mu1

A

)
. (4.14)

In Appendix A.5 we show that the averaged state adopts a simple form; it is diagonal
with respect to tensor products of Bell states

1

16

∑
r,s,r′,s′

ρ
Ur,sUr′,s′

ATB =
1∑

a,b,a′,b′=0

αa,b,a′,b′ |Φa,b〉〈Φa,b|A,T1 ⊗ |Φa′,b′〉〈Φa′,b′ |T2,B (4.15)

for some arbitrary set of coefficients αa,b,a′,b′ . We may now limit our search for the optimal
attack to the set ΓBell

eu , which includes all states of the the reduced form

ρBell :=
1∑

a,b,a′,b′=0

αa,b,a′,b′ |Φa,b〉〈Φa,b|A,T1 ⊗ |Φa′,b′〉〈Φa′,b′ |T2,B (4.16)

that are also consistent with the set of observed error rates eu1,u2 . The process of trans-
forming ρATB to ρBell is more commonly known as a twirling map. Note for states of the
reduced form ρBell it holds that

∑
u1,u2

pu1pu2χ

(∑
b

pb|u1,u2ψ
u1,u2,b(ρATBE)⊗ |b〉〈b|C ,Mu1

A

)
= (4.17)∑

u1,u2,b

pu1pu2pb|u1,u2χ(ψu1,u2,b(ρATBE),Mu1
A ). (4.18)

As Thm. 2 suggests, this is not true for general states.

4Specifically,
∑

b pb|u1,u2
ψu1,u2,b(ρATBE)⊗ |b〉〈b|C =

∑
b(11A ⊗F

u1,u2,b
T ⊗ 11BE)ρATBE(11A ⊗Fu1,u2,b

T ⊗
11BE)† ⊗ |b〉〈b|C is linear.
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4.4.2 Applying Permutation Symmetries

We can again take advantage of symmetries to reduce the number of free parameters
involved in optimizing the Holevo quantity. Instead of using the Pauli-invariance of the
signal states, we use permutations of the eigenvalues of ρATB. To simplify notation, let us
first use Theorem 3 to eliminate any reference to Eve’s system. It follows from Theorem 3
that

χ(ψu1,u2,b(ρATBE),Mu1
A ) ≤ S(trE{ψu1,u2,b(ρATBE)})−

∑
k

pkS(trE{ψu1,u2,b,k(ρATBE)}).

(4.19)

For each state ρATB, a set of states {ρP1
ATB, . . . , ρ

Pm
ATB} may be defined by applying

the permutations Pi to the eigenvalues αa,b,a′,b′ of ρATB. The Holevo quantity is concave;
therefore, if the permutations are chosen so that the error rate is unchanged, and if the
permuted states are invariant with respect to the Holevo quantity, the optimal attack is of
the form

ρ̃Bell :=
1

m

∑
i

ρPi
Bell. (4.20)

Note that error-rate invariance and Holevo invariance do not hold in general for general
eigenvalue permutations. However, for specific permutations, the invariance relation can
be verified.

In order to examine the effect of a given eigenvalue permutation, it helps to define a
matrix consisting of the eigenvalues of ρATB:

λ :=


α0,0,0,0 α0,0,0,1 α0,0,1,0 α0,0,1,1

α0,1,0,0 α0,1,0,1 α0,1,1,0 α0,1,1,1

α1,0,0,0 α1,0,0,1 α1,0,1,0 α1,0,1,1

α1,1,0,0 α1,1,0,1 α1,1,1,0 α1,1,1,1

 . (4.21)

The eigenvalue matrix, λ, can be understood as a correlation table between the tensored
Bell states in Eq. 4.16. The intersecting eigenvalue is the probability associated with that
pair of Bell states. For example, α0,1,1,0 is the probability associated with |U0,1〉〈U0,1| ⊗
|U1,0〉〈U1,0|.

In Appendix A.6, we show that the Holevo quantity in Eq. 4.18 is invariant under
several symmetries. For example, it is invariant under the exchange of bit and phase
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errors. This is equivalent to exchanging the second and third rows and/or columns of λ (or
to swapping the Bell states |U0,1〉 and |U1,0〉). The Holevo quantity is also invariant when
the links are swapped. This can be visualized as a reflection of λ about the downward
diagonal. Furthermore, the Holevo quantity remains invariant when λ is reflected about
the upward diagonal. Note that in order for the state to be invariant with respect to these
permutations, the basis weighting pu must be even.

While the basis-dependent error rates eu1,u2 are not invariant with respect to the above
symmetries, the average error rate between Alice and Bob is. We may safely upper-bound
the Holevo quantity by only considering the average error rate. With regards to the
eigenvalue matrix λ, the average error rate is given by,

e =
∑
u1,u2

pu1pu2e
u1,u2 =

∑
a,b,a′,b′

λe(ab),(a′b′)αa,b,a′,b′ , (4.22)

λe =
1

2


0 1 1 2
1 1 1 1
1 1 1 1
2 1 1 0

 . (4.23)

Here λe(rs),(r′s′) is the element of λe, corresponding to row rsth row and the r′s′th column.
Given the form of λe, it is apparent upon inspection that e is consistent with the symmetries
listed above.

Considering combinations that respect the previously mentioned symmetries, the eigen-
value matrix of ρ̃Bell is

λ̃ =


β0 β1 β1 β2

β1 β3 β3 β1

β1 β3 β3 β1

β2 β1 β1 β0

 (4.24)

for some arbitrary β0, β1, β2, β3, such that 2β0 + 8β1 + 2β2 + 4β3 = 1. Let us define Γ̃Bell to
be the set of all states ρ̃Bell, that are consistent with the observed error rate e.

The Holevo quantity may now be analytically maximized. While the convex combi-
nation of ρ̃Bell depends on four eigenvalues, the maximization only depends on three free
parameters. Using the normalization condition and the average error rate between Alice
and Bob, two of these parameters can be specified. The Holevo quantity can then be ana-
lytically maximized with respect to the last open parameter. The maximum occurs when
β0 + β3 = (1/2)(1− e)2, β1 = (1/4)(1− e)e and β2 + β3 = (1/2)e2.
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The minimum postselected key rate therefore becomes

r ≥
∑
u1,u2

pu1pu2H(Ku1,u2

A )− δEC
leak − h(e) (4.25)

where H(Ku1,u2

A ) := −∑k pk|u1,u2 log pk|u1,u2 . Note that the final expression for the key rate
relies upon only the average error rate between Alice and Bob, e. Thus, the node is not
required to participate in parameter estimation.

For realistic error patterns, the qubit key rate in Eq. 4.25 is equal to the qubit key rate
arising from a point-to-point BB84 protocol, where Alice and Bob observe an error rate e.
However, the key rate is lower than the expected key rate for a conventional trusted relay.
In Section 4.6.2, we compare the STR protocol to a conventional trusted relay.

4.4.3 Trusted Nodes and Error Correction

In this section, we posit an alternative version of the BB84 STR protocol. By allowing
the trusted node additional complexity, the key rate may be improved. The improvement
comes at the cost of increased node complexity.

For realistic parameters, the key rate can be improved by allowing the trusted node
to participate in some post-processing. Specifically, we consider the case when the node
participates in error correction, but not privacy amplification. For implementations, this
would imply that the node generates error correcting information and broadcasts it to
Alice and Bob. (The node is not required to partake in the computationally expensive
task of correcting its own key.) The key map is defined by the node; therefore, we refer to
this alternative protocol as the node-focused protocol. This is juxtaposed to our original
protocol, which we will refer to as the user-focused STN protocol. The key rate formula
for this protocol is

rnode-focused ≥ H(KT )− δEC
leak −max

Γ0

χ(KT : E). (4.26)

The postselection formalism from Section 4.3.2 and the symmetry arguments from
Sections 4.4.1 and 4.4.2 remain largely unaltered by the new key map. Only two steps are
affected: proving that the Holevo quantity is invariant under local Pauli-operations, and
proving that the Holevo quantity is invariant under the eigenvalue permutations listed in
Section 4.4.2. The proofs outlined in Appendix A.4 and Appendix A.6 can be trivially
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Figure 4.4: The rate at which key bits can be derived from the raw key, in the limit of
infinite key length, for a node-focused BB84 STR protocol (solid line), and the user-focused
BB84 STR protocol (dashed line), as a function of the error rate in each link, elink. The plot
assumes realistic error patterns. Error correction is assumed to be done in the Shannon
limit. The difference between the two is strictly due to a difference in the expected value
of δEC

leak.

altered to show that these invariance properties hold. The final analytic maximization is
then identical to the original proof. The resulting key rate is therefore

rnode-focused ≥
∑
u1,u2

pu1pu2H(Ku1,u2

T )− δEC
leak − h(e). (4.27)

While the form of the key rate is identical to that of our original protocol, the amount
of information revealed in error correction is expected to be less. This is represented in
Fig. 4.4.
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4.5 BB84 STR Key Rate: an Alternative Approach

The security proof introduced in the previous section has several limitations. In this section
we propose an alternative qubit-level security proof that generalizes to an arbitrary number
of nodes. Importantly, this proof does not restrict the basis weighting pu. To simplify
notation, we will first consider the case of a single node, then generalize to multiple nodes
in Section 4.5.3.

The proof proceeds as follows. In Section 4.4.1, we demonstrated that when only the
basis-dependent error rates are considered, the optimal attack lies in the set ΓBell

eu . Using
this insight, the STR protocol is compared to an alternative protocol which is based upon
Bell measurements (Section 4.5.1). The alternative protocol has equivalent security, but
proves to be easier to work with. Next, in Section 4.5.2, we show that the observed
error rates place sufficient restrictions on the joint state. The complexity of the proof is
essentially reduced to the typical BB84 security proof.

4.5.1 Utilizing Hypothetical Bell Measurements

To derive an analytical expression for the Holevo quantity in Eq. 4.5, we compare the
STR protocol to a hypothetical trusted relay based upon Bell measurements. In the STR
protocol, the trusted node measures each link in either the X- or Z-basis. If the interme-
diate nodes in an STR protocol were instead to perform Bell measurements, this would
effectively carry out entanglement swapping, leaving Alice and Bob with entangled states.
If the nodes publicly announced the outcome of their measurements, Alice and Bob could
establish a secret key without trusting the nodes, or any further involvement from the
nodes [28].

A Bell measurement can be deconstructed into a parity measurement and a phase
measurement on two qubits. This insight links the entanglement swapping protocol to the
STR protocol. The parity component of the Bell measurement is functionally equivalent to
the parity announcement in the STR protocol. Unlike the protocol based on entanglement
swapping, the phase measurement in the STR protocol is suppressed. Given that the
nodes in the STR protocol do not carry out a full Bell measurement, they can obtain
the individual measurement outcomes (and do so in practice); therefore, Alice and Bob
must trust the node. However, as a proof technique, we can imagine the nodes faithfully
performing a phase measurement after performing the parity announcement. In effect, the
nodes can be viewed as performing full Bell measurements, even if they only announce the
parity bits.
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Specifically, let us examine an alternate protocol where the node carries out a measure-
ment in the Bell basis, up to some rotation defined by its basis choices. If we denote the
Z-basis with ui = 0 and the X-basis with ui = 1, the rotated Bell basis is given explicitly
by

{Hu1 ⊗Hu2|Φa,b〉}1
a,b=0 =


{|Φ0,0〉, |Φ0,1〉, |Φ1,0〉, |Φ1,1〉} : u1 = 0, u2 = 0
{|Φ′0,0〉, |Φ′0,1〉, |Φ′1,0〉, |Φ′1,1〉} : u1 = 0, u2 = 1
{|Φ′0,0〉, |Φ′1,0〉, |Φ′0,1〉, |Φ′1,1〉} : u1 = 1, u2 = 0
{|Φ0,0〉, |Φ1,0〉, |Φ0,1〉, |Φ1,1〉} : u1 = 1, u2 = 1

(4.28)

|Φ′a,b〉 := (11⊗H)|Φa,b〉 (4.29)

where Hui denotes a Hadamard matrix raised to the power ui and |Φa,b〉 are the four Bell
states. When u1 = u2, the above set is simply a permutation of the Bell states. Similarly,
when u1 6= u2 the set is a permutation of the Bell states, up to an overall unitary.

If the node announces only the bit value, b, corresponding to the original parity an-
nouncement and the node is trusted to faithfully perform a Bell measurement, the security
of this alternative protocol can be shown to be equivalent to the original STR protocol.
This can be seen by rewriting the conditional state introduced in Eq. 4.3:

ψu1,u2,b(ρATBE) =
1

pb|u1,u2

(
11A ⊗Fu1,u2,b

T ⊗ 11BE

)
ρATBE

(
11A ⊗Fu1,u2,b

T ⊗ 11BE

)†
(4.30)

Fu1,u2,b
T =

1∑
t=0

Mu1
T,t ⊗Mu2

T,t⊕b =
1∑

a=0

Hu1 ⊗Hu2|Φa,b〉〈Φa,b|Hu1 ⊗Hu2 . (4.31)

In this case, the node retains an additional bit of information from the measurement.
We will refer to this as the phase bit, a ∈ {0, 1}. If the node were untrusted, the public
announcement of the phase bit would be enough for the legitimate parties to verify that the
node faithfully performed a Bell measurement. However, if the node is trusted to perform
a Bell measurement, Bob only needs the parity announcement b to correct his data.

To simplify the security analysis, we may consider announcing the phase bit to Eve (but
not to Alice or Bob), effectively putting a lower bound on the key rate of the alternative
protocol. Given that the security of alternative protocol is equivalent to the STR protocol,
we therefore lowerbound the key rate of the STR protocol. Intuitively, if the phase bit is
leaked to Eve, Eve’s knowledge of the key cannot decrease. Formally, we can consider the
phase information to be stored in another register E ′ held by Eve. The Holevo quantity
can be expressed in terms of the quantum relative entropy. Considering the partial trace
over the system E ′, the monotonicity of the quantum relative entropy [40] ensures that
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Eve’s knowledge of the key does not decrease. This is expected, as Eve could simply ignore
the phase information. This insight, along with Thm. 2, leads to the bound

max
ΓBell
eu

∑
u1,u2

pu1pu2χ

(∑
b

pb|u1,u2ψ
u1,u2,b(ρATBE)⊗ |b〉〈b|C ,Mu1

A

)
(4.32)

≤ max
ΓBell
eu

∑
u1,u2

pu1pu2χ

(∑
a,b

pa,b|u1,u2ψ
u1,u2,a,b(ρATBE)⊗ |a, b〉〈a, b|C ,Mu1

A

)
(4.33)

= max
ΓBell
eu

∑
u1,u2,a,b

pu1pu2pa,b|u1,u2χ(ψu1,u2,a,b(ρATBE),Mu1
A ), (4.34)

ψu1,u2,a,b(ρATBE) :=
1

pa,b|u1,u2

IA ⊗ Gu1,u2,a,b
T ⊗ IBE ρATBE(IA ⊗ Gu1,u2,a,b

T ⊗ IBE)† (4.35)

Gu1,u2,a,b
T := Hu1 ⊗Hu2|Φa,b〉〈Φa,b|Hu1 ⊗Hu2 . (4.36)

Note that this bound makes use of the fact that ρATBE ∈ ΓBell
eu ; for states of this form, the

mutual information between the phase and parity bits and the key bit (see Thm. 2) is
zero.

4.5.2 Maximizing the Holevo Quantity

A conventional method to upper bound Eq. 4.34 is to maximize each term individually. If
the set ΓBell

eu is suitably restrictive, each term can be shown to be a function of the corre-
sponding Z-error rate (u1 = 0) or X-error rate (u1 = 1) arising from the conditioned state
ψu1,u2,a,b(ρATBE). This is done by treating each conditional state as if it had arisen from an
independent protocol. Previous security proofs for the point-to-point BB84 protocol have
shown that the Z- and X-error rates are enough to detect an eavesdropper (see Ref. [43]
for example).

However, it is not immediately apparent that ΓBell
eu contains suitable restrictions. First,

the observed Z- and X-error rates arise from the conditional states ψu1,u2,b(ρATBE), not
ψu1,u2,a,b(ρATBE). Second, it is not immediately apparent that the Z- and X-error rates can
be simultaneously determined for each conditioned state. In Eq. 4.37 the Z-error rates arise
from the states ψu1=0,u2,b(ρATBE) and X-error rates arise from the states ψu1=1,u2,b(ρATBE).
It is not clear, for example, how to derive the Z-error rate for the conditioned states
ψu1=1,u2,b(ρATBE). We address the first concern by considering the hypothetical error rates
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eu1,u2,a,b and later invoking the concavity of the binary entropy to derive a key rate de-
pendent only on the observed error rates eu1,u2 . The second concern is addressed using a
relation among the conditioned states (see Eq. 4.39). In Appendix A.7 we clearly show
that the Z- and X-error rates for the BB84 STR protocol are as restrictive as the BB84
protocol.

To address the concerns mentioned above, let us write the set ΓBell
eu in terms of the

hypothetical error rates for each Bell announcement, i.e. ΓBell
eu is the set of all states ρATBE

consistent with the error rates eu1,u2,a,b, such that
∑

a pa,b|u1,u2e
u1,u2,a,b equals the observed

error rates eu1,u2 . The hypothetical error rates eu1,u2,a,b are given by

eu1,u2,a,b =
∑

x 6=y⊕b

trATBE(Mu1
A,x ⊗ 11T ⊗Mu2

B,y ⊗ 11Eψ
u1,u2,a,b(ρATBE)) (4.37)

With these two conditions in mind, we define:

Definition 4. Let Γhidden be the set of all states ρATBE with the reduced form ρBell that are
consistent with the error rates eu1,u2,a,b.

Definition 5. Let Sobs be the set of all error rates eu1,u2,a,b such that
∑

a pa,b|u1,u2e
u1,u2,a,b =

eu1,u2.

The maximization in Eq. 4.32 can then be treated as two separate maximizations.
The equation can therefore be upper bounded by maximizing each term in the summation
independently with respect to Γhidden:

max
ΓBell
eu

∑
u1,u2,a,b

pu1pu2pa,b|u1,u2χ(ψu1,u2,a,b(ρATBE),Mu1
A ) (4.38)

≤ max
Sobs

∑
u1,u2,a,b

pu1pu2pa,b|u1,u2 max
Γhidden

χ(ψu1,u2,a,b(ρATBE),Mu1
A )

For this approach to be useful, we must first show the set Γhidden contains suitable re-
strictions on each state ψu1,u2,a,b(ρATBE). The form of the Bell measurement reveals that
certain sets of the conditioned states ψu1,u2,a,b(ρATBE) are related by trivial relabelings (see
Eq. 4.28). Explicitly,

ψu1=i,u2=j,a=k,b=l(ρATBE) = ψu1=i⊕1,u2=j⊕1,a=l,b=k(ρATBE) ∀i, j, k, l. (4.39)

The above relations allow us to derive X- and Z-basis error rates for each conditioned state
(see Table 4.1).
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Conditioned States

Restriction ρu1=0,u2=0,a=k,b=l
AB ρu1=0,u2=1,a=k,b=l

AB ρu1=1,u2=0,a=k,b=l
AB ρu1=1,u2=1,a=k,b=l

AB

Z-error eu1=0,u2=0,a=k,b=l eu1=0,u2=1,a=k,b=l eu1=0,u2=1,a=l,b=k eu1=0,u2=0,a=l,b=k

X-error eu1=1,u2=1,a=l,b=k eu1=1,u2=0,a=l,b=k eu1=1,u2=0,a=k,b=l eu1=1,u2=1,a=k,b=l

Table 4.1: Listed here are the hypothetical error rates, eu1,u2,a,b, that correspond
to the Z- and X-error rates restrictions for each conditional state, ρu1,u2,a,b

AB :=
trTE{ψu1,u2,a,b(ρATBE)}. The relations are established using Eq. 4.39.

We can now maximize each term, χ(ψu1,u2,a,b(ρATBE),Mu1
A ), as if it had arisen from

an independent protocol (after making use of the above relation). Given that we are
only interested in an upper bound, we can choose to maximize each term using only
the pertinent X- and Z-basis error rates. This maximization can now be handled using
techniques outlined in Appendix A of Ref. [43]:

max
Γhidden

χ(ψu1=i,u2=j,a=k,b=l(ρATBE),Mu1
A ) ≤ h(eu1=i⊕1,u2=j⊕1,a=l,b=k) ∀i, j, k, l.

Although the individual error rates, eu1,u2,a,b, are unknown, we can arrive at a useful
key rate by first using the fact that the conditional probability pa,b|u1,u2 respects similar
relations to Eq. 4.39,

pa=i,b=j|u1=k,u2=l = pa=j,b=i|u1=k⊕1,u2=l⊕1, ∀i, j, k, l. (4.40)

Then, by using the concavity of the binary entropy, with consideration of Eq. 4.5 and Eq.
4.32, we find the key rate to be

r ≥
∑
u1,u2

pu1pu2H(Ku1,u2

A )− δEC
leak −max

Sobs

∑
u1,u2

pu1⊕1pu2⊕1h(eu1,u2) (4.41)

=
∑
u1,u2

pu1pu2

(
H(Ku1,u2

A )− h(eu1⊕1,u2⊕1)
)
− δEC

leak.

Note that the maximization over Sobs is trivial, given each element in Sobs results in the
same key rate.

4.5.3 Multiple Trusted Nodes

The same analysis may easily be extended to the case where n trusted nodes are used.
In this case, the parity announcements made by the nodes may be described as a vector,
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b := {b1, . . . , bn}. Similarly, the basis choices for the n + 1 links are described as u :=
{u1, . . . , un+1}. For n-nodes, the legitimate parties share the postselected state

Ψ(ρATnBE) :=
∑
u,b

pupu|bψ
u,b(ρATnBE)⊗ |u,b〉〈u,b|C . (4.42)

ψu,b(ρATnBE) :=
1

pb|u
(11A ⊗Fu,b

Tn
⊗ 11BE)ρATnBE(11A ⊗Fu,b

Tn
⊗ 11BE)† (4.43)

Fu,b
Tn

:=
n⊗

i=1

Fui,ui+1,bi
Ti

(4.44)

where Fui,ui+1,bi
Ti

is defined in Eq. 4.4. Above, pu is the probability of the announcement
combination u, and pb|u is the probability of parity announcements b conditioned u.

For multiple nodes, Alice and Bob monitor the error rate for each combination of
announcements. We define the set Γn

eu similarly to Def. 3,

Definition 6. Let Γn
eu be the set of all states ρATnBE consistent with the set of basis-

dependent error rates eu.

Similar to the single-node case, we show that the joint state ρATnBE has eigenstates
composed of tensored Bell states. Following the same arguments outlined in Section 4.4.1,
we examine the set of states where the same local Pauli-operation is applied in each link:

ρ
Ur,s

ATnB
:=

(
n+1⊗
i=1

Uri,si ⊗ Uri,si

)
ρATnB

(
n+1⊗
i=1

Uri,si ⊗ Uri,si

)†
(4.45)

for some r = {ri} and s = {si}. Through straightforward extensions of Appendix A.3
and Appendix A.4, the basis-dependent error rates and Holevo quantity may be shown to
be invariant with respect to these states. Given the concavity of the Holevo quantity, it
follows that the extremum for the key rate formula is obtained by a state of the form

ρnBell :=
1

4n+1

n+1∑
i=1

∑
ri,si

ρ
Ur,s

ATnB
. (4.46)

Using techniques from Appendix A.5, all states of this form can be shown to have eigen-
states composed of tensor products of Bell states. Importantly, for these states it holds
that

χ

(∑
u,b

pupu|bψ
u,b(ρATnBE)⊗ |u,b〉〈u,b|C ,Mu1

A

)
=
∑
u,b

pupu|bχ(ψu,b(ρATnBE),Mu1
A ).

(4.47)
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Again, we simplify the calculation by considering a hypothetical protocol based upon
Bell measurements. Each node performs the measurement outlined in Eq. 4.28 and leaks
the phase bit to Eve. Analogous to Eq. 4.39, we use the same intuition to derive a relation
among the conditional states. Let a := {a1, . . . , an} be a vector describing the phase bit
announcements, and let ũ := {u1⊕1, . . . , un+1⊕1}. Furthermore, let k, and l be arbitrary
binary vectors of length n. It holds that

ψu,a=k,b=l(ρATnBE) = ψũ,a=l,b=k(ρATnBE). (4.48)

The subsequent steps presented in Section 4.5.2 may now be replicated to find the key
rate

r ≥
∑

u1,...,un+1

pu
(
H(Ku

A)− h(eũ)
)
− δEC

leak. (4.49)

4.6 Realistic Considerations

The key rates found in the previous sections are constructed for the ideal case where the
legitimate parties exchange qubits over a lossless channel, and Eve performs collective
attacks. Most QKD implementations use optical modes to transmit signal states over
a lossy channel. This is problematic, as Eve can actively select for pulses that contain
additional information. Additionally, Eve is not limited to collective attacks. In this
section, we will address these concerns.

4.6.1 From Collective Attacks to General Attacks

First, let us justify our examination of collective attacks in the previous sections. The
techniques developed in Ref. [14] provide a method for extending the security of collective
attacks to general attacks, provided the protocol is invariant with respect to permutations
of the input states. Even when exchanging qubit signal states in a lossless setting, the
STR protocol is not permutation invariant, due to the fact that basis sifting occurs before
the parity announcement.

We may still extend the security of the STR protocol to general attacks by noting that
key elements of the STR protocol are permutation invariant. Note that the process of
basis sifting commutes with measurements on the signal states. This allows us to view
basis sifting as an initial step preceding measurements. In a general attack, Eve may store
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all the signal states in a large quantum memory before distributing them to the legitimate
parties. Let us denote this state with ρN . The prestep of basis sifting maps the state ρN

to a smaller state ρndata:
ψsifting : ρN → ρndata. (4.50)

Importantly, the remainder of the STR protocol acting on ρndata (measurements and post-
processing) is permutation invariant.5

In order to separate the initial sifting step from the remainder of the STR protocol, a
common proof technique is to assume Eve performs the sifting step. However, Eve is unable
to perform the process of basis sifting as she does not have access to the basis information.
We therefore posit a hypothetical protocol that proceeds identically to the STR protocol;
however, before the protocol begins, whether signals will be kept or discarded during sifting
is announced to Eve for each time slot. Without loss of generality, we may now assume
Eve removes any signals that would be lost in basis sifting. More rigorously, for any attack
that Eve performs, there exists another attack that 1) does not change Eve’s knowledge of
the state, 2) does not change the observed error rates, and 3) removes states that will be
lost in basis sifting. The steps following sifting are now permutation invariant with respect
to the signals grouped by the parity announcements. Without loss of generality, we may
now assume that Eve performs collective attacks on these signals, when considering the
infinite key limit [14]. This is precisely the situation we have analyzed in previous sections.

Importantly, the key rate for this hypothetical protocol is a lower bound on the BB84
STR protocol. (Similar to the phase bit announcement in Section 4.5, Eve can always
choose to ignore the additional sifting information.) Therefore the analysis given in the
previous sections provides a lower bound on the key rate of the BB84 STR protocol, when
considering general attacks on qubit signal states sent over lossless channels.

We may extend our above analysis to include qubit signals exchanged over lossy chan-
nels. In the case of a lossy channel, the legitimate parties discard any data in which a
detector did not click. Similar to basis sifting, the removal of these events commutes with
the measurement process. We may therefore simply treat vacuum sifting as part of the
sifting map ψsifting. The remainder of the argument follows similarly.

5This follows from the fact that the measurements have a tensor product structure. As well, note that
there exist permutation invariant methods for carrying out privacy amplification; however, not all methods
of privacy amplification are permutation invariant.
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4.6.2 STR Protocol with Decoy States

Recall that when considering qubit-level security, our analysis directly applied to a number
of protocols with different variations of state creation and measurement (see the discussion
beginning Section 4.3). In order to move beyond qubit-level security, we restrict our focus
to the BB84 STR protocol as detailed in Section 4.2. While the following analysis still
applies to the case where the roles of state preparation and measurement are interchanged,
it does not directly apply to entanglement-based or measurement-device independent STR
protocols.

Current QKD implementations do not have access to ideal single photon sources. Typ-
ically, highly attenuated lasers are used to generate the signal states. These sources are
described by coherent states, where the photon number adheres to a Poisson distribution.
The probability of sending multi-photon pulses is therefore non-zero. An eavesdropper can
exploit multi-photon pulses through a Photon Number Splitting attack [30, 31]. In order
to improve the key rate for realistic sources, the legitimate parties may employ decoy state
analysis [24, 29, 55], supported by tagging [21, 25]. In addition to the original pulses, the
legitimate parties send decoy states which have a variable mean photon number, µn. By
introducing these additional observables, a lower bound may be estimated on the number
of single photon pulses in each link. On the detection side, squashing methods can deal
with the possibility of multiple photons entering a detector [6, 54, 35]. Given the existence
of a squashing map, the detection pattern can be interpreted as if it resulted from a vacuum
or single-photon pulse.

Decoy state analysis has been thoroughly explored in the literature. Most techniques
assume that the detected signal states are independent and identically distributing (i.i.d.).
In general, this assumption is not valid. For this reason, we rely on the analysis found
in Ref. [16], which does not assume i.i.d. signal states. The analysis in Ref. [16] uses
observables arising from ρN (the overall state shared between the legitimate parties, in-
cluding vacuum and multi-photon signals) to bound the fraction of tagged signals and the
single-photon error rate by use of decoy states. While the analysis directly applies for a
single node, it may be extended to an STR protocol with an arbitrary number of nodes.
Intuitively, it may be helpful to view this information as a promise about the fraction of
detected signals that are tagged. The same analysis from Section 4.6.1 may be applied to
extend the security analysis from collective attacks to general attacks; the final key rate
simply needs to be updated with respect to this promise.

Due to the structure of the parity announcement, if any of the legitimate parties emits
a multi-photon pulse, Eve may perform a Photon Number Splitting attack. For simplicity,
we assume Eve obtains full information of the corresponding raw key bit whenever this
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Figure 4.5: When the first link contains a vacuum signal (v), no information about the key
bit is revealed. Only when the source in the first link emits a single photon (s), and all
other links similarly emit single-photon or vacuum signals, does the qubit security analysis
apply. Whenever a multiphoton signal (m) is emitted (and the first link contains a non-
vacuum signal) Eve is assumed to obtain full knowledge of the state. Note that all emitted
signals that are not detected are discarded during sifting.

happens — except when a vacuum signal is sent in the first link (assuming Alice defines
the key map). Additionally, we need to rescale privacy amplification to account for Eve’s
interaction with the single photon pulses (see Figure 4.5). Let us denote the fraction of
detected events used for the raw key in which a single photon was sent in the first link
and all other links sent a single photon (vacuum or single photon) pulse to be fs,s (fs,v/s).
Similarly, fv is the fraction of events where a vacuum pulse was sent in the first link, and
eu,bs,s/v is the error rate arising from events where a single photon was sent in the first link
and all other links sent vacuum or single photon pulses. The fraction of multi-photon
events is then given by fm = 1− fv − fs,v/s. This is directly subtracted from the key rate.
For n nodes, the corresponding decoy state key rate is

r ≥
∑

u1,...,un+1

puH(Ku
A)− δEC

obs − fs,s/v
( ∑

u1,...,un+1

pu h(eũs,s/v)

)
− (1− fv − fs,v/s) (4.51)

for the asymptotic limit. Note that in practice, fs,v will be small. The approximations
fs,s/v ≈ fs,s and es,s/v ≈ es,s will safely lower bound the key rate.
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In Section 4.4.3, we outlined an alternative node-focused protocol where the trusted
node generated the error correcting information. Importantly, our analysis of this protocol
was limited to the case of a single node. Let us divide the node into two parties, a
pseudo-Bob (T ) and a pseudo-Alice (T ′). Let us imagine that pseudo-Bob generates the
error-correcting information based upon the raw key it holds with Alice. The decoy state
key rate is similarly

rnode-focused ≥
∑
u1,u2

pu1pu2H(Ku1,u2

T )− δEC
leak − fs,s/vh(es,s/v)− (1− fv − fs,v/s). (4.52)

Recall that the node-focused protocol required that the basis choices be evenly weighted,
i.e. pu1 = pu2 = 1/2.

4.7 Discussion

In this section, we compare the BB84 STR protocol to a conventional trusted relay, which
implements the BB84 protocol in each link. As we show below, the benefits of the BB84
STR protocol come at the cost of a lower key rate.

Let us reexamine the lossless case where the legitimate parties exchange qubit signals.
In Section 4.5.3 we determined the key rate for an arbitrary number of nodes to be

r ≥
∑

u1,...,un+1

pu
(
H(Ku

A)− h(eũ)
)
− δEC

leak. (4.53)

For realistic error patterns
∑

u pu(H(Ku
A)−h(eũ)) ≈ H(KA)−h(e), where e is the average

error rate between Alice and Bob for the entire raw key. This is reminiscent of the key
rate for the point-to-point BB84 protocol.

The qubit security of an STR differs from conventional trusted relays in two major ways.
First, the key rate is only a function of the error rate between Alice and Bob. Second, the
addition of new nodes in an STR protocol degrades the key rate due to compounding errors.
(In a conventional relay, errors are corrected in each link.) The qubit key rates for one and
two nodes are plotted in Figure 4.6, along with the key rate for a conventional trusted relay
implementing the BB84 protocol. As shown, the simplicity of the STR protocol comes at
the cost of a reduced key rate.

In Figure 4.7, we examine the effects of loss on the the STR protocol, when decoy state
techniques are used. We plot the key generation rate per clock cycle as a function of channel
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Figure 4.6: The rate at which key bits can be derived from the raw key, in the limit of
an infinite key length, for a conventional trusted node (solid line), an STR with one node
(dashed line), and an STR with two nodes (dotted line), as a function of the error rate in
a single link, elink. The plot assumes realistic error patterns. Error correction is assumed
to be done in the Shannon limit.

loss in one arm of the relay, optimizing the mean photon intensity, µ, at each distance.
While the key generation rate per clock cycle is lower for an STR, the computational load
on each node is also reduced. If the nodes are computationally limited, the key generation
rate per unit time may in fact be greater for an STR than a conventional trusted relay.

While STRs are not a substitute for conventional trusted relays, they may prove to be
a valuable tool in quantum networks. For example, in hub-and-spoke quantum networks,
in which the majority of traffic is routed through a small number of trusted nodes, the
network hubs may function as an STR. This would serve to reduce bottleneck effects by
shifting the majority of post-processing from the hubs to the end users. Additionally, STRs
may be useful for small satellites which are limited in both computational resources and
communication bandwidth.

52



0 5 10 15 20 25 30 3510-6

10-5

10-4

0.001

0.01

Loss HdBL

K
ey
R
at
e
pe
rC
lo
ck
C
yc
le

0 5 10 15 20 25 30 3510-6

10-5

10-4

0.001

0.01

Loss HdBL

K
ey
R
at
e
pe
rC
lo
ck
C
yc
le

Figure 4.7: The number of secret key bits generated per clock cycle, for a conventional
trusted node (solid line), an STR with one node (dashed line), and an STR with two nodes
(dotted line), as a function of the loss in a single link. Above: The scaling is examined in
the error-free limit. Below: In each link, we use an intrinsic error rate of 1.85% and a dark
count rate of 6×10−6 per clock cycle. Furthermore, we assume the information lost during
error correction is 1.2 times greater than the Shannon limit. For both cases, we assume a
detector efficiency of 50%. For each value of loss, the signal intensity is optimized. Finite
size effects are not considered, and Alice and Bob are assumed to perfectly determine fv
and fs,v/s.
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4.8 Conclusion and Outlook

We have examined the security of an STR which implements the quantum phase of the
BB84 protocol. In addition to providing an analytic key rate for an ideal case (lossless
and i.i.d. qubit signals), we have provided a clear path for extending the proof to realistic
circumstances (loss, general attacks, and weak coherent signal states). Our results show
that a trusted relay can function securely without the nodes participating in parameter
estimation, error correction or privacy amplification.

In comparison to conventional trusted relays, the STR protocol benefits from its sim-
plicity; however, this comes at the cost of a lower key rate. Compounding errors prevent a
naive implementation of the STR protocol from achieving long distances; however, several
STRs may be chained together (similar to a conventional trusted relay) to form a pattern
of simplified and conventional trusted relay nodes. For many scenarios, the optimal net-
work likely incorporates STRs and conventional trusted relays. In addition, for situations
where the intermediate nodes have limited computational power (such as lightweight satel-
lites), STRs may prove to have a higher key generation rate per second, as they reduce the
computational load on the intermediate nodes.

This work provides the foundation for several future research directions. While we
have demonstrated the basic security of STRs, it is unclear whether more refined classical
post-processing can significantly increase the key generation rate. For particular implemen-
tations, STRs are likely to benefit from tricks such as noisy preprocessing [39] or two-way
communication during error correction [22]. However, as we have demonstrated in Section
4.4.3, there exist additional improvements that are unique to the STR protocol (such as
allowing a node limited participation in error correction and privacy amplification). At the
moment we do not have a rigorous understanding of the limitations of STR protocols. A
thorough analysis may yield additional low-cost measures for increasing the key generation
rate in STR protocols — especially in network settings.

Furthermore, it remains an open question whether allowing a node limited participa-
tion in error correction truly affects the security of the BB84 STR relay — or whether
the difference in key rates (see Section 4.4.3 and Section 4.5.2) is merely an artifact of
an overly pessimistic security proof. If the difference is simply due to proof technique, a
refined analysis that accounts for any party generating and broadcasting the error correct-
ing information would provide a better understanding of how STRs best fit into network
settings.

Finally, it is of practical interest whether STR protocols may be implemented on the
first generation of QKD satellites. Technical analysis shows that QKD satellites are near
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the limits of current technology [34]. This may cause difficulties given the lowered error
tolerance of STRs. A rigorous analysis of an STR implementation (including finite-size
effects) is critical if STRs are to be implemented.
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Appendix A

Proofs from Chapter 3 and Chapter 4

A.1 Simplification of the Postselected Holevo Quan-

tity

In this appendix we prove Theorem 2 from Section 3.4.2.

Proof. Given the form of the key map implicit in the notation (see the discussion in Section
3.4.2) the Holevo quantity can be written as

χ

(∑
u

puρ
u
AE ⊗ |u〉〈u|,Mu

A

)
= S

(∑
u

puρ
u
E ⊗ |u〉〈u|

)
−
∑
k

pkS

(∑
u

pu|kρ
u,k
E ⊗ |u〉〈u|

)
(A.1)

where ρu,k denotes the state ρu conditioned on the key bit k and pu|k := pu,k/pk is a
conditional probability. Using basic properties of the von Neumann entropy, it follows that

χ

(∑
u

puρ
u
AE ⊗ |u〉〈u|,Mu

A

)
= (A.2)∑

u

puS (ρuE)−
∑
u

pu log pu −
∑
u

pu
∑
k

pk|uS(ρu,kE ) +
∑
k

pk
∑
u

pu|k log pu|k =

H(pu)−
∑
k

pkH(pu|k) +
∑
u

puχ(ρuAE,M
u
A) =

∑
u

puχ(ρuAE,M
u
A) + I(pu,k).
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A.2 Eve’s Attack is Bounded by Pure Conditional

States

In this appendix we prove Theorem 3 from Section 3.4.2.

Proof. Using the monotonicity of the quantum relative entropy [40], we can write

χ(X : E) = S(ρE)−
∑
k

pkS(ρkE) (A.3)

=
∑
k

pkS(ρkE||ρE) (A.4)

≤
∑
k

pkS(ρkEE′||ρEE′) (A.5)

= S(ρEE′)−
∑
k

pkS(ρkEE′). (A.6)

Given that the states ρAEE′ and ρkAEE′ are pure, we may use the Schmidt decomposition
to show that S(ρEE′) = S(ρA) and S(ρkEE′) = S(ρkA). Therefore

χ(X : E) ≤ S(ρA)−
∑
k

pkS(ρkA). (A.7)

Note that equality is reached when the conditional states ρkAE are pure.

A.3 Error Rate Invariance Under Local Pauli-operations

The basis-dependent error rates arising from the states ρ
Ur,sUr′,s′

ATB can be shown to be the
same as the observed error rates. We can consider the observed error rates to arise from
the function

eu1,u2 = fu1,u2
err. (ρATB) (A.8)

fu1,u2
err. (σATB) :=

∑
b

∑
x 6=y⊕b

trAB(Mu1
A,x ⊗Fu1,u2,b

T ⊗Mu2
B,yσATB) (A.9)
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where Fu1,u2,b
T is defined in Eq. 4.4.

We will make use of the fact that Pauli matrices only permute the BB84 signal states
within each basis. Let us define the action of the Pauli operator Ur,s on the signal state
|φu

x〉 to be Ur,s|φu
x〉 = |φu

x⊕h(u,r,s)〉 for some function h(u, r, s) with binary output. It follows
that this relation similarly applies to the BB84 POVM elements. The averaged error rate

arising from the state ρ
Ur,sUr′,s′

ATB can then be rewritten

fu1,u2
err. (ρ

Ur,sUr′,s′

ATB ) =
∑
b

∑
x 6=y⊕b

trAB(Mu1
A,x ⊗Fu1,u2,b

T ⊗Mu2
B,yρ

Ur,sUr′,s′

ATB ) (A.10)

=
∑
b

∑
x,t

trAB(Mu1
A,x ⊗Mu1

T,t ⊗Mu2
T,t⊕b ⊗Mu2

B,x⊕b⊕1ρ
Ur,sUr′,s′

ATB )(A.11)

=
∑
b

∑
x,t

trAB(Mu1

A,x⊕h(u1,r,s)
⊗Mu1

T,t⊕h(u1,r,s)
(A.12)

⊗Mu2

T,t⊕b⊕h(u2,r′,s′)
⊗Mu2

B,x⊕b⊕h(u2,r′,s′)⊕1ρATB).

Let us define x′ := x⊕ h(u1, r, s), t
′ := t⊕ h(u1, r, s), and b′ := b⊕ h(u1, r, s)⊕ h(u2, r

′, s′):

=
∑
b

∑
x′,t

trAB(Mu1

A,x′ ⊗Mu1

T,t⊕h(u1,r,s)
(A.13)

⊗Mu2

T,t⊕b⊕h(u2,r′,s′)
⊗Mu2

B,x′⊕h(u1,r,s)⊕h(u2,r′,s′)⊕b⊕1ρATB)

=
∑
b

∑
x′,t′

trAB(Mu1

A,x′ ⊗Mu1

T,t′ ⊗Mu2

T,t′⊕b⊕h(u1,r,s)⊕h(u2,r′,s′)
(A.14)

⊗Mu2

B,x′⊕h(u1,r,s)⊕h(u2,r′,s′)⊕b⊕1ρATB)

=
∑
b′

∑
x′,t′

trAB(Mu1

A,x′ ⊗Mu1

T,t′ ⊗Mu2

T,t′⊕b′ ⊗Mu2

B,x′⊕b′⊕1ρATB) (A.15)

= eu1,u2 (A.16)

Therefore the basis-dependent error rates are invariant when the same Pauli-operation is
applied in each link.
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A.4 Holevo Invariance Under Local Pauli Operations

In this appendix we demonstrate that the state ρATBE is invariant with respect to the
postselected Holevo quantity in Eq. 4.12 when local Pauli operations are applied, i.e.

χ

(∑
b

pb|u1,u2ψ
u1,u2,b(ρ

Ur,sUr′,s′

ATBE )⊗ |b〉〈b|C ,Mu1
A

)
= (A.17)

χ

(∑
b

pb|u1,u2ψ
u1,u2,b(ρATBE)⊗ |b〉〈b|C ,Mu1

A

)
. (A.18)

Similar to Appendix A.3, we can make use to the fact that Pauli operators simply
permute the BB84 signal states. Again we define Ur,s|φu

x〉 = |φu
x⊕h(u,r,s)〉, k′ := k⊕h(u1, r, s),

and b′ := b⊕ h(u1, r, s)⊕ h(u2, r
′, s′) for some function h(u, r, s) with binary output. The

invariance of the Holevo quantity stems from the fact that the following operators are
equivalent up to a global unitary

Mu1
A,k ⊗Fu1,u2,b

T ⊗ 11Bρ
Ur,sUr′,s′

ATB (Mu1
A,k ⊗Fu1,u2,b

T ⊗ 11B)†
U
= (A.19)

Mu1

A,k′ ⊗Fu1,u2,b′

T ⊗ 11BρATB(Mu1

A,k′ ⊗Fu1,u2,b′

T ⊗ 11B)†.

Note that
U
= represents equality up to a global unitary.

In order to show that the Holevo quantity is invariant, we need examine the probability
of obtaining a key bit (pk) and Eve’s conditional states (ρkE). Given that the trace is
invariant under a global unitary, the probability distribution pk is simply permuted:

p
Ur,sUr′,s′

k := trATBE{Mu1
A,k ⊗ 11TBEρ

Ur,sUr′,s′

ATBE } = pk′ . (A.20)

It follows similarly that the action of the local Pauli operations simply permutes Eve’s
conditional state up to a relabelling of the classical register,

ρ
k,Ur,sUr′,s′

E :=
1

p
Ur,sUr′,s′

k

∑
b

trATB{Mu1
A,k ⊗Fu1,u2,b

T ⊗ 11BEρ
Ur,sUr′,s′

ATBE } ⊗ |b〉〈b|C (A.21)

=
1

pk′

∑
b

trATB{Mu1

A,k′ ⊗Fu1,u2,b′

T ⊗ 11BEρATBE} ⊗ |b〉〈b|C (A.22)

= ρk
′

E . (A.23)
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Therefore

χ

(∑
b

pb|u1,u2ψ
u1,u2,b(ρ

Ur,sUr′,s′

ATBE )⊗ |b〉〈b|C ,Mu1
A

)
= (A.24)

S

(∑
k

p
Ur,sUr′,s′

k ρ
k,Ur,sUr′,s′

E

)
−
∑
k

p
Ur,sUr′,s′

k S(ρ
k,Ur,sUr′,s′

E ) = (A.25)

S

(∑
k′

p′kρ
k′

E

)
−
∑
k′

pk′S(ρk
′

E ) = (A.26)

χ

(∑
b

pb|u1,u2ψ
u1,u2,b(ρATBE)⊗ |b〉〈b|C ,Mu1

A

)
. (A.27)

A.5 Calculation of Symmetric State for BB84 STN

Protocol

The form of ρBell is calculated using an extension of the work presented in Ref. [19]. We
can express the averaged state in Eqn. 4.15 in terms of the Pauli matrices:

1

16

∑
r,s,r′,s′

ρ
Ur,sUr′,s′

ATB =
1

16

∑
r,s,r′,s′

Ur,s ⊗ Ur,s ⊗ Ur′,s′ ⊗ Ur′,s′ρATB(Ur,s ⊗ Ur,s ⊗ Ur′,s′ ⊗ Ur′,s′)
†.

(A.28)
Any state ρATB can be expressed in the tensored Bell basis B = {|Ur,s〉⊗|Ur′,s′〉 : r, s, r′, s′ =
0, 1}. Note that the action of the Pauli matrices on a basis element is

Ur,s ⊗ Ur,s ⊗ Ur′,s′ ⊗ Ur′,s′ |Um,n〉 ⊗ |Up,q〉 (A.29)

= (−1)−sm+rn−s′p+r′q|Um,n〉 ⊗ |Up,q〉.

By averaging over the Pauli matrices, we find∑
r,s,r′,s′

Ur,s ⊗ Ur,s ⊗ Ur′,s′ ⊗ Ur′,s′|Um,n〉〈Um′,n′| ⊗ |Up,q〉〈Up′,q′|(U∗r,s ⊗ Ur,s ⊗ Ur′,s′ ⊗ U∗r′,s′)†

=
∑

r,s,r′,s′

(−1)−s(m+m′)+r(n+n′)−s′(p+p′)+r′(q+q′)|Um,n〉〈Um′,n′ | ⊗ |Up,q〉〈Up′,q′|. (A.30)
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The off diagonal elements can be shown to vanish by observing that the coefficient in Eqn.
A.30 is equivalent to 16δm,m′δn,n′δp,p′δq,q′ . Therefore the averaged state can be expressed
simply as

1

16

∑
r,s,r′,s′

ρ
Ur,sUr′,s′

ATB =
∑

m,n,p,q

αm,n,p,q|Um,n〉〈Um,n| ⊗ |Up,q〉〈Up,q|. (A.31)

A.6 Holevo Invariance Under Eigenvalue Permuta-

tions

In this appendix we demonstrate that the state ρBell is invariant with respect to the Holevo
quantity under four permutations of the eigenvalues of ρBell. With regards to the eigenvalue
matrix λ, these permutations are: exchanging the second and third columns, exchanging
the second and third rows, reflecting the matrix about the upward diagonal, and reflecting
the matrix about the downward diagonal. Each permutation can be described by a unitary
transformation acting on ρBell. We denote the permutations respectively as Ucol, Urow,
Uerrors, and Ulinks.

For clarity, let us denote the system T with two qubit spaces T1 and T2. Consider the
action of the postselection operator 11A ⊗ Fu1,u2,b

T ⊗ 11B on the eigenstates of ρBell. It can
be shown that

11A ⊗Fu1,u2,b
T ⊗ 11B|Φi,j〉AT1|Φi′,j′〉T2B =

∑
a

|Φa⊕i⊕i′,b⊕j⊕j′〉AB|Φa,b〉T1T2 : u1 = 0, u2 = 0∑
a

(11A ⊗H ⊗ 11T1 ⊗H)|Φa⊕i⊕j′,b⊕j⊕i′〉AB|Φa,b〉T1T2 : u1 = 0, u2 = 1∑
a

(H ⊗ 11B ⊗H ⊗ 11T2)|Φa⊕j⊕i′,b⊕i⊕j′〉AB|Φa,b〉T1T2 : u1 = 1, u2 = 0∑
a

(H ⊗H ⊗H ⊗H)|Φa⊕j⊕j′,b⊕i⊕i′〉AB|Φa,b〉T1T2 : u1 = 1, u2 = 1

(A.32)

Futhermore, we can show the action of the permutations on the Bell-states:

Ucol|Φi,j〉AT1|Φi′,j′〉T2B = |Φj,i〉AT1|Φi′,j′〉T2B (A.33)

Urow|Φi,j〉AT1|Φi′,j′〉T2B = |Φi,j〉AT1 |Φj′,i′〉T2B (A.34)

Uerrors|Φi,j〉AT1|Φi′,j′〉T2B = |Φi′⊕1,j′⊕1〉AT1|Φi⊕1,j⊕1〉T2B (A.35)

Ulinks|Φi,j〉AT1|Φi′,j′〉T2B = |Φi′,j′〉AT1|Φi,j〉T2B. (A.36)
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Note that for all elements in ΓBell it holds that

χ(Ψ(ρBell),M
u1
A ) =

∑
u1,u2,b

pu1pu2pb|u1,u2χ(ψu1,u2,b(ρBell),M
u1
A ). (A.37)

Furthermore, the symmetric form of ρBell ensures that pk|u1,u2,b = pb|u1,u2 = 1/2. Given
that the Hadamard matrix permutes the basis of Alice’s POVM elements (HMu1=i

A,x H =

Mu1=i⊕1
A,x ) the above relations can be used to show that for all i, j, k:

χ(ψu1=i,u2=j,b=k(UcolρBellU
†
col),M

u1=i
A ) = χ(ψu1=i⊕1,u2=j,b=k(ρBell),M

u1=i⊕1
A ) (A.38)

χ(ψu1=i,u2=j,b=k(UrowρBellU
†
row),Mu1=i

A ) = χ(ψu1=i,u2=j⊕1,b=k(ρBell),M
u1=i
A ) (A.39)

χ(ψu1=i,u2=j,b=k(UerrorsρBellU
†
errors),M

u1=i
A ) = χ(ψu1=j,u2=i,b=k(ρBell),M

u1=j
A ) (A.40)

χ(ψu1=i,u2=j,b=k(UlinksρBellU
†
links),M

u1=i
A ) = χ(ψu1=j,u2=i,b=k(ρBell),M

u1=j
A ). (A.41)

In consideration of the above, the Holevo invariance follows directly, so long as pu1 = pu2 =
1/2.

A.7 Z- and X-errors in the BB84 STR Protocol

In deriving an alternative security proof of the BB84 STR Protocol (Section 4.5) we first
compare the protocol to a hypothetical Bell measurement-based protocol. Furthermore,
we reduce the complexity of security proof for the BB84 STR protocol to the point-to-
point BB84 protocol. Implicit in this proof is the notion that the Z- and X-error rates in
the STR protocol place the same restrictions on the joint state, as they do in the BB84
protocol. In this Appendix, we justify this assumption.

For the Bell measurement-based protocol, the hypothetical error rates conditioned on
all four announcements can be viewed as a function of Alice and Bob’s conditioned states,

eu1,u2,a,b = fu1,u2,b
err. (trTE{ψu1,u2,a,b(ρATBE)}) (A.42)

fu1,u2,b
err. (ρAB) :=

∑
x 6=y⊕b

trAB(Mu1
A,x ⊗Mu2

B,yρAB) (A.43)

In the point-to-point BB84 protocol, the Z- and X-error rates for the state ρAB are given
by a different function

eu = fu
err.(ρAB) (A.44)

fu
err.(ρAB) :=

∑
x 6=y

trAB(Mu
A,x ⊗Mu

B,yρAB). (A.45)
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From conventional point-to-point BB84 security proofs, we know that by specifying the
value of fu=Z

err. (ρAB) and fu=X
err. (ρAB) (i.e. measuring the Z- and X-error rates) the function

χ(ρABE,M
u
A) can be upper bounded. In order to make use of this fact, we need to clearly

show that specifying the value of fu1,u2,b
err. (ρAB) places the same restrictions on ρAB as does

specifying the value of fu
err.(ρAB). Note the functions differ by the parity announcement b

and the addition of a second basis, u2.

First, we can make use of the fact that χ(ρABE,M
u
A) is invariant if Bob applies a

local unitary transformation. This follows directly from the unitary invariance of the von
Neumann entropy. This allows us to write χ(ρABE,M

u
A) = χ(ρ′ABE,M

u
A), where ρ′ABE :=

(11A ⊗ Hu1⊕u2 ⊗ 11E)ρABE(11A ⊗ Hu1⊕u2 ⊗ 11E)†. The restriction may now be rewritten
fu1,u2,b

err. (ρAB) =
∑

x 6=y⊕b trAB(Mu1
A,x ⊗Mu1

B,yρ
′
AB). Formally, the error rates can be viewed as

restrictions on ρ′AB, and we instead optimize χ(ρ′ABE,M
u
A).

In addition, we can make use of the fact that the POVM elements satisfy the relation∑
xM

u
x = 11. Using this it easily follows that

fu1,u2,b
err. (ρAB) =

{
fu1

err.(ρ
′
AB) : b = 0

1− fu1
err.(ρ

′
AB) : b = 1.

(A.46)

By specifying fu1,u2,b
err. (ρAB), we can uniquely specify fu1

err.(ρ
′
AB). Therefore the Z- and X-

error rates in the BB84 STR protocol are as restrictive as the point-to-point BB84 protocol.
Note that u1 = 0 defines the Z-error and u1 = 1 defines the X-error. In the main text,
we show that it is possible to derive Z- and X-error rates for each conditioned state
ψu1,u2,b(ρATBE).
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Hannes Hübel, and Thomas Jennewein. How to implement decoy-state quantum
key distribution for a satellite uplink with 50-db channel loss. Physical Review A,
84(6):062326, 2011.

[35] Tobias Moroder, Otfried Gühne, Normand Beaudry, Marco Piani, and Norbert
Lütkenhaus. Entanglement verification with realistic measurement devices via squash-
ing operations. Physical Review A, 81(5):052342, 2010.

[36] Jörn Müller-Quade and Renato Renner. Composability in quantum cryptography.
New Journal of Physics, 11(8):085006, 2009.

[37] Momtchil Peev, Christoph Pacher, Romain Alléaume, Claudio Barreiro, Jan Bouda,
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