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Abstract

There has been an increase in demand for efficient wireless systems. Smart antennas using
position location are one possible way to improve the capacity of cellular systems. In
order to deploy such systems successfully, the wireless network must properly exploit the
processing of spatial information (ie. The uplink angle of arrival) through wireless channel
models.

Geometric modelling is a technique to model the wireless environment. When compared
to other methods such as ray tracing simulations, geometric models allow one to classify a
wide varity of environments within a single model.

Secondly, there have been much research in the past to obtain empirical measurements
in many different environment settings. These measurements have been recorded, however,
there has been no research undertaken to systematically compare and validate the empirical
findings with current geometric models. The goal of this research is to compare and
constrast geometric models with empirical data in order to show which models are best
suited for specific wireless environments. The uplink angle of arrival (AOA) probability

distribution is the fading metric that will be used to compare and contrast these models.
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Chapter 1

Background

1.1 What is Small Scale Fading ?

In a perfect communication channel, attenuation of a wireless signal over a distance occurs
in free space. The objects or obstacles in between the transmitter and receiver do not absorb
or reflect any of the signals energy. The atmosphere also exhibits this same behaviour.
However, in a real world scenario, such an environment is not possible. A signal trans-
mitted from a mobile user gets corrupted with random noise and is also received at the

1" These results in a signal that is reflected,

receiver via multiple propagation paths.
diffracted, and scattered multiple times before reaching the final destination. The receiv-
ing data measurement of each antenna represents the summed effect of these individually
unobservable multipaths. However, when the multipaths are summed, they may contain

different phase values. These phase differences (as tiny as a half wavelength) can degrade

1A multipath carries its own propagation history of electromagnetic reflections and diffractions and
corruption by multiplicative noise. A history represents the multipaths amplitude, Doppler, arrival angle,

and arrival time delay at the receiving antenna.



or even cancel the received signal. This is known as small scale fading. When the signal is
cancelled due to multipath fading, the signal is said to be in a deep fade.

Secondly, since the local scatterers reflect the signal many times, the transmitted signal
travels to the receiver via multiple paths, each having their own associated path length.
This results in the signal arriving at the receiver at various time delays. Time delays in
the signal result in time dispersion or spreading of the signal. This is also known as a
time-varying wireless channel. If the arrival delay is larger than the symbol interval, the
signal will overlap with other symbols. This is known as inter-symbol interference (ISI).
In another words, the channel characteristics change faster than time required to receive
one complete period of signal. Therefore, the complex channel gain is not constant over
the entire symbol interval. ISI is one major factor in increasing the bit error rate (BER).

When there exists a line of sight (LOS) between the transmitter and receiver, the small-
scale fading is statistically modeled by a Rician probability distribution. If no line of sight
(NLOS) exits, a Rayleigh distribution is used to model the fading behaviour.

Another type of fading is called large-scale fading. Large-scale fading represents the
average signal power attenuation or the path loss due to motion over large areas. This phe-
nomenon is affected by dominant terrain contours such as hills, forests, buildings, etc. The
receiver is often said to be shadowed by such obstacles. The statistics of large-scale fading
provide a way of computing an estimation of path loss as a function of the distance. This
is described in terms of a mean-path loss (nth-power law) and a log-normally distributed
variation about the mean.

Figure 1.1 shows the typical signal power received at a mobile unit. We can break up
the signal into multiple components: path loss, shadowing, and small scale fading. Due to
the scope of this research, the mathematical analysis in this thesis will focus only on the

microscopic (small scale) fading statistics, not macroscopic (large scale) statistics such as
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Figure 1.1: Large Scale and Small Scale Fading
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1.2 Uplink Angle of Arrival

Small-scale fading is a result of scattering multipaths in a wireless channel environment.
Due to the local scatterers around the mobile unit, the signal will be reflect in all directions.
As a result, the signals multipaths will arrive at the mobile stations receiving antenna from
many of these angular directions. These angles are known as the angle of arrival (AOA).
If we were to normalize the power received in this angular domain, we can then generate
a probability distribution function. In another words, the AOA is a scaled version of the
probability density function (pdf) in the angular domain.

There are many applications within wireless communications that exploit the use of
angular statistics. One such application is with adaptive or smart antennas systems. The

AOA is the most crucial component that these systems rely on.

1.3 Smart Antenna Systems

The recent tremendous growth in wireless communications has led to crowding or over-
loading of the radio spectrum. Current wireless systems can not handle this increasing
load as they are designed to be inefficient. Systems today use omni-directions antennas
at the base station. The signal that is transmitted is sent out in all directions as shown
in Figure 1.2. Therefore, only a small percentage of the total signal transmitted reached
the mobile user. Another problem resulting from omni-directional antennas is co-channel
interference. This occurs when neighboring cells overlap each others frequency spectrum
resulting in interference. In another words, the same carrier frequency reaches the one user
from two separate transmitting cells causing interference.

Traditionally, to overcome such problems, cell splitting has been used to cope up with

the increase in the number of users in a cellular system. Cell splitting increases the capacity



of a cellular system by subdividing or splitting cells into two or more smaller cells. However,
cell splitting is expensive and requires reconfiguring the cellular network.

Smart antenna systems are the new alternative to currently deployed systems. Smart
antenna systems attempt to overcome the current problems of inefficiency and capacity.
Instead of using omni-directional antenna’s, the base stations use directional antennas to
focus the signal energy towards the mobile unit as shown in Figure 1.2. By using the AOA
statistics of the wireless channel, the base station can locate the direction of the mobile

unit. As a result, smart antenna systems can provide the following advantages:

e Suppression of co-channel interference due to reduced multipath propagation.

Increased signal gain

Increased range or coverage within cell.

Spectral efficiency by mobile localization and multiple diversity schemes. Diversity
schemes involve recombining the information from multipath components of signals

with lower bit error rates while still using lower transmitting power.

In order for smart antenna systems to be deployed in the field, there needs to be
a thorough understanding of the wireless propagation phenomena. Many models in the
past have described the received field strength, the power delay profiles, and the Doppler
spectra. Although these parameters are important for the analysis of systems with omni-
directional antennas, new smart antenna systems require knowledge of angle of arrival
(AOA) statistics. Using the angle of arrival metrics, the system can be designed to exploit
this spatial information to improve the efficiency of the wireless system. Models in the past
are unable to derive such statistics due to the fact that the Doppler spectra are dependent

on the velocity and direction of motion of scatterers and the mobile station. Therefore,



e —

Omni Antenna

Smart Antenna

Figure 1.2: Omni-direction BaseStation vs Smart Antenna BaseStation

the realistic design and simulation of smart antenna systems requires new accurate spatial

channel models. It is for this reason that there has been a motivation for developing new

models.



Chapter 2

Modeling Wireless Fading Channels

2.1 Introduction

It is important to model small scale fading and its affect on performance in order for smart
antenna systems to be deployed. The modeling of this type of communication system
requires a statistical modeling of the wireless channel and its angular statistics. Various
methods for modeling such an environment exist today. The most common modeling
techniques are Geometric modeling, Ad-hoc modeling, and Ray-tracing modeling. Each
of these modeling techniques will be discussed and compared, however the focus of this

report will concentrate on geometric modeling.

2.2 Ray Tracing Models

Ray-tracing modeling (based on electromagnetic modeling) is unique in the sense that it
retains the full (or almost the full) electromagnetic and spatio-temporal complexities of

the specific propagation channel under investigation. The analysis of this model can be



achieved through electromagnetic-physics-based analysis or can be achieved through ray-
tracing computer simulations. Its quantitative accuracy makes this type of modeling very
advantageous. However, new simulations must be performed for each specific environment
setting (ie downtown, rural, etc). Therefore, this dependency for particular environment
settings does not make it feasible to be applicable to a much wider class of propagation

settings.

2.2.1 Geometric Models

Another type of modeling, called Geometric modeling, refers to a mathematically rigor-
ous derivation of the received signal’s measurable statistical properties. This is achieved
through geometric abstraction of the wireless environment. The geometric abstraction in-
volves the use of spatial relationships between the transmitter, receiver and all local scat-
terers. The mathematical derivation is integrated based on an idealization of the spatial
geometry that is altogether simple, generic (i.e. site non-specific) and abstract. The geo-
metric parameters that would affect the fading metrics are inter-connected in a way that will
result in representing the channel’s underlying fading dynamics. Secondly, the generic ab-
stract geometry of this model involves no site-specific, terrain-specific, or building-specific
information such as those used in empirical measurements or in ray-shooting. This makes

geometric modeling high advantageous.

2.2.2 Ad Hoc Models

There is no specific example of an Ad hoc model, however, as its name implies, these
models consists of all models that are conceived without any rigorous research. They are
simply made up out of thin air. They involve no (or very little) mathematical derivation

and do not perform any simulations to obtain results.
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2.2.3 Geometric vs Ad Hoc

Geometric modeling can be contrasted with ad hoc non-geometric models. Ad Hoc models
may impose certain improvised and a priori statistics. These statistics correspond to the
individual aspects of the multipaths’ spatial and temporal behavior without embedding
any side-by-side presumptions into an integrated comprehensive model. This results in
no underlying geometric inter-connection among the model and its other fading metrics.
Such models demonstrate very little or no analytical insight into the propagation channel’s
fundamental dynamics. As a result, it is difficult to generalize any meaningful data due
to a missing fundamental framework. There is also no framework to allow meaningful
generalization into categorically different propagation settings such as that provided with

geometric models.

2.2.4 Geometric vs Ray Tracing

Geometric modeling contrasts with site-specific, terrain-specific or building-specific em-
pirical measurements obtained from exhaustive ray-shooting / ray-tracing computer sim-
ulations. These simulations which are applicable only to the one particular propagation
setting under investigation cannot be easily generalized to wider scenarios. A benefit is
that one geometric model can apply for a wide class of propagation settings. This produces
the received-signal’s measurable fading metrics (e.g. the uplink and downlink probability
density functions of the multipaths’ arrival delay and two-dimensional arrival angle) that
can be then applicable more generically within that class of channels.

Given a model’s set of inter-relations (such as spatial distance, LOS, elevation, etc),
which correspond to the mobile, the scatterers and the base station, the channel fading

metrics could be estimated through numerical approximations of the Monte Carlo ! simu-

!The Monte Carlo simulation provides approximate solutions to a variety of mathematical problems by

9



lations as in [1], [2], [9], [13], [14], [19], [22]. However, this can not produce a closed-form
expression of the fading statistics through the geometric-model’s independent parameters.
Therefore, this limits the knowledge obtainable from such a model.

Ray tracing channel models, which are based on the complete description of the field
environments, are not practical due to the field conditions complexity and variability. Con-
sider the following example. The received power at a cellular base-station depends on the
electromagnetic response of the base-station’s receiving antennas. As many urban cellu-
lar base-stations are built on roof-tops, unpredictable happenings such as the passing of a
truck or bus or the signal from a neighbor’s newly constructed TV antenna could distort the
base-station antennas’ response considerably. An electromagnetic analysis starting from

the Maxwell’s equations would involve a difficult large number of independent variables.

2.2.5 Model Summary

Most “geometric models” involve little or no rigorous mathematical derivation of the re-
ceived signal’s measurable fading statistics. This is due to the inherent mathematical
difficulties when deriving such models. Instead, such models would perform a limited
series of Monte Carlo computer-simulation experiments based on the “geometric mod-
els”. Many models, of course, lie somewhere in the middle. For example, there are many
research initiatives that involve an incomplete mathematical analysis which result in open-
form expressions of the fading statistics. These results have unsolved complex summations
or integrals, which are estimated for a few sample propagation channels through limited
Monte Carlo computer-simulation experiments. Instead, the present work takes a longer
and tough path, yet more productive path of a mathematical analysis in order to obtain

close-form explicit expressions of the wireless environments statistical metrics. The follow-

performing statistical sampling experiments.

10



ing table is a summary of the advantages and disadvantages of the models discussed in this

section.

Model Type | Advantages Disadvantages

Ad Hoc -Simple (no derivation or simulation) -A priori knowledge is required.
-No insight into the propagation-channel’s
fundamental dynamics

Ray Tracing | -Very accurate quantitative analysis -Applicable to one particular propagation
setting
-Not practical due to the field conditions
complexity and variability

Geometric -Can apply for a wide class of propagation -Low degree of accuracy for any specific

settings

-Underlying geometric inter-connection

on its other fading metrics

-Rigorously derived closed-form expressions
-Integrated and comprehensive conceptual
foundation for an entire class of fading-

channels’ underlying propagation mechanism

field environment as compared against

site specific

11
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Chapter 3

Analytically Derived TOA-DOA

Statistics for Inverted-Parabola

3.1 Overview

In the past, there have been many rigorously derived closed-form explicit expressions to
model the wireless cellular multipaths delay and angle of arrival (TOA-AOA) statistics.
A new geometric model is derived in this section such that the scatterers are assumed to
have an inverted-parabolic spatial distribution on a two-dimensional disc centered around

the mobile station.

3.2 Assumptions

From Figure 3.1, we formulate the two-dimensional geometry in order to derive the joint
and marginal TOA and AOA pdfs. For simplicity, only one scatterer is shown and its

relation to the Mobile Station and Base Station. The scatterers in this geometry have

12



an inverted parabolic spatial distribution as seen in Figure 3.2, where D represents the

distance from the MS to the BS, and R represents the radius of the disc centered around

the MS. From these figures, we can make the following assumptions:

1)
2)

3)

All transmitting and receiving antennas are omni directional.
Polarization effects may be ignored.

Each propagation path, from the mobile to the base-station, reflects off exactly one

scatterer.

Each scatterer acts (independently of other scatterers) as an omni directional lossless

re-transmitter.

Scatterers are randomly located with a Cartesian “inverted parabolic” spatial density

fa:,y(l'a y) =

2 [1- D] i (o - DP 4P < R

(3.1)
0, otherwise

Hence, the scatterers are confined to only a finite two-dimensional disc-like spatial
support-region, centered around the mobile transmitter at (r = D,y = 0). See

Figure 3.2.

Negligible complex-phase effects in the receiving antenna’s vector-summation of its
arriving multipaths. That is, all arriving multipaths arriving at each receiving-

antenna are assumed to be temporally in-phase among themselves.

The inverted parabolic spatial density indirectly accounts for scattering power loss,

as opposed to the “uniform circular disc¢” or the uniform hollow-disc density derived in

([4], 5], [7], [8], [17], [20]), and [24]. Scattering power loss is accounted for by having a

13



lower spatial density of scatterers for spatial regions where the propagation paths are likely
to have reflection power loss. In another words, it assumes more frequent reflections off
scatterers nearer to the mobile than scatterers further away. This is accurate of a real
world scenario because a reflection farther from the mobile will be severely more degraded
due to multiple reflections (without first reaching the mobile station) that occur farther

away from the mobile.

scatterer
C

L el |
it |

base station mobile

Figure 3.1: The Geometry Relating the Mobile, the Scatterers, and the Base Station
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Figure 3.2: The Scatterers’ ”Inverted Parabolic” Spatial Density, D = 1km, R = 0.3km
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3.3 Uplink’s AOA-TOA Joint Distribution

The scatterers’ spatial distribution’s support region, in terms of the geometry in Figure

3.1, equals:

R?* > (rycos6, — D)* + (rysinf,)? (3.2)

and r, = M%Zc—ic)' The scatterers’ Cartesian spatial density in (3.1) may be expressed

in terms of the multipaths’” TOA-AOA (7, 0,) arriving at the cellular basestation through
a Jacobian transformation [17], When (3.2) holds,

cD(1 — (%)2) [1 + (%)2 — 2% cos Ou]

4 (cos 0, — %)3

2 {1 _ (rycos b, — D)* + (rysin QU)T

fT,Gu (7—, eu) =

R2

J/

=fz,y(rp cOS Oy, rp sin by,

(Cos O — 5

(B -1 [ - Ll

cosf, — %

and frg,(7,0,) = 0 when (3.2) is false. Figure 3.3 plots f; g, (7, 6,) for R = 100 meters and
D = 1000 meters.

15



D'=1000 meters -
R = 100 meters

(7 R RS

[ : '0'0 e

Upiink Arrival Angle-Delay Joint Density, £  (56,)
5
i

o .
a9, 40

-2 gegrees)

o -4
6 e
T (in sechds)as ~Station, uptink AnS

Figure 3.3: fr,(7,0,), at R = 100 meters and D = 1000 meters.

3.4 Uplink’s AOA Marginal Distribution

Restriction (3.2) requires 7, to lie between D (cos 0, £ 1/ (£)? —sin’ Ou) [17]. The Jaco-
bian transformation [17] f””o"r—(:l”%) = fay (1 cO80,, 1810 6,,) leads to:

D+2R

fou(60) = / o (r6.)dr

D(cos Ou++/ (%)Z—Sin20u>

= fp(coseu— (%)2—sin2eu) b f,y (T COS Oy, 7p S0 B, ) dry

- e (1)~ [(1)? e, ] (33)

for 0, € [— arcsin %,arcsin %}; otherwise, fy,(0,) = 0. The symmetry of fp, (6,) with

respect to 6, = 0 implies E[§,] = 0.

16



3.5 TOA Marginal Distribution

Any two-dimensional constant-7 curve may intersect with the scatterers’ support region’s

border at most twice. Because of (3.2) and 7¢ = 1, + R, the integration limits #; and 6, in:

fT(T) = /_7r fT,@u(T) eu>d8u

02 cD(1 — (TC)Q) [1 + (%0)2 — 275 cos QU]

- /91 4 (cos b, — %0)3
(1-(5)) -5
fz,y <2—TC)D COS eu, ml} Sin Gu d@u

¢ _ R
D™D

2 0 1—1—(”)2 27 cos 6

. Ry—4 02 D) "D hd
f‘r(T) - % [1 - (%) ] (5) fO d9u (fos@u—%c)s

2 2 2

R\2 (5 (1-(%)") cos(0u)
{(5) -1 |:2(cos(95—%):| + COSD(Gu)_%

2 TC 1—172

The last step above uses these coordinate transformation identities x = tan %“, sinf,, =

2z 1—a? 2dx 2 1—cos 6, : A
o costy = 75, dby, = 55, and 27 = Treoso”» Which give:
(B)2—(1-re £y oL . . . .
T =\ e mys iy Substituting z = 0 in the primitive gives 0; hence, the integral
- p) (5

17



D D—|;2R) ,

needs to be evaluated only at x;. All these imply that for 7 € (

f(1) = i (B) {48R (7)° 5,9, — 1875,
+235,8,7¢ — 28815, 5, 4192 (£)* (€)% 5,
+23 (7€) 5,5, 4 48 (Z)° S5 — 36 (£)” 5,5,
)’ 75,5, — 192 (£)* (%)’ Sy
+96 (£)" 5,8, — 282 (%)% 5,9, — 96 (£)* S,
—38 ()" 5,5, — 48 (£)° 5,9, — 38 (%)* 5,5,
1855 + 96 (£)? (7)* 5,8, + 40 (B)* 75,5,

—128 (£
) S

18519, 8 — 48 ()" 55 + 967¢ (£)” 53} (3.4)

_ _ [1 27c+2 +(z¢)2 QLCE] B e e B

with So = 7 + 1, 5 [1+27¢—2E +(%?)2 2%?%? , S92 = \/(5 - 1) (5"’1)7 and S3 =
arctan (Sgsl

3.6 Downlink’s Multipaths’ TOA-AOA Distributions

The scatterers’ spatial symmetry around the mobile implies that multipaths” AOA density
at the mobile to equal fy,(04) = &, for 6, € [—m, ).

The travelled distance of each multipath from the base station to the mobile station
is independent of the propagations direction. Therefore, the TOA propagation delay’s
distribution remains to be f, (7).

The TOA-AOA joint distribution may be non-zero only for o 1—(5)" ) < %, whereby

cos(0q)— 5

2.2

2_.2.2 . 2_r2¢ 2
re = 72@’208(5(1)0 —o and thus fay (1scos(04) + D, rgsin(by)) = — {Rz _ [Q(Dlzos(gd)_m)] }7

18



giving frg,(T,04) =
[1 - (%)Q] [1 + (%)2 -2 cos(@d)]
[cos(ﬁd) — %}3

¢ (R\7'|[(R\? 1-(5)°

D
2rD \ D D 2 (cos(0a) — %)

Otherwise, fg,(7,64) = 0. Figure 3.4 plots f,,(7,04) for R = 100 meters and D = 1000

meters.

Py

%

%

S,

Downlink Arrival Angle-Delay Joint Density, l! N (t8 d)

3.4
proped

Figure 3.4: f,,(7,64), at R = 100 meters and D = 1000 meters.
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Chapter 4

Compare and Contrast of Geometric

Models

It would be of interest to calibrate the independent variables of geometric analytical mod-
els using empirically measured data. To this date, such laborious tasks have not been
adequately performed in a systemic manner. With these calibrations, we can then classify
which models are best suited for a particular enviroment. For example, downtown urban
areas with high-rises exhibit similar wireless channel statistics whether it be downtown
Tokyo or downtown Toronto. Suburban areas with relatively flat human-made structures
(i.e., buildings not more than a few floors high) exhibit another type of channel statistics.
Mountainous areas in Switzerland or the Rockies, for example, fall into another class of
their own. Spread out throughout the research literature are many such empirical studies,
but they have been inadequately compared and systematized.

The papers [3], [5], [7], [8], [10], [15], [17], [20], [21], [23], [24], [25], have rigorously
derived closed-form geometric models to represent an abstract wireless environment. These

papers will be compared with empirical measurements to help classify which geometric
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models are best suited for a particular environment.

When deriving the geometric model, the author does not explicitly state all the possible
assumptions pertaining to the model being derived. As a result, there are many assump-
tions that are omitted in the paper which should have been included. Both explicit and
implicit assumptions must be stated in order to have an accurate model. Any assumptions
not stated in the paper but implied in the derivation of the geometric model have been
added. The following table contains both implicit and explicit assumptions of these geo-

metric models.

The table also contains the mathematical expressions for DOA marginal distribution,
TOA marginal distribution, and joint DOA-TOA distribution. The DOA marginal is then
plotted in Figure 4. The geometric model parameters used in Table 1 and here on in are

defined as follows:

6 - The angle of arrival of the planar wave from MS or BS.

R - The radius of the circular disc of scatterers surrounding the MS.

D - The distance between the MS and the BS.

o - The standard deviation of scatterers around MS.

r - The inner radius of the hollow circular disc of scatterers around MS.

Tm - The maximum delay for a mulitpath signal.
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Due to space limitations, the following are equations referred in Table 1.

fr = (BYT[mE) ke o gk whokd £ Bk 20k (5) o + kb
i B ™ D 4k1k2 2/@% + 2]43(2)/{%
c)? TC TC
(5) +k (kokl) __3-% |, (5)2 EhEk(L+ D)), |
2/{71 /{74 4 (%)2 . kf% D 2]{2 + 21{7(2)]{3%
where

]{?4 - 1 - %
(D2+7-2c2>( 2c412¢3—27¢2D cos&) D2—2r¢D cos 0+12c2
4 ) D cos 6 < 2R
f9 7(9’ 7_) _ 4R (DcosG—Tc) Tc—D cos (42)
’ c¢(D+7c) D D+2R _
s D << D2R g _
4T R? ) c c

5The Rayleigh scatterer distribution around the MS, proposed and derived in the paper LaurilaISSTA98
assumes D >> R. For D/R, not large, the distribution could become negative. Secondly, when D/R >> 1,
the Rayliegh-distributed scatterers’ fy(6) approaches the Gaussian distributed scatterers’ fy(6). Hence,
this model is omitted in the empirical comparison. A detailed comparison between the rayleigh and

gaussian distribution of scatterers is found in the Appendix.
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b 2 — M cosOIn (157) } r>1

2 {2+ 2%+ Tsing [(20 —T?)sinf + ¥ — I cos? Oln (=) ]}, T'<1

fo(0) = (4.3)

where

=

U =+1-12cos?6

Sl

6 € [—arcsin (+) , arcsin (§)]

1 _D_2 D COS 9 ™ D D2 co0s2 0
fo(0) = 5-¢ F {1+e7‘f< \/§R>}{1+\/;§00806 2R },86[-7‘(’,7‘(‘K4.4)

B cv (D? — 27?) ) <_ (D? — ¢7)? — 4vDer cosu

7 = exr
f(™) /0 87272 (D cosu — cr)? 8R?(Dcosu — cr)?

where

) du (4.5)

v=D?+c*7r?— Dercosu

1 —D? - w/2 2D2sin 6
fr(r) = P D? exp\(/(Tg 3_7_1/8) /0 (12 — sin*0) exp (—D? sin” 0/8) cosh (%) df4.6)

_ D _ T _ D
WhereTo—;,Tn—;,Ds—;

(D? — 72¢) (D?*c + 72¢® — 27¢* D cos 0)
AT by (D cos 0 — 7¢)?

c (272 — D?)

47, b/ 722 — D?
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where in both above equations, a,, = “g» and b,, = % 212 — D?

‘ (R) - (5] 1+ ()7 - 255 cosf)

fT, T)e = ey
o(r.) 2rD \ D (cos@— %)3
R\?2 , 1 — (Z¢)2 2+[1—(T—C)]0059 (49
D 2(cos — =) cosf — ¢ '
¢/D R\N*[ R /7c R e
fT(T> = m (5) {485 (5> 5152 - 18 Sg + 235152— — 28555152
R\? /7c TC TC R R
4192 (5) 5) Sy + 23 (D) 1S, + 48 (D) Sy — 36 (5) 519 + 18515,
R\? 7¢ R\? /7c\3 R\* R /7Tc\2
—128 <5> =515, — 192 (5> (5> S5 + 96 <5> S8, — 2875 (5) 5,5,
R\? TC R\? TC\ 3
96 (75 ) S5 —38 (D) S18:—48 (5 | 15— 38 (5> 1S5 + 185,
R\? /7c\2 R\? rc TC\4 e [ R\?
496 (5) (5) 1S, + 40 (5> D518, — 48 (5) S+ 967 (5) 53} (4.10)
where
So=%+1,
S, = |z eB 2% ]

Sz=¢<%—1><’—5+1>,

S3 = arctan (Sg51>,

¢ 1—(%)2 1+ (%)" — 2% cosb
fT,e(Tae) - 47TD(%)2_ %)2 (COS _%)3 (411)



f+(7)

(

\

_ —c(£-%)"151u 51251+ 5u(S15+516)]
()8 5 Bll(5) ]
= Sy1 {Sa2 [Sos — Sas] + S5 [S2655;S0s+ (1 — %)

[Sa6 (S20 — Sz0) — 452055 (1 — F — S51) — 8551932 + 455
(S50 + Ss3) (1 = 5 = S%)] } if T e [2, 24

[

ifre [@, D-l;QR}

0, otherwise
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% sin [2517]
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Various geometric model’s fy(#) are plotted in Figure 4. Analysis on TOA distribution

data is beyond the scope of this research and some results can be found in the appendix.
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Figure 4.1: AOA distribution for all geometric models

AOA marginal distribution curves use multiple parameters which characterize the shape

of the curve. These parameters are defined and described below:

1) D/R: This parameter determines the maximum and minimum values of the angle
of arrival, 6, where fe [— arcsin (%) , arcsin (%)] As D/R increases, the theoretical
fo(0), decreases in width and increses in height. As D/R — oo, fa(8) — §(6), an

impluse function. If D/R < 1, the base stations lies inside the region of scatterers.
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As a result, the plane waves will arrive at an angle greater than 90 degrees from the

LOS. When D/R — 0, fy(f) becomes "flatter’ with respect to 6 and fy(0) = 5=, V0,

o)

a uniform distribution.

5(0) VO, as & — o0
g § O
by VG, as R — 0

It is to be noted that not all geometric models that use this parameter have a

close form derivation when D/R < 1. Ouly the conical and circular uniform scat-
terer distribution models derive an expression to satisfy this condition. The inverted
parabolic, 3D uniform spheroid, and the hollow disc geometric models do not such a

condition. In these model derivations, D/R can only be > 1.

D/o: This parameter is used in the Gaussian scatterer distribution model. As D/o
increases, the distance between the BS and MS increases and fy(#) becomes narrower
with respect to . When D/o — oo, fp(6) — 0. On the other hand, if this ratio
decreases below unity, the BS lies inside the region of scatterers and thus the angle

can arrive from all possible directions.

6(0) V0, as £ — o0
fol®) = L v as 2 —0
2w ) o

r/R: This parameter is used only in the hollow disc scatterer distribution model.
When /R — 0, we obtain a circular disc of scatteres and the DOA curve reduces to
the uniform scatterer distribution model. When r/R — 1, the inner and outer length
of the hollow disc are equal and we obtain the circular ring of scatterers distribution

model.
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4) Tnc/D: This parameter is used only in the elliptical and elliptical rim scatterer

distribution model. In these model derivations, 7,,¢/D > 1. As 7,,¢/D increases, we

essentially increase the maximum delay with repect to the seperation between the

MS and BS. As a result, we are increasing the minor axis of the ellipse. This results

in the AOA distribution having a uniform distribution. As 7,,¢/D approaches 1, we

decrease the minor axis and increase the major axis resulting in an impulse function.

fo(0) —

azimuth angles) around the mobile:

5(0) VO, as ™ —1
5= V0,

2w

as — — OO

Table 4.2 summarizes the angle of arrival distribution curve as each parameter is varied.

Parameter | — 0 — o0 | —1 Geometry of Model

D/R uniform distribution J(0) | N/A uniform on circular disc,
conical on circular disc,
uniform on hollow disc,
inverted parabolic

D/o uniform distribution 5(0) | N/A gaussian model

r/R uniform on circular disc | N/A | uniform circular ring | unifrom on hollow disc

Tc/D NA 5(6) | uniform distribution | uniform on ellipse
uniform on ellipse rim

Table 4.2: Summary of DOA distribution curve parameters

The parameters discussed above also affect other features of AOA curves as follows:
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1)

Unimodal vs Multi-modal - AOA distribution curves seen in Figure 4 are either
unimodal or multi-modal. A unimodal distribution occurs in all geometric models
that have scattereres distributed with a circular region surrounding the mobile. A
multi-modal distribution can only be seen in the geometric model where the scatterers
are distributed in a hollow disc surrounding the mobile. The two peaks of this multi-
model distribution depends on the parameter value, r/R. As r/R increases, the
height of each peak also increases. The peaks reach a maximum height as r/R
approaches 1, the circular ring of scatterers model. A multi-modal distribution also
occurs for the elliptical rim scatterer distribution model. By decreasing the parameter
value 7,,¢/D we essentially increase the BS and MS seperation w.r.t the maximum

path delay. As a result, the peak increases in height.

Width of main peak - The width of the main peak depends on distribution of scat-
teres. For geometric models that use the parameter D/R, the width of the AOA
curve is defined to be 2arcsin(R/D) radians. For geometric models that have scat-
terer distributions that does not end outside a predetermined radius value but intead
which continue to infinity and/or in which the BS is enclosed within the scatterer
distribution, such as the gaussian and/or the elliptical distribution models, the re-
cieved signal at the BS comes from all possible angles. Therefore, the width of the

AOA curve is the entire angle space region defined as 27 radians.

Finite AOA spread - The AOA spread for all geometric models can be calculated

using the following formula.

s = \/E[67] — E[6,)? (4.13)

The angular spread is a statistic that measures the dispersiveness of the wireless
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channel. In another words, it is the standard deviation of the angle of arrival seen at

the base station.

Symbolic mathematic programming could find a closed-form solution for any of the
geometric models except the 3D spherical model. The AOA spread for this model
is shown in Equation 4.14. To determine the AOA spread for all other models,

numerical integration must be used.

[ 1 1 1
{6?2 —26—6I (I° —4)4/1— T3 arcsin (f> + 9 arcsin® <f> } (4.14)

S3D =

Nl
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Chapter 5

Compare and Contrast of Empirical

Data

Empirical measurements have been taken in different outdoor propagation environments.
Due to the scope of this research, outdoor channel sounding measurements are not per-
formed by the author. Instead, empirical measurements published in various conferences
and journals are extracted and use for comparison. In order to compare empirical measure-
ments accurately, the empirical data is first used to generate model parameters (described
in the previous section) such as distance between mobile and base station, D, radius of

scatterer distributions, R, standard deviation of scatterer density, o, etc.

5.1 Least-Square-Error Fitting of AOA models

To compare and contrast various geometric model’s closeness to reality, each geometrical
model in Table 1 is calibrated by each set of empirical fading dataset in Table 3. The least-

square-error (LSE) between each pair of geometric model and empirical data indications the
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goodness of the fit between the two. Both the geometric model and the empirical dataset
are each normalized to give a distribution that sume to one, then the LSE is computed as

follows:

1 & 1 &
LSE = N;di = NTLZ:;[%—f(SUn)]2 (5.1)

where:
d,, = least-square-fit error for the n-th point
x, = the n-th grid point along the #-coordinate or 7-coordinate
yn = the empirical signal’s normalized strength at § = z,, or 7 = x,,
f(z,) = the geometric model’s prediction

Based on this LSE formula, we can use an empirical dataset E,, to calibrate a geometric
model, G, to determine its independent parameter that results in the best fit. For all
empirical datasets, (Ei, Es, ..., Eyr), and all geometric models, (G, Gs,...,Gx), we can
formulate M N least-square errors. In order to properly compare and constrast the LSE
values among each other, we must also normalize the LSE values. The LSE values have
been normalized by the number of datapoints, N.

For papers where the probability density function is not explicity stated, but instead
the power of each individual multipaths, the cumulative distribution function is calculated
for each given empirical dataset. The cumulative distribution function is also generated
for the theoretical model. The LSE is then calculated by using both these cumulative

distribution functions.

35



The LSE values for all AOA models discussed thus far and empirical datasets are
shown in Table 5.1, various papers’ empirical data have been plotted against the calibrated

geometric models and are found in Figures 5.1a to 5.4c.
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5.1.1 Empirical Measurement Environment Settings

In addition to calibrating the models to determine which models best fit the empirical mea-
surements, we also need to classify which models are best suited for particular environment
settings. In order to determine which geometric models fit which environments the best,
we need to classify all empirical datasets into three different environment settings. The

characteristics of these typical environment settings are described as below:

Rural (R) - The rural environment consists of flat or hilly terrain (possibly sur-
rounded by large hills or mountains). There are very few buildings or no buildings
in the surrounding environment. The landscape may also contain large amounts of
vegetation such as forests and meadows. Typically, the rural setting has large open

spaces and is characterized by the natural surrounding environment.

Suburban (S) - The suburban environment consists of small buildings of approxi-
mately 3 to b stories in height. The landscape may also contain scattered vegetation
in areas such as parks. There is significanly less amounts of open space compared
to a rural environment settings. Residential communities are typical examples of a

suburban setting.

Urban (U) - The urban environment is best depicted by dense downtown areas of
large metropolitan cities. This setting has large tall high rise buildings greater than
5 stories. This includes office skyscrapers, apartment buildings, high rise hotels, and
high rise towers. Secondly, there is no open space due to the dense build up and

narrow streets.
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The following paragraph describes the environment setting in which each empirica
dataset was obtained. It also describes the height of the MS and BS antenna, whether the
measurement was taken in the Line of Sight(LOS) of the BS, and the frequency used in
the measurements. Since all empirical data has been taken from conference and journal
papers, the environment and parameters used are not always explicitly stated. In such

cases the parameter value is not known.
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|| Reference Setting Best Model 2nd Best 3rd Best ||

KleinISSTA96 1 Rural Ellipse Gaussian Conical
MatthewsICMPRCS89 1 Rural Gauusian Conical Inv. Parab
MatthewsICMPRCS89 2 Rural Ellipse Conical Gaussian

PedersenVTC98 Rural Ellipse Gaussian Conical
SteinbauerAPMO0801 1 2 Rural Ellipse Conical Inv. Parab
SteinbauerAPMO0801 3 4 Rural Inv Parab Conical Gaussian

ThomalMT0400 Rural Hollow Circular disc Conical

KavakAsilomar98 Suburban Inv Parab 3D Spheroid Conical

KleinISSTA96 2 Suburban Ellipse Gaussian Conical

MogensenVTC97 Suburban Ellipse Gaussian Conical

TakadaJSAC0402 Suburban Ellipse Gaussian Conical

ZhuAPSIS00 Suburban Ellipse Gaussian Conical
DeJongVTC99F 1 2 Urban Ellipse Gaussian Circular disc
FleuryJSAC0399 1 2 Urban Ellipse Gaussian Conical

KleinISSTA96 3 Urban Ellipse Gaussian Conical

KlochAPT0901 Urban Circular disc Hollow Conical

LaurilaAPT0202 Urban Ellipse Gaussian Conical

PedersenVTT0300 Urban Gaussian Ellipse Conical

TanakaJSACO0800 Urban Ellipse Gaussian Conical

ZhuVTC01S Urban Inv Parab 3D Spheroid Conical

Table 5.3: Best three models compared against empirical datatsets

5.1.2 Conclusions

From the Table 5.3, we can observe that the uniform Elliptical model is clearly the best
model in all environment settings; rural, suburban, and urban. The Gaussian and Conical
models are also models in which the empirical data matches closely. The reason that the
elliptical and gaussian models give better results when calibrating with empirical data is
due to their scatterer distributions. In the elliptical model, the base station and mobile
station are enclosed in an elliptical disc. The gaussian model also has the base station and
mobile station enclosed by scatterers. Therefore, the AOA at the base station is incident
from all directions. Secondly, since many of the empirical datasets have an AOA greater
than 90 degrees, these two models are calibrated resulting in the minimum LSE values.

The Elliptical model with more spatially spread scatterers than all other models is best

41



2/3 of all empirical data sets (18 out of 27). Elliptical is best for rural, suburban, and
urban. This is perhaps because of the unavoidability of scatters local to the base station.
Elliptals fitnees is especially pronounce over its closes competitor (by over 1/3 in LSE) in
urban areas where local scattering around the base station is especially problematic.

One can also observe when calibrating empirical datasets, KlochAPT0901, MatthewICM-
PRC89, ZhaoJSAC0402, and SteinbauerAPMO0801 (1, 3, & 4), the conical and circular
models have a parameter value that is less than one. In such cases, parameter allows the
model to be calibrated such that the scatterer distribution encloses the base station. This
results in a smaller LSE value.

Other geometric models, such as the inverted parabola and hollow circular disc, have
scatterers distributed around the mobile station only. The inverted parabolic model results
in the best match for empirical datasets ZhuVTCO1S and KavakAsilomar98. The hollow
disc model results in the optimal match for ThomalIMT0400.

There seems to be little advantage in having a hollow disc of scatterers over the circular
disc. These two models have comparable LSE. The Hollow disc model beats Circular disc
model in 1 out of 9 rural datasets, 2 out of 7 suburban datasets, and 1 out of 11 urban
datasets. A total of 4 out of 27 for all datasets.

Inverted Parabola is typically worse than conical. The 2 have comparable LSE for rual
and suburn, but inverted parabola has notable worse LSE for urban. It also has lower LSE
then conical only in 2 out of 7 sub, out of 11 datase , 5 out of 27 overall. Inv parab is
worse than conical because the latters scattereres are much more spread out spatially from
the center of the mobile.

From Table 4, and Table 5, there is no direct correlation between a specific geometric
model and the empirical datasets’ carrier frequency, and base station and mobile station

heights.
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Appendix A

Rayleigh vs Gaussian Scatterer

Distributions

The rayleigh scatterer distribution around the MS proposed and derived by Laurila [10]
makes an assumption that D >> o. The closed form expression for the AOA proba-
bility density function of this geometric model takes into account this assumption in its
derivation. As a result, values where the ratio, D/o, are not large cannot be used as
the distribution results in negative values. As an example, the AOA distribution for this
scatterer distributions is plotted in Figure A.la. Secondly, for comparison, we also plot
the geometric model with a gaussian scatterer distribution proposed by Janaswamy [21].
It is clearly seen that the AOA distribution for the rayleigh scatterer distribution is not
correct as it contains negative values. However, when large values are used, the assumption
assumed by Laurila is true and the AOA distribution matches very closely to the gaussian
geometric model derived by Janaswamy. If we compute the lease square error (LSE) be-
tween the AOA distribution’s for various values of D /o, we obtain Figure A.1b. Due to

the inconsistency in the rayleich model, we have used the gaussian model instead which
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has the correct AOA distribution for all values of D/o.
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Appendix B

AOA Distribution Fitting using AOA

spread

The following table summarizes various empirical papers’ measured AOA spreads and
each geometric model’s corresponding parameter giving this same AOA spread. See Fig-
ures B.1a,B.1b, B.1¢,B.1d,B.1e,B.1f for comparison between empirical data and specific

geometric models.

Reference AOA Spread 3D Spheriod Hollow Disc Inv. Parabola Gaussian Conical Circular
D/R r=0.1%R r=05%R r =099 %R D/R o/D D/R D/R
ThomalMT0400 30.7° 1* 1.047 1.1364 1.3514 NA 0.4505 1 1
LaurilaAPT0202 8.8687° 2.9 3.2258 3.5714 4.3478 2.66 0.1529 2.6 3.3
PedersenVTT0300 7.01° 3.6 4.1667 4.5455 5.2632 3.4 0.122 3.2 4
KlochAPT0901 38.65° 1* 1* 1* 1.1494 NA 0.1215 0.59 0.9091
TanakaJSACO0800 1.099° 23.3 26.31 29.4 34.482 21.29 0.0192 NA 26
FleuryJSAC0399 9.1749° 2.8 3.1546 3.5088 4.1152 2.57 0.158 2.45 3.2

Table B.1: Parameters corresponding to angular spread for “Geometrical Models”
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* _ In these models, the AOA spread exceeds the maximum AOA spread of the model.
Since the maximum AOA spread occurs when D/R is a minimum, this minimum value of 1
is used. Therefore, the geometric-model parameter which produced this maximum angular

spread was used.

NA - In these models, the geometric-model AOA spread was outside the range of all
possible empirical AOA spread values for a given parameter. Therefore, this model could

not be compared with the empirical dataset.
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Appendix C

TOA Distributions

TOA Marginal distribution curves:

1)

D, D/R, D/o : As we increase these parameter values, the maximum and minimum
delay of the multipath components also increases. Similarly, if we decrease these
parameter values, the maximum and minimum arrival delays decrease. This obser-
vation is trivial since increasing and decreasing the distance between the MS and
BS will result in long and short delay paths respectively. For scatterers uniformly
distributed in a circular disc around the MS, the shape of the TOA curve remains
the same for all values of D such that the ratio D/R is constant. Only the arrival
delay times change w.r.t. D. The TOA curve derived in [ErtelJSAC1199] does not
show this property. The reason for this anomality could be due to an error in the

original derivation by the authors.

r/R: This parameter is used only in the hollow disc scatterer distribution model.
When r/R approaches 0, we obtain a circular disc of scatteres and the DOA curve

reduces to the uniform scatterer distribution model. When r/R approaches unity,
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the curve peaks at the minimum and maximum delay arrival times.

C.0.3 TOA models vs empirical data

The time of arrival(TOA) was another channel fading metric measured in an outdoor
enviroment setting. Similar to DOA mentioned in the previous section, the second order
statistics, delay spread was numerically calculated for all models and empirical datasets!.
From this delay spread, each geometric TOA model was calibrated to determine model
parameters. Unlike the DOA models, in order to properly calibrate models, we must have
a priori knowledge of the distance between the base station and the mobile. The reason
for this is due to the fact that the TOA model parameter, D cannot be determined from
the delay spread directly.

The following table summarizes the delay spread of empirical data and each geometric

models corresponding parameter which also produces the same delay spread.

NA - In these models, the delay spread was outside the range of all possible delay
spread values for a given parameter. Therefore, this model could not be compared with
the empirical dataset.

See Figures C.1a,C.1b,C.1¢,C.1d,C.2a ,C.2b,C.2¢,C.2d,C.3a,C.3b for comparison be-
tween empirical data and specific geometric models.

A finite support region leads to a fintie maximum in relative delay, as expected.

The hollow-disk support region of [24] allows the TOA distribution a second peak,

IThe delay spread for the geometric model with uniform scatteres in a circular disc found in
ErtelJSAC1199, [17], could not be calculated correctly using numerical integration. The spread values
obtained were complex. The reason for this is yet to be determined. As a result, the geometric model with
uniform scatterers in a hollow disc was used to calculate the delay spread by setting the parameter value

to r = 0.0001.
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Author, Venue & Date Delay Spread Distance Hollow Disc Inv. Parabola Gaussian Circular
(in psecs) D r=0.1%xR r=05%R r=0.99 % R D/R D/o D/R
ErcegJSAC0399 0.2409 500 4.1322 90.09 12.1 55.5 3.25 8
0.106 500 NA NA NA NA 7.5 10.8
0.1173 500 NA NA NA NA 6.75 10.7
0.1629 500 NA NA NA NA 4.85 10.2
KlochAPT0901 0.0781 72 43 30.69 3.7 18.5 1.45 4.2
KucharAPT0200 0.3205 700 3.7838 128.7 19 85 3.45 0.3, 12.8
LaurilaAPT0202 0.4752 500 1.8519 207.9 27 131 1.65 0.625, 9
Steinbauer APT0801 0.0307 8 NA NA NA NA NA NA
0.0177 28 NA NA NA NA 2.5 9
0.0727 28 NA NA NA NA N/A 1.7
0.0426 28 1.4 16.83 2 10.5 1.05 3
PedersenVTT0300 0.69 1500 2.4 396 60 275 3.4 9
0.69 2000 2.5 470.25 80 350 4.5 11.5
0.69 1750 2.5 420.75 70 312.5 4 10

Table C.1: Parameters corresponding to delay spread for “Geometrical Models”

whose delay-value and height and sharpness may be controlled by r/R.
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