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Abstract

The Graph Partitioning problems are hard combinatorial optimization problems. We are
interested in both lower bounds and upper bounds. We introduce several methods including
basic eigenvalue and projected eigenvalue techniques, convex quadratic programming tech-
niques, and semidefinite programming (SDP). In particular, we show that the SDP relaxation
is equivalent to and arises from the Lagrangian relaxation for a particular quadratically con-
strained quadratic model. Moreover, the bounds obtained by the eigenvalue techniques are

good and cheap.
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Chapter 1

Introduction

We consider graph partitioning, GP problems where we partition the node set of a graph
into k sets of given sizes in order to minimize the sum of the weights of the cut edges. This
problem contains the cut minimization problem as a special case. In both problems, we
can use a model with a quadratic objective function over the set of partition matrices. A
common problem in circuit board and microchip design, computer program segmentation,
floor planning and other layout problems can be modelled as GP problems. More applications
of GP problem can be found in [11].

The GP problems have a history since 1869, due to Jordan who had results for trees.
Three new algorithms, as well as three earlier algorithms, are summarized in [11]. We briefly
introduce some of these heuristic algorithms.

The Kernighan-Lin algorithm is one of the earliest algorithms proposed for partitioning
graphs. The algorithm starts with an initial partition into two sets, A and B whose sizes are
specified. At each iteration, we choose subsets, A" of A and B’ of B with |A'| = |B’| such
that 6(A, B) > §((A\A")UB', (B\B')UA’). This algorithm is possible generated to partition
the graph into arbitrary number of sets. However, the running time and storage costs of the
algorithm will increase rapidly with the number of parts. In fact, most variants of graph
partitioning problem are N'P-hard, i.e., it is unlikely to find a polynomial time algorithm.
Worse, Bui and Jones have shown that it is AN'P-hard to find approximately optimal vertex
and edge separators, even in graphs with maximum degree three.

Level-structure partitioning is another early algorithm. We first find a approximately
longest path in the graph, say uv-path. Then we apply breadth-first search from u to label
the vertices. We label u as level 0, and neighbors of u as level 1. We label the neighbors of
ith level vertices as (7 4+ 1)th level. Then the algorithm chooses the vertices in the median
level as the vertex separator.

A spectral partitioning algorithm is introduced in [10]. We need to solve an eigenvector
corresponding to the second smallest eigenvalue of L, the Laplacian matrix of the graph.
Then we use the median of the components of the eigenvector to partition the vertices. We
say the median is x;. Let A contain all vertices whose components are less than z;. Let
B contain all vertices whose components are greater than z;. We put the vertices whose
components are equal to x; into either A or B such that the size of A differs the size of B at



most one. Let A" C A be the set of vertices having neighbors in B. Let B’ C B be the set
of vertices having neighbors in A. Let E’ be the set of edges joining A’ and B’. Obviously,
removing E’ disconnect the graph. H := (A’, B, E’) is a bipartite graph. Konig’s Theorem
says that the size of maximum matching equals the size of minimum cover. Finding the
minimum cover of H gives us a vertex separator.

In this thesis, we don’t talk about algorithms. We focus on lower bounds for graph
partitioning. The lower bounds as well as upper bounds are also important because of the
following reasons. First, we can improve our bounds to get close to the optimal value.
Second, the good quality bounds are very helpful for a branch-and-bound scenario. We will
study both existing and new bounds and provide both theoretical properties and empirical
results.

In 1953, Hoffman and Wielandt proved Theorem (3.1.2) in [9]. In the early 70s, Do-
nath and Hoffman provided an eigenvalue-based bound in [5] using the Hoffman-Wielandt
result. The projection technique is studied and applied in [7, 14, 6] to eliminate two linear
constriants. These are based on a parametrization of the affine span of the linear equality
constraints. In [14], it shows that we can separate the objective function into three parts,
and further we can perturbate the diagonal of A to improve the bounds. Computational
results on variaty of randomly generated graphs are provided in [6].

Furthermore, we extend the approach in [1, 3, 2] from the quadratic assignment problem,
QAP, to our GP case. This allows for a convex quadratic programming (QP) bound that is
based on semidefinite programming (SDP) duality and that can be solved efficiently.

Finally, the SDP bounds are studied in [17, 18]. In [18], it shows that SDP relaxation
can be obtained from the dual of the homogenized Lagrangian dual of the quadratically
constrained quadratic problem. In [15], authors showed that the two constraints X7 X =
Diag(m) and diag(X XT) = u are redundent.

Many of the results in this thesis are taken from the recent research report [15].

1.1 Outline

This thesis is organized as follows. We continue in Chapter 2 with preliminary discriptions of
graph partitioning problem and its formulation. We give a brief introduction to semidefinite
programming, which is applied in Chapter 5. In Chapter 3, we introduce the definition of
minimal scaler product and the projection technique. We get lower bounds by Theorem
(3.1.2) and Theorem (3.2.3). The quadratic programming (QP) bound is introduced in
Chapter 4. The semidefinite programming (SDP) bound is described in Chapter 5.

The Cut Minimization Problem (CM) is introduced in Chapter 6, including lower bounds.

Our empirical numerical tests are presented in Chapter 7.

We close with Chapter 8 presenting some conclusions.



Chapter 2

Preliminaries

2.1 Graphs and Partition Matrices

Definition 2.1.1. A graph G is a finite nonempty set, N(G), of objects, called vertices,
together with a set, E(G), of unordered pairs of distinct vertices. The elements of E(G) are
called edges.

Let G = (N, E) be an edge-weighted undirected graph with node set N = {1,...,n} and
edge weights w;; > 0. In addition, we have an ordered positive integer vector of set sizes
m = (my,...,mp)t € N¥ my, > ..., > my, k > 2, such that the sum of the components
Zle m; = ui'm = n. Here u; is the vector of ones and k indicates its size. We define

Pm = {(Sl, c. ,Sk) . Si,Sj C N,Sl N Sj = @, for ¢ 7é j, Ulesi = N, |SZ| = mz,‘v’z}

to be the set of all partitions of N with the appropriate sizes specified by m. The partitioning
is encoded using an n x k partition matriz X € {0, 1}"Xk where the column X,; is the
incidence vector for the set S

(1 ifies;
Xij = { 0 otherwise.

Therefore, the set cardinality constraints are given by X7 u,, = m; while the constraints that
each vertex appears in exactly one set is given by Xwuy, = w,. We collect these matrices in
the set M,,,

M = {X € {0,1}™% . Xup, = up, X up, = m}.

Remark 2.1.2. There is a one-to-one corresponding relation between P, and M,,.

Definition 2.1.3. We denote the set of zero-one, nonnegative, linear equalities, doubly
stochastic type, m-diagonal orthogonality type, e-diagonal orthogonality type, and gangster



constraints as, respectively,

Z = {X eR™: X, €{0,1},Vij} = {X € R™F: (X;)? = Xy, Vij}.
N = {X c R™<k . Xij > O,VZ]}

E = {X e R : Xup = up, XTu, =m} = {X € R || Xuy, — uy, | + [| XTu,, — m|* = 0}.
D = NnNnE.
Do = {X e R™*: XTX = Diag(m)}.

S
|

= {X e R : diag(XXT) = u,}.
G = {XeR":X,0X,=0,Vi#j}

Here Diag(v) denotes the diagonal matrix formed using the vector v; the adjoint
diag(Y) = Diag*(Y) is the vector formed from the main diagonal of Y. We will indro-
duce the concept of adjoint later. A o B denotes the Hadamard product.

A nonnegative matrix X is called doubly stochastic if every row sum and column sum are
both equal to 1. D looks like the set of doubly stochastic matrices but not quite since the
column sums of elements in D are not 1. So we call D the set of doubly stochastic type.

There are many equivalent ways of representing the set of all partition matrices. Following
are a few.

Proposition 2.1.4.
M, = ENZ
= ENDoNN
= ENDoND.NN
= ENZNDoNGNN

(2.1.1)

Proof. The first equality follows immediately from the definitions.

The second equality is shown in [13, Prop. 1]. Here we include the proof for completeness:

XeM, = XecENDoNN is trivial.

Conversely, let X € ENDoNN. X € ENN implies 0 < X;; < 1, hence (X;;)? < X;.
X € Do implies tr(X7X) =>".m; = n.

So we have tr(X7X) = > (Xi5)? =n and s(X) = T Xuy = > i Xij = .

Thereforen = 3. (Xy5)* < 37, Xij = n. Getting equality throughout gives (Xj;)* = X;.
So Xij S {O, 1}

The third and fourth equivalences contain redundant sets of constraints. O

ij

2.2 Formulation of GP using a Quadratic Program

Now we are going to formulate/model the GP Problem.
Let A be the matrix such that

A — Wsj le]GE,
v 0 otherwise.



The matrix A is called the weighted adjacency matriz of the graph. Since G is a undi-
rected graph, A = AT. Now we use S" to denote the set of all n x n symmetric matrices,
ie.,

S"={HeR"™ :H=H"}.
Symmetric matrices are orthogonally diagonalizable, S = PDPT, where P € R™" is the

orthogonal, PTP = PPT = I,,, matrix of eigenvectors, and D is the diagonal matrix of (real)
eigenvalues. Denote the matrices with orthogonal columns as

Onxm = {Q € R™™ QTQ = m}

We use O,, to simply denote O, .

Throughout this thesis, we use the vector notation A\(H) = (A (H), \o(H), -+ , N\ (H))T €
R" to denote the eigenvalues of an n-by-n symmetric matrix H in non-increasing order, where
MH)>X(H) >, > M\ (H)

For each partition matrix X, we can verify

(XXT);; = { (1) gt}riz;ivii;eand node j are in the same set,

So
Wanent (X) 1= %tr(AXXT) ;tr(XTAX)

is the total weight of the uncut edges induced by the partition matrix X. Here, tr denotes
the trace of the matrix. Note that tr(-) is commutative, tr(XY) = tr(YX) and tr(X) =

Z?:l Ai(X )
Let r(A) denote the row sums of a n x n matrix A which indicates the degree of every
vertex, i.e.,

r(A) = Au,.
Let s(A) denote the sum of all entries of A, i.e.,

s(A) = u,” Au,.

Notice that 1s(A) = |E(G)|. Then the total weight for the cut edges induced by the
partition matrix X is

1 1 1
Weut (X)) := 53(14) ~3 tr(XTAX) = §(unTAun —tr(XTAX)),
which is our objective function.

For each partition matrix X, we have
diag(XXT) =
So

up L Au,, = (diag(X XT))T Au,
= tr (Dlag(Aun)XXT)
=tr

(X7 Diag(Au,)X).
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The second last equality above is due to that Diag is the adjoint of diag. We will introduce
the adjoint of linear mapping later. So our objective function can be also written as:

e (X) = %tr(XTLX) (2.2.1)

where the matrix

L := Diag(Au,) — A

is called the Laplacian matriz of the graph G.
So the minimum weight of cut edges can be solved as:

(GP) wi,:= min itr(XTLX)

cut
st. X € M,,. (2.22)

Notice that
Lu,, = r(L) = r(Diag(Au,) — A) =r(A) —r(A) = 0.

So u,, is an eigenvector of L with the eigenvalue 0. Oberse that rank(L) = n — x, where
k is the number of components of G. By rank-and-nullity theorem, the multiplicity of 0
eigenvalue is k.
Also,
s(L) = u," Lu, = 0.

2.3 Semidefinite Programming

A semidefinite programming (SDP) problem is a problem of minimizing or maximizing a
linear function of finitely many symmetric matrix variables with real entries subject to finitely
many linear equations and linear inequalities on these variables and subject to positive semi-
definiteness constraints on some of them. In this section, we will introduce some background
of SDP, which is needed in chapter 5. We also conclude some theorems and proofs, as well
as some related important results for SDP. Most of contents are taken from [16], which is
the textbook of the course CO 671, Semidefinite Optimization.

2.3.1 Positive Semidefinite Matrices

Definition 2.3.1. Let A € 8". A is called positive semidefinite (PSD) if Vo € R", we
have 2T Az > 0. The set of all positive semidefinite matrices is denoted by St. Similarly,
A is called positive definite (PD) if Vo € R™ and x # 0, we have 27 Az > 0. The set of all
positive definite matrices is denoted by ST .

Proposition 2.3.2. [16, Proposition 1.10](Characterization of PSD matrices) Let A € S™.
Then the following are equivalent:

1. A is positive semidefinite;



2. \(A) >0,Vj e {1,2,...,n};

3. there exist € RY and r® € R™, Vi € {1,2,...,n} such that
A= Z 1RO
i=1

4. there exists B € R™" such that A = BBT (here, B can be chosen as a lower triangular
matriz-the Cholesky decomposition of A);

5. for every nonempty J C {1,2,...,n}, det(X;) >0, where X; := {[X;;] :4,j € J};
6. VS € ST, (X,S) > 0.

Remark 2.3.3. Note that the number of nonzero eigenvalues of A € S is equal to the rank
of A. In Item /4, if rank(A) = r, then we can choose B € R"*". In Item 5, we call X; the
symmetric minors of A.

Proposition 2.3.4. [16, Proposition 1.11](Characterization of PD matrices) Let A € S™.
Then the following are equivalent:

1. A is positive definite;
2. N\j(A)>0,Vj e {1,2,...,n};

3. there exist 1 € R", and h) € R", Vi € {1,2,...,n} linearly independent such that
A= Z 1R OROT
i=1

4. there exists B € R™™ nonsingular such that A = BBT (here, B can be chosen as a
lower triangular matriz-the Cholesky decomposition of A);

5. for every J, :={1,2,...,k}, k€ {1,2,...n},det(A,;,) > 0;
6. VS € ST\{0}, (X, S) > 0;
7. A > 0 and rank(A) = n.

Definition 2.3.5. Let A € §™. A is called diagonally dominant if A; > Z#i |A;jl, for
every 1 <i < n. Similarly, A is called strictly diagonally dominant if A; > > i |A;j], for
every 1 <1 < n.

Remark 2.3.6. The Laplacian matrixz L is obviously diagonally dominant.



Lemma 2.3.7. [16, Lemma 1.22](Schur Complement) Let X € 8™ and T' € ST'_. Then

U X
Moreover, M = 0 if and only if X — UT*UT = 0.
Proof. Consider the following decomposition of M:

I 0\ /(T 0 [ T\ (T U”
ur-t 1 0 X-UrT'uT)\o I - \U X )
—_— —_——

R RT

T UT . . 17T
M = =0 if and only of X —UTU" = 0.

Since R is lower triangular and det(R) = 1, R is nonsingular. Therefore,
M=0+X-UT'U" =0.

Also,
M0 X-UT'U" » 0.

Theorem 2.3.8. If A is diagonally dominant, then A = 0.

Proof. We prove it by induction on n.

Base case: n=2. AH Z |A12| Z 0 and A22 Z |A12| Z 0. det(A) = A11A22 — A122 Z 0. So
Ax0.

Suppose it is true for 2 < n < k, where £ is some natrual number. We need to prove it
is also true for n =k + 1.

T
Let A= An a_] € REFDx(k+1) e g diagonally dominant matrix, where A;; € R, a €
RF, and A € RF*k,

A
If A;; =0, then @ = 0. By inductive hypothesis, A >= 0, which implies A > 0.
If A;; > 0, by the Schur Complement Lemma,

. Ay a’ 1 1 T

T is a diagonal dominant matrix, we are done by the inductive

If we can show A — A%laa
hypoiihesis.

(A _ LaaT)ij — Aij _asa4

A11 All '
2 it

(A— AinaaT) A e

i 7 A

2

ij

< Zj;éi |Aij‘ + % Zj;éi |a;]
< Zj# |121”‘ + %(An — |ail)
Zj;ﬁi |Aij‘ + |a§| - in
Zj;ﬁz’ |Aij2| - ,%1
4]~ 2

A

(A — ALHCLCLT)Z‘Z‘

8



So A = 0, as desired. O
Remark 2.3.9. Note that if A is strictly diagonally dominant, then A > 0.

Corollary 2.3.10. The Laplacian matriz L > 0 and A\(L) > 0.

2.3.2 Inner Product and Norms
An inner product (-,-) on R™*™ is defined as

(X,V) = tr(XTY),
where X, Y € R™*™,

Remark 2.3.11. (-,-) is indeed an inner product on R"*™ i.e. Yo € R, VX,Y,Z € R™™,
we can easily verify:

1. positive semidefinite:

(X,X) >0 and (X,X) =0 if and only if X = 0.

2. linearity:

(@X,)Y)=a(X,Y) and (X+Z)Y)=(X,Y)+(Z)Y).

3. Symmetry:
(X,7) = (¥, X).

Theorem 2.3.12. [16, Proposition 1.19] Let X,Y = 0. Then (X,Y) = 0 if and only if
XY =0.

Proof. Suppose XY = 0. Then (X,Y) = tr(XY) = tr(0) = 0.

Now suppose X,Y = 0 and (X,Y) = 0. Then (X,Y) = tr(XY) = tr(X/2Y X/?) =
Since Y = 0 and X'/? is symmetric matrix, we have X'/2Y X1/2 = 0. So A(X'/2Y X1/?) >
Since tr(X/2Y X1/2) = 0, we have A\(X/2Y X/2) = 0. It implies that

0.
0.

0= XV2y x1/2 — Xl/QYI/Q(XI/QYl/Q)T.

So X1/2y1/2 = 0. Then
XY = XXy VY2 <.

Now we talk about norms on S™.



Definition 2.3.13. Let « € R and X,Y € 8". The norm, |-||, on 8™ satisfies the following
three azioms:

1. || X > 0,YX #0 and || X|| =0 if and only if X = 0.

2. laX] = [a] | X]I.

3. NX+Y| <X+ Y| (triangle inequality).

Recall that for h € R", ||A]|, :== (327, ]hj]p)%. We introduce the Frobenius norm:
1Hlp = D (Hi)?,
4,3
and the operator p-norm:

|H]|, = maX{HHth .h e R, |[h], = 1} _

Lemma 2.3.14. Let H € 8". Then |H||, = (H, H)"* = |A(H)||,.
Proof. Since H € 8™, there exists an orthogonal matrix P such that
PTHP = Diag(\(H)).
Then

IH|3 =3,;(Hy)? = te(HH) = te(HPPTHPPT) = tr (PTHP)(PTHP))
= tr (Diag(A(H)) Diag(\(H))) = >, (N (H))? = |IAH)3.

Next, we talk about adjoints of linear operators.

Definition 2.3.15. Let A: 8™ — R™ be a linear operator. We define the adjoint of A as
a linear operator
A R" — S
such that
(A" (), X)gn == y" A(X) = (y, A(X))gm , VX € S",Vy € R™.

Notice that if we choose y = ¢;, then (A*(e;), X) = el A(X) = [A(X)];. So we can write
the explicit form of the linear operator A as

[A<X)]l = <A17X> ,VZ € {1727 T 7m}7
where A; = A*(e;) € 8™, Vi € {1,2,--- ,m}. The adjoint A* gives

A*(y) = Z yiAi.
i=1

Example 2.3.16. The adjoint of Diag is diag, i.e.,
(diag(X),y) = (X, Diag(y)) , VX € §",Vy € R".

10



2.3.3 Kronecker Product

Definition 2.3.17. Let X € R™*. vec(X), the vector formed from the column of X, is
defined as
VGC(X) — [XH,XQI; ce 7Xn17 ){'127 . ,Xn2; . 7Xnk]T c Rnk

vec is a linear mapping. The adjoint, as well as the inverse mapping of vec is Mat, which
maps nk-dimensional vectors to n x k matrices. Let x € R"™. [Mat(2)].; = Tpn(i—1)+1:ni-

Definition 2.3.18. Let A € R™*" and B € RP*9. We define the Kronecker product to be

AHB e AlnB
A® B := : : e RmPxm,
AmB - AnnB

Note that, for compatible matrices, there are four obvious identities we use offen through-
out this paper:

1. (A B)T = AT @ BT,

2. (A® B)(C® D) = AC ® BD.

3. vec(AXB) = (BT @ A)vee(X).

4. tr(AXBXT) = vee(X)T(B ® A)vec(X).

2.3.4 Duality Theory

We define the semidefinite programming problem in standard form and its dual. Suppose
C € 8" beR™ and a linear transformation A : S” — R™ are given. Then we define

(P) inf (C,X)

st. AX) = b,
X = 0.
(D) sup by
st. A (y)+S = C,
S = 0.
As we noted, A can be represented in a more explicit form. So let Ay, Ay, -+, A, € S"

such that [A(X)]; = (A;, X),VX € §". Then we can write (P) and (D) as

(P) inf  (C,X)

s.t. (A, X) = b, Vie{l,2,--- ,m}
X = 0.
(D) swp BTy
st Y yA+S = C,
S = 0

11



This primal-dual pair is useful even in more general settings. We can replace St by an
arbitrary convex cone K. Given ¢ € R", b € R™, A : R” — R™ a linear mapping. Then the
primal-dual pair is defined as

(CP) inf (¢, )
st.  A(z)=b
x € K.
(CD) sup by
st. A (y)+s=c
se K*,

where K* = {s € R": (s,z) > 0,Vz € K} is called the dual cone of K.

Definition 2.3.19. X is a Slater point for (P) if it is feasible for (P) and X = 0. (y,S) is
a Slater point for (D) if it is feasible and S = 0.

Theorem 2.3.20. [16, Theorem 1.17] (Weak Duality Theorem for SDP) If (X, (,S)) are
feasible to (P) and (D ),respectively, then

(C.X) — b5 = (X,5) >0,

Proof.
(C.X) ="y =(C.X)— AX)"y
= (C.X) = (A(X).7)
= (0, X) = (A(9), X)
=(C — A"(5),X)
=(5,X) >0,
since X,S’GS?_. n

The (S, X) is called the duality gap of (X, (y,5)).

Theorem 2.3.21. [16, Theorem 2.14] (Strong Duality Theorem for SDP) Suppose (D) has a
Slater point. If the objective value of (D) is bounded from above then (P) attains its optimum
value and the optimum values of (P) and (D) coincide.

Corollary 2.3.22. [16, Corollary 2.17] If both (P) and (D) have Slater points, then both
optima are attained and they agree.

2.3.5 Facial Structures

Definition 2.3.23. A set C' C R" is convex, if for every z,y € C and every X € [0,1], we
have A\x + (1 — Ny € C.

In above definition, the set {\x 4+ (1 — A)y : A € [0, 1]} is called the line segment of x and
y. So C' is convex, if the line segment of every two points of C' also lies in C.
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Definition 2.3.24. A set K C R" is a cone, if for every x € K and every A € R, we have
A € K.

If a cone is nonempty and closed, it must contain the O-element by definition.

Definition 2.3.25. Let S;,S5; C R". We define the Minkowski Sum of S| and Sy as
S1+ 5= {81+82 181 € 51,82 € 82}

It is not hard to verify that a set K € R" is a conver cone, i.e., K is a cone and a convex
set, if K+ K C K and AK C K,VA € R, where AK = {\z:x € K}.

Next, we are going to introduce the notion of an extreme ray. Let K be a cone. The set
{Az: A€ R,} for x € K\{0} defines a ray inside K. A ray R C K is called an extreme ray
of K if for every pair of rays Ry, Ry C K, such that R C Ry + R, implies either R; = R or
Ry = R possibly both. The union of all extreme rays is denoted by Ext(K).

Let R be an extreme ray of a cone K. We use a single nonzero normalized element of R
to represent R. The set of all representatives of extreme rays is denoted by ext(K).

Theorem 2.3.26.
ext(ST) = {zz’ 1z e R, ||z| = 1}.

Proof. Let R be an extreme ray of S7. We need to show that
R={ vz’ : e R,}, forsome x¢cR"
Since R is a ray of S8, it can be written as
R={XX:XeR;}, forsome X €8.

By spectral decomposition of X,

n

T

X = E Ty
i=1

where x; is the normalized eigenvector of X corresponding to the i-th largest eigenvalue «;.
We prove by contradiction. Suppose rank(X) > 1. Since rank(X) equals the number
of nonzero eigenvalues of X, then at least two of eigenvalues of X are greater than 0. Let

Ry = {Arizl : X >0} and R, = {)\(Z a;zirr): A >0p. Both Ry and Ry are rays, and
i=2
R C Ry + R,. But neither R = R; nor R = R, which is a contradiction. O

Remark 2.3.27. The above theorem tells us Ext(SY) is the set of all rank one positive
semidefinite matrices.
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Definition 2.3.28. Let C C RY be a closed convex cone. A convex cone K C C is a face of
C,if
r,2yelCaox+ye K=ux,ye K.

We denote K <1 C.
A face K of C is exposed if there exists a € R? such that

K={zecC:{a,r)=0} and C C {z € R*: (a,2) <0},

i.e., K s the intersection of C' with one of its supporting hyperplanes.
A face K of C is a proper face of C if

{0} Cc K cC.

The notation K C C' means that K is a proper subset of C. K C C means that K is a
subset of C' and K may equal C.

Theorem 2.3.29. [16, Theorem 2.25]
1. Every nonempty face I of St is characterized by a unique subspace S C R"™ such that

F={Xec8&":5CN(X)}

and

relint(F) = {X € S} : S = N(X)}.
2. Every proper face F' of ST is exposed.

3. Bvery nonempty face F' of S can be expressed as
F=(-Q)SI(I-Q),
where () € 8™ is the projection onto the unique subspace S defining F.

Remark 2.3.30. The above theorem implies that every proper face of S is isomorphic to
S for some p < n.

14



Chapter 3

Eigenvalue Based Bounds

We first present bounds on w}, based on X € Dy, the m-diagonal orthogonality type
constraint X7 X = M, where we let M := Diag(m); and m =: (\/m_l,...,\/m_k)T,M =
Diag(in) for notational simplicity. Note that M = M2,

Notice that tr(X7LX) = s(A) — tr(XTAX), under the condition X € M,,. But we

don’t guarantee that the equality holds if we only subject to X € Dy. That is

min 1 tr(XTLX) # min %—%tr(XTAX)

.0.1
s.t. X €Do. s.t. X €Do. (3 0 )

It gives us two options of objective functions when we do the relaxation over X € Dy.
But we can perturb the diagonal of L by adding a parameter d € R™ to combine these two
cases together.

Lemma 3.0.31. tr(X7LX) = tr (X" (L + Diag(d))X) — s(d),VX € M,,,Vd € R".

Proof. Since X € M,,, we have diag(X X7T) = u,. So tr(X” Diag(d)X) = tr(Diag(d) X XT) =
(Diag(d), XXT) = (d,diag(XXT)) = d"u,, = s(d). O

We denote L(d) := L + Diag(d) = Diag(Au,, + d) — A. So our objective function can be
written as 3 tr(X7L(d)X) — @. Notice that

1 - s(d) [ $tr(XTLX) if d=0,
g ALY T_{ ) (XTAX) i d= —Au,

2

So our Graph Partitioning Problem is equivalent to

whe = min L tr(XTL(d)X) — 22 (3.02)
st. XeM,,.

Because we are allowed to choose any d € R", the objective function in (3.0.2) performs
better than the previous two when doing relaxation on X € Dy if we choose appropriate
d e R"™.
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3.1 Basic Eigenvalue Bound

The Donath-Hoffman [9] bound can be applied to get a simple eigenvalue bound, i.e., we
solve the relaxed problem

pii,(d) == min Ltr(XTL(d)X) - 22

st. X € Do, (3.1.1)
where d € R".
Here, by setting X = Y M'/? gives
tr(XTL(d)X) = tr (M?YTL(d)Y M'/?) = tr (L(d)YMYT) .
Since X € Do if and only if YTY = I}, our relaxation (3.1.1) is equivalent to
(BE) piy,(d)= min Ltr(L(d)YMYT) - =D (3.1.2)

st. YTY = 1I,.
We first introduce the following definition.

Definition 3.1.1. For two vectors x,y € R", the minimal scalar product of x and y 1is
defined by

(x,y)_ :=min {Z TYg() © @ 15 a permutation on N} :
i=1
We need the following theorem to get the optimal value of (BE) hence a lower bound for

(GP).

Theorem 3.1.2 ([9]). Let A, B be symmetric matrices of order n, k, respectively, with k < n.

Then

min {tr(AXBXT): XTX = I} = <)\(A), (A%B)» : (3.1.3)
The minimum is attained for X = (p¢(1), e ,p¢(k)) QT , where Dg(i) 1S a normalized eigenvec-
tor to Ay (A) and the columns of Q) = [q1 qk] contains the normalized eigenvectors

¢ of \i(B), and ¢ is the permutation of N attaining the minimum in the minimal scalar
product.

Proof. For completeness we include an optimization based proof.

Let G(X) := XTX — I}, = 0 denote the orthogonality constraint. Then the derivative act-
ingon H € R™*is VG(X)(H) := XTH+HTX. We note that vec(XTH) = (I®XT) vec(H)
and that the Kronecker product (I ® X7) has full row rank at the minimizer X since X7 has
full row rank. Therefore the standard linear independence constraint qualification (LICQ)
that VG(X) is onto holds. We can now apply the Lagrange multiplier approach to the
minimization problem in (3.1.3). Recall that the Lagrangian is defined as

L(X,S) =tr(AXBXT") —tr(S(XTX - 1)),
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where S € S8*. From the LICQ, there exists a Lagrangian multiplier S € S* so that the
minimizer X satisfies the stationary condition

0=VxL(X,S)=24XB —2IXS.

Therefore, XTAXB = S = ST which implies that at the optimum X, the matrices X7CX
and D commute and hence are mutually orthogonally diagonalizable by a k x k orthogonal
matrix ). We can then write the optimal value at the optimum X to be

H(AXBXT) = tr(QTXTAXQQT BQ)
= tr((XQ)"A(XQ))(Diag(A(B)))
> M\ (A)T (A(f)) .

where the last inequality follows from the interlacing of eigenvalues and the fact that (X Q)T (X Q) =
I,. We have padded the vector of eigenvalues of B with zeros and A\4s(A) is a suitable per-
mutation of the eigenvalues of A. The conclusion now follows from this last observation, the
definition of minimal scalar product, and the attainment for the choices of X, @ stated in
the hypothesis. O]

Remark 3.1.3. By Theorem (3.1.2), the optimal value p,; (d) of (3.1.2) is attained at

Y:[n Pn-1 - pn7k+1}7

where p; is the normalized eigenvector corresponding to N\;(L(d)). Then we can recover an
approzimate solution X =Y M2,

Theorem 3.1.4. Let d € R™. Then:

W 2 Pigg(d) = 3 <A<L<d>>a (73>> ) (3.1.4)
— (- AHZ-JL(d))) - 2. R

Proof. This result is a direct application of the Donath-Hoffman bound. We provide a proof
for completeness.
We now solve the equivalent problem (BE) in (3.1.2):

min L tr (L(d)Y MYT) — &
S.t. YTY = Ik

The optimal value of quadratic part is obtained using the minimal scalar product of
eigenvalues as done in the Hoffman-Wielandt result, Theorem 3.1.2. [

Observe that wy,, > 0. So 0 is a natural lower bound. If p, (d) < 0, then the lower
bound is useless. However we can simply use eigenvalues of L and A to get a useful lower

bound as below.
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Corollary 3.1.5.

w:ut > max{p:ig (0) ’ pZig (_Aun)}

— max {% </\(L), <7g‘> >_ 4 <A(—A), (73) >_ - S(f)l (3.15)

= max {% Zf:Q m; - )\n7i+1(L>, —% Ele m; - )\i(A) + 5(2 )}
> 0.

Proof. If we choose d = 0, the objective function is purely quadratic. L(0) = L = 0 =
ML) >0 =35 ,m; - Auis1 (L) > 0 = p;,(0) > 0. 0

Remark 3.1.6. There is no relation between pj;,(0) and p};,(—Auy,) so far. We don’t know
which one 1s greater in general. However, we can always obtain nonnegative bounds by using

p:ig (O) .
Here we provide an alternative envidence of p;g(O) > 0 by using the fact
tr(LY MYT) = vec(Y)" (M ® L)vec(Y).
First, we need the following Lemma:

Lemma 3.1.7. If A > 0 and B = 0, then A® B = 0. Moreover, if u; is an eigenvector
of A with X\;(A) and v; is an eigenvector of B with \;(B), then u; ® v; is an eigenvector of
A ® B with eigenvalue N\;(A)\;(B).

By the above Lemma, we have M ® L = 0. Y'Y = I, implies ||vec(Y)|, = v/k. Consider
the problem:
p*= min z7(M ® L)x

st Jlally, = V&

which is a relaxation of
Piig(0) = min tr(LYMYT)
st. Y'Y = I,.

So we have 0 < k- A\p(M ® L) = p* < pt,,(0).

3.2 Projected Eigenvalue Bound

3.2.1 The projection technique

Consider the minimization problem

min 3 tr (XTL(d)X) — 22 (3.2.1)
st. XeDonNE€&.

We now project X € R™* onto the E-space.
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Let the n x (n — 1) matrix V' be such that
Vi, =0; V'V =1,

The columns of V' form an orthonormal basis to the orthogonal complement of w,,.
Similarly, let the k& x (k — 1) matrix W be such that

Whm = 0; WIW = I,._,.

The columns of W represent the orthogonal complement to m.
Clearly, both V and W are not uniquely determined.
We define the n x n and k x k orthogonal matrices P, () with

P [%ﬁun v] co, Q= [\/Lﬁm W} €Oy (3.2.2)
Note that 1
PPl =1,=VvVl=1,—- ~u,u,’
n
and

1
QR =L, =WWT =1, — EmmT.

Lemma 3.2.1. [14, Lemma 5.1] Let P,Q be defined in (3.2.2). Suppose that X € R™** and
Z € RO=DxE=1) gre related by

1 0

X:P[O A

} QM. (3.2.3)

Then the following holds:
1. Xe&.
2. X e N = VZIW" > —Lum".
3. X €Do = Z € Op—1)x(k—1)-
Conversely, if X € &, then there exists Z such that the representation (3.2.3) holds.

Proof. Define X := Lu,m". We expand (3.2.3) by substituting (3.2.2) yields

10
X —P[O Z} Q"M
w 1 0] 22| -
=[5 V] [0 Z} M\@]M (3.2.4)
. :

= Ltyu,mT +VIWTM

N

=X +VZIWTM.
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Since VTu,, = 0, we have
XTu, = %MukunTun + MWZTVTun = Mu, =m
Similarly, since W2 Muy, = WP = 0, we have
Xup = %unukTMuk +VIWT Muy, = u,,.

So
X e€.

By (3.2.4), we can write
1 - -1 -
X = ~u,m"M+VIW'M = (—u,m" + VZWH)M.
n n

Thus
1 1
XeN = ( it + VZWHM >0 <= VZWT > —Zu,m’,
n

because multiplying with the positive diagonal matirx M~ does not change the inequality.
Finally, since P € O,, and @ € Ok, we have

0 10
X'X =M= Q [o ZT] pP'p [0 Z} QN =1+ Z € Op1)x-1)-

Suppose X € £. Then

T
- un” - - 1 0
T -1 = \/ﬁ -1m = ~
PIXMTQ = |y | X [ﬁ W} {o VTXle]'

]

Please note that the XZ relation (3.2.4) in Lemma (3.2.1) will be used frequently in
Chapter 4. So we emphasize it here.

If we substitute (3.2.4) into our objective function £ tr(X*L(d)X)—
equivalent formulation of the graph partitioning problem in the lower dlmensmnal Z-space.

S(d) , we will obtain an

L(XTL@X) -2 = fu((X+ VZWTM)TL(d)( +VZWTAD)) - 0
tr(XTL(d)X) + tr (VTL(d) ZT>
+§t ((WTMW VZE(VTL(d)V)Z) — 4

_s(d) ) T tr (C(d)ZT) + 5 tr (Z(d)ZMZT) ,

3 X+
1 XM
2 (3.2.5)

N

I
Q
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where

2
~ ~ 1 ~ ~ N
a(d) = %tr(XTL(d)X) = M, C(d) = EvTalmTMW, L(d) = VTL(d)V and M = WTMW.

2n2
(3.2.6)

Notice that the linear term can be further written as
(C(d)27) =Lt demTMWZT)
= Lt (dm (VZWT )T
= Ltr (dm"(X — )A()T> (3.2.7)
= Lr (dm™XT) — Lt <me)/(\'T>
= L(Xm)Td — 2a(d).
So

%tr(XTL(d)X) . @ - (—a(d) - —) + %(Xm)Td + %tr (ﬁ(d)ZMZT) . (3.2.8)

3.2.2 The PE Bound

By Lemma (3.2.1), we can obtain the new formulation (PE) by using the variable Z €
RO=1x(*=1) "which is equivalent to our original graph partitioning problem (GP) in (2.2.2):

(PE) wt, = min (a(d)—%‘i))Hr (C(d)27) + L tr (z(d>ZMZT)
N (3.2.9)

VZIWT > —Ly,mT.

Theorem 3.2.2. [14, Theorem 3.1] Suppose X and Z are related by (3.2.3). Then X solves
(2.2.2) if and only if Z solves (3.2.9).

Theorem 3.2.3. Let d € R™. Then:

~

(at) - 2)+ winw(c@zn) + 5 (@) (MG1)

0<LunmT+VZWT

(~at@ - 42) + 2 pinCemyTa+ § (ML), (A(Q” ) -

w:ut 2 p;eig(d) :

(3.2.10)

Proof. Notice that the objective function in (3.2.9) has three parts: the constant, the linear
part, and the quadratic part. We separate the objective function into three parts and subject
to different partial constraints. For the notational simplicity, we denote

1
Sy ={Z e R-"Dx&=D . 777 — 1\, —uy +VZWT > 0}.
n
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cut 2

wh, = mm{ a(d) — ﬂ) +te(C(d)27) + L te(L(d)ZMZT) : Z € SZ}
d) — ﬂ; +min {tr(C(d)27) : Z € Sz} + 1 min {tr(z(d)zMZT) A= SZ}
+

. ~Tm‘i}12WT>OtT(C(d)ZT)+- in tr(L(d)ZM Z7)
min €@z + 5 (L@ (M) = bl

0<LunmT+VZWT

N
—a(d) — 42) + Lin(Xm)"d + } <)\(E(d)), (A(é‘”)»_.

(3.2.11)
The first equality is due to theorem (3.2.2). The second equality follows from
: . - - A(M)
tr(L(d)ZMZ") = ( M(L(d
i w(ia@ziizh) = (k). (1))
by theorem (3.1.2). The last equality follows from the relation in (3.2.7). O

Notice that p,;,(0) = 3 <)\(IA/), (A(é\4)>> . Next we explore the information of eigen-

values of L and M.

Lemma 3.2.4. [18, Lemma 7] Let vy,v9, -+ v, = u, be n eigenvectors of L, pairwise
orthogonal, with eigenvalues \y(L), \o(L),--- ,\p(L) = 0. Then the eigenvalues of L are
M (L), Aa(L), -+ A1 (L) with eigenvectors VI, fori=1,2,--+ n—1.

Proof. Smce VVT = I, — Lu,u,T and Lu, = 0, we have L(VTv;) = (VTLV)(VTv;) =
VTL(I, — Eunun Ty, VTLUZ = \VT;. O

Lemma 3.2.5. Let U € RP*? where p < q. Then rank(UTU) = rank(U) = rank(UT) =
rank(UUT).

Here, the notation N (U) = {z € R?: Uz = 0} is called the null space of U.

Proof. We start by showing N(UTU) = N(U). N(U) CN(UTU) is trivial.
Now we prove N (UTU) C N(U). Suppose x € N(UTU). Then UTUx = 0. So
(Uz)T(Uz) = 2"UTUz = 0, which implies Uz = 0. So x € N(U). So we have N (UTU) C
N(U).
By the Rank-and-Nullity Theorem, we have rank(UTU) = ¢ — dimN(UTU) = ¢ —
dim N(U) = rank(U).

Lemma 3.2.6. M = WIMW = 0.

U

Proof. M = WTMMW = 0. Since M is nonsingular, rank(MW) = rank(W) =k — 1. By
the above lemma (3.2.5), we have rank(M) = rank(MW) = k — 1. Hence M > 0. O
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Theorem 3.2.7.
b = 5 (M0 (G0 = %ZA(M AelB) 20

Proof. The first equality follows from the definition of pj., (0). The second equality follows
from the definition of minimal scalar product. We proved M € S*7! in lemma (3.2.6) and

~

L e 8. So\(M)>0and \(L) > 0. 0

As we did in the basic eigenvalue bound method, we can simply use the eigenvalues of L
and M to obtain a useful lower bound by above theorem.

Remark 3.2.8. Since py.,;,(d) has both linear term and quadratic term and we optimize the
two terms separately, the optimal solution of quadratic term will not be an optimal solution
of linear term in general. Here we obtain an approximate solution by solving the optimal
solution of the minimal scalar product. Let Q) € Or_1 with columns consisting of the eigen-
vectors of M, defined in (3.2.6), corresponding to the eigenvalues of M in nondecreasing
order. Let P € R"=UX=1) pe the matriz with orthonormal columns consisting of the k — 1
eigenvectors of f/(d), corresponding to the smallest k—1 eigenvalues ofﬁ(d) N NONINCTEAsIng
order. From the theorem (3.1.2), the minimal scalar product term in (3.2.10) are attained at

7 = PQ", (3.2.12)

and the corresponding point in € N Do is

X=X+VZWTM. (3.2.13)
Corollary 3.2.9. If the problem 1is graph equipartitioning, i.e. my = mg = -+ = my = 7,
then
k—1

p;eig(o) = ﬁ Z )\n*Z(L)
Proof. 1f the problem is equipartitioning, then

M=WTMW = WT(%]k)W - %WTW - %[k_l.

So \(M)=2Vi=1,....k— 1 O

3.2.3 Explicit Solution for Linear Term

The constant term —a(d) — @ = STd) (—S(LQ) — 1) in (3.2.10) can be computed easily. The

minimal scalar product </\(IA/(d)), (A(é\4))> = EA,(M) - A—i(L(d)) in (3.2.10) can be

also computed efficiently. We now going to show the linear term can be computed efficiently
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by deriving a explicit solution. In theorem (7.1.1), we have shown that D is the convex hull
of M,,. So )rgli%(Xm)Td is equivalent to iji\;{l tr(Xm)Td. We define
€ €

m

xozz(mla"'amlv'“7mk>"'7mk)TeRna
————— —_—————
m1 my
and

Up, 0 0

0 Up, -+ O

Xo=1 . ™ | eMn. (3.2.14)
0 0 Up,

Notice that Xom = xg.
Lemma 3.2.10. Let d € R™. Then

. T
Xrg/lgtlm(Xm) d=(d,zo)_.

Proof. Oberve that X € M,, if and only if there exists a permutation matrix P on N such
that X = PX,. Let II denote the set of all permutation matrices on N. Then

min (Xm)Td = min(PXym)Td
XM Pell ,
~ P
= <d, $0>7 .

where the last equality follows from the definition of minimal scalar product. O

3.2.4 PE Bound via QAP

In this subsection, we first show GP problem can be convert into Quadratic Assignment
Problem QQAP, hence a special case of QAP. Formally, QAP consists of minimization

f(Y) =tr((AY BT + C)YT)

over the set of permutation matrices. A, B, and C' are given real matrices defining the QAP.
We now convert the problem (3.0.2) into QAP.
Recall that X € M,, if and only if there exists a permutation matrix ¥ on /N such that
X =Y Xy, where X is defined in (3.2.14).

So
tr(XTL(d)X) = tr(L(d) X XT) = tr(L(d)Y Xo X' YT).
Define
En, 0 0
. 0 En, -+ 0
TO = X()XO = . . . . € Rnxn
0 0 - B,



where X is defined in (3.2.14) and E is a square matrix of all ones. Notice that T =
0,rank(7p) = k and A\;(Tp) = m; fori =1,... k. Also, r(Ty) = Tou, = xo.
Let I denote the set of permutation matrices. So the problem (3.0.2) is equivalent to
the QAP
Wiy = min 2 tr(L(d)YT,YT) — 22

s.t. Y ell (3:2.15)

By considering the relaxation Y € O,,, we have the lower bound for w},, as same as the
basic eigenvalue bound.

Now define
{Y € R .Y, > 0,VYij}.
{Y e RV : Y, = tp, XU, = uy ).

o) =)
i

Notice that L
I=0,NNnNE.

We now project I onto € by the following lemma, see [7].

Lemma 3.2.11. [7, Lemma 3.1] Let Y be n xn and Z be (n—1) x (n—1). Suppose Y and
Z satisfy

_pll O pr
Y_P{O Z]P. (3.2.16)

Then R
Y eé,
YeEN VIV > %ununT,
YGOn@ZEOn_l.

Conversely, if Y € E, then there is a Z such that (3.2.16) houlds.

After substituting Y = 2u,u,” +VZV7 into the problem (3.2.15), we have the following

bound which is equal to our projected eigenvalue bound py, . (d):

~

wow 2 (al@) = L)+ L min o (V7dn'V)Z") + (L), A(T))

2 VZVT>Lupu,T

_I._
= (—a(d) — i?) + % min_(Yag)Td + % <)\(ﬁ(d)), A(TO)>_
)

YeEnN

+ 1 (d, zo)_ + 2 <A(i(d)), A(To)>_

n

(3.2.17)
where d € R", Ty, = VTT,V. The last equality follows from the fact

(AL(@)AT)) = (ML) (D))
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Chapter 4

Convex Quadratic Programming
Bound

4.1 Introduction and Related Work

A new successful and efficient bound used for the quadratic assignment problem (QAP) is
given in [1, 3]. In this chapter, we adapt the idea described there to obtain a lower bound for
wy ., which is stronger than the projected eigenvalue bound. This bound is obtained from
a relaxation that is a Convex Quadratic Programming, i.e., the minimization of a quadratic
function that is convex on the linear manifold defined by linear constraints. Approaches
based on nonconvex QPs are given in e.g., [8].

The main idea in [1, 3] is to use the zero duality gap result for a homogeneous QAP
[2, Theorem 3.2] on an objective obtained via a suitable reparametrization of the original
problem. Following this idea, we consider the parametrization in (3.2.5) where our objective
function in (3.0.2) is rewritten as:

s(d)

%tr(XTLX) _ (a(d) _ T) L (C(d)Z7) + %tr (Ld)z312") (4.1.1)

with X and Z related according to (3.2.3). Now we look at the homogeneous part:
vri=min jtr (f/(d)ZMZT)

p
s.t. ZTZ = ]k’—la (412)
(22T < I, 1))

Lemma 4.1.1. If H € O, then HHT < I,,.

Proof. Since H € O, there exists Hy € Ok, such that [Hy H| € O,. Then I, =
(Hy H|[H, H|" = HyHT + HHT. Since 0 < HyHY = I,, — HH”, we have HH” < I,. 0

By lemma (4.1.1), ZZ" < I,,_; is a redundant constraint in (4.1.2). But it does not mean
that it is redundant in our Lagrangian dual problem because we may close the duality gap
if we add the redundant constraint.
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The Lagrangian dual problem of (4.1.2) is the following, with variables in Lagrangian
multipliers S and T

vy :=max 1 tr(S)+ 3 tr(7)
st. @S +T®I, <=M L(d),
S =<0,
Ses 1 Tes L

Claim 4.1.2. [12, Theorem 2] v} = v}.

(4.1.3)

Proof. Tt is clear that vy > vj. Next we are going to show v, < vj.

Write M = U, Dlag()\)U T and L(d) = U, Diag(c)U; in eigenvalue orthogonal decompo-
sition forms. We substitute S = UJ SU, and T' = UTTU,; and rename of S and 7. Then we
have

204 = max tr(S) + tr(7)
st. I;1®S+T® I, = Diag(\) ® Diag(o),
S =0,
Sesl TeSH

Suppose (Sp, Tp) is a pair of optimal solution to (4.1.4). It is easy to verify that
(Diag(diag(So)), Diag(diag(7o))

(4.1.4)

is also a optimal solution to (4.1.4). So it suffices to consider the variables S and T to
be diagnal matrices. So we can reduce (4.1.4) to solving the following LP with variables
se€ R ! and t € RF L,
205 =max U, 17s+up 1t
st. tits; <Noj, i=1,... k=1 j=1,...n—1, (4.1.5)
5;<0, y=1,...,n—1.

The dual problem of (4.1.5) is

k—1n—1

205 =min ) Z Ni0jZij

21]
S.t. Zzijzl, ’izl,...,k—l,
j=1

k—1
Zzij—l—yj:l, jzl,...,n—l,

i=1
2; >0, i=1,...,k—=1,7=1,...,n—1,
y; 20, 7=1,...,n— 1

(4.1.6)

Notice that (4.1.6) is totally unimodular. So there is an optimal solution (z*,y*) which
is integral. z* defines an injection ¢* : {1,...,k — 1} — {1,...,n — 1} with ¢*(:i) = j, if
zj; = 1. Hence we have

k—1 n—1 k—1 N
g . A(M .
205 = Y Y Ny = Yhewo = (k@) (MG1)) =



]

Remark 4.1.3. The SDP in (4.1.3) can be efficiently solved as the LP in (4.1.5). If we have
an optimal solution (s*,t*) of (4.1.5), we can recover an optimal solution of (4.1.3) as

S* = U, Diag(s*)U] and T* = U, Diag(t*)U{. (4.1.7)

4.2 QP Bound

Next, suppose that the optimal value of the dual problem (4.1.3) is attained at (S*, T7*). Let

Z be such that the X defined according to (3.2.3) is a partition matrix. Then we have
c(2)T(M ® L(d))vec(Z)

vec(Z)T (M@ L(d) — Iy-1 @ S*"—T" @ I,_1) vec(Z)

Lee(L(d)ZzMZT) =

Lye
2V
1
2

(S*Z 11 Z7) + %tr([ilZT*ZT)

(Z)TQvec( )+ 2 t0(ZZ75*) + 1 tx(T7)

C(Z)TQvec( )+ 5 te([Z27 — I,.4]S*) + 5 tx(S*) + 5 tx(T™)
(2)TQuec(Z) + L te(S%) + 1 tx(T7),

2

NI)—‘MIHMI}—‘

AV
<
)
o

where the last inequality uses S* < 0 and ZZ7 =< I,_,. Notice that our @ > 0 since
Ly ®@S*+T*®I,_, < M ® L(d) since (S*,T*) is a feasible solution to (4.1.3).

Recall that the original nonconvex problem (3.0.2) is equivalent to minimizing the right
hand side of (4.1.1) over the set of all Z so that the X defined in (3.2.3) corresponds to a
partition matrix. From the above relations, the third equality in (2.1.1) and Lemma 3.2.1,
we see that

Wy, > min ((a(d) S<d>) +tr (C(d)Z7) + L vee(2)TQ Vec(Z)> +14r(S%) + Len(T)
st. 277 =1, 4,
X +VZWTM > 0.
(4.2.1)
We also recall from (4.1.3) that 3 tr(S*) + & tr(T*) = v} = v}, which further equals

3 (. (97)

according to (4.1.2) and Theorem (3.1.2).
A lower bound can now be obtained by relaxing the constraints in (4.2.1). For example,
by dropping the orthogonality constraints, we obtain the following lower bound on w} ;:

pop(d) = min R(Z) = (a(d) . %) i (C@)27) + L vec(2)TQ vee(Z)
w1 (e, (G) (1:2:2)
st. X+ VZWTH >0 )
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Notice that this is a QP with (n — 1)(k — 1) variables and nk constraints.

As in [1, Page 346], it is possible to reformulate (4.2.2) into a QP in variables X € D.
Note that Q defined in (4.2.4) is not positive semidefinite in general. Nevertheless, the QP
is implicitly convex. Also notice that

1 ~
p*QP(d) > p;‘)eig(d) +  min —vec(Z2)TQvec(2).
X+VZWTN>0

Since Q = 0, we have Ppo(d) > pheiy (d). The euquality can hold. If d = 0, then
a(d) — %d) =0and C(d) = 0. Z =0 is in our feasible region X + VZWTM > 0. So we
have p*QP(O) = p;eig(o) > 0.

Theorem 4.2.1. Let (S*,T*) be optimal solutions of (4.1.3) as defined in (4.1.7). A lower

bound on w}, is obtained from the following QP:

Weur 2 Pop(d) = min % vec(X)TQ vee(X) + % <>\(ﬁ(d)), (A(é” )>> - STd) (4.2.3)

where
Q=LaLd-M'eVSV) - (M WIW'M) ® I,. (4.2.4)

The QP in (4.2.3) is implicitly convex since Q is positive semidefinite on the tangent space

of £.

Proof. We start by rewriting the quadratic term of R(Z) in (4.2.2) using the relation (3.2.3).
Since VIV = I,y and WTW = I;,_;, we have from the definitions of M and L(d) that

Q=M®L(d) - I, ,®5 —T*® I,
= WIMLMW)® (VILA)V) - L1 @S —T*® I, 4

_ ((MW) ® v)T Iy @ L(d) — M~' @ (VS*VT) — (M'WT*WTM ) @ I,] ((MW) ® v) .

Q
(4.2.5)
On the other hand, from (3.2.4), we have
vee(X — X) = vee(VZWTM) = ((MW) ® V) vec(Z).
Hence, the quadratic term in R(Z) can be rewritten as
VeC(Z)T@ vec(Z) = vee(X — )?)TQ vec(X — )A(), (4.2.6)

where @ is defined in (4.2.4). Next, we see from vec()?) =m ® u, and VTu, = 0 that

(M~ @ (VS*VT)) vee(X) = % (M7' @ (VSV) (m®u,) = %uk ® (VS*VTu,) =0.
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Similarly, since WTm = 0, we also have
Vi s T 71 v Lo s T 71
((M WT*W7T M )®In) veo(X) = = ((M WT*WT N )®In) (m @ u,)

1 -~
= —(M'WT*W"h) ® u, = 0.

n

Combining the above two relations with (4.2.6), we obtain further that

%vec(Z)Tévec(Z)

zéveC(X)Té?vec(X) - Vec()?)T[[k ® L(d)]vec(X) + %Vec()?)T[[k 2 L(d)]vec()?)

:%veqX)TQvec(X) ~tr (L@XXT) + %tr(L(d))?)?T)

zévec(X)Tévec(X) — %tr(meXT) + a(d).

For the first two terms of R(Z), we have

<a(d) — @) +tr (C(d)Z") = (—a(d) — @) + %tr(meXT).
Furthermore, recall from Lemma (3.2.1) that with X and Z related by (3.2.3), X € D if,
and only if, VZWTM > —X.
The conclusion in (4.2.3) now follows by substituting the above expressions into (4.2.2).
Finally, from (4.2.5) we see that Q is positive semidefinite when restricted to the range
of MW ® V. This is precisely the tangent space of £. O]

Notice that (4.2.2) and (4.2.3) are equivalent. (4.2.3) has nk variables and nk +n + k
constraints. But the constraints of (4.2.3) look simpler than that of (4.2.2).
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Chapter 5

Semidefinite Programming Relaxation
Bound

In this chapter, we are going to apply semidefinite programming (SDP) method to compute
lower bounds for GP problem. We are going to present two methods to obtain the same SDP
relaxation. One way is doing lifting process through quadratic formulation. This method is
called the direct approach. The other method is using Lagrangian relaxation.

5.1 The Direct Approach to SDP Relaxation

We now show that SDP relaxation can be obtained from lifting process, i.e., we lift the vector
z = vec(X) into the matrix space S *1.
We starts with the equivalent quadratically constrained quadratic formulation:

wh, = min tr(XTLX)
st. XoX =X,
| Xy — up||” =0, (5.1.1)
| X u, — mH2 =0,
Xi0X, =0 Vij.

Here: o is the Hadamard (elementwise) product. The last constraint is redundant. But
it may not be redundant in our SDP relaxation.

Now we do the lifting process.

First, we define

vec(X)T

= L vec(X)T) = nk+1
Y= (Vec(X)) (1 (07) vec(X)  vec(X)vec(X)T €RTT

Then Yx = 0 and rank(Yx)=1.

Remark 5.1.1. Y € 8} and rank(Y') = 1 if and only if there exists v € RP such that Y =
xzT by Item 4 of Theorem (2.3.2).
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Define

0 0
Lo:= [0 [k®L}

Then our objective function becomes
Etr(X LX) = §tr(LX[kX )= §V6C<X) (I ® L)vec(X) = §tr(L0YX).

The first constraint XoX = X is equivalent to X;; € {0, 1}, Vij which is further equivalent
to
vec(X) = diag (vec(X)vec(X)").

We now define the linear mapping arrow : RUATDx(nk+1) __y Rrk+1 6 he
arrow (V) := diag(Y) — (0, Yo 1.nk) " -
Therefore, X o X = X is equivalent to
arrow (Yx) = ep.
Observe that

[ Xup — un)® = (Xup — un) (Xup, — uy)
= up T XT Xy, — 2u,” Xug + ulu,
= tr(L, Xupup T XT) — 2u, T Xy, +n
= vecT (X)[(upur?) @ I)vec(X) — 2vect (X) (up, @ uy,) +n

and
| X u, — mH2 = (XTu, —m)"(XTu, —m)
=ul X XTu, — 2u," Xm +mTm

= tr(upup,t X [, XT) — 2u," Xm +mTm
= vec (X)[I; ® (unu,T)]vec(X) — 2vec! (X)(m ® u,) +mim.
We define Dy, Dy € S™*! to be
mTm —mT'® U,
—m@u, I ® (uyu,?)

n —uT @u,T T

D=
! —up @ u, (upu’) @ I,

| pai= |

Then || Xuy, — u,||* = 0 and | X u, — m”2 = 0 is equivalent to
tr(D1Yyx) =0 and tr(DyYx) = 0.
We now define the gangster operator G; : S™+1 — S"+1 to be

L Y; lf (Z,j) or (]72) € J’
(Gs(Y))ij = { 0 otherwise,
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where the set

., i=(p—-1n+g, p<m,
J'_{“’j)'j:(r—l)wq, for p,re{l,.--,k},qe{1,-.-,n}}'

The Hadamard constraint X,; o X,; = 0,Vi # j is equivalent to
Gs(Yx) = 0.

We can see that the gangster operator G; shoots many “holes” in the matrix Y.
If we ignore the last rank-one hard constraint and use a general symmetric matrix Y
rather than Yy, we obtain the following SDP relaxation:

et = Pspp = min gtr(LeY)
s.t.  arrow(Y') = e,
tr(D,Y) =0,
tr(D,Y) = 0, (5.1.2)
G,(Y) =0,
Yoo =1,
Y >~ 0.

w

5.2 Lagrangian Relaxation

In this section, we develop the SDP relaxation constructed from the various equality cons-
triants in the representation in (2.1.3) and the objective function in (2.2.1). We follow the
approach in [18].

We start with the following equivalent quadratically constrained quadratic problem to
(GP) in (2.2.2):

wh, = min 1tr(AXBXT) = min 1 tr(AXBXT)
st. XoX =X, st. XoX =ux¢X,
| X e — un® =0, | X ue — zou,||* =0,
HXTun—m‘on, HXTun—:comH2:0, (5.2.1)
X;Z'OX;]‘:O,\V/Z.%]., X:iOX;j:O,VZ'%j, o
XTX — M =0, XTX — M =0,
diag(XXT) —u, =0, diag(XX7T) —u, =0,
xo? = 1.

Here we use a trick of adding a new variable xy and a new constraint zo?> = 1 to the
second optimization problem in (5.2.1). The reason is that we can kill all linear terms in
our Lagrangian £, while not changing the optimal value. zy can only take values 1 or -1
in the second problem. (X,1) is an optimal solution of second problem if and only if X
is an optimal solution of first problem. (X,-1) is an optimal solution of second problem if
and only if —X is an optimal solution of the first problem. In both cases, the two problems
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are equivalent and their optimal values agree. Again, the last two constraints in the first
problem of (5.2.1) are redundant. They may be not redundant in the Lagrangian dual.

The Lagrangian of second optimization problem in (5.2.1) is the sum of the objective
function along with inner-products of the Lagrangian multipliers and the corresponding
constraints.

L(X, 20,1, 8,G,V,¢,t) = %tr(AXBXT)
+ (T, X 0 X) + Blup” XT Xug 4w X X ) + 37,45 Gij (X 0 X )
+ (U, XTX) + (¢, diag(X XT)) + two?
— (T, 20X) — 28(xou,” Xug + xom® X u,)
+B(n+mTm)xy? — (U, M) — (¢, u,) — t.

Then we use the implicit constraint that the Hessian of the Lagrangian must be positive
semidefinite in the Lagrangian relaxation

X,zo

F,Bl,rglflllziﬁ,t (mlnL(X7 Ty, F? 57 g7 ‘Ilv ¢7 t)) :

Moreover, there is a hidden constraint that we want the inner minimization problem to
be bounded below. So the inner minimization is attained at xg = 0 and X = 0. Plugging
these in, we obtain a maximization SDP in the Lagrangian multipliers.

why > max  — (U M) — (o, u,) —t
8,69t (5.2.2)
s.t. V%X’xO)E(X, xo, I, 5,G, ¥, ¢, t) = 0.

Finally, we take the dual of (5.2.2), using the adjoints of the linear transformations in
the constraints in (5.2.2) and obtain an SDP relaxation of (5.2.1):

Weyy 2 PLspp = Min %tr(LOY)
s.t. arrow (Y) = ey,
tr(D,Y) = 0,
tr(D,Y) = 0,
G;,(Y)=0, (5.2.3)
Do(Y) = M,
De(Y) = Un,
Yoo = 1,
Y = 0.

Now we denote the set of feasible solution of (5.2.3) by F.
By abuse of notation, we use the symbols for the sets of constraints Dg, D, to represent
the linear transformations in the SDP relaxation in (5.2.3). Note that

(U, XTX) = tr(L,XUXT) = vec(X) (¥ @ I,,)vec(X).
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Therefore, Do*, the adjoint of Dp, is made up of a zero row and column and k2 blocks
that are multiplies of the identity matrix:

Do’ (V) = {8 v g IJ '

If we block Y appropriately as:

3:/(11) Yoy - 3:/(1k)

Yoo Yol o |Yey Yoy oo Y
Y_[Y,O }_/:|7Y_ . . )

Yiery Yoy - Yo

with each Y{;;) being a n x n matrix, then
Do(Y) = [tr(Yiiy)] € S™.
Similarly,
(¢, diag(XXT)) = (Diag(¢), XXT) = vec(X)" (I, ® Diag(¢)) vec(X).
So we get the D.*, the adjoint of D,:
D.*(¢) = {8 I ® Doiag(qb)} ’

Therefore we get the sum of the diagonal parts
k —
D.(Y) = Z diag(Y) € R™.
i=1

Claim 5.2.1. Do(Y) = M and D.(Y) = u,, are redundant in (5.2.3).
Proof. Write v := Yy.5n0, V1 := Y10, and X = Mat(vy). So we have
| X — up||® =l XT Xy — 2uF X Ty + uluy,
= vec! (X)[(upul) @ I, Jvec(X) — 2vec” (X ) (u @ uy,) +n

= o [(wpul) @ LJv; — 20T (up, @ u,) +n
= tr(DyvvT)

and
HXTun — m”2 = ngXTun —2mT X"y, + m™m
= vec (X)[I, ® (upul)]vec(X) — 2vect (X)(m ® u,) + mim
= o] [I; ® (upul)]vy — 20T (m @ u,) + mim
= tr(Dqvv?).
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By Schur complement of Yyo = 1, Y > 0 if and only if Y > UlvlT if and only if Y >

1o T
r| =vv'. We see further that
U1 U1Uy

Xuk—uH2 if i=1
0 = tr(D;Y) > tr(Dawv’) = | " ’
HDY) 2 (D) = | |XTu, —mlf i i=2

XTu, = m together with the arrow constraint imply that tr(Y;;) = Zj:(i—l)n—i—l Yo = m,.
Thus Do (Y) = M holds. Similarly, Xu; = u, together with the arrow constraint imply that
DY) = uy. O

5.3 The Final Semidefinite Relaxation Through Facial
Reduction

Claim 5.3.1. D1 t 0 and D2 t 0.

Proof. Observe that rank(D;) = n and rank(Ds) = k.

T
n

—u
L,
Let By = | In | e RO*+Dx" Then D; = B;BY. So D, > 0.
L,
—m7T
J1
Let By = Jo € Rk+DxE where J; € R™** with everywhere 0 but [-th column all

I
ones. Then Dy = ByBT. So D, = 0. O
Since Dy, Dy, Y = 0, by Theorem (2.3.12), we have D1Y = 0 and DY = 0. So we
cannot find a feasible Y = 0 such that tr(DY) = tr(D;Y) = 0. So we encounter numerical
difficulties if we apply the Interior Point Method. Actually, for many problems in the reality,
the Slater’s condition fails. But by Theorem (2.3.29), every nonempty face of S7 is uniquely
characterized. So we can find the minimal face of §% which contains F, the feasible set of
(5.2.3), by finding the barycenter point in the relative interior of the minimal face. Because
the minimal face we found is isomorphic to a smaller dimensional space S, where ¢ < n,
we can project F onto ST. This procedure is called the facial reduction. We now explain
the procedure in detail.

1 T 1 2T
Let X € M,, and z = vec(X). Yx = . (1 27) =

T} € F. Observe that
xx
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IM,,| = mme We define the barycenter point

Il
~ my. mi.:
V= >

1 2T
r xzxl|’
XeMm
For each X € M,,, rank(Yy) = 1. By Theorem (2.3.26), Yx is on an extreme ray of S™.
We need only consider the intersection of faces of St which contain all Yx. To achieve this,

we need to find a matrix V with range equal to the intersection of the nullspaces of D; and

D,.

Let V; € R*U-Y (V) = VIu; =0, e.g.,
1 0 0
0 1 0

V=0 o0 1 0

1
—1 -1 -1

Let

~ 1 0

Theorem 5.3.2. [17, Theorem 5.1]

1. The barycenter

m m my(mi—1) mim
o oy, ("L, + S (B — 1) e s (B, — 1)
rr; mim m m m'—l
T nine1) (En = In) (1, + (B, — 1))

where E,, is the n X n matrix with entries all 1’s.

2. The rank of the barycenter
rank(Y) = (k — 1)(n — 1) + 1.

3. The rows of i
—my ug 0o ... 0
—my 0 wl 0 0
T:=| : : :
—my, 0 ul
—u, I, I, I,

form a basis of the null space of Y.
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4. The columns ofV form a basis of the range of Y.

BX thAe above theorem, we conclude that Y > 0 is in the minimal face if and only if
Y = VZVT, for some Z = 0. By substituting

Yy =vVzvT e 8kl 7 ¢ Sh-Din-1)+1
into (5.2.3), we get the reduced SDP

w', > pipp = min %tr(f/TPOVAZ)
s.t. arrow (VZVT) = ¢q
G;,(VZVT) =0 (5.3.1)
(VZVT)g =1
7 = 0, 7 c S(kfl)(n71)+1.

Lemma 5.3.3. [17, Lemma 4.1] Let Z be an arbitrary symmetric matric of order (n—1)(k—

1)+ 1 with
Zoo Zo1 Zo(k-1)
7 _ Z1o ?11 Z1(k—1) |
Zk-10 Zk-11 " Lk-1)(k-1)

where Zyy is a scalar, Zyy € R"™Y fori = 1,...,k — 1 and Z;; € RO=DX0=D for g j =
1,...,k—1 are blocks of Z. LetY =V ZVT and blockY as

Yoo Yo -+ Yo
e
Yo Yiu -+ Y

where Yoo is a scalar, Yio € R fori=1,...,k and Y;; € R™" are blocks of Y. Then

1. Yoo = Zoo,
Ybiun:Zgomi fOT' Z:L,k
and
k
E Yoi = Zoouz.
i=1

2. miYo; =ulYy for i,j=1,... k.
k
3.3 Yii=u,Zy; for j=1,... k.

i=1
and

k
Zdlag(Yw) = Z()j fO?" ] = ]_,...7l€.
i=1

38



By Lemma (5.3.3), the arrow operator is redundant if both the gangster constraint holds
and (VZVT)OO = 1.

Lemma 5.3.4. [17, Lemma 4.2] Suppose that W € S"™ L. Then
VIg, W)V =0 = G,W)=0.
Lemma (5.3.4) tells us there are no other redundant constraints.

Theorem 5.3.5.

W 2 ppp = min Ltr ((V7LoV)2)
(SDP final) s.t. g’(VZVT) = gj(eoeg) (532)
Z = 0,7 e Sk,

where J := J U (0,0).
The dual problem is
max Wy

% A N “
st. VIG;(W)V = VTL,V. (5:33)
Theorem 5.3.6. [17, Theorem 4.1]
1| 0
7 = c S_(ﬁ_k*l)('ﬂ*l)%»l’
0 m(n Diag(mk,l) — mk,1m£_1> X (n[n,l — Enfl)

where my_1 = (my,...,mu_1)T is a Slater point for (5.3.2).
Theorem 5.3.7. [17, Theorem 4.2]

- « 0
W=l B—1oI,

is a Slater point for (5.3.3), if a is a sufficiently negative real scalar.

We next present two properties for recoving approximate solutions X from a solution Z

Of (SDP final) .

Proposition 5.3.8. [15, Proposition 5.2] Suppose that Z is feasible for (SDP finq) and
Y =VZVT. Let vy = Yigno. Then Xy := Mat(v)) € ENN. Let (vy vI)T denote a unit
eigenvector of Y corresponding to the largest eigenvalue. If vy # 0, then Xy := Mat(%vg) €
E. Moreover, if Y >0, then vy # 0 and X, € N.

Proof. The fact that X; € £ was shown in the proof of Lemma (5.2.1). That X; € N follows
from the arrow constraint saying that the first column of Y equals the diagonal of Y which
is nonnegative since Y = 0. We now prove the result for X5. Suppose vg # 0. Then

Y = M(Y) <“0> (v of).

(%)
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Using this and the definition of D; and X5, we see further that

M2 || Xy, — up|*, if =1,

M (Y)vg HX2Tun — m‘ 2 if =2 (5.3.4)

0=tr(D;Y) > {

Since A (Y) # 0 and vy # 0, we must have || Xpuy, — u,||* = 0 and | X3, — mH2 =0. So
X, eé.

Finally, we suppose Y > 0. We claim that for any eigenvector (vy v2)T corresponding
to the largest eigenvalue must satisfy:

1. ’U()?éo.

2. all entries if the eigenvector have the same sign, i.e., vgvs > 0.

From this claim, we have X, = Mat(%vg) eN.

To prove the cliam, we note from the classical Perron-Frobenius theory, e.g. [4], that the
vector (Jvg| |ua|")7 is also an eigenvector to the largest eigenvalue. Let y := Mat(vy). We
do the same procedure as in (5.3.4), we conclude that

XU, — vounH2 =0 and |||x|wm — |vol unH2 =0. (5.3.5)

Suppose by contradiction that vy = 0. Then the second equality implies y = 0. Then
vy = vec(x) = 0. It is a contradiction since eigenvectors cannot be 0. So we conclude that

Vo 7é 0.
Now suppose vg > 0. Then the two equalities give us

k k
ZXU = Vo = Z X5l
j=1 J=1

for all 7 = 1,...,n. So we have x;; > 0 for all 7,j, which implies v, > 0. One can show
similarly for the case vy < 0. Hence we proved vgve > 0. O
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Chapter 6

Cut Minimization Problem

6.1 Introduction

There is another type of GP Problem. We partition the node set of a graph into k sets of
given sizes. The goal is to minimize the size of cut edges obtained by removing the k-th set.
This problem is called Cut Minimization, CM Problem, which is contained as a special case
of GP Problem because the two minimization problems share the same constraints. Most of
the contents in this chapter is taken from [15].

We let §(S;, ;) denote the set of cut edges between the sets S; and 5, i.e.,

§(5i,5;) ={w € E(G) :u e S;,v e S;}.
We denote the set of edges with endpoints in distinct partition sets Si,...,Sp_1 by
0(S) = Uicjckd(Si, S;). (6.1.1)
The minimum of the cardinality |§(5)| is denoted
cut(m) = min{|6(S)| : S € P, }. (6.1.2)

The graph G has a vertex separator if there exists an S € P, such that §(S) = 0,
i.e., cut(m) = 0. Otherwise, cut(m) > 0. We call the later problem the Vertex Separator

Problem.
We define the k ordered matrix

uuT—Ik_l(] k
pe [ Y e

Proposition 6.1.1. [15, Proposition 2.3] For S € P, let X € M,, be the associated
partition matriz. Then

16(9)| = %tr ((A — Diag(d))XBX") ,vd € R". (6.1.3)
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Proof. We include the proof for completeness. Let X € M,, be the partition matrix as-
sociated to S € P,,. Write X = (Il Ty - Z‘k), where z; is the ¢-th column of X.
Then XBX" =37, ;o vix] +xjz]. So XBX" is the adjacency matrix of the complete
(k — 1)-partite graph with the parttition S € P,,. In particular,

1 if 7 and j are in the distinct sets Sq,...,Sk_1 ,

T L=
(XBX™);; { 0 otherwise.

So
) r _ J 1 ifijed(s),
Ay (XBXT);g _{ 0 otherwise.
Therefore tr(AXBX™) = 37, Ai(XBXT)i; = 216(5)].
Since diag(XBX7”) = 0 and A;; = (A — Diag(d));; for i # j, we have tr(AXBXT)
tr ((A — Diag(d))XBXT) ,Vd € R™.

Remark 6.1.2. VS € P,,,[0(9)| = tr(AXBXT) if d = 0, while |6(S)| = tr(~LXBXT) if
d = Au,. So the above proposition is a general version of [13, Prop.2].

co

So the Vertex Separator Problem can be solved as

min 1 tr (G(d)XBXT)

S.t- X E Mm7 (6.1.4)

where G(d) = A — Diag(d),d € R".

The format of objective function in (6.1.4) is same as that of (3.0.2), i.e., they are
both quadratic. So we can apply the same strategies to derive the eigenvalue bounds, con-
vex quadratic programming bounds, and semidefinite programming bounds for the Vertex
Seperator Problem. We are going to go over some main details in the following sections.

6.2 Lower Bounds for the CM Problem

We briefly conclude the three types of lower bound for CM problem. Numerical tests for
CM problem can be found in [15].

6.2.1 Eigenvalue Bounds

The same idea in Chapter 2 can be applied to derive the basic eigenvalue bound for the CM
problem. Consider the relaxed problem

cut(m) > min 3 tr(GXBXT)

s.t. X €Dop. (6.2.1)

Lemma 6.2.1. [13, Lemma 4] The k — ordered eigenvalues of the matriz B := MBM
satisfy

M(B) > 0= Xo(B) > Ns(B) > --- > \e(B).
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Proof. We include the proof for completeness. The matrix ugz_ju} , has rank one and
tr(uu®) = k —1 so it has eigenvalues (k—1,0,---,0)T € R¥"1. So the matrix uu’ — I;_; has
eigenvalues (k —2,—1,---,—1)T € R¥"1. Because B has a row of 0, then 0 is an eigenvalue
of B. So B has eigenvalues (k —2),0,—1,---,—1)T € R

The conclusion for B follows from the Sylvester Law of Inertia for nonsingular congru-
ences. O

Remark 6.2.2. The Sylvester Law of Inertia states that if H € SP and Q) € RP*P is nonsin-
gular, then H and QHQT have the same number of positive, negative and zero eigenvalues
(same inertia). QHQT is said to be congruent to H.

Theorem 6.2.3. [15, Theorem 3.4] Let d € R",G = A — Diag(d). Then

cut(m) > 0 > ¢ty (G) == % <A<G), (A(f)) > _ % <i M it (B)M(G) + Al(B))\n(G)> |

Moreover, the function q%;,(G(d)) is a concave function of d € R".

Proof. Let Y = XM~ We have XX = M if and only if YTV = I;. We substitude
X =Y M into (6.2.1) to get the equivalent problem to (6.2.1):

min 1 tr(GY BYT)

st. YTY = I, (6.2.2)

where B = MBM.

Since (6.2.2) is a relaxation to the CM Problem, we have cut(m) > ¢};,(G). The explicit
formula for the minimal scalar product follows immediately from Lemma (6.2.1).

We are going to show 0 > ¢, (G). Let ® be a permutation of N = {1,2,...,n} that
attains the minimal value min {Zle A¢(i)(G)Ai(B) D¢ is a permutation}. Then for any
permutation v, we have

S M (@ONB) 2 37 A (N, (623)

Note that 32 \;(B) = tr(B) = tr(MBM) = tr(MB) = 0, since diag(B) = 0 and M is
a diagonal matrix.
Let T be the set of all permutations of N, then we have

> (Z >‘¢(i)<G))‘i<B)> => <Z )‘w(i)(G)> Ai(B) = (Z Awm(@) (Z MB))

peT \i=1 i=1 \peT YeT
(6.2.4)

0,
since Yo7 Ay(i)(G) is independent of 4. It implies that Zle )\é(i)(G)Ai(B) <0.
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Now we prove by contradiction. Suppose Zle Aqﬁ(i)(G))‘i(B) = 0 which implies that

S A (G)N(B) = 0,¥ € T. Recall from the Lemma (6.2.1) that A\;(B) > \(B). It
implies that all eigenvalues of G are equal. Moreover, if all eigenvalues of G were equal, then
necessarily G = 1, for some € R and A must be diagonal matrix. This implies that A=0
since diag(A) = 0, which is a contradiction. Therefore ¢}; (G) < 0.

Finally, the concavity follows by observing from (6.2.2) that

£:(G(d) = min Lr (GlayByT).

YTY=I, 2

is a function obtained as a minimum of a set of affine functions in d, and recall that the
minimum of affine functions is concave. ]

Since ¢;,(G(d)) < 0,Vd € R", the basic eigenvalue bound for the CM problem is not a
useful bound. Next theorem provides the projective eigenvalue bounds.

Theorem 6.2.4. [15, Theorem 3.7] Let d € R",G = A — Diag(d). Let V and W be defined
in (3.2.2) and X = tu,m? € Rk Then:

n

1. For any X € £ and Z € R"=Y*E=1 related by (3.2.3), we have

tr(GXBXT) =a+tr(GZBZT) +tr(FZT)

S - 6.2.5
= —a+ tr(GZBZT) + 2tr(GX BXT), (6.2.5)

and o
tr(~LXBX") =tr(—~LZBZ"), (6.2.6)
where
R R R . 1 ~ o~
G=V'GV,L=VTLV,B=W"MBMW,a = —(u" Gu)(m"Bm),F = 2V"GXBMW.
n
(6.2.7)

2. We have the following lower bounds:

cut(m) > ¢, (G) =1 {—a + <A(G), ( 0 )>_ + 2)IP€igtr(G)?BXT)}

o+ <A(@)’ (A(f)) > " og)?gianTMtr(FZT)}

= 1 a3 2N (B)N(G) + M(B)A 1 (G) + 2 min tr(G)?BXT)} .
(6.2.8)

N =

N

0 A
culm) 2 (-0 = 5 (0. (V) zan 629



Proof. We substitute the parametrization (3.2.3) into our objective function tr(GXBXT).
Then we get a constant, quadratic, and linear term:

tr(GXBXT) = tr (G()? +VZWTM)B(X + VZWTM)T)
= (GXBXT) + 1 (VIGV)Z(WTNIBNIW)ZT) + (2V T GR BNIW Z7)

and

tr(GXBXT) = tr(GXBXT) + tr (VIGV)Z(WTMBMW)ZT) + 2tr G)?B(VZWTM)T)
= t2((GXBXT) + tr (VIGV)Z(WTMBMW)ZT) + 2tr (GXB(X —X)T)
= —tr(GRBXT) + tr (VIGV)Z(WTMBIW)ZT) +2tx(GR BXT).

These together with (6.2.7) yield the two equations in (6.2.5). Since Lu = 0 and hence
LX =0, we obtain (6.2.6) by replacing G with —L. We proved Item 1.
Now we are going to prove (6.2.8), i.e., Item (2a). Recall from (6.1.4) and (2.1.1) that

1
cut(m) = min {Etr(GXBXT) X € DﬂDO} :

Combining this with (6.2.5), we see further that

cut(m) =1 (—a+ min {t(GZBZ7) + 2tr(GXBXT)
2 X€DNDo
>1(-a+ min tr(GZBZT) 42 min tr(G)?BXT))
XeDNDo XeDNDop
. . (6.2.10)
>i(—-a+ min tr(GZBZT)+2mintr(GXBXT)
2 2T 7=l XeD

N[

(—a + <A(G), (A(f)) >_ +2min tr(G)?BXT)) e

where X and Z are related via (3.2.4), and the last equality follows from Lemma (3.2.1) and
Theorem (3.1.2).
Furthermore, notice that

—a + 2min tr(GXBXT) =« + 2min tr <GX'B(X - )?)T>
XeD XeD

=a+2 min tr <G)?B(VZWTJ\ZI)T> (6.2.11)
0<X+VZWT M
=a+ _min tr(FZ7),
0<X+VZWT I

where the second equality follows from Lemma (3.2.1), and the last equality follows from
the definition of F in (6.2.7). Combining this last relation with (6.2.10) proves the first two
equalities in (6.2.8).
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The last equality in (6.2.8) follows from the fact that
Me(B) < Mp_1(B) < M_i(B) < -+ < M(B) =0 < M (B) < M(B), (6.2.12)

which is a consequence of the eigenvalue interlacing theorem, the definition of Band Lemma(6.2.1).
Next, we prove (6.2.9), i.e., Item 2b. Recall from (6.1.4) and (2.1.1) that

1
cut(m) = min {ﬁtr(—LXBXT) : X eDn DO} :

Using (6.2.6), we see further that

cut(m) > min {3 tr( LXBXT)'XESHDO}
_mm{ltr LZBZ"): 277 = I 1}

(00, () o

>m1n{2tr LXBXT): XEDO} =q%,(—L)),

where X and Z are related via (3.2.4). The last inequality follows from dropping the con-
straint X € £. O

6.2.2 Convex Quadratic Programming Bounds

We follow the approach we used in chapter 4. Let (S**,7**) be an optimal solution to the
following problem
max 3 tr(S) + 5 tr(T) o
st. I, 1 ®05S+T®I, 1 R BRG,
S =<0,
Ses 1. TeSk1,

where B and G are defined in (6.2.7).
We define

~ N

Then,

cut(m) > qap(G) = min % (oz +tr(FZ7) + vec(Z)Tévec(Z) + <>\(G)> ( : )>_>

st. X +VZWTM >0,
(6.2.13)
where F' is define in (6.2.7).
Notice that (6.2.13) is a convex QP with (n — 1)(k — 1) variables and nk constraints.
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Theorem 6.2.5. [15, Theorem 4.1]
cut(m) > qop(G) = gl{lel% % Vec(X)Té vee(X) + = <)\(@), (A(OB>)> (6.2.14)

where

Q:=BoG-M"'@VS*VT) = (M'WT*W' M) ® I,.
The QP in (6.2.14) is implicitly convex.

6.2.3 SDP Bounds

Like what we did in Chapter 5, we can obtain a lower bound for cut(m) through the semidef-
inite programming. Let

0 0
to= [y pag)

So we have the semidefinite programming bounds for cut(m) as following.

Theorem 6.2.6. [15, Theorem 5.1]

cut(m) > pigpp(G) = min %tr(VTL(;\?Z)
sit. Gi(VZVT) =Gjlepel), (VSDP tinai)
7 = 0, = S(k—l)(n—l)—i—l'

The dual problem is
max iWOO
sit. VIG:W)V < VTLGV.
Both primal and dual satisfy the Slater constraint qualification and the objective function
is independent of the d € R™ chosen to form G.

Proof. The only thing we need to prove is the independence of choice of d. Let Y = VZVT
with Z feasible for (VSDP fipq1). Then Y satisfies the gangster constriants, i.e., diag(ff(ij)) =
0,Vi # j. On the other hand, notice that tr(LgY) = tr(LaY) — tr(Lpiag)Y). From the
structure of B ® Diag(d), Lpiag(a) has nonzero elements only in the diagonal positions of the

off-diagonal blocks. So we have tr(Lpiaga)Y) = 0. As a result,
tr ((XA/TLGXA/)Z> — tr(LaVZVT) = tr(LaY) = tr(LaY) = (VI LAV Z),

for all d € R". O]
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Chapter 7

Numerical Tests

In this chapter, we provide some empirical comparisons for the lower and upper bounds
obtained from above methods. All the numerical tests are performed in MATLAB version
2013b on a single node of the COPS cluster at University of Waterloo.

7.1 Feasible Solutions Upper Bounds

As an extension of the well-known Birkhoff-von Neumann Theorem relating the extreme
points of the doubly stochastic matrices to the permutation matrices, we have the following.
(We include a proof for completeness.)

Theorem 7.1.1. [15, Theorem 6.1] The set of extreme points of the doubly stochastic type
matrices D equals the set of partition matrices M,,, i.e.,

ext(D) = M,y,.

Proof. 1t is clear that M,, C ext(D). Next we prove ext(D) C M,, by showing that all
entries of elements in ext(D) are integral. Let X € D have a non-integral entry. We are
going to show that X is a nontrivial convex combination of partition matrices, and hence is
not extremal. We define

Up, O -+ 0
0 Up, -+ O

Xo = ) . _ . cM,,.
0 0 Up,

Consider the linear map h : R™" — R™* with h(D) = DX,. Then for any doubly
stochastic matrix D of order n, we have h(D) € D. Moreover, for any permutation matrix
P of order n, we have h(P) € M,,. Next we define

_ 1 = 1 = 1 =

1 ~
X = [—X:l e —Xg o —Xyg oo _X:k] e R,
m mq znk mp

J/
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It is easy to verify X is doubly stochastic and h(X) = X. Since X is doubly stochastic
matrix, by the Birkhoff-von Neumann Theorem, there exist A; > 0 and permutation matrices
P, i =1,...,[, such that X = 22:1 A P; and 25:1 A; = 1. Applying the linear map h on

both sides gives
!
X =h(X)= <Z)\ P) :ZAih(P

Since there is a entry of X that is fractional, there is at least one \; that is fractional.
Consequently, since Z Ai = 1, there are two \}s that are fractional. So X is a nontrivial
convex combination of partition matrices. 0

Theorem 7.1.2. [15, Theorem 6.2] Let X € R™*. Then an optimal solution ome/iéll | X - X||,.
e m
can be found by using simplex method to solve the LP problem
min — tr(X7X)
s.t. Xup = up,

XTu, =m,
X >0.

(7.1.1)

Proof. 1If X € M,,, then Diag(X?X) =m. So tr(X7X) = n. Hence we have

min ||X—XH? = min <X XX X>
XeMp, XeMpm, _
= tr(XTX) + Juin tr(XTX —2XTX)
EM,

=tr(XTX)+n+2 min tr(—XTX).
XeEMp,

The simplex algorithm can give us an extreme point of D which is optimal. So this
optimal solution is in M,, by the theorem (7.1.1). O

7.2 Random Tests with Various Size

We first fix a positive integer £ > 4 and generate k integers myq, ..., my each chosen randomly
from {1,...,imax}. If any of m; happened to be 1, then we increase all the m; by 1. Next
we construct our graphs in two ways:

1. Structured graphs: We construct k disjoint cliques. The i-th clique has m; nodes.
Then we add ug edges between the k cliques, chosen uniformly at random from the
complement graph. In our tests, we set ug = |e.p|, where e, is the number of edges in
the complement graph and 0 < p < 1. By our construction, ug is very likely to be the

optimal value, i.e., uy = w},.

2. Random graphs: We generate a graph with n = u{ m nodes. The adjacency matrix is
generated by

A = round(rand(n)); A = round((A + A’)/2); A = A — diag(diag(A));
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As a consequence, an edge is chosen with probability 0.75.

we define the relative gap (Rel. gap) as

best upper bound — best lower bound

Rel. gap = best upper bound + best lower bound

In Tables 7.1 and 7.2, we consider small instances where k = 4, 5, p = 20% and imax = 10.
The tables include BE; with value pZ; (0), BE4 with value p}; (—Au), PE, with value
Preig(0), PE4 with value py; (—Au), QP with value pf,p(—Au), SDP bounds and the dou-
bly nonnegative programming (DNN) bounds'. For each approach, we present the lower
bounds (rounded up to the nearest interger) in the first line and the corresponding upper
bounds (rounded down to the nearest integer) obtained via the linear programming technique
described in Section (7.1)? in the second line.

In terms of lower bounds, the DNN approach usually gives the best lower bound. While
the SDP bounds are better than the QP bounds for random graphs, they are comparable
for structured graphs.

Data % bounds Rel. gap
n|k| |E||u || BEL | BE4 | PEL | PE4 | QP | SDP | DNN
21 (4] 9329 16| 23| 20| 26| 27 28] 29 0.0000
51| 57| 56| 39| 29| 36| 29
27 [ 41139 52| 33| 45| 34| 46| 47| 46| 52 0.0877
77| 83| 68| 79| 62| 62| 62
25 [ 5| 115 (46 || 28| 36| 33| 40| 42 40| 46 0.0000
66 | 71| 71| 55| 57| 55| 46
315|173 [ 73] 43| 61| 48| 65| 66| 65| 73| 0.0000
117 | 119 | 117 | 80| 73| 92| 73

Table 7.1: Results for small structured graphs

We consider medium-sized instances in Tables 7.3 and 7.4, where £ = 8,10,12,p =
20% and imax = 20. We do not consider DNN bounds due to computational complexity.
It is very interesting that QP bounds are better than SDP bounds in the medium-sized
structured instances while SDP bounds are better than QP bounds in the medium-sized
random instances. BE bounds and PE bounds are comparable.

Finally, in Tables 7.5 and 7.6, we consider larger instances with k& = 35, 45,55, p = 20%
and imax = 100. We do not consider QP, SDP and DNN bounds due to computational
complexity.

!The doubly nonnegative programming relaxation is obtained by imposing the constraint VZVT > 0
onto (SDP finai)-

2The SDP and DNN problems are solved via SDPT3 (version 4.0) with tolerence gaptol set to be le-6
and le-3 respectively. The problem (4.1.5) and (4.2.2) are solved via SDPT3 (version 4.0) called by CVX
(version 1.22), using the default settings. The problem (7.1.1) is solved using simplex method in MATLAB
using the default settings.
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Data LL]‘;)V;‘Z’; bounds Rel. gap
n|k| |E| || BEL | BE4 | PEy | PE4 | QP | SDP | DNN
16 4] 93] 36] 40 46| 50| 52| 52] 58] 0.0085
60 60| 60| 59| 59| 62| 59
27 [4|271 | 149 | 165| 156 | 172 [ 173 | 176 | 188 | 0.0105
196 | 195 | 195 | 192 | 195 | 199 | 208
3151360 | 196 | 224 | 212 238|241 | 244 | 262 | 0.0113
268 | 270 | 275 | 269 | 274 | 275 | 286
35 | 5| 446 || 242 | 276 | 261 | 294 [ 299 | 302 | 324 | 0.0167
344 | 335 | 340 | 337|338 | 347 | 347

Table 7.2: Results for small random graphs

In all tables, we have PE4, > PE;, > BE; and PE4, > BE, > BE,, while PE; and BE4
are comparable.

Before ending this section, we briefly talk about the computational time measured by
MATLAB tic-toc function. For lower bounds, the eigenvalue bounds are fastest to compute.
The computational time for small, medium and large problems are usually less than 0.01
seconds, 0.1 seconds and 0.5 seconds, respectively. The QP bounds are more expensive to
compute, taking around 0.5 to 2 seconds for small problems and 0.5 to 15 minutes for medium
problems. The SDP bounds are even more expensive to compute, taking 0.5 to 3 seconds for
small problems and 2 minutes to 2 hours for medium problems. The DNN bounds are the
most expensive to compute. Even for small problems, it can take 20 seconds to 40 minutes
to compute a bound. For upper bounds, using the MATLAB simplex method, the time for
solving (7.1.1) is usually less than 1 second for small and medium problems; while for the
large problems in Table (7.5) and Table (7.6), it takes 1 to 5 minutes.
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Data %]‘;V;i’; bounds Rel. gap

n| k| [E[| w ||BEL|BE4 | PEL | PE4| QP |SDP

58 | 8| 501 | 287 202 | 235 | 220 | 251 | 256 | 232 0.1065
380 | 382 | 364 | 357 | 317 | 394

62| 8| 594 | 324 225 | 275 | 248 | 294 | 300 | 291 0.1071
422 | 438 | 442 | 426 | 372 | 394

95 | 8| 1481 | 745 583 | 665 | 619 | 691 | 701 | 678 0.0377
1045 | 972 | 1047 | 988 | 756 | 1079

117 | 10 | 1979 | 1201 994 | 1084 | 1033 | 1115 | 1123 | 1097 0.0369
1565 | 1474 | 1464 | 1521 | 1209 | 1472

94 | 10 | 1387 | 745 590 | 652 | 633 | 682 | 692 | 675 0.0559
992 | 1003 | 971 | 774 | 878 | 911

123 | 10 | 2147 | 1338 || 1061 | 1190 | 1120 | 1241 | 1253 | 1197 0.0504
1645 | 1641 | 1662 | 1597 | 1386 | 1757

132 | 12 | 2346 | 1575 || 1259 | 1408 | 1316 | 1460 | 1469 | 1438 0.0498
1952 | 1876 | 1940 | 1623 | 1717 | 1983

132 | 12 | 2368 | 1569 || 1242 | 1402 | 1285 | 1438 | 1449 | 1380 0.1003
1907 | 1851 | 1966 | 1772 | 1790 | 2012

115 | 12 | 1845 | 1177 912 | 1025 | 972 | 1073 | 1085 | 1047 0.0683
1513 | 1440 | 1501 | 1244 | 1326 | 1477

Table 7.3: Results for medium-sized structured graphs

52




Lower

Data Upper bounds Rel. gap
n| k| |E||BEL |BEs | PEL | PE4| QP |SDP

65 | 8] 1571 [ 980 | 1055 | 1089 | 1162 | 1170 | 1175 ||  0.0435
1292 | 1290 | 1297 | 1282 | 1299 | 1316

67 | 8| 1681 || 1050 | 1126 | 1182 | 1261 | 1270 | 1272 ||  0.0450
1407 | 1392 | 1408 | 1396 | 1398 | 1401

73| 8] 1987 || 1245 | 1323 | 1420 | 1497 | 1511 | 1516 ||  0.0408
1656 | 1662 | 1663 | 1645 | 1653 | 1669

92 | 10 | 3130 || 2138 | 2289 | 2322 | 2474 | 2486 | 2492 || 0.0384
2716 | 2708 | 2720 | 2691 | 2708 | 2724

122 | 10 | 5457 || 3898 | 4156 | 4089 | 4343 | 4358 | 4362 ||  0.0377
4732 | 4704 | 4735 | 4711 | 4718 | 4783

108 | 10 | 4362 || 3121 | 3250 | 3323 | 3444 | 3457 | 3467 ||  0.0355
3722 | 3732 | 3740 | 3722 | 3732 | 3775

130 | 12 | 6296 || 4701 | 4897 | 4936 | 5120 | 5135 | 5146 || 0.0331
5549 | 5517 | 5546 | 5498 | 5549 | 5580

144 | 12 [ 7728 || 5674 | 6089 | 5983 | 6402 | 6419 | 6429 ||  0.0340
6926 | 6881 | 6911 | 6891 | 6929 | 6976

137 | 12 | 6982 || 5127 | 5443 | 5414 | 5726 | 5743 | 5747 || 0.0348
6181 | 6173 | 6192 | 6162 | 6184 | 6271

Table 7.4: Results for medium-sized random graphs
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Lower

Data Upper bounds Rel. gap
n| k| E| | ug BE, BE4 PE, PE,4

2004 | 35 | 461865 | 386285 361900 | 376315 | 366025 | 380173 0.0170
431210 | 418626 | 433334 | 393350

1763 | 35 | 359293 | 298477 271810 | 288338 | 276742 | 292997 0.0273
335801 | 327283 | 340000 | 309453

1631 | 35 | 305901 | 255840 235396 | 247030 | 239323 | 250704 0.0269
285787 | 277977 | 287345 | 264577

2238 | 45 | 557743 | 486365 452193 | 469991 | 459627 | 477125 0.0352
528404 | 519478 | 533745 | 511978

2429 | 45 | 655197 | 573402 533846 | 556720 | 540877 | 563493 0.0168
624029 | 607715 | 627066 | 582761

2363 | 45 | 620375 | 542582 506838 | 526087 | 514241 | 533235 0.0222
588947 | 569792 | 589190 | 557422

2834 | 55 | 878964 | 783849 733871 | 761522 | 742441 | 769788 0.0233
844913 | 826628 | 848004 | 806582

3195 | b5 | 1113466 | 997237 941234 | 973997 | 948921 | 981431 0.0194
1069036 | 1049898 | 1074344 | 1020181

2863 | 5 | 892381 | 801142 750958 | 777796 | 760249 | 786835 0.0239
860769 | 844305 | 862399 | 825361

Table 7.5: Results for larger structured graphs

o4




Lower

Data Upper bounds Rel. gap
n| k| |E| BE, BE4 PE, PE,4

1863 | 35 | 1300266 || 1179478 | 1199702 | 1202727 | 1222947 0.0113
1252578 | 1250970 | 1252942 | 1251010

1952 | 35 | 1428503 || 1300322 | 1322867 | 1317912 | 1340382 0.0110
1372084 | 1370239 | 1372118 | 1370104

2089 | 35 | 1635134 || 1495514 | 1520705 | 1515972 | 1541096 0.0107
1576666 | 1574543 | 1576794 | 1574286

2383 | 45 | 2128866 || 1966436 | 1994338 | 1993357 | 2021177 0.0101
2064791 | 2062844 | 2065059 | 2062515

2262 | 45 | 1918577 || 1765491 | 1792213 | 1794208 | 1820953 0.0104
1861114 | 1859275 | 1861269 | 1859358

2429 | 45 | 2211867 || 2044687 | 2076008 | 2068729 | 2099995 0.0100
2144815 | 2142597 | 2144933 | 2142573

2764 | 55 | 2863291 || 2664605 | 2701727 | 2695612 | 2732598 0.0095
2787232 | 278b471 | 2787807 | 2785103

2744 | b5 | 2822053 || 2625297 | 2662913 | 2655062 | 2692538 0.0095
2746913 | 2744450 | 2747459 | 2744324

2936 | 55 | 3231089 || 3018448 | 3057504 | 3051330 | 3090316 0.0092
3150582 | 3148539 | 3150742 | 3147990

Table 7.6: Results for larger random graphs
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Chapter 8

Conclusion

In this thesis, we have introduced eigenvalue bounds, QP bounds, and SDP bounds for the
GP problem. We have used the Hoffman-Wielandt result together with projection techniques
to find the eigenvalue bounds. In particular, we break the projected eigenvalue bound into
three parts and find their optimal values separately. We have used a zero duality gap result
and implicit convexity to find the QP bound and have shown that the QP bound is stronger
than the projected eigenvalue bound. We have used the lifting process, or equivalently
Lagrangian duality, to derive the SDP relaxation for the GP problem. We then obtain a
faciallly reduced SDP relaxation and show that the so-called gangster constraint is very
strong so that many other constraints are redundant. We have shown how to recover a
feasible solution from an approximate solution by solving an LP . We have also summarized
the eigenvalue, quadratic programming and semidefinite programming bounds for the CM
problem, a special case of the GP problem.

Our eigenvalue bounds and QP bound can be found efficiently. The computational ex-
pense for the basic eigenvalue bound is less than for the projected eigenvalue bound which
is less than for the QP bound which is less than for the SDP bound. In our numerical tests,
we conclude that the quality of the eigenvalue bounds is comparable to the QP and SDP
bounds, but the computational expense of the eigenvalue bounds is much cheaper. Surpris-
ingly, we found that the bounds found by setting the parameter d = —Au are stronger than
the bounds using d = 0.
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Index

A, adjacency matrix, 5

A o B, Hadamard product, 4

B, 41
E,,, matrix of all 1’s, 37
G(d), 42

L = Diag(Au,) — A, the Laplacian, 6

M = Diag(m), 15
V;, 37

D, 4

Do, 4

D., 4

Diag, 4

&, 4

g, 4

N, 4

O,.xm, orthogonal matrices, 5

S5

S", symmetric matrices, 5
S8, 6

Z, 4

diag, 4

v, 37

L, 21

M, 21

(x,y)_, the minimal scalar product, 16

A(H), eigenvalues, 5
B, 42

M = Diag(m), 15
m, 15

vec(X), 11

r(A), 5

s(A), 5

u, vector of ones, 3

Weyt, the total weight of cut edges, 5
Wuneut, the total weight of uncut edges, 5

adjacency matrix, A, 5
arrow operator, 32

doubly stochastic, 4
eigenvalues, A\(H), 5

Gangster operator, G, 32
graph

G, 3

edge set, E, 3

node set, N, 3
graph partitioning, GP, 1

Hadamard product, 4
Kronecker product,®, 11
orthogonal matrices, O, xm, 5

partitions, 3
P,,, set of all partitions, 3
partition matrix, X, 3
set of all partition matrices, M,,, 3

QAP, quadratic assignment problem, 26
QP, quadratic program, 26
quadratic assignment problem, QAP, 26
quadratic program, QP, 26

symmetric matrices, 8", 5

trace, tr, 5
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