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Abstract

A rechargeable hybrid aqueous battery (ReHAB) system was recently developed by our

research group. It has been improved via different experimental approaches, but nobody yet

has tried to use mathematical modeling techniques to further understand the system. This

thesis tries to investigate the ReHAB system using a few current modeling methods. The

study is categorized into empirical level, electrochemical engineering level and atomistic

level.

At the empirical level, a battery is simply viewed as a whole system, which means

detailed descriptions in terms of the cathode, anode or electrolyte are ignored. By using

the historical experimental data, researchers can predict the future behavior of a battery

regardless of its internal phenomena. They usually employ some general mathematical

functions, such as polynomial, logarithmic, exponential or other nonlinear functions. Cur-

rently automatic curve fitting and predicting algorithms are commonly used in the battery

management system, due to the advantage in coping with the system nonlinearity. The

first study in this thesis implements a tracking method called particle filter method on

the ReHAB experimental data. The basic math function in the simulation is an empirical

formula between the battery capacity and the Coulombic efficiency. The study confirms

this correlation in the ReHABs, and proves that particle filter method can be a good option

in battery performance tracking and prediction.

At the electrochemical engineering level, battery performance is simulated in the contin-

uum models, by incorporating chemical or electrochemical reactions, transport phenomena

or interfacial kinetics. This level of simulation can help observe battery electrodes in details.

It is more accurate than the empirical level model, and more versatile in simulating various

electrochemical problems. This thesis secondly focuses on the ReHAB system cathode and

anode using finite element method, which is implemented in COMSOL Multiphysics. The

study includes a design of battery system model, investigation of species distribution dur-

ing cell operation, side-reaction effects and anode corrosion issues. The models designed at

this level give consistent results compared with the experimental data, and illustrate some

guidance for the potential experiments.

At the atomistic level, molecular simulation can model the system dynamics via step-

iii



by-step computation. Stochastic method is an efficient molecular method to investigate

electrochemical problems coupled with species diffusion and chemical reactions. Atomistic

simulation commonly spends longer time, but it can be very accurate regarding the evolu-

tion of a dynamic physical system. The study at this level employs the classical stochastic

method on the electrochemical deposition of Zn atoms. It is focused on the dendrite for-

mation via implementing diffusion-limited aggregation techniques and the remaining metal

ions by using stochastic simulation methods. The simulation schematically illustrates the

overpotential influence on the dendrites and ion distribution at the metal surface. These

findings prove that overpotential is an important factor and can also help further design

of experiments.
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Chapter 1

Introduction

1.1 Battery History

Batteries have attracted more and more attention in recent years. They are now commonly

used for energy storage in a number of electronic devices. In the mean time, electric auto-

mobile companies such as Tesla Motors are gradually changing our conventional concepts

of petroleum or gas driving force into electricity driving force.

In fact, the battery has a very long history of development. It could even be derived back

to the early electricity experiments in 1749 when Benjamin Franklin, the U.S. founding

father interested in electricity, first used the term ’battery’ to describe a set of linked

capacitors with electricity [1]. At that time he created an idea that two or more objects are

piled together and functioning. This idea can still explain the structure of many of today’s

battery cells. Afterwards the battery was developed over time when people incessantly

made contributions. Guided by the basic principle of electrochemistry, different types of

batteries were invented. Many people are familiar with some of the representative types

listed here. In 1800 Alessandro Volta invented the voltaic cell, which was composed of

zinc and copper disks. Then in 1839, the invention of fuel cell (H2/O2) by William Robert

Grove in the UK pushed batteries to a new progress. In 1859 Gaston Plante from France

invented a lead acid battery which is still widely used today. Then people created different

1



systems incorporating metal with metallic ions that are transferred inside the electrolyte

as the internal battery current. These battery types are easily recognized nowadays, such

as nickel-cadmium batteries, alkaline-manganese batteries, lithium-ion batteries, and so

on. It is worthwhile mentioning that in 1991 Japanese company Sony first commercialized

lithium-ion battery, and it has been popularly used in our current portable electric devices

since then. However, there are still quite a number of challenging problems to deal with.

Researchers in the universities, companies and other institutions are trying their best,

not only to develop new types of battery systems, but to enhance the existing battery

performance as well. The battery development is still prosperously going on.

1.2 Rechargeable Hybrid Aqueous Battery

The organic liquid electrolyte usually used in lithium-ion battery is not an optimal choice.

The main reason is the safety issue due to its flammability and toxicity. In 1994, Dalhousie

University professor Jeff Dahn first proposed the idea of the aqueous based lithium-ion

battery [2]. He used LiMn2O4 and VO2 as electrodes and 5M LiNO3 in water as the

electrolyte. It provided a nice solution to the traditional lithium-ion battery problem.

From then on, more aqueous battery types followed the milestone made by Dahn [3–6].

A new type of rechargeable hybrid aqueous lithium-ion battery (ReHAB) was invented

by professor Pu Chen’s research group in 2012 [7]. This type of battery uses lithium in-

tercalation compounds LiMn2O4 as the cathode material, metal Zn as the anode material,

and acidic Zn2+ and Li+ ions water based solution as the electrolyte. This combination sig-

nificantly alleviates the safety problems from the non-aqueous typed battery; additionally

it has an important advantage of low cost.

At the cathode side, lithium ion is intercalated into LiMn2O4 during the discharge

process or de-intercalated from LiMn2O4 during the charge process. It is usually expressed

as follows [8].

LiMn2O4 � Li1−xMn2O4 + xLi+ + xe− (1.1)

When a battery is charged, the cathode is oxidized, meaning Li+ is extracted from

the LiMn2O4 tetrahedral sites. In contrast, when a battery is discharged, the cathode is
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reduced, meaning Li+ is inserted into the LiMn2O4 tetrahedral sites. Researchers have

found that two steps usually occur during Li+ intercalation and deintercalation. During

cyclic voltammetry (CV) testing, it has been observed that in the charging process, Li

ions from half of the tetrahedral sites with Li-Li interaction are extracted at around 4.05V

(versus Li/Li+ equilibrium potential), giving an obvious peak. Then the second peak at

4.15V (versus Li/Li+ equilibrium potential) illustrates another extraction of Li ions from

the other half of the tetrahedral sites without Li-Li interaction [9].

At the anode side, Zn2+ is deposited on the Zn surface during the charge process or

dissolved back to the solution during the discharge process. Written in the simple chemical

reaction formula, these processes are just Zn electrochemical reactions.

Zn � Zn2+ + 2 e− (1.2)

Comparison with cathode makes it clear that when the battery is being charged, the

anode is reduced, thus Zn2+ ions are deposited on the Zn anode side. Conversely, Zn is

oxidized to Zn2+ during the discharge process.

In this case, the anode and cathode appear to be undergoing their own ion transfer pro-

cesses during charge and discharge, when the electrolyte acts as an ion reservoir providing

Li+ and Zn2+ sources for the electrochemical reactions. This whole process is illustrated

schematically in the Figure 1.1 [7].

However, in a battery system, the amount of electrons generated/consumed in the

cathode by Li+ ion transfer should be strictly equal to the amount of electrons con-

sumed/generated in the anode by Zn2+ ion transfer. This is how the anode and cathode are

linked together in the ReHAB, the principle of which is quite different from the conventional

rocking-chair lithium-ion battery [10](Lithium-ion is intercalated into one electrode, and at

the same time, lithium-ion is deintercalated from another electrode. The flow of electrons

is only driven by the flow of lithium-ions). Thus, ideally the electron activity should only

be related to the Zn deposition/dissolution and lithium-ion intercalation/deintercalation.

But in fact, as with other battery systems, related issues can seriously influence ReHAB’s

performance. The most harmful problems happening inside the battery during charge and

discharge are extra chemical reactions and self-discharge issues. Because of the aqueous
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Figure 1.1: ReHAB Schematic Image

solution environment, the potential window has to be restricted within the equilibrium po-

tential of H2 evolution and O2 evolution. It is worth noting that in the aqueous electrolyte

solution, the electrochemical stability should be limited to around 1.2V [11]. There are

many forms of reactions possibly generating gas, for example,

2 H2O −→ O2(g) + 4 H+ + 4 e− (1.3)

4 OH− −→ O2(g) + 2 H2O + 4 e− (1.4)

2 H+ + 2 e− −→ H2(g) (1.5)

2 H2O + 2 e− −→ H2(g) + 2 OH− (1.6)

It is still unclear whether one or several reactions happen in the ReHAB, but since

ReHAB has acidic electrolytes and a Zn anode, one unwanted chemical reaction could be

definitely happening at the anode.

Zn + 2 H+ −→ Zn2+ + H2(g) (1.7)

This reaction at the anode causes Zn corrosion, which seriously consumes electrode
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material Zn and change the electrolyte environment pH. In the lab, researchers search for

protective materials to restrain the influence; in this thesis study, a model is intended to

explain the fundamental mechanism, reproduce the experimental results by simulation,

and guide the future experiments.

At the cathode side, LiMn2O4 material has been known to be thermodynamically un-

stable for years. At the end of discharge when Mn3+ is at high concentration, a dispropor-

tionation reaction may happen [12].

2 Mn3+(s) −→ Mn4+(s) + Mn2+(l) (1.8)

This reaction can cause Mn2+ to be generated and dissolved into the aqueous electrolyte,

and is identified by researchers as an important reason for battery capacity fading.

1.3 Battery System Modeling

As mentioned above, different levels are associated with relevent methods in the curren-

t research on battery modeling. Researchers have developed a number of standardized

approaches to the design and realization of their goals. Obviously there is not an abso-

lutely accurate model which produces the same results as the experiments. Model design

is usually incorporated with idealization, parameter tradeoffs and error trial methods. Via

iterative refinements, models can give inspiring discoveries out of the experimental data.

Nowadays, modeling has gradually become a very popular research methodology.

1.3.1 Empirical Model

It might be conceived that a mathematical model is simply created out of abstract concepts,

for example, the famous Newton’s Law describes natural physics in the mathematical forms

such as acceleration and forces. But more often researchers are confronted with batches of

experimental data with no idea of any physics or chemistry concealed beneath. Therefore

at the starting stage, theoretical model is usually based on some initial assumptions. Un-

satisfied may these assumptions in the model implementation process initially, they should
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be adjusted in a correct cycle. One model approach is to combine the experimental data

with the model design, and the real data can indeed help theoretical achievement. This is

called empirical model.

The general philosophy of designing an empirical model does not vary a lot even though

there are widespread applications. It is named empirical because it highly relies on data.

With enough experimental data collected, modelers try to find out how to make an opti-

mal combination of the known parameters and real conditions that can provide accurate

descriptions [13].

Many techniques can be used for empirical modeling. One of the commonly used meth-

ods is the regression curve (Linear, Quadratic, Exponential, etc.). However, since battery

is a chemical system, it cannot simply obey the laws of strict functions. Even at the system

level faced with simple cell performance (for example battery capacity and battery voltage),

one needs to come up with a method to cope with the existing nonlinearity in the experi-

mental data. Recent years have seen a dynamic development of modeling techniques. They

have been gradually used in the battery management system. These modeling algorithms

can precisely track and predict battery performance. The initial design of these models usu-

ally considers factors such as internal resistance, charge/discharge type or charge/discharge

rate [14], and the execution focuses more on how to mathematically fit the modeling data

with the experimental data.

1.3.2 Electrochemical Engineering Model

In terms of insight studies of materials, physics and chemistry can be explained using con-

tinuum modeling strategies. This level is described as electrochemical engineering model-

ing. When one wants to model an object as a continuum, it is assumed that the substance

of the object completely fills the space it occupies [15]. The fact that the matter is made of

atoms is ignored; even though on length scales greater than atomic distance, a satisfactory

accuracy can still be obtained. Continuum models usually deal with problems in solids

or fluids. Under some general physics governing principles such as conservation of mass,

conservation of momentum and conservation of energy, different parameters and unknown

variables are bundled together into a set of partial differential equations.
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There are various modern techniques in solving these complicated equations. Since it

is almost impossible to solve these equations analytically, people have derived the stan-

dardized numerical methods. Confronted with partial differential equations, researchers

sometimes use finite volume or finite difference methods. These methods can successfully

change the continual mathematics into discrete forms, but when the system equations be-

come intertwined with each other, finite element method is usually chosen. Finite element

method is a step-by-step computational method. The whole process of finite element anal-

ysis is generally divided into the following stages: discretization, derivation of equations,

assembly, and postprocessing [16].

Finite element method emphasizes that a continuous function can be approximated

using discrete models by discretization. A complex region defining a continuum can thus

be discretised into several simple shapes. Each shape, named an element, has several points

called nodes. Each element’s behavior is expressed using some interpolation functions (for

example polynomial functions) with respect to its individual nodal behavior. Elements’

behavior, which is a physical property (for example mechanical forces, heat flow, or in the

case of batteries’ electric current) can be related to the nodal behavior, which is another

physical property (for example displacement, heat velocity, and lithium-ion concentration).

This relationship is derived exactly from the partial differential equations.

Lithium-ion battery model at the continuum level is very complicated. It can be simpli-

fied with a total of five governing equations, five dependent variables and two independent

variables at most [17]. If more conditions are added inside, solving the problem would be

very difficult. COMSOL Multiphysics is a powerful tool to cope with such complex partial

differential equation problems [18]. It has some specific libraries such as Electrodeposition

Module and Battery & Fuel Cells Module designed for battery modeling [19].

1.3.3 Atomistic Model

Molecular dynamics has been frequently used in a system whose behavior can be simulated

in time dependent molecular interactions. Equations derived from the fundamental physics

and chemistry are coupled together. The complexity of computations largely depends on
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the parameters involved in the equations and the number of considered conditions. The

extreme case can cause very long processing time.

However when the calculation of the molecular interaction potentials and forces becomes

quite handy, people try to resort to other global optimization techniques [20]. Thermody-

namics equilibrium properties are static averages independent from the process of dynamics

of the system. One widely used technique is called Monte Carlo (MC) method [21]. The

essence of the Monte Carlo algorithm is a heuristic description of a plausible pattern of

changes which are in the configuration assumed by the whole system [22]. From the s-

tandard Metropolis Monte Carlo algorithm for example, an acceptance of a trial step of

move relies on the potential associated with this tempted move. This acceptance ratio is

expressed by a probability,

Prold→rnew ∝ exp[−U(rnew)− U(rold)

kBT
] (1.9)

in which kB is the Boltzmann constant. The characteristic of the stochastic method is

its utilization of random numbers. Every calculated probability is postprocessed by a

comparison with a random number. The comparison is the criterion to decide whether to

move or not.

Kinetic Monte Carlo (KMC) method, which is a branch from the Monte Carlo statistical

simulation family, has provided a pretty simple, yet powerful and flexible approach to

stochastically simulate systems having many processes and behaviors, such as chemical

reactions or species diffusion [23]. It is right now commonly used in the chemical and

biological systems. Well-conditioned atomistic simulations have shown highly consistent

results with the experiments.

1.4 Objectives

All the studies in this thesis are examined around the ReHAB, covering empirical level,

electrochemical engineering level and atomistic level. The overall objectives of this thesis

can be summed as follows:
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1. Track and predict ReHAB cell capacity via a principle proposed in the literature;

2. Develop a continuum model for ReHAB system and test battery cycles in simulation;

3. Study the anode system with corrosion issues, and compare modeling results with

the experimental data;

4. Study the dendrite formation and remaining ion distribution during electrodeposition

correlated with overpotential.

In order to achieve the goal, detailed theory and methodologies used in this thesis are:

1. Particle Filter method on the assumption of capacity degradation model;

2. Lithium-ion battery interface with Butler-Volmer theory, ion transport theory, porous

electrode theory and Nernst-Planck interface;

3. Metal corrosion on the Nernst-Planck interface;

4. Diffusion-limited aggregation techniques and stochastic simulation algorithms.

1.5 Structure of Thesis

The thesis is organized into six chapters.

• Chapter 1 gives a basic introduction of battery history, ReHAB system structure and

common modeling methods.

• Chapter 2 reviews the related literature, illustrating the general ideas of models at

different levels.

• Chapter 3 focuses on the empirical level. The background knowledge of particle filter

technique is presented at first. Then this technique is implemented on the experi-

mental data. An assumption correlating Coulombic efficiency and battery capacity

is incorporated for cycle tracking and prediction.
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• Chapter 4 focuses on the electrochemical engineering level. In the first cathode-

focused section, background knowledge of pseudo 2D porous electrode theory is given

at the beginning. Butler-Volmer kinetic and anode Tafel kinetic connect LiMn2O4

and Zn together. The model simulate battery charge/discharge curve, ion distribu-

tion during discharge and capacity fading during constant-current constant-voltage

tests. Modeling results are compared with experimental results. In the second part,

corrosion theory is firstly introduced. The model focuses on the Zn corrosion in

the thermodynamics simulation. The simulating results address Tafel curve with pH

values, and compare them with the experimental results.

• In Chapter 5, the general theory on stochastic method is presented. The electrode-

position simulation in the study is restricted in the diffusion-controlled region. In the

first part, the simulations are implemented on the dendrite formation with different

sticking coefficients. In the second part, remaining metal ion distribution is simulated

via the stochastic method. All the stochastic simulations in this chapter can clearly

illustrate the overpotential influence.

• Chapter 6 concludes what has been done and discusses the potential future work.
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Chapter 2

Literature Review

The previous chapter has generally introduced the basic knowledge of batteries and mod-

eling methods. This chapter will include more detailed research accomplishments. Three

levels of modeling are separated into three sections.

2.1 System Model Design

Modeling at the system level is similar to the situation when a driver wants to know how far

he can drive his car until he has to refuel the tank, but only from the information he obtains

from the meter. He can make predictions for the decrease of the oil in the tank on the basis

of historical data. He can estimate the health of his car. He can also propose solutions

if his car does not stay at the standard of health conditions. System simulations on the

battery performance think in a similar way. Researchers design methods and algorithms

in order to predict and track the voltage or capacity performance, evaluate batteries’ state

of health (SOH), and give suggestions to the optimization of materials.

Remaining useful performance (RUP) is widely acknowledged as one of the important

metrics to evaluate batteries from the view on the system level [24]. It is defined as the

time length from starting to make observation to the end of performance (EOP) criterion

is reached. EOP is another terminology in the battery research and application. It is
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the time period when the maximum available capacity (or sometimes used as voltage) is

reduced to a particular threshold, for an instance, 80% of its initial value [25] [26].

There are various factors influencing the RUP evaluation. It might be unexpected noise,

for example environmental noise or operational noise, and researchers design algorithms to

cope with the uncertainties [27]. It might be the difficulties from evaluating the maximum

capacity [28]. But the most critical issue is the unclearness of how to incorporate the bat-

teries internal characteristics, such as internal impedance [29], the normal battery testing

measurement, such as cycles testing [30], and other side effects, such as side reactions [31].

There are generally two approaches to the system modeling, physics-based and data-

driven. As mentioned above, electrochemical impedance spectroscopy (EIS) measurement

can help establish a robust battery model [32], but the high accuracy requirements and

complexity often make the procedure hardly manageable. On the other hand, simple mod-

els based on the raw data cannot reveal a deeper interpretation of the battery materials.

Thus experimentalists and modelers cannot establish a mutual communication on the bat-

tery system. A common way people choose to model on the system level is to design

the model parameters based on the physics assumptions, and fit the model results based

on the experimental data, for example the neural network model [33] or circuit filtering

model [34]. Via this approach, model design links background physics and system data

together.

2.2 Electrochemical Engineering Model Description

In 1959 physicist Eugene Wigner delivered an astounding lecture titled ”The Unreasonable

Effectiveness of Mathematics in the Natural Sciences”. In his speech, he addressed that

the mathematical formulation can lead in an uncanny number of cases to an amazing

description of a large class of phenomena [35]. As a self operational system, battery has

attracted scientists to try to use complicated but well organized groups of partial differential

equations to explain phenomena, predict future performance, and help design better cells.

A general model for lithium-ion batteries was firstly developed by Doyle and Newman

from University of California, Berkeley [36]. Since then researchers developed numer-
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ous pseudo 2D battery models to study different battery phenomena. Professor Ralph

E. White at the University of South Carolina has contributed a series of first principle

lithium-ion battery models. Some models neglect transport of lithium in electrolyte phase

under charge/discharge current [37]. Some models are developed to simulate the loss of

active materials due to electrochemical solvent reduction reaction at the anode/electrolyte

interface [38]. Various cathode and anode materials are selected in the theoretical models.

To solve the real battery issues, many models also have incorporated detailed descriptions

such as materials internal structure, Solid Electrolyte Interphase (SEI) formations, etc.

The battery system is only one kind of electrochemical system, but there are a lot

more models on other systems. In the corrosion area, various models on the issues such as

corrosion processes or material influence are developed. For example, Sharland designed

a model focusing on the propagation stage of an established pit during the corrosion [39].

Walton’s work on the crevices and pits in iron studied species transport during corrosion

[40].

Among numerous models at this level, finite element method is one of the most widely

used techniques. It can help solve the problems like ion flows or exchange currents [41].

Meanwhile it also helps battery design with multiphysics problems such as heat runaway

[42], geometrical thickness [43] or loading tests [44].

2.3 Atomistic Model Computation

Electrodeposition process is an important technology for the fabrication of electric de-

vices [45]. Accompanied with experimental studies, computational methods provide a

more sophisticated view [46]. In the last section discussion, continuum computation meth-

ods on a set of partial differential equations are implemented on the condition that the

characteristic length is greater than the molecular scale [47]. However, in terms of nano

scale, atomic simulation has the priority.

Kinetic Monte Carlo (KMC) is a widely used stochastic method in the atomistic sim-

ulation [48]. The advantage of KMC is that it can perfectly simulate a evolving system
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dynamically from one state to another state [49]. Meanwhile in the electrodeposition ap-

plication, many processes such as surface adsorption, dissolution, diffusion and reactions

happen simultaneously [50–52]; thus this static method has been used more and more

frequently.

In the recent years, more work has been contributed to the approaches to speed up

KMC algorithm in multiscale approaches, including methods like coarse-grained [53] KMC

method and spatially adaptive coarse-grained KMC method [54] [55]. People are mainly

trying to find a better algorithm, because in the diffusion-adsorption-reaction system,

diffusion rate is weigh larger than the other rates, which takes too long time to make the

system evolve (meaning deposition height getting thicker) [56]. Apart from this effort, some

groups also try to combine partial differential equations (PDE) with stochastic methods

[57], which is considered to be accurate and highly efficient right now.
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Chapter 3

Empirical Models

3.1 Introduction

Battery system level models have been studied frequently in the recent years. Most of the

parameters in the applications are related to the battery conditions such as cycle numbers,

battery capacity, battery state-of-charge (SoC), etc [58]. The ultimate goal of these studies

is mostly to better control the battery system [59]. For example, some papers focus on the

study of remaining useful level (RUL), in which case they can understand when battery

will no longer maintain useful [60].

But few studies have tried to bridge the gap between the system level study with

material level study. One important reason is because most system models are trying to

develop more robust methods, and apply the methods on the raw battery data. While on

the other hand, there is a strong need to understand a system with a specific material or

charging protocol via system level modeling.

A rechargeable hybrid aqueous battery (ReHAB) system was recently developed by

professor Pu Chen’s research group [7]. Researchers have tried different methods to further

investigate either the material properties or the best optional materials for the system.

This chapter aims to apply a standardized particle filter model on different materials in

the system. Via the empirical model and the intrinsic model establishment principles, the
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study further reveals the selected material properties.

3.2 Experimental Section

Electrolyte preparation: 110.28g of Li2SO4 (Alfa Aesar, 97%) and 146.71g of ZnSO4 7 H2O

(Alfa Aesar, 98%) were added into 250mL of deionized water under vigorous stirring. The

stirring was continued overnight and the volume of the obtained solution was adjusted to

500 mL. pH of the electrolyte was adjusted to 4.00 ± 0.05 by a few drops of 1M H2SO4

solution.

Anode preparation: commercial zinc foil (Alfa Aesar) was polished using 0.3µm zinc

powder (Boehler) dispersed in de-ionized water and a mesh (Boehler). Droplets of the zinc

powder suspension were added onto zinc surface while the mesh was manually crushed

back and forth on the surface for 10 minutes. Polished zinc foil was washed with soap and

deionized water, followed by rinsing with ethanol and dried at 60oC under vacuum for 30

minutes. Zinc anode was prepared from polished zinc foil by mean of electrode cutter.

Cathode preparation: 1.72g of LiMn2O4 (MTI) was mixed with 0.14g of carbon KS-15

or SFG-6 (Timcal). The obtained mixture was added in 2.80g solution of polyvinylidene

fluoride (5%) in N-methy1-2-pyrrolidone (Sigma Aldrich). The system was mixed in an

automatic mixer for 2 minutes; the mixture was casted onto a polyethylene (PE - All-spec)

paper. The casted cathode on PE was heated under vacuum at 60oC for 1 hour before cut

by mean of electrode cutter.

Battery assembling and testing: cathodes were immersed in electrolyte in vacuum for

20 minutes before battery assembling. Celgar separator was wetted with several drops of

electrolyte and placed in between anode and cathode. Both Swagelok cells and coin-cells

were used. The batteries were cycled on a Neware battery tester (Neware Co. Ltd.). Each

cycle consists of a rest period of 1 minute, constant current charge at 1C rate, and rest for

1 minute, followed by constant current discharge at 1C rate.
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3.2.1 Experimental Results

Batteries assembled with two different carbon conductors and two different cells are studied

in the lab. Two carbon sources are KS-15 and SFG-6. Both coin cells and Swagelok cells

were used. Each system was tested three times to ensure repeatability, which sum up to

twelve samples altogether. The batteries were charged/discharged at 1C rate. The tests

were run at room temperature (25 ± 2oC). The charge/discharge capacity was recorded

in each cycle. In this chapter, only discharge capacity of different batches is used in the

further simulation. The following tables from 3.1 to 3.4 illustrate the results obtained

from the experiments. Each table shows three repeated cells’ capacities at 20th, 320th

and 800th cycles. The values listed in the columns µ and σ represent average values of

three batches of samples and their standard deviations. From the tested data, we can find

coin cells preserve better performance compared with swagelok cells, since most coin cells’

800th capacities are around 0.2 mAh while swagelok cells’ capacities are around 0.13 mAh

or even lower. This is due to the fact that coin cells are assembled in the glove box with

vacuum circumstances, but the swagelok cells are assembled directly in the open air. Thus

the latter ones are more likely to be affected by environmental factors such as oxygens and

humidity.

Table 3.1: Coin Cell/KS-15 Data

Cells 20th[mAh] 320th[mAh] 800th[mAh]

1 0.458 0.282 0.184

2 0.472 0.304 0.201

3 0.469 0.272 0.188

µ 0.4663 0.2860 0.1910

σ 0.0074 0.0164 0.0089

The simulation uses data from cycle 20 to cycle 800. The reason for this selection is

because lithium ion battery’s first cycle and second cycle capacity are mostly different.

This capacity difference will maintain when the calculation model (Ck+1 = ηC,kCk) is

implemented. However this is not due to the non-linearity term between calculation and

measurement, which will be further discussed in the model section. In order to avoid this
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Table 3.2: Coin Cell/SFG-6 Data

Cells 20th[mAh] 320th[mAh] 800th[mAh]

1 0.446 0.292 0.188

2 0.475 0.320 0.225

3 0.473 0.332 0.240

µ 0.4647 0.3147 0.2177

σ 0.0162 0.0205 0.0268

Table 3.3: Swagelok Cell/KS-15 Data

Cells 20th[mAh] 320th[mAh] 800th[mAh]

1 0.535 0.350 0.132

2 0.473 0.282 0.128

3 0.479 0.316 0.140

µ 0.4957 0.3160 0.1333

σ 0.0342 0.0340 0.0061

Table 3.4: Swagelok Cell/SFG-6 Data

Cells 20th[mAh] 320th[mAh] 800th[mAh]

1 0.509 0.344 0.170

2 0.515 0.230 0.056

3 0.529 0.349 0.155

µ 0.5177 0.3077 0.1270

σ 0.0103 0.0673 0.0576

influence on the model, cycle 20 is chosen to be the starting point for comparison and

implementation.
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3.3 Model Implementation

3.3.1 Model Definition

Empirically, the battery is simply viewed as a whole system, which means detailed de-

scriptions in terms of the cathode, anode or electrolyte are ignored. General mathematical

functions such as polynomial, logarithmic, exponential or other nonlinear functions are

commonly utilized. Accessing these functions is not totally from scratch, but actually it is

developed by interpreting a battery system.

One approach to understand a battery system is by using a circuit model. The losses

in a battery such as the voltage drop due to its internal impedance (which is IR drop),

concentration or activation polarization can be described by a standard lumped parameter

model [61]. As show in the Figure 3.1, the battery system is composed of a resistor

RE and an RC network connected in series. The resistor RE describes the electrolyte

resistance, or other resistance generated by the charge accumulation and dissipation. The

RC network illustrates the charge transfer effects, when the RCT is understood as the

charge transfer resistance, RW is known as concentration polarization effect encapsulated

as Warburg impedance and CDL is explained as diffusion capacitance. Simple as the

lumped parameter model seems to be, the usual electrochemical analysis such as lithium-

ion battery charge/discharge curves and frequency domain graphs are derived from this

model.

An empirical model proposed frequently to simply describe the battery capacity degra-

dation is given as follows [62].

λ = a exp(−bt) (3.1)

where a and b are model parameters, t is the time of cycles and λ is the internal battery

performance related parameter such as RCT or RE in the lumped parameter model. In the

real battery testing, battery performance is usually under the metrics of capacity. In this

case, C/1 capacity can be considered here as λ, and it can be observed that the capacity

is degrading based on the model.
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Figure 3.1: Lumped Parameter Model

According to the model presented, it can be rewritten in a new form:

Ck = exp(−bk∆t)Ck−1 (3.2)

where tk = tk−1 + ∆t. The reason parameter b is expressed with respect to k is because it

is very likely that the degradation rate is different at different cycle. However the problem

for this model is that bk cannot explicitly reflect the properties or measurements of real

batteries. At the same time, it is also too tedious to calculate bk at every cycle. In order to

understand how the parameter bk is related to the battery observation, there is a further

model proposed:

Ck+1 = ηCCk + β1 exp(−β2/∆t) (3.3)

In this expression, Columbic efficiency and capacity are correlated at each cycle. The

second term on the right being accounted is a description of the self-charge factor during

test, in which ∆t is the time duration for each cycle interval and β1,β2 are parameters to

be determined. Different battery cells have different values of the second nonlinear terms.

The values depend on the certain battery material properties, battery running environment

conditions or how well the battery can resume the capacity during the resting time. To

simplify the model equation, it is written as

Ck+1 = ηCCk +M (3.4)

where M denotes a nonlinear term.
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Based on the definition of Coulombic efficiency, it is expressed as follows [63].

CE =
Qd

Qc

=
Charge out

Charge in
(3.5)

As defined above, CE is a ratio between one charge and discharge, which illustrates the

energy removed from a battery during discharge compared with the energy used during

charging to restore the original capacity. It reflects the charge efficiency or charge ac-

ceptance of a battery. But from the system level model, Coulombic efficiency becomes a

connection between two consecutive cycles. In this paper, this empirical model is imple-

mented via particle filter method.

3.3.2 Particle Filter Method

Particle filtering method is a Monte Carlo sampling method for inferring a specified perfor-

mance in the state-space models. The state of a system evolves over time. Meanwhile we

also measure the system state at each step. The measurement has noise combined, which

is why we need filtering method [64]. Expressed by a standard mathematical formula, the

state of the system evolves as:

xk = fk(xk−1, vk−1) (3.6)

where xk represents the state of the system at time k, vk is the state noise vector, and

fk is a possible non-linear and time-dependent function describing the evolution of the

state vector. The state information xk is unobservable, or in another word hidden, while

the information about xk can be obtained through the measurement of its zk, which is

expressed as:

zk = hk(xk, nk) (3.7)

where hk is another non-linear and time-dependent function describing the measurement

at every step, and nk is the measurement noise.

There are two steps in the filtering process, prediction step and update step. We

denote all the measurements up to the time k as z1:k. In this case, in the Bayesian setting,

the problem can be formalized as finding the distribution p(xk|z1:k), which is also named

probability density function (PDF). In the prediction step, we only have the information
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of PDF up to k − 1, which is p(xk−1|z1:k−1), and we want to have the prediction for the

next step state p(xk|z1:k−1). The math function is

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (3.8)

p(xk−1|z1:k−1) is the previous particle filter calculation result, which can be recursively

used. p(xk|xk−1) can be obtained by our defined function xk = fk(xk−1, vk−1).

Here the knowledge of p(xk|z1:k−1) can be understood as prior knowledge of xk, but it

needs to be updated when we receive the measurement of zk. Thus naturally in the update

step, based on the Bayesian rules, there is a formula:

p(xk|z1:k) ∝ p(zk|xk)p(xk|z1:k−1) (3.9)

in which p(zk|xk) can be calculated from zk = hk(xk, nk) and p(xk|z1:k−1) is introduced

before.

During the update step, there is an added procedure called importance sampling which

is a Monte Carlo procedure. In this procedure, we need to calculate the likelihood of all

the particles compared with the measurement. The reason is that some particles might

not correctly reflect the true measurement, and we need to discard these particles; and

some particles are just correctly reflecting the true measurement, and we need to keep

these particles and even duplicate these particles for several times. The expression of the

likelihood function is expressed as

L(zk|xik, βik, σik) =
1√

2πσik
exp[−1

2
(
zk − xik(βik)

σik
)2], i = 1, . . . , n (3.10)

where i defines the ith particle. Each particle thus is given a weight by normalization.

Compared with a random number generated, it can be decided whether to be eliminated

or duplicated. The two-step prediction and update processes can be illustrated in the

Figure 3.2.

After first tens of cycles of prediction and update processes, the estimated parameters

for our current tested battery are obtained. Based on Jeff Dahn’s Coulombic efficiency

series of publications [63, 65–69], Coulombic efficiency will gradually stabilize when cycle
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Figure 3.2: Flow Chart of PF

number increases. A stabilized Coulombic efficiency is assumed and used for future cycle

predictions.

In the battery measurement and processing operations, measurement noise nk and state

estimation noise vk are both added as Gaussian noise ω ∼ N(0, σ) with different standard

deviations. The former represents a possible inaccuracy from machine and the latter stands

for both the estimate noise and the nonlinear term in the model. In the following two parts,

capacity tracking and prediction implement this algorithm. The results are compared with

the raw capacity calculation.
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3.3.3 Tracking and Prediction

Experimental Capacity Versus Simulated Capacity Without PF

The following curves show the measured capacity combined with calculated capacity with-

out utilization of particle filter method.

Figure 3.3: Coin KS-15 CE 1 Figure 3.4: Coin KS-15 CE 2

Figure 3.5: Coin KS-15 CE 3 Figure 3.6: Coin SFG-6 CE 1
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Figure 3.7: Coin SFG-6 CE 2 Figure 3.8: Coin SFG-6 CE 3

Figure 3.9: Swagelok KS-15 CE 1 Figure 3.10: Swagelok KS-15 CE 2

In the graphs, three curves separately denote the experimental measured capacity, the

raw calculated evolved capacity, and the difference between measured capacity and calcu-

lated capacity (nonlinearity term). The capacity calculation simply obeys the relationship

from the model, which is Ck+1 = ηC,kCk. All the graphs obviously illustrate the similar

trend between experimental data and calculated data. In terms of the individual batch of

battery cells, experiment and calculation data from coin cell assembly method with either
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Figure 3.11: Swagelok KS-15 CE 3 Figure 3.12: Swagelok SFG-6 CE 1

Figure 3.13: Swagelok SFG-6 CE 2 Figure 3.14: Swagelok SFG-6 CE 3

KS-15 carbon conductor or SFG-6 carbon conductor are almost the same. In another word,

the nonlinear term from the model is approximately equal to zero. But for the data from

Swagelok assembly cell, the true measurement is always larger than the calculated data.

This small difference can be explained from the resting time when the capacity regains

the capacity loss during the charge or discharge. And this difference is the nonlinear term

implemented in the particle filter model.
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Experimental Capacity Versus Simulated Capacity With PF Tracking

Next particle filter method is implemented as a tracking method. 100 particles are used

in all the particle filter simulation. The same relationship from Coulombic efficiency and

cell capacity is used in the particle filter estimation function, while the nonlinear term is

covered inside the noise of the estimation during simulation. The standard deviation σ is

adjusted based on the specific battery cell.

Figure 3.15: Coin KS-15 PF 1 Figure 3.16: Coin KS-15 PF 2

From the graph, particle filter accurately tracks the battery capacity up to cycle 800.

This is partially due to the fact that the trend of fading model is similar to the trend of real

experimental data. Also particle filter method is very robust in the nonlinear calculation.

Experimental Capacity Versus Simulated Capacity With PF Prediction

Lastly, particle filter method is executed to predict the cell capacity beyond 300 cycles until

800 cycles. Experiments have confirmed that regardless of sudden severe side-reactions or

a sudden battery death, the Coulombic efficiency remains at a constant value near 1 with

little fluctuations. In this paper, Coulombic efficiency is averaged from the 50 cycles

previously, and is used as the fixed Coulombic efficiency in the particle filter method for

prediction. The model noise ω in terms of nonlinear part is adjusted and optimized from
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Figure 3.17: Coin KS-15 PF 3 Figure 3.18: Coin SFG-6 PF 1

Figure 3.19: Coin SFG-6 PF 2 Figure 3.20: Coin SFG-6 PF 3

the first 300 cycles fitting results, which is also used in the prediction. The flow chart in

Fig 3.27 shows how particle filter method is implemented for the capacity prediction.

Even though small deviations exist in the cycle capacity prediction, particle filter mod-

eling result converges around the true measurement.

The capacity difference from modeled results and true measurement at cycle 500 is

recorded in the table below. It includes raw Coulombic efficiency calculation data, particle
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Figure 3.21: Swagelok KS-15 PF 1 Figure 3.22: Swagelok KS-15 PF 2

Figure 3.23: Swagelok KS-15 PF 3 Figure 3.24: Swagelok SFG-6 PF 1

filter tracking data and particle filter prediction data.

All the results from the table show that particle filter tracking has the fittest data

compared with the real experimental data. Because tracking is a direct and entire imple-

mentation of particle filter method, and it shows the advantage of particle filter method

dealing with nonlinearity. In terms of calculation data and prediction data, the compar-

isons are not clear. Since the curves from Graph 3.3 to Graph 3.8 find that the nonlinearity
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Figure 3.25: Swagelok SFG-6 PF 2 Figure 3.26: Swagelok SFG-6 PF 3

Table 3.5: Coin Cell and KS-15

CE Calculation[mAh] PF Tracking[mAh] PF Prediction[mAh]

0.011403 0.002758 0.009095

0.011877 0.006908 0.02818

0.008185 0.004963 0.008859

Table 3.6: Coin Cell and SFG-6

CE Calculation[mAh] PF Tracking[mAh] PF Prediction[mAh]

0.011686 0.007204 0.015855

0.010732 0.000354 0.009743

0.023743 0.000717 0.035757

is very small in the Coin-cell case, while the curves from Graph 3.9 to Graph 3.14 show the

nonlinearity is large in the Swagelok-cell case. Moreover, the prediction only implements

the first 300 cycles tracking, and it is likely that the Coulombic efficiency also fluctuates

at the high cycles.

From the tables, it can also be observed that the good effect of particle filter method is

more pronounced in the case of Swagelok battery data, which are generally more fluctuating
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Figure 3.27: Flow Chart of Prediction Implementation

Table 3.7: Swagelok Cell and KS-15

CE Calculation[mAh] PF Tracking[mAh] PF Prediction[mAh]

0.082427 0.009357 0.014512

0.039052 0.000438 0.01454

0.012754 0.000049 0.020823

than coin cell data. Coin cell data are generally more stable since the batteries were pressed

by machine up to a pre-set pressure. However, by modeling of data from both types of

batteries, we found that the particle filter method is highly flexible, and it can work

effectively with non-ideal data.
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Figure 3.28: Coin KS-15 Est 1 Figure 3.29: Coin KS-15 Est 2

Figure 3.30: Coin KS-15 Est 3 Figure 3.31: Coin SFG-6 Est 1

Table 3.8: Swagelok Cell and SFG-6

CE Calculation[mAh] PF Tracking[mAh] PF Prediction[mAh]

0.06635 0.002435 0.011357

0.028229 0.003838 0.022579

0.107295 0.003324 0.074672
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Figure 3.32: Coin SFG-6 Est 2 Figure 3.33: Coin SFG-6 Est 3

Figure 3.34: Swagelok KS-15 Est 1 Figure 3.35: Swagelok KS-15 Est 2

3.4 Conclusion

Cycling performance of ReHABs has been experimental studied and modeled by particle

filter method. The results propose that particle filter method may be an exceptional tool

for both tracking and predicting the battery performance. The difference in tracked data

and experimental ones is as small as 0.000049[mAh]. Futhermore, the error of predicted

data is as low as 0.074672[mAh] comparing to the calculation error of 0.107295[mAh]. This
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Figure 3.36: Swagelok KS-15 Est 3 Figure 3.37: Swagelok SFG-6 Est 1

Figure 3.38: Swagelok SFG-6 Est 2 Figure 3.39: Swagelok SFG-6 Est 3

great advance may add valuable and reliable output about battery cyclability exclude the

need of running batteries till the end of lives.
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Chapter 4

Electrochemical Engineering Models

4.1 Cathode Study

4.1.1 Introduction

Lithium-ion battery modeling was initially attempted in the Newman’s research group

[36]. It established the basic theory for the future development of lithium-ion battery

pseudo-2D first principle models. A set of equations is used to describe how lithium

ions are intercalated in or de-intercalated from the porous electrode during discharge or

charge. Meanwhile it also clarifies the connection between lithium-ion concentration and

the exchange current density.

Equation Set Explanation

Two phases exist in the model by assumption. They are solid phase and liquid phase,

representing electrode and electrolyte separately. Two phases are superposed between

each other. In this thesis, subscript ’s’ means solid phase, and subscript ’l’ means liquid

phase. For example,

• φs Solid phase potential
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• φl Solution potential

• σs Ion conductivity in the solid electrode

• σl Ion conductivity in the solution electrolyte

The model incorporates one dimensional and two dimensional scales of study. In the

one dimension domain, each point on the line comprises potential or ion concentration;

while in the two dimension domain, ions can transfer within a control volume.

The electrode material is considered as a spherical particle, meaning the interfacial area

of the porous electrode can be calculated by

as = Np(4πr
2
s) (4.1)

The volume fraction of the solid phase εs, is given as

εs = Np(
4

3
πr3s) (4.2)

as is equal to the surface area of each sphere. The fraction of solid material εs, is equal

to the volume per sphere times the number of spheres per unit volume Np. From previous

two equations, one can derive:

as =
3εs
rs

(4.3)

Based on the porous electrode theory, the current density of the electrolyte phase in

the electrode scale (liquid in the solid) is described by Ohm’s Law [17]:

il = ∇ · [−σl∇φl +
2σlRT

F
(1 +

∂ ln f

∂ ln cl
)(1− t+)∇ ln cl] (4.4)

Thus the current density in the solid phase of the electrode is

is = I − il = −σs∇φs (4.5)

where I denotes the current density. This is based on the assumption that the divergence

of the total current density is zero.
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Meanwhile, the mass balance of lithium-ion in the electrode can also give

εeffs

∂cl
∂t

+∇ ·Nl = Rl (4.6)

The first term on the left represents the concentration change with respect to time. The

second term on the left means the flux of the lithium-ion, which can be further obtained

by the addition of species diffusion and convection. And the last term shows any possible

reaction that can influence the concentration of lithium. In the expansion of the flux term

Nl,

Nl = −Deff∇cl +
ilt+
F

(4.7)

From the Bruggeman relation, the effective diffusivity coefficient Deff and effective

solid conductivity coefficient are related to solid phase fraction εs.

σeffs = σsε
1.5
s Deff = Dsε

1.5
s (4.8)

At the pure solid phase of microscopic scale, the process of lithium-ion intercalation/de-

intercalation is treated as a diffusion process. It follows the second Fick’s Law in the

spherical coordinate that

∂cs
∂t

= ∇ · (Ds∇cs) = Ds
∂2cs
∂r2

+
2Ds

r

∂cs
∂r

(4.9)

The boundary condition is,

∂cs
∂r

= 0, r = 0 (4.10)

jn =
in
F

= −Ds
∂cs
∂r

, r = Rs (4.11)

Here, Rs is the particle radius, cs denotes the solid phase concentration of lithium-ions in

the particles. At the surface of a particle, the solid concentration of lithium-ion corresponds

to the solid phase concentration cs in the electrode scale. The surface flux of lithium-ion

jn is equal to the particle ion diffusion at the surface.
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The interfacial kinetics is expressed in the dependence of the local electrochemical

reaction rate on the concentration and potential. The most famous equation, Butler-

Volmer equation is,

in = i0[exp(
αaFη

RT
)− exp(−αcFη

RT
)] (4.12)

in refers to the local current density during charge or discharge. η, which is defined as

overpotential, is expressed as η = φs − φl − Eeq. Eeq is the equilibrium open circuit

potential. The exchange current density i0 is [36]

i0 = F (kc)
αa(ka)

αc(cmax − cs)αa(cs)
αc(

cl
cc,ref

)αa (4.13)

where αc and αa, representing cathode and anode specific characteristic number, are usually

identified as 0.5.

Lastly, the charge balance relating local current density in and the divergence of the

current to the surface diffusion flux jn is

ain = aFjn = ∇ · il (4.14)

All the equations listed above are supposed to be solved using numerical methods.

COMSOL Multiphysics finite element solver includes six unknown, which are the concen-

tration in the solid electrode phase cs, liquid electrolyte phase cl, the solid phase potential

φs, liquid phase potential φl, the electrolyte phase current density il, and the local current

density in. Further details can also be added into the model such as side reactions or

thermal effects.

Time dependent solver is used in the study. Initial conditions and boundary conditions

should be formalized at first. Then the time stepping moves on until the cut-off voltage or

cut-off current is reached.

Side Reaction

LiMn2O4 has been identified as unstable at the end of discharge, when Mn3+ is highly

concentrated. The possible mechanism is denoted as the self-discharge of LiMn2O4. Mn3+
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is very likely to be converted to Mn2+ and Mn4+.

2Mn3+ −→ Mn2+ + Mn4+ (4.15)

By analysis, the side reaction becomes serious when the cathode is at the end of the

discharge. This study proposes a side reaction expression depending on the potential.

iside = −i0,side exp(
−0.5Fη

RT
) (4.16)

The negative sign compared with the current direction of the discharge is rendered to

give a negative influence to the battery performance. i0,side is the exchange current density

of the side reaction.

4.1.2 Results and Discussion

General Discharge Curve

The material properties chosen for the model are obtained from COMSOL battery module

[18]. The anode material is Zn and the cathode material is LiMn2O4. Zn equilibrium

potential is set as -0.763V. Based on the literature, the equilibrium potential of LiMn2O4

versus the state of charge is [36]

U = 4.19829 + 0.0565661 tanh[−14.5546y + 8.60842]− 0.0275479[
1

(0.998432− y)0.492465

− 1.90111]− 0.157123 exp(−0.04738y8) + 0.810239 exp[−40(y − 0.133875)] (4.17)

where y is the amount of lithium inserted in LiyMn2O4. This potential is recorded with

respect to lithium equilibrium potential (Li is -3.0401V relative to standard hydrogen

electrode). The curve in Graph 4.1 illustrates the LiMn2O4 equilibrium potential.

The curves in Graph 4.2, Graph 4.3 and Graph 4.4 show simulated battery discharge,

lithium ion concentration in the electrolyte in the porous electrode domain and lithium-ion

concentration at the cathode electrode surface.
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Figure 4.1: Equilibrium Potential of LiMn2O4

Equilibrium potential (open circuit potential) of LiMn2O4 as a

function of the state of charge relative to solid lithium. x-axis

represents the state of charge/discharge, and y-axis represents

the potential versus Li/Li+ equilibrium potential.

From the simulation graphs, the discharge process starts at around 1.95V and ends at

around 1.55V. The truncation is the result when most lithium insertion sites in LiMn2O4

are occupied. In terms of concentration changes during discharge, at the electrolyte do-

main, the lithium ion concentration increases. The increment becomes bigger towards the

direction of the current collector site (the cathode ending point). At the electrode domain,

lithium ion concentration at the particle surface also increases during discharge. It reaches

the maximum when time arrives at 3000s defined in the simulation. These findings are con-

sistent with the theoretical analysis of the lithium-ion battery discharge process. During

the discharge, lithium ions are intercalated into the electrode. This causes increased ion

concentration in the liquid electrolyte inside the porous electrode; meanwhile, the surface

ion concentration is supposed to be increased due to the ion insertion.
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Figure 4.2: LiMn2O4 Discharge Curve
LiMn2O4 discharge curve vs time in the simulation. The oper-

ational potential is around 1.55V to 1.95V from the simulation.

x-axis represents the simulation time (s), and y-axis represents

the operational potential (V).

Constant-current and Constant-voltage

Constant-current and constant-voltage (CC-CV) tests are applied in the simulation over

100 cycles. Events interface inside COMSOL helps define the details. The procedure of

CC-CV test is conditioned such that,

• Constant-current charge: iapp = ich

• Constant-voltage charge: Ecell = Ecell,max

• Resting time: iapp = 0

• Constant-current discharge: iapp = idch
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Figure 4.3: Lithium Ion In Electrolyte
x-axis represents the x-coordinate in the simula-

tion, and y-axis represents the Li+ concentration

in the electrolyte in the porous electrode domain.

Figure 4.4: Lithium Ion At Particle Surface
x-axis represents the x-coordinate in the simula-

tion, and y-axis represents the Li+ concentration

in the LiMn2O4 particle surface.

• Constant-voltage discharge: Ecell = Ecell,min

• Resting time: iapp = 0

ich is the constant charging current (A/m2), Ecell is the battery cell voltage (V), Ecell,max

is the maximum voltage limit of constant charging when cell starts constant-voltage (V),

idch is the constant discharging current (A/m2), Ecell,min is the minimum voltage limit of

constant discharging when cell starts constant-voltage (V). The testing is shown in the

Graph 4.5 below.

A side reaction term is added into the CC-CV mode for cycles to observe the potential

at cycle 1, 10, 50, 100. The exchange current density is set as 1.5e-2(A/m2), which is

assumed to have some side-effects compared with 0.08(mA/cm2) for LiMn2O4 exchange

current density [37]. The first graph in Figure 4.6 shows the experimental result [7]. The

second two graphs in Figure 4.7 and Figure 4.8 show the simulation results.

From the results, both charge and discharge processes have a gradual voltage decrease

with the increase of the cycle number. In Figure 4.7 and Figure 4.8, both cell voltages slowly

drop from cycle 1, cycle 10, cycle 50, and until cycle 100. This is due to the side reaction
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Figure 4.5: Constant-current Constant-voltage
The upper curve shows cell voltage during CC-CV, and the low-

er curve shows cell current density during CC-CV. x-axis repre-

sents the time (s) in the simulation, and y-axis represents voltage

(V) and current (A) separately.

set inside the simulation. This proposed term causes a similar phenomena observed in the

experiment during discharge process, since from Figure 4.6, the voltage drops clearly from

cycle 1 to cycle 1000. But in terms of charge process, the voltage gradually increases in

the experiment. It is explained from the experimental view that the side reaction expands

the gap between the charge voltage and discharge voltage curves. Thus the model needs

more adjustments in the future study.

4.1.3 Conclusion

To sum up, this model successfully simulates LiMn2O4 cathode with the lithium-ion bat-

tery interface. Compared with the real battery discharge curves, the simulated discharge

results not only exhibit similar curves, but also illustrate the Li distribution in the active
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Figure 4.6: Experimental Charge/Discharge Curves

Experimental charge/discharge potential profiles.

Figure 4.7: Simulation Charge Profile Figure 4.8: Simulation Discharge Profile

material particle phase and electrolyte phase. This illustration explains that Li concen-

tration increases during discharge at the cathode. Furthermore, the model incorporates a
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side-reaction term in the constant-current constant-voltage battery test. This term causes

a gradual battery voltage decrease during charge and discharge. This finding is consistent

with the experimental data in terms of discharge process, but modifications are required

since the charge process in the experiment shows different trend compared with the model.
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4.2 Zinc Study

4.2.1 Introduction

In the ReHABs, the main processes at the anode are the dissolution of Zn during discharge

and deposition of Zn2+ during charge. The Zn surface is chemically corroded by reactions

with the acidic electrolyte media and electrochemically corroded by the operation near

H2 evolution potential, which leads to H2 evolution. A clear understanding about the

thermodynamics and kinetics of such processes is important for experimental designs. This

part is focused on a mathematical study of chemical reactions on Zn in contact with

electrolyte.

4.2.2 Model Definition

Nernst-Planck Interface

Transport process is mainly considered to describe the kinetic process. There are basically

two transport processes happening, species diffusion and migration. Based on the Fick’s

Law, the diffusion flux of species i flows can be represented as,

~Ji = −Di∇ci (4.18)

where ~Ji denotes the flux of ions per unit area, Di is the diffusion coefficient, and the

concentration gradient ∇ci gives rise to the driven force of diffusion. In the non-steady

state of diffusion, the process can be further given as

∂ci
∂t

= −Di∇2ci (4.19)

Migration is another transport process driven by the potential gradient. The velocity

of the species i is expressed as

~vi = −ui∇µi (4.20)

where ui is the mobility. The flux thus takes the form

~Ji = ci~vi = −uici∇µi = −Dci
RT
∇µi (4.21)
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Here R is the universal gas constant. The diffusion coefficient Di = uiRT is based

on Einstein relation. The potential gradient originates from changes in composition and

electric potential φ, thus

∇µi = RT∇ ln ci + ziF∇φ (4.22)

in which F is the Faraday constant and zi is the charge number of the species. Assuming the

composition does not change during operation, the total flux from diffusion and migration

is
~Ji = −Di(∇ci +

ziciF

RT
∇φ) (4.23)

The first term on the right, denoted as diffusion flux, is the result of random thermal

motion of the species. The second term as migration, is the effect exerted by local electrical

field. This is the so-called Nernst-Planck equation, a description of mass conservation under

the influence of ionic concentration gradient and electrical potential distribution. The role

of migrational term is to ensure that the solution remains as electroneutrality. If there

are some chemical reactions, the total transport expression on the change of the species

concentration is given as

∂ci
∂t

= Di∇2ci +
ziDiF

RT
∇(ci∇φ) +Ri (4.24)

where Ri is the rate of production or depletion of species i.

Thermodynamic Relations

Equilibrium Potential Thermodynamic relation is originated from the consideration

of energy relations. The tendency of a chemical reaction can be explained by Gibbs free

energy G. The change of free energy, which is ∆G, is denoted by the difference between

products and reactants.

∆G =
∑
i

µi,prod −
∑
i

µi,rect (4.25)

In the standard conditions (partial pressure of gas in the reaction is 0.1MPa, concen-

trations of all aqueous solutions are 1M), the standard free energy change ∆G0 is used to

illustrate the tendency of a chemical reaction. It is defined that if ∆G0 < 0, the reaction
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is happening spontaneously; if ∆G0 > 0, the inverse reaction proceeds spontaneously; and

if ∆G0 = 0, the reaction is in the state of equilibrium. If a chemical reaction is written as

aA + bB 
 cC, the equilibrium constant K of the reaction is defined as

K =
αcC

αaA · αbB
=

Product of activities of products

Product of activities of reactants
(4.26)

Given the standard-state free energy of a reaction expressed as ∆G0 = −RT lnK and

the relationship between free energy change ∆G with electrochemical reaction driving force,

∆G = −nFE ∆G0 = −nFE0 (4.27)

an expression is derived as

E = E0 +
RT

nF
ln[

Product of activities of reactants

Product of activites of products
] (4.28)

where E0 is also called standard electrode potential if explained with respect to electro-

chemical reaction. E is the electromotive force and nF is the total charge per molecule of

ions involved in the reaction.

Electrochemical Reaction Two most important species at the anode generating elec-

trochemical reactions are zinc and hydrogen ions. The reactions written in the standard

forms are

Zn−2 e− = Zn2+ E0 = −0.763V (4.29)

2 H+ + 2 e− = H2 E0 = 0.0V (4.30)

While in terms of the real processes at the zinc side, the equilibrium potentials for two

reactions are modified as

EZn = −0.763 +
RT

2F
ln[
aZn2+

aZn
] (4.31)

EH2
= 0.0 +

RT

F
ln[

aH+

(aH2
)0.5

] (4.32)

48



The activity (ai) of species Zn2+ and H+ is related to the concentration (yi) and the

activity coefficient (γi)

ai = γiyi (4.33)

where the activity coefficients constant are γZn2+ = 0.1 and γH+ = 0.5. With the potential

given at the Zn anode, the overpotential or polarization (η) for Zn and H2 are

ηZn = E − EZn (4.34)

ηH2
= E − EH2

(4.35)

When the Zn process (Zn→ Zn2+) and H+ process (2 H+ → H2) are happening simul-

taneously, the former is working anodically while the latter is working cathodically, causing

the unwanted corrosion at the Zn anode.

The polarization for an electrochemical reaction can be categorized into activation

polarization and concentration polarization. The former can also be divided into cathodic

polarization ηc and anodic polarization ηa depending on positive polarization or negative

polarization.

ηc = βc log
ic
i0

ηa = βa log
ia
i0

(4.36)

in which i0 is the exchange current density; βc and βa are cathodic and anodic Tafel

constant; ic and ia are cathodic and anodic exchange current density. In terms of con-

centration polarization, which is caused by the changes in the ion concentration near the

electrode/electrolyte interface, happens when reaction proceeds fast. The polarization

(ηconc) in terms of H2 reaction, is expressed as

ηconc =
RT

nF
ln

[H+]2

pH2

(4.37)

Corrosion as a combination of cathodic reactions and anodic reactions is defined with

respect to corrosion potential (Ecorr) and corrosion current (icorr). The kinetic expression

at the metal surface is written as

i = ia − ic = icorr[exp(
η

βa
)− exp(− η

βc
)] (4.38)
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where η = E − Ecorr is the overpotential at the metal surface; the anodic polarization

ηa = E − Ecorr and cathodic polarization ηc = E − Ecorr are related to the Zn oxidation

and H+ reduction.

Kinetics

Apart from the main electrochemical reactions, there are some possible reactions happening

at the anode position. These reactions not only change the species concentration in the

solution, but at the same time influence the equilibrium potential of the species. For the

ionic species H+ and OH–, the ionization of H2O gives the rate

H2O 
 H+ + OH− (4.39)

At the same time, it is highly suspected that there are some potential reactions hap-

pening related to Zn.

Zn + 2 H2O→ Zn(OH)2 + H2 (4.40)

Zn2+ + 2 H2O 
 Zn(OH)2 + 2 H+ (4.41)

In terms of H2O reaction for example, the reaction rate based on the law of equilibrium,

is

RH2O
= kf,H2O

[H2O]− kb,H2O
[H+][OH−] (4.42)

The equilibrium constant of H2O (KH2O
) is 10−8[mol2m−6] from software HSC Chemistry,

and if the relationship between forward and backward rate is

KH2O
=
kf,H2O

kb,H2O

(4.43)

The equilibrium constants for all the reactions are referred from HSC Chemistry, while

in terms of forward or backward rate, the values are found from online resources or esti-

mated by experience [70,71].
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According to Nernst-Planck interface, the transport equations in one dimension for

interested species are

DZn2+ [
d2[Zn2+]

dx2
+

2F

RT

d

dx
([Zn2+]

dφ

dx
)]− (kf,Zn2+ [Zn2+][H2O]2 − kb,Zn2+ [H+]2) =

ia
2F

DH+ [
d2[H+]

dx2
+

F

RT

d

dx
([H+]

dφ

dx
)] + 2(kf,Zn2+ [Zn2+][H2O]2 − kb,Zn2+ [H+]2)

+ kf,H2O
[H2O]− kb,H2O

[H+][OH−] = − ic
F

DH2

d2[H2]

dx2
=

ic
2F

in which ia and ic denote current density from Zn oxidation and H+ reduction. The pH

value of the solution is represented via H+ concentration, which is

pH = − log(0.001 · [H+]) (4.44)

COMSOL Simulation

COMSOL Multiphysics is used to establish a one dimensional model. The model is com-

posed of a electrochemical reaction site, a species transport region and an end representing

bulk solution. Figure 4.9 shows, a linear line connecting two points defines the problem to

be simulated.

The right point is illustrated as the bulk solution site, meaning there is no chemical or

electrochemical reaction happening. All the concentrations are assumed to be constant at

this position. The left point of the line is defined as the active reactive site, where species

have electrochemical reactions and potential chemical reactions. Flux caused by species

diffusion, convection and reactions gives rise to current density and changes of electric

potential here. The line connecting two points is denoted as the transition region, which

means there is no metal corrosion, but the species diffusion and migration happens.

COMSOL Nernst-Planck interface is implemented to investigate the process at final

steady state. The domain and boundary definitions are based on what is described above.

Simulation parameters are covered in the appendix.
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Figure 4.9: Zinc Corrosion Geometry
x-axis represents the x-coordinate in the simulation, and y-axis repre-

sents y-coordinate in the simulation. The length is set in the magnitude

of 10−7 m for study purpose.

4.2.3 Results and Discussion

Experimental Measurement

Experiments have been done in the lab measuring Tafel curve of zinc corrosion. The pH

environment is maintained at around 4. The composition of the solution is ZnSO4 and

Li2SO4 with different concentration. Figure 4.10 shows the experimental setup in Tafel

test. In the Tafel test, working electrode is Zn, and the relative electrode is Hg/HgSO4,

whose potential is 0.654V relative to the standard hydrogen electrode.

The experimental Tafel curves with different compositions of Li2SO4 (1M and 2M)

show some differences (-1.436V for 1M Li2SO4 and -1.424V for 2M Li2SO4). Based on the

theory, the corrosion potential should not be drastically influenced by Li+ concentration.

But from the experimental results, larger Li+ causes higher corrosion potential. It can be
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Figure 4.10: Linear Polarization Studies
In the Tafel test, working electrode is Zn, and the relative elec-

trode is Hg/HgSO4, whose potential is 0.654V relative to the

standard hydrogen electrode.

explained that when Li+ is concentrated, it influences Zn2+ and H+ flows. This influence

might cause the equilibrium potential increment.

Simulated Result

The model uses linear cyclic voltage sweeping method to simulate the Tafel curve, meaning

that it provides a sweeping voltage in a range [Vmin, Vmax] where corrosion potential is

situated inside. In the model, Zn2+ is initialized as 1M for the whole one-dimensional line.

Two different H+ concentration are set in the model, which are pH=3.0 and pH=4.0. After

implementing the stationary Nernst-Planck interface, the model can show the final steady
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Figure 4.11: Tafel I 1M Li2SO4

x-axis shows the potential (V), y-axis shows the current in the logarithmic

modification.

Figure 4.12: Tafel II 2M Li2SO4

x-axis shows the potential (V), y-axis shows the current in the logarithmic

modification.

state for the system.

The results from Figure 4.14 and Figure 4.15 show that pH is almost the same as the

initialization. It is because the right side of bulk solution is kept at a constant concen-

tration. But at the left side, pH increases with a small amount, which is due to the H+
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Figure 4.13: Zn2+ Concentration
Zn2+ is initialized as 1M.

Figure 4.14: pH = 3
pH is initialized as 3.0.

Figure 4.15: pH = 4
pH is initialized as 4.0.

reduction to H2. The Tafel curves at two H+ are shown in Figure 4.16 and Figure 4.17.

Both corrosion potential at pH=3.0 and pH=4.0 are around -0.74V to -0.76V, which

are similar compared with the experimental result. (Experimental measurement of cor-
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Figure 4.16: Tafel I pH3.0 Figure 4.17: Tafel II pH4.0

rosion potential -1.44V relative to Hg/HgSO4, is converted to -0.788V relative to SHE.)

But pH=3.0 situation has a slightly higher corrosion potential compared with pH=4.0 sit-

uation based on the simulation. The equilibrium potential of hydrogen reaction can help

explain this phenomenon. Because the hydrogen concentration polarization part (which

is 2.3RT
nF

log (H+)2

pH2

) depends on the hydrogen ion concentration. The higher the concentra-

tion of H+, the larger the polarization (or smaller the absolute value of polarization, since

the polarization here is negative). Therefore pH=3.0 equilibrium potential is higher than

pH=4.0 equilibrium potential in terms of H2 reaction. This causes pH=3.0 final corrosion

potential slightly larger.

4.2.4 Conclusion

In summary, the model was successful in simulating the linear polarization phenomenon

on Zn surface when in contact with electrolyte. Compared with experimental results, the

model derives the logarithmic corrosion current values of around -1 and -4 at the corrosion

potential of around -0.72V and -0.75V(versus SHE), which are at the same magnitudes

with experimental data of -3 from the logarithmic corrosion current and -1.43V(versus

Hg/HgSO4)corrosion potential. Meanwhile the model’s corrosion potential results are also

consistent with theoretical principle of concentration polarization influence.
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Chapter 5

Atomistic Models

5.1 Introduction

The feature of electrochemical deposition is that the onset potential (U(Mn+/S)) is more

negative than the equilibrium potential of the metal ion (Ueq(M
n+/M)), which gives rise to

the so-called overpotential η(Mn+/S) = |U(Mn+/S)−Ueq(Mn+/M)| [72]. Two directions

of growth can potentially happen during electrochemical deposition. They are vertical and

lateral growth.

In terms of a system, the onset potential U(Mn+/S) is very close to the equilibrium

potential Ueq(M
n+/M), the calculated overpotential is thus comparably small. In the

experiment, it is observed that the attachment of metal ions on the substrate is slow, and

the growth is usually described as layer-by-layer (or spiral) growth. Under this condition,

electrochemical deposition is considered to be governed by kinetic control, and dendrites

do not significantly form. As the potential becomes more negative, the flux to the island on

the substrate increases, and the layer-by-layer growth can not be sustained on the surface.

In other words, the deposition transits from the kinetic control to the diffusion control

with the increase of overpotential. When the overpotential is quite large, the nucleation

becomes very fast and growth instabilities can lead to the formation of unusual dendrite

morphologies. Figure 5.1 below illustrates the surface profile in a potential range [73].
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Figure 5.1: Potential Vs Electrochemical-deposition
There are two main regions combined with a mixed region in

the graph. Region (a) is kinetic control; region (b) is mixed

kinetic-diffusion control; region (c) is diffusion control. Region

(a) is governed by layer-by-layer growth; region (b) is a transi-

tion region where dendrite starts to form; region (c) has diffusion

limited aggregation or dendrite formation.

This section of atomistic simulation is operated in the diffusion-controlled region. Two

parts are covered with respect to overpotential influence. The first part simulates the

dendrite formation at different overpotential; the second part simulates the remaining ion

distribution at the metal surface at different overpotential.

5.2 Diffusion-limited Dendrite Formation

The diffusion-limited aggregation provides a basis for modeling dendrite growth in the

diffusion-controlled region [74]. During the process, dendrite are grown from a line electrode

by electrodeposition under the diffusion-limited condition. The diffusion-limited condition

is described by metal ions moving in a random manner and finally being deposited to a

growing structure. Simulation can help obtain the growth patterns and average heights

grown at different overpotential.
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5.2.1 Random Walk

Random walk process is usually used in the diffusion-limited growth. It is defined as the

current value of a variable composed of the past value plus an error term defined as a white

noise (statistically zero mean and variance one). The mathematical expression is

yt = yt−1 + εt−1 (5.1)

The implication of the process is that the prediction for the change (yt−yt−1) is not allowed,

meaning the change of y is random. But the average value of a random walk process is a

constant even though the variance changes at each step. In the simulation, the metallic

ion undergoes random walk until it is ultimately fixed at a position.

5.2.2 Simulation Methods

Monte Carlo simulation method has been proved to be a simple but efficient approach

in numerical computation. It is one of the most widely used stochastic methods. In the

diffusion-limited aggregation simulation, this probability theory is implemented to decide

an atom deposition based on the sticking coefficient criteria.

In the study, each atom performs a random walk from the top to the bottom until it gets

stuck on the substrate or metal surface. Their positions are randomly selected. During the

flow, each atom has four possible neighbouring sites to choose if all the neighbouring sites

are vacant. If one or more sites are occupied by another atom, the flowing atom has an

opportunity to be deposited against that atom. It is assumed in the simulation that once

the atom gets deposited on the surface, it becomes an immobile atom and one part of the

growth site. The probability of deposition Pstick, also denoted as sticking coefficient [75],

is expressed as

Pstick =
fc(η)− fa(η)

fc(η) + fa(η) + IL/I0
(5.2)

where fc(η) = exp(−αcFη
RT

) and fa(η) = exp(αaFη
RT

); η is known as overpotential; F is

the Faraday constant; αa and αc are anodic and cathodic coefficient separately; I0 is the

exchange current and IL is the limiting current [76]. The cathodic term is given a minus
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sign by convention when the overpotential η is used as a true negative value rather than

an absolute value.

The decision of whether an atom sticks to the surface or not depends on comparing the

sticking coefficient Pstick with a random number Prand. If Prand is less than Pstick, the atom

will be successfully deposited; otherwise it will continue flowing. The boundary condition

in this simulation is defined such that, if an atom goes outside the study domain in its

random flowing, it will re-enter the domain from the other side. Each cycle of simulation

focuses only on one atom, meaning when one atom is fixed as immobile, the next atom gets

started by flowing from the top to the bottom. Therefore in the simulation, the number

of atoms is predefined. When all the atoms are deposited, the whole simulation ends.

However, if one atom has equal probability of going to four directions and starts from the

top, it will take a long time until it finally gets to the bottom. Thus, in order to speed up

the simulation, atoms are defined with a probability of 0.375 flowing down, a probability of

0.125 flowing up, and a probability of 0.25 flowing left and right. (It is assumed that atoms

have equal probabilities of flowing to the left or to the right, but higher probabilities of

flowing downside than upside. This is only for the sake of computation.) In the simulation,

3000 flowing atoms are used for deposition with different overpotential. The simulation

cares both two dimensional case and three dimensional case in the following discussions.

5.2.3 Results and Discussion

The equilibrium potential for zinc is -0.763V with respect to the standard hydrogen po-

tential. The simulation assumes that IL/I0 is universally defined as 1. The temperature

used is room temperature 300 K. anodic and cathodic coefficient based on the literature

are both set as 0.5 (αa = αc = 0.5). Figure 5.2 below shows the sticking coefficient with

different overpotential. For all the graphs, the overpotential η is changed to be an absolute

value (|η|).

The following several graphs from Figure 5.3 to Figure 5.8 show the dendrite mor-

phologies at different overpotentials of 0.01V, 0.04V, 0.08V, 0.12V, 0.15V and 0.30V in the

two dimensional simulation. In all these graphs, y-axis represents the number of atoms
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Figure 5.2: Sticking Coefficient Vs Overpotential
The sticking coefficient plot with respect to overpotential η

based on the calculation.

deposited on the surface, which illustrates the height of the dendrites. x-axis represents

the domain defined in the simulation with the same magnitude as the atom size.

Figure 5.3: Dendrite Formation |η| = 0.01V Figure 5.4: Dendrite Formation |η| = 0.04V

61



Figure 5.5: Dendrite Formation |η| = 0.08V Figure 5.6: Dendrite Formation |η| = 0.12V

Figure 5.7: Dendrite Formation |η| = 0.15V Figure 5.8: Dendrite Formation |η| = 0.30V

When |η| = 0.01V , the overpotential is too small to be controlled by diffusion in the real

situation. But at the same time, results via diffusion-limited aggregation method still show

that small overpotential causes lower height. The atoms are densely deposited with each

other. When overpotential increases to 0.04V (|η| = 0.04V ), the dendrite morphology is

very clear to be observed. The space inserted inside the deposited film is bigger compared

with the case from overpotential 0.01V. When overpotential increases to a larger value over

0.1V such as 0.12V or 0.15V, the dendrite height formed is also increasing. But in terms
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of 0.30V overpotential, the height is not significantly higher than 0.15V or 0.12V. It can

be confirmed by observing the sticking coefficient curve Pstick versus |η|, that Pstick quickly

converges to 1 when |η| is around 0.15V.

Three dimensional simulation further confirms the tendency of dendrite formation with

different sticking coefficients. The graphs from Figure 5.11 to Figure 5.16 show the mor-

phologies with directly calculated sticking coefficients.

Figure 5.9: Dendrite Formation Pstick =

0.05

Figure 5.10: Dendrite Formation Pstick =

0.10

The table 5.1 records the simulation data listing overpotential (η), sticking coefficient

(Pstick) and growth height (natom). Even though only 3000 particles are used in the sim-

ulation, the result still shows the tendency of the relationship between overpotential and

growth height at the diffusion-limited region.

From the statistical point of view, the above simulations study the dendrite heights

at different overpotential based on a governing sticking coefficient Pstick formula. In the

experiment, it is observed that at the diffusion-limited region, the larger values of overpo-

tential usually cause higher dendrites and varied island orientations [73]. The simulation

in this study confirms the results by incorporating a proved formula using diffusion-limited

aggregation method.
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Figure 5.11: Dendrite Formation Pstick =

0.05

Figure 5.12: Dendrite Formation Pstick =

0.10

Figure 5.13: Dendrite Formation Pstick =

0.20

Figure 5.14: Dendrite Formation Pstick =

0.40
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Figure 5.15: Dendrite Formation Pstick =

0.50

Figure 5.16: Dendrite Formation Pstick =

0.99

Overpotential (η) Sticking Coefficient (Pstick) Height (natom)

-0.01 0.1282 13

-0.02 0.2518 22

-0.04 0.4705 35

-0.08 0.7591 53

-0.10 0.8403 58

-0.12 0.8941 65

-0.15 0.9425 59

-0.20 0.9787 69

-0.25 0.9920 68

-0.30 0.9975 65

Table 5.1: Dendrite Growth Height
The data in the table shows that generally with increment of overpotential η abso-

lute values, sticking coefficients Pstick increase, accompanied by the increase of the

dendrite heights.
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5.3 Metallic Ion Distribution

In this session of study, the focus switches from the metallic atoms deposited on the surface

to the metallic ions left inside the solution. It is in fact a parallelled investigation from

another angle, while a different simulation method is implemented. Stochastic diffusion-

reaction process, in another name kinetic Monte Carlo method is presented and applied

in the study. The electrochemical deposition-dissolution process is executed by stochastic

reaction. Metallic ions diffusing at the surface is executed by stochastic diffusion. The

subsequent sections will introduce stochastic reaction, diffusion and the combined process

separately. Finally the combined method will entirely simulate the assumed situation of

electrochemical deposition.

5.3.1 Stochastic Reaction

For a general chemical reaction such as,

M
k−→ φ (5.3)

in which M is the reaction species and k is the rate constant of the reaction. Here we

are mainly concerned about species M , while species φ is considered as a species with no

interests. The rate constant k is given here so that the term kdt is defined as the probability

of any atom randomly chosen. dt is denoted as the time interval between [t, t+dt). Usually

the number of atoms change over time, so M(t) means the number of atoms at the specific

time t. Given all the necessary concepts, the probability that an atom gets reacted during

the time interval [t, t+ dt) is calculated as M(t)kdt [77].

In the simulation, this probability is compared with a random number Prand uniformly

generated in the region (0, 1). If the number M(t)kdt is bigger than Prand, the event is

accepted, giving rise to the atomic number reduction [49].

From the definition, if the time interval dt is defined too large, or the reaction rate k is

too high, or the atomic number is very big, the reaction probability M(t)kdt can go high

enough beyond 1. In this case, during every time interval dt, the atomic number always
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decreases. However, when the number becomes small, the product of M(t)kdt becomes

small too. Thus the probability can result in M(t)kdt < Prand, when there is no reaction

during this interval. By experimental observation, the reaction rate cannot always keep

high, and ultimately it will be stabilized at a certain value or even decrease to 0.

It is also very likely that the product of M(t)kdt is much less than 1. Therefore,

the simulation needs a big trial cycling number until at one time M(t)kdt > Prand. A

speedup technique in the stochastic simulation is usually used to substitute the conventional

method. The speedup algorithm alternatively calculates a time step, named τ , after which

one reaction definitely happens [78]. Hence from the assumption, the reaction happening

probability after time period τ is

P = exp[−M(t)kτ ] (5.4)

After the minimum time period, a newly generated random number Prand should be equal

to the probability shown above.

τ =
1

M(t)k
ln[

1

Prand
] (5.5)

Therefore, a general stochastic reaction algorithm is organized as follows.

Algorithm 1 Stochastic Reaction

Require: Reaction rate krec;

1. Generate one random number r;

2. Compute the time τ with r when next reaction occurs at t+ τ ;

3. Compute the number of atoms at t+ τ by M(t+ τ) = M(t)− 1;

4. Go back to Step 1 at t+ τ ;

This algorithm can be used for both atom deposition and dissolution problem in the

study. The requirement should be changed to deposition rate kdep and dissolution rate

kdis. Meanwhile, since the events are happening in the diffusion-controlled region, sticking

coefficient Pstick should be further multiplied with the deposition rate kdep.
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5.3.2 Stochastic Diffusion

The surface atomic diffusion simulation can adopt a similar approach as introduced in the

reaction case, but the stochastic selection needs to separate atoms into different compart-

ments [79]. In terms of a one dimensional simulation, the domain with a length L can be

averagely divided into K compartments. Thus, each atom is allocated into one compart-

ment. One compartment can have zero, one or more than one atoms. The length of each

compartment is defined as h = L/K. For ith compartment ranging from [(i− 1)h, ih), the

number of atoms inside is Mi(t). Therefore diffusion stochastic form is

M1(t)
d
↼−−⇁M2(t)

d
↼−−⇁ . . .

d
↼−−⇁Mk(t) (5.6)

Mi(t)
d
↼−−⇁ Mi+1(t), interpreted as Mi(t)

d−→ Mi+1(t) and Mi(t)
d←− Mi+1(t), means one

atom with the rate d diffuses to the right side or left side. The rate constant d is calculated

as d = D/h2, in which D is the conventional diffusion coefficient and h is the compartment

length [80].

During simulation, the diffusion propensity function is expressed as αi(t) = Mi(t)d,

where i = 1, 2, . . . , K. And the whole propensity function is the sum of diffusion going to

the left and going to the right.

αsum(t) =
K−1∑
i=1

αi(t) +
K∑
i=2

αi(t) (5.7)

Thus the stochastic diffusion algorithm is derived as follows.

The metallic ions diffusion can directly incorporate the above algorithm.
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Algorithm 2 Stochastic Diffusion

Require: Diffusion coefficient D;

1. Generate two random numbers r1, r2;

2. Compute the propensity functions given as

α0 =
K−1∑
i=1

αi +
K∑
i=2

αi (5.8)

where αi = Mi(t)d, d = D/h2;

3. Compute time τ with r1 when next diffusion occurs at t+ τ ;

4. Choose the direction of diffusion;

if r2 <
∑K−1

i=1 αi/α0 then

Find j ∈ 1, 2, . . . , K − 1;

Such that r2 ≥ 1
α0

∑j−1
i=1 αi and r2 ≤ 1

α0

∑j
i=1 αi;

DO Mj(t+ τ) = Mj(t)− 1 and Mj+1(t+ τ) = Mj+1(t) + 1;

else

Find j ∈ 2, 3, . . . , K;

Such that r2 ≥ 1
α0

(
∑K−1

i=1 αi +
∑j−1

i=2 αi) and r2 ≤ 1
α0

(
∑K−1

i=1 αi +
∑j

i=2 αi);

DO Mj(t+ τ) = Mj(t)− 1 and Mj−1(t+ τ) = Mj−1(t) + 1;

end if

4. Go back to Step 1 at t+ τ ;
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5.3.3 Stochastic Diffusion-Deposition-Dissolution

Eventually, deposition, dissolution and diffusion are combined together for the entire elec-

trochemical deposition simulation. Zinc ions are assumed to be the metallic ions.

MZn2+(t) −→ φ Deposition (5.9)

φ −→MZn2+(t) Dissolution (5.10)

MZn2+,1(t)
d
↼−−⇁MZn2+,2(t)

d
↼−−⇁ . . .

d
↼−−⇁MZn2+,k(t) Diffusion (5.11)

The specific parameters for Zn2+ diffusion coefficient, deposition or dissolution are

pretty vague. It largely depends on the external environment. However this study mainly

aims to prove the overpotential influence on the number of metallic atoms on the surface. It

can also be extended to other metallic ions. Due to an additional sticking coefficient on the

deposition, the true propensity function of deposition in the simulation is PstickM(t)kdep.

The final diffusion-deposition-dissolution algorithm is shown below.

Algorithm 3 Stochastic Diffusion-Deposition

Require: Diffusion coefficient D;

Require: Deposition rate kdep;

Require: Dissolution rate kdis;

Require: Sticking coefficient Pstick;

1. Generate two random numbers r1, r2;

2. Compute the propensity functions in two parts

Ai(t)d for diffusion and Mi(t)kdepPstick for deposition;

3. Decide deposition or diffusion similar to Stochastic Diffusion;

4. Go back to Step 1 at t+ τ ;

5.3.4 Results and Discussion

There is not enough information about the exact diffusion coefficient and deposition rate

of Zn2+ and dissolution rate of Zn atoms in the aqueous environment. In the sophisticat-
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ed lattice atomic calculation, some formulas are proposed to describe molecular rate for

dissolution, deposition and diffusion. [81]

However these calculations are based on pure metal deposition on substrate at certain

environment, which are quite different from the metallic ions deposited on the metal surface

in the aqueous environment. Therefore, this study simply uses some general and fixed rate

parameters to simulate the remaining number of ions in the solution via stochastic method.

From most literatures, the diffusion coefficient of ions in the solution ranges from 10−9 to

10−7 [cm2/s]. In order to accelerate the simulation, the study here chooses 10−7[cm2/s] for

diffusion coefficient D. In terms of deposition and dissolution rate representing Zn2+ → Zn

and Zn→ Zn2+, many research groups have reported that the surface diffusion events have

way higher rate than deposition, which results in a very long time until one monolayer

is successfully deposited [54, 57]. Regarding the time spent in the simulation and also

balancing the influence from diffusion process, the study picks two reaction rates, namely

deposition and dissolution rate to be 1.2 · 10−3[s−1] and 1.5 · 10−3[s−1].

The domain is separated into five regions with five sticking coefficients for deposition.

The first part of simulation has the sticking coefficient distribution as [0.7 0.3 0.1 0.9 0.5].

The simulations use different time periods (5min, 10min, 20min, 40min) to test the remain-

ing metal ions on the surface.

Figure 5.17: 5.0 min Simulation Figure 5.18: 10 min Simulation
x-axis is the domain of simulation from 0 to 1, and y-axis the number of ions left after 5 and 10 minutes.

In Figure 5.17 when time period is 5 minutes, the ions are almost averagely distributed

inside the whole domain. Meanwhile the region with the highest number of ions still have
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Figure 5.19: 20 min Simulation Figure 5.20: 40 min Simulation
x-axis is the domain of simulation from 0 to 1, and y-axis the number of ions left after 20 and 40 minutes.

number around 100. It is due to the fact that diffusion rate is higher than the other two

rates, which causes small changes on the ion number. When the period gets longer, more

ions are deposited on the surface. And the sticking coefficient factor gradually influences

the distribution of ions on the surface, such as in Figure 5.19 and Figure 5.20. It can

be seen that the middle part of domain gets more ions while the two end sides maintain

smaller number of ions. Because in the middle region, sticking coefficient is set as 0.1,

this small probability will reject many trials of deposition. In comparison higher sticking

coefficients such as 0.9 on the right and 0.7 on the left give rise to higher probability of

deposition.

In the next study, regions with different sticking coefficient distributions are simulated

via stochastic method. Different sticking coefficients simulate the conditions when the over-

potentials at the substrate or metal surface are distributed unevenly, and the results can

illustrate some of the potential influence on the remaining ion distribution after long simu-

lation time. The time period for all the following conditions is set the same as 30min. The

simulations consider three different situations: [0.7 0.3 0.1 0.9 0.5], [0.1 0.3 0.5 0.7 0.9]

and [0.9 0.7 0.5 0.3 0.1].

The three figures from Figure 5.21, Figure 5.22 and Figure 5.23 distinctively illustrate

the sticking coefficient influence on the final ion distribution. When the sticking coefficient

is large, it is more likely that the ions can be deposited on every deposition trial, which

shows less ions left in this region. In contrast, the low sticking coefficient area can reject
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Figure 5.21: Sticking Coefficient Distribution: [0.7 0.3 0.1 0.9 0.5]

Figure 5.22: Sticking Coefficient Distribution: [0.1 0.3 0.5 0.7 0.9]

more deposition trials, thus showing more ions left on the surface.
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Figure 5.23: Sticking Coefficient Distribution: [0.9 0.7 0.5 0.3 0.1]

5.4 Conclusion

Dendrite formation and metal ion consumption are simulated via atomistic model. The

model is constructed stochastically assisted with a sticking coefficient theory. Both simu-

lated results show that overpotential has a big influence at the diffusion-controlled region.

Higher overpotential can accelerate the dendrite growth; also in the meantime decreas-

es the number of ions in that region if operated in a long time. The results may guide

experimental tests and designs if better Zn morphology is expected.
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Chapter 6

Conclusions

6.1 Conclusions

A series of modeling strategies covering empirical, electrochemical engineering, and atom-

istic level have been implemented on the ReHAB system. At the empirical level, particle

filter method is executed on the raw battery data from experiments to track and predict

battery capacity at higher numbers of cycles. At the electrochemical engineering level, in

terms of cathode LiMn2O4, battery interface module and porous transport theory give a

good illustration to simulate battery charge/discharge process. An additional side reaction

exchange current density formula is added in the model to simulate the constant-current

constant-voltage process. In terms of anode Zn, the simulation is focused on the corro-

sion. Nernst-Planck interface combining electrochemical reactions and chemical reactions

is used to study thermodynamics during corrosion, by illustrating the Tafel curves at dif-

ferent pH values. At the atomistic level, the thesis studies the diffusion-controlled region

where diffusion-limited aggregation technique is implemented. Via sticking coefficient and

probability theory, it is found that higher overpotential can give rise to more severe den-

drite growth, and more ions consumed in the long time. General conclusions of this thesis

are listed as:

• The empirical relationship between Coulombic efficiency ηC and cycle capacity Ck is
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valid in ReHAB cell.

• Particle filter method is proved to be an efficient method in tracking and predicting

battery cell performance.

• Butler-Volmer interface kinetic of Li and anodic kinetic of Zn can be combined to-

gether in cell operation.

• A reaction current opposite to the charge or discharge current direction at the elec-

trode can be used as a side reaction expression.

• Nernst-Planck interface can accurately model the corrosion potential and illustrate

the hydrogen concentration polarization influence.

• At the diffusion-controlled region, the stochastic theory proves that higher overpo-

tential can lead to rougher surface and faster ion deposition.

6.2 Recommendations

Since this is the first trial of simulating ReHAB system at different levels, more work with

deeper depth can be done in the future study.

• Empirical level:

– The nonlinear term obtained from ηC calculating capacity and measured capaci-

ty deserves deeper study. The empirical model can be derived back to cell circuit

model, whose parameters are linked with cell material properties. Particle filter

achieves the tracking convergence via the convergence properties from numbers

of sampled particles, but the nonlinear terms are covered inside the Gaussian

noise assumption. It is worthwhile designing a better algorithm focusing on the

nonlinear terms with respect to different battery materials.

• Electrochemical engineering level:
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– The conventional pseudo 2D model is used in this part to simulate cathode.

The original pseudo 2D model is designed for organic electrolyte but ReHAB

has aqueous electrolyte solution. Therefore it requires a more sophisticated

study on the model design with more emphasis on H2O influence.

– The added side reaction current density is only a simple assumption, while more

work could be done to make a more accurate expression for side reaction during

charge/discharge, since the charge process in the simulation is not consistent

with the experiments. Also there can be other possibilities causing side reactions

except for an additional current term.

– The potential chemical reactions in the model are only assumed without further

study. Meanwhile anode corrosion does not consider cathode influence and cath-

ode Li intercalation does not incorporate anode corrosion effects. Thus a better

model on the how anode affects cathode performance or how cathode affects

anode performance is needed to understand the interconnected side effects.

• Atomistic level:

– The study only cares about one aspect of overpotential on Zn dendrite formation

in the diffusion-controlled region, but a more sophisticated study usually incor-

porates atomic energy calculation at step of calculation. An extended simula-

tion on the lattice structure with Zn atom energy at different state computation

should be considered in the future.
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Appendix

Matlab Code in Simulation

Particle Filter Code

The key parts of the particle filter Matlab code are put here.

Load battery performance data from C hard drive.

file_coin_SFG = ’C:\Users\Han\140326\SFG-6\A3.xls’;

data_coin_SFG = xlsread(file_coin_SFG);

% file_coin_KS = ’C:\Users\Han\140326\KS-15\C3.xls’;

% data_coin_KS = xlsread(file_coin_KS);

% file_swig_SFG = ’C:\Users\Han\140326 swig log\SFG-6\B3.xls’;

% data_swig_SFG = xlsread(file_swig_SFG);

% file_swig_KS = ’C:\Users\Han\140326 swig log\KS-15\D3.xls’;

% data_swig_KS = xlsread(file_swig_KS);

efficiency = data_coin_SFG(20:800,6);

capacity = data_coin_SFG(20:800,3);

Compare Coulombic efficiency calculation with true measurement data.

x_CE = zeros(length(capacity),1);
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x_CE(1) = capacity(1);

for i = 1 : length(capacity)-1

x_CE(i+1) = x_CE(i)*efficiency(i)/100;

end

x_Left = capacity(:) - x_CE(:);

figure;

T = length(capacity);

t = 1 : T;

plot(t,capacity,’.-b’,t,x_CE,’.-g’,t,x_Left,’.-r’,’linewidth’,3)

legend(’True capacity’, ’Modeled capacity’, ’Non-linear part capacity’)

xlabel(’Cycles’)

ylabel(’Capacity’)

fprintf(’CE, xLeft = %f\n’, abs(x_Left(500)))

Particle filter method tracking and prediction.

x = capacity(1);

N = 100; % Particle number

x_N = 0.0025;

x_R = 0.001;

T = length(capacity);

V = 2; % Initial variance estimate

x_P = [];

for i = 1 : N

x_P(i) = x + sqrt(V)*randn;

end

for t = 2 : T

for i = 1 : N

% Update process
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x_P_update(i) = efficiency(t-1)/100*x_P(i) + x_N*randn;

% Weight every particle

P_w(i) = 1/sqrt(2*pi*x_R) * exp(-(capacity(t)-x_P_update(i))^2/(2*x_R));

end

% Normalize the weight

P_w = P_w./sum(P_w);

% Resample

for i = 1 : N

% Use cumulative command to randomly choose the

% first element satisfying (>= rand)

% The more probable, the more likely to be chosen, which is KMC idea

x_P(i) = x_P_update(find(rand <= cumsum(P_w),1));

end

% Get the particle estimate for current cycle

x_est = mean(x_P);

% Load the estimate for the whole process

x_est_out = [x_est_out x_est];

end

% =========================================================================

% Particle filtering of the estimated efficiency

eff = 99.8847;

capacity_new = capacity(T1);

x_R = 1;

for t = T1+1 : T

for i = 1 : N

% Update process

x_P_update(i) = eff/100*x_P(i) + x_N*randn;

% Weight every particle

capacity_new = capacity_new*eff/100;

P_w(i) = 1/sqrt(2*pi*x_R) *
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exp(-(capacity_new-x_P_update(i))^2/(2*x_R));

end

% Normalize the weight

P_w = P_w./sum(P_w);

% Resample

for i = 1 : N

% Use cumulative command to randomly choose the first

% element satisfying (>= rand)

% The more probable, the more likely to be chosen, which is KMC idea

x_P(i) = x_P_update(find(rand <= cumsum(P_w),1));

end

% Get the particle estimate for current cycle

x_est = mean(x_P);

% Load the estimate for the whole process

x_est_out = [x_est_out x_est];

end

t = T1+1 : T;

plot(t,x_est_out(T1+1:T),’.-k’,t,capacity(T1+1:T),’.-b’,’linewidth’,3);

hold off

xlabel(’Cycles’); ylabel(’Capacity’);

legend(’True measurement’,’PF estimate with true CE’,

’PF estimate with estimated CE’);

% =================================================

% Calculate the percentage difference

% =================================================

fprintf(’myEst, xLeft = %f\n’, abs(capacity(500)-x_est_out(500)))

fprintf(’Est CE = %f\n’, eff)
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Dendrite Formation Code

Main Matlab code for dendrite formation and stochastic simulation code are listed here.

Sticking coefficient calculation.

alpha_c = 0.5;

alpha_a = 0.5;

F = 9.65e4;

R = 8.31;

T = 300;

eta = 0:-0.001:-0.5;

eta = eta’;

fc = zeros(length(eta),1);

fa = zeros(length(eta),1);

Pstick = zeros(length(eta),1);

% Assume I/I_l = 1

for i = 1 : length(eta)

fc(i) = exp(-alpha_c*F*eta(i)/(R*T));

fa(i) = exp(alpha_a*F*eta(i)/(R*T));

Pstick(i) = (fc(i) - fa(i)) / (fc(i) + fa(i) + 1);

end

figure

set(gca, ’FontSize’, 15)

plot(eta,Pstick,’LineWidth’,2)

title(’Sticking Coefficient’)

xlabel(’\eta, V’)

ylabel(’P_{stick}’)

Dendrite formation with sticking coefficient influence.
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clear, clc, close all

% Start timing

tic

nParticles = 20000;

maxX = 10;

maxY = 10;

maxZ = 120;

zStart = 5;

nNewParticlesPerFrame = 10;

dX = 0.1;

dY = 0.1;

xx = dX:dX:maxX;

yy = dY:dY:maxY;

[X,Y] = meshgrid(xx,yy);

Z = zeros(length(xx));

PstickList = 0.99;

Height = 0;

f = zeros(length(PstickList),1);

rng(’shuffle’)

for j = 1 : length(PstickList)

Pstick = PstickList(j);

figure

Z = zeros(length(xx));

for i = 1 : nParticles
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% x, y used for recording numbers, NOT Coordinate !!!!!

x = ceil(rand()*length(xx));

y = ceil(rand()*length(yy));

z = maxZ - zStart;

while 1

xOld = x;

yOld = y;

zOld = z;

rval = rand();

% 5 Possiblities: [Down, North, South, West, East]

if rval <= 0.5

z = z - 1;

elseif rval <= 5/8 && rval > 1/2

x = x + 1;

elseif rval <= 6/8 && rval > 5/8

x = x - 1;

elseif rval <= 7/8 && rval > 6/8

y = y + 1;

else

y = y - 1;

end

if z < 0

Z(xOld,yOld) = 1;

break;

end

% Periodic boundary condition

if x > length(xx)

x = 1;

end

if x < 1

84



x = length(xx);

end

if y > length(yy)

y = 1;

end

if y < 1

y = length(yy);

end

% if Z(x,y) == z

% x = xOld;

% y = yOld;

% z = zOld;

% continue;

% end

xR = mod(x,length(xx)) + 1;

xL = mod(x,length(xx)) - 1;

yR = mod(y,length(yy)) + 1;

yL = mod(y,length(yy)) - 1;

zU = z + 1;

zD = z - 1;

if xL < 1

xL = length(xx);

end

if xR > length(xx)

xR = 1;

end

if yL < 1

yL = length(yy);

end

if yR > length(yy)
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yR = 1;

end

f(j) = f(j) + 1;

rval = rand();

if Z(xL,y) == z||Z(xR,y) == z||Z(x,yL) == z||

Z(x,yR) == z||Z(x,y) == zD||Z(x,y) == zU

if Pstick > rval

Z(x,y) = Z(x,y) + 1;

if Z(x,y) > Height

Height = Z(x,y);

end

break;

end

end

end

if i == nParticles || mod(i,nNewParticlesPerFrame) == 0

surf(Z, ’EdgeColor’, ’none’);

%colormap(1-prism);

alpha(0.55);

%axis equal

%axis tight

axis([0 maxX 0 maxY 0 20])

drawnow

shading interp

grid on

end

end

end

title(’P_{stick} = 0.99’,’FontSize’,12);
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fprintf(’Height = %d\n’,Height);

% End timing

toc

Stochastic simulation code on diffusion-dissolution-deposition code.

rng(’default’);

% Parameter initialization

L = 1;

K = 50;

h = L/K;

D = 1e-5;

kdif = D/h/h; % Diffusion rate (A -> A)

kdep = 1.2e-3; % Deposition rate (A -> phi)

kdis = 1.5e-3; % Dissolution rate (phi -> A)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Deposition happening with sticking coefficient nu

% Dissolution happening everywhere

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Assume 5 areas with different overpotential

% High overpotential --> High sticking probability

nu = [0.1 0.3 0.5 0.7 0.9];

kdep = kdep * nu;

T = 30*60;

A0 = 100; % Initial number of ions on the surface

A = zeros(K,1);

A(:) = A0;

t = 0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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while(t <= T)

% Initialize the propensity function

aDif = A*kdif;

aLeft = sum(aDif(1:K-1)); % Left propensity

aRight = sum(aDif(2:K)); % Right propensity

aDis = kdis; % Dissolution propensity

aDep1 = A(1:K/5)*kdep(1); % Deposition propensity area 1

aDep2 = A(K/5+1:K*2/5)*kdep(2); % Deposition propensity area 2

aDep3 = A(K*2/5+1:K*3/5)*kdep(3); % Deposition propensity area 3

aDep4 = A(K*3/5+1:K*4/5)*kdep(4); % Deposition propensity area 4

aDep5 = A(K*4/5+1:K)*kdep(5); % Deposition propensity area 5

sumDep1 = sum(aDep1);

sumDep2 = sum(aDep2);

sumDep3 = sum(aDep3);

sumDep4 = sum(aDep4);

sumDep5 = sum(aDep5);

aDep = sumDep1 + sumDep2 + sumDep3 + sumDep4 + sumDep5;

a0 = aLeft + aRight + K*aDis + aDep;

% Get the random number

r = rand(2,1);

% Update time

tau = (1/a0) * log(1/r(1));

t = t + tau;

% Choose which event to happen

% Go for left diffusion

if ((r(2)>=0) && (r(2)<aLeft/a0))

for i = 1 : K-1

if ((r(2)>=sum(aDif(1:i-1))/a0) && (r(2)<sum(aDif(1:i))/a0))
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A(i) = A(i) - 1;

A(i+1) = A(i+1) + 1;

break;

end

end

% Go for right diffusion

elseif ((r(2)>=aLeft/a0) && (r(2)<(aLeft+aRight)/a0))

for i = 2 : K

if ((r(2)>=(aLeft+sum(aDif(2:i-1)))/a0) &&

(r(2)<(aLeft+sum(aDif(2:i)))/a0))

A(i) = A(i) - 1;

A(i-1) = A(i-1) + 1;

break;

end

end

% Go for Deposition

% Area 1

elseif ((r(2)>=(aLeft+aRight)/a0) && (r(2)<(aLeft+aRight+sumDep1)/a0))

for i = 1 : K/5

if ((r(2)>=(aLeft+aRight+sum(aDep1(1:i-1)))/a0) &&

(r(2)<(aLeft+aRight+sum(aDep1(1:i)))/a0))

A(i) = A(i) - 1;

break;

end

end

% Area 2

elseif ((r(2)>=(aLeft+aRight+sumDep1)/a0) &&

(r(2)<(aLeft+aRight+sumDep1+sumDep2)/a0))
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for i = 1 : K/5

if ((r(2)>=(aLeft+aRight+sumDep1+sum(aDep2(1:i-1)))/a0) &&

(r(2)<(aLeft+aRight+sumDep1+sum(aDep2(1:i)))/a0))

A(i+K/5) = A(i+K/5) - 1;

break;

end

end

% Area 3

elseif ((r(2)>=(aLeft+aRight+sumDep1+sumDep2)/a0) &&

(r(2)<(aLeft+aRight+sumDep1+sumDep2+sumDep3)/a0))

for i = 1 : K/5

if ((r(2)>=(aLeft+aRight+sumDep1+sumDep2+sum(aDep3(1:i-1)))/a0) &&

(r(2)<(aLeft+aRight+sumDep1+sumDep2+sum(aDep3(1:i)))/a0))

A(i+2*K/5) = A(i+2*K/5) - 1;

break;

end

end

% Area 4

elseif ((r(2)>=(aLeft+aRight+sumDep1+sumDep2+sumDep3)/a0) &&

(r(2)<(aLeft+aRight+sumDep1+sumDep2+sumDep3+sumDep4)/a0))

for i = 1 : K/5

if ((r(2)>=(aLeft+aRight+sumDep1+sumDep2+sumDep3

+sum(aDep4(1:i-1)))/a0) && (r(2)<(aLeft+aRight+sumDep1

+sumDep2+sumDep3+sum(aDep4(1:i)))/a0))

A(i+3*K/5) = A(i+3*K/5) - 1;

break;

end

end
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% Area 5

elseif ((r(2)>=(aLeft+aRight+sumDep1+sumDep2+sumDep3+sumDep4)/a0) &&

(r(2)<(aLeft+aRight+aDep)/a0))

for i = 1 : K/5

if ((r(2)>=(aLeft+aRight+sumDep1+sumDep2+sumDep3+

sumDep4+sum(aDep5(1:i-1)))/a0) && (r(2)<(aLeft+aRight+

sumDep1+sumDep2+sumDep3+sumDep4+sum(aDep5(1:i)))/a0))

A(i+4*K/5) = A(i+4*K/5) - 1;

break;

end

end

% Go for Dissolution

else

for i = 1 : K

if ((r(2)>=(aLeft+aRight+aDep+(i-1)*aDis)/a0) &&

(r(2)<(aLeft+aRight+aDep+i*aDis)/a0))

A(i) = A(i) + 1;

break;

end

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plot the figure

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

xxx = [h/2 : h : L-h/2];

figure

set(gca, ’FontSize’, 15);

bar(xxx, A);

colormap([0.8 0.8 0.8])
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box on

xlabel(’x [mm]’)

ylabel(’Number of Zn^{2+} Ions’)

axis([0 1 0 1.2*max(A)])

text(0.1, max(A), ’time = 30 min’, ’FontSize’, 15);

title(’Diffusion-Dissolution-Deposition’)

COMSOL Multiphysics Setting

LMO Setting

LiMn2O4 setting are based on the parameters obtained from COMSOL.

Ds_pos 1e-13[m^2/s] Solid phase Li-diffusivity Positive

rp_pos 8e-6[m] Particle radius Positive

T 298[K] Temperature

t_plus 0.363 Cationic transport number

Dl 7.5e-11[m^2/s] Salt diffusivity in Electrolyte

epss_pos 1-epsl_pos-0.259 Solid phase vol-fraction Positive

epsl_pos 0.444 Electrolyte phase vol-fraction Positive

Ks_pos 3.8[S/m] Solid phase conductivity Positive

cl_0 2000[mol/m^3] Initial electrolyte salt concentration

csmax_pos 22860[mol/m^3] Max solid phase concentration Positive

cs0_pos 3900[mol/m^3] Initial Positive State of Charge

k_pos 2e-11[m/s] Reaction rate coefficient Positive

aA_pos 0.5 Reaction rate coefficient Positive

aC_pos 0.5 Reaction rate coefficient Positive

i_disch i_1C Discharge current

t_disch_stop 3600[s] Discharge duration

t_ocp 60[s] Open Circuit interval

i_charge -i_1C Charge current
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t_charge_stop 3600[s] Charge time

n_count 0 multiplicative factor for cycle number counts

n_cyc 100 Cycle number

D_Li_ion 0.9e-15[m^2/s] Duffusion coefficient for Li ions in the electrolyte

D_n 5.1e-15[m^2/s] Diffusion coefficient for n in the electrolyte

Eq_Zn -0.763[V] Equilibrium potential for Zinc

disch_on step1((t-n_count*(t_disch_stop+t_charge_stop+2*t_ocp))[1/s])*

step1((n_count*(t_disch_stop+t_charge_stop+2*t_ocp)+t_disch_stop-t)[1/s])

discharge on/off func

charge_on step1((t-n_count*(t_disch_stop+t_charge_stop+2*t_ocp)-

t_disch_stop-t_ocp)[1/s])*step1((n_count*(t_disch_stop+t_charge_stop+2*t_ocp)+

t_charge_stop+t_disch_stop+t_ocp-t)[1/s]) charge on/off func

i_app i_disch*disch_on+i_charge*charge_on total charge/discharge current

Zn Corrosion Setting

Some of Zn corrosion study parameters.

DSO4 1e-9[m^2/s]

DLi 1e-9[m^2/s]

DZn2 1e-9[m^2/s]

DZnOH2 1e-9[m^2/s]

DH 9.3e-9[m^2/s]

DOH 5.3e-9[m^2/s]

DH2 1e-9[m^2/s]

DO2 1e-9[m^2/s]

DZnSO4 1e-9[m^2/s]

R 8.314[J/(mol*K)]

T 298[K]

F 96485.3415[C/mol]

a1 1

i01 2.7e11[A/m^2]
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a2 0.5

i02 2e-7[A*m/mol]

kZnf 1e-3[m^3/mol]

kZnb (1e9)[m^3/mol]

Keauf 1e-3

keaub 1e8[m^6/mol^2]

c0_SO4 2000[mol/m^3]

c0_Zn2 1e-6[mol/m^3]

c0_ZnOH2 cWater^2*c0_Zn2*kZnf/(kZnb*c0_H^2)

c0_H 1e-4[mol/m^3]

c0_OH 1e-14[mol^2/m^6]/(c0_H)

c0_H2 0[mol/m^3]

c0_ZnSO4 1e-6[mol/m^3]

Vm -0.763[V]

cWater 1000[mol/m^3]

Kwater 1e-8[mol^2/m^6]

KZn 1e-12 Equilibrium Constant Zn2 + 2H2O = Zn(OH)2 + 2H

kSO4f 1[m^3/s/mol]

kSO4b 1e4[mol/m^3]

KZn1 1e13

KZn2 1e20

kZnOH2_1f 1e4[m^3/mol]

kZnOH2_1b 1e-6[m^3/mol]

kZnOH2_2f 1e6[m^3/mol]

kZnOH2_2b 1e-10[m^3/mol]
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