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Abstract 
 
Finite element (FE) simulations are widely used in automotive design processes to model the 

forming behavior of sheet metals. Comprehensive material characterization and the availability of 

suitable constitutive models are prerequisites for accurate modeling of these forming operations. 

In the current research, monotonic tension, compression and large strain compression-tension-

compression (CTC) and tension-compression-tension (TCT) experiments have been performed to 

characterize the mechanical behavior of AZ31B and ZEK100 magnesium sheets at room 

temperature. A digital image correlation system is used to measure the surface strains during 

monotonic tension and compression testing. The data is later processed to calculate the evolution 

of r-values with plastic deformation. Texture measurements of the annealed materials and 

fractography of deformed specimens under monotonic tension and compression are also 

performed. The results of mechanical testing are discussed in light of the crystallographic texture 

and deformation mechanisms such as slip, twinning and untwinning. It is observed that annealed 

AZ31B sheet has a strong basal texture where the majority of crystallographic -axes are aligned 

in the sheet normal (ND) direction whereas the annealed ZEK100 sheet exhibits a comparatively 

weak basal texture, with significant basal pole spreading in sheet transverse direction (TD). The 

AZ31B sheet specimens exhibit higher in-plane flow stresses and lower ductility as compared to 

ZEK100 sheet specimens. The tension-compression yield asymmetry is found to be more 

pronounced in AZ31B sheet as compared to ZEK100 sheet. In addition to this, the ZEK100 sheet 

specimens exhibit a strong in-plane orientation dependency of flow stress when subjected to 

uniaxial tension. Furthermore, a significantly greater evolution of plastic anisotropy (r-values) is 

observed for AZ31B sheet specimens as compared to ZEK100 sheet specimens. Moreover, the 

unusual S-shaped hardening behavior is observed during reverse tension following previous 

compression portions of CTC and TCT flow curves of AZ31B and ZEK100 sheets.  

A constitutive model is also proposed to capture the evolving asymmetric/anisotropic hardening 

response of magnesium alloys considering both monotonic and reverse loading paths. The 

hardening behaviour of magnesium alloys is classified into three deformation modes (i.e. 

Monotonic Loading [ML], Reverse Compression [RT], and Reverse Tension [RT]). The 

deformation modes correspond to the different loading regimes of the cyclic hardening curve. 

Specifically, the ML mode corresponds to the initial in-plane tension and the initial in-plane 
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compression from the annealed state, the RC mode corresponds to the in-plane compression 

following previous tension and the RT mode corresponds to the in-plane tension following 

previous compression. A multi-yield surface modeling approach is used where a CPB06 type 

anisotropic yield surface is assigned to each deformation mode. For each deformation mode, the 

yielding criterion is modified to capture the evolution of subsequent yield loci with accumulated 

plastic deformation. A strain rate independent elasto-plastic formulation is used to implement the 

proposed constitutive model as a UMAT in LS-DYNA. The predictions of the model are compared 

against the experimental monotonic and cyclic (CTC and TCT) flow stresses of AZ31B and 

ZEK100 sheets along different test directions. An excellent agreement is found between the 

simulated and experimental results.  
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Chapter 1: Introduction 
 

In light of volatile fuel prices and tighter emission regulations by the government, automotive 

industry has been increasingly considering the use of lightweight materials for structural 

components. Magnesium (Mg) alloys being the lightest of all possible structural engineering 

metals, are attractive candidates for use in automotive applications. Magnesium alloys possess low 

density, superior specific tensile strength and rigidity compared to traditional steel and aluminum 

alloys (Reed-Hill and Robertson [1957], Roberts [1960], Avedesian and Baker [1999]).  

The first use of magnesium alloys in automotive industry is dated back to the Second World War 

era (Bettles and Gibson [2005]). Currently, the majority of magnesium parts used in automotive 

applications are die casted (see Figure 1). However, the die casted magnesium parts often have 

poor fatigue strength and ductility (Doege and Dröder [2001], Xu et al. [2007]). Sheet forming of 

magnesium alloys, on the other hand, typically exhibit superior mechanical properties such as 

tensile and fatigue resistance (Duygulu and Agnew [2003], Bettles and Gibson [2005], Agnew et 

al. [2006], Easton et al. [2006], Jain and Agnew [2007]). However, sheet metal forming of 

magnesium alloys has been limited due to their poor formability at room temperature (Avedesian 

and Baker [1999]). The formability of magnesium alloys improves at higher temperatures but 

warm forming requires more complex tooling setup; thereby increasing the cost of the forming 

operation.  

 

Figure 1: Die cast magnesium parts in automotive industry (Kainer et al. [2008]) 
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Magnesium alloys exhibit unique mechanical properties such as tension-compression asymmetry 

in flow response and high in-plane anisotropy of yield stress and plastic flow. This unusual 

mechanical behaviour has been mainly linked to deformation twinning, which is more prevalent 

at room temperature. Of particular interest is to predict the deformation behavior of these alloys 

during sheet metal forming processes using finite element modeling (FEM). Due to their unique 

mechanical behaviour, modeling of magnesium alloys requires careful experimental 

characterization as well as advanced constitutive laws to predict the deformation behaviors under 

complex strain path changes during sheet metal forming.  

The general goal of this research is to support the application of magnesium alloys for sheet metal 

forming in automotive industry. In particular, a comprehensive material characterization study of 

AZ31B and ZEK100 magnesium alloys is conducted to improve the understanding of different 

deformation mechanisms and their effects on room temperature mechanical behavior of 

magnesium alloys. Furthermore, a continuum based constitutive model is developed and 

implemented in a commercial finite element code LS-DYNA to model the complex hardening 

behaviors of these magnesium alloys.   

The remainder of this thesis has been divided into different chapters. Chapter 2 provides 

background information about different deformation mechanisms in magnesium alloys as well as 

their effects on formability and mechanical behavior. A brief overview of different modelling 

approaches till-date is also provided in this chapter. Chapter 3 outlines the main objectives of this 

research. Chapter 4 details the procedures for experimental analysis. Chapter 5 presents the results 

of experimental work. The development of the new constitutive model is described in Chapter 6 

and its numerical implementation into the FEM code is outlined in Chapter 7. In Chapter 8, the 

simulation results using the proposed constitutive model are compared with the corresponding 

experimental findings. The section also summarizes the limitations of the current modelling 

approach and opportunities for future work. The last chapter of this thesis summarizes the present 

work and highlights the important observations and conclusions.            
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Chapter 2: Background 
 

2.1 Deformation mechanisms and formability 
 
Magnesium and its alloys have a hexagonal close-packed (HCP) crystal structure (see Figure 2) 

with a  ratio of 1.624 (Barrett [1952]). The low formability of Mg alloys arises from the limited 

number of active slip systems at room temperature. Basal  slip systems are the dominant slip 

systems in Magnesium alloys at room temperature (Roberts [1960]). Although, other slip systems, 

such as prism  and pyramidal  are also observed in magnesium, their critical resolved shear 

stresses (CRSS) are generally much higher than those of basal slip systems (Kelley and Hosford 

[1968b], Obara et al. [1973], Lou et al. [2007], Knezevic et al. [2010]). In order to achieve an 

arbitrary homogenous deformation in a polycrystalline material, five independent slip systems are 

required to be activated (Von Mises [1928], Taylor [1938]). However, all the previously mentioned 

slip systems can only provide a total of four independent slip systems at room temperature. The 

pyramidal  slip systems, which in principle can provide the additional degree of freedom 

required for homogeneous deformation, are difficult to activate at room temperature due to their 

high CRSS (Yoo et al. [2002], Agnew and Duygulu [2005], Lou et al. [2007]). However, it is 

observed that at room temperature, twinning can provide this additional independent deformation 

mechanism to satisfy the Von Mises criterion (Kocks and Westlake [1967]).  

Unlike dislocation slip, twinning in Mg alloys is a polar mechanism (Agnew and Duygulu [2005]). 

Two common twinning modes:  extension twins and  contraction 

twins, have been observed in Mg alloys (Yoo [1981], Knezevic et al. [2010]). The extension twins 

cause extension of the hexagonal lattice along the crystallographic  direction and reorient the 

crystal lattice by 86.3° about  directions. Contraction twins, on the other hand, produce a 

contractile strain along the crystallographic  direction and reorient the crystal lattice by 56.2° 

about the same  directions. (Knezevic et al. [2010]).    
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Figure 2: Important slip and twinning systems in magnesium alloys (Luque et al. [2013]) 

    

2.2 Initial texture and mechanical behavior 
 
The mechanical properties of magnesium alloys can vary significantly depending on the initial 

texture and loading path. Metal forming processes such as rolling can induce strong textures in 

wrought magnesium alloys. A well-known example of this is the AZ31B magnesium sheet, which 

usually has a strong basal texture developed due to prior rolling (Kaiser et al. [2003], Barnett et al. 

[2004], Styczynski et al. [2004]), where the majority of grains have their -axes aligned parallel 

to the sheet normal direction (ND) (Yukutake et al. [2003], Agnew and Duygulu [2005]). Thus, 

in-plane tension or through-thickness compression of the sheet causes contraction along the -axes 

of majority of the grains. This compressive strain along the -axes cannot be accommodated by 

means of easy to activate  type dislocation slip and require the activation of pyramidal  

slip systems or  contraction twins (Yoo [1981], Yi et al. [2006], Knezevic et al. 

[2010]), which are much harder to activate at room temperature due to their high CRSS (Yoo 

[1981], Gall et al. [2013]). On the contrary, in-plane compressive loading results in extension of 

the -axes of the lattice. This tensile strain along the -axes can be accommodated by easily 

activated  extension twinning at room temperature (Agnew and Duygulu [2005]). 

This strong dependence of deformation mechanisms on the in-plane loading direction of AZ31B 

sheet, leads to a strong tension-compression yield asymmetry at room temperature. (Gall et al. 
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[2013]). In addition to this, the limited formability of AZ31B sheet has also been linked to the 

strong basal texture, which offers only a limited number of active slip systems at room temperature 

(Agnew and Duygulu [2005], Lou et al. [2007]).     

One of the suggested methods to improve the room temperature formability of Mg alloys is by 

modifying the alloying composition by addition of Rare-Earth (RE) elements such as cerium (Ce), 

neodymium (Nd), yttrium (Y) and gadolinium (Gd). The addition of RE elements have shown to 

weaken the basal texture of rolled Mg alloys (Bohlen et al. [2007], Hantzsche et al. [2010], Al-

Samman and Li [2011], Jiang et al. [2011]), resulting in an enhancement of formability at room 

temperature (Dreyer et al [2010], Kurkuri et al. [2014]). Bohlen et al. [2006] has examined the 

texture and anisotropy of several Mg-Zn-RE alloys with different levels of zinc and rare earth 

additions. It is reported that the alloying additions has weakened the basal texture by placing more 

grains in favourable orientations for basal slip and tensile twinning and has also resulted in 

Lankford coefficient (r-values) of closer to unity. It is suggested that the lower r-values should 

lead to an improvement in forming behavior, especially under straining conditions, which call for 

thinning of the sheet (Bohlen et al. [2006]).  

Deformation twinning can significantly influence the in-plane hardening response of wrought Mg 

alloys (Lou et al. [2007], Knezevic et al. [2010]). The compressive hardening behavior of Mg sheet 

is characterized by an S-shaped sigmoidal hardening curve exhibiting a low initial yield stress (i.e. 

approximately one half of that for in-plane tension (Nobre et al. [2002]) followed by a concave-up 

stress-strain behavior with a low initial hardening rate due to extension twinning (Yukutake et al. 

[2003]). At large compressive strain, due to the exhaustion of twinning and dominance of slip 

mechanisms, the stress strain curve switches to that of a typical concave-down shape (Yukutake 

et al. [2003], Lou et al. [2007]). Apart from slip and twinning, untwinning may occur in a 

previously twinned material and can be characterized by the disappearance of existing twin bands 

(Lou et al. [2007]). Untwinning can occur during reverse loading paths such as in-plane tension 

following previous in-plane compression and results in an inflected S-shaped flow curve similar 

to that of twinning (Lou et al. [2007], Wu et al. [2008]). In cyclic loading of Mg alloys at room 

temperature, twinning and untwinning appear alternately and leads to a large asymmetry of cyclic 

deformation (Lou et al. [2007], Lee et. al [2008]). The asymmetric loading reversals and the 
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Bauschinger effect (Bauschinger [1886]) are often found to become more significant with an 

increase in strain amplitudes (Xiong et al. [2013]). 

 

2.3 Constitutive modelling 
 
Finite element (FE) simulations are widely used in automotive design processes to predict the 

deformation behavior of sheet metals during forming processes (Chung et al. [1992], [1996]). The 

availability of accurate numerical models is critically important for successful numerical analysis. 

However, due to the unusual mechanical behavior of magnesium alloys, constitutive modeling of 

these alloys is a challenging task. Several polycrystal type models have been proposed to model 

the complex deformation behavior of HCP metals (Tomé et al. [1991], Lebensohn and Tomé 

[1993], Kalidindi [1998], Staroselsky and Anand, [2003], Tome´ and Lebensohn [2004], Mayeur 

and McDowell [2007]). Although, the recent development in polycrystal modelling (Proust et al. 

[2009], Izadbakhsh et al. [2011], Wang et al. [2012,2013b]) has made it possible to capture and 

study the complex deformation mechanisms in HCP materials, the use of such models for sheet 

forming applications may still be impractical due to the high computational time. On the other 

hand, conventional continuum based models (Von Mises [1928], Hill [1948,1950], Hosford 

[1972], Barlat et al. [1991,1997,2003]) are more suitable for metals with BCC and FCC lattice 

structures where the mechanical behavior is not influenced by deformation twinning.   

Several continuum based approaches have been used to model the tension/compression asymmetry 

associated with HCP materials by introducing eccentricity of the yield surface (Lee and Backofen 

[1965], Kelley and Hosford [1968a]). Noticeably, Cazacu and Barlat [2004] modified the 

Drucker’s isotropic yield surface model (Drucker [1949]) to incorporate a strength differential 

parameter to account for tension/compression asymmetry. The yield surface was further modified 

to orthotropy by performing linear transformations on the Cauchy stress tensor. Cazacu and Barlat 

[2006] proposed an orthotropic yield criterion (CPB06) to account for both the anisotropy of a 

material and the yielding asymmetry between tension and compression. The yield surface was 

expressed in terms of the principal values of the linearly transformed stress deviator ensuring 

insensitivity to the hydrostatic pressure. Plunkett et al. [2008] introduced multiple linear 

transformations to CPB06 and showed that an improved accuracy in both the tensile and 

compressive anisotropy in yield stresses and r-values of materials could be achieved by 



 7 

incorporating additional linear transformations of the stress deviator. A different approach was 

used by Yoon et al. [1998], where a constant non-zero back stress was used to model the initial 

yield eccentricity of the yield surface. Li et al. [2010] modified the previous approach by 

introducing evolving Armstrong–Frederick-like (Armstrong and Frederick [1966]) back stress 

terms to model the evolving tension/compression asymmetry of AZ31B Mg sheets.      

Fewer continuum phenomenological approaches have been proposed to describe the reverse 

loading behavior of magnesium alloys. Lee et al. [2008] used a two surface plasticity model with 

use of gap functions to describe the reverse hardening behavior. The anisotropy and asymmetry in 

tension and compression was represented by a modified Drucker-Prager type yield criterion. Li et 

al. [2010] proposed a phenomenological model TWINLAW, where an isotropic Von Mises type 

yield surface with an evolving back stress was used to model reverse loading behavior. A set of 

different kinematic hardening rules depending on the active deformation mode (slip, twinning, and 

untwinning) were used to model hardening within each deformation mode. Kim et al. [2013] 

modeled the temperature-dependent asymmetric cyclic behavior of magnesium alloy sheets by 

classifying the hardening behavior in to three deformation modes based on the dominant 

deformation mechanism (i.e. twinning , untwinning and slip).  The yield surface, at any instant, 

was defined by two separate yield functions that correspond to the twinning/untwinning and slip 

dominant deformation modes. Nguyen et al. [2013] has proposed a multi-yield surface modelling 

approach where the hardening behavior of magnesium sheet was divided in to three deformation 

modes (slip, twinning, untwinning). Three separate Von Mises yield surfaces (one corresponding 

to each deformation mode) along with a set of corresponding hardening equations for each 

deformation mode, were used to model the cyclic hardening behavior of AZ31B sheets.  

Texture evolution in magnesium alloys causes evolving tension/compression asymmetry, evolving 

flow stress anisotropy between the different in-plane loading directions and significant r-values 

evolution with plastic deformation. This leads to a continuous change in the shape of the yield 

surface with on-going plastic deformation, which cannot be captured by simple isotropic hardening 

of the yield surface. Plunkett et al. [2006] proposed a methodology to account for this evolving 

anisotropy in HCP metals, where evolution of the anisotropic coefficients involved in the 

expression of the CPB06 yield function (Cazacu and Barlat [2006]) was considered. The yield 

surface corresponding to an arbitrary equivalent plastic strain level was obtained by interpolating 
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between two previously calibrated yield surfaces. Similar approach was later used by Gilles et al. 

[2011] to model the evolution of anisotropic hardening in TA-6 V titanium alloy. Yoon et al. 

[2013] and Ghaffari Tari et al. [2013] used the CPB06 yield criterion along with a set of evolution 

laws for the anisotropic coefficients involved in the yield criterion expression to model evolving 

anisotropy in AZ31B sheets. 

 

 

2.4 Need for current research 
 
Although there has been many material characterization studies performed on magnesium alloys 

in recent years, most of them have been focusing on the monotonic loading behavior of these 

alloys. There is limited data available on the large strain cyclic behavior and the evolution of plastic 

anisotropy in these materials which is required for accurate modeling of forming processes. Apart 

from material characterization, very few modelling approaches has been proposed to capture the 

large strain cyclic behavior of magnesium alloys. Furthermore, all the preceding modelling 

approaches for evolving anisotropic hardening of the yield surface were limited to monotonic 

loading conditions. To the best of author’s knowledge, no effort till date has been made to 

incorporate the effects of evolving anisotropic hardening of the yield surface considering reverse 

loading paths. However, accurate modelling of the reverse loading behavior is important as it is 

usually observed in sheet metal forming applications, when sheet element moves through the tool 

radii and draw beads (Lee et al. [2008]). Additionally, it is also essential for precise prediction of 

sheet springback.  
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Chapter 3: Research Objectives 
 
The overall goal of this research is the development of a rate-independent continuum based 

plasticity model for large strain cyclic hardening behavior of magnesium alloys. However, in order 

to achieve this overall goal, two primary objectives are defined as follows 

 

1. Characterization of the quasi-static room-temperature mechanical behavior of AZ31B and 

ZEK100 magnesium alloy sheets under monotonic and reverse loading paths. 

 

To this end, a comprehensive experimental investigation of the quasi-static, mechanical response 

of AZ31B and ZEK100 magnesium sheet alloys at room temperature, is presented. The effects of 

initial texture and different deformation mechanisms on the observed mechanical response of these 

alloys are also highlighted. Monotonic tension and compression tests are conducted along different 

in-plane directions and the evolution of r-values is measured as the deformation proceeds. Large 

strain compression-tension-compression (CTC) and tension-compression-tension (TCT) tests are 

conducted to characterize the in-plane cyclic hardening behavior. 

 

2. Develop a continuum based constitutive model to capture the evolving asymmetric / 

anisotropic hardening response of magnesium alloys considering both monotonic and 

reverse loading paths. 

 

For this purpose, a phenomenological model is proposed in which the cyclic hardening behaviour 

is classified into three deformation modes (i.e. Monotonic Loading [ML], Reverse Compression 

[RT], and Reverse Tension [RT]). In contrast to previous research works, the developed model 

captures the evolving asymmetric/anisotropic response of both flow stresses and r-values under 

both monotonic and reverse loading conditions. A strain rate independent elasto-plastic 

formulation is used to implement the proposed constitutive model as a user material subroutine 

(UMAT) within the commercial finite element software LS-DYNA. For validation of the 

constitutive model, the predictions of the model are compared against the experimental monotonic 

and cyclic (CTC and TCT) flow responses of AZ31B and ZEK100 sheets along different test 

directions.   
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Chapter 4: Material Characterization - Experimental Procedures 
 
Uniaxial tension, uniaxial compression, and cyclic tension-compression tests were performed to 

characterize the mechanical behavior of AZ31B and ZEK100 magnesium alloy sheets. All the 

mechanical tests were conducted at room temperature within the quasi-static regime and were 

repeated at least three times to ensure good repeatability. Electron Backscatter Diffraction (EBSD) 

method was used to characterize the initial annealed texture of the starting materials.  

 

4.1 Material properties 
 
AZ31B and ZEK100 alloy sheets with a nominal thickness of 1.6 mm were used in the present 

study. The chemical compositions of these alloys are listed in Table 1.  

Table 1: Chemical composition of as-received AZ31B and ZEK100 sheet materials. 

Material Chemical Composition (Max. wt%) 
Mg Al Zn Mn Ca Cu Fe Ni Si Zr Re* 

AZ31B Bal 3.5 1.3 1.0 0.04 0.05 0.005 0.005 0.05  -  - 
ZEK100 Bal   - 1.5   -   - 0.008 0.004 0.001   - 0.5 0.22 

 
The as received sheet materials were subjected to annealing heat treatments to eliminate the effects 

of previous cold working and to obtain a recrystallized starting microstructure. The AZ31B sheet 

was annealed at 350 °C for 1 h and then air cooled to room temperature. The ZEK100 sheet was 

annealed at 450 °C for a duration of 1 h in a vacuum furnace with Ar gas protection and then 

furnace cooled to room temperature. The furnace heating ramp-up rate was set to 100 °C/h for both 

annealing heat treatments. 

 

4.2 Monotonic tension tests 
 
Sub-sized ASTM tensile specimens (ASTM-E8M-13a) with a gauge length of 25 mm and a gauge 

width of 6 mm were prepared for tensile testing of AZ31B. The uniaxial tension tests for ZEK100 

sheet material were performed using a modified ASTM-E8M sheet specimen with a reduced gauge 

length of 15 mm (see Figure 3).  All the specimens were machined parallel to the rolling direction 

(RD), transverse to the rolling direction (TD) and 45° to the rolling direction (DD). The tests were 

carried out using an Instron 8511 Servohydraulic machine with a load cell capacity of 40 KN and 
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an MTS (Model: 632.12C-21) extensometer. The testing was conducted at room temperature at a 

nominal strain rate of 5 x 10-4/s. 

 

Figure 3: ZEK100 tensile test specimen 

The tensile Lankford parameter (r-value) and its evolution with plastic strain was also measured. 

For this purpose, a digital image correlation (DIC) system ARAMIS® was used to record the 

sample surface strain with tensile deformation. A random color pattern was sprayed on the sample 

surface within the gauge length prior to performing the tests. A digital image of the deformation 

was captured every second for the entire duration of a tensile test and the data was further 

processed to obtain axial and width strains. The measured axial and width strains were used to 

calculate r-values as follows: 

 (1) 

 
where ,   and  are the axial, width and through-thickness plastic strains respectively. It is 

noted that the assumption of volume constancy during plastic flow is inherent in the above 

formulation.  

 

4.3 Monotonic compression tests 
 
The quasi-static compression experiments in RD, DD and TD were performed using single sheet 

specimens (i.e. no bonding of multiple sheets) with a specimen dimensions of 6.0 mm gauge 

length, 4.0 mm gauge width and 1.6 mm sheet thickness. Compression tests were also performed 

through thickness of the sheet with the loading normal to the sheet plane (ND). However, for the 

compression tests in ND direction, specimens were prepared by bonding together three 1.6 mm 

thick round sheets having a diameter of 19.05 mm. A rather similar approach has been previously 

used by Tozawa [1978], Maeda et al. [1998], Ghaffari Tari et al. [2013] and Kurkuri et al. [2014]. 
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A high performance adhesive, Master bond SUPREME10HT®, was used to bond the sheet layers 

together. A small amount of pressure was applied and maintained for 24 hours until the adhesive 

was completely cured. For improved bonding results, the bonding surface of each sheet was 

roughened by light machining prior to bonding.  

Sheet metals are prone to buckling when subjected to in-plane compression, which makes it 

difficult to measure the actual stress-strain behavior of the material. Even though, buckling is a 

geometry dependent phenomenon, the flatness of contact surfaces (i.e. specimen and tooling 

contact surfaces) and friction between contacts play an important role in defining the onset of 

buckling. Thus, before testing, the contact surfaces of all the specimens were ground and polished 

using three different grades (1200, 2400 and 4000 grit) of SiC papers to minimize the effects of 

friction and to achieve a shiny surface finish.  

A custom designed fixture was used to carry out the compression tests. The fixture consisted of 

two custom made grips, which were attached to the actuator arms of the Instron machine (Figure 

4 (a)). Each grip (i.e. top and bottom) had a machined tungsten carbide insert incised in its center 

(Figure 4 (b)) and the compression specimen was placed on the carbide insert. The carbide insert 

provided a hard and flat contact surface between the specimen and the tooling. The test machine, 

the extensometer and the testing conditions (i.e. temperature and strain rate) used for compression 

tests were the same as that of the uniaxial tension tests. The r-values in compression were also 

determined using the DIC system. 

 

 

Figure 4: (a) Custom made compression fixture with top and bottom grips and (b) carbide insert incised into the bottom 
grip 
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4.4 Cyclic tests 
 
Compression-tension-compression (CTC) and tension-compression-tension (TCT) tests were 

performed to characterize the in-plane cyclic behavior of AZ31B and ZEK100 alloys. The tests 

were performed in three (RD, TD and DD) directions for ZEK100 and only in the rolling direction 

for AZ31B. Various methods have been proposed in the literature to prevent the buckling of 

specimens during in-plane cyclic compression tests (Kuwabara et al. [1995], Boger et al. [2005], 

Lou et al. [2007], Piao et al. [2012a,b]). In the present work, an anti-buckling fixture was used to 

prevent buckling of the sheet specimen during in-plane cyclic compression. The anti-buckling 

fixture and the cyclic specimen (Figure 5) were a slight modification of the one used by Kim and 

co-workers in their work (Kim et al. [2013]). The anti-buckling fixture consisted of two machined 

I-shaped blocks, made of high strength steel and were clamped to the gauge and shoulder portion 

of the cyclic specimen to prevent the out-of-plane buckling of the specimen. A thin layer of 

Teflon® sheet was placed between the specimen and the fixture blocks to minimize the effects of 

friction. The clamping force was adjusted by applying torque to the four bolts connecting the two 

blocks.    

 

Figure 5: (a) The anti-buckling fixture, (b) the cyclic test specimen 

The use of the I-shaped anti-buckling fixture could lead to undesired through thickness stresses 

imposed on the cyclic specimen. However, it has been reported in the literature that the through 

thickness stresses caused by the clamping force are negligible as compared to the in-plane stresses, 

and the amount of stress correction is known to be negligible when an appropriate amount of 

clamping force is applied (Boger et al. [2005], Kim et al. [2013], Lee et al. [2013]).In addition, 

before starting a cyclic test, a small amount of load (~0.02 KN) was momentarily applied to the 

specimen to cause an elastic deformation; and the Young’s modulus was measured from the elastic 

response. This process was repeated and the clamping force on the anti-buckling fixture was 
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adjusted until the measured Young’s modulus was in proximity of the theoretical actual Young’s 

modulus of magnesium. Hence, it was assured that the clamping force was just the proper amount 

to keep the specimen clamped in place at the beginning of the cyclic test. 

The cyclic tests were conducted using an MTS Landmark 370 Servohydraulic machine with a load 

cell capacity of 100 KN and an MTS (Model: 632.31F-24) extensometer. The tests were performed 

at room temperature under strain controlled condition at a nominal strain rate of 2.5 x 10-4/s.  

 

4.5 Texture measurements 
 
The EBSD texture measurements were performed for the initial annealed sheet material of AZ31B 

and ZEK100. The measurements were conducted using a LEO 1450 scanning electron microscope 

(SEM) equipped with a TSL EBSD camera using a step size of 0.5 µm. The EBSD data was later 

analyzed using the TSLTM OIM software. The EBSD data was cleaned and only data points having 

a confidence index (CI) above 0.2 were retained for the analysis.    

  

4.6 Fracture surface characterization 
 
Fracture surfaces of a few representatives samples were examined using (JEOL JSM-6460) 

scanning electron microscope. Both RD and TD uniaxial tension and compression samples for 

AZ31B and ZEK100 were examined to reveal fracture mechanisms.  
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Chapter 5: Material Characterization - Experimental Results and Discussion 
 

5.1 Initial texture 
 
Figure 6 (a) shows the inverse pole figure (IPF) map corresponding to the top rolled surface of the 

annealed AZ31B sheet. A strong initial basal texture is evident and is consistent with the  

basal pole figure (Figure 6 (b)), which shows the majority of -axes being aligned normal to the 

sheet plane. However, there is a relatively higher angular spreading of the basal poles towards RD, 

thereby giving rise to an ellipsoidal intensity distribution of the  pole figure. Furthermore, 

the prismatic  and the pyramidal  planes are distributed rather randomly in the sheet 

plane. 

 

 

Figure 6: (a) Initial texture and (b) pole figures for annealed AZ31B sheet. The RD-TD plane represents the rolled surface 
of the sheet. 

Figure 7 (a) shows the IPF map of the top rolled surface of the annealed ZEK100 sheet. The IPF 

map shows grains of several different colors distributed randomly, indicative of the fact that the 

starting texture for ZEK100 is rather different from that of AZ31B. In fact, the annealed ZEK100 

sheet exhibits a relatively weak basal texture (Figure 7 (b)), with significant spreading of basal 

poles along TD and a weaker peak intensity as compared to that of annealed AZ31B sheet. The 

intensity distribution for prismatic  planes shows higher intensity along RD whereas the 
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pyramidal  planes appear to be distributed rather randomly in the TD-RD plane with a 

slightly higher intensity at appropriate angles away from TD towards RD (see Figure 7 (b)).  

 

Figure 7: (a) Initial texture and (b) pole figures for annealed ZEK100 sheet. The RD-TD plane represents the rolled 
surface of the sheet. 

Figure 8 shows the Schmid factor distribution for different slip systems (i.e. a  basal 

plane slip system with an -axis slip direction, a  prismatic plane slip system with 

an -axis slip direction, a  first-order pyramidal plane slip system with an -axis 

slip direction, and a  pyramidal plane slip system with a  slip direction) with 

loading axis along RD,TD and ND. All the Schmid factors were calculated using EBSD results 

corresponding to the rolled surface of annealed AZ31B and ZEK100 sheets using the TSLTM OIM 

software.  

It is observed that for the annealed AZ31B specimen (Figure 8 (a)) the frequency percentage of 

crystals having a high Schmid factor (i.e. between 0.4-0.5) for basal slip is greater for loading 

along RD then TD. In fact, the average Schmid factor for basal slip for loading along RD is 

 and that for loading along TD is . This is consistent with the 

initial  pole figure of annealed AZ31B (Figure 6 (b)) where the basal poles show a higher 

angular spread towards RD then TD leading to an ellipsoidal intensity distribution of the  

pole figure. Moreover, irrespective of the loading axis, the average Schmid factor for basal slip is 

considerably lower than that for non-basal slip. However, it is important to realize that although 

the initial texture of AZ31B is suitably oriented for non-basal slip, the CRSS for non-basal slip is 
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comparatively high at room temperature (Agnew  et al. [2003], Barnett [2003], Agnew and 

Duygulu [2005], Lou et al. [2007], Ulacia et al. [2010]) thereby, limiting non-basal activity at room 

temperature. In contrast to the annealed AZ31B sheet, it is observed that for the annealed ZEK100 

sheet (Figure 8 (b)), the average Schmid factor for basal slip for loading along TD (i.e. 

) is higher than that for loading along RD (i.e. ) and is most likely caused 

by the higher angular spread of basal poles towards TD in the initial texture of ZEK100.  

It is worth noting that the initial texture of ZEK100 is more favorably oriented for basal slip as 

compared to the initial texture of AZ31B as indicated by the comparatively higher average Schmid 

factor values for ZEK100. Since basal slip plays an important role in room temperature 

deformation of Mg alloys, the relatively easy basal glide in ZEK100 could be an important factor 

contributing to the overall lower flow stresses observed in uniaxial tension and compression tests 

of ZEK100 as compared to AZ31B.   

 

Figure 8: Schmid factor distribution for different slip systems with loading axis along RD,TD and ND for (a) AZ31B 
annealed sheet and (b) ZEK100 annealed sheet. The Schmid factors are calculated from EBSD results corresponding to 

the rolled surface of annealed AZ31B and ZEK100 sheets using the TSLTM  OIM software.  

 

5.2 Monotonic tension and compression 
 
Figure 9 shows the tensile true stress – true plastic strain curves in the three directions (i.e. RD, 

DD and TD) for AZ31B and ZEK100 samples tested to failure at room temperature at a nominal 

strain rate of 5 x 10-4 s-1.  The corresponding 0.2% offset yield stresses are given in Table 2. The 

repeatability of the experiments was reasonably good, with an average absolute deviation from the 
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mean of approximately 2 MPa. The tested specimens showed signs of diffuse necking followed by 

an abrupt fracture without developing a localized neck, similar to the observations reported by 

Kang et al. [2013].  

 

Figure 9: True stress vs. true plastic strain response under monotonic tension for (a) AZ31B and (b) ZEK100 

It is observed that for AZ31B sheet specimens (Figure 9 (a)), the stress-strain curves exhibit a 

concave down shape typical of tensile tests. The yield and flow stresses are highest for TD 

specimen and lowest for RD specimen, consistent with results reported in the literature (Barnett et 

al. [2004], Agnew and Duygulu [2005], Lou et al. [2007], Khan et al. [2011]). The lower flow 

stress in RD as compared to TD is associated with the greater angular spread of basal poles towards 

RD than TD in the initial AZ31B sheet material (see Figure 6 (b)). This in turn improves the 

Schmid factor for basal slip for loading along RD (see Figure 8 (a)) leading to relatively easy basal 

glide and consequently lower flow stress in that direction. The yield and flow stress response for 

the DD specimen lies in between that of the TD and RD specimens of AZ31B.  In general, the 

tensile stress-strain curves of AZ31B exhibit similar features for loading along the three in-plane 

directions (i.e. RD, DD, TD). This behavior has been attributed to the inherent in-plane symmetry 

of the initial basal texture of annealed AZ31B as shown in Figure 6 (b). 

In comparison, the uniaxial tension curves for ZEK100 (Figure 9 (b)) exhibit a rather different 

flow stress response when compared with AZ31B. In particular, the yield and flow stresses are 

highest along RD and lowest along TD and the difference in yield and flow behavior along the 

three directions is comparatively more pronounced (i.e. higher planar anisotropy). Furthermore, 

the flow curve along RD exhibits a typical concave down shape representative of slip dominated 

deformation whereas the flow curve along TD exhibits an almost linear hardening for the initial 
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part of tensile deformation with an eventual transition to the concave down shape upon further 

straining. This linear flow behavior lies in-between that of the slip dominated concave-down and 

the twinning dominated concave-up behaviors. Similar linear hardening behavior along TD has 

been reported by Bohlen et al. [2007] in their study on magnesium-zinc-rare earth alloy sheets and 

by Barnett [2007]. It is suggested that this type of linear hardening behavior is a result of an 

interaction between basal slip and extension twinning dominated deformation mechanisms Bohlen 

et al. [2007]. In fact, EBSD texture measurements performed by Kurkuri et al. [2014] on a 

deformed TD tensile specimen of ZEK100 sheet, have confirmed the occurrence of extension 

twinning. It has been shown that those grains with their -axes originally parallel to TD, have been 

rotated by extension twinning, which resulted in their -axes to re-orient parallel to RD and ND 

sheet directions. Kurkuri et al. [2014] has also reported the occurrence of slip on prismatic and 

pyramidal planes after initial yielding, which is twinning dominated. Together, the occurrence of 

extension twinning and a mix of basal and prismatic slips may also account for the low strength 

and higher ductility shown by the TD specimen of ZEK100 as compared to the RD specimen (see 

Figure 9 (b)). 

Figure 10 shows the compressive true stress – true plastic strain curves for AZ31B and ZEK100 

sheet specimens tested to failure at room temperature at a nominal strain rate of 5 x 10-4 s-1. The 

corresponding 0.2% offset yield stresses are given in Table 2. The compression test results showed 

good repeatability with an average absolute deviation from the mean of approximately 6 MPa. The 

specimens failed by shearing through-thickness of the sheet with no apparent signs of buckling. 

The fractured surfaces analyzed under SEM showed a typical shear fracture and will be discussed 

later in this paper.  
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Figure 10: True stress vs. true plastic strain response under monotonic compression for (a) AZ31B and (b) ZEK100 

The compression curves for AZ31B and ZEK100 exhibit an unusual concave up appearance up to 

a certain strain level after which an inflection point is obvious. This behavior is consistent with 

results reported in literature (Nobre et al. [2002], Barnett et al. [2004], Agnew and Duygulu [2005], 

Lou et al. [2007]) and has been related to the activation of extension twinning at low strains 

followed by non-basal slip at larger strains. Consistent with the tensile tests results, the 

compressive yield and flow stresses for AZ31B are also highest along TD and lowest along RD 

whereas the contrary is true for ZEK100 sheet specimens.  It is also observed that compression of 

the ND specimen of AZ31B leads to significantly higher flow stress with a typical concave down 

shape. This behavior is linked to the strong basal texture of AZ31B sheet specimens where the 

compressive through thickness plastic strain requires contraction along the -axes of majority of 

grains. This contraction cannot be accommodated by the means of basal  and prismatic  

slips; thus, it requires activation of  pyramidal slip and contraction twinning, which 

consequently leads to higher flow stresses and comparatively lower ductility (Jiang et al. [2007]). 

Consistent with the recent results reported by Kurkuri et al. [2014], the ND (through-thickness) 

compression curve of ZEK100 also shows a tendency towards the concave down flow behavior, 

reflective of a predominant crystallographic slip deformation mechanism.  

In general, irrespective of the loading type (i.e. tension or compression), the flow stresses for 

AZ31B are comparatively higher than the corresponding flow stresses for ZEK100 sheet 

specimens.  
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Table 2: 0.2% offset yield stresses for AZ31B and ZEK100 

  RD DD TD ND 

AZ31B 
  161  177 189  - 

 92 93 99 156 

ZEK100 
 129 89 72 - 

  81 79 75 103 
 

5.3 Tension-compression asymmetry and planar anisotropy 
 
The yield stress anisotropy ratios given in Table 3 are calculated by dividing the highest in-plane 

yield stress by the lowest.  It is noted that, even though the 0.2% yield stresses (given in Table 2) 

for AZ31B sheet material used in this study, are slightly lower then what has been previously 

reported by Lou et al. (2007), the yield stress anisotropy ratios are almost identical. It is also 

observed that the ZEK100 sheet specimens exhibit a high yield stress anisotropy ratio (i.e. 1.79) 

when subjected to uniaxial tension. In other words, the uniaxial tensile yield strength for ZEK100 

samples oriented along RD is significantly higher than for those oriented along TD. This is related 

to the initial texture of ZEK100, which shows significant spreading of basal poles in TD, 

consequently resulting in the activation of extension twinning when subjected to tensile loading 

along TD. Thus, the activation of extension twinning leads to significantly lower tensile yield 

stress in TD as compared to RD and accordingly resulting in a relatively high tensile yield 

anisotropy ratio. It is also worth noting that the compressive yield stress anisotropy ratios for 

AZ31B and ZEK100 sheet materials are almost identical. This is due to the fact that irrespective 

of the loading direction (i.e. RD or TD), yielding during in-plane compression is dominated by the 

activation of extension twinning in both materials. 

The yield stress asymmetry is much more pronounced in annealed AZ31B sheet specimens as 

compared to annealed ZEK100 sheet specimens. As a result, the yield stress asymmetry ratios 

(Table 3) are noticeably higher for AZ31B sheet specimens. This profound yield stress asymmetry 

between tension and compression is caused by the strong basal texture of annealed AZ31B, which 

favours extension twinning only under in-plane compression. Furthermore, the TD specimen of 

ZEK100 shows almost similar yield strength in tension and compression as reflected by the very 

low yield stress asymmetry ratio of close to unity (i.e. 0.96 in Table 3).  This is because extension 

twinning is the dominant deformation mechanism in the early stages of both tensile and 
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compressive plastic deformations in TD. Thus, the tensile and compressive yield strengths of the 

TD specimen of ZEK100 are fairly identical. 

Table 3: Yield stress asymmetry and anisotropy ratios for AZ31 and ZEK100 sheet specimens 

Yield stress asymmetry ratio 
�������

���	
������
 

Yield stress anisotropy 
ratio 

 RD DD TD 

AZ31B 1.75 1.90 1.91 

��


�
            = 1.17 

��


�

    = 1.07 

ZEK100 1.59 1.13 0.96 


�

��
            = 1.79 


�

��
    = 1.08 

 

5.4 Anisotropy of deformation  
 
The evolution of the Lankford parameter (r-value) with uniaxial deformation was measured using 

the DIC system (ARAMIS®). Figure 11 shows the evolution of tensile and compressive r-values 

with true plastic strain for uniaxial tension and compression tests of AZ31B and ZEK100. It is 

observed that AZ31B (Figure 11 (a),(b)) exhibits significant evolution of plastic anisotropy (r-

values) in both tension and compression. The plastic anisotropy evolve much more rapidly for 

uniaxial tension along TD and is linked with the higher incidence of non-basal  slip relative to 

basal  slip during TD tension (Agnew and Duygulu [2005], Horton et al. [2005b], Lou et al. 

[2007]).  On the other hand, twinning produces substantial amount of through thickness plastic 

strain and as a result the compressive r-values for AZ31B are less than 1. The compressive r-values 

show an eventual increase with plastic strain, which is related to the exhaustion of twinning and 

dominance of slip with continuous compressive plastic straining (Lou et al. [2007]).  
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Figure 11: R-values evolution with true plastic strain under monotonic tension and compression for AZ31B and ZEK100 

A reduced plastic anisotropy (r~1) is observed for ZEK100 (Figure 11 (a),(b))  as compared to 

AZ31B. This behavior is related to the weaker basal texture of ZEK100, which has a comparatively 

large volume fraction of grains oriented favourably to accommodate the in-plane plastic 

deformation by slip and twinning; thus promoting sheet thinning (Bohlen et al. [2007]). 

Furthermore, for ZEK100 sheet material, it is observed that irrespective of tensile or compressive 

loading, the r-values for TD are much lower than those observed for RD and DD test directions. 

This trend is consistent with the results reported by Kurkuri et al. [2014], where it is suggested that 

this behavior is associated with greater resistance to in-plane deformation along RD as compared 

to ND (through-thickness) direction and is a result of the greater angular spreading of basal poles 

in TD direction of ZEK100 sheet.  
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5.5 Fractography 
 
Figure 12 shows the fracture surfaces of RD and TD tensile specimens of ZEK100 and AZ31B 

sheets. The ZEK100 RD and TD specimens show signs of ductile tearing along with the presence 

of some voids. On the other hand, many small micro voids are visible in the SEM images 

corresponding to RD and TD specimens of AZ31B. There is also some fast tearing apparent in the 

SEM images.  

Figure 13 shows the fracture surfaces of RD and TD specimens of ZEK100 and AZ31B sheet 

specimens subjected to monotonic compression. All SEM images show a typical shear fracture 

surface. The successive striations caused by the shearing force are noticeable in each SEM 

photomicrograph. 

 

Figure 12: Fracture surfaces of (a) ZEK100 RD (b) ZEK100 TD (c) AZ31B RD and (d) AZ31B TD tensile specimens 
deformed at a strain rate of 5x10-4 s-1 at room temperature. 
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Figure 13: Fracture surfaces of (a) ZEK100 RD (b) ZEK100 TD (c) AZ31B RD and (d) AZ31B TD compression 
specimens deformed at a strain rate of 5x10-4 s-1 at room temperature. 

 

5.6 Cyclic CTC and TCT tests  
 
Compression-tension-compression (CTC) and tension-compression-tension (TCT) tests were 

conducted for AZ31B (Figure 14) and ZEK100 (Figure 15) sheet materials using strain amplitudes 

of 2%, 4% and 6%. As mentioned previously, the experiments were conducted in all three test 

directions (RD, DD and TD) for ZEK100 and only in RD for AZ31B mainly due to the fact that a 

good amount of cyclic data for AZ31B is already available in the literature and the similarity in 

flow stress evolution across the three test directions has been reported for AZ31B (Lou et al. 

[2007]).    
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Figure 14: (a) CTC and (b) TCT true stress vs. true strain curves for AZ31B with 2%, 4% and 6% strain amplitudes for 
loading along RD 

With the exception of differences in yield stresses related to textural anisotropy, the flow stresses 

for AZ31B CTC and TCT tests (Figure 14) are highest for samples oriented along TD and lowest 

for those oriented along RD whereas the contrary is true for CTC and TCT tests of ZEK100 (see 

Figure 15). It is also observed that the CTC and TCT curves for AZ31B and ZEK100 exhibit an 

unusual sigmoidal S-shaped behavior in the reverse tension portion of the deformation following 

previous compression. This inflected shape does not show up in monotonic uniaxial tension tests 

or in the initial tensile deformation region of TCT curves.  Similar behavior has been previously 

reported by Lou and co-workers for AZ31B and is linked with the activation of untwinning process 

which is activated by extension along the -axes of the previously twinned grains (Lou et al. 

[2007]). It is also observed that this sigmoidal behavior during reverse tension is much more 

pronounced for ZEK100 samples oriented along RD and least pronounced for those oriented along 

TD. Lastly, as expected, the reverse tensile and compressive yield stresses for CTC and TCT 

loadings increase with an increase in strain amplitude from 2% to 6%. 
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Figure 15: (a),(c),(e) CTC and (b),(d),(f) TCT true stress vs. true strain curves for AZ31B with 2%, 4% and 6% strain 
amplitudes for loading along RD, DD and TD. 
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Chapter 6: Constitutive Model Development 
 

6.1 Modelling approach 
 
One of the major goals of this research is to develop a constitutive model that can capture the 

anisotropic/asymmetric hardening behavior of AZ31B and ZEK100 sheet metals subjected to 

monotonic or cyclic loading conditions. Several phenomenological continuum plasticity models 

have been proposed to capture the hardening behavior of AZ31 under reverse loading paths (Lee 

et al. [2008], Li et al. [2009], Kim et al. [2013], Nguyen et al. [2013]). A general approach is to 

classify the cyclic hardening behavior into three different deformation modes based on the 

dominant deformation mechanisms such as “Twinning” during in-plane compression, 

“Untwinning” during reverse tension and “Slip” during tension from the undeformed state or after 

exhaustion of twinning or untwinning deformation (see Li et al. [2009], Kim et al. [2013]). This 

classification of the cyclic hardening behavior is reasonable for some magnesium alloys such as 

AZ31B since it exhibits a strong basal texture (see Figure 6 (b)), which favors extension twinning 

deformation only during in-plane compression of the sheet. However, as discussed in the previous 

section, rare-earth magnesium alloys such as ZEK100 exhibit a comparatively weaker bimodal 

texture (see Figure 7 (b)); hence, extension twinning can be activated during both in-plane 

compression and in-plane tension. Consequently, it becomes rather difficult to associate a certain 

deformation mechanism (i.e. Twinning, Untwinning or Slip) with a certain type of loading (i.e. 

tension or compression). Therefore, in order to avoid such complications in the current modeling 

work, a relatively simple but effective approach is proposed.  

Figure 16 shows the schematic of typical CTC and TCT curves of a magnesium alloy sheet at room 

temperature. Four different loading regimes can be identified from the curves namely, initial 

tension, initial compression, reverse tension following compression and reverse compression 

following tension. In order to simplify the modeling approach, the cyclic hardening behavior of 

magnesium alloys is classified in accordance with these different loading regimes. More precisely, 

three distinct deformation modes are proposed: MODE1 - Monotonic Loading (ML), which 

corresponds to initial tension and initial compression portion of the CTC and TCT hardening 

curves. MODE2 - Reverse Compression (RC), which corresponds to the compression following 

tension portion of the CTC and TCT hardening curves. MODE3 - Reverse Tension (RT), which 
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corresponds to the tension following compression portion of the CTC and TCT curves (see Figure 

16). It is noted that, only one of the three deformation modes can be active at a time. The activation 

criterion for the three deformation modes is explained next. 

 

Figure 16: Flow stress curves for the three deformation modes: MODE 1: Monotonic Loading (ML), MODE 2: Reverse 
Compression (RC) and MODE 3: Reverse Tension (RT). 

The Monotonic Loading (ML) is the default deformation mode to begin with. In other words, any 

loading applied to the initial undeformed state (see Figure 16) will automatically activate this 

mode. The initial plastic deformation is certain to happen within this mode. However, as to which 

of the remaining two deformation modes (i.e. Reverse Compression (RC) or Reverse Tension 

(RT)) will activate next, is linked with the direction of the subsequent reverse loading from ML 

mode. If the subsequent reverse loading after the initial plastic deformation in ML mode is 

compressive in nature, it leads to the activation of the RC mode. On the contrary, if the subsequent 

reverse loading, after the initial plastic deformation in ML mode is tensile, it leads to the activation 

of the RT mode. Lastly, the RC mode can also become active as a consequence of reverse loading 

from the RT mode and vice versa. The direction of reverse loading (i.e. whether tensile or 

compressive) is identified by the sum of the in-plane principal strains increments. This can be 

formulated as below 

 (2) 
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where  and  are the major and minor principal in-plane strain increments respectively and 

for the plane stress formulation implied in this work,   

 (3) 

where  and  are the in-plane normal strain increments and  is the in-plane shear 

strain increment. A criterion for the detection of reverse loading is defined next. For this purpose, 

an existing criterion for reverse loading has been adapted from the literature (Lee et al. [2008]). 

Figure 17 shows the schematic representation of the reverse loading criterion, where  represents 

the relative angle between the two stresses representing the previous , and the current loading 

directions  and is a prescribed reference angle (i.e. typically set to π/2) for reverse loading. 

 

Figure 17: Reverse loading criterion for the proposed constitutive model. 

 Hence, for reverse loading to occur , where 

 

 

(4) 

where  and are the stress tensors for the previous and the current time steps 

respectively.     

In the current work, three separate yield surfaces are employed to model the yielding behavior 

within each deformation mode (i.e. ML, RC and RT). This multi-yield surface approach is rather 

similar to the one employed by Nguyen et al. [2013], where multiple isotropic Von Mises yield 

surfaces were used to model the hardening behavior within different deformation modes (i.e. slip, 
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twinning, untwinning). However, in the present work, a separate anisotropic CPB06 type yield 

surface (Cazacu et al. [2006]) is used to capture the evolving asymmetric/anisotropic hardening 

response within each deformation mode. Hence, a total of three CPB06 type yield surfaces are 

used and at any instant during the deformation process, only the yield surface corresponding to the 

current deformation mode stays active. The yield surface for each deformation mode (i.e. ML, RC 

or RT) evolves following the reference hardening equation and a set of evolving anisotropy 

parameters corresponding to that particular deformation mode. Furthermore, the initial size of the 

activated yield surface is determined by the amount of plastic prestrain accumulated during the 

previous deformation mode.   

It is noted that, the current model is phenomenological and does not essentially represent the cyclic 

hardening behavior of magnesium alloys from a microstructure or deformation mechanics 

perspective. However, the macroscopic effects of these different deformation mechanisms and 

textural evolution on cyclic hardening and plastic anisotropy, are taken into account in the 

development of the proposed model.  

 

6.2 Hardening evolution models 
 
The strain hardening models proposed in this section are used to represent the isotropic expansion 

of the activated yield surface with accumulated plastic strain. For this purpose, a reference flow 

stress equation is defined for each of the three deformation modes. The initial size of the activated 

yield surface is influenced by the level of plastic prestrain during the previous deformation mode 

and its expansion is controlled by the local accumulated plastic strain within the active deformation 

mode  

 

6.2.1 Monotonic Loading (ML) mode 
 
ML (MODE 1) is the default deformation mode and is automatically activated at the beginning of 

the deformation process. Initial plastic deformation from the undeformed state (i.e. plastic prestrain 

= 0) always takes place within this mode until the loading is reversed. The true stress – true plastic 

strain curve for uniaxial tension along RD is chosen as the reference flow curve for representing 
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the isotropic hardening behavior during this deformation mode. The isotropic hardening response 

for ML mode  is fitted using a modified Hockett-Sherby type hardening law as follows 

��  (5) 

where , , ,  are material parameters for the reference hardening curve representing 

uniaxial tension along RD and  is the corresponding local accumulated plastic strain for ML 

mode. 

 

6.2.2 Reverse Compression (RC) mode 
 
The isotropic hardening response for RC mode is obtained from the reverse compression portion 

of the cyclic curves. At a given plastic prestrain level, the reverse compression curve along RD is 

used as the reference flow curve and the isotropic hardening response  is modelled using 

a Boltzmann type hardening law given below 

 ���,
� �,
�


�

�
�,
� 
�

 (6) 

where , , ,  are material parameters and  is the local accumulated plastic 

strain for RC mode. The material parameter  is related to the upper stress plateau of the 

compressive sigmoidal flow curve,  controls the transition from the twin-dominated flow 

regime to the slip-dominated flow regime (i.e. point of inflection), and  controls the width and 

steepness of this transition region. As observed in Section 5.6 previously, an increase in tensile 

prestrain leads to an increase in the reverse compressive yield stress and the hardening rate when 

the loading is reversed. To account for this hardening effect, the parameters in Eq. (6) are expressed 

as function of tensile plastic prestrain , which is identified by the accumulated plastic strain 

during the previous deformation mode.  

 

6.2.3 Reverse Tension (RT) mode 
 
The reverse tension portion of the cyclic hardening curves are used to represent the isotropic 

hardening response for RT mode. The hardening behavior for reverse tension following previous 

compression is comparatively complex and cannot be captured accurately using a single 
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Boltzmann type sigmoid function. This is partly due to the occurrence of a Bauschinger-type non-

linear unloading curve and due to the absence of an abrupt elastic-to-plastic transition region upon 

reverse tensile loading (see Figure 14 and Figure 15). Furthermore, the exhaustion of untwinning 

upon reverse tension leads to the initiation of a slip dominated deformation with an exponentially 

decaying hardening rate. It is noted that for the case of reverse compression, the experimental 

compressive strains are not high enough to cause exhaustion of twinning dominant deformation. 

Therefore, the use of a single sigmoid function was deemed sufficient to capture the hardening 

response during reverse compression. For the current case of reverse tension, a new modified 

Voce-Boltzmann type hardening law is used to represent the hardening response for improved 

accuracy. The proposed isotropic hardening law for RT mode is written as follows  


�

 

(7) 

where , , , , , , ,  are material parameters and  is the 

local accumulated plastic strain for RT mode. The material parameter  in Eq. (7) is associated 

with the lower flow stress plateau of the reverse tension sigmoidal curve (i.e. region with relatively 

lower hardening rate due to untwinning dominant deformation),  is linked with the upper 

stress plateau of the reverse tension sigmoidal curve,  controls the transition from the 

untwinning dominant flow regime to the slip dominant flow regime (i.e. point of inflection) and 

 controls the steepness of this transition region. In general, the 2nd term on the left hand side 

in Eq. (7) accounts for the initial low hardening rate experienced during untwinning dominant 

deformation whereas the last term accounts for the change in hardening behavior due to the 

transition from untwinning-to-slip dominated deformation. The 3rd term, in between the previous 

two, is used to improve the overall smoothness and accuracy of the modelled hardening response 

to the experimental data. Furthermore, in order to account for the effects of compressive prestrain 

on reverse tensile yield stress and subsequent hardening behavior during reverse tension, the 

material parameters in Eq. (7) are expressed as a function of compressive plastic prestrain  

accumulated during the previous deformation mode.  
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6.2.4  Identification of hardening parameters and application to ZEK100 and AZ31B 
 
The flow stress curves for monotonic tension in RD (Section 5.2) and cyclic CTC and TCT curves 

in RD (Section 5.6) for ZEK100 and AZ31B sheet alloys are used to obtain the material parameters 

associated with the hardening models developed in the previous section. The material parameters 

are obtained by fitting the hardening models to the corresponding experimental data for each 

deformation mode using non-linear least square regression based on the Trust-Region algorithm 

available within Matlab®.    

The stress strain curve for uniaxial tension along RD was used to obtain the material parameters 

associated with the isotropic hardening response for ML mode . It is noted that, the 

material parameters for isotropic hardening response in ML mode could also be obtained by using 

the initial tension portion of cyclic TCT curve along RD but the stress-strain curve for uniaxial 

tension along RD is used instead as it can capture the experimental hardening response for a much 

larger strain range which is not achieved during initial tension portion of cyclic TCT tests. 

However, before proceeding, it is ascertained that the experimental stress-strain curve for uniaxial 

tension along RD is indeed identical to the initial tension portion of cyclic TCT curve along RD. 

The material parameters used in Eq. (5) for ML mode are given in Table 4.   

Table 4: Material parameters for the isotropic hardening model of ML mode. 

Material     
AZ31B 161 173.3591 0.9503 10.6638 
ZEK100 129 142.3007 0.2783 9.27440 

 

For fitting the hardening response during RC and RT mode, the cyclic CTC and TCT curves for 

ZEK100 and AZ31B sheet alloys are each partitioned into three segments based on the type of 

loading (i.e. initial compression or initial tension, reverse compression, reverse tension). Next, the 

flow stress segments for reverse compression and reverse tension were used to establish stress-

strain relationships for reverse compression and reverse tension with respect to the corresponding 

local plastic strains  and  respectively. These modified stress-strain curves are then used to 

obtain the material parameters associated with the hardening response for RC mode  

(Table 5) and RT mode  (Table 6) respectively.  
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Table 5: Material parameters for the isotropic hardening model of RC mode 

Materi
al 

Test Type  
(Prestrain) 

   
 

  

AZ31B CTC 1)   0.0304 94.9255 460.000 0.0827 0.0239 
2)   0.0671 124.868 485.000 0.0838 0.0205 
3)   0.1055 155.000 503.555 0.0801 0.0167 

TCT 4)   0.0154 97.6402 413.912 0.0770 0.0213 
5)   0.0340 120.000 449.058 0.0808 0.0172 
6)   0.0526 134.258 464.252 0.0817 0.0152 

ZEK10
0 

CTC 1)   0.0301 91.6155 393.000 0.0807 0.0251 
2)   0.0676 117.910 405.251 0.0870 0.0223 
3)   0.1065 142.581 422.000 0.0885 0.0217 

TCT 4)   0.0158 42.9361 375.000 0.0950 0.0540 
5)   0.0346 96.6728 385.000 0.0908 0.0280 
6)   0.0534 117.624 400.000 0.0922 0.0215 

 

Table 6: Material parameters for the isotropic hardening model of RT mode 

Materi
al 

Cycli
c 

Test 

 
(Prestrain

) 

 
 

 
  

   

AZ31B CTC 
 

1)   0.0173 22.394 58.000 230.233 3.494 230.900 294203 0.016 0.001 
2)   0.0379 31.665 63.000 280.947 3.831 133.150 62168.1 0.034 0.003 
3)   0.0580 43.935 68.000 323.935 2.648 145.916 799.170 0.053 0.004 

TCT 4)   0.0283 28.845 100.00 327.845 1.905 79.2850 96.0130 0.026 0.002 
5)   0.0655 45.539 75.000 337.789 1.920 297.319 269.868 0.059 0.004 
6)   0.1020 103.72 54.000 375.215 2.144 558.786 840.531 0.073 0.009 

ZEK10
0 

CTC 1)   0.0179 21.432 64.000 201.182 2.365 146.436 7225.69 0.015 0.001 
2)   0.0380 30.252 66.500 240.777 2.726 140.172 2332.24 0.033 0.003 
3)   0.0580 41.329 69.000 259.579 2.413 153.485 645.960 0.052 0.006 

TCT 4)   0.0290 26.788 68.000 260.757 1.925 170.984 184.336 0.025 0.003 
5)   0.0670 43.023 70.000 273.217 1.840 216.947 255.533 0.058 0.006 
6)   0.1040 68.718 72.500 306.834 2.247 258.118 420.754 0.080 0.012 

 

In Table 5, for a given material, the first three tensile prestrain  values correspond to reverse 

compression during CTC tests and the next three tensile prestrain  values correspond to reverse 

compression during TCT tests. Similarly, in Table 6, the first three compressive prestrain  

values correspond to reverse tension during CTC tests and the next three compressive prestrain 

 values correspond to reverse tension during TCT tests. It is noted that, the material parameters 

given in Table 5 and Table 6 are not constants and vary with the amount of plastic prestrain 

accumulated during the previous deformation mode. For general loading cases where the prestrain 

upon reverse loading is different than experimentally obtained values, the material parameters are 

interpolated from those listed. A similar approach was previously used by Nguyen et al. [2013], 

for modelling reverse hardening behavior in AZ31 sheets.   
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6.3 Anisotropic yield criteria 
 

6.3.1 Yield criterion background 
 
Cazacu et al. [2006] proposed an isotopic pressure-insensitive yield criterion to account for the 

tension-compression yielding asymmetry associated with deformation twinning in HCP metals. 

The yield criterion is defined as 

 (8) 

where , are the principal values of  which is the deviator of the Cauchy stress , 

the integer  is the degree of homogeneity and the coefficient  represents the strength differential 

effect between tension and compression. The isotropic yield criterion (Eq. (8)) was further 

extended to orthotropy by applying a linear transformation on the deviatoric stress tensor. The 

resulting anisotropic yield criterion CPB06 is written as  

 (9) 

where are the principal values of the transformed stress tensor . The transformed stress 

tensor  is defined as  

 (10) 

where  is a fourth-order symmetric tensor that describes material’s anisotropy and is the 

deviatoric stress tensor. With respect to the ( coordinate system (where  represent 

the sheet RD, TD and ND, respectively) the orthotropic tensor is represented as 

 (11) 

The CPB06 yield criterion (Eq. (9)) is insensitive to hydrostatic pressure; thus, the condition for 

plastic incompressibility is satisfied. Also, for and any integer , the anisotropic 

yield function is convex in the variables   (see Cazacu et al. [2004]).  
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Plunkett et al. [2008] demonstrated that additional linear transformations can be incorporated into 

CPB06 to improve the representation of the anisotropic yield surface. Recently, Ghaffari Tari et 

al. [2013] successfully employed three linear transformations of the stress deviator to capture the 

hardening behavior of AZ31B magnesium alloy under monotonic loading conditions. However, in 

the current modeling approach, two linear stress transformations are deemed sufficient to represent 

the anisotropic behavior of both AZ31B and ZEK100 magnesium alloys. The yield criterion with 

two stress transformations (CPB06ex2) can be written as: 

 
(12) 

where  are the strength differential parameters and the new tensor  is given by:   

 (13) 

where the fourth-order orthotropic tensor  has a similar representation to that of tensor  given 

in Eq. (11). For a 3D stress state and orthotropic symmetry, the tensors  and , have nine non-

zero components each. However, for the plane stress formulation implied in this work,  and , 

have seven non-zero components since the parameters  =  =  =  = 0. It is noted that, 

when  = , and  = , the CPB06ex2 yield criterion (Eq. (12)) reduces to the original anisotropic 

yield criterion CPB06 (Eq. (9)).    

 

6.3.2 Yield criterion extension to include evolving anisotropy/asymmetry 
 
Deformation twinning inevitably leads to texture evolution in HCP metals such as magnesium 

alloys. On a macroscopic scale, texture evolution leads to an evolving plastic anisotropy and 

tension-compression flow stress asymmetry as shown by the experimental results presented in the 

earlier sections of this paper. The CPB06 yield criterion presented in the previous section is able 

to represent individual plane stress yield loci for given fixed levels of accumulated plastic 

deformation as shown by Cazacu et al., [2006] and Plunkett et al. [2008]. However, in order to 

account for the continuous evolution of plastic anisotropy and tension-compression asymmetry, 

the shape of the yield locus should also change with the accumulated plastic deformation. 

Accordingly, this means that the anisotropy coefficients and strength differential parameters 
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involved in the expression of CPB06ex2 yield criterion (Eq. 12) must also evolve with 

accumulated plastic deformation. Thus, it is assumed that yielding condition has the following 

general form 

 (14) 
  

where is the effective stress based on the CPB06ex2 stress potential given in Eq. (12),  

is the isotropic hardening law and  is the effective plastic strain associated with the anisotropic 

yield function using the work-equivalence principle (Hill [1987]). In the current work, each of the 

three deformation modes (i.e. ML, RC, and RT) has been assigned a CPB06ex2 yield surface and 

at any instant in time, only one of the three yield surfaces corresponding to the current deformation 

mode is active. Furthermore, the anisotropy coefficients and strength differential parameters are 

considered to be evolving with the local accumulated plastic deformation within each mode. The 

modified yielding condition for each deformation mode is of the following form 

  (15) 

 

where , ,   are the effective stresses and , ,  represent the 

isotropic hardening laws corresponding to ML, RC and RT deformation modes, respectively.     

Several approaches has been implemented, where saturating exponential functions (Steglich et al. 

[2011], Ghaffari Tari et al. [2013]) or sine damping functions (Yoon et al. [2013]) are used to 

capture the variation of anisotropy coefficients and strength differential parameters with 

accumulated plastic deformation for monotonic loading conditions. An alternative approach, 

proposed by Plunkett et al. [2006], consists of determining the anisotropy coefficients 

corresponding to several fixed levels of accumulated plastic deformation. Afterwards, a piece-wise 

linear interpolation is used to obtain the yield surface corresponding to any level of accumulated 

plastic deformation.     

In the present work, the methodology proposed by Plunkett et al. [2006] in conjunction with the 

anisotropic CPB06ex2 yield criterion has been used. For each deformation mode, the 
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anisotropic/asymmetric evolution of its associated yield locus is captured by calculating the 

anisotropy (i.e. and ) and strength differential parameters (i.e. and ) for  fixed levels 

of the local effective plastic strains . Next, for each deformation 

mode, the effective stress corresponding to each individual effective plastic strain level 

  is calculated using   according 

to Eq. (15). The effective stress corresponding to any intermediate level of accumulated plastic 

strain  is determined using linear interpolation as 

follows 

 (16) 

where  is an interpolation weighting factor and it is defined as  

 (17) 

such that  and .  

 
6.3.3 Yield surface calibration and application to ZEK100 and AZ31B 
 

6.3.3.1 General calibration approach 
 
For each deformation mode, the anisotropy (i.e. and ) and strength differential parameters 

(i.e. and ) involved in Eq. (15) are determined by minimizing the difference between the 

corresponding stress potential function and the experimental data. The error minimization 

approach due to Plunkett et al. [2008] has been adopted in this work. The experimental data used 

in the calibration process includes the flow stresses and the r-values in tension and compression 

corresponding to the three in-plane sheet orientations (i.e. RD, DD and TD) as well as the in-plane 

biaxial flow stresses in tension and compression. The yield surface anisotropy parameters are 

found by minimizing the following error function 

 (18) 
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In the above equation,  and  represent the yield function response for flow stresses and r-

values respectively, while  and  are the associated experimental values. The subscript  

and  represent the number of experimental flow stresses and r-values, respectively, used in the 

calibration process and  represents the corresponding weighing factors given to the experimental 

data. In the present work, the degree of homogeneity  in Eq. (12) is set to , based on 

previous modeling work of Ghaffari Tari et al. [2013]. For the exact relations used for  and  

in Eq. (18), readers are referred to see Appendix A. The non-linear minimization of the error 

function is performed using the commercial software Matlab®. The minimization process is 

repeated several times while adjusting the weighing factors and initial guesses until satisfactory 

results are achieved.     

In the present work, for each deformation mode, the corresponding anisotropy (i.e. and ) and 

strength differential parameters (i.e. and ) are calculated for hundred fixed levels (i.e.

) of the local accumulated plastic strains starting with  and ending at  with 

an increment of .  

 

6.3.3.2 Calibration for ML (MODE 1) 
 
The experimental flow stresses for monotonic loading given in Section 5.2 and the experimental 

r-values given in Section 5.4 are used for calibrating the yield surface corresponding to the ML 

mode. At a given level of  local effective plastic strain, a total of 14 experimental values are used 

for calibration including: three flow stresses and instantaneous r-values for tensile loading along 

RD, DD and TD, three flow stresses and instantaneous r-values for compressive loading along RD, 

DD and TD, the equi-biaxial tension, and the equi-biaxial compression flow stresses. Using the 

assumption of plastic incompressibility, the experimental flow stress for ND (through-thickness) 

compression is used to represent the yielding behavior in equi-biaxial tension. The experimental 

data for equi-biaxial compression is not available at the present time. However, in order to control 

the yielding response in that regime, the equi-biaxial compression flow stress is assumed to be 

equal to the average of RD and TD flow stresses in compression. Similar assumptions were used 
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by Ghaffari Tari et al. [2013] to represent the behavior of AZ31B sheet in equi-biaxial tension and 

compression regimes.    

Figure 18 shows the evolution of anisotropy/asymmetry parameters with local effective plastic 

strain  (i.e.  = 0, 0.001, 0.002, …, 0.099, 0.1) for ZEK100 and AZ31B alloys. It is observed 

that the anisotropy parameters evolve rapidly with accumulated plastic strain and tend to reach an 

almost constant value with continuing plastic deformation. This is rather expected because of the 

exhaustion of deformation twinning which is the major cause of texture evolution and anisotropy 

in Mg alloys. 

 

Figure 18: Evolution of anisotropy coefficients and strength differential parameters for (a) ZEK100 (b) AZ31B 
corresponding to ML mode (MODE 1) 

 

6.3.3.3 Calibration for RC (MODE 2) and RT (MODE 3) 
 
The experimental CTC and TCT flow stresses given in Section 5.6 are used for calibrating the 

yield surfaces corresponding to RC and RT deformation modes. Since the loading during RC 

deformation mode is always compressive, the yield surfaces for RC mode are calibrated for 

compression regime (i.e. ) and similarly the yield surfaces corresponding to RT 

mode are only calibrated within the tension regime (i.e. ). To simplify the 

calibration process, the strength differential parameters associated with the respective yield 

functions for RC and RT mode are set equal to zero (i.e. =  = 0) as we are dealing with 

compressive-only or tensile-only loading during RC and RT modes respectively. At a given level 

of local effective plastic strain (i.e. ,  for RC and RT modes respectively), a total of 7 
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experimental values are used in calibration process. For calibration of RC mode, the values include 

the three flow stresses and instantaneous r-values for reverse compression along RD, DD, TD and 

the equi-biaxial compression flow stress. Similarly, for calibration of RT mode, the experimental 

values include the three flow stresses and instantaneous r-values for reverse tension along RD, 

DD, TD and the equi-biaxial tension flow stress. The experimental results for the evolution of r-

values during reverse compression and reverse tension along RD, DD, and TD are not available at 

the present time. However, in order to constrain the slope of yield locus at these locations, the 

values are assumed to be constant and are set equal to the corresponding r-values for monotonic 

loading tests at an accumulated plastic strain of 0.1. Furthermore, for AZ31B sheet material, the 

experimental CTC and TCT tests were only conducted in RD and hence the results for DD and TD 

test directions are not available. However, as mentioned previously, with the exception of 

differences in experimental yield stresses among the three test directions, the hardening behavior 

observed during CTC and TCT tests of AZ31B is similar (Lou et al. [2007]). Therefore, it is 

assumed that the CTC and TCT flow curves for DD and TD test directions of AZ31B can be 

represented by multiplying (i.e. scaling) the CTC and TCT flow curves in RD by the corresponding 

yield stress anisotropy ratios (i.e. , )  observed in monotonic tension tests.         

The anisotropy parameters for RC and RT deformation modes are calculated for each of the six 

corresponding experimentally tested prestrain conditions listed in Table 5 and Table 6. For general 

loading conditions where the prestrain is different from those listed, the anisotropy parameters 

corresponding to the closest tested prestrain are used. Figure 19 shows the evolution of anisotropy 

parameters corresponding to prestrain 1 (see Table 5 and Table 6) for RC and RT deformation 

modes of ZEK100 and AZ31B sheets. Similar evolutionary relationships are established for the 

remaining five experimental prestrain conditions. However, for simplicity they are not shown here.   
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Figure 19: Evolution of anisotropy coefficients for (a) ZEK100 – RC deformation mode (b) ZEK100 – RT deformation 
mode (c) AZ31B – RC deformation mode (d) AZ31B – RT deformation mode 

The anisotropy parameters for RC and RT modes of AZ31B (Figure 19 (c-d)) are almost constant 

and do not change with the corresponding local effective plastic strains. This is consistent with the 

calibration approach explained in this section for RC and RT deformation modes of AZ31B. 
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Chapter 7: Numerical Implementation 
 
The proposed constitutive model was implemented as a user material subroutine (UMAT) in the 

commercially available software LS-DYNA within the framework of rate independent plasticity. 

In the present work, the incremental theory of plasticity (Chung and Richmond [1993], Yoon et 

al. [1999]) was applied to the elasto-plastic formulation based on the materially embedded 

coordinate system; thus, ensuring the objectivity of the Cauchy stress tensor. Since elastic strains 

are usually much smaller than plastic strains, an additive decomposition of the total strain rate  

into an elastic part  and a plastic part   is considered as follows 

 (19) 
 
The elastic stress strain relationship is given by 

 (20) 
 
where  is the fourth-order elasticity tensor. The incremental plastic strain is determined by an 

associated flow rule given below 

 (21) 

where  is the yield function defined by Eq. (4414) and  is the plastic multiplier. The loading-

unloading conditions are expressed in the standard Karush-Khun-Tucker form (Simo and Hughes 

[1998]) as follows  

 (22) 

Furthermore, as the effective stress  is a first order homogeneous function in stresses, it then 

follows from the work-equivalence principle that  where  is the effective plastic strain 

increment.  

In the present work, the stress integration framework based on the cutting-plane return mapping 

algorithm proposed by Simo and Ortiz [1985], Ortiz and Simo [1986] is adopted for integration of 

the elasto-plastic constitutive relations. A similar stress integration approach was previously used 

by Abedrabbo et al. [2006,2007] for implementing a UMAT into the explicit LS-DYNA code for 

conducting warm forming simulations of aluminum alloys using YLD96 (Barlat et al. [1997]) and 
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YLD2000-2d (Barlat et al. [2003]) type yield functions. Using the proposed approach, at the 

beginning of each time step , a trial stress state  is calculated by assuming a pure elastic 

deformation as follows 

 (23) 
 
where  is the stress state at the end of nth (previous) time increment and  is the current 

strain increment. Next based on the current active deformation mode, the following procedure is 

followed.  

 

7.1 Monotonic Loading (ML) mode 
 

Using the calculated trial stress state , the yielding condition for ML deformation mode is 

defined as 

 (24) 

If the above condition is satisfied, then the trial stress state is elastic and the calculated trial stress 

is the actual stress state (i.e. )  for that time increment. However, if the condition is 

not satisfied then there is plastic flow and the Newton-Raphson method is used to iteratively return 

the trial stress state to the yield surface. This is done by calculating the normality parameter  at 

the beginning of each  iteration and sequentially updating the stress state and the effective 

plastic strain as follows  

 (25) 

where the term ��  is the plastic corrector for return mapping of the stress state 

to the yield surface and  is the local iteration counter, with  representing the elastic trial 

stress state (i.e.   and ). Using the new stress state, the yielding 

check is performed once again as follows 
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 (26) 

The plastic correction step is repeated for a number of iterations until the plastic consistency is 

restored within a set tolerance, i.e.  

 (27) 

where the residual parameter  represents a small number, taken as 10-7 MPa in the current work. 

The relationship for the normality parameter  is obtained through a Taylor expansion of the yield 

criterion as follows 

 

 

(28) 

Using Eq. (25), the above relationship can be rewritten as 

 

(29) 

 

Using Eq. (16-17), the derivatives in the previous equation are evaluated as follows 

 (30) 

By re-arranging Eq. (29), the normality parameter   for ML deformation mode is defined as 

 
(31) 
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 The plastic strain increments are calculated using the associated flow rule for ML mode which is 
defined as: 

 (32) 

 
For the plane stress formulation adapted in this work, at the end of each time step, the through 

thickness strain increment  is calculated and reported back to the FEM code LS-DYNA using 

the following relationship (Abedrabbo et al. [2006]) 

 

 (33) 

 
where  is the Poisson’s ratio of the material. At the end of the current time step, the updated stress 

state and the local effective plastic strain for ML mode are given by  

 

 (34) 

 
   

7.2 Reverse Compression (RC) mode 
 
The stress update procedure for RC mode is similar to the one presented for ML deformation mode 

in the previous section. However, few important equations are presented here. The yielding 

condition for RC mode is given as 

 (35) 

 where  is the local iteration counter, with  representing the elastic trial stress state (i.e.  

 and ). The plastic strain increments are calculated using the 

associated flow rule for RC mode which is defined as 

 (36) 

where the normality parameter  is calculated as follows 
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(37) 

At the end of the current time step, the updated stress state and the local effective plastic strain for 

RC mode are given by: 

 (38) 

 

7.3 Reverse Tension (RT) mode 

 
The yielding condition for RT mode is written as 

 (39) 

where  is the local iteration counter, with  representing the elastic trial stress state. The 

plastic strain increments are calculated using the normality flow rule for RT mode as follows 

 

 (40) 

 

and the normality parameter  is given by 
 

 
(41) 

 
At the end of the current time step, the updated stress state and the local effective plastic strain for 

RT mode are given by 

 

 (42) 
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7.4 Implementation framework 
 
In the proposed constitutive model, three deformation modes (i.e. ML, RC, RT) are used to model 

the monotonic and reverse loading behavior of Mg alloys. At any instant throughout the 

deformation process, only one of the three deformation modes stays active. The yield locus for 

each deformation mode evolves following a reference hardening behavior and a set of evolving 

anisotropy/asymmetry parameters corresponding to that particular deformation mode. At the 

beginning of each time step, the previous stress state value , the current strain increment  

and any history variables saved at the previous stress update step are provided by the FEM code 

as input. The history variables include the local effective plastic strains corresponding to the three 

deformation modes (i.e. , , ) and the prestrain . For each time increment, 

the following procedure is executed: 

1. Using Eq. (4), the strain increment for the current time step is classified as either proportional 

 or reverse  based on the following condition: 

 (43) 

 

2. At the first time increment, the ML deformation mode is activated by default. Starting from 

the annealed state (i.e. ), initial plastic deformation is bound to happen within this 

deformation mode. For the succeeding time steps, the current deformation mode stays as ML 

unless the strain increment is reverse  according to Eq. (43) and there is previous plastic 

deformation in ML mode (i.e. ). If both conditions are met (i.e. current increment 

is  and ) then the current deformation mode is either RC or RT depending on 

the reverse loading direction. The direction of reverse loading is either compressive or tensile 

and is determined by the sum of in-plane principal strain increments using Eq. (2). The current 

loading mode is RC if the direction of reverse loading is compressive or RT if the reverse 

loading direction is tensile.  For subsequent time steps, the current deformation mode is the 

same as the previous one if the increment is proportional . However, if the increment is 

reverse  then the current loading mode is RT if it was RC previously or RC if it was RT 

previously. 
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3. If the current strain increment is reverse  and the new deformation mode is RC or RT then 

the local effective plastic strain corresponding to the activated deformation mode is set to zero 

(i.e.  or   and the prestrain  is reset to the value of the local effective 

plastic strain at the end of previous time step. For proportional  loading during RC and RT 

deformation modes, the previous value of the local effective plastic strain  (  and  ) 

and the prestrain  is maintained   

4. Finally, the return mapping algorithm (outlined previously) is used to update the stress state 

and calculate other plastic variables. At the end of each time step, the calculated stress state 

, the incremental plastic strain , and the updated history variables are reported back 

to the FEM code.  
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Chapter 8: Constitutive Modeling Results and Discussion 
 

8.1 Yield surface predictions for monotonic loading conditions 
 
Figure 20 shows the evolution of subsequent yield surfaces for monotonic loading conditions 

corresponding to several fixed levels of the local effective plastic strains (i.e.  = 0%, 0.1%, 

0.2%, ……, 9.9%, 10%) for ZEK100 and AZ31B alloys. The experimental flow stresses 

corresponding to uniaxial tension and uniaxial compression along RD and TD, biaxial tension and 

biaxial compression are also plotted as data points (symbols) for comparison.  

 

Figure 20: Yield surface evolution for monotonic loading cases (a) annealed ZEK100 and (b) annealed AZ31B sheet. The 

data points (symbols) represent the experimental flow stresses used for calibration of subsequent yield loci.    

It is noted that, the CPB06ex2 based yield loci for ZEK100 (Figure 20 (a)) and AZ31B (Figure 20 

(b)) describe well the corresponding experimental flow stresses for the plotted range of effective 

plastic strains of up to 10%. The developed model is able to capture the change in the shape of 

subsequent yield loci as a consequence of textural changes induced by the interactions between 

twinning and slip deformation mechanisms. Notably, the effect of {10 2} twinning is evident in 

the low compressive strengths at lower effective plastic strains (i.e.   ≈ 0%-1%) as indicated 

by the third quadrant strengths (i.e. the area in the third quadrant is much smaller than that in the 

first quadrant) in Figure 20. The shape of subsequent yield loci for ZEK100 and AZ31B are rather 

different owing to a relatively different starting texture leading to a comparatively different 

macroscopic behavior for flow hardening and plastic anisotropy. The yield loci for ZEK100 and 

AZ31B show a comparatively higher hardening in uniaxial compression regime as compared to 
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the tensile loading regime. Furthermore, the yield locus for ZEK100 exhibit a very strong 

hardening response in biaxial tension regime consistent with the experimental observations. 

8.2 Yield surface predictions for reverse compression 
 
Figure 21 and Figure 22 show the evolution of subsequent yield surfaces for reverse compression 

loading from different tensile prestrains  (see Table 5) for ZEK100 and AZ31B respectively. 

The yield loci are plotted for several fixed levels of the local effective plastic strains (i.e.  = 

0%, 0.1%, 0.2%, …, 9.9%, 10%). The experimental flow stresses used for calibration are also 

shown as data points (symbols) for comparison. In the present work, the loading during reverse 

compression occurs within the 3rd stress quadrant which is represented by solid lines in Figure 21 

and Figure 22. The yield loci show a fairly accurate fit to the experimental data points for all tensile 

prestrain conditions corresponding to ZEK100 (Figure 21 (a-f)) and AZ31B (Figure 22 (a-f)) sheet 

materials. The yield surfaces for reverse compression are able to represent the experimentally 

observed phenomenon that a comparatively larger tensile prestrain leads to a relatively higher yield 

and subsequent flow stress upon reverse compression. 

 

8.3 Yield surface predictions for reverse tension 
 
Figure 23 and Figure 24 show the evolution of subsequent yield loci for reverse tension following 

different level of compressive prestrains  (see Table 6) for ZEK100 and AZ31B respectively. 

Similar to the previous loading cases, the yield loci are plotted for hundred fixed levels of the local 

effective plastic strains (i.e.  = 0%, 0.1%, 0.2%, …, 9.9%, 10%). The reverse tension flow 

stresses used for calibration are also shown as data points for comparison. In the present work, the 

loading during reverse tension occurs within the 1st stress quadrant as represented by solid lines in 

Figure 23 and Figure 24. All yield loci show an accurate fit to the experimental data points for all 

compressive prestrain conditions and the effects of compressive prestrain on subsequent yield and 

hardening behavior during reverse tension is captured fairly well.  

Single element finite element simulations are also performed to evaluate the response of the newly 

developed material model under monotonic and cyclic loading paths. The simulated results are 

then compared with the corresponding experimental data to verify the implementation of the 
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current material model and to validate its ability in capturing the hardening behavior of ZEK100 

and AZ31B alloys under both monotonic and cyclic loading conditions.   

 

 

Figure 21: Yield surface evolution for anisotropic hardening during reverse compression tests of ZEK100 from different 
tensile prestrains (a) �

	∗ = 0.0301, (b) �
	∗ = 0.0676, (c) �

	∗ = 0.1065, (d) �
	∗ = 0.0158, (e) �

	∗ = 0.0346, (f) �
	∗ = 0.0534. The 

data points (symbols) represent the experimental flow stresses used for calibration of subsequent yield loci. 
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Figure 22: Yield surface evolution for anisotropic hardening during reverse compression tests of AZ31B from different 
tensile prestrains (a) �

	∗ = 0.0304, (b) �
	∗ = 0.0671, (c) �

	∗ = 0.1055, (d) �
	∗ = 0.0154, (e) �

	∗ = 0.0340, (f) �
	∗ = 0.0526. The 

data points (symbols) represent the experimental flow stresses used for calibration of subsequent yield loci. 
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Figure 23: Yield surface evolution for anisotropic hardening during reverse tension tests of ZEK100 from different 
compressive prestrains (a) �

	∗ = 0.0179, (b) �
	∗ = 0.0380, (c) �

	∗ = 0.0580, (d) �
	∗ = 0.0290, (e) �

	∗ = 0.0670, (f) �
	∗ = 

0.1040. The data points (symbols) represent the experimental flow stresses used for calibration of subsequent yield loci. 
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Figure 24: Yield surface evolution for anisotropic hardening during reverse tension tests of AZ31B from different 
compressive prestrains (a) �

	∗ = 0.0173, (b) �
	∗ = 0.0379, (c) �

	∗ = 0.0580, (d) �
	∗ = 0.0283 (e) �

	∗ = 0.0655, (f) �
	∗ = 0.1020. 

The data points (symbols) represent the experimental flow stresses used for calibration of subsequent yield loci. 
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8.4 Model response to monotonic loading paths 
 
Figure 25 shows the predictions of the proposed CPB06ex2 based material model with the 

experimental data for ZEK100 and AZ31B. It is noted that for all strain levels, the simulated stress-

strain curves show a good agreement with the corresponding experimental results. The developed 

material model is able to capture the evolving flow stress anisotropy and tension-compression 

asymmetry and is also able to reproduce the experimentally observed concave up hardening 

behavior during initial in-plane compressive deformation.     

 

Figure 25: Comparison between simulated true stress vs. true plastic strain response and experimental data using 
different loading paths for (a) ZEK100 and (b) AZ31B. 

 
The proposed model also shows a good agreement between the predicted and experimental r-

values for ZEK100 (Figure 26 (a)) and AZ31B (Figure 26 (b)) sheet materials.  The predicted 

tensile r-values for AZ31B does show a minor deviation at large experimental plastic strain of 8%. 

However, in general the developed model is able to capture the profound plastic anisotropy 

observed during in-plane tension and compression of AZ31B sheet materials.  
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Figure 26: Comparison between simulated plastic anisotropy (r-values) response and experimental data for (a) ZEK100 
and (b) AZ31B. 

 

8.5 Model response to reverse loading paths 
 
Figure 27 shows the model response to CTC and TCT loading paths for strain amplitudes of 2%, 

4%, and 6% in RD and TD test directions of ZEK100. The proposed material model successfully 

reproduced the experimental large strain cyclic stress-strain curves for both RD and TD test 

directions of ZEK100. There are minor discrepancies between the simulated and experimental 

results in vicinity of stress unloading-reloading regions of cyclic curves. This may be associated 

with the change in effective elastic modulus which the proposed model is unable to capture. 

However, the proposed model is able to capture the Bauschinger effect, tension-compression 

asymmetry and the unusual s-shaped hardening response during reverse tension and reverse 

compression of ZEK100 for all the investigated cases of loading reversal in both RD and TD test 

directions.  
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Figure 27: Comparison between simulated (a), (b) CTC and (c), (d) TCT flow stress response and experimental data for 
ZEK100 in RD and TD test directions. 

 
Figure 28 shows the model response to CTC and TCT loading paths for strain amplitudes of 2%, 

4%, and 6% in RD for AZ31B sheet material. For all the investigated cases of reverse loading, the 

simulated flow stress response shows an excellent agreement with the experimental large strain 

cyclic stress-strain curves for AZ31B.  
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Figure 28: Comparison between simulated (a) CTC and (b) TCT flow stress response in RD and experimental data for 
AZ31B. 

8.6 The current modelling approach and future work  
 
The current multi-yield surface modelling approach uses multiple CPB06ex2 type evolving yield 

surfaces to capture the plastic anisotropy and flow stress hardening response of ZEK100 and 

AZ31B Mg alloys for monotonic and reverse loading paths. A rather similar approach was 

previously proposed by Nguyen et al. [2013] where multiple Von Mises yield surfaces were used 

to model the cyclic hardening behavior of AZ31B Mg sheets. Nguyen et al. [2013] suggested that 

the multi-yield surface approach can be regarded as a special case of the two-surface plasticity 

modelling approach  proposed by Lee et al. [2008], where an outer stationary bounding surface 

and an inner expanding and translating loading surface were used to model the cyclic hardening 

response of AZ31B Mg sheets. In the current modelling approach, the loading surface is the current 

yield surface corresponding to the active deformation mode given by Eq. (15) and the stationary 

bounding surface can be visualized as the yield surface at an infinitely large local effective plastic 

strain. For the proposed model, the corresponding bounding surface for each deformation mode 

can be represented by the following yielding conditions 
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In the current work, the proposed constitutive model has been successfully applied to capture the 

r-values evolution and the evolving anisotropic/asymmetric flow response of HCP metals such as 

ZEK100 and AZ31B for monotonic as well as reverse loading (i.e. CTC and TCT) paths at room 

temperature. Further validation of the model for more complex proportional loading paths such as 

simple shear tests are in progress which will provide further information about the shape and 

evolution of subsequent yield loci. Furthermore, the application of the proposed model to different 

forming processes such as deep drawing and v-bending, is the topic for future work. Lastly, the 

proposed constitutive model does not account for the effects of temperature on the hardening 

behavior of magnesium alloys. In principle, forming of magnesium alloys is usually performed at 

high temperatures. Hence, it is important to include the effects of temperature into the hardening 

behavior of the proposed model. However, this is also left as future work.          
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Chapter 9: Summary and Conclusions 
 
The monotonic and large strain cyclic behavior of AZ31B and ZEK100 magnesium alloy sheets 

at room temperature is studied by using a combination of mechanical and microstructural 

techniques. The techniques include monotonic tension, compression and large strain CTC and TCT 

testing along RD, DD and TD test directions, EBSD texture measurements of the annealed 

materials and fractography of few deformed specimens under monotonic tension and compression. 

Some important observations are summarized as follows 

•  The annealed AZ31B sheet has a very strong basal texture where the majority of 

crystallographic c-axes are aligned in the sheet normal (ND) direction. On the contrary, the 

annealed ZEK100 sheet exhibits a comparatively weak basal texture, with significant basal 

pole spreading in TD and a weak peak intensity as compared to annealed AZ31B sheet. 

•  For AZ31B sheet specimens, the monotonic yield and flow stresses are higher for in-plane 

loading along TD as compared to RD. The tensile flow stress curves exhibit a typical 

concave down shape whereas the shape of the compressive flow stress curves is concave 

upward (S-shape) for all in-plane loading directions. A strong tension-compression yield 

asymmetry is also observed for in-plane loading along the different test directions. The 

tension-compression yield asymmetry is higher for loading along TD as compared to RD.   

•  The monotonic flow characteristic of ZEK100 sheet specimens are essentially the opposite 

of those observed for AZ31B sheet specimens. Specifically, the monotonic yield and flow 

stresses are higher for in-plane loading along RD as compared to TD. The tension-

compression yield asymmetry is almost negligible for in-plane loading along TD. The 

ZEK100 sheet specimens also exhibit a significant in-plane flow stress anisotropy when 

subjected to uniaxial tension.   

•  In general, the AZ31B sheet specimens exhibit higher flow stresses and lower ductility as 

compared to ZEK100 sheet specimens. The tension-compression yield asymmetry is also 

more pronounced in AZ31B sheet specimens as compared to ZEK100 sheet specimens and 

the contrary is true for the in-plane flow stress anisotropy. 

•  AZ31B sheet specimens show a significant evolution of r-values especially in tension. In 

comparison, a reduced plastic anisotropy (i.e. r-values closer to unity) is observed for 

ZEK100 sheet specimens 
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•  For the in-plane large strain cyclic loading, the S-shaped hardening behavior is observed 

for both initial compression and reverse tension following compression regions of CTC 

and TCT flow curves of AZ31B and ZEK100 sheets.  

In addition to the experimental characterization work, a phenomenological plasticity model has 

been proposed to capture the evolving anisotropic/asymmetric response of HCP metals considering 

monotonic and reverse loading paths. The proposed model is numerically implemented into the 

commercial finite element software LS-DYNA as a user material subroutine (UMAT). 

Experimental data for AZ31B and ZEK100 is used to obtain material parameters for the developed 

constitutive equations. The following observations and conclusions are made 

•  Even though, the observed mechanical behavior of AZ31B and ZEK100 sheets is 

reasonably different, the proposed model successfully captures the evolution of flow stress 

response and r-values under different monotonic loading conditions and test directions for 

both AZ31B and ZEK100 sheet materials.  

•  The predicted CTC and TCT results for various strain amplitudes and test directions for 

AZ31B and ZEK100 also showed an excellent conformity to the experimental data. In 

particular, the model was able to reproduce the rather different CTC and TCT hardening 

behavior of ZEK100 in both RD and TD test directions. In general, the model successfully 

reproduced the experimentally observed features such as the large cyclic tension-

compression asymmetry, the Bauschinger effect and the nonlinear hardening behavior. 

However, minor discrepancies within the loading/unloading regions are observed. 

•  The proposed constitutive model is flexible enough to capture the comparatively different 

and complex large strain cyclic hardening behavior observed in magnesium alloys (i.e. 

AZ31B vs ZEK100). The proposed model can be successfully applied to simulate different 

sheet metal forming processes in automotive industry. However, the application of the 

proposed model to real forming simulations is the topic for future work. 
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