
Optical Sensor for Measurement of
Clad Height during Laser Cladding

Process

by

Matthew Asselin

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Mechanical Engineering

Waterloo, Ontario, Canada 2006

c©Matthew Asselin, 2006



AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A

THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

The process of laser cladding consists of depositing successive layers of molten

metallic powder to create a near-net shape. A high-power laser is used to melt

incoming metallic powder, which forms a melt pool on the surface. As the latter moves

beneath the laser, this newly created melt pool solidifies. By properly controlling the

trajectory of deposition tracks, one can create a diverse range of shapes with varying

complexities. However, the process is very sensitive to parameters, requiring constant

attention from technicians. This lends itself perfectly to the addition of automatic

controllers whereby supervision is minimal.

In this thesis, an optical sensor is developed to monitor the process zone. The

sensor will output a measurement of the height of solidified clad, which in turn can

be used by a controller to adjust this geometrical feature. The thesis is divided into

three main parts, each contributing to the final algorithm.

First, in Chapter 3 an analysis is performed on the light irradiating from the inter-

action zone (or melt pool). It is stated that the dominating source of light is governed

by blackbody radiation from this molten metal. This is confirmed by analyzing a se-

ries of images captured through a digital camera, where various narrow bandpass

filters were utilized to selectively view a portion of the CCD-sensor’s spectrum. This

investigation also leads to the selection of bandpass filter such that a stable, relatively

intense melt pool is captured through the digital camera’s CCD-sensor.

Second, in Chapter 4 the captured images are taken through a pair of image pro-

cessing techniques, outputting a series of coordinates representating the melt pool’s

boundary. The image is first analyzed to calculate an optimal threshold level based

on the minimization of fuzzy entropy. With this threshold selected, the grayscale

image is converted into black-and-white, where the white pixels represent the melt

pool. After this step, the melt pool’s boundary is extracted through an 8-connectivity

border tracing algorithm. This technique outputs a series of coordinates (in pixels)

as though one were traveling along the melt pool in a clockwise rotation.

Last, Chapter 5 analyzes these pixel coordinates to extract the melt pool’s height.

The coordinates are first transformed into real-world coordinates, by use of a perspec-

tive transformation. This transformation essentially yields the melt pool’s shadow,

as created by a light-source coincident with the camera. As a result, the melt pool’s
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height is estimated based upon a right-angle triangle, where the camera’s angle is

known, and the projected coordinates represent the shadow length (triangle’s base).

The result of applying this series of steps to the estimation of clad heights is

found at the end of Chapter 5. Results varied dramatically, from 4% error to 393%.

Although the errors are large at times, they are mainly caused by a bias in the

estimate. That is, the dynamics of the true clad formation are very well predicted

by the algorithm, however, shifting by a certain amount. This amount varies both

with substrate velocity, and the clad’s direction of travel, relative to the camera. A

partial explanation is given such that the clad’s height is offset from the laser center-

point, which is a function of both these parameters. However, the specific relationship

requires further experimentation.
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Chapter 1

Introduction

In the past few decades, developments in laser systems, computer aided design (CAD),

and additive manufacturing techniques [1] have given rise to a new trend in manu-

facturing: rapid-prototyping (RP). RP is a technique allowing designers to directly

construct a part from a computer model. First, a model is designed in a CAD package

where it is then sliced into many thin layers. The information of each layer is then

passed to a rapid-prototyping machine, which utilizes the focused energy of lasers to

build each successive layer.

In conventional techniques, a designer’s part would be constructed from either a

mold or die, or as a result of some machining steps. A mold or die requires special

fabrication unique to each part, where experience and time are key. Machining also

requires the attention of an experienced machinist, can require many different tools

and steps before completion, and can produce limited geometries. Machining tech-

niques are known as subtractive methods, whereby material is removed to fabricate

a part. On the other hand, RP methods use additive manufacturing techniques. A

blank substrate works as a base onto which material is deposited at precise locations

to form a part, layer-by-layer.

Additive manufacturing provides many advantages over the traditional subtractive

methods. According to Watkins [2], RP-tecniques have considerable savings in both

cost and delivery time. In the early days of RP-technologies, Waterman states that

production time can be cut up to 70%, while time-to-market reduced up to 90% [3]. In

addition, due to the nature of the subtractive techniques, there is a larger amount of
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wasted-material, as opposed to additive techniques which attempt to administer only

what is required. Also, complexity of objects are limited with traditional techniques,

whereby RP-methods can build upon these. For example, some RP-methods are

capable of producing hollow shapes, where a traditional NC machining operation

cannot. In addition, RP machines are highly automated, such that an operator can

merely upload its CAD model and start the machine. This reduces the amount of

supervision and expertise required.

RP-technologies have allowed designers to better refine their models by producing

near-net shape prototypes with minimal effort and time. In the next section, a series

of different RP-methods will be discussed, culminating with Laser Cladding. This

technique of RP is the basis for the report, whereby a feedback sensor is developed

to measure the final solidified height of a deposited clad.

1.1 Rapid-Prototyping and Laser Cladding

The process of Laser Cladding (LC) consists of adding successive layers to a substrate,

producing a fully functional, near-net three-dimensional shape. The LC process is

part of a larger group of rapid prototyping technologies, whereby material is added

and not removed, to create a part. Other RP techniques include: stereolithography,

selective laser sintering, laminated object manufacturing, and 3D printing (see [4, 5]

for additional variations on these main techniques). These methods will now be

described, along with associated advantages and disadvantages:

1. Stereolithography (SL), first introduced in the late 1980s, is a technique by

which a photo-sensitive monomer resin solidifies into a larger polymer molecule

with exposure to an ultraviolet (UV) source [4]. This UV source is provided

by a laser beam, which traces the desired path on the resin, thus solidifying it.

A substrate is placed inside a pool of resin, where after tracing one layer with

a laser-source, the substrate is lowered. This reveals uncured resin for which

another layer can be traced. After all layers are traced, the part must be further

cured by placing it under a fluorescent light, rendering it fully solid. Different

types of materials can be used, however, are mainly from the family of acrylics
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and epoxies [4]. The technique is well established in the industry, and provides

tolerances comparable to NC machining, with reasonable producting times [4].

On the other hand, the limited materials are expensive and toxic, and must

be constantly shielded from ambient light to prevent premature solidification

[4]. Also, there is often a need for support structures for over-hanging sections,

which must be accounted for in the design stage, and removed after production

[1].

2. Selective laser sintering (SLS) was developed in the late 1980s, at the Uni-

versity of Texas Austin [6]. In SLS, a low-power laser is used to sinter powder

particles, as opposed to liquid resin as with SL. The laser heats the powder parti-

cles to break surface tensions, allowing fusion between neighboring particles [4].

As explained by Klocke et. al. [7], the working material is preheated to a tem-

perature just below that of melting, thus reducing the thermal gradient caused

by laser interaction. After each layer, a fresh deposition of powder is applied to

the part, and the procedure is repeated. This technique is capable of producing

parts of many different materials, ranging from polymers, to metallic-based,

to ceramics [5]. In general, these materials are less toxic than SL-materials,

and can be processed with a low-powered laser (<100W) [4]. However, many

of these materials require longer cooling-times, thus reducing the time-to-part

production, and can be sensitive to heat and laser variables, thus parameters

are specific to the material in question [4].

3. Laminated object manufacturing (LOM) is a technique by which succes-

sive layers of thin sheets are bonded together. First, a thin sheet of material is

placed onto a substrate, whereby a laser cuts the desired pattern based on the

sliced CAD model. The laser only penetrates through the thickness of the ma-

terial. A hot roller then passes over the cut sheet, activating a bonding chemical

[4]. Another sheet is then placed over this last one, whereby the second layer is

cut with the laser. Again, a hot roller bonds the two layers together and the pro-

cess is repeated. Excess material is cut into small squares, and remains on the

structure to provide support for overhanging sections [4]. These small squares

are more easily removed afterwards. This process lends itself to having quick
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production times as only contours of each layer must be cut [4]. Also, many

different materials can be used, such as polymer, metal or composite sheets [5].

On the other hand, there is a great deal of wasted material, which can also be

difficult to remove [3], leading to limitations in hollow shapes. Moreover, the

surface finish is relatively poor, and requires additional attention afterwards [4].

4. 3D printing was developed at the Massachusetts Institute of Technology in the

1990s. The method consists of spreading a layer of powder over a substrate, after

which a binder-chemical is deposited in a precise manner, solidifying the powder

at this location [8, 5]. The binder is delivered through a printing-head, which

is deposited according to the sliced version of a 3D CAD model. Additional

powder is spread over the solidified material, where the process repeats, but

for the next layer. Before the part can be fully solidified, it must be heat-

treated to set this binder-chemical, followed by a final sintering step [4]. A

major advantage to this technique is the lack of support structures required to

produce over-hanging sections. However, powder can be trapped within cavities,

thus the CAD model must contain holes or channels for the latter to escape [4].

In the past decade, the process of laser cladding has substantially grown in the

market of rapid prototyping technologies. The LC process generally uses metallic

powder, melted by a high-powered laser, and deposited onto a substrate. The molten

metal solidifies as the laser-source moves through its predefined trajectory created

from a sliced version of the original CAD model. Figure 1.1 illustrates the main

components of a common LC system. As seen, a nozzle feeds powder to the laser,

which in turn produces a pool of molten metal, known as the melt pool. As the

subtrate moves, this melt pool solidifies to produce a metallic wall.

The system is rather simple, and builds on several disadvantages of the other

techniques. For one, complex deposition paths can be created, including the tilt and

rotation of the actual part itself. This allows hollow and overhanging sections to be

produced without the worry of sagging or entrapped powder. Another advantage is

that almost any type of material can be used, assuming it can be pulverized. This

technique can also be expanded to produce heterogeneous components by simply

adding multiple nozzles from different powder feeders. For example, one can begin

4



LASER

HEAD

Lateral N
ozzle

Substrate Velocity

Solidified
Clad

Melt
Pool

Figure 1.1: Main components involved in a laser cladding system.

with 100% stainless steel from powder feeder 1, and while building a thin wall, a

second feeder can slowly begin to incorporate aluminum powder. This would create a

wall of 100% stainless steel at the base, and slowly working its way to 100% aluminum

at the top surface (or any other desired percentage combinations).

Many deviations to the setup of Figure 1.1 exist. For example, in this figure

powder is injected through a lateral nozzle. This injects powder in one direction,

usually with that of motion. However, powder can also be injected through a coaxial

nozzle, which emits powder in a conical shape, with its focal point being the melt

pool (Figure 1.2(a)). Another alternative is having the powder delivered in a direction

vertical to the melt pool, while the laser source is at an angle to the latter (Figure

1.2(b)). In this technique, there are normally additional laser sources for symmetry.

Another alternative to Figure 1.1 is to have the laser head move while the substrate is

stationary, contrary to that shown in the figure. A combination of moving laser head

and substrate is also possible, allowing for more complex geometries to be deposited.

Last, some research groups [9] do not inject powder to the melt pool through a nozzle,

but rather, pre-place powder onto the substrate (or previously deposited layer). As

the laser passes over this pre-placed powder, the latter melts and bonds with the

previous layer. This variation, however, approaches that of selective laser sintering.
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(a) Coaxial nozzle delivering powder evenly to
the melt pool, in a conical shape.

(b) Vertical nozzle to deliver powder to melt
pool, with multiple laser sources at angles to
the latter.

Figure 1.2: Two additional methods for delivering powder to the melt pool. Different
techniques provide better qualities, such as surface finish and clad density.

Although the technique of laser cladding has many advantages, it is also prone to

many of the common disadvantages of all rapid prototyping methods: sensitivity to

both internal and external parameters. As will be further discussed in the report, the

system is very sensitive to parameters that can, and cannot be directly controlled.

For example, the final microstructure of a part is depicted by the cooling rate of the

liquid metal. Therefore, controlling temperature gradients throughout the part is

essential to having a desired microstructure.

1.2 Thesis Motivation, Objectives and Outline

As mentioned, laser cladding is very sensitive to variations in process parameters.

Changes in these parameters lead to disturbances in the process, and in turn, the

final product. It is therefore very important to monitor and control these properties.

The majority of currently available LC machines utilize open-loop control strategies,

whereby numerous experiments have provided empirical data on working ranges for

various input parameters. In many situations, additional expert knowledge is required

for online adjustments. This type of open-loop architecture lends itself to many

limitations. For example, parameters must be optimized ahead of time for every

possibly configuration of a part to be constructed, since the system cannot respond
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during the process.

Many institutions are beginning to develop close-loop systems for better control

of the process. The addition of close-loop control to a system of such sensitivity is

imperative for competition in the market of RP technologies. In addition to increasing

output quality, close-loop control will enable further automation, reducing the need for

exhaustive experimentation and empirical studies, along with specialized technicians.

At the basis of all control systems lies the ability to measure properties of the pro-

cess at hand. Laser cladding is no different, where several properties directly affect

the final object. These properties, such as melt pool temperature, powder feedrates,

substrate velocity, or focal distance of laser beam, have two main effects on the final

part: metallurgical and geometrical. Metallurgical properties relate more to micro-

scopic characteristics of the final object, such as its microstructure, porosity, and

density. On the other hand, geometrical properties are seen to represent macroscopic

details, such as dimensional tolerances and surface roughness. Both are very impor-

tant, however, only geometrical features will be analyzed in this report. It should be

noted that the clad’s width and dilution into the previous layer are equally important

to dimensional tolerances, however, will not be considered in this work.

One of the major criteria of RP technologies is producing accurate parts, with

tolerances comparable to existing traditional techniques. Monitoring the dimensions

of deposited material is therefore crucial to the sustainability of laser cladding in

the rapid-prototyping industry. Since LC is a layer-by-layer deposition process, it

is therefore very important to deposit consistent clads of specified height. This is

where the addition of a close-loop controller will drastically help maintain accuracies,

assuming a feedback sensor is capable of producing height measurements in real-time.

The objective of this report is to develop such a sensor, capable of monitoring

the height of a deposited clad, in real-time. Due to the nature of the process, it is

very difficult to physically attach a sensor to the workpiece for measurement. There-

fore, a non-contact sensor is required, and with recent advances in CCD-technologies,

the cost of CCD-cameras has become more than feasible, rendering them as perfect

measurement devices for this application.

The remainder of this report will consist of the development and testing of a

non-contact, CCD-based measurement device for monitoring clad height formation
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in real-time. Chapter 2 will provide background information on advances in the laser

cladding industry, along with feedback sensors pertinent to this report. Subsequently,

Chapter 3 describes the lighting conditions relevant to capturing useful pictures during

the process. The following two chapters will then deal with analysis of these pictures,

where Chapter 4 describes melt pool segmentation from an image, and Chapter 5 is

the analysis of this melt pool to determine the clad’s solidified height. This chapter

will also contain experimental verification of the algorithms. Overall conclusions and

recommendations will be found in the last section, namely Chapter 6.
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Chapter 2

Literature Review and Background

2.1 Laser Cladding

Over the past few decades, many institutions have advanced the field of laser cladding

to its present state. As a result of being studied at various academic settings around

the world, the term laser cladding is not unique as to describing the physical pro-

cess. Table 2.1 lists the various research programs around the world, along with their

associated term for the process. In addition, several projects have also been commer-

cialized (also listed in Table 2.1) as to compete with existing RP-technologies, and to

provide new services to the industry.

2.2 Feedback Sensors

In the previous section, various institutions involved in the advancement of the laser

cladding process where outlined. Through the various research programs, many differ-

ent sensors have been developed to measure important parameters affecting the fab-

ricated part. The majority of the sensors can be categorized into four main groups:

powder measurements, temperature recordings, laser parameters, and geometrical

characteristics. In the following paragraphs, each group will be discussed in further

detail, whereby specific sensors developed by various authors are outlined.

The first group relates to sensors relevant to the measurement of powder charac-
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Institution, Commericalization Country

National Research Centre, AccuFusion CANADA
—Freeform Laser Consolidation (FLC)

University of Waterloo, SmartFabrication CANADA
—Laser Cladding
—Laser Powder Deposition

University of Liverpool ENGLAND
—Laser Cladding and Direct Fabrication
—Direct Laser Fabrication (DLF)

Electrolux Rapid Development FINLAND
—Direct Metal Laser Sintering (DMLS)

Fraunhofer Institute for Production Technology GERMANY
—Controlled Metal Build-Up (CMB)

Raja Ramanna Centre For Advanced Technology INDIA
—Laser Rapid Manufacturing (LRM)

Los Alamos National Laboratory USA
—Direct Light Fabrication

Penn State University, AeroMet USA
—Laser Additive ManufacturingTM(LAM)

Sandia National Laboratory, Optomec Design Company USA
—Laser Engineering Net ShapingTM(LENS)
—Direct Metal Deposition SystemsTM(DMDS)

University of Michigan, Precision Optical Manufacturing USA
—Direct Metal DepositionTM(DMD)

Table 2.1: List of popular institutions with research interests in laser cladding. Synony-
mous names of the process are also listed, along with spin-off companies from associated
affiliations.
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teristics. This group is important as incoming powder is melted by a laser source, and

will eventually solidify to form the final part. Properties, such as particle velocity,

powder distribution from nozzle output, and carrier gas fluctuations can greatly affect

the amount of powder captured in the melt pool, with end results directly applicable

to the part. In 1996, Meriaudeau et. al. [10, 11] utilized one CCD-camera to mea-

sure powder stream distributions. At startup, the camera is capable of measuring

the velocity of particles 1, allowing the operator to adjust carrier gas rates. During

continuous operation, the sensor provides information regarding the shroud gas, used

to shape the stream. This is obtained by measuring the width of the powder stream

before contact with the melt pool. A year later, Meriaudeau et. al. [12] develop

a second sensor for measurement of mass flow rates of incoming powder. The sen-

sor consists of a light source (laser) shining through the powder stream (upstream

of the nozzle), where a photo-voltaic cell records the amount of transmitted light.

This provides information regarding dynamic changes from the mean powder flow

rate. In 2003, Doubenskaia et. al. [13] publish their apparatus for measuring several

parameters related to incoming powder: particle velocities and sizes, and tempera-

ture. As mentioned, their system is based on the work of Ignatiev et. al. [14] for

thermal spraying, and consists of a regular CCD-camera with a bandpass filter in the

near-infrared spectrum of 800-960nm. Since Doubenskaia is working with multiple

powders, measuring the size and temperature of different powders within the stream

allows online correction of powder distributions.

In the second category of feedback sensors, namely process temperature, there has

been a significant amount of work. In 1990, Li and Steen [15] published work on uti-

lizing a photo-diode to indirectly record melt-pool temperatures (in the 400-1250nm

wavelength spectrum). Light irradiation from the melt pool was recorded, where pro-

cess conditions were changed to reveal deviations in their mean voltage levels. This is

partially the problem with photo-diodes: no spatial distribution. The sensor outputs

a voltage proportional to the total light irradiated, and can therefore not distinguish

where the latter is coming from. In 1996, Meriaudeau et. al. [10, 11] utilize radia-

tion thermometry, a non-contact method for measuring surface temperatures. They

use one camera, with a bandpass filter centered at 850nm (to steer clear of laser

1Velocity is measured through tracking of particle displacement in multiple image frames.

11



and atmospheric interference), to interpolate spatial surface temperature from pixels’

gray-scale values. They obtained a resolution of 5oC, with an accuracy of 15oC up

to a temperature of 800oC. Although this range is not sufficiently high for melting

typical steels, the use of a camera allows for spacial temperature distributions to be

measured. In 1998, Fox et. al. [16] analyze the light irradiated back through the

laser’s optics for measuring melt pool temperatures. Light returning through the fo-

cus optics of the laser head is redirected to a chamber through means of ZnSe plate

(transmits 99.8% of laser light). In the chamber, two wavelengths are selected (650nm

and 950nm), whereby their intensities are compared to deduce the temperature us-

ing two-color pyrometry. In 2004, Doubenskaia et. al. [13] used a multi-wavelength

1-spot pyrometer and a two-dimensional pyrometer to measure surface temperatures

during cladding operations. The pyrometers were composed of several photo-diodes,

enabling spatial measurements. Both pyromaters were fully capable of measuring

temperatures above the melting point of typical steels (∼1800K ). Results were given

as temperature measurement deviations based on different cladding conditions. No

information regarding true temperatures and measured temperatures were given.

The third category of feedback sensors relates to the energy supplied to the process

zone. The amount of energy, and delivery methods are very important, as they dictate

the amount and method of melting incoming powder. Depending on the type of laser

(continuous or pulsed), different parameters can be monitored directly from the laser

source’s instruments, such as mean power, energy per pulse, or pulse duration. An

interesting use of reflected radiation is done by Fox et. al. [16], which uses the

information to keep the laser’s focal point at a constant distance from the substrate

(indirectly used to control the height). Their work is based on that of Haran et.

al. [17], a year before them. Haran et. al. capture light reflected back through the

optical system, and segment two wavelengths. A comparison is made between the two

wavelength’s focal distance on the receiving optics, which relate back to the original

laser’s focal distance with respect to the optics. Based on empirical data, they are

capable of measuring the laser’s offset distance.

Geometry-based sensors is the last main category where authors have concentrated

their research. In 1996, Meriaudeau et. al. [10, 11] publish work relating to the

measurement of melt pool shape. There is no information regarding the actual image
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processing algorithms, merely empirical relationships between process parameters and

the resultant height and width measurements. In 1997, another paper is presented

by Meriaudeau et. al. [12] whereby the CCD-camera’s placement is shown to face

the direction of motion of the deposited clad. This allows them to gather information

relating to clad height and width, along with the its cross-sectional profile. In 1999,

Mazumder et. al. [18] publish their work relating to photo-diodes used in height

measurement. The work presents results of using more than one sensor, however,

no specific details on their algorithms for height extraction, due to the patented

technology. Much of the work on geometrical sensors has concentrated on deviations

from a predetermined measurement. For example, Fox et. al. [16] develop a control

algorithm to keep the height at a constant level, which is accomplished based on the

work of Haran et. al. [17], as mentioned in the previous paragraph. A recording

is taken of the sensor’s output for a given height, and the control scheme attempts

to control the inputs to keep this measurement value. This appears to also be the

result of Mazumder’s work, where by the photo-diodes output a voltage, and when

this voltage is exceeded, certain process parameters are changed to bring the voltage

back down.

As seen, many sensors have been developed to measure various properties of the

laser cladding process. This report is concentrated on the measurement of clad height

during deposition, using one or more CCD-cameras. As seen from the various liter-

ature surveys, many uses of CCD-cameras have been accompanied by selection of

proper bandpass filters, due to the high levels of light irradiation from the process,

in addition to avoiding the laser’s wavelength. Aside from this information, there are

very little details as to image processing algorithms or their frequencies and camera

placement or limitations on clad deposition directions. Also, there has been little to

none comparison of true height and estimated height from the various algorithms.

This may be attributed to many authors using their height sensor directly in a con-

trol scheme, whereby visual comparisons with, and without the latter on a part’s final

geometry.

Based on this lack of information in the literature, this thesis will concentrate

on developing a sensor to measure the height of deposited clads in real-time. A

discussion will be presented on the nature of the light irradiation from the process
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zone, along with the selected bandpass filters. Also, a thorough presentation of the

image processing algorithm is included, where limitations on clad’s direction with

respect to camera’s position is established, along with the overall accuracy of the

algorithm, with respect to true clad measurements taken offline.
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Chapter 3

Camera Filter Selection

3.1 Introduction

The laser cladding process produces very intense light as a result of melting metallic

powder by use of a high-power laser. Capturing frames of the process reveals purely

white images, caused by saturation of the CCD-sensor from this intense irradiation.

To properly view images of the melt pool region, the source and nature of this intense

light must be defined. This will enable one to properly select filters for the cameras,

allowing only a portion of the irradiation to be seen. It is desired to have this portion

of light be representative of the melt pool zone.

In the following sections, a theoretical development will produce a hypothesis as

to the nature of this irradiation. This will be followed by experimental results to

confirm such claims, along with proper selection of optical hardware (i.e. filters).

Before continuing, a quick mention is made of a threshold algorithm used in this

Chapter, however, only developed later in Chapter 4. The threshold algorithm is

based upon minimizing the fuzzy entropy of an image. That is, in an 8-bit grayscale

image, each pixel has a value between 1 and 256. Thresholding is the process by

which each pixel is assigned to the foreground (value of 1) or background (value of 0).

In this algorithm, a threshold is selected where all pixels below are assigned a value

of 0, while all pixel values above are set to 1. A resultant measure of the image’s

entropy is given by a specific metric, and the threshold value yielding the minimal

level is selected as the optimal threshold. In general, threshold levels obtained in this
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manner are very good at segmenting the melt pool from the background objects. For

this reason, the algorithm will used throughout this Chapter as a measure of light

intensity, whereby large thresholds indicate a larger amount of light in the image than

lower thresholds.

3.2 Theoretical Analysis

In many laser applications, such as laser welding, cutting, drilling, etc., the energy

supplied to the material is sufficiently large to cause ionization of the elements. How-

ever, in the laser cladding process, the main purpose is to deposit molten metal on

a substrate, building successive layers in a similar manner. The energy supplied

is merely enough to melt the powder, and thus, the elements do not become over-

excited, causing ionization (plasma). For this reason, the majority of light emitted

from the process zone is caused by blackbody radiation of the molten powder due to

its elevated temperature.

Typical temperatures encountered during the process are dependent upon the

material being deposited. As previously mentioned, only a sufficient amount of energy

required to melt the incoming powder is necessary, and thus, depending upon the

type of powder, the melting temperature will vary. For stainless and tool steels, the

dominant element is iron, which melts at 1811K. However, from experimental testing

temperatures can rise up to 2300-2400K [19]. This is especially true for the first layer

deposited onto a substrate, where the energy supplied is not only for melting the

incoming powder, but is also utilized to melt the substrate, creating good bonding of

the two.

Max Planck developed an equation describing blackbody radiation as a function

of both temperature and wavelength [20], as seen below:

E(λ, T ) =
2πhc2

λ5 (ehc/λkT − 1)
(3.1)

where λ [m] is the wavelength, T [K] is the temperature, h = 6.626 × 10−34[Js] is

Planck’s constant, c = 3.00 × 108[ms−1] is the speed of light, and k = 1.381 ×
10−23[JK−1] is Boltzmann’s constant. It is seen that radiation emitted varies not
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Figure 3.1: Hypothetical irradiation from melt pool zone, as characterized by Max Plank’s
blackbody radiation. Temperatures reflect typical laser cladding operating conditions.
Wavelength range selected according to CCD-sensor’s range (UNIQ 600CL Digital Camera).

only with the temperature of the body, but is also non-uniform throughout the elec-

tromagnetic spectrum. For this reason, it is important to analyze Planck’s equation

in the spectrum visible by the CCD-sensor, which extends from 400nm to 1000nm 1.

A graphical representation of Equation (3.1) is seen in Figure 3.1 for the aforemen-

tioned spectrum. Several curves are plotted for various temperatures, representing

typical values encountered during the process. As can be seen, the amount of irradi-

ation increases with both wavelength and temperature. Thus, in the captured image,

since the melt pool has the greatest temperature, it should appear with brightest

pixel values. This should be of great help when segmenting the melt pool from the

background information of the image, as long as saturation of the CCD-sensor does

not impede the algorithm, as will be discussed later.

The CCD-sensor used to capture this blackbody radiation during experiments does

1This information is provided by the camera manufacturer, for a UNIQ 600CL digital camera.
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Figure 3.2: Response of CCD-sensor to incoming light. Bandpass-type response, with
peak at ∼500nm. (UNIQ 600CL Digital Camera)

not have a uniform gain throughout its spectrum. Figure 3.2 illustrates the spectral

response of the sensor to incoming light. For example, according to this graph, light

intensity of rays at 700nm would be attenuated by approximately 68%. As can be

seen, it has almost unity gain in the range of 500nm to 550nm. Outside of this range,

the camera’s response decreases in a relatively linearly manner. This non-uniform

response is very important, as it will modify the incoming blackbody radiation from

the process zone.

To evaluate the response of the CCD-sensor to the incoming light, the latter is

attenuated in the spectrum by the former. That is, at every frequency channel, the

theoretical blackbody radiation is multiplied by the CCD-sensor’s attenuation, at this

frequency. The result of this procedure is shown in Figure 3.3. These curves represent

the light irradiated from the interaction zone, as seen by the digital cameras. From

the spectral response of the sensor (Figure 3.2), the incoming signal (or light) is

attenuated as the wavelength increases. However, the incoming blackbody radiation

is the total opposite, as seen in Figure 3.1. The combined effect is seen in Figure
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Figure 3.3: Actual light intensity, as seen by digital camera. This is obtained by multiply-
ing the incoming blackbody radiation by the CCD-sensor’s response, at each frequency chan-
nel. Again, temperatures representative of typical operating conditions in laser cladding.

3.3 where the attenuation dominates and the signal is decreased as the wavelength

increases. The peak in curves of Figure 3.3 appears in the middle of the spectrum,

where the CCD-sensor’s attenuation was overshadowed by the amount of incoming

light, thus producing peaks at approximately 700nm. Before this peak, the incoming

irradiation is very small (as seen by the theoretical curves), and coupled with the low

gain from the CCD-sensor, produces even less light intensity in the lower wavelengths.

As previously mentioned, in order to reduce the effects of sensor saturation, a

bandpass filter will be added to the camera’s optical hardware which will allow ir-

radiation from a specific wavelength to penetrate. In the next section, experimental

verification will be provided for the theory developed in this section, followed by the

selection of a proper bandpass filter.
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Figure 3.4: Experimental setup of cameras with respect to process zone. Cameras are
symmetrical about this region and, have different bandpass filters in their optical hardware,
based upon the experiment number (see Table 3.1).

3.3 Experimental Setup

In the previous section, the following hypothesis was introduced: blackbody radiation

is the main source of light irradiating from the process zone, which is attenuated in

a non-linear manner by the CCD-sensor, as shown in Figure 3.3. To evaluate this

statement, a series of experiments are conducted such that the light intensity emitted

and captured by the digital cameras are analyzed quantitatively.

For such experiments, two digital cameras (UNIQ UP-600CL) are setup in sym-

metrical locations about the process zone, each with a different bandpass filter added

to its optical hardware, as seen in Figure 3.4.

Three bandpass filters are selected for the experimentation (manufactured by Ed-

mund Optics). The filters have their center wavelengths at 520, 700 and 880nm, and

each has a width of ±40nm (half-maximum full-width, HMFW, of 80nm). As can be
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Figure 3.5: Location of bandpass filters with respect to light intensity, as registered by
the CCD-sensors.

seen from Figure 3.5, where the filters are overlapped with the theoretical blackbody

radiation as observed from the digital cameras, each filter should allow a different

amount of light intensity to be observed by the CCD sensor. The maximum amount

of light should be observed with the second filter, centered at 700nm, while the filter

centered at 520nm should yield the least amount of light.

To measure the amount of light seen by the CCD-sensor, images captured by the

digital cameras are analyzed offline by means of calculating the optimal threshold

value in order to segment the melt pool from the image. This optimal threshold value

is found by means of a fuzzy threshold algorithm, which selects a threshold value

based upon minimizing the image’s entropy, as will be discussed in Chapter 4. As

a simplistic view, the thresholding algorithm returns the average gray-level intensity

of the melt pool, as a percentage of the maximum level. For example, if the fuzzy

threshold is computed for two images, and the first returns an optimal threshold of

75%, while the second returns 60%, it indicates that there are a greater number of
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Table 3.1: Bandpass filters used for each experiment, along with their location (right/left
camera). Each filter is used twice: once per digital camera. This is to reduce any possible
bias associated to a particular viewpoint or camera.

Experiment Left Camera Right Camera
1 520nm 700nm
2 700nm 880nm
3 880nm 520nm

bright pixels in the first image than in the second. This indicates that more light is

being transmitted to the CCD-sensor in the first image, than in the second. Note

that, the digital cameras utilized provide a maximum gray level of 255 (8 bit camera).

Thus, for example, a threshold value of 60% represents a gray level of 153.

Since two digital cameras are available, and three filters are selected for evaluation,

it is necessary to perform a minimum of two experiments: one experiment with the

520 and 700nm filters, the second with the 700 and 880nm filters (or 520 and 880nm).

This will produce a pair of results for one of the filters, while only a single set for

the other two. Thus, an extra experiment is conducted, where the other two filters

were used, thus yielding a pair of results for each filter. Also, the extra information is

useful for providing information regarding repeatability and hardware-specific details,

seeing as each filter is tested on a different camera. The combinations of filters for

each experiment are listed in Table 3.1.

3.4 Results and Discussion

The results of applying the fuzzy thresholding algorithm to the set of images captured

during the three experiments of Table 3.1 are found in Figure 3.6. The figure is divided

into three columns, each having a series of 50 thresholded-images, which corresponds

to the results of each experiment outlined in Table 3.1. The filter centered at 700nm

consistently produces the greatest threshold level, indicating that the series of images

captured with this filter had the greatest light intensity. On the other hand, the

filter centered at 520nm consistently has the lowest threshold levels, indicative of

the images having the least amount of light intensity. Again, the filter centered at
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Figure 3.6: Optimal thresholds for each filter, computed over 50 images. Two cameras
are used per experiment, thereby allowing only two filters to be tested per experiment. See
Table 3.1 for details.

880nm has consistently lower threshold values than the filter at 700nm, while greater

than that centered at 520nm. These trends were fully predicted by the theoretical

developments in the previous section.

To further visualize the threshold levels obtained throughout the three experi-

ments, their average values are computed for each experiment, and are outlined in

Table 3.2. In addition, the average value for each filter is computed, and plotted

against the theoretical blackbody irradiation as seen from the CCD-sensor (see Fig-

ure 3.3) in Figure 3.7. As can be seen, tracing a best-fit curve through these later

three points demonstrates the proper trend that the threshold levels follow. That is, it

is expected to have the lowest light intensity from the filter centered at 520nm, which

corresponds to an average threshold level of 3.85%. As the wavelength increases, the

theoretical blackbody irradiation as captured by the CCD-sensor equally increases

(for increasing temperatures). With a filter centered at 700nm, we have the largest

average threshold value of the three filters tested, corresponding to 69.70%. From
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Table 3.2: Average of 50 thresholds obtained for each bandpass filter, at every experiment.
Overall average for each filter listed in last row of table.

Experiment 520nm 700nm 880nm
1 3.90% 69.00% –
2 – 70.40% 23.60%
3 3.80% – 22.40%

Average 3.85% 69.70% 23.00%

theoretical developments, in the temperature range of normal laser cladding condi-

tions, it was noticed that the maximum irradiation is seen at approximately 700nm,

as verified experimentally by the average threshold values from the bandpass filters.

After this filter, the average threshold value falls to 23.00% for a bandpass filter cen-

tered at 880nm. This value is larger than the average threshold level at 520nm, as

expected. It was seen in Figure 3.3 that the light intensity seen by the CCD-sensor

was greater at 880nm than at 520nm, for the same temperature curve, as verified by

this last result.

As previously mentioned, a bandpass filter is to be added to the digital camera’s

optical hardware. Without this filter, the amount of light irradiating from the process

zone is too large for the CDD-sensor, and causes saturation of the pixels (i.e. image

is all white). To select the proper filter, the threshold levels obtained from the pre-

vious three experiments were analyzed, along with the actual images obtained from

the digital cameras. Figure 3.8 illustrates the entire section of thresholds calculated

for experiments #1 and #2 of Table 3.1. As can be seen, the thresholds obtained

for filters centered at 520nm and 880nm fluctuate throughout the experiments, as

opposed to those obtained with a filter centered at 700nm. The observed fluctua-

tions are caused by changes in the process zone, such as melting of the incoming

powder stream, or flares toward the incoming laser (caused by an insufficient powder

stream, and thus melting of the substrate, or previous layer). These abnormal pro-

cess conditions cause a larger amount of light to be irradiated. However, the digital

cameras used throughout the experiments appear to greatly amplify the latter, due

to unknown reasons. No matter the source of this additional light, the fluctuation of

threshold levels is unwanted in the image processing algorithm.

Figure 3.9 illustrates a sample image captured using each of the three aforemen-
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Figure 3.7: Average threshold level obtained for every bandpass filter, throughout all
experiments. These results are overlayed with the hypothetical light intensity, as seen by
the CCD-sensors. See Figure 3.3 for further details.

tioned filters in the optical hardware of the digital cameras. As can be seen, and as

illustrated by the low threshold values, the melt pool is attenuated for the 520 and

880nm filters. With a bandpass filter at 700nm, the melt pool is well seen by the

digital camera, and there is large contrast between the foreground (melt pool) and

the background objects. This contrast will be very important when attempting to

segment the true melt pool from the image.

Based upon the results of Figures 3.8 and 3.9, the bandpass filter centered at

700nm is selected as the final filter for the digital camera’s optical hardware. The

threshold values obtained with this filter have little to no fluctuations during all

process conditions, while the contrast between the melt pool and background objects

is the most promising of the three.
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Figure 3.8: Threshold values obtained throughout entire experiments. Top and bottom
figures correspond to experiments 1 and 2, respectively. Large spikes for filters at 520 and
880nm are caused by irregular process conditions, causing extra light to be emitted from
the process zone. The 700nm filter appears to be unaffected by this additional light.

3.5 Conclusions

In Section 3.2, a theoretical analysis of the system’s light irradiation was developed,

stating that the process zone of the laser cladding system emitted purely blackbody

radiation. It was stated that the temperatures encountered were not sufficient to cause

any ionization of the material, and thus, the only source of light, aside from outside

environmental sources, was caused by the elevated temperatures of the molten metal

(1600-2400K for iron-based materials). In addition, the blackbody radiation emitted

was not only a function of the body’s temperature, but equally of the wavelength at

which it was radiating. This was described by Planck’s Law in Equation (3.1).

On the other end, incoming light is attenuated by the CCD-sensor in a non-linear

manner, as shown in Figure 3.2. Applying this attenuation to the incoming light of

Figure 3.1 produced the actual light, as seen by the CCD-sensor, resulting from the

blackbody emission of the process zone (plotted in Figure 3.3). The camera’s non-
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Figure 3.9: Sample image captured with each bandpass filter, along with the associated
fuzzy-algorithm thresholds, segmenting the melt pool from the background.

uniform attenuation modified the incoming radiation such that, in the CCD-sensor’s

wavelength spectrum (400nm to 1000nm) and for the range of temperatures encoun-

tered (1600K to 2400K ), the maximum irradiation was centered at approximately

700nm.

These hypotheses were verified experimentally by calculating the optimal thresh-

old level obtained from images where three bandpass filters were added to the digital

camera’s optical hardware (centered at 520nm, 700nm, and 880nm). Three experi-

ments were conducted, where two filters were used on two separate cameras during

the cladding. The results were plotted in Figure 3.7, which show that the amount of

light seen by the digital cameras is governed by blackbody radiation being attenuated

by the CCD-sensor’s non-uniform spectral distribution.

A bandpass filter centered at 700nm was then selected out of the three filters.

This filter was shown to provide consistent, robust threshold measurements during

varying process conditions, in addition to having the best contrast between melt pool

and background objects, in the captured images.
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Chapter 4

Image Analysis: Melt Pool

Segmentation

4.1 Introduction

After the camera captures a frame from the process zone, the resulting image must

undergo a series of image processing steps before the final measurements can be ex-

tracted. The first, and one of the most important steps, is to properly segment the

melt pool from the grayscale image. This is accomplished by two steps: thresholding

and boundary tracing. Thresholding is the process by which a grayscale image is

transformed into a binary image. From this information, the boundary of the melt

pool can be traced, resulting in a series of coordinates (in pixels) of the melt pool

perimeter. These coordinates can then be transformed into real-world coordinates

(such as millimeters or inches), and through an analytical solution, the desired mea-

surements can be extracted.

In this chapter, the thresholding and boundary tracing operations will be dis-

cussed. First, thresholding of the grayscale image will be investigated, where two

techniques will be evaluated to determine the optimal method. This will then be

followed by the melt pool boundary tracing algorithm.
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4.2 Image Thresholding

Image thresholding consists of associating each pixel from its grayscale value (or

any other format, such as RGB, YUV, etc.) to either a background pixel (black

pixel, value of 0) or a foreground pixel (white pixel, value of 1) [21]. The foreground

pixels are normally associated with the desired objects for future analysis, while the

background represents objects one wishes to ignore. This association is accomplished

by selecting a threshold value within the grayscale range, where pixels above this level

are associated to the foreground, and pixels below to the background (or vice-versa).

A static threshold value is normally used for pixels within the same image. In

certain circumstances however, the threshold value can change spatially within the

image, to allocate for different lighting conditions. From image to image, a static

threshold value is also often used, reducing the amount of calculations to be per-

formed, thus increasing the speed of the algorithm. However, adaptive threshold

values may be used, where a new level is calculated based upon the new image. This

requires an extra step in the processing, thus reducing the frequency at which images

may be analyzed. This technique however, does allow for different lighting conditions

to be assessed in a dynamic manner.

In the laser cladding process, the threshold level is kept static throughout the

image, however, is adapted from frame-to-frame. This will allow for changes in the

process to be accounted for, such as the addition of light to the image from powder-jet

ignition, or large emission of light resulting from plasma phenomena.

Many techniques exist for the calculation of this threshold value. Sezgin and

Sankur [21] associate thresholding techniques into six categories, based upon the

information they exploit:

1. Histogram shape-based methods

2. Clustering-based techniques

3. Entropy-based algorithms

4. Object attribute-based techniques

5. Spatial distribution methods
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6. Local methods (dynamic thresholding within the image)

The first method is based upon the shape of the histogram1, exploiting the peaks

and valleys of the image’s histogram, or even the curvature and smoothness of the

later. The second technique utilizes a clustering analysis of the gray-level data where

the number of clusters is two. The third technique is based upon calculating the

resulting entropy of the foreground and background pixels after thresholding. A

criterion is used, such as maximization of image entropy, to select the optimal thresh-

old. The fourth technique involves searching for a similarity between the original

gray-scale image, and the binarized image, using criteria such as edge coincidence or

fuzzy shape-similarity. The fifth algorithm, spatial distribution-methods, looks not

only at pixel gray-levels, but also includes information regarding its neighbourhood

of pixels. Last, the sixth technique calculates a new threshold at each pixel within

the image, based upon statistical information at each location.

A typical melt pool image is shown in Figure 4.1. As can be seen, the image is

rather simple, where the melt pool is easily distinguished from the background by

an observer. The difficulty is with respect to fuzzy-borders, and possible reflections

from the substrate or flaring in the process, as outlined in the image. Since the

image is not dominated by background objects (background is essentially black), the

aforementioned list of six thresholding techniques can be reduced down to two. The

fourth, fifth and sixth techniques are more useful for images having multiple objects,

or varying light intensities throughout the image, which is not the case for the process

zone images. The first option, histogram shape-based, is often used when multiple

peaks in the histogram occur, for various objects within the image, which again, is not

the case. This leaves options two and three, corresponding to a more statistical-based

approach with a clustering analysis and, maximization of information transfer with

an entropy-based approach [21].

In the following section, a technique from these last two categories will be in-

vestigated, and followed by experimental verification. First, a statistical approach

developed by Otsu [22] will be discussed, followed by a fuzzy-entropy algorithm by

Huang and Wang [23].

1A histogram is a function that returns the number of pixels in one image for each graylevel. The
sum of all pixels at all gray-levels is equivalent to the number of pixels in the total image.
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Figure 4.1: Typical image taken from digital camera with 700nm bandpass filter.

4.2.1 Theoretical Analysis

A typical image for analysis is seen in Figure 4.1 (captured from a UNIQ 600CL

digital camera with a bandpass filter centered at 700nm, as discussed in Chapter 3).

In Figure 4.1(a), the melt pool is fairly obvious, along with the difficulties labeled;

namely reflection from the substrate, flares or plasma formation, and fuzzy/blurred

boundary. In Figure 4.1(b), the main components in the process zone environment

are highlighted, namely the solidifed clad, the substrate onto with the molten powder

is being deposited, the laser beam, and the incoming powder stream.

As seen, the image is largely dominated by dark pixels, while the melt pool is

relatively well segmented. This is more clearly demonstrated from the image’s his-

togram, found in Figure 4.2. The melt pool is surrounded by a hazy region, where

the thresholding algorithm must determine which pixels consist the foreground object

(melt pool) or background object. This hazy region can also be seen in the histogram,

represented by the pixel counts leading up to all white (255).

In Otsu’s technique, a metric is devised which measures the inter-class variance.
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Figure 4.2: Histogram of typical process zone image, taken from 8-bit camera, or 256
gray-levels (see Figure 4.1(a) for image).

This metric is found below:

δ2 = (µf − µb)
2(ωfωb), (4.1)

where µf and µb are the foreground and background means, respectively, and ωf and

ωb are the probabilities of belonging to the foreground and background classes, re-

spectively. These values are calculated by counting the number of pixels in each class.

It can be seen that this metric will be largest when both the first and second terms

are largest. The first term corresponds to the difference between class means, thus

maximizing the distance between classes. The second term represents the product of

the probabilities, and will be largest when the two terms are largest. The optimal

threshold is found by going through all possible combinations of threshold values, cal-

culating the metric of Equation (4.1) for each value, and then selecting the threshold

of maximal inter-class variance.
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The images captured by the digital cameras are mainly composed of three different

regions: the actual melt pool, a hazy region around the latter, and the background.

Due to the bandpass filter added to the digital camera’s optics, the background is

composed of very dark pixels, where no ambient light is captured. The melt pool

however, is at the other end of the gray-scale spectrum, where it is mainly composed

of very bright pixels. These two values create a very binomial distributed histogram,

as shown in Figure 4.2. Otsu’s technique thus divides the two peaks in the middle,

and selects this as the optimal threshold. This allows for a large distance between

class means (first term in the metric).

A second approach to calculating the optimal threshold is proposed by Huang

and Wang [23], where a fuzzy algorithm to minimize the entropy of a given image is

developed. The entropy E of an image X is measured by the following metric:

E(X) =
1

MN ln 2

L−1∑
g=0

S(µ(g))h(g), (4.2)

where the image X has dimensions M×N , has L gray-levels, a histogram represented

by the function h(g), g being the gray-level, and S() is Shannon’s function, defined

below:

S(y) = y ln(y)− (1− y) ln(1− y). (4.3)

Also, in Equation (4.2), µ(g) is a function indicating the degree of membership of a

given pixel to either the background or foreground region. This degree of membership

is given by a Gaussian function, as:

µ(y) = exp

[
−1

2

(
y − T

MAXGL× σ

)2]
(4.4)

where T is the possible optimal threshold, MAXGL is the maximum gray scale value,

and σ is a parameter to scale the width of the Gaussian function. This latter variable

is left as a tuning parameter, however, the final threshold level is found to be rather

insensitive to its value. It is set to σ = 0.3.

From these three equations, the procedure must first select a threshold value, and

then compute the entropy of the image from Equation (4.2). This is repeated for
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all threshold values, from 0 → MAXGL. The threshold value creating the lowest

entropy for the image is the optimal threshold.

Looking back at the Otsu algorithm (Equation (4.1)), the goal is to maximize the

metric δ2, which is done by maximizing both the distance between the foreground

and background mean values, along with the product of the probabilities of both

the foreground and background. This last term will be greatest when half the pixels

are classified as background, and the other half as foreground. This is not always

desirable seeing as the melt pool can occupy only a small portion of the image,

while the background the remainder. As a result, Otsu’s technique would attempt

to increase the number of foreground pixels to increase δ2, which would result in the

hazy region being included into the foreground; an unwanted result. In general, the

thresholds obtained from this technique, applied to the images captured of the laser

cladding process are around 50%, which allows the hazy region around the melt pool

to be considered as a foreground object, which is unwanted.

On the other hand, the fuzzy algorithm utilizes the information from the his-

togram, as opposed to the probability of pixels. This information is combined with

Shannon’s function, which has minimal value for degrees of membership near 0 or

100%; maximum values are found for memberships around 50%. Thus, if a thresh-

old is selected such that it is placed midway between two large clusters of pixels,

their membership values will tend to be around 50%. However, if the threshold is

placed very close to one cluster (resulting in a degree of membership approaching

100%), while far from the other (resulting in a degree of membership approaching

0%), Shannon’s function will result in minimal values, thus producing minimal en-

tropy. Since the majority of pixels have gray scale values near 0 (very dark images),

and the fact that the histogram data is multiplied by Shannon’s function within the

summation, the algorithm should attempt to place the optimal threshold at a high

gray scale value (near the white region). This will cause low degrees of membership

for the great majority of pixels (since they are black pixels, and far from the thresh-

old value), thus low values of Shannon’s function, and as a result, would diminish

the effect of high histogram values at low gray scale values. These combined effects

should result in greater optimal threshold values, and thus eliminating, or at least

greatly reducing, the addition of a hazy region around the melt pool in the captured
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Figure 4.3: Position of camera with respect to melt pool. Camera is perpendicular to the
direction of travel, and to the vertical plane. Images captured will be used to investigate
two thresholding techniques.

images.

4.2.2 Experimental Setup

As discussed in the previous section, there exists a hazy region around the melt pool,

which may be included into the real measured pool after thresholding. Thus, to

evaluate each algorithm, it is decided to analyze the degree to which this hazy region

is included in the thresholded image. For this, the true height of the deposited clad is

compared to the height obtained from the thresholded images, captured from cameras

perpendicular to the process (see Figure 4.3). Three experiments are conducted,

where images are captured at 10 Hz from one digital camera (UNIQ UP-600CL),

fitted with a bandpass filter centered at 700nm.

To estimate the clad’s height, the camera is placed perpendicular to the process,

as previously mentioned, and shown in Figure 4.3. Clads are deposited in straight

lines, and therefore, one can count the height of the clad in terms of pixels, for each
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Figure 4.4: Threshold levels obtained through Otsu and a fuzzy algorithm methods for
each image in the three experiments.

image. That is, counting from the heighest point on the segmented melt pool, down

to the reference plane (or substrate), reveals the height in terms of pixels. Converting

pixels into metric units can be done by capturing a picture of a ruler, and measuring

the number of pixels per unit length. This is similar to the method for obtaining the

clad’s true height, as will be discussed in the following paragraph.

To measure the true height of the clad, the latter is placed under a microscope,

where digital pictures are taken. These pictures are then analyzed offline, where the

height of the clad is measured, in pixels. Using the microscope’s magnification factor,

the heights are then converted into millemeters. Typical resolutions obtained in this

manner are ∼ 10µm/pixels. See Appendix C for further details.
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4.2.3 Results and Discussion

The results of applying the Otsu and fuzzy-threshold algorithms are presented in

Figure 4.4 for all images captured during the three experiments. As can be seen, the

fuzzy algorithm produces consistently higher thresholds than Otsu’s technique (mean

of ∼75%), for the last two experiments. In the first experiment, large pertubations

to the process were reflected in drastic changes in the captured images, resulting in

varied threshold computations for each technique. However, this ability of the fuzzy

algorithm to consistently produce larger threshold levels greatly reduces the size of

the hazy region around the melt pool.

The threshold obtained with Otsu’s technique are very stable about a mean value

of ∼50%, for the last two experiments. On the other hand, the fuzzy algorithm has

larger deviations about its mean value, which indicate its ability to adapt to small

changes in melt pool conditions.

To further investigate this feature, height estimates using each threshold algorithm

are shown in Figure 4.5. The inclusion of this hazy region can clearly be seen in these

results, as the height estimated based on Otsu’s technique has a bias with respect to

the true height. However, the height estimated based on the fuzzy algorithm’s melt

pool segmentation performs very well in estimating the true height, even though its

threshold levels have larger deviations from the mean value. This good agreement

illustrates its ability to ignore the hazy region by varying the threshold level based

upon small changes in melt pool dynamics (reflected in changes of hazy region).

It should be noted that conditions do occur where both threshold levels result

in bad estimates of the true height. These conditions can be attributed to process

instabilities, whereby large amounts of light are irradiated towards the camera, caus-

ing larger than normal melt pools, with very little hazy regions. This can be seen in

experiment 2, from 6-10mm along the clad.

As a last step, Figure 4.6 illustrates one image thresholded by both techniques

under normal conditions. As shown in the original image, the hazy region is clearly

seen. When applying the fuzzy algorithm, this latter region is no longer present, as

opposed to the lower threshold value from the Otsu technique, which encompasses

this light into the melt pool.
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38



Original

Fuzzy

Otsu

75%

50%

Figure 4.6: Sample image binarized by both threshold techniques. As seen, the hazy
region around the melt pool is captured by Otsu’s low threshold, as compared to that
obtained from a fuzzy algorithm.
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Figure 4.7: Example of kernel operations on a sample image.

4.3 Boundary Tracing

With a thresholded image, pixels have a value of either 1 (white) or 0 (black). A con-

vention is adopted such that the foreground objects are white, while the background

objects are black, and it is the former that one wishes to analyze. In the case of melt

pool segmentation, it is desired to segment the border of this latter, which will then

be used for further analysis.

Several techniques exist for finding the border of an object, and can be classified

in two main categories: derivative-based and comparison-based. In the first option, a

mask (or kernel) is placed over a neighborhood of pixels (such as 2× 2, 3× 3, 5× 5,

etc.) and the cumulative sum of the product of corresponding pixel and kernel entries

is calculated. The result provides information of the pixels in this neighborhood, and

is associated to the middle pixel over which the kernel is placed. For example, Figure

4.7 illustrates the algorithm for several typical kernels, namely smoothing, sharpness

and Laplacian kernels.

Three common techniques utilize these kernels operations to detect edges, mainly

from gray-scale images [24]. They can equally be applied to binarized images, as will

be discussed. All three techniques compute the spacial gradient of the image at each
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pixel location. If the gradient is sufficiently high (corresponding to a change in pixel

values, which is characteristic of edges), then the pixel at which this spacial gradient

is calculated becomes an edge, or boundary pixel. The level at which a gradient is

considered an edge is predetermined, and used as a tuning parameter in the technique.

The first technique is referred to as a Roberts edge detection algorithm, and con-

sists of two 2× 2 kernels, one for each direction. This is illustrated in Figure 4.8(a).

Both kernels are placed over a neighborhood, and the gradients in each direction (x-

gradient GX and y-gradient GY ) are computed. They are then merged together into

an overall spacial gradient G, in a geometric manner, stated in Equation (4.5):

G =
√

G2
X + G2

Y (4.5)

If this gradient goes beyond a predetermined threshold, the pixel over which the

kernel is applied is considered as an edge, or boundary pixel.

The second technique is the Sobel edge detection algorithm, which relies upon the

same computations as the Roberts operator, however, the two kernels utilized are

of size 3 × 3, as illustrated in Figure 4.8(b). Again, both kernels are applied to a

neighborhood, and the gradient in each direction is computed. The overall spacial

gradient G is again calculated with Equation (4.5), and if this value goes beyond a

predetermined level, the pixel is considered to be an edge, or boundary pixel.

The third technique is known as the Canny edge detection algorithm. This al-

gorithm is more complex than the previous two, and involves three distinct steps:

Gaussian smoothing, kernel convolution, and edge connection. The first step consists

of applying a Gaussian smoothing operation to the image, which reduces the number

of possible false edges, or smooths-out the edges for better detection. The second

step is to apply a cross-kernel to the image, such as a Roberts kernel. This identifies

the edge pixels. Last, these pixels are connected via an algorithm which travels along

the edge to create a continuous border.

The advantage of gradient-based algorithms, such as Roberts, Sobel and Canny, is

that they can be applied directly to a gray-scale image without the need of computing

an optimal threshold. However, the disadvantage is that the border pixels are given

for the entire image, and in the case of noise (such as flaring or plasma formation),
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Figure 4.8: Kernels used in Roberts and Sobel edge detection algorithms.

several pixels that do not belong to the melt pool are identified. This adds another

step in the procedure, which consists of labeling those pixels belonging to the melt

pool, and those that do not. Another disadvantage is the order in which edge pixels

are output. Border pixels arise in the order that the kernels are applied, and thus,

can produce raster-type edges. In the next category of techniques, this order will

be much better as the algorithm will more efficiently trace the border in a clockwise

manner.

In the second type of border detection techniques, namely the comparison-based

algorithms, a binary image is taken, and based upon comparisons of pixels, the melt

pool border can be traced. The following algorithm is border tracing based upon

8-connectivity. This algorithm has two main steps: identify a border, followed by

tracing this border. First, a pixel on the border must be determined. This can be
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done by going through each row of the image until a white pixel has been found,

as shown in Figure 4.9(a)2. With a border pixel identified, the algorithm proceeds

by checking the pixels in the neighborhood for another border pixel, in a clockwise

manner, as shown in Figure 4.9(b). When another pixel is identified, the direction of

this identification is important as it defines the starting point for the next search of

another border pixel. Tracing of the border continues until the original border pixel

in the first step has been re-identified (Figure 4.9(c)).

Before continuing, it was mentioned that the direction upon which a border pixel

is identified is very important. In order to prevent redundant identification of border

pixels, and to properly follow the border, the next direction in which a neighborhood

pixel is searched is shown in Figure 4.10, which is for 8-connectivity (hence the eight

arrows)3. For example, in Figure 4.9(b), the first border pixel is identified as a result

of an arrow pointing in Direction 1. It is now required to search in this pixel’s 3× 3

neighborhood for the next border pixel. Since we have come from Direction 1, we

must begin searching the neighborhood at Direction 4, as prescribed in the look-up

table of Figure 4.10. If this pixel is not a border pixel (as is the case in Figure 4.9(b)),

then searching through the neighborhood continues, in an ordered clockwise manner,

as shown in this figure. The next border pixel is identified at Direction 8, where the

next pixel in this new border pixel’s neighborhood will begin at Direction 3.

Comparing the border tracing techniques, the derivative-based methods require

no thresholding of the image, however, do require more complex calculations at each

pixel location (since addition and multiplication are performed). Also, the algorithm

requires a given threshold level to determine if the gradient is sufficiently large to

cause an edge, which can become subjective, especially with blurry melt pool borders.

Finally, the output edges must be analyzed afterward to determine which are actual

melt pool borders. On the other hand, the comparison-based technique requires

computation of an optimal threshold, however, much less computation at each pixel

location (since it is only a comparison operation), and outputs the border pixels in

sequential order of the melt pool, in a clockwise rotation.

2An important modification to this is starting the search at the center of the melt pool, which
greatly reduces the possibility of identifying a false border, such as flares or moltent powder particles
in flight.

34-connectivity also exists, whereby only 4 directions are used, and are separated by 90o.
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(a) Pixel identification in test image.

(b) Clockwise rotation for iden-
tification of next border pixel.

(c) Movement along border pix-
els.

Figure 4.9: Schematic of 8-connectivity border tracing algorithm used in segmentation of
melt pool from binarized image.

Requiring calculation of an optimal threshold is comparable to the last step of bor-

der pixel identification of derivate-based methods, and therefore both can be ignored.

As a result, the second technique is much quicker than the first at each pixel location

(since only comparisons are performed, as opposed to addition/multiplication oper-

ations). For this reason, the second technique will be used in providing melt pool

border coordinates. In addition, this allows the threshold algorithm decipher the

melt pool’s blurry boundary, as opposed to tuning the predetermined level at which

a gradient is considered to be an edge.
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Figure 4.10: Next search direction based upon current direction. The current direction
corresponds to the direction which has correctly identified a border pixel. The next direction
identifies the neighborhood pixel which is searched next for the following border pixel. This
prevents redundant identification of border pixels, and correct tracing of the border.

4.4 Conclusions

The first part of melt pool segmentation consists of binarizing the captured image.

That is, an optimal threshold is selected such pixel values beneath are considered as

background objects (value of 0), and pixel values above are considered the melt pool

(value of 1). Two techniques were investigated for calculating this optimal threshold:

Otsu’s method and a fuzzy-algorithm. Although the melt pool is well segmented with

the human eye, there does exist a hazy region around its border, which causes the

most problems for threshold algorithms.

Otsu’s method consisted of maximizing inter-class variance. That is, a metric was

calculated for each possible threshold level (see Equation (4.1)), and the latter with

the greatest metric was selected as the optimal threshold. Maximizing this metric was

accomplished by having an even number of pixels in each class, along with maximum

distance between the two. Due to the high number of dark pixels, a low threshold

level is taken such that an even number of pixels are in each class, however, this

includes the hazy region around the melt pool into the foreground object, which is

unwanted.

The fuzzy algorithm was based on minimizing the image’s entropy, after binariza-

tion. That is, the image’s entropy is calculated for all possible threshold levels (see

Equation (4.2)), where the lowest value is taken as the optimal threshold. Minimiza-

tion of the image’s entropy is achieved through low products of Shannon’s function

and histogram information. Due to the high number of dark pixels, this is done by
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placing the optimal threshold at a high level, which is desired as it reduces the amount

of hazy region captured in the melt pool.

Three experiments were conducted to quantitatively compare the algorithms. The

thresholds computed with Otsu were consistently lower than (∼50%) those obtained

through a fuzzy algorithm (∼75%), as expected. This predicted a larger hazy region

for Otsu images. To verify this, the height of the segmented melt pools were measured

to obtain an estimate of the true height, whereby Otsu estimates provided consistenly

biased estimates, as opposed to fuzzy-based estimates which had little error. The Otsu

thresholds were much more stable than fuzzy, however, this prove to be inadequate

as it always incorporates the hazy region. Meanwhile, the larger deviations of fuzzy

thresholds about its mean value enabled the latter to adapt to changes in melt pool

sizes, and thus hazy regions.

After binarizing the image, melt pool’s boundary must be extracted. Two types

of techniques are discussed: derivate- and comparative-based. Derivative-based tech-

niques require more calculations at each pixel location, since a spatial gradient is

being computed. Also, border pixels arrive in raster-order. On the other hand, much

less computation is required at each pixel location for comparision-based techniques,

and border pixels are output in a more convenient order, as the algorithm traces the

border. For these reasons, the melt pool is extracted for a binary image through a

comparative technique based upon 8-connectivity.

46



Chapter 5

Feature Extraction: Clad Height

5.1 Introduction

In the previous chapter, the boundary of the melt pool was segmented from the image

captured by the digital camera. This boundary represents the silhouette of the melt

pool, as seen by the camera’s perspective. From this boundary, it is desired to extract

the height of the clad currently being formed. To extract this feature from the melt

pool silhouette, three possible techniques are considered: 3D reconstruction, shape

from silhouette, and a shadow analysis. The first technique utilizes common traits

in multiple camera images, along with triangulation of their data, to reconstruct a

3D model of the object in question (i.e. the melt pool). This assumes no predefined

shape of the melt pool. The second technique assumes a predefined shape for the melt

pool, and using the boundary (or silhouette) of the melt pool, recreates this assumed

shape from multiple images. In the third technique, the camera is assumed to be a

source of light, whereas the projection of the silhouette from the image plane onto a

work plane is considered as the object’s shadow. This shadow is then analyzed in the

aforementioned work plane to estimate a height causing this shadow. Each technique

will be further discussed in the following paragraphs.

The first technique, 3D reconstruction, requires the use of two or more images

taken from different positions with respect to the melt pool. The technique recon-
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structs the shape point-by-point, where point correspondence1 between images out-

puts a mesh of coordinates of the melt pool’s outer surface. This is accomplished

by identifying common points on the melt pool in multiple, separate images. With

the common point’s coordinates in multiple images, one can determine the three-

dimensional coordinate in the workspace with triangulation.

The main advantages to this technique are that no predefined shape of the melt

pool is assumed and, the end result is a three-dimensional shape of the melt pool’s

outer surface. This allows for full geometrical properties to be measured, such as

width, height, angle of solidification, etc.

However, two major difficulties arise: observability and point correspondence.

Observability is the criterion for which a surface may be reproduced if it is observable

by two or more cameras [25, 24, 26]. That is, only areas of the melt pool seen

by two or more cameras may be reproduced. The main problem arises from self-

occlusion, where one camera can see one side of the melt pool, while another camera

is orientated such that it can see the other side. This requires the cameras be properly

positioned and orientated such that a large region is common to all cameras. Solving

this, point correspondence represents a larger problem. Point correspondence refers

to the task of identifying a common point in the real world to its location in multiple

images. That is, how does one go about identifying the exact point in more than

one captured image? This is an ongoing problem in the field of Computer Vision.

With basic shapes, such as cubes or walls, the intersection of lines can provide useful

information [26]. Also, utilizing the epipolar constraint placed upon a set of multiple

cameras can reduce the size of the region where pixels must be analyzed [24, 27, 26].

Many successful techniques use histogram information [26], where it is assumed that

a point on the object has the same light intensity in all images. The major problem in

applying this technique to the melt pool images is the lack of histogram information.

Typical images of melt pools are largely black-and-white, and have very little gray

pixels2. Thus, matching points based upon light intensity is very difficult.

1Point correspondence is the process by which a point in the real world is recognized in all images.
That is, the point can be seen and identified in all images as the same point in space.

2It should be noted that increasing the resolution of the camera could help this situation. That
is, images only have 8-bits of data per pixels, thus 256 gray levels. Increasing this to 10-bits could
potentially address this issue of black-and-white images.
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The second available technique for feature extraction is to reconstruct a predeter-

mined melt pool shape based upon silhouettes observed from multiple images. The

key to this method is that a predetermined, or assumed three-dimensional shape is

given to the melt pool. From this assumed model, theoretical silhouettes seen by

each camera can be determined, based upon camera orientation with respect to the

melt pool. This last step is the major drawback of the technique. The silhouette

seen by each camera can change both due to melt pool size (i.e. height), and due

to the tangential direction of the clad being deposited. It therefore becomes difficult

to determine whether the silhouette has changed as a result of the height changing,

or the clad’s tangential direction. One possible solution is to determine the theoret-

ical silhouette for all possible tangential directions through experimentation. This,

however, requires a large amount of empirical curve fitting for an assumed shape.

The third and final technique for feature extraction is done by analyzing the melt

pool’s shadow. This shadow is obtained through the perspective transformation of

the melt pool’s silhouette, from the image plane to the horizontal world plane. With

the shadow of the melt pool in the world plane, the problem becomes much simpler,

as the height is a function of the length of the shadow. Making basic assumptions,

this relationship can be given by trigonometric theorems of right angle triangles. The

difficulty in this approach lies in the measurement of the shadow’s length, as the clad’s

formation is dynamic, where its solidified height can be at an unknown distance from

the reference origin.

It now remains to decide upon a technique, based on the descriptions above. The

first technique, 3D reconstruction, can be eliminated immediately as the problem

of point correspondance is enormous when considering the information given in a

melt pool image. Since the melt pool is essentially white pixels, and the background

is covered with black, there is very little information to gather from the grayscale

values, hence rendering most point correspondence techniques ineffective. The second

technique, shape from silhouette, requires one to assumed a predefined shape for

the melt pool. This is rather difficult as a melt pool is formed by liquid metal,

which is free-flowing and has no specific shape. In the majority of cases, the melt

pool shape is somewhat constant, however, even with a well defined shape, it would

take a large number of experimental data to empirically associate clad height to a
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silhouette, especially if it is desired to have independence from the deposition path.

This leaves the last technique, estimating height from the melt pool’s shadow. This

technique assumes that the melt pool’s boundary, as viewed in the image plane, can

be transformed to obtain an equivalent shadow of the latter. If this is possible,

then it only remains to determine the origin of this shadow, which should be a good

approximation to the clad’s solidified height. Therefore, the first two techniques

will be placed aside such that the third method of height estimation can be further

investigated.

5.2 Theoretical Analysis

In this section, two algorithms will be developed based upon the perspective trans-

formation of the melt pool’s shadow onto a work plane. In the first algorithm, two

cameras are used to view the melt pool from different angles. The silhouette from

each camera is projected onto the same work plane, whereby the width is extracted.

From the width, and assuming a specific cross-section for the clad, one can obtain

an estimate of the height. Due to practical problems (as will be further discussed),

a second algorithm is developed which makes different assumptions and relies upon

more stable regions of the melt pool. This algorithm produces relatively good esti-

mates, however leads to the development of a third technique, which does not rely

upon any perspective transformations.

Each algorithm will be further discussed in the following sections, with results

shown in Section 5.4. However, before proceeding, the perspective transformation

will be developed as it is common to the first two techniques.

5.2.1 The Perspective Transformation

A perspective transformation is used to convert a two-dimensional point from one

plane to another [27]. In order for this transformation to occur, the 2D point must
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be placed into a homogeneous representation, namely

(
x

y

)

︸ ︷︷ ︸
Cartesian Coordinates

→




x

y

1




︸ ︷︷ ︸
Homogeneous Format

= P0.

In this format, one can define the perspective transformation of a point P , from plane

0 to 1, as:

P1 = HP0, (5.1)

where P0 is defined above, P1 is the resulting 2D point in the new plane, and H is

a homogeneous transformation matrix. This transformation matrix is defined up to

scale [27], resulting in eight unknown parameters:

H =




a b c

d e f

g h 1


 (5.2)

The H-matrix is specific to a desired transformation. That is, it uniquely defines

the transformation from one plane to another, and cannot be used for transformations

into any other plane. A schematic of the transformation is shown in Figure 5.1.

Amongst other things, the homogeneous transformation matrix defines a focal point

from which all perspective rays originate (labeled as ‘Camera Center’ in Figure 5.1).

With this is mind, it can be seen that transforming the silhouette of an object from

plane 0 into plane 1 represents a shadow in this second plane. That is, if the source of

light is at the focal point, then the object’s shadow in plane 1 is found by a perspective

transformation of the object’s boundary in plane 0.

In the case of melt pool images, the latter’s border is projected onto a horizontal

plane, coincident with the substrate onto which it is being deposited. Thus, from

a global perspective, the camera can be seen as a source of light whose rays cast a

shadow of the melt pool onto the work plane. This shadow is directly related to the

height of the object, or in this case, the melt pool.

It was briefly mentioned that the homogeneous transformation matrix has eight
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Figure 5.1: Perspective transformation from image plane to work plane.

unknown parameters, which uniquely define the transformation from one plane to

another. To solve for the unknowns, a minimum of 4-points are required for an exact

solution (it is preferred to have more points, such that a least-squares optimization

can be performed). Points are placed on the work plane, where they are identified

in the image plane (supplied by the camera). The correspondence of points enables

one to uniquely solve for the transformation matrix between these two planes. See

Appendix A for a detailed derivation of the solution.

5.2.2 Algorithm 1: Intersection of Two Projections

The first algorithm is based upon the perspective transformations obtained from two

independent views of the same melt pool3 . These views are obtained from two

identical cameras orientated 120o apart. Due to this angle of separation, each camera

is capable of witnessing a different side of the melt pool, as shown in Figure 5.2. Thus,

the projection from one camera will see one edge of the melt pool’s interface with the

substrate, while the other camera will see the other intersection, on the other side of

the melt pool. This allows one to determine the width of the clad being deposited.

Figure 5.3 shows a top view of the melt pool border’s projection, as seen by each

camera. A cross-sectional view of the clad is also shown, illustrating how the width W

of the clad can be extracted from the projections. The remainder of the information

3This algorithm is partially based on the work done in [28].
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Figure 5.2: Schematic of camera setup for Algorithm 1. Due to their orientation (120o

apart), each camera is capable of viewing one side of the melt pool. It is therefore straight-
forward to measure the clad’s width from the projections.

provided by the projections relates to the shadow created by the compound angle of

the camera with respect to the melt pool.

Assuming a specific cross-section for the clad, and combining the length of the

shadow S with the angle of the incoming perspective ray, α, one can obtain an

analytical solution to the height of the clad. Inherent in this development is the

tangency of the perspective ray to the clad’s cross-section, occuring at a point (xt, yt).

Assuming a parabolic cross-section, this point is defined as

xt = S + W −√S2 + 2SW

yt =
√

S2 + 2SW tan(α).
(5.3)

where S, W and α are shown in Figure 5.3, with subscripts indicative of the camera

from which the information is gathered. Using this information, the clad’s height (i.e.

height of the assumed parabolic cross-section), is given by:

h =
W 2 tan(α)

2xt

. (5.4)
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Figure 5.3: Detailed schematic of Algorithm 1. Width of clad is determined from projec-
tions of both cameras.

It is shown in Figure 5.3 that two shadow lengths can be obtained, (SL, SR), one

for each camera. To combine the information from the two cameras, a final height is

obtained by averaging the result from each camera.

It should be noted that the previous is developed for a clad whose tangential

direction ψ bisects the cameras. If ψ deviates from this direction, the shadows pro-

jected from each camera will have different lengths, however, should result in the

same height. Since the camera angle α does not change, it remains that this shadow
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length must be adjusted. The algorithm is first tested whereby ψ does bisect the two

cameras, to validate the previous theory.

In testing the algorithm for a bisecting ψ, it is noticed that the clad’s cross-section

does not remain constant. That is, the cross-section varies both within an experiment,

and from experiment-to-experiment. The cross-section is a good sign of clad quality,

in terms of diffusion with the previous layer. A parabolic cross-section represents

ideal diffusion, where the wetting-angle4 is small. However, the wetting-angle often

becomes very large, indicative of a circular cross-section, and poor diffusion with the

previous layer.

Different cross-sections result in different measures of the clad’s width. Figure 5.4

illustrates this with two widely different cross-sections. In Figure 5.4(a), a typical,

ideal cross-section results in the proper extraction of the width feature. However, if

diffusion is poor (resulting in a greater wetting-angle), the width measurement suffers,

as shown in Figure 5.4(b). With a poor width measurement, the analytical solution

of Equation (5.4) yields a false height.

Although it is desired to have ideal diffusion with the previous layer (or substrate),

it is not always the case. In spite of this, the height algorithm should continue to

provide a good estimate. For this reason, a second technique is developed, placing

less emphasis on the clad’s cross-section, and more upon the shadow’s length.

5.2.3 Algorithm 2: Shadow Length of One Projection

In this section, the author develops novel algorithm, where less dependence is placed

on the clad’s cross-section, but rather, on the shadow length. The algorithm assumes

no specific cross-section for the clad; instead, the camera is assumed to be a light

source, whereby each pixel in the melt pool is considered as a straight pole. By

projecting a point from the image to the work plane (substrate), one can measure

this shadow length and knowing the origin of the light source (or camera), the height

can be estimated from a simple right-angle triangle.

To illustrate this concept, imagine a cube resting on a surface, with a distinctive

shadow outline, as shown in Figure 5.5. The cube’s height
∣∣AB

∣∣ is related to the

4The wetting-angle is a measure of the angle formed by the clad’s cross-section when intersecting
the substrate (or previous layer). It ranges from 0 to 180o.
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Figure 5.4: Effect of various cross-sections, all having the same width, but different wetting
angles.

shadow’s length,
∣∣BC

∣∣, by the tangent of the angle ∠ACB. More formally,

∣∣AB
∣∣ =

∣∣BC
∣∣ tan(∠ACB) (5.5)

When applied to the melt pool images, the camera’s focal point is considered the

source of light, and the projection of the border onto the substrate is the shadow.

It remains to ensure that the projection represents the actual shadow. For this, the

picture of a 2mm cube is taken from a camera elevated at 15o to the surface. The

border of this cube (outlined in Figure 5.6(a)) is projected onto the substrate, shown

in Figure 5.6(b). The height at different points is estimated based upon Equation

(5.5). The height estimated at points B, G, and F is calculated as 1.93mm, 2.05mm,
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Figure 5.5: Schematic of principle upon which Algorithm 2 is based. The height of the
cube (length of segment AB) is related to the shadow (length of segment BC) by the tangent
of the angle ACB.

and 2.00mm respectively. This represents a very good estimate of the height, and

verifies that the border’s projection represents the object’s shadow.

In this example, the shadow’s length is measured from the projected point (c,

d, or e) back to a location where the height is associated (b, g, or f, respectively).

This shadow forms a segment which is parallel to the camera’s line of sight. This

shadow segment is crucial in estimating clad heights, specifically the location where

the height is assumed.

Figure 5.7(a) illustrates a melt pool’s longitudinal section, parallel to the direction

of motion, ψ. Due to varying heat transfer rates, different solidification rates occur,

causing the interface between liquid metal (melt pool) and solidified clad to be tilted.

In addition, since the substrate is moving, the clad’s actual, solidified height occurs

at the top, right-most point of the clad5. The offset from the laser’s center-point

(Z-axis), namely δo, is where the height occurs. Figure 5.7(b) illustrates a top-view

of the same melt pool where the offset is shown with respect to the laser’s center-

5This is assuming the substrate’s velocity is directed to the left.
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Figure 5.6: Estimation of cube’s height (2mm) using length of shadow. Camera is elevated
13o from the work plane, onto which the shadow is projected. Height estimate at points b,
g, and f are 1.93, 2.05, and 2.00mm, respectively.
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Figure 5.7: Location of melt pool’s height from two different perspectives. Height is at
an offset δo from the laser’s center point (Z-axis), along the direction of motion, ψ.

point (Z-axis). This view is very important since it coincides with the work plane (or

substrate), which is the plane onto which the melt pool border will be projected.

The location of clad height is now determined as being at a distance δo from the

laser’s center-point, in the direction of motion ψ. It now remains to determine the

length of the shadow, which is given by the projection of the melt pool’s border in the

image plane. Figure 5.8 shows a top-view schematic of the proposed shadow length

measurement. Point Q represents the location on the clad where maximal height

occurs, while point R is the laser’s center-point at (0, 0). Therefore, it can be written

that, ∣∣RQ
∣∣ = δo (5.6)

and point Q is given as

Q = (δo cos (π + θψ) , δo sin (π + θψ)) (5.7)
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as also shown in Figure 5.8. The dashed-lined represents the projection of the melt

pool border from the image plane to the work plane. Drawing a line from the camera’s

focal point and through Q yields, point P on the melt pool’s projection. This latter

point represents the end of the shadow segment, while point Q is the height causing

this shadow. Thus, the shadow length S of the clad’s maximal height can be expressed

as:
S =

∣∣QP
∣∣ =

∣∣∣~P − ~Q
∣∣∣

=
√

(Px −Qx)
2 + (Py −Qy)

2

=
√

(Px − δo cos(π + θψ))2 + (Py − δo sin(π + θψ))2

(5.8)

As with the 2mm cube, the height at point Q can be found with Equation (5.5) as:

h = S tan (α)

=
√

(Px − δo cos(π + θψ))2 + (Py − δo sin(π + θψ))2 tan (α)
(5.9)

where α is the angle of the camera with respect to the work plane (or substrate).

Therefore, for every melt pool image, one must determine the coordinates of point

Q, subsequently allowing point P to be found, followed by the clad’s height at this

former point.

In Equation (5.9), all parameters are known with confidence, aside from δo. As

previously discussed, the clad’s height is at an offset δo from the laser’s center-point,
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along the direction of motion ψ. However, it was not mentioned that this offset varies

with substrate velocity. With a higher velocity, the heat transfer rates are faster,

creating a shorter clad. In turn, δo equally becomes shorter. With a slower substrate

velocity, the opposite is true, whereby δo becomes longer. Thus, δo = f(v), with v

being the substrate’s velocity. Since this offset is used to locate point Q in the work

plane, it will be further investigated.

Conducting experiments where the clad’s direction of motion is perpendicular to

the camera’s line of sight (θψ = 90o while ϕ = 0o, i.e. experiment 4 from Table 5.1)

reveals images very similar to Figure 5.7(a). From these, the offset δo is measured for

various velocities. The results indicate a parabolic relationship, as shown in Figure

5.9. The fit appears to be rather good, with an RMS of 3.1 × 10−4. However, when

looking at the standard deviation from the mean values (represented by the error

bars at each velocity), it is seen that there are large deviations at each velocity. This

may be indicative of noisy measurements within the melt pool’s boundary, or subtle

velocity changes that were not measured. In either case, it demonstrates how dynamic

the melt pool is, making it difficult to accurately model the relationship δo = f(v).

For this reason, it is difficult to estimate the position of point Q in Figure 5.8, which

makes it even more difficult to locate point P . Therefore, it is necessary to devise

another method for finding this latter point on the projected melt pool border.

An alternate method for finding the shadow point P is found by analyzing the

border of the melt pool in the camera’s image plane. In Figure 5.10, four images are

shown, whereby β represents the angle between the camera’s line of sight and the

clad’s tangential direction of motion, ψ. Also, the world coordinate system is shown

(x, y, z), as seen by the camera. Based upon expert knowledge, the bold square

represents the location of maximum height of the clad. When this point is projected,

it represents point P . This point can thus be found in the image plane by simply

measuring the height of all border pixels, in the z-axis direction. This is expected

since the axis is normal to the surface.

With this point selected in the melt pool image, it is now transformed into the

work plane through the perspective transformation of Equation (5.1). In the work

plane, the shadow is still measured as the length of segment QP , however, point Q is

found by using the bestfit curve shown in Figure 5.9. Although this is an estimation,
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Figure 5.9: Mean value of offset measured along direction of motion, for various substrate
velocities.

less error is induced since point P is found independently. The final algorithm is

summarized in the following five steps:

1. In the image plane, measure the height of all points, in the direction of the

z-axis. The highest point represents the location of maximum clad height.

2. Project this point onto the work plane with the perspective transformation of

Equation (5.1), which yields the coordinates of point P .

3. Calculate the location of point Q in the work plane. This point is located

along the direction of motion ψ, at a distance of δo. This offset has a parabolic

relationship with respect to the substrate’s velocity, as shown in Figure 5.9.

The final coordinates are given by Equation (5.7).

4. With the coordinates of points P and Q, calculate the shadow length according

to Equation (5.8).
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Figure 5.10: Melt pool borders in camera’s image plane for different tangential directions.
β represents the angle between the camera’s line of sight ϕ and the clad’s direction ψ. Bold
square indicates top-most point on melt pool, used for height measurement.

5. With this shadow length, and knowing α (camera’s angle with respect to the

work plane), the height is calculated from Equation (5.9).
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Figure 5.11: Schematic of third algorithm for extraction of clad height. This algorithm
analyzes the image directly, without need to project coordinates into work plane.

5.2.4 Algorithm 3: Direct Height Estimate from Image

Before addressing the results, a third algorithm is developed. Looking at a cross-

section of the clad, normal to the direction of motion ψ, one can derive a relationship

between the clad’s height, and the height of the melt pool in the image plane. Figure

5.11 illustrates the concept, whereby the height of the clad is estimated as

h = |ae|
= |ac| csc (α)

= RL csc (α)

(5.10)

where L [pixels ] is the height of the clad, as measured in the image plane, R [mm/pixel ]

is the magnification of the camera, and α is the camera’s angle with respect to the

substrate. The clad’s height is measured in the image plane, in the direction of the

z-axis, where the tangential direction ψ is taken as the substrate. It should be noted

that ∠ace is taken as 90o.

This new algorithm is independent of the clad’s cross-section, along with the

maximal height offset along the tangential direction, δo.
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Table 5.1: Series of experiments to validate theoretical development of height equation
(Equation (5.9)).

Experiment β Velocity Experiment β Velocity
No. [deg ] [mm/s] No. [deg ] [mm/s]

1a 0 0.75 3a 60 0.75
1b 0 1.25 3b 60 1.25
1c 0 1.75 3c 60 1.75
1d 0 2.25 3d 60 2.25
1e 0 2.75 3e 60 2.75
2a 30 0.75 4a 90 0.75
2b 30 1.25 4b 90 1.25
2c 30 1.75 4c 90 1.75
2d 30 2.25 4d 90 2.25
2e 30 2.75 4e 90 2.75

5.3 Experiments

To validate the theoretical developments resulting in Equation (5.9), several experi-

ments were conducted at various angles between the tangential direction ψ and the

camera’s line of sight (i.e. varying β). Also, various velocities were selected, resulting

in different clad heights. The experiments are listed in Table 5.1.

The experiments were conducted with a pulse frequency of 90Hz, 4J/pulse, and a

3msec pulse duration, corresponding to approximately 360W of energy. 304L stain-

less steel was delivered to the melt pool at a rate of 2g/min. The interaction zone

was monitored by one Sony SM183 analog camera, whose optical system comprised a

bandpass filtered centered at 700nm and neutral density filter (e.g. welding shield) of

number 8. Images were captured at a rate of 10Hz through a National Instruments

LabView Real-Time system, where the height algorithm was applied offline. In ad-

dition to capturing images, the LabView system controlled a 3-axis motion system

for producing the desired trajectories. The true height of the deposited clads were

obtained through a digital microscope, capable of recording magnified images. These

images were subsequently passed to a simple image processing algorithm, based on

the magnification scale, to measure the height of clads. The accuracy was found to

be ∼ 13µm.
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5.4 Results and Discussion

In the theoretical development of Section 5.2, three height algorithms were discussed.

The first algorithm was set aside due to its sensitivity to melt pool shape, a prob-

lematic issue for real data. The second algorithm was given an in-depth analysis,

upon which practical physical phenomena could be related with. The third algorithm

was a quick glance at another possible technique for height extraction, however, was

taken more as a future recommendation. For these reasons, only algorithm 2 will be

applied to the experiments listed in Table 5.1.

Figure 5.12(a) illustrates both the true and estimated clad heights, with black and

gray curves respectively. The height estimate is obtained from algorithm 2, however,

without including the effect of height offset δo along the clad’s direction of motion

ψ. Two things should be noticed from these results: 1) the estimates follow the

proper dynamics of the true clads and, 2) there is a large bias for all estimates of all

experiments.

First, Figure 5.12(b) illustrates a closer look at the results of experiment 4b,

illustrating that algorithm 2 does provide a good estimate to the true height as

the dynamics are properly captured. This demonstrates that the location at which

the shadow is measured properly relates to the actual clad height. That is, as the

clad grows or shrinks, both the time and magnitude are captured by the algorithm.

However, the bias explains that the length of the shadow, or the origin from which it

is taken, is not correct.

For verification of algorithm 2’s functionality, it was applied to the estimation of

a 2mm-cube, with errors less than 0.07mm (see Figure 5.6 for more details). The

only difference from this experiment to those of Table 5.1 is the addition of a neutral

density shield to the optical system. After a quick investigation, it is concluded that

this piece of glass causes refraction of incoming light, thus translating the melt pool.

Since the length of shadows are measured from the melt pool’s boundary back to

the laser’s center-point, the shadow lengths become longer, and thus, larger height

estimates incur. This was corrected by shifting the laser center-point by an amount

equal to that observed during refraction. Figure 5.13(a) illustrates images with and

without welding shields. A point is identified in both images, which gets translated
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(a) Comparison of height estimate and true height for all experiments listed in Table
5.1. Black: true height, gray: algorithm 2 estimate.

0 5 10 15 20 25
0

0.5

1

1.5

2

C
la

d 
H

ei
gh

t [
m

m
]

True Height
Algorithm 2 Estimate

(b) Result of experiment 4b, illustrating that dynamics are properly estimated using
algorithm 2.

Figure 5.12: Results of applying height algorithm 2 for experiments listed in Table 5.1.
Height estimates do not include height offset δo along direction of motion ψ.
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by (14,8) pixels (see Appendix B for further details on refraction). As a result of

shifting the laser’s centre-point by this latter amount, the corrected height estimates

have an improved accuracy, as shown in Figure 5.13(b). The estimates are better

however, still contain some bias.

This remaining bias can partially be explained by the introduction of height offset

δ into the estimation, as outlined in the development of algorithm 2. As previously

mentioned, the offset is dependent upon two things: the substrate’s velocity v, and

the angle between camera and clad direction, β. The relationship between velocity

and offset was shown in Figure 5.9 as δo = (0.94− 0.39v + 0.05v2), while the effect of

β is given by the cosine of this angle. The author proposes incorporating these two

effects into the final height as follows:

h =


S −

Height Offset δo Along ψ︷ ︸︸ ︷(
0.94− 0.39v + 0.05v2

)
cos (β)




︸ ︷︷ ︸
Adjusted Shadow Length

tan (α) (5.11)

The results of this adjustment are found in Figure 5.14. The new findings have slightly

increased the accuracy of the estimates, however, it appears the values obtained in

Figure 5.9 are not very suitable (i.e. the offset’s relationship to substrate velocity).

This can largely be attributed to the dependence of clad formation on its direction

of motion, relative to that of the powder nozzle. That is, the nozzle utilized in

this setup has a lateral configuration, and therefore, has a preferential direction ψ

for optimal clad formation. This can be seen when comparing clad formations for

constant velocities, however, varying the tangential direction ψ. For example, the first

row of Figure 5.14 corresponds to depositions at a constant velocity of v = 0.75mm/s.

A clad formation of nearly 2mm is achieved for β = 90o, while only 1mm at β = 0o.

Larger clads require larger melt pools, which in turn have larger offsets δo at which

the actual height is found. Thus, since the experimental setup is not capable of

producing similar clad heights for varying tangential directions, the offset δo should

be a function of height, as opposed to substrate velocity.

An additional attempt at understanding the problem of estimate bias was done

through empirical measures. That is, each height estimate was manually offset by

68



No Shield With Density Shield

(287,100)
(279,86)

(a) Image taken of 2mm-cube, with and without neutral
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(b) Adjusted height estimates due to refraction.

Figure 5.13: Results of applying height algorithm 2 for experiments listed in Table 5.1.
Estimates have been adjusted due to unexpected refraction through the optical system.
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Figure 5.14: Height estimate using algorithm 2, with the inclusion of height offset δo

along the clad’s direction of motion ψ. The final offset removed from the shadow’s length
is:

(
0.94− 0.39v + 0.05v2

)
cos (β).

a given amount, namely dh. For example, looking at the results of experiment 1a

of Figure 5.13(b), dh was set to −0.5mm. With this information gathered for all 20

experiments, it was now possible to relate the shift in height estimate back to the

height’s offset δo along ψ, such that:

δo = − dh

cos (β) tan (α)
. (5.12)

A plot of these results is found in Figure 5.15, for angles of 0o through 60o versus

their respective velocities. Since the offset δo does not come into play for an angle of

β = 90o, it was not included. Also, it should be noted that experiments 3b and 3d

produced abnormal results, and were omitted from this graph. There are two main

features to notice from this graph: 1) the relationship between offset and velocity,
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Figure 5.15: Calculation of bias required to obtain the nearest estimate possible to true
clad height. Each test was adjusted by a specific amount, as shown in the graph. Tests 4
were not included, as the offset does not come into play, while tests 3b and 3d provided
abnormal results and were equally omitted.

and 2) the magnitudes of height offsets.

First, as the velocity increases, the offset also increases, which is not anticipated.

One possible reason for this unexpected trend is camera focus. When the optical

system is setup, all adjustments are made with no density shield. When this shield is

placed on the camera’s lens, it is virtually impossible to see through the latter under

normal lighting conditions. This makes it very difficult to properly align the camera,

and set its focus. However, this last fact may be causing the problem. The camera’s

lens is focused at the laser center-point, without density shield. As this is added to

the hardware, the camera’s focus changes, as noticed when placing a shield of lesser

density. Therefore, images are definitely out-of-focus, by an unknown amount. Now,

this out-of-focus adds a hazy region around the melt pool, for example, of 10 pixels

in width. Assuming two melt pools of largely different sizes, say 20 and 70 pixels in

height (corresponding to approximately 0.5 and 2mm, respectively). The addition of

10 pixels due to an out-of-focus camera has a much larger effect on the small clad

(∼ 50%) than with a larger clad (∼ 14%). This may be the cause of height offsets
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becoming larger for smaller clads. The rationale is that a smaller clad will have a

smaller height offset, however, if there is an additional constant hazy region around

this pool, the error is much larger, hence corrupting the trends, as seen here.

Second, the magnitudes of the offsets are much larger than previously observed. In

Figure 5.9, the maximum offset has a magnitude of approximately 0.67mm. However,

in the latest trends of Figure 5.15, the maximum offset is roughly 3.85mm. In general,

offsets are many times greater than those previously observed. Remembering that the

height offset δo essentially represents the length of the melt pool along its direction of

travel ψ, it is difficult to understand how offsets of several millimeters can exist. This

may be an indication that melt pools observed with the Sony SM183 analog camera

may not be correct.

As a quick verification of these findings, a cubic function was fit to the height

offset data of this latter figure. The resulting curve is now used in algorithm 2’s

height estimate, as shown in Figure 5.16. As seen, the estimates are much better, as

expected since the bias has essentially been eliminated afterward. It would be very

interesting to see if one is capable of reproducing these results.

The overall errors associated with each version of algorithm 2 are shown in Fig-

ure 5.17. As expected, the greatest errors occur for the original estimates, with no

compensation for refraction through the density shield (triangle-series). As the re-

fraction is accounted for (square-series), and with the introduction of height offset δ

(pentagon-series), the errors reduce. By increasing the magnitudes of δo and revers-

ing the expected trend of δo-versus-v, the errors are drastically reduced (circle-series).

Table 5.4 summarizes these errors at each step.

As seen in both the figure and table, the maximum errors occur as the angle β

is reduced. This is expected as the height offset is largest at β = 0o. At the other

extreme, the height offset does not influence the estimates for β = 90o, and therefore,

estimates should be very good at this angle. The fact that δ does not influence

estimates at β = 90o should be utilized to ensure that the remainder of the algorithm

is correct. Looking at the largest error in this series of experiments, namely 1a, the

average error is 15%, or 0.30mm. This would initially seem to be a good estimate,

however, when looking at the standard deviation of this error, 0.04mm, one can see

that this is not random error, but rather, biased error. Thus, for simplest case of

72



Table 5.2: Estimate error in percentage of true height. Referring back to Figure 5.16,
Original = red series, With Refraction = green series, With Refr. & offset δo 1 =
blue series, and With Refr. & offset δo 2 = black series.

Original
With With Refr. With Refr.

Refraction & offset δo 1 & offset δo 2

T
es

t
1

a -95 -53 -38 -21
b -116 -64 -49 -26
c 100 -52 -42 -3
d 292 -185 -166 -20
e -633 -422 -393 -5

T
es

t
2

a -49 -19 -9 1
b -45 -14 -6 6
c -83 -38 -28 4
d -179 -108 -97 -13
e -369 -236 -220 -6

T
es

t
3

a -40 -13 -8 -2
b 1 23 26 31
c -63 -21 -16 1
d -197 -112 -104 -46
e -306 -150 -140 -15

T
es

t
4

a -6 15 15 15
b -13 14 14 14
c -30 9 9 9
d -38 8 8 8
e -53 4 4 4
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Figure 5.16: Height estimation using algorithm 2. These estimations have been optimized
such that an attempt has been made to eliminate the bias. This was done by manually
calculating the bias after estimation, and recalculating the function δo = f(v).

β = 90o, there still exists bias in the estimate. This further solidifies the thought that

melt pool images are not properly being captured.
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Figure 5.17: Percent errors associated with algorithm 2’s estimation of true clad height.
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further explanation on each series.
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5.5 Conclusions

In this chapter, melt pool boundaries were analyzed to extract height measurements

of deposited clads. Three techniques were developed: intersection of two projections,

shadow length of one projection, and direct height estimate from one image. In the

first two algorithms, the perspective transformation was utilized to convert melt pool

coordinates from the image plane to a work plane, coincident with the substrate upon

which it was being deposited.

The first algorithm consisted of capturing two independent images of a melt pool,

and projecting them onto the work plane. Due to the physical setup of the cameras,

the front edge was common amongst the two images, and could therefore be used

to extract the clad’s width. From this width, an assumed elliptical cross-section for

the clad allowed one to analytically determine the latter’s height. The problem with

this technique was the reliance upon the melt pool having a perfect shape near the

substrate’s intersection. This was not always the case, as the cross-section often

varied, creating a false estimate of the clad’s width, and therefore height. In theory,

this algorithm should work, however, it was not practical.

In the second algorithm, the perspective projection of one camera was found to

represent the melt pool’s shadow, casted on the substrate. Knowing the angle of the

camera, it was therefore possible to measure the length of the shadow, and using a

right-angle triangle, calculate the height of the melt pool. The algorithm was tested

with the picture of a 2mm-cube, where it was revealed that measurement of shadow

lengths were crucial. This lead to the inclusion of a height offset parameter, δ, which

was the result of a constant height offset δo along the clad’s tangential direction of

motion ψ.

The last technique involved a quick analysis of the melt pool within the image

itself. With the camera’s resolution calculated, it was possible to measure the height

of the clad, back to a line representative of its tangential direction of motion. This

technique was not investigated for situations other than β = 90o, and could be inves-

tigated in the future.

The second algorithm provided the simplest, yet most realistic model of height

calculation, and was therefore applied to a set of 20 experiments. These were divided
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into four groups, whereby a constant angle between camera and tangential direction

of motion was established (from β = 0o to 90o). Within each group, five experiments

were conducted, each at varying substrate velocities (0.75-2.75mm/s), which provided

clads of differing heights.

The results revealed two important factors: first, refraction occurs through a

neutral density shield, added to the optical system to reduce the light intensity seen

by the analog camera, and second, the height offset δ is not properly modeled. The

addition of a neutral density shield caused refraction of the incoming melt pool’s

light, shifting the laser’s center-point, causing large errors. After this correction, it

was noticed that the dynamics of the algorithm were very good, whereby clad growing-

shrinking was very well estimated by the algorithm, however, with a constant bias.

This bias was a function of both substrate velocity v and relative direction of motion β.

Adjusting for height offset by introducing δ = (0.94− 0.39v + 0.05v2) cos (β) reduced

the bias, however, not sufficiently. By analyzing the bias for each experiment, an

opposite trend was noticed: as substrate velocities increase, so does the height offset.

This was the opposite of a trend previously observed by measuring clad offsets from a

camera perpendicular to clad motion. This should therefore be further investigated,

as the measurement of the clad’s shadow is crucial to removing this bias.

Table 5.4 provides a list of experimental errors for all tests, and all modifications

to the algorithm. The last two columns represent the best errors obtained. In the

last column, the bias was calculated after the experiments were finished, and then

removed, which is why the errors are very low. The third column has the most

realistic errors, whereby results are best for β = 90o (4-15%), and worst for β = 0o

(38-393%). The algorithm should therefore be tested for angles near β = 90o since

the clad’s offset has little to no effect on the results. With this condition properly

accounted for, one can investigate the effect of δ for angles nearing β = 0o.

In addition, for all angles of β, the algorithm appears to work best at low velocities,

which correspond to large clad formations. Large clad formations result in large melt

pools in the captured images, which may lead to certain hypotheses as to why the

algorithm has such a large bias. For instance, if the image is not in focus, this

will result in a melt pool slightly larger in circumference. With smaller melt pools,

this represents a much larger percentage of its area, as opposed to large melt pools.
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Thus, the error is also larger for smaller melt pools. In either case, this may provide

a working range for the algorithm (v=0.75–1.75mm/s), or valuable insight as to

improvements for the algorithm, such that it can perform well at higher velocities.

78



Chapter 6

Conclusions and Recommendations

6.1 Conclusions

In this thesis, analog cameras were used to extract height measurements of deposited

clads in the laser cladding process. The steps involved in such a procedure can be

categorized into three components: light analysis, melt pool segmentation, and feature

extraction.

In Chapter 3, light irradiated from the process zone was analyzed, where it was

determined to be dominated by blackbody radiation. From Planck’s equation for

blackbody radiation, and the non-linear attenuation of the CCD-sensor, theoretical

trends of light, as observed from captured images of the process, were established

(Figure 3.3). Experiments were conducted such that light from specific wavelengths

was observed by a UNIQ 600CL digital camera. The captured images were analyzed

by calculating optimal threshold levels, a measure of light intensity from an image.

As predicted, the captured light followed the bell-shaped trends, peaking at approxi-

mately 700nm. For this reason, and due to stable light conditions, narrow bandpass

filters centered at this latter wavelength were added to the camera’s optical hardware.

In Chapter 4, images were taken through a pair a image processing techniques,

whereby the final output was a series of coordinates, in the image plane, of the

melt pool’s border. First, a grayscale image was thresholded by use of binarization

techniques. The main goal of binarization was to properly associate pixels to either the

background, or the melt pool. The main difficulties arose due to a hazy region around
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the latter’s border. Two techniques were investigated: Otsu and fuzzy entropy. Otsu’s

method largely concentrated on threshold levels near 50%, resulting in inclusion of this

unwanted hazy region. On the other hand, minimization of fuzzy entropy produced

threshold levels near 75%, which was able to properly segment the melt pool, with

very little hazy region. After the image has been binarized, it remains to extract

coordinates of the melt pool’s border. For this, two categories of techniques were

investigated: derivate- and comparison-based. Derivate strategies required a larger

number of computations as spatial gradients were found at each pixel location. Also,

border pixels did not arise in sequential order, but in a raster-manner. On the other

hand, binarization was not required for this technique. Comparison-based methods

performed very little computation at each pixel location (only comparisons of pixel

values), and output pixel coordinates in a logical order, as the border is being traced

in a clockwise fashion. For this reason, it was selected as the optimal technique to

extract pixel coordinates.

In Chapter 5, the extracted melt pool coordinates were transformed into real-world

coordinates, by use of a perspective transformation. This transformation produced

the melt pool’s shadow on the plane upon which it was being deposited. With the

source of this shadow known (i.e. the camera), and measuring the length of the

shadow, back to the location of clad height, it is possible to estimate the height of

the object. This was confirmed through measurement of a 2mm-cube, with very good

accuracy (< 3.5% error). Applying the algorithm to melt pool images revealed the

need to further investigate the location at which clad height is measured. Due to the

symmetry of a 2mm-cube, it is rather easy to determine the location of height. For

melt pools, an extra parameter, δ, was subtracted from the shadow’s measurement

to incorporate the effect of clad height being offset from the laser’s center-point. A

relationship was developed such that δ decreased with both velocity v and the angle

between camera and clad’s direction of motion, β. 20 experiments were conducted,

varying both v and β. The results revealed very good dynamics, whereby excellent ap-

proximation of the shrinking-growing of the clad was accomplished. However, a large

bias existed, varying with both parameters. Analyzing this bias revealed an opposite

trend for δ. That is, δ decreased with increasing β, as expected, however, increased

with faster velocities, which was not expected. This last comment required could be
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attributed to the camera being out-of-focus, but should be further investigated to see

if the trends can be reproduced.

Experimental errors were found to be lowest for β = 90o, ranging from 4 to

15% error. On the other hand, as β decreased to zero, so did the accuracy of the

estimates. Largest errors were found at β = 0o, ranging from 38 to 393%. The errors

were almost completely attributed to the bias in the estimates, as standard deviations

were extremely small.

Although the algorithm should work for all angles β, these preliminary findings

illustrate that better results will be obtained for angles approaching 90o. Thus, keep-

ing the camera as perpendicular as possible to the deposition track will, in the case of

these results, provide the best estimate of the solidified height. Also, a working range

for the substrate’s velocity is in order, such that keeping these lower than 1.75mm/s

provides the best estimates, for all angles of β. In addition, due to the use of an

optical density shield causing refraction, it is required to perform identification of

this translation for each experimental setup.

6.2 Recommendations

From the results of Chapter 5, the large problem with the algorithm is the amount

of bias in the estimate. The bias appears to be related to the height offset δo along

the direction of motion ψ. This is relatively clear since the algorithm is capable of

working with the image of a 2mm-cube, where the height offset is very clear. Thus,

two conclusions arise regarding the origin of this bias: first, the images captured

are possibly corrupt, and second, further investigation of verification of the height

offset are required. The following recommendations are largely based on these two

observations.

1. Images captured with the UNIQ 600CL digital camera had much better qual-

ity. First, the camera has a digital gain, which capable of reproducing the

effects of the neutral density shield, without refraction. Also, this will elimi-

nate the problem of images possibly being out-of-focus. Second, images have

more information as saturation is less prominent. With the Sony SM183 analog
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camera, the melt pool is essentially white, with very little hazy region, while

the background is black. The images also have a “banding” effet, which is said

to be a cause of CCD-saturation, as mentioned by the supplier in the provided

document. On the other hand, the digital camera provides a better grayscale

image, where previously solidified clads can be seen alongside the melt pool.

This almost guarantees that the melt pool’s size is properly captured. The only

disadvantage to these digital cameras are the sudden “explosions” that occur.

These abnormal phenomena should be further investigated, especially with help

from the supplier.

2. The laser’s center-point often appears just outside the melt pool. This should

be further investigated by properly selecting trajectories of varying directions.

That is, one trajectory of interest is to deposit a clad with β = 90o, where the

two line-up properly. Then, a sudden of β = 0o should provide good insight

as to where the center-point is located, depending on the direction of travel.

At this point, the phenomena is associated with refraction through the optical

hardware, however, such tests can fully verify the hypothesis. This type of

testing requires further programming of the NI LabView software as only simple,

one point trajectories can be accomplished at this moment.

3. Further investigation of the height offset δo along the direction of travel ψ should

be done, as this appears to be the main contribution to the bias. Placing a

camera perpendicular to the direction of travel should provide a good view of

the process, and with various parameters such as velocity and nozzle placement,

should yield a better understanding of this parameter. Possibly investigating

the relationship of this offset with respect to estimated height could also produce

a good result.

4. Including two cameras into the algorithm will not increase this algorithm’s

accuracy. This is due to the fact that the same algorithm is applied but to a

camera with a different view of the melt pool. As shown in the results, there is

only a small range of camera angles which yield good results. Therefore, adding

a second camera with a drastically different view of the melt pool will only

provide worse estimates. On the other hand, addition of a second camera may
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help for a different algorithm, which properly combines the information from

each view into one estimate. However, from the results shown in this thesis, it

appears one camera is sufficient since the majority of the error is attributed to

a bias.

5. The nozzle placement is crucial for all types of experiments, and more attention

should be placed on creating a proper fixture for fine tuning. Also, it should be

adjusted for optimal catchment efficiency, such that it is virtually independent

of deposition trajectories.

6. The algorithm lends itself well to application in real-time. Each sub-component

is rather simple, where simple comparison-instructions are used to obtain the

information. First, a look-up-table can be used to greatly reduce the speed at

which fuzzy thresholds are obtained. On a QNX platform (Pentium 4, 2.8GHz

single processor), speeds upwards of 100Hz were obtained. In addition, the

border tracing algorithm requires even less time to operate as it merely uses

comparisons at each pixel location. Next, conversion from image plane to world

plane need only be done for the one pixel selected as the height’s shadow point.

Last, a few equations of simple multiplication and addition are performed to

yield the height. Thus, the algorithm itself is very rapid. However, the limiting

factor is the capture-rate of the cameras. With two UNIQ 600CL digital cameras

on the same QNX platform, speeds approaching 40Hz where obtained, without

saving images to memory. On the NI Real-Time platform, with comparable

processor speed, the is drastically reduced to around 15-20Hz.
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Appendix A

Solution of the Perspective

Transformation Matrix, H

A perspective transformation is defined as the homogeneous transformation of a two-

dimensional point from plane 0 to plane 1. The transformation is accomplished

through a homogeneous transformation matrix H, such that

P1 = HP0 (A.1)

where,

P0 =




x

y

1


 , P1 =




WX

WY

W


 , and H =




a b c

d e f

g h 1


 .

The original point P0 has coordinates (x, y), which are placed into homogeneous

format, as shown. The homogeneous matrix H is defined up to scale, with eight

unknown parameters. The final result is a homogeneous representation of the original

point, in the second plane, namely P1. This point is equally defined up to scale, which

is given by W . Therefore, to obtain Cartesian coordinates of the latter, one must

divide P1 by its third element:

(X,Y ) =

(
P1(1)

P1(3)
,
P1(2)

P1(3)

)
(A.2)
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It remains to solve for the transformation matrix H, which is uniquely defined for

a set of two planes1. First, Equation (A.1) is decomposed such that,




WX

WY

W


 =




ax + by + c

dx + ey + f

gx + hy + 1


 . (A.3)

Combining this last result with Equation (A.2), one can express the components of

the output P1 as 


X

Y


 =




ax+by+c
gx+hy+1

dx+ey+f
gx+hy+1


 . (A.4)

Decomposing this vector equation as two separate equations, such that all unknown

parameters are in present, yields:

xa + yb + 1c + 0d + 0e + 0f − xXg − yXh = X

0a + 0b + 0c + xd + ye + 1f − xY g − yY h = Y.
(A.5)

This can now be placed into matrix form, such that all input values are in matrices

U and Y , and the unknown parameters are in a column-vector A. This is expressed

as:

[
x y 1 0 0 0 −xX −yX

0 0 0 x y 1 −xY −yY.

]

︸ ︷︷ ︸
U




a

b

c

d

e

f

g

h




︸ ︷︷ ︸
A

=

[
X

Y

]
.

︸ ︷︷ ︸
Y

(A.6)

1The following derivation is taken from Hartley and Zisserman [27]
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A least-squares optimization is used to solve for the unknown parameters, such that

A = (U ′U)
−1

U ′Y, (A.7)

and hence the solution for our homogeneous transformation matrix H.

Since H has eight unknown parameters, one must have a minimum of eight data

points. However, as seen, each point-correspondence creates two linearly independent

equations, as shown in Equation (A.6). Therefore, it is only required to have a

minimum of four point-correspondences to yield an exact solution. It is recommended

however to have more than four, such that a better approximation may be found of

the desired region.

Applying this to the problem at hand, solving for the homogeneous transformation

matrix for the purpose of projecting melt pool borders from the image plane (taken

as plane 0) to the substrate, or work plane (taken as plane 1), is summarized in the

following four steps:

1. Place a minimum of four points on the work plane. Record the coordinates

of all points using a well-defined Cartesian coordinate system and origin (i.e.

intersection of laser with substrate, where alignment of X and Y axes are parallel

to the motion of the CNC table beneath). These points can be placed on the

surface by ‘zapping’ a point with the laser.

2. Setup the camera in the desired location, ensuring full view of all points. Take

a picture of plane 1. Record the coordinates of the points as seen through in

plane 0 (i.e. from the picture taken).

3. Match the points from the work plane to the image plane (point correspon-

dence). For each point correspondence, construct the associated U and Y ma-

trices of Equation (A.6). Each new point correspondence increases the number

of row-vectors in the matrices (by a factor of 2).

4. Solve for the unknown parameters (A-matrix) with Equation (A.7).
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Appendix B

Refraction of Melt Pool Irradiation

Refraction occurs when light travels from one medium to another. In the case of laser

cladding, light irradiates from the melt pool and travels through the atmosphere. It

then comes in contact with the welding shield, which is made of glass. The refraction

can be measured through Snell’s law, which states that:

n1 sin θ1 = n2 sin θ2, (B.1)

where n is the index of refraction for mediums 1 and 2, and θ represents the angle

with respect to the surface’s normal, where subscripts 1 and 2 represent the incident

and refracted light rays, respectively. Thus, if an incident ray is perpendicular to the

surface (or in this case, the welding shield), then no refraction occurs.

The series of experiments listed in Table 5.1 were subjected to a translation due

to refraction of the incoming light. At first, it was thought that the welding shield

was not properly connected to the optical hardware, and thus light rays would hit

the surface at an angle other than 90o, causing refraction. However, additional ex-

periments were conducted whereby clear glass and this welding shield were further

investigated. With the clear glass perpendicular to the camera’s lens, no refraction

could be observed. However, when replaced with the welding shield, refraction was

observed as shown in Figure 5.13(a). One possible explanation lies in light rays be-

ing emitted at all angles. When these rays travel toward the camera, a small angle

occurs, causing refraction. If the index of refraction n2 is large enough, a substantial
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Figure B.1: Trajectory of light irradiating from melt pool.

refraction could occur. However, for common types of glass, the index of refraction

is near 1.50, and as will be shown shortly, causes little deviation of the incoming ray.

Figure B.1 illustrates the basic trajectory taken by a light ray, with and without

refraction through a different medium. As seen, refraction causes the point A′ to

shift, yielding A′′. Equations of thin lenses are:

1

S1

+
1

S2

=
1

f
, and

A

A′ =
S1

S2

,

where S1, A and A′ can be measured, leading to:

S2 = S1
A′

A
, and f =

(
1

S1

+
A

A′S1

)−1

.

From snell’s law, and assuming the density filter has thickness t, the deviation of
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incoming rays to the thin lens is given as

δ = t

(
sin (θ1 − θ2)

cos (θ2)

)
, (B.2)

where the refracted angle is:

θ2 = sin−1

(
n1 sin θ1

n2

)
.

Finally, using similar triangles between the thin lens and image plane, the final shift

observed between A′ and A′′ is given as:

A′′ − A′ = δ

(
S2 − f

f

)
(B.3)

From this equation, assuming common indices of refraction for air (n1 = 1.00) and

glass (n2 = 1.50), incoming rays should be have θ1 = 15o to the welding shield’s

normal. This would cause a shift of approximately 14 pixels, as observed in the

experiments. This is a rather large angle of incidence in regards to the overall mag-

nitudes. The camera is approximately 500mm from the melt pool, which only has

dimensions of ∼ 2mm. The camera’s field of view is roughly 10×10 [mm], and there-

fore, irradiation from the melt pool should arrive at the camera nearly parallel to the

its surface, with very little angle.
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Appendix C

True Height Measurement of Clad

To evaluate the accuracy of the height algorithm it is necessary to have a reference

height. This reference corresponds to the true height of the solidified clad, which

is obtained by placing the latter beneath a microscope, where digital pictures are

taken. Because the microscope magnifies the clad, multiple pictures must be taken

of the overall length. Thus, each section of the clad is individually analyzed. Figure

C.1 illustrates three samples images taken of a magnified clad. When the substrate

and clad are placed under the microscope, a bright light is placed beneath the two,

shinning directly upward toward the camera. This produces a very binarized image,

whereby the clad is very dark while the remainder of the image is light.

Each image is then thresholded, where a static threshold level is selected based

Picture 1 Picture 2 Etc.

Figure C.1: Images captured from a microscope of a sample clad. Multiple images must
exist due to the magnification and the length of the clad. A bright light is placed beneath
the sample, thus enhancing the view of the clad.
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Picture 1

Substrate

Threshold
@ 70%

h = 56 pixels

Figure C.2: A static threshold of 70% is used to binarize a portion of Picture 1. The
substrate is then located, shown here with a thick red line. The height at each column in
the image is then measured, in terms of pixels.

upon expert knowledge. The substrate is located, where a reference line is drawn

on the image. The clad’s height is then obtained by counting the number of pixels

from substrate to the clad’s top surface. This is done for each column in the picture.

Figure C.2 illustrates the concept for Picture 1.

To convert heights from pixels to millimeters, a reference object is placed under

the microscope, where an image is captured with the same magnification used for

the clad pictures. From this image, the magnification can be obtained from the ratio

of the reference object’s height in millimeters, to the height in the image in units of

pixels. For the sample image shown in the previous figures, the ratio corresponds to

13µm/pixel, yielding a height of 0.728mm for that shown in Figure C.2.
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