
Unsupervised Spectral Ranking for
Anomaly Detection

by

Ke Nian

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2014

c© Ke Nian 2014

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Anomaly detection is the problem of finding deviations from expected normal patterns. A
wide variety of applications, such as fraud detection for credit cards and insurance, medical
image monitoring, network intrusion detection, and military surveillance, can be viewed as
anomaly detection. For anomaly detection, obtaining accurate labels, especially labels for
anomalous cases, is costly and time consuming, if not practically infeasible. This makes
supervised anomaly detection less desirable in the domain of anomaly detection. In this
thesis, we propose a novel unsupervised spectral ranking method for anomaly detection
(SRA). Based on the 1st non-principal eigenvectors from Laplacian matrices, the proposed
SRA can generate anomaly ranking either with respect to a single majority class or with
respect to multiple majority classes. The ranking type is based on whether the percentage
of the smaller class instances (positive or negative) is larger than the expected upper
bound of the anomaly ratio. We justify the proposed spectral ranking by establishing a
connection between the unsupervised support vector machine optimization and the spectral
Laplacian optimization problem. Using both synthetic and real data sets, we show that
our proposed SRA is a meaningful and effective alternative to the state-of-art unsupervised
anomaly ranking methods. In addition, we show that, in certain scenarios, unsupervised
SRA method surpasses the state-of-art unsupervised anomaly ranking methods in terms of
performance and robustness of parameter tuning. Finally, we demonstrate that choosing
appropriate similarity measures remains crucial in applying our proposed SRA algorithm.

iii

Acknowledgements

I would like to thank my supervisors Prof. Yuying Li and Prof. Thomas F. Coleman
for their patience and guidance with my work.

I thank my thesis reader Prof. Peter Forsyth and Prof. Justin Wan, for taking the time
to review the thesis and give me valuable comments.

Thanks also go to my friends and lab mates from Scientific Computing group of U-
niversity of Waterloo, Adiya Tayal, Eddie Cheung, HaoFan Zhang, Kai Ma, Ken Chan,
Parsiad Azimzadeh and Swathi Amarala, for engaging and memorable discussions.

iv

Dedication

Dedicated to my parents, Fushun Nian and Xuemei Wang, for their support and en-
couragement all along the years.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Anomaly Detection and Associated Challenges 1

1.2 Existing Anomaly Ranking Methods . 4

1.3 Contribution . 7

2 Spectral Clustering and Support Vector Machine 8

2.1 Spectral Clustering . 8

2.1.1 Graph Construction . 9

2.1.2 Graph Partition . 9

2.1.3 Spectral Approximation . 10

2.2 Support Vector Machine . 15

2.2.1 Supervised SVM . 15

2.2.2 Kernel Trick . 20

2.2.3 Unsupervised SVM . 23

2.3 Similarity Matrices and Kernel Matrices 24

vi

3 Spectral Ranking for Anomaly Detection 28

3.1 Understanding the 1st Non-principal Eigenvector 28

3.1.1 Degree of Support Perspective . 28

3.1.2 Random Walk Perspective . 33

3.2 A Spectral Ranking for Anomaly Detection 38

4 Experimental Results 42

4.1 Receiver Operating Characteristic Curves 42

4.2 Existing Methods for Comparisons . 45

4.3 Synthetic Data Sets . 48

4.4 Case Study: Insurance Fraud Detection . 55

4.4.1 Comparisons with LOF, OC-SVM and (supervised) RF 58

4.4.2 Understanding and Validating Detected Abnormal Patterns 59

4.5 Additional Real Data Sets . 61

5 Conclusion 68

5.1 Future Work . 69

APPENDICES 69

A Proof of Theorem 3 70

B Out of Sample Prediction 72

C One-Class Support Vector Machine (OC-SVM) 75

D Deduction of Classification Trees 80

References 82

vii

List of Tables

2.1 Commonly Used Kernel Function for Numerical Data Sets 24

4.1 Confusion Matrix . 44

4.2 Summary of the Synthetic Data . 48

4.3 Summary of Results for the Fraud Detection Data Set 57

4.4 Summary Information for Clusters . 59

viii

List of Figures

1.1 Illustration of multi-class anomaly detection and one-class anomaly detection 5

2.1 Illustration of Kernel Trick . 21

3.1 Interpretation of 1st Non-principal Eigenvector For Synthetic Data 1 . . . 31

3.2 Interpretation of 1st Non-principal Eigenvector For Synthetic Data 2 . . . 32

3.3 Interpretation of 1st Non-principal Eigenvector For Synthetic Data 3 . . . 38

3.4 Interpretation of 1st Non-principal Eigenvector For Synthetic Data 4 . . . 40

4.1 Comparing SRA, LOF, OC-SVM on Synthetic Data 1 49

4.2 Comparing SRA, LOF, OC-SVM on Synthetic Data 2 50

4.3 Comparing SRA, LOF, OC-SVM on Synthetic Data 3 51

4.4 Comparing SRA, LOF, OC-SVM on Synthetic Data 4 52

4.5 Change of Performance Due to Change of Parameter 53

4.6 Comparisons Based on the Overlapping Similarity 57

4.7 Comparisons Based on an Adaptive Gaussian Kernel with β = 100 58

4.8 Comparisons Based on a Hamming Distance Kernel with τ = 0.8 59

4.9 Clusters With Color . 59

4.10 Decision Tree . 60

4.11 Comparing SRA, LOF, OC-SVM on Advertisement Data Set 62

4.12 Change of Performance Due to Change of Parameter (Advertisement Data) 63

4.13 Comparing SRA, LOF, OC-SVM on Satellite Data Set 63

ix

4.14 Change of Performance Due to Change of Parameter (Satellite Data Set) . 64

4.15 Comparing SRA, LOF, OC-SVM on Solar Data Set 64

4.16 Change of Performance Due to Change of Parameter (Solar Data Set) . . . 65

4.17 Comparing SRA, LOF, OC-SVM on Mushroom Data Set 66

4.18 Change of Performance Due to Change of Parameter (Mushroom Data Set) 66

C.1 Illustration of OC-SVM . 76

x

Chapter 1

Introduction

1.1 Anomaly Detection and Associated Challenges

Anomaly detection, at the abstract level, is to detect data instances in a given data set
that do not conform to the expected normal patterns. The anomalies in data sets often
translate to valuable knowledge such as clues to fight against malicious attack or behaviors,
indication of malfunctions and so on. Anomalies in credit card transactions and insurance
claims are often the fraudulent cases. Anomalies in the readings of electronic sensors
often indicate malfunction of devices. Thus, successful detection of anomalies can lead to
significant gains in business efficiency.

Traditionally, anomaly detection (e.g., fraud detection, malfunction detection, network
intrusion detection) relies heavily on expert inspection which is often costly, time con-
suming, and highly inefficient. Data mining and machine learning techniques have been
recognized as the key to speed up the detection of anomalous cases and greatly reduce
economic losses. Based on the type of input data used, data mining and machine learning
techniques used for anomaly detection can be classified into three categories:

• Supervised learning algorithms train models based on labeled data, i.e., input data
instances whose output targets are already known. The objective of the supervised
learning is to learn a function that map the input data instances to the output targets.
In the cases of anomaly detection, output targets are often the binary class labels:
’normal’ versus ’abnormal’. The learnt function is used to produce prediction of the
output targets for previously unknown data instances. Typical supervised learning

1

tasks include classification problems where the output targets are in discrete format
and regression problems where the output targets are real number.

• Unsupervised learning algorithms train models based on unlabeled data, i.e., input
data instances whose output targets are unknown. Unlike supervised learning al-
gorithms which seek to map input data instances to output targets, unsupervised
learning algorithms often aim at exploring and discovering the structure of the da-
ta sets. One of the typical unsupervised learning tasks is clustering, which tries to
group the data instances so that data instances belonging to the same group are more
similar to each other than data instances in other groups.

• Semi-supervised learning algorithms train models based on both labeled data and
unlabeled data to generate appropriate discriminative functions that map input data
instances to output targets. They are often used in the cases where output targets
are known for only a small proportion of the input data instances.

The most straightforward approach to deal with anomaly detection is to formulate it
as a supervised rare class classification problem which aims at inferring a discriminant
function from labeled training data with highly unbalanced class distributions. However,
several factors make this approach ineffective in practice.

• Obtaining labeled data for training in the context of anomaly detection is often
difficult. Considering fraud detection as an example, obtaining clearly fraudulent
and non-fraudulent samples is very costly, if not impossible.

• Crimes or malicious actions from human beings are often the major causes of anoma-
lous instances in many data sets (e.g., fraud detection, network intrusion detection).
There is a tendency for those anomalous instances to mimic the normal cases. There-
fore the distinction between abnormal cases and normal cases is often blurred and
imprecise. This fuzziness poses difficulties in defining accurate discriminant functions
with satisfying predictive power.

• The presence of noises in the normal data instances, which often act similarly as
anomalies, also introduces difficulty in deducing clear decision rules within the data
sets.

• In many applications domains, credibility of labeled data is also an issue. Again, we
use fraud detection as an example. Even if one ignores human investigative costs, it
is quite common to find fraud investigators to differ in their claim assessments. This
raises issues of data (label) trustworthiness.

2

• For many applications, both abnormal and normal patterns can evolve. Since obtain-
ing labels takes time, this nature often leads to poor performance of using currently
learnt discriminant functions to predict future anomalies.

The difficulties in obtaining labels, the credibility of human judgement, and the nature
of evolving patterns means, in practice, unsupervised learning can be more feasible and
useful than supervised and semi-supervised learning. Therefore, developing an efficient
unsupervised anomaly detection technique can be of great use in practice. Several anomaly
detection methods have already been proposed in the literatures. See, e.g., [42, 9, 26].
However, there are three additional challenging aspects, which are not well addressed in
the previous work, that motivate us in developing a new unsupervised anomaly detection
method:

• The nature of anomalies in different application domains are often different. Some-
times, anomalies correspond to outliers which are the isolated data instances far away
from the normal data instances. We will refer to outliers as ”point anomalies” in lat-
er sections. Sometimes, anomalies form small clusters. Sometimes, both scenarios
exist. In certain cases, anomalies are actually embedded in certain contexts. These
contextual anomalies can only be detected after we define the proper context. For
example, a male with a height of 180 cm will not be regarded as an anomaly unless
we provide the context that he is only 8 years old. Defining such context can be
extremely hard. Although many effective anomaly detection techniques have been
proposed, most of them have explicit assumptions of the nature of anomalies. In the
cases where no domain knowledge exists, choosing the right detecting algorithms and
tuning the parameter for the detection algorithms can be challenging .

• The types of input data can also have significant impact on the effectiveness of the
anomaly detection. Many of existing methods are only effective with numerical data
and lack the support for mixing data types or categorical data.

• In certain scenarios, only the pairwise distances or similarities between data instances
are given as input [12]. In such cases, algorithms that need to access the original
data instances, e.g. most of statistical methods, can not be used.

These additional challenges motivate us to develop an approach that can deal with differ-
ent types of anomalies and different types of data simultaneously. In addition, we want to
develop a method that use only the pairwise distances and similarities as input. Further-
more, we want to develop an approach whose learning outputs can be useful in deducing

3

potential context. Thus, human judgement can be included to see whether the detected
abnormal patterns is meaningful or not. In the unsupervised setting, this feature is crucial
because validation of results in unsupervised setting is challenging.

The presence of noises in normal data instances and the tendency of the malicious data
instances to mimic normal patterns pose extra difficulties in defining clear discriminant
functions between normal data instances and anomalies. Therefore, providing a ranking
which indicates the relative likelihood of being abnormal is much more sensible and useful
than providing binary classifications. Furthermore, for many anomaly detection problems,
the cost associated with misclassifying an anomaly as a normal case is much greater than
the cost associated with misclassifying a normal case as an anomaly. For example, the cost
of providing loans to defaulters greatly exceeds that of denying loads to a non-defaulters.
Similarly, the cost of predicting cancerous patients as being healthy greatly exceeds that of
providing false alarms. Thus the cost-benefit analysis can be crucial in many application
domains. With an anomaly ranking, an analyst can either analyze top few highly ranked
instances or use a cut-off threshold to generate binary classifications. The analysts can
conduct cost-benefit analysis by trying different cut-off thresholds to select the best output
for their problems. This is the major advantage of providing anomaly ranking. Therefore,
in this thesis, we focus on developing a ranking method which assigns an anomaly score to
each data instance in a given data set.

1.2 Existing Anomaly Ranking Methods

In this section, we briefly survey related supervised, semi-supervised and unsupervised
anomaly ranking methods and discuss their merits and disadvantages. Generally, there
are three ways to classify the anomaly detection methods. One is to classify them based
on whether they can cope with multiple patterns for normal cases or not. The difference
between multi-class anomaly detection and one-class anomaly detection is illustrated in
Figure 2.1. A second way to classify them is based on whether the labels have been used
or not. Supervised and semi-supervised algorithms require labeled training data while
unsupervised algorithms do not. However, the supervised and semi-supervised algorithms
can produce the prediction for the new data instances which are not used in the training
process while most of unsupervised algorithms typically do not. Finally, based on the basic
ideas behind the algorithms, standard anomaly detection methods can also be classified
as classification based approaches, clustering based approaches, nearest neighbor based
approaches and statistical approaches see, e.g., [25] for a detailed discussion. Here, we
only introduce several methods that can generate ranking scores. The discussion here are

4

(a) multi-class anomaly detection

−10 0 10 20 30

−10

0

10

20

30

 Normal ClassSmall Cluster of Anomalies

Point Anomaly

(b) one-class anomaly detection

Figure 1.1: Illustration of multi-class anomaly detection and one-class anomaly detection

mainly drawn from [25] and [12].

Classification based approaches are supervised or semi-supervised learning. The super-
vised or semi-supervised classification methods require accurate labels and a few of them
can be modified to generate ranking instead of binary predictions efficiently. RankSVM
[27] can be applied to a bi-class rare class prediction problem. Unfortunately solving a
kernel RankSVM problem is computationally prohibitive for large data mining problems.
Using Support Vector Machines (SVMs) ranking loss function, a rare class based nonlinear
kernel classification method, RankRC, is proposed recently in [50, 49]. RankRC has gained
significant computational advantage over RankSVM while not sacrificing performance and
effectiveness. One-class classification based approaches, such as One-Class Support Vec-
tor Machine (OC-SVM)[42], can be generalized to the unsupervised setting. For anomaly
detection, the one-class classification algorithms assume that all training instances are nor-
mal cases and it will learn a discriminative boundary around the training data instances.
Any test instances that do not fall within the boundary is regarded as anomalies. In the
case of OC-SVM, the algorithm fits a hypersphere with smallest radius in a feature space
that encloses most of the data instances. The feature space is usually a high dimensional
derived feature space implicitly defined by a kernel function. A corresponding anomaly
ranking score can be generated based on the distance of each data instance to the center
of the hypersphere.

There are many clustering based anomaly detection algorithms. Most of the clustering
based anomaly detection techniques output binary predictions. But there are also several

5

clustering based ranking methods. The Clustering-Based Local Outlier Factor (CBLOF)
[26] is one of the examples. The score from CBLOF is computed based on the size of the
cluster to which the data instance belongs and the distance between the data instances
to the cluster centroid. The implicit assumption is that normal cases belong to large and
dense clusters while anomalies belong to small clusters. The main merit of clustering
based ranking methods is that they do not require labels and they can handle both one-
class anomaly detection and multi-class anomaly detection. The major disadvantage is
that they often have implicit assumptions of the nature of anomalies within the data sets.

The nearest neighbor based approaches are also applied frequently in the context of
anomaly detection. There are two categories: distance based methods and density based
methods. The most representative distance based nearest neighbor ranking approach [12]
can be summarized as follows: the anomaly score of a data instance is defined as its
distance to its kth nearest neighbor. Many variations of this idea exist [21, 29]. There are
also variations to deal with categorical features. The most representative density based
nearest neighbor ranking approach is the Local Outlier Factor (LOF) [9]. The LOF score of
a specific data instance is the ratio between the average local density of k nearest neighbors
of the data instance and the local density of the data instance itself. Many variations of
LOF such as Connectivity-based Outlier Factor (COF) [47] exist. One of the merits of the
nearest neighbor based methods is that they only need a distance or similarity metric so
they can handle data sets with both numerical and categorical attributes well and they
do not need to access the original data instances. Another merit is that, with proper
parameter k, they can deal with both multi-class anomaly detection cases and one-class
anomaly detection cases. In addition, they do not have explicit assumption of the nature
of anomalies. Anomalies can be data instances in small clusters or outliers. The major
disadvantage is that tuning the parameter k is often quite challenging.

The last category of methods consists of the statistical algorithms. The basic idea is
to estimate a probability density function from the sample data and regard the cases oc-
cur with a high probability as normal cases and the cases occur with low probability as
anomalies. Here, the sample data is assumed to come from a specific probability model
such as multi-variate Gaussian distribution or mixture of Gaussian distribution [33]. The
parameters of the specific probability model are then estimated. We can also estimate
non-parametric models using methods such as Parzen Window Estimation [55] and use
the estimated probability density function to generate anomaly ranking. The major dis-
advantage of the parametric statistical approach is that if the assumption regarding the
underlying statistical model is wrong, the performance of the ranking can be extremely
poor. Another disadvantage of the statistical approaches is that it will be hard to apply
them to data sets with categorical attributes.

6

1.3 Contribution

In this thesis, we focus on unsupervised learning in the context of anomaly detection. We
develop a generic anomaly ranking approach that can be adapted to dealing with different
types of anomalies and also different types of input data. Specifically we consider both the
case in which anomaly is assessed with respect to a majority class, as well as the cases where
anomaly is assessed with more than one major classes. To quantify patterns, we assume
that a similarity measure is given from which patterns can be assessed. Each similarity
measure yields a view on data patterns. We then use spectral analysis to identify the first
couple of bi-modal non-principal eigenvectors of the corresponding Laplacian matrices.
The anomaly ranking is generated based on the non-principal eigenvectors. The main
contributions of the thesis are as follows:

• Motivated by the connection between the unsupervised support vector machine opti-
mization and normalized spectral clustering optimization [24], we propose the unsu-
pervised Spectral Ranking for Anomaly Detection (SRA) algorithm which generates
ranking score directly from the non-principal bi-modal eigenvectors of a normalized
Laplacian matrix. Alternative justification will also be briefly discussed.

• Following a detailed analysis on a real auto fraud detection data set, we demonstrate
the potential usage of SRA on auto insurance fraud detection. Through identify-
ing significant attributes which separate identified clusters, we also show that our
proposed method leads to potentially useful rules for identifying fraud.

• We demonstrate the effectiveness of the unsupervised SRA for anomaly detection
using both synthetic data sets and a few real data sets from UCI machine learning
repository [3].

Presentation of the following thesis is organized as follows. In Chapter 2, we review the
formulation of the spectral optimization and SVM optimization and discuss the similarity
measures that can be used to cope with different types of input data. In Chapter 3,
we introduce our SRA algorithm and justify our algorithm by establishing a connection
between an unsupervised SVM optimization formulation and the spectral optimization.
The experimental results for both synthetic data sets and real data sets are shown in
Chapter 4. Concluding remarks and discussion of future work are given in Chapter 5.

7

Chapter 2

Spectral Clustering and Support
Vector Machine

In this chapter, we briefly review the techniques of spectral clustering and support vector
machine (SVM). We will also introduce several similarity matrices and kernel matrices that
can be used by spectral clustering algorithms and SVM algorithms.

2.1 Spectral Clustering

Spectral clustering is a class of recent popular clustering algorithms based on eigenvalue
computation. Such methods often outperform traditional k-means and hierarchical clus-
tering algorithms [25]. Since the main objective of clustering is to separate data in a
meaningful and reasonable way, the simplest and most straightforward way to conduct
clustering is to partition the data set into different groups so that the overall similarity
between different groups is minimized. If we represent a given data set as a graph, then
the problem of finding appropriate clustering can be modeled as graph partition problems.
Spectral clustering techniques, which have many variations, can be viewed as approximate
solutions to graph partition problems which are often NP-hard problems. In this section,
we will introduce the spectral clustering techniques and the corresponding graph partition
intuition behind it. The discussions here are mainly drawn from [53] [45] and [36].

8

2.1.1 Graph Construction

The first step of spectral clustering is to construct a meaningful graph to represent the
structure of the data set. Assume that we have a graph G = (V,E), with vertices V =
{v1, v2, ..., vn} where each vertex corresponds to a data instance in the given data set. The
graph is usually represented by an adjacency matrix W . Typically, the graph is assumed
to be undirected and the adjacency matrix W represents all pairwise edge weights. There
are basically three ways to construct the adjacency matrix W and all of which rely on a
meaningful similarity matrix S where Sij is the similarity between data instances i and
data instance j:

1. The ε-neighborhood graph: Let ε be a given threshhold. Here we connect two
vertices vi and vj if the Sij ≥ ε. That is we assign Wij = 1 if Sij ≥ ε. The constructed
graph is an undirected unweighted graph. We can also assign weight to the edges
where we assign Wij = Sij if Sij ≥ ε.

2. The k-nearest neighbors graph: Here we connect each vertex vi to its k-nearest
neighbors where the nearest neighbors are determined based on the similarity matrix.
If we construct the graph this way, the graph will be a directed graph since the
adjacency matrix W will not be symmetric. There are two ways to make the graph
undirected. One is to connect vertex vi and vj if vertex vj is one of the k-nearest
neighbors of vi or if vertex vi is one of the k-nearest neighbors of vj. The other is to
connect vertex vi and vj only when vj is one of the k-nearest neighbors of vi and vi
is one of the k-nearest neighbors of vj. Hence Wij = Sij, if vj and vi is connected.
Otherwise, Wij = 0. In the unweighted version, Wij = 1, if vj and vi is connected.

3. Fully connected graph: Here we directly use the similarity matrix S as the ad-
jacency matrix W , i.e., W = S. The constructed graph is an undirected weighted
graph.

2.1.2 Graph Partition

After the graph construction process, we have an adjacency matrix W to describe the
graph G = (V,E) which captures the structure of the given data set. The next step to
get meaningful clustering of the data instance is to conduct a graph partition. The goal of
the graph partition is to separate the graphs into subgraphs so that an objective function,
which can be viewed as a cost function, is minimized.

9

The simplest objective function is the minimum k-cut objective. The goal here is to
minimize the summation of edge weights connecting different partitions. Let A1, . . . , Ak
be k disjoint subsets of vertex V and

⋃k
i=1Ai = V . For a minimum k-cut, we want to find

A1, . . . , Ak to minimize:

Cut(A1, · · · , Ak) :=
1

2

k∑
i=1

W (Ai, Ai)

where Ai is the complement of Ai and W (Ai, Ai) =
∑

i∈Ai,j∈AiWij.

In practice, the solution to the minimum cut problem will often give us unsatisfying
results because often one of the partitions in the solution consists of only a few data
instances. Consequently, two variants, ratiocut and normalized cut, are proposed:

RatioCut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Ai)

|Ai|

Ncut(A1, . . . , Ak) :=
1

2

k∑
i=1

W (Ai, Ai)

vol(Ai)

where |Ai| is the cardinality of Ai, vol(Ai) =
∑

i∈Ai di, and di =
∑n

j=1Wij.

The intuition behind RatioCut and Ncut is that by adding balancing factors |Ai| and
vol(Ai) respectively, we can, to a certain extent, alleviate the problem of separating a
single outlier from the rest of the data instances and therefore produce more reasonable
and meaningful partitions.

2.1.3 Spectral Approximation

For the ratio cut and normalized cut variations, computing the exact solution to the graph
partition problems is extremely costly because the corresponding constrained optimization
problems are NP-hard integer programming problems. Therefore certain relaxations are
needed in order to get approximate solutions efficiently. In this subsection, we use the
normalized cut and ratio cut as examples to illustrate how to relax the integer programming
problems to continuous optimization problems such that the approximate solution can be
efficiently computed.

Firstly, we introduce the Laplacian matrices which are the key to the approximation
process. Again, suppose we can use an undirected graph G = (V,E) with vertex V =

10

{v1, v2, ..., vn} to describe the relationship between each data instance. The graph can be
expressed by an (weighted) adjacency matrix W where Wij is the edge weight between the
vertex vi and vj. Furthermore, we define the degree of a vertex as the summation of the

edge weights connecting vertex vi to the other vertices di =
n∑
j=1

Wij. The degree matrix

D = diag(d1, d2, ..., dn) is then a diagonal matrix with the degree of each vertex on its
diagonal. With the degree matrix and the (weighted) adjacency matrix W , we can define
Laplacian matrices in three different ways:

• unnormalized Laplacian matrix: [53] L = D −W

• normalized Laplacian matrix [45]: Lrw = I −D−1W

• symmetric normalized Laplacian matrix [36]: Lsym = I −D−1/2WD−1/2

The following properties hold for L, Lrw and, Lsym. These properties will be used to
explain the ideas behind the spectral clustering methods and also our Spectral Ranking
for Anomaly Detection method. Detailed proofs can be found in the tutorial [53].

Properties of Laplacian Matrices

Property 1 Suppose L ∈ Rn×n, then for every vector f ∈ Rn,

fTLf = 1
2

n∑
i,j=1

Wij(fi − fj)2

Property 2 Suppose Lsym ∈ Rn×n, then for every vector f ∈ Rn,

fTLsymf = 1
2

n∑
i,j=1

Wij(
fi√
di
− fj√

dj
)2

Property 3 L and Lsym are symmetric positive semi-definite matrices. Lrm is a positive
semi-definite matrix.

Property 4 L,Lrw and Lsym have n non-negative, real-valued eigenvalues 0 = λ0 ≤ λ1 ≤
... ≤ λn−1. We refer to the eigenvector associated with eigenvalue λ0 = 0
as principal eigenvector and the eigenvector associated with smallest nonzero
eigenvalue as 1st non-principal eigenvector of the Laplacian matrices.

Property 5 The smallest eigenvalue of L is λmin = 0 corresponding to the vector e =
[1, . . . , 1]T as eigenvector.

11

Property 6 Zero is an eigenvalue of Lrw corresponding to the vector e = [1, . . . , 1]T as the
eigenvector. Zero is an eigenvalue of Lsym with D1/2e as the eigenvector.

Property 7 The eigenvalues of Lrw and Lsym are the same. If u is an eigenvector of Lrw,
then g = D1/2u is an eigenvector of Lsym

Property 8 Let G = (V,E) be an undirected graph with the adjacency matrix W . Then
the multiplicity k of the eigenvalue 0 for L, Lrm and Lsym equals the number
of connected components in the graph. When there is only one connected
component in the graph, L, Lrm and Lsym are irreducible.

RatioCut and Unnormalized Spectral Clustering

Here we firstly consider the 2-way ratio cut problem. Suppose we have f = (f1, . . . , fn)
where

fi =


√
|A|/|A|, if vi ∈ A

−
√
|A|/A|, if vi ∈ A

(2.1)

From Property 1, we know

fTLf = 1
2

n∑
i,j=1

Wij(fi − fj)2

Let n1 = |A|, n2 = |A| and n1 + n2 = |V | = n, following (2.1), we would have:

fTLf =
1

2

n∑
i,j=1

Wij(fi − fj)2

=
1

2

∑
i∈A,j∈A

Wij

(√
n2

n1

+

√
n1

n2

)2

= (n1 + n2)
1

2

∑
i∈A,j∈A

Wij

(√
n2

n1(n1 + n2)
+

√
n1

n2(n1 + n2)

)2

= (n1 + n2)
1

2

∑
i∈A,j∈A

Wij

(
1

n1

+
1

n2

)

= |V | · 1

2

(
W (A,A)

|A|
+
W (A,A)

|A|

)
= |V | ·RatioCut(A,A)

12

Note that with definition of (2.1) we have ‖f‖22 = n1 + n2 = |V | and
n∑
i=1

fi = 0. Therefore,

the corresponding constrained optimization problem of RatioCut is:

min
A⊂V

fTLf

subject to f ⊥ e , ‖f‖2 =
√
n

fi is defined by equation (2.1)

(2.2)

This discrete minimization problem (2.2) is an NP-hard problem. However, if we relax the
constraint that requires the solution to be discrete, we have the following relaxation,

min
f
fTLf subject to f ⊥ e, ‖f‖2 =

√
n (2.3)

Since the eigenvector associated with the principal eigenvalue λ = 0 is e = [1, . . . , 1]T , by
the Rayleigh-Ritz theorem [53], the solution to (2.3) is the eigenvector of L that corresponds
to the smallest nonzero eigenvalue of Laplacian matrix.

Similarly, for k-way RatioCut problem, suppose we have an n-by-k matrix H where its
element is defined as

hij =


1√
|Aj|

, if vi ∈ Aj

0, if vi /∈ Aj
(2.4)

ThenRatioCut(A1, · · · , Ak) = 1
2

k∑
i=1

W (Ai,Ai)
|Ai| = Trace(HTLH). Note that with definition of

(2.4) we have HTH = I. Therefore, the corresponding minimization problem is equivalent
to

min
A1,...,Ak

Trace(HTLH)

subject to HTH = I

H is defined by equation (2.4)

Again this problem is an NP-hard problem because of the discrete value requirement. The
relaxed minimization problem is then

min
H

Trace(HTLH) subject to HTH = I (2.5)

The solution to (2.5) is a matrix H that contains the first k eigenvectors of L, corre-
sponding to the smallest k eigenvalue, as its columns. In unnormalized spectral clustering

13

algorithms [53], the solution matrix H is used. Eventually, using standard k-means or
hierarchical clustering algorithm, the rows of the H matrix are converted from the real
valued approximate solution to the discrete partition indicator. Note that a bound on the
error between relaxed problems, (2.5) and (2.3), and the exact RatioCut problems has yet
to be found. However, in practice, solving the relaxed problems can often give us satisfying
results.

Ncut and Normalized Spectral Clustering

For the 2-way normalized cut problem, we can define a vector u, where

ui =


√
vol(A)/vol(A), if vi ∈ A

−
√
vol(A)/vol(A), if vi ∈ A

(2.6)

Note that with definition (2.6), we have uTDu = vol(V) and Du ⊥ e. It can be shown
that the minimization of Ncut(A,A) is equivalent to:

min
A⊂V

uTLu

subject to Du ⊥ e, uTDu = vol(V)

ui is defined by equation (2.6)

Again, the original discrete optimization problem is NP-hard, we can relax the constraint
that requires the solution u to be discrete. Let g = D

1
2u and relax the discreteness

constraint, the corresponding relaxed problem is:

min
g
gTLsymg subject to g ⊥ D1/2e, ‖g‖22 = vol(V) (2.7)

The solution to equation (2.7) is the 1st non-principal eigenvector of Lsym. For arbitrary
k way normalized cut, let H be a matrix where its elements is defined as

Hij =


1

vol(Aj)
, if vi ∈ Aj

0, if vi /∈ Aj
(2.8)

The minimization of Ncut(A1, ..., Ak) is equivalent to

14

min
A1,...,Ak

Trace(HTLH)

subject to HTDH = I

H is defined by equation (2.8)

Relaxing the discreteness constraint and substituting T = D
1
2H, we get the relaxed ap-

proximation problem

min
T
Trace(T TLsymT) subject to T TT = I (2.9)

Similarly, the matrix T with the first k eigenvectors of Lsym corresponding to the smallest
k eigenvalues as its columns is the solution to (2.9). The solution matrix T is used in
normalized spectral clustering algorithms [36] where the rows of T matrix are converted
from the real valued approximate solution to the discrete partition indicator, using a s-
tandard k-means or hierarchical clustering method. From Property 8, we know that, if g
is an eigenvector of Lsym, then u = D−1/2g is an eigenvector of Lrw. Consequently, there
is another variant of normalized spectral clustering algorithm [45] that is based on the
eigenvectors of Lrw. Again there is no theoretical proof of how close the solutions of the
relaxed problems (2.9) and (2.7) are to the optimal solutions of the original Ncut problems.

2.2 Support Vector Machine

One of the major justifications of our proposed SRA algorithms is based on connecting
unsupervised support vector machine and normalized spectral clustering. In this section,
we review the supervised support vector machines (SVMs), unsupervised SVMs, the kernel
trick and the associated primal and dual optimization formulation. The discussions here
are mainly draw from [17], [43], [52] and [25].

2.2.1 Supervised SVM

The supervised linear SVM tries to learn a linear discriminant hyperplane that separates
the two classes in a given training data set. Suppose, we have n training data instances in
the given data set which is represented as D = {(x1, y1), . . . , (xn, yn)}, where xi ∈ χ ⊆ <d
is the input data instance and yi ∈ {−1,+1} is the corresponding output target. The linear
supervised SVM seeks a linear discriminant function represented as f(x) = wTx+ b, such

15

that we can obtain the class label as ŷi = sign(f(xi)) and the geometric margin, which is
defined as the minimum distance between data instances and the separating hyperplane
wTx+ b = 0, is maximized. The resulting hyperplane separates the feature space into two
half spaces corresponding to the two classes.

Linearly Separable Data Sets

If the data set is linearly separable, there are infinite separating hyperplanes that can
separate the two classes. The SVM learns the separating hyperplane that maximizes the
geometric margin between the two classes since it minimizes the bound of the generalization
error, irrespective of the dimensionality [52].

Given the separating hyperplane, wTx + b = 0, for a given point xi with associated
label yi, we can project it orthogonally to the hyperplane. The projection is represented
by x0. Let γi be the distance between xi and hyperplane. Then we have

xi =


x0 + γi

w

‖w‖2
, if wTxi + b ≥ 0

x0 − γi
w

‖w‖2
, if wTxi + b < 0

Since we know that x0 is on the hyperplane which means wTx0 + b = 0

wTxi + b =

{
γi‖w‖2, if wTxi + b ≥ 0

−γi‖w‖2, if wTxi + b < 0

Thus γi can be recovered by multiply yi with (wT xi+b)
‖w‖2 :

γi =
yi(w

Txi + b)

‖w‖2
The functional margin of the data instance i is defined as:

γ̂i = yi(w
Txi + b)

Note that if we rescale hyperplane associated with (w, b) to be (λw, λb), the functional
margin is rescaled but the hyperplane remain unchanged. Therefore, we do not direct-
ly optimize over the functional margin. Fixing the minimum function margin at 1, we
minimize the geometric margin. The geometric margin is defined as:

γ̃ = min
i,...,n

γi = min
i,...,n

yi(w
Txi + b)

‖w‖2
=

1

‖w‖2

16

Thus, we can see that maximizing the geometric margin is equivalent to maximizing the
minimum distance between data instances and the hyperplane. We can also notice that
maximizing the geometric margin is equivalent to minimizing the norm of weight vector
‖w‖2. Consequently, the associated primal optimization problem is:

min
w,b

1

2
‖w‖22

subject to yi(w
Txi + b) ≥ 1, i = 1, . . . , n

This is a strictly convex quadratic programming problem.

Linearly Inseparable Data Sets

In practice, the data sets are often linearly inseparable. To cope with this problem, penal-
ized slack variables, εi, are introduced to allow the margin constraints to be violated. The
associated optimization problem is then:

min
w,b

1

2
‖w‖22 + C

n∑
i=1

εi

subject to yi(w
Txi + b) ≥ 1− εi, i = 1, . . . , n

εi ≥ 0, i = 1, . . . , n

(2.10)

Here, C is a penalty parameter which acts as a balancing factor between the margin
maximization and margin violations. Note that we can also assign different penalties to
different data instances. The associated optimization problem is:

min
w,b

1

2
‖w‖22 +

n∑
i=1

Ciεi

subject to yi(w
Txi + b) ≥ 1− εi, i = 1, . . . , n

εi ≥ 0, i = 1, . . . , n

(2.11)

The above formulations are often referred to as C-SVM in the academic literature.

For C-SVM, little guidance is available for choosing this penalty parameter C. There-
fore, cross-validation, which sometimes can be costly and inefficient, are needed in order to
tune this parameter. The ν-SVM was proposed by Schölkopf et al. [44] as a modification

17

of problem (2.10) which replaces C by a parameter ν. The parameter 0 < ν ≤ 1 has been
shown to be linked to the generalization error [44]. The primal problem for the ν-SVM is:

min
w,b,ε,p

1

2
‖w‖22 +

1

n

n∑
i=1

εi − νp

subject to yi(w
Txi + b) ≥ p− εi, i = 1, . . . , n

εi ≥ 0, i = 1, . . . , n

p ≥ 0

(2.12)

Assume that εi = 0, i = 1, . . . , n, and the optimal separating hyperplane computed from
(2.12) is wT∗ x+ b∗ = 0. Then the minimum functional margin is p∗ and minimum distance
between the data instances and the hyperplane wT∗ x+b∗ = 0 is p∗

‖w∗‖2 . Note that, in ν-SVM

formulation (2.12), p is also an unknown variable that needs to be optimized.

Dual Formulation

Problem (2.10) and (2.12) can be transformed into their corresponding Lagrange dual
problems. The optimization problems (2.10) and (2.12) are convex quadratic programming
problems. Thus, the optimal solutions can also be computed from the dual problems. The
dual problem leads to the usage of the kernel trick and provides more insights into the
SVM formulation.

The Lagrangian of the problem (2.10) is:

L(w, b, ε, α, η) =
1

2
wTw + C

n∑
i=1

εi −
n∑
i=1

αi(yi(w
Txi + b)− 1 + εi)−

n∑
i=1

ηiεi (2.13)

with αi ≥ 0 and ηi ≥ 0. The first order optimality conditions implies:

∂L

∂w
=w −

n∑
i=1

yiαixi = 0

∂L

∂εi
=C − αi − ηi = 0

∂L

∂b
=

n∑
i=1

yiαi = 0

(2.14)

18

Substituting the relations in (2.14) back to (2.13), we get the dual objective function of
the dual problem:

L(w, b, ε, α, η) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjαiαjx
T
i xj

The associated dual optimization formulation of (2.10) is then:

min
α

1

2

n∑
i=1

n∑
j=1

yiyjαiαjx
T
i xj −

n∑
i=1

αi

subject to
n∑
i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, . . . , n

(2.15)

The first constraint
∑n

i=1 αiyi = 0 comes directly from the relations (2.14). The relation
∂L
∂εi

= C − αi − ηi = 0 and dual feasibility η ≥ 0, α ≥ 0 imply 0 ≤ αi ≤ C, which is the
second constraint.

From the Karush-Kuhn-Tucker (KKT) conditions, the optimal solution computed from
(2.15) (w∗, b∗, ε

∗, α∗) must satisfy:

α∗i (yi(w∗xi + b∗)− 1 + ε∗i) = 0, i = 1, . . . , n

ε∗i (α
∗
i − C) = 0, i = 1, . . . , n

(2.16)

The equation ε∗i (α
∗
i − C) = 0 from (2.16) implies that when the slack variable ε∗i 6= 0,

we mush have α∗i = C. These points are the margin violations. In addition, 0 < α∗i < C
implies ε∗i = 0 and yi(w∗xi + b∗) = 1. These points are the points that lie on the margin
hyperplanes w∗x+b∗ = ±1. The points with α∗i = 0 are the points lying beyond the margin
hyperplanes in the corresponding half space, i.e, yi(w

T
∗ xi + b∗) > 1. Points with non-zero

αi are referred to as support vectors.

With the optimal α∗ computed directly from (2.15), the optimal weight vector can then
be computed as: w∗ =

∑n
i=1 yiα

∗
ixi. The value of b∗ can be determined from any support

vector with 0 < α∗i < C by solving yi(w
T
∗ xi + b∗) = 1.

19

Similarly, the dual problem of ν-SVM is [44]:

min
α

1

2

n∑
i=1

n∑
j=1

yiyjαiαjx
T
i xj

subject to 0 ≤ αi ≤
1

n
, i = 1, . . . , n

n∑
i=1

αiyi = 0

n∑
i=1

αi ≥ ν

(2.17)

Let the optimal solution from problem (2.17) be α∗. We denote the set of support vectors
as SV = {xi|α∗i 6= 0} and set of margin violations as S = {xi|εi 6= 0}. It can be shown
that the parameter ν is an upper bound on the fraction of margin violations and a lower
bound of the fraction of support vectors. Detailed proof can be found in [44]. Therefore,
compared the penalty parameter C in C-SVM, the penalty parameter ν in ν-SVM is more
meaningful, which facilitates tuning of the tuning of parameter.

2.2.2 Kernel Trick

In the previous discussion, we focus on the linear SVMs where we assume that the decision
boundary is linear in the original feature space. In practise, we often encounter cases where
a decision boundary needs to be non-linear in the original space as illustrated in Figure 2.1
(a). However, by mapping to a derived feature space with a higher dimensionality, a linear
separating hyperplane that successfully separates the two classes can possibly be defined.
Consider the example in Figure 2.1 (a), with its two concentric rings. We can add a third
dimension z = x2 + y2 to the original data set. The resulting data set in <3 is linearly
separable by a hyperplane. Thus, provided that we work in this <3 space, we can train a
linear SVM classifier that successfully finds a good linear decision boundary. Unfortunately,
in most of real life cases, explicitly finding a derived high dimensional feature space is not
as easy as this example. Thus, kernels are employed. Kernels allow us to implicitly work
in a high dimensional derived feature space. Formally, we define a feature map as below:

Definition 1. A feature map is a function θ : χ ⊆ <d → H ⊆ <d′ that maps the input
space χ to a derived feature space H:

x = (x1, . . . , xd) 7−→ θ(x) = (θ1(x), . . . , θd′(x))

20

−10 −5 0 5 10
−10

−5

0

5

10

x

y

(a) Non-linear in <2(x, y)

−10

0

10

−10
0

10
0

50

100

xy

z

(b) Mapping to <3(x, y, x2 + y2)

Figure 2.1: Illustration of Kernel Trick

The feature map enables us to learn a linear SVM in a new space where the separating
hyperplane is wT θ(x) + b = 0. The decision function f(x) = wT θ(x) + b, when mapping
back to the original space, is usually non-linear.

Definition 2. A kernel is a function K : χ× χ→ < that for all x, x̂ ∈ χ :

K(x, x̂) = θ(x)T θ(x̂)

A kernel function implicitly compute the inner product in a derived space. Thus for any
algorithm that only relies on the inner product, e.g SVM, the kernel can be applied to
provide the inner product in a derived space. This is known as the ’kernel trick’.

Definition 3. Given a kernel function K : χ×χ→ < and input data set X = {x1, . . . , xn}
where xi ∈ χ the matrix

K =


K(x1, x1) K(x1, x2) . . . K(x1, xn)

K(x2, x1)
.

...
...

...
. . .

...
K(xn, x1) K(xn, x2) . . . K(xn, xn)


is called the kernel matrix for the input data X.

We can use the following condition to test whether a specific function K(x, x̂) is a valid
kernel function.

21

Theorem 1 (Mercer’s Condition). A symmetric function K : χ×χ→ < can be expressed
as an inner product

K(x, x̂) = θ(x)T θ(x̂)

for some feature map θ if and only if∫
K(x, x̂)g(x)g(x̂)dxdx̂ ≥ 0 for any function g(x) ∈ L2(χ).

where L2(χ) denotes the space of square-integrable function or, equivalently, the corre-
sponding kernel matrix

K =


K(x1, x1) K(x1, x2) . . . K(x1, xn)

K(x2, x1)
.

...
...

...
. . .

...
K(xn, x1) K(xn, x2) . . . K(xn, xn)


is positive semi-definite for any collection of {x1, x2, . . . , xn} where xi ∈ χ.

Consider dual problems for linear C-SVM (2.15) and ν-SVM (2.17) in the derived
feature space H. Given a kernel function K(x, x̂) or the kernel matrix K for the train data
set, we can utilize the ’kernel trick’. The resulting problem for C-SVM is:

min
α

1

2

n∑
i=1

n∑
j=1

yiyjαiαjK(xi, xj)−
n∑
i=1

αi

subject to
n∑
i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, . . . , n

(2.18)

The resulting problem for ν-SVM is then:

min
α

1

2

n∑
i=1

n∑
j=1

yiyjαiαjK(xi, xj)

subject to 0 ≤ αi ≤
1

n
, i = 1, . . . , n

n∑
i=1

αiyi = 0

n∑
i=1

αi ≥ ν

(2.19)

22

By solving these problems, we are learning a linear SVM in a new space implicitly
defined by the kernel function K(x, x̂), which usually corresponds to a non-linear decision
boundary in the original space. Although usually SVMs work with kernels that satisfy
Mercer’s condition, indefinite kernels, which are the kernels that violate Mercer’s condition,
are also widely used [32, 23]. In subsequent sections, when we say a kernel is a valid kernel
we mean that the kernel satisfies Mercer’s condition.

2.2.3 Unsupervised SVM

In the previous discussion, we have reviewed the standard supervised SVMs which seek to
learn a discriminant hyperplane that separates the two classes in a given training data set
while maximizing the geometric margin. The idea can be generalized to the unsupervised
setting where the objective becomes determining the optimal labels based on a margin
maximization C-SVM. The basic idea is to optimally choose the labels so that the corre-
sponding margin maximization optimal hypothesis yields the minimum C-SVM objective
[14]. Thus we solve the following problem:

min
yi∈{+1,−1}


maxα eTα− 1

2
αTY KY α

subject to yTα = 0
0 ≤ αi ≤ C, i = 1, . . . , n

 (2.20)

where K is the kernel matrix for the input data set and Y = diag(y1, . . . , yn). Now let us
introduce a new variable z as:

zi = αiyi, i = 1, ..., n

For any αi 6= 0 ,we have yi = sign(zi), i = 1, ..., n. Therefore, we have

αTY KY α = zTKz, eTα = eT |z| and yTα = eT z.

where |z| = (|z1|, . . . , |zn|). Thus problem (2.20) can be further be rewritten as:

min
yi∈{+1,−1}


max
z

eT |z| − 1

2
zTKz

subject to eT z = 0

|zi| ≤ C, i = 1, . . . , n

 (2.21)

Note that finding the global optimal solutions of the problem (2.20) and (2.21) is NP-hard.
In order to solve them, relaxation and approximation are needed.

23

2.3 Similarity Matrices and Kernel Matrices

In this subsection, we review several similarity and kernel matrices that can be used by
spectral clustering algorithms and SVM algorithms. We will also briefly discuss how to deal
with numerical data, categorical data and mixing data types. Note that kernel matrices
can, sometimes, be viewed as special similarity matrices. For example, for a given Gaussian
kernel K, the value of entry Kij is inversely related to the distance between the data
instance i and j.

Numerical data is quite common in real life. Table 2.1 summarizes several commonly
used kernel functions for numerical data sets. Gaussian kernel is a popular kernel for kernel

Table 2.1: Commonly Used Kernel Function for Numerical Data Sets

Kernel Type K(x, x̂)
Linear xT x̂
P-polynomial (xT x̂+ b)p

Gaussian e−
‖x−x̂‖22

2σ2

Spline Πd
i=1(1 + xix̂i + xix̂i min(xi, x̂i)− xi+x̂i

2
min(xi, x̂i)

2 + min(xi,x̂i)
3

3
)

Wavelet θ
‖x−x̂‖2 sin ‖x−x̂‖2

θ

based algorithms, especially when we do not have expert knowledge of the data sets. It is
also the main similarity matrix that is used in spectral clustering techniques.

In practice, data sets can also contain large portion of categorical and ordinal data. A
common practice is to preprocess data sets to numerical forms which includes treating a
direct numerical representation of such data as numerical data, or expanding categorical
features into a set of binary indicators. However, these practices often lead to poor pattern
recognitions because the structures of the data sets are often not captured appropriate-
ly. This crucial understanding is often missing in practical applications as most existing
machine learning algorithms solely focus on numerical values.

For categorical data sets, appropriate similarity measures can be applied to explore the
structures of the data sets, see, e.g., [5] and references therein. In subsequent discussion, we
focus on the simplest similarity measure, overlapping similarity and its derived similarity
measures which can be applied directly to categorical data. These similarity measures are
defined based on the set of possible values for each specific categorical feature where match
and mismatch in categorical values form an intuitive basis for comparing patterns within
the data sets. In the subsequent discussion, we assume that the data set comes from

24

sampling of random d-dimensional categorical vector D, with the ith feature Di having
|Di| distinct values, i = 1, 2, · · · , d.

Overlapping Similarity

Given two d dimensional categorical feature vector x and x̂, the Hamming distance is
defined as the number of features for which the nominal values of x and x̂ do not match
divided by the total number of features:

dH(x, x̂) =

d∑
i=1

δ(xi, x̂i)

d

where

δ(xi, x̂i) =

{
1, xi 6= x̂i
0, xi = x̂i

Consequently overlapping similarity, which is also called as Jaccard index, is given by

sO(x, x̂) = 1− dH(x, x̂)

It has been proven that overlapping similarity (Jaccard Index) is a valid kernel function.
Detailed proof can be found in [22]. For data instance x and x̂ with numerical features, a
standard Gaussian kernel has the form

K(x, x̂) = e−
‖x−x̂‖22

2σ2

where σ > 0 is a constant bandwidth. We can derive a Gaussian kernel for categorical
data from the overlapping similarity.

KGH(x, x̂) = e−
dH (x,x̂)

2σ2 (2.22)

The fact that the associated Gaussian kernel is still a valid kernel function can be proven
by the following theorem [28]:

Theorem 2. Let χ be a nonempty set and f : (χ× χ) → < be a function. The function
exp(−tf(x, x̂)) is positive semi-definite for t > 0 if and only if f is negative semi-definite.

Proof. Detailed proof can be found in chapter 3, Theorem 2.2 [16].

25

Note that, since overlapping similarity (Jaccard Index) is a valid kernel function (posi-
tive semi-definite), it can be easily seen that −sO(x, x̂) is negative semi-definite. Therefore,
following Theorem 2, we see that

KGH(x, x̂) = e−
dH (x,x̂)

2σ2 = e
−1

2σ2

(
e−
−sO(x,x̂)

2σ2

)
is positive semi-definite, which satisfies the Mercer’s condition and is a valid kernel function.

Adaptive Gaussian Kernel

In the Gaussian kernel with the Hamming distance (2.22), a single bandwidth σ is applied
to every data instance. In [18] the authors argue that performance of spectral clustering
on categorical data sets can be improved using an adaptive bandwidth. In addition, a
weighted Hamming distance

dWH(x, x̂) =
d∑
i=1

δ(xi, x̂i)

|Di|

is proposed in [18], where |Di| is the number of distinct values in that dimension. Corre-
sponding to the weighted Hamming distance, an adaptive kernel

KWH(x, x̂) = e
− d

WH (x,x̂)

2σ2(x,x̂)

can be defined, where σ(x, x̂) is a data driven adaptive bandwidth uniquely determined by
the k nearest neighbors of data instances x and x̂. Detailed discussion on the data driven
adaptive bandwidth can be found in [18]. In the subsequent section, we use β to denote
the neighborhood size parameter of this kernel in order to avoid confusion.

Hamming Distance Kernel

Hamming distance kernel [15] is proposed as a variant of the string kernel [31]. The
basic idea is to explicitly create a high dimensional feature space, with each dimension
representing a possible feature nominal value combination. The kernel function K(x, y)
equals to the inner product of two vectors in the high dimensional feature space mapped
from x and y. Because the resulting kernel function is explicitly defined based on the inner
product in the high dimensional space, the Hamming distance kernel is also a valid kernel
satisfying the Mercer’s condition.

26

Formally, let Di be the domain of the ith feature. Let Dn be the cross product over
all feature domains. Thus, for each q ∈ Dn, given a categorical instance x = (x1, ..., xn),
xi ∈ Di, we define an explicit mapping: θq(x) = τ d

H(q,x), where τ ∈ (0, 1). Note that θq(x)
is just one dimension of the derived feature space. Each q ∈ Dn represents one dimension
in the derived feature space and an explicit mapping is defined to map any instance x into
this dimension, i.e., θq(x). Thus the Hamming distance kernel between instances x and x̂
is:

KH(x, x̂) =
∑
q∈Dn

θq(x)θq(x̂) (2.23)

Directly computing the Hamming distance kernel has an exponential computational com-
plexity. Fortunately a dynamic programming technique can be applied, which allows this
kernel to be computed efficiently following the recursive procedure below [15]:

K0(x, x̂) = 1

Kj(x, x̂) = (τ 2(|Dj| − 1− δ(xj, x̂j)) + (2τ − 1)δ(xj, x̂j) + 1)Kj−1(x, x̂), j = 1, · · · , d

and KH(x, x̂) = Kd(x, x̂). While in evaluating similarity between a pair of instance x
and x̂, Hamming distance directly compares nominal values of x and x̂ to determine the
number of different values. In contrast, a Hamming distance kernel assesses the similarity
between x and x̂ in referencing to all possible nominal value combinations of the categorial
attribute. Consequently, a Hamming distance kernel can capture more information than
the simple Hamming distance (overlapping similarity).

It is also common that data sets contain both numerical attributes and categorical
attributes. There are two common approaches to obtain similarity and/or kernel matrices
for data sets with mixing data types:

1. Convert categorical attributes to numerical attributes (binarization) or numerical
attribute to categorical attributes (discretization). Then compute the kernel or sim-
ilarity matrices designed for pure numerical data or categorical data.

2. Compute the kernel or similarity matrices K1 designed for pure numerical data using
only numerical attributes and compute the kernel or similarity matrices K2 designed
for pure categorical data using only numerical attribute. The final similarity or kernel
matrix is the K = αK1 + βK2. In the cases of supervised learning such as SVM, the
coefficient α and β can be determined by cross validation [46].

27

Chapter 3

Spectral Ranking for Anomaly
Detection

In this chapter, we propose the Spectral Ranking for Anomaly Detection (SRA) algorithm.
In Section 3.1, we review some insights for the 1st non-principal eigenvector of Lsym, which
is the eigenvector corresponding to the smallest nonzero eigenvalue. Based on these insights
for the 1st non-principal eigenvector of Lsym, the SRA algorithm is proposed in Section
3.2.

3.1 Understanding the 1st Non-principal Eigenvector

3.1.1 Degree of Support Perspective

Nonconvex Relaxation of the Unsupervised SVM: Recall that the unsupervised
SVM can be formulated as:

min
yi∈{+1,−1}


maxα eTα− 1

2
αTY KY α

subject to yTα = 0
0 ≤ αi ≤ C, i = 1, . . . , n

 (3.1)

The inner optimization problem can be rewritten as:

max
z

eT |z| − 1

2
zTKz

subject to eT z = 0

|zi| ≤ C, i = 1, . . . , n

(3.2)

28

where zi = αiyi, i = 1, ..., n. We note that eT |z| is convex and (3.2) has many local
maximizers. Consider the following nonconvex quadratic programming problem:

min
z
− 1

2
zTKz

subject to eT z = 0

|zi| ≤ C, i = 1, . . . , n

(3.3)

Assume that K is positive definite in the space {z : eT z = 0}. Then the local minimizers
of (3.3) are at the boundary of |zi| ≤ C, i = 1, . . . , n. Theorem 3 suggests that problem
(3.3) can be considered as a nonconvex relaxation of problem (3.1).

Theorem 3. Suppose that K is symmetric positive definite. Let(α∗,y∗) be a solution to
the unsupervised SVM (3.1). Assume that the solution z∗ to (3.3) is a local maximizer of
(3.2) and satisfies eT |z∗| = eTα∗. Then a∗z = |z∗| and y∗z = sign(z∗) solves the unsupervised
SVM (3.1).

A proof of Theorem 3 is shown in the Appendix A. Note that with Theorem 3, we
can see that (3.3) can be viewed as a nonconvex relaxation of the unsupervised support
vector machine. However, finding the global optimal solution of (3.3) remains a NP-hard
problem.

Connecting the Unsupervised SVM with the Spectral Optimization: Consider
the normalized spectral clustering formulation for approximating the 2-way normalized
cut:

min
g

gTLsymg

subject to g ⊥ D1/2e

‖g‖22 = vol(V)

(3.4)

This formulation can be rewritten as:

min
g
− gTD−1/2WD−1/2g

subject to gT (D1/2e) = 0

gTg = vol(V)

Let z = D
1
2 g, we can further rewrite the formulation (3.4) as:

min
z
− zTD−1WD−1z

subject to eT z = 0

zTD−1z = vol(V)

29

If we assume W is positive definite in the space {z : (D
1
2 e)T z = 0}, we can replace the

second equality constraint with inequality constraint since the ellipsoidal constraint should
be active at a solution. Let K = D−1WD−1. Then (3.4) can the be rewritten as

min
z
− zTKz

subject to eT z = 0

zTD−1z ≤ vol(V)

(3.5)

Problem (3.5) can be approximated by the nonconvex problem below

min
z
− zTKz

subject to eT z = 0

|zi| ≤ Ci, i = 1, . . . , n

(3.6)

where Ci =
√
di ·vol(V) and di is the degree of the data instance i. We can now observe that

problem (3.3) and problem (3.6) have the similar form. Since (3.5) is an approximation
to the normalized 2-cut optimization problem, this suggests that the normalized spectral
optimization problem can be regarded as an approximation to the unsupervised SVM
problem with the kernel K = D−1KD−1 and Ci =

√
di · vol(V).

We note that in connecting the spectral optimization with the unsupervised SVM (3.1),
the following assumptions are made:

• The solution z∗ to (3.3) is a local maximizer of (3.2) and satisfies eT |z∗| = eTα∗

where (α∗, y∗) solves the unsupervised SVM (3.1).

• The matrix W is positive definite in the space {z : (D
1
2 e)T z = 0}.

• The rectangular constraint in (3.3) is approximated by the ellipsoidal constraint in
(3.5).

Note that the optimal separating hypothesis from the unsupervised SVM has the form

f(x) =

(
n∑
j=1

yj|zj|K(x, xj) + b

)

where yj = sign(zj) and |zj| denotes the measure of the strength of support from the jth
data point on the two classes separation decision.

30

−2 −1 0 1 2
−5

0

5

X

Y

−1

−0.5

0

0.5

1

(a) Synthetic Data

−2 −1 0 1 2
−5

0

5

10

15

1st Non−pricinpal Eigenvector

2n
d

N
on

−
pr

ic
ip

al
 E

ig
en

ve
ct

or

−1

−0.5

0

0.5

1

(b) Visualization of z1 = D1/2g1
and z2 = D1/2g2

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1st Non−principal Eigenvector

D
en

si
ty

(c) Density Distribution of z1 =
D1/2g1

Figure 3.1: Interpretation of 1st Non-principal Eigenvector For Synthetic Data 1

Above discussion suggests that the spectral clustering optimization (3.5) can be viewed

as an approximation to the unsupervised SVM. Therefore, the variable z1 = D
1
2 g1, where

g1 is the 1st non-principal eigenvector of Lsym, approximates the optimal solution for
unsupervised SVM and |(z1)j| approximates the strength of support from the jth data
point on the two classes separation decision.

We note that, due to the use of the ellipsoidal constraint rather than rectangular con-
straint and other approximations, z is different from the vector of support computed from
the exact unsupervised SVM. In particular, the eigenvector is likely to have no zero com-
ponents, i.e., every data point offers support to some degree in the two classes separation.

With the degree of support interpretation, supposing we have two major clusters, we
can expect anomalies, no matter whether they are point anomalies or anomalies belonging
to small clusters, will offer less support in separating the two major clusters. Therefore,
for an abnormal data instance i and a data instance j belonging to the major clusters, it
is highly likely that |(z1)i| will be smaller than |(z1)j|.

Here we present two synthetic data sets in <2, which are shown in Figure 3.1 (two large
clusters with point anomalies) and 3.2 (two large clusters with small clusters and point
anomalies), to illustrate this insight. We first use a Gaussian kernel with the bandwidth
σ = 1 as the similarity matrix S. The graph constructed is a fully connected graph where
the adjacency matrix W equals to the similarity matrix S.

Subplot (a) demonstrates the original 2-D data while subplot (b) demonstrates points
in the space of the z1 = D1/2g1 and z2 = D1/2g2. To depict the meaning of the value of
the first non-principal eigenvector, we assign a unique color to each value with the darkest
red color representing the largest positive value and darkest blue representing the most

31

−2 −1 0 1 2
−2

−1

0

1

2

X

Y

−1

−0.5

0

0.5

1

(a) Synthetic Data

−2 −1 0 1 2
−3

−2

−1

0

1

2

3

1st Non−Principal Eigenvector

2n
d

N
on

−
P

rin
ci

pa
l E

ig
en

ve
ct

or

−1

−0.5

0

0.5

1

(b) Visualization of z1 = D1/2g1
and z2 = D1/2g2

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1st Non−principal eigenvector

D
en

si
ty

(c) Density Distribution of z1 =
D1/2g1

Figure 3.2: Interpretation of 1st Non-principal Eigenvector For Synthetic Data 2

negative value. Each point in the original plot (a) then inherits its designated color value
of the corresponding component of the first non-principal eigenvector. The color map is
shown at the right side of the subplot (a) and (b) in Figure 3.1 and Figure 3.2. The density
distribution of the vector z1 = D1/2g1 is shown in subplot (c). We point out that, for these
two examples, the vector z2 = D1/2g2 is just used for visualization. No information in the
vector z2 = D1/2g2 is used.

From Figure 3.1 (a), it is easy to see that the corresponding strength of support |(z1)i|
of point anomalies, colored in yellow and green, is the smallest. Since the data points in the
light blue and light red regions are closer to the other cluster, they offer less information in
defining the cluster. Thus the strength of support of those data instances |(z1)i| is smaller
than that of the other data points, colored as dark blue and dark red. Also from the
density distribution shown in Figure 3.1 (c), we note that there are two major peaks and
one valley. The two peaks correspond to the two major clusters and the valley corresponds
to the point anomalies.

In Figure 3.2, we show the example with two major clusters, two small clusters for
anomalies, together with point anomalies. It is clear that the strength of support |(z1)i| of
point anomalies and small clusters for anomalies is the smallest. We can also see, from the
darkness of the red and blue colors, that the edges of the major clusters have relatively
smaller strength of support |(z1)i| than the cores of the major clusters. We can also observe
from Figure 3.2 (c) that there are two major peaks, one small peak and two valleys. The
two peaks correspond to the two major clusters, the small peak corresponds to the two
small clusters, and the two valleys correspond to the point anomalies. Thus, we can see
that |z1| provides a reasonable basis for detecting the point anomalies and also anomalies
belonging to small clusters when two main clusters exist.

32

3.1.2 Random Walk Perspective

Degree of support is not the only view for the 1st non-principal eigenvector of Lsym. Wang
and Davidson [54] has proposed a similar measure from a random walk perspective. The
following discussion of the alternative random walk perspective is mainly drawn from [54].

We start with the similar graph construction discussed in Section 2.1.1 to obtain an
(weighted) adjacency matrix W which captures the structure of the given data set. Sim-

ilarly, we define a degree matrix D with di =
n∑
j=1

Wij on its diagonal. The data set is

represented as a graph G = (V,E) with |V | = n. A random walk of length t on a graph
G(V,E) starting from an initial node r can be represented by a sequence of state random
variable X0, . . . , X t, where X i = j indicates that the random walk starting from the initial
node r visiting node j at step i. We assume that the random walk is a memoryless Markov
process where the next state depends entirely on the current state. Mathematically, the
memoryless Markov property implies:

P (X t+1 = i|X t = j,X t−1 = k, . . . , X0 = r) = P (X t+1 = i|X t = j)

Therefore a transition matrix P = WD−1 can be defined where the entries in P represents
the probability of transition from one node to another node in graph G(V,E) at any step
t, i.e,

pij = P (X t+1 = i|X t = j),∀i, j, 1 ≤ i, j ≤ n

We assume that P (X t+1 = i|X t = j) is the same at any step t. The Markov random walk
described above can be characterized by the stationary distribution π. The stationary
distribution π is a time invariant measure that has been used widely in applications such
as anomaly detection [35] and pagerank [38]. Given a graph G = (V,E) and the associated
transition matrix P , there exists a unique probability distribution π = (π1, . . . , πn)T that
satisfies the following equation:

πj =
n∑
i=1

πipij, ∀j, 1 ≤ j ≤ n

This unique probability distribution is referred to as stationary distribution.

It can be shown that the eigenvector z0 corresponding to the largest eigenvalue (which
is always 1) of matrix P equals the stationary distribution. For a point anomaly i since
it is far from the rest of the data instances, the probability that a random walk in the
graph visits the node i from any other node j at any step t, pij, is smaller. Thus, for

33

a point anomaly i, the corresponding πi is likely to be smaller than other data instances
that belong to certain clusters. The stationary distribution is used in [35] to detect point
anomalies. We refer to the the eigenvector z0 as the principal eigenvector of matrix P .

The limitation of using stationary distribution π for anomaly detection is that it is
based on a global random walk. Therefore, it is only useful to detect point anomalies
which are the data instances that are less likely to be visited no matter where the random
walk starts. Wang and Davidson [54] propose to use non-principal eigenvectors from the
transition matrix P for anomaly detection. Suppose we have two disjoint subset S+ and S−

where S+
⋃
S− = V and S+

⋂
S− = ∅ , we can define an indicator variable as follows: If

node i is not visited at step t in a random walk, we set Y t
i to 0. If node i is visited at step

t and the random walk starts from nodes in S+, we set Y t
i to 1. If node i is visited at step

t and the random walk starts from nodes in S−, we set Y t
i to -1.

Y t
i =


1, X t = i,X0 ∈ S+

−1, X t = i,X0 ∈ S−

0, otherwise

(3.7)

Consequently, the expectation E(Y t
i) = P (X t = i,X0 ∈ S+) − P (X t = i,X0 ∈ S−)

measures the difference in the likelihood the of node i being visited from S+ and S−. For
example, the expectation E(Y t

i) = P (X t = i,X0 ∈ S+) − P (X t = i,X0 ∈ S−) being
closer to 1 suggests that node i would be visited from set S+ more likely. The expectation
E(Y t

i) = P (X t = i,X0 ∈ S+)− P (X t = i,X0 ∈ S−) being closer to 0 suggests that node
i would be visited from both sets almost equally likely.

Wang and Davidson [54] suggest that S+ and S− can be regarded as two cluster based
contexts and those data instances that can be visited from both sets almost equally likely
are the contextual anomalies. The random walk in G = (V,E) with respect to contexts is
called a contextual random walk. Thus the expectation E(Y t

i) can be viewed as a score for
a contextual anomaly. However, the E(Y t

i) is not time invariant and will change as time
step t increase. Since generating anomaly ranking score requires a time invariant measure,
Wang and Davidson [54] define a time invariant measure which is based on E(Y t

i).

Definition 4 (Stationary Expectation [54]). Given a graph G = (V,E), its two disjoint
subset S+ and S− where S+

⋃
S− = V and S+

⋂
S− = ∅, and its transition matrix P , we

say that the expectation E(Y t
i), which is represented as µi, is stationary if the following

condition holds:

µi = C
n∑
j=1

µjpij ,where C is a constant. (3.8)

34

We refer to µ = {µ1, ..., µn} as the stationary expectation of the contextual random walk
with respect to S+ and S−.

Suppose P (X0 = i) = wi is the probability that the random walk starting from a
specific node i. We have:

P (X1 = i,X0 ∈ S+) =
∑
j∈S+

P (X0 = j)P (X1 = i|X0 = j) =
∑
j∈S+

wjpij

P (X1 = i,X0 ∈ S−) =
∑
j∈S−

P (X0 = j)P (X1 = i|X0 = j) =
∑
j∈S−

wjpij
(3.9)

Therefore,

E(Y 1
i) =

∑
j∈S+

wjpij −
∑
j∈S−

wjpij (3.10)

Similarly, we can see that

P (X t+1 = i,X0 ∈ S+) =
n∑
j=1

P (X t = j,X0 ∈ S+)P (X t+1 = i|X t = j)

and

P (X t+1 = i,X0 ∈ S−) =
n∑
j=1

P (X t = j,X0 ∈ S−)P (X t+1 = i|X t = j)

Therefore,

E(Y t+1
i) =

n∑
j=1

P (X t = j,X0 ∈ S+)P (X t+1 = i|X t = j)

−
n∑
j=1

P (X t = j,X0 ∈ S−)P (X t+1 = i|X t = j)

=
n∑
j=1

[
P (X t = j,X0 ∈ S+)− P (X t = j,X0 ∈ S−)

]
P (X t+1 = i|X t = j)

=
n∑
j=1

E(Y t
j)pij

(3.11)

From (3.9) and (3.11), it is clear that E(Y t
i) is not time invariant and the value of E(Y t

i)
depends on the initial random walk probability distribution w = {w1, . . . , wn}. However,

35

supposing that at a time step t, the expectation is E(Y t
i) = µi where µi satisfies (3.8), we

notice from (3.8) and (3.11):

E(Y t+1
i) =

n∑
j=1

E(Y t
j)pij =

n∑
j=1

µjpij =
µi
C

=
E(Y t

i)

C
(3.12)

From (3.12), we can see that, if at a time step t, E(Y t
i) satisfies (3.8), the relative order of

expectation E(Y t
i) will not change as the time step t increase. Hence, the time invariant

measure µ can be used as the ranking score to detect contextual anomalies with respect to
S+ and S−.

Supposing that z is an eigenvector of P that corresponds to an eigenvalue less than 1,
we can divide the given data set into two contexts:

S+ = {i : zi ≥ 0}, S− = {i : zi < 0} (3.13)

It can be shown that
∑n

i=1 zi = 0. Let µ = {µ1, ..., µn}, where µi = zi∑n
i=1 |zi|

, be the the

normalized eigenvector. Assume that the random walk starts with:

P (X0 = i,X0 ∈ S+) =

{
µi, if i ∈ S+

0, if i ∈ S−
(3.14)

P (X0 = i,X0 ∈ S−) =

{
0, if i ∈ S+

−µi, if i ∈ S−
(3.15)

In other words,

P (X0 = i) =

{
µi, if i ∈ S+

−µi, if i ∈ S−
(3.16)

Given the contexts defined in (3.13), we notice from (3.10) that if the initial probability
distribution P (X0 = i) = wi satisfies (3.16), then:

E(Y 1
i) =

∑
j∈S+

wjpij −
∑
j∈S−

wjpij =
n∑
j=1

µjpij = λ̃µi (3.17)

From (3.17), we can see E(Y 1
i) satisfies (3.8). Therefore, the normalized eigenvector µ =

{µ1, ..., µn} is a valid stationary expectation under the assumption that the random walk
starts with probability (3.16). Hence, Wang and Davidson [54] suggest that the smaller

36

the |µi| is, the more likely the ith data instance is a contextual anomaly with respect to
the two contexts defined in (3.13).

We notice, from the above discussion, the reasonability of using the normalized eigen-
vector µ = {µ1, ..., µn} to generate anomaly ranking depends on the reasonability of using
(3.16) as the initial random walk probability. However, Wang and Davidson [54] did not
provide any justification or explanation on why the assumption that initial random walk
probability satisfies (3.16) is reasonable and important. This is the major drawback of this
random walk justification.

Note that if we use the same adjacency matrix W to construct Lsym and P , then the
following relationship holds: Supposing z is an eigenvector of P = WD−1 and g is an
eigenvector of Lsym = I −D−1/2WD−1/2 with the eigenvalue λ, we have

Lsymg = (I −D−1/2WD−1/2)g = λg

This is the same as
D−1/2WD−1/2g = (1− λ)g

or
D−1/2(WD−1)D1/2g = (1− λ)g

Consequently,
(WD−1)(D1/2g) = (1− λ)(D1/2g)

From above we can conclude that g is an eigenvector of Lsym = I − D−1/2WD−1/2 with
eigenvalue λ if and only if z = (D1/2g) is an eigenvector of P = WD−1 with eigenvalue

1 − λ. We refer to the eigenvector z1 = D
1
2 g1 as the 1st non-principal eigenvector and

z2 = D
1
2 g2 as the 2nd non-principal eigenvector of matrix P in latter sections.

Following this random walk perspective from [54], we can see |(z1)i| provides a reason-
able basis for measuring the difference in the likelihood of a data instance i being visited
by a random walk starting from the cluster based contexts S+ = {i : (z1)i ≥ 0} and
S− = {i : (z1)i < 0} respectively. The contextual anomalies are those data instances that
can be visited from S+ and S− almost equally likely. In other words, these contextual
anomalies do not belong strongly to either S+ and S−.

Recall the previous discussion on degree of support perspective in Section 3.1.1, the
entry |(z1)j| of the vector z1 = D

1
2 g1, where g1 is the 1st non-principal eigenvector of Lsym,

approximates the strength of support from the jth data point on the two classes separation
decision. Using the degree of support perspective, we can see that these contextual anoma-
lies, since they do not belong strongly to either S+ and S−, they offer less information in

37

defining the two major classes S+ and S−. Thus |(z1)j| for the contextual anomalies will
be small. In cases where two major clusters exist, the contextual anomalies are actually
the point anomalies or anomalies belonging to small clusters since they lie in between the
major clusters.

3.2 A Spectral Ranking for Anomaly Detection

From the degree of support perspective in Section 3.1.1, the vector z1 = D
1
2 g1 approximates

the vector of strength of support in the optimal two classes separation. From the random

−3 −2 −1 0 1 2
−5

0

5

x

Y

−0.5

0

0.5

1

1.5

2

(a) Synthetic Data

−1 0 1 2 3
−10

−8

−6

−4

−2

0

2

1st Non−Principal Eigenvector

2n
d

N
on

−
P

rin
ci

pa
l E

ig
en

ve
ct

or

−0.5

0

0.5

1

1.5

2

(b) Visualization of z1 = D1/2g1
and z2 = D1/2g2

−1 0 1 2 3
0

0.5

1

1.5

2

1st Non−principal eigenvector
D

en
si

ty
(c) Kernel Density Estimation

Figure 3.3: Interpretation of 1st Non-principal Eigenvector For Synthetic Data 3

walk perspective in Section 3.1.2, the vector z1 = D
1
2 g1 can be used to detect the contextual

anomalies with regard to the two contexts S+ = {i : (z1)j ≥ 0} and S− = {i : (z1)j < 0}.
Both perspective suggest that, if we define the anomaly score as f = max(|z|) − |z|, we
are able to rank data instances according to their likelihood of being anomalies when two
major clusters for normal data instances exist.

However, there are also cases where there is only one major cluster for the normal data
instances together with point anomalies and/or anomalies which form up small clusters. In
these scenarios, as illustrated in Figure 3.3, f = z or f = −z can be used as the anomaly
score. The small clusters for anomalies will be ranked as the most abnormal. The point
anomalies are ranked as the second most abnormal. The major cluster is ranked as the
least abnormal. This ranking is reasonable since the small clusters are the more important
targets in these cases.

Based on above analysis, we now formally propose the Spectral Ranking for Anomaly
Detection (SRA) algorithm which is summarized in Algorithm 1. SRA automatically

38

decides whether to provide anomaly ranking score f with respect to one majority pattern
(cluster) or with respect to the two (±) major patterns (clusters). The decision is made
based on class cardinality as follows: Let C+ = {i : (z1)i ≥ 0} and C− = {i : (z1)i < 0}
denote the sets of data instances that correspond to non-negative and negative values in
z1 respectively. We denote the total number of data instances as N . Assume an upper
bound on the anomaly ratio is given as RU . If min{ |C+|

N
, |C−|

N
} ≥ RU , SRA outputs ranking

with respect to multiple patterns. Otherwise, SRA outputs ranking with respect to a single
majority class. In other words, if the 1st non-principal eigenvector represents two relatively
balanced classes (|C+| ≈ |C−|), SRA outputs ranking with respect to multiple patterns.
Otherwise, SRA outputs anomaly ranking score with respect to one major pattern.

Algorithm 1: Spectral Ranking for Anomaly Detection

Input: W : An m-by-m similarity matrix W .
RU : Upper bound of the ratio of anomaly

Output: f ∈ <n: A score vector where larger value implies being more abnormal
Mflag : A flag indicating ranking with respect to two patterns or a
single pattern

begin
Form Laplacian Lsym = I −D−1/2WD−1/2 ;

Compute z1 = D1/2g1 where g1 is the 1st non-principal eigenvector for Lsym ;
Let C+ = {i : (z1)i ≥ 0} and C− = {i : (z1)i < 0};
if min{ |C+|

N
, |C−|

N
} ≥ RU then

Mflag = 1, f = max(|z1|)− |z1| ;
else if |C+| > |C−| then

Mflag = 0, f = −z1 ;
else

Mflag = 0, f = z1 ;
end

end

In above discussion, the proposed SRA algorithm mainly focuses on cases where two
patterns (clusters) for normal data instances exist and cases where only one pattern (clus-
ter) exists. Note that for cases where more than two patterns (clusters) for normal data
instances exist, Algorithm 1 can still be used. This is because that in those cases the 1st
non-principal eigenvector from the transition matrix P often separates one main cluster
from the other main clusters. Therefore, both the contextual random walk justification
and degree of support justification still can be applied. Here we illustrate this fact with one

39

synthetic data set in <2, which is shown in Figure 3.4. In Figure 3.4 (a), there are three
main clusters, which are marked in red, green and dark blue respectively, together with
point anomalies, marked in black. We use a Gaussian kernel with the bandwidth σ = 1
as the adjacency matrix W . Visualization of the vector z1 = D1/2g1 and z2 = D1/2g2 is
shown in Figure 3.4 (b). For each data instance i, we have marked the corresponding point
((z1)i,(z2)i) in Figure 3.4 (b) using the same color as it is in Figure 3.4 (a). As shown in
Figure 3.4 (b), |(z1)i| for most of the point anomalies is still much smaller than the data
instances that belong to the three major clusters. Therefore a reasonable result can still
be achieved using Algorithm 1.

−2 −1 0 1 2 3
−2

−1

0

1

2

3

x

y

(a) Synthetic Data

−2 −1 0 1 2
−2

−1

0

1

2

1st Non−principal Eigenvector

2n
d

N
on

−
pr

in
ci

pa
l E

ig
en

ve
ct

or

(b) Visualization of z1 = D1/2g1 and z2 = D1/2g2

Figure 3.4: Interpretation of 1st Non-principal Eigenvector For Synthetic Data 4

A second way to cope with more than two main patterns is to utilize additional non-
principal eigenvectors. Note that with the random walk perspective, every non-principal
eigenvector provides a way to divide the data sets into two contexts, so in cases where
more than two patterns (clusters) for normal data instances exist, other non-principal
eigenvectors can also be used. For instance, let us suppose that the 2nd non-principal
eigenvector of P is also used. The same procedure in Algorithm 1, but with z2 = D1/2g2
instead of z1 = D1/2g1, can be used to compute another anomaly score denoted as f2. The
final anomaly score for a data instance i can be the summation of (f1)i computed from the
1st non-principal eigenvector and (f2)i computed from the 2nd non-principal eigenvector,
i.e, fi = (f1)i + (f2)i. More sophisticated way to combine the multiple anomaly score
vectors computed from different non-principal eigenvectors can be used [30]. We leave it
as a future study.

40

A third way to cope with many main patterns is to apply the Algorithm 1 iteratively
with the 1st non-principal eigenvector. In other words, we further segment both or one of
the subgroups C+ = {i : (z1)i ≥ 0} and C− = {i : (z1)i < 0}. For example, C− = {i :
(z1)i < 0} of the synthetic data 4, as shown in Figure 3.4, consists of two main clusters
together with point anomalies. We can apply Algorithm 1 only with the data instances in
C− = {i : (z1)i < 0} again. This will help us capture more anomalous cases. The challenge
here is how to combine scores to generate a single ranking. We also leave this approach as
a future study.

One of the difficulties of the clustering algorithm is to decide the number of clusters in
a given data set. However, since the process of spectral clustering can also be regarded as
a dimension reduction process [4], the non-principal eigenvectors can be viewed as the low
dimensional embedding of the high dimensional data set. Therefore, data instances belong-
ing to clusters tend to show up as clusters in the non-principal eigenvectors. Visualization
of a couple of non-principal eigenvectors can often be used to get a sense of the number of
major clusters in the given data set and decide how many non-principal eigenvectors are
needed or which subgroups need further segmentation.

We observe that, with the degree of support perspective, SRA can capture both small
clusters for anomalies and point anomalies. Other standard methods usually target one
cases instead of both cases. In addition, we note that SRA can also distinguish edges of the
main clusters from the cores of the main clusters. Finally, SRA can cope with both cases
where there are multiple patterns (clusters) for normal data instances and cases where only
one pattern (cluster) exists. Other methods often lack the simultaneous support for both
multi-class anomaly detection and one-class anomaly detection.

Although we focus on the unsupervised learning perspective which does not emphasize
on generating prediction for new data instances, we observe that, with our SRA algorithm,
there is a natural way to generate out of sample predictions. This feature is often missing
in other unsupervised anomaly detection methods. However, prediction capability can be
useful when new instances arrive after a training model has been computed, particularly
if training set is very large, since we do not need to train a new model to incorporate the
new data instances. Detailed discussion on how to generate out of sample prediction with
the proposed SRA Algorithm is given in Appendix B.

41

Chapter 4

Experimental Results

In this chapter, we demonstrate effectiveness of the SRA algorithm using both synthetic
data sets and real data sets. Particularly, a case study on an automobile insurance fraud
detection data set is presented in Section 4.4. Evaluation of the SRA algorithm on synthet-
ic data sets and other real data sets is presented in Section 4.3 and Section 4.5 respectively.
These results are evaluated using the Receiver Operating Characteristic (ROC) curves. A
brief discussion on the ROC curves is given in Section 4.1. For the purpose of comparison-
s, we include the performance of two popular unsupervised anomaly detection methods,
one-class SVM (OC-SVM) and Local Outlier Factor (LOF), and one supervised learning
method, Random Forest (RF). A brief review of the OC-SVM, LOF and RF is given in
Section 4.2.

4.1 Receiver Operating Characteristic Curves

Evaluation metrics play an important role in the model selection process. Various evalua-
tion metrics exist for the learning quality of algorithms that produce binary outputs (e.g.,
’normal’ versus ’abnormal’). The most common evaluation metric is the classification error
rate. Let D = {(x1, y1), . . . , (xn, yn)} be a set of data instances, where xi is the input data
and yi ∈ {+1,−1} is the output target. Assume that a discriminative function f(x) is
used. The classification error rate is defined as:

Error =
1

n

n∑
i=1

δ(f(xi), yi) (4.1)

42

where

δ(f(xi), yi) =

{
1, f(xi) 6= yi
0, f(xi) = yi

For anomaly detection, the data set is usually highly unbalanced, i.e., most of the data
instances are normal cases. Therefore, the classification error rate is not an appropriate
measure since it has a bias toward normal cases. Furthermore, we are more interested in
the successful classification of anomalies than normal cases. For example, suppose we have
two classifiers for a fraud detection problem where 95% of the data instances are normal
cases and 5% of the data instances are fraudulent cases. The first method classifies all
the data instances to be normal. The second one classifies 10% of the data instances as
abnormal, which include the all the fraudulent cases, and rest of the data instances as
normal. The classification error for both classifiers is the the same: 95%, but the second
classifier is clearly better for the fraud detection purpose.

Therefore, other measures must be used to evaluate performance of an anomaly detec-
tion method. The Receiver Operating Characteristic (ROC) curve is a class skew inde-
pendent measure [41, 6, 34] that can be used to illustrate the performance of the binary
classification as the discriminative threshold varies. Before we discuss the ROC curve, we
first introduce several terminologies that are used to describe the ROC curve.

Suppose we have a classifier and we want to evaluate the performance of the classifier
on a data set D = {(x1, y1), . . . , (xn, yn)}, following terms can be defined:

• Positive Data Instances: The class of data instances that is of interest. In anoma-
ly detection, the positive data instances are anomalies. We denote the number of
positive data instances as P.

• Negative Data Instances: The data instances that are not positive data instances.
In anomaly detection, the negative data instances are normal cases. We denote the
number of negative data instances as N.

• True Positives (TP): The positive data instances that are correctly labeled by the
classifier. We denote the number of true positives as TP.

• False Positives (FP): The negative data instances that are incorrectly labeled by
the classifier. We denote the number of false positives as FP.

• True Negatives (TN): The negative data instances that are correctly labeled by
the classifier. We denote the number of true negatives as TN.

43

Table 4.1: Confusion Matrix

Predicted Labels
Positive Negative Total

True Labels
Positive TP FN P
Negative FP TN N

• False Negatives (FN): The positive data instances that are incorrectly labeled by
the classifier. We denote the number of false negatives as FN.

The confusion matrix, as shown in Table 4.1, summarizes the relationship between these
terms.

Many anomaly detection algorithms, e.g., our proposed SRA algorithms, LOF, OC-
SVM, intrinsically output a numerical ranking score and a predicted label can be obtained
by thresholding this ranking score. Each threshold value generates a confusion matrix with
different quantities of true positives and false positives. The ROC graph is obtained by
plotting the true positive rate (TP

P
) against the false positive rate (FP

N
) as the threshold

level varies. The true positive rate (also known as sensitivity) is one criterion and the false
positive rate (or 1 − specificity) is the second criterion.

An increase in the true positive rate, which can be viewed as benefit, often occurs
at the cost of an increase in the false positive rate. ROC curves (or true-positive and
false-positive frontiers) allow us to visualize the trade-off between true positive rate and
false positive rate for different thresholds. Thus it does not depend on a priori knowledge
to combine the two objectives into one. The area under the ROC curve (AUC) yields
the probability that the generated ranking places a positive class sample above a negative
class sample when the positive sample is randomly drawn from the positive class and the
negative class sample is drawn randomly from the negative class respectively [19]. Thus,
the ROC curve and AUC can be used as criteria to measure how well an anomaly detection
ranking algorithm performs. In the subsequent section, we will use AUC and ROC curves
to compare different methods. The positive class will be the rarest class, which can be
viewed as the anomalies, within the data sets.

44

4.2 Existing Methods for Comparisons

In this section, we briefly discuss OC-SVM, LOF, and supervised RF and show how to use
them for anomaly detection.

One-Class Support Vector Machine (OC-SVM): One-Class Support Vector Machine
(OC-SVM) is proposed by Schölkopf et al. [42] for estimating the region where most of the
data instances occur in a feature space. The feature space usually is the derived feature
space implicitly defined by a specific kernel function.

Let θ : χ ⊆ <d → H ⊆ <d′ be a feature map corresponding to a kernel function K(x, x̂).
Given the unlabelled training data set X = {x1, . . . , xn}, where xi ∈ χ ⊆ <d, the OC-SVM
tries to separate θ(X) = {θ(x1), . . . , θ(xn)} from the origin in H ⊆ <d′ using a hyperplane
wT θ(x) = p where the distance between the origin and the hyperplane, p

‖w‖2 , is maximized

and most of the data instances are in the half space wT θ(x) ≥ p . Penalized slack variables,
ξi, are introduced to allow some data instances to be in the wrong half space, wT θ(x) < p.
The corresponding primal optimization problem is as follows:

min
w,p,ξ

1

2
‖w‖22 +

1

νn

n∑
i=1

ξi − p

subject to wT θ(xi) ≥ p− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n

(4.2)

where 0 < ν ≤ 1 is a parameter that controls the tradeoff between maximizing the distance
between origin and the the hyperplane, wT θ(x) = p, and containing most of the data in the
normal region, wT θ(x) ≥ p, created by the hyperplane. We denote this penalty parameter
as νsvm in latter discussion. It can be shown [43], under certain condition, solving (4.2) is
equivalent to finding a hypersphere with the smallest radius in the derived feature space
H that encloses the training data set.

Given the optimal separating hyperplane wT∗ θ(x) = p∗, the associated anomaly ranking
score of a data instance x is then:

f̃(x) = wT∗ θ(x)− p∗

More detailed discussion of OC-SVM can be found in Appendix C. For results reported in
this thesis, we use the implementation of OC-SVM from [13].

Local Outlier Factor: Local Outlier Factor (LOF) was proposed by Breunig et al. [9].
For any given data instance, the LOF score is equal to the ratio of average local density of
the k nearest neighbors of a data instance and the local density of the data instance itself.

45

Formally, let x be a data instance and Kdistance(x) be the distance between data
instance x and its kth nearest neighbor. The set of k nearest neighbors of x is denoted as
Nk(x). Let x be another data instance and distance(x, x̂) be the distance between x and
x̂. The reachability distance between x and x̂ is defined as:

Rdistancek(x, x̂) = max{Kdistance(x̂), distance(x, x̂)}

The local reachability density is defined as:

lrd(x) =
|Nk(x)|∑

x̂∈Nk(x)Rdistancek(x, x̂)

where |Nk(x)| is cardinality of Nk(x). The LOF score of a data instance x is then defined
as:

LOFk(x) =

∑
x̂∈Nk(x)

lrd(x̂)
lrd(x)

|Nk(x)|
=

∑
x̂∈Nk(x) lrd(x̂)

|Nk(x)|lrd(x)
(4.3)

In other words, the LOF score of a data instance x is the average local reachability density
of the its neighbors divided by its own local reachability density. We denote the neighbor
size parameter for LOF as klof in latter discussion. For results reported for LOF, we use
the implementation comes from [48].

Classification And Regression Tree (CART) and Random Forest: Tree based
methods use decision trees as predictive model to map input data to output targets [25].
Classification And Regression Tree (CART) proposed by Breiman et al. [8] is one repre-
sentative tree based method. CART tries to divide the feature space into a set of regions.
For a specific region, CART computes a constant as the prediction of all the data instances
that reside in the region. In other words, data instances inside the same region has the
same prediction.

Formally, let D = {(x1, y1), . . . , (xn, yn)} be a set of training data instances, where
xi ∈ χ is the input data and yi is the corresponding output target. We denote (xi)j as
the value of the jth attribute for data instance i. Suppose CART has already divided the
feature space χ into a set of regions R = {r1, . . . , rm}. Then the decision function is:

f(x) =
m∑
i=1

CiI(x ∈ ri) (4.4)

where I(x ∈ rm) is an indicator function that returns 1 if x ∈ rm is true and 0 otherwise.
For a regression problem, Cm is the average of the training output targets of all xi ∈ rm.
For a classification problem, Cm is the majority of the training output targets of all xi ∈ rm.

46

Greedy methods are adopted by CART to divide the feature space into different regions.
Taking a regression problem on a real valued training data set, i.e., yi ∈ <, as an example.
We start with the full feature space <d and we want to find an attribute j and a split point
s to split the space into two regions:

r1(j, s) = {xi|(xi)j ≤ s} and r2(j, s) = {xi|(xi)j > s}

so that the sum of squared error is minimized:

min
j,s

 ∑
xi∈r1(j,s)

(yi − C1) +
∑

xi∈r2(j,s)

(yi − C2)


where C1 is the average of the training output targets of all xi ∈ r1(j, s) and C2 is the
average of the training output targets of all xi ∈ r2(j, s). After we find the best partition
strategy for the whole data set, we have two regions. We repeat the same procedure
on each of the two regions (r1,r2). This process is repeated on all the resulting regions
until certain stopping criteria is reached or there is only one data instance in the resulting
region. Typical stopping criterion is the maximum depth of the tree. Another common
stopping criterion is that we require each resulting region to have at least nmin training
data instances. For a classification problem, the similar greedy process is adopted where
we use weighted sum of some impurity measures to replace the sum of squared errors.
Detailed discussion of how to deduce classicification tree is given in Appendix D

Random Forest (RF) is proposed by Breiman [7] to improve the performance of tree
based methods. The idea is that, instead of building up a single CART decision tree,
we build a series of CART decision trees and combine the predictions from each tree to
form the final predictions. It has become a popular supervised machine learning technique
due to its predicting power, simplicity and robustness. Formally, let n be the number of
training data instances and d be the number of attributes that can be used for prediction.
The procedure of random forest can be summarized as below:

1. Suppose that we want to build B trees. Let S be the bootstrap sample of size ns
and m be the number of attributes for building the trees. Then for each tree:

(a) Create a bootstrap sample S of size ns from the training data.

(b) Randomly select m attribute where m < d as predicting attributes.

(c) Build a CART decision tree using the bootstrap sample S and the randomly
selected m attributes

47

2. Output the ensemble of trees {T1, . . . , TB}.

3. Let the prediction of a data instance x from Ti be Ti(x). For a regression problem,
the final prediction from random forest is fRF (x) = 1

B

∑B
i=1 Ti(x). For a Classifi-

cation problem, the final prediction from random forest fRF (x) is the majority of
{T1(x), . . . , TB(x)}.

In the following section, CART is used to deduce rules for clusters and random forest is
used to compare the performance of unsupervised learning and supervised learning.

4.3 Synthetic Data Sets

In this section, we demonstrate effectiveness of the proposed SRA algorithm on several
synthetic data sets. All the synthetic data sets are real valued. To be consistent, the
penalty parameter νsvm for OC-SVM is always set to 0.1 and the neighborhood parameter
klof for LOF is always set as to 200. We use Gaussian kernels as similarity matrices. The
same kernel matrix is used by both OC-SVM and the proposed SRA algorithm. The graph

Table 4.2: Summary of the Synthetic Data

Synthetic Data No. of clusters
for normal cas-
es

No. of normal
cases

No. of point
anomalies

No. of anoma-
lies belonging
to small clus-
ters

1 2 8000 500 0
2 2 8000 2000 1000
3 1 4000 1000 500
4 3 3000 300 0

constructed for each data set is a fully connected graph; the (weighted) adjacency matrix
W equals the similarity matrix S. The distance metric used by LOF is the Euclidean
distance in the original feature space. In other words, k nearest neighbors are determined
based on the Euclidean distance. For SRA, we fix the upper bound of anomaly ratio RU to
20 %. The four data sets have been used to illustrate the performance of SRA algorithm
in Chapter 3. Now we compare performance of SRA with other methods based on these
data sets. Table 4.2 presents details regarding these data sets.

48

The first synthetic data set, as shown in Figure 4.1 (a), consists of two large and dense
clusters, marked in blue, together with 500 point anomalies, marked in red. Each of the
clusters consists of 4000 data instances. Visualization of z1 = D1/2g1 and z2 = D1/2g2 is

−2 −1 0 1 2
−5

0

5

x

y

Normal Cases
Anomalies

(a) Synthetic Data

0.5 1 1.5 2

0.4

0.6

0.8

1

A
U

C
σ in Gaussian Kernel

SRA
LOF(k

lof
=200)

OC−SVM(ν
svm

=0.1)

(b) Influence of Bandwidth σ in Gaussian Kernel

−1.5 −1 −0.5 0 0.5 1 1.5
−5

0

5

10

15

1st Non−principal eigenvector

2n
d

N
on

−
pr

in
ci

pa
l e

ig
en

ve
ct

or

Normal Cases
Anomalies

(c) Visualization of z1 = D1/2g1 and z2 = D1/2g2
(σ = 1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

SRA, AUC=0.99
LOF(k

lof
=200), AUC=1

OC−SVM(ν
svm

=0.1), AUC=0.99

(d) ROC Curves (σ = 1)

Figure 4.1: Comparing SRA, LOF, OC-SVM on Synthetic Data 1

shown in Figure 4.1 (c). Note that, for this data set, the vector z2 = D1/2g2 is just used
for visualization. No information in the vector z2 = D1/2g2 is used. From Figure 4.1 (c),
we can see that |(z1)i| for the point anomalies is smaller than the data instances belonging
to the two clusters. For this data set, LOF, OC-SVM, and the proposed SRA algorithm
all perform reasonably well. ROC curves are shown in Figure 4.1 (d) in which we use the
Gaussian kernel with bandwidth σ = 1 as the kernel and similarity matrix for OC-SVM

49

and SRA. Using LOF, the AUC is close to 1. Using OC-SVM and SRA, the AUC is close to
0.99. The influence of the bandwidth σ in Gaussian kernel on the performance of the three
methods is shown in Figure 4.1 (b). Note that we directly use Euclidean distance in original
feature space for LOF, so there is no influence of the bandwidth σ on the performance of
LOF. For this data set, SRA and OC-SVM both perform stably with respect to the change
of bandwidth.

−2 −1 0 1 2
−2

−1

0

1

2

x

y

Normal Cases
Anomlaies

(a) Synthetic Data

0.5 1 1.5 2

0.4

0.6

0.8

1

A
U

C

σ in Gaussian Kernel

SRA
LOF(k

lof
=200)

OC−SVM(ν
svm

=0.1)

(b) Influence of Bandwidth σ in Gaussian Kernel

−1.5 −1 −0.5 0 0.5 1 1.5
−4

−2

0

2

4

1st Non−principal eigenvector

2n
d

N
on

−
pr

in
ci

pa
l e

ig
en

ve
ct

or

Normal Cases
Anomalies

(c) Visualization of z1 = D1/2g1 and z2 = D1/2g2
(σ = 1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

SRA, AUC=0.99
LOF(k

lof
=200), AUC=0.67

OC−SVM(ν
svm

=0.1), AUC=0.9

(d) ROC Curves (σ = 1)

Figure 4.2: Comparing SRA, LOF, OC-SVM on Synthetic Data 2

The second synthetic data set, as shown in Figure 4.2 (a), consists of two large and
dense clusters, marked in blue, together with 1000 point anomalies and two small clusters

50

of anomalies, marked in red. Each of the major clusters consists of 4000 data instances
and each of the small clusters consists of 1000 data instances. Visualization of z1 = D1/2g1
and z2 = D1/2g2 is shown in Figure 4.2 (c). Again, for this data set, the vector z2 = D1/2g2
is just used for visualization. ROC curves are shown in Figure 4.2 (d). Using LOF, AUC
is 0.67. Using SRA, AUC is 0.99. Using OC-SVM, AUC is 0.9. The influence of the

−3 −2 −1 0 1 2
−5

0

5

x

y

Normal Cases
Anomalies

(a) Synthetic Data

0 0.5 1 1.5 2
0.4

0.6

0.8

1

A
U

C

σ in Gaussian Kernel

SRA
LOF(k

lof
=200)

OC−SVM(ν
svm

=0.1)

(b) Influence of Bandwidth σ in Gaussian Kernel

−1 0 1 2 3
−10

−5

0

5

1st Non−principal eigenvector

2n
d

N
on

−
pr

in
ci

pa
l e

ig
en

ve
ct

or

Normal Cases
Anomalies

(c) Visualization of z1 = D1/2g1 and z2 = D1/2g2
(σ = 1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

SRA, AUC=0.99

LOF(k
lof

=200), AUC=0.7

OC−SVM(ν
svm

=0.1), AUC=0.82

(d) ROC Curves (σ = 1)

Figure 4.3: Comparing SRA, LOF, OC-SVM on Synthetic Data 3

bandwidth σ in Gaussian kernel on the performance of the three methods is shown in
Figure 4.2 (b). For this data set, the performance of SRA is more stable than that of OC-
SVM with respect to the change of bandwidth. However, when the bandwidth of Gaussian

51

kernel decreases, the performance of SRA and OC-SVM will decrease. From Figure 4.2 (b)
and (d), we can see SRA dominates the other two methods on this synthetic data set.

The third synthetic data set, as shown in Figure 4.3 (a), consists of one large and
dense clusters, marked in blue, together with 500 point anomalies and one small cluster of
anomalies, marked in red. Visualization of z1 = D1/2g1 and z2 = D1/2g2 is shown in Figure
4.3 (c) and the vector z2 = D1/2g2 is just used for visualization. Note that, for this data set,

−2 −1 0 1 2 3
−2

−1

0

1

2

3

x

y

Normal Cases
Anomalies

(a) Synthetic Data

0.5 1 1.5 2

0.4

0.6

0.8

1

A
U

C

σ in Gaussian Kernel

SRA
SRA(Combined)
LOF(k

lof
=200)

OC−SVM(ν
svm

=0.1)

(b) Influence of Bandwidth σ in Gaussian Kernel

−2 −1 0 1 2
−2

−1

0

1

2

1st Non−principal eigenvector

2n
d

N
on

−
pr

in
ci

pa
l e

ig
en

ve
ct

or

Normal Cases
Anomalies

(c) Visualization of z1 = D1/2g1 and z2 = D1/2g2
(σ = 1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

SRA, AUC=0.95
SRA(Combined), AUC=0.99
LOF(k

lof
=200), AUC=1

OC−SVM(ν
svm

=0.1), AUC=0.99

(d) ROC Curves (σ = 1)

Figure 4.4: Comparing SRA, LOF, OC-SVM on Synthetic Data 4

min{ |C+|
N
, |C−|

N
} ≤ RU = 20%, where C+ = {i : (z1)i ≥ 0} and C− = {i : (z1)i < 0}, holds

for all the similarity matrices experimented with. Therefore, SRA always output ranking

52

score with regard to one major pattern (Mflag=0 cases in Algorithm 1). Figure 4.3 (d)
demonstrates ROC curves of the three methods when Gaussian kernel with bandwidth
σ = 1 is used in OC-SVM and SRA. Using LOF, AUC is 0.7. Using SRA, AUC is 0.99.
Using OC-SVM, AUC is 0.82. The influence of the bandwidth σ in Gaussian kernel on the
performance of the three methods is shown in Figure 4.3 (b). From Figure 4.3 (b), we can
see that the performance of SRA is stabler than that of OC-SVM on this data set. From

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

A
U

C

ν
svm

(a) Change of Performance Due to Change of νsvm
of OC-SVM for Synthetic Data 2 (σ = 1)

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

A
U

C

ν
svm

(b) Change of Performance Due to Change of νsvm
of OC-SVM for Synthetic Data 3 (σ = 1)

0 500 1000 1500 2000 2500 3000
0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

C

k
lof

(c) Change of Performance Due to Change of klof
of LOF for Synthetic Data 2

0 500 1000 1500 2000 2500 3000
0.5

0.6

0.7

0.8

0.9

1

A
U

C

k
lof

(d) Change of Performance Due to Change of klof
of LOF for Synthetic Data 3

Figure 4.5: Change of Performance Due to Change of Parameter

Figure 4.3 (b) and (d), we can see that SRA also dominates the other two methods on this

53

synthetic data set

The fourth synthetic data set, as shown in Figure 4.4 (a), consists of three large and
dense clusters, marked in blue, together with 300 point anomalies. From Figure 4.4 (d),
in which Gaussian kernel with bandwidth σ = 1 is used for OC-SVM and SRA, we can
see that, for this data set, LOF, OC-SVM, and our SRA algorithm all perform reasonably
well. The influence of the bandwidth σ in Gaussian kernel on the performance of the
three methods is shown in Figure 4.4 (b). Note that for the previous three data sets, only
the 1st non-principal eigenvector z1 = D1/2g1 is used to generate the SRA anomaly score.
However, in this example, we also include the anomaly score computed from the 2nd non-
principal eigenvector z2 = D1/2g2 and combine it with anomaly score computed the from
the 1st non-principal eigenvector z1 = D1/2g1 using a simple summation. This corresponds
to SRA (Combined), marked in green, in Figure 4.4 (b) and (d). For this data set, we
can see that combining the SRA anomaly scores computed from 1st and 2nd non-principal
eigenvector together is better than using only SRA anomaly score computed from the 1st
non-principal eigenvector.

In the experimental results in this section, we have fixed the penalty parameter νsvm
for OC-SVM to be 0.1 and the neighborhood parameter klof for LOF to be 200. We point
out that by tuning the parameter, higher AUC can be achieved with OC-SVM and LOF
on the second and third synthetic data sets. The influence of the parameter νsvm on the
performance of OC-SVM and klof on the performance of LOF is illustrated in Figure 4.5.
The bandwidth of the Gaussian kernel for OC-SVM is fixed to be σ = 1. Note that, in
practice, it is often hard to tune the parameters for LOF and OC-SVM since we usually
do not have labels to evaluate the results. Given a similarity matrix, SRA either output
anomaly score vector with regard to a single pattern or with regard to multiple patterns,
the choice of which is controlled by parameter RU . As we can see from previous examples,
SRA only requires a rough estimation of the upper bound of the anomaly ratio RU in order
to be effective. Therefore, compared with LOF and OC-SVM, SRA, to some extent, is less
susceptible to the problems associated with parameter tuning.

In this section, we have demonstrated with some synthetic examples that SRA can be
one effective alternative to the state-of-the-art anomaly detection method. Furthermore,
we show that SRA, to some extent, alleviates the problem of parameter tuning. In addition,
SRA can sometimes outperform LOF and OC-SVM.

54

4.4 Case Study: Insurance Fraud Detection

Fighting against insurance fraud is a challenging problem. According to [51, 20], 21% ∼
36% auto-insurance claims contain elements of suspected fraud but only less than 3% of
suspected fraud is prosecuted. Traditionally insurance fraud detection relies heavily on
auditing and expert inspection. Since manually detecting fraudulant cases is costly and
inefficient, investigative resource can be severely constrained. Data mining and machine
learning techniques have recently gained the interest from both the insurers and policy
holders. In addition, due to the need to detect fraud prior to the claim payment, data
mining analytics is increasingly recognized as a key in fighting against fraud. There is a
great demand for efficient predicative methods which maximize the true positive detection
rate, minimize the false positive rate, and are able to quickly identify new and emerging
fraud schemes.

The existing literature on auto insurance fraud detection typically formulates the prob-
lem as a supervised learning task, see, e.g., [39, 40] and references therein. The literature
on auto insurance unsupervised fraud detection is extremely sparse. To the best of our
knowledge, there are clustering analysis [11] (based on self-organizing feature map) and
PRIDIT analysis [10, 2, 1] (based on RIDIT Score and Principal Component Analysis).
However, studies in [11, 10, 2, 1] are all conducted using a single Personal Injury Pro-
tection (PIP) data set, which is provided by Automobile Insurance Bureau (AIB) from
Massachusetts [10]. This data set has been preprocessed by auditors and fraud detection
inspectors so that all the features are the red flags selected by domain experts. Further-
more, this data set consists of predictive variables which have been constructed such that
the members from the fraudulent class tend to score lower than the members from the non-
fraudulent class. Consequently methods developed for data sets under these assumptions
are not truly unsupervised learning methods and are susceptible to pitfalls which come
from potential untrustworthiness in human assessments. Furthermore, insurance claim da-
ta often consists of numerical, ordinal, categorical, and text data. Consequently, it will be
hard to apply methods proposed in [11, 10, 2, 1] without preprocessing from experts since
they can only deal with numerical features.

To illustrate the effectiveness of the proposed SRA algorithm on insurance fraud detec-
tion, we apply it for an auto insurance claim data set used in [39]. This is the only publicly
available auto insurance fraud data set that we can find from the academic literature. This
data set consists of 15420 claim instances from January 1994 to December 1996. It has a
6% fraudulent cases and 94% legitimate cases, with an average of 430 claims per month. In
addition, the data set consists of 31 attributes, all of which can be considered as categorical
or ordinal, including base policy, fault, vehicle category, vehicle price (6 nominal values),

55

month of the accident, manufacturer of the car, accidental area, gender of policy holder,
and others. Intuitively, anomaly in this case should be assessed with respect to nominal
value combinations. Consequently the overlapping similarity and Hamming distance based
kernels are reasonable similarities to use.

In [39], this data set is used to assess achievable prediction quality from the supervised
learning. Since labels for auto insurance claims are generally not available at the detection
time, we now apply our proposed unsupervised SRA to the claim data set. In other words,
the labels are used here only for performance evaluation.

When applying standard unsupervised fraud detection methods on this data set, we
encounter two major challenges which have been briefly mentioned in the previous sec-
tions. Firstly, most of the attributes in this dataset are categorical or ordinal. Secondly,
unlike common anomaly detection problems, the claim data forms multiple patterns. Con-
sequently one-class anomaly detection method is less likely to be effective.

We train a supervised Random Forest (RF) on the full dataset. The training accuracy
of RF is used as an upper bound for evaluations of unsupervised learning methods. For
all computational results reported subsequently, the number of trees built is 500 and the
number of attributes used for building each tree is 6. The number of trees that classify the
data instance as fraud is used as the ranking score. What we have observed is that the
|C+| ≈ |C−| for all the similarities we have experimented with, thus we always output the
SRA ranking score with regard to multiple patterns (mFLAG=1). Computational results
from SRA are all based on the 1st non-principal eigenvector only. We use the distance in
the derived feature space, implicitly defined by a kernel function, as the distance metric
for LOF. Formally, let K(x, y) be a kernel function that uniquely define a feature map
θ : χ ⊆ <d → H ⊆ <d′ . The Euclidean distance between two data instance x and x̂ in the
derived feature space H is then:

d(x, y) = ‖θ(x)− θ(x̂)‖2
=
√
θ(x)T θ(x) + θ(x̂)T θ(x̂)− 2 · θ(x)T θ(x̂)

=
√
K(x, x) +K(x̂, x̂)− 2 · K(x, x̂)

(4.5)

Table 4.3 summarizes AUCs from different methods on different similarities. We note
that some of the results here have been included in our recent paper [37]. In the following
sections, the fraudulent cases are marked in red while the legal cases are marked in blue.

56

Table 4.3: Summary of Results for the Fraud Detection Data Set

Automobile Fraud Detection

Method OS
AGK HDK
β τ

10 100 1000 3000 0.5 0.8

LOF klof

10 0.53 0.5 0.52 0.58 0.64 0.52 0.53
100 0.51 0.51* 0.54 0.58 0.67 0.51 0.52
500 0.53 0.52* 0.55 0.59 0.68 0.51 0.51
1000 0.53 0.52* 0.53 0.59 0.69 0.5 0.5
3000 0.5 0.58* 0.55 0.58 0.69 0.54* 0.55*

OC-SVM νsvm

0.01 0.51* 0.53* 0.51* 0.54 0.59 0.51* 0.52*
0.05 0.51* 0.53* 0.51* 0.55 0.59 0.52* 0.53*
0.1 0.51* 0.54* 0.51* 0.55 0.59 0.53* 0.54*

SRA mFLAG 1 0.73 0.74 0.74 0.66 0.74 0.74 0.74

For entries marked by *, AUC reported is one minus the actual AUC (which is below 0.5).
OS:Overlapping Similarity, AGK: Adaptive Gaussian Kernel

HDK:Hamming Distance Kernel

−2 −1 0 1 2
−3

−2

−1

0

1

2

1st Non−principal Eigenvector

2n
d

N
on

−
pr

in
ci

pa
l E

ig
en

ve
ct

or

(a) Visualization of z1 = D1/2g1 and z2 = D1/2g2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

OC−SVM (ν
svm

=0.01), AUC=0.51*

LOF (k
lof

=1000), AUC=0.53

SRA(mFLAG=1), AUC=0.73
Supervised RF, AUC=0.83

Upper Bound

(b) ROC Curves

Figure 4.6: Comparisons Based on the Overlapping Similarity

57

−2 −1 0 1 2 3
−2

−1

0

1

2

3

1st Non−principal Eigenvector

2n
d

N
on

−
pr

in
ci

pa
l E

ig
en

ve
ct

or

(a) Visualization of z1 = D1/2g(1) and z2 =
D1/2g(2)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

OC−SVM (ν
svm

=0.1), AUC=0.51*

LOF (k
lof

=500), AUC=0.55

SRA(mFLAG=1), AUC=0.74
Supervised RF, AUC=0.83

Upper Bound

(b) ROC Curves

Figure 4.7: Comparisons Based on an Adaptive Gaussian Kernel with β = 100

4.4.1 Comparisons with LOF, OC-SVM and (supervised) RF

We first compare the performance of SRA with that of LOF and OC-SVM using overlapping
similarity, as well as (supervised) RF. We note that, in contrast to SRA, which only requires
a rough estimation of RU , LOF requires tuning of the parameter klof and OC-SVM requires
tuning of parameter µsvm. This can present more challenges for unsupervised learning since
there is no mechanism to decide how to choose their values.

Figure 4.6 (b) presents ROC curves for RF (supervised), SRA, LOF and OC-SVM,
where latter three used overlapping similarity. For LOF and OC-SVM, they correspond to
the optimal AUC among different parameters we have experimented with.

Figure 4.7 (b) shows ROC curves for SRA, LOF, OC-SVM achieved with the adaptive
Gaussian Kernel with the weighted Hamming distance and neighborhood size β = 100.
We observe that AUC for each of SRA, LOF, and OC-SVM is improved. We conjecture
that the improvement comes from the fact that the weighted Hamming distance is a better
distance measures than Hamming distance, since information on the number of distinct
value in each feature is also included in the similarity measure. From Figure 4.7 (a), we also
observe that, using the adaptive Gaussian kernel, clusters are also more distinct comparing
to the overlapping similarity.

Hamming distance kernel is defined based on the overlapping similarity measure. Figure
4.8 compares performance of SRA, LOF and OC-SVM using a Hamming distance kernel.

58

−2 −1 0 1 2
−3

−2

−1

0

1

2

1st Non−principal Eigenvector

2n
d

N
on

−
pr

in
ci

pa
l E

ig
en

ve
ct

or

(a) Visualization of z1 = D1/2g1 and z2 = D1/2g2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

OC−SVM (ν
svm

=0.01), AUC=0.52

LOF (k
lof

=100), AUC=0.52

SRA(mFLAG=1), AUC=0.74
Supervised RF, AUC=0.83

Upper Bound

(b) ROC Curves

Figure 4.8: Comparisons Based on a Hamming Distance Kernel with τ = 0.8

We observe a slight change in cluster structures, but SRA achieves a similar 0.74 AUC.

4.4.2 Understanding and Validating Detected Abnormal Pat-
terns

−2 −1 0 1 2
−3

−2

−1

0

1

2

1st Non−principal Eigenvector

2n
d

N
on

−
pr

in
ci

pa
l E

ig
en

ve
ct

or

Figure 4.9: Clusters With Color

Cluster # I # L # F rf
1 (blue) 723 722 1 0.0014
2 (green) 3261 3228 33 0.0101
3 (red) 4266 4231 35 0.0082
4 (black) 6423 5622 761 0.1185
5 (yellow) 206 203 3 0.0146
6 (purple) 340 294 46 0.1353
7 (brown) 201 157 44 0.2189
I: No. of Instance, # L: No. of Legal

F: No. of Fraud, rf : Fraud Ratio

Table 4.4: Summary Information for Clus-
ters

In order to understand whether the ranking of suspiciousness for this auto fraud de-
tection problem is reasonable, we investigate the significant attributes under which highly

59

Base
Policy

Fault

Vehicle
Category

Cluster3
Gini:0.0005
(4263)

sport

Cluster7
Gini:0.27

(19)

utility

policy holder

Cluster1
Gini:0.01
(727)

third party

liability

Fault

Vehicle
Category

Vehicle
Category

Cluster7
Gini:0.02
(186)

sport

Cluster6
Gini:0.01
(336)

utility

sport
or utility

Cluster4
Gini:0.001
(6426)

sedan

policy holder

Vehicle
Category

Number
of

Previous
Claims

Cluster2
Gini:0.12

(15)

no < 4

Cluster5
Gini:0.18

(19)

no >= 4

utility

Vehicle
Category

Cluster5
Gini:0.00
(184)

sport

Cluster2
Gini:0.00
(3245)

sedan

sport
or sedan

third party

all perils or collision

Figure 4.10: Decision Tree

ranked claims are different from the majority. If deviation from the majority is based on
attributes which can lead to suspicion, further investigation of these cases are deemed nec-
essary. As an example here, we investigate clusters identified using the Hamming distance
kernel with τ = 0.8. Figure 4.9 is identical to Figure 4.8 (a), except that different clusters
formed by the 1st and 2nd non-principal eigenvectors are displayed with different colors.
The fraud ratio of each cluster is shown in Table 4.4. It can be seen from the plot and the
table that most of the fraudulent cases (92%) reside in the region colored in black, brown
and purple. They are also regions that have relatively high anomaly score from SRA. Such
observation leads us to investigate what each cluster represents, especially the ones with
high fraud ratio.

For this purpose, we build a standard CART (classification and regression tree) to
deduct rules for each cluster. The training labels for CART are the cluster labels that we
have identified from the 1st and 2nd non-principal eigenvectors and training data is the
whole data set. We can discover several rules from Figure 4.10 for the clusters, colored in
black, brown and purple, which have relatively high rank from SRA:

1. If the insurance policy is for collision or all perils and it is the policy holder who
causes the accident (policy holder at fault), the corresponding claim belongs to the

60

cluster with high fraud ratio (colored in black, brown and purple).

2. If the insurance policy is for liability and/or it is not the policy holder who causes the
accident (third party at fault), the corresponding claim belongs to the other clusters
(colored in blue, red, yellow and green).

3. Following Rule 1, if the policy holder drives a sport car, the corresponding claim
belongs to cluster 7 (colored in brown). If the policy holder drive a utility car,
the corresponding claim belongs to cluster 6 (colored in purple). Otherwise, the
corresponding claim belongs to cluster 4 (colored in black).

Intuitively, even without the ranking function, the rules deducted for cluster 4, 6 and 7
indeed seem to be suspicious to alert auditors to carry on further investigation. What
is more, from training supervised random forest in the previous section, we have learnt
that the most important 3 attributes in classify fraudulent cases against legal cases are
base policy, car types , and fault. As you can see, the three attributes are actually the
attributes used in defining the clusters identified by SRA. Thus, we conclude that ranking
from SRA is actually meaningful and reasonable for this auto fraud insurance detection
data set.

4.5 Additional Real Data Sets

In this section, we demonstrate effectiveness of the proposed SRA algorithm on several
other real data sets from the UCI machine learning repository [3]. Again, the penalty
parameter νsvm for OC-SVM is set to 0.1 and the neighborhood parameter klof for LOF
is set to 200. The upper bound of anomaly ratio RU , for SRA algorithm, is set to 30%.
The graph constructed for SRA is a fully connected graph. For real valued data sets,
Gaussian kernel is used for similarity (kernel) matrices for OC-SVM and SRA. Euclidean
distance in the original feature space is used as the distance metric for LOF. For data sets
with categorical attributes, Hamming distance kernel discussed in Section 2.3 is used. The
Euclidean distance in the derived feature space implicitly defined by the kernel function is
used as the distance metric for LOF.

The first data set is the internet advertisement data set which consists of 3279 data
instances. A total of 2821 data instances correspond to non-advertisement web sites and
458 data instances correspond to advertisement web sites. For each data instance, there
are 1558 real valued attributes. We treat the 458 data instances that correspond to ad-
vertisement web sites as anomalies. Note that for this high dimensional data sets, to use

61

Gaussian kernel as the similarity and kernel matrices for OC-SVM and SRA, we need to
set the bandwidth σ to be approximately proportional to the number of attributes d. The
visualization of the eigenvectors can be found in Figure 4.11 (a) where we use the Gaussian
kernel with bandwidth σ = 60. For this data set, the vector z2 = D1/2g2 is just used for

−10 −8 −6 −4 −2 0

−3

−2

−1

0

1

2

1st Non−principal eigenvector

2n
d

N
on

−
pr

in
ci

pa
l e

ig
en

ve
ct

or

Non−advertisement Sites
Advertisement Sites

(a) Visualization of z1 = D1/2g1 and z2 = D1/2g2
(σ = 60)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

SRA, AUC=0.88
LOF(k

lof
=200), AUC=0.68

OC−SVM(ν
svm

=0.1), AUC=0.66

(b) ROC Curves (σ = 60)

Figure 4.11: Comparing SRA, LOF, OC-SVM on Advertisement Data Set

visualization. For this data set, SRA dominates OC-SVM and LOF. A demonstration of
ROC curves is shown in Figure 4.11 (b). SRA achieves AUC=0.88 while LOF achieves
AUC=0.68 and OC-SVM achieves AUC=0.66. The changes of performance due to changes
of parameters in Gaussian kernel, LOF ,OC-SVM are shown in 4.12. From 4.12 (b) and
(c), we observe that, for this data set, tuning the parameters for LOF and OC-SVM will
not significantly improve the results.

The second data set is the satellite image data set which consists of 6435 data instances.
For each data instance, there are 36 real valued attributes. There are 7 classes within the
data set and each of them corresponds to a specific type of landscapes. We treat the data
instances belonging to Class 4 as anomalies since the number of data instances belonging
to Class 4 is the smallest. The rest of the data instances are treated as normal cases. In
this example, the anomaly score computed the from the 2nd non-principal eigenvector is
also included. We combine it, using a simple summation, with the anomaly score from
the 1st non-principal eigenvector. This corresponds to SRA (Combined), marked in green,
in Figure 4.13 (b) and 4.14 (a). Visualization of eigenvectors and ROC curves are shown
in Figure 4.13, where a Gaussian kernel with bandwidth σ = 10 is used for OC-SVM

62

50 100 150
0.65

0.7

0.75

0.8

0.85

0.9

A
U

C

σ in Gaussian Kernel

SRA1
LOF(k

lof
=200)

OC−SVM(ν
svm

=0.1)

(a) Influence of Bandwidth σ in
Gaussian Kernel

0 0.2 0.4 0.6 0.8 1
0.65

0.66

0.67

0.68

0.69

A
U

C

ν
svm

(b) Influence of νsvm for OC-
SVM (σ = 60)

0 200 400 600 800 1000 1200
0.65

0.66

0.67

0.68

0.69

0.7

0.71

A
U

C

k
lof

(c) Influence of klof for LOF

Figure 4.12: Change of Performance Due to Change of Parameter (Advertisement Data)

−2 −1 0 1 2
−2

−1

0

1

2

3

4

1st Non−principal eigenvector

2n
d

N
on

−
pr

in
ci

pa
l e

ig
en

ve
ct

or

Other Classes
Class 4

(a) Visualization of z1 = D1/2g1 and z2 = D1/2g2
(σ = 10)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

SRA, AUC=0.79
LOF(k

lof
=200), AUC=0.42

OC−SVM(ν
svm

=0.1), AUC=0.25

SRA(Combined), AUC=0.8

(b) ROC Curves (σ = 10)

Figure 4.13: Comparing SRA, LOF, OC-SVM on Satellite Data Set

63

2 4 6 8 10

0.2

0.4

0.6

0.8

1

A
U

C

σ in Gaussian Kernel

SRA
SRA(Combined)
LOF(k

lof
=200)

OC−SVM(ν
svm

=0.1)

(a) Influence of Bandwidth σ in
Gaussian Kernel

0 0.2 0.4 0.6 0.8 1
0.25

0.3

0.35

0.4

0.45

0.5

A
U

C

ν
svm

(b) Influence of νsvm for OC-
SVM (σ = 10)

0 200 400 600 800 1000 1200
0.35

0.4

0.45

0.5

A
U

C

k
lof

(c) Influence of klof for LOF

Figure 4.14: Change of Performance Due to Change of Parameter (Satellite Data Set)

and SRA. We note that SRA still dominates LOF and OC-SVM on this data set and
tuning the parameter for LOF and OC-SVM does not significantly improve the results.
We also notice that for OC-SVM, AUC is actually below 0.3. If we reverse the ranking,
we achieve AUC=0.75. However, reversing the ranking contradicts the assumption of OC-
SVM. In addition, from Figure 4.13 (a), we can see that SRA also performs poorly when
the bandwidth for the Gaussian kernel is small.

−2 0 2 4 6 8 10
−15

−10

−5

0

5

10

1st Non−principal eigenvector

2n
d

N
on

−
pr

in
ci

pa
l e

ig
en

ve
ct

or

Normal Cases
Anomalies

(a) Visualization of z1 = D1/2g1 and z2 = D1/2g2
(σ = 5)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

SRA, AUC=0.79
LOF(k

lof
=200), AUC=0.72

OC−SVM(ν
svm

=0.1), AUC=0.65

(b) ROC Curves (σ = 5)

Figure 4.15: Comparing SRA, LOF, OC-SVM on Solar Data Set

The third data set is the solar flare data set which consists of 1389 data instances. Each
data instance corresponds to a specific day and the output target is the number of times

64

2 4 6 8 10 12

0.4

0.5

0.6

0.7

0.8

A
U

C

σ in Gaussian Kernel

SRA
LOF(k

lof
=200)

OC−SVM(ν
svm

=0.1)

(a) Influence of Bandwidth σ in
Gaussian Kernel

0 0.2 0.4 0.6 0.8 1
0.64

0.66

0.68

0.7

0.72

0.74

A
U

C

ν
svm

(b) Influence of νsvm for OC-
SVM (σ = 5)

0 100 200 300 400 500 600

0.65

0.7

0.75

0.8

A
U

C

k
lof

(c) Influence of klof for LOF

Figure 4.16: Change of Performance Due to Change of Parameter (Solar Data Set)

the solar flares occur within that day. There are 32 real valued attributes for this data
set. Among the 1389 days recorded, solar flares only occur in 68 days. We treat the days
when solar flares occur as anomalies. For this data set, the best AUC for SRA is 0.8 , the
best AUC for LOF is 0.75 and the best AUC for OC-SVM is 0.72. When the bandwidth
of the Gaussian kernel is within the range of [3,5], SRA dominates the LOF and OC-SVM
as shown in Figure 4.15 (b) and Figure 4.16 (a). However, we also observe that SRA only
performs well when the bandwidth of the Gaussian kernel is within the range of [3,5].

From the previous two examples, we notice the choice of similarity matrix can play
an important role in successfully applying SRA for anomaly detection. How to find the
best similarity matrices, which capture the important structure within the data sets, is
challenging and worthy of future investigation.

Lastly we consider the mushroom data which consists of 8124 instances originally. There
are two classes in this data set: edible and poisonous classes, with 4208 edible data instances
and 3916 poisonous data instances. We create an anomaly detection problem by including
all 4208 edible data instances as normal cases and randomly selecting 300 poisonous data
instances as anomalies. All attributes in this data set are categorical. We use Hamming
distance kernel (τ = 0.8) for OC-SVM and SRA. Visualization of eigenvectors is shown
in Figure 4.17 (a). Using the 1st non-principal eigenvector only, the SRA ranking score
only yields AUC=0.65. However, from visualization of the eigenvectors, we can see clearly
that more than two major patterns exist. Therefore, if we also include the anomaly score
computed the from the 2nd non-principal eigenvector and combine it with anomaly score
computed the from the 1st non-principal eigenvector using a simple summation, AUC=0.94
is achieved. LOF can also perform reasonably well with AUC close to 0.95 on this data
sets as long as the klof is large than 150. OC-SVM can achieve close to 0.9 AUC if we tune

65

−0.2 −0.1 0 0.1 0.2 0.3
−0.2

−0.1

0

0.1

0.2

1st Non−principal eigenvector

2n
d

N
on

−
pr

in
ci

pa
l e

ig
en

ve
ct

or

Edible
Poisonous

(a) Visualization of z1 = D1/2g1 and z2 = D1/2g2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
ru

e
P

os
iti

ve
 R

at
e

False Positive Rate

SRA, AUC=0.65
SRA(Combined), AUC=0.94
LOF(k

lof
=200), AUC=0.95

OC−SVM(ν
svm

=0.1), AUC=0.78

(b) ROC Curves

Figure 4.17: Comparing SRA, LOF, OC-SVM on Mushroom Data Set

0 0.2 0.4 0.6 0.8 1
0.7

0.75

0.8

0.85

0.9

0.95

A
U

C

ν
svm

(a) Influence of νsvm for OC-SVM)

0 200 400 600 800 1000 1200
0.7

0.75

0.8

0.85

0.9

0.95

A
U

C

k
lof

(b) Influence of klof for LOF

Figure 4.18: Change of Performance Due to Change of Parameter (Mushroom Data Set)

66

the penalty parameter νsvm. The influence of klof on LOF and νsvm on OC-SVM is shown
in Figure 4.18.

In this section, with four real data sets, we further demonstrate the effectiveness of
the proposed SRA for anomaly detection problems. We can see that SRA is an effective
alternative to LOF and OC-SVM. In addition, in certain cases, SRA outperforms OC-SVM
and LOF.

67

Chapter 5

Conclusion

In this thesis, we propose a spectral ranking method for anomaly detection (SRA). We
observe that the spectral optimization can be interpreted as a relaxation of the unsuper-
vised SVM; consequently the absolute value of a non-principal eigenvector is a measure
of strength of support in a two classes separation. Alternative random walk perspective
provides a different motivation for the proposed SRA algorithm. Based on this information
in the eigenvector, in the cases where more than one major patterns for normal cases exist,
a data instance is more likely to be an anomaly if the absolute value of its corresponding
element in the non-principal eigenvector is smaller. Furthermore, we allow a choice of the
reference in the assessment of anomaly ranking. If the minority cluster class does not have
a sufficient mass, one can choose to assess anomaly likelihood with respect to a single
majority class and ranking is generated suitably with this view. Otherwise, anomaly is
assessed with two main patterns. Other anomaly detection methods often lack the simul-
taneous detection for both one-class anomaly and multi-class anomaly. Furthermore, with
a meaningful similarity measure, SRA method is able to deal with data sets with different
types of attributes. This feature is also often missing for many other anomaly detection
methods.

As an illustration of the proposed SRA, we consider the challenging auto fraud insurance
detection problem based on a real claim data set. Since obtaining labels is time consuming,
costly, and error prone in real applications, we model the problem as unsupervised learning.
For the given claim dataset, SRA generates ranking without labels. The given labels
are used in performance evaluation only. Since data attributes are categorical, we assess
anomaly in nominal value combinations which lead to suspiciousness of the claim. We
choose the Hamming distance and Hamming distance based kernels in generating spectral

68

ranking for this data set. SRA yields an impressive 0.74 AUC, which is close to 0.83 AUC
generated by the supervised RF.

We also compare our SRA method with two state-of-the-art anomaly detection meth-
ods, OC-SVM and LOF, using several synthetic data sets and several real data sets. We
show that SRA can be an effective alternative to OC-SVM and LOF and can sometimes
outperform OC-SVM and LOF.

5.1 Future Work

Here we list several directions for extending the proposed SRA algorithm in the future:

1. In this thesis, we mainly utilize the 1st non-principal eigenvector. We demonstrate
several examples where, by combining the SRA anomaly scores from the 1st and
2nd non-principal eigenvectors using a simple summation, better performance can be
achieved. How to best combine the SRA anomaly scores from multiple eigenvectors
can be one of the future work.

2. An alternative to cope with cases where more than two major patterns exist is to
iteratively apply the SRA with the 1st non-principal eigenvector. In other words, we
further segment both or one of the subgroups C+ = {i : (z1)i ≥ 0} and C− = {i :
(z1)i < 0}. This is another direction to extend our proposed SRA algorithm.

3. As we have mentioned in Section 3.1, the principal eigenvector of the transition matrix
P is the stationary distribution which can be used for detecting point anomalies. How
to combine the anomaly scores from SRA with the stationary distribution π is also
one of the interesting direction to extend the SRA algorithm.

4. How to construct appropriate similarity matrices based on the given data sets for
SRA and spectral clustering is also another future direction to explore.

69

Appendix A

Proof of Theorem 3

Recall that the unsupervised SVM formulation is :

min
yi∈{+1,−1}


maxα eTα− 1

2
αTY KY α

subject to yTα = 0
0 ≤ αi ≤ C, i = 1, . . . , n

 (A.1)

The inner optimization problem of (A.1) can be rewritten as:

max
z

eT |z| − 1

2
zTKz

subject to eT z = 0

|zi| ≤ C, i = 1, . . . , n

(A.2)

where zi = αiyi, i = 1, ..., n. We note that eT |z| is convex and (A.2) has many local
maximizers. The nonconvex relaxation of the unsupervised SVM is :

min
z
− 1

2
zTKz

subject to eT z = 0

|zi| ≤ C, i = 1, . . . , n

(A.3)

Theorem 3. Suppose that K is symmetric positive definite. Let(α∗,y∗) be a solution to
the unsupervised SVM (A.1). Assume that the solution z∗ to (A.3) is a local maximizer of
(A.2) and satisfies eT |z∗| = eTα∗. Then a∗z = |z∗| and y∗z = sign(z∗) solves the unsupervised
SVM (A.1).

70

Proof. Assume that (α∗, y∗) solves the unsupervised SVM (A.1). Let Y ∗ = diag(y∗) and
Y ∗z = diag(y∗z). Then Y ∗α∗ is a local maximizers of (A.2) and has the smallest objective
function value among all local maximizers.

It is clear that Y ∗α∗ is a feasible point for the relaxation problem (A.3). Since z∗ solves
(A.3), we have

−1

2
α∗Tz Y ∗z KY

∗
z α
∗
z ≤ −

1

2
α∗TY ∗KY ∗α∗

From the assumption eT |z∗| = eTα∗, we have

−1

2
α∗Tz Y ∗z KY

∗
z α
∗
z + eTα∗z ≤ −

1

2
α∗TY ∗KY ∗α∗ + eTα∗

From above and the assumption that z∗ is a local maximizer of (A.2), we conclude that
α∗z = |z∗| and y∗z = sign(z∗) solves the unsupervised SVM (A.1). This completes the
proof.

71

Appendix B

Out of Sample Prediction

In previous discussion, we have encountered four different matrices:

• unnormalized Laplacian matrix : L = D −W

• normalized Laplacian matrix: Lrw = I −D−1W

• symmetric normalized Laplacian matrix: Lsym = I −D−1/2WD−1/2

• transition matrix: P = WD−1

Note that if u is an eigenvector of Lrw with eigenvalue λ then g = D1/2u is an eigenvector
of Lsym with eigenvalue λ. Similarly, if g is an eigenvector of Lsym with eigenvalue λ then
z = D1/2g is an eigenvector of P with eigenvalue 1− λ, where

z = D1/2g = Du , g = D1/2u (B.1)

SRA algorithm is based on z1 = D1/2g1, which is the eigenvector for P associated with the
second largest eigenvalue. Let u1 be the eigenvector for Lrw associated with the smallest
nonzero eigenvalue λ1, i.e,

Lrwu1 = λ1u1 (B.2)

Thus for the jth element (u1)j of u1, we have:

λ1(u1)j = (u1)j −
n∑
i=1

1

dj
Wij(u1)i ⇔ (1− λ1)(u1)j =

1

dj

n∑
i=1

Wij(u1)i (B.3)

72

From z = D1/2g = Du, for the the jth element of z1, we have:

(z1)j = dj(u1)j =

∑n
i=1Wij(u1)i

1− λ1
=

∑n
i=1Wij(u1)i

λ̂1
(B.4)

where λ̂1 = 1− λ1 is the second largest eigenvalue of P = WD−1. From (B.4), we can see
that the jth element of z1 can be viewed as the weighted summation of all the elements
of u1 scaled by the constant λ̂1. The weights are the weights of edges connecting the jth
data instance with all the data instances.

Suppose matrix W is positive semi-definite and corresponds to a kernel function K(x, y),
which implicitly computes the inner product φ(x)Tφ(y) with a high dimensional feature
mapping φ(·). Consider a specific feature space H = {φ(xi)} and we have a training set
X = {v1, . . . , vn} and an out of sample testing point vy for prediction. Matrix W is the
kernel matrix for training data X. Then we want to find α = {α1, α2, ..., αn} such that:

n∑
i=1

αiφ(vi) = φ(X)α = φ(vy) (B.5)

where φ(X) = [φ(v1), . . . , φ(vn)]. Hence,

φ(X)Tφ(X)α = φ(X)Tφ(vy)

Consequently,
Wα = ky (B.6)

where ky = φ(X)Tφ(vy) . More explicitly, we have

W =

 W11 . . . W1n
...

. . .
...

Wn1 . . . Wnn

 and ky = [W1y, . . . ,Wny]
T

Suppose z1 is the eigenvector associated with the second largest eigenvector of P = WD−1.
Then zy of the data instance vy can be predicted by the weighted score of the training
instances:

zy = αT z1 = zT1 α = zT1 (W−1ky)

Since WD−1z1 = λ̂1z1, we have

zT1 =
zT1D

−1W

λ̂1

73

Thus

zy = zT1 α = zT1 (W−1ky) =
zT1D

−1ky

λ̂1

From z1 = Du1 and D−1Wu1 = λ̂1u1, we have:

zy = zT1 α = zT1 (W−1ky) =
uT1W

λ̂1
(W−1ky) =

uT1 ky

λ̂1
=

∑n
i=1Wiy(u1)j

λ̂1
(B.7)

We notice that (B.4) is similar to (B.7). In other words, the prediction of the zy is again

represented as a weighted summation of all the elements of u1 scaled by the constant λ̂1.
Thus, the prediction of the anomaly score is set to fy = max(|z1|) − |zy| or fy = ±zy,
depending on whether to output a score with respect to one pattern or not. The predic-
tion procedure discussed above can also be applied to other non-principal eigenvectors.
Therefore, the prediction procedure still works in the cases where we want to combine the
anomaly scores from more than one non-principal eigenvectors.

74

Appendix C

One-Class Support Vector Machine
(OC-SVM)

One-Class Support Vector Machine (OC-SVM) is proposed by Schölkopf et al. [42] for
estimating the region where most of the data instances occur in a feature space. The
feature space usually is the derived feature space implicitly defined by a specific kernel
function. The OC-SVM is based on the ν-SVM proposed by Schölkopf et al. [44].

The OC-SVM tries to separate the unlabelled training data set X = {x1, . . . , xn},
where xi ∈ χ ⊆ <d, from the origin in <d using a hyperplane wTx = p where the distance
between the origin and the hyperplane, p

‖w‖2 , is maximized and most of the data instances

are in the half space wTx ≥ p . Penalized slack variables, ξi, are introduced to allow
some data instances to be in the wrong half space wTx < p as shown in Figure C.1. The
corresponding primal optimization problem is as follows:

min
w,p,ξ

1

2
‖w‖22 +

1

νn

n∑
i=1

ξi − p

subject to wTxi ≥ p− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n

(C.1)

where 0 < ν ≤ 1 is a parameter that controls the tradeoff between maximizing the distance
between origin and the the hyperplane, wTx = p, and containing most of the data in the
normal region, wTx ≥ p, created by the hyperplane as shown in Figure C.1.

Problem (C.1) is a strictly convex quadratic programming problem. The solution can

75

Origin

Normal Region

ξi
‖w‖2

Outlier
Region

p

‖w‖2

wTx = p

Figure C.1: Illustration of OC-SVM

be obtained by its dual problem [42]:

min
α

n∑
i=1

n∑
j=1

αiαjx
T
i xj

subject to 0 ≤ αi ≤
1

νn
, i = 1, . . . , n

n∑
i=1

αi = 1

(C.2)

Let the optimal solution from problem (C.2) be α̂∗. We denote the set of support vectors

as ŜV = {xi|α̂∗i 6= 0} and set of outliers as Ô = {xi|ξi 6= 0}. It can be shown [43] that ν is
an upper bound on the fraction of outliers and a lower bound on the fraction of support
vectors. Detailed proof and explanation are shown in [43].

Let K(x, y) be a kernel function corresponding to a feature map θ : χ ⊆ <d → H ⊆ <d′ .

76

The OC-SVM in the derived feature space H is then:

min
α

n∑
i=1

n∑
j=1

αiαjK(xi, xj)

subject to 0 ≤ αi ≤
1

νn
, i = 1, . . . , n

n∑
i=1

αi = 1

(C.3)

After computing the optimal α̃∗ for problem (C.3), p∗ can be recovered from any xi that
satisfies 0 < α̃∗i <

1
νn

:

p∗ =
n∑
j=1

α̃∗jK(xj, xi)

The binary decision function for anomaly detection is then:

f(x) = sign

(
n∑
i=1

α̃∗iK(x, xi)− p∗
)

(C.4)

It can be shown [43] that finding the hyperplane wTφ(x) = p that separates the training
data set from the origin in a derived feature space, where the distance between the origin
and the hyperplane, p

‖w‖2 , is maximized, is equivalent to finding a hypersphere with the
smallest radius in the derived feature spaceH that encloses the training data set. Formally,
let R be the radius of the hypershpere. We can put most of the data instances into a small
hypershpere with its radius minimized. The optimization problem is then:

min
R,ξ,c

R2 +
1

νn

n∑
i

ξi

subject to ‖φ(xi)− c‖22 ≤ R2 + ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n

(C.5)

where c ∈ H is the center of the hypersphere in a derived space H. This leads to its dual

77

problem:

min
α

n∑
i=1

n∑
j=1

αiαjK(xi, xj)−
n∑
i=1

αiK(xi, xi)

subject to 0 ≤ αi ≤
1

νn
, i = 1, . . . , n

n∑
i=1

αi = 1

(C.6)

After obtaining the optimal solution α̃∗ of (C.6), the center of the hypersphere c is then
given by c =

∑n
i=1 α̃

∗
iφ(xi) [42]. The corresponding decision function is then:

f2(x) = sign

(
R2 −

n∑
i=1

n∑
j=1

α̃∗i α̃
∗
jK(xi, xj) + 2

n∑
i

α̃∗iK(xi, x)−K(x, x)

)
(C.7)

where R can be recovered by solving f2(xi) = 0 with any xi where 0 < αi <
1
νn

. The
square of the distance ‖φ(x)− c‖22 is then:

d(x) =
n∑
i=1

n∑
j=1

α̃∗i α̃
∗
jK(xi, xj)− 2

n∑
i

α̃∗iK(xi, x) +K(x, x) (C.8)

Note that for many kernel functions, such as Gaussian kernel, K(xi, xi) is a constant for
1 ≤ i ≤ n. In addition, the second constraint in (C.3) and (C.6) requires that

∑n
i=1 αi = 1.

Therefore, under the assumption that K(xi, xi) is a constant, (C.3) is equivalent to (C.6)
since

n∑
i=1

n∑
j=1

αiαjK(xi, xj)−
n∑
i=1

αiK(xi, xi)

is equivalent to
n∑
i=1

n∑
j=1

αiαjK(xi, xj)

when K(xi, xi) is a constant and
∑n

i=1 αi = 1.

The second formulation (C.6) of OC-SVM enables us to generate ranking scores using
(C.8) instead of binary predictions. The square of distance ‖φ(x) − c‖22, between φ(x)
and c, can be used to compute the anomaly ranking score of the data instance x. The

78

predicted label can be obtained by thresholding the function d(x) instead of using the sign
of R2 − d(x). It can be shown that [43], under the condition that K(xi, xi) is a constant
for 1 ≤ i ≤ n, decision function (C.4) is equivalent to decision function (C.7). Therefore
thresholding the function d(x) is equivalent to thresholding

f̃(x) = wT∗ θ(x)− p∗ =
n∑
i=1

α̃∗iK(x, xi)− p∗

79

Appendix D

Deduction of Classification Trees

Recall that, to deduce a regression tree, we start with the full feature space <d and we
want to find an attribute j and a split point s to split the space into two regions:

r1(j, s) = {xi|(xi)j ≤ s} and r2(j, s) = {xi|(xi)j > s}

so that the sum of squared error is minimized:

min
j,s

 ∑
xi∈r1(j,s)

(yi − C1) +
∑

xi∈r2(j,s)

(yi − C2)


where C1 is the average of the training output targets of all xi ∈ r1(j, s) and C2 is the
average of the training output targets of all xi ∈ r2(j, s). After we find the best partition
strategy for the whole data set, we have two regions. The same procedure is adopted to
further partition all the resulting regions until certain stopping criteria are reached

For a classification problem, we use weighted sum of certain impurity measures to
replace the sum of squared errors. Let nm be the number of training data instances
inside the region rm. Suppose that the output target yi can take k possible values, i.e,
yi ∈ F = {t1, . . . , tk}. Let hm be the value of output target yi that occurs most frequently
inside region rm and pjm be the fraction of output targets that takes the value tj inside
region rm. Three impurity measures can then be used for a specific region rm:

• Misclassification error:

Errorm =
1

nm

∑
xi∈rm

δ(hm, yi) , δ(hm, yi) =

{
1, hm 6= yi
0, hm = yi

80

• Gini Index:

Ginim = 1−
k∑
i=1

p2im

• Information Entropy:

Infom = −
k∑
i=1

pim log pim

CART uses Gini index as the impurity measure while other tree based methods such as C4.5
and ID3 use information entropy [25]. These impurity measures evaluate the homogeneity
within different regions. For example, given a region where all the training data instances
inside the region have the same value for the output targets, all three impurity measures
mentioned above for this region would be 0. Ideally, we want to partition the space
into different regions where the impurity measures for each of the region is 0. Thus, these
measures provide criteria for partitioning the feature space. Taking a classification problem
on a real valued training data set, i.e., xi ∈ <d, as an example. Let the total number of
data instances be n and nm be the number of training data instances inside the region rm.
We start with the full feature space <d and we want to find an attribute j and a split point
s to split the space into two regions:

r1(j, s) = {xi|(xi)j ≤ s} and r2(j, s) = {xi|(xi)j > s}

where the weighted sum of a specific impurity measure of r1(j, s) and r2(j, s) is minimized:

min
j,s

(n1

n
Error1 +

n2

n
Error2

)
(Misclssisification Error)

or
min
j,s

(n1

n
Gini1 +

n2

n
Gini2

)
(Gini Index)

or
min
j,s

(n1

n
Info1 +

n2

n
Info2

)
(Information Entropy)

Again, we repeat the same procedure to further partition all the resulting regions until
certain stopping criteria are reached or the impurity measure is already 0 for the region
we want to split.

81

References

[1] Ai, J., Brockett, P. L., and Golden, L. L. (2009). Assessing consumer fraud risk in
insurance claims: An unsupervised learning technique using discrete and continuous
predictor variables. North American Actuarial Journal, 13(4):438–458.

[2] Ai, J., Brockett, P. L., Golden, L. L., and Guillén, M. (2012). A robust unsupervised
method for fraud rate estimation. Journal of Risk and Insurance.

[3] Asuncion, A. and Newman, D. (2007). UCI machine learning repository.

[4] Belkin, M. and Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for
embedding and clustering. In NIPS, volume 14, pages 585–591.

[5] Boriah, S., Chandola, V., and Kumar, V. (2008). Similarity measures for categorical
data: A comparative evaluation. red, 30(2):3.

[6] Bradley, A. P. (1997). The use of the area under the roc curve in the evaluation of
machine learning algorithms. Pattern Recognition, 30:1145–1159.

[7] Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

[8] Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and
regression trees. CRC press.

[9] Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000). LOF: identifying
density-based local outliers. In ACM Sigmod Record, volume 29, pages 93–104. ACM.

[10] Brockett, P. L., Derrig, R. A., Golden, L. L., Levine, A., and Alpert, M. (2002).
Fraud classification using principal component analysis of ridits. Journal of Risk and
Insurance, 69(3):341–371.

82

[11] Brockett, P. L., Xia, X., and Derrig, R. A. (1998). Using Kohonen’s self-organizing
feature map to uncover automobile bodily injury claims fraud. Journal of Risk and
Insurance, pages 245–274.

[12] Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey.
ACM Computing Surveys, 41(3):15.

[13] Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27.

[14] Chapelle, O., Sindhwani, V., and Keerthi, S. S. (2008). Optimization techniques for
semi-supervised support vector machines. The Journal of Machine Learning Research,
9:203–233.

[15] Couto, J. (2005). Kernel k-means for categorical data. In Advances in Intelligent Data
Analysis VI, pages 46–56. Springer.

[16] Cowling, M. G. (1983). Harmonic analysis on semigroups. Annals of Mathematics,
pages 267–283.

[17] Cristianini, N. and Shawe-Taylor, J. (2000). An introduction to support vector ma-
chines and other kernel-based learning methods. Cambridge university press.

[18] David, G. and Averbuch, A. (2012). Spectralcat: Categorical spectral clustering of
numerical and nominal data. Pattern Recognition, 45(1):416–433.

[19] DeLong, E. R., DeLong, D. M., and Clarke-Pearson, D. L. (1988). Comparing the
Areas under Two or More Correlated Receiver Operating Characteristic Curves: A
Nonparametric Approach. Biometrics, 44(3):837–845.

[20] Derrig, R. A. (2002). Insurance fraud. Journal of Risk and Insurance, 69(3):271–287.

[21] Eskin, E., Arnold, A., Prerau, M., Portnoy, L., and Stolfo, S. (2002). A geomet-
ric framework for unsupervised anomaly detection. In Applications of Data mining in
Computer Security, pages 77–101. Springer.

[22] Gower, J. C. (1971). A general coefficient of similarity and some of its properties.
Biometrics, pages 857–871.

[23] Haasdonk, B. (2005). Feature space interpretation of svms with indefinite kernels.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(4):482–492.

83

[24] Haofan, Z., Ke, N., Thomas, F. C., and Yuying, L. Spectral ranking and unsuper-
vised feature selection for point, collective and contextual anomaly detection. under
preparation.

[25] Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Friedman, J., and Tibshirani, R.
(2009). The elements of statistical learning, volume 2. Springer.

[26] He, Z., Xu, X., and Deng, S. (2003). Discovering cluster-based local outliers. Pattern
Recognition Letters, 24(9):1641–1650.

[27] Herbrich, R., Graepel, T., and Obermayer, K. (1999). Large margin rank boundaries
for ordinal regression. Advances in Neural Information Processing Systems, pages 115–
132.

[28] Jayasumana, S., Hartley, R., Salzmann, M., Li, H., and Harandi, M. (2013). Kernel
methods on the Riemannian manifold of symmetric positive definite matrices. In Com-
puter Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 73–80.
IEEE.

[29] Knorr, E. M., Ng, R. T., and Tucakov, V. (2000). Distance-based outliers: algorithms
and applications. The International Journal on Very Large Data Bases, 8(3-4):237–253.

[30] Kriegel, H.-P., Kröger, P., Schubert, E., and Zimek, A. (2011). Interpreting and
unifying outlier scores. In SDM, pages 13–24. SIAM.

[31] Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., and Watkins, C. (2002).
Text classification using string kernels. The Journal of Machine Learning Research,
2:419–444.

[32] Luss, R. and d’Aspremont, A. (2008). Support vector machine classification with
indefinite kernels. In Advances in Neural Information Processing Systems, pages 953–
960.

[33] Markou, M. and Singh, S. (2003). Novelty detection: a review-part 1: statistical
approaches. Signal Processing, 83(12):2481–2497.

[34] Metz, C. E. (1978). Basic principles of ROC analysis. Seminars in nuclear medicine,
8(4):283–298.

[35] Moonesinghe, H. and Tan, P.-N. (2006). Outlier detection using random walks. In
Tools with Artificial Intelligence, 2006. ICTAI’06. 18th IEEE International Conference
on, pages 532–539. IEEE.

84

[36] Ng, A. Y., Jordan, M. I., Weiss, Y., et al. (2002). On spectral clustering: Analysis
and an algorithm. Advances in Neural Information Processing Systems, 2:849–856.

[37] Nian, K., Zhang, H., Tayal, A., Coleman, T. F., and Li, Y. (2014). Auto insurnace
fraud detection using unsupervised spectral ranking for anomaly. Journal of Risk and
Insurance, submitted.

[38] Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation
ranking: Bringing order to the web.

[39] Phua, C., Alahakoon, D., and Lee, V. (2004). Minority report in fraud detection:
classification of skewed data. ACM SIGKDD Explorations Newsletter, 6(1):50–59.

[40] Phua, C., Lee, V., Smith, K., and Gayler, R. (2010). A comprehensive survey of data
mining-based fraud detection research. arXiv preprint arXiv:1009.6119.

[41] Provost, F. J., Fawcett, T., and Kohavi, R. (1998). The case against accuracy esti-
mation for comparing induction algorithms. In ICML, volume 98, pages 445–453.

[42] Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., and Williamson, R. C.
(2001). Estimating the support of a high-dimensional distribution. Neural Computation,
13(7):1443–1471.

[43] Scholkopf, B. and Smola, A. J. (2001). Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press.

[44] Schölkopf, B., Smola, A. J., Williamson, R. C., and Bartlett, P. L. (2000). New
support vector algorithms. Neural computation, 12(5):1207–1245.

[45] Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 22(8):888–905.

[46] Smits, G. F. and Jordaan, E. M. (2002). Improved svm regression using mixtures
of kernels. In Neural Networks, 2002. IJCNN’02. Proceedings of the 2002 International
Joint Conference on, volume 3, pages 2785–2790. IEEE.

[47] Tang, J., Chen, Z., Fu, A. W.-C., and Cheung, D. W. (2002). Enhancing effectiveness
of outlier detections for low density patterns. In Advances in Knowledge Discovery and
Data Mining, pages 535–548. Springer.

[48] Tax, D. (2014). DDtools, the data description toolbox for matlab. version 2.1.1.

85

[49] Tayal, A., Coleman, T. F., and Li, Y. (2013a). Bounding the difference between
rankrc and ranksvm and an application to multi-level rare class kernel ranking. Journal
on Machine Learning Research, submitted.

[50] Tayal, A., Coleman, T. F., and Li, Y. (2013b). Rankrc: Large-scale nonlinear rare
class ranking. IEEE Transactions on Knowkedge and Data Engineering, submitted.

[51] Tennyson, S. and Salsas-Forn, P. (2002). Claims auditing in automobile insurance:
fraud detection and deterrence objectives. Journal of Risk and Insurance, 69(3):289–308.

[52] Vapnik, V. N. and Vapnik, V. (1998). Statistical learning theory, volume 2. Wiley
New York.

[53] Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing,
17(4):395–416.

[54] Wang, X. and Davidson, I. (2009). Discovering contexts and contextual outliers using
random walks in graphs. In Data Mining, 2009. ICDM’09. Ninth IEEE International
Conference on, pages 1034–1039. IEEE.

[55] Yeung, D.-Y. and Chow, C. (2002). Parzen-window network intrusion detectors. In
Pattern Recognition, 2002. Proceedings. 16th International Conference on, volume 4,
pages 385–388. IEEE.

86

	List of Tables
	List of Figures
	Introduction
	Anomaly Detection and Associated Challenges
	Existing Anomaly Ranking Methods
	Contribution

	Spectral Clustering and Support Vector Machine
	Spectral Clustering
	Graph Construction
	Graph Partition
	Spectral Approximation

	Support Vector Machine
	Supervised SVM
	Kernel Trick
	Unsupervised SVM

	Similarity Matrices and Kernel Matrices

	Spectral Ranking for Anomaly Detection
	Understanding the 1st Non-principal Eigenvector
	Degree of Support Perspective
	Random Walk Perspective

	A Spectral Ranking for Anomaly Detection

	Experimental Results
	Receiver Operating Characteristic Curves
	Existing Methods for Comparisons
	Synthetic Data Sets
	Case Study: Insurance Fraud Detection
	Comparisons with LOF, OC-SVM and (supervised) RF
	Understanding and Validating Detected Abnormal Patterns

	Additional Real Data Sets

	Conclusion
	Future Work

	APPENDICES
	Proof of Theorem 3
	Out of Sample Prediction
	One-Class Support Vector Machine (OC-SVM)
	Deduction of Classification Trees
	References

