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Abstract

This work develops a generalized modeling framework using several techniques for as-

sessing the feasibility of an eco-industrial network or ‘eco-park’ in order to demonstrate

the environmental and economic benefits of industrial facilities with cooperative goals to

conserve energy and materials. The work takes advantage of three distinct types of model-

ing techniques (linear programming, mixed-integer linear programming and mixed-integer

non-linear programming) to incorporate increasingly complex circumstances for designing

eco-industrial networks. The purpose of this research is to provide policy-makers and facil-

ity designers with an approach to optimize construction of facilities based upon economic

and environmental incentives. This framework allows for optimizing the material and en-

ergy efficiency of a network of facilities to reduce emissions, waste, and input of materials

and energy while maintaining production levels.

Major contributions from this thesis are to examine the potential for alternative-fuel

vehicles within the concept of a hydrogen economy and exploration of eco-industrial net-

works, utilizing the tools of life cycle analysis and system optimization. Life-cycle assess-

ment is utilized as a tool for decision-making throughout this thesis and is an invaluable

asset in making environmentally-conscious decisions. This type of assessment evaluates

the emissions of a product from virgin material extraction through to final disposition in

the aquatic, terrestrial or atmospheric domain. The use of life-cycle assessment techniques

shows clear impacts on society over the entire lifecycle of the products and processes con-

sidered herein. Development of a dual-objective function to account for economics and

environmental performance of industrial facilities is developed and utilized to aid in the

decision process for policy-makers and facility designers.

The concept of eco-industrial networks is further extended by including additional com-

v



ponents, such as transportation modes, within the model. To this end, preliminary work

examines the practical possibility of shifting automobile propulsion technologies to alter-

native fuels with emphasis on the criteria air contaminants considered herein of greenhouse

gases, volatile organic compounds, and oxides of sulphur and nitrogen. The scenarios pre-

sented are based on a model of the electricity system in the province of Ontario, Canada

and energy pathway analysis to assess the supportable market penetration of, and emis-

sions from, alternative vehicle technologies. The recommendation of this work is that a

transition to electric vehicles in the near-term followed by a transition to hydrogen fuel-

cell vehicles will yield the largest reduction in criteria air contaminants in both the urban

centre of Toronto, Ontario and in the province as a whole.

The consideration of transportation and transitional technologies feeds directly into

the concept of eco-industrial parks and the benefit to society of their implementation. The

reduction in transportation distance between relatable chemical manufacturers has been

hailed as a major benefit of implementing eco-industrial park topology. This work devel-

ops a generalized modeling framework for eco-industrial parks based on a dual objective

of societal and industrial requirements. The nodes considered in this work include: energy

generation via hydrocarbon gasification or reforming, carbon capture, carbon sequestra-

tion, pressure-swing adsorption in addition to the manufacture of ammonia and urea within

the context of refueling a fleet of 1000 hydrogen vehicles. Life-cycle assessment is applied

to form the societal benefits of operating facilities within an eco-industrial framework and

the long-term economics of the processes are considered to form the economic portion of

the objective. Modeling is carried out in three distinct types: linear programming, mixed-

integer linear programming and mixed-integer non-linear programming. Each of these types

represents a different modeling framework developed to assess various complexities in the

eco-industrial network and yet they share common goals, themes and analysis methods.

Using each of these approaches, a case study eco-industrial park is analyzed using the three
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types of modeling methodologies mentioned. The simpler LP model is unable to account

for some of the complexities inherent in an eco-park network and thus the results from this

model are subsequently viewed as an upper boundary on the benefits of eco-industrial in-

tegration for the case study mentioned. The subsequent efforts of mixed-integer linear and

non-linear programming serve to refine the model and provide more realistic investigation

of the benefits of such a network.

In order to achieve a reduction in emissions of harmful substances to the air, water

and land to meet national targets, analysis of the interactions between humans and the

environment must be explored to unlock new avenues of production and consumption to

reduce the impact that society is having on the environment. This work is completed

within the larger context of the potential hydrogen economy with the supposition that

such a scenario will be enabled by increasingly effective technology. The transition of our

current infrastructure to the hydrogen economy shows benefits to air quality from reduced

emissions of vehicles and also from a reduced industrial contribution.
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ySGij
Fraction of sulphur present in fuel j used

in gasifier i

Decimal

yAGij
Fraction of ash present in fuel j used in

gasifier i

Decimal

Fij Moles of fuel j used in gasifier i kmol

CO Total moles of carbon monoxide produced

from gasification

kmol

H2 Total moles of hydrogen produced from

gasification

kmol

N2 Total moles of nitrogen produced from

gasification

kmol

CO2 Total moles of carbon dioxide produced

from gasification

kmol

xij binary variable expressing whether fuel j

is being supplied to gasifier i

Binary

CO2pout CO2 output from plant p kmol

CO2pin CO2 input to plant p kmol

N2pout N2 output from plant p kmol

N2pin N2 input to plant p kmol

H2pout H2 output from plant p kmol

H2pin H2 input to plant p kmol

COpout CO output from plant p kmol

COpin CO input to plant p kmol

NH3pin Ammonia input to plant p kmol

NH3pout Ammonia output from plant p kmol
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Variable Description Units /Type

Mepin Methanol input to plant p kmol

Mepout Methanol output from plant p kmol

Upin Urea input to plant p kmol

Upout Urea output from plant p kmol

Epin electricity input to plant p kWh

Epout electricity input to plant p kWh

Hpin heat input to plant p MJ

Hpout Heat output from plant p MJ

γWGS Extent of water-gas shift reaction inside

the gasifier

Decimal

EG Energy converted in the CHP unit MJ

LHVCO Lower heating value of carbon monoxide MJ kmol−1

LHVH2 Lower heating value of hydrogen MJ kmol−1

HGX Heat generated for export MJ

EGX Electricity generated for export kWh

HeatSplit Split of energy conversion for heating Decimal

Z The objective value, value to society none

JLCE Contribution of life-cycle emission reduc-

tions to the objective function

none

Je Contribution of economics to the ojective

function

Dollars

ACCSp Amortized capital cost of plant p in an

independent operating scenario

Dollars

OCSp Operating cost of plant p in an indepen-

dent operating scenario

Dollars
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Variable Description Units /Type

ACCIp Amortized capital cost of plant p in an

integrated operating scenario

Dollars

OCIp Operating cost of plant p in an integrated

operating scenario

Dollars
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Sets, Subsets and Indices Description

i plant index

j fuel index

p set of plants

e set of emissions

Ω set of fuels

Ωi set of fuels that can be utilized in gasifier i

Parameter Description units

Coste Environmental cost of emission e Decimal

FU
i upper limit on supply of fuel to gasifier i tonnes

FU
j Upper limit of supply of fuel j tonnes

n,m,k coefficients of a biomass product none

ηHG Efficiency of heat generation Decimal

ηEG Efficiency of electricity generation Decimal

WLCE Objective function weighting for life cycle emissions Decimal

We Objective function weighting for economics Decimal
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Nomenclature associated with Chapter 5

Binary Variables

xp,m =

 1 if plant p of size m exists

0 Otherwise

yp,p2,k,v =

 1 if material v is transported by method k between p and p2

0 Otherwise

xxviii



Acronym Description

EIN Eco-industrial network

LCA Life-cycle assessment

EIP Eco-industrial Park

GAMS General algebraic modeling system

MILP Mixed-integer linear program

DJSI Dow Jones sustainability index

WAR Waste reduction

ISO International Standards Organization

SOx Oxides of sulphur

CO2 Carbon dioxide

GHG Greenhouse gases

NPV Net present value

G Symbol for the gasification unit

PSA Symbol for the pressure-swing adsorption unit

CHP Symbol for the combined heat and power unit

CC Symbol for the carbon capture unit

AM Symbol for the ammonia manufacturing unit

U Symbol for the urea manufacturing unit

ME Symbol for the methanol manufacturing unit

GH Symbol for greenhouses

SQ Symbol for the sequestration unit

SMR Steam-methane reforming
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Model Framework Description

Z Objective value

x Design vector

c Vector of fixed parameters

g vector of inequality constraints

h vector of equality constraints

xLi the lower bound for xi

xUi the upper bound for xi

q number of objectives

x vector of decision variables

c vector of fixes parameters

m1 number of inequalities; and

m2 number of equalities

xxx



Model Setup Description

λi weighting factor for objective Zi

Fi scaling factors for Zi

Z̃ aggregated objective value

Z1 = Zeconomic economic portion of the objective value

Z2 = Zemissions environmental portion of the objective

value

ne number of emissions considered

λe weighting factor for emission e

Fe scaling factors for emission e

Ze emission differential between the inte-

grated and stand-alone facilities

Ie emissions of e from an integrated facil-

ity

Se emissions of e from a standalone facility

rd discount rate

np number of manufacturing facilities

Sets Description

k set of the transportation technologies available

m set of plant sizes

v set of material vectors

e set of emissions

p set of facilities; and

p2 alias of p
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Variables Description Units

outv,p amount of material v output from

plant p

kg; mol

inv,p input of v to plant p mol

rxv,p consumption of v in p mol

genv,p generation of v in p mol

MU
p,m upper flowrate limit of from plant

p of size m

m3; kg; mol

Rp return from sale of products from

plant p

$

ICC integrated plant capital cost $

SCC standalone plant capital cost $

IOC integrated plant operating cost $

SOC standalone plant capital cost $

t year

L plant lifetime p years

TransportationCostk Total transportation cost of type

k

$

BaseCostk Base cost of transportation mode

k

$

ThroughputCostk Throughput cost of transporta-

tion mode k

$m−3; $kg−1; $mol−1
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Nomenclature associated with Chapter6

Acronyms Description

AHP Analytic hierarchy process

EIN Eco-industrial network

GAMS General Algebraic Modeling System

GHG Greenhouse gases

H total number of fuels available

LCA Life-cycle assessment

LCE life-cycle emission

LP Linear Programming

MILP Mixed-Integer Linear Programming

MINLP Mixed-Integer Nonlinear Programming

SMR Steam methane reforming

Continuous

Variables

Description Unit /type

ACCi,s annual amortized capital cost of the plant i with

scheme s

$ yr−1

ADu ammonia plant node’s utility u demand J h−1; tonne h−1; kW

AIm ammonia node’s material m input mol h−1

AOm,j ammonia plant node’s material m output to the

jth node

mol h−1

APm ammonia plant node’s material m product mol h−1

ARu ammonia plant node’s utility u requirement per

unit of NH3 produced

Jmol−1; tonnemol−1;

kWhmol−1

ASFj ammonia plant node’s split factor to node j %
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Continuous

Variables

Description Unit /type

CCDu carbon capture node’s utility u demand tonne h−1

CCIm carbon capture node’s material m input mol h−1

CCOm,j carbon capture node’s material m output to the

jth node

mol h−1

CCSj carbon capture node split factor of the CO2-

deficient gas sent to the node j

%

CCSFj carbon capture node’s stream splitting factor to

the sink node j

%

CEC combined heat and power node’s input gas en-

ergy content

J h−1

CERu combined heat and power node’s energy ratio

used to produce utility u

%

CF problem’s objective cost function fractional

CGu combined heat and power node’s utility u gen-

eration

J h−1;kW

CIm combined heat and power node’s material m in-

put

mol h−1

COm,j combined heat and power node’s material m

(stack gas) sent to the node j

mol h−1

CPm combined heat and power node’s product m

generation

mol h−1

EPCi,s,e emission e related to the construction of plant i

with scheme s

tonnes emission e
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Continuous

Variables

Description Unit /type

EPOi,s,e emission e from the operation of plant i with

scheme s

tonnes emission e

FM mass flowrate of the fuel entering the gasifier kg h−1

GDu gasifier’s utility u demands J h−1; tonne h−1; kW

GOm,j gasifier’s material m output to the production

node j

mol h−1

GPm gasifier’s material m production mol h−1

GSFj gasifier’s split factor to the sink node j %

GWm gasifier’s waste material m generation sent to

waste /water treatment facilities

mol h−1

MAMm,j market node’s material m available to be sold

to node j

mol h−1

MATERm,i,j material m going from node i to node j mol h−1; m3 h−1

MEAu,j market node’s utility u exported to node j Jh−1; tonne h−1

MEIu market node’s utility u input (i.e., utility sold

to the market)

J h−1; kW

MEOu,j market node’s utility u sold to node j J h−1; tonne h−1; kW

MERu market node’s utility u ratio input (i.e., utility

ratio that can be sold to the market)

%

MIm market node’s material m input mol h−1

MOm,j market node’s material m outputs to the jth

node

mol h−1

NEC eco-industrial network’s annual lifecycle emis-

sions comparison ratio

dimensionless
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Continuous

Variables

Description Unit /type

NPC eco-industrial network’s annual production cost

comparison ratio

dimensionless

NTCk networks transport cost for mode k $yr−1

OCi,s operating cost of plant i following scheme s $ yr−1

PCl,i,s plant capital cost $

PDu pressure swing adsorption nodes utility u de-

mand

J h−1; tonne h−1; kW

PIm pressure swing adsorption nodes material m in-

put

mol h−1

PlantCost2 plant scaled cost $

POm,j pressure swing adsorption nodes material m

output to the jth node

mol h−1

POCi,s plant’s operating capacity mol h−1

PPCl,i plant’s production capacity mol h−1; m3 h−1

PSj pressure swing adsorption node’s split factor of

the H2-deficient syngas to the node j

%

PSFj pressure swing adsorption node’s H2 stream

splitting factor to the jth node

%

SDu sequestration node’s utility u demand tonne h−1; kW

SIm sequestration node’s material m input from the

carbon capture node

mol h−1

UDu urea plant node’s utility u demand J h−1; tonne h−1; kW

UIm urea plant node’s material m input mol h−1
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Continuous

Variables

Description Unit /type

UOm,j urea plant node’s output material m into node

j

mol h−1

UPm urea plant node’s product m mol h−1

URm,j urea plant node’s material m output to the jth

node

mol h−1

WDu waste/water treatment node’s utility u demand J h−1; tonne h−1; kW

WIm waste/water treatment node’s material m input mol h−1

Binary Variables

fh =

 1 if fuel h is selected

0 Otherwise

xi,l =

 1 if plant i of size l is selected

0 Otherwise

yi,j,k =

 1 if transportation method k is used between node i and node j

0 Otherwise

Integer Variables Description

TUNk,i,j number of transport units k used to transfer materials from i to j

xxxvii



Sets and Subsets Description

d set of pipeline diameters

e set of environmental emissions considered in the LCE analysis

h set of feedstock fuels available in the eco-industrial network

i set of source nodes

j set of sink nodes

k set of transport modes available to connect the nodes

m set of materials (i.e., products and by-products of the EIN)

u set of utilities associated to the EIN

Set elements Description

ap ammonia production node

B biomass fuel

C coal fuel

cc carbon capture node

chp combined heat and power node

g gasification process node

GHG Greenhouse Gases emissions expressed in CO2 eq.

mk market place node

M1 carbon monoxide (CO)

M2 carbon dioxide (CO2)

M3 hydrogen (H2)

M4 nitrogen (N2)

M5 ammonia (NH3)

M6 urea CO(NH2)2

M7 water (H2O)

xxxviii



Set elements Description

M8 methane (CH4)

M9 ash

M10 sulfur (S)

M11 other contaminants

NG natural gas fuel

NOx oxides of nitrogen emissions

Pd transport pipeline

psa pressure swing adsorption node

Rd road transport

Rl rail transport

SOx sulfur oxides emissions

sq sequestration node

SW solid waste materials (i.e., landfill materials)

up urea production node

U1 heat utility

U2 process water utility

U3 electricity utility

wt waste /water treatment node

Model Parame-

ters

Description Units /Type

ACF ammonia plant node’s reaction conversion %

ACFi annual amortized capital factor associated

to the plant i

%

xxxix



Model Parame-

ters

Description Units /Type

ASFm ammonia plant node’s stoichiometric rela-

tionship for the production of material m

decimal

CCRu carbon capture node’s utility requirement

per CO2 product

tonnemol−1

CEFu combined heat and power node efficiency

for generating utility u

%

di,j distance between nodes i and j km

EFPCl,i,s,e emission e from the construction of a plant

of size l

tonnes emissione

EFPOi,s,e emission factor related to the operation of

the plants

(tonnes emission e)(h)

(yr)−1(mol)−1

FCh,m material m composition out of the gasifier

per fuel type h

mol%; mass%

FCk fixed cost associated with transport

method k

$ yr−1; $(km)−1(yr)−1

FCUk fixed cost per transportation unit type k $ yr−1

GRu gasifier’s utility requirement per unit of

product

J mol−1; tonnemol−1;

kWhmol−1

LHVm lower heating value of the gaseous compo-

nents m

J mol−1

MWh molecular weight of the feedstock fuel type

h

g mol−1

OCFi,s operating cost factor associated to the

plant i following scheme s

%

xl



Model Parame-

ters

Description Units /Type

PlantCapacity1 reference plant installed capacity mol h−1

PlantCapacity2 scaled plant installed capacity mol h−1

PlantCost1 reference plant cost $

POLi plant’s operating life years

PRu pressure swing adsorption node’s energy

requirement per unit of H2 product

J mol−1; tonnemol−1;

kWhmol−1

SRu sequestration node’s utility u requirement

per unit of CO2 input

kWhmol−1

TCk transportation method k’s capacity factor mol h−1; m3h−1

UCF urea plant node’s reaction conversion %

URu urea plant node’s utility u requirement per

product

J mol−1; tonnemol−1;

kWhmol−1

USFm urea plant node’s stoichiometry for the

production/consumption of material m

unitless

V Ck variable cost of the transportation method

k

($)(h) (km)−1 (yr)−1 (mol)−1;

($)(h) (yr)−1 (mol)−1

WE weight assigned to the lifecycle emissions

of the network

%

WP weight assigned to the production cost of

the network

%

WRu waste /water treatment node’s utility re-

quirement per tonne process water

J tonne−1;

kWh tonne−1

xli



Chapter 1

Introduction

This work focuses on demonstrating the benefits of eco-industrial integration with respect

to environmental and economic benefits while providing a holistic production of heat, elec-

tricity, industrial products and transportation fuel. Sections of this work contribute to the

optimization of a network of chemical facilities considering economics and emissions from

virgin material extraction to the network boundary, while another portion is focused upon

the impacts of alternative transportation fuels from a complete life-cycle perspective. The

scope of this work is limited to economic assessment and four environmental impact cate-

gories, namely: climate change potential, acidification, urban air quality and solid waste.

This work is intended to impact the areas of facility design/construction, environmental

assessments of industrial operation and to a large degree, those who create and influence

policy within the industrial sector. Balance between economic viability and environmental

impact for the operation of industrial facilities are balanced throughout this work; there-

fore, the most relevant recipients of this work are those who would influence the policy

decisions for reducing environmental impact from industry without discouraging invest-

ment in construction of such facilities. The balance between economic and environmental

components as part of a bi-objective optimization in eco-industrial networks (EINs) is a
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novel method and unique contribution to this field.

This thesis will contribute to re-invigorating the concepts of eco-industrial integration

by empirical analysis of potential economic and environmental benefits. Implementation of

the proposed modeling frameworks across a network of chemical facilities including syngas

production, combined heat and power, carbon capture, carbon sequestration, ammonia

manufacture, pressure-swing adsorption and urea production is completed to show the in-

tegration framework and possibilities for economic and environmental benefit from this

set of facilities. The selection of facilities was completed with the mindset that integrated

systems should have commonalities in the form of energy and material vectors utilized,

endothermic/exothermic coupling to maximize the potential integration of material and

energy transfers throughout the network.

Chapter 2 describes the methodologies utilized throughout this thesis with emphasis

placed on life-cycle assessment (LCA) and eco-industrial network (EIN) concepts. The

scope of this work is to provide the reader with the concepts necessary to comprehend the

work contained in Chapters 3 - 6 and to provide context for this research. Some of the

topics contained in this chapter include modeling techniques and programs used through-

out this work, the hydrogen economy context for this research and the environmental and

economic metrics discussed throughout this thesis.

Chapter 3 explores the positive contributions to reducing urban air pollution in the

greater context of the hydrogen economy and alternative transportation options. This

work examines the supportable market penetration of alternative-fuel vehicle types within

the confines of the electricity grid in Ontario, Canada. ‘A Mathematical Programming

Language’ (AMPL) software is utilized in the preliminary model to explore the support-
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able penetration of these vehicles technologies given the constraints of the electricity grid.

The second part of the analysis is connecting these supportable penetrations to a reduction

in emissions in both the urban setting of Toronto, Ontario and in the overall context of

Ontario, Canada. GREET 1.8b software, developed by Argonne National Laboratories in

the USA is utilized in order to assess the emission reductions from each of the alternative

vehicle technologies. The overarching goal of this chapter is to analyze the potential im-

pacts of adopting these alternative fuel technologies related to the air quality in the urban

centres in the province of Ontario. Emissions from constructing hydrogen fuel distribution

infrastructure are not included in this work as they are external to the fuel production

and its use in the vehicles. Additionally, this chapter is based on current operation of

the electrical grid in Ontario including planned improvements for generation, the emission

calculations for electricity are based on the current mix of generation used in Ontario. This

work includes ‘cradle-to-grave’ analysis of alternative fuels used in vehicles pertaining to

the areas of climate change and urban air pollution. This chapter establishes a baseline re-

quirement of hydrogen generation for 1000 fuel cell vehicles persisting in the eco-industrial

integration scenarios in later chapters.

Chapter 4 continues the emphasis on emission reductions from Chapter 3 but applies

the combined analysis of economics and emissions to an optimization framework of an eco-

industrial park. This chapter attempts to connect the benefits from reduced transportation

emissions to the chemical manufacturing industry in order to reduce the emissions from

a group of chemical production facilities while providing the fueling needs for a limited

number of fuel cell vehicles, the benefits of which were shown in Chapter 3 in terms of

reduced airborne emissions. The modeling framework for this analysis is presented as a

linear programming (LP) model for a group of facilities with the end goal of improving

profitability while reducing life-cycle emissions for the end products. The case study of

plants explored in this chapter yield hydrogen, ammonia and urea with reduced emissions
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when compared to conventional production. The network of facilities to be considered in

this work includes syngas generation (by coal or biomass gasification or by steam-methane

reforming of natural gas), carbon capture, carbon sequestration, combined heat and power

production, pressure-swing adsorption as well as the manufacture of ammonia and urea.

This analysis is also complete in the context of a potential hydrogen economy where hy-

drogen becomes a valuable product to support the transportation network. Two of the

primary benefits connecting this work with the work in Chapter 3 are the reduction in

emissions by operating hydrogen fuel-cell vehicles and the reduction in transportation dis-

tance for the feedstock materials used by the production facilities. The CPLEX solver

within GAMS is utilized for solving this LP and utilizes a simplex-based algorithm to de-

termine a global optimum for this model. This work is a ‘cradle-to-gate’ assessment for

the facilities mentioned and as such, it is assumed that any usage beyond the network

boundary will have an emissions profile identical to current usage, thus offering no benefit

beyond this boundary. Benefits from alternative usages beyond the network boundary are

described in Chapter 3 for hydrogen and electricity utilized as transportation fuels and

exhibit the benefits of this application.

The work in Chapter 5 expands the modeling framework from the LP model discussed

in Chapter 4 by including integer and binary constraints such as decisions for existence

of facilities and connections. The mixed-integer linear programming (MILP) model that

results from this expansion includes the ability to assess multiple hydrocarbon fuel sources

(specifically biomass, coal and natural gas) for manufacturing the chemical exports from

the eco-industrial park. The expansion of the modeling efforts to the MILP domain was

considered necessary as the LP model was limited in its practicality for large industrial

systems. This work contributes to the goal of assessing the economic and environmental

reductions which can be experienced by operating facilities in an interconnected network

of chemical plants and furthers the quantification of these benefits. By analyzing decisions
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with added modeling flexibility of binary and integer constraints, the model provides addi-

tional realistic constraints on the construction and operation of an eco-industrial network.

The CPLEX solver within GAMS is again implemented to provide a global optimum for

this model, though the CPLEX algorithm for solving MILP models is based on branch-and-

bound techniques to accommodate the integer and binary portions of the model combined

with the simplex method for solving the constituent linear problems.

Chapter 6 takes the analysis from Chapters 4 and 5 to the next level of modeling com-

plexity by incorporating non-linear constraints into the MILP model. This mixed-integer

non-linear programming (MINLP) model is a much more complex optimization problem

and requires alternative solver algorithms and computational resources when compared to

an MILP or LP model. This step toward MINLP was necessary as the additional complex-

ity required from the constraints could not be forced into a linear form as it was previously

with the LP and MILP models. The goals for this framework were to create the most com-

prehensive optimization model with the same case study facilities explored in Chapter 5

but utilizing a more sophisticated model in an attempt to provide additional accuracy

and realism to the model. The models presented in Chapters 4 and 5 were completely

redeveloped with the goal of a relativistic objective function and increased realism for

constraints placed on the optimization. The framework developed for the MINLP model

serves to investigate the benefits of operating chemical facilities under stringent economic

and financial constraints. The model in this chapter also applies the most conservative

estimates on the benefits of the eco-industrial park case study and further investigates the

relationship between economics and reduction of environmental pollutants. The BARON

solver in GAMS is used to solve the MINLP model in this chapter and provides a global

optimum under general bounding assumptions for the model variables. The BARON algo-

rithm implements a deterministic solution approach and draws upon additional MILP and

NLP solvers making use of a branch-and-bound approach to return a global optimum.
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Chapters 4, 5 and 6 assess environmental benefits from reducing ‘cradle-to-gate’ emis-

sions with the assumption that emissions beyond the network boundary will be equivalent

to those from conventional production. Chapter 3 explores the impacts of the entire life-

cycle of alternative fuels in vehicle applications on both urban and gross air emissions. The

environmental metrics used in this thesis are reflective of major environmental concerns

such as climate change, acidification and urban air pollution. The form of the objective

function utilized in Chapters 4, 5 and 6 can be used by policy-makers to influence decisions

in facility siting, design, construction as well as to work with corporations to achieve a re-

sult that reduces environmental impact from operations with marginal economic impact.

This allows for a collaborative relationship between industry and regulators to assure a

net-benefits solution for all participants.

Chapter 7 draws upon the work completed in Chapters 3 - 6 and summarizes the conclu-

sions of this work, the contributions and significance of the research and recommendations

for implementation of the results and methods explored herein.

The progression through each of the modeling types exhibits the benefits and limita-

tions of each methodology. These methods are assessed for their usefulness in modeling

EINs and express how each methodolgy can provide specific, explicit results. The objective

function is modified through each model developed for the eco-park under consideration

and expresses the balanced approach between economics and emissions explored through-

out this work. The specific examples shown through the model formulation are for the

proposed EIN, yet the generalized modeling framework developed by this work can be

applied across a broad range of integration scenarios for many types of facilities and situ-

ations. The introduction of additional modeling complexity to the formulation makes the
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MINLP a complex, yet valuable tool in assessing potential benefits from operating many

facilities within an eco-park network compared to stand-alone facilities.

The methodologies developed herein are powerful implementations of facility optimiza-

tion that could be used by policy-makers to suggest approaches toward industrial develop-

ment and setting realistic goals for reduction of virgin material usage and wasted energy.

The same framework can be applied by industial entities to achieve such policy goals

such as a reduction in environmental pollutants while improving on the business goals of

profitability and corporate sustainability.
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Chapter 2

Background

This chapter provides background on the concepts and methodologies used throughout

this research. This chapter contains background information on eco-industrial networks,

analysis tools such as life-cycle assessment, the hydrogen economy, modeling methods and

programs used in this work and environmental and economic metrics.

2.1 Eco-park Concepts

Eco-park concepts are several decades old and rely on collaboration from progressive fa-

cility managers in order to implement a symbiotic strategy for responsible and sustainable

chemical processing. Examples of these concepts are available in several European coun-

tries and are also found sparingly throughout North America and other parts of the world,

although the major drivers for these collaborative efforts are typically economic.

In this work, a number of industial chemical manufacturing and energy conversion

facilities are envisioned as working cooperatively to share outputs, emissions and wastes
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within a network in order to improve profitability and overall environmental impact. Such

a network of the facilities can be termed an ‘eco-park’, eco-industrial park (EIP) or eco-

industrial network (EIN). Generally, materials and energy are exchanged between eco-park

partners such as:

• electricity;

• heat;

• fuel gases such as natural gas or hydrogen;

• base organic chemicals such as methane, methanol, DME, ethylene, benzene, organic

chlorides, solvents, etc.;

• base inorganic chemicals such as sulphuric acid, inorganic chlorides, hydrogen, hy-

droxides, etc.; and finally,

• water and waste.

An eco-park will ultimately seek to improve profitability of the network as a whole.

Key to the success of such a network is that the network profitability is apportioned ap-

propriately among the various facilities such that each facility recognizes the benefit of

participation in the EIN. Regulators, as the agent for society, can encourage the formation

of an ecopark through regulation, emission costs, solid waste disposal fees, etc. Regulators

can use incentives or fees (i.e., fees, taxes, fines, levies, etc.) in order to achieve the desir-

able outcomes. Especially in the case in which fees such as environmental levies or taxes

are to be avoided, eco-park principles can be applied to reduce the number or severity of

these measures.

One major focus of an eco-park should be the recovery of waste heat and allocation of

heating. Practically every chemical processing plant and almost all buildings in Canada
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require heating, and often produce or consume significant amounts of process heat. Each

chemical plant has its own reservoir to discharge waste heat, which results in massive en-

ergy waste in each facility. If locations were close enough, heat and steam supplies could

be shared between facilities and would result in massive operational savings by optimizing

the design of the system [1]. The operational savings of this plan are not the sole factor

on which an eco-industrial system is based. In this analysis, the eco-park is assumed to

be in the developmental and/or planning stage, heat/steam supply and distribution can

be incorporated directly into the design of each respective plant. This is not to suggest

that this type of arrangement could not be constructed as a retrofit, merely that it would

reduce capital costs if done during the initial build. In fact, there have been several in-

stances of retrofit heat/steam handling cooperation, most recently in parts of Alberta near

Edmonton which is the oil-refining hub of Western Canada, including the oil sands refining

processes. Heat distribution is also one of the key factors in the Kalundborg network (dis-

cussed in section 2.1.1), where a single facility provided heating and power for a number

of neighbouring sites. Waste treatment and remediation is another obvious benefit of de-

veloping an eco-park. A large majority of chemical plants have waste storage facilities and

remediation plans specific to the particular process. The cost of construction and remedi-

ation typically follows a ‘base cost plus’ pricing scheme having a fixed cost for equipment

rental and design, with a comparatively smaller incremental sum depending on the size of

the site to be constructed/remedied. Thus, pooling the industrial waste between several

parties would significantly reduce the economic burden on each individual facility. Also,

due to strict environmental regulations being enacted, remediation of these sites must be

evaluated prior to any preparation of the site for construction and must be budgeted for

in advance such that funds are available to recover the natural ecology of the land. Again,

distributing this burden among several parties would greatly reduce the financial burden

on any particular party.
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Reduction of waste is a major focal point for many eco-park plans and exchanging

co-products between facilities is one method, and the most intuitive, for accomplishing an

overall reduction in eco-park waste [2, 3]. Reduction of industrial waste was the primary

premise behind the Kalundborg cooperative [4, 5, 6]. The oil refinery acted as the central

hub for the system, and its waste streams were used by neighbouring facilities that also

took part in this relationship. Waste sulphur, normally a major environmental constraint

in a refinery, was used to make gypsum in a nearby facility where it was processed into

drywall. Waste gas and water from the refinery were used in the afore-mentioned power

plant as fuel gas and cooling water. Excess steam from the refinery and power station were

used for heating in all of the nearby buildings including several greenhouse installations.

The waste gas from the refinery was not sufficient to fuel the entire power station, yet

the coal fly ash from the adjacent power station was captured and processed into cement

in a nearby facility. Each addition to the network made it more economical and more

environmentally attractive for the citizens of Kalundborg. Significant cost savings were

experienced by each partner in the cooperative; thus, it was feasible to implement without

losing profits. Developing initiatives without incentive for industrial partners have a very

small chance of being supported by large industries, as most will not sacrifice profit to

improve the environment without clear benefit to the shareholders [7].

2.1.1 Examples of Eco-parks

Kalundborg, Denmark is the most recognized eco-park as it was one of the first applications

of eco-park concepts that was developed and studied [4, 5, 6]. The network began almost

accidentally as the business operators suggested that it might simply make sense to start

conducting business in a different manner. This example of eco-park concepts invigorated

the search for other potentially symbiotic sites and has served to show the potential bene-
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fits of industrial collaboration.

Kalundborg has had incredible success with its industrial operations and has increased

profits dramatically among its industrial stakeholders. As wasted resources are inherently

uneconomical, the Kalundborg network manages to save 1 million cubic meters of ground

water each year, reduce annual oil consumption by 20 000 tonnes and has created mar-

kets and alternate uses for countless other normally wasted materials [5]. These massive

reductions in waste, in addition to being incredibly beneficial for the environment, have

also significantly boosted the profits of each organization involved. Economic and envi-

ronmental benefits must be exhibited in order for industry to have renewed interest in the

concepts of EINs. This information is available [8, 9, 10]yet the lack of published examples

throughout the industrialized regions of North America are proof that the information is

not known or there is some barrier to implementing these techniques. Jacobsen et al. [11]

presents concepts for mobilizing industrial symbiosis and sustainability for a variety of

industrial settings.

North American examples are considerably fewer than those in Europe as eco-park con-

cepts have yet to root themselves amongst business owners and leaders. As mentioned in

Section 2.1.3, most of the work in the area of North American eco-parks has been limited

to the petrochemical industry as it is one of the most prolific and centralized industries

available. As many of the co-products from organic chemical manufacturing can be reused

or reprocessed in a refinery, applying eco-park concepts to these processes tends to be very

advantageous for the industries involved. Although many of the proposed networks have

yet to become fully functional, the opportunities are present and academic studies have

shown that there may be great benefit in their operation [12, 9].
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An additional example appears in the Brownsville/Matamoros park which is a joint

project between industry in Mexico and the United States with the major products of

cardboard, plastics, automotive products, oil and solvents. Examples elsewhere in the

world are limited due to challenges presented by developing nations [7]. A proposal of a

network in Rio de Janeiro, Brazil exhibits the fact that this type of network is possible in

developing nations and that these areas may benefit the most from such an integration [13].

2.1.2 Academic Studies of Eco-parks

The concept of eco-parks has been studied in the academic setting as a practical way for

industry to mimic the symbiotic effects of the natural world. Studies in this field have often

concentrated on the petrochemical industry as there are many possibilities for exchanging

co-products between refining facilities and manufacturers of plastics, paints, solvents, pro-

pellants and others. The theory behind eco-parks is an overall conservation of materials and

energy which has proven to be of interest in many fields of study in the academic setting.

While some studies have quantified economic benefits from these industrial integrations,

many produce qualitative analysis of the possibilities without empirical assessment. The

analysis discussed in this work serves to provide a quantitative approach to calculate the

environmental and economic benefits from integrating industrial facilities to form an eco-

park. This method can provide empirical evidence to support these cooperative initiatives

from both a financial and environmental position. Previous academic pursuits in this area

have failed to encompass all of these aspects using one technique [14, 15, 16] but do provide

insight into the potential ecological and economic benefits of integration which are useful

when attempting to create metrics for optimization as described in section 2.5. The aca-

demic realm of planning and evaluating the performance of eco-parks has a commonality

in the fact that it is a diverse field and requires a multidisciplinary approach in order to
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properly assess the arrangement and operation of networked facilities [17].

Côté et al. [18] discusses, on a qualitative level, how eco-parks may be designed and

give several examples of projects being considered but no mention of any quantitative ev-

idence or optimal design to maximize profits or emission reductions. Côté et al. [19] also

discusses environmental assessment of small enterprises in Canada, choosing to develop a

new system of metrics but with limited results presented of the analysis.

Monteiro et al. [20] explores two routes for producing dimethyl carbonate (DMC) via

ethylene oxide or urea methanolysis but acknowledges the limits of attempting to optimize

a system within the constraints of HYSYS. Furthermore, the analysis does not account for

exchanges between this process and others, as an eco-park optimization would. Similar

ideas can be found elsewhere [21] but lack the supporting optimization complexity to fully

support decision-making.

2.1.3 Industrial Examples of Eco-parks

Industrial applications of eco-park concepts can be seen to some extent in Eurasia, Ocea-

nia and, to a lesser degree, in North America [7]. Investigations into applying eco-park

concepts in developing countries has not been ignored and may prove to be one of the

most cost-effective methods for industrializing these nations [22]. The European eco-park

concepts depend heavily on co-location and process similarities while most published eco-

parks in North America are purely petrochemical. An excellent example of this is a thesis

from Louisiana State University on the integration of facilities located in the Louisiana

petrochemical corridor [23]. Similar concepts can be seen in areas of oil production and

importation. Non-petrochemical eco-parks have been developed to a lesser extent world-

wide but have the potential to conserve vast amounts of fossil fuels, raw materials and
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energy.

Networks of companies were formed in the late 1990s and early 2000s due to the interest

in industrial cooperation for the benefits that may be realized from such symbiotic rela-

tionships. One example of this is the Canadian Eco-Industrial Network (CEIN) which was

developed in 2000 but has not been active since 2005. The legal implications of commod-

ity trading between co-located facilities is a barrier to implementation as failure to deliver

products in a timely manner and in the specified quantities can lead to operational upsets

within any chemical facility. Although applications of these principles can be seen, it is

generally simpler for facilities to run as individual cells instead of as a network of processes

for the ease of operations, legality and communications. European facilities, however, have

shown that integration can lead to financial benefits which have drawn more interest in the

industrial community. EIN development has drawn much more interest from the academic

realm than it has in the industrial setting. In North America, one of the most major

barriers to implementation is the shipping of products between facilities. Gibbs et al. [24]

presents the planning of eco-parks within North America and observes some critical points

about this practice. Evaluating eco-parks can also have unique issues between countries,

eco-parks and facilities [12, 25].

2.1.4 Geographical Differences in the Application of Eco-parks

The North American climate for eco-parks is somewhat more limited by geography than are

eco-parks in Europe due to the vast distances between producing facilities. As Canada and

the United States are both very large countries with populations spread across thousands

of kilometres, integration of chemical processing facilities can be financially challenging on

a simple basis of shipping costs and constraints. The location of facilities is a related topic,

typically with a seperate optimization to determine the location of various plants with
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respect to other facilities and proximity to natural resources [26]. North American rail

networks are also less developed than their European counterparts, leading to increased

dependence on roadway transportation with other considerations to pipelining and trans-

portation by ocean. Marine transportation is limited to port cities while pipelining is

intrusive to the land and is limited to fluid applications. The effects of each type of ship-

ping can be assessed in terms of cost and its impact on the air, water and land. This

transportation cost within an eco-park, both economic and environmental, must also be

weighed with the associated costs of production.

2.2 Hydrogen Economy

The ‘hydrogen economy’ is considered to be the next generation in energy infrastructure, in

which hydrogen is used as an energy vector for many applications which currently employ

fossil fuels. Hydrogen is easily stored and can be combusted or utilized in a fuel cell to

provide electricity. Hydrogen also has the benefit of flexible production using a variety

of fuel sources such as hydrocarbon reforming or water electrolysis. The only product of

hydrogen combustion is water as is also the case for using hydrogen in a fuel cell; thus, it

is considered to be a cleaner fuel than many alternative energy vectors. For motive power,

hydrogen can be employed in a combustion engine or fuel cell within a vehicle to provide

power to the engine with the exhaust composed of simple water vapour. Many major

vehicle manufactures will commence marketing a fuel cell vehicle in 2015. In electricity

systems that desire peak-shaving, load-leveling or peak-shifting, hydrogen can be produced

in off-peak times and stored to be utilized during high-demand periods to produce elec-

tricity. This method of energy storage is particularly useful in regions such as Ontario,

Canada where there is a high baseline production of electricity from carbon-free nuclear

plants, allowing for hydrogen production by electrolysis during low-demand periods. The

concept of ‘power to gas’ in which hydrogen is produced and then distributed and stored
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within the existing natural gas infrastructure is also explored in the literature [27].The hy-

drogen economy also has several other benefits, one of the primary ones being to encourage

energy independence in countries that currently rely on imports of fossil fuel from unstable

economies to meet the demand for energy. Additional social and political reasoning for a

transition to the hydrogen economy are discussed in the literature [28, 29, 30], this work

is focused on operation within the current infrastructure but connects exceptionally well

to a scenario of the hydrogen economy.

2.3 Analysis Tools

2.3.1 Life Cycle Assessment

Key to the evaluation of the performance of industrial facilities is the concept of life cycle

assessment. Life-cycle assessment (LCA) is a methodology developed to account for the

impacts of a product, process or service over its entire lifetime from the initial extraction

of virgin materials to the final disposition into the air, water or land.

LCA is defined by the ISO 14040 standard in the following way: “LCA is a technique

for assessing the environmental aspects and potential impacts associated with producing a

product” [31]. As such, LCA can thus be seen as a tool that is to be used as a part of an

environmental management system (EMS) in order to improve the quality of the practices

within a company with respect to sustainable development and the environment. LCA can

also be referred to as a “Cradle-to-Grave” assessment as it incorporates the environmental

effects from the initial stages of extraction to its final disposition.

In this research, it is desired to apply LCA metrics and methods to optimize a system
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of production processes in order to optimize the materials and energy usage. One typical

use for LCA is to compare alternative processes to determine which has the least life cycle

impact on the environment [32, 21]; therefore, this methodology is very much in agreement

with life cycle principles and applications.

2.3.1.1 History of LCA

The first recorded usage of an LCA-like methodology was by Harold Smith in 1963 for

the World Energy Conference of that year. Since that time, LCA has seen large shifts

in popularity due to changing economies and societal demands. One of these shifts was

experienced during the economic turmoil that followed the crash of the oil markets in the

1980s at which point public and private concerns were more focused on recovering from

the economic shock. When the “green shift”’ began in the early 1990s, LCA again be-

came favourable and started to be incorporated as a key tool and strategy in management

systems. Standardization of LCA began in the late eighties and early nineties [33] and

was mainly implemented to curb rampant misuse of the methodology leading to incor-

rect advertising statements and social views of companies. The first workshop on LCA

was held in Smugglers Notch, Vermont and was organized by the Society of Environmen-

tal Toxicology and Chemistry (SETAC). The concepts of the life-cycle inventory, impact

analysis and improvement analysis were founded during this workshop. A study on milk

packaging in Europe in 1990 showed the necessity of standardizing the LCA methodology

as the different methodologies led to very different results for the study [34]. The varying

studies showed exhorbitant variation in pollution and solid waste production per container

produced, causing LCA to be criticized as an ineffective method to account for waste.

The weaknesses of the varying studies were identified and specifically addressed in order to

achieve standardized methods which act as a base for past, current and future assessments.
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2.3.1.2 Uses of LCA

A company may pursue life-cycle analysis and management within its operations or product

management for a number of reasons. The most common reason for this is that the company

is using an environmental management system and that LCA is simply a tool within this

management system [4]. As such, it provides measurable metrics in order to demonstrate

improvement toward objectives and targets; thus, it integrates very well with the process

and policies already in place. If a company is not already using an EMS, they may choose

to use LCA or a life-cycle mentality as a way of evaluating their environmental impacts

on a purely altruistic basis; typically, though, there is an end goal or benefit in mind

and that is to demonstrate environmental stewardship to society for the associated public

and employee relations benefits [35]. One such benefit of using LCA is that the company

may be able to use the results as part of a cost/benefit analysis, where the environmental

impacts are weighed as benefits against the cost of a certain project, product or process.

Using LCA also allows companies to advertize and interact with potential consumers by

showing their commitment to life-cycle thinking and to the environment. Finally, LCA

is a practical tool to measure improvement of materials and energy usage and such an

improvement contributes to the profitability of the operation as a whole. Reduced costs

can be realized in a number of areas such as:

• reduced material costs;

• reduced energy costs;

• reduced hazardous material management costs and hazardous waste disposal costs;

• reduced solid waste tipping fees;

• reduced waste and emission treatment costs;

• lower lost production time associated with fugitive releases and plant shutdowns;
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• better regulator tracking;

• reduced fines and fees associated with environmental incidents; and,

• better relations with regulators and insurance providers.

2.3.1.3 LCA Process — Establishing a Baseline

Before implementing a change to a product or process and evaluating it from a life-cycle

perspective, it is generally advised to conduct a preliminary study in which the baseline for

the current process is established. This is an important step since the improvement may

cause the emissions from the plant under consideration to decrease but may increase the

overall impact on the environment due to upstream processing. One example of this would

be to consider a new catalyst which would increase the single-pass conversion from 80% to

90% but its production requires 50% more energy and emits large amounts of toxic agents

to the environment. Because LCA encompasses the impacts from all stages of manufacture,

adoption of the new catalyst can be assessed based on its full impact throughout the supply

chain.

2.3.1.4 Legislated Commitments

Currently, LCA is not required by specific legislation; however, emissions regulations, es-

pecially in the developed nations, are becoming increasingly stringent as the technology is

developed to curb these emissions and society demands that industry consider impacts on

the environment and potential impacts to the health of humans. Obeying policy is thus an

atypical reason for applying LCA methodology to date and thus LCA completed to date

would be by company mandate rather than regulator mandate.
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2.3.2 Typical Life Cycle

The areas of interest for LCA are generally from the extraction of raw materials to the

production of the intended product and the associated product disposal into the environ-

ment via air, water or land. The process or product under consideration can generally be

visualized as undergoing the steps shown in Figure 2.1. This figure demonstrates that raw

materials and energy are inputs into the product, these materials are processed using energy

and finally are recycled or disposed of as waste. The outputs from each step are emissions

to air, land and water as well as the desired product and its associated co-products. Figure

2.1 illustrates that upon extracting the raw materials from the environment, these raw

materials are processed into a final product. Typically, this processing includes several

steps of manufacturing before the eventual product is created. This upstream manufac-

turing generally includes several steps of bulk processing which produce bulk feedstock

for many different applications. These bulk processors commonly produce co-products in

addition to the desired material as basic feedstock for other processing facilities; therefore,

allocation of emissions in these instances is extremely important and must be considered

appropriately.

Once the appropriate feedstock has been created, it is processed into the finished prod-

uct within the facility in question. Following its manufacture, the product is packaged

and then transported to the appropriate customer as required. The product is then used,

re-used and maintained until the user deems it time to retire the product and leads the

product to its final disposition. The final disposition of a product should not be treated

as being synonymous with land-filling, as there are many options for disposition including

recycling and incineration in addition to the option of land-filling. LCA is an integral part

of an environmental management system (EMS) as a tool that can be used to evaluate op-

tions and future projects in terms of environmental/sustainability metrics, can be included

as part of a cost/benefit analysis and can also be used to identify bottlenecks within a
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Figure 2.1: Fundamentals of a product life cycle, adapted from ISO Standards [31]

system that currently exists.

2.3.2.1 Typical LCA

Figure 2.2 shows the steps to completing an LCA. The first stage is to determine the

scope of the project which includes identifying project goals, study specificity, methods

of data collection and timeline. The definition and scoping steps are typically reviewed

as the project progresses to ensure that the goals are being followed and that any devi-

ations must be noted and are still in accordance with achieving the goals of the assessment.

The second step of LCA, inventory, is generally the most time-consuming portion of
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Figure 2.2: LCA Framework, adapted from [31]

an LCA and tends to also be the most difficult step in a life-cycle study. The participants

need to collect all of the appropriate data in this step after revisiting the methods of data

collection, boundaries, specificity and relevance.

Third, the data is analyzed under life cycle impact assessment procedures. The infor-

mation collected during the inventory is evaluated systematically and it is determined how

each impact category, such as climate change or ozone depletion, will be affected by the

product or process emissions. These impact categories are defined in the goal definition

and scoping and can reflect any of the concerns that are brought forward regarding poten-

tial impacts of a product or process. These impact categories are ranked according to their

importance in the study and thus the full effects of production can be assessed according

to these impacts.

The final block of the LCA framework is interpretation and monitoring. This portion of
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LCA serves to provide checks for each step of the analysis in order to ensure the goals are

being met and that the analysis is being conducted according to the proper procedures.

The evaluation of process modifications is also carried out after the changes have been

made. The modifications are evaluated based on the expected performance and the actual

results achieved by collecting additional data to monitor the success of the change.

2.3.2.2 LCA in this Work

LCA is referred to as a major part of this work as the goal is to evaluate the viability

of eco-parks based on life-cycle principles [4]. Process improvements that simply allocate

product emissions to another processor cannot be considered as benefits for the process.

The cost, energy and emissions associated with removing an impurity, for example, must

be done at some point along the production pathway. If one facility in the process has

observed that the impurity does not affect their operation, they may choose to simply pass

the issue to the recipient of that chemical who must then remove the impurity as it can

damage a critical system. By ceasing the removal of the impurity, the former company may

show results that their product now uses less energy and is less harmful to the environment

because of the decreased emissions from their plant. In reality, the emissions have still been

produced and only the location of these emissions has changed. Evaluating the entire eco-

park on LCA principles exhibits the consequences for all of the network facilities while

avoiding the superficial appearance of reduced emissions where this is not the case.

2.4 Modeling Programs and Methodologies

The modeling in this work is completed using both optimization and deterministic calcula-

tion packages. Optimization approaches rely on iterative optimization algorithms to reduce

and solve a system of equations with a defined objective and constraints. This approach is
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used when high variability exists in many decision variables but there is a defined objective

that should be reached such as a least-cost or maximum-return approach. For optimization

to provide meaningful results, the program must have many degrees of freedom in order to

have license for altering the decision variables in order to find the best solution. Contrary

to deterministic solutions to systems of equations, there must be more undefined variables

in the program than there are independent equations. Excessive constraints placed on

an optimization model gives rise to trivial solutions or an infeasible problem. Although

there are many types of optimization problem, three of the most common are linear pro-

gramming (LP), mixed-integer linear programming (MILP) and mixed-integer non-linear

programming (MINLP).

Linear programming methods rely on linearization techniques to convert non-linear ob-

jectives and constraints into linear ones which can be handled by the LP solver algorithm.

This type of optimization is the most widely-studied and forms the basis for other types

of optimization. The solution of an LP can be computed very quickly and even very large,

complex or inefficient programs can be solved using a modest amount of computing power.

MILP problems stem from the foundation of LP formulations but are allowed to include

integer and binary components. This type of program is a powerful addition to the LP for-

mulations as it allows programmers to include discrete decisions within the model. Many

complex problems can be reduced to MILP formulations by applying techniques developed

specifically for this purpose. The MILP can be applied to a wider array or problems than

an LP and the solution algorithms are similar to those used for LP programs. Generally,

the algorithms for MILP solutions consist of solving many LP sub-problems in order to

find a feasible solution within the MILP super-problem.
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MINLP formulations are another step in complexity from the MILP but are becom-

ing increasingly popular with the rise of inexpensive computational power. Attempts to

force non-linear constraints into linearity have been a focus of study for many years as

the computational expense associated with solving MINLP problems was high. With the

increase in computing power, solutions to large MINLP problems are becoming possible

and more widely-used. Though still computationally-intensive, MINLP optimizations are

very powerful and can be used to model even more complex systems than the MILP. Con-

straints that cannot be linearized can be included in an MINLP model and thus this type

of optimization can be applied to increasingly complex systems. Algorithms for solving

MINLP formulations are not as well-studied as those for LP or MILP problems as they

are less common and considerably more complex problems to solve. The basis for finding

solutions is similar in relation to the MILP algorithms as the MILP algorithms are to the

LP solvers. Generally, the MINLP solver uses many linear and non-linear solutions with

feasible integer solutions encompassed within the larger MINLP in order to bound the

search space and use alternative methods for decisions on which sub-problem to solve in

the next iteration.

Deterministic calculations involve utilizing known quantities and relations to provide

the solution to a problem with known inputs. Most popular calculation packages are

examples of this type. Deterministic calculations rely on known quantities and will return

a solution that may not be optimal. These calculations are used in situations where more

variables are specific or well-defined in order to quantify values for an unknown.

2.4.1 Software Used

The packages for optimization discussed herein are ‘A Mathematical Programming Lan-

guage’ (AMPL) and ‘General Algebraic Modeling System’ (GAMS). AMPL was developed
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at Bell Laboratories and its development is currently under the direction of AMPL Op-

timization LLC. AMPL is a popular package for optimization used in both industry and

academia for linear and non-linear problems with both continuous and integer variables.

AMPL supports a variety of architectures common to deterministic programming packages

but are omitted from many optimization softwares such as handling looping commands and

case-specific declarations.

GAMS is another optimization package used in this work and is applied for the analysis

of the eco-park scenarios. GAMS is created and supported by the GAMS Development

Corporation and is designed for modeling and solving complex, large-scale models. Typ-

ically, GAMS is used for linear, non-linear and mixed-integer optimization problems but

also includes the capability for other model types. GAMS incorporates many solvers cre-

ated by research institutions around the world to create a broad-based architecture that

can be applied to many realistic situations.

Deterministic calculation packages used for this work include many well-known tools

such as Microsoft Excel and MATLAB but also include SimaPro, a life-cycle assessment

(LCA) tool, and GREET, a tool for assessing impacts of vehicles and fuels. SimaPro is

developed by PRé Consultants and includes many LCA databases from around the world

in order to provide a comprehensive analysis of life-cycle impacts for many products and

processes.

GREET is a calculation tool based in Microsoft Excel which is developed by the US

Department of Energy at Argonne National Laboratory. GREET is a specific life-cycle

assessment tool for analyzing the impacts and emissions from vehicles and vehicle fuels.

There are two series’ of GREET developed to date, the first series assesses the impact of
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vehicle fuels while the second series analyzes the impact of the physical vehicles including

the materials and energy of construction etc. For the analysis herein, only the first series

of GREET was utilized, specifically, version 1.8b.

2.5 Environmental Metrics

This research also contributes to society by developing a method for evaluating industrial

relationships and by assisting in the planning of new facilities. This will benefit citizens

as the optimization will take environmental factors into account and will attempt to mini-

mize the overall waste from facilities that could otherwise affect living conditions in areas

surrounding these facilities. The impacts on air, water and land can all be considered and

the importance of the environment is taken into account in addition to the contribution

to the economic performance of industrial processes. If construction of a new chemical

facility can be made more economically feasible by its integration with other processes in

the region, construction and factory workers would also be required to build and operate

these facilities. This would contribute to the economic stability in the region in addition

to causing a decline in unemployment rates. As such, a number of environmental metrics

will be used to evaluate the performance of the eco-park scenarios compared to similar

independently-operated facilities.

2.5.1 Climate Change

The threat of climate change from anthropogenic sources of greenhouse gases (GHGs) has

been a source of environmental and political debate for many years. Public demands on

policy-makers are forcing governments to consider energy supplies from more renewable

sources and that regulations be placed on companies who are contributing to an increase

in the CO2 content in the atmosphere, as CO2 emissions are the principle contributor to
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the enhanced greenhouse effect contributing to climate change. As such, CO2 is used as

the reference metric for greenhouse gas emissions from any source. One of the benefits

of eco-parks is that efficiency in energy use leads to a reduction in GHG emissions. This

reduction is one of the focal points of recent proposals for eco-parks as it is a burgeoning

topic in the public realm of environmental stewardship.

2.5.2 Air Pollution

Air pollution has been a subject of concern for health officials in many major cities, in-

cluding Toronto, Ontario, Canada. One estimate of the number of fatalities due to air

pollution in Toronto claims that 1700 deaths per year are attributable to air pollution

[36]. The combination of light, oxides of nitrogen (NOx) and volatile organic compounds

(VOCs) produces ground-level ozone (e.g., photochemical smog) which is considered to be

a major contributor to air pollution and premature death. By reducing NOx emissions

and centralizing other emissions to a locale removed from urban centres, such as Toronto,

eco-parks can be a factor in reducing these fatalities.

2.5.3 Ozone Depletion

Although not particularly pertinent in this study, ozone depletion became a major concern

several decades ago as chloro-flouro-carbons (CFCs) were found to deplete the ozone in the

atmosphere, leading to an increase in ultraviolet light striking the surface of the Earth which

had potentially disastrous consequesnces for humans. Although ozone-depleting substances

are not manufactured in the proposed network, this is a common impact category in life-

cycle assessments to ensure that additional production of these substances is not incurred.

Ammonia is also being studied as a potential refrigerant as it does not deplete ozone and

is capable of operating within a refrigeration cycle which would offset the usage of CFCs.

29



2.5.4 Acid Rain

Oxides of sulphur and nitrogen (SOx and NOx, respectively) are considered to be the major

culprits behind acidification and acid rain. These emissions can be produced in a number

of chemical facilities but tend to be found in much larger quantities as emissions from

electricity generation stations, specifically fossil fuel plants. By capturing emissions from

the power generation in this network, it is expected that gases impacting acidification will

be reduced; additionally, biomass can be used as a fuel source for gasification and should

thus emit less SOx than would the equivalent electricity production from coal or oil.

2.5.5 Resource Conservation

One of the major impacts that an eco-park can have is the ability of this arrangement

to conserve resources. In the case of EINs, energy feedstocks are conserved by utilizing

heating and cooling efficiently but also by using alternative fuel sources to replace fossil

fuel energy. Other resources are conserved by appropriately using the products and co-

products of other eco-park processes instead of requiring extensive production, packaging

and shipping of feedstock materials.

2.5.6 Habitat Destruction and Fragmentation

Localizing many facilities in close proximity would reduce the amount of deforestation and

habitat destruction to be absorbed by local wildlife. An arrangement of disparate plants

and shipping routes would only endanger wildlife by fragmenting their habitats and may

lead to animal management issues as can be the case in many rural climates. This can be

seen as efficient land use and the economies of scale associated with land-clearing ventures

would also serve to reduce the capital required for start-up operations.
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2.5.7 Solid Waste

Another central idea to the vision of eco-parks is efficiency in terms of material usage and

the percentage of a material that is used in final products. Although a traditional plant

may only utilize 70% of a feedstock in its product, eco-park collaboration allows the unused

portion to be integrated into other products or processes and may increase the material

utilization of the feedstock to almost 100%. Although solid waste is typically unavoidable,

the ratio of solid waste to material input can be greatly reduced by using other portions

of the feedstock for other applications [3].

2.6 Financial Metrics

While environmental metrics are becoming increasingly important to business leaders, com-

panies are still responsible to their shareholders to show solid and sustainable economic

performance. The use of a dual-objective function in this work allows for profitability

to also be considered in the optimization and leads to a solution that proves to be envi-

ronmentally responsible as well as being economically feasible. This research is intended

to reinvigorate discussions in the industrial sector regarding issues such as sustainability,

process symbiosis and collaborative efforts.

The eco-park concept is synonymous with polygeneration, industrial symbiosis and the

like. All of these terms are based upon the concept of a diverse group of industrial produc-

ers cooperating to achieve a common goal of cost-savings and/or reduced environmental

impact. The literature has also shown that developing these eco-parks can very much be

a driver for innovation and development of new technologies [37, 38]. The Dow Jones

Sustainability index, DJSI, is an indicator used to manage investment funds based on sus-

tainability metrics. The funds developed using this index have shown solid growth since
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the inception of the program and is an indicator that sustainability within an organization

can have significant impacts on profitability. Though the index also focuses on business

practices and management styles, the overarching reality is that sustainability within a

company yields financial performance results [39, 40].

2.7 Summary

This chapter explains the context in which this thesis is completed. Economics and envi-

ronmental concerns are assessed in terms of life-cycle impacts within the domain of eco-

industrial integration. Current literature concerning eco-industrial integration is primarily

focused on either economic or environmental principles while neglecting the other; however,

this work is unique in its assessment of both concerns as part of the objective function in

an optimization model. In addition, quantifiable assessment of eco-industrial benefits is

scarce as the majority of the work to this point has been primarily qualitative and lacking

empirical support whereas this research is completely focused on the quantifiable benefits

of eco-industrial integration.
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Chapter 3

Air quality and environmental

impacts of alternative vehicle

technologies in Ontario, Canada

Chapter 3 is based on the previously published work “Air quality and environmental im-

pacts of alternative vehicle technologies in Ontario, Canada” by Kantor et al. [41] as seen

in the International Journal of Hydrogen Energy 35(10):5145-5153 and is reproduced with

permission from the International Association of Hydrogen Energy. The thesis author’s

specific contributions to this paper were to develop the model of emission reduction poten-

tials, conduct the simulations, prepare the graphics and results, write the final manuscript

and respond to the comments of reviewers. This work was conducted with direction from

the project supervisors, Dr. M. Fowler and Dr. A Elkamel, who are co-authors on the pub-

lication. Amirhossein Hajimiragha contributed with primary modeling of the electricity

grid in the province of Ontario to determine the supportable penetration of alternative-fuel

vehicles.
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3.1 Introduction

The economies of the developed world are increasingly expanding to include “green” tech-

nologies and processes that take into account the social, environmental and economic conse-

quences of business decisions. Western society, as a whole, is demanding that the products

and services that it uses are less harmful to human health and to the environment. The

transportation industry has made significant advances in fuel efficiency of the vehicle power

trains and reduction of emissions in the past decades, but more is expected from this sec-

tor. As the price of gasoline rose in combination with this societal green shift, vehicle

companies have commenced production of hybrid electric vehicles and other fuel-efficient

vehicle types. The impetus of this shift was to supply consumers with vehicles that would

decrease their ecological footprint as well as reduce the cost associated with purchasing

fuel. In recent years, energy security has also become a driving force for change in vehicle

fuel types. One of the societal concerns often overlooked is the impact of alternative-fuel

vehicle usage on the air quality in the urban environment. It is the purpose of this chapter

to assess the impact on air quality stemming from the operation of alternative-fuel vehicles

in urban environments.

While several studies have based the comparison of alternative fuel vehicles (AFVs) on

least-cost comparisons or other economic metrics [42, 43, 44, 45, 46], this study is purely

focused on air quality. The effects on overall air quality are considered with respect to

climate change potential and acidification. The special focus of this study is on urban air

quality as it can be of major concern in large centres of population.

This chapter is concentrated on the province of Ontario and specifically the city of

Toronto for two major reasons. The primary reason for this focal point is that Ontario

represents the most highly-populated province in Canada which naturally leads to a higher
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level of concern from the increased number of individuals affected. The second reason is

that urban air quality in Toronto is specifically an area of concern due to the estimated

fatalities in this city. Traffic volumes in smaller cities would induce less concern as the

concentration of urban air pollutants is directly proportional to the emissions from vehicle

traffic. In addition, the data availability for Ontario in general and Toronto specifically is

more widely available due to the concerns mentioned above and to the increased govern-

ment resources attributed to gathering and analyzing this data.

The AFVs considered for this analysis are fuel cell vehicles (FCVs), plug-in hybrid

electric vehicles (PHEVs) and fuel cell plug-in hybrid electric vehicles (FCPHEVs). The

reason that these vehicle types were chosen is that they represent the most promising

technologies for partially replacing fossil fuels in conventional vehicles. The transition of

vehicle drive trains will begin with electrification of the vehicle drive train which allow for

hybridization with electric motors. Hybrid electric vehicles (HEVs) can make modest gains

in fuel efficiency mainly through the use of regenerative braking.

Once the drive train is completely electrified, the power train can be composed of a

combination of batteries and some type of range extender technology (e.g., gasoline, diesel

or fuel cell) to recharge the batteries onboard or provide electricity in parallel with the

batteries [47]. This differs from the methodology considered by Thomas [48] as this work

includes electric vehicles with range extenders and is not a comparison between FCVs and

battery-electric vehicles (BEVs) considered by Thomas [48]. FCV in this case refers to

compressed gaseous hydrogen as the technology is simpler and would likely be commer-

cialized before options that use liquefied hydrogen as the fuel.

The FCPHEV would operate as a normal plug-in vehicle except that the energy sup-
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ply for the charge-sustaining mode would be supplied by hydrogen fuel cells and not by

gasoline. Other AFVs could also be compared on an emissions-per-distance basis but the

interest of this chapter is on the impact that could be achieved through greater utilization

of base-load electricity. As such, this study focuses on the near term transition technology

of the PHEV which will use electricity to recharge batteries, and the FCV which uses base-

load electricity to generate hydrogen. This analysis also represents the most promising near

term technology transition to PHEV and the technology with the greatest potential for

emissions reduction in the long term (FCV). The transition between the near-term adop-

tion of PHEVs to the eventual transition to FCVs is examined by Suppes [30].

Thomas [49] states that FCVs are the only vehicle technology that has potential to

virtually eliminate problems relating to urban air pollution. In this study, the effects of

vehicles on urban air pollution are considered in a similar fashion to the work of Thomas

[49]; however, the limitations of the Ontario’s electricity grid are incorporated into the

calculations. As such there are some notable differences in the environment, assumptions

and potentially the results. Specifically, the Ontario grid makes much less use of coal

as a generation source than the system Thomas [49] assumed, and greater use of nuclear

and renewable (mainly hydroelectric) sources. Also, this study assumes that only surplus,

base-load power is used for the transportation sector and thus represents a more feasible

transition scenario for the transportation sector, as the electricity is available and under-

utilized at this time.

The emissions from manufacturing the vehicles are not included as part of this study

at this time and will be considered in future analyses; however, these types of vehicles also

have increased emissions resulting from the manufacturing process would likely have less

impact on urban air emissions and are therefore likely to be insignificant for this study

where the main focal point is urban air quality. It should be noted that preliminary esti-
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mates for the production of both types of AFV considered in this study show that current

production methods of traditional vehicle manufacturing emit less pollution and consume

less energy than current methods of AFV production. These preliminary results would

also be affected if centralized, large-scale production of AFVs were to exist on the same

level as traditional vehicle manufacturing.

Developing infrastructure has been considered by several authors for Southern Califor-

nia [42, 43, 50] with special focus again on the economics of its development. It is assumed

for this chapter that the distribution of hydrogen is available and thus the construction of

a distribution network is not included in the results of this study.

3.1.1 Health Effects

Toronto Public Health estimates that the number of annual deaths in Toronto from urban

air pollution is 1700 annually [51]. Estimates from the Ontario Medical Association (OMA)

[52] and Health Canada [53] estimates the number of fatalities is 5 800 throughout Ontario.

These deaths attributed to air pollution are most predominantly from lung diseases but

air pollution also partakes in increasing the rate of atherosclerosis which is a contributor

to heart disease and stroke [51].

The life cycle of hydrogen and its impacts have been studied previously [54, 55] in an

attempt to characterize the effect of hydrogen production in terms of life-cycle emissions

and sustainability. The use of hydrogen as a transportation fuel has also been considered

but comparisons between hydrogen and other transportation fuels are only now being de-

veloped [56, 57]. It is important to consider hydrogen as a transportation fuel relative to

other fuels in order to realize the consequences related to its mainstream adoption as a
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transportation fuel. PHEVs have also been studied from a life-cycle perspective by several

authors [58] and this study is intended to compare these different types of AFV using a

realistic basis of penetration and adoption.

Overall and urban emissions from AFVs were both considered to be important since

overall emissions may affect climate change, acidification and other effects related to gener-

alized emissions into the air. Urban emissions were considered specifically for the purposes

of analyzing a possible decrease in fatalities caused by poor urban air quality. Photochem-

ical smog is particularly an issue when considering the large volumes of traffic that occur

during the rush-hour times in the greater Toronto area (GTA). Due to the location and

specifics of Toronto, smog formation is limited by the amount of nitrogen oxides (NOx)

present. According to the empirical kinetic modeling approach to photochemical smog, a

reduction in NOx would yield a much more pronounced effect on the reduction of photo-

chemical smog than would an even greater reduction in VOCs.

When considering urban air emissions, four major pollutants and one additional stres-

sor are considered. Two classifications of particulate matter, one having diameter less than

10 microns (PM10) and one of diameter less than 2.5 microns (PM2.5), are generally con-

sidered to be the most harmful to human health and are also the eventual products from

some other pollutants [59]. This small particulate matter is capable of penetrating deep

into the human lung, causing irritation and is too minute to be rejected by natural human

mechanisms [59]. VOCs and NOx react with sunlight to form photochemical smog which

is generally the largest contributor to urban air pollution in industrialized countries. Re-

ducing the synthesis of photochemical smog is a top priority for individuals involved with

addressing urban air quality in major cities. Athens, Greece and Beijing, China among

several other cities that have made similar laws, institution of bi-daily driving was initiated

in an attempt to partially curb the creation of photochemical smog. Sulfur oxides are the
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remaining stressor and are generally viewed to be more of a significant factor with regard to

acidification than urban air pollution; nevertheless, it does contribute to producing aerosols

and particulate matter in the troposphere.

3.2 Modeling and Results

3.2.1 Data Gathering and usage

The current GHG emissions in Canada are shown in Figure 3.1 [36]. It is important to

note that these emissions are the overall emissions for Canada and are not specific to the

urban air quality which is considered to be of major concern due to the annual fatalities

exhibited in the GTA from air quality issues. For analysis of the impacts of AFVs, the

total emissions can be compared to the current overall emissions in Ontario. The results of

these comparisons can be realized as a percentage increase or decrease in each particular

emission type. For pollution that is mainly of concern in the urban setting, emission levels

are significantly harder to quantify due to the number of emission sites and the varied

locations of these sites as well as their relative severity.

The generation mix considered in this research is the approximate Ontario generation

mix shown in Figure 3.2. While this generation mix is expected to change, the relative

levels of production from each source should remain consistent. The reduction in emissions

in this study are calculated using this energy mix under normal conditions whereas the

base-load contribution is used in the circumstances that base-load power can be assumed

to be utilized (i.e., for hydrogen production). The current base-load generation mix is

shown in Figure 3.3.
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Figure 3.1: Canadian greenhouse gas emissions by sector [36]

3.2.2 Methodology

The software packages of AMPL and GREET 1.8b [60] were used to complete the analysis

presented herein. The number of vehicles that can be feasibly supported by the current

electricity grid in Ontario including the planned modifications was found by modeling

the scenarios in AMPL. AMPL is a modeling language for mathematical programming

and is especially tuned for optimization scenarios. Every effort was taken to ensure ac-

curate results by using this model such as justifications of assumptions and sensitivity

analysis, the model is presented in [61] and a summary of the model is supplied in the

Appendix. The merits of this model are that it takes many factors into account such as

energy import/export, electricity prices, market penetration transition, generation capac-

ity, base-load generation mix, transmission capacity in addition to environmental credits

and vehicle data. It is important to note that the AMPL model uses conservative values

for predicting penetration levels based on information currently available concerning the

Ontario electricity grid. Conservative values are used in order to determine the smallest

possible number of AFVs that may penetrate the vehicle market in Ontario, Canada. In

reality, the penetration of AFVs that may be supported using Ontario’s energy grid are

expected to be larger than the results of the model indicate. Similar work has been com-

40



Figure 3.2: Overall electricity generation mix for Ontario [36]

pleted by Oi [44] for utilizing Japan’s base-load electricity for generating hydrogen. With

the resulting supportable penetration rates, GREET was used to calculate the pollution

abatement resulting from the adoption schemes.

The penetration rates for both FCVs and PHEVs were assumed to follow one of two

possible trajectories [61, 29]. These possible paths are shown below in Figure 3.4. The

first possible transition trajectory is labeled as such and yields a slow adoption and would

mimic the effects of an uncertain population who are hesitant to invest in a new technology

before it is proven. This transition rate has a slower initial response than the first transition

scenario but leads to a less volatile adoption scheme in which the general public steadily

gains confidence in the new technology. The second transition scheme presents a rapid

initial adoption of the AFVs which tapers off after the initial adoption phase before being

revitalized in the final years of the simulation. This transition scheme mimics a popula-

tion with environmentally and technologically oriented consumers who wish to incorporate

the new technology into their lives as soon as it is available. After the target consumers
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Figure 3.3: Base-load electricity generation mix for Ontario [36]

have purchased these vehicles, a downturn in sales is experienced due to uncertainty in

the technology from the remainder of the general public [62]. As the technology is proven

and manufacturing becomes less expensive, members of the general population who were

previously hesitant are encouraged to purchase AFV technology which leads to the second

period of growth for this transition scenario. Only the results for the first transition sce-

nario are considered in this paper.

It is important to note that the scenario for the adoption of FCVs and PHEVs have

been compared as being mutually exclusive to illustrate the effects on the overall and urban

air pollution from adopting the individual vehicle types. This approach does not reflect a

realistic scenario given that new vehicle types will likely be adopted in parallel and none of

these will be sole type of AFV used, assuming that both were available. In all likelihood, a

combination of these vehicle types will be adopted as individuals make decisions based on

their own personal requirements. The emission changes from these reductions will then be

a combination of these vehicle types in quantities which could be estimated using consumer

surveys and adoption patterns of hybrid electric vehicles.
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Figure 3.4: Transition scenarios for AFV penetration in Ontario

The FCPHEV has been included in this study in order to yield the maximum and

minimum emission reductions that can be supported in Ontario. It is important to note

that the AMPL model has not been attuned to produce the supportable penetration of

FCPHEVs and that the calculations for this vehicle type are based on the maximum sup-

portable penetrations for FCVs and PHEVs. Such analysis would be complex as not only

would electrical grid transmission constraints be considered, but the location, storage and

distribution of hydrogen needs to be considered as well. The potential for electrolysis to

provide voltage regulation within the electrical generation system would also positively af-

fect the use of available base-load power. The maximum achievable reduction in emissions

is calculated using the supportable penetration of PHEVs while the minimum is calculated

by using the penetration of FCVs. These estimates would lead to a power requirement

above the feasible limits of the planned Ontario grid or an underutilization of this grid for
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the maximum and minimum cases, respectively. This methodology of developing a range of

market penetrations has previously been demonstrated for vehicle fleets as seen in research

completed by Wang, Ogden and Nicholas for the United States [63] and also by researchers

in Germany [64]. The benefit from this analysis is to be able to establish lower and upper

boundaries of emission reductions and not to predict actual emission reductions from the

supportable adoption of FCPHEVs.

For FCPHEVs, the calculations included data from the Canadian vehicle survey show-

ing that a daily drive for a vehicle is approximately 50 km [65] and additionally, 60% of

the distance driven can be powered by electricity (i.e., from the plug-in battery capac-

ity). FCPHEV energy usage will therefore consist of 60% grid electricity and 40% gaseous

hydrogen produced by electrolysis. The penetration rates for FCPHEVs are discussed in

more detail in the subsequent section 3.2.3.

3.2.3 Results of Supportable Penetration and Vehicle Growth

The population growth in Ontario and the percentage of Ontarians who currently own

vehicles can be used to predict the number of vehicles that will be present in Ontario in

future years. This information is found in Table 3.1. This table also shows the penetra-

tion rates of FCVs and PHEVs in Ontario for each given year based on the two transition

schemes addressed previously. The analysis was completed for two final penetration rates

of FCVs due to the fact that locating future generation projects in different regions have

a significant impact on the final supportable penetration.

A conservative estimate of 1.2% penetration of FCVs in Ontario is based upon new

nuclear generation capacity in the Bruce zone. If, instead, the location of this generation
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is in the Toronto zone, the supportable penetration of FCVs climbs to 2.8% [29]. This is a

change which leads to further comparison of the two vehicle types. All further calculations

use only the estimate of almost 2.8% because it is the most probable scenario but similar

calculations have been completed for the alternative penetration rates. The correspond-

ing penetration of PHEVs is almost 6% [66]. One assumption in the calculation of these

penetration rates is that the social cost of carbon dioxide emissions is approximately $ 35

per tonne. This assumption is based on the work of Pearce [67] but was found to have an

almost-negligible impact on the penetration rates calculated by the model [61].

The drivable distance for PHEVs and FCV must be compared in order to be able to

compare their emissions on the same basis. The assumptions made at this stage are that

the all-electric operating range for PHEVs is 30 km per day (i.e., per overnight charge)

and that the annual mileage for a FCV is 20 000 km which corresponds to the approximate

annual mileage for a conventional vehicle. The drivable distance for these two vehicle types

can then be found and is shown in Table 3.2.

Penetration rates based on regional adoption would likely yield different results for air

quality as residents in urban areas and those who commute short distances on a frequent

basis may be more inclined to purchase AFVs than individuals having longer commutes or

living higher distances from urban areas. These speculations are not included as definitive

research is not available to confirm these market predictions.

As mentioned in the previous section, the number of FCPHEVs considered will be

equivalent to the number of PHEVs for the maximum-reduction case and will be equiv-

alent to the supportable number of FCVs for the minimum-reduction case. Though the

results from this analysis are either slightly high or low based on the planned developments
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Table 3.1: Calculated number of vehicles in Ontario and penetration for FCVs and PHEVs

for both transition scenarios

Transition 1 Transition 2

Year Total Number of

Vehicles

in Ontario

(thousands)

Penetration

of FCVs

(%)

Penetration

of PHEVs

(%)

Penetration

of FCVs

(%)

Penetration

of PHEVs

(%)

2008 7074 0.00 0.00 0.00 0.00

2009 7155 0.04 0.09 0.04 0.08

2010 7237 0.07 0.16 0.20 0.44

2011 7321 0.12 0.25 0.45 0.96

2012 7405 0.18 0.38 0.69 1.48

2013 7491 0.27 0.58 0.92 1.97

2014 7577 0.39 0.84 1.11 2.37

2015 7665 0.54 1.15 1.23 2.64

2016 7755 0.72 1.55 1.32 2.82

2017 7845 0.93 1.99 1.37 2.93

2018 7937 1.17 2.50 1.41 3.02

2019 8030 1.41 3.02 1.46 3.12

2020 8124 1.67 3.58 1.54 3.29

2021 8219 1.93 4.15 1.67 3.58

2022 8316 2.17 4.66 1.86 3.98

2023 8414 2.41 5.16 2.12 4.55

2024 8514 2.61 5.58 2.43 5.21

2025 8615 2.80 6.00 2.80 6.00
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Table 3.2: Calculated number of each type of PHEVs and FCVs in Ontario and the drivable

distance

Year Number of

FCVs

in Ontario

Number of

PHEVs

in Ontario

kms

drivable

by FCVs

Electric

kms

drivable by

PHEVs

2008 0 0 0 0

2009 2840 6090 5.680×107 6.665×107

2010 5370 11500 1.074×108 1.259×108

2011 8670 18600 1.734×108 2.034×108

2012 13200 28300 2.638×108 3.095×108

2013 20100 43100 4.021×108 4.717×108

2014 29600 63400 5.919×108 6.945×108

2015 41200 88300 8.237×108 9.664×108

2016 56200 120000 1.123×109 1.318×109

2017 72800 156000 1.455×109 1.708×109

2018 92600 198000 1.852×109 2.172×109

2019 113000 242000 2.260×109 2.651×109

2020 136000 291000 2.715×109 3.185×109

2021 159000 341000 3.181×109 3.731×109

2022 181000 388000 3.617×109 4.244×109

2023 203000 435000 4.056×109 4.758×109

2024 222000 475000 4.436×109 5.204×109

2025 241000 517000 4.824×109 5.660×109
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to the Ontario electricity grid, the ultimate result is to establish the maximum and mini-

mum reduction of emissions. It should also be noted that in the case of FCPHEV there is

likely to be a wide range of fuel cell and battery combinations aboard vehicles, especially

during the transition phase as hydrogen distribution infrastructure is developed.

3.2.4 Pollution Abatement Results

The two scenarios presented here, which correspond to the adoption of FCVs or PHEVs,

must be considered as mutually exclusive. Both penetration rate assumptions depend on

maximum usage of the Ontario energy grid and thus cannot proceed in concert. As men-

tioned previously, other AFVs have not been considered as they could only be compared

on a per-kilometre basis which would not add significant value to this work.

The two areas of concern with respect to emissions are in the overall and urban sce-

narios. For comparison purposes, the emission reductions resulting from the adoption of

these AFVs are shown in Figures 3.5 – 3.11. Figure 3.5 represents the greenhouse gas

reduction and CO2 reduction simultaneously for consideration in the overall abatement of

gases that may contribute to global warming. Because these emissions are not suspected

to have appreciable effects on urban air quality, they are only analyzed from this overall

perspective. The other emissions are found to have effects in both the overall setting as

well as having an impact on urban air quality; therefore, the calculated reduction of a

particular emission is shown as an overall reduction as well as an urban reduction. Note

that these values are reductions, so a negative value is the product of an increase in that

emission.

Figure 3.5 Illustrates that the majority of the greenhouse gas emissions can be at-
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Figure 3.5: GHG and CO2 reduction in Ontario

tributed to the release of carbon dioxide into the atmosphere which is illustrated by the

fact that the GHG and CO2 lines are almost identical. Since the transportation sector

in Ontario emits approximately 3.76 × 107 tonnes of GHGs per annum based on data

from 2005, the normalized reduction can also be calculated and is shown in Figure 3.6.

It is observed that the reduction in the transportation GHG emissions in Ontario would

reach the level of 3 to 3.5 percent by 2025. The FCPHEV predictions yield the maximum

and minimum reduction from the transportation sector. It is observed that the range of

reduction in GHG emissions from the transportation sector would be between 3% and 5.8%.

By analyzing the information in Figure 3.7, it is observed that PHEVs exhibit superior-

ity in reducing VOCs in both the overall and urban scenarios when compared to the FCV.

As the major concern with VOCs is related to photochemical smog production in urban
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Figure 3.6: Normalized reduction in GHG emissions

areas, it is important to note that PHEVs show approximately 100 tonnes of reduction per

annum above the levels that can be achieved by FCVs. The FCPHEV scenarios yield the

maximum and minimum reduction of VOCs that could be achieved by adopting a fleet of

FCPHEVs that would follow the high penetration rate of PHEVs or the lower penetration

rate of FCVs. For the emission of VOCs, FCPHEVs could greatly exceed reductions from

either FCVs or PHEVs in the overall scenario but would only show a very slight benefit

in urban areas relative to PHEVs. As the most significant contribution of VOCs is urban

air pollution, PHEVs and FCPHEVs are approximately equivalent in terms of emissions

while they both yield a greater reduction than FCVs.

Figure 3.8 demonstrates that both PHEVs and FCVs will have similar effects on urban

air quality in terms of reduced NOx emissions. Due to the fact that the photochemical
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Figure 3.7: VOC emission reductions in overall and urban settings for AFVs

smog reactions in a region such as Toronto are limited by the amount of NOx available

for reaction, the urban NOx reductions are of greater concern than similar levels of re-

duction in VOCs. As both PHEVs and FCVs have approximately the same reduction in

NOx, neither can be considered to be superior in terms of reducing this emission. The

other pertinent information to be observed from Figure 3.8 is that the FCVs demonstrate

a larger overall reduction of NOx which would lead to a slight decrease in acidification.

While this attribute is positive, this reduction in NOx is unlikely to decrease acidification

by an appreciable amount as the annual emissions of NOx and SOx in Ontario exceed this

by over four orders of magnitude [68].

The maximum and minimum reductions in NOx from adoption of FCPHEVs are also

shown in Figure 3.8. It is observed that NOx reduction by a maximum number of
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Figure 3.8: NOx emission reductions in overall and urban settings for AFVs

FCPHEVs would reduce NOx emissions by approximately 50% more than the support-

able number of FCVs and more than double the reduction when compared to PHEVs

considering overall emission levels. Since the urban emission reductions are more pertinent

for NOx, it is important to note that at a maximum level of penetration, FCPHEVs could

reduce urban NOx emissions by an additional 75% over the levels that either PHEVs or

FCVs are able to achieve at their respective levels of supportable penetration. Additionally,

the reduction levels for a minimum adoption of FCPHEVs show only a slight deficiency in

NOx emission reductions when compared to PHEVs and FCVs for their respective sup-

portable penetration levels.

The reduction of particulate matter emissions with diameter less than 10 microns is

shown in Figure 3.9. The dominant trend in this figure is the increase in overall PM10
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Figure 3.9: PM10 emission reductions in overall and urban settings for AFVs

related to the adoption of PHEVs. This increase is related to the increased particulate

emissions from burning coal using the current generation mix in Ontario. The negative con-

sequences of particulate emissions associated with coal electricity generation and PHEVs

use is confirmed by other studies [49]. The PM10 emissions from a maximum number of

FCPHEVs follow a trend similar to that shown by the PHEVs with only slightly lower

increases in emissions. It is observed from the figure that the overall emission of PM10

will increase in a range of 190-370 tonnes per annum by adopting FCPHEVs; however,

the urban reduction in this emission will be similar to the levels observed for FCVs and

PHEVs. By adopting the maximum amount of FCPHEVs, the reduction in PM10 could

achieve a reduction in PM10 emission of 75% greater than that achievable by PHEVs or

FCVs.
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Figure 3.10: PM2.5 emission reductions in overall and urban settings for both types of

AFVs

Taking into consideration that the annual emissions of PM10 in Ontario exceeded 1.04

million tonnes in 1995 (including open sources) [68], an overall increase of 400 tonnes per

year by 2025 is hardly significant. The reduction of particulate matter in the urban air is

very similar for both FCVs and PHEVs and is 40-42 tonnes per annum in 2025.

The trends for PM2.5 have similarities to those found for PM10 as is exhibited in Figure

3.10. The overall increase in emissions of PM2.5 for PHEVs is significant as was the case

in Figure 3.9 for PM10 with the cause again being the increased use of coal for generating

the electricity for these vehicles. It is again observed that the emissions of PM2.5 in the

urban setting will decrease by approximately the same amount for both PHEV and FCV

technologies with reduction reaching 29 and 31 tonnes for FCVs and PHEVs, respectively.

54



The upper and lower reduction limits for urban PM2.5 by adopting FCPHEVs can be ob-

served to bound the reductions predicted for PHEVs and FCVs; the lower limit appearing

slightly below the reductions from FCVs and PHEVs while the upper reduction limit is

significantly above the reduction for the other two vehicle types.

The emissions of this size of particulate matter (PM2.5) are of most concern in the ur-

ban air as they have the greatest potential for harm to human health. It is observed from

Figure 3.10 that because of the hybrid nature of the FCPHEV, the range of overall emis-

sion increases from FCPHEVs falls within a small range of approximately 10 - 20 tonnes

per annum by 2025. As for PM10, though, the overall emissions are again overshadowed

by the province-wide emission of over 250 000 tonnes (including open sources) [68]. A

minor increase in the overall emissions is thus insignificant but reductions in the urban

environment could have slight positive impacts on population health.

From the two trends of particulate matter emissions, the data for SOx in Figure 3.11

is not surprising. The increased use of coal for electricity generation has again led to an

increase in emissions of SOx. SOx emissions are generally of concern when considering

acidification and thus the overall emissions are of particular interest. The SOx emissions

in Ontario in 1995 were estimated to be over 632 000 tonnes meaning that the increase of

790 tonnes annually by 2025 would be an increase of just over 0.12%.

The adoption of FCPHEVs shows an impact on overall emissions of SOx that encom-

passes a range of increasing SOx emissions from 320 - 620 tonnes per year by 2025. These

increases are slightly less than the increase attained from adoption of PHEVs yet are still

significantly greater than the actual reduction achieved by adoption of FCVs. The elec-

tricity requirement for the plug-in portion of the operational time would contribute to
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Figure 3.11: SOx emission reductions in overall and urban settings for AFVs

increased emissions just as was the case for PHEVs.

SOx emissions in the urban setting are of considerably less concern than precursors

of photochemical smog and particulate matter and thus are not especially pertinent for

discussion here.

3.3 Summary

Using the electricity grid infrastructure and planned improvements allows for calculation

of the supportable penetration of PHEVs, FCVs and FCPHEVs in Ontario, Canada. From

this study, it is evident that a reduction in life-cycle emissions can be achieved by tran-
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sitioning a fleet of conventional vehicles to alternative fuels. For the metropolitan centre

of Toronto, Ontario, alternative fuels of all types would decrease the urban emissions of

small particulate matter (PM2.5 and PM10) and NOx which are the major sources of urban

air quality problems. From a provincial or national level, each alternative vehicle type is

expected to decrease all emissions except for SOx, which are expected to increase slightly

in most situations.

The results show that FCVs and FCPHEVs are the most effective vehicle types for

reducing life-cycle emissions during operation; however, the refueling infrastructure for

these vehicles is not currently sufficient to make these vehicles practical. As such, it

is recommended that PHEVs should be adopted in the near term with a transition to

hydrogen as soon as the infrastructure allows.

The reduction in emissions on a national or provincial level from adoption of alternative

fuel vehicles is less significant than are the reductions in the urban setting and thus the

impetus for adoption of such vehicles from a policy standpoint would be to reduce health

impacts from urban air pollution.
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Chapter 4

Optimized production of hydrogen in

an eco-park network accounting for

life-cycle emissions and profit

Chapter 4 is based on previously published work “Optimized production of hydrogen in an

eco-park network accounting for life-cycle emissions and profit” by Kantor et al. [69] as seen

in the International Journal of Hydrogen Energy 37(6):5347-5359 and is reproduced with

permission from the International Association of Hydrogen Energy. The thesis author’s

specific contributions to this paper were to develop the model, conduct the simulations,

prepare the graphics and results, write the final manuscript and respond to the comments

of reviewers. This work was conducted with direction from the project supervisors, Dr.

M.W. Fowler and Dr. A. Elkamel, who are co-authors on the publication.

58



4.1 Introduction

4.1.1 Problem Definition

The purpose of this chapter is to develop a method for optimizing the material and en-

ergy usage for an existing network of industrial facilities in order to reduce emissions and

waste generation, while optimizing material and energy output to maintain product output.

Specifically in this case, the eco-park is used to generate hydrogen for the hydrogen econ-

omy. The overarching goals are to reduce emissions and energy use without compromising

the process profitability. Through collaboration within an eco-industrial network or com-

munity of industrial facilities, chemical processors can reduce their environmental impact

while still pursuing profitability to maintain favour amongst shareholders. The quantita-

tive benefits of pursuing eco-park concepts within a network of facilities will be identified.

This will help to exhibit the possibilities for industry to collaborate in order to maintain

or increase profitability while reducing their individual impacts on the environment.

4.1.2 Eco-industrial Network Description

The concept of eco-industrial networks (EINs) has been discussed in detail in Section 2.1

and will not be discussed in detail here. The major principles behind EIN development

are to achieve environmental and economic goals by integrating the production and usage

of energy and materials from many facilities. This approach is the foundation of indus-

trial symbiosis to mimic the behaviour of the natural world. This chapter is focused on

developing a generalized linear program (LP) for optimization of these networks.
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4.1.3 Analysis Methods

Economic and environmental objectives are both considered in this work in an attempt to

balance the interests of society with those of industry. Economics are easily measurable

based on construction and operation of chemical plants, purchase and sale of chemicals

and energy and other major-cost items. The environmental objectives in this work are

quantified by using llife-cycle assessment, as explained in Section 2.3.1 and are focused on

emissions from each facilitiy to the air, water and land.

4.1.4 Hydrogen Economy

In the context of integrated energy and production systems, different energy infrastructures

are to be studied simultaneously with the eco-park concept. In the last few years, the

concept of a hydrogen economy has attracted attention in industry and academia [70, 71,

28]. Hydrogen as an energy carrier can be produced from multiple energy resources like

fossil fuels, nuclear, and renewables for multiple end-uses; this has led to the development

of the hydrogen economy concept, which concentrates on the study of the economic aspects

associated with the production, distribution and utilization of hydrogen in energy systems

[29, 72]. Hydrogen is a desirable energy vector because it can be stored and used to generate

electricity. The use of hydrogen in transportation applications will result in decreased

urban air pollution and national greenhouse gas emissions, as well as diversified energy

production and security of energy supply [41]. Despite these benefits, in the present state

of technological development, there remains the need for development of a production,

distribution and storage network [71]. From the eco-park management point of view, the

use of hydrogen as an energy carrier is appealing, given its energy storage potential and

high value as an end product for the transportation sector. Hydrogen is both a product

and input in a variety of potential industrial facilities in an eco-park. A hydrogen economy

becomes an interesting possibility in the context of competitive electricity markets with
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increasing amounts of intermittent renewable sources of energy (e.g., wind and solar) and

given the significant price differences between high and low demand hours for electricity, as

well as in urban environments where zero-emission vehicles are highly desirable [73]. Thus,

the use of hydrogen can address two key life-cycle metrics, the reduction of greenhouse

gases (GHGs) and the reduction of criteria air contaminants; specifically, urban smog-

generating emissions. Thus, if one considers in this market context that chemical and

energy generation plants are most efficient when operating at rated production and load

levels, the generation of hydrogen as a valuable end-product as well as energy storage

within the eco-park becomes highly desirable [74]. When the various advantages of the use

of hydrogen in transportation applications (i.e., in vehicles) are factored in, the importance

of studying the production, distribution and utilization of hydrogen in association with the

eco-park becomes evident. Thus, there is a need to consider hydrogen as an important part

of integrated eco-park systems. This chapter studies the production of hydrogen from an

eco-park perspective in association with the various hydrogen demands and uses with the

eco-park itself.

4.2 Network Description

4.2.1 Chemical Processing Plants

The network is comprised of several chemical production facilities including gasification,

CO2 capture, pressure-swing absorption, combined heat and power, as well as the manu-

facture of ammonia and urea. Mass and energy balances can be written for each network

node and are devised to maintain linearity in the model. Syngas generation can be carried

out utilizing a variety of fuels, j, that can be gasified in the corresponding set of gasifiers,

i. The variables are constructed of the form SpeciesUnitdirection to be interpreted that

CO2CHPout describes the amount of CO2 output from the CHP unit.
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4.2.1.1 Gasification

The process of gasification typically consists of a hydrocarbon feedstock entering the pro-

cess where it is exposed to high temperatures, resulting in production of a mixture of

gaseous products referred to as syngas. The gaseous products, since the fuels are gener-

ally hydrocarbons, typically consist of carbon monoxide, carbon dioxide, water, hydrogen

gas and nitrogen products when air is used as the source of oxygen for the process. The

resultant gaseous mixture is typically dominated by hydrogen gas and carbon monoxide;

therefore, gasification utilizes hydrocarbon fuels as would standard combustion, yet the

products of the process are available for further use as chemical feedstocks and to service

the hydrogen economy.

Gasification is typically not practiced in the energy production sector as it adds an

additional step to the traditional combustion-centric approach without yielding noticeable

benefits. One benefit of gasification is in the versatility of the approach with regard to

potential feedstock [75]. Combustion boilers focus on one source of fuel as the design must

be catered to the normal operating parameters of the system. Gasification units can be de-

signed to accept a wider variety of fuels so that dependence on one type of fuel is no longer

a constraint on the unit. This also allows for the units to utilize biomass as a feedstock

to displace the usage of fossil fuels when such biomass is available [76]. Utilizing available

biomass for producing syngas can greatly reduce the overall usage of fossil fuels within the

network while also reducing the emissions associated with transportation by using biomass

generated in nearby agricultural facilities [77].

In this case, biomass was selected to enhance the usage of renewables within the overall

EIN. Modifying reaction parameters can also allow the producer to adjust the syngas ratio

depending on the downstream processes and process input [78]. The balances for this unit
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can be written so as to maintain the appropriate amount of syngas as feedstock to the

downstream processes, as can be seen by equations 4.1 - 4.4 while the syngas is generated

according to biomass gasification described by Van Der Drift et al. [79].

CO2Gout = CO2CHPin + CO2PSAin (4.1)

N2Gout = N2CHPin +N2PSAin (4.2)

H2Gout = H2CHPin +H2PSAin (4.3)

COGout = COCHPin + COPSAin (4.4)

Equations 4.5 and 4.6 represent the total sulphur produced from the gasification section

and the sulphur produced from gasifier i, given the sulphur content of the fuel feeding the

gasifier and the flowrate of this fuel, respectively. Ash is quantified in a similar way as

shown in equations 4.7 and 4.8

S =
N∑
i=1

SGi
(4.5)

SGi
=
∑
j∈Ωi

ySGij
Fij ∀i (4.6)

where ySGij
Fij represents the fraction of sulphur produced by fuel j being fed to gasifier

i.

A =
N∑
i=1

AGi
(4.7)

AGi
=
∑
j∈Ωi

yAGij
Fij ∀i (4.8)

where yAGij
Fij represents the fraction of ash produced by fuel j being fed to gasifier i.

The following four equations (4.9 - 4.12) represent the syngas product from each of the

gasifiers that is fed into the syngas header.

COi =
P − γWGS

n
(4.9)
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where γWGS represents the extent of the water-gas shift reaction during gasification.

H2i =
P

n+m
2
− k

(4.10)

where P, n, m and k are functions of the specific biomass used as a fuel.

N2i ' 0 for biomass gasification (4.11)

CO2i = γWGS (4.12)

The total amount of each gas being supplied to the syngas header is then calculated

as the summation of each gas from the individual gasifiers. The total mix of gas in the

syngas header is then found by Equations 4.13 – 4.16.

CO =
N∑
i=1

COi (4.13)

N2 =
N∑
i=1

N2i (4.14)

H2 =
N∑
i=1

H2i (4.15)

CO2 =
N∑
i=1

CO2i (4.16)

Equation 4.17 represents the total amount of fuel that is fed into gasifier i while equation

4.18 yields the calculation of the total amount of fuel j that is used in gasification where

Ωi represents the set of fuels acceptable in gasifier i.

Fi =
∑
j∈Ωi

Fij (4.17)

Fj =
∑
i

Fij ∀j ∈ Ω (4.18)
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Supply constraints on the operation of the gasification section are shown as equation 4.19

which limits the usage of each fuel to an upper limit of availability to the network. In this

case, only biomass is used in the gasification process.

Fj ≤ FU
j (4.19)

An upper limit is placed on the fuel flowrate due to possibilities of limitation in supply

or desirability of a given energy feedstock. In the case of biomass, only a certain rate of

agricultural waste might be available for a given time of year; therefore, it is necessary to

include the availability of crop waste as a function of the season or month. For fossil fuel

feedstocks, it may not be desirable to utilize the maximum amount available, and thus this

constraint can also be used to fix an upper limit on usage of certain fuels.

4.2.1.2 CO2 Capture

Historically, carbon dioxide was considered to be a necessary by-product of electricity pro-

duction yet is now considered by many as a pollutant. Certainly, CO2 is a greenhouse gas

(GHG) and the principal contributor to climate change. Capturing CO2 from a gas stream

has been a focal point of research in the energy industry in an attempt to create “clean

coal” plants in which the CO2 would be captured from the stack and then disposed of in

a manner that does not follow the traditional approach of releasing it to the atmosphere.

The technologies developed to date generally consist of a recirculating medium used to

capture the CO2 and then a process to remove the CO2 from the capture medium.

Captured CO2 can be purified and used for a wide variety of processes in order to avoid

emitting it to the atmosphere which would have little benefit over simply combusting the

coal to produce electricity [80]. Monoethanolamine (MEA) is one of the capture media be-

ing pursued for its high capacity for capturing CO2 from flue gas. An alternative medium
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is ammonia, a common chemical product that has demonstrated various advantages in

its ability to capture CO2 [81, 82]. Ammonia is being used in the proposed network as

a product from the EIN and also as a precursor to the production of urea. By using

ammonia as a medium for CO2 capture, the need to import MEA is removed and the car-

bon capture process can be maintained by using make-up ammonia from the nearby facility.

The CO2 generated must be sufficient to supply all of the processes requiring it while

any remainder is sequestered. The balances on this unit are seen in equations 4.20 - 4.22.

CO2CCout = CO2GHin + CO2ECin + CO2MEin + CO2Uin + CO2SQin (4.20)

N2CCout = N2CHPout (4.21)

NH3CCin = 0.01SCO2 CO2CCin (4.22)

where SCO2 represents the solubility of CO2 in ammonia based on the operating param-

eters of the unit. 1% make-up of ammonia is used as a design rule to avoid build-up of

contaminants and deactivation of the ammonia [83, 84], which is described in Eq. 4.22.

4.2.1.3 Pressure-swing Adsorption

Pressure-swing adsorption (PSA) has been used for many years and is an industrially

mature process. PSA is used to separate one or more gas species from a mixture and can

be applied to a wide variety of gas streams as the adsorbent material may be varied to

suit the specific application. The inlet gas is passed over an adsorbent which attracts the

desired gas or an impurity in the stream. The remainder of the feed thus continues to the

outlet for release or further processing. This process will be used to separate hydrogen

from a gaseous mixture, and as such, PSA is a key technology for implementation within

the eco-park to support the development of a hydrogen economy which will demand a pure
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stream of hydrogen for use in fuel cells. Additionally, this process is frequently found in

refineries and ammonia plants as hydrogen is required as a feed for some units in these

facilities. Thus, hydrogen produced from this section of the network will supply the other

facilities in the eco-park and may also provide hydrogen as a valuable co-product to the

transportation market [85, 86]. Equations 4.23 - 4.25 show the balances on the PSA unit.

COPSAout = COPSAin (4.23)

N2PSAout = N2PSAin (4.24)

H2PSAout = H2AMin +H2M (4.25)

Hydrogen product gases can be exported from gasification of hydrocarbon feedstocks fol-

lowed by purification of the gas streams using PSA. Alternative methods have also been

proposed to utilize off-peak electricity generation to electrolyze water for the production

of hydrogen. Efforts behind these initiatives to produce hydrogen gas are to stimulate

low-cost hydrogen for use in vehicles and to develop the ‘Hydrogen Economy’, termed as

such due to the concept being is that hydrogen is used as an energy carrier for powering

society. Transportation of people and goods within Canada represents 27% of the total

GHG emissions within the country [87]. Utilizing hydrogen as an energy carrier to power

commuter transportation could reduce these emissions by 3-6% by 2025 based only upon

the current infrastructure and planned improvements [41]. Thus, this reference [41] will

be used to develop the target hydrogen output from the eco-park. In addition, the life

cycle economic cost of hydrogen vehicles can be reduced by producing hydrogen in a more

efficient manner and also by economies of scale associated with producing the vehicle itself

[88, 50].

As mentioned previously, excess off-peak electrical generation can be used to electrolyze
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water. The hydrogen produced from this process can then be stored for later use in a

fuel cell to generate electricity during peak hours. This would allow for additional peak

generation capacity without constructing additional peak- or base-load plants, leading to

a much more cost-effective energy system.

4.2.1.4 Ammonia Manufacture

Production of ammonia is another mature process that has been developed to produce

fertilizers for the growing agricultural sector. The feedstock for this process is typically

natural gas, which is processed to remove sulphur compounds and then reformed to produce

syngas. Upon separating the gases and introducing air as a source of nitrogen, ammonia

can be produced in large quantities. The common modern methodology for producing am-

monia is the Haber-Bosch process, converting nitrogen and hydrogen directly to anhydrous

ammonia in reaction 4.26.

3H2 +N2 → 2NH3 (4.26)

Ammonia will be produced in the proposed eco-park using a similar methodology although

the typical process will be much simpler as the feed gases are already free from sulphur

compounds and other impurities. The process may also accept unreacted ammonia from

the urea plant, depending on process conditions and geographical locations. LCA on

ammonia processing can provide details on improvements based on the modifications [89].

The governing equation for the ammonia section is shown by equation 4.27

NH3AMout = NH3CCin +NH3Uin +NH3M (4.27)

4.2.1.5 Urea Manufacture

Urea is primarily produced as a nitrogenous fertilizer for the agricultural industry but cur-

rently contributes to GHG emissions in the forms of CO2 and oxides of nitrogen in addition
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to the heat and power required to operate the facilities [90]. The solid urea is broken down

into two ammonia groups and one molecule of carbon dioxide. Although several small-scale

methods have been developed for manufacturing urea, large-scale manufacturing methods

consist of combining the afore-mentioned two molecules of ammonia with one molecule of

carbon dioxide according to the Bosch-Meiser process in reaction 4.28.

2NH3 + CO2 ↔ (NH2)2CO +H2O (4.28)

In the proposed eco-park, carbon dioxide is readily available as a pure process stream

from the carbon-capture process and ammonia is also produced as a park co-product. One

advantage at this point is that the inefficiency related to compression of CO2 into dry ice

for transportation is not necessary. Since CO2 and ammonia can both be obtained from the

eco-park, the manufacture of urea may be one of the most profitable nodes of this process.

Environmentally, urea acts as a convenient transportation medium for urea and carbon

dioxide. The fertilizer pellets are a much easier method for applying ammonia to fields and

is a convenient source of carbon dioxide immediately available to growing biomass.

The production of urea from ammonia and carbon dioxide is a two-step reaction in

which the stoichiometric ratio of NH3:CO2 is 2:1. The reaction transpires according to

equations 4.29 and 4.30, shown below.

CO2 + 2NH3 ⇐⇒ NH2COONH4 (4.29)

NH2COONH4 ⇐⇒ NH2CONH2 +H2O (4.30)

Thus it can be seen that production of urea consumes ammonia and CO2 while producing

water as a co-product. Upon separation, the water can be recycled to be used in other

locations in the network. Because this is an equilibrium reaction, excess CO2 can be added

to the reaction to facilitate an equilibrium shift toward the production of urea. Analyses

have shown that an equilibrium conversion of 85% can be achieved by having excess CO2

available for reaction. The remaining reactants can then be recycled within the plant or
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elsewhere in the network. For modeling purposes, 85% equilibrium conversion of ammonia

with 50% excess CO2 is assumed. The remaining reactants are available for recycle and

use elsewhere in the network. The balances on the urea section are shown in equations

4.31 - 4.34.

UUout = NH3Uin

(
K

SR

)
(4.31)

where K represents the equilibrium conversion within the reactor and SR represents the

stoichiometric ratio for the reaction.

CO2Uin = 1.5NH3Uin (4.32)

With the factor of 1.5 built in to the function so that CO2 is supplied in 50% excess of the

stoichiometric requirement.

NH3Uout = NH3Uin − 2UUout (4.33)

CO2Uout = CO2Uin − UUout (4.34)

4.2.1.6 Combined Heat and Power

Plants for generating heat and power, also termed cogeneration plants continue to receive

attention as the efficiency of these plants in producing electricity and useful heat exhibits

that they have potential for becoming a valuable part of the energy solution. The technol-

ogy is mature yet there are relatively few of these plants that have been built due to their

increased technical complexity and previously-undervalued ability to produce heat for use

in facilities or as district heating. The CHP node in the proposed eco-park is an important

part of the process as it provides heating for the facilities as well as an opportunity to

produce the electricity for the eco-park, further reducing the operational costs. This plant

will have the capability of completely oxidizing any residual carbon monoxide from the

syngas as well as hydrogen gas. The flue gas is to be treated by the carbon-capture process
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so as to avoid emissions of CO2 to the atmosphere. The energy generation is a function of

the heating value of each of the gases fed into the unit. The heat generated for export is

either the heat required by other processes or the waste heat from the CHP process that

cannot be used elsewhere. The energy and heat generation are a split of the total energy

generation term, given that each has a different efficiency. The overall balances on the

CHP unit are shown in equations 4.35 - 4.40.

EG = (COCHPin) (LHV CO) + (H2CHPin) (LHVH2) (4.35)

EG represents the energy generated from the fuels fed into the CHP unit and LHV for

each gas is the lower heating value for each of the species.

HGX = EG (HeatSplit) (ηHG) (4.36)

EGX = EG (ElecSplit) (ηEG) (4.37)

where EGX and HGX represent the electricity and heat generated for export, respectively.

Similarly HeatSplit and ElecSplit represent the energy split between heat and electricity gen-

eration. In addition,ηEG and ηHG from these equations represent the efficiency of electricity

and heat production, respectively.

CO2CHPout = COCHPin + COPSAout + CO2PSAout (4.38)

H2OCHPout = H2CHPin (4.39)

N2CHPout = N2PSAout

(
ηN2sep

)
+N2CHPin (4.40)

While ηN2sep
represents the efficiency at which N2 can be separated.

71



4.3 Methodology

4.3.1 Introduction

The first steps to develop this model are to identify the nodes that are available to exchange

quantities of material and energy. The nodes have been identified in section 4.2.1 and will

be referred to by the corresponding indices for the remainder of this document:

• syngas generation G;

• pressure-swing adsorption PSA;

• combined heat and power CHP;

• carbon dioxide capture CC;

• ammonia production AM; and,

• urea production U;

With this list of facilities, it is possible to draw connections of products, co-products and

energy among the facilities. The objective function of the optimization is defined by the

development of the metric system shown in section 2.5. The objective function can be

manipulated to fit a wide array of scenarios including environmental indices as well as

profitability. The proposed network and connections is shown pictorially in Figure 4.1.

4.3.2 Definition of Environmental Metrics

Metrics for this optimization need to encompass all potential results of this collaborative

effort; therefore, the objective function must be formulated with these metrics in order
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Figure 4.1: Proposed network

to achieve both goals of environmental responsibility and economic sensibility. The ques-

tion of what should be included in such an index is postulated by Ziegler [91] although

there are several options that already exist. An overview of different indexing systems

has been completed by several authors [92, 93, 20], yet a clearly superior index has not

emerged. Thus, it is important to review the applicable systems in order to develop an

appropriate set of metrics, and hence, an applicable objective function for the optimization.

Methods such as the Analytic Hierarchy Process (AHP) [94, 95], developed over 30

years ago are too primitive to be applied to this type of optimization although this is one

of the first standardized methods of analytical decision analysis for this type of problem.

Another system, called the Sustainable Process Index (SPI) was proposed in 1995 as a uni-
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versally applicable index focused on sustainability. The SPI bases the sustainability of any

process on a ratio of area required for production to the area of consumption [96]. While

the pursuit of a single resultant output is beneficial for building optimization routines, it

is not particularly appropriate for the type of analysis considered in this work.

The Dow Jones Sustainability Index (DJSI) has been used for several years to base

investment decisions on the sustainability of a company as measured using financial, envi-

ronmental and social indicators [40]. This system has been used extensively in the financial

community to record extensive growth in investments. Unfortunately, this system relies

too heavily on qualitative information to be applicable in a numerical optimization algo-

rithm. Other metrics such as the waste reduction (WAR) algorithm have more empirical

clout but only apply to the extent that waste is reduced within a system [97, 98, 99]. This

methodology can be adapted and applied to be a part of the objective function but clearly

cannot be the only route pursued as it fails to include metrics traditionally important to

industry. Other indexes such as the Environmental Protection Index (EPI) [100] are also

somewhat applicable to this end, although it also excludes any mention of economic ben-

efits.

Emergy, exergy and e-green analyses have also been developed as an attempt to use

these systems to quantify benefits from eco-park networking [101]. These techniques are

very robust in their applicability but tend to focus more on energy and the efficiency of

energy usage within a process system. This type of analysis could be very effective in

monitoring or optimizing an energy-based eco-park but are unwieldy for application in a

material and energy exchange eco-park environment.

As none of the systems mentioned above are completely adequate for the analysis of an
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eco-park, it is required to produce a new index which will account for both environmental

management and economic profitability. This index can then be used to formulate the ob-

jective function for an eco-park optimization. This metric basically consists of two parts,

one for the calculation of cost savings and the other for assessing the reduction in waste

and emissions. The caveat for this index is that there must be a comparable process so that

the difference between the two options can be calculated. The mathematical formulation

is shown in section 4.3.5.

4.3.3 Problem Formulation

The problem in this case is akin to a transportation/networking problem in a typical fashion

yet with several additional complexities. The first of these differences is that the eco-park

network includes many chemical reactions, which are atypical of a transportation problem.

Generally, a transportation or networking problem may have one or several goods/signals

transferred between nodes, yet the item in question remains unchanged. Chemical reac-

tions allow for a change in the good at each node as it may be converted into another

chemical and also be energetically altered.

Additionally, several types of good are being transferred and may not necessarily be

permitted to utilize the same transportation pathways. For example, although water or

natural gas may be transmitted through a pipeline at a capacity determined by the pipeline

infrastructure, electricity cannot be transmitted in a similar fashion. Thus it is required

that a minimum of two (electricity, materials) transportation pathways be implemented in

order to conduct goods between the facilities. Heat integration of the network plants could

potentially be transported using similar methods as the materials but at the extent that

the facilities are to be integrated, it is likely that heating must also be a separate pathway.
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Similarly, some materials may require different forms of transportation than others and

thus the pathways for each chemical must be considered.

Simulations of eco-park concepts have been previously documented [102, 103, 104, 105]

but tend to apply non-optimal algorithms or metrics which are not based on life-cycle

thinking. The work presented here is an optimization model that uses a dual-objective

function in order to maintain profitability while reducing environmental impact based on

LCA metrics. This method is realistic as it does not compromise profitability for reduced

emissions but will yield a scenario amicable to both industry and society.

4.3.4 Selection of Optimization Package

The concept of combining chemical facilities into an eco-park system in an optimized way

would only be suited for an optimization package as it is desired to find the operating point

at which the profits and waste reduction benefits are maximized. GAMS software was se-

lected to complete the optimization as it is a powerful software language for optimization

and is well-suited to this type of problem [106]. Deterministic, numerical packages do not

provide the solution routines and are not specifically designed for optimization and thus

are not considered for use here.

GAMS stands for General Algebraic Modeling System, a commercial optimization pack-

age which is used extensively in both the academic and commercial realms for solving

optimization problems. The GAMS software employs a variety of strategies and solvers in

order to obtain the optimal solution for a given problem. The solver that is employed for

this model is CPLEX, which uses Simplex and barrier techniques for solving problems of

this type.
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4.3.4.1 Transportation

Transportation of materials, heat and electricity are discussed as part of the problem

formulation in section 4.3.3 yet the aspects discussed were transportation associated with

the number of pathways required for goods to flow through the network. The environmental

impact of transportation has been studied for the consumer market and typically focuses on

greenhouse gases and total energy used per kilometre travelled. The transportation options

here, as the network has not yet been constructed, can be varied in order to reduce the cost

and emissions from the transportation of goods between facilities. Several environmental

factors have been shown to stem from altering the fuels used in vehicles [41] and vehicles

powered by electricity and hydrogen would integrate very easily into the network as these

two commodities are already produced.

4.3.5 Objective Function

The objective function for this optimization is a construct of two objective functions. The

two factors considered in this analysis are emission deviations from stand-alone plants as

well as economic incentives. It is important to consider both of these objectives so as not

to bias the output to be purely profit-motivated nor purely attuned to societal benefit from

reducing emissions. The portion of the objective function that governs the reduction in

emissions will tend to minimize the magnitude of all facilities; therefore, relying only upon

this metric, the plant sizes would be reduced to zero. In the scenario considered for this

work, note that the eco-park was constrained to provide hydrogen for 1000 fuel cell vehicles,

and the plants were sized accordingly as dictated by the optimal scenario. The economic

portion of the objective function is then incorporated to add realism to the optimization as

well as ensuring that the optimization will terminate with some plants have a size greater

than zero. Equations 4.41 - 4.43 show the condensed form of the objective function.

Z = WLCEJLCE +WeJe (4.41)
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JLCE =

np∑
p=1

EnvCostp (Sp − Ip) (4.42)

Je =

np∑
p=1

[(ACC +OC)S − (ACC +OC)I ]p (4.43)

Where:

• JLCE = portion of the objective function attributed to the reduction in life cycle

emissions;

• Je = portion of the objective function attributed to the economics of the network;

• EnvCost = the environmental cost associated with a particular emission;

• p = representative of the particular chemical plant;

• np = the total number of plants;

• W = weighting factor for the economics (We) or life cycle emissions (WLCE);

• S=stand-alone facilities;

• I =integrated scheme;

• ACC =annualized capital cost; and,

• OC =operating Cost.

4.4 Results of Reduced Case

4.4.1 Reduced Case Model

In order to test the eco-park optimization theory and the objective function, five nodes were

extracted from the large case and the model was simplified to the one shown in Figure 4.2.
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Figure 4.2: Reduced network configuration representative of the reduced case

The facilities accepted into the reduced case were carbon capture (CC), combined heat

and power (CHP), ammonia production (AM), urea production (U) and pressure-swing

adsorption (PSA). Transportation distances and types were removed from the model along

with their associated costs for simplicity, which basically assumes that the facilities will be

co-located within an eco-park complex. Additionally, the plants were able to scale linearly

instead of by discretized advances. These simplifications would result in a model of these

five nodes as if they shared a small geographical area with equipment that is custom-built

without incurring additional costs for such equipment.

4.4.2 Results

Simulating the five nodes mentioned above yields a result that can be shown in Figure 4.2.

Testing the case with the parameters presented in Table 4.1 yields the results shown in

Figure 4.3. The results from this trial represent a base case from which to experiment to

ensure that the model behaves logically in accordance with the constraints.
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Table 4.1: Table of input parameters for basic case in reduced model

Parameter Description Value

We Optimization weight associ-

ated with economic perfor-

mance

0.5

WLCE Optimization weight asso-

ciated with life-cycle emis-

sions

0.5

Environmental Costs Description Value

CostCO2 Environmental cost/weight

of CO2

0.6

CostSOx Environmental cost/weight

of SOx emissions

0.05

CostNOx Environmental cost/weight

of NOx emissions

0.2

CostSW Environmental cost/weight

of Solid waste

0.15

4.4.3 Hydrogen Optimization

The network is comprised of several chemical production facilities including gasification,

CO2 capture, pressure-swing absorption, combined heat and power, as well as manufac-

turing of ammonia and urea. The amount of hydrogen produced from the network is fixed

to supply hydrogen 1000 vehicles in Ontario and the remaining plants are fixed in order to

accommodate the hydrogen production while maintaining an optimum value for the objec-

tive function. Assuming a 70 km kg−1 fuel efficiency for a hydrogen vehicle and 20 000 km
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Figure 4.3: Reduced configuration representative of the reduced eco-park

a−1, the resulting mass of hydrogen for 1000 vehicles for one year of driving is 285 700 kg H2.

Varying the economic weighting between 0 and 1 by increments of 0.1 allows for the

stability of the optimization to be seen in Figure 4.4.

Although the overall reduction in emissions changes only slightly in the range of We

between 0 and 0.6, the plant sizes vary to accommodate the changes in the economic

weighting of the objective function. In the range between 0 and 0.3, carbon sequestration

is utilized in order to reduce emissions by a maximum amount, as the economic weighting

is relatively low and sequestering the CO2 would thus have little impact on the objective

function. In addition, production of urea during this stage is minimal as the economic

weighting is not at a level which would dictate that this production is necessary. When

the economic weighting reaches 0.4, it is sufficient to force the urea plant to increase in size

as a destination for the captured CO2 as the scenario is more profitable than sequestering

the CO2 resulting from gasification.
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Figure 4.4: Results of producing hydrogen for 1000 fuel cell vehicles from [41]

At an economic weighting of 0.7, the optimization again reaches a new optimum value

for the objective function as the profitability is increasingly important. The optimization

dictates that the optimal solution for a high value of economic weighting includes reducing

the size of the carbon capture and urea manufacturing plants in addition to the combined

heat and power facility. In this case, the objective function is maximized by importing the

required electricity as it will reduce emissions less but is more profitable for the operation

of the remainder of the facilities.

The feasible region of the optimization is contained by several constraints and the

limiting constraint changes at the points mentioned above, i.e., when We=0.4, 0.7. The

differences take place in the size of the producing facilities for electricity, carbon seques-

tration and urea production. The hydrogen production is fixed at a level to power 1000

average hydrogen vehicles in Ontario, Canada, so the size of this overall eco-park facility
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Figure 4.5: Normalized plant exports with hydrogen production for 1000 cars for various

values life-cycle emissions weighting

is variable yet the net hydrogen output is fixed.

Analyzing the plant sizes for a variety of values of WLCE yields the results in Figure

4.5. Positive values indicate an export of that product from the boundaries of the eco-park

while negative values indicate an import into these boundaries.

This figure shows the changing plant sizes for a variety of values of WLCE. The values

for each plant are normalized to their respective maxima to exhibit the sensitivity of

the model to the environmental and economic weighting factors. When We takes large

values, simulating a case in which profitability is the major concern, a large amount of

electricity is imported to produce the required hydrogen. Ammonia is also produced in

large quantities as it is a profitable product in this network. For scenarios of moderate We
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values, environmental impact having a larger weighting relative to profit, a greater amount

of biomass is imported in order to manufacture the network products. The advantage in

emission reductions provokes the optimization to produce electricity, ammonia, urea and

heat in addition to the requirement for hydrogen. At WLCE = 1, ammonia production is

reduced to order to increase the production of heat and electricity while maintaining the

required amount of hydrogen. Although ammonia is a profitable product, the economics

of the scenario are unimportant as the weighting is entirely placed on the reduction in

life-cycle emissions from the network.

4.4.4 Greenhouse Gas Emissions Compared to Criteria Air Con-

taminants

Criteria air contaminants are defined by Environment Canada as pollutants that “cause

to air issues such as smog and acid rain. They are produced in varying quantities by

a number of sources, including the burning of fossil fuels” [107]. Varying the relative

importance of greenhouse gas emissions and criteria air contaminants leads to a result

showing some interesting results. Figure 4.6 shows that with a reduced weighting of GHG

emissions, the overall emissions from the network actual increase, as does the output of

urea and ammonia. Economics, in this case, drive the size of the plants and the emission

reductions follow as a result. As the network was developed for producing useful products

while focusing on reducing GHG emissions, it is not surprising that emissions may increase

with a very low GHG emission weighting. Until a GHG weighting of 0.3 is utilized, the

overall emissions from the network increase over the baseline case of no integration among

facilities. This is a reflection of the design complexities associated with the network plants

compared to traditional plants. These additional complexities contribute to an increase in

emissions as reducing GHG emissions yield no benefit to the objective value.
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Figure 4.6: Analysis of the impact of varying the weighting of greenhouse gas emissions

and criteria air contaminants with life-cycle emissions weighting of 0.5 and profit weighting

of 0.5

At this time, the analysis does not account for the added benefit of avoiding the crite-

ria contaminants being generated in the urban environment from the burning of gasoline

(which is now offset by zero-emissions hydrogen), which would have a strong impact on ur-

ban health. Note the trends shown in Figure 4.4 would remain the same, only the amounts

would decrease as the number of vehicles in this scenario analysis is fixed.

Figure 4.6 also shows linear relations in each of these results which is to be expected

from the linear nature of the optimization program. As the relative importance of GHG

emissions is increased, the overall emissions are reduced as the network is designed for this

purpose. The LP model indicates that profit remains relatively unaffected compared to

the reduction in emissions and the objective value also corresponds to show the optimum

value changing with the reduction in emissions.
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4.5 Summary

This chapter summarizes a method for constructing an optimization model to quantita-

tively assess the economic and environmental performance of a set of chemical facilities

utilizing a dual-objective function. It is evident from the results of this work that inte-

gration of chemical facilities into an EIN format yields both economic and environmental

benefits.

The products exported from each participant in the EIN varies with the weighting

placed on the two parts of the objective function and leads to four stable, optimal solu-

tions from a weighting of purely economic to purely environmental. The balance between

these objectives is important for policy-makers in communication with facility owners to

negotiate for the best option for profitability and also for reduced environmental impact.

The framework developed in this research allows for additional applications of the method-

ology for policy-makers across a variety of industries.

The sensitivity of the model through a range of economic and environmental weighting

factors shows that there are four optimal solutions in which the export of products from

each facility varies according to these two factors. The sensitivity of each of the individual

emission weighting factors is also considered and the results show that the objective value

and the emissions portion of the objective function vary linearly with changes in these

individual weighting factors.

The results show that emissions from the proposed network can be reduced and that the

profitability of the network is also maintained. Biomass gasification is used as a feedstock

to the network and an upper limit is placed on its availability in order to maintain the

sustainability of the EIN. The optimization also operates under a minimum constraint
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of hydrogen production for 1000 fuel cell vehicles. This chapter is representative of the

‘cradle-to-gate’ emissions from the participating industries whereas the work in the previous

chapter exhibits the benefits from the entire ‘cradle-to-grave’ utilization of hydrogen as a

transportation fuel.
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Chapter 5

Optimization of Material and Energy

Exchange in an Eco-park Network

Considering Three Fuel Sources

Chapter 5 is based on the forthcoming work “Optimization of Material and Energy Ex-

change in an Eco-park Network Considering Three Fuel Sources” by Kantor et al. [108],

in press with the International Journal of Advanced Operations Management and is repro-

duced with permission from the International Journal of Advanced Operations Manage-

ment. The thesis author’s specific contributions to this paper were to develop the model,

conduct the simulations, prepare the graphics and results, write the final manuscript and

respond to the comments of reviewers. This work was conducted with direction from the

project supervisors, Dr. M.W. Fowler and Dr. A. Elkamel, who are co-authors on the

publication.
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5.1 Introduction

The goal of this research is to further the efforts made in exploring eco-industrial networks

(EINs) as a form of increased material and energy efficiency for manufacturing a given set

of products. The benefits of operating a facility within an EIN where inputs and outputs

are exchanged must be quantified in order to encourage development of these networks.

As such, this work contributes to empirically modeling an EIN with emphasis on reducing

environmental impacts while maintaining or improving profitability of each facility within

the network. Life-cycle assessment (LCA) has been utilized in order to assess the environ-

mental impact of the network facilities while profitability is computed using market pricing

for the exports from the eco-park network. The baseline production for the network is to

provide hydrogen for 1000 fuel cell vehicles which are intended to also decrease the emis-

sions burden from the transportation sector as shown by Kantor et al. to be beneficial

for urban air pollution and overall emissions [41]. Commercialization of hydrogen fuel cell

vehicles is expected from most major vehicle manufacturers in 2015, and thus this research

also contributes to the consideration of the transition to the ‘hydrogen economy’ [109].

The concepts of operating facilities within an EIP arrangement are documented in the

literature. The benefits most often touted are increased efficiencies in the form of:

• reduced energy intensity through energy exchange and heat integration;

• reduction in transportation costs/impacts;

• reduced material waste;

• increased profits;

• reduced water use intensity and capital requirements through centralized water and

waste-water processing; and,
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Figure 5.1: Visualization of an EIN as described by Lambert and Boons (modified) [1]

• reduced raw material use intensity though the multi-facility exchange of co-products,

by-products or residual materials.

These are key factors in all eco-industrial park development and are documented as

such by a number of authors [1, 10, 110, 8, 7]. A visualization of these concepts is shown

in Figure 5.1 as presented by Lambert and Boons [1].

Life cycle assessment (LCA) is a technique typically used as part of an environmental

management system for analyzing the performance of a process based on the emissions

attributable to that process. Generally, a study conducted at a facility is compared to a

baseline of emissions established for a generic plant in the same industry. In this work,

LCA is used as part of the objective function in a mixed integer linear program (MILP)

simulation of an EIN to optimize it for reduced emissions. Another portion of the objective

function is attributed to financial gain from operating in an EIN compared to each plant

operating as a stand-alone facility. GAMS is used in this work to construct and solve the
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MILP simulation to determine plant capacity considering the dual objective of reducing

emissions and maintaining or increasing profitability.

In recent years, several groups have attempted to apply LCA concepts to EIN arrange-

ments. A study on the Finnish forest industry revealed a potential benefit of 5-20% in most

impact categories considered by the LCA, and the authors state that “LCA seems a very

useful, albeit labor-intensive, tool for this kind of assessment. It can also help in detecting

those flows whose utilization could provide the greatest environmental benefits.” [111]. In

another study conducted by Mattila et al. in 2012, the authors address the methodology of

LCA applied to industrial symbioses, i.e., EINs [112]. The conclusion of the study is that,

to date, LCA has been applied in very few cases and also that “Expansion of current EIPs

and implementation of new ones may result in changes in the economic structure. This

change has not yet been analyzed in the IS [industrial symbiosis] literature, even though

LCA provides tools for such analysis.” [112]. To be clear, the work herein does not attempt

to analyze a change in economic structure or overall product outputs, but to consider that

reducing emissions and increased profits from industrial plants is a desirable outcome.

The eco-park considered in this work is shown in Figure 5.2 and is representative of

the material flow from each facility in the eco-park. The figure is not a traditional repre-

sentation of a network within an optimization context and instead represents the flow of

materials within the eco-park.

Previous work has been completed on a similar arrangement of processes and can be

found in a previous paper by Kantor et al. [69] which focused on a basic, preliminary de-

velopment of an optimization model in GAMS to optimize the network with a requirement

of hydrogen production to meet the demand of 1000 hydrogen fuel cell vehicles operating
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Figure 5.2: EIN considered in this work [69]

within Ontario, Canada. The work presented in this chapter expands on the previous

model, introducing a more complex modeling technique of mixed-integer elements for ad-

ditional realistic consideration of production. This work uses the same baseline hydrogen

production as in the previous chapter but also furthers the analysis with the consideration

of the benefits of industrial integration using three different feedstocks for energy and reac-

tion components. The three fuels considered here are biomass, coal and natural gas. Each

fuel is considered separately, meaning that co-gasification of a mixture of biomass and coal

is not considered at this stage.

The decision variables for the optimization are:

• existence of each facility;
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• existence of a connection between one facility and another;

• capacity of each facility; and,

• the division or ‘split’ of products from one facilities to others.

Also in this work, life-cycle assessment databases such as ecoInvent and the US LCA

database are used as a primary source for life-cycle data to improve upon the reliability

of the input data. These databases prescribe specific methodologies for obtaining and

publishing data and thus they are assumed to be more consistent over the broad range

of products considered. Additionally, each dataset is vetted for quality in the areas of

reliability, completeness, temporal correlation and geographical correlation as described by

Weidema and Wesnæs [113].

This work represents a growing part of the field of analyzing eco-parks and quan-

tifying their benefits. Several authors have expressed that an EIN has many benefits

[9, 16, 110, 8, 35] but empirical analysis of these benefits remains relatively unexplored

[112, 111]. Karlsson and Wolf utilize an optimization model to explore the benefits from

integrating a system comprised of a sawmill, pulp mill, district heating and biofuel upgrad-

ing [9]. Their method compares the baseline case of no integration with several cases of

integration between the different parts of the network. Additionally, the authors use the

terms industrial symbiosis and polygeneration synonymously with industrial integration,

as is common practice in the field of industrial ecology.

5.1.1 Eco-park concepts

The concept of an eco-park is described in several publications [9, 8, 10, 7] and is described

again briefly here to illustrate the idea. Eco-parks are a method of industrial cooperation
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in which products, co-products and large centralized utilities can be operated to maximize

the efficiency of producing a wide array of outputs within a fixed geographical area [1].

Major improvements by operating in an EIN structure can be found in:

• large plants for water/waste treatment, heat exchange and electricity production;

• exchange of products and co-products between facilities [114, 2];

• waste reduction through facility intergration [114, 2]; and,

• increased optimized operation for higher profit or environmental performance [1].

It is the goal of this research to quantitatively exhibit the benefits of EINs in both

the economic realm as well as for reducing overall environmental impact of manufacturing

chemical products.

This research contributes to society by developing a method for evaluating industrial

relationships and by assisting in the planning of new facilities. This will benefit citizens as

the optimization will take environmental factors into account and will attempt to minimize

the overall waste and air emissions from facilities that could otherwise affect living condi-

tions in areas surrounding these facilities. The impacts on air, water and land can all be

considered and the importance of the environment is taken into account in addition to the

economic performance of industrial processes. If construction of a new chemical facility, or

more specifically a collection of facilities, can be made more economically feasible by its

integration with other processes in the region, construction and factory workers would also

be required to build and operate these facilities. This would contribute to the economic

stability in the region in addition to causing a decline in unemployment rates.

While environmental metrics are becoming increasingly important to business leaders,

companies are still responsible to their shareholders to show solid and sustainable economic
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performance. The use of a dual-objective function allows for profitability to also be consid-

ered in the optimization and this will lead to a solution that proves to be environmentally

responsible as well as being economically feasible. This research is intended to reinvigorate

discussions in the industrial sector regarding issues such as sustainability, process symbiosis

and collaborative efforts. The EIN concept is synonymous with polygeneration, industrial

symbiosis and the like. All of these terms are based upon the concept of a diverse group of

industrial producers cooperating to achieve a common goal of cost-savings and/or reduced

environmental impact. Research has also shown that developing these eco-parks can very

much be a driver for innovation and development of new technologies [37, 38]. The Dow

Jones Sustainability Index (DJSI) is an indicator used to manage investment funds based

on sustainability metrics. The funds developed using this index showed solid growth since

the inception of the program and is an indicator that sustainability within an organization

can have significant impacts on profitability. Though the index also focuses on business

practices and management styles, the overarching reality is that sustainability within a

company yields financial performance results [39, 40]. The DJSI was considered as a po-

tential metric system for measuring the economic and environmental sustainability for the

eco-park network scenarios but was ultimately rejected due to qualitative parameters that

were not considered as part of the optimization model. The WAR algorithm, proposed by

Cabezas [99], was predominantly used in the construction of the metrics for optimization.

The premise of this system is utilized by researchers and government in order to assess

the amount of waste reduced from a process or process alternative [98, 97]. This approach

was used in combination with life-cycle assessment to construct the metric indices in the

objective function for reducing the overall waste reaching final disposition within the air,

water and land.

The approach for this optimization is to calculate the life-cycle impact of each product

or process in the proposed network and to compare the eco-park scenario with a plant of
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comparable size operating as an independent facility. The eco-park concepts rely on col-

laboration from progressive facility managers in order to implement a symbiotic strategy

for responsible and sustainable chemical processing.

5.1.2 Life-cycle Assessment

Life cycle assessment can be used as part of an environmental management strategy to

assess and manage the life cycle inventory of emissions from a product or process. In this

work, LCA efforts are used in the construction of the objective function and for assessing

the reductions in environmental waste from operating in an integrated scenario. The life-

cycle inventory is taken from LCA studies and from SimaPro software databases. Life-cycle

impact assessment methods are used to relate emissions to potential impacts on people and

the environment as is described in the ISO 14040 series of standards [31].

SimaPro databases are region-specific but can be used as an estimate for emissions

from manufacturing a variety of products. Data quality considerations are monitored

within SimaPro according to the framework set out by Weidema and Wesnæs [113] and

the goal for this chapter was to obtain reliable, complete and temporally relevant data sets.

Although the life cycle inventories can respond to regional electricity generation and other

geographical considerations, less weight was applied to obtaining data specific to Canada.

For the figures below, cut-off values between one and six percent of total emissions are

applied so that only the major contributors to emissions are shown. If the figures were

not truncated as such, they would be unreadable as they would contain several thousand

elements contributing to the final emissions burden for the final product. As the cut-off

values are very small, the omitted elements are minor overall contributors to the life-cycle

emissions burden.

96



Figure 5.3 shows the life-cycle greenhouse gas (GHG) contributions from various sources

required to produce 1 kg of ammonia. This is a representation of the GHG emission contri-

bution from different aspects of ammonia production using steam-methane reforming which

is a standard practice for producing ammonia. The cut-off applied in this instance for rep-

resenting the major emission contributors is 1%. In this typical production of ammonia, it

can be observed that natural gas production and use, in several stages, is responsible for the

majority of GHG gas emissions. It must be noted, however, that the emission landscape

changes depending on the emission being considered. For example, when considering the

emission of sulphur oxides, the emissions from the natural gas streams and fuel oil streams

are similar as shown in Figure 5.4 with an applied cut-off value of 3% in order to properly

view the network of life-cycle contributions. This is logically sound as there is typically

more sulphur contained in, and released from, crude oil when compared with natural gas

[115].

The complexities involved with assessing the emission burden from each product /pro-

cess requires an objective function that will take each emission into account and its relative

importance to society. The scope of this work covers the emissions of GHGs, pre-cursors

to photochemical smog, oxides of sulphur and solid waste.

Figure 5.3 and Figure 5.4 are examples of the life-cycle assessment where the CO2 and

SOx emissions associated with producing ammonia in a traditional facility which is not

part of an EIN are evaluated. The purpose of these examples is to show the areas in which

the production of ammonia can be improved in order to decrease life-cycle emissions. The

thickness of arrows exhibits the contribution from one area of the life cycle production pro-

cess to the overall emissions burden associated with a product, in this case, ammonia. For
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Figure 5.3: Life-cycle GHG contributions for producing Ammonia via a traditional (non-

EIN) process from EcoInvent Database of SimaPro software
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Figure 5.4: Life-cycle SOx contributions for producing ammonia via a traditional (non-

EIN) process from EcoInvent Database of SimaPro software

example, it can be seen in Figure 5.3 that the greatest contribution to GHG emissions in

the ammonia production process is the steam reforming of natural gas. Minor contributors

in this case are generation of electricity and fuel oil for heating and transportation. Figure

5.4 shows the life-cycle emissions of SOx and shows a much more even split of the pro-

cesses contributing to SOx emissions stemming from ammonia production; furthermore,

it exhibits that the requirements of fuel oil, natural gas and nickel are the primary areas

contributing to these emissions. It is important to understand life-cycle concepts when

attempting to integrate processes into an eco-park network as the major contributors to

emissions of a particular type are the best candidates for improving the environmental

performance of that process.
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For both instances, the network layer previous to the finished product represents the

sum of the process production flow charts to create the product or process used by the final

manufacturing. Discrepancies between the sum of the penultimate layer and the final life

cycle emission contribution are attributed to the processing within the plant, defined as

gate-to-gate emissions for the facility. Figure 5.3 shows high gate-to-gate GHG emissions

and thus represents a large opportunity for reducing the life-cycle GHG emissions within

the plant. Figure 5.4; however, shows most of the life-cycle SOx emissions are accounted

for prior to entering the manufacturing facility. The opportunity for reducing the life-cycle

SOx emissions is thus bound with the process feedstock.

Researchers have only begun investigating the possibilities of evaluating EINs using

LCA concepts, this work not only shows that this is a valuable undertaking but also pro-

ceeds to utilize optimization in order to assess the best way of constructing these facilities

based on the LCA concepts.

5.2 Manufacturing Facilities

The model is formulated as an MILP with chemical reactions, conversions, product removal

and recycling. Supply and demand are modeled as in a classical transportation problem

but varies significantly due to reaction and/or separation at each facility or ‘node’. The

mass and energy balances must be written for each node to account for the flows of en-

ergy and material through the network. Following this, the technical constraints must be

quantified in a mathematical format in order to implement them within the model.

The nodes of this network were chosen in order to process the streams of a fuel source
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into products. Gasification processes (G) can be constructed to accept input of coal or

biomass and produce syngas of varying H2 : CO, and CO : CO2 ratios. The alternative

fuel source considered is natural gas, with the syngas mixture achieved by steam-methane

reforming. Some of the syngas can be used directly in a combined heat and power plant

(CHP) to produce heating and electricity for the network processes.

For the remaining nodes in the network, the hydrogen in the syngas must be separated

from the other gases in order to utilize them in further processing stages. The separation

of these gases is completed by the pressure-swing adsorption process (PSA). To ensure

that the network operates with the least possible emissions, a carbon capture process (CC)

using a recirculating ammonia loop is added to the network to capture CO2 emissions

which would otherwise be emitted to the atmosphere. A CO2 sequestration process (SQ)

is added as a possibility for the network to reduce its emissions to the environment. This

node relies on injection of CO2 into a deep saline aquifer as is the most feasible form of

geological storage in Ontario as explored by Shafeen et al. [116]. It is estimated in the

same work that the storage capacity via geological sequestration is approximately sufficient

for 730 million tonnes of CO2. For the scale of processing considered in this work, the stor-

age capacity is much larger than the amount produced; however, the constraint is placed

within the model in the event that the scale of facilities considered is increased significantly.

Ammonia production (AM) in the network is sufficient to supply the carbon-capture

process with make-up ammonia while also producing excess as a market product which is

used as a chemical building block for other processes or as an agricultural fertilizer. Urea

processing is naturally synergistic to the ammonia process as urea requires two molecules

of ammonia and one molecule of CO2. The ammonia can be produced at the proper con-

ditions for urea production, negating additional processing considerations for conventional

ammonia destined for use in manufacturing urea. The remainder of the ammonia is sent
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to market.

A urea node is included in the network as it is efficient to produce ammonia in close

proximity to ammonia manufacture [117]. Urea is also a chemical fertilizer which can be

used to temporarily sequester CO2 as part of a solid fertilizer. This CO2 is later released

to the atmosphere when urea is applied as a fertilizer but the emission of CO2 in close

proximity to the vegetation can increase probability of its utilization for respiration. Urea

manufacturing (U) in this network is entirely for export to external markets. A summary

of the network nodes is shown in Table 5.1. Table 5.2 shows a summary of the inputs and

outputs for each facility.

Table 5.1: Legend of Nodes

Process Node Abbreviation

Gasification G

Combined Heat and Power CHP

Carbon Sequestration SQ

CO2 Capture CC

Pressure-swing Adsorption PSA

Ammonia Production AM

Urea Manufacture U

5.3 Objective Function

As mentioned previously, the complex nature of the life-cycle emission considerations must

be included in an objective function that will lead to the optimization of the network of
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Table 5.2: Summary of inputs and outputs

Process Inputs Outputs

Gasification

Biomass/Coal/Natural gas CO

Heat CO2

Electricity N2

Air H2

H2O

Combined Heat and Power

CO Heat

CO2 Electricity

N2 N2

H2 H2O

Heat CO2

Electricity

Carbon Sequestration

CO2 (purified stream)

CO2 (purified stream)Heat

Electricity

CO2 Capture

CO2 CO2 (purified stream)

N2 N2

H2O H2O

Heat

Electricity

Pressure-swing Adsorption

CO H2 (purified stream)

CO2 CO

N2 CO2

H2 N2

Heat H2

Electricity

Ammonia Production

N2

NH3

H2

Heat

Electricity

Urea Manufacture

NH3

(NH3)2CO2

CO2

Heat

Electricity
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plants yielding the most beneficial emission reductions. A purely environmental objective

function is impractical for two reasons; primarily, a purely environmental objective is

unlikely to be undertaken by industrial interests as the manufacturers must show positive

financial results. Additionally, it is impractical to consider a purely environmental objective

as the optimization algorithm would naturally decrease the plant sizes to the least allowable

value. This assessment does not include the emissions offset associated with reforestation.

For these reasons, an economic term is included to offset the environmental term to present

a balanced, applicable, practical approach to optimizing the network. The bi-objective

optimization is structured as described by Kim and Weck [118] and the formulation for the

program is shown below.

For an optimization program to minimize Z subject to a design vector x and a vector

of fixed parameters, c, the objective function can be written as equation 5.1.

minZ(x, c) (5.1)

The entire problem can be structured as follows:

minZ(x, c)

s.t. g(x, c) ≤ 0

h(x, c) = 0

xLi ≤ xi ≤ xUi (i = 1, . . . , n)

Z = [Z1(x) . . . Zq(x)]T (5.2)

x = [x1 . . . xi . . . xn]T

g = [g1(x) . . . gm1(x)]T

h = [h1(x) . . . hm2(x)]T

Where:
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• g is the vector of inequality constraints;

• h is the vector of equality constraints;

• xLi is the lower bound for xi;

• xUi is the upper bound for xi;

• q is the number of objectives;

• x is the vector of decision variables;

• c is the vector of fixes parameters;

• m1 is the number of inequalities; and,

• m2 is the number of equalities;

and with these definitions, 5.2 can be reduced to a scalar problem of the form shown

in 5.3

min Z̃ =

q∑
i=1

λi
Fi
Zi (5.3)

Where λi and Fi are the weighting and scaling factors for each Zi. Z̃ is considered to be

the aggregated objective value, being a summation of each weighted element Zi as shown

by Kim and Weck [118]. Generally, the sum of the weighting/scaling ratios is equal to

unity. Kim and Weck explored this structure in the case of a bi-objective function which is

applicable in this work, as the two objectives being considered are the economic objective

and the environmental objective which is written in terms of reduced emissions.

Splitting the objective function into the economic portion and an environmental por-

tion yields Z1 = Zeconomic and Z2 = Zemissions, respectively. Though this form would then
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appear as a bi-objective function, Zemissions is constructed inherently as a multi-objective

function to include the emissions of multiple environmental contaminants. Zemissions is

constructed as a summation of the reduced emissions between an independently-operated

facility when compared to the integrated facility such that:

Z̃emissions =
ne∑
e

λe
Fe
Ze (5.4)

Where:

• e is representative of a considered emission;

• ne is the number of emissions considered;

• λe and Fe are the weighting and scaling factors as mentioned previously; and,

• Ze is the emission differential between the integrated and stand-alone facilities. The

difference is defined in Equation 5.5 below:

Ze = Ie − Se (5.5)

Where:

• Ie is the emissions of e from an integrated facility;

• Se is the emissions of e from a standalone facility.

Constructing the economic portion of the objective does not require further manipulation,

as it is a difference between the net present value (NPV) of the integrated and independent

plants assessed at a set discount rate, rd, and plant lifetime and is constructed as shown
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in Equation 5.6.

Zeconomic = ICC − SCC +
L∑
t=1

np∑
p

Rp − [IOC − SOC ]p
(1 + rd)t

(5.6)

Where:

• p is a manufacturing facility;

• np is the number of manufacturing facilities;

• Rp is the return from sale of products from plant p ($);

• ICC and SCC represent the integrated and standalone capital costs, respectively($);

• IOC and SOC represent the integrated and standalone operating costs, respectively($);

• t represents the year; and,

• L represents the lifetime of plant p.

The numerator in equation 5.6 does not require the subscript t, as it is assumed that

production is maintained at the same level for the lifetime of the plant. For this analysis,

the network lifetime, L, is considered to be 30 years during which time, the discount rate,

rd, is also fixed. The full bi-objective function, based on these equations can then be seen

in equation 5.7.

min Z̃ =
λemissions
Femissions

Z̃emissions +

[
1− λemissions

Femissions

]
Zeconomic (5.7)
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5.4 Modeling

The modeling is explained in detail in a previous chapter. The explanation here is pre-

sented to summarize the main differences in the model which are added in order to create

a more realistic scenario with mixed-integer programming. A schematic of the network

under consideration was shown previously as Figure 5.2.

The sets used in this formulation are as follows:

• k is a set of the transportation technologies available;

• m is a set of plant sizes;

• v is a set of material vectors;

• e is a set of emissions;

• p is a set of facilities; and,

• p2 is an alias of p.

The mass balances between units are formulated as inequalities as described by the vector

g in Equation 5.2, whereas the mass balances within a unit are formulated as equalities

as described by vector h in Equation 5.2. The format of some inequalities in the following

equations is altered from the general format for the sake of clarity. The generalized form

of the mass balances between units are described by Equation 5.9, while the mass balances

within a unit are described by Equation 5.8.

outv,p =
∑
p

inv,p − rxv,p + genv,p ∀v, p (5.8)
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Where outv,p is the amount of material v output from plant p and inv,p is the input of v

to plant p. This equation is a mass balance based on equilibrium conditions within a unit

such that the amount output from a given plant p is equal to the inputs from all other

plants p2 with a decrease due to consumption at a rate of rxv,p or an increase from genera-

tion encompassed by genv,p. rxv,p and genv,p are functions of conversion and stoichiometry.

outv,p ≥
∑
p26=p

inv,p2 ∀v, p (5.9)

This mass balance between units forces the production of material v from plant p to

exceed the requirements of input for all other plants, p2, that accept material v from p. At

this point, the binary variable x is defined for selection of plant sizing.

xp,m =

 1 if plant p of size m exists

0 Otherwise
(5.10)

To force the selection of only one plant, Equation 5.11 is included:∑
m

xp,m ≤ 1 ∀p (5.11)

Additionally, the flow of material v from plant p must be less than the capacity ex-

pressed by xp,m. This constraint is applied by utilizing Equation 5.12.

outv,p ≤MU
p,mxp,m ∀v, p,m (5.12)

Where MU
p,m is the upper limit of from plant p of size m. Each value of MU

p,m is defined

in a table within the optimization program.
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At which point ICC and SACC from Equation 5.6 are calculated for plant p of size m

from existing plant data for the stand-alone and integrated facilities. The economy of scale

plant construction theory with an exponential scaling factor of 0.6 is used to calculate the

costs for sizes lying between defined points. The costs are amortized and included in the

economic portion of the objective function. The existence of a transportation connection

between two plants is represented by variable y as described by equation 5.13.

yp,p2,k,v =

 1 if material v is transported by method k between p and p2

0 Otherwise

(5.13)

Several integer equations must be applied at this time. The first, Equation 5.14, pre-

vents the existence of transportation connections to plant p if plant p does not exist in any

size (i.e.,
∑
m

xp,m = 0).

∑
m

xp,m ≥ yp,p2,k,v ∀p, p2, k, v (5.14)

Equation 5.15 yields the result that only one method of transportation should be chosen

to transport material v between plants p and p2.

∑
k

yp,p2,k,v ≤ 1 ∀p, p2, v (5.15)

The transportation cost can thus be assessed by applying the base-plus-throughput

method. This is shown here in Equation 5.16.
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TransportationCostk =
∑
p

∑
p2

∑
v

yp,p2,k,vBaseCostk+
∑
v

∑
p

outv,pThroughputCostk ∀k

(5.16)

The transportation cost, in turn, is also included in the economic portion of the ob-

jective function. More details on the interactions of each unit and the associated reagents

can be found in Chapter 4.

The structure of the environmental portion of the program is constructed in a similar

manner to the economic portion shown above, yet is increasingly complex as each emission

type (set e, noted above) requires its own correlations. These correlations are parallel to

the economic portion of the objective function, yet they yield the differences in emissions

produced from a standalone facility and an integrated facility instead of the economic dif-

ferences.

5.5 Results

The EIN considered here is to support production of hydrogen for export, in anticipation

of the potential ‘hydrogen economy’ where there is some demand to refuel fuel cell vehicles

[41]. The target for hydrogen production in the EIN is enough to fuel 1000 vehicles within

Ontario, Canada. As presented in a previous chapter, the results of the model show that

to produce the requirement for 1000 vehicles fuelled by hydrogen, the export of products

from facilities will vary based on the weighting factor of life cycle emissions in the objective

function [69]. By varying the life-cycle emissions weighting in the range of 0, representing

no impact of emissions on the objective function, to 1, representing no impact of profitabil-

ity on the objective function yields the result shown by Figure 5.5. The x-axis in Figure
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Figure 5.5: Normalized plant exports as a function of life-cycle emissions weighting

5.5 refers to the ratio λemissions

Femissions
as mentioned in equation 5.7 and refers to the weighting of

the life-cycle emissions relative to the economic weighting. As it is a bi-objective function,

the two sides of the figure are noted as being the side of high environmental bias or high

economic bias.

Normalized plant export, used on the y-axis of Figure 5.5- 5.7 is representative of the

output from each facility in the EIP. The values are normalized to the maximum value

seen over the trials for the purposes of observing changes in production from each facility.

As the level of production varies largely between plants, a figure of the normalized values

is best for observing variations in the level for each facility.

As suggested by previous work, the possibilities of alternative fuel sources should be
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considered [69]. For this work, coal and natural gas have been considered as possible al-

ternatives to biomass as the primary fuel source for gasification. Modifying the model

to accept a variety of fuel sources as inputs to the eco-park shows any potential benefits

which may arise from utilizing a traditional fossil fuel as a gasification or steam-methane

reforming (SMR) fuel, providing that the network still provide an adequate level of hy-

drogen for 1000 fuel cell vehicles. Figure 5.6 and Figure 5.7 show the same analysis but

using coal or natural gas as fuels. Figure 5.6 shows that importing electricity is required

for emission weighting between 0 and 0.8 in order to produce the required products. This

is likely due to a balancing of emissions from using coal generation and the grid mix in

order to supply the necessary electricity to the network. High volumes of coal are required

at a high value of emissions weighting as coal can be utilized within the network in a

more emission-efficient manner than the electricity production that would be imported

into the network in the low-emission-weighting scenarios. The highest production for most

industrial chemicals is at an emissions weighting of 0.9 at which point, emissions have a

large impact but economics also plays a role. At higher emissions weighting, the economic

portion of the objective is no longer used and thus the production drops off significantly in

order to reduce the amount of emissions while maintaining the level of hydrogen production

for the fuel cell vehicles as stipulated previously.

Figure 5.7 represents the same information as in the previous two figures but utilizing

natural gas as the feedstock. There are three distinct regions, the first when the life-cycle

weighting is between 0 and 0.4, the second between 0.5-0.9 and the final region when the

life-cycle emissions are weighted as 1, representing a purely environmental objective. Sim-

ilar trends are seen as with the coal except that electricity import is only occurring in the

scenario in which life-cycle emissions weighting is set to 1. At this point, the optimization

again reduces the amount of chemical production as economics are no longer a factor. In the

intermediate to high range of emissions weighting, 0.5-0.9, large product volumes are man-
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Figure 5.6: Normalized network plant export using coal as gasification feedstock

ufactured in the EIN as there is an economic incentive in addition to the reduced emissions.

Also, the analysis points to the processing of urea being most economically viable when

balancing emissions and economics. Urea is a value-added product and is easier to produce

using a natural gas feedstock than other potential sources. The CO2 that is bound in the

urea is also beneficial economically as the carbon sequestration facility would experience

reduced loading and thus would require lower capital and operating costs.

The weighting for life-cycle emissions and profitability were set to the baseline level of

0.5 for each factor. Figure 5.8 and Figure 5.9 show the results of the updated modeling in

terms of production amounts, profits and emissions for the three fuels.
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Figure 5.7: Normalized network plant export using natural gas as feedstock

In terms of profitability, the model results shown in Figure 5.8 yields that biomass is

the least profitable fuel to use and that natural gas yields slightly higher profit than coal.

The reasoning for a slight but marginal difference using the various fuels is due to a dif-

fering network price structure considering SMR instead of gasification of coal or biomass.

The biomass yields a lower net profit due to a lower energy density and increased pro-

cessing complexities associated with utilizing biomass in the system. The total emissions,

surprisingly, are similar for all three fuels. Any potential emission reduction from utilizing

biomass as a feed is offset by the increased transportation emissions of the biomass and

the fact that reforestation has not been considered as it is not part of the EIN operations.

It is assumed that inclusion of reforestation to re-sequester carbon through the growth of

new biomass over the EIN lifetime would reduce the total emissions produced by utilizing

biomass as a fuel. The hydrogen, as mentioned, has a fixed level in order to produce the
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Figure 5.8: Network product exports and profit for three different fuels

required fuel for 1000 vehicles and thus it is constant across the three fuels considered. The

production level of ammonia varied slightly for the three fuels, with the largest amount

being produced while utilizing biomass as gasification feed.

Figure 5.9 shows the heat, power and urea output for the three fuels. Immediately, it

can be seen that the net power export for using biomass is a negative value, indicating

that power import is required. Both fossil fuels show a net export of power, although the

level is very low. Clearly the low energy content of the biomass requires electrical input to

the EIN. Heat output is also dramatically lower for biomass than for coal or natural gas,

although this was expected due to the lower energy content in the fuel. The only fuel which

showed a meaningful production of urea is natural gas. Due to the inclusion of life-cycle

emissions as part of the objective function, ammonia is typically produced in higher quan-
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Figure 5.9: Network exports of power, heat and urea for three different fuels

tity than urea as the additional processing of ammonia to produce urea generally does not

produce a favourable cost/benefit transaction in terms of the objective function. With the

case of natural gas, the cost of erecting the urea facility is only slightly overcome by the

profitability associated with the product. For the other fuels, this barrier is not exceeded

and thus urea is not produced in any significant quantity.

Calculating the mass-specific contributions of ammonia production between the tradi-

tional process shown in Figure 5.3 for GHG emissions and Figure 5.4 for SOx emissions

yields the comparative tables shown in Table 5.3 and Table 5.4. While the differences in

Table 5.3 seem minute, Table 5.4 is shown for comparison at a level representing a very

small, considering typical industrial operations, production of ammonia. The reduction in

significant figures for Table 5.4 belies some of the differences due to rounding; whereas,
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the benefits in terms of GHG emissions are very clear. Some issues, such as allocation

of emissions to the appropriate facility, are sometimes difficult to address and thus it is

generally a better approach to look at the emissions from the network perspective instead

of each individual product. Regardless of the possible allocation issues, the EIN shows

large reductions in GHG emissions using any of the three fuels and mixed results for SOx,

smog precursors and solid waste. Part of this reduction is due to the incorporation of car-

bon capture and sequestration within the network but reductions in transportation-related

emissions and fugitive releases also contribute.

Table 5.3: Comparison of life cycle emissions per kg of ammonia based on three fuels

Basis: 1 kg Ammonia Traditional EIN with EIN with EIN with

Natural Gas Coal Biomass

GHG (kg CO2 equivalent) 1.91 1.1469 1.14125 1.00464

SOx (kg SO2 equivalent) 0.00333 0.00293 0.00405 0.00146

Smog Precursors (kg VOC

equivalent)

0.00309 0.00329 0.00308 0.00437

Solid Waste (kg) 0.0033 0.00326 0.00386 0.00396

Total 1.91972 1.15637 1.15224 1.01443

5.6 Summary

This chapter focused on the expansion of the model from the previous chapter to include

integer and binary variables for options of plant size/existence and connections between

the facilities. In addition, the gasification node was implemented in the model and three

fuel sources were considered. Natural gas, coal and biomass showed similar results for
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Table 5.4: Life-cycle emissions of ammonia based on three fuels at a reference level of 730

tonnes

Basis: 730000 kg Ammonia Traditional EIN with EIN with EIN with

Natural Gas Coal Biomass

GHG (kg CO2 equivalent) 1400000 840000 840000 740000

SOx (kg SO2 equivalent) 2400 2400 3000 1100

Smog Precursors (kg VOC

equivalent)

2300 2400 2300 3200

Solid Waste (kg) 2400 2400 2800 2900

Total 1410000 850000 840000 740000

many of the plant exports although the lower heat content from biomass coupled with

additional impurities led to reduced profitability and less generation of heat and electricity

when compared to the other two fuel options.

The sensitivity analysis on the weighting of each portion of the objective function was

carried out for each fuel and result in four distinct optimal scenarios with varying levels of

production from each of the facilities.

Compared to the previous chapter, the overall economic and environmental benefits are

slightly lower which is attributable to the increasing constraints imposed in the model such

as discrete plant sizes and inclusion of transportation costs. The MILP approach presented

in this chapter allows for increasingly detailed modeling of the EIN than the LP presented

in Chapter 4 and is a more realistic representation of facility construction.
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Chapter 6

Generalized MINLP Modeling of

Eco-Industrial Networks

6.1 Introduction

Symbiotic relationships between chemical network producers have been demonstrated ef-

fectively in both academic and industrial domains. The integration of material and energy

exchange between producers typically offers economic and environmental advantages over

stand-alone facilities. However, the high level of interactions between participants in an

eco-industrial network (EIN) requires the application of a system integration method for

the design of a common optimal infrastructure. One of the crucial factors for the success

of any EIN is that the sum of the benefits achieved working together must be greater than

working as many stand-alone facilities [119]. For example, the industrial symbiotic network

of Kalundborg, created in the 1970s, is considered a prototype of an EIN. This network

consists of an oil refinery, a pharmaceutical company, an electric power plant, a gypsum

plate factory, a cement factory, a fish nursery and city heating. These facilities use surplus

energy and waste materials from each other, obtaining annual savings of more than $12
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million [120]. Currently, the government of South Korea is implementing a three-phase,

15-year EIN initiative to promote the balance between the economy, society and environ-

ment [121, 8, 122]. The first phase of the project (2005-2009) aimed at converting five

existing industrial complexes into EIN based on the optimization of energy consumption,

raw materials, and other resources. This is part of the South Korean “low-carbon green

growth” strategy, which has become the core paradigm of development since 2008 [123].

Accordingly, the focus of these networks has been analyzed qualitatively by a number

of authors and quantitative examples have now been presented in a number of instances.

Lovelady et al. [119] developed an optimization model for the design and integration

of EINs. The model focuses on the management of water among multiple processes in

a common industrial network. The recycle, reuse, and separation of waste-water using

interception devices are considered as management strategies. The model is based on a

source-interception-sink structure to determine the best potential configuration. Fernandez

et al. [124] proposed a model to determine the optimal location for a sustainable EIN. The

model is based on the analytical hierarchy process (AHP) that applies multicriteria eval-

uation to analyze different suitable locations. The model consists of three different levels:

selection of the geographic area, evaluation and selection of suitable areas, and evaluation

of specific zones. The evaluation is performed according to the importance assigned to the

goal variables (i.e., social, economic, environment, planning, and infrastructure). There-

fore, weights are applied to the different factors considered in the model, which leads to

the identification of the suitable locations.

Sendra et al. [125] adapted a material flow analysis tool to consider material flow into

and out of an EIN. The model determines the amount of material and energy that are

used in the network to plan the development of an eco-park. The model also takes into

account environmental metrics for the analysis. Zhao et al. [126] used system dynamics
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and grey clusters approaches to redesign an EIN in China. Four different scenarios were

considered in the analysis: base case, economic development as key priority, impact on

the environment, and economic impact (subject to science, technology, and environmental

improvements). Spriggs et al. [127] described the challenges involved in the development

of eco-parks. The authors classified these challenges into two groups: technical/economic

and organizational/commercial/political. The technical/economic challenge means that

the success of an eco-park greatly depends on the feasible exchange of materials and energy

among the companies involved in the network. The organizational/commercial/political

challenge means that deep cooperation/integration amongst the companies in the EIN are

needed to set common rules that lead to the optimal flow of information in the network.

Additionally, Chertow [4] proposed taxonomy for EINs based on the type of material ex-

change. He studied 18 potential networks and suggested the following classification: waste

exchange within a facility/organization, among facilities co-located in a defined eco-park,

among facilities at some distance (e.g., Kalundborg) and among facilities structured across

a broader region. Another approach presented by Baldwin et al. [128] who studied various

EIN models (Kalundborg, Styria and Massachusetts) based on an evolutionary framework.

This work represents a novel approach to the construction of such networks that includes

optimization of material and energy streams and uses a purely quantitative methodology

for evaluating these eco-park scenarios. This work expands on the eco-park principles

to include additional mathematical complexity in the model formulation as well as ana-

lytical insight into the network’s design. Kantor et al. [69] developed a linear program

(LP) that models an EIN to demonstrate its economic and environmental feasibility and

the approach used to solve this type of problem. The model considered a dual-objective

function to account for economic and environmental factors existing in processing facilities.

In this chapter, the base models presented in the previous chapters have been refor-
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mulated to add additional complexity and express the life-cycle effects of a transporta-

tion network for materials and energy between the production nodes. The extension of

this model has required a shift into the realm of mixed integer non-linear programming

(MINLP). This type of model allows for increased flexibility in constraint construction and

improved accuracy of the model. Shifting to MINLP methods also has consequences, which

include: increased computational time, less well-defined algorithms for providing solutions

and concerns regarding the globality of a solution, once found.

Life cycle concepts are particularly useful in determining environmental benefits of

alternatives as the methodology is capable of capturing emissions produced from resource

extraction to final disposition [129, 130]. Accordingly, for further development in terms

of transportation analysis and improvements, the model was reformulated as an MINLP

model to design this EIN. Additionally, the objective function of the model has been

reformulated in such a way to prevent either of its two terms from overshadowing the

other.

6.2 Multi-Objective Optimization Model

This section presents the main features of the multi-objective optimization model pro-

posed in this work to determine the annual production costs (accounting for environmental

metrics) associated with the EIN. The model has been constructed using GAMS, as dis-

cussed previously, as it has been used extensively for multi-objective optimization as well

as MINLP modeling.
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6.2.1 Problem Statement

The multi-objective model proposed in this work aims to minimize the life-cycle emissions

while attaining economic profits in an EIN design. Figure 6.1 shows the general layout

of the present network design model. The model consists of nodes defined by different

industrial processes designed to operate as a network. These nodes exchange material

and/or energy, thus minimizing waste (by reutilizing process products and co-products from

other EIN facilities) and maximizing profit (by generating higher added-value products)

under operational constraints. As a result, the integrated relationship between nodes

has been considered in the present mathematical formulation. The model’s key inputs

are: maximum output capacities of the production nodes, fuel composition and distances

between the nodes. To meet the expected production levels of energy carriers and chemical

products, the present EIN simultaneously minimizes the environmental impacts (in terms of

life cycle emissions) and production costs by selecting the most suitable type of feedstock

fuel, nodes in the production network and transportation modes subject to operational

constraints. The model’s key outputs are (see Figure 6.1): annualized network production

costs, type and amount of products, plants and systems with corresponding capacities, and

overall economic and environmental performance relative to non-integrated facilities.

The present EIN model includes the selection of continuous, binary and integer vari-

ables. In addition to these variable types, there are non-linearities present in the model

from various constraints and calculations; thus, the resulting mathematical model is formu-

lated as an MINLP optimization problem. Each of the processes (i.e., production nodes)

considered in the present model (see Figure 6.1) are described in detail in the present sec-

tion.

A formulation of this network was initially constructed as an LP model which relies

on continuous variables without complex interactions between variables. This type of
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Figure 6.1: Eco-industrial network flow diagram

model is the most rigorously studied and most easily solved type of optimization. For this

reason, large bodies of research have been published on this type of model and for lineariz-

ing complex constraints to take advantage of well-known algorithms for solving LP models.

Typically, LP models are incapable of capturing the full extent of a complex opti-

mization and thus the MILP type of optimization is used. This type of model allows

for binary and integer constraints to be used in the model which permits discrete deci-

sions and discontinuous variables to be used in the model. This type of model is used for

more extensive optimization problems as it allows the user to construct a more realistic

model of the system. As with LP models, MILP models often rely on linearization tech-

niques applied to more complicated constraints in order to maintain the MILP structure
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to comply with the solution methods. LP and MILP methods are well-studied and require

relatively little computational time and power when compared to an MINLP formulation.

The solvers which are included in many standard optimization packages have been refined

to solve LP and MILP problems efficiently and effectively. MINLP modeling, however,

introduces non-linear constraints to an MILP model and is typically considered when the

constraints can no longer be linearized. The consequences of delving into this realm are

less well-defined solution algorithms and a large increase in computational power and time.

In this work, the nature of the constraints and the objective function would not allow for

a definite linearization and thus the model was necessarily constructed as an MINLP. The

benefits of utilizing this framework are that the model can be presented in a more realistic

and comprehensive fashion without compromising on the specificity of constraints or the

objective function.

As outlined in the previous chapters, this network of facilities was selected because

of natural integration that is experienced between these facilities. The network contains

products and co-products which act synergistically with other facilities in the network;

thus, locating such industries and collaborating toward an end goal of increased profits

and reduced emissions can be realized.

The base scenario for the optimization models is that each facility operates indepen-

dently of each other, i.e., no integration between the nodes. The integrated case is always

compared to this base case in order to derive a benefit of reduced emissions or improved

economics compared to the case without integration.
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6.2.2 Problem Representation

To simplify the terminology, key indices have been introduced into the problems formula-

tion to represent the main properties of the model. A source-sink structural representation

is used to embed potential configurations of interest. Accordingly, the indices i and j have

been included to represent the source and sink nodes, respectively. The sets i and j are

defined as follows:

i ∈ I = {g, chp, cc, psa, sq, ap, up, mk, wt} (6.1)

j ∈ J = {g, chp, cc, psa, sq, ap, up, mk, wt} (6.2)

where g represents gasification processes, chp combined heat and power plants, cc

carbon capture, psa pressure swing adsorption, sq sequestration, ap ammonia production,

up urea production, mk the market place, and wt water and waste treatment facilities.

Also, a constraint has been included in the model to avoid material back-feeding in the

nodes (i.e., i 6= j). The set of alternative feedstock hydrocarbon fuels, h, used in the

network is given as:

h ∈ H = {C, B, NG} (6.3)

where h denotes the set of feedstock fuels available in the eco-industrial network, C

represents coal, B biomass and NG natural gas. Furthermore, the index m is used to

denote the set of materials, which includes products and co-products involved in the eco-

industrial network. The set of materials, M, is defined as follows:

m ∈M = {M1, ...,M11} (6.4)
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where M1 represents carbon monoxide (CO), M2 carbon dioxide (CO2), M3 hydrogen

(H2), M4 nitrogen (N2), M5 ammonia (NH3), M6 urea, M7 water (H2O), M8 methane

(CH4), M9 ash, M10 sulfur (S), and M11 other contaminants. On the other hand, the

set of utilities, u, associated to the eco-industrial network are heat, process water and

electricity. This utility set is denoted as follows:

u ∈ U = {U1, U2, U3} (6.5)

where U1 represents heat, U2 process water and U3 electricity. Additionally, the set of

transport modes, k, available to connect the nodes is given as:

k ∈ K = {Rd,Rl, Pd} (6.6)

where Rd represents roadway transportation, Rl rail and Pd pipeline of diameter d.

Six different pipeline sizes are considered in the formulation of the model, ranging from

a minimum of two inches (2”) to a maximum of twelve inches (12”) with a difference of

two inches between each other (i.e., P2”, P4”, ..., P12”). The environmental emissions, e,

considered for the life-cycle emission assessment of this study are given by the following

set:

e ∈ E = {GHG,NOx, SOx, SW} (6.7)

where index e denotes the set of emissions, GHG represents the greenhouse gases mea-

sured in CO2 equivalent units, NOx are the nitrogen oxides, SOx are the sulfur oxides,

and SW represent the solid waste materials (landfill materials).
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Figure 6.2: Gasification process

6.2.3 Model Formulation

As previously mentioned, the optimization model presented in this work consists of differ-

ent production nodes that can be linked to each other depending on material needs and

operational constraints. These nodes i and j are linked by different available transport

modes k depending on economic factors and the nature of the transported materials. The

EIN nodes considered in the model are described next.

6.2.3.1 Gasification node (g)

The model’s first stage consists of a gasification process, where the feedstock hydrocarbon

fuel, h, reacts at high temperatures generating a mixture of gaseous products. The gaseous

products are typically carbon monoxide (CO), carbon dioxide (CO2), water (H2O), hy-

drogen gas (H2) and nitrogen products (e.g., when air is used as the oxygen source of the

process). The diagram of this process is shown in Figure 6.2.

Hydrogen gas and carbon monoxide are the main outputs of the process and they are

available, as well as the rest of the products, for further use as chemical feedstocks in down-
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stream nodes j [69] . The type of feedstock fuel and corresponding product composition

in the gasifier are calculated as follows:

GPm =
fhFCh,mFM

MWh

(6.8)

fh =

 1 if fuel h is selected

0 Otherwise
(6.9)

where GPm represents the total amount of material m produced in the gasifier, FCh,m

is a parameter that represents the material composition of the gaseous product formed

in the gasification process as a function of the type of fuel h based on the literature

[131, 132, 133, 78, 134], FM is the mass flowrate of the fuel entering the gasifier, and

MWh is the molecular weight of the feedstock fuel. The selection of only one type of fuel

for the gasifier is constrained as follows:

∑
h

fh = 1 (6.10)

where the index h represents the type of feedstock hydrocarbon fuel and fh is a binary

variable indicating the type of fuel h. The waste products (i.e., M9 −M11) obtained from

the gasification process are sent to waste/water treatment facilities (wt). These waste

products are given as follows:

GWm = GPm ∀m ∈ {9, 10, 11} (6.11)

where GWm represents the amount of waste materials generated in the gasifier (source

node) and sent to waste/water treatment facilities (sink node) for environmental treatment

and later disposal/commercialization. The rest of the materials generated in the gasifier
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are co-products that can be used in the remaining production nodes for further processing,

these materials can be calculated as follows:

GOm,j = GSFjGPm ∀m ∈ {1, 2, 3, 4} , j ∈ {cc, chp, psa} (6.12)

where GOm,j represents the material m output from the gasifier to the production nodes

j, and GSFj is the gasifiers split factor to the sink nodes j. Furthermore, the gasification

process demands certain types of energy such as heat, water and electricity. These utility

demands (GDu) associated to the gasifier can be estimated as follows:

GDu = GRu

4∑
m=1

GPm (6.13)

where GRu is a parameter that denotes the amount of utility u required in the gasifier

per unit of total gaseous product generated in the plant as defined by the requirements of

the facility operations as found in the literature [131, 132, 133, 78, 134, 135, 136, 137, 138,

79].

6.2.3.2 Combined heat and power node (chp)

This node represents a type of cogeneration plant where the main outputs are heat and

power. This node provides heat to the facilities in the EIN as well as potential power supply.

This node oxidizes carbon monoxide and hydrogen gases coming from the pressure swing

adsorption (psa), gasification (g) and carbon capture (cc) nodes. The overall interactions

of this node are shown in Figure 6.3.

The total amount of materials entering this node can be estimated as follows:

CIm = POm,j +GOm,j + CCOm,j +MOm,j ; j = chp (6.14)
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Figure 6.3: Combined heat and power process

where CIm represents the total amount of material m entering the combined heat and

power unit whereas POmj, CCOm,j and MOm,j are the material outputs from pressure

swing adsorption, carbon capture and an outside source, the market, going into the chp

node, respectively (i.e., the market can provide H2 if needed). Moreover, only carbon

dioxide and water are generated in this process. The amount of carbon dioxide produced

in this node is calculated as follows:

CPM2 =
∑

m∈{M1,M8}

CIm (6.15)

where CPm is the total amount of carbon dioxide (m = M2) produced in this facility.

The carbon monoxide and methane entering this node participate in a series of reactions

producing carbon dioxide on a 1:1 mole ratio according to standard combustion stoichiom-

etry. Additionally, water is generated in this process as follows:
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CPM7 = CIM3 + 2CIM8 (6.16)

where CPm is the total amount of water (m = M7) produced in the combined heat and

power node, which results from reactions involving hydrogen and methane. Accordingly,

for each mole of hydrogen and methane that react in this process, one and two moles of

water are produced, respectively, according to standard combustion stoichiometry for di-

atomic hydrogen (H2) and methane (CH4).

The main material outputs associated with this process are carbon dioxide and water.

Nevertheless, nitrogen may enter and exit this node unchanged or may react to produce

NOx under some conditions. The rest of the materials that enter this node are consumed

in the internal process reactions. The materials from this node (stack gas) are sent to

carbon capture; these output materials can be estimated as follows:

COm,j = CIm + CPm ∀m ∈ {M2,M4,M7} , j = cc (6.17)

where COm,j is the amount of material m sent to the carbon capture node; this product

is mainly composed of CO2. The total energy content within the gas fed to this node can

be calculated as follows:

CEC =
∑

m∈{M1,M2,M3,M4}

CImLHVm (6.18)

where CEC is the total energy content of the gas entering the combined heat and

power unit, and LHVm is the lower heating value of the gaseous components, which are

widely published values and are included in the appendix. Furthermore, the total amount

of electricity and heat generated can be estimated as shown in Eq. 6.19 below:
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CGu = CERuCEC CEFu ∀u ∈ {U1, U3} (6.19)

where CGu is the total amount of utility u generated in the process, CERu is the

ratio of the total energy content used to produce utility type u, CEFu is a parameter that

represents the efficiency of generating utility type u. The process modeling in this section

is drawn from several major publications [131, 139, 136, 140, 141].

6.2.3.3 Carbon capture node (cc)

Captured CO2 can be purified and used for a wide variety of processes in order to avoid

emitting it to the atmosphere. Presently, monoethanolamine (MEA) is the most common

CO2 capture media used in the industrial sector. However, ammonia represents an alter-

native medium and has demonstrated various advantages in its ability to capture carbon

dioxide [81, 82]. Therefore, ammonia is included as the CO2 capture media in the proposed

network to avoid the need of importing MEA. The diagram of this process is shown here

as Figure 6.4.

The total amount of materials entering carbon capture can be calculated as follows:

CCIm = GOm,j + COm,j + POm,j + AOm,j ; j = cc (6.20)

where CCIm is the total amount of material m entering carbon capture, POm,j is the

outlet material from the pressure swing adsorption node into carbon capture, and AOm,j

is the output from the ammonia production node used as make-up material to maintain

the carbon capture process. The carbon capture process does not involve any chemical

reaction, in this process the CO2 product is purified for its use in other nodes, especially

the urea plant. Accordingly, the amount of CO2 product can be estimated as follows:
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Figure 6.4: Carbon capture process

CCOm,j = CCSFjCCIm ;m = M2, j = up, sq (6.21)

where CCOm,j (m = M2) represents the output of CO2 from the unit, CCSFj is the

fractional splitting of the CO2 stream at the outlet of this unit to the sink nodes j. Note

that most of the purified carbon dioxide is sent to the urea production process whereas

the remaining CO2 is sent to the outlet node sq (i.e., carbon sequestration). Nevertheless,

small amounts of CO2 are also sent to the chp and psa nodes. The amount of the remaining

carbon capture outlet materials can be estimated as follows:

CCOm,j = CCSFjCCIm ∀m ∈ {M1,M2,M3,M4} , j = chp, psa (6.22)

where CCSFj is the split factor of the CO2 deficient outlet gas sent to the sink nodes

j. Furthermore, the utility demands associated to the carbon capture node are electricity,
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water and heat. The utility demands of the carbon capture facility can be estimated as

follows:

CCDu = CCRuCCOm,j ;m = M2, j = up (6.23)

where CCDu represents the demand of utility type u in the carbon capture node, and

CCRu is a parameter denoting the utility requirements per unit of CO2 product sent to

the urea plant obtained from the literature [142, 143, 144, 145, 110, 146, 147, 148, 81, 139,

149, 150, 151, 138, 152, 82, 153]. Moreover, the minimum amount of CO2 sent to the urea

plant, which depends on the urea plant reactions, is constrained as follows:

CCOM2,up ≥ 1.4 (0.5AOM5,up) (6.24)

where CCOM2,up represents the amount of CO2 sent to the urea plant and AOM5,up

is the amount of ammonia sent from the ammonia to the urea plant. This constraint

specifies the minimum amount of CO2 required for the main reaction in the urea plant.

The design flowrate of CO2 is set to be 40% greater than the stoichiometric requirement

as recommended by Riegel and Kent [117].

6.2.3.4 Pressure Swing Adsorption node (psa)

This process is typically used to separate one or more gas species from a mixture, the inlet

gas is passed over an adsorbent which attracts the desired gas or impurity in the stream,

whereas the remainder of the feed continues to the outlet for release or further processing.

This process will be used in the EIN to separate hydrogen from a gaseous mixture [86, 85].

The schematic of this process is shown in Figure 6.5.

The total amount of materials entering the pressure swing adsorption node can be

calculated as follows:

136



Figure 6.5: Pressure swing adsorption process

PIm = GOm,j + CCOm,j + AOm,j ; j = psa (6.25)

where PIm is the total amount of material m entering the pressure swing adsorption

unit, and AOm,j (j = psa) represents the outlet materials from the ammonia plant into

the psa node. The amount of hydrogen produced in this unit can be estimated as follows:

POm,j = PSFjPIm ;m = M3, j ∈ {ap,mk} (6.26)

where POm,j represents the amount of hydrogen product obtained in this node, PSFj

is the H2 stream splitting factor from this unit to the ammonia plant (ap) and market

(mk). However, traces of H2 products are also sent to the chp and cc nodes. Accordingly,

the remaining material outputs can be calculated as follows:

POm,j = PSjPIm ∀m ∈ {M1,M2,M3,M4} , j = chp, cc (6.27)

where PSj is the split factor associated with the H2 deficient syngas sent to the pro-

duction nodes j. The PSA process is well-defined in the literature [154, 155, 138, 156] and

is used throughout industry for separating hydrogen from mixed gas streams.
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The utility demands of the pressure swing adsorption node are electricity, water and

heat. The utility demands consider in this production node can be calculated as follows:

PDu = PRu

∑
j∈{ap,mk}

∑
m=M3

POm,j (6.28)

where PDu is the total amount of utility u required in the pressure swing adsorption

node, and PRu is a parameter that defines the energy requirements per unit of H2 product

sent to the ammonia plant and the market.

6.2.3.5 Sequestration node (sq)

Part of the objective of this model consists of minimizing waste production. This is achieved

using waste as a co-product in as many applications as possible. However, waste can only

be utilized to a certain extent, after which sequestration plays a key role in balancing the

excess of CO2 produced in the network; thus, venting gas to the atmosphere (which would

contradict part of the models objective) can be avoided.

The total amount of materials entering the sequestration (SIm) node can be estimated

as follows:

SIm = CCOm,j ;m = M2, j = sq (6.29)

where SIm (molh−1) represents the total amount of CO2 entering the sequestration

node from the carbon capture facility. The carbon dioxide sent to this node is stored in

suitable sites, e.g., deep saline aquifers. Therefore, this production node does not contain

any outlet stream.

The utility demands associated to the sequestration node can be defined as follows:
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SDu = SRuSIm (6.30)

where SDu is the total amount of the utility type u required in the sequestration pro-

cess, and SRu is a models parameter that represents the energy requirements per unit of

CO2 entering the sequestration node as found in the literature [157, 145, 86].

The addition of carbon capture and storage represents a benefit to society in terms

of reduced emissions, yet there is an economic cost of this addition. Nevertheless, this

benefit will be more clearly quantifiable to plant operators in the conceivable circumstance

that a carbon cap and trade system or carbon taxes are implemented in order to mitigate

climate change. The literature discusses many economic and environmental aspects of

carbon sequestration in conjunction with the technical specifications of such facilities [158,

159, 150, 145, 160, 144, 157, 138].

6.2.3.6 Ammonia node (ap)

The production of ammonia in the eco-park is considered to be similar to the commonly

used Haber-Bosch process, where three molecules of hydrogen react with one molecule

of nitrogen over a catalyst to produce two molecules of anhydrous ammonia (NH3) as

described by Riegel and Kent [117]. The diagram of this process is shown as Figure 6.6.

However, the production of ammonia in this network is simpler since the feed gases are

already free of sulfur compounds and other impurities. Furthermore, this production node

may also take in unreacted ammonia from the urea plant, depending on process conditions

and geographical locations [89]. The total amount of materials entering this node can be

estimated as follows:

AIm = POm,j +MOm,j ; j = ap (6.31)
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Figure 6.6: Ammonia process

where AIm is the total amount of material m entering the ammonia production node,

whereas POm,j, URm,j and MOm,j (j = ap) are the output materials from the pressure

swing adsorption plant, urea plant and market into the ap node, respectively. The amount

of ammonia produced in this facility can be calculated as follows:

APM5 = ACF

(
2

3
AIM3

)
(6.32)

where APm (m = M5) is the total amount of ammonia produced in this node, ACF is

a parameter of the model that defines the total conversion of the reaction (e.g., 94%). The

amount of NH3 product out of this node can be calculated as follows:

AOm,j = ASFj (AIm + ASFmAPm) ;m = M5, j ∈ {up,mk, cc} (6.33)

where AOm,j represents the amount of product m in the outlet streams transported to

node j, ASFj is the ammonia plant splitting factor to nodes j, ASFm is a parameter of
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the model that specifies the stoichiometric relationship for the production of ammonia in

this node (i.e.,ASFM5 = 1.0). The output of the reactants and remaining materials can

be estimated as follows:

AOm,j = AIm + ASFmAPM5 ∀m ∈ {M3,M4} , j = psa (6.34)

where ASFm denotes the stoichiometric relationship between the amount of reactant

m consumed and the amount of ammonia produced (i.e.,ASFM5 = −1.5, ASFM4 = −0.5).

The utility demands considered in the ammonia process are as follows:

ADu = ARu

∑
j∈{up,mk,cc}

AOm,j ;m = M5 (6.35)

where ADu is the total amount of the utility type u required in the ammonia process,

and ARu represents the parameter that denotes the utility requirements per unit of NH3

produced in this node. Ammonia manufacturing is a mature process with the current

technology and is well-documented in the literature [84, 81, 89, 117, 161, 138, 141, 152, 82,

162].

6.2.3.7 Urea node (up)

The urea production in the eco-park network is considered through the Bosch-Meiser pro-

cess where two molecules of ammonia are combined with one molecule of carbon dioxide

over a catalyst as described in the literature [84, 117]. The ammonia is readily available as

a co-product of the network and the carbon dioxide is obtained from the carbon capture

process. The process is shown pictorially in Figure 6.7.

One of the main network advantages is the energy savings due to avoiding CO2 com-

pression inefficiencies for transport since CO2 and NH3 can both be obtained from inside
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Figure 6.7: Urea process

the EIN boundaries. The total amount of materials entering the urea production process

can be calculated as follows:

UIm = CCOm,j + AOm,j ; j = up (6.36)

where UIm is the total amount of material m entering the urea production process.

The amount of urea produced in this node can be calculated as follows:

UPM6 = UCF

(
1

2
UIM5

)
(6.37)

where UPm (m = M6) is the total amount of urea produced in the process, UCF is a

models parameter that defines the assumed total conversion of the reaction (e.g., 85% as

described by Riegel and Kent [117]). The full process of urea manufacturing by the Bosch-

Meiser process is presented in numerous sources [84, 163, 117, 164, 138]. The amount of

urea products and any remaining co-products obtained from this node can be calculated

as follows:

UOm,j = UIm + USFm UPM6 ∀m ∈ {M2,M6} , j = mk (6.38)

where UOm,j represents the amount of product m sent to the market node, USFm is a

parameter that determines the stoichiometric relationship for the production/consumption
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of material m in this node (i.e.,USFM2 = −1.0, USFM6 = 1.0). Furthermore, the amount

of unreacted ammonia recycled within the urea node (URm,j) can be estimated as follows:

URm,j = UIm + USFm UPM6 ;m = M5, j = up (6.39)

where USFm denotes the stoichiometric relationship between the amount of reactant

m consumed and urea produced (i.e., USFM5 = −2.0). The utility demands associated

with the urea node are as follows:

UDu = URuUOm,j ;m = M6 , j = mk (6.40)

where UDu is the total amount of the utility type u required by the urea production

process, and URu is a parameter that denotes the energy requirements in the process per

unit of urea produced in this node.

6.2.3.8 Market node (mk)

The market node is not present in the network schematic presented as Figure 6.1 as it is

assumed to be connected to every node and serves a dual function in the network. Firstly,

it is the end node where the network’s products are sold to generate profits; however, it

can also act as an external supplier to help meet the material and energy needs associated

to the network when required. Accordingly, the total amount of materials entering the

market node can be calculated as follows:

MIm = UOm,j + AOm,j + POm,j ; j = mk (6.41)

where MIm is the total amount of material m entering the market node. The type and

amount of utility sold to the market can be estimated as:
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MEIu = MERuCGu ∀u ∈ {U1, U3} (6.42)

where MEIu is the total amount of utility type u sold to the market from the chp node

and MERu represents the ratio of utility u that can be sold to the market. The amount

and type of materials sent from the market to the EIN nodes are as follows:

MOm,j = MAMm,j (6.43)

where MOm,j is the total amount of material m out of the market to node j, and

MAMm,j represents the type and amount of material m available in the market to be sold

to the networks node j. The type and amount of utility sold to the networks nodes can be

estimated as:

MEOu,j = MEAu,j (6.44)

where MEOu,j is the total amount of utility type u sold to the networks node and

MEAu,j represents the amount of utility u that can be exported from the market to

supply the eco-park nodes.

6.2.3.9 Waste and Water Treatment node (wt)

The water treatment plant is used to process the water consumed in the EIN. The total

amount of water demanded by the network can be calculated as follows:

WDu = GDu + CCDu + PDu + SDu + ADu + UDu − CPM7 ;u = U2 (6.45)
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where WDu (u = U2) is the total amount of process water demanded by the eco-

industrial network and treated in the plant. Moreover, heat and electricity are also de-

manded for the operation of the water treatment plant. Accordingly, the amount of utility

u required to treat the process water consumed in the EIN can be calculated as follows:

WDu = WRuWDu2 ∀u ∈ {U1, U3} (6.46)

where WDu represents the amount of utility type u consumed in the water treatment

plant and WRu denotes the energy requirements per unit of process water produced.

On the other hand, the amount of materials treated in the waste treatment facility of this

node can be calculated as follows:

WIm = GWm (6.47)

where WIm represents the amount of materials m entering the waste treatment unit,

whereas, GWm is the amount of waste materials (i.e., ash, sulfur and other contaminants)

sent from the gasification node to waste treatment. Industrial water and water treatment

is discussed in detail within industrial literature and is implemented here based on several

sources [165, 166, 167, 168, 169, 170, 138, 171, 172, 173].

6.2.3.10 Transportation system

The transportation system enables the carriage of materials from node i to j; thus, linking

the facilities located inside the EIN. These materials can be solid, liquid or gaseous depend-

ing on the operating or storage conditions. As a result, different transportation options,

k, are included in the model to meet the specifications of the transported materials inside

the network. The transportation system is constrained to select only one option between

nodes; this can be formulated as follows:
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yi,j,k =

 1 if transportation method k is used between node i and node j

0 Otherwise

(6.48)

∑
k

yi,j,k ≤ 1 (6.49)

Eq. 6.49 determines the transportation option selected to transfer materials between

nodes i and j and stipulates that only one of these methods can be used. The material

supply constraint from node i to j can be expressed as follows:

∑
k

TUNi,j,kTCk ≥
∑
m

MATERIALm,i,j (6.50)

where TUNi,j,k is an integer variable that represents the number of transport units of

type k are required to transfer materials from i to j, TCk is the capacity of the trans-

portation method k, and MATERIALm,i,j is a variable that represents the network nodes

sending material to node j.

6.2.3.11 Network Costs

This section describes the different costs involved in the operation of the EIN such as the

transportation system cost, capital cost of the plants (nodes), the plant operating costs

and life-cycle emissions costs. Accordingly, the costs of the transportation systems are

presented forthwith. The cost associated to the pipelines transportation system can be

calculated as follows:

NTCk =
∑
i

∑
j

(
TUNi,j,kFCk + yi,j,kdi,jV Ck

∑
m

MATERIALm,i,j

)
∀k ∈ P (6.51)
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where NTCk represents the networks transport cost, FCk is the fixed cost associated

to transportation method k, di,j is the distance between nodes i and j, and V Ck is the

variable cost of the transportation method k. Similarly, the transportation costs associated

to the rail and road infrastructures can be estimated as follows:

NTCk =
∑
i

∑
j

(yi,j,kdi,jFCk + TUNi,j,k (FCUk + TCkV Ck))∀k ∈ Rd ∪Rl (6.52)

where FCUk represents the systems fixed cost per transportation unit type k. Costing

for transportation options can be found in the literature [29, 174, 175, 176].

The present model compares the economics of using integrated production plants in-

stead of stand-alone plants. Consequently, the capital costs of the plants are calculated as

follows:

xi,l =

 1 if plant i of size l is selected

0 Otherwise
(6.53)

ACCi,s = ACFi

(∑
l

xi,lPCi,l,s +
∑
k

NTCk

)
(6.54)

where the index s, as in s ∈ S = {a, b} represents the production scheme of the plant,

which can be either stand-alone (a) or integrated (b), ACCi,s is the annual amortized

capital cost of the plant i with scheme s, ACFi is the amortized capital factor of plant i,

and PCl,i,s is the capital cost of the plant. Also, the operating costs of the plants can be

calculated as follows:

OCi,s =
OCFi,sACCi,s

ACFi
(6.55)
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where OCi,s represents the total operating cost of plant i following scheme s, and OCFi,s

is the operating cost factor associated to the plant as calculated from the literature.

The supply constraints for the production plants can be expressed as follows:

∑
l

xi,lPICi,l ≥
∑
m

∑
j

MATERIALm,i,j (6.56)

∑
l

xi,l ≤ 1 (6.57)

where PPCl,i represents the plants production capacity.

6.2.3.12 Network Emissions

An analysis regarding the lifecycle emissions of the production nodes considered in the EIN

is included in the present model. Accordingly, the emissions associated to the construction

of the production plants included in the network can be estimated as follows:

EPCi,s,e =
∑
l

xi,lEFPCi,l,s,e (6.58)

where EPCi,s,e represents the emission e related to the construction of plant i of scheme

s, and EFPCl,i,s,e is a factor denoting the emission e from the construction of a plant of

size l as found in the literature for each node. Similarly, the emissions associated to the

operation of the production nodes can be calculated as follows:

EPOi,s,e = (EFPOi,s,ePOCi,s)POLi (6.59)

where EPOi,s,e represents the emission e from the operation of plant i of scheme s,

EFPOi,s,e denotes the emission factor related to the operation of the plants which are
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found in the literature for each node, POCi,s is the plants operating capacity, and POLi

is the plants operating life (e.g., 30 years).

6.2.3.13 Objective Function

The model’s objective function is formulated in terms of two ratios: The first ratio denotes

the relation between construction and operating costs (i.e., production costs) of the inte-

grated scheme and stand-alone plants; whereas, the second ratio indicates their relative

lifecycle emissions. Accordingly, the total production cost of the network can be calculated

as follows:

NPC =

∑
s=b

∑
i

ACCi,s +OCi,s∑
s=a

∑
i

ACCi,s +OCi,s
(6.60)

where NPC represents the EIN annual production cost, while the numerator and de-

nominator terms of the equation denote the production costs related to the integrated and

stand-alone schemes, respectively. Similarly, the life-cycle emissions can be calculated as

follows:

NEC =
1

Ne

∑
i

∑
s=b

∑
e

EPCi,s,e + EPOi,s,e∑
i

∑
s=a

∑
e

EPCi,s,e + EPOi,s,e

(6.61)

where NEC represents the annual lifecycle emission associated to the network. The

reciprocal Ne factor in this equation is representative of the number of emissions considered

in the analysis so as to reduce the weight of the environmental objective to align with the

economic portion. Consequently, the objective function can be formulated as follows:

CF = WP (NPC) +WE (NEC) (6.62)

149



where CF represents the objective cost function of the problem, WP is the weight as-

signed to the profitability of the network, whereas WE is the weight considered for the

lifecycle emissions of the eco-park. The objective function takes into account the costs

related to the operation of the network as well as associated life-cycle emissions (i.e., en-

vironmental and social impacts). This work clearly shows that emission reductions for

society and improved profits for operators can be achieved through the implementation of

eco-industrial networks.

The fractional output shows a relativistic result with reference to the base case. Ac-

cordingly, if the ratio is greater than unity, the integrated scenario costs more than the

stand-alone, whereas for a ratio less than unity, it is less costly. Likewise, if the emissions

ratio is greater than unity, the integrated scenario emissions are higher than the stand-alone

scenario. On the other hand, for emissions ratio less than unity, the integrated scenario

emissions are lower than the stand-alone. The model’s objective function has been formu-

lated in terms of these ratios to assign relevance to the environmental impacts caused by

the network operations. This prevents the economic term of the objective function from

becoming very large compared to the life-cycle emission term, which could negate the life-

cycle emissions effect on the design of the network (as occurs in many cases). As a result,

both terms of the objective function play a key role in model formulation. Accordingly,

when one separates and normalizes the life-cycle emissions from the economics, one of the

terms would have to be significantly larger in order to overshadow the effect of the other

term, since they are normalized to the stand-alone emissions/economics.

6.3 Results and Discussion

The model was constructed with the basis of a minimum production of hydrogen to meet

demand for 1000 fuel cell vehicles in the province of Ontario, Canada as was the require-
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ment the previous LP and MILP formulations of this case study presented in previous

chapters.

Previous work using LP and MILP models calculated a reduction in emissions for the

base scenario of 50% weighting on each portion of the objective to be approximately 40%

for the LP model and 35% for the MILP model [69, 108]. The work herein is updated to

reflect current pricing, introduces additional accuracy of the model and a more consistent

data set for calculating the life-cycle emissions. In addition, the model is expanded into

the MINLP domain to allow for additional constraints to be placed on the model which

were not possible using linear programming methods.

For this work, an upper limit on the input biomass feedstock was set to 2 million

tonnes per year as a sustainable rate for harvesting from forest residues and other undesir-

able biomass co-products [177]. No limits were placed on coal or natural gas availability.

The plant lifetimes were assumed to be 30 years as is a standard assumption in chemical

engineering and the capital charge rate for amortization was set to be 15%. The following

scenarios discussed are based on varying the weighting factors for the environmental and

economic portions of the objective function from 0 to 1 by increments of 0.1. The purpose

of this increment is to explore the different network configurations and outputs with varying

priorities of the network management. The complexity of the network demands significant

computing resources and it was determined that a smaller increment would require exces-

sive computing resources and that scoping on the coarser level would exhibit the variation

of the network outputs with respect to the economic and environmental weighting factors.

The reference sizing of each facility is shown in Table 6.1. The scaling for each facility

was completed using the capacity scaling equation used by many chemical plant design
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texts and is shown as Eq. 6.63.

PlantCost2 = PlantCost1

(
PlantCapacity2

PlantCapacity1

)q
(6.63)

The scaling factor, q, was assumed to be 0.6 for these facilities as is a generally accepted

practice in the industry. Chemical process equipment is typically subject to sizing options

given by the manufacturer and thus the plant sizes available were chosen as even multiples

of the reference plant size (up to a multiple of five) or even fractions such as 1
4

, 1
2

or 3
4

of

the reference condition.

The values of the weighting factors in the bi-objective function are varied from 0 to 1

in an attempt to analyze the difference in facility construction with emphasis placed on

economics, reduction in emissions or a combination of the two. With a purely economic ob-

jective function, the resulting network is shown in Figure 6.8 with the major mass flowrates

shown in Table 6.2 which is designated by the number above each flow stream. It can be

seen from this that ammonia production in the network is foregone completely in favour

of purchasing ammonia from outside of the eco-park. Since a price premium is not applied

to importing ammonia, it is reasonable that ammonia would be imported to the network

under a purely economic scenario. In addition to this, carbon sequestration is also not

included in the network. Since the objective in this case is completely economic, and

viable products are not produced from carbon sequestration, it is again reasonable that

this facility would not be constructed. The material exports from the network under the

purely economic case are then limited to hydrogen and urea. Urea is a value-added product

compared to the inlet ammonia and CO2 streams; thus, it is maintained in the network

where ammonia production is excluded. The air separation for gasification would also

lead to a saleable nitrogen product in this case, although this was not considered as part

of the economic analysis as the nitrogen is simply used as a reagent in ammonia production.
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Table 6.1: Capacities and reference costs of eco-park facilities

Unit Reference Capacity Reference cost

($millions)

Literature Reference

Gasifier - Coal (TPD coal

feed)

3 390 269 [134]

Gasifier - Biomass TPD

biomass feed

1 130 134 [136]

Gasification (Steam

Methane Reforming)

(TPD natural gas)

3 120 255 [178]

Carbon Capture (TPD cap-

tured CO2)

11 000 547 [126]

Combined Heat and Power

(MWe)

335 208 [179, 134]

Pressure Swing Adsorption

(TPD H2)

229 10 [180]

Sequestration (TPD CO2

sequestered)

2 690 114 [158]

Ammonia Production

(TPD ammonia produced)

1 800 678 [181]

Urea Production (TPD urea

produced)

2 350 189 [182]

Water Treatment (TPD

treated water)

9 450 3.16 [183]
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Figure 6.8: Optimal network schematic under purely economic consideration

The same analysis has been conducted over a range of values for the objective func-

tion weights, the case in which the environmental objective term dominates the objective

function, WE = 1, is shown in Figure 6.9 with the accompanying flowrates shown in Table

6.3. The purely environmental objective shown here includes smaller facilities, yet indi-

cates that the facilities are all included in the network, despite the environmental burden

associated with their construction. The level of production at each facility is less than

shown in alternative scenarios and it was necessary to include a positive production con-

straint from the gasification unit in order for the optimization to solve without a trivial

solution for this particular scenario. CO2 is sequestered in this scenario, though at a lower

rate than observed in other scenarios during this ten-scenario scoping analysis. This is

due to the large energy burden required for CO2 sequestration and the already-reduced

plant sizing. Consequently, the additional energy required to sequester additional CO2

would be provided by the external electricity grid (i.e., adding energy costs). Hydrogen in
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Table 6.2: Summary of flowrates under pure economic consideration

Line number Description Million Tonnes per annum

0 Gasifier Outlet 2.77

1 CHP Outlet 2.61

2 CO2 Sequestered N/A

3 CO2 to Urea production 0.429

4 Hydrogen to ammonia manufacturing N/A

5 Hydrogen to combustion 0.0547

6 Ammonia to Urea production N/A

7 Ammonia exported N/A

8 Urea exported 0.363

this scenario’s network is not used for combustion as was observed in some other scenarios;

however, the hydrogen is utilized for producing ammonia which in turn is used as a reagent

for producing the urea, sequestering CO2 by proxy.

Figure 6.10 shows the variation in the objective value varying the weights of the two

parts of the bi-objective function described by Eq. 6.62. This figure shows the balance

between the objectives for a range of solutions to the problem at set parameters. In the

case of a bi-objective function in which the sum of the weighing factors is equal to unity,

the objective value can be shown as a correlation with only one of the weighting factors;

this two-dimensional view is shown as Figure 6.11.

Figure 6.10 and Figure 6.11 show the variation in the objective value based on a vari-

ation of the two terms of the objective function. The objective function is based on

environmental and economic benefits obtained from operating in an integrated EIN com-
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Figure 6.9: Optimal network schematic under purely environmental consideration

Table 6.3: Summary of flowrates under purely environmental consideration

Line Description Million Tonnes per annum

0 Gasifier Outlet 0.264

1 CHP Outlet 3.39

2 CO2 Sequestered 0.764

3 CO2 to Urea production 0.109

4 Hydrogen to ammonia manufacturing 0.030

5 Hydrogen to combustion N/A

6 Ammonia to Urea production 0.132

7 Ammonia exported 0.129

8 Urea exported 0.282
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Figure 6.10: Results of the objective value for eco-park optimization varying objective

function weights

pared to facilities operating independently. These results show that the best objective

value is reached when the life-cycle emissions weighting is set to zero. The optimization

at this point is essentially an economic optimization and shows that there are significant

economic incentives to be considered for operating as part of an integrated network of

facilities. Each of the scenarios presented in the figures are independent and should not

be compared in order to determine which scenario is ultimately the best. In this case,

however, it is notable that the weighting of the two objectives is highly influential upon

the objective value found by the optimization. The optimization results show that the

economic term is more favourable to a minimum objective than is an increased weighting

upon the life-cycle emissions.
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Figure 6.11: Results of variation in the objective value weights in two dimensions related

to weighting for life-cycle emissions

The size of each facility in the network is allowed to vary in order to obtain the optimal

objective value within the simulation and thus it is interesting to include the normalized

capacity of the facilities for each of the scenarios for which the objective function weights

were varied. The result is essentially a sensitivity analysis on the weighting parameters

in the bi-objective function. The solution time for the MINLP is typically 7 - 10 days and

thus additional sensitivity analysis on other parameters was not completed. The normal-

ized plant capacities from varying the weighting factors in the objective function are shown

in Figure 6.12.

The gasification node shows a maximum production for the economic mono-objective.

A sharp decline in gasifier usage is shown with the introduction of the emissions portion of

the objective function. Since the gasifier is a relatively large contributor to the emissions of

all contaminants considered in this work, it becomes obvious that its size would be reduced
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Figure 6.12: Normalized plant capacities under varying weighting of life-cycle emissions.

G is descriptive of gasification, CC of carbon capture, CHP for combined heat and power,

PSA for pressure-swing adsorption, SQ for sequestration, AM for ammonia manufacture

and U for urea production

to a much lower level once the network emissions become incorporated into the objective

function via the life-cycle emissions weighting factor.

Carbon capture processing within the network is intended to extract CO2 from exhaust

gases for purposes of sequestration or utilization in further reactions. For most of the sce-

narios, carbon capture processes remain at a relatively low level relative to the maximum

available plant capacity. In many cases, it is favourable to purchase CO2 from the mar-

ket to avoid the contaminants associated with producing the CO2 onsite. The exception

to this is during the instances in which the combined heat and power unit operates at a

high level, requiring the carbon capture capacity to increase to balance the loading from

this unit. Indeed, the maximum carbon capture capacity occurs in conjunction with the
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maximum output from the CHP unit and also in the case of a maximum CO2 sequestration.

The combined heat and power unit supplies heat and/or electricity to the processes

within the network and excess of either product is exported through the market node. The

variability in CHP output is directly related to the increased ammonia production and is

favourable under only two of the simulations considered. Accordingly, a higher production

of ammonia demands more heat and electricity, which causes an increase in the CHP unit

size to accommodate the production of ammonia.

Hydrogen is separated in the PSA unit and utilized as a feed to the other network

nodes but can also be exported as a market product. The level of production for the PSA

has a lower limit set to produce hydrogen for a minimum of 1000 fuel cell vehicles in the

province of Ontario, as in the previous analysis, but there is additional incentive under the

objective function herein to produce additional hydrogen. This level of hydrogen produc-

tion was selected as a likely entry point when dedicated facilities will be required to enable

the hydrogen economy. The benefits of producing hydrogen using the proposed network of

facilities are both economic and environmental; therefore, hydrogen production is a neces-

sity to reduce the emissions burden from further processes but can also be produced as a

reduced-emissions export.

Carbon sequestration is applied when the economic and environmental objective would

be better served by its inclusion than its exclusion. The economics of sequestration are

undesirable as it lacks a market value under the current pricing regime; therefore, the

inclusion of carbon sequestration processing in the network is related solely to the environ-

mental benefits. In the majority of simulations, sequestration is excluded or constructed

on a very small scale. The anomalous occurrences are found when the life-cycle emissions
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weighting factor is at 0.4 or 0.7 and complement a larger burden from the gasification unit.

Ammonia production, contrary to the results of previous work, is maintained at a rel-

atively low level in most simulations presented here. The juxtaposition of ammonia and

urea production is a direct correlate to the price of these two products which was not the

case in the previous published work [69, 108]. This exhibits the leverage of product cost

on the simulation as urea is a more profitable product in this analysis and as the urea

node approaches the maximum processing capacity, ammonia is sold to the market as an

additional method for increasing the economics of the EIN.

Urea production remains relatively constant throughout the simulations, having only

a slight decline to 75% of its maximum value for the environmental mono-objective. The

difference between the production of urea under these simulations compared to the results

presented in previous chapters is the increment in the urea price. Additionally, the overall

objective function differs in the environmental objective term, which compares release of

GHG emissions in an integrated and stand-alone facility concurrently. In previous publi-

cations using LP and MILP modeling, urea production was generally low which could be

attributed to its relatively low reduction in absolute GHG emissions. With the objective

function as implemented in this work, the relative reduction of GHG emissions relative to

a stand-alone urea facility are much higher, corresponding to relatively stable levels of urea

production.

Another consideration of the model solution is which part of the bi-objective dominates

the result. In Figure 6.13 and Figure 6.14, the results of this question are addressed. The

scalar weighting factor of each portion of the objective function is applied to the objective

value resulting from the optimization to evaluate the impact of each portion of the objective
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Figure 6.13: Relative contributions of emission reduction objective and economic objective

to the overall objective value considering weighting factors

function on its final value. The contribution from each portion of the objective function is

comparable to the weighting applied, though the emissions term in the objective function

contributes a marginal surplus above the specified weighting factor for all cases except the

mono-objective considerations of WE = 0, 1. Figure 6.13 includes the weighting factors for

each part of the bi-objective function while Figure 6.14 shows the relative weight of each

part of the objective function irrespective of the weighting applied during the optimization.

This result is also shown by the contribution of each portion of the objective function

excluding the weighting factors as shown in Figure 6.14. This figure exhibits the relative

strength of the two components of the objective function in each of the scenarios consid-

ered. This reinforces the finding that the objective value for the life-cycle emissions is

slightly more influential on the final objective value than is the impact of the economic

portion of the objective function.
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Figure 6.14: Relative strength of emission reduction and cost reduction factors on the

objective function

This work and the previous chapters differ in terms of the reduction in cost and emis-

sions. For the same base case as in previous models, the emissions are reduced by 12.7%

and the cost savings amount to 24.6% which are more reasonable and conservative esti-

mates compared with the previous model results. The LP and MILP formulations of this

case study presented in earlier publications should be considered as an upper boundary for

the reduction in cost or emissions from operating in an integrated network of facilities as

the full complexity of the system cannot be captured comprehensively by these methods.

The MINLP model is a more realistic assessment of the actual cost and emission reductions

from such operating an EIN.
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6.4 Summary

This chapter presents an MINLP modeling framework for assessing new construction of an

EIN with many integrated nodes. One major difference between the model in this chap-

ter and those in the previous two chapters is the relativistic bi-objective function which

optmizes the configuration of the network based on percentage reduction in each emission

and percentage of improvement in overall economics. This relationship is non-linear and

thus cannot be applied in either the LP or MILP formulations in Chapters 4 and 5. This

novel approach to EIN design is a powerful tool for policy-makers to understand the impli-

cations of regulation and pollution abatement relative to the status quo. This framework

allows for quantitative discussions between policy-makers and industry with the intention

of improving the environmental performance of chemical processes and introducing cost

savings potential for improved profitability.

The solution to the MINLP shows high variability in the capacity of various facilities

in the EIN relative to the weighting of the two parts of the bi-objective function. Con-

trasting the previous two chapters, each combination of weighting factors yields different

plant capacities and configurations of the network. The model is highly sensitive to these

weighting factors and it is likely that parameters such as product pricing would also have

an impact on the optimal solution /network configuration.

The opportunity for collaboration between chemical processors and with regulators

negates the thinking that reducing emissions and improving profitability are mutually

exclusive. The framework developed here with the bi-objective function comprised of an

economic term and environmental term relative to existing operations shows that both

can be improved without compromising the other. While some scenarios show greater

profitability or a greater reduction in emissions, policy-makers can participate in a realistic
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discussion with industry to find a compromise.
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Chapter 7

Summary and Conclusions

7.1 Summary of Work

This work developed several models of an eco-park in order to demonstrate the environ-

mental and economic benefits of industrial facilities working cooperatively to share energy

and materials, including the production of hydrogen to support a future hydrogen economy.

The EIN models constructed in this work focus on cradle-to-gate emissions from energy

conversion and the production of industrial chemicals. This work utilizes three distinct

modeling techniques in order to demonstrate their respective benefits, specifically: linear

programming, mixed-integer linear programming and mixed-integer non-linear program-

ming. Chapter 3 in this thesis addresses life-cycle emissions of criteria air contaminants

from vehicle operations and potential reductions that could be experienced by shifting to

alternative vehicle fuels. The work presented in Chapter 3 is focused on the province-wide

emissions in Ontario, Canada and urban air pollution in the city of Toronto.

Chapter 4 expands on the utilization of life-cycle concepts but is focused in the ap-

plication of the methodology to an EIN. An optimization method is developed in order
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to balance the frequently-conflicting goals of reduced cost and reduced emissions of con-

taminants to the air, water and land. This chapter explored eco-industrial integration

using an LP model and revealed some preliminary conclusions. From this analysis, it was

found that hydrogen can feasibly be produced to fuel 1000 hydrogen vehicles in Ontario

within the proposed EIN. Policy-makers are the intended audience for this approach in

addition to forward-thinking facility designers and environmental organizations. Utilizing

this modeling framework to negotiate an acceptable plan for facility construction based on

non-zero weighting factors for economic and environmental decisions allows for a quantita-

tive discussion of benefits for policy-makers and industry. The focus on production in an

EIN complements the vehicle-centric work from Chapter 3 which exhibits benefits beyond

the facility gate for utilization of a potential chemical fuel produced in an EIN.

Chapter 5 attempts to address these recommendations by expanding the model to an

MILP formulation and also exploring three feedstock fuels for the analysis. Chapter 5 con-

tinues the work from Chapter 4 with added complexity and realism which required adding

binary/integer decisions. This work builds on the previous work to represent a quantitative

assessment of the eco-park theory and its application to a case involving the production

and export of several chemical products in addition to heat and electricity from an EIN

comprised of a number of facilities. The network is assessed in terms of environmental

impact and profitability relative to existing facilities that do not interact directly with the

exchange of material and energy streams amongst the nodes. GAMS software was again

employed to create the optimization program with decision variables describing which of

the network nodes should be constructed and what their associated production capacities

should be in order to optimize a similar dual-objective function including profit and en-

vironmental impact. Again, the focus is to provide a balance between cost-savings and

reduced environmental impact to influence policy and the design of facilities.
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Chapter 6 builds further on the previous modeling attempts and migrates the model

to a mixed-integer non-linear program (MINLP). This is the most detailed model of the

system constructed to date and implements a relativistic objective function to normalize

the outputs in relation to independent facilities. This objective function is a valuable tool

for policy-makers as it exhibits the increase or decrease of process profitability and emis-

sions in an integrated scenario relative to the base case of no integration. This is capable

of influencing policy decisions on facility construction in order to achieve net benefits for

producers as well as society.

7.2 Conclusions

The life-cycle impacts of utilizing alternative fuels for transportation purposes is considered

in terms of six major stressors for climate change, acidification and urban air quality. The

vehicles considered are plug-in hybrid electric vehicles (PHEVs), fuel cell vehicles (FCVs)

and fuel cell plug-in hybrid electric vehicles (FCPHEVs). Modeling of the penetration rates

for these types of vehicles has been completed based on the maximum base-load capacity

of Ontario’s electricity grid to accommodate the generation of hydrogen and charging of

vehicles using grid electricity. Results show that the reduction in greenhouse gas emissions

from adoption of PHEVs or FCVs will exceed 3% of the current emissions from the trans-

portation sector in Ontario while FCPHEVs may achieve almost twice this reduction. All

vehicles exhibit similar impacts on the precursors for photochemical smog although the

province-wide effects differ significantly.

Also from chapter 3, it is observed that the location of new generation in Ontario greatly

affects the supportable penetration of AFVs as both vehicle types depend on electricity

to generate their fuel. This study focused on near term evaluation of the potential pene-
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tration of likely PHEV and FCV technologies, and as such considered only the currently

planned upgrades to the electrical generation system. The only scenario considered for this

study was that new generation will be located in the Toronto region. Locating generation

in the Bruce zone will decrease the supportable penetration of PHEVs mainly due to the

proximity to the urban population. Clearly if greater emission reductions in GHGs and

urban air pollutants from vehicles are desired, further large scale expansion of the CO2-free

generation sources such as nuclear will be required and this will dramatically change the

available base-load power profile.

Comparing FCVs and PHEVs in an urban-emissions scenario shows that FCVs tend

to present an advantage over or near-equality with PHEVs in almost every aspect of their

emissions. The range of FCPHEV emissions for the pertinent urban air pollutants suggest

that a minimum number of FCPHEVs would exhibit reductions close to those attained

by PHEVs or FCVs and the potential for the reduction of these emissions could greatly

exceed that achievable by either vehicle.

One of the major emissions impacts from adopting either PHEVs or FCVs is a 3-3.5%

decrease in greenhouse gas emissions within the transportation sector. Since transportation

accounts for approximately 37% of all emissions of these gases in Canada, it is a signif-

icant impact to reduce transportation GHG emissions in Ontario by 3-3.5%. Adoption

of FCPHEVs could attain a reduction as high as 5.8% of the transportation emissions in

Ontario.

The effects on emissions of particulate matter are drastically different for the adoption

of the different vehicle types. The overall emissions of particulate matter are of compar-

atively less concern because this matter is easily dispersed in the atmosphere instead of
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being heavily concentrated in a densely-populated area where it can affect the health of

the population. Adoption of PHEVs shows an insignificant increase in overall particulate

matter whereas adoption of FCVs and PHEVs will achieve approximately the same reduc-

tion in urban particulate matter emissions. FCPHEVs perform similarly to PHEVs for

increased emissions of overall particulate matter but show a potential for larger decreases

in the urban environment.

Overall emissions of SOx, a contributor to acid rain, are expected to increase from the

adoption of PHEVs and FCPHEVs which corresponds to an increase in the burning of coal

in order to produce electricity for powering the vehicles.

When observing the emissions and technological readiness of each vehicle type, it should

be noted that PHEVs are nearer to mass production and distribution but should be cou-

pled with fuel cells as soon as production is technologically and economically feasible in

order to achieve the maximum reduction in emissions.

The work from Chapter 4 focuses on analyzing possiblities for reduced life-cycle emis-

sions from industrial operations producing industrial chemicals including hydrogen for fuel

cell vehicles. The model developed is specifically for assessing the economics and emission

reductions from EINs but the environmental benefits are limited to the boundaries of the

EIN. Reduced emissions from the production of industrial chemicals and fuels can also have

impacts throughout the remainder of the life cycle as shown by the emission reductions

from AFVs.

Applying this model for a scenario of hydrogen production for 1000 consumer vehicles

shows two independent stable solutions. Both of these solutions show profitability while
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reducing life-cycle emissions and maintaining the appropriate production of hydrogen for

these vehicles. The LP model developed in this chapter is powerful but lacking in the com-

plexity required to fully capture the interactions between networked production facilities.

This assessment emphasizes the need for further efforts in network modeling, leading to an

MILP or MINLP model which will also allow for consideration of alternative gasification

feedstocks.

Chapter 5 shows that life cycle analysis and eco-park network optimization provide

an excellent pairing for assessing EINs. The emissions from producing typical chemical

exports are reduced when operating within the construct of an EIN and the profitability of

the network is also improved. The optimization of this network with three different fuels

shows that biomass usage has slightly less effect on the environment but with reduced profit

and a net import of electricity from an outside source. A mixed integer modeling technique

has been applied to improve potential application of the simulation results. Comparisons

of three fuel types showed that biomass yielded the least profitable scenario, required a net

import of electricity and produced significantly less heat for use in surrounding applications

as would be suggested to improve the environmental performance of the region.

Additionally, utilization of three different fuels as the primary source of chemical

reagents and energy are considered in various scenarios. These fuels are coal and biomass

for gasification or a steam-methane reforming process using natural gas as the feedstock.

The eco-park with interacting production nodes is shown to be more profitable than the

comparable non-integrated set of facilities and the outputs are produced with lower envi-

ronmental impact in terms of criteria air contaminants.

The model in Chapter 6 is a reconstruction and expansion from the MILP model in
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Chapter 5 to reduce approximations and expand the capabilities of the model to handle

a broader range of considerations. The MINLP includes a more detailed assessment of

transportation considerations in addition to a more rigorous and complex set of contraints

governing the interactions between plants.

This model builds on previous iterations and lends itself to future development as a

tool to assess environmental and economic feasibility of applying eco-industrial integration

concepts to new construction projects. In addition, the model is formulated to assess fea-

sible transportation distances, transportation technologies and may be modified to include

stochastic import/export pricing. The results of this analysis show that the estimated cost

and emission reductions are less significant than with an LP or MILP model but represent

a more realistic case. Cost for the integrated set of facilities is shown to be reduced by

24% while the emission reduction is observed at 12.7% for the base scenario represented

by the earlier LP and MILP models.

The work from this chapter further expresses the usefulness of MINLP modeling to

assess the potential benefits of eco-industrial integration. The MINLP model is the most

comprehensive of the three considered in this work for assessing eco-park scenarios though

it requires significantly more computational power.

7.3 Summary Statement of Contributions

This work has focused on providing a model for the analysis of the improvement of the

environmental performance of transportation technologies and industrial manufacture of

base chemicals in the context of emissions to the aquatic, terrestrial and atmospheric do-

mains.

172



This work has developed a novel method for analyzing the potential and impacts of

alternative-fuel vehicles and a generalized modeling framework for eco-industrial network

integration using linear programming, mixed-integer linear programming and mixed-integer

non-linear programming. These modeling frameworks have been applied to a potential

eco-park integration scenario in order to assess the realistic potential for decreased envi-

ronmental emissions and improved process profitability. This analysis has been completed

in the broader context of the hydrogen economy and a social desire to improve the quality

of the environment. As such, the work has also demonstrated the benefits and differences

of the modeling techniques explored herein.

Life-cycle assessment has been applied to construct a dual-objective function capable

of balancing environmental concerns with industrial profitability. The objective functions

for these analyses relate the emissions and economics of independent facilities with those

operating within an eco-industrial network arrangment. The objective function in each

framework is of particular interest to policy-makers who can utilize such methods to find

a compromise with industrial entities to reduce emissions while implementing cost-saving

measures.

The bi-objective optimization framework in this thesis is a novel approach to facility

design and includes environmental and economic considerations. Emissions are considered

independently of economics in each model to avoid large economic incentives from over-

shadowing environmental objectives.

This work also serves to re-invigorate the notion of eco-industrial integration in light

of increasing corporate social responsibility and the societal shift to provide increasing
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environmental awareness in industry. The economic needs of industry are balanced with

the societal desire for reducing emissions to achieve mutual benefits.

7.4 Recommendations

7.4.1 Recommendations for Future Work

Recommendations for further work on this topic include reformulation strategies of the

MINLP to reduce the solution time which remains one of the limitations for this type of

model. MINLP modeling is well-suited to optimization of industrial eco-parks, yet the

solution time is such that large numbers of simulations cannot be completed in a rapid

fashion.

Stochastic simulation of networks which rely heavily on static costs of base chemicals

should be conducted. Prices of both the feedstock and products of these networks may

be highly sensitive to these costs and thus it is important to explore predicted values for

commodities and chemicals.

In order to expand the list of contaminants considered for an optimization of this struc-

ture, a more comprehensive database of contaminants must be available for use. Research

and data for less widely-studied contaminants are difficult to locate and contain many

uncertainties as many aspects of production are not considered. Further work into devel-

oping a comprehensive database of life-cycle emissions must be available and be backed by

high-quality research and methods.
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7.4.2 Recommendations for Implementation

This work exhibits the impact of adoption of alternative fuel vehicles on the air quality in

the urban centre of Toronto, Canada as well as the impact on air pollution in the province

of Ontario. It is recommended that policy-makers create incentives for transitioning from

convential fossil-fuel powered vehicles to those powered by electricity or hydrogen. The

short-term benefits can be realized immediately by transitioning the existing vehicle fleet

to operate on electricity with greater improvements seen in the long-term adaptation to

hydrogen-powered vehicles. These recommendations are within the broader context of the

hydrogen economy in an attempt to curb urban air pollution and smog in addition to global

concerns of climate change. The transitions mentioned in this work are within the scope

of electricity production in Ontario, Canada as forecast to 2025.

Based on the EIN case studies, it is recommended that industrial entities strongly

consider the use of eco-industrial design optimization in order to realize the benefits of

eco-industrial integration. Such tools would improve the economics and environmental

performance of operations, proactively making improvements to processing in the eventual

scenario of greater legislation on emissions of contaminants to air, water and land. In

addition, this work serves to instruct policy-makers to consider stricter environmental

legislation with the goal of encouraging corporations to apply eco-industrial integration

possibilities into new facility constuction.
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Appendix: Additional detail with

respect to primary modeling in

Chapter 3

The following is a summary of the AMPL model which was primarily constructed by

Amirhossein Hajimiragha as presented in [29, 61] which yielded the supportable penetra-

tion of alternative fuel vehicles used in Chapter 3. These estimates were then used to

calculate the emission reductions from these vehicles using GREET 1.8b as described in

Chapter 3. A summary of the model, as published by Hajimiragha et al. is shown below

with permission from the International Association of Hydrogen Energy.

Ω =
λi
πi

=
λ
∑

i bi∑
i πibi

Describes the ratio of base-load growth rate (λi) to peak-load growth rate (πi) under the

assumption that this ratio is constant across all zones. Thus λ is the annual baseload

growth rate in all zones and bi is the base load value in Zone i. The growth rate in each

zone can then be calculated:

λi = λ
πi
∑

i bi∑
i πibi
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Phppiy is the total installed HPP capacity in Zone i, by Year y which can by utilized

for producing hydrogen locally and also in other zones. This total capacity is composed of

smaller power components, Psijy, which represents the contribution of zone i to the total

power required in zone j to be transported by compressed gas truck transportation. Other

zones can share in part of the required power in zone i based on the complementary power

component Psjiy. Accordingly, the required power of HPPs in Zone i by Year y (Phiy) can

be expressed as follows:

Phiy = Phppiy −
∑
j 6=i

Psijy +
∑
j 6=i

Psjiy ∀i, j ∈ Z ∧ y ∈ Υ1

Phppiy = Phppiy−1 + ∆Phppiy

where:

• ∆Phppiy is the newly installed HPP in Zone i and Year y;

• Z = {1,...,10} is the set of indices of zones or buses in the simplified network; and,

• Υ1 = {2009,...,2025} is the set of indices of planning years starting in 2009.

Operational hours or capacity factors for the HPPs must be considered to link the

power component to the amount of hydrogen transferred between zones. The HHV of

hydrogen coupled with assumptions of 68 hours of operation per week with 70 % plant

efficiency yields the power component, Psijy, is capable of producing 0.1724 Psijy tonnes

of hydrogen per day for transfer to zone j by compressed gas tube trailers. This transfer is

represented by Thijy.
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Thijy = 0.1724Psijy ∀(i, j) ∈ Z∗ ∧ y ∈ Υ

where Z∗ = {(i, j) : i, j ∈ Z, i 6= j} is the set of indices of hydrogen transfer corridors

and Υ = {2008, ..., 2025} is the set of indices of planning years starting from 2008.

The total cost of transporting hydrogen between zone i and j, TOCijy , follows a step

function depending on the total transfer of hydrogen:

TOCijy = m ·OCy · dij

where m stands for the number of trucks, OCy is operational cost in year y per com-

pressed gas truck [$CADkm−1] and dij is the distance between zones i and j in km.

The objective function in this optimization is to minimize costs for electricity and hy-

drogen transportation. The cost function is composed of the costs and revenues from

electricity import/export in addition to generation costs for segments of 8 weekday hours

(0:00 - 07:00) and 14 weekend hours (0:00-13:00) with an additional consideration of hy-

drogen tranportation costs.

∑
y∈Υ1

∑
i∈Z

{(
Pgω1

iy + Pimω1
iy − Pex

ω1
iy

)
·HOEP ω1

y × 8× 261

(
PGω2

iy + Pimω2
iy − Pex

ω2
iy

)
·HOEP ω2

y × 14× 104
}

+
∑
y∈Υ1

∑
(i,j)∈Z∗

(
ntry∑
m=1

m ·Kmijy

){
2OCy · dij × 365 +

DR · CCcab
[1− (1 +DR)−LTcab ]

+
DR · CCtube

[1− (1 +DR)−LTtube ]

}
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where:

• ω1 is an index for the time period corresponding to 8 weekday hours (12 am-7 am);

• ω2 is an index for the time period corresponding to 14 weekend hours (12 am-1 pm);

• Pg, Pim and Pex are zonal generation power, imported power, and exported power,

respectively, in Zone i, Year y, and during the time periodω1 orω2;

• Kmijy is a binary variable which takes the value of 1 if m trucks are needed for daily

hydrogen transfer between Zones i and j in Year y;

• CCcab and CCtube are the capital cost of cab and tube trailers, respectively;

• LTcab and LTtube are the life time of cab and tube trailers, respectively;

• DR is the discount rate; and,

• ntry is the maximum number of compressed gas trucks in route between Zones i and

j in Year y.

The power losses in line (i,j) of the electricity network can be approximately calculated

as:

Plossij ∼= gij (δi − δj)2

where gij is the conductance of the line between buses i and j, and δ denotes the cor-

responding bus voltage angles according to the following equation:

δγijy = |δγiy − δ
γ
jy|
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Which can be approximated in linear terms by the following equations:

δγijy = δγ+
ijy + δγ−ijy

δγiy − δ
γ
jy = δγ+

ijy + δγ−ijy

δγ+
ijy ≥ 0

δγ−ijy ≥ 0

∀(i, j) ∈ Ω ∧ y ∈ Υ ∧ γ ∈ Ψ

where Ω is the set of indices of transmission lines and Ψ = {ω1, ω2}. A linear approx-

imation of power losses in Year y and during the time period γ can be obtained using L

piecewise linear blocks as follows:

δγijy =
L∑
l=1

δγijy(l)

Plossγijy = gijy

L∑
l=1

αijy(l)δ
γ
ijy(l)

where αijy(l) and δγijy(l) represent the slope and value of the lth block of voltage angle,

respectively. Assuming that each angle block has a constant length ∆δy, the slope of the

blocks of angles for all lines (i,j) can be calculated as:

αijy(l) = (2l − 1)∆δy ∀(i, j) ∈ Ω ∧ y ∈ Υ

Enforcing the adjacency of the angle blocks requires the following:
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δγijy(l) ≥ 0 ∀(i, j) ∈ Ω ∧ y ∈ Υ ∧ γ ∈ Ψ ∧ l ∈ L1

ωγijy(l) ·∆δy ≤ δγijy(l) ∀(i, j) ∈ Ω ∧ y ∈ Υ ∧ γ ∈ Ψ ∧ l ∈ L2

δγijy(l) ≤ ωγijy(l − 1) ·∆δy ∀(i, j) ∈ Ω ∧ y ∈ Υ ∧ γ ∈ Ψ ∧ l ∈ L3

ωγijy(l) ≤ ωγijy(l − 1) ∀(i, j) ∈ Ω ∧ y ∈ Υ ∧ γ ∈ Ψ ∧ l ∈ L4

where ωγijy(l) is a binary variable which takes the value of 1 if the value of the lth angle

block for the line (i,j) is equal to its maximum value ∆δy; {L1 = 1, . . . , L}; {L2 = 1, . . . , L− 1};

{L3 = 2, . . . , L}; and {L4 = 2, . . . , L− 1}.

Considering the line losses model just described, the net power injected at Zone i can be

represented as:

Piy =
∑

(i,j)∈Ω

[
1

2
gijy

L∑
l=1

αijy(l)δ
γ
ijy(l)− bijy(δ

γ
iy − δ

γ
jy)

]

where bijy is the susceptance of the line (i,j) in Year y. Consequently, in general terms,

the zonal power balance constraints can be formulated as follows:

Pgγiy − Pl
γ
iy + Pimγ

iy − Pex
γ
iy −

∑
(i,j)∈Ω

[
1

2
gijy

L∑
l=1

αijy(l)δ
γ
ijy(l)− bijy(δ

γ
iy − δ

γ
jy)

]
= 0

∀i ∈ Z ∧ y ∈ Υ ∧ γ ∈ Ψ

where Pl is the total load in each zone and is comprised of zonal electricity demand

(Pe) and total installed HPPs as follows:

Plγiy − Phppiy − Pe
γ
iy = 0 ∀i ∈ Z ∧ y ∈ Υ ∧ γ ∈ Ψ

The power generation in each year and zone is bounded by minimum and maximum

limits Pg
iy

and Pgiy, respectively. These limits are the minimum and maximum effective
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generation capacities which are available in each zone during the planning years, resulting

in the following inequality constraint:

Pg
iy
≤ Pgγiy ≤ Pgiy∀i ∈ Z ∧ y ∈ Υ ∧ γ ∈ Ψ

These limits are stated as:

Pimiy ≤ Pimγ
iy ≤ Pimiy ∀i ∈ Z ∧ y ∈ Υ ∧ γ ∈ Ψ

Pexiy ≤ Pexγiy ≤ Pexiy ∀i ∈ Z ∧ y ∈ Υ ∧ γ ∈ Ψ

where Pimiy and Pimiy are lower and upper bounds of imported power, respectively; addi-

tionally, Pexiy and Pexiy are exported power minimum and maximum limits, respectively.

These constraints are defined as:

bij(δ
γ
iy − δ

γ
jy) +

1

2
gij

L∑
l=1

αijy(l)δ
γ
ijy(l) ≤ Pdij − bij(δγiy − δ

γ
jy)

+
1

2
gij

L∑
l=1

αijy(l)δ
γ
ijy(l) ≤ Prij

∀(i, j) ∈ Ω ∧ y ∈ Υ ∧ γ ∈ Ψ

where Pdij and Prij are maximum capacity of the transmission corridor (i,j) in direct and

reverse power flow, respectively.

In order to effectively model the hydrogen transportation costs, the following constraints
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are also needed:

[C(m− 1) + ε]Kmijy ≤ thmijy ≤ C ·m ·Kmijy

ntry∑
m=1

Kmijy ≤ 1

Thijy =

ntry∑
m=1

thmijy

∀m ∈M ∧ (i, j) ∈ Z∗ ∧ y ∈ Υ1

where ε is a very small positive number; thmijy is an auxiliary variable representing the

transferred hydrogen, since Thijy = thmijy if Kmijy = 1; and M = {1, . . . , ntry}.

These limits are represented by:

0 ≤ Phppiy ≤ Phppiy ∀i ∈ Z ∧ y ∈ Υ

where Phppiy is the maximum size of HPP which is allowed to be installed in zone i by

Year y. Since HPP is not installed for 2008, Phppiy is equal to zero for y = 2008.
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