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Abstract

There are many situations where one might be interested in eliciting and aggregating
the private information of a group of agents. For example, a recommendation system might
suggest recommendations based on the aggregate opinions of a group of like-minded agents,
or a decision maker might take a decision based on the aggregate forecasts from a group
of experts.

When agents are self-interested, they are not necessarily honest when reporting their
private information. For example, agents who have a reputation to protect might tend
to produce forecasts near the most likely group consensus, whereas agents who have a
reputation to build might tend to overstate the probabilities of outcomes they feel will
be understated in a possible consensus. Therefore, economic incentives are necessary to
incentivize self-interested agents to honestly report their private information.

Our first contribution in this thesis is a scoring method to induce honest reporting of
an answer to a multiple-choice question. We formally show that, in the presence of social
projection, one can induce honest reporting in this setting by comparing reported answers
and rewarding agreements. Our experimental results show that the act of encouraging
honest reporting through the proposed scoring method results in more accurate answers
than when agents have no direct incentives for expressing their true answers.

Our second contribution is about how to incentivize honest reporting when private in-
formation are subjective probabilities (beliefs). Proper scoring rules are traditional scoring
methods that incentivize honest reporting of subjective probabilities, where the expected
score received by an agent is maximized when that agent reports his true belief. An implicit
assumption behind proper scoring rules is that agents are risk neutral. In an experiment
involving proper scoring rules, we find that human beings fail to be risk neutral. We
then start our discussion on how to adapt proper scoring rules to cumulative prospect
theory, a modern theory of choice under uncertainty. We explain why a property called
comonotonicity is a sufficient condition for proper scoring rules to be indeed proper under
cumulative prospect theory. Moreover, we show how to construct a comonotonic proper
scoring rule from any traditional proper scoring rule. We also propose a new approach
that uses non-deterministic payments based on proper scoring rules to elicit an agent’s
true belief when the components that drive the agent’s attitude towards uncertainty are
unknown.

After agents report their private information, there is still the question on how to
aggregate the reported information. Our third contribution in this thesis is an empirical
study on the influence of the number of agents on the quality of the aggregate information in
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a crowdsourcing setting. We find that both the expected error in the aggregate information
as well as the risk of a poor combination of agents decrease as the number of agents
increases. Moreover, we find that the top-performing agents are consistent across multiple
tasks, whereas worst-performing agents tend to be inconsistent.

Our final contribution in this thesis is a pooling method to aggregate reported beliefs.
Intuitively, the proposed method works as if the agents were continuously updating their
beliefs in order to accommodate the expertise of others. Each updated belief takes the form
of a linear opinion pool, where the weight that an agent assigns to a peer’s belief is inversely
related to the distance between their beliefs. In other words, agents are assumed to prefer
beliefs that are close to their own beliefs. We prove that such an updating process leads
to consensus, i.e., the agents all converge towards the same belief. Further, we show that
if risk-neutral agents are rewarded using the quadratic scoring rule, then the assumption
that they prefer beliefs that are close to their own beliefs follows naturally. We empirically
demonstrate the effectiveness of the proposed method using real-world data. In particular,
the results of our experiment show that the proposed method outperforms the traditional
unweighted average approach and another distance-based method when measured in terms
of both overall accuracy and absolute error.
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Chapter 1

Introduction

There are many scenarios where it is desirable to elicit the private information of an agent.
One particular context is asking an expert for his belief regarding the occurrence of future
outcomes during a decision-making process. For example, companies rely on predictions
about consumer demand and material supply to make their production plans, while weather
forecasts provide guidelines for long range or seasonal agricultural planning so that farmers
can select crops that are best suited to the anticipated climatic conditions.

Another domain highly dependent on the elicitation of agents’ private information is
crowdsourcing, which consists of the practice of obtaining relevant information or services
from a large group of people. Recent technological advances have facilitated the outsourcing
of a variety of tasks to “the crowd”, e.g., the development and testing of large software
applications, the design of websites, professional translation of documents, etc.

Unfortunately, self-interested agents are not necessarily honest when reporting their
private information. For example, Nakazono [57] reported that governors of the Federal
Open Market Committee tend to report forecasts close to the previous consensus, whereas
non-governors tend to report forecasts far away from the previous consensus. Nakazono
concluded that both governors and non-governors behave strategically. Agents might also
bias their reports towards what they believe is socially desirable, or in a way that makes
them look more favorable to the requester. This phenomenon is also known as the social
desirability bias. It has been reported that the social desirability bias might account for
as much as 10%-70% of the variance in agents’ reports [59].

Clearly, a method to promote honest reporting is necessary when agents are self-
interested or biased. Henceforth, we refer to such methods as incentive methods. Incentive
methods use economic incentives (not necessarily money) for promoting honest reporting.
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Some incentive methods, however, rely on assumptions that are not necessarily realistic,
e.g., that there exists an actual outcome that will be observed at a certain point in the
future, and that agents are expected-value maximizers. An important question in this do-
main is how to circumvent these limitations and design incentive methods under realistic
assumptions.

Ideally, a requester should elicit and aggregate the private information from many
different agents so that biases of individual judgments can offset each other, which may
result in more accurate aggregate information. This is the core idea behind collective
intelligence, or the “wisdom of crowds”, i.e., the aggregate information is, at least in
expectation, more accurate than the information of any single individual [81]. Agents
are not always in agreement when reporting their private information. Consequently,
aggregation methods must be used to combine agents’ reports into a single representative
report. The aggregation aspect brings two new questions to the elicitation process: (1)
how does the number of agents influence the aggregate report? and (2) how to aggregate
agents’ reports in a meaningful way?

1.1 Contributions

This thesis addresses each one of the aforementioned questions. Regarding incentive meth-
ods, our initial contribution is a scoring method based on proper scoring rules to induce
honest reporting of private information without relying on the assumption of future observ-
able outcomes. Our proposed method compares agents’ reports and rewards agreement.
We formally show that this simple payment structure induces honest reporting when there
exists social projection, i.e., when each agent believes that his private information is the
most common amongst all other agents.

Our second contribution is an approach to incentivize honest reporting of subjective
probabilities (beliefs) without assuming that agents are expected-value maximizers. In
particular, we adapt proper scoring rules to cumulative prospect theory (CPT), a modern
theory of choice under uncertainty. Besides providing sufficient conditions for proper scor-
ing rules to induce honest reporting under cumulative prospect theory, we also propose a
new incentive method that uses non-deterministic payments to elicit an agent’s belief when
the CPT components that drive the agent’s attitude towards uncertainty are unknown.

Regarding the aggregation of agents’ reports, our first contribution is a study on the
influence of the number of agents on the quality of aggregate reports in a crowdsourcing
setting. We find that both the expected error in the aggregate report as well as the risk of
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a poor combination of agents decrease as the number of agents increases. Moreover, our
results show that restricting the population of agents to 40 or fewer percent top-performing
agents is likely to produce more accurate aggregate reports, whereas removing up to 40%
of the worst-performing agents can actually make the aggregate reports less accurate. We
find that this result holds due to top-performing agents being consistent across multiple
tasks, whereas worst-performing agents tend to be inconsistent.

Our final contribution is a method to aggregate agents’ reported beliefs. We start
by assuming that agents prefer beliefs that are close to their own beliefs. Given this
assumption, we propose an algorithm to find a consensual belief. The proposed algorithm
works by simulating interactions between agents. In each round, agents disclose their
beliefs to others, and they update their own beliefs after observing the disclosed beliefs.
We formally show that this updating process leads to a consensual belief. Moreover, we
show that if risk-neutral agents are rewarded using a particular proper scoring rule called
the quadratic scoring rule, then the assumption that agents prefer beliefs that are close to
their own beliefs follows naturally.

It is important to note that our research is focused on settings where agents are not
concerned about how their private information will be used in the future, as opposed to
situations where externalities exist, such as when agents want to influence the potential
decision of a decision maker (e.g.,[10, 19, 20]).

1.2 Thesis Outline

Besides this introductory section, this thesis has six more chapters:

• In Chapter 2, we introduce proper scoring rules, a class of functions which is the
core of our proposed methods to elicit agents’ private information, and Amazon’s
Mechanical Turk, the crowdsourcing platform utilized for collecting some data sets
used throughout this thesis;

• In Chapter 3, we describe our method for inducing honest reporting of private infor-
mation without relying on future observable outcomes;

• In Chapter 4, we adapt proper scoring rules to cumulative prospect theory in order
to elicit agents’ beliefs under a more realistic theory of choice under uncertainty;

• In Chapter 5, we present our empirical study on the influence of the number of agents
on the quality of the aggregate reports;
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• In Chapter 6, we describe our aggregation method for finding a consensual belief;

• In Chapter 7, we conclude by presenting a summary of the contributions of this
thesis.
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Chapter 2

Background

In this chapter, we introduce proper scoring rules, which is the core of our proposed meth-
ods for inducing honest reporting, and Amazon’s Mechanical Turk, which is the platform
utilized for collecting some data sets used throughout this thesis.

2.1 Proper Scoring Rules

Consider a set of exhaustive and mutually exclusive outcomes {θ1, . . . , θn}, for n ≥ 2, and
a probability vector q = (q1, . . . , qn), where qx is the probability value associated with the
occurrence of outcome θx. A scoring rule R(q, θx) is a function that provides a score for
the assessment q upon observing the outcome θx, for x ∈ {1, . . . , n}. A scoring rule is
called strictly proper when an agent receives his maximum expected score if and only if his
stated assessment q corresponds to his true assessment p = (p1, . . . , pn) [94]. When q = p,
we say that the agent is honestly reporting his belief. The expected score of q at p for a
real-valued scoring rule R(q, θx) is:

Ep [R(q, ·)] =
n∑
x=1

pxR(q, θx) (2.1)

Proper scoring rules have been used directly and indirectly to promote honest reporting
in a variety of domains, e.g., when grading students’ exams [9], when sharing rewards
amongst a set of agents based on peer evaluations [15, 16, 17], when incentivizing agents
to accurately estimate their own efforts to accomplish a task [5], to elicit predictions in
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patient management and clinical trials [78], to elicit opinions from policy makers regarding
the occurrence of political and economic events [83], in financial markets set to aggregate
agents’ subjective probabilities [35], etc. Some of the best known strictly proper scoring
rules, together with their scoring ranges, are:

logarithmic: R(q, θx) = log qx (−∞, 0]

quadratic: R(q, θx) = 2qx −
n∑
k=1

q2k [−1, 1] (2.2)

spherical: R(q, θx) =
qx√∑n
k=1 q

2
k

[0, 1]

Selten [74] and Jose [41] provided axiomatic characterizations of, respectively, the
quadratic scoring rule and the spherical scoring rule in terms of desirable properties, e.g.,
sensitivity to small differences of small probabilities, symmetry, etc.

For the sake of illustration, consider a coin toss experiment with two outcomes (n = 2):
θ1 = “heads” and θ2 = “tails”. Consider that an agent i has a true assessment p =
(0.4, 0.6). Assume that agent i reports the assessment q = (q1, q2), which is rewarded
according to the logarithmic scoring rule. Then, agent i’s expected score is Ep [R(q, ·)] =
p1 log q1 + p2 log q2 = 0.4 log q1 + 0.6 log q2. In the future, if outcome θ1 is the observed
outcome, then the score agent i receives is equal to log q1. Since the logarithmic scoring
rule is a strictly proper scoring rule, agent i’s expected score is strictly maximized when he
is honest, i.e., when q = p = (0.4, 0.6). To show this, note that Ep [R(q, ·)] = p1 log q1 +
p2 log q2 = p1 log q1 + (1 − p1) log(1 − q1). Since the resulting function is concave, its
maximum value can be found by taking the first-order derivative with respect to q1, and
equating the result to zero, i.e.:

p1
q1
− 1− p1

1− q1
= 0 =⇒ p1 = q1

The above proper scoring rules are all symmetric, in a sense that R((q1, . . . , qn), θx) =
R((qπ1 , . . . , qπn), θπx), for all probability vectors q = (q1, . . . , qn), for all permutations π on
n elements, and for all outcomes indexed by x ∈ {1, . . . , n}. We say that a scoring rule is
bounded if R(q, θx) ∈ R, for all probability vectors q and x ∈ {1, . . . , n}. For example, the
logarithmic scoring rule is not bounded because it might return log 0 = −∞ whenever the
probability vector q contains a probability value equal to zero. On the other hand, both
the quadratic and the spherical scoring rules are bounded.
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We say that a scoring rule is positive when all the returned scores are nonnegative, i.e.,
R(q, θx) ≥ 0 for all x ∈ {1, . . . , n}. A negative scoring rule only returns nonpositive scores,
i.e., R(q, θx) ≤ 0 for all x ∈ {1, . . . , n}. Finally, a mixed scoring rule might return both
positive and negative scores.

A well-known property of strictly proper scoring rules is that they are still strictly
proper under positive affine transformations, i.e., γR(q, θx) + λ, for γ > 0 and λ ∈ R, is
also strictly proper [34]. We prove this statement below for the sake of completeness.

Proposition 1. If R(q, θx) is a strictly proper scoring rule, then a positive affine trans-
formation of R, i.e., γR(q, θx) + λ, for γ > 0 and λ ∈ <, is also strictly proper.

Proof. We just need to note that arg maxq E [γR(q, ·) + λ] = arg maxq E [R(q, ·)], which is
equal to the true assessment p since R is a strictly proper scoring rule.

In a seminal work, Savage [72] showed that any differentiable strictly convex function
J(q) that is well-behaved at the endpoints of the scoring range can be used to generate a
proper scoring rule. Formally:

R(q, θx) = J(q)−

(∑
k

∂J(q)

∂qk
× qk

)
+
∂J(q)

∂qx

For example, consider J(q) =
∑

k qk log qk. The resulting proper scoring rule is then
the logarithmic scoring rule:

R(q, θx) =
∑
k

qk log qk −

(∑
k

(log qk + 1)× qk

)
+ log qx + 1

= log qx

Gneiting and Raftery [34] generalize Savage’s results in terms of subgradient methods.
Scoring rules are also classified based on monotonicity properties. Consider a metric G
that assigns to any pair of assessments q1 and q2 a real number, which in turn can be seen
as the shortest distance between q1 and q2. By definition, a metric G must satisfy the
following conditions for any assessments qi,qj, and qk:

1. Positivity: G(qi,qj) ≥ 0, for all i, j, and G(qi,qj) = 0 if and only if qi = qj;
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2. Symmetry: G(qi,qj) = G(qj,qi);

3. Triangle Inequality: G(qi,qk) ≤ G(qi,qj) +G(qj,qk).

We say that a scoring rule R is effective with respect to G if the following relation holds
for any assessments q1 and q2 [30]:

G(q1,p) < G(q2,p) ⇐⇒ Ep [R(q1, ·)] > Ep [R(q2, ·)]

In words, each agent’s expected score can be seen as a monotone decreasing function
of the distance between his true assessment and the reported one, i.e., agents still strictly
maximize their expected scores by reporting honestly, and the closer a reported assessment
is to the true assessment according to the metric G, the higher the expected score will be.
Consequently, the property of effectiveness is stronger than strict properness, and it has
been proposed as a desideratum for scoring rules for reasons of monotonicity in keeping
an agent close to his true assessment. Friedman [30] discussed some examples of effective
scoring rules. For example, the quadratic scoring rule is effective with respect to the root-
mean-square deviation, the spherical scoring rule is effective with respect to a renormalized
L2-metric, and the logarithmic scoring rule is not effective with respect to any metric [58].

2.2 Amazon’s Mechanical Turk

Amazon’s Mechanical Turk1 (AMT) is an online labor market originally developed for hu-
man computation tasks, i.e., tasks that are relatively easy for human beings, but nonethe-
less challenging or even currently impossible for computers, e.g., audio transcription, filter-
ing adult content, extracting data from images, etc. Some studies have shown that AMT
can effectively collect valid data in these settings [50, 77].

The standard crowdsourcing process on AMT works as follows: first, a requester asks
a number of workers to individually complete a common task. After completing the task,
each worker must report back an output. Finally, each worker receives from the requester
a common baseline payment and, sometimes, an individual bonus.

Recently, AMT has also been used as a platform for conducting behavioral experiments
[52]. One of the advantages that it offers to researchers is the access to a large, diverse,
and stable pool of people willing to participate in the experiments for relatively low pay,

1https://www.mturk.com
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thus simplifying the recruitment process and allowing a faster iteration between developing
theory and executing experiments. The majority of workers on AMT come from the United
States, but with an increasing proportion coming from India [40].

AMT also provides an easy-to-use built-in mechanism to pay workers that greatly re-
duces the difficulties of compensating individuals for their participation in the experiments,
and a built-in reputation system that helps requesters distinguish between good and bad
workers and, consequently, to ensure data quality. Many studies have shown that results of
behavioral studies conducted on AMT are comparable to results obtained in other online
domains as well as in offline settings [12, 38], thus providing evidence that AMT is a valid
means of collecting behavioral data.

As concrete examples of how AMT has been used in practice, we can cite the social net-
work LinkedIn, which has been using workers from AMT for transcribing business cards2,
the Defense Advanced Research Projects Agency (DARPA) uses AMT to translate Arabic
texts to English3, the mobile-web community SnapMyLife has been using AMT to tag
photos4, etc.

2https://requester.mturk.com/case_studies/cs/linkedin
3https://requester.mturk.com/case_studies/cs/darpa
4https://requester.mturk.com/case_studies/cs/snapmylife
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Chapter 3

Inducing Honest Reporting Without
a Ground Truth

Traditional scoring methods that incentivize honest reporting, such as proper scoring rules,
rely on the assumption that there is an observable future outcome, or a ground truth. Such
an assumption is not always reasonable. For example, when market analysts provide sales
forecasts on a potential new product, there is no guarantee that the product will ever be
produced. Hence, the actual number of sales may never be observed. Crowdsourcing is
another domain where the assumption of the existence of a ground-truth outcome is not
always reasonable. After eliciting information from the crowd, verifying the accuracy of
each report can be either too costly or not even possible because the underlying task might
be subjective, such as in content and sentiment analysis.

In this chapter, we propose a new scoring method based on proper scoring rules for
inducing honest reporting when agents have to answer a multiple-choice question. However,
different than what is traditionally assumed in the proper scoring rules literature, the
proposed method does not assume that there is a ground-truth answer. Instead, scores are
determined based on pairwise comparisons between agents’ reported answers. Our scoring
method exploits the psychological concept of social projection to induce honest reporting,
i.e., the tendency of agents to expect similarities between themselves and others.

The setting, as we consider in this chapter, can be described as follows: a requester
elicits answers to a multiple-choice question from a set of agents. Agents cannot commu-
nicate with each other during the elicitation process, and they do not know each other’s
identity. The requester then rewards agents based on their reported answers using our
proposed scoring method. We assume that agents’ rewards are somehow coupled with
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relevant incentives, be they social-psychological, such as praise or visibility, or material re-
wards through prizes or money. Then, we naturally assume that agents seek to maximize
their expected rewards. We show that, in the presence of social projection, agents strictly
maximize their expected rewards by honestly disclosing their answers.

We also show how our proposed scoring method reduces to the output-agreement method
whenever the underlying proper scoring rule is bounded and symmetric. The output-
agreement method rewards agents based on whether their reported answers are the same.
The output-agreement method has been successfully used in online marketplaces and in
games with a purpose such as the ESP game [87]. We also show how our scoring method
together with the ranked probability scoring rule [29] induce honest reporting by penalizing
disagreements proportionally to the absolute difference between agents’ answers.

From an empirical perspective, we investigate the efficiency of the output-agreement
method and, consequently, of our scoring method in a content-analysis experiment. When
objective verification is not possible, as often in content analysis, economic measures may
be used to encourage agents to honestly disclose their answers. We discuss how our scoring
method does so by making pairwise comparisons between reported answers and rewarding
agreements. Our experimental results show that encouraging honest reporting through the
output-agreement method creates more accurate answers than when agents have no direct
incentives for expressing their honest answers.

3.1 Related Work

Two prominent methods to induce honest reporting without relying upon the existence
of a ground-truth answer have been recently proposed: the Bayesian truth serum (BTS)
method [65] and the peer-prediction method [54].

Similar to the setting we discuss in this chapter, the BTS method works on a single
multiple-choice question with a finite number of answers. Each agent endorses the answer
mostly likely to be correct and predicts the empirical distribution of the endorsed answers.
Agents are evaluated by the accuracy of their predictions as well as based on how sur-
prisingly common their answers are, i.e., based on whether the reported answer is more
common than collectively predicted.

The score received by an agent from the BTS method has two major components. The
first one, called the information score, evaluates the agent’s answer according to the log-
ratio of its actual-to-predicted endorsement frequencies. The second component, called the
prediction score, is a penalty proportional to the relative entropy between the empirical
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distribution of answers and the agent’s prediction of that distribution. Under the BTS
scoring method, collective honest reporting is a Bayes-Nash equilibrium, i.e., the best
action that an agent can take (in expectation) given that all his peers are reporting honestly
is also to report honestly.

The BTS method has been used to promote honest reporting in many different domains,
e.g., when sharing rewards amongst a set of agents [16] and in policy analysis [93]. However,
there are two major drawbacks with the BTS method. First, it requires the population
of agents to be large. Second, besides reporting their answers, agents must also make
predictions about how their peers will report their answers. While the artificial intelligence
community has recently addressed the former issue [67, 96], the latter issue is still an
intrinsic requirement for using the BTS method.

The peer-prediction method [54], on the other hand, does not share the drawbacks
of the BTS method. In the original setting of the peer-prediction method, a number of
agents experience a product and rate its quality. A mechanism then collects the ratings
and makes payments based on those ratings. The peer-prediction method makes use of
the stochastic correlation between the signals observed by the agents from the product to
achieve a Bayes-Nash equilibrium where every agent reports honestly.

Our work differs from the aforementioned works in that we explicitly explore the concept
of social projection to induce honest reporting. Social projection is a cognitive bias where
an agent believes that his private information is the most common one amongst his peers,
although that might not be the case in reality. In other words, agents project themselves
onto others. As the literature on psychological projection has shown, social projection
serves as an egocentric heuristic for inductive reasoning [68]. There is evidence that social
projection exists intra-groups and, to a less degree, inter-groups [68]. Some formal models
have been proposed to model social projection, e.g., Brenner and Bilgin [11] proposed
a social projection model based on support theory, whereas Busemeyer and Pothos [13]
discussed a quantum model of social projection.

We propose a flexible social projection model that allows one to model the strength of
the projection within the Bayesian learning framework. This modeling choice is desirable
because it has been shown that the strength of the projection is context dependent, e.g.,
intra-group social projection seems to be stronger in groups that are artificially created in
the laboratory than in groups that exist in the social world [68].

Given our social projection model, we show that it is possible to induce honest reporting
by simply comparing reported answers and rewarding agreements. The rationale behind
our approach is that when an agent believes that his answer is the most popular one, then
honest reporting maximizes the chance of a random agreement. It is interesting to note
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that both the BTS method and the peer-prediction method only induce honest reporting
in a Bayes-Nash Equilibrium, whereas this is not the case for our method. The main
reason for this result is that our model is simpler in that it only relies on an agent’s belief
about the population knowledge, instead of an agent’s belief about others’ beliefs about
the population knowledge.

Rewarding agents based on pairwise comparisons has been empirically proven to be
an effective payment structure in some domains. For example, Shaw et al. [75] measured
the effectiveness of a collection of social and financial incentive schemes for motivating
agents to conduct a qualitative content-analysis task. The authors found that treatment
conditions that provided financial incentives and asked agents to prospectively think about
the responses of their peers produced more accurate responses. Huang and Fu [39] showed
that informing the agents that their rewards will be based on how similar their responses
are to other agents’ responses produces more accurate responses than telling the agents that
their rewards will be based on how similar their responses are to gold-standard responses.
The aforementioned studies were both performed on Amazon’s Mechanical Turk.

Our work adds to the existing body of literature by providing a theoretical justification,
and further empirical evidence, on why scoring methods based on pairwise comparisons
work well in environments such as Amazon’s Mechanical Turk. Moreover, our work provides
a novel characterization of the output-agreement method different than, for example, a
recent game-theoretic characterization by Waggoner and Chen [88]. Waggoner and Chen
argued that the output-agreement method does not elicit honest answers. Instead, it
elicits the correct answer according to the common knowledge among agents. We obtain a
different result because, in contrast to Waggoner and Chen’s work, we make assumptions
on the nature of agents’ information structure to model social projection.

3.2 The Model

We consider a multiple-choice question with a total of n ≥ 2 exhaustive and mutually
exclusive answers A1, . . . , An. This modeling choice is rather flexible because one can phrase
many different tasks in terms of a multiple-choice question, e.g., ratings, content/sentiment
analysis, classification, categorization, etc. We assume that the population’s knowledge is
represented by an unknown categorical distribution Ω with parameter ω = (ω1, . . . , ωn),
where 0 ≤ ωk ≤ 1 and

∑n
k=1 ωk = 1. A possible interpretation of ωk is that it is the

probability that an agent selected at random from the population of agents has Ak as the
answer to the multiple-choice question.
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Each agent possesses a privately observed draw (signal) from Ω. We refer to observed
signals as honest answers. We denote the honest answer of an agent i by ti ∼ Ω, where
ti ∈ {A1, . . . , An}. Honest answers are independent, i.e., P (ti|tj) = P (ti). Agents are not
necessarily honest. For example, agents might report an answer they believe is socially
desirable, as opposed to their true answers. Hence, we distinguish between each agent
i’s honest answer, ti, and his reported answer ri ∈ {A1, . . . , An}. We say that agent i is
reporting honestly when his reported answer is equal to his honest answer, i.e., ri = ti.

An entity, referred to as the center, is responsible for eliciting the answers and for
rewarding the agents. Let si be agent i’s reward after he reports ri. We discuss how to
compute si in the next section. Rewards are somehow coupled with relevant incentives, be
they social-psychological, such as praise or visibility, or material rewards through prizes or
money. We make four major assumptions in our model:

1. Autonomy : agents cannot influence other agents’ answers, i.e., they do not know
each other’s identity and they are not allowed to communicate to each other during
the elicitation process.

2. Risk Neutrality : agents behave so as to maximize their expected rewards.

3. Symmetric Dirichlet Priors : each agent i has a prior distribution over ω. We
assume that this prior is a symmetric Dirichlet distribution with hyperparameter
α = (α1, . . . , αn), i.e., P (ω|α).

4. Social Projection: after observing ti, every agent i updates his belief by applying
Bayes’ rule to his prior, i.e., P (ω|α, ti).

The first assumption means that agents work individually on the multiple-choice ques-
tion. It describes how, for example, crowd workers traditionally solve tasks on the crowd-
sourcing platform Amazon’s Mechanical Turk. The second assumption means that agents
are self-interested and no external incentives exist for each agent.

The third assumption means that all the elements of the hyperparameter α have the
same value, i.e., α1 = · · · = αn > 0. In practice, this assumption implies that before
an agent sees the underlying multiple-choice question and knowing only the number of
possible answers n, the agent’s response to the query “what is the probability that one of
your peers will report the answer Ak?” is 1

n
, for all k ∈ {1, . . . , n}. That is, all the answers

are equally likely a priori. Formally:
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P (rj = Ak|α) = E[ωk|α] =
αk∑n
x=1 αx

=
1

n

for j 6= i. Given that all the answers are equally likely a priori, we henceforth refer to the
prior as uninformative. The fourth assumption means that the posterior distributions are
consistent with Bayesian updating. Moreover, this assumption implies that after solving
the multiple-choice question, an agent’s response to the query “what is the probability that
one of your peers will report the answer Ak?” is:

P (rj = Ak|α, ti) = E[ωk|α, ti] =

{ αk+1
1+
∑n
x=1 αx

if ti = Ak,

αk
1+
∑n
x=1 αx

otherwise.

We can write the above posterior as follows:

P (rj = Ak|α, ti) = E[ωk|α, ti] =

{
1
n

+ y if ti = Ak,

1
n
− y

n−1 otherwise.
(3.1)

for 0 < y = n−1
n+αk×n2 < 1. Appendix A provides details about Dirichlet distributions.

The above equation models social projection, which is the tendency to expect similarities
between oneself and others [68]. In other words, an agent believes that his honest answer
is the most popular answer amongst his peers. With this perspective, the value of y and,
consequently, the elements α1, . . . , αn of the hyperparameter α determine the strength
of the social projection, where a small (respectively, high) value for y implies a weak
(respectively, strong) social projection.

3.2.1 Social Projection

An important assumption in our model is that social projection holds true. Social pro-
jection, as defined in our work, is an extreme version of the psychological concept known
as the false-consensus effect [69]. False consensus refers to an egocentric bias that occurs
when people estimate consensus for their own behaviors or beliefs. Specifically, the false-
consensus hypothesis asserts that human beings who engage in a certain behavior, or hold
a certain belief, estimate that behavior/belief to be more common than the estimations
from people who engage in alternative behaviors, or hold different beliefs.

The false-consensus effect is not restricted to cases where people believe that their values
are shared by the majority. In other words, the term false consensus has also been used
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when there is no consensus, i.e., when agents do not necessarily believe that the majority
of people share their views, but their estimates of the number of people who share their
views tend to exceed the actual number. Our concept of social projection, on the other
hand, asserts that an agent believes that his true response is the most popular response
amongst his peers, i.e., there is actually a consensus around the agent’s true response,
which might be a false consensus.

A pioneer work on false consensus was performed by Katz and Allport [44], who noticed
that the more students admitted that they had cheated on an exam, the more they ex-
pected that other students cheated too. Ross et al. [69], the authors who coined the term
false consensus, hypothesized and then demonstrated that people tend to overestimate the
popularity of their own beliefs and preferences. In particular, the results of Studies 1, 3,
and 4 in the paper by Ross et al. [69] showed that social projection, as defined in this
paper, holds true when considering the agents’ aggregated answers and estimates, whereas
the combined results of Study 2 showed that social projection was present in 5 out of 14
multiple-choice questions.

Since the work by Ross et al. [69], dozens of studies have documented a systematic
relationship between one’s perceptions of his own characteristics and his estimates of the
percentage of people in the population who share those characteristics in a variety of
settings, ranging from questionnaire studies presenting situations, choices, and judgments
that are hypothetical to actual conflict situations demanding personally relevant behavioral
choices and social judgments [55, 51, 68]. Moreover, it has been shown that the strength
of the false-consensus effect is highly dependent on the underlying agents and task. For
example, there is some evidence that elderly people display higher degree of false con-
sensus than adolescents [97]. Furthermore, false consensus is stronger when people make
judgments about ingroups than when they make judgments about outgroups [68].

The emergency of the false-consensus effect and, consequently, our concept of social
projection, has been explained under four different perspectives [51]: 1) selective exposure
and cognitive availability; 2) salience and focus of attention; 3) motivational processes; and
4) logical information processing.

The perspective of selective exposure and availability suggests that instances of simi-
larity between oneself and others are more readily available from memory than instances
of dissimilarity, thereby increasing estimates of consensus for one’s preferred opinion. The
reason why these instances of similarity are more readily available is due to selective ex-
posure, i.e., due to the tendency of human beings to associate with those who are similar
rather than dissimilar to themselves. This selective exposure to similar others provides
an agent with a biased and restricted sample of information about the population’s true
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diversity of opinion.

The perspective about salience and focus of attention suggests that false consensus/social
projection arises when an agent focuses attention exclusively on a single position. Conse-
quently, perceived consensus may be augmented because that position is the only one in
the agent’s immediate consciousness.

The motivational perspective asserts that false consensus/social projection has a dissonance-
reduction function, where agents unconsciously project their own beliefs onto others in
order to obtain confirmation for their own attitudes and beliefs, i.e., to bolster social sup-
port, to validate the correctness or appropriateness of a belief, to maintain self-esteem,
etc.

Finally, the logical information processing perspective views active reasoning and ra-
tional processes as underlying one’s estimates about the similarity between oneself and
others. Within this perspective, Dawes [26] reexamined the data obtained by Ross et al.
[69] and argued, from a Bayesian perspective, that subjects were correct in considering
their own behavioral choices common in the population. In particular, Dawes [26] showed
that the typical strength of the false-consensus effect was similar to the statistically nor-
mative change from prior to posterior probabilities in generic induction. Moreover, Dawes
[26] discussed that even a sample of size 1, representing an agent’s private information as in
our model, should have substantial effect on the agent’s percentage estimates. Therefore,
it is conceivable that subjects intuitively understand the logic of statistical induction and
perform accordingly.

To summarize, our concept of social projection is strongly grounded in psychology. In
particular, social projection is an extreme version of the psychological concept known as the
false-consensus effect. As the seminal work by Ross et al. [69] suggests, social projection
happens often and in many different settings.

3.3 The Scoring Method

If the center knew a priori agents’ honest answers, he could then compare the honest
answers to the reported answers and reward agreement. However, due to the subjective
nature of our setting, we face a situation where this objective truth is unknowable. Our
solution to this issue is to induce honest reporting by providing rewards based on pairwise
comparisons between reported answers.

The first step towards computing an agent i’s reward is to estimate his posterior distri-
bution in (3.1) based on his reported answer ri. Let E[ω|α, ri] = (E[ω1|α, ri], . . . ,E[ωn|α, ri])
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be such an estimation, where:

E[ωk|α, ri] =

{
1
n

+ y if ri = Ak,
1
n
− y

n−1 otherwise.
(3.2)

Clearly, E [ωk|α, ri] = E [ωk|α, ti] if and only if agent i is reporting honestly, i.e., when
he reports ri = ti. The score of agent i is then determined as follows:

si = γR (E [ω|α, ri] , rj) + λ (3.3)

where j 6= i is an arbitrary agent, γ and λ are constants, for γ > 0 and λ ∈ R, and R is
a strictly proper scoring rule. Scoring rules require an observable outcome, or a ground
truth, in order to score an assessment. Intuitively, the scoring method in (3.3) considers
the answer reported by an agent other than agent i as the observed outcome, and then the
method scores agent i’s estimated posterior distribution in (3.2) as an assessment of the
observed outcome. In the following proposition, we show that our scoring method induces
honest reporting.

Proposition 2. Each agent i strictly maximizes his expected reward if and only if ri = ti.

Proof. For ease of exposition, let Θi = E [ω|α, ti] and Φi = E [ω|α, ri]. By the autonomy
assumption, agent j cannot affect agent i’s reported answer.

(If part) Since R is a strictly proper scoring rule, from Proposition 1 we have that:

arg max
Φi

EΘi
[γR (Φi, rj) + λ] = Θi

If ri = ti, then by construction Φi = Θi, i.e., the estimated posterior distribution in
(3.2) is equal to the true posterior distribution in (3.1). Consequently, honest reporting
maximizes agents’ expected rewards.

(Only-if part). Using a similar argument, given that R is a strictly proper scoring
rule, from Proposition 1 we have that:

arg max
Φi

EΘi
[γR (Φi, rj) + λ] = Θi

By construction, Φi = Θi if and only if ri = ti. Thus, agents maximize their expected
rewards only when they are honest.

18



Another way to interpret Proposition 2 is to imagine that each agent is betting on
the most appropriate answer to the underlying multiple-choice question. Since the most
relevant information available to him is the observed signal, then the strategy that maxi-
mizes his expected reward is to bet on that signal, i.e., to bet on his honest answer. When
this happens, the true posterior distribution in (3.1) is equal to the estimated posterior
distribution in (3.2) and, consequently, the expected score resulting from a strictly proper
scoring rule is strictly maximized when the expectation is taken with respect to the true
posterior distribution.

We note that because honest answers are independent, Proposition 2 is still valid when
the scoring method in (3.3) involves more than one agent, i.e.:

si =
∑
j 6=i

(γR (E [ω|α, ri] , rj) + λ) (3.4)

Using only a few agents in the above summation might result in “unlucky” pairwise
comparisons, i.e., a single agent with a very distinct reported answer might cause another
agent to have a low reward. Hence, we believe there are practical benefits in using many
agents in order to obtain fairer rewards. It is interesting to compare our scoring method
with a related method known as the Bayesian Truth Serum (BTS) method. Using our
model, the BTS method can be defined as:

n∑
k=1

h(ri, Ak) ln
Āk
φ̄k

+
n∑
k=1

Āk ln
φi,k
Āk

,

where h(·) is the identity function, Āk is the average frequency of answer Ak, φi,k is agent
i’s reported probability regarding the occurrence of answer Ak, and φ̄k is the geometric
average of the predicted frequencies of answer Ak. As mentioned before, collective honest
reporting is a Bayes-Nash equilibrium under the BTS method. As we will show in the
following subsections, our method can be reduced to a much simpler and intuitive scoring
function than the BTS method.

Different interpretations of the scoring method in (3.3) may arise depending on the
underlying strictly proper scoring rule. In the following subsections, we discuss two natural
interpretations for the proposed scoring method: 1) when R is a symmetric and bounded
strictly proper scoring rule; and 2) when R is a strictly proper scoring rule sensitive to
distance called ranked probability scoring rule.
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3.3.1 Rewarding Agreements

When agents’ prior distributions are uninformative, the elements of agents’ true and es-
timated posterior distributions can take on only two possible values (see equations (3.1)
and (3.2)). Consequently, if R is a symmetric scoring rule, then the term R (E [ω|α, ri] , rj)
in (3.3) can take on only two possible values because a permutation of similar probabil-
ity values in E [ω|α, ri] does not change the score from a symmetric scoring rule. When
R is also strictly proper, it means that R (E [ω|α, ri] , rj) = δmax, when ri = rj, and
R (E [ω|α, ri] , rj) = δmin, when ri 6= rj, where δmax > δmin. Thus, we can write (3.3) as
follows:

γR (E [ω|α, ri] , rj) + λ =

{
γδmax + λ if ri = rj,
γδmin + λ otherwise.

When R is also bounded, we can then set γ = 1
δmax−δmin and λ = −δmin

δmax−δmin , and the
above values become, respectively, 1 and 0. Hence, the resulting scores do not depend on
parameters of the model. Moreover, we obtain an intuitive interpretation of the scoring
method in (3.3), namely whenever two reported answers are equal to each other, the
underlying agents are rewarded by one payoff unit. This is precisely what constitutes
the output-agreement method [87, 88, 14]. In other words, the output-agreement method
can be seen as an instance of our scoring method and, consequently, it induces honest
reporting in our setting. This result may explain why the output-agreement method has
been successfully used in practice.

3.3.2 Taking Distance Into Account

Rewarding agreements, as defined in the previous subsection, might work well for small
values of n, the total number of answers, but it can be too restrictive and, to some degree,
unfair when n is high. For example, consider the case when the answers are numerical
values, where A1 = 1, A2 = 2, . . . , An = n. Moreover, let n = 5, and the answer used as
the observed outcome equal to rj = A5 = 5. Then, a reported answer A4 = 4 seems to be
more accurate than a reported answer equal to A1 = 1. One effective way to deal with this
issue is by using a strictly proper scoring rule in (3.3) that is sensitive to distance.

Using the notation of Section 2.1, recall that q = (q1, . . . , qn) is some probability vector.
We assume that the outcomes (answers) are ordered numerical values, i.e., A1 = 1 < A2 =
2 < · · · < An = n. We denote the cumulative probabilities by capital letter: Qk =

∑
j≤k qj.

We first define the notion of distance between two probability vectors as proposed by Staël
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von Holstein [79]. We say that a probability vector q′ is more distant from the jth outcome
than a probability vector q 6= q′ if:

Q′k ≥ Qk, for k = 1, . . . , j − 1

Q′k ≤ Qk, for k = j, . . . , n

Intuitively, the above definition means that q can be obtained from q′ by moving
probability mass towards the jth outcome from other outcomes [79]. A scoring rule R is
said to be sensitive to distance if R(q, Aj) > R(q′, Aj) whenever q′ is more distant from q
for all outcomes Aj. Epstein [29] introduced the ranked probability score (RPS), a strictly
proper scoring rule that is sensitive to distance. Using the formulation of Epstein’s result
proposed by Murphy [56], we have for a probability vector q and an observed outcome Aj:

RPS(q, Aj) = −
j−1∑
k=1

Q2
k −

n∑
k=j

(1−Qk)
2 (3.5)

When using RPS as the strictly proper scoring rule in (3.3), the center rewards agents
based on how close their reported answers are to the answers taken as observed outcomes.
We show below that this closeness concept has a very natural interpretation in our model.
Assume that the elements of the hyperparameter α are defined as follows: α1 = · · · =
αn = ε, for an arbitrarily small constant ε > 0. In this case, each element of the posterior
distribution in (3.1) is:

E [ωk|α, ti] =

{
ε+1

1+
∑n
x=1 ε

if ti = Ak,
ε

1+
∑n
x=1 ε

otherwise.

For a sufficiently small ε, the above value is approximately:

E [ωk|α, ti] =

{
1 if ti = Ak,
0 otherwise.

Similarly, each element of the estimated posterior distribution in (3.2) is approximately:

E [ωk|α, ri] =

{
1 if ri = Ak,
0 otherwise.
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Under the above circumstances, when R in (3.3) is the ranked probability scoring rule,
the term R (E [ω|α, ri] , rj) becomes:

RPS (E [ω|α, ri] , rj) = −
rj−1∑
k=1

(∑
x≤k

E [ωx|α, ri]

)2

−
n∑

k=rj

(
1−

∑
x≤k

E [ωx|α, ri]

)2

= − |ri − rj|

In words, scores from R are equal to the negative of the absolute difference between
two reported answers. Consequently, the scoring method in (3.3) has a very natural in-
terpretation: agents are penalized in proportion to the absolute difference between their
reported answers. Since the scoring range of RPS is [−n + 1, 0], the resulting scores are
always non-negative when γ = 1 and λ = n− 1.

3.3.3 Numerical Example

Consider a population of four agents and a multiple-choice question with five numeri-
cal answers: A1 = 1, A2 = 2, A3 = 3, A4 = 4, and A5 = 5. Suppose that agents
have uninformative Dirichlet priors with α = (ε, ε, ε, ε, ε), where ε > 0 is an arbitrar-
ily small constant. Assume that agents 1, 2, 3, and 4 report, respectively, r1 = 1,
r2 = 1, r3 = 2, and r4 = 5. From (3.2), the resulting estimated posterior distribu-
tions are, approximately, E[ω|α, r1 = 1] = (1, 0, 0, 0, 0), E[ω|α, r2 = 1] = (1, 0, 0, 0, 0),
E[ω|α, r3 = 2] = (0, 1, 0, 0, 0), and E[ω|α, r4 = 5] = (0, 0, 0, 0, 1). In this example, agents’
information structures are entirely defined by their observed signals. In what follows, we
illustrate the scores the proposed scoring method returns when using a symmetric and
bounded strictly proper scoring rule and when using RPS. These scores show how distinct
reported answers might have a considerable impact on agents’ scores when the center does
not take distance into account.

Rewarding Agreements

Assume that R in (3.3) is the quadratic scoring rule in (2.2), which in turn is symmet-
ric, bounded, and strictly proper. Consequently, as discussed in Section 3.3.1, the term
γR (E[ω|α, ri], rj) + λ in (3.4) can take on only two values:
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γ
(
2× 1− 12 −

∑n−1
x=1 02

)
+ λ if ri = rj,

γ
(
2× 0− 12 −

∑n−1
x=1 02

)
+ λ otherwise.

If we set γ = 1
δmax−δmin = 0.5 and λ = −δmin

δmax−δmin = 0.5, for δmax = 1 and δmin = −1,
the above values are equal to, respectively, 1 and 0. Using the scoring method in (3.4), we
then obtain the following scores: s1 = s2 = 1 and s3 = s4 = 0. That is, the rewards agents
1 and 2 receive are similar due to the fact that r1 = r2. Agents 3 and 4’s rewards are
equal to 0 because there is no match between their reported answers and others’ reported
answers.

Taking Distance into Account

Now, assume that R in (3.4) is the ranked probability score shown in (3.5). In order to
ensure non-negative scores, let γ = 1 and λ = n − 1 = 4. Using the scoring method in
(3.4), we obtain the following rewards: s1 = s2 = (λ−|1−1|)+(λ−|1−2|)+(λ−|1−5|) =
7, s3 = 2× (λ−|2−1|)+(λ−|2−5|) = 7, and s4 = 2× (λ−|5−1|)+(λ−|5−2|) = 1. The
reward of agent 4 is the lowest because his reported answer is the most different answer,
i.e., it has the largest distance between it and all of the other answers.

3.4 Aggregating Reported Answers

After agents report their answers and receive their rewards, there is still the question of
how the center will aggregate the reported answers. We explain in this section why the
center can rely on the frequency of the reported answers when he induces honest reporting.

For illustration’s sake, assume that the center and the agents have common uninforma-
tive Dirichlet priors, where the elements of the hyperparameter α are defined as follows:
αk = ε, for all k ∈ {1, . . . , n}, and ε > 0 is an arbitrarily small constant. Moreover, assume
that the center updates his belief using Bayes’ rule after observing the reported answers,
i.e., P (ω|α, r1, . . . , rn). Let hk be the number of times that the answer Ak ∈ {A1, . . . , An}
is reported. Hence, the center’s final posterior distribution is approximately:

E[ω|α, r1, r2, . . . , rn] =

(
h1∑n
x=1 hx

,
h2∑n
x=1 hx

, . . . ,
hn∑n
x=1 hx

)
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In other words, the center’s final posterior distribution is equal to the frequency of the
reported answers. Due to the law of large numbers, the frequency of the reported answers
converges to the distribution that represents the population knowledge as the number of
honestly reported answers increases. This result, together with the result from Section
3.3, provide a theoretical justification for why the output-agreement method and, more
generally, our proposed scoring method is expected to perform well in the studied setting.
This section’s result also means a word of caution on indiscriminately using the frequency
of agents’ reports as the distribution of agents’ observed signals. Such a perspective is
unlikely to hold true when agents are not reporting their private information honestly.

3.5 Experiments

In this section, we describe a content-analysis experiment designed to test the effectiveness
of our scoring method. In the following subsections, we discuss the experimental design
and the experimental results.

3.5.1 Experimental Design

We designed a content-analysis task on Amazon’s Mechanical Turk (AMT) that required
workers (agents) to review 3 short texts under three different criteria: Grammar, Clarity,
and Relevance. The first two texts were extracts from published poems, but with some
original words intentionally replaced by misspelled words. The third text contained random
words presented in a semi-structured way. Appendix B contains all the details regarding
the texts. For each text, three questions were presented to the agents, each one having
three possible answers ordered in decreasing negativity order:

• Grammar: does the text contain misspellings, syntax errors, etc.?

– A lot of grammar mistakes

– A few grammar mistakes

– No grammar mistakes

• Clarity: does the text, as a whole, make any sense?

– The text does not make sense
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– The text makes some sense

– The text makes perfect sense

• Relevance: could the text be part of a poem related to love?

– The text cannot be part of a love poem

– The text might be part of a love poem

– The text is definitely part of a love poem

We intentionally designed subjective answers so as to emphasize the subjective nature
of content analysis. We translated each reported answer into a numeral value inside the
set {0, 1, 2}. The most negative answer received the score 0, the middle answer received
the score 1, and the most positive answer received the score 2. Thus, each agent reported
a vector of 9 numerical values (3 texts times 3 criteria).

We recruited 150 agents on AMT, all of them residing in the United States of America
and older than 18 years old. They were required to accomplish the content-analysis task
in at most 20 minutes. We split the agents into 3 groups of equal size. Agents were
not informed about the group sizes. After accomplishing the task, every agent in every
group received a payment of $0.20. A study done by Ipeirotis [40] showed that more than
90% of the tasks on AMT have a baseline payment less than $0.10, and 70% of the tasks
have a baseline payment less than $0.05. Thus, our baseline payment was much higher
than the majority of payments from other tasks posted on the Amazon’s Mechanical Turk
marketplace.

We randomly assigned each agent into one of the three groups. Agents in two of the
groups, the treatment groups, could earn an additional bonus of up to $0.10. We informed
agents in the first treatment group, referred to as the Bonus Group (BG), that their bonuses
would be proportional to the number of answers similar to their reported answers. Agents
in the second treatment group, the Bonus and Information Group (BIG), received similar
information, but they also received a short summary of some theoretical results presented
in this paper:

“A group of researchers from the University of Waterloo (Canada) formally
showed that the best strategy to maximize your expected bonus in this setting
is by being honest, i.e., by considering each question thoroughly and deciding
the best answer according to your personal opinion”.
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The main reason behind using the treatment group BIG was to investigate the effects of
framing on the accuracy of the reported answers. Members of the third group, the Control
Group (CG), neither received extra explanations nor bonuses. We used their reported
answers as the control condition. We computed the bonuses by rewarding agreements
as described in Section 3.3.1. Recall that each agent reported 9 answers (3 texts times
3 criteria). For each answer reported by an agent i, we calculated the total number of
agreements (#agreements) between agent i’s reported answers and the answers reported
by members of agent i’s group. Consequently, for each reported answer, there could be
at most 49 similar reported answers because each group had 50 members. We then used

the formula 10
9
× #agreements

49
to calculate the reward for an individual answer. Such a

reward can be seen as a positive affine transformation of the scoring method in (3.4) and,
consequently, it induces honest reporting due to Proposition 1. Given that each agent
reported 9 answers, if the answers reported by all members of a group were the same, then
all group members would received the maximum bonus of 10 cents.

3.5.2 Gold-Standard Answers

We were able to derive gold-standard answers for each text/criterion because we knew the
source and original content of each text a priori, i.e., before we conducted the content-
analysis experiment. In order to avoid confirmation bias1, we asked five professors and
tutors from the English and Literature Department at the University of Waterloo to com-
plete the content-analysis task. We set the gold-standard answer for each criterion in a text
as the median of the answers reported by the professors and tutors. Coincidentally, each
median was also the mode of the underlying answers. Appendix B contains all the answers
reported by the professors and tutors as well as the respective gold-standard answers.

3.5.3 Hypotheses

Our first research question was whether or not providing scores through pairwise compar-
isons makes the reported answers more accurate, i.e., closer to the gold-standard answers.
Our hypothesis was:

Hypothesis 1. The average error of group BIG is less than the average error of group
BG, which in turn is less than the average error of group CG.

1The tendency to interpret information in a way that confirms one’s preconceptions [64].
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In other words, the resulting answers would be on average more accurate when agents’
bonuses were based on our scoring method. Moreover, the extra explanation regarding the
theory behind the scoring method would provide more credibility to it, thus making the
reported answers more accurate. That is, framing has a positive influence on the accuracy
of the reported answers. Regarding the resulting bonuses, since honest reporting maximizes
agents’ expected scores in our model (Proposition 2), our second hypothesis was:

Hypothesis 2. The average bonus received by members of group BIG is greater than the
average bonus received by members of group BG, which in turn is greater than the average
bonus received by members of group CG.

In order to test whether Hypothesis 2 was true, we used the bonus the members of
group CG would have received had they received any bonus. It is noteworthy that we
measured Hypothesis 1 by comparing how close the reported answers were to the gold-
standard answers, whereas we measured Hypothesis 2 by making pairwise comparisons
between reported answers: the higher the number of agreements, the greater the resulting
bonus.

Another metric we used to compare groups’ performance was the task completion time.
The amount of time agents spent on the content-analysis task can be seen as a proxy for
the effort they exerted to complete the task. Regarding this metric, we expected agents
who received scores from our scoring method to be more cautious when completing their
tasks. Moreover, the extra explanation regarding the theory behind the scoring method
would provide more credibility to it, thus making the members of group BIG work longer
on the task. Hence, our third hypothesis was:

Hypothesis 3. The average task completion time of group BIG is greater than the average
task completion time of group BG, which in turn is greater than the average task completion
time of group CG.

3.5.4 Experimental Results

In what follows, we describe our experimental results and analyze our hypotheses.

Error on Individual Criteria

In our first analysis, we defined the error of each agent’s reported answer as the absolute
difference between his answer and the corresponding gold-standard answer. Thus, the
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outcome measure was an integer with a value between zero and two, and the closer this
value was to zero, the better the resulting accuracy. Table 3.1 shows the average error for
each group.

Table 3.1: The average of the absolute difference between the reported answers and the
corresponding gold-standard answers is shown below each group. For each criterion, the
lowest average is highlighted in bold. The standard deviations are in parenthesis. The last
three columns show one-tailed p-values resulting from rank-sum tests. Given the notation
A-B, the null hypothesis is that the outcome measures resulting from groups A and B are
equivalent, and the alternative hypothesis is that the outcome measure resulting from group
A is less than the outcome measure resulting from group B.

p-values

BG BIG CG BIG-BG BIG-CG BG-CG

Grammar 0.5000 0.3200 0.4400 0.035** 0.110 0.726
(0.5051) (0.4712) (0.5014)

Text 1 Clarity 0.8200 0.6200 0.8600 0.065* 0.052* 0.413
(0.6606) (0.6024) (0.7287)

Relevance 0.2200 0.2000 0.3000 0.484 0.213 0.230
(0.5067) (0.4518) (0.5803)

Grammar 0.4400 0.3600 0.3800 0.209 0.420 0.729
(0.5014) (0.4849) (0.4903)

Text 2 Clarity 0.5000 0.3800 0.5400 0.155 0.067* 0.325
(0.6468) (0.6024) (0.6131)

Relevance 0.4400 0.6400 0.6600 0.977 0.419 0.014**
(0.5014) (0.4849) (0.4785)

Grammar 0.7600 0.7800 1.0200 0.539 0.077* 0.061*
(0.8466) (0.8640) (0.8449)

Text 3 Clarity 0.1400 0.0000 0.1600 0.006** 0.002** 0.301
(0.4046) (0.0000) (0.3703)

Relevance 0.1200 0.1000 0.2000 0.491 0.112 0.122
(0.4352) (0.3642) (0.4949)

* p ≤ 0.1
** p ≤ 0.05
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Focusing first on the groups BG and BIG, the group BIG is the most accurate group on
all criteria, except for the criterion Relevance in Text 2 and the criterion Grammar in Text
3. This result is statistically significant with p-value ≤ 0.1 in three out of the seven cases
in which BIG is more accurate than BG. In two out of these three statistically significant
cases, this result is also statistically significant with p-value ≤ 0.05. BG is more accurate
than BIG in only two criteria. This result is only statistically significant for the criterion
Relevance in Text 2 (p-value ≤ 0.05). Hence, the priming effect has a positive impact on
the accuracy of the reported answers.

The group CG, the control condition that involved no incentives beyond the base-
line compensation offered for completing the content-analysis task, never outperforms the
group BIG. Moreover, the group CG outperforms the group BG in only two occasions. In
two (respectively, four) occasions, CG is statistically significantly less accurate than BG
(respectively, BIG) with p-value ≤ 0.1.

Giving these results, we conclude that Hypothesis 1 is true for individual criteria, i.e.,
the resulting answers are on average more accurate when using rewards based on pairwise
comparisons, and the extra explanation regarding the theory behind our scoring method
seems to provide more credibility to it, thus reducing the error of the reported answers.

Aggregate Error

We also computed the aggregate error for each text as well as for the whole task. In the
former case, the outcome measure was the sum of the absolute differences between each
reported answer for a given text and the corresponding gold-standard answer. For example,
given (0, 1, 2) as the reported answers for Text 1, and (1, 2, 2) as the corresponding gold-
standard answers, the outcome measure for Text 1 would be |0−1|+|1−2|+|2−2| = 2. For
the whole task, we summed the absolute differences across all criteria and texts. Table 3.2
shows the average aggregate error for each group.

For every single text as well as for the overall task, members of the group CG report
less accurate answers than members of the group BG and the group BIG. For the group
BG, this result is statistically significant for Text 3 and for the overall task (p-value ≤ 0.1).
For the group BIG, this result is statistically significant for Text 1 (p-value ≤ 0.1), Text
3 (p-value ≤ 0.05), and for the whole task (p-value ≤ 0.05). Thus, the experimental
results suggest that providing rewards produces a significant improvement in quality over
the control condition. Moreover, providing an extra explanation about the theory behind
the scoring method improves the final quality of the answers because, on average, the
answers from group BIG are more accurate than the answers from group BG. This result is
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Table 3.2: The average of the sum of the absolute differences between the reported answers
and the corresponding gold-standard answers is shown below each group. For each text and
for the whole task, the lowest average is highlighted in bold. The standard deviations are in
parenthesis. The last three columns show one-tailed p-values resulting from rank-sum tests.
Given the notation A-B, the null hypothesis is that the outcome measures resulting from
groups A and B are equivalent, and the alternative hypothesis is that the outcome measure
resulting from group A is less than the outcome measure resulting from group B.

p-values

BG BIG CG BIG-BG BIG-CG BG-CG

Text 1 1.5400 1.1400 1.6000 0.043** 0.085* 0.588
(1.1287) (1.0304) (1.4142)

Text 2 1.3800 1.3800 1.5800 0.547 0.163 0.148
(1.0669) (0.9666) (0.9916)

Text 3 1.0200 0.8800 1.3800 0.394 0.020** 0.052*
(1.1865) (0.9179) (1.1933)

Overall 3.9400 3.4000 4.5600 0.110 0.002** 0.064*
(2.2352) (1.6903) (2.1301)

* p ≤ 0.1
** p ≤ 0.05

statistically significant for Text 1 (p-value ≤ 0.05). Therefore, we conclude that Hypothesis
1 is also true on the aggregate level.

Bonus

The average bonus per group is shown in the first row of Table 3.3. From it, we conclude
that Hypothesis 2 is true, i.e., the average bonus received by members of the group BIG
is greater than the average bonus received by members of the group BG, which in turn
is greater than the average bonus hypothetically received by members of the group CG.
All these results are statistically significant with p-value ≤ 0.05. In other words, providing
scores and informing agents about the theory behind the scoring method do indeed increase
the number of reported answers that are similar.

Interestingly, there is a strong negative correlation between bonuses and the aggregate
error for the whole task shown in the seventh row of Table 3.2, even though the former is
computed by making pairwise comparisons between reported answers, whereas the latter
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Table 3.3: Average bonus and completion time per group. The highest average values are
highlighted in bold. The standard deviations are in parenthesis. The last three columns
show one-tailed p-values resulting from rank-sum tests. Given the notation A-B, the null
hypothesis is that the outcome measures resulting from groups A and B are equivalent, and
the alternative hypothesis is that the outcome measure resulting from group A is greater
than the outcome measure resulting from group B.

p-values

BG BIG CG BIG-BG BIG-CG BG-CG

Bonus 0.053 0.058 0.050 < 0.0005** <0.0005** 0.0025**
(0.0086) (0.0073) (0.0078)

Time 178.66 215.90 196.36 0.0232** 0.0257** 0.4208
(87.4495) (127.7471) (149.0788)

** p ≤ 0.05

is computed by comparing reported answers with gold-standard answers. The Pearson
correlation coefficients for BG, BIG, and CG are, respectively, −0.73, −0.79, and −0.72.
This result implies that there exists a strong positive correlation between honest reporting
and accuracy in our content-analysis experiment.

Completion Time

We show the average completion time per group in the third row of Table 3.3. We start by
noting that Hypothesis 3 is not true. Surprisingly, the average time spent on the task by
members of the group BG is statistically equivalent to the average time spent by members
of the group CG since the null hypothesis cannot be rejected. The average completion
time by members of the group BIG is the highest one amongst the three groups, and this
result is statistically significant with p-value ≤ 0.05. A possible explanation for this result
is that agents work on the content-analysis task more seriously by taking more time to
complete it when they receive a brief explanation regarding some theoretical results of the
proposed scoring method, whereas the same agents could be quickly guessing how their
peers would report their answers when the extra explanation about the theoretical results
is not provided.

It is noteworthy that even though the average values might suggest that spending more
time on the task results in higher bonuses and lower aggregate errors, we do not find any
significant correlation between these variables at an individual level.
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3.6 Summary

We proposed in this chapter a scoring method built on strictly proper scoring rules that
induces honest reporting by risk-neutral agents in multiple-choice questions without relying
upon the assumption of a ground-truth answer. We discussed two natural interpretations
of our scoring method. First, we showed that the proposed scoring method reduces to
the output-agreement method when the underlying proper scoring rule is bounded and
symmetric. Thus, we provided a novel characterization of the output-agreement method.
Second, we showed how our scoring method in conjunction with the ranked probability
scoring rule induce honest reporting by penalizing disagreements proportionally to the
absolute difference between reported answers.

We then discussed how honest reporting is related to accuracy in our model: as the
number of honestly reported answers increases, the frequency of the reported answers
convergences to the distribution that represents the population knowledge. Thus, the
combination of our results explains why the output-agreement method and, more generally,
our scoring method are expected to be effective in tasks framed as multiple-choice questions.

We tested the effectiveness of our scoring method on a content-analysis experiment
using Amazon’s Mechanical Turk. We empirically showed that providing rewards through
pairwise comparisons results in more accurate answers than when agents have no direct
incentives for expressing their honest answers. Moreover, agents tended to agree more with
each other when they received such rewards.

3.6.1 Directions for Future Research

Given the positive results obtained in our content-analysis experiment, one interesting
open question is whether our scoring method would perform as well in other domains. It
has already been reported that the output-agreement method, which is an instance of our
scoring method, is very effective in games with a purpose and crowdsourcing [87]. One
particularly exciting domain for investigation is the peer-review process as used in massive
open online courses since a peer-review task can be modeled as a multiple-choice question.

An important assumption in our model is the existence of social projection, i.e., that
agents assume that others will behave as they themselves do. As the literature on psycho-
logical projection has shown, social projection serves as an egocentric heuristic for inductive
reasoning [68]. Consequently, social projection might explain why the output-agreement
method has been so effective in crowdsourcing settings. An exciting direction for future re-
search to validate or invalidate this hypothesis consists in determining the extent to which
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social projection exists in crowdsourcing settings, and whether or not an equation similar
to equation (3.1) can effectively model social projection.

Another question worth contemplating is whether or not incentives other than from the
received rewards play a role in inducing honest behavior. For example, one can conjecture
that altruism may play an important role in our scoring method. In our content-analysis
experiment, for example, the performance of the agents not only affect their own rewards,
but also the rewards of their peers. In other words, if agents do not put enough effort
into reporting high-quality answers, not only might they receive low rewards, but other
answers evaluated based on those erroneous answers might also receive low rewards. Thus,
an interesting future work is to investigate whether or not agents, in general, have an
altruistic motive to put more effort into the underlying task in order to maximize the
potential payoffs of their peers.
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Chapter 4

On Proper Scoring Rules and
Cumulative Prospect Theory

An agent’s assessment of the likelihood of a future event in which he has no stake may be
of interest to others, e.g., a financial investor may be interested in the probability a market
expert assigns to the increase of a certain stock price. In the medical domain, a patient
might want to know the likelihood of success of a treatment before deciding whether to
undergo that treatment.

As described in Section 2.1, proper scoring rules are traditional scoring methods to
induce honest reporting of subjective probabilities [94]. The expected score from a proper
scoring rule is maximized when an agent reports his true belief. Hence, the implicit as-
sumption behind proper scoring rules is that agents are risk neutral, i.e., that they behave
so as to maximize their expected scores.

Our first contribution in this chapter is an experiment where we investigate whether
or not risk neutrality holds true when eliciting beliefs under proper scoring rules. Our
experimental results show that human beings are not risk neutral when reporting their
beliefs even when the stakes are small. We then discuss how reporting a belief under a
proper scoring rule is equivalent to making a choice under uncertainty. Hence, our logical
next step is to adapt proper scoring rules to a more appropriate model of choice under
uncertainty1.

Modern theories of individual choices under uncertainty based on rank-dependent util-

1We use the term uncertainty as commonly used in decision analysis, meaning that the uncertainty
regarding the occurrence of future evens is captured by subjective probability distributions.
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ities2 assert that the values that human beings derive from payoffs are represented by
nonlinear utility functions, which in turn are weighted by decision weights, instead of sub-
jective probabilities [66, 73]. Decision weights are differences between weighting functions
applied to cumulative probabilities. Thus, according to rank-dependent models, the com-
ponents that drive an agent’s attitude towards uncertainty are both a utility function and
weighting functions.

Cumulative prospect theory [86] is regarded as one of the most prominent theories
of individual choices under uncertainty. Cumulative prospect theory advances original
rank-dependent models by considering loss aversion and reference dependence. Given the
discrepancy between cumulative prospect theory and risk neutrality, it is expected that
agents who behave according to cumulative prospect theory misreport their true beliefs
under a proper scoring rule since they are no longer expected value maximizers.

We first show that, in theory, one should be able to obtain an agent’s true belief from
his misreported belief by solving a system of equations when the components that drive
the agent’s attitude towards uncertainty are known. In practice, however, there may be
multiple true beliefs associated with the same reported belief. This happens because of the
natural incompatibility between proper scoring rules and cumulative prospect theory, i.e.,
traditional proper scoring rules do not satisfy an essential property called comonotonicity
[45]. We provide a new explanation for why comonotonicity is a sufficient condition for
making proper scoring rules indeed proper under cumulative prospect theory. Further, we
suggest how to construct a comonotonic proper scoring rule from any proper scoring rule.

We also propose a new approach to obtain the true belief of an agent who takes deci-
sions according to cumulative prospect theory when the components that drive the agent’s
attitude towards uncertainty are unknown. Our approach uses non-deterministic payments
based on proper scoring rules.

4.1 Related Work

A standard assumption when using proper scoring rules is that the underlying agents
are risk neutral. Such an assumption is often unrealistic when agents are human beings
[80]. Focusing on the quadratic scoring rule, Winkler and Murphy [95] investigated the
effects of nonlinear utility functions on how agents report their beliefs. For some specific
utility functions, they showed that a risk-seeking agent reports a very sharp (narrow)
probability distribution, whereas a risk-averse agent reports a distribution close to the

2That is, when agents rank the payoffs when calculating the utility of a decision.
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uniform distribution. In other words, different utility functions induce different reporting
behavior.

Winkler and Murphy’s analysis assumed that agents are expected utility maximizers,
where different risk attitudes are driven exclusively by utility functions. More modern
models of decisions under uncertainty based on rank-dependent utilities assert that besides
nonlinear utilities, probability sensitivity also plays a role in defining an agent’s attitude
towards uncertainty [33, 66, 73].

Focusing on binary outcomes, Offerman et al. [61] discussed how to calibrate a posteri-
ori beliefs reported under the quadratic scoring rule by agents who take decisions based on
rank-dependent utilities. Our work generalize the results by Offerman et al. by considering
cumulative prospect theory [86], a decision theory based on rank-dependent utilities which
also incorporates loss aversion and reference dependence. In other words, we discuss how
to obtain the true belief of a cumulative prospect theory agent from his misreported belief
under any proper scoring rule and for any number of outcomes.

Kothiyal et al. [45] noted that traditional proper scoring rules might not actually be
proper under rank-dependent models. The reason for this is that traditional proper scoring
rules do not satisfy comonotonicity, which implies that a reported belief might relate to
many true beliefs and, thus, it cannot be used to uniquely determine the correct true belief.
Focusing on binary outcomes, Kothiyal et al. [45] showed how to construct a comonotonic
proper scoring rule from a positive proper scoring rule. We extend the results by Kothiyal
et al. in two different ways. First, we provide a novel explanation for why comonotonicity is
a sufficient condition for mapping each reported belief to a single true belief, thus allowing
any true belief to be obtained from a reported belief. Second, we show how to construct
a comonotonic proper scoring rule from any proper scoring rule and for any number of
outcomes.

In all previously mentioned works, it was assumed that all the components that drive an
agent’s attitude towards uncertainty are known a priori, e.g., they were previously elicited
using methods such as the trade-off method [1, 90]. In this chapter, we also propose an
approach to obtain an agent’s true belief when those components are unknown by making
probabilistic payments based on proper scoring rules. Different non-deterministic payment
structures based on proper scoring rules have been proposed in the literature [4, 43]. Our
payment structure is based on the work by Sandroni and Shmaya [71].
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4.2 Proper Scoring Rules and Risk-Neutral Behavior

A basic assumption underlying proper scoring rules is that agents are risk neutral, i.e.,
they behave so as to maximize their expected scores in (2.1). Consequently, a risk-neutral
agent always honestly reports his belief under a strictly proper scoring rule R because
arg maxq Ep [R(q, ·)] = p.

The assumption of risk-neutral behavior is hardly compelling when the stakes are high
[80], e.g., when scores from a proper scoring rule are associated with high monetary values.
It might be argued, however, that risk neutrality holds true when the stakes are low. For
example, in his seminal work about the theoretical foundations of proper scoring rules,
Savage [72] said the following regarding risk neutrality:

“This assumption is not altogether unobjectionable; for it may imply that the
person’s utility function is linear in money. But such linearity assumptions are
made almost throughout the present paper and are presumably tolerable if only
moderate sums of money are involved.” [72, p. 791]

In order to investigate whether or not risk-neutral behavior holds true when the scores
from a proper scoring rule are associated with low monetary values, we performed an exper-
iment on Amazon’s Mechanical Turk (AMT), the online marketplace for work described in
Section 2.2. Specifically, we designed a task on AMT that required participants to predict
the outcomes of the 2013 NBA playoff games.

The participants were all older than 18 years old and resided in the United States of
America. For each one of the 85 playoff games, we informed the participants about the
names of the teams playing the game and the date of the game. Thereafter, we asked
the participants to predict the result of each game twice. The first time, we informed the
participants that besides the baseline payment of $0.10 for completing the task, each par-
ticipant could earn an additional bonus of up to $0.10 based solely on his performance. To
compute the bonus, we used a positive affine transformation of the quadratic scoring rule:

R(q, θx) = 5×

(
2qx −

n∑
k=1

q2k

)
+ 5

The resulting strictly proper scoring rule is positive, and its range is [0, 10]. After re-
porting the first prediction, we asked each participant to predict the result of the same
game once more, but this time we informed the participant that he had already received a
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bonus of $0.10 cents. Furthermore, such a bonus would decrease according to his perfor-
mance. In order to calculate the final bonus, we used a positive affine transformation of
the logarithmic scoring rule:

R(q, θx) = log qx + 10

Since the logarithmic function is not well-defined when qx = 0, we restricted the
minimum probability value reported by a participant to 0.0000453, which implies that
minR(q, θx) = log 0.0000453 + 10 ≈ 0. Hence, the range of the final bonus was [0, 10].

Instead of reporting probability values directly, the participants reported their beliefs
by sliding a horizontal bar. The more a participant moved the bar towards one end, the
higher the probability value associated with the underlying team would be. Figure 4.1
shows an example of the graphical interface used in our experiment. For each possible
outcome, the participants could visualize the resulting bonus they would receive if the
outcome turned out to be true.

We collected a total of 5822 predictions, i.e., 2911 predictions under each scoring rule.
If a participant is risk neutral, then his prediction of the result of a game does not change
when different proper scoring rules are used3. In other words, the L1 distance between the
beliefs reported under two different proper scoring rules should be 0. Our experimental
results show, however, that the mean of the L1 distances between the reported beliefs across
the 2911 data points is 0.34, the standard deviation being equal to 0.5. The mean distance
is statistically significantly greater than 0 (p-value < 0.01, Wilcoxon rank-sum test), which
implies that agents are not risk neutral. Thus, our experimental results show that different
proper scoring rules induce different reporting behavior, even when the stakes are low.

We discuss later how reporting a belief under a proper scoring rule is equivalent to
making a choice under uncertainty. Hence, the logical next step is to adapt proper scoring
rules to a more appropriate model of decision-making under uncertainty. In this chapter,
we adapt proper scoring rules to Cumulative Prospect Theory [86], which has been shown
to provide a more accurate description of individual choice under uncertainty than many
other decision theories, including expected utility theory and, consequently, risk neutrality.

3We note that the scoring rules used to compute the bonuses in our experiment are proper because a
positive affine transformation of a proper scoring rule is still proper (see Proposition 1).
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Figure 4.1: Example of the graphical interface used in the experiments.

4.3 Cumulative Prospect Theory

It has been reported that human beings are not risk neutral when the stakes are high
[80]. In the previous section, we showed that the assumption of risk-neutral behavior
is not empirically plausible when the stakes are low. Different than risk neutrality and,
more broadly, expected utility theory, modern theories of individual choices under risk
and uncertainty based on ranks assert that both sensitivity to payoffs and sensitivity to
probabilities generate deviations from risk-neutral behavior. Cumulative Prospect Theory
(CPT) [86] is one of such theory based on ranks which also incorporates loss aversion and
reference dependence.

CPT is defined is terms of prospects, which are event-contingent payoffs. We use the
notation f = [s1 : θ1, . . . , sn : θn] to denote a prospect f which yields a payoff of sk ∈ <
if outcome θk occurs, for k ∈ {1, . . . , n}. Since one can always rearrange outcomes and
collapse similar payoffs, we assume without loss of generality that sn > sn−1 > · · · > s1.
The uncertainties regarding the occurrence of the outcomes are quantified in terms of a
probability vector p = (p1, . . . , pn). Consequently, we can represent a prospect as f =
[s1 : p1, . . . , sn : pn], which yields a payoff of sk ∈ < with probability pk.

A prospect is called positive if all payoffs are nonnegative, i.e., sn > · · · > s1 ≥ 0. We
denote a positive prospect by f+. A prospect is called negative if all payoffs are nonpositive,
i.e., 0 ≥ sn > · · · > s1. We refer to a negative prospect as f−. Finally, a mixed prospect
f± contains both positive and negative payoffs, i.e., sn > · · · > si ≥ 0 > si−1 > · · · > s1.

In the expected utility theory, which subsumes risk neutrality, the utility of a prospect
is the sum of the utilities of the payoffs, each weighted by its underlying probability. CPT
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proposes two major modifications of the expected utility theory: 1) the utility of each
payoff is multiplied by a decision weight, not by an additive probability; and 2) the carriers
of value are gains and losses relative to a reference point, not final payoffs. Formally, the
value an agent derives from a prospect is defined in terms of a utility function, a loss-
aversion parameter, and cumulative weighting functions. We discuss these components in
the following subsections before going into details about CPT utilities.

4.3.1 Utility Functions and the Loss-Aversion Parameter

Cumulative prospect theory asserts that the carriers of value are gains and losses relative
to a reference point. We implicitly used the reference point equal to 0 in our definitions of
positive, negative, and mixed prospects. Agents have different risk attitudes towards gains
and losses, i.e., with respect to payoffs above and below the reference point. Formally,
the intrinsic value of a payoff sk is defined in terms of a strictly increasing value function
V : < → < satisfying:

V (sk) = U(sk) for sk ≥ 0

V (sk) = λU(sk) for sk < 0

where U : < → < is a continuously differentiable strictly increasing utility function sat-
isfying U(sk) ≥ 0, for sk ≥ 0, and U(sk) < 0, for sk < 0. The parameter λ > 0 is
the loss-aversion parameter. The loss-aversion parameter captures the psychological phe-
nomenon that losses usually loom larger than gains. As a consequence, the value function
is steeper for losses than for gains, i.e., V ′(sk) < V ′(−sk), for sk ≥ 0. It is often the case
that the parameter λ is defined in terms of the utility function U . For example, Tversky
and Kahneman [86] implicitly assumed that λ = −U(−1).

Another property of the value function V is that it is concave for gains, convex for
losses, and it satisfies V (0) = 0. Tversky and Kahneman [86] proposed the following value
function:

V (sk) =

{
sαk for sk ≥ 0,
λ ·
(
−(−sk)β

)
otherwise

(4.1)

where α and β are parameters of the power utility function:
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Figure 4.2: Tversky and Kahneman’s value function for α = β = 0.88, λ = 2.25, and the
reference point equal to 0.
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Figure 4.2 illustrates the value function in (4.1) for parameter values empirically deter-
mined by Tversky and Kahneman [86].

4.3.2 Weighting Functions

Cumulative prospect theory asserts that the weight associated with the value V (sk) is the
difference between two transformed ranks, instead of an individual probability value pk
as in expected utility theory. For a positive prospect f+, the rank of a payoff sk is the
probability of f+ yielding a payoff weakly better than sk, i.e., the rank of sk is equal to
pk+1+pk+2+· · ·+pn. The weight of V (sk) is then the marginal contribution of the individual
probability pk to its rank, i.e., to the total probability of receiving better payoffs, measured
in terms of a strictly increasing function W+ : [0, 1]→ [0, 1]. Formally, the weight of V (sk)
is π+

k , where:
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π+
n = W+(pn) (4.2)

π+
k = W+

(
n∑
x=k

px

)
−W+

(
n∑

x=k+1

px

)
, for k ∈ {1, . . . , n− 1}

For a negative prospect, the weight associated with V (sk), π
−
k , is the marginal contri-

bution of the individual probability pk to the total probability of receiving worse payoffs,
measured in terms of a strictly increasing function W− : [0, 1]→ [0, 1], i.e.:

π−1 = W−(p1) (4.3)

π−k = W−

(
k∑
x=1

px

)
−W−

(
k−1∑
x=1

px

)
, for k ∈ {2, . . . , n}

For a mixed prospect where sn > · · · > si ≥ 0 > si−1 > · · · > s1, we have that the
weight associated with V (sk), for k ∈ {i, . . . , n}, is π+

k , whereas π−k is the weight associated
with V (sk), for k ∈ {1, . . . , i−1}. The π-values in (4.2) and (4.3) are traditionally referred
to as decision weights. Decision weights reflect a cognitive bias concerning how human
beings deal with probabilities and, thus, they should not be taken as a measure of an
agent’s true belief. Importantly, (π+

1 , . . . , π
+
n ) and (π−1 , . . . , π

−
n ) are probability vectors,

whereas the same is only true for (π−1 , . . . , π
−
i−1, π

+
i , . . . , π

+
n ) when W−(ρ)+W+(1−ρ) = 1,

for all ρ ∈ [0, 1].

The functionals W+ and W− are known as weighting functions. Common findings
suggest that a weighting function is a nonlinear transformation of the probability scale that
overweights small probabilities and underweights moderate and high probabilities [1, 86].
In other words, the weighting function displays an inverse-S shape: it is concave near 0 and
convex near 1. Moreover, W+(0) = W−(0) = 0, and W+ (

∑n
k=1 pk) = W− (

∑n
k=1 pk) = 1.

The weighting functions proposed by Tversky and Kahneman [86] for gains and loses are:

W+(ρ) =
ργ

(ργ + (1− ρ)γ)
1
γ

and W−(ρ) =
ρδ

(ρδ + (1− ρ)δ)
1
δ

(4.4)

where γ, δ ≥ 0.28 in order for the weighting functions to be strictly increasing. Figure 4.3
illustrates the above weighting functions for γ = 0.61 and δ = 0.69, the parameter values
empirically found by Tversky and Kahneman [86].
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Figure 4.3: Tversky and Kahneman’s weighting functions for γ = 0.61 and δ = 0.69.
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4.3.3 CPT Utility

Cumulative prospect theory asserts that risk attitudes are jointly determined by the weight-
ing functions and the value function. Together, they result in a fourfold pattern of risk
attitudes: risk aversion for gains and risk seeking for losses of high probability; risk seeking
for gains and risk aversion for losses of low probability [86]. Let CPT(f) be the value
an agent derives from a prospect according to cumulative prospect theory. For a positive
prospect f+ = [s1 : p1, . . . , sn : pn], CPT(f+) is defined as:

CPT(f+) =
n∑
k=1

π+
k V (sk) (4.5)

The CPT utility for a negative prospect f− = [s1 : p1, . . . , sn : pn] is:

CPT(f−) =
n∑
k=1

π−k V (sk) (4.6)
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Finally, the CPT utility for a mixed prospect f± = [s1 : p1, . . . , sn : pn], where sn >
· · · > si ≥ 0 > si−1 > · · · > s1, is:

CPT
(
f±
)

=
i−1∑
k=1

π−k V (sk) +
n∑
k=i

π+
k V (sk) (4.7)

4.4 Proper Scoring Rules and Cumulative Prospect

Theory

For ease of exposition and mathematical notation, consider a permutation of the outcomes
for a given q so that the scores from a proper scoring rule R are ordered, i.e., R(q, θn) >
R(q, θn−1) > · · · > R(q, θ1). We note that the scores resulting from a proper scoring
rule R can be stated in terms of a prospect, i.e., [R(q, θ1) : p1, . . . , R(q, θn) : pn]. In other
words, when reporting a belief q, an agent is essentially defining the payoffs of a prospect,
where the associated probabilities are subjective probabilities. Reporting a belief q is
then equivalent to taking a decision under uncertainty by choosing a prospect amongst a
potentially infinite number of prospects. Consequently, an agent’s reporting behavior can
be analyzed from the perspective of decision theories such as cumulative prospect theory.

In general, the utility derived by an agent who behaves according to cumulative prospect
theory from a given prospect is only equal to the utility derived by a risk-neutral agent
when: 1) the weighting functions are identity functions; 2) the utility function is a linear
function; and 3) the loss aversion parameter is equal to 1. Hence, cumulative prospect
theory subsumes risk neutrality and, more broadly, expected utility theory. As discussed
before, common findings suggest that the weighting functions are nonlinear functions, the
utility function is concave for gains and convex for losses, and the loss aversion parameter
is greater than 1. Thus, risk-neutral agents and agents with CPT utilities are expected to
value prospects in different ways and, consequently, to behave differently when reporting
their beliefs under a proper scoring rule.

In the following subsections, we characterize how experts with CPT utilities report their
beliefs. Formally, we obtain systems of equations for different proper scoring rules that
describe how agents with CPT utilities report their beliefs. From the characterization, we
then describe how to obtain their true beliefs, i.e., we discuss how to solve those systems of
equations in order to obtain an agent’s true belief from his misreported belief. Naturally,
we start by assuming that an agent reports his belief so as to maximize his CPT utility.
In other words, each agent is solving the following optimization problem:
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maximize
q

CPT(q)

subject to
n∑
k=1

qk = 1

qk ≥ 0, k ∈ {1, . . . , n}

We abuse notation by dropping the underlying scoring rule R and by writing CPT(q),
instead of CPT(f), for f = [R(q, θ1) : p1, . . . , R(q, θn) : pn]. Given that the CPT functional
is continuous and that the domain of every qk is compact, an optimal q always exists.
There may exist several optima, in which case one optimum is arbitrarily selected to be
the reported probability vector q. Since all the constraints are linear, it must be the case
that the reported probability vector q satisfies the Karush-Kuhn-Tucker (KKT) conditions.
The Lagrangian associated with the above problem is:

L(q, τ,µ) = CPT(q)− τ

(
n∑
k=1

qk − 1

)
+

n∑
k=1

µkqk (4.8)

where the dual feasibility and the complementary slackness are:

µk ≥ 0, for k ∈ {1, . . . , n}
µkqk = 0, for k ∈ {1, . . . , n}

Let q∗ = (q∗1, . . . , q
∗
n), τ ∗,µ∗ = (µ∗1, . . . , µ

∗
n) be the optimal points for the Lagrangian.

Henceforth, we assume that the constraint qk ≥ 0 is not binding at the optimal, i.e., q∗k > 0,
for k ∈ {1, . . . , n}. Consequently, µ∗k = 0, for k ∈ {1, . . . , n}. This assumption allows us
to remove µ from the Lagrangian. We note that without such an assumption, we might
run into technical problems whenever the underlying scoring rule is not bounded, e.g., the
resulting CPT utility is equal −∞ when using the logarithmic scoring rule and q∗k = 0, for
some k ∈ {1, . . . , n}. However, we allow q∗k to be arbitrarily close to 0.

In the following subsections, we discuss the implications of the above optimization
problem for, respectively, positive, negative, and mixed proper scoring rules. That is, we
derive systems of equations in terms of an agent’s value function, weighting functions, true
belief, and reported belief that, by construction, must be valid. In the next section, we
discuss how to solve these systems of equations to obtain an agent’s true belief from his
misreported belief when the agent’s value function and weighting functions are known.
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4.4.1 Positive Scoring Rules

Suppose that an agent’s belief is elicited through a positive scoring rule R, for R(q, θn) >
R(q, θn−1) > · · · > R(q, θ1) ≥ 0. The CPT utility of that agent is then:

CPT(q) =
n∑
k=1

π+
k V (R(q, θk))

Consider the Lagrangian in (4.8). Given that q∗ = (q∗1, . . . , q
∗
n), τ ∗, and µ∗ = (µ∗1, . . . , µ

∗
n)

are optimal points, we obtain the KKT conditions:

∂L(q∗, τ ∗,µ∗)

∂q∗k
= 0, for k ∈ {1, . . . , n}

For illustration’s sake, consider the partial derivative of L with respect to q∗n:

∂L(q∗, τ ∗,µ∗)

∂q∗n
=

(
n∑
k=1

π+
k

∂V (R(q∗, θk))

∂q∗n

)
− τ ∗ = 0

By considering all partial derivatives ∂L(q∗,τ∗,µ∗)
∂q∗k

, for k ∈ {1, . . . , n}, we end up with

the following system of equations:

π+
1

∂V (R(q∗, θ1))

∂q∗1
+ π+

2

∂V (R(q∗, θ2))

∂q∗1
+ · · ·+ π+

n

∂V (R(q∗, θn))

∂q∗1
=τ ∗

π+
1

∂V (R(q∗, θ1))

∂q∗2
+ π+

2

∂V (R(q∗, θ2))

∂q∗2
+ · · ·+ π+

n

∂V (R(q∗, θn))

∂q∗2
=τ ∗

...
...

...
...

π+
1

∂V (R(q∗, θ1))

∂q∗n
+ π+

2

∂V (R(q∗, θ2))

∂q∗n
+ · · ·+ π+

n

∂V (R(q∗, θn))

∂q∗n
=τ ∗

(4.9)

We discuss in Section 4.5.1 how to solve the above system of equations.
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4.4.2 Negative Scoring Rules

Now, suppose that an agent’s belief is elicited through a negative scoring rule R, for
0 ≥ R(q, θn) > R(q, θn−1) > · · · > R(q, θ1). The CPT utility of that agent is:

CPT(q) =
n∑
k=1

π−k V (R(q, θk))

By considering all partial derivatives ∂L(q∗,τ∗,µ∗)
∂q∗k

, for k ∈ {1, . . . , n}, we end up with

the following system of equations:

π−1
∂V (R(q∗, θ1))

∂q∗1
+ π−2

∂V (R(q∗, θ2))

∂q∗1
+ · · ·+ π−n

∂V (R(q∗, θn))

∂q∗1
=τ ∗

π−1
∂V (R(q∗, θ1))

∂q∗2
+ π−2

∂V (R(q∗, θ2))

∂q∗2
+ · · ·+ π−n

∂V (R(q∗, θn))

∂q∗2
=τ ∗

...
...

...
...

π−1
∂V (R(q∗, θ1))

∂q∗n
+ π−2

∂V (R(q∗, θ2))

∂q∗n
+ · · ·+ π−n

∂V (R(q∗, θn))

∂q∗n
=τ ∗

(4.10)

We discuss in Section 4.5.2 how to solve the above system of equations.

4.4.3 Mixed Scoring Rules

Finally, suppose that an agent’s belief is elicited through a mixed scoring rule R, for
R(q, θn) > · · · > R(q, θi) ≥ 0 > R(q, θi−1) > · · · > R(q, θ1). The CPT utility of that
agent is then:

CPT(q) =
i−1∑
k=1

π−k V (R(q, θk)) +
n∑
k=i

π+
k V (R(q, θk))

By considering all partial derivatives ∂L(q∗,τ∗,µ∗)
∂q∗k

, for k ∈ {1, . . . , n}, we end up with

the following system of equations:
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i−1∑
k=1

π−k
∂V (R(q, θk))

∂q∗1
+

n∑
k=i

π+
k

∂V (R(q, θk))

∂q∗1
= τ ∗

i−1∑
k=1

π−k
∂V (R(q, θk))

∂q∗2
+

n∑
k=i

π+
k

∂V (R(q, θk))

∂q∗2
= τ ∗

...
...

...

(4.11)

i−1∑
k=1

π−k
∂V (R(q, θk))

∂q∗n
+

n∑
k=i

π+
k

∂V (R(q, θk))

∂q∗n
= τ ∗

We discuss in Section 4.5.3 how to solve the above system of equations.

4.5 Obtaining True Beliefs from Misreported Beliefs

When the Value Function and Weighting Func-

tions Are Known

In this section, we discuss how to solve the previous systems of equations to obtain an
agent’s true belief from his misreported belief under a traditional proper scoring rule R.
In our analysis, we implicitly assume that the components of the CPT utility are known,
i.e., the utility function, the loss-aversion parameter, and the weighting functions were
previously elicited through some elicitation procedure (e.g., [1, 2, 90]). This scenario was
previously studied by Offerman et al. [61]. However, Offerman et al. focused only on the
positive version of the quadratic scoring rule for binary outcomes (n = 2). In the following
subsections, we generalize the results by Offerman et al. by considering any finite number
of outcomes as well as positive, negative, and mixed proper scoring rules.

4.5.1 Positive Scoring Rules

When the value function V is known, the terms ∂V (R(q,θk))
∂q∗x

in (4.9), for all k, x ∈ {1, . . . , n},
become known numerical values. Given the definition of π+

k in (4.2), the system of equations
in (4.9) can then be written as:
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−1 a1,2 · · · a1,n
−1 a2,2 · · · a2,n
...

...
. . .

...
−1 an,2 · · · an,n




τ ∗

W+ (
∑n

k=2 pk)
...

W+(pn−1 + pn)
W+(pn)

 =


−∂V (R(q,θ1))

∂q∗1

−∂V (R(q,θ1))
∂q∗2
...

−∂V (R(q,θ1))
∂q∗n

 (4.12)

where ax,k = ∂V (R(q,θk))
∂q∗x

− ∂V (R(q,θk−1))

∂q∗x
. Hence, the system of equations in (4.9) becomes

a system of linear equations when one considers all the W+(·) as well as τ ∗ as variables.
Let W+(pn) = yn after solving the above system of linear equations. Since W+ is strictly
increasing, it admits an inverse function. Consequently, pn = W+−1

(yn). Similarly, let
W+(pn + pn−1) = yn−1 =⇒ pn−1 = W+−1

(yn−1) − pn = W+−1
(yn−1) −W+−1

(yn). More
generally, for all k ∈ {2, . . . , n− 1}, we obtain pk by using backward substitution, i.e., by
solving the equation pk = W+−1

(yk)−W+−1
(yk+1). Lastly, p1 = 1−

∑n
k=2 pk.

Numerical Example

Consider three exhaustive and mutually exclusive outcomes (n = 3) and let R(q, θx) =
2qx −

(∑3
k=1 q

2
k

)
+ 1, i.e., R is a positive affine transformation of the quadratic scoring

rule with range [0, 2]. Suppose that an agent reports the belief q∗ = (0.1, 0.3, 0.6). Con-
sequently, R(q∗, θ3) > R(q∗, θ2) > R(q∗, θ1) > 0. For illustration’s sake, consider the last
equation in (4.9):

[
1−W+ (p2 + p3)

] ∂V (R(q, θ1))

∂q∗3
+
[
W+(p2 + p3)−W+(p3)

] ∂V (R(q, θ2))

∂q∗3
+

W+(p3)
∂V (R(q, θ3))

∂q∗3
= τ ∗

Let V be the value function in (4.1) with parameter α = 0.88. Consequently, the above
equation can be written as follows:

1.6983×W+(p3) + 0.0553×W+(p2 + p3)− τ ∗ = 1.0949

Repeating the same procedure for all partial derivatives ∂L(q∗,τ∗,µ∗)
∂q∗k

, for k ∈ {1, 2, 3},
we end up with the following system of linear equations:
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0.0086×W+(p3)− 1.8155×W+(p2 + p3)−τ ∗ = −1.6423

−1.7068×W+(p3) + 1.7602×W+(p2 + p3)−τ ∗ = 0.5474

1.6983×W+(p3) + 0.0553×W+(p2 + p3)−τ ∗ = 1.0949

The above system of linear equations is equivalent to the system in (4.12). After solving
the above system of equations, we obtain: W+(p3) = 0.6151, W+(p2 + p3) = 0.9075, and
τ ∗ = 4 × 10−11. Let W+ be the weighting function proposed by Tversky and Kahneman
[86] shown in (4.4) with parameter γ = 0.61. We then obtain p3 = W+−1

(0.6151) = 0.809,
p2 = W+−1

(0.9075) − p3 = 0.1802, and p1 = 1− p3 − p2 = 0.0108. Thus, the agent’s true
belief is equal to p = (0.0108, 0.1802, 0.809).

4.5.2 Negative Scoring Rules

For a negative scoring rule R, and given the definition of π−k in (4.3), the system of equations
in (4.10) can then be written as:


b1,1 · · · b1,n−1 −1
b2,1 · · · b2,n−1 −1

...
. . .

...
...

bn,1 · · · bn,n−1 −1




W−(p1)
W−(p1 + p2)

...

W− (∑n−1
k=1 pk

)
τ ∗

 =


−∂V (R(q,θn))

∂q∗1

−∂V (R(q,θn))
∂q∗2
...

−∂V (R(q,θn))
∂q∗n

 (4.13)

where bx,k = ∂V (R(q,θk))
∂q∗x

− ∂V (R(q,θk+1))

∂q∗x
. Hence, the system of equations in (4.10) becomes

a system of linear equations when one considers all the W−(·) as well as τ ∗ as variables.
Let W−(p1) = y1 after solving the above system of linear equations. Since W− is strictly
increasing, it admits an inverse function. Consequently, p1 = W−−1

(y1). Similarly, let
W−(p1 + p2) = y2 =⇒ p2 = W−−1

(y2) − p1 = W−−1
(y2) −W−−1

(y1). More generally,
for all k ∈ {2, . . . , n− 1}, we obtain pk by using forward substitution, i.e., by solving the
equation pk = W−−1

(yk)−W−−1
(yk−1). Lastly, pn = 1−

∑n−1
k=1 pk.

Numerical Example

Consider three exhaustive and mutually exclusive outcomes (n = 3) and let R(q, θx) =
2qx −

(∑3
k=1 q

2
k

)
− 1, i.e., R is a positive affine transformation of the quadratic scoring
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rule with range [−2, 0]. Suppose that an agent reports the belief q∗ = (0.1, 0.3, 0.6).
Consequently, 0 > R(q∗, θ3) > R(q∗, θ2) > R(q∗, θ1). For illustration’s sake, consider the
last equation in (4.10):

W−(p1)
∂V (R(q, θ1))

∂q∗3
+
[
W−(p1 + p2)−W−(p1)

] ∂V (R(q, θ2))

∂q∗3
+

[
1−W− (p1 + p2)

] ∂V (R(q, θ3))

∂q∗3
= τ ∗

Let V be equal to the value function in (4.1) with parameters β = 0.88 and λ = 2.25.
Consequently, the above equation can be written as follows:

0.1084×W−(p1)− 4.2813×W−(p1 + p2)− τ ∗ = −1.8619

Repeating the same procedure for all partial derivatives ∂L(q∗,τ∗,µ∗)
∂q∗k

, for k ∈ {1, 2, 3},
we end up with the following system of linear equations:

3.8697×W−(p1) + 0.0622×W−(p1 + p2)−τ ∗ = 0.4655

−3.9781×W−(p1) + 4.2191×W−(p1 + p2)−τ ∗ = 1.3964

0.1084×W−(p1)− 4.2813×W−(p1 + p2)−τ ∗ = −1.8619

The above system of linear equations is equivalent to the system in (4.13). After solving
the above system of equations, we obtain: W+(p1) = 0.1132, W+(p1 + p2) = 0.4377, and
τ ∗ = 10−16. Let W− be the weighting function proposed by Tversky and Kahneman [86]
shown in (4.4) with parameter δ = 0.69. We then obtain p1 = W−−1

(0.1132) = 0.0513,
p2 = W−−1

(0.4377) − p1 = 0.4226, and p3 = 1− p1 − p2 = 0.5261. Thus, the agent’s true
belief is equal to p = (0.0513, 0.4226, 0.5261).

4.5.3 Mixed Scoring Rules

For a mixed scoring rule R, the system of equations in (4.11) can then be written as:
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b1,1 b1,2 · · · b1,i−1 a1,i · · · a1,n
b2,1 b2,2 · · · b2,i−1 a2,i · · · a2,n

...
...

. . .
...

...
. . .

...
bn,1 bn,2 · · · bn,i−1 an,i · · · an,n





W−(p1)
W−(p1 + p2)

...

W−
(∑i−1

k=1 pk

)
W+ (

∑n
k=i pk)

...
W+ (pn + pn−1)

W+ (pn)


=


τ ∗

τ ∗

...
τ ∗

 (4.14)

where ax,k = ∂V (R(q,θk))
∂q∗x

− ∂V (R(q,θk−1))

∂q∗x
, and bx,k = ∂V (R(q,θk))

∂q∗x
− ∂V (R(q,θk+1))

∂q∗x
. By considering

all the W (·) as well as τ ∗ as variables, the above system of equations becomes a system of
linear equations with n+ 1 variables and n equations. The true belief p = (p1, . . . , pn) can
be obtained from (4.14) by following the procedure described below:

1. Solve (4.14) for W−
(∑i−1

k=1 pk

)
in terms of τ ∗, i.e., W−

(∑i−1
k=1 pk

)
= yi−1 × τ ∗ =⇒∑i−1

k=1 pk = W−−1
(yi−1 × τ ∗), where yi−1 ∈ < is a known numerical value;

2. Solve (4.14) for W+ (
∑n

k=i pk) in terms of τ ∗, i.e., W+ (
∑n

k=i pk) = yi × τ ∗ =⇒∑n
k=i pk = W+−1

(yi × τ ∗), where yi ∈ < is a known numerical value;

3. Combine the results from the first and second steps to obtain τ ∗, i.e.,
∑i−1

k=1 pk +∑n
k=i pk = W−−1

(yi−1×τ ∗)+W+−1
(yi×τ ∗) =⇒ 1 = W−−1

(yi−1×τ ∗)+W+−1
(yi×τ ∗).

Given that W+,W−, yi, and yi−1 are known, the value of τ ∗ can be computed numer-
ically after the third step. We discuss an approach to do so in the following subsection.
Hence, the system of equations in (4.14) becomes a system of linear equations with n vari-
ables and n equations. The true belief p can then be obtained by following the extra steps
described below:

4. Let W−(p1) = y1 × τ ∗. Consequently, p1 = W−−1
(y1 × τ ∗);

5. Let W+(pn) = yn × τ ∗. Consequently, pn = W+−1
(yn × τ ∗);

6. For all k ∈ {2, . . . , i− 1}, we obtain pk as described in Section 4.5.2, i.e., by solving
the equation pk = W−−1

(yk × τ ∗)−W−−1
(yk−1 × τ ∗);

7. For all k ∈ {i, . . . , n− 1}, we obtain pk as described in Section 4.5.1, i.e., by solving
the equation pk = W+−1

(yk × τ ∗)−W+−1
(yk+1 × τ ∗).
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Numerical Example

Consider three exhaustive and mutually exclusive outcomes (n = 3) and let R(q, θx) =
2qx −

(∑3
k=1 q

2
k

)
, i.e., R is the quadratic scoring rule with range [−1, 1]. Suppose that an

agent reports the belief q∗ = (0.1, 0.3, 0.6). Consequently, R(q∗, θ3) > R(q∗, θ2) > 0 >
R(q∗, θ1). For illustration’s sake, consider the last equation in (4.11):

W−(p1)
∂V (R(q, θ1))

∂q∗3
+
[
W+ (p2 + p3)−W+ (p3)

] ∂V (R(q, θ2))

∂q∗3
+

W+(p3)
∂V (R(q, θ3))

∂q∗3
= τ ∗

Let V be equal to the value function in (4.1) with parameters α = β = 0.88 and
λ = 2.25. Consequently, the above equation can be written as follows:

−2.7929×W−(p1)− 1.3370×W+(p2 + p3) + 2.0669×W+(p3) = τ ∗

Repeating the same procedure for all partial derivatives ∂L(q∗,τ∗,µ∗)
∂q∗k

, for k ∈ {1, 2, 3},
we end up with the following system of linear equations:

4.1893×W−(p1)− 0.2228×W+(p2 + p3)+0.0404×W+(p3) = τ ∗

−1.3964×W−(p1) + 1.5598×W+(p2 + p3)−2.1072×W+(p3) = τ ∗

−2.7929×W−(p1)− 1.3370×W+(p2 + p3)+2.0669×W+(p3) = τ ∗

The above system of linear equations is equivalent to the system in (4.14) for i = 2.
After solving the above system of equations, we obtain: W−(p1) = 1959.6882×τ ∗,W+(p2+
p3) = 42283.3111× τ ∗, and W+(p3) = 30000× τ ∗. Thus, p1 = W−−1

(1959.6882× τ ∗), p2 +
p3 = W+−1

(42283.3111×τ ∗), and then 1 = W−−1
(1959.6882×τ ∗)+W+−1

(42283.3111×τ ∗).
For ease of exposition, let ψ = 1959.6882×τ ∗, and φ = 42283.3111×τ ∗. By construction,

ψ, φ ∈ [0, 1]. Moreover, φ = 42283.3111
1959.6882

× ψ. Thus, to find the value of τ ∗, we just need to

find the value of ψ ∈ [0, 1] such that 1 = W−−1
(ψ) + W+−1 (42283.3111

1959.6882
× ψ

)
. Let W+

and W− be the weighting functions proposed by Tversky and Kahneman [86] shown in
(4.4) with parameters γ = 0.61 and δ = 0.69. We find numerically that φ = 0.0420 and,
consequently, τ ∗ = 0.00002143. Finally, we obtain that p1 = W−−1

(1959.6882×τ ∗) = 0.011,
p3 = W+−1

(30000× τ ∗) = 0.8392, and p2 = W+−1
(42283.3111× τ ∗)− p3 = 0.1498. Thus,

the agent’s true belief is equal to p = (0.011, 0.1498, 0.8392).
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Figure 4.4: (LEFT) The reported probability of 0.5 relates to many degrees of true belief
under a traditional proper scoring rule. (RIGHT) Each reported belief is mapped to a single
true belief under a comonotonic proper scoring rule.
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4.6 Comonotonic Proper Scoring Rules

In the previous section, we showed how to obtain an agent’s true belief from his reported
belief by solving a system of equations. Unfortunately, the obtained belief is not always
the agent’s correct true belief. Under a proper scoring rule, agents with CPT utilities
and different true beliefs might end up reporting the same belief. This point was noted
by Offerman et al. [61] for the positive version of the quadratic scoring rule and binary
outcomes. For illustration’s sake, consider an agent with belief p = (p1, p2) = (p1, 1− p1),
who reports q = (q1, q2) = (q1, 1−q1) under the proper scoring rule considered by Offerman
et al., i.e., R(q, θx) = 2qx + (

∑n
k=1 q

2
k) + 1. The left part of Figure 4.4 illustrates how an

agent with CPT utility reports q1 in terms of p1 when W+ is equal to the weighting function
in (4.4) with parameter γ = 0.61, and the value function is equal to the function in (4.1)
with parameter α = 0.88.

The most striking feature of the left part of Figure 4.4 is that the curve is flat around
p1 = 0.5. As explained by Offerman et al. [61], the risk aversion generated by the CPT
utility is so strong for a subjective probability around 0.5 that an agent makes the safe
choice of reporting 0.5. Thus, proper scoring rules may be insensitive to small changes in
the neighborhood of 0.5 for binary outcomes. As a consequence, a reported probability of
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0.5 relates to many degrees of true belief and, thus, it cannot be used to uniquely determine
the correct true belief. As Kothiyal et al. [45] mentioned, if properness is to be taken to
mean that all degrees of belief can be identified, then proper scoring rules are no longer
proper under CPT.

The implication of the above problem in our work is that there are cases in which
solutions for the systems of equations in (4.12), (4.13), and (4.14) might not actually be
an agent’s true belief. Kothiyal et al. [45] pointed out that such a problem is due to the
fact that decision weights change in a drastic non-smooth manner when the ordering of the
scores for any two outcomes changes. Mathematically, the abovementioned problem occurs
when a proper scoring rule R allows R(q, θx) = R(q, θy), for some probability vector q,
and x, y ∈ {1, . . . , n}.

For ease of exposition and mathematical notation, we have assumed thus far that
R (q, θn) > R (q, θn−1) > · · · > R (q, θ1). We claimed that such an assumption was without
loss of generality because the outcomes could always be rearranged a posteriori. In this
section, however, we do not allow the outcomes to be rearranged. Moreover, we assume a
strict ordering of the outcomes such that R (q, θn) > R (q, θn−1) > · · · > R (q, θ1), i.e., an
agent will always receive the highest score when outcome θn happens, the second highest
score when outcome θn−1 happens, and so on, no matter what he reports. In other words,
the scoring rule R satisfies a property called comonotonicity [45, 73].

Focusing on binary outcomes, Kothiyal et al. [45] suggested that one can avoid the
non-smooth changes in decision weights, and the underlying analytical problems, when R
is a comonotonic and positive proper scoring rule. In the following subsections, we provide
a detailed explanation on why comonotonic proper scoring rules map each reported belief
to a single true belief. We show that this happens not only for binary outcomes and
positive proper scoring rules, but for any number of outcomes as well as positive, negative,
and mixed proper scoring rules. In other words, we give a sufficient condition under which
proper scoring rules are indeed proper under CPT.

4.6.1 Positive Scoring Rules

Consider a positive proper scoring rule R that satisfies comonotonicity, i.e., R (q, θn) >
· · · > R (q, θ1) ≥ 0, for all q. An agent’s CPT utility in (4.5) can be written as:
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CPT(q) =W+(pn)[V (R(q, θn))− V (R(q, θn−1))]+

W+(pn−1 + pn)[V (R(q, θn−1))− V (R(q, θn−2))] + · · ·+

W+

(
n∑
x=2

px

)
[V (R(q, θ2))− V (R(q, θ1))] + V (R(q, θ1))

By keeping q fixed and differentiating the above function with respect to a probability
value pk, for some k ∈ {2, . . . , n}, we obtain:

∂W+ (
∑n

x=k px)

∂pk
[V (R(q, θk))− V (R(q, θk−1))]+

∂W+
(∑n

x=k−1 px
)

∂pk
[V (R(q, θk−1))− V (R(q, θk−2))] + · · ·+

∂W+ (
∑n

x=2 px)

∂pk
[V (R(q, θ2))− V (R(q, θ1))]

Since W+ is strictly increasing, ∂W+(·)
∂pk

is greater than zero. Moreover, since R(q, θn) >

· · · > R(q, θ1) ≥ 0 and V is strictly increasing, then V (R(q, θx))− V (R(q, θx−1)) > 0, for
any x ∈ {2, . . . , n}. Hence, the first derivative shown above is greater than zero, which
implies that the CPT utility is strictly increasing in pk when the other probabilities as
well as q are fixed. Consequently, there are no stationary points and, thus, we map every
reported belief to a single true belief. The right side of Figure 4.4 illustrates this.

If, alternatively, the scoring rule R allows R(q, θn) = R(q, θn−1) = · · · = R(q, θ1), then
all partial derivatives illustrated above are equal to zero, which implies that there might
exist multiple stationary points and, consequently, multiple true beliefs associated with a
reported belief q. Thus, we have shown how comonotonicity provides a sufficient condition
under which positive proper scoring rules are indeed proper under CPT.

4.6.2 Negative Scoring Rules

Now, consider a negative proper scoring rule R that satisfies comonotonicity, i.e., 0 ≥
R (q, θn) > · · · > R (q, θ1), for all q. An agent’s CPT utility in (4.6) can then be written
as:
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CPT(q) =W−(p1)[V (R(q, θ1))− V (R(q, θ2))]+

W−(p1 + p2)[V (R(q, θ2))− V (R(q, θ3))] + · · ·+

W−

(
n−1∑
x=1

px

)
[V (R(q, θn−1))− V (R(q, θn))] + V (R(q, θn))

By keeping q fixed and differentiating the above function with respect to a probability
value pk, for some k ∈ {1, . . . , n− 1}, we obtain:

∂W−
(∑k

x=1 px

)
∂pk

[V (R(q, θk))− V (R(q, θk+1))]+

∂W−
(∑k+1

x=1 px

)
∂pk

[V (R(q, θk+1))− V (R(q, θk+2))] + · · ·+

∂W− (∑n−1
x=1 px

)
∂pk

[V (R(q, θn−1))− V (R(q, θn))]

Since W− is strictly increasing, ∂W−(·)
∂pk

is greater than zero. Moreover, since 0 ≥
R(q, θn) > R(q, θn−1) > · · · > R(q, θ1) and V is strictly increasing, then V (R(q, θx)) −
V (R(q, θx+1)) > 0, for any x ∈ {1, . . . , n − 1}. Hence, the first derivative shown above is
greater than zero, which implies that the CPT utility is strictly increasing in pk when the
other probabilities as well as q are fixed. Consequently, we map every reported belief to a
single true belief.

4.6.3 Mixed Scoring Rules

Finally, consider a mixed proper scoring ruleR that satisfies comonotonicity, i.e., R(q, θn) >
· · · > R(q, θi) ≥ 0 > R(q, θi−1) > · · · > R(q, θ1). An agent’s CPT utility in (4.7) can then
be written as:
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CPT(q) =W+(pn)[V (R(q, θn))− V (R(q, θn−1))] + · · ·+

W+

(
n∑

x=i+1

px

)
[V (R(q, θi+1))− V (R(q, θi))]+

W+

(
n∑
x=i

px

)
V (R(q, θi)) +W−

(
i−1∑
x=1

px

)
V (R(q, θi−1))+

W−

(
i−2∑
x=1

px

)
[V (R(q, θi−2))− V (R(q, θi−1))] + · · ·+

W−(p1)[V (R(q, θ1))− V (R(q, θ2))]

If we keep q fixed and differentiate the above function with respect to a probability
value pk, for some k ∈ {i, . . . , n}, we obtain:

∂W+ (
∑n

x=k px)

∂pk
[V (R(q, θk))− V (R(q, θk−1))] + · · ·+

∂W+
(∑n

x=i+1 px
)

∂pk
[V (R(q, θi+1))− V (R(q, θi))]+

∂W+ (
∑n

x=i px)

∂pk
V (R(q, θi))

Since W+ is strictly increasing, ∂W+(·)
∂pk

is greater than zero. Moreover, since R(q, θn) >

· · · > R(q, θi) ≥ 0 and V is strictly increasing, then V (R(q, θx)) − V (R(q, θx−1)) > 0, for
any x ∈ {i, . . . , n}. Hence, the first derivative shown above is greater than zero.

If, on the other hand, k ∈ {1, . . . , i− 1}, we obtain:

∂W−
(∑i−1

x=1 px

)
∂pk

V (R(q, θi−1))+

∂W−
(∑i−2

x=1 px

)
∂pk

[V (R(q, θi−2))− V (R(q, θi−1))] + · · ·+

∂W−
(∑k

x=1 px

)
∂pk

[V (R(q, θk))− V (R(q, θk+1))]
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Since W− is strictly increasing, ∂W−(·)
∂pk

is greater than zero. Moreover, since 0 >

R(q, θi−1) > · · · > R(q, θ1) and V is strictly increasing, then V (R(q, θx))−V (R(q, θx+1)) >
0, for any x ∈ {1, . . . , i − 1}. Hence, the first derivative shown above is also greater than
zero. Consequently, we map every reported belief to a single true belief.

4.6.4 Constructing a Comonotonic Proper Scoring Rule

We finally discuss how to construct a comonotonic proper scoring rule S from a bounded
proper scoring rule R with range (a, b). If R is a positive proper scoring rule, i.e., a, b ∈ <+,
we then define a scoring rule S as:

S(q, θx) = R(q, θx) + (x− 1)× (b− a)

for x ∈ {1, . . . , n}. The above scoring function has different non-overlapping ranges for
different outcomes. Clearly, we obtain S(q, θn) > · · · > S(q, θ1) ≥ 0, and S is trivially
proper.

If, on the other hand, R is a negative proper scoring rule with range (a, b), for a, b ∈ <−,
we then define S as:

S(q, θx) = R(q, θx) + (n− x)× (a− b)

for x ∈ {1, . . . , n}. Once more, S is proper and it has different non-overlapping ranges for
different outcomes. Moreover, we obtain 0 ≥ S(q, θn) > · · · > S(q, θ1).

Finally, if R is a mixed proper scoring rule with range (a, b), for a ∈ <− and b ∈ <+,
we then define S as follows:

S(q, θx) = R(q, θx) + (n− x)× (a− b), for x ∈ {1, . . . , i− 1}
S(q, θx) = R(q, θx) + (x− 1)× (b− a), for x ∈ {i, . . . , n}

S is proper and S(q, θn) > · · · > S(q, θi) > 0 > S(q, θi−1) > · · · > S(q, θ1).

To summarize, the range of the score an agent receives from a comonotonic proper
scoring rule depends on the observed outcome, where different non-overlapping ranges are
associated with different outcomes. An agent’s reported belief then defines the agent’s
score inside the possible ranges.
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4.7 A General Method for Obtaining True Beliefs When

the Utility Function, the Loss-Aversion Parame-

ter, and the Weighting Functions Are Unknown

Thus far, we have focused on how to calibrate a posteriori an agent’s reported belief when
the same was elicited using a proper scoring rule. To do so, we have assumed that the
components that drive the agent’s attitude towards uncertainty are known, i.e., the agent’s
utility function, loss-aversion parameter, and weighting functions were previously elicited.
There are many techniques to elicit such components, e.g., based on the trade-off method
[1, 3, 90], and regret-based techniques [36, 91]. Clearly, eliciting those components incurs
an extra burden since agents must be pre-screened before reporting their beliefs.

In this section, we propose a general method based on non-deterministic payments to
obtain an agent’s true belief when those components are unknown. Consider two fixed
payoffs smax and smin, where smax > smin ≥ 0. The specific values for smax and smin are
irrelevant in our analysis as long as the previous inequalities hold true. The scores from a
proper scoring rule will now determine how likely it is that an agent will receive each fixed
payoff. In other words, instead of defining the payoffs of a prospect (see Section 4.4), the
scores from a proper scoring rule and, consequently, a reported belief, have now the dual
role of determining the probabilities of obtaining the fixed payoffs. In order for the above
interpretation to be true, we consider a positive proper scoring rule R with range [0, 1].
An agent’s payment is defined as follows:

If θ1 happens: the agent receives the prospect [smin : 1−R(q, θ1), smax : R(q, θ1)];

If θ2 happens: the agent receives the prospect [smin : 1−R(q, θ2), smax : R(q, θ2)];
... (4.15)

If θn happens: the agent receives the prospect [smin : 1−R(q, θn), smax : R(q, θn)].

The above payment structure is based on the payment structure proposed by Sandroni
and Shmaya [71]. However, Sandroni and Shmaya focused on the elicitation of beliefs under
expected utility theory, whereas we focus on the elicitation of beliefs under cumulative
prospect theory. The payment structure in (4.15) is essentially a compound prospect (or a
two-stage prospect), i.e., an agent receives the prospect [smin : 1−R(q, θ1), smax : R(q, θ1)]
with probability p1, the prospect [smin : 1 − R(q, θ2), smax : R(q, θ2)] with probability p2,
and so on. We assume the reduction of compound lotteries axiom [70], i.e., an agent finds
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a two-stage prospect as attractive as the one-stage prospect yielding the same payoffs with
the corresponding multiplied probabilities. In other words, the above compound prospect
is equivalent to the following one-stage prospect:[

smin :
n∑
k=1

pk(1−R(q, θk)), smax :
n∑
k=1

pkR(q, θk)

]
(4.16)

An important feature of cumulative prospect theory is that it satisfies stochastic domi-
nance, i.e., a prospect [smin : 1− ρ, smax : ρ] is preferred to a prospect [smin : 1− ρ′, smax : ρ′]
if and only if ρ > ρ′. Given that stochastic dominance holds true, we do not need to know
how an agent evaluates the prospect in (4.16). Stochastic dominance implies that the agent
will move as much probability mass towards the highest payoff smax as possible. In other
words, an agent reports q so as to maximize

∑n
k=1 pkR(q, θk), which is the probability of

receiving the maximum payoff smax. Note that
∑n

k=1 pkR(q, θk) is the expected score from
the proper scoring rule R, which implies that arg maxq

∑n
k=1 pkR(q, θk) = p. That is, by

using the payment structure in (4.15), we obtain an agent’s true belief without having to
elicit the components that drive the agent’s attitude towards uncertainty.

4.8 Summary

Proper scoring rules have been widely used to induce honest reporting of subjective prob-
abilities. The main assumption behind proper scoring rules is that agents are risk neutral,
which is often an unrealistic assumption when the underlying agents are human beings.
Our first contribution in this chapter was an experiment that corroborates the fact that
human beings are not risk neutral even when the stakes are small. Different than other
related experiments (e.g., [92]), our experiment was performed in the context of elicitation
of beliefs using proper scoring rules.

Thereafter, we adapted proper scoring rules to cumulative prospect theory [86], a more
appropriate model of decision making under uncertainty. Given that CPT is descriptive
in nature, it is then more empirically justifiable than normative theories such as expected-
value maximization and expected-utility theory. In particular, we showed how to obtain
an agent’s true belief from his misreported belief by solving a system of equations. We
covered all possible scenarios regarding the underlying proper scoring rule, i.e., when the
proper scoring rule is positive, negative, and mixed. Moreover, our discussion is valid for
any finite number of outcomes, thus generalizing the work by Offerman et al. [61].
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We also discussed how multiple true beliefs might be associated with a single reported
belief when agents behave according to cumulative prospect theory. This implies that
the reported belief cannot always be used to uniquely determine the correct true belief.
The reason for this phenomenon is that traditional proper scoring rules do not satisfy
comonotonicity. We provided a new explanation for why comonotonicity is a sufficient
condition for fixing the above problem. We also suggested how to construct a comonotonic
proper scoring rule from any traditional proper scoring rule, thus generalizing the work by
Kothiyal et al. [45].

While the abovementioned contributions assumed that the components that drive an
agent’s attitude towards uncertainty are known a priori, we also proposed a new ap-
proach to elicit an agent’s belief when those components are unknown. Our approach uses
non-deterministic payments based on proper scoring rules. An important feature of our
approach is that it is in the best interest of a CPT agent to behave honestly since this
maximizes the agent’s CPT utility.

4.8.1 Directions for Future Work

There are some interesting open questions regarding the applicability of our results. Of-
ferman et al. [61] showed empirically that adapting the binary and positive version of the
quadratic scoring rule to cumulative prospect theory results in a lower degree of violation
of additivity in the reported probabilities. An interesting related question is whether or not
adapting proper scoring rules to cumulative prospect theory results in more accurate re-
ported beliefs, where accuracy is defined in terms of forecast accuracy. Another interesting
question regards the effectiveness of our elicitation approach based on non-deterministic
payments. In particular, it would be interesting to compare our proposed approach with
traditional deterministic approaches in terms of how easy it is to apply and explain to the
agents.

Finally, it would be of theoretical value to characterize how agents report their beliefs
when only partial information about an agent’s CPT utility is known. A potential approach
to follow when only the value function is known is to incorporate the value function into
the proper scoring rule, as suggested by Winkler and Murphy [95]. Formally, the composite
function S = V −1 ◦ R is a proper scoring rule under V . In other words, the scoring rule
S(q, θx) is tailored to the agent’s value function. It is easy to see from (4.5) and (4.6)
that such tailored proper scoring rules elicit a vector of decision weights, which in turn
is a probability vector for positive and negative scoring rules. However, after obtaining a
vector of decision weights, one still needs to elicit the agent’s weighting function in order
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to remove the influence of the weighting function on the reported belief. Such a procedure
can be performed similarly to the recursive approaches described in Sections 4.5.1, 4.5.2,
and 4.5.3. We conjecture that no deterministic payment structure can elicit the true belief
of a CPT agent when the agent’s weighting functions are unknown.

Regarding the case when only the agent’s weighting functions are known, we argue
that this setting can be treated in a similar way to the case when one wants to elicit the
true belief of an agent who behaves according to expected-utility theory. In particular, the
probabilistic payments proposed in [4, 43, 71] would all elicit vectors of decision weights.
Given that the agent’s weighting functions are known, one can then perform simple re-
cursive approaches to eliminate the influence of the weighting functions on the reported
belief in a way similar to the procedures described in Sections 4.5.1, 4.5.2, and 4.5.3. We
conjecture that no deterministic payment structure can elicit the true belief of a CPT agent
when the agent’s value functions are unknown.

The above conjectures find some support on the work by Lambert [46], who showed that
without a non-deterministic payment structure, and without any knowledge of the agent’s
preferences, the only information that can be elicited with strict incentives is whether an
event is more likely than its complement. All in all, we note that the non-deterministic
payment structure proposed in Section 4.7 induces honest reporting when only partial
information about the agent’s CPT utility is available, as long as the reduction of compound
lotteries axiom holds true.
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Chapter 5

A Study on the Influence of the
Number of Agents on the Quality of
the Aggregate Information

While previous chapters focused mainly on how to induce honest reporting during the
elicitation of private information, hereafter we focus on how to aggregate the reported
information. When eliciting and aggregating agents’ private information, arguments can
be made in favor and against the use of multiple agents. On the one hand, multiple agents
bring diversity to the process so that biases of individual judgments can offset each other,
which may result in more accurate aggregate information. On the other hand, hiring a
larger population of agents might be too costly.

In this chapter, we empirically investigate the above question through an experiment us-
ing one of the most popular crowdsourcing platforms: Amazon’s Mechanical Turk (AMT).
In particular, we use the data set resulting from our content-analysis experiment (see Sec-
tion 3.5). Recall that in our experiment, we asked agents to solve three content-analysis
tasks. Due to the nature of the tasks, we were able to derive gold-standard answers, i.e.,
answers of high quality provided by experts with relevant expertise (see Appendix B).

The existence of gold-standard answers allows us to investigate how different combi-
nations of agents affect the accuracy of aggregate answers. We first analyze the accuracy
of aggregate answers as the number of agents increases. Focusing on simple averages to
aggregate answers, we find a substantial degree of improvement in expected accuracy as
we increase the number of agents, with diminishing returns for extra agents. Moreover, the
standard deviation of errors in the aggregate answers decreases with more agents, which
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implies less risk when aggregating answers.

Our experimental results also show that combining only the overall top-performing
agents results in more accurate aggregate answers, and these agents are consistent across
multiple homogeneous tasks. On the other hand, removing the overall worst-performing
agents from the population of agents sometimes result in less accurate aggregate answers.
The reason for this surprising result is that the overall worst-performing agents can produce
good answers on some tasks, which implies that they tend to be inconsistent across multiple
tasks. Our results thus contribute to a better understanding on how to design more effective
crowdsourcing processes.

5.1 Related Work

Many different questions have been recently addressed by the crowdsourcing research com-
munity, e.g., how to assign tasks to agents [37, 84], how to design optimal workflows to
coordinate the work of the crowd [47, 98], how to induce honest behavior in crowdsourcing
settings [31], etc.

To the best of our knowledge, our work in this chapter is the first one to address the
question of how the number of agents affects the quality of aggregate answers in crowd-
sourcing settings. Similar studies have been performed in different domains. For example,
it is well-known in decision analysis and operations research that combining multiple fore-
casts often leads to improved forecasting performance [23]. Sheng et al. [76] showed in
a data mining/machine learning domain that labeling the same data set with different
“labelers” might sometimes improve data quality.

However, some unexpected results are apparently specific to crowdsourcing. For exam-
ple, our experimental results show that removing the overall worst-performing agents from
the population of agents might result in less accurate aggregate answers. Thus, we expect
our work to shed light on how to design more effective crowdsourcing processes.

5.2 The Content-Analysis Experiment

Recall that in our content-analysis experiment described in Section 3.5, each agent analyzed
3 texts, and reported 3 answers per text inside the set {0, 1, 2}, thus reporting a total of 9
answers. Since the domain of each answer is rather small, our analysis in this chapter is
performed per text, i.e., we consider triplets of answers. Henceforth, we denote by output
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a vector of 3 answers for a given text. Thus, each agent reported 3 outputs. We define
gold-standard outputs in a similar fashion. In our analysis, we use outputs from members
of the group CG, i.e., the control group that involved no incentives beyond the baseline
compensation offered for completing the content-analysis task. We focus only on this group
because that is how tasks are traditionally performed in crowdsourcing settings.

5.3 Accuracy of Aggregate Outputs by the Number

of Agents

In this section, we study the influence of the number of agents on the quality of the ag-
gregate output. In order to do so, we generated combinations of the 50 agents in our
population. For r ∈ {1, . . . , 4} and r ∈ {46, . . . , 50}, we calculated all possible combina-
tions of agents, i.e.,

(
50
r

)
. For example, for r = 2, we generated all

(
50
2

)
= 1225 pairs of

agents. Due to the intractable number of combinations for r ∈ {5, . . . , 45}, we randomly
generated 105 different combinations of agents for any r ∈ {5, . . . , 45}.

For each combination of agents, we aggregated the outputs from the underlying agents
by taking the average of them. For instance, for two agents, we calculated the average
output for all

(
50
2

)
= 1225 possible pairs of agents.

We then measured the accuracy of each aggregate output. For each aggregate output,
we calculated the root-mean-square deviation (RMSD) between the aggregate output and
the gold-standard output. For example, suppose that a pair of agents report the outputs
(1, 2, 0) and (2, 2, 1) for Text 1. Thus, the aggregate output is (1.5, 2, 0.5). Given that
the gold-standard output for Text 1 is (1, 2, 2) (see Appendix B), the root-mean-square
deviation between the aggregate output and the gold-standard output is:√

(1.5− 1)2 + (2− 2)2 + (0.5− 2)2

3
≈ 0.9129

We denote by error the RMSD between the aggregate output and the gold-standard
output. Clearly, the lower the error, the more accurate the aggregate output. In our
experiments, the range of the error is [0, 2]. The resulting average error for a given r
can be seen as the expected error when aggregating outputs using r agents. For instance,
the average of the

(
50
2

)
= 1225 errors from all possible pairs of agents is the expected

error when aggregating outputs using 2 agents chosen at random. Figure 5.1 shows the
average error, the standard deviation of the errors, and the maximum error per text for
each r ∈ {1, . . . , 50}. The complete numerical data is shown in Table C.1 in Appendix C.
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Figure 5.1: The average error, the standard deviation of the errors, and the maximum
error per text for each r ∈ {1, . . . , 50}.
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An interesting feature of Figure 5.1 is that the influence of the number of agents on the
quality of the aggregate output is qualitatively the same for all texts. That is, the average
error decreases as the number of agents r increases, which means that the expected accuracy
of the aggregate output increases with more agents.

Figure 5.2 shows the percentage of the reduction of the average error when one extra
agent is added. From the starting point of one agent, adding a second agent reduces the
average error by 3.6%−16.5%. Given two agents, adding a third agent decreases the average
error by 2%−8.3%, and so on. Clearly, there are diminishing returns for extra agents. For
example, while adding a fourth agent reduces the average error by 1.19%− 4.79%, adding
a tenth agent reduces the average error by only 0.07% − 0.79%. After the sixth agent,
adding another agent always decreases the average error by less than 2% for all texts.

Figure 5.1 also shows that the standard deviation of the errors decreases with the
number of agents r. The initially high standard deviation indicates an opportunity to get
considerably low error with a single agent. Of course, the other side of the coin is a greater
risk of high error with a single poor agent. As the number of agents increases, this risk
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Figure 5.2: The percentage of the reduction of the average error when one extra agent is
added to the population.
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decreases because combinations of exclusively poor agents become less likely. This fact is
also shown in the reduction of the maximum error when r increases, which implies less risk
when aggregating outputs.

5.4 Accuracy of Outputs from the Top Agents

The analysis performed in the previous section is based on combinations of agents from
the full population of agents. Two interesting follow-up questions are: 1) how much
can accuracy be improved by restricting attention to combinations of the overall top-
performing agents? and 2) how much can accuracy be improved by removing the overall
worst-performing agents from the population of agents?

In order to answer these questions, we first sorted agents based on the overall error.
Recall that each agent reported three outputs, each one consisting of three answers. We
denote by overall output a vector of all nine reported answers. Likewise, we denote by
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overall gold-standard output the vector of all nine answers from the gold-standard outputs.
Then, the overall error of an agent is the RMSD between his overall output and the overall
gold-standard output.

For example, suppose that an agent reports the following outputs for Text 1, 2, and
3: (1, 2, 2), (1, 2, 0), and (1, 0, 0). Hence, his overall output is (1, 2, 2, 1, 2, 0, 1, 0, 0). Recall
that the gold-standard outputs for Text 1, 2, and 3 are, respectively, (1, 2, 2), (1, 2, 1), and
(0, 0, 0). Thus, the overall gold-standard output is (1, 2, 2, 1, 2, 1, 0, 0, 0). Consequently, the
agent’s overall error is:

√
x

9
≈ 0.4714

where:

x =(1− 1)2 + (2− 2)2 + (2− 2)2 + (1− 1)2 + (2− 2)2+

(0− 1)2 + (1− 0)2 + (0− 0)2 + (0− 0)2

= 2

For ease of exposition, in the following discussion we focus on the overall accuracy of the
top 3 agents and on the accuracy of the population of agents without the 3 overall worst-
performing agents, i.e., the top 47 agents. We note, however, that the following results are
qualitatively the same for the top k and the top 50−k agents, for any k ∈ {2, . . . , 20}. We
return to this point later in this section, when we also suggest a different way of ordering
agents.

After ordering agents in terms of overall errors, we considered all possible combinations
of the top 3 agents, i.e., we calculated the aggregate outputs and errors for all

(
3
r

)
possible

combinations of agents, for r ∈ {1, 2, 3}. Moreover, we removed the three overall worst-
performing agents from the full population of agents and calculated the aggregate outputs
and errors for all

(
47
r

)
combinations of agents, for r ∈ {1, 2, 3} in order to allow quantitative

comparisons across different populations of agents. The resulting average error per text for
different populations of agents is illustrated in Figure 5.3. The complete numerical data is
shown in Table C.1 in Appendix C.

Focusing first on Text 1 and 3, any combination of the top 3 agents results in a perfect
aggregate output with zero error, whereas removing the three overall worst-performing

69



Figure 5.3: The average error per text for different populations of agents and r ∈ {1, 2, 3}.
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agents reduces the average error by 4.96%− 8.10% in comparison with the complete pop-
ulation of agents, for the same group size r ∈ {1, 2, 3}.

Looking at the numerical values for Text 1 in Table C.1 (see Appendix C), the average
error for combinations of 1, 2, and 3 agents from the top 47 agents (i.e., 0.632, 0.572,
and 0.543) is less than the average error for combinations of 1, 4, and 11 agents from the
complete population of agents (i.e., 0.685, 0.575, and 0.544). In other words, the aggregate
outputs of 1, 2, and 3 randomly selected agents from the top 47 agents are expected to
be more accurate in Text 1 than the aggregate outputs of 1, 4, and 11 randomly selected
agents from the complete population of agents. These numbers for Text 3 are, respectively,
2, 8, and 50. Thus, for Text 1 and 3, it is beneficial to remove some worst-performing agents
from the full population of agents.

The striking result comes from Text 2, where the average error for the full population
of agents is 0.69%− 3.85% lower than the average error for the top 47 agents. The reason
for this counter-intuitive result is that there were agents amongst the three overall worst-
performing agents who excelled in Text 2, while performing poorly in Text 1 and 3. This
shows that some agents are not consistent across multiple tasks. We return to this point
in the next section.
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For all populations of agents, the average error, the standard deviation of the errors, and
the maximum error decrease as the number of agents increases, showing that combining
multiple agents is always beneficial since it improves accuracy and reduces risks.

As mentioned before, for ease of exposition, our discussion in this section has been
focused on the implications of restricting the population of agents to the overall top 3
agents and of removing the three overall worst-performing agents from the full population
of agents. The obtained results are, however, more general. Any combination of up to k
agents, for k ∈ {1, . . . , 20}, from the top k agents results in a lower average error than a
combination of the same number of agents from both the complete population of agents and
the top 50−k agents. Moreover, removing any number k ∈ {2, . . . , 20} of worst-performing
agents from the complete population of agents results in an increase of the average error
for Text 2.

The above results are statistically significant for any k ∈ {3, . . . , 20} (rank-sum test,
p-value ≤ 0.05). For combinations of size k ∈ {1, 2}, the three populations of agents
have many combinations of agents in common. In general, as k increases, the fraction of
combinations of agents shared between the top k agents, the top 50−k agents, and the full
population of agents decreases, thus allowing us to make stronger statistical comparisons.
For example, for k ≥ 4, the p-values from the rank-sum tests are approximately 0.

It could be argued that the results in this section hold true because our experimental
setting is biased, e.g., the overall top-performing agents are expected to be more accurate
in all texts because the overall error contains information about errors from all individual
texts. However, if such a bias existed, combinations of top-performing agents would always
result in lower average errors than combinations of the same number of agents from the
full population of agents, a fact which is not true for k ∈ {21, . . . , 25}. For example, for
k ∈ {23, 24, 25} and Text 1 and 2, a random combination of agents from the complete
population of agents results in a lower average error than a random combination of the
same number of agents from both the top k agents and the top 50− k agents. In general,
we find no clear pattern for values of k ∈ {21, . . . , 25}.

Another way to compute the overall error and, thus, of ranking agents is by using
a leave-one-out cross-validation approach. That is, given n texts, each agent receives a
historical rank based on his errors on n − 1 texts. Then, the performance of different
populations of agents is measured on the left-out text. However, the leave-one-out cross-
validation approach may not work well with small data sets, such as the one in this study.
We tried this approach on our data set and had mixed results. For example, when defining
agents’ historical ranks based on their performance in Text 1 and 2, and measuring the
performance of different populations of agents in Text 3, a random combination of agents
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from the top k agents resulted in higher average error than a random combination of the
same number of agents from both the full population of agents and the top 50− k agents,
for some values of k. We conjecture that the above result is an artifact of having a small
number of texts since the effect of a single text on the historical rank would likely be
diluted if there was a larger number of texts.

To summarize, our results in this section imply that combining outputs from any num-
ber of the overall top 40% agents yields substantial improvements in expected accuracy
in comparison to a combination of the same number of agents from the full population of
agents, whereas removing agents amongst the overall worst 40% agents might result in less
accurate aggregate outputs.

5.5 Consistency of Agents Across Multiple Tasks

Our previous analysis shows that the relative performance of some agents is not necessarily
consistent across multiple tasks. In order to further investigate this issue, we first calculated
the overall ranking of agents in terms of overall errors, i.e., we sorted agents in ascending
order according to their overall errors.

Next, we calculated the individual rankings of each agent in terms of individual errors,
i.e., for each reported output, we sorted agents in ascending order according to their errors.
Thus, each agent was ranked three times according to his errors. Ties in rankings were
allowed, i.e., agents with similar (overall) errors received the same ranking.

In the following analysis, we use the standard deviation of an agent’s individual rankings
as a measure of how stable the overall ranking of that agent is, where a high standard
deviation indicates more ranking inconsistency across multiple tasks. For example, suppose
that the outputs of an agent result in the lowest error in Text 1, the third lowest error
in Text 2, and the second lowest error in Text 3. Thus, the standard deviation of that
agent’s individual rankings is equal to 1, showing high consistency across multiple tasks.
On the other hand, an agent with individual rankings equal to 5, 48, and 22 is much more
inconsistent across multiple tasks since the standard deviation of his individual rankings
is equal to 21.66.

Figure 5.4 shows the standard deviation of individual rankings as a function of the
overall ranking of each agent. For the sake of a better visualization, we fit a quadratic
function to the data in a least-squares sense (norm of residuals equal to 35.664). We note
that 2 is the optimal degree for polynomial fitting according to the Akaike information
criterion (AIC). The resulting quadratic function is:
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Figure 5.4: The standard deviation of individual rankings as a function of the overall
ranking of each agent.
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f(x) = −0.018922 ∗ x2 + 1.1371 ∗ x+ 1.6287

where x is an agent’s overall ranking, and f(x) is the standard deviation of that agent’s
individual rankings. Figure 5.4 shows that the overall top-performing agents are more con-
sistent across multiple tasks than the other agents. For example, the standard deviations
of the individual rankings of the top 7 agents are always less than 15, whereas 4 out of the
7 worst-performing agents have standard deviations greater than 15. In general, the most
inconsistent agents are the agents with overall ranking between 15 and 35.

The results presented in this section, together with the results from the previous section,
suggest that removing agents with high overall error from the population of agents might
be a mistake since those agents can sometimes produce high quality outputs, as can be
inferred from Figure 5.4. Furthermore, restricting the population of agents to a few overall
top-performing agents is likely to produce more accurate aggregate outputs because these
agents consistently report outputs with low errors.

5.6 Summary

In this chapter, we empirically studied the influence of the number of agents on the accuracy
of aggregate outputs in a crowdsourcing setting. We first showed that having more agents
reduces the average error of the aggregate output, which was measured in terms of the
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root-mean-square deviation between the aggregate output and a gold-standard output. In
other words, the expected accuracy of the aggregate output increases as the number of
agents increases.

We also showed that there are diminishing returns for extra agents, where the reduction
in the average error is always less than 2% after the sixth agent. Adding extra agents
also implies that the risk of obtaining a combination of exclusively poor agents decreases
because both the standard deviation of errors in aggregate outputs and the maximum error
decrease as the number of agents increases.

We then moved to analyze the benefits of removing the overall worst-performing agents
from the population of agents as well as the benefits of restricting the population of agents
to only the overall top-performing agents. We found that an aggregate output from any
combination of up to k top-performing agents, for k ∈ {1, . . . , 20}, is, in expectation, more
accurate than an aggregate output from a random combination with the same number of
agents from the complete population of agents.

Unexpectedly, removing any number k ∈ {2, . . . , 20} of worst-performing agents does
not necessarily result in more accurate aggregate outputs. The reason for this unexpected
result is that the worst-performing agents are not always consistent across multiple tasks,
which implies that a poor agent can eventually produce an accurate output.

Based on our results, our first recommendation for an organization or a decision maker
who wants to design a crowdsourcing process is: in the absence of prior knowledge about the
accuracy of the agents, having more agents is always beneficial because both the expected
error in the aggregate output and the risk of obtaining a poor combination of agents
decrease as the number of agents increases.

Clearly, the marginal costs as well as the marginal benefits of adding extra agents must
be considered in practice. Our results showed that most of the benefit occurs with the first
five to six agents. Thereafter, the marginal benefit of adding another agent is very low,
and it might not outweigh the cost of adding the extra agent.

Our second recommendation for a more efficient design of crowdsourcing processes
concerns the case when there exists prior knowledge about the accuracy of the agents. In
this case, one should focus only on combinations of the overall top-performing agents since
this greatly reduces the expected error in the aggregate output.

We found that almost perfect accuracy can be achieved by using only combinations
of the very top agents. In practice, however, agents have constraints on the number of
outputs they are willing to provide. This issue can be addressed by increasing the pool of
top-performing agents. Our results show that when the size of the pool is up to 40% of
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the size of the full population, the aggregate outputs from the top-performing agents are,
in expectation, still more accurate than the aggregate outputs from the full population of
agents, for the same number of agents.

5.6.1 Directions for Future Work

It is noteworthy that our study focused on simple averages to combine agents’ outputs.
Such an approach has been shown to perform well empirically and to be robust when elicit-
ing expert opinions in different domains [23]. In addition, an averaging approach is easy to
use, requiring neither assessments regarding the agent’s judgment process nor self-assessed
confidence in the accuracy of the reported outputs. However, it would be interesting to
investigate whether or not we obtain similar results when using more sophisticated combi-
nation procedures [18].

Another exciting open question is whether or not the results obtained in our study hold
true in different settings, e.g., for different tasks, number of answers, etc. We argue that an
answer to this question is of great importance to the crowdsourcing community given its
potential to create less costly and more effective crowdsourcing processes. It would also be
interesting to perform similar experiments, but under more contingent policies, e.g., when
the underlying workers are assessed online for quality and selected, rejected, or filtered to
specific tasks as appropriate.

Finally, it would be of theoretical value to make stronger connections between our
results in this section and standard results in statistics. For example, the metric mean
square deviation can be stated in terms of variance and bias. That said, a promising
approach is to analyze at which number of agents the bias stops decreasing. Such a
number would be the ideal number of agents to hire since the statistical bias represents
the true value of the parameter being estimated, i.e., the aggregate error in our setting.
Furthermore, the central limit theorem might help to derive stronger results. In particular,
for each group size n, we obtain an x-bar distribution by considering the mean of each
group instance as a data point. The analysis of the variance of such distributions might
help to determine an optimal number of agents to hire, but now taking the risk of poor
combinations of agents into account.
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Chapter 6

A Consensual Linear Opinion Pool

Agents’ private information usually take the form of either numerical point estimates or
probability distributions over plausible outcomes. In this chapter, we focus on the latter
case, i.e., when agents report their beliefs once. We propose a pooling method to aggre-
gate the reported beliefs into a single aggregate belief that works as if the agents were
continuously updating their beliefs in order to accommodate the expertise and knowledge
of others, i.e., the proposed method mimics a consensus-reaching method. Each updated
belief takes the form of a linear opinion pool, or a convex combination of beliefs, where the
weight that an agent assigns to a peer’s belief is inversely related to the distance between
their beliefs. In other words, we assume agents prefer beliefs that are close to their own
beliefs. We prove that such an updating process leads to consensus, i.e., the agents all
converge towards the same belief with probability one in the limit of the number of itera-
tions, no matter their reported beliefs. We also show that if the beliefs of rational agents
are scored using the quadratic scoring rule, then the assumption that agents prefer beliefs
that are close to their own follows naturally.

6.1 Related Work

The aggregation of agents’ private information have been extensively studied in computer
science and, in particular, artificial intelligence, e.g., the aggregation of private information
represented as preferences over a set of alternatives as in social choice theory [22], the
aggregation of point estimates using non-standard opinion pools [42], and the aggregation
of subjective probabilities (beliefs) using prediction markets [21].
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A traditional way of aggregating beliefs is through opinion pooling methods. These
methods are often divided into behavioral and mathematical methods [24]. Behavioral
aggregation methods attempt to generate agreement among the agents through interactions
in order for them to share and exchange knowledge. Ideally, such sharing of information
leads to a consensus. However, these methods typically provide no conditions under which
the agents can be expected to reach agreement or even for terminating the iterative process.

On the other hand, mathematical aggregation methods consist of processes or analyt-
ical models that operate on the individual probability distributions in order to produce
a single, aggregate probability distribution. An important mathematical method is the
linear opinion pool, which involves taking a weighted linear average of the beliefs [25].

Several interpretations have been offered for the weights in the linear opinion pool.
The performance-based approach recommends setting the weights based on previous per-
formance of the agents [32]. A caveat with this approach is that performance measurements
typically depend on the true outcome of the underlying event, which might not be available
at the time when the beliefs have to be aggregated. Also, previous successful (respectively,
unsuccessful) beliefs are not necessarily good indicators of future successful (respectively,
unsuccessful) ones.

More closely related to our work is the interpretation of weights as a measure of distance.
For example, Barlow et al. [6] proposed that the weight assigned to each agent’s belief
should be inversely proportional to its distance to the most distant belief, where distance
is measured according to the Kullback-Leibler divergence. A clear drawback with this
approach is that it only considers the distance to the most distant belief when assigning a
weight to an agent’s belief. Thus, even if the majority of agents have similar and accurate
beliefs, the weights of these agents’ beliefs in the aggregate belief can be greatly reduced
due to a single distant belief.

For a comprehensive review of different perspectives on the weights in the linear opinion
pool, we refer the interested reader to the work by Genest and McConway [32].

Even though we tackle the task of aggregating beliefs from a decision analysis per-
spective, we note that there is a field in machine learning called ensemble learning that
deals with a similar problem, i.e., how to use multiple learning algorithms to obtain better
predictive performance than the performance achieved by any of the individual algorithms
making up the ensemble [62]. We refer the reader interested in this perspective to the work
by Dietterich [28].
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6.2 The Model

We consider the setting where a decision maker is interested in a probability vector (belief)
over a set of mutually exclusive outcomes θ1, . . . , θn, for n ≥ 2. The decision maker deems
it inappropriate to interject his own judgment about these outcomes. Hence, he elicits
beliefs from z agents. Agents’ beliefs are represented by n-dimensional probability vectors
q1, . . . ,qz. The probability vector qi = (qi,1, . . . , qi,n) represents agent i’s belief, where qi,k
is his subjective probability regarding the occurrence of outcome θk.

Since agents are not always in agreement, belief aggregation methods are used to com-
bine their beliefs into a single probability vector. Formally, q = T (q1, . . . ,qz), where q is
called an opinion pool, and the function T is the pooling operator. The linear opinion pool
is a standard approach that involves taking a weighted linear average of the beliefs:

T (q1, . . . ,qz) =
z∑
i=1

wiqi (6.1)

where wi denotes the weight associated with agent i’s belief. We make the standard
assumption that 0 ≤ wi ≤ 1, for every i ∈ {1, . . . , z}, and

∑z
i=1wi = 1. Some axioms that

support the use of the linear opinion pool have been proposed in the literature [53, 89].

6.2.1 Consensus and Weights

DeGroot [27] proposed a model which describes how a group can reach agreement on a
common probability distribution by pooling their individual beliefs. Initially, each agent
i is informed of the belief of every other agent. In order to accommodate the information
and expertise of the rest of the group, agent i updates his own belief as follows:

q
(1)
i =

z∑
j=1

wi,jqj

where wi,j is the weight that agent i assigns to the belief of agent j when he carries out
this update. Weights must be chosen on the basis of the relative importance that agents
assign to their peers’ beliefs. It is assumed that wi,j > 0, for every agent i and j, and∑z

j=1wi,j = 1. In this way, each updated belief takes the form of a linear opinion pool.

The whole updating process can be written using matrix notation, i.e., Q(1) = WQ(0),
where:
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W =


w1,1 w1,2 · · · w1,z

w2,1 w2,2 · · · w2,z
...

...
. . .

...
wz,1 wz,2 · · · wz,z

 , and Q(0) =


q1

q2
...

qz

 =


q1,1 q1,2 · · · q1,n
q2,1 q2,2 · · · q2,n

...
...

. . .
...

qz,1 qz,2 · · · qz,n


Since all the beliefs have changed, the agents might wish to revise their new beliefs in

the same way as they did before. If there is no basis for the agents to change their weights,
we can then represent the whole updating process after t revisions, for t ≥ 1, as follows:

Q(t) = WQ(t−1) = WtQ(0) (6.2)

Let q
(t)
i =

(
q
(t)
i,1 , . . . , q

(t)
i,n

)
be agent i’s belief after t updates, i.e., it denotes the ith row

of the matrix Q(t). We say that a consensus is reached if q
(t)
i = q

(t)
j , for every agent i and

j, as t → ∞. Since W, the matrix with weights, is a z × z stochastic matrix, it can then
be regarded as the one-step transition probability matrix of a Markov chain with z states
and stationary probabilities. Consequently, one can apply a limit theorem that says that
a consensus is reached when there exists a positive integer t such that every element in at
least one column of the matrix Wt is positive [27].

It is interesting to note that different forms of belief updating are possible without
explicitly using other agents’ disclosed beliefs. For example, in prediction markets, agents
traditionally update their beliefs based on the current market price and market price
movements (e.g., see [49]).

6.2.2 Weights as a Measure of Distance

The original method proposed by DeGroot [27] has some drawbacks. First, the agents
might want to change the weights that they assign to their peers’ beliefs after learning
their initial beliefs or after observing how much beliefs change from stage to stage. Further,
beliefs and/or identities have to be disclosed to the whole group when agents are assigning
weights. Hence, privacy is not preserved, a fact which might be troublesome when the
underlying event is of a sensitive nature.

In order to tackle these problems, we derive weights that agents assign to the beliefs
by interpreting each weight as a measure of distance between two beliefs. We start by
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making the assumption that agents prefer beliefs that are close to their own beliefs, where
closeness is measured by the following distance function:

D(qi,qj) =

√∑n
k=1(qi,k − qj,k)2

n
(6.3)

i.e., it is the root-mean-square deviation between two beliefs qi and qj. Given the above
assumption, one can estimate the weight that agent i assigns to agent j’s belief at a given
time t, for t ≥ 1, as follows:

w
(t)
i,j =

α
(t)
i

ε+D
(
q
(t−1)
i ,q

(t−1)
j

) (6.4)

where α
(t)
i normalizes the weights so that they sum to one, and ε is a small, positive constant

used to avoid division by zero. We set q
(0)
i = qi, i.e., it is the original belief reported by

agent i. There are some important points regarding equation (6.4). First, the distance
between two beliefs is always non-negative. Hence, the constant ε ensures that every single
weight is strictly greater than 0 and strictly less than 1. Further, the closer the beliefs q

(t−1)
i

and q
(t−1)
j are, the higher the resulting weight w

(t)
i,j will be. Since D

(
q
(t−1)
i ,q

(t−1)
i

)
= 0,

the weight that each agent assigns to his own belief is always greater than or equal to the
weights that he assigns to his peers’ beliefs. In spirit, the underlying learning model can
be seen as a model of anchoring [85] in a sense that the belief of an agent is an “anchor”,
and subsequent updates are biased towards beliefs close to the anchor.

Now, we can redefine equation (6.2) so as to allow the agents to update their weights
based on the most recent beliefs. After t revisions, for t ≥ 1, we have that Q(t) =
W(t)Q(t−1) = W(t)W(t−1) . . .W(1)Q(0), where each element of each matrix W(k) is com-
puted according to equation (6.4):

W(k) =


w

(k)
1,1 w

(k)
1,2 · · · w

(k)
1,z

w
(k)
2,1 w

(k)
2,2 · · · w

(k)
2,z

...
...

. . .
...

w
(k)
z,1 w

(k)
z,2 · · · w

(k)
z,z


The belief of each agent i at time t then becomes q

(t)
i =

∑z
j=1w

(t)
i,jq

(t−1)
j . Algorithm 1

provides an algorithmic description of the proposed method.
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Algorithm 1 Algorithmic description of the proposed method to find a consensual belief.

Require: z probability vectors q
(0)
1 , . . . ,q

(0)
z .

Require: recalibration factor ε.
Require: number of rounds τ .

1: for t = 1 to τ do
2: for i = 1 to z do
3: for j = 1 to z do

4: w
(t)
i,j =

α
(t)
i

ε+D
(
q
(t−1)
i ,q

(t−1)
j

)
5: end for
6: q

(t)
i =

∑z
j=1w

(t)
i,jq

(t−1)
j

7: end for
8: end for

In order to prove that all beliefs converge towards a consensual belief when using the
proposed method, consider the following functions:

δ (U) =
1

2
max
i,j

n∑
k=1

|ui,k − uj,k|

γ(U) = min
i,j

n∑
k=1

min(ui,k, uj,k)

where 0 ≤ δ (U) , γ(U) ≤ 1, and U is a stochastic matrix. δ (U) computes the maximum
absolute difference between two rows of a stochastic matrix U. Thus, when δ

(
Q(t)

)
= 0,

all rows of Q(t) are the same, i.e., a consensus is reached. We use the following results in
our proof [63]:

Proposition 3. Given two stochastic matrices U and V, δ(UV) < δ(U)δ(V).

Proposition 4. Given a stochastic matrix U, then δ(U) = 1− γ(U).

We state our main result below.

Proposition 5. When t→∞, q
(t)
i = q

(t)
j , for every agent i and j.

Proof. Recall that Q(t) is the stochastic matrix representing the agents’ beliefs after t
revisions, and that Q(t) = W(t)Q(t−1). Now, consider the following sequence:
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(
δ
(
Q(0)

)
, δ
(
Q(1)

)
, . . . , δ

(
Q(t)

))
We are interested in the behavior of this sequence when t → ∞. First, we show that

such a sequence is monotonically decreasing:

δ
(
Q(t)

)
= δ

(
W(t)Q(t−1))

< δ
(
W(t)

)
δ
(
Q(t−1))

=
(
1− γ

(
W(t)

))
δ
(
Q(t−1))

≤ δ
(
Q(t−1))

The second and third lines follow, respectively, from Propositions 3 and 4. Since
δ (U) ≥ 0, for every stochastic matrix U, then the aforementioned sequence is a bounded
decreasing sequence. Hence, we can apply the standard monotone convergence theorem [7]
and δ

(
Q(∞)

)
= 0. Consequently, all rows of the stochastic matrix Q(∞) are the same.

To summarize, the sequence
(
δ
(
Q(0)

)
, δ
(
Q(1)

)
, . . . , δ

(
Q(t)

))
is strictly decreasing,

which means that, according to the monotone convergence theorem, it will hit its tight
lower bound after a potential infinite number of rounds. Given that the tight lower bound
of δ(·) is 0, then the sequence converges to 0.

In words, a consensus is always reached under the proposed method, and this does not
depend on the reported beliefs. A straightforward corollary of Proposition 5 is that all
revised weights converge to the same value.

Corollary 1. When t→∞, w(t)
i,j = 1

z
, for every agent i and j.

Hence, the proposed method works as if agents were continuously exchanging informa-
tion so that their individual knowledge becomes group knowledge and all beliefs are equally
weighted. Since we derive weights from the reported beliefs, we are then able to avoid some
problems that might arise when eliciting these weights directly, e.g., beliefs do not need to
be disclosed to others in order for them to assign weights, thus preserving privacy.

The proposed method works very similarly to the behavioral aggregation method known
as the Delphi method [48], where agents disclose and update their beliefs in a sequence
of rounds in order to achieve consensus. In practice, however, consensus is not always
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achieved under the Delphi method. By mimicking the Delphi method, our proposed algo-
rithm always achieves consensus without requiring agents to explicitly participate in the
consensus-reaching process. Hence, our proposed method is of great value whenever a re-
quester is interested in a consensual belief, but achieving such a consensus might be costly
in practice.

The resulting consensual belief can be represented as an instance of the linear opin-
ion pool. Recall that q

(t)
i =

∑z
j=1w

(t)
i,jq

(t−1)
j =

∑z
j=1w

(t)
i,j

∑z
k=1w

(t−1)
j,k q

(t−2)
k = · · · =∑z

j=1 βjq
(0)
j , where β = (β1, β2, . . . , βz) is a probability vector that incorporates all the

previous weights. Hence, another interpretation of the proposed method is that agents
reach a consensus regarding the weights in equation (6.1).

6.2.3 Numerical Example

A numerical example may clarify the mechanics of the proposed method. Consider three
agents (z = 3) with the following beliefs: q1 = (0.9, 0.1), q2 = (0.05, 0.95), and q3 =
(0.2, 0.8). According to (6.3), the initial distance between, say, q1 and q2 is:

D(q1,q2) =

√
(0.9− 0.05)2 + (0.1− 0.95)2

2
= 0.85

Similarly, we have that D(q1,q1) = 0 and D(q1,q3) = 0.7. Using equation (6.4), we
can then derive the weights that each agent assigns to the reported beliefs. Focusing on
agent 1 at time t = 1 and setting ε = 0.01, we obtain w

(1)
1,1 = α

(1)
1 /0.01, w

(1)
1,2 = α

(1)
1 /0.86,

and w
(1)
1,3 = α

(1)
1 /0.71. Since these weights must sum to one, we have α

(1)
1 ≈ 0.00975 and,

consequently, w
(1)
1,1 ≈ 0.975, w

(1)
1,2 ≈ 0.011, and w

(1)
1,3 ≈ 0.014. Repeating the same procedure

for all agents, we obtain the matrix:

W(1) =

 0.975 0.011 0.014
0.011 0.931 0.058
0.013 0.058 0.929


The updated belief of agent 1 is then q

(1)
1 =

∑3
j=1w

(1)
1,jqj ≈ (0.8809, 0.1191). By repeat-

ing the above procedure, when t→∞, W(t) converges to a matrix where all the elements
are equal to 1/3. Moreover, all agents’ beliefs converge to the belief (0.3175, 0.6825). An
interesting point to note is that the resulting belief would be (0.3833, 0.6167) if we had
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taken the average of the reported beliefs, i.e., agent 1, who has a very different belief,
would have more influence on the aggregate belief.

6.3 Consensus and Proper Scoring Rules

The major assumption of the proposed method is that agents prefer beliefs that are close to
their own beliefs. In this section, we formally investigate the validity of this assumption.
We start by noting that in the absence of a well-chosen incentive structure, the agents
might indulge in game playing which distorts their reported beliefs. For example, agents
who have a reputation to protect might tend to produce beliefs near the most likely group
consensus, whereas agents who have a reputation to build might tend to overstate the
probabilities of outcomes they feel will be understated in a possible consensus [30]. As
mentioned in Section 2.1, proper scoring rules are traditional devices used to promote
honest reporting of beliefs

In particular, we consider effective scoring rules. Consider a metric G that assigns to
any pair of beliefs qi and qj a real number, which in turn can be seen as the shortest
distance between qi and qj. Recall from Section 2.1 that a scoring rule R is effective with
respect to G if the following relation holds for any beliefs qi,qj, and qk [30]:

G(qi,qj) < G(qi,qk) ⇐⇒ Eqi [R(qj, ·)] > Eqi [R(qk, ·)]

By definition, a metric G must satisfy the following conditions for any beliefs qi,qj,
and qk:

1. Positivity: G(qi,qj) ≥ 0, for all agents i, j, and G(qi,qj) = 0 if and only if qi = qj;

2. Symmetry: G(qi,qj) = G(qj,qi);

3. Triangle Inequality: G(qi,qk) ≤ G(qi,qj) +G(qj,qk).

The root-mean-square deviation shown in (6.3) satisfies the above conditions. However,
equation (6.4), taken as a function of beliefs, is not a true metric, e.g., symmetry does not
always hold. We adjust the original definition of effective scoring rules so as to consider
weights instead of metrics. We say that a scoring rule R is effective with respect to a set of
weights {w(t)

1,1, . . . , w
(t)
1,z, w

(t)
2,1, . . . , w

(t)
z,z}, assigned at any time t ≥ 1, if the following relation

holds for any beliefs q
(t−1)
i ,q

(t−1)
j , and q

(t−1)
k :
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w
(t)
i,j < w

(t)
i,k ⇐⇒ E

q
(t−1)
i

[R(q
(t−1)
k , ·)] > E

q
(t−1)
i

[R(q
(t−1)
j , ·)]

In words, each agent’s expected score can be seen as a monotone increasing function
of his assigned weights, i.e., the higher the weight one agent assigns to a peer’s belief,
the greater the expected score of that agent would be if he reported his peer’s belief, and
vice versa. We prove below that the quadratic scoring rule shown in (2.2) is effective with
respect to a set of weights assigned according to (6.4).

Proposition 6. The quadratic scoring rule shown in (2.2) is effective with respect to a set

of weights {w(t)
1,1, . . . , w

(t)
1,z, w

(t)
2,1, . . . , w

(t)
z,z} assigned at any time t ≥ 1 according to equation

(6.4).

Proof. Given a belief qj, we note that the qi-expected value of the quadratic scoring rule
in (2.2) can be written as:

Eqi [R(qj, ·)] =
n∑
e=1

qi,eR(qj, θe)

=
n∑
e=1

(
2qj,eqi,e − qi,e

n∑
x=1

q2j,x

)

=
n∑
e=1

2qj,eqi,e −
n∑
e=1

qi,e

n∑
x=1

q2j,x

=
n∑
e=1

2qj,eqi,e −
n∑
x=1

q2j,x

for a set of exhaustive and mutually exclusive outcomes θ1, . . . , θn. Now, consider the
weights assigned by agent i to the beliefs of agents j and k at time t ≥ 1 according to
equation (6.4). We have that w

(t)
i,j < w

(t)
i,k if and only if:
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α
(t)
i

ε+D
(
q
(t−1)
i ,q

(t−1)
j

) < α
(t)
i

ε+D
(
q
(t−1)
i ,q

(t−1)
k

) ≡

D
(
q
(t−1)
i ,q

(t−1)
k

)
< D

(
q
(t−1)
i ,q

(t−1)
j

)
≡

n∑
x=1

(
q
(t−1)
i,x − q(t−1)k,x

)2
<

n∑
x=1

(
q
(t−1)
i,x − q(t−1)j,x

)2
≡

n∑
x=1

2q
(t−1)
i,x q

(t−1)
k,x −

n∑
y=1

(
q
(t−1)
k,y

)2
>

n∑
x=1

2q
(t−1)
i,x q

(t−1)
j,x −

n∑
y=1

(
q
(t−1)
j,y

)2
≡

E
q
(t−1)
i

[
R
(
q
(t−1)
k , ·

)]
> E

q
(t−1)
i

[
R
(
q
(t−1)
j , ·

)]

Proposition 6 implies that there is a correspondence between weights, assigned accord-
ing to (6.4), and expected scores from the quadratic scoring rule: the higher the weight
one agent assigns to a peer’s belief, the greater that agent’s expected score would be if
he reported his peer’s belief, and vice versa. Hence, whenever agents are rational, i.e.,
when they behave so as to maximize their expected scores, and their beliefs are rewarded
using the quadratic scoring rule, then the major assumption of the proposed method for
finding a consensual belief, namely that agents prefer beliefs that are close to their own
beliefs, is formally valid. A straightforward corollary of Proposition 6 is that a positive
affine transformation of the quadratic scoring rule is still effective with respect to a set of
weights assigned according to (6.4).

Corollary 2. A positive affine transformation of the quadratic scoring rule R in (2.2),
i.e., xR (qi, θe) + y, for x > 0 and y ∈ <, is effective with respect to a set of weights

{w(t)
1,1, . . . , w

(t)
1,z, w

(t)
2,1, . . . , w

(t)
z,z} assigned at any time t ≥ 1 according to equation (6.4).

It is important to clarify the implications of the above result. Proposition 6 means
that if an agent receives a payment in a certain round according to the quadratic scoring
rule, then it follows naturally that the agent should assign weights according to equation
(6.4). In practice, however, agents are paid only once for the beliefs reported during the
first round, since the algorithm behaves on their behalf from the second round on.
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6.4 Empirical Evaluation

In this section, we describe an experiment designed to test the effectiveness of the proposed
method for finding a consensual belief. In the following subsections, we describe the dataset
used in our experiments, the metrics used to compare different methods to aggregate beliefs,
and the obtained results.

6.4.1 Dataset

Our dataset was composed by 267 games (256 regular-season games and 11 playoff games)
from the National Football League (NFL) held between September 8th, 2005 and February
5th, 2006. We obtained the beliefs of 519 agents for the NFL games from the Probabil-
ityFootball1 contest. The contest was free to enter. Each agent was asked to report his
subjective probability that a team would win a game. The beliefs had to be reported by
noon on the day of the game. Since the probability of a tie in NFL games is very low (less
than 1%), agents did not report the probability of such an outcome. In particular, no ties
occurred in our dataset.

Not all 519 registered agents reported their beliefs for every game. An agent who did not
enter a belief for a game was removed from the opinion pool for that game. On average, each
game attracted approximately 432 agents, the standard deviation being equal to 26.37. The
minimum and maximum number of agents were, respectively, 243 and 462. Importantly,
the contest rewarded the performance of agents via a positive affine transformation of the
quadratic scoring rule, i.e., 100 − 400 × p2l , where pl was the probability that an agent
assigned to the eventual losing team.

Recall that a positive affine transformation of a strictly proper scoring rule is still
strictly proper (Proposition 1). The above scoring rule can be obtained by multiplying
the quadratic scoring rule in (2.2) by 200 and subtracting the result by 100. The resulting
proper scoring rule rewards bold beliefs more when they are right. Likewise, it penalizes
bold beliefs more when they are wrong. For example, a prediction of 99% earns 99.96
points if the chosen team wins, and it loses 292.04 points if the chosen team loses. On
the other hand, a prediction of 51% earns 3.96 points if it is correct, and it loses 4.04
points if it is wrong. A prediction of 50% neither gains nor loses any points. The agents
with highest accumulated scores won prizes in the contest. The suggested strategy at the
contest website was “to make picks for each game that match, as closely as possible, the
probabilities that each team will win”.

1Available at http://probabilityfootball.com/2005/
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We argue that this dataset is very suitable for our purposes due to many reasons. First,
the popularity of NFL games provides natural incentives for people to participate in the
ProbabilityFootball contest. Furthermore, the intense media coverage and scrutiny of the
strengths and weaknesses of the teams and individual players provide useful information
for the general public. Hence, participants of the contest can be viewed as knowledgeable
regarding to the forecasting goal. Finally, the fact that agents were rewarded via a positive
affine transformation of the quadratic scoring rule fits perfectly into the theory developed
in this chapter (see Corollary 2).

6.4.2 Metrics

We used two different metrics to assess the prediction power of different aggregation meth-
ods.

Overall Accuracy

We say that a team is the predicted favorite for winning a game when an aggregate pre-
diction that this team will win the game is greater than 0.5. Overall accuracy is then
the percentage of games that predicted favorites have indeed won. A polling method with
higher overall accuracy is more accurate.

Absolute Error

Absolute error is the difference between a perfect prediction (1 for the winning team) and
the actual prediction. Thus, it is just the probability assigned to the losing team (pl). An
aggregate belief with lower absolute error is more accurate.

6.4.3 Experimental Results

For each game in our dataset, we aggregated the reported beliefs using three different
linear opinion pools: the method we propose in this chapter, henceforth referred to as the
consensual method; the traditional average approach, where all the weights in (6.1) are
equal to 1/z; and the method proposed by Barlow et al. [6], henceforth referred to as
the BMS method. These authors proposed that the weight assigned to agent i’s belief
should be wi = c

I(qi,q∗
i )

, where c is a normalizing constant, I(qi,q
∗
i ) is the Kullback-Leibler
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Table 6.1: The average absolute error of each method over the 267 games. Standard devi-
ations are in parentheses.

Consensual Average BMS

0.4115 (0.1813) 0.4176 (0.1684) 0.4295 (0.1438)

divergence, and qi∗ achieves max{I(qi,qj) : 1 ≤ j ≤ z}, i.e., q∗i is the most distant belief
from agent i’s belief. The BMS method produces indeterminate outputs whenever there
are probability assessments equal to 0 or 1. Hence, we recalibrated the reported beliefs
when using the BMS method by replacing 0 and 1 by, respectively, 0.01 and 0.99.

After computing the aggregate beliefs, we calculated the performance of each method
according to the accuracy metrics previously described. Regarding the overall accuracy of
each method, the consensual method achieves the best performance in this experiment with
an overall accuracy of 69.29%. The BMS and average methods achieve an overall accuracy
of, respectively, 68.54% and 67.42%. Table 6.1 shows the average absolute error of each
method over the 267 games. The consensual method achieves the best performance with
an average absolute error of 0.4115. We performed left-tailed Wilcoxon signed-rank tests in
order to investigate the statistical relevance of these results. The resulting p-values are all
extremely small (< 10−4), showing that the results are indeed statistically significant. One
reason for such a small p-value is the fact that we used many data points in our analysis.

Despite displaying a decent overall accuracy, the BMS method has the worst perfor-
mance according to the absolute error metric. A clear drawback with this method is that
it only considers the distance to the most distant belief when assigning a weight to a belief.
Since our experiments involve hundreds of agents, it is reasonable to expect at least one of
them to have a very different and wrong belief.

The high number of agents should give an advantage to the average method since biases
of individual judgment can offset with each other when beliefs are diverse, thus making the
aggregate belief more accurate. However, the average method achieves the worst overall
accuracy, and it performs statistically worse than the consensual method when measured
under the absolute error metric. We believe this result happens because the average method
ends up overweighting extreme beliefs when equally weighting all beliefs. On the other
hand, under the consensual method, agents put less weight on beliefs far from their own
beliefs, which implies that this method is generally less influenced by extreme beliefs as
illustrated in Section 6.2.3.
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6.5 Summary

We proposed a pooling method to aggregate beliefs. Intuitively, the proposed method works
as if the agents were continuously updating their beliefs, where each updated belief takes
the form of a linear opinion pool, and the weight that each agent assigns to a peer’s belief
is inversely related to the distance between their beliefs. We proved that this updating
process leads to a consensus.

A different interpretation of the proposed method is that agents reach a consensus
regarding the weights of a linear opinion pool. We showed that if rational agents are
rewarded using the quadratic scoring rule, then our major assumption, namely that agents
prefer beliefs that are close to their own beliefs, follows naturally. To the best of our
knowledge, this is the first work linking the theory of proper scoring rules to the seminal
consensus theory proposed by DeGroot [27].

Using real-world data, we compared the performance of the proposed method with two
other methods: the traditional average approach and another distance-based aggregation
method proposed by Barlow et al. [6]. The results of our experiment show that the
proposed method outperforms all the other methods when measured in terms of both
overall accuracy and absolute error.

6.5.1 Directions for Future Work

Given our positive empirical results, it would be interesting to compare how the proposed
consensus-based aggregation method performs in comparison to other opinion polls as well
as prediction markets. Form a theoretical perspective, an interesting research direction is
to provide more theoretical guarantees for the proposed method. For example, it would be
interesting to pinpoint the extent to which an extreme belief affects the aggregate belief
under the consensual method.

Recall that the resulting consensual belief can be represented as an instance of the
linear opinion pool, i.e., q

(t)
i =

∑z
j=1w

(t)
i,jq

(t−1)
j =

∑z
j=1w

(t)
i,j

∑z
k=1w

(t−1)
j,k q

(t−2)
k = · · · =∑z

j=1 βjq
(0)
j , where β = (β1, β2, . . . , βz) is a probability vector that incorporates all the

previous weights. Another interesting research direction is to characterize β in terms of
q1, . . . ,qz, i.e., to characterize the resulting consensus as a function of the agents’ initial
beliefs.
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Chapter 7

Concluding Remarks

The major theme in this thesis was to look at ways of making the elicitation and aggregation
of agents’ private information more effective. We accomplished this goal in many distinct
ways. In Chapter 3, we showed that, in the presence of social projection, one can induce
honest reporting in settings that involve multiple-choice questions by making pairwise
comparisons between reported answers and rewarding agreements. Further, we empirically
showed that providing rewards through pairwise comparisons results in more accurate
answers than when agents have no direct incentives for reporting their honest answers.

Our first contribution is of great relevance when eliciting private answers to multiple-
choice questions due to its theoretical guarantees and easiness to use and explain to the
underlying agents. Our work opens the door to many interesting research questions, e.g.:

• How can one induce social projection and, consequently, incentivize honest reporting
under the proposed scoring method?

• Which variables affect the strength of social projection?

• Is there a correlation between the strength of social projection and expertise?

Focusing on the elicitation of beliefs, we experimentally showed in Chapter 4 that
human beings fail to be risk neutral when reporting their beliefs under a proper scoring
rule. We then discussed how reporting a belief under a proper scoring rule is equivalent to
making a choice under uncertainty. We proposed a way to adapt proper scoring rules to
cumulative prospect theory, a modern theory of choice under uncertainty. We explained
why a property called comonotonicity is a sufficient condition for proper scoring rules to be
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indeed proper under cumulative prospect theory. Moreover, we showed how to construct a
comonotonic proper scoring rule from any traditional proper scoring rule. Finally, we also
proposed a new approach that uses non-deterministic payments based on proper scoring
rules to elicit an agent’s true belief.

Our contributions in Chapter 4 improve the elicitation process by considering a more
modern and, arguably, accurate decision theory when using proper scoring rules. An excit-
ing research direction is to investigate how much of improvement one obtain by assuming
that agents follow cumulative prospect theory, rather than displaying risk-neutral behavior.

Moving to the aggregation of agents’ reports, we empirically investigated in Chapter
5 how the number of workers on the crowdsourcing platform Amazon’s Mechanical Turk
influences the quality of the aggregate answers in a content-analysis task. We found that
both the expected error in the aggregate answer as well as the risk of a poor combination
of workers decrease as the number of workers increases. Moreover, our results showed
that restricting the population of workers to up to the overall top 40% workers is likely
to produce more accurate aggregate answers, whereas removing up to the overall worst
40% workers can actually make the aggregate answer less accurate. We found that this
result holds due to top-performing workers being consistent across multiple tasks, whereas
worst-performing workers tend to be inconsistent.

Our results in Chapter 5 have very relevant practical implications. For example, a
requester might not need to hire dozens of workers to complete a task. Our results show
that after the 6th worker, the marginal benefit of having another worker is very low.
An interesting research direction regarding our study in Chapter 5 concerns investigating
whether similar results hold true in different settings, e.g., for different tasks.

Finally, in Chapter 6, we proposed a pooling method to aggregate agents’ beliefs. In-
tuitively, the proposed method works as if the agents were continuously updating their
beliefs to accommodate the expertise of others. Each updated belief takes the form of a
linear opinion pool, where the weight that an agent assigns to a peer’s belief is inversely
related to the distance between their beliefs. We proved that such an updating process
leads to consensus. Further, we showed that if risk-neutral agents are rewarded using
the quadratic scoring rule, then the assumption that they prefer beliefs that are close to
their own beliefs follows naturally. We empirically demonstrated the effectiveness of the
proposed method using real-world data. Given that the algorithm proposed in Chapter 6
mimics a consensus-reaching process, an interesting research direction is to investigate how
its results compare to empirical consensus-reaching processes such as the Delphi method
[48].
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Appendix A

Dirichlet Distributions

For our purposes, the Dirichlet distribution is as a continuous distribution over parameter
vectors of a categorical distribution. Since ω is the unknown parameter of the categorical
distribution that models the population knowledge, then it is natural to consider a Dirichlet
distribution as a prior for ω. Given a hyperparameter α = (α1, . . . , αn), which is a vector
of positive reals that determines the shape of the Dirichlet distribution, the probability
density function of the Dirichlet distribution over ω is:

P (ω|α) =
1

β(α)

n∏
k=1

ωαk−1k (A.1)

where:

β(α) =

∏n
k=1 Γ(αk)

Γ (
∑n

k=1 αk)

and Γ is the Gamma function. Figure A.1 shows the above probability density when n = 3
for some parameter vectors α. For the Dirichlet distribution in (A.1), the expected value
of ωj is E[ωj|α] = αj/

∑n
k=1 αk. The probability vector E[ω|α] = (E[ω1|α], . . . ,E[ωn|α])

is called the expected distribution regarding ω.

An interesting property of the Dirichlet distribution is that it is the conjugate prior of
the categorical distribution [8], i.e., the posterior distribution P (ω|α, ti) is itself a Dirichlet
distribution. This relationship is often used in Bayesian statistics to estimate hidden
parameters of categorical distributions. To illustrate this point, suppose that agent i
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Figure A.1: Probability densities of Dirichlet distributions when n = 3 for different param-
eter vectors. Left: α = (1, 1, 1). Center: α = (2, 1, 1). Right: α = (2, 2, 2).

observes the signal ti = Ax, for x ∈ {1, . . . , n}. After applying Bayes’ rule, agent i’s
posterior distribution is P (ω|α, ti = Ax) = P (ω|(α1, α2, . . . , αx+1, . . . αn)). Consequently,
the new expected distribution regarding ω is:

E[ω|α, ti = Ax] =

(
α1

1 +
∑n

k=1 αk
, . . . ,

αx + 1

1 +
∑n

k=1 αk
, . . . ,

αn
1 +

∑n
k=1 αk

)
(A.2)

We call the probability vector in (A.2) agent i’s posterior predictive distribution regard-
ing ω because it provides the distribution of future answers given the observed signal ti.
Consequently, the values α1, . . . , αn are “pseudo-counts” from “pseudo-data”, where each
αk is the number of times that the ωk-probability event has been observed before.

A Dirichlet distribution is uninformative when all the elements making up the vector
α have the same value. Uninformative priors are used when there is no prior knowledge
favoring one probability event over another. The assumption of uninformative priors is
reasonable in Chapter 3 because there is no ground for one agent to favor one answer over
another a priori, i.e., before observing and solving the multiple-choice question.
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By using Dirichlet distributions as priors, belief updating can be expressed as an up-
dating of the parameters of the prior distribution. Furthermore, the assumption of social
projection allows the center to estimate agents’ posterior distributions based solely on their
reported answers, a point which is explored by our scoring method in Chapter 3.
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Appendix B

Content-Analysis Experiment

In this appendix, we describe the texts used in our content-analysis experiment as well
as the gold-standard answers reported by five professors and tutors from the English and
Literature Department at the University of Waterloo, henceforth referred to as the experts.

Text 1

An excerpt from the “Sonnet XVII” by Neruda [60]. Intentionally misspelled words are
highlighted in bold.

“I do not love you as if you was salt-rose, or topaz,
or the arrown of carnations that spread fire:
I love you as certain dark things are loved,
secretly, between the shadown and the soul”

Figure B.1 shows the graphical interface used in our experiment. Table B.1 shows
the answers reported by the experts. The gold-standard answer for each criterion is the
median/mode of the experts’ answers.

Table B.1: Answers reported by the experts for Text 1.

Criterion Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Median/Mode

Grammar 1 0 1 0 1 1
Clarity 2 2 2 1 2 2
Relevance 2 2 2 2 2 2

105



Figure B.1: Graphical interface used in our content-analysis experiment to elicit answers
for Text 1.
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Text 2

An excerpt from “The Cow” by Taylor et al. [82]. Intentionally misspelled words are
highlighted in bold.

“THANK you, prety cow, that made
Plesant milk to soak my bread,
Every day and every night,
Warm, and fresh, and sweet, and white.”

Figure B.2 shows the graphical interface used in our experiment. Table B.2 shows
the answers reported by the experts. The gold-standard answer for each criterion is the
median/mode of the experts’ answers.

Table B.2: Answers reported by the experts for Text 2.

Criterion Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Median/Mode

Grammar 1 1 1 1 1 1
Clarity 2 2 2 1 2 2
Relevance 1 0 0 1 1 1

Text 3

Random words in a semi-structured way. Each line starts with a noun followed by a verb
in a wrong verb form. All the words in the same line start with a similar letter in order to
mimic a poetic writing style.

“Baby bet binary boundaries bubbles
Carlos cease CIA conditionally curve
Daniel deny disease domino dumb
Faust fest fierce forced furbished”

Figure B.3 shows the graphical interface used in our experiment. Table B.3 shows
the answers reported by the experts. The gold-standard answer for each criterion is the
median/mode of the experts’ answers.

107



Figure B.2: Graphical interface used in our content-analysis experiment to elicit answers
for Text 2.
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Figure B.3: Graphical interface used in our content-analysis experiment to elicit answers
for Text 3.
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Table B.3: Answers reported by the experts for Text 3.

Criterion Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Median/Mode

Grammar 0 1 0 0 0 0
Clarity 0 0 0 0 0 0
Relevance 0 1 0 0 0 0
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Appendix C

Numerical Results of Chapter 5

Table C.1 shows the numerical results from all the analysis performed in Chapter 5.

Table C.1: The average error, the standard deviation of the errors, and the maximum error
per text for different populations of agents. All the values are rounded to 3 decimal places.

Text 1 Text 2 Text 3

Population r Avg Std Max Avg Std Max Avg Std Max

1 0.685 0.492 1.732 0.679 0.327 1.414 0.675 0.526 1.633
2 0.621 0.322 1.732 0.567 0.220 1.323 0.650 0.348 1.633
3 0.591 0.260 1.610 0.520 0.184 1.305 0.637 0.278 1.515
4 0.575 0.225 1.555 0.495 0.162 1.199 0.630 0.237 1.451
5 0.565 0.201 1.414 0.480 0.146 1.114 0.625 0.210 1.352
6 0.560 0.183 1.398 0.469 0.135 1.045 0.622 0.189 1.305
7 0.554 0.167 1.314 0.462 0.124 0.962 0.620 0.173 1.259

All 8 0.550 0.155 1.220 0.457 0.116 0.944 0.618 0.161 1.242
9 0.548 0.145 1.185 0.452 0.109 0.914 0.616 0.150 1.232
10 0.545 0.135 1.158 0.449 0.102 0.920 0.616 0.140 1.134
11 0.544 0.128 1.102 0.446 0.096 0.827 0.615 0.132 1.127
12 0.542 0.121 1.063 0.444 0.092 0.814 0.614 0.124 1.120
13 0.541 0.115 1.048 0.442 0.087 0.802 0.613 0.118 1.078
14 0.540 0.110 1.067 0.440 0.083 0.768 0.613 0.111 1.042
15 0.539 0.105 0.996 0.439 0.079 0.768 0.612 0.106 1.034

Continued on the next page
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Text 1 Text 2 Text 3

Population r Avg Std Max Avg Std Max Avg Std Max

16 0.538 0.100 1.026 0.438 0.076 0.744 0.611 0.102 1.032
17 0.537 0.096 0.973 0.436 0.073 0.724 0.611 0.097 1.000
18 0.537 0.092 0.911 0.436 0.069 0.726 0.610 0.093 1.012
19 0.536 0.088 0.932 0.434 0.067 0.710 0.611 0.089 0.971
20 0.536 0.084 0.877 0.434 0.064 0.694 0.610 0.086 0.979
21 0.535 0.081 0.922 0.433 0.062 0.681 0.610 0.082 1.027
22 0.535 0.078 0.860 0.433 0.059 0.660 0.610 0.079 0.923
23 0.535 0.074 0.839 0.432 0.057 0.657 0.610 0.075 0.946
24 0.534 0.072 0.835 0.432 0.055 0.650 0.609 0.073 0.950
25 0.534 0.069 0.804 0.431 0.053 0.640 0.609 0.070 0.967
26 0.534 0.066 0.824 0.431 0.051 0.629 0.609 0.067 0.890
27 0.534 0.064 0.793 0.430 0.048 0.638 0.609 0.065 0.878
28 0.534 0.061 0.791 0.430 0.047 0.627 0.609 0.062 0.850
29 0.533 0.059 0.758 0.429 0.045 0.606 0.609 0.059 0.847
30 0.533 0.056 0.752 0.429 0.043 0.600 0.609 0.057 0.852
31 0.533 0.054 0.762 0.429 0.041 0.594 0.608 0.055 0.847
32 0.533 0.052 0.738 0.428 0.040 0.578 0.609 0.052 0.823
33 0.532 0.049 0.726 0.428 0.038 0.571 0.608 0.050 0.809

All 34 0.532 0.047 0.718 0.428 0.036 0.567 0.608 0.048 0.837
35 0.532 0.045 0.709 0.428 0.035 0.575 0.608 0.046 0.813
36 0.532 0.043 0.718 0.428 0.033 0.556 0.608 0.044 0.791
37 0.532 0.041 0.692 0.427 0.031 0.542 0.608 0.041 0.785
38 0.532 0.039 0.672 0.427 0.030 0.548 0.608 0.039 0.767
39 0.531 0.036 0.677 0.427 0.028 0.537 0.608 0.037 0.757
40 0.531 0.034 0.660 0.426 0.027 0.542 0.608 0.035 0.754
41 0.531 0.032 0.647 0.426 0.025 0.518 0.608 0.033 0.727
42 0.531 0.030 0.638 0.426 0.023 0.510 0.608 0.030 0.720
43 0.531 0.028 0.623 0.426 0.021 0.513 0.607 0.028 0.706
44 0.531 0.026 0.612 0.426 0.020 0.502 0.607 0.026 0.690
45 0.531 0.023 0.598 0.426 0.018 0.491 0.607 0.023 0.675
46 0.531 0.020 0.585 0.426 0.016 0.481 0.607 0.021 0.660
47 0.531 0.017 0.570 0.425 0.013 0.470 0.607 0.018 0.646
48 0.531 0.014 0.556 0.425 0.011 0.459 0.607 0.014 0.632
49 0.530 0.010 0.543 0.425 0.008 0.442 0.607 0.010 0.620

Continued on the next page
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Text 1 Text 2 Text 3

Population r Avg Std Max Avg Std Max Avg Std Max

50 0.530 0.000 0.530 0.425 0.000 0.425 0.607 0.000 0.607

1 0.632 0.456 1.732 0.684 0.318 1.414 0.641 0.525 1.633
Top 47 2 0.572 0.298 1.555 0.581 0.219 1.323 0.617 0.346 1.633

3 0.543 0.241 1.503 0.541 0.182 1.305 0.604 0.275 1.515

1 0.000 0.000 0.000 0.192 0.333 0.577 0.000 0.000 0.000
Top 3 2 0.000 0.000 0.000 0.192 0.167 0.289 0.000 0.000 0.000

3 0.000 0.000 0.000 0.192 0.000 0.192 0.000 0.000 0.000

113


	List of Tables
	List of Figures
	Introduction
	Contributions
	Thesis Outline

	Background
	Proper Scoring Rules
	Amazon's Mechanical Turk

	Inducing Honest Reporting Without a Ground Truth
	Related Work
	The Model
	Social Projection

	The Scoring Method
	Rewarding Agreements
	Taking Distance Into Account
	Numerical Example

	Aggregating Reported Answers
	Experiments
	Experimental Design
	Gold-Standard Answers
	Hypotheses
	Experimental Results

	Summary
	Directions for Future Research


	On Proper Scoring Rules and Cumulative Prospect Theory
	Related Work
	Proper Scoring Rules and Risk-Neutral Behavior
	Cumulative Prospect Theory
	Utility Functions and the Loss-Aversion Parameter
	Weighting Functions
	CPT Utility

	Proper Scoring Rules and Cumulative Prospect Theory
	Positive Scoring Rules
	Negative Scoring Rules
	Mixed Scoring Rules

	Obtaining True Beliefs from Misreported Beliefs When the Value Function and Weighting Functions Are Known
	Positive Scoring Rules
	Negative Scoring Rules
	Mixed Scoring Rules

	Comonotonic Proper Scoring Rules
	Positive Scoring Rules
	Negative Scoring Rules
	Mixed Scoring Rules
	Constructing a Comonotonic Proper Scoring Rule

	A General Method for Obtaining True Beliefs When the Utility Function, the Loss-Aversion Parameter, and the Weighting Functions Are Unknown
	Summary
	Directions for Future Work


	A Study on the Influence of the Number of Agents on the Quality of the Aggregate Information
	Related Work
	The Content-Analysis Experiment
	Accuracy of Aggregate Outputs by the Number of Agents
	Accuracy of Outputs from the Top Agents
	Consistency of Agents Across Multiple Tasks
	Summary
	Directions for Future Work


	A Consensual Linear Opinion Pool
	Related Work
	The Model
	Consensus and Weights
	Weights as a Measure of Distance
	Numerical Example

	Consensus and Proper Scoring Rules
	Empirical Evaluation
	Dataset
	Metrics
	Experimental Results

	Summary
	Directions for Future Work


	Concluding Remarks
	References
	APPENDICES
	Dirichlet Distributions
	Content-Analysis Experiment
	Numerical Results of Chapter 5

