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Abstract 

The clinical standard method of measurement for clinical visual sensitivity is currently Standard 

Automated Perimetry with a size III target (SAP III). However, there are many factors that can make 

the results unreliable. While there is literature that confirms the benefit of increasing target size for 

measurement of visual sensitivity in the later stages of glaucoma, there is little literature that looks into 

the effect of increasing target size for the measurement of visual sensitivity in early glaucoma. 

Furthermore, the effect of increasing target size for the measurement of visual sensitivity in normals is 

largely undefined. We performed 2 studies to determine the effect of increasing target size for the 

perimetric measurement of both normals and in participants with very early glaucoma. 

In the first study (chapter 2), 40 normal participants (one study eye) performed 3 full threshold 

visual fields at 2 separate visits, no more than 90 days apart. The target sizes used were size III (0.43° 

diameter), size V (1.72° diameter) and size VI (3.44° diameter). We investigated the interaction of the 

different target sizes by regressing the average field threshold for each participant against age in both 

decibels and candelas. We found an expected difference in sensitivities between the different target 

sizes for the decibel analysis, but an unexpected difference in thresholds between the target sizes for 

the candela analysis. Possible reasons for this unexpected difference in total light energy are discussed.  

In the second study (chapter 3) we investigated the effect of increasing target size in 17 

participants with very early glaucoma (perimetric mean deviation of equal to, or better than, -4.0dB). 

Each participant underwent 3 full threshold visual field tests, using 3 different target sizes, at 2 

separate visits (no more than 90 days apart). We computed empirical probability plots for each 

participant and target size: Size III (0.43° diameter), size V (1.72° diameter) and size VI (3.44° 

diameter), where normal percentile limits were based on the first study - chapter 2. We then compared 

the number of normal and abnormal test locations at each defect depth (5%, 2%, 1% and 0.5%) 

between SITA-Std and the 3 different target sizes (full threshold) using a repeated measures ANOVA. 

We found there to be no statistical difference in the number of abnormal locations detected between 

SITA-Std and the 3 target sizes. However, when analysing the empirical probability plots there was an 

apparent clinical difference between the locations of abnormality detected between SITA-Std and the 

larger size VI target, with the size VI giving less consistent defect locations. 
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Chapter 1: Literature Review 

 

1.1 Glaucoma 

 Glaucoma, the world’s second most prevalent cause of blindness
1
, is an umbrella term for a range of 

progressive ocular diseases. The definition of the glaucomas has changed over the years, with a current 

definition being that it is a range of diseases that arise as a result of various risk factors, including 

increased intraocular pressure (IOP), with a common consequence of optic neuropathy and ultimately, 

loss of visual sensitivity
2
. The types of glaucoma are many, but almost all occur in the older 

generations and can include primary open angle glaucoma, secondary open angle glaucoma, including 

pigmentary glaucoma and pseudoexfoliation glaucoma, and primary or secondary closed angle 

glaucoma. Due to the high prevalence of the glaucomas and the severe visual consequences, it is 

important that progression of this disease can be monitored accurately, so that treatment can be 

administered and adjusted effectively.  

 

1.2 Structure and Function  

In the literature, the evidence for a structure-function relationship when measuring defect in glaucoma 

is much debated. Harwerth et al.
3
 investigated the correlation between structural and functional 

measurements of retinal ganglion cells (RGCs) and their axons in adult rhesus monkeys, both for the 

normal population and monkeys that were laser treated to scar their trabecular meshwork and induce 

high IOP (experimental glaucoma). When the functional Standard Automated Perimetry (SAP) 

measurements and the structural Optical Coherence Tomography (OCT) measurements were 

converted to a shared parameter of RGC populations, the measurements were correlated for both the 

controls and the experimental glaucoma populations. They suggested that, to accurately gauge the 

correlation between retinal function and structure measurements, there should be a common 

denominator, such as RGC population, to compare the 2 methods of neural loss. Furthermore, they 

proposed that the discrepancy between function and structure measurements in other studies could be 

due to the lack of sensitivity of many of the instruments that measure either parameter: It is thought 

that OCT is much more sensitive to detecting the small, early RGC changes, whereas SAP is more apt 

for detecting gross defects in advanced glaucoma due to its large clinically useful range (dynamic 

range)
3
. In 2010, Harwerth et al.

4
 further explored these concepts and proposed a model that could 
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estimate with reasonable precision the neural loss from both visual sensitivity measurements and 

retinal nerve fibre layer (RNFL) thickness in patients with glaucoma using time domain OCT and 

SAP. However, the authors did state that the relationship should be reconsidered using newer 

technology to measure the RNFL thickness, such as a spectral domain OCT (SD-OCT), to increase the 

accuracy and precision of the model.  

More recently, another study
5
 showed that there is a weak linear relationship between 

structural and functional damage, even in suspect/early glaucoma, when comparing visual sensitivity 

measured by SAP and rim area (RA) measured by Cirrus high definition spectral domain optical 

coherence technology (Cirrus HD-OCT; Carl Zeiss Meditec, Dublin, CA, USA). Optic disc RA 

measurement appeared to have a stronger correlation to SAP measurements than RNFL thickness in 

this study. To second the study by Nilforushan et al., Leite et al.
6
 used very similar instruments (Cirrus 

SD-OCT and SAP) to show that there was a linear correlation with a weak –moderate strength of 

relationship (r
2
 = 0.203) between structural and functional damage in early/suspected glaucoma 

patients when perimetric sensitivity was converted to a linear scale. The authors suggested that, had 

they also included patients with advanced glaucoma, the results may have shown a much stronger 

correlation. This comment was based on the results of a relatively recent study which found a stronger 

structure/ function correlation when including a proportion of more advanced glaucoma participants
7.
 

There have, however, been studies to suggest that structural damage in glaucoma precedes 

functional damage
8-10

. Sommer et al.
8
 suggested that 60% of glaucomatous eyes showed RNFL 

damage before visual field loss. However, these results are difficult to compare with previous studies 

as their results relied upon 2 examiners measuring both the functional and structural loss with a 

Goldmann perimeter and a Zeiss fundus camera respectively. In essence, this study relied heavily on 

the experience of the examiners. A later study by Matsumoto et al.
9
showed, by a more objective 

method, that RNFL thickness was already decreased in participants with glaucoma before visual 

sensitivity became reduced when using the Humphrey Field Analyzer (HFA) and an updated version 

of the Nerve Fiber Analyzer (NFA, GDx Version 1.012) to measure visual field loss and RNFL 

thickness respectively. However, this study only measured patients with primary open angle glaucoma 

(POAG) and normal tension glaucoma (NTG), so did not encompass the full range of the glaucomas. 

Interestingly, another recent study evidenced that not all types of optic disc damage resulting from 

glaucoma exhibit the same rate of structural or functional progression
11

. This study showed that 

patients with focal optic disc damage have a more rapid decline in visual field loss and optic disc 

change than other types of optic disc damage, such as diffuse or sclerotic optic disc damage. However, 
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despite a more rapid structural and functional loss in focal disc damage, only the functional loss was 

shown to be statistically significant
11

. The results of this study highlight that all types of glaucoma 

should be included in the study sample to gain a non-biased result across the range of glaucomas. The 

lack of structure-function correlation found in a proportion of the literature could also be due to the 

lack of a common denominator when comparing the variables, as proposed by Harwerth et al.
3
.  

However, despite the discrepancy in the literature, there are studies which present evidence 

that functional damage is correlated with structural glaucomatous damage
4, 5, 7

, although the 

conclusions that are drawn depend on the precision and accuracy of the instruments used to measure 

both structural and functional damage and a common denominator to link the two variables being 

measured 
3
. In short, although there is still debate as to the exact relationship, functional damage is 

known to be correlated with structural damage in glaucoma. For this reason, it is important that 

functional progression is monitored accurately at all stages of the disease. 

 

1.3 Measuring Functional Loss in Glaucoma 

Visual sensitivity, measured by a perimeter, has been, and still is, the clinical standard for evaluating 

functional progression of the disease. More specifically, Standard Automated Perimetry with a white 

Goldmann size III target (SAP III) presented on a white background is the current clinical standard 

when measuring functional defects in glaucoma. SAP III has been shown to be a compromise between 

blur 
12

, accuracy of result 
13

 obtained and effective dynamic range (EDR)
14

. An early study
13

 showed 

that smaller targets measure absolute scotomas more accurately. In this study the blindspot, used as an 

absolute scotoma, was measured with Goldmann stimuli I through V. They demonstrated that larger 

targets measured the blindspot as more relative and less defined than smaller targets and attributed this 

to the increasing light scatter with the larger targets. They suggested that, as a greater amount of light 

(i.e. larger stimulus) passed through the optic media of the eye, there was increased scattering of the 

target, creating a larger halo of light. In normal eyes, lateral inhibition would eliminate these haloes. 

However, this mechanism is not active at borders of seeing/non-seeing retina (i.e. scotomas). The 

authors’ conclusion was that, when detecting scotomas that are small in spatial area, the smallest target 

size possible should be used. While Anderson et al. also agreed that smaller targets gave a more 

accurate measurement of scotomas; they determined that larger targets were less influenced by dioptric 

blur in uncorrected peripheral refractive error
12

. One other advantage of using a larger target is that 

EDR increases with increasing target size
14

. Therefore, SAP III is a compromise between maximising 
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EDR, optimising accuracy of defect detection and dioptric blur effects and is currently used as the 

clinical standard to measure visual sensitivity in both healthy patients and in ocular pathology, such as 

glaucoma. 

However, when measuring visual sensitivity by means of a perimeter, there has been much 

research into factors that can cause the results to be unreliable. More recent literature that has revisited 

this area of research shows that these factors include, but are not restricted to, learning effects
15, 16

, 

fatigue
15

, pupil size
17, 18

, media opacities
19

, foveal and peripheral dioptric blur
12

, level of instruction 

given
20

 and both short term
21

 and long term fluctuation
22

. In addition, due to the limited number of 

stimuli presented at each location in the interests of a maintaining a test that is of reasonable length, 

the staircase threshold method may possibly measure inaccurate results. One other main concern is 

that variability with SAP III is shown to be high in areas of retinal pathology
22, 23

 resulting in poor 

accuracy when monitoring progression of visual sensitivity in these areas
24

. An early study by Heijl et 

al.
23

, measuring perimetric test/re-test variation in 51 patients with glaucoma using SAP III, showed 

that variation is a product of both defect depth and eccentricity. For participants with initial visual 

field loss in the range of approximately -8 to -18dB, the 95% prediction interval of re-test thresholds 

varied across almost the whole extent of possible sensitivities. Furthermore, with shallower defect 

depth, variation increased as a factor of eccentricity. In light of these results, the authors concluded 

that the greater the retinal damage, the larger the test/ re-test variation, although they also showed that 

variation in much greater abnormality reduces. Furthermore, in areas of shallow defect depth, variation 

is greater in the peripheral field. A recent study
22

 that looked at long term fluctuation (LF) in 

Humphrey Field Analyser (HFA) SITA standard perimetric testing across different stages of glaucoma 

(classified using the GSS2 scale), confirmed this early study by Heijl et al., showing that LF increased 

up to stage 4 in a curvilinear fashion. Interestingly, at stage 5, they also found a decrease in LF and 

suggested this could be due to the scotomas presenting in more advanced glaucoma being much more 

absolute and less relative, showing less fluctuation. These results by Fogagnolo et al. do show that LF 

becomes, in general, greater as glaucoma progresses. Henson
25

, using frequency of seeing curves to 

measure perimetric intra-test variability, also concluded that variability increases with decreasing 

retinal sensitivity. With these findings in mind, it is vitally important that ways are found to decrease 

the variability of results in these damaged retinal areas to enable an accurate prediction of disease 

progression within glaucoma.  
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1.4 Increasing Target Size 

There have already been promising results from studies that have, in recent years, revisited the effect 

of target size on perimetric variability, suggesting that increasing target size in SAP decreases 

variability in areas of manifest retinal disease
26-28

. One study showed that, when testing 10 normal 

participants using an HFA perimeter with Goldmann target sizes I - V, the size IV and V stimuli 

resulted in a reduced short term fluctuation while the smaller targets (size I and II) had an increased 

short term and total fluctuation
21

. The authors did, however, state that as their study did not include 

any patients with glaucoma or elderly patients, further investigation would be needed to determine if 

these results held true for these additional groups. In 1997, Wall and colleagues began a series of 

investigations looking at the effect of target size on perimetric results in patients with glaucoma
14, 26-30

. 

Their first study in this series
26

 investigated how increasing target size in automated perimetry affected 

perimetric variability in patients with well established POAG. They showed, using frequency of seeing 

curves, that the standard deviations of intra-test variability were significantly reduced for the size V 

target compared to size III or size I target for patients with glaucoma at abnormal test locations. This 

study, however, was carried out under quite artificial test conditions that did not mimic real life. Each 

patient was only tested in 2 test locations (controls: central and peripheral locations; glaucoma 

patients: normal and abnormal locations), with 205 stimulus presentations varying in stepwise 

threshold at each location. A more recent study by Wall et al.
28

 tested 120 patients with glaucoma 

(encompassing a range of severities) and 60 age-matched controls with 3 different perimeters (the 

HFA perimeter was utilized once with a size III target and once with a size V target). This 

investigation showed that re-test variability with the perimeters which employed larger target sizes 

was lower in areas of reduced sensitivity than those that employed smaller target sizes. Matrix 

perimetry (target size of 4°diameter) and motion perimetry (range of target sizes between 0.1 and 8° 

diameter), showed no clinically meaningful increased variability in areas of decreased sensitivity, such 

as that of both SAP measurements. Furthermore, SAP V (with a target size of 1.72 °diameter) showed 

reduced variability in areas of lower sensitivity compared to SAP III (with a target size of 0.43 

°diameter). A later study also promoted the use of SAP V by showing that the EDR for SAP V is 

about 1 log unit greater than that of SAP III
14

. There is also evidence for a similar precision of testing 

between the 2 target sizes when monitoring moderate glaucoma
27

. In 2013, Wall et al. continued this 

research, investigating the effect of a target size V over a target size III on variability of mean defect
29

. 

They found that there was only small decrease in variability of mean defect with size V target 

compared to a size III target. Nevertheless, these results serve to add to, not take-away from, the 
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evidence that is gathering to indicate that SAP V would be more accurate in detecting functional loss 

in moderate/established glaucoma, compared to SAP III
14, 26-28

. To take the research one step further, 

Wall et al. also looked at the performance of target size VI compared to size V and III
30

. When 

comparing the amount of abnormal test locations for a group of 120 glaucoma participants 

(encompassing all stages of the disease) between the 3 different target sizes, they found that the size V 

target was the most sensitive. When stratified into MD bins, the size V target was still the most 

sensitive for the lower MD bins, while size VI was the least sensitive. This suggests that there is a cut-

off point where a further increase in stimulus size can be detrimental to the perimetric results.   

 There is also evidence in the literature that enhanced perimetry results with increasing target 

size is not confined to SAP, but has been demonstrated in other types of perimetry. Quaid and 

Flanagan
31

 used normal participants to show that, with flicker defined form perimetry (FDF), as 

stimulus size increased, variability within subjects decreased and sensitivity increased at all 

eccentricities. In their 2009 study, Wall et al.
28

 showed decreased variability, not only with SAP V 

compared to SAP III, but with the increased target size in matrix and motion perimetry in areas of 

retinal defect in participants with glaucoma. The results from the literature described here show 

promise that, regardless of perimetric method, increasing target size could be the key to obtaining 

more repeatable perimetry results, especially in retinal areas that have been subject to neuronal 

damage.  

 There is certainly evidence to suggest that a larger size V target could be beneficial in 

measuring retinal sensitivity more accurately across the progression of glaucoma
14, 26-29

, and early 

evidence to suggest that increasing the target size to a size VI may be detrimental to detection of 

perimetric abnormality in disease
30

. However, the current literature looks at these effects across all 

stages of the disease, with a focus on moderate to established glaucoma. This research must be 

stretched further to investigate the effect of increasing target size on very early glaucoma. 

 

1.5 Spatial Summation 

Spatial summation is the summing of information over space. In the case of the retina, light energy 

over a certain area will be combined
40

. Spatial summation occurs across the retina and increases 

relative to the size of receptive fields with increasing eccentricity. Ricco’s Law states that, within each 

critical area (Ricco’s Area), as threshold intensity doubles, size of the target halves to maintain the 

quanta of energy reaching the retina
32

. As target size increases above the critical area incomplete 



 

 7 

summation occurs, relative to Piper’s Law
32

. Ricco’s area is dependent on the size of receptive fields 

in the retina, and has been shown to enlarge with increasing retinal eccentricity for both s-cones and l-

cones when each type of cone was isolated and tested for foveal and peripheral spatial summation 

characteristics. The authors suggested that this was due to larger receptive fields and more 

convergence of photoreceptors in the periphery
33

 and suggested it is likely that Ricco’s area is dictated 

by density of RGCs in each area of the retina, explaining why Ricco’s area increases with increasing 

retinal eccentricity. 

 Interestingly, it has been shown that, in infants, a greater extent of visual field is measured 

with a 6° diameter target, compared to a 1.5° diameter target
34

. These results did not hold true for 

healthy adults though, and one reason for the difference was suggested to be due to infants having 

larger spatial summation properties in the peripheral retina compared to adults. These findings could 

be very relevant when measuring the visual field of participants with glaucoma, especially since 

spatial summation is a characteristic that has been shown to change in patients with glaucoma
35

. If 

differing spatial summation properties can affect the measurement of visual fields in infants
34

, then the 

measurement of visual sensitivity in patients with glaucoma could also be adapted if there exists 

changes in spatial summation properties in the ocular disease.  

 There is also evidence in the literature to support changes in Ricco’s area with age, although 

this literature is conflicting. The outcome of one early study showed that there was no change in 

spatial summation across different age groups
36

. The results of this study were limited, however, since 

spatial summation was only measured along the superior temporal oblique meridian in all participants. 

A much more recent study investigating the full extent of the human retina, shows that the density of 

neurones in the retina declines per year, although this effect is much more pronounced when 

considering the entire retina than it is in the foveal regions
37

. This conclusion is consistent with the 

findings of Malania et al. in 2011, who also broadened their study to look at the effect of RGC loss on 

spatial summation
38

. These authors showed that spatial summation increased with age in the 

parafoveal area, due to loss of RGCs. While they explained the significant parafoveal increase in 

spatial summation of the older participants by a related loss of RGCs, they justified the preserved 

spatial summation properties in the fovea by the minimal age-related loss of RGCs in the foveal region 

of the retina. 

Bearing this in mind, it is also thought that there could be alterations in receptive fields and 

spatial summation properties as a result of the progressive loss of RGCs in glaucoma
35

, although there 

is literature that rejects this theory
39

. Battista et al.
39

 investigated how spatial summation differed 
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across the magnocellular (M) and parvocellular (P) pathways, and also between controls and patients 

with primary open angle glaucoma (POAG). Although this study did show that spatial summation 

characteristics differ across the M and P pathways, the elevation in threshold with differing stimulus 

size when measured in controls and POAG subjects was not significant. The authors did, however, 

acknowledge that if they had used a wider range of stimulus sizes they may have obtained a different 

result. Redmond et al.
35

 undertook an experiment to monitor how Ricco’s area and spatial summation 

changes within the early stages of glaucoma. By comparing healthy subjects to patients with early 

glaucoma, they showed that there was a significant increase in size of Riccos’ area for achromatic and 

s-cone specific stimuli in the early glaucoma participants. They concluded that Ricco’s area becomes 

enlarged even at the early stages of the disease and suggested this may be a result of each receptive 

field needing a critical number of RGC to enable the stimulus to be detected. It was also suggested by 

these authors, that increasing target size in relation to the enlargement of Ricco’s area in patients with 

glaucoma would be beneficial in encompassing areas with a greater number of healthy RGCs, despite 

inevitable glaucomatous loss of RGC. This result, however, is confined to early glaucoma and has not 

yet been proven in the later stages of the disease. Further study needs to be carried out in this area to 

confirm these results, but these initial studies show promise that increased areas of spatial summation 

in early glaucoma could serve as a means of explaining the reason for more accurate perimetry results 

with larger stimulus sizes when measuring functional loss in glaucoma. 

 

1.6 Summary and Conclusion 

In conclusion, there is evidence to show that increasing target size from Goldmann size III to 

Goldmann size V decreases perimetric variability in both normals
21

 and patients with moderate to 

advanced glaucoma
26, 28

. Furthermore, EDR is also greater with a size V target
14

. It is possible that 

decreased variability with increasing target size can be attributed to the spatial summation properties 

changing with progression of glaucoma
35

. Volbrecht et al.
33

 suggested that spatial summation 

properties change with loss of RGCs to maintain a constant density of neurones within the critical 

area, which could explain this phenomenon. 

Despite these findings, SAP III is currently used as the clinical standard to measure visual 

sensitivity, and there is evidence to show that use of larger target sizes reduces the detection accuracy 

of relative scotomas
13

. Since early functional change in glaucoma presents as relative scotomas and 

this research has mainly focused on patients with moderate to advanced glaucoma, there needs to be 
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further study at looking into whether increasing target size in early glaucoma is beneficial in 

decreasing variability, while also sensitive enough to detect relative scotomas. 
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Chapter 2 

The Effect of Increasing Target Size on the Measurement of Visual 

Sensitivity in Normals: Defining Normal Limits 

Sarah L. Bishop, Yuan-Hao (Derek) Ho, John G. Flanagan 

2.1 Overview 

Purpose: To investigate the effect of increasing perimetric target size for the measurement of visual 

sensitivity in normals. 

Methods: Forty normal participants were recruited and 3 visual fields were performed on one study 

eye at 2 separate visits, no more than 90 days apart. The target sizes used were size III (0.43° 

diameter), size V (1.72° diameter) and size VI (3.44° diameter).We investigated the interaction of the 

different target sizes by regressing the average field threshold for each participant against age in both 

decibels and candelas. 

Results: We found an expected difference in sensitivities between the different target sizes for the 

decibel analysis, but an unexpected difference in thresholds between the target sizes for the candela 

analysis (total light energy). When values were converted back to size III dBs, the minimum fitted 

threshold difference in total light energy was 4.68dB and the maximum fitted threshold difference was 

11.65dB  

Conclusions: We suggest that the difference in total light energy between the 3 different target sizes 

was mainly due to changing properties of retinal spatial summation with many factors. 

2.2 Introduction 

Standard Automated Perimetry (SAP) with a Goldmann size III target (0.43° diameter) is the clinical 

standard method for measuring visual sensitivity. It has been regarded as the clinical standard method 

after a series of research papers showed it to be a compromise between the influences of dioptric blur 

(larger stimuli better)
12

, accuracy of result (smaller stimuli better)
13

 and effective dynamic range 

(EDR) (larger stimuli better)
14

. However, even the gold standard size III target can be unreliable. 

There are many factors that can cause perimetric results to be unreliable: some physiological (pupil 

size
17, 18

 and media opacities
19

) and some variable individual factors (learning effects
15, 16

, fatigue
15

, 

foveal and peripheral dioptric blur
12

, level of instruction given
20

 and both short term
21

 and long term 
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fluctuation
22

). In addition, there is a very real concern around increasing variability of perimetric 

results as defect depth deepens in patients with glaucoma
23

. 

In light of this, there have been a number of studies that have recently revisited the 

relationship between increasing target size and perimetric variability in both glaucoma participants
26-

28
, and controls

21
. It is thought that spatial summation properties apply when altering target size to 

determine visual sensitivity. For a stimulus that falls within a receptive field up to 10minutes of arc, 

the light energy is summed, complete spatial summation occurs and Ricco’s Law applies: As target 

size doubles, the light energy halves to maintain a constant total amount of light energy
32

. As the target 

size increases to an area greater than that which will fall within the retinal receptive field, incomplete 

spatial summation occurs, where the product of the target area to a coefficient value of k (0 < k< 1) 

and target luminance maintains a constant total amount of light energy. The value of the coefficient k 

varies with the degree of spatial summation. This theory is the basis of Goldmann’s Law of constancy, 

which is applied in perimetry and is important when looking at the effect of increasing target size in 

perimetry.  

When investigating the effect of perimetric target size on healthy participants, larger targets 

(size IV – 0.86° diameter and V – 1.72° diameter) showed less short term fluctuation, but a similar 

long term fluctuation to the size III target
21

. The authors suggested, therefore, that there would be no 

benefit in changing target size from the gold standard size III target. However, this was a small study, 

with a sample of 10 participants and the authors did acknowledge the limitations of the young average 

age of their study participants (29.1 ± 6.1yrs). There have also been a series of studies that have shown 

there to be benefits to increasing target size when measuring perimetric threshold in patients with 

moderate to advanced glaucoma
14, 26-28

. These benefits include increased effective dynamic range 

(EDR)
14

 and reduced variability in areas of greater defect depth
26, 28

 coupled with a similar precision of 

testing between target size III and target size V
27

. Recently, the research was extended to look at the 

effect of a size VI target (3.44°diameter), compared to a size V and III target across the range of 

glaucoma severities
30

. The results of this study found the target size V to be most sensitive with size 

VI being the least sensitive to detecting abnormality. 

It is important now to look in greater detail at how increasing target size affects perimetric 

measurement in controls, extending the research to include a greater number of participants and a 

wider age-range.  
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2.3 Methods 

2.3.1 Participants 

We tested one eye of 40 healthy participants, recruited from the School of Optometry and Vision 

Science, University of Waterloo, Canada. The participants, which were stratified by age (10 year 

bands), had a mean age of 58.9 years and ranged from 41 to 76 years. Eighteen participants were male 

and 22 participants were female. All participants underwent baseline measurements on both eyes and 

ocular health screening to ensure they were eligible to be included in the study. These measurements 

included: Visual acuity, refraction (if needed), perimetric testing using a Humphrey Field Analyzer 

SITA-Std 24-2 test, optical coherence tomography using the Cirrus Optical Coherence Tomographer; 

Carl Zeiss Meditec, intraocular pressure measurement by Goldmann applanation tonometry and a 

fundus photograph.  Participants were included if the study eye had a refractive error equal to or less 

than 5DS and 2.50DC with a best corrected visual acuity of 6/9 or better. They were excluded if they 

had any history of ocular surgery, or trauma, or any ocular/ systemic disease that could affect the 

visual field outcome in the study eye. They were also excluded if they had a diagnosis of amblyopia in 

the non-study eye. If both eyes were eligible for the study, the right eye of odd-numbered participants 

and the left eye of even-numbered participants were enrolled. 

2.3.2 Visual Testing 

Since all participants were naïve perimetry observers, each participant attended 2 study visits, no more 

than 90 days apart. The first visit served as a practise visit where the participants were familiarized 

with the visual field testing in order to mitigate learning effects. At each visit, 3 perimetric tests, each 

with a different target size, were carried out on the study eye using appropriate near refractive 

correction as defined by the perimeter. All perimetric testing was carried out using Standard 

Automated Perimetry, 24-2 full threshold with the Humphrey Field Analyzer (HFA; Carl Zeiss 

Meditec). The stimulus sizes used for the 3 tests at each visit were Goldmann stimulus size III (0.43° 

diameter, 4mm
2
), size V (1.72° diameter, 64mm

2
) and size VI (3.44° diameter, 256mm

2
) respectively. 

The order of the visual field tests was randomised for each participant, but maintained for the second 

study visit. A minimum rest break of 5 minutes was given between tests. Tests were repeated if the 

false positive rate was greater than or equal to 15%. In addition, 3-dimensional imaging of the optic 

disc and macula was performed using the Cirrus high definition optical coherence tomographer (Cirrus 

HD-OCT; Carl Zeiss Meditec) for both eyes on the first visit and the study eye on the second visit. 
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2.3.3 Statistical Analysis 

As the first visit was a practise session, we analysed only the second visit perimetry results for each 

target size. We removed all blindspot locations (co-ordinates (15,3) and (15,-3) for OD and (-15,3) and 

(-15,-3) for OS) and, at the locations where 2 threshold readings were measured, we used the second 

measurement. To assess the interaction between the 3 different target sizes, we took each participant’s 

average threshold (over the entire field in decibels) and converted the value to candelas (measurements 

converted from decibels (dB) to apostilbs (asb), from asb to candelas per square metre (cd/m
2
) and 

finally from cd/m
2
 to candelas (cd) – equations in appendix

A
). This conversion was carried out in order 

to obtain a linear scale and total light energy for each target size, eliminating spatial summation 

effects. We then regressed these average thresholds (in both dB and cd) against age for each target size 

To compare the difference in total light energy between the target sizes, we took the minimum and 

maximum fitted difference between the target sizes in cd and converted the values back to size III dB 

to give a meaningful value. 

2.4 Results 

When measured in dB, figure 2-4-1 shows that, as target size increased, average threshold also 

increased (light intensity decreased). Based on spatial summation properties and Goldmann’s law of 

constancy, we would anticipate that, when converted to total light energy (threshold in cd), the 

luminous intensity for each target size would be equivalent. However, figure 2-4-2 shows that as target 

size increased, total light energy also increased. Table 1 outlines the minimum and maximum average 

fitted threshold differences, calculated in size III dB, between each target size when the thresholds 

were converted to cd (values based on robust fit). The threshold difference varied between 4.68 and 

11.65 size III dBs. The largest difference was between the size III and size VI target, but there was a 

noticeable difference between all fitted values. Additionally, when the data was plotted by concentric 

zone for the 3 target sizes (central 10°, 10-16° and 16-24° ), figure 2-4-4 shows that this trend held true 

within each concentric zone. Furthermore, figure 2-4-2 shows that the difference between average 

fitted thresholds (total light energy in cd) increases with age, especially for the size VI target. When 

fitted by age, figure 2-4-3 shows that, up to the age of 65 yrs, the fitted threshold difference in cd (total 

light energy) between the 3 target sizes was linear. As age increased above 65yrs, we can see that there 

was a stepwise increase in average threshold for all 3 target sizes. When using a robust fit, the 

difference in total light energy was still constant between target size III and V, but there was a slight 

increase in fitted difference as age increased between target size III and VI and target sizes V and VI 
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 When comparing inter-individual variation, the size III target showed the greatest inter-

individual variation when average threshold was measured in dB (figure 2-4-1). However, when 

converted to total light energy (threshold in cd), the size III target had the least inter-individual 

variation and the size VI target showed the greatest inter-individual variation (figure 2-4-2). Size V 

inter-individual variation was similar when measured in dB and when converted to cd. 

 Finally, we also measured the actual size of each of the targets as displayed in the HFA (table 

2). We found all the stimuli to be very slightly smaller than the expected area. This decrease in area 

was between 3.02% and 5.04% smaller than the expected measurement. 
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Figure 2-4-1: Graph to show comparison of full field average perimetric sensitivities for size III, 

V and VI targets in decibels 

 

 

Figure 2-4-2: Graph to show comparison of full field average perimetric thresholds for size III, 

V and VI targets in candelas (regular fitting; dotted line, robust fitting; solid line) 
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Figure 2-4-3: Graph to show optimal linear fits of full field average perimetric thresholds for 

size III, V and VI targets in candelas for the both participants under 65yrs , and over 65yrs 

(regular fitting; dotted line, robust fitting; solid line) 

 

Figure 2-4-4a: Graph to show comparison of average concentric zone perimetric threshold for 

III, V and VI targets in candelas 
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Figure 2-4-4b: Graph to show robust fitting for the comparison of average concentric zone 

perimetric threshold for III, V and VI targets in candelas 

 

 

 Target sizes Difference (in size III dB) 

Difference @ 41yrs of age III to V 5.96 

III to VI 11.25 

V to VI 5.28 

Difference @ 76yrs of age III to V 6.97 

III to VI 11.65 

V to VI 4.68 

Table 1: Table corresponding to figure 2-4-2 to show the difference, in size III dBs, between the 

robust fitting for each target size taken at 41 yrs and at 76 yrs where the difference was 

minimum and maximum, respectively, in cd. 
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Area (mm
2
) 

Target size III Target size V Target size VI 

Projected  Actual (mean 

average of 3, 

 % decrease 

from expected) 

Projected  Actual (mean 

average of 3, 

 % decrease 

from expected) 

Projected  Actual (mean 

average of 3, 

 % decrease 

from expected)  

4 3.81, 4.75 64 60.77, 5.04 256 248.26, 3.02 

Table 2: Table to show the expected and actual measurements of the HFA target sizes on the 

HFA perimeter that we used for the study 

2.5 Discussion 

When considering average full field perimetric threshold in dB, our study shows that as target size 

increased, stimulus intensity decreased (figure 2-4-1). These results seem to agree with the spatial 

summation theory (Ricco’s Law of energy conservation)
32

. However, when these values were 

converted to total light energy (threshold in cd), thus removing the effects of spatial summation, we 

found there to be an increase in average threshold value (figure 2-4-2). We are aware that the dB 

threshold values can only be as accurate as 0.5dB due to the increment step size of the HFA. This 

0.5dB value varies over the range of light intensities once converted to a linear scale. However, at 

30dB, a 0.5dB difference is 1.382 x10
-6

cd
, 
which is a considerably smaller value than any difference 

between fitted values in figure 2-4-2. Therefore, we can ascertain that there is an actual difference 

between the light intensities of the different target sizes, even when removing the effects of spatial 

summation. 

 We can speculate on the reasons that these differences in total light intensities may occur 

between target sizes. Firstly there are potential errors that may cause this discrepancy between the 

values: Calibration of the HFA may have initially been miscalculated, or the apertures in the target 

wheel may have been misjudged at production. In this case, we would expect the size V and VI 

apertures to be too small (participants would be observing the light to be too bright – the smaller the 

aperture the brighter the target would be seen due to the spatial summation theory). When measuring 

the actual stimulus sizes, as displayed by the HFA, we found the target sizes to be only very slightly 

smaller than expected (values in table 2). Since the size differences between expected and actual are 

minimal, and since the size III target was also slightly too small, this in itself cannot wholly account 

for the difference in total light energy we found between the target sizes. Furthermore, we also found a 
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slightly greater difference in the total light energy with increasing age between the size III and V target 

and the size III and VI target (figure 2-4-2). Figure 2-4-3 shows that there was a stepwise increase in 

average threshold as age increased to 65yrs. This suggests a further reasoning behind the difference 

between target sizes. 

Another explanation could be due to the characteristics of spatial summation, and therefore, 

Goldmann’s theory of energy conservation, changing across the retina. Goldmann perimetry, where 

Goldmann’s law of energy conservation was originally formed is a kinetic perimetry test measuring 

visual sensitivity of the peripheral retina. Conversely, the HFA-FT perimetry testing we used in this 

study is a static perimetry test and only measures the central 24° of the visual field.  

 We know that in some areas of the retina there is complete spatial summation (when a 

stimulus of less than 10 minutes of arc falls directly in a receptive field). However, when the stimulus 

exceeds the size of the receptive field, incomplete spatial summation occurs
32

. Goldmann’s Law of 

energy conservation applied in perimetric testing is defined by the following equation:  

A
k
 x L= C 

Where: A= area of target (mm
2
); k= coefficient between 0 and 1 indicating whether spatial summation 

is complete or incomplete (dependent on many factors), where 1= complete spatial summation and 0= 

incomplete spatial summation; L=luminance of target (asb); C=constant 
40

 

The accepted value of k for perimetric testing is a constant value of 0.8. However, we know 

that the degree of spatial summation changes with many factors, thus in reality, the value of the 

coefficient k is far from constant. It is known that the extent of spatial summation changes with 

eccentricity
36

. Dannheim also confirmed that the value of k changes as target size differs. Furthermore, 

across individuals, the shape of the spatial summation curves change, showing that the value of k not 

only differs within individuals, but also between individuals
36

. Another paper demonstrated a change 

in spatial summation properties in the parafoveal retinal area, likely explained by age-related loss of 

retinal ganglion cells and subsequent re-organisation of the receptive fields
38

. Since our study 

encompassed both change in target size and many participants of the older generation, it is highly 

likely that the value of the coefficient k differed not only across participants, but also within 

participants. This in itself could have caused the unexpected difference in total light energy between 

target sizes.  

If we take the current value of the coefficient k used for the size III target to be correct (where 

k=0.8), we can calculate the expected values of k for the size V and VI targets, based on an expected, 

known area for each stimulus. This can be calculated for age below 65yrs (since, when converted to 
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cd, we know that the threshold step change in cd is constant between the 3 different target sizes, thus 

the value of k will also be constant across this age range within target size). Using the fitted threshold 

values, where threshold is measured with a linear scale (asb), and applying Goldmann’s Law of 

Energy Conservation (p21), the following k values are established: For the size V target, k = 0.6, for 

the size VI target, k = 0.5. Where age increases above 65yrs, k is clearly affected to a greater degree 

and with an inconsistent step change. 

Conversely, if we take the value of the coefficient k to be 0.8 and assume that it is correct 

across all target sizes, we can calculate the resulting area of target sizes (if the size III target is taken to 

be 4mm
2
). Using Goldmann’s law of energy conservation (on p21), the following areas are 

established: Size V target = 21.5mm
2
, Size VI target = 29.1mm

2
. 

Therefore, if the value of k was taken to be correct at 0.8 across all target sizes, and the 

difference in total light energy was due to engineering/calibration error, the size of the stimuli would 

have to be a great deal smaller to compensate (as shown above). Since the actual areas of all the 

stimuli were only slightly smaller than the expected measurements (table 2), the difference in total 

light energy we found between the 3 different target sizes is likely mainly due to the changing value of 

the coefficient k across target sizes. The reality that all the stimuli are very slightly too small (and to a 

very similar degree) could account for an overall increase in total light energy, but could not account 

for the overall difference between the target sizes. 

The difference in inter-individual threshold variability found between target sizes in this study 

is also interesting. Gilpin et al.
21

 looked at the effect of increasing target size on perimetric variability, 

although thresholds were only analysed in dB. They found larger target sizes (size V and VI) to have 

greater inter-individual variation. In our study, we found target sizes V and VI to have lower inter-

individual variability when measured in dB (figure 2-4-1), but size VI to have the largest inter-

individual variation when measured in cd (figure 2-4-2). The difference between our findings and 

Gilpin et al’s results is likely due to Gilpin’s study being performed on a smaller sample of younger 

participants.  We also found target size V to have the most stable inter-individual variability when 

thresholds are converted from dB to cd. 

Based on our results, target size V seems to have benefits over the gold standard target size III 

when used to measure visual sensitivity in normals, since it has the lowest inter-individual variability 

when thresholds are measured in dB and converted to total light energy (cd). However, SAP III is the 

current gold standard method of perimetry measurement due to it being a compromise between the 

influences of dioptric blur
12

, accuracy of result
13

 and effective dynamic range (EDR)
14

 and the value of 
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the coefficient k is based upon these gold standard conditions (currently taken as k=0.8). However, 

since we know that the value of k changes both between and within participants as factors such as age 

and target size vary, there must be further work to verify the adjustment needed for k as these factors 

change to ensure equality of total light energy across the targets sizes.  

In summary, our research shows that increasing target size does not give equality of results, 

even when converted to total light energy and this inequality increases as age increases above 65yrs. If 

the target sizes are accurately calibrated then it is likely due to the changing value of the coefficient k 

(determinant of the completeness of spatial summation in any given situation). The stimuli being 

slightly too small may also account for some overall increase total light energy. Therefore, before 

another target size is deemed as a rival for the current gold standard, there must be further research to 

ensure the stimuli are accurately calibrated and verify the optimum value of k for each stimulus size, 

by eccentricity and age. 
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Chapter 3 

The Effect of Increasing Target Size on the Detection of 

Abnormality in Very Early Glaucoma 

Sarah L. Bishop, Natalie Hutchings, John G. Flanagan 

3.1 Overview 

Purpose: To investigate the effect of increasing target size on the measurement of visual sensitivity 

in very early glaucoma.  

Methods: Seventeen participants with very early glaucoma (perimetric mean deviation of equal to, or 

better than, -4.0dB) were recruited and 3 full threshold visual field tests were performed on one 

study eye of each participant using 3 different target sizes, at 2 separate visits (no more than 90 days 

apart). We compared the normal and abnormal test locations between SITA-Std and the full 

threshold target sizes III (0.43° diameter), V (1.72° diameter) and VI (3.44° diameter) by computing 

empirical probability plots for each participant and target size (normal percentile limits defined from 

normal data in chapter 2). We then compared the number of normal and abnormal test locations at 

each defect depth (5%, 2%, 1% and 0.5%) between SITA-Std and the 3 different target sizes using 

repeated measures analysis of variance. 

Results: We found there to be no notable difference in amount or location of defect between SITA-

Std and the size III full threshold perimetric testing, confirming equivalence in the tests. We also 

found there to be no difference in number of abnormal points between SITA-Std and the 3 different 

target sizes (p = 0.066). However, the locations of abnormal points for the largest size VI target were 

not found to be correlated well with those of SITA-Std. 

Conclusions: Our results suggested that, although there was statistically no difference in the number 

of abnormal points detected with the larger target sizes, the size VI target was not as sensitive as 

SITA-Std due to a discrepancy between the locations of abnormal points detected. 

3.2 Introduction 

Functional progression of glaucoma, across all stages, is routinely monitored by using the Standard 

Automated Perimetry, size III target (SAP III – 0.43° diameter, 4mm
2
). This is the gold standard 

perimetric measurement, since it was shown to be a compromise between the effects of peripheral 
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dioptric blur
12

, accuracy of result
13

 and effective dynamic range (EDR)
14

. However, there is literature 

that shows perimetric accuracy with a size III target to decrease notably as defect depth increases
22, 

23
. In light of this, there have been a number of research papers that have investigated ways to 

increase the accuracy and precision when measuring functional defect in glaucoma. Recently, the 

relationship between increasing target size and measurement of visual fields has been re-examined in 

participants with glaucoma. This literature has shown many benefits to increasing target size up to a 

size V target (1.72° diameter, 64mm
2
). These benefits include decreased variability as defect depth 

increases
26, 28

 and greater EDR
14

. There is also literature showing the precision of testing to be 

similar between the gold standard size Goldmann III target and the larger Goldmann size V target
27

. 

Recently a paper looked at the effect of a size V and VI Goldmann (3.44° diameter, 256mm
2
) target 

on the measurement of visual fields in participants with all stages of glaucoma
30

. This research 

showed that target size V had a slightly better sensitivity to detecting abnormality in glaucoma 

patients, both across the range of severities and in relatively early defect.  

When using Goldmann target sizes, Goldmann’s Law of constancy is applied (based on 

Ricco’s Law of spatial summation): Within a given area below 10 (Ricco’s area), the total light 

energy needed to produce a response (area to the power of a coefficient k multiplied by luminance) 

is constant
40

. The value of the coefficient k varies between 0 and 1, depending on the degree of 

spatial summation. Ricco’s area has been shown to increase in the periphery of a healthy retina for 

both s-cones and l-cones
33

. The literature also suggests that Ricco’s area increases, due to loss of 

retinal ganglion cells, (RGCs) in both age
38

 and in glaucoma
35

, to maintain a similar number of 

RGCs in a receptive field. Redmond et al.
35

 suggested that the larger targets are able to still fall 

within Ricco’s area and be detected by a greater number of ‘healthy’ RGCs, resulting in a more 

reliable result with a larger target size.  

Increasing target size has largely been shown to be of benefit when measuring visual 

sensitivity in glaucoma
14, 26-28

, although there is question as to whether increasing further to a size VI 

is detrimental to the sensitivity of the perimetric test
30

. However, previous research has mostly been 

performed using participants with moderate to late stage glaucoma, and must be extended to looking 

at the very early stage of the disease. This study will investigate the effect of target size III, V and VI 

on the measurement of visual sensitivity in the very earliest stages of glaucoma. 
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3.3 Methods 

3.3.1 Participants 

One eye of 17 participants, with very early glaucoma, was tested. All types of glaucoma were 

included, as long as treatment had been started. These participants were recruited from the Ocular 

Health Clinic of the School of Optometry and Vision Sciences, University of Waterloo, Canada and 

from Optometry and Ophthalmology Offices in Kitchener-Waterloo, Ontario. The glaucoma 

participants had a mean average age of 63.2 years and ranged from 48 years to78 years. Nine 

participants were male and 8 participants were female. The participants were stratified into 4 groups 

according to mean deviation (MD), where MD was better than -2dB, measured by the Humphrey 

Field Analyzer (HFA; Carl Zeiss Meditec), with an additional MD group between -2dB and -4dB. In 

addition, participants were required to have a refractive error equal to or less than 5DS and 2.50DC 

with a best corrected visual acuity of 6/9 or better. They were excluded if they had any history of 

ocular surgery, or trauma, or any ocular/ systemic disease that could affect the visual field outcome, 

other than glaucoma, in the study eye, or a diagnosis of amblyopia in the non-study eye. All 

participants were experienced in perimetry testing. 

3.3.2 Visual Testing 

Each participant attended 2 study visits, where the first visit served as a practice to mitigate learning 

effects. The visits were no more than 90 days apart. At each visit, 3 perimetric tests, each with a 

different target size, were carried out using appropriate near refractive correction, as defined by the 

perimeter. All perimetric testing was carried out using Standard Automated Perimetry, 24-2 full 

threshold with the Humphrey Field Analyzer (HFA; Carl Zeiss Meditec). The stimulus sizes used for 

the 3 tests at each visit were Goldmann stimulus size III (0.43° diameter, 4mm
2
), Goldmann size V 

(1.72° diameter, 64mm
2
) and Goldmann size VI (3.44° diameter, 256mm

2
) respectively. The order 

of the visual field tests was randomised for each participant, but maintained for the second visit. A 

minimum rest break of 5 minutes was given between tests. Tests were repeated if the false positive 

rate was greater than, or equal to, 15%. In addition, 3-dimensional imaging of the optic disc and 

macula was performed using the Cirrus high definition optical coherence tomographer (Cirrus HD-

OCT; Carl Zeiss Meditec) for both eyes on the first visit and the study eye on the second visit. 
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3.3.3 Statistical Analysis 

As the first visit was a practise session, we used the second visit perimetry results for each target 

size. All blindspot locations were removed (co-ordinates (15,3) and (15,-3) for OD and (-15,3) and (-

15,-3) for OS) and, at the locations where 2 threshold readings were measured, we used the second 

measurement. To establish the limits of normality for each full threshold target size we used normal 

data collected from 40 participants (Chapter 2) to determine percentile limits for each location (52 

locations) and target size (3 target sizes). We then plotted the thresholds for the participants with 

early glaucoma for each location (in decibels - dB). From these graphs, we determined normal and 

abnormal locations, taking defect depth into consideration, for every participant (n=17) and all 

stimulus sizes. We then computed empirical probability plots for all participants and all target sizes. 

We also compared the results to the SITA-Std plots obtained at recruitment. A repeated measures 

analysis of variance (rANOVA) was used to compare the number of normal and abnormal test 

locations detected by SITA-Std and each of the 3 target sizes at each defect depth across 

participants. 

3.4 Results 

Figure 3-4-1 (A-D) shows an example of the empirical probability plots computed to compare the 

normal and abnormal locations between SITA-Std and all target sizes for each participant (see 

Appendix for all plots). When comparing the probability plots of the SITA-Std and the 3 different 

full threshold Goldmann target sizes (target size III, size V, size VI), we found there to be no 

significant difference in the number of normal or abnormal test locations (5%, 2%, 1% and 0.5% 

deviations from normal) across target sizes (rANOVA; Target Size*Abnormality F(12, 240)=1.708, 

p=0.066; Figure 3-4-2). The empirical probability plots also show that SITA-Std and the size III full 

threshold detected defects in similar locations for each participant, since 78% of the time (mean 

average; range of 63% to 96%), both size III perimetric tests detected equivalent locations as normal 

or abnormal for a single participant (see figure 3-4-3). Since there was no difference between the 

number of normal and abnormal locations detected, and since these locations are similar, we can 

confirm that the SITA-Std database and the calculated full threshold size III tests are comparable.  

Although the statistical tests showed that there was no significant difference in the detection 

of visual sensitivity when using the larger target sizes compared to the current gold standard size III 

target, the empirical probability plots showed an important clinical observation that must be taken in 

to account. When comparing the distribution of abnormal locations across the visual field, SITA-Std 
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and size III full threshold detected similar abnormal locations (see figure 3-4-3). The size V target 

appeared to detect abnormal locations that were altogether similar to SITA-Std, although there were 

a few cases where the abnormal locations were not sufficiently comparable. When comparing the 

size VI target to SITA-Std, in some cases, the VI target detected more abnormal locations than 

SITA-Std (e.g. participants 211 and 216) and in some cases, the larger target detected less 

abnormality (e.g. participants 207 and 210). There were a few cases were size VI detected generally 

scattered points compared to SITA-Std (e.g. participants 203 and 214). Despite size VI detecting a 

similar number of abnormal locations statistically, when observing the empirical probability plots, 

the distribution of abnormal locations for the majority of participants was  inconsistent compared to 

the SITA-Std results (current clinical standard). Table 3 shows the 3 target sizes for each participant 

ranked in order of how similar each empirical probability plot appeared to SITA-Std. Overall, the 

size VI target showed the most inconsistency to the SITA-Std abnormal locations based on the 

ranking scores (table 3), while the full threshold size III and size V targets were, in comparison to 

SITA-Std, ranked similarly. 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 3-4-1: Example of empirical probability plots showing good agreement between SITA-

Std and full threshold size III for participant 207 (OD) using: A: SITA-Std size III, .B: Full 

threshold size III, C: Full threshold size V, D: Full threshold size VI 
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Figure 3-4-2: Interaction of target size and defect depth across early glaucoma subjects 

(rANOVA Target Size*Abnormality). There was no significant difference between target sizes 

across defect depths.  

 

 

 

Figure 3-4-3: Bar graph to show percentage of equivalent and non-equivalent locations 

between SITA-Std and size III full threshold visual fields. Measured as equivalent if both fields 

had an abnormal point or both fields had a normal point in the same location.  
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Participant 

ID 

Ranked score of target size (based on similarity of abnormal locations to SITA-Std 

plot)  III V VI 

202 2 3 1 

203 1 2 3 

204 1 2 3 

205 2 1 3 

206 1 2 3 

207 1 2 3 

208 3 2 1 

209 2 1 3 

210 1 2 3 

211 1 2 3 

212 1 2 3 

213 3 1 3 

214 1 2 3 

216 2 1 3 

217 1 2 3 

218 3 2 1 

221 1 2 3 

Total score 27 31 45 

 

Table 3: Table to show the ranked scores, for how similar the empirical probability plot 

appeared in relation to SITA-Std (where 1 = most similar and 3=least similar), based on 

locations of abnormality, for each participant  

3.5 Discussion 

The full threshold size III test detected a similar number and location of normal and abnormal points 

to SITA-Std size III, confirming that these databases were essentially equivalent. Our results also 

suggested that the number of abnormal points detected was similar across SITA-Std and the full 

threshold size III, size V and size VI targets in the early glaucoma group. However, we can confirm 

that there was a clinical difference in the distribution of abnormal points between the SITA-Std and 

full threshold size VI target by observing the empirical probability plots. While the full threshold 

size III and size V targets detected a similar number of abnormal points, the size VI target was not 

always able to detect the extent of abnormality in these early glaucoma participants. Sometimes the 

size VI target also detected points that were much more scattered than the clinical standard.  

We know from previous literature that there are advantages to using a size V target to 

measure functional defect in moderate to advanced glaucoma; namely a larger EDR
14

, decreased 
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variability
26, 28

 and a slightly greater degree of repeatability when measuring perimetric mean 

deviation
29

. Wall et al also showed that there was a similar precision of testing between the size III 

and size V target for the later stages of glaucoma
27

. Our results suggest that there is also a similar 

precision of testing between a size III and size V target when measuring functional defect in the very 

early stages of glaucoma. 

We also determined the number of abnormal test locations detected in the very early 

glaucoma participants with a larger size VI target. Our results showed that, statistically, we 

identified a similar number of abnormal points with a size VI compared to a size V or size III target. 

These results suggested that there was no disadvantage to increasing target size even further. This, 

however, is surprising, since Bek
13

 showed the larger the stimulus, the more relative the scotoma 

measured. This difference in results could have been due to the fact that Bek used the blindspot as an 

absolute scotoma while we used participants with known visual field defects due to glaucoma. 

However, although statistically the size VI target seemed to detect a similar number of abnormal 

points as SITA-Std, the larger target size did not always accurately match the spatial location of 

SITA-Std and, therefore, was considered not as sensitive clinically as the current standard (table 3) 

as it may lead to a different interpretation of the visual field defect.  

Recently Wall et al.
30

 also investigated the effect of increasing target size to a size VI when 

measuring visual sensitivity in patients with a range of glaucoma severities, although the authors 

mainly focused on participants with moderate to advanced glaucoma. They found that full threshold 

perimetric testing with a size V target was the most sensitive to detecting visual loss in the glaucoma 

participants across the full range of severities. They also found that the larger size VI target was too 

large to detect the full extent of abnormality in these patients. They suggested that the lower 

sensitivity they found was due to the larger target sizes being partly viewed across the steep borders 

of the moderate/advanced glaucomatous scotomas. This theory could also explain the difference 

between our findings and the findings of Wall et al. when looking at the number of abnormal 

locations. All of our participants were included in the study as a result of their very early glaucoma 

(MD equal to, or better than, -4dB). In very early glaucoma the scotomas are generally much more 

relative and the borders are less steep. We suggest that, with the shallower borders it is possible that 

the size VI target is less likely to be viewed at these borders (i.e. no steep cut off point), which may 

cause the size VI target to be detected at the same number of spatial locations, or even overestimate 

the defect in very early glaucoma compared to SITA-Std (e.g. participants 211 and 216). Another 

possibility is that the visibility of the target would not be significantly impacted with the shallower 
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defect, leading to underestimation of the defect (e.g. participants 207 and 210). Additionally, 

because of the early defect in our study, some participants displayed functional visual sensitivity 

close to normal (e.g. participants 208 and 212). In this case, SITA-Std and the full threshold targets 

all measured isolated, spurious defects in different locations. This would lead to a similar number, 

but different locations of abnormal points being detected with each target size. 

Although we found that there was no statistical difference in the number of abnormal 

locations detected between the size III, V and VI targets, we can conclude that the size VI target was 

less able to detect abnormality accurately and precisely in very early glaucoma compared to the 

clinical standard.  
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Chapter 4: Conclusion 

The aim of our research was to investigate the effect of increasing target size on the perimetric results 

in both normals and in early glaucoma. Since there are no current normative limits for the larger target 

sizes V (1.72° diameter) and VI (3.44° diameter), we firstly used 40 normal participants (aged 40-

80yrs) to define normal percentile limits by age and eccentricity for all target sizes (III, V and VI). We 

used these limits to identify abnormality in the early glaucoma group. Subsequently, we computed 

empirical probability plots for each of the 17 early glaucoma participants and compared the amount of 

defect between SITA-Std and the 3 target sizes using a rANOVA. 

 We found there to be no significant difference between the number of abnormal points 

detected with SITA-Std and the 3 target sizes (p=0.066), suggesting that there is no disadvantage to 

using a larger target size to measure functional defect in very early glaucoma. We also showed that a 

similar number, depth and location of abnormal points were detected for SITA-Std and the full 

threshold size III perimetric test, confirming that these databases were similar (see appendix for all 

empirical plots and figure 3-4-3). The difference between our findings and those of Wall et al.
30

 may 

have been due to our larger sample of participants with very early glaucoma manifesting more relative 

scotomas, which either led to overestimation or underestimation the defect. The discrepancy also 

could have been due to the size VI target sometimes picking up more scattered abnormal points, 

falsely detecting these as abnormal. Although the size VI target detected a similar number of abnormal 

locations statistically, suggesting that the size VI was just as sensitive as the size III target, the 

distribution of abnormal locations had poor spatial agreement between the size VI and SITA-Std 

(current clinical standard) – see empirical plots in appendices and table 3. Despite the few cases where 

the abnormal locations were not sufficiently comparable to the SITA-Std abnormal locations with a 

size V target, comparable abnormal locations were ascertained with most participants. In addition, the 

size V target manifested the most stable variation when converted from dB to total light energy (cd) in 

normals, giving the target size another advantage. 

 In addition to defining the normal percentile limits and comparing the amount of abnormality 

in the very early glaucoma participants, we also investigated the threshold interaction of the 3 target 

sizes for normal patients by age. We found an expected difference (due to spatial summation 

properties), between the average thresholds when measured in decibels. However, when converted to 

total light energy (threshold in candelas), a difference in threshold between the target sizes remained 

(as target size increased, light intensity also increased). This difference was constant up to the age of 

65 yrs, but increased slightly as age increased over the age of 65yrs when comparing the size III and V 



 

 32 

target to size VI. We suggest that this remaining difference between total light energy was mainly due 

to the changing degree of spatial summation, and therefore changing value of the coefficient of 

summation value (k). An overall increase in total light energy may also be partly due to the stimuli 

sizes on the HFA being slightly too small. There are many different variables that influence the spatial 

summation coefficient value of k, including age
38

, eccentricity and target size
36

. If the currently used 

value of k (0.8) is used taken as true for the size III target, and the HFA is calibrated correctly, we 

suggest, based on our results, that the size V target would require a k value of 0.6 and the size VI 

target would require a k value of 0.5. It is probable that the reality of a variable k value with these 

factors could cause a discrepancy in thresholds. 

 In summary, we found that, although it appears as though functional defects in very early 

glaucoma can be equally as well detected with the larger targets as with the current, smaller standard 

size III target, our results showed that the larger size VI target was not able to accurately detect early 

defect compared to the current clinical standard visual field measurement (SITA-Std). The size V 

target does show promise though, in manifesting a similar sensitivity to detecting abnormality, both in 

amount and location. Our research has also shown that the total light energy for larger stimuli is not 

equivalent to that of the clinical standard target. This is thought to be due to varying spatial summation 

factors and, therefore, a changing value of the coefficient k that is not currently taken into 

consideration. Before a larger target size is used routinely in practice, there must be further research to 

ensure the stimuli are accurately calibrated and verify the optimum value of k for each stimulus size, 

by eccentricity and age.  
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Chapter 5: Future Directions 

Our research has shown that the size V target (1.72° diameter) has a similar precision of testing to the 

gold standard size III target (0.43°diameter) , although the size VI target (3.44° diameter) is not 

sensitive enough to detect the location of abnormality accurately. A size V target has been suggested, 

in the literature, to be an enhanced method of measurement for visual sensitivity in moderate to 

advanced glaucoma due to its clinical properties of a larger EDR 
14

 and reduced variability in greater 

defect depth 
26, 28

. Although we have found a similar precision of testing with size III and size V 

targets in very early glaucoma, further research with a greater number of very early glaucoma 

participants must be carried out to further verify these conclusions. Additionally, it is worth 

considering that, although SITA-Std is the current gold standard method of measuring visual 

sensitivity, it is difficult to determine whether the few extra abnormal locations detected with the size 

V target convey a greater sensitivity or simply unwanted scatter. 

Currently, the coefficient of summation in perimetry is taken to be k=0.8. It is already known 

that the degree of spatial summation varies across the retina, and with other factors, such as age 
38

 and 

target size 
36

. Our research agrees with this, and has shown that total light energy with the 3 different 

target sizes is far from equal when k is taken as a constant value across the different conditions. If a 

variable target size is to be used as a perimetric tool in the future, the exact values of k must be known 

as per target size to ensure equality. We have speculated that, if k=0.8 with a size III target, when a 

size V target is used, k=0.6 and when a size VI target is used, k=0.5. These values must be 

investigated with a larger sample of normal participants in order to establish these values with greater 

precision.  
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Appendix 

Chapter 2 
A
: Conversion of decibels to candelas:  

Decibels to apostilbs:  

asb= (4-dB/10)
log-1

 (derivation graph below) 
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Figure: Graph to derive the conversion equation of dB to asb when using the conversion values 

from the HFA handbook. (Humphrey Field Analyzer Hand Book, Table E.1; 
41

) 

 

Apostilbs to candelas per square metre: 
41

 

cd/m
2
= asb/∏ 

Candelas per square metre to candelas: 
42

 

Size III: cd = 0.000004 * cd/m
2 
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Size V = 0.000064 * cd/m
2 

Size VI = 0.000256 * cd/m
2
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Chapter 3: Empiral probability plots for study eye of all 17 participants 
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