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Abstract

Modesn integrated circuits contain thousands of switching cells making their design
an overwhelming task. The design procedure is therefore divided into sequence of design
steps. Circuit layout is the design step in which a physical realization of a circuit is
obtained from its functional description. Placement is one subproblem of circuit layout
which involves positioning cells within a target placement geometry while minimizing the
placement area and the total interconnecting wire length. Placement heuristics capable
of producing high quality (near optimal) placements with little computational effort are
required as integrated circuits increase in size.

In this thesis, we propose and investigate a placement heuristic that combines con-
structive and iterative improvement methods. The heuristic is both flexible and extensi-
ble. A good initial placement is constructed through a combination of relative placements
and circuit partitioning. Computational efficiency is achieved by using an interior point
method for finding relative placements and cell interchange heuristics for finding circuit
partitions. Two formulations for the relative placement problem are proposed and in-
vestigated. Iterative rather than direct methods are shown to reduce the computational
time required by the interior point method. A clustering heuristic is also proposed for
improving the efficiency of the placement heuristic. Subsequently, iterative improvement
is applied to further improve the placement. We describe a simple and greedy itera-
tive improvement method which is capable of producing high quality final placements
when provided with a good initial placement. Placements generated by our heuristic are
shown to compare favourably in terms of quality and computational efficiency to other

established placement heuristics on a set of test circuits.
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Chapter 1

Introduction

Modern integrated circuits typically contain many thousands of switching cells. The large
number of switching cells makes the design of an integrated circuit an overwhelming task.
The design procedure is therefore divided into a sequence of design steps [22], namely ar-
chitectural design, logical design, ctrcuit design, circuit layout, design verification, testing,
and debugging. These design steps are illustrated in Figure 1.1, and we briefly describe
each of these steps.

Architectural design involves defining the goals and constraints of the system. This
includes what the system will do, how the system will be divided into components and
how the components will interact. Criteria for the system are also specified during the
architectural design and may include specifications such as power requirements, area
requirements, speed requirements and so forth.

Logic design involves deciding how each component of the system will be expressed
logically. Various components may be implemented as RAM (random access memory),
ROM (read only memory) or as PLAs (programmable logic arrays), for example.

Circuit design involves converting the logic design into electronic circuits that imple-

ment the desired functions. The result of the circuit design step is a set of functional
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blocks (cells) which are generally rectangular in shape and connected together via a set
of signal paths (nets).

potential
feedback paths

Figure 1.1: Integrated circuit design procedure.

Circuit layout involves converting the functional description of the circuit into a set
of physical masks which can be used to physically realize the circuit. Since circuit layout
is the topic of this thesis, a more detailed description of circuit layout is provided in a
subsequent section.

Finally, design verification, testing and debugging involve checking the circuit to en-
sure all design criteria are satisfied, and that the circuit correctly performs its intend
function.

Although the design procedure has been described as a sequence of steps, the individ-
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ual design steps are not mutually exclusive operations. Each step influences subsequent
steps, and the results of any step may be used as feedback information to revise an earlier
step. Several iterations of the design procedure may be required to obtain a satisfactory

design for any given integrated circuit.

1.1 Circuit Layout

As input to the circuit layout design step, we are given a description of a circuit in the form
of a netlist which is a description of switching elements, or cells, and their interconnecting
wires, or nets. Nets connect to cells via pins which represent electrical connection points
to the cells and are located within the boundaries of the cells. Circuit layout involves
determining the geometrical coordinates for cells within a two dimensional plane, or in one
of a few planar layers, and connecting the cells according to the netlist. In performing this
task, several objectives and requirements are satisfied. Typical objectives include (i) area
minimization, (ii) wire length minimization, and (iii) minimization of performance driven
criteria such as path delays, power consumption and so forth. Requirements represent
constraints imposed by the design technology or fabrication technology being used, such
as sufficient spacing between cells and wires, and so forth. Circuit layout is therefore an
example of a constrained optimization problem.

The circuit layout problem itself is NP-hard [29] and is therefore divided into a se-
quence of subproblems which are solved one after another. These subproblems are also
intractable, but are amendable to heuristic solution methodologies which are best de-
scribed as approximate schemes capable of yielding near optimal solutions to the required
problem with reasonable computational effort. The most common division of the circuit
layout problem into subproblems is illustrated in Figure 1.2. First, a partitioning sub-

problem may be solved. This subproblem involves dividing a circuit into a small set
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Figure 1.2: Circuit layout subproblems.

of relatively independent subcircuits which can be designed and implemented as sepa-
rate circuits, and subsequently interconnected. The cell placement subproblem is solved
(for each partitioned subcircuit) to determine the positions of the cells. Subsequently,
the global routing and the detailed routing subproblems are solved to connect the cells
according to the netlist. As illustrated for the circuit design procedure, the circuit lay-
out subproblems are not mutually exclusive. The solution of each subproblem influences
subsequent subproblems, and the results of any subproblem may be used as feedback
information to revise and influence the solution of a previous subproblem.

As previously mentioned, circuit layout involves the minimization of several different
objectives subject to constraints or restrictions imposed on the problem. However, due
to the division of circuit layout into amendable subproblems, these objectives can often
only be estimated during the solution of each subproblem. For instance, until the circuit
routing is actually performed, quantities such as wire lengths and path delays are un-

known. It is therefore necessary to have accurate estimates of these quantities during the
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placement subproblem. The quality of the circuit layout highly depends on the design of

the heuristic methods used to solve the placement and routing subproblems.

1.2 Research Motivations and Objectives

In this thesis, we are concerned with the cell placement subproblem. Heuristics for
cell placement may be classified as either iterative improvement [41] or as constructive
methods {25]. We defer to Chapter 2 for a more detailed description of these heuristics
and presently provide only enough description to illustrate the motivation and objectives

for additional investigations into the cell placement subproblem.

1.2.1 Motivations

Previously proposed placement heuristics all exhibit certain advantages and disadvan-
tages. Interestingly, the advantages of certain heuristics tend to be the disadvantages of
other heuristics. For instance, certain iterative improvement methods produce very high
quality placements, but require excessively large computational effort to do so. Con-
versely, certain constructive methods require little computational effort, and although
good, the placements produced by these methods are generally of lesser quality than
their iterative improvement counterparts. In designing a placement heuristic, both qual-
ity and computational efficiency are issues that must be addressed. The quality of the
placement is essential for the performance of the final circuit whereas computational ef-
ficiency is essential for shortening the design procedure (this is especially true for large
circuits where a “short” design procedure may correspond to weeks, months or years).
Finally, the flexibility and robustness of a placement heuristic are also issues which must
be addressed as layout styles change and different design objectives are proposed. On-

going research is therefore necessary to develop newer and better placement heuristics
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which are: (i) effective, (ii) efficient, and (jii) flexible and robust.

1.2.2 Objectives

In this thesis, our main objective is to investigate and develop a placement methodology
which exhibits the aforementioned characteristics through enhancements, alterations and
combinations of previously proposed constructive and iterative improvement methods.
Essentially, we propose to combine constructive and iterative improvement methods where
the constructive method is used to create a good initial placement which is subsequently
improved using an iterative improvement method.

Our proposed constructive method requires a combination of mathematical program-
ming and circuit partitioning. When used in combination with circuit partitioning, the
solution of the mathematical program (which is known as the relative placement problem)
provides relative cell positions (that is, cell adjacencies and proximities to desired posi-
tions) throughout the placement area. These cell positions represent useful information
for determining cell positions in a good initial placement. We present two formulations of
the relative placement problem which facilitate an investigation of the tradeoff in quality
of the initial placements created by the constructive method versus the computational
effort required to do so. Unlike previous heuristics, we propose an interior point method
for solving the relative placement problems which arise during the constructive method.
We introduce the interior point method as an enhancement to previously proposed solu-
tion methodologies since the interior point method allows a wide variety of constraints to
be included into the formulation of the relative placement problem without requiring any
changes in the solution methodology. We illustrate that the computational “bottleneck”
of the interior point method is the solution of a sequence of systems of linear equations.
Therefore, as an additional enhancement, we investigate the application of iterative meth-

ods as a means of solving these systems of equations. We illustrate that iterative methods
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are useful for reducing the computational effort required to solve very large and sparse
optimization problems when the degree of accuracy required in the solution (such as that
required by the relative placement problem) is low. We also investigate circuit clustering
as a means of reducing the computational effort required by the constructive method
while improving the quality of the initial placements. Additionally, we illustrate that
circuit clustering is applicable to other problems, such as circuit partitioning, which arise
during the integrated circuit design procedure.

Our proposed iterative improvement method improves the placements created by the
constructive method using a search heuristic to locally rearrange cells. We illustrate that,
by taking into account the quality of the initial placement, the iterative improvement
method requires little computational effort to create high quality placements. Finally,
the objective function used to determine the improvement in any local rearrangement can
be arbitrarily flexible when using a search heuristic, provided evaluation of the objective

function is not prohibitive.

1.3 Thesis Outline

This thesis is organized as follows. In Chapter 2, we describe cell placement in greater
detail. We describe different types of placement topologies encountered in practice. Pre-
vious placement heuristics are also described. Finally, our proposed placement heuristic
is described as a combination of constructive and iterative improvement methods. The
purposes and interactions of the various components of the heuristics are described.

In Chapters 3 through 6, our constructive method for generating initial placements
is described. In Chapter 3, the relative placement problem is described as a method for
determining relative cell positions throughout the placement area. Two different formula-

tions of the problem are presented to illustrate potential tradeoffs in quality versus speed
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during the relative placement. An interior point method which is suitable for solving
both formulations of the relative placement problem is described in Chapter 4. In Chap-
ter 5, the circuit partitioning problem is presented and its application to cell placement
is described. We illustrate that several iterations of relative placement and circuit parti-
tioning results in a procedure for determining a good distribution of cells throughout the
placement area. This distribution of cells is shown to be useful in determining good cell
positions in an initial legal placement. The creation of an initial legal placement from
the cell positions provided by the relative placement and circuit partitioning iterations
is described in Chapter 6. Additionally, numerical results are presented in Chapter 6 to
illustrate the effectiveness and efficiency of our constructive method using both relative
placement formulations.

In Chapter 7, an iterative improvement method is presented for further improving the
initial placement provided by the constructive method. Numerical results are presented
to demonstrate that final placements generated after the completion of the constructive
and iterative improvement methods are comparable or better than existing placement
heuristics on a set of test circuits. We consider iterative improvement as a necessary step
in the overall placement heuristic.

Circuit clustering is described in Chapter 8. A clustering heuristic for condensing a
circuit netlist is proposed. Circuit clustering is proposed in order to reduce the dimension-
ality of the relative placement problems thereby improving the computational efficiency
of the constructive method. Numerical results are presented to demonstrate the effective-
ness of circuit clustering when incorporated into the placement heuristic. Clustering is
demonstrated to provide comparable placements (to those obtained without clustering)
while substantially reducing the computational effort.

Finally, a summary of this thesis is presented in Chapter 9. The intention is to
highlight the contributions of this thesis and to provide a description of future research
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possibilities for additional enhancements to this work.
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Chapter 2

Cell Placement

As previously mentioned, cell placement is a subproblem of the circuit layout design
step which involves positioning cells (although a small number of cells, known as I/0O
pads are fixed at positions around the periphery of the placement area) within a speci-
fied placement geometry. In performing the placement, several objectives are minimized
while satisfying several restrictions or constraints imposed on the positions of the cells.
Primarily, the objectives in cell placement are minimization of (i) the placement area,
(ii) the wire length, and/or (iii) performance criteria such as path delays and so forth.
Restrictions on cell positions are generally due to the type of placement required, which
is a function of the technology and layout style begin used in the design. For instance,
the technology determines the size of the cells and may influence the required spacing
between neigbouring cells. The layout style may require the cells to be positioned within
rows or at points arranged in a grid [29].

The type of cell placement we consider is semi-custom design [29] which is applicable
to the design of Application Specific Integrate Circuits (ASICs) and Field Programmable
Gate Arrays (FPGAs). In semi-custom design, typical circuits may contain thousands

of cells. Restrictions are imposed on the positions of cells and locations for routing con-

10
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Figure 2.1: Semi-custom design topologies.

nections between cells. In other words, the physical topology of the circuit is essentially
known a priori. Cells implementing different functions can be placed at any of the re-
stricted positions and subsequently implemented by modifying a standard set of physical
masks prior to the fabrication of the circuit.

Figure 2.1 illustrates common semi-custom design topologies, namely island-styled
gate arrays and row-oriented standard cells/gate arrays. In island-styled gate arrays, cells
are typically equal in width and height, and must be positioned at specified grid points
within the placement area. Subsequent routing is performed in vertical and horizontal
channels. In row-oriented placement, cells are equal in height, but are different in width.
Cells must be placed into a prescribed number of rows located within the placement area.
Once placed, routing is performed in the horizontal channels in between adjacent rows.
Connections between cells in non-adjacent rows may be routed around the end of the
rows, or through the insertion of additional cells, known as feedthroughs, into the rows.
Since identical placement heuristics are typically used for each topology, we consider only
row-oriented placement.

In performing cell placement, hand designs are impractical due to the large circuit

sizes. Furthermore, the design objectives can only be approached at the expense of ex-
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Figure 2.2: Taxonomy of placement heuristics.

cessive computational efforts. Therefore, high quality placements are obtained only by
accepting excessive computational effort, or by sacrificing placement qualities. Auto-
mated placement heuristics are required to facilitate semi-custom design, and to reach a

reasonable tradeoff in quality versus computational effort.

2.1 Previous Approaches

Many different heuristics have been proposed for cell placement. The taxonomy of these
placement heuristics is illustrated in Figure 2.2. Placement heuristics may be broadly

classified as either constructive or iterative improvement methods [29].
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2.1.1 Constructive Methods

Constructive methods produce placements directly from the circuit description (that is,
the cell-net interconnections provided by the netlist). These methods may be subdivided
into two major categories, namely partitioning algorithms (8, 40] and analytical algo-
rithms [32]. Constructive methods are considered global approaches, since placements
are obtained by considering all circuit connections simultaneously. Typically, the com-
bination of partitioning and analytical algorithms has resulted in the most successful
constructive methods [25, 49].

Constructive methods have the advantage that they are generally fast and produce
reasonably good placements for large circuits due to the globality (that is, the simultane-
ous consideration of all cell interconnections) of the approach. However, these methods
are typically restrictive in the design objectives which can be incorporated into the cost

functions and therefore cannot produce the highest quality placements.

2.1.2 Iterative Improvement Methods

Iterative improvement methods do not produce placements directly from the circuit de-
scription, but rather begin with an initial placement and search for an improved placement
by making local changes to the existing placement. These perturbations are continued
until a near optimal placement is obtained. Therefore, these methods are essentially local
search algorithms which begin at an existing solution and move to neighbouring solutions
via small and local perturbations. Iterative improvement methods may be subdivided
into two major subclasses, namely randomized or deterministic algorithms. This division
depends on whether or not a given perturbation is used to alter an existing placement.
Iterative improvement methods are highly flexibility in the design objectives which

can be incorporated into the cost functions. Since the cost of a given placement is a
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function of the design objectives, it is only necessary to re-evaluate the cost function to
determine if one placement is better than another placement.

Randomized algorithms always accept changes which lead to an improved solution,
and may also accept changes leading to poorer solutions with a low probability. It is
this acceptance of changes leading to poorer solutions which gives these algorithms the
ability to escape from local minima, and to approach a global optimum. Randomized
iterative improvement methods are traditionally based on Simulated Annealing [41] or on
evolution-based algorithms [26, 27). Randomized algorithms produce very high quality
placements (often the best of the heuristic methods), which is a direct consequence of the
ability of such approaches to escape from local minima. However, excessive amounts of
computational effort are required by randomized algorithms to produce these results.

Unlike randomized algorithms, deterministic algorithms only accept changes which
lead to improved solutions. These algorithms require less computational effort than their
randomized counterparts, but are generally unable to produce placements of comparable
quality due to their inability to escape from local minima. Deterministic algorithms
that have the ability to escape local optima have been proposed [37]. Even so, these
algorithms are not comparable to randomized algorithms in there ability to escape from

local minima.

2.2 A Combination of Methods

Since constructive and iterative improvement methods both exhibit advantages and disad-
vantages, further progress in developing placement heuristics requires combining and/or
enhancing the different methods. Constructive methods, although not as flexible as it-
erative improvement methods, are capable of producing good placements with low com-

putational effort. Flexibility for the constructive method may be achieved by enhancing
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existing constructive methods by using different modelling of the problem or by using
more flexible solution algorithms. Conversely, iterative improvement methods are very
flexible and are capable of producing high quality placements, but at the expense of ex-
cessive computational effort. By combining the methods, excessive computational efforts
may be avoided. An iterative improvement method can take advantage of a good initial
placement generated by a constructive method and less computational effort will be re-
quired to reach a near optimal placement. In other words, a deterministic improvement
algorithm may be sufficient. Similarily, the quality of the final placement is not restricted
by the flexibility of the constructive method since subsequent iterative improvement is
performed. The combination of a constructive and an iterative improvement method
results in an overall placement heuristic illustrated in Figure 2.3. As illustrated, the
placement heuristic requires a combination of relative placements, circuit partitioning
and search heuristics.

An initial placement is generated using a constructive method as follows. The circuit
description and desired placement geometry is read, and an iterative procedure involving
a combination of mathematical programming and circuit partitioning begins. The cir-
cuit description and placement geometry is first used to create an initial overlapping cell
placement which is described by a mathematical program known as the relative placement
problem. By allowing several placement violations (cells are allowed to overlap and are
not restricted to positions within the rows), the solution of the relative placement problem
provides the general positions of cells throughout the placement area while minimizing an
estimate of the total wire length. The intention is to determine general cell proximities
and adjacencies in the final placement while providing a global view of the circuit inter-
connections. Ideally, the placement restrictions should be included in the formulation of
the relative placement problem. However, these simplifications are required in order to

obtain a practical solution methodology for solving the relative placement formulations.
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Figure 2.3: A combination of constructive and iterative improvement methods.
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The simplifications made when determining relative cell positions may result in signif-
icant cell overlap. Furthermore, cells tend to cluster towards the center of the placement
area. Circuit partitioning is applied to divide the cells into disjoint groups and the place-
ment area into regions. By assigning the partitioned groups of cells to disjoint regions
within the placement area cell overlap may be reduced (since cells in one regions are
prevented from overlapping with cells in other regions) and area utilization is improved
(by forcing cells into unoccupied portions of the placement area). By resolving the rel-
ative placement problem with additional information (constraints) appended from the
circuit partitioning problem, a good (global) distribution of cells throughout the place-
ment area may be obtained. This information aids in determining cell proximities in the
final placement.

Therefore, there is an interaction between the relative placement and the circuit par-
titioning problems. The relative cell positions are used to generate initial partitions of the
cells. These initial partitions are subsequently improved using circuit partitioning. Once
the partitioning is completed, the division of the cells into disjoint regions throughout
the placement area is taken into account during subsequent relative placements by in-
cluding additional constraints into the relative placement formulations. This alternation
between mathematical programming and circuit partitioning is repeated until cells are
distributed evenly throughout the entire placement area. The interaction between the
relative placement and circuit partitioning problems is described in more detail in Chap-
ter 5. Subsequently, a legalization heuristic based on the cell positions can be applied to
remove any residual cell overlap and to satisfy any placement restrictions imposed on the
cell positions.

Once the initial cell placement is obtained, an iterative improvement method is applied
to further improve the placement. Given the effort expended to produce an initial place-

ment, we assume that the initial placement is good (cells are in the vicinity of their final
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[ Circuit Cells Nets Pads | Rows
circuitl 833 983 81 21
circuit2 3014 3136 107 21
biomed 6417 5742 97 27
industryl | 2271 2478 580 15
industry2 | 12142 13419 495 70
industry3 | 15059 21938 375 50

Table 2.1: Test circuit sizes and placerent geometries.

positions in a near optimal placement). A greedy and highly localized search heuristic
based on cell moves and swaps is applied to rearrange cells. Localizing the rearrangement
of the cells (which is possible as a consequence of the effort spent to produce the initial
placement), implies our iterative improvement method requires less computational effort.
That is, since the cells are highly restricted in their possible positions, the search for

improved cell positions is accomplished in a more timely manner.

2.3 Test Circuits

Throughout this work, numerical results are presented on a set of test circuits to illustrate
various aspects of the placement heuristic. All the numerical results presented were
produced on a Sun SPARCstation 5/85 with 64 Mbytes of memory.

The test circuits we consider are illustrated in Table 2.1. In Table 2.1, the identifier
and the number of cells, nets and I/O pads for each circuit are presented. The first two
test circuits are of our own creation and the remaining four circuits are taken from the
MCNC benchmark test suite [28]. The number of rows required in the final placement of
each circuit are also indicated in Table 2.1. The number of rows determines the desired
placement geometry in the following sense. The height of the cells determines the height
of the rows and the spacing between the rows. This in turn determines the height of

the placement area. The width of the placement area is determined by the length of
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Circuit Cell Deg. Net Size

Avg. Std. [ Avg. Std. % <3 % > 10
circuitl 336 134 3.12 250 82.50 3.46
circuit2 3.66 157 )| 3.65 3.77 73.57 4.82
biomed 3.23 106! 3.66 20.89 84.78 3.48
industryl 302 138 347 856 80.79 3.1
industry2 3.81 181 3.59 1097 85.22 4.48
industry3 427 154 3.00 323 79.36 0.77

Table 2.2: Additional test circuit statistics.

the longest row once the cells are placed into the rows. By keeping the rows equal in
length (which is generally not possible since the cells differ in widths), the width of the
placement area is minimized.

Additional statistics for each circuit are presented in Table 2.2. For each circuit, the
average and standard deviation for the number of nets incident on each cell are presented.
These statistics indicate that very few nets are incident to each cell and that the variation
in the number of incident nets is low. The average and standard deviation for the number
of cells connected to each net are also presented in Table 2.2. Finally, the number of nets
(expressed as a percentage of the total number of nets) connecting less than or equal to
3 cells and more than 10 cells are presented. These statistics indicate that a very large
percentage of the nets are short (connected to only a few cells) and very few nets are
long (connected to many cells). Therefore, the circuits are typically sparse. For several
circuits, namely biomed, industry! and industry2, the standard deviations for the number
of cells connected to each net are quite large. This indicates that for these test circuits,

the variation in net connectivity is large and that some of the long nets are very long.

2.4 Summary

In this chapter, semi-custom design has been described. Semi-custom design is especially

relevant to ASIC and FPGA design, where the circuits may contain many thousands of
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cells. Because of the large number of cells, hand design is not possible and optimal cell
placements may only be obtained by accepting excessively large computational efforts.
Several automated placement heuristics have been proposed and may broadly be classi-
fied as either constructive or iterative improvement methods. The classification depends
on the approach for finding placements. Primarily, constructive methods are less flexible,
but are capable of producing good placements with little computational effort. Con-
versely, iterative improvement methods are highly flexible, and are capable of producing
high quality placements. Unfortunately, those iterative improvement methods capable of
producing high quality placements require large computational time and effort.

To improve cell placement, a combination of methods is useful in order to exploit the
advantages of the different methods. A constructive method is useful for generating a
good initial placement which is subsequently improved using an iterative improvement
method. Given that the initial placement is good, the computational effort of the iterative
improvement method may be reduced by taking into account the quality of the initial
placement. Similarily, the quality of the final placement is not restricted by the construc-
tive method due to the subsequent iterative improvement. The combination of methods
results in an overall placement heuristic requiring a combination of mathematical pro-
gramming and circuit partitioning to construct an initial placement. This is followed by
the application of a search heuristic to perform the iterative improvement.

In the next chapter, we begin the description of our proposed constructive method by

introducing the relative placement problem.



Chapter 3

Relative Placement

In this chapter, we consider the relative placement problem. Relative placement involves
determining the relative positions of cells throughout the placement area while minimizing
an estimate to the total interconnecting wire length. In determining the relative cell
positions, the relative placement problem takes a global view of the cell positions by
considering all cell interconnections simultaneously. This global view aids in determining
cell proximities and adjacencies in an initial legal (non-overlapping) placement. Several
simplifications are made when formulating the relative placement problem in order to
make the resulting problem solvable using an efficient algorithm. For instance, cells
are permitted to overlap and are not restricted in their positioning provided they fall
within the placement area. Due to these simplifications, the solution of the relative
placement problem does not produce a legal placement by itself. Relative placement is a
heuristic method intended to provide a good “idea” of the general cell positions. These
cell positions can be provided to (or used in combination with) other heuristics to remove
cell overlap and to satisfy placement restrictions.

The relative placement problem has been formulated as a mathematical program, typ-

ically with either linear or quadratic objective functions [3, 5, 20, 21, 23, 25, 37, 39, 38, 42,

21
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49]. The solution methodologies proposed have varied according to the objective function
used and the constraints included in the formulation. Example solution methodologies
have included linear programming methods [5, 23, 49], eigenvector methods [3, 20], linear
systems methods [25, 37] and various lagrangian multiplier methods [21, 39, 38, 42].

In this chapter, we present two relative placement formulations. The first formulation
uses a quadratic objective function whereas the second formulation uses a linear objective
function. Both formulations are subject to a set of linear constraints and variable bounds.
Therefore, one formulation may be solved as a Quadratic Program (QP) and the other as a
Linear Program (LP). We consider two formulations since the different objective functions
imply a different estimate of wire length and therefore different relative cell placements.
Furthermore, the different formulations result in optimization problems which differ in
the number of unknowns and the number of constraints. Therefore, the potential for
tradeoffs in quality of solution versus computational effort may be investigated. Finally,
we consider both formulations since both may be solved using an interior point method
{45] (which is the topic of the next chapter).

This chapter is organized as follows. The formulations of the relative placement
problem as a QP and a LP are presented in Sections 3.1 and 3.2, respectively. In Section
3.3, we present an analysis of the two formulations. We demonstrate the differences in the
size and storage requirements for the two formulations. The potential benefits in quality
versus computational effort for each of the formulations is also described to illustrate why
both formulations should be considered. Finally, a summary of this chapter is provided
in Section 3.4.
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Figure 3.1: Quadratic estimate of wire length.
3.1 A Quadratic Programming Formulation

3.1.1 The Objective Function

Quadratic program formulations are a result of the estimate used for wire length and the
constraints included in the problem formulation [25]. As an estimate of wire length for
net j, we use the sum of the squared distance from all pins to the net position, which
is taken as the mean value of the coordinates of the connected pins. This estimate of
wire length is illustrated in Figure 3.1. The resulting estimate of wire length for net j,

denoted by l;, is given by

=Y [(z+ G- w) + (s +mis — v3)?] (3.1)

i€C;
where C; denotes the set of cells connected to net j, (z;,y;) denotes the position of
cell 7, (uj,v;) represents the location of net j, and ((ji, nj;) denotes the offset for the
pin connecting cell ¢ to net j. This estimate of wire length is separable in the z and y

directions, and minimization can be performed independently in both directions. The
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following description involves only the z direction, but extends to the y direction without
any loss of generality.

The total estimate of the wire length is given by summing the estimates of wire length
for all the nets. Performing this summation and substituting the coordinates for each
net and the coordinates of all fixed I/O pads results in a total estimate of wire length

(ignoring constant terms) that can be written in matrix form as
1 7 T
Lgop = 3 Qx+c'x (3.2)

where Q is a symmetric positive definite matrix (Q > 0), ¢ is a cost vector, and x is
the vector of unknown cell positions. This estimate of wire length resuits in a symmetric
positive definite quadratic objective function.

3.1.2 The Problem Constraints

We now consider constraints imposed on the cell positions. Although we allow cells to
overlap, we still include constraints in the formulation which tend to reduce the amount
of cell overlap and provide an even distribution of cells throughout the placement area.
We assume that the placement area has been partitioned into disjoint regions, and that
each free cell has been assigned to one region (the method for obtaining a partitioning of
the cells is the subject of a subsequent chapter). The partitioning of the placement area
and the restriction of cells to regions is illustrated in Figure 3.2.

For each region j, let R; denote the cells assigned to this region. Additionally, let L;
and U; denote the lower and upper boundaries for region j, respectively. Cells assigned
to region j are restricted to positions within the region by including the variable bounds
given by '

Lj<z;<U; Vi€R;. (3.3)
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Figure 3.2: Restriction of cells to regions.

The consequence of the variable bounds is a reduction in the total amount of cell overlap
since cells in different regions are prevented from overlapping with each other.

To improve the distribution of cells throughout each region, we include first moment
constraints. Let X; denote the centre of region j. For each region j, we include the

inequality constraints

(1 - Q)Xj < }l'i; Z:I'ER,' Aiz; < (1 +Q)Xj, (3'4)

where F; denote the total area of the cells assigned to region j and a € (0,1) is a
parameter included to permit some (small) amount of flexibility on the value of the first
moment for the cells in region j. The first moment constraints improve the distribution
of cells within each region by requiring a balancing of cell area throughout the region.
That is, if a cell tends to the left of a region due to the minimization of wire length, then
other cells within the region will be forced to the right of the region in order to satisfy

the first moment constraints. The result is a better usage of the area within each region.
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Figure 3.3: Linear estimate of wire length.

The constraints and variable bounds can be expressed in matrix form as

Ax<b, 1<x<u. (3.5)

Equations (3.2) and (3.5) result in a QP formulation for the relative placement problem.

3.2 A Linear Programming Formulation

3.2.1 The Objective Function

Like quadratic program formulations, linear program formulations are a result of the wire
length estimate and the constraints included during the problem formulation [49]. As an
estimate of wire length for each net, we use the half perimeter wire length (HPWL) as
shown in Figure 3.3. For each net j, we enclose all cells connected to net j by a bounding
boz, and introduce the variables pairs (uj, v;) and (ij, #;) to denote the upper and lower

limits on the bounding box in the z and y directions, respectively. The resulting estimate
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of wire length for net j is given by
l; = (uj — vj) + (5 — 95). (3.6)

This estimate of wire length is separable in the z and y directions and minimization can
be performed independently in both directions. The rest of the discussion involves only
the z direction, but extends to the y direction without any loss of generality.

The total estimate of the wire length is given by summing the estimates of wire length
for all the nets. Performing this summation results in a total estimate of wire length that

can be written in matrix form as
Lip= T(u -v)+ Orx, 3.7)

where u and v are vectors representing the net variables (that is, the vectors representing
the upper and lower limits on the bounding boxes for all nets, respectively), x represents
the unknown cell positions, 0 is the zero vector, and ¢ is a cost vector (equal to e, where
e denotes a vector of ones). This estimate of the total wire length is a linear objective

function.

3.2.2 The Problem Constraints

As for the QP formulation, variable bounds and first moment constraints are included in
the LP formulation to eliminate overlap between cells in different regions and to improve
cell distribution within each region, respectively.

For the QP formulation, nets are considered as points that can be expressed directly
in terms of the cell positions (that is, by equality relationships) and therefore eliminated

from the problem. Since the net variables represent only bounds on the surrounding
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bounding boxes, they cannot be expressed directly in terms of the cell positions and
cannot be eliminated from the LP formulation. The LP formulation requires additional
constraints to relate the net and cell positions. The net variables u and v must remain
above and below all pin positions on the cells in the respective nets. This restriction can
be accomplished using inequality constraints and variable bounds. Consider net j and
its connected cells C;. For each net j, u; is restricted above all pins on the cells in net j
using the inequalities

u; > 2;+ (i, VieC;. (3.8)

(Recall that nets connect to pins. For instance, for a net j which connects to a pin
of cell 7, the pin position is z; + (;;, where {;; is a constant expressed in the circuit
description indicating the offset of the pin from the center of the cell). For free cells,
these inequalities represent constraints since the cell positions are unknown. For fixed
I/O pads, these inequalities represent variable bounds on the net variables u since the
fixed I/O pad positions are known. By replacing u; with v; and changing the direction
of the inequality, similar constraints can be included to restrict v; below all cells in net j.

The problem constraints and variable bounds can be written in matrix form as

u u
Alv|<b 1<|v]l<u (3.9)
X x

Equations (3.7) and (3.9) result in a LP formulation for the relative placement problem.
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3.3 Analysis of the Formulations

Both the QP and LP formulations can be expressed as optimization problems in the form

given by
minimize <z 4 127Qs
subject to Az<b, (3.10)
0<z<u

where z represents the vector of unknowns. When Q # 0 the QP formulation is implied
whereas when Q = 0 the LP formulation is implied. This optimization problem can
be solved in polynomial-time using the same primal-dual interior point method [45].
It is important to emphasize that the LP formulation is not solved using a quadratic
program solver simply by setting Q = 0. The structure (that is, the sequence of steps
and computational requirements at each step) of the interior point method is essentially
the same regardless of whether or not the optimization problem is a QP or a LP. This
represents one benefit of using the interior point method for solving the relative placement
formulations in that both formulations are essentially solved using the same algorithm,
with only minor changes required to implement the algorithm.

The question arises as to the advantages and disadvantages of both formulations.
The complexity of the relative placement problem is a function of the solution method
used (in our case the interior point method). In turn, the computational efficiency of
the method is a function of the number of mathematical operations required during the
solution method. It is therefore useful to consider the optimization problem sizes and
storage requirements for both formulations.

Let p represent the number of pins in the circuit, n the number of nets, ¢ the number
of cells, and r the number of regions into which the placment area has been partitioned.

When considering the optimization problem sizes and storage requirements, the quantities
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of interest are the number of variables and constraints, and the number of nonzeros in
any matrices required in the formulation.

For the QP formulation the number of variables equals c and the number of constraints
equals 2r. The number of nonzeros in the constraint matrix A (due to the first moment
constraints) is 2c since each cell is involved in only 2 constraints. Consider next the matrix
Q. If we consider one net connecting ¢ cells, then we find that the quadratic estimate
of wire length causes a ¢ x q dense block of nonzero entries (a clique) to appear in Q.
Therefore, in the worst-case, where we find a net connecting every cell, the matrix Q will
be totally dense and require storage for ¢? nonzero entries. Considering both matrices Q
and A, the storage requirements for the QP formulation are ¢2 + 2c. We note, however,
that for typical circuits the nonzero entries in Q is much lower than ¢? due to the sparsity
of the circuit (the circuit statistics presented in Chapter 2 support this observation).

For the LP formulation the resulting number of variables is equal to ¢ + 2n due to
the inclusion of the net variables within the formulation. For each pin, two constraints
are required to represent the bounding box relationships. Therefore, the total number of
bounding box constraints in 2p. Including the first moment constraints, the total number
of constraints for the LP formulation is 2p 4 2r. Since the matrix Q does not appear in
the LP formulation, it is necessary to consider only the constraint matrix A. For each
bounding box constraint, two nonzeros are introduced, resulting in a total of 4p nonzero
entries. Considering the first moment constraints, this implies a total of 4p+ 2¢ nonzeros
in A.

The QP formulation results in optimization problems which have substantially fewer
variables and constraints than the LP formulation. Comparision of the storage require-
ments is slightly more difficult since the storage requirements for the QP formulation can
only be bounded and not calculated explicitly. Although it appears that the QP formu-

lation requires more storage (due to the quadratic term ¢2), in practical situations the
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storage requirements for the QP formulation are less than the LP formulation. This ob-
servation is highlighted in the next chapter, when we introduce the interior point method
and solve several relative placement problems using both formulations. We briefly note
that the optimization problem sizes and storage requirements for the LP formulation may
be reduced somewhat by applying standard LP preprocessing techniques [16] whereas the
QP formulation does not benefit from preprocessing due to the nature of the first moment
constraints.

The analysis just presented, along with the empircal results presented in the next
chapter for storage requirements, indicate that QP formulation is preferable to the LP
formulation: It results in smaller optimization problems requiring less storage which
implies lower computational efforts. However, the LP formulation cannot be ignored.
Empirical investigations have shown that linear objective functions may produce better
placements in terms of wire length than quadratic objective functions [37]. Quadratic
objective functions over emphasize the minimization of long nets (nets connecting many
cells) at the expense of short nets (nets connecting few cells), whereas linear objective
functions consider all nets equally during the minimization of the wire length. Further-
more, linear objective functions better approximate the actual wiring strategies used to
connect cells during the actual routing of the circuit. Therefore, the LP formulation offers
the possibility of better final placements at the expense of increased computational effort.
We consider the LP formulation for this reason and to faciliate an investigation of the
tradeoff in computational effort versus quality of solution for different relative placement

formulations.
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3.4 Summary

In this chapter, the relative placement problem has been formulated as both a quadratic
program and as a linear program. The formulation was shown to depend on the esti-
mate of wire length. In terms of the resulting optimization problem sizes and storage
requirements, the QP formulation is preferable to the LP formulation. Less variables and
constraints are required for the QP formulation. Additionally, for practical circuits the
storage requirements are lower for the QP formulation. The smaller problem sizes for the
QP formulation were shown to be a consequence of representing the nets as points. When
represented as points, the net variables can be expressed in terms of the cell positions and
eliminated from the formulation. The elimination of the net variables was not possible
for the LP formulation.

The optimization problem sizes and storage requirements do not necessarily make
the LP formulation unattractive. Empirical results by other researchers have indicate
that the LP formulation may result in better final placements [37]. This improvement
in quality stems from the observation that the LP formulation considers all nets equally
during the minimization of wire length and better represents the wiring strategies actually
used when routing a circuit. The result is two different relative placement formulations,
each with advantages and disadvantages. By considering both formulations, the tradeoff
in quality versus computational effort may be investigated.

In the next chapter, we consider an interior point method as an efficient solution

methodology for both the QP and LP formulations presented in this chapter.
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Chapter 4

An Interior Point Method for

Relative Placement

In this chapter, we consider a primal-dual interior point method [31, 45, 46] suitable for
solving both the QP and LP relative placement formulations. We consider an interior
point method for several reasons: (i) it has a worst-case polynomial-time complexity, (ii}
it is simple to implement, and (iii) it exhibits effective solution times on large and sparse
optimization problems. These characteristics make an interior point method attractive
since the relative placement formulations result in large and sparse optimization problems.

As previously illustrated in Chapter 3, the QP and LP formulations presented are
similar to those used by other researchers. However, the interior point method represents
a different solution methodology than those previously proposed. For instance, previous
LP formulations [23, 49] used simplex-based approaches [30] to obtain a solution (Al-
though, more recently, a primal-dual interior point method specifically for solving an
LP formulation has been proposed [5]). Computationally, the interior point method was
demonstrated to be superior to the simplex-based approaches. For the QP formulation,

33
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various solution methodologies have been proposed and rely on the constraints imposed
on the problem. For wire length minimization, linear systems approaches have been
used [25, 37]. However, these approaches are highly dependent on the structure of the
constraints included in the problem formulation. Similarly, other QP approaches, such
as eigenvector approaches [3, 20], also rely heavily on the formulation. When these ap-
proaches are used, careful consideration must be given when adding constraints into the
formulation. Therefore, an interior point method suitable for the QP formulation offers
more flexibility than the aforementioned linear system and eigenvector approaches. Other
more flexible approaches for QP formulations have been based on Lagrangian multipliers
[21, 39, 38, 42], where convex (and sometimes non-differentiable) constraints have been in-
cluded into the formulation for various reasons (specifically, for inclusion of performance
driven criteria). In the context of previously proposed approaches, the interior point
method offers computational efficiency when compared to other methods (for instance,
simplex-based approaches). In many cases, the interior point method allows additional
constraints to be included into the formulation (specifically linear equality/inequality
constraints and/or variable bounds) without affecting the solution methodology. Fur-
thermore, the same interior point method is sufficient for both QP and LP formulations.
Although the QP and LP formulations do not include performance driven constraints
[23, 39] as presented, the interior point method is easily extensible to handle the inclu-
sion of performance constraints used by many other researchers. Therefore, we consider
the interior point method to be an efficient and more effective approach than many of
those previously proposed. Additionally, it appears to be extensible to more difficult
formulations.

This chapter is organized as follows. In Section 4.1, we describe the basic idea be-
hind our primal-dual interior point method for solving the QP and LP relative placement

formulations as previous described in Chapter 3. We demonstrate that the main computa-
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tional burden of the interior point method is the solution of a sequence of large and sparse
symmetric indefinite systems of linear equations. Therefore, in practical implementations
efficient solution techniques for these systems of equations are required. In Section 4.2,
we describe direct and iterative methods for solving these systems of equations. Iterative
methods require more consideration than direct methods when implemented. Specifically,
consideration is given to the generation of an effective preconditioning matriz when us-
ing an iterative method. Generation of a preconditioning matrix using established drop
tolerance techniques is described in Section 4.3. In Section 4.4, numerical results are
presented to demonstrate several aspects of the QP and LP relative placement formula-
tions. The differences in the problem sizes and storage requirements for the QP and LP
formulations are presented. These results confirm the observations made previously in
Chapter 3, namely that the QP results in smaller problem sizes and require less storage
than the LP formulation. Additionally, the QP formulation is solved more efficiently than
the LP formulation. Finally, the potential benefits of iterative versus direct methods for
solving the systems of equations arising during the interior point method are illustrated.

A summary of this chapter is provided in Section 4.5.

4.1 A Primal-Dual Interior Point Method

As previously demonstrated, both relative placement formulations can be expressed in

the form of the primal problem

minimize ¢Tx+ }x7Qx
subjectto Ax+p = b

j P , (1)
x+8 = u,

x,s,p > 0,
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which has the associated dual problem

maximize bTy + uTw - 1xTQx
subject to ATy+w4r —Qx = ¢,
(4-2)

w4 rs

y+rs

r,r,r3 > 0,

where Q is an n x n symmetric semi-definite matrix (Q > 0), A is an m X n constraint
matrix, ¢ and u are n-vectors, b is an m-vector, and x is an n-vector of unknowns. For
this primal-dual pair of problems, Q # 0 implies the QP formulation whereas Q = 0
implies the LP formulation of the relative placement problem.

The primal-dual interior point method is derived by applying a logarithmic barrier
function to either (or both) the primal or dual problems in order to eliminate the non-

negativity constraints. Assuming a solution that satisfies

{(xv s,p,Y, W, r, Iy, 1‘3) :X,8,p,r,r2,r3 > 0} (4‘3)

is provided, the first order conditions for simultaneous optimality for the primal and dual
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barrier problems are:

Ax+p = b

xX+s8s = u

ATy +w+r,-Qx = ¢
vir =0 (4.4)

y+r3 = 0

XR, = pe

SR; = pe

PR3 = pe

where e denotes a vector of ones, and g > 0 is the penalty parameter for the loga-
rithmic barrier problems. The first two equations represent primal feasibility and the
following three equations represent dual feasibility. The final three equations represent
the g-complementarity conditions, and in these equations an upper case letter denotes a
diagonal matrix with components of the corresponding lower case vector on its diagonal.

Assuming an initial solution satisfying (4.3) is provided, one step of Newton’s method
is used to to find a solution closer the solution of the first order optimality conditions.
This new solution becomes the current solution and the penalty parameter p is reduced
appropriately. This procedure is continued until g is sufficiently close to zero. When g
is reduced sufficiently, it follows from the first order optimality conditions that the final
solution is both primal feasible, dual feasible, and optimal for the primal-dual pair of
problems in (4.1)—(4.2). '

The primal-dual algorithm is therefore an iterative procedure where each iteration
requires application of Newton’s method to determine a search direction for updating the
solution. To determine the search direction, Newton’s method requires the solution of the

augmented equations (the derivation of this system of equations is provided in Appendix
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The matrices E and F are symmetric positive definite matrices, [s;, sz]T represents the

A) given by

search direction, and [(;, (3]T is some right-hand side vector. This system of equations is
sparse, symmetric and indefinite. The sparsity pattern of E is identical to the sparsity
pattern of Q when Q # 0, otherwise it is diagonal. In both cases, F is diagonal. The
solution of the augmented equations represents the main computational burden of each
iteration of an interior point method. Efficient solution techniques for the augmented
equations are required for efficient implementations of an interior point method. Further
details regarding interior point methods, including methods for reducing the penalty

parameter, termination criteria, and so forth can be found in [45].

4.2 Solving the Augmented Equations

Since each iteration of the interior point method is dominated by the solution of the
augmented equations, it is necessary to consider efficient methods for their solution. We
briefly note that it is not necessary to work with the augmented equations directly. We
can either eliminate s; from (4.5) and solve the reduced system of equations

(AE'AT + F)s; =G + AEI(y (4.6)
for s3, or eliminate s, and solve the reduced system of equations

(ATF'A +E)s; =ATF ! - (4.7)
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for s;. Both of these reduced systems of equations are symmetric and positive-definite,
and can be solved using any appropriate direct or iterative method [19]. In many cases,
the reduced systems of equations suffer more fill than the augmented equations during a
matrix factorization. Moreover, it is necessary to explicitly form the reduced systems of
equations, If one uses the reduced system of equations in (4.6), it is necessary calculate
the inverse of E which may not be easy when it has a non-diagonal sparsity pattern. If
one uses the reduced system of equations in (4.7), the resulting matrix has a sparsity
pattern identical to that of AT A. For the relative placement problem, this matrix is very
dense (totally dense at the beginning of the algorithm) since the first moment constraints
become dense columns in the matrix AT. Hence, we prefer to work directly with the

augmented equations.

4.2.1 Direct Methods

Typically, the augmented equations are solved using direct factorizations. Since the
system is symmetric indefinite, a Bunch-Parlett factorization [4] has been advocated [10].
Although such a factorization is guaranteed to exist and is stable, the pivot order cannot
be computed a priori, since the pivot choice is based on numerical values. Thus, the
disadvantage of a Bunch-Parlett factorization is the large overhead required to implement
the approach. Recently, it has been shown [44, 46] that an appropriate selection of an a
priori pivot order is possible such that an LDLT factorization of the augmented equations
exists. In this case, D remains diagonal and non-singular, but contains both positive and
negative values on its diagonal. Moveover, since the matrix K is quasi-definite [44], the
LDL7 factorization exists under any symmetric pertubation. An ordering scheme such
as minimum degree ordering [13] may be used to reduce the fill which occurs during the

factorization process.
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4.2.2 Iterative Methods

Generally, direct factorizations tend to perform well on small problems, or larger prob-
lems which do not incur large amounts of fill during the factorization. For large problems,
and for those where fill becomes substantial, it is necessary to consider iterative methods.
Iterative methods offer several potential benefits versus direct methods, namely that stor-
age requirements are typically lower than for direct methods and solution times are often
lower (due to the inexact nature of the resulting solution). However, one disadvantage of
iterative methods is the failure to converge to an accurate solution.

An important aspect of an iterative method is the ability to determine a precondition-
ing matrix that closely approximates the original matrix. That is, we want to compute

an approximate LDLT factorization such that
K =LDL” +R, (4.8)

where R is an error matrix. The approximate factorization should be easier to compute
and require less storage space than a direct factorization of K. Good preconditioners
tend to significantly reduce the iteration counts for iterative solvers. For interior point
methods and the augmented equations, iterative solvers have not been widely applied.
SYMMLAQ [33] has been proposed for solving the augmented equations arising at each
iteration of an interior point method [14]. In this work, several methods for generating
preconditioners were proposed. However, in all cases the preconditioners were formed
by using a Bunch-Parlett factorization on a simpler matrix which closely approximated
the original matrix. A positive definite preconditioner (a positive definite preconditioner
is required by SYMMLQ) was then obtained by replacing the eigenvalues of the Bunch-
Parlett factorization with their absolute values. Level of fill precondioners [6] have also

been proposed for solving the augmented equations at each iteration of an interior point
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method designed specifically for linear programs [5]. In (5], rather than using SYMMLQ,
the iterative solver BICGSTAB [43] is proposed. The advantage of BICGSTAB is that
a positive definite preconditioner is not required, since BICGSTAB is designed for non-
symmetric matrices.

Motivated by the a priori orderings and LDLT factorizations introduced in [44, 46],
we consider generating incomplete LDLT factorizations directly from the original quasi-
definite matrix without resorting to a complete Bunch-Parlett factorization on a matrix
approximation. We consider generating preconditioners by retaining (or rejecting) entries
in L based on numerical values. Preconditioners generated in this manner are referred
to as drop tolerance preconditioners [6] and tend to yield more accurate approximations
than those based on level of fill. Furthermore, the preconditioning technique is applicable
for the augmented equations arising for both QP and LP optimization problems. As an
iterative solver, we follow the approach in [5] and use BICGSTAB since a positive definite
preconditioner is not required.

One important issue which must be addressed is the existence of an incomplete LDL?
factorization. That is, zero pivots must be avoided due to the dropping of terms during
the factorization process since zero pivots result in failure of the method. We illustrate

how this issue may be resolved in the next section.

4.3 Drop Tolerance Preconditioning

We now consider incomplete factorizations of the augmented equations based on drop
tolerance techniques, as well as techniques for avoiding zero pivots during the incomplete

factorization. Recall we are interested in computing an approximate LDLT factorization
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of the augmented equations such that
K =LDLT +R, (4.9)

where R is an error matrix. Drop tolerance preconditioning refers to the retention (or
rejection) of nonzero entries in the approximate factorization based on their numerical
value. At the p-th stage of the elimination process, the entire column p of LL is calculated.
If any entry in column p is small compared to the current diagonal entries it is dropped,

otherwise it is kept. That is, entry I} is dropped if
(15,)° < €| dbyd%; |, (4.10)

where dF, and d&; are the current diagonal entries in the matrix D at the p-th stage
of the elimination, and € is a small positive number. For interior point methods, where
the augmented equations change at each iteration, it is necessary to update the data
structures for drop tolerance preconditioning at each iteration. However, due to the
increased sparsity of the incomplete factorization, some of the additional effort to update

the data structures is hopefully offset by the reduced factorization time.

4.3.1 The Augmented Equations and Zero Pivots
Positive Definite Matrices

We briefly consider the case when the matrix K is symmetric positive definite. One
difficulty that may be encountered when generating an incomplete LDLT factorization
for a positive definite matrix is the loss of positive definiteness due to the dropping of
terms. A positive definite preconditioner is required, since for symmetric positive definite

systems the preconditioned conjugate gradient algorithm is the iterative solver of choice
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(19], and this algorithm requires a pasitive definite preconditioner.

Fortunately, for positive definite systems, it is possible to guarantee the preconditioner
remains positive definite by adding fractions of the absolute values of dropped terms to
the diagonals of D during the incomplete factorization [1]. Let [7, denote the entry
which is being dropped from column p of the incomplete factorization and introduce the

quantities
1/2 £ \12
= (%) ;| and ;= (#) | 851 - (4.11)

By modifying these diagonal entries according to the rule
&y diytcpp and &  d; + 5, (4.12)

the incomplete factorization will remain positive definite. Although promising, it has
been observed that when many terms are dropped, the amount added to the diagonals
is often an overestimation of the amount actually required to ensure positive definiteness
[6], leading to an increase in the iteration count of the iterative solver. A more heuristic
approach that performs well in practice is to simply abort the factorization process when
a negative or zero pivot is encountered, scale the diagonal elements and re-attempt to

compute the incomplete factorization using the scaled matrix [6].

Quasi-Definite Matrices

We now consider the case when K is a quasi-definite matrix. It should be observed that
the matrix D contains exactly n negative entries and m positive entries (when E is an
n X n matrix and F is an m x m matrix). For an incompete LDL7 factorization, we show
that the same property can be guaranteed, implying that no zero pivots occur during the

factorization process. To do so, we require the following assumption.
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Assumption 4.1 For a symmetric positive definite matriz, zero and negative pivots can
be avoided by modifying the diagonal elements during an incomplete factorization. Fur-

thermore, the resulting incomplete factorization will be positive definite.

We note that this assumption is trivial from the discussion of positive definite matrices

in the previous section. We now consider the case of a quasi-definite matrix.

Proposition 4.1 For a quasi-definite matriz, zero pivots can be avoided by appropriate

modification of the diagonal elements during an incomplete factorization.

Proof Consider the elimination of the first column of a quasi-definite matrix K during

a direct LDLT factorization. The result is as follows:

-

- —eoT T

= | —es ~E, AT (4.13)

A F
aa Al F
1 00
= 83/81 IO
—01/61 01
—e) 0 0

X 0 -(Ez - e;eg'/el) Ag' - egaf/el

0 A — aleg/el F+ a;af/el

-

1 ef/ey, —-aT/e,
x|o0 I 0 . (4.14)
0 0 I

If we consider the lower diagonal submatrix F +a;a /e;, any terms in the rank 1 update

a;af /e, can be dropped with the resulting submatrix remaining positive definite since F is
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positive definite. Consider the upper diagonal submatrix (ignoring the negative sign) E,+
esel /e;. Since this submatrix is positive definite, performing diagonal modifications will
keep final incomplete factorization positive definite. Finally, any terms in the submatrix
A, — a1el /e, can be dropped without jeopardizing the incomplete factorization.

The result of the incomplete elimination is that the lower right submatrix remains
quasi-definite. Thus, by induction, the elimination process can be continued for the first
n columns without encountering zero pivots. The last m steps of the factorization require
an incomplete factorization of a positive definite matrix (namely F updated by a series
of rank 1 updates). This incomplete factorization can also proceed successfully using

diagonal modifications.

4.4 Numerical Results

We now consider the effectiveness of the interior point method for solving the QP and
LP relative placement formulations. The intention is to illustrate several differences in
the two relative placement formulations, namely the resulting optimization problem sizes
and the storage requirements. Computational times are also presented to demonstrate
the reduced computational effort required when the QP formulation is used rather than
the LP formulation. Finally, the benefits of using an iterative versus a direct method for
solving the augmented equations are illustrated.

In producing the results, the following settings were used for the interior point method.
In all cases, the interior point method was terminated when the primal and dual feasibil-
ity norms dropped below the threshold of 10~* and when more than 2 significant digits
of agreement were obtained between the primal and dual objective function values. Al-
though these settings are not stringent (when compared to typical setting used on other

types of optimization problems [45]), experimentation showed they were more than ac-
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Circuit QP Form. LP Form.
Rows Cols nz(K) | Rows Cols nz(K)

Circuitl 2 833 11313 5422 2769 33203

Circuit2 2 3014 45468 | 18733 9096 114809

Biomed 2 6417 66687 | 28776 17609 187149

Industryl 2 2271 31357 | 13067 7157 81568

Industry2 2 12142 158720 | 69749 38124 435429
2

Industry3 15059 212225 | 124342 58723 740661

Table 4.1: Problem sizes and storage requirements for relative placement formulations.

ceptable for the relative placement problem (more stringent settings did not change the
resulting cell positions significantly). For the iterative method, the following settings
were used. The drop tolerance was initially set to 103 and the BiCGSTAB iterations
were terminated when (i) the residual error dropped below 10~ or (ii) when more than
100 iterations were required. In the cases where more than 100 iterations were required,
the iterative solver was considered to have failed. However, rather than stopping the
entire algorithm, the drop tolerance was reduced by a factor of 10, resulting in a more
accurate preconditioner (fewer dropped terms), and the iterative solver was re-executed.
This technique guaranteed convergence of the iterative method since reduction of the
drop tolerance would eventually result in a direct factorization (if required). Failure of
the iterative method was not considered acceptable for the relative placement problem,
and therefore convergence was considered necessary regardless of the cost.

In Table 4.1, the optimization problem sizes are shown for the QP and LP relative
placement formulations with the entire placement area taken as the only region. The
number of variables, constraints and nonzeros in the augmented equations are shown in
Table 4.1. As expected, the results presented in Table 4.1 indicate that the QP formu-
lation results in optimization problems with significantly fewer variables and constraints
than the equivalent LP formulation. In addition, the nonzeros in the matrix K (which

measures the number of nonzeros in Q and A, since K is composed from these two
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Circuit Dir. Meth. Iter. Meth. Imp. (Iter/Dir})
nz(L) Time | nz(L) Time | nz(L) Time

Circuitl 18899 2.78 5671 3.20 0.30 1.15
Circuit2 142357 37.28 | 21055 22.70 0.15 0.61
Biomed 56691 5724 | 28404 71.46 0.50 1.25

Industryl 42001 17.32 | 14217 22,04 0.34 1.27
Industry2 | 440143 296.74 | 71073 233.66 | 0.16 0.79
Industry3 | 1745903 1375.90 | 103692 334.80 | 0.06 0.24

Table 4.2: Relative placement results for the QP formulation.

matrices) indicates that the QP requires less storage space than the equivalent LP formu-
lation. These observations comfirm the predictions made previously in Chapter 3 about
the differences in the two relative placement formulations.

The performance of the interior point method for solving the QP relative placement
formulation is illustrated in Table 4.2. In Table 4.2, we present the number of nonzeros
in the matrix factorization L and the total computational time required to solve the
QP relative placement formulation. These statistics are presented when both direct and
iterative methods are used to solve the augmented equations. For the iterative method,
the number of nonzeros in L presented in Table 4.2 represents the maximum number
of nonzeros required over all interior point iterations. These results indicate that the
iterative method typically requires significantly less storage (always less than 50 percent)
for the matrix factorization when compared to the direct method. The computational
times are not as good. In several cases, the direct method out performs the iterative
method in terms of computational effort. However, for the larger circuits industry2 and
industry3, the presented results favour the iterative method.

In Table 4.3, the same statistics are presented to illustrate the performance of the
interior point method for solving the LP formulation of the relative placement problem.
Once again, the iterative method requires less storage space than the direct method,

although the savings (expressed as the ratio) are not as significant as for the QP formu-
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Circuit Dir. Meth. Iter. Meth. Imp. (Iter/Dir)
nz(L) Time | nz(L) Time |nz(L) Time
Circuitl 42396 23.89 | 27078 53.13 0.64 2.22

Circuit2 225524 256.11 | 120604 275.76 | 0.53 1.07
Biomed 175570 548.74 | 155847 507.08 | 0.89 0.92
Industryl 94831 109.69 | 74129 265.27 | 0.78 2.42
Industry2 | 690201 2706.33 | 398046 1603.32 ( 0.58 0.59
Industry3 | 2377871 4243.13 | 776025 2037.17 | 0.33 0.48

Table 4.3: Relative placement results for the LP formulation.

lation. For the LP formulations, the direct method is preferable to the iterative method
in several situations (namely the smaller problems circuit! and industry!) when compu-
tational effort is considered. However, for the larger problems (especially for the largest
circuits industry2 and industry3), where savings in computational effort are most crucial,
the iterative method is preferable.

From both Tables 4.2 and 4.3, we make several observations to compare the QP and
LP formulations. In all cases, the QP formulation requires less storage and exhibits lower
solution times than the LP formulation. This is significant, since it is necessary to solve a
sequence of relative placement problems during the constructive phase of the placement
heuristic. However, no statements regarding the quality of the final placements can be
made since the solution to the relative placement problem is not sufficient for creating a
legal placement. Therefore, it is not necessarily feasible to ignore the LP formulation at
this point.

4.5 Summary

In this chapter, a primal-dual interior point method suitable for solving the relative place-
ment formulations previously described in Chapter 3 has been presented. The computa-

tional burden of the interior point method was shown to be the solution of the augmented
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equations which arise at each iteration of the interior point method. Both direct and it-
erative methods were described for solving the augmented equations. Iterative methods
require the generation of a good preconditioning matrix. Preconditioning using drop tol-
erance techniques have been described, and a method for avoiding zero pivots based on
modifying diagonal elements during the incomplete factorization was presented.

Numerical results on our set of test circuits indicate that the QP relative placement
formulation results in smaller optimization problems requiring less storage space than
the equivalent LP formulation. Moreover, regardless of the method used to solve the
augmented equations, the QP formulation was solved with less computational effort than
the equivalent LP formulation of the relative placement problem.

Numerical results also indicated that iterative methods require significantly less stor-
age space than direct methods for solving the augmented equations. The performance
of the iterative method was less definitive in terms of computational effort (when com-
pared to the benefits in the storage requirements). In several cases the direct method was
preferable to the iterative method. However, for the larger test circuits, which result in
larger optimization problems and consume a significant amount of computational effort
to solve, the iterative method was preferable. Therefore, we consider the application of
the iterative method a promising approach.

Although the numerical results presented in this chapter favour the QP formulation,
it is not sufficient to ignore the LP formulation. No statements regarding the quality of
the placement were made in this chapter since a single relative placement is not sufficient
for the generation of a legal placement. Therefore, the LP formulation must still be
considered to invesigate any potential tradeoffs in quality versus speed. In the following
chapters, we continue with a description of the remaining components of the constructive
placement method to further explore the QP and LP relative placement formulations, as

well as the overall constructive placement method itself.



Chapter 5

Partitioning the Placement Area

In Chapter 3, the relative placement problem was formulated under the assumption that
the placement area had been divided into a number of disjoint regions and each free cell
could only be positioned within one of these regions. These assumptions lead to a set of
inequality constraints involving the cell positions and variables bounds on the acceptable
cell positions.

Several relative placements for circuit! are presented in Figures 5.1(a)-(c) to illustrate
the necessity of dividing the placement area and the cells (the relative placements were
obtained using the QP formulation in all cases. Similar results are obtained with the LP
relative placement formulation). Figure 5.1(a) illustrates the relative placement obtained
when cells were only required to be positioned within the placement area (that is, the
placement area was “divided” into one region). Although cells are allowed to fall anywhere
within the placement area, there is a tendency for the cells to group towards the middle
of the region. The grouping of cells is a result of the minimization of wire length which
naturally pulls connected cells together. The result is substantial cell overlap and poor
utilization of the available placement area. In Figure 5.1(a), the movement of some cells

away from the middle of the region is due to connections to the fixed I/O pads located
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(c) Typical relative placement with > 100 regions.

Figure 5.1: Examples of relative placements.
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around the perhiphery of the placement area (which pull connected cells outward) and the
first moment constraints (which balance cells throughout the region). The cell positions
provided by solution of a single relative placement problem are not sufficient for the
creation of a legal placement since cells are not necessarily near to their final positions.

Figure 5.1(b) illustrates the relative placement obtained when the placement area is
divided into eight regions. Clearly, area utilization is improved and the cells are dis-
tributed more evenly throughout the placement area. Overlap is prevented for cells
assigned to different regions. Although cells still group together, there is more movement
outward due to the I/O pads, the first moment constraints, and external connections to
cells within other regions. Finally, the relative placement obtained when the placement
area is divided into more than 100 regions is illustrated in Figure 5.1(c). Area utilization
is very good and the cells are distributed evenly throughout the entire placement area.
Cell overlap is also substantially lower. The cell positions obtained after division of the
placement area into many regions are useful for determining good cell positions in an
initial legal placement. Hence, it is necessary to have a progression of relative place-
ments, starting from Figure 5.1(a), passing through the result shown in Figure 5.1(b),
and terminating with the result shown in Figure 5.1(c). Obviously, the computational
effort required to solve a sequence of relative placement problems (and obtain a relative
placement similar to that illustrated in Figure 5.1(c)) is larger than that required to solve
only a single relative placement problem. However, as we have illustrated, the additional
computational effort is justified since it provides more useful (better) information for cre-
ating initial placements. The necessity of dividing the placement area in order to obtain
“useful” relative cell positions has been observed by many researchers (23, 25, 37].

To divide the placement area and the cells in an intelligent manner, we introduce the
concept of circuit partitioning [2, 3, 34]. In general terms, circuit partitioning involves

dividing the cells of a circuit into a small number of disjoint blocks while minimizing a
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defined measure of connectivity between cells within different blocks. In other words, par-
titioning attempts to divide the circuit into relatively independent pieces. In the context
of circuit placement, partitioning the cells within the placement area corresponds to di-
viding the cells into disjoint regions where each region has an underlying two-dimensional
geometry. Therefore, circuit partitioning accomplishes several objectives, namely (i) over-
lap between cells within different regions is prevented and (ii) area utilization is improved
by forcing cells into less utilized portions of the placement area. Furthermore, these ob-
jectives are accomplished in an intelligent manner since circuit partitioning naturally
minimizes the connections between cells in different regions implying that wire lengths
will be kept short (since nets will require wiring cells within only one or a few nearby
adjacent regions).

This chapter is organized as follows. In Section 5.1, we describe circuit partitioning in
greater detail. Its application in the context of cell placement is also described to illustrate
how the two-dimensional properties of the placement area are taken into account. Qur
proposed approach for introducing circuit partitioning into the constructive method for
circuit placement is described in Section 5.2. The relationship and interaction of the
relative placement and circuit partitioning problems is also described. The intention is
to illustrate how a progression of relative placements, such as those previously illustrated
in Figures 5.1(a)-(c), are obtained. Termination criteria for the relative placement and

partitioning problems is also described. Finally, a summary is provided in Section 5.3.

5.1 Circuit Partitioning
5.1.1 General Description

Circuit partitioning can be described as follows. Assume that we are given a set of ¢ cells

interconnected by n nets. It is assumed that each net connects to two or more cells. The
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Figure 5.2: llustration of circuit partitioning.

objective in circuit partitioning is to divide the cells into a small number of disjoint sets
of cells denoted by B,, Bj, - --, Br while minimizing a measure of connectivity between
cells located in different blocks. This is illustrated in Figure 5.2. Circuit partitioning
arises in many applications other than VLSI design. For instance, partitioning naturally
arises in any application where it is desireable to divide a set of interconnected items
into a small number of relatively independent blocks. Examples of such applications are
manufacturing, parallel algorithms, and so forth [34].

Circuit partitioning is known to be NP-hard [12], and it is therefore necessary to resort
to partitioning heuristics to obtain near optimal partitions in reasonable time. Partition-
ing heuristics may be broadly classified as either constructive or iterative improvement
methods. Constructive methods generate partitions directly from the circuit description.
Typical methods are based on spectral approaches [3] or network algorithms [47]. These
methods are generally computationally efficient and produce “globally” good partitions
since the partitions are obtained directly from the circuit description and all intercon-
nections are considered simultaneously. Therefore, the resulting partitions tend to have
cells placed into the correct blocks. However, due to various approximations required to
implement these heuristics, the partitions are not generally globally optimal.

Iterative improvement methods, unlike their constructive counterparts, obtain a parti-
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tion of cells by attempting to improve on an initial partition. Typically, iterative improve-
ment methods for circuit partitioning are based on cell interchange heuristics 2, 24, 34, 35]
which attempt to find an improved partition by moving cells from one block to another
block. The advantage of cell interchange heuristics is their efficient implementations.
However, cell interchange heuristics are local in nature and tend to get trapped into a
locally optimal partition, often far from a globally optimal partition. Several different
techniques are used to avoid locally minimal partitions. Often, cell interchange heuristics
are performed from maultiple random initial partitions with the best result selected as the
final partition [17]. Meta-heuristics, such as Tabu Search [15], have also been proposed
as a means of guiding cell interchange heuristics out of locally optimal partitions (2].
Another technique is to start with a single (or a few) good initial partitions produced by
a constructive method [2]. Since the initial partitions are globally good, cell interchanges
on a single (or a few) good initial partitions tend to avoid locally minimal partitions
(2, 17]. Two-phased partitioning heuristics are also used. In these approaches, the circuit
is initially clustered (condensed) into a smaller circuit. Partitioning is applied to the
condensed circuit from a few random initial partitions. Subsequently, the initial results
from the first phase of partitioning are flattened and used as the initial partitions for cell
interchanges on the original circuit. Finally, it is possible to combine all of these tech-
niques, where good initial partitions are created, but enhanced search heuristics are still
applied to guide the cell interchange heuristic out of locally minimal partitions. Extensive

investigations of these techniques have been done [2].

5.1.2 Partitioning and Placement

In the context of cell placement, where partitioning is used to divide the placement area,
each block of a partition is associated with an underlying region of a specified geometry.

Therefore, it is necessary to consider the underlying placement geometry when using
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Figure 5.3: Methods for partitioning the placement area.

partitioning for the division of the placement area and the cells.

Previous approaches to partitioning a two-dimensional placement area have relied on
two-way circuit partitioning (bisection) [8, 25, 37]. In this approach, each region of the
placement area is divided into two halves of nearly equal size by first partitioning the
cells into two blocks and subsequently applying a cut in either the z or the y direction.
At subsequent iterations, the cuts alternate in the z and y directions. This approach is
illustrated in Figure 5.3(a). In performing the bisectioning, the measure of connectivity
is taken as the number of cut nets, where a net is considered to be cut if it connects cells
in different blocks (crosses the cut line).

Bisection suffers from the disadvantage that it takes a one-dimensional view of the
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Figure 5.4: Accounting for different measures of connectivity.

problem since only one cut in either the z or the y direction is introduced at each stage.
Since cell placement is inherently two-dimensional, four-way partitioning {quadsection)
has been proposed [40] and is illustrated in Figure 5.3(b). Rather than applying the cuts
in the z and y directions at separate iterations, all cuts are applied simultaneuously. The
result is a division of any area into four regions simultaneously. Although quadsection
can be accomplished by applying several stages of bisectioning, it has been demonstrated
(2, 17, 34, 35, 40] that quadsection gives better results than multiple bisections when four
blocks are required. This is true for the general circuit partitioning problem where there
is no underlying geometry and in the context of division of a placement area. Moreover, in
addition to improving the quality of the partitions, quadsection also reduces the number
of partitioning steps since the division of cells into disjoint blocks in accomplished in a
more timely manner. This is important from a computational aspect, since reducing the
number of partitioning steps reduces the total computational effort.

A difficulty with four-way partitioning of a placement area is that it is no longer
sufficient to minimize the number of cut nets. This is illustrated in Figure 5.4 where
several examples of a single net connecting cells in two or more blocks are presented. Let
b represent the number of blocks in which a net has a connected cell. Whenever b > 2,

the net is cut and therefore contributes one to the measure of connectivity. However,
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if the wiring of the net is considered, nets connecting cells in a large number of blocks
corresponds to an increase in wire length during the routing since the cells requiring
connection are physically further apart. Therefore, it would be more appropriate to
measure the number of times a net is cut which is equivalent to minimizing the number
of blocks in which a net connects to a cell. This measure of connectivity is also illustrated

in Figure 5.4 and has been incorporated into multi-way cell interchange heuristics (35, 40].

5.2 A Proposed Strategy

5.2.1 Incorporating Circuit Partitioning

We now consider how circuit partitioning is incorporated into the constructive placement
method. The approach is illustrated in Figure 5.5. In Figure 5.5, it is assumed that
the cell positions from the solution of the most recent relative placement problem are
available. Each region currently within the placement area is selected one at a time and
a list of cells within the region is composed. If the region is suitable for partitioning (we
explain why a region may be unsuitable for partitioning in a subsequent section), the cells
within the region are partitioned into four blocks, otherwise another region is selected.
Once a region is selected, the cells within the region are sorted according to their z
and y positions. An initial partition for each region is created by partitioning the cells
into two blocks of equal size based on the sorted y positions. Subsequently, these two
blocks are further divided into two blocks each (resulting in a total of four blocks) based
on the sorted z positions. Despite the grouping of cells towards the middle of the region,
cells have moved towards their final positions. Hence, good initial partitions are possible
(introducing cuts into the sorted lists). Furthermore, the initial partitions are generated
quickly since the creation of the initial partitions is based on sorting cells which has a
complexity of O(clogc), where c is the number of cells. Taken in the context of the
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Figure 5.5: Incorporating circuit partitioning into the placement heuristic.
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previous description of partitioning methods, the creation of initial partitions based on
sorting cell positions can be considered a constructive method for generating an initial
partition.

Once the initial partition has been created, further improvement is still possible by
considering the movement of cells from one block to another. This follows from the
observation that partitioning the cells based on their relative cell positions corresponds
to placing cut lines within the placement area near the middle of the region. Since this
also corresponds to where cells tend to group during the relative placement, the division
of cells close to the cut lines into their initial blocks may be arbitrary. To improve the
initial partitions, a cell interchange heuristic {35] is used with the measure of connectivity
counting the number of times each net is cut. We allow cells near the middle of the
region (near the cut lines introduced in the z and y directions) to move between regions
while (or locking) cells far from the cut lines into their initially selected partitions. Since
cells within the current region under consideration may also have connections to cells
outside of the region, terminal propagation [40] is also used to account for these external
connections. The partitioning is accomplished efficiently, since the complexity of the cell
interchange heuristic is O(Ipb(logb + gl)) per pass, where [ is a level parameter (typically
one or two) internal to the interchange heuristic, p is the number of pins in the circuit, b
is the number of blocks and g is the maximum number of nets attached to any cell.

Finally, once each region within the current placement area has been considered and
subdivided into a larger number of regions (with each new region containing fewer cells
than the original). the circuit partitioning terminates. It follows from the description of
the proposed approach that the incorporation of circuit partitioning into the construc-
tive placement method follows the general partitioning technique of using a good initial

placement which is subsequently improved using cell interchanges.



CHAPTER 5. PARTITIONING THE PLACEMENT AREA 61

5.2.2 Relative Placement and Circuit Partitioning Interaction

The circuit partitioning required the solution of the relative placement problem as input
for the creation of initial partitions. Similarly, the output of the circuit partitioning (a
new division of the placement area and the cells) is used as input to the next relative
placement problem (Recall the formulation of the relative placement problem in Chapter
3. The region information is used to revise or add constraints and variable bounds into
the formulation such that a new relative placement of the cells can be found. We empha-
size that the relative cell positions are found simultaneously once the relative placement
formulation is revised using the partitioning information, and that it is not necessary
to solve a separate relative placement problem for each region). Therefore, there is an
interaction between the two problems which is illustrated in Figure 5.6. By performing
several iterations of relative placement followed by circuit partitioning, a good distribu-
tion of cells throughout the placement area, such as that previously illustrated in Figure
5.1(a)-(c), is obtained.

It is necessary to develop an approach for terminating the relative placement and
circuit partitioning iterations. As previously described, a region which is not appropriate
for circuit partitioning may be selected. A region is not appropriate when the number of
cells within the region drops below a small predefined threshold (for instance, 10 to 20
cells). In this situation, the region correponds to only a very small portion of the entire
placement area and little improvement in area utilization and cell overlap is possible by
partitioning the cells within region. Eventually, the circuit partitioning will reach a stage
where the number of cells within every region has fallen below the threshold, and no region
will be partitioned. Any further relative placements will produce identical results since
the constraints and variable bounds will not change. Therefore, the relative placement

and circuit partitioning iterations may be terminated.
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Figure 5.6: Relative placement and circuit partitioning interaction.
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5.3 Summary

This chapter has illustrated that the solution of a single relative placement problem is not
sufficient for providing useful information for the creation of an initial legal placement.
This is a consequence of the grouping of cells towards the middle of the placement area
after the solution of the initial relative placement problem. It is necessary to solve a
sequence of relative placement problems where, at each iteration, the placement area
is divided into more and more disjoint regions (with a subset of the cells restricted to
positions within each region) using circuit partitioning. Several iterations of relative
placement and circuit partitioning result in an even distribution of cells throughout the
entire placement area, a reduction in cell overlap, and better utilization of the available
placement area. In other words, cells are nearer to their desired positions, and therefore
the final relative placement provides useful and reliable information for the creation of
an initial legal placement.

Once the number of regions has become very large (and only a small number of cells
are assigned to every region), the relative placement and circuit partitioning iterations
terminate and a set of cell positions are available. Once the cell positions are “modified”
such that cells are positioned within rows and any residual cell overlap is reduced, the
constructive placement method is completed. In the next chapter, we consider how an

initial legal placement is created using the relative cell positions.



Chapter 6

Initial Placement Construction

As previously described in Chapter 5, the relative placement and circuit partitioning iter-
ations provide cell positions distributed throughout the entire placement area. However,
these cell positions do not constitute a placement since the placement restrictions are not
satisfied. There is still minor cell overlap and the cells are not positioned within the rows,
as required. It is therefore necessary to “legalize” the placement by further adjusting the
cell positions to satisfy the placement requirements. Once the repositioning of cells is ac-
complished, an initial legal placement is obtained and the constructive placement method
is completed.

In this chapter, we consider the construction of an initial legal placement based on
the cell positions provided by the relative placement and circuit partitioning iterations.
In Section 6.1, we describe a simple heuristic for legalizing the placement by sorting the
relative cell positions. Numerical results are presented in Section 6.2 to illustrate various
aspects of the constructive placement method. Both the QP and LP relative placement
formulations are considered. The computational effort required by the relative placement,
circuit partitioning and legalization heuristics are presented. The quality of the initial

placements are presented and judged by considering the estimates of wire length and the
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required placement areas. Additionally, we confirm through numerical results that the
cell positions provided by a single relative placement are not sufficient for the creation of

initial placements. Finally, a summary is provided in Section 6.3.

6.1 Legalization Using Relative Cell Positions

We propose the following simple, yet effective, approach for positioning cells within rows
while removing cell overlap. Cells are sorted in ascending order according to their posi-
tions in both the z and y directions. Cells are assigned to rows based on the sorted y posi-
tions while keeping the row length nearly equal (implying a minimum width placement).
Cells are allowed to move between rows in order to keep the row lengths approximately
equal. Once a cell has been assigned to a row, its y position is updated to reflect its row
assignment. Subsequently, the cells within each row are positioned adjacent to each other
from left to right across the row based on the sorted z positions. As cells are shifted to
remove overlap, the z positions of the cells are updated. Since the legalization heuristic
is based on sorted cell positions, the complexity of the legalization heuristic is O(clogc),

where ¢ denotes the number of cells.

6.2 Numerical Results

The constructive placement method is completed once an initial legal placement is ob-
tained. In this section, we consider the computational aspects of the constructive place-
ment method and the quality of the initial legal placements. Additionally, we also justify
the necessity of performing several relative placement and circuit partitioning iterations,
rather than a single relative placement, in order to obtain cell positions which are “useful”
for creating an initial placement. In presenting these results, we consider both the QP

and LP formulations of the relative placement problem.
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Circuit | Iter. “Time (CPU Secs)

Relative Place. Circuit Part.  Legal.
circuitl 6 38.96 9.02 ~0.03
circuit2 6 232.93 92.57 0.12
biomed 7 716.64 171.85 0.26
industryl 6 135.23 53.36 0.08
industry?2 7 2031.65 543.35 0.91
industry3 7 3293.77 710.30 0.89

Table 6.1: Computational effort with the QP relative placement formulation.

[Circuit | Iter. “Time (CPU Secs)
Relative Place. Circuit Part. Legal.
circuitl 6 428.44 8.88 0.03
circuit2 6 2187.04 94.52 0.11
biomed 7 3970.78 158.91 0.27
industryl 7 1300.99 48.69 0.07
industry2 7 11854.62 505.36 0.85
industry3 7 27336.94 759.05 0.90

Table 6.2: Computational effort with the LP relative placement formulation.

6.2.1 Computational Effort

The computational effort required for the various components of the constructive method
when the QP formulation of the relative placement problem is used are presented in
Table 6.1. The number of relative placement and circuit partitioning iterations required
to produce the relative cell positions used by the legalization heuristic are also presented.
In Table 6.2, the same numerical results are presented when the LP formulation of the
relative placement problem is used.

Several observations follow from the numerical results presented in Tables 6.1 and 6.2.
In all cases, very few relative placement and circuit partitioning iterations (< 7 even on
the largest test circuits) are required in order to spread the cells throughout the place-
ment area. Regardless of the relative placement formulation, the circuit partitioning and
legalization components of the constructive method consumes significantly less time than

the solutions of the sequence of relative placement problems. Therefore, the “bottleneck”
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[ Circuit Solution Times (CPU Secs) | Improvement
QP Form. LP Form. (QP/LP)
circuitl 48.01 43735 0.1098
circuit2 325.62 2281.67 0.1427
biomed 888.75 4129.96 0.2152
industryl 188.67 1349.75 0.1398
industry?2 2575.91 12360.83 0.2084
industry3 4004.96 28096.89 0.1425

Table 6.3: Total computational effort for initial placements.

of the constructive method is the solution of the relative placement problem.

Finally, it is possible to compare the computational effort required by the different
relative placement formulations. The number of relative placement problems solved dur-
ing the constructive method are comparable (equal on all test circuits with the exclusion
of industry! where one additional iteration was required) for both the QP and LP formu-
lations. As previously illustrated in Chapter 4, the QP formulation required substantially
less time than the LP formulation when only one relative placement problem was solved.
The results in Tables 6.1 and 6.2 again illustrate this observation over a sequence of rela-
tive placements. That is, the QP formulation results in substantially lower computational

effort when compared the equivalent LP formulation.

6.2.2 Total Computational Effort and Quality of the Placements

The total computational times (taken as the summation of the times for the individual
components presented in Tables 6.1 and 6.2) required to generate initial placements for
each test circuit are presented in Table 6.3 for both relative placement formulations. Ad-
ditionally, the ratio of the time required when using the QP formulation to that required
when using the LP formulation is presented. As previously mentioned, the QP formula-
tion requires significantly less computational effort than the equivalent LP formulation.
In Table 6.4, the length of the longest row in the initial placement for each test circuit
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"Circuit Max. Row Length (4 m) Improvement
P Form. LP Form. (QP/LP)
circuitl 6380 6270 1.0175
circuit2 12500 12540 0.9968
biomed 8368 8392 0.9971
industryl 4822 4810 1.0025
industry?2 14344 14352 0.9994
industry3 28296 28280 1.0006

Table 6.4: Maximum row le-ngths for initial placements.

Circuit HPWL (m Improvement
QP Form. LP Form. (QP/LP)
circuitl 1.6154 1.5101 1.0697
circuit2 6.3227 5.8707 1.0770
biomed 4.0053 3.5557 1.1264
industryl 2.1200 1.9053 1.1127
industry?2 29.3326 29.3229 1.0003
industry3 77.6508 73.1003 1.0622

Table 6.5: Wire length estimates for initial placements.

are presented as a measure of the required placement area. Row lengths are comparable
regardless of the relative placement formulation used. This follows from the observation
that the row lengths are a consequence of the legalization heuristic and have nothing to
do with the relative placement formulation used.

Finally, estimates of wire lengths for the initial placements are presented in Table 6.5.
As an estimate of the wire length, the half-perimeter wire length (HPWL) is used. Note
that the LP formulation minimizes this estimate of wire length directly, whereas the QP
formulation does not. Since rectilinear wiring is typically used in routing the circuit, the
HPWL respresents an accurate estimate of the actual wire length. Additionally, other
results presented in the literature (for example, [25, 41, 49]) typically used the HPWL
for reporting placement results.

From Table 6.5, the LP formulation clearly produces better initial placements than the
QP formulation when the HPWL is used as the estimate of wire length. This observation
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[Circuit | Time (CPU Secs) Imp. HPWL (m) Tmp.
Sing. Tter. | (Sing./Tter. Sing. Tter. | (Sing./Iter.)
circuitl 6.48 48.01 0.13| 13758 1.6154 1.16
circuit2 52.03  325.62 0.16 | 10.6007 6.3227 1.68
biomed | 214.08  888.75 024 | 7.3746 4.0053 1.84
industryl | 38.20  188.67 0.20 | 29814 2.1200 1.40
industry? | 473.52 2575.91 0.18 { 47.8197 29.3326 1.63
industry3 | 774.87  4004.96 0.19 | 160.9700 77.6508 2.07

Table 6.6: Single versus Several Relative Placements.

agrees with those results obtained by other researchers [37]. However, these improved
results come at the expense of significantly larger computational effort. Therefore, there
is, as expected, a tradeoff in the quality of the initial placement versus the computational

effort required to produce the initial placement.

6.2.3 Justification for Relative Placement and Circuit Partitioning

We now justify the necessity of performing several iterations of relative placement and
circuit partitioning rather than using the cell positions provided by a single relative
placement for the creation of an initial placement. In Table 6.6, we present numerical
results from the creation of initial placements when the cell positions provided by the first
relative placement problem were used as input to the legalization heuristic. In producing
these results, the QP relative placement formulation was used (although similar results are
obtained using the LP formulation). These results are compared with those obtained using
the relative placement and circuit partitioning iterations (comparisons are made based
on computational effort and wire length estimates since the row lengths were comparable
in all cases).

The creation of initial placements using only one relative placement requires less com-
putational effort than performing several iterations of relative placement and circuit par-

titioning. This is an obvious result, since less computational effort is necessary (only one
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relative placement problem is solved and no circuit partitioning is performed). However it
is necessary to consider the qualities of the initial placements. Table 6.6 clearly illustrates
that the resulting estimates of wire length are substantially worse than those obtained
when several relative placement and circuit partitioning iterations are performed. As
previously illustrated in Chapter 5, most cells group towards the middle of the placement
area after the first relative placement problem (despite the tendency of some cells to move
outward towards the periphery of the placement area due to connections to I/O pads).
Using these initial cell positions as a “useful” indication of the desired cell positions in
an initial placement is simply incorrect. The poorness of the wire length estimates pre-
sented in Table 6.6 confirm this observation. Hence, there is significant motivation for
the additional computational effort required to perform several relative placement and

circuit partitioning iterations in order to obtain a better placement.

6.3 Summary

In this chapter, a simple heuristic for creating an initial legal placement based on the
relative cell positions provided by the relative placement and circuit partitioning iterations
has been described. Since the relative cell positions provide a good indication of the
general position for a cell, the initial legal placement was obtained by simply sorting
the relative cell positions based on their z and y positions. The sorted y positions were
used to assign cells to rows and the sorted z positions were used to order the cells (while
removing overlap) within each row.

Numerical results were presented to illustrate the computational aspects of the con-
structive method. Regardless of the relative placement formulation, the circuit partition-
ing and legalization heuristics required only a fraction of the total computational effort. In
other words, the relative placement problem was identified as the “bottleneck” step of the
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constructive method. Therefore, any additional enhancements to the relative placement
problem, either in the formulation (for instance, more compact formulations) or in the
solution methodology (improvements in the efficiency of the interior point method) will
result in an overall improvment to the constructive method. Comparisons between the
QP and LP formulations illustrated that the QP formulation required significantly less
computational effort than the equivalent LP formulation on all test circuits considered.

In terms of quality, the row lengths (and therefore the width of the placement area)
were comparable regardless of the relative placement formulation. The LP formulation
was illustrated to provide placements with lower estimates of wire length than the equiva-
lent QP formulation, but at the expense of increased computational effort. This illustrated
a tradeoff in quality of the initial placement versus the computational effort required to
produce the placement.

Finally, initial placements created using the relative cell positions available after the
solution of a single relative placement problem were presented. Although less computa-
tional effort was required, the quality of the initial placements were quite poor. These
results confirmed the necessity of the additional computational effort required in per-
forming several relative placement and circuit partitioning iterations in order to obtain
“useful” information for positioning cells in the initial legal placement.

Although the cell positions produced by the relative placement and circuit partitioning
iterations provide a good indication of the final cell positions, accepting the placement
immediately after the legalization may not be sufficient. The relative cell positions used
by the legalizaton heuristic, although “globally” good, only provide an “indication” of
where each cell belongs. Although each cell may only move a small amount using the
legalization heuristics described in this chapter, the total amount of cell movement may be
significant. Therefore, some effort should be expended at improving the initial placement

produced by the constructive method. Improving the initial placements by the application
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of a simple search heuristic is the topic of the next chapter.
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Chapter 7

A Simple Iterative Improvement

Method

In this chapter, we consider a simple iterative iterative method to further improve the ini-
tial placements created by our constructive method. Although the constructive method
provides a good initial placement, it is still only a heuristic method for globally positioning
cells near to their final positions. Several shortcomings may be identified, namely (i) the
relative placement and circuit partitioning iterations may have incorrectly forced some
cells into non-optimal positions and (ii) the additional cell movement during the legaliza-
tion heuristic may have deteriorated the quality of the initial placement. It is therefore
reasonable and important (necessary) to consider a method for further improving the
initial placements created by the constructive method.

As previously mentioned, iterative improvement methods take an initial placement
and make small changes (that is, rearrangements of the cells) to generate a new and
improved placement. The methods may be classified as either randomized or determin-

istic algorithms, depending on whether or not a newly generated placement is accepted.
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Randomized algorithms accept worse placements with some probability and are capable
of escaping locally optimal placements. Given enough computational time, these algo-
rithms tend to achieve globally optimal placements. Conversely, deterministic algorithms
accept only improved placements and are not capable of escaping from locally optimal
placements. However, these algorithms require little computational effort.

In this chapter, we consider a highly localized method for improving our initial place-
ments. Although there is some randomness in the way we select cells for rearrangement,
we consider our method to be deterministic since any attempt at rearranging cells is only
permitted if it leads to an improved placement (that is, it is a greedy algorithm). We
consider such an algorithm for the following reason. For any circuit, the constructive
method has provided an initial placement in which the cells are near their desired final
positions. It is reasonable to assume that, although not globally optimal, the initial place-
ment lies within the vincinity of either a near, or globally, optimal placement. Hence,
local rearrangement of cells is reasonable.

This chapter is organized as follows. In Section 7.1, we describe our iterative im-
provement method. We illustrate that by using simple 1-opt (cell moves) and 2-opt (cell
swaps) techniques for repositioning cells, that an improved placement is possible. In Sec-
tion 7.2, we present numerical results to demonstrate the effectiveness of the method when
the initial placement is provided by the constructive method. Numerical comparisions
are presented to demonstrate that our method compares favourably with a well-known
randomized iterative improvement method, namely Simulated Annealing (36]. Finally, a

summary is provided in Section 7.3.
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placement area

overlapping tiles

Figure 7.1: Tiles overlapping the placement area.

7.1 The General Strategy

7.1.1 Localizing the Improvement

Iterative improvement methods rely on rearrangements of cells to achieve an improved
placement. In our placement heuristic, the initial placement is assumed good, and there-
fore any attempted improvements in the placement should reflect the assumption about
the quality of the initial placement. To localize the rearrangement of cells, we intro-
duce a novel technique of overlapping tiles, or windows, throughout the placement area
as illustrated in Figure 7.1. The introduction of tiles throughout the placement area is
useful for restricting the rearrangement of cells and is common in all types of iterative
improvement methods to some extent [7, 26, 36]. Each tile contains a small subset of
the cells. Furthermore, cells may belong to more than one tile due to the overlap which
exists between tiles.

The iterative improvement method works as follows. A tile is selected, and a list of
cells within the tile is generated. Subsequently, cells within the selected tile are rearranged
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in some fashion. In rearranging the cells, the cells are restricted to positions within the
tile boundaries which keeps cells close to their original positions. The computational
effort required to find improved cell positions is reduced, since the search for improved
cell positions is restricted to positions within the tile boundaries. Since tiles overlap, cells
near the boundaries of a tile may be permitted to move between tiles.

The question arises as to how tiles are selected. We use the idea of passes or gener-
ations [7]. During one pass, tiles are selected randomly, and only once during each pass.
After each pass, the quality of the placement is evaluated and compared to placements
generated by previous passes. The algorithm terminates when either a maximum num-
ber of passes is exceeded, or when the improvement in the placements over a number of

consecutive passes is neglible.

7.1.2 Cell Rearrangement Within a Tile

Once a tile is selected, it is necessary to rearrange the cells within the tile. Several
approaches have been proposed for this rearrangement.

One approach requires removing all cells from the tile and rearranging all cells simul-
taneously by solving a minimum cost maximum flow network problem [7]. Since cells are
of differing width, this approach required cells to be divided into a number of subcells
of equal width prior to creating and solving the network flow problem. Potentially, cells
could split into disconnected pieces and a heuristic is therefore required to rejoin the cells.
Additionally, since the cells within a tile were repositioned simultaneously, wire length
approximations were required to account for cell interconnections within the tile.

A similar approach was proposed in [26]. Rather than repositioning all of the cells,
a measure of goodness is calculated for each cell to estimate its appropriateness in its
current location. Cells with high goodness are cotrectly positioned, whereas those with a

low goodness are incorrectly positioned. A subset of cells with low goodness are removed
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from the placement and repositioned into the empty space created by their removal. This
assignment is performed using a weighted matching algorithm, where the weights were
selected based on an estimate of the appropriateness of repositioning each cell in each of
the empty positions.

Both of the aforementioned methods are capable of avoiding locally minimal placement
since cells are repositioned simultaneously. That is, given the subproblem these methods
attempt to solve, the application of network methods results in optimal repositioning
of the cells. However, in order to apply these methods, estimates in the objectives are
required during the formulation of the network problems. This implies that, although
the subproblem being solved is optimal, it may not be optimal in terms of the actual
placement since wire lengths approximations are required.

We consider a third alternative method for rearranging cells based on simple 1-opt
(cell moves) and 2-opt (cell swaps) movement of cells. This approach is more local than
the network methads since it does not necessarily provide an optimal rearrangement of
cells. However, repositioning using cell moves and swaps is a valuable method since it (i)
is simple and efficient to implement, (ii) requires no estimates to the design objectives,
and (iii) provides good results since the initial placement is good anyway.

The rearrangement of cells within a tile using moves and swaps proceeds as follows. To
rearrange the tile, we randomly select a cell ¢ and consider moving it to another position
within the tile. If the new position for cell i does not violate any row length constraints,
the move is considered. If the move violates a row length constraint, a second cell j closest
to the new position is found and the cells ¢ and j are swapped (provided that the swap
does not violate any row length constraints). The motivation for the random selection of
cells is computational effort. Selecting cells at random is constant, whereas attempting
to select the “best” cell (or pair of cells) to move (swap) would require some additional

computational effort to decide which cell is “best” to consider for rearrangement. Once
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the move or swap is performed, additional cells within the tile may require shifting to
remove overlap and accomodate the repositioned cell. Shifting is required for cell moves
and for cell swaps when the swapped cells are unequal in width. Cell moves and swaps,
combine with potential shifting, are illustrated in Figure 7.2.

Figure 7.2 illustrates an additional aspect of the algorithm that must be mentioned.
When cells are shifted within a tile, overlap may be introduced with cells external to
tile under consideration. We ignore this overlap for several reasons. First, the overlap
is temporary since it can be removed once the rearrangement of the tile is completed.
Shifting cells external to the current tile after every move or swap (and estimating the
effects of these shifts) requires a large amount of computational effort. However, the
amount of temporary overlap is typically very small (since the tiles are selected to contain
a small number of cells), and its effect on the total estimate of wire length is negligible.
Therefore, ignoring the temporary overlap has little impact on quality, but substantially
improves the computational efficiency of the tile rearrangement. Ignoring overlap external
to the current tile being rearranged represents the one approximation used in our iterative
improvment method.

Once a move or cell swap is made, and any cell shifting within the tile is performed, the
change in the HPWL is estimated. Only nets connected to cells begin moved, swapped,
or shifted will have a change in their HPWL (again, if cells external to the tiles were
shifted, a significant number of nets would require updates to their HPWLs, which is
computational prohibitive). If the change in HPWL leads to a reduction in the total
HPWL, the move or swap is permitted and the placement is updated, otherwise the
placement is left unchanged. The number of attempted moves and/or swaps for each tile
is selected to be linear in the number of cells within the selected tile. The algorithm
rearranging cells within a tile is outlined in Figure 7.3.

We consider the complexity of rearranging each tile using cell moves and swaps. As-
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Figure 7.2: Example of cell moves and swaps.
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procedure tile_rearrangment()

1  estimate_hpwl(initial_placement)

repeat
select cells i and j
3 determine_cell_shifts()
estimate_hpwl(new_placement)
4 if AHPWL <0do

update_placement(}
until attempted_moves > maz_attempts

Figure 7.3: Algorithm for tile rearrangement.

sume that a tile contains ¢ cells. Furthermore, assume that the number of nets connected
to each cell is bounded by a small constant, and that the number of cells on each net is
similarily bounded (a reasonable assumption for practical circuits since the circuit statis-
tics previously presented in Chapter 2 indicated that most cells (nets) connect to very
few nets (cells)).

Step 1 of the algorithm requires estimating the wire length for each net connected
to a cell within the tile. This operation is linear in the number of connection points.
However, the number of nets on each cell is bounded, and the estimate of wire length is
performed in O(c) time. Step 2 requires the random selection of two cells, and a check
for row length violations. This operation is done in O(1) time. The shifting operation in
Step 3 requires a linear search of the current cell positions to remove any overlap, which
is accomplished in O(c) time. If in Step 4, the new placement is better than the previous
placement, new cell positions must be saved. This can be accomplished by a copy of the
new cell positions which is done in O(c) time. Therefore, each attempted cell move or
swap requires O(c) time. Since the number of attempted tile rearrangements is selected

linear in the number of cells, the complexity of rearranging one tile is O(c?).
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“Circuit QP Form. (CPU Secs) | Improv. | LP Form. (CPU Secs) | Improv.
Construct. Iter. Improv. | Passes | Construct. Iter. Improv. | Passes

circuitl 48.01 153.54 10 437.35 160.02 10
circuit2 325.62 711.34 10 2281.67 727.56 11
biomed 888.75 997.82 12 4129.96 1006.15 12
industryl 188.67 381.28 11 1349.75 352.39 10
industry2 2575.91 3583.69 12| 12360.83 3467.36 12
industry3 4004.96 2421.74 11| 28096.89 2862.02 12

Table 7.1: Constructive and iterative improvement times
7.2 Numerical Results

We now consider the effects of the iterative improvement method on the initial placements
provided by the constructive method. The iterative improvement method was terminated
when the reduction in wire length over the previous placement was less than 1/4 % for
more than 3 passes, or when a maximum of 12 passes were performed.

We consider several aspects of the algorithm, namely (i) computational aspects of
the iterative improvement method and the entire placement heuristic, and (ii) time and
quality of the overall placement heuristic compared to a well-known Simulated Annealing
(SA) placement package (TimberWolfSC V4.2) [36]. Results are presented using the

initial placements created using both the QP and LP relative placement formulations.

7.2.1 Computational Aspects

Timing results for the overall placement heuristic are illustrated in Table 7.1. The times
shown include that taken by the constructive method (extracted from those results previ-
ously presented in Chapter 6) and that taken for the iterative improvement method. The
results are presented using both the QP and LP relative placement formulations (different
initial placements imply a different sequence of events during the iterative improvement,
and therefore potentially different times). Finally, the number of iterative improvement

passes required are also illustrated in Table 7.1.
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Table 7.1 illustrates that the initial placement (whether created from the QP or the
LP relative placement formulation) has little impact on the amount of computational
effort required by the iterative improvement method. This observation follows since
the number of improvement passes (and therefore the computational effort) is nearly
identical regardless of the initial placement used. If the computational effort of the
iterative improvement method is compared to the constructive method, the following
observations can be made. The computational time required by the iterative improvement
method is either comparable or greater than that required by the constructive method
when the QP relative placement formulation is used. Conversely, when the LP relative
placement formulation is used during the constructive method, the time required by the
iterative improvement method represents only a portion of the overall computational
effort. This is a direct consequence of the differences in computational effort required by
the different relative placement formulations which were previously illustrated in Chapter
7.

We illustrate the progression of the iterative improvement method in Figure 7.4. In
Figure 7.4, the estimate of wire length and cumulative computational effort is plotted
versus the pass number of the iterative improvement method for circuit! (similar plots
are obtained regardless of the test circuit considered). The time required by the iter-
ative improvement method increases linearly with the number of passes. However, the
estimated wire length decreases rapidly near the beginning of the iterative improvement
method and tapers off towards the last few passes. This is an important aspect (obser-
vation) for the local improvement heuristic since, if the computational effort required by
the iterative improvement method is considered too large for any given circuit, decreasing
the number of permitted passes will still result in a reasonable amount of improvement

in the placement with less computational effort.
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Figure 7.4: Progression of the iterative improvement method

7.2.2 Total Computational Effort and Quality of the Placements

The total computational effort for the entire placement heuristic (constructive and iter-
ative improvement methods) is presented in Table 7.2. Results using both QP and LP
relative placement formulations are presented. Additionally, the computational effort re-
quired by the Simulated Annealing placement algorithm is also presented. These results

indicate that our placement heuristic requires less computational time than that required

[ Circuit Solution Times (CPU Secs) Improvement
QP Form. LP Form. Sim. Anneal. | (QP/SA) (LP/SA)
circuitl 201 575 656 0.31 0.88
circuit2 1037 3009 3961 0.26 0.76
biomed 1887 5136 10309 0.18 0.50
industryl 570 1702 2629 0.22 0.65
industry?2 6160 15828 25405 0.24 0.62
industry3 6427 30959 36267 0.18 0.85

Table 7.2: Final solution times
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~ Circuit Max. Row Length (um) Improvement
QP Form. LP Form. Sim. Anneal. | (QP/SA) (LP/SA
circuitl 6280 6280 6260 1.003 1.003
circuit2 12500 12500 13010 0.961 0.961
biomed 8424 8424 8464 0.995 0.995
industryl 4842 4840 5366 0.902 0.902
industry?2 14432 14432 15240 0.947 0.947
industry3 28480 28480 31768 0.896 0.896

Table 7.3: Final placement areas

Circuit Est. HPWL (m) Improvement

QP Form. LP Form. Sim. Aanneal. | (QP/SA) (LP/SA)
circuitl 1.180 1.181 1.186 0.995 0.996
circuit2 4.676 4.697 4.822 0.968 0.974
biomed 2.843 2.661 2.572 1.105 1.034
industryl 1.743 1.656 1.933 0.902 0.856
industry? 19.304 19.686 21.716 0.889 0.906
industry3 56.798 64.694 68.589 0.828 0.943

Table 7.4: Final estimates of wire length

by Simulated Annealing. This observation is valid regardless of the relative placement
formulation used. Moreover, the savings in computational effort is substantial when the
QP formulation of the relative placement problem is used during the constructive phase
of the placement heuristic.

Table 7.3 illustrates the longest row lengths (taken as an indication of the final place-
ment widths) in the final placements. In all cases, our placement heuristic generates
placements with row lengths better than or comparable to those obtained using Simu-
lated Annealing. The different relative placement formulations result in placements with
exactly identical row lengths. The observation that the row lengths for the different rel-
ative formulations are identical is a coincidence (they were not required to be identical).

Finally, comparisions of the estimated wire lengths are presented in Table 7.4. Our
placement heuristic generates placements with lower wire lengths for all test circuits

considered, with the exception of biomed. Analysis of circuit biomed indicated that several
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extremely long nets were present which were apparently “handled” more effectively by
Simulated Annealing than by our placement heuristic. We also note that the LP relative
placement formulation was more effective at handling these long nets than the equivalent
QP formulation. To summarize, our placement heuristic (which uses a combination of
relative placements, circuit partitioning and iterative improvement) yields placements
that are up to 10 — 17% better than Simulated Annealing in terms of estimated wire
lengths while requiring 5 times less computational effort (for the QP formulation).

One interesting observation can be made from the results presented in Table 7.4.
Although it provides better initial placements, the LP formulation does not necessarily
result in better placements than those obtained using the equivalent QP formulation after
the application of the iterative improvement method (with the exception of circuit biomed,
where the additional improvement using the LP formulation is about 7 percent). This
leads to an important observation, namely that by performing iterative improvement,
the QP formulation is sufficient for the creation of good initial placements which lead
to very good final placements. Given the substantial reduction is computational effort
necessary to obtain an initial placement, the QP formulation appears preferable to the

LP formulation of the relative placement problem.

7.3 Summary

In this chapter, a greedy and localized iterative improvement method based on simple cell
moves and cell swaps has been presented. By “tiling” the placement area and restricting
cells to positions within their assigned tile, the computational efficiency of the iterative
improvement method was greatly enhanced. The tiling was facilitated by the construction
of a good initial placement, where cells were already near to their desired final positions.

Numerical results highlighted several important aspects of the overall placement heuris-
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tic. The computational effort of the iterative improvement method was illustrated to be
linear in the number of passes performed (where one pass consisted of considering each
tile within the placement area once, and rearranging the cells within each selected tile).
However, the reduction in estimated wire length was illustrated to be greatest at the
beginning of the iterative improvement method. Therefore, for any given circuit, if the
computational effort required by the iterative improvement method is considered too
large, a reduction in the overall computational effort is possible by reducing the number
of passes performed while still maintaining a reasonable improvement in the quality of
the placement.

Comparisions with a Simulated Annealing placement heuristic illustrated the effec-
tiveness of our combination of constructive and iterative improvement methods. In all
cases, our heuristic produced placements of comparable or superior quality, both in terms
of the widths of the required placement areas and the total estimates of wire length.
Aciditiona.lly, our heuristic required less computational effort (substantially less when the
QP relative placement formulation is used during the creation of the initial placements)
to produce these higher quality placements.

Comparisions of the final placements also illustrated several important aspects regard-
ing the relative placement formulations. Although, as previously illustrated in Chapter
6, the LP formulation provides better initial placements than the equivalent QP formu-
lation, after the application of iterative improvement the QP formulation provides (in
most cases) either comparable or better results. The savings in computational effort for
the creation of the initial placement using the QP formulation versus the LP formulation
was reflected in the final computational times of the overall placement heuristic. There-
fore, we concluded that our placement heuristic, with the QP formulation of the relative
placement problem, is the preferable placement heuristic.

Although we have completely described the combination of constructive and iterative
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improvement methods for cell placement (and illustrated they produce favourable results
compared to a well known Simulated Annealing placement heuristic), we consider an
additional enhancement to our constructive method in the next chapter. Specifically, we
consider circuit clustering which may be used to improve the efficiency of the constructive
placement method by reducing the sizes of the resulting relative placement formulations

(regardless of the relative placement formulation used).



Chapter 8

Circuit Clustering

We now consider a method for reducing the computational effort of the constructive
method, while maintaining or improving the quality of the resulting initial placements,
by introducing the concept of circuit clustering. Circuit clustering involves identifying
strongly connected components of a circuit and merging these components into a large
number of small groups called clusters. For highly complex circuits containing many
thousands of cells, efficient placement procedures require a reduction in problem sizes.
Circuit clustering achieves this objective since grouping cells into clusters is equivalent
to condensing the circuit, where clusters of cells may be considered as single cells and
nets which connect cells entirely within the same cluster are effectively removed from the
problem.

When applied to a condensed circuit, our constructive method results in a sequence
of smaller optimizations problems for determining relative cell positions. This implies
reduced storage requirements and reduced computational efforts. Circuit clustering can
also lead to improved placements since cells that should be close to each other are merged
into the same cluster. Therefore, the possibility of making “bad™ decisions early in the

constructive method (that is, forcing highly connected cells apart) is reduced. Circuit

88
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clustering is applicable not only to cell placement, but to other VLSI problems as well.
For instance, it has been incorporated into a two-phase circuit partitioning heuristic [2],
where it resulted in better final partitions with less computational effort (when compared
to those final partitions obtained without clustering). Hence, we expect similar benefits
when applied to the placement problem.

This chapter is organized as follows. In Section 8.1 we describe previously pro-
posed circuit clustering heuristics. We identify several shortcomings of these previous
approaches which make them unattractive when applied to the cell placement problem.
In Section 8.2, we describe a new greedy clustering heuristic based on graph connectivity.
The heuristic is illustrated to be capable of producing a large number of clusters of nearly
equal size due to limits imposed on the size of the clusters. We illustrate that the storage
requirements are reasonable in practical situations, and that the complexity of the heuris-
tic is polynomial in the number of cells in the circuit. The incorporation of the clustering
heuristic into the constructive placement method is also described. Numerical results are
presented in Section 8.3. These results illustrate that the proposed clustering heuristic
is effective at reducing the netlist sizes while requiring reasonable computational effort.
The reduction in computational effort and the quality of the initial legal placements when
clustering is included into the constructive placement method is also illustrated. Final
placements obtained after the application of the local improvement heuristic are also pre-
sented and compared to Simulated Annealing. Finally, a summary is provided in Section
8.4.

8.1 Previous Approaches

We consider a circuit clustering heuristic effective if (i) it exhibits reasonable storage

requirements (ii) it is efficient to implement and requires little computational effort to
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run to completion, and (iii) it is capable of producing a large number of clusters of nearly
equal size while still providing large reductions in circuit sizes. Since clustering is most
beneficial when applied to large circuits, its implementation requirements (the storage
requirements) should not prohibit its application. Since circuit clustering is typically used
as a preprocessing step for a subsequent problem, any computational benefits achieved
at later stages should not be lost during the clustering. Finally, by generating a large
number of clusters of nearly equal size, no “skewing” (that is, no preference for a cluster
based on size) occurs during the solution of subsequent problems.

Many clustering heuristics have been proposed which achieve some, but not all, of
the aforementioned characteristics. Recently, an effective clustering heuristic capable of
producing a large number of clusters of nearly equal size has been proposed [2] based on
a combination of a multi-way cell interchange heuristic [34] with the GRASP heuristic
[9]. The heuristic was illustrated to be effective at reducing netlist sizes while requiring
little computational effort. One shortcoming of this heuristic, however, is the storage
requirements necessary for its implementation. Since it is based on a cell interchange
heuristic, it is necessary to store the so called “gain entries” [34] associated with cell
interchange heuristic which is prohibitive for extremely large circuits with a large number
of clusters.

A clustering heuristic based on a modification of the uniform multicommodity flow
problem has been proposed [51). This heuristic produces natural clusters where the final
number of clusters is unknown until the heuristic runs to completion. Unfortunately, this
heuristic typically produces very few clusters which vary greatly in size. For instance,
results presented in [51] on an example test circuit produced the following: 1 cluster of
3184 cells, 6 clusters of 8 cells, 2 clusters of 4 cells, and 6 clusters of single cells. Therefore,
it is not useful as preprocessing step for a subsequent problem as a result of the skewing

in the cluster sizes. Another approach for generating natural clusters based on circuit
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connectivity was proposed in [11}. The heuristic requires the selection of two parameters
whose optimal values cannot be determined prior to running the algorithm. Therefore,
the resulting clusters are not controllable.

A clustering heuristic based on random walks has been proposed [18]. Although
this approach was illustrated to produce good clusters, the length of each random walk
required is O(c?) where ¢ is the number of cells in the circuit. The total complexity of
the heuristic is O(c®) which makes it undesireable when used as a preprocessing step for

a subsequent problem.

8.2 Proposed Clustering Strategy

In this section, we propose a new simple and greedy clustering heuristic based on circuit
connectivity. The heuristic produces a large number of clusters (with each cluster con-
taining a small number of cells) of nearly equal size. We also describe the incorporation

of circuit clustering into our constructive placement method.

8.2.1 Description

To implement the heuristic, it is first necessary to convert the circuit netlist into a
weighted adjacency graph, where each node in the adjacency graph represents a cell
in the circuit and the edge weight between any pair of nodes provides a measure of how
“tightly connected” the corresponding cells are in the circuit netlist. The adjacency graph
is created by defining, for each net i in the original circuit, the net weight

1

=TT

(8.1)
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Figure 8.1: Conversion from circuit netlist to adjacency graph.

where N; denotes the cells on net i. Clearly, short nets which connect only a few cells
are assigned larger weights than long nets which connect many cells. The edge weight,

denoted by w,s, between any two nodes @ and & in the adjacency graph is given by

W= Y, wi (8.2)

iGCaﬂCb

where C, and C}, represent the set of nets incident on cells a and b, respectively.

Defining the edge weights in this way accompishes several objectives. Pairs of cells
with no common nets have zero edge weights, whereas cells sharing many nets have large
edge weights. Therefore, the weights reflect the amount of connectivity between pairs
of cells in the netlist. Preferential treatment is given to short nets since they make
larger contributions than long nets when computing the edge weights. This is desireable
for circuit clustering since it is precisely short nets which tend to get absorbed when
clustering cells, whereas long nets cannot be eliminated. An example of the conversion
of a netlist into a weighted adjacency graph is illustrated in Figure 8.1.

Our proposed clustering heuristic is based on merging pairs of nodes in the adjacency
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graph according to the edge weights. More precisely, the heuristic continually selects a
maximally weighted edge in the adjacency graph of maximal and attempts to merge the
two incident nodes together. After each merge, the adjacency graph is updated to reflect
the consequence of the merge as follows. Let the two nodes being merged be nodes a
and b, and let node a be the representative after the merge. Node b and all its incident
edges are removed from the adjacency graph. The adjacencies to node a are replaced by
those nodes in Adj(a)U Adj(b). Finally, the edge weights incident to node a are updated
according to the rule w,. = w,. + wy. for all ¢ € Adj(a) U Adj(b). Since nodes in the
adjacency graph correspond to cells in the circuit netlist, the circuit netlist also changes
along with the adjacency graph (cells in the circuit netlist are merged together and form
the desired clusters). Nodes are merged together until no further merges are possible. The
total number of merges is limited as follows. Let the desired cluster size be denoted by T,
the maximum cluster size be denoted by M, and select a cluster size penalty parameter
a. After selecting nodes a and b for merging, the size penalty poy, = T — a(S; + Sp) is
computed, where S, and S; represent the current number of nodes represented by nodes
a and b, respectively. That is, the size penalty represents the difference between the
resulting cluster (weighted by some factor) and the target cluster size. If the selected
merge would result in a cluster with size greater than M, or the selected edge weight plus
the size penalty is negative, the merge is discarded from future consideration. When all
potential merges are rejected, the clustering heuristic terminates. An example illustrating
the merging of nodes, along with the associated changes in the circuit netlist, is provided
in Figure 8.2.

A pseudo-code description of the clustering heuristic is provided in Figure 8.3 where
it is assumed that the edge weights in the adjacency graph are provided as input. The
complexity of the heuristic is computed as follows. In the worst-case, the adjacency graph

created from the circuit netlist will be a complete graph consisting of c¢(c — 1)/2 edges
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Figure 8.2: Progression of the clustering heuristic.
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procedure cluster();
1  insert edge weights into mazimum heap

k=1
repeat
2 Select mazimally weighted edge wqp

{ merge node b into node a }
{ update adjacencies, edge weights and heap }
3 for c € Adj(a) U Adj(b) do
Wge = Wae + Whe
k=k+1
endfor

until no possible merges;

Figure 8.3: Pseudo-code for the clustering heuristic.

and c nodes. Step 1 of the heuristic requires the insertion of the edge weights into an
appropriate data structure to facilitate the retrieval of the maximally weighted edges at
each step of the heuristic. To faciliate the selection of such edges, the edge weights are
inserted into a maximum heap [50]. The creation of a heap in linear in the number of
entries in the heap. Therefore, Step 1 of the heuristic is O(c?).

Once initialized, the heuristic continues until no further merges are possible. Step
2 requires the selection of the maximally weighted edge which is O(1), since the edge
weights are stored in a maximum heap. In the worst-case, where the merging proceeds
until all nodes are collapsed into a single node, the outer loop of the heuristic is executed
¢ — 1 times. Therefore, over the course of the entire heuristic, the selection of maximally
weighted edges is O(c). After the kth merge, the number of remaining nodes in the
adjacency graph is c — k and the maximum number of edges is (¢ — k)(c — k —1)/2. Step
3 of the heuristic requires updating the adjacencies of node a to reflect the consequence
of merging node b into node a. This requires removing any adjacencies to both nodes,

updating the edge weights and reinserting the updated edge weights back into the heap.
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Step 3 is executed at most ¢ — k times during the kth iteration (this occurs since in the
worst-case, node a is adjacent to every other node in the graph) and the insertion and
removal of entries from a heap is logarithmic in the number of entries. Therefore, the

complexity of the updating step over the course of the entire heuristic is given by

e—1 c—1

Y O((c— k) log[(c — k)(c~ k —1)/2]) = Y O((c - k) log(c ~ k) = O(c*log c)
k=1 k=1

Therefore, the clustering heuristic is O(c?logc). Finally, the storage requirements of the
heuristic are O(c?), namely the space required to store the edge weights in the heap.

We now make some practical oi)setvations. A circuit netlist is typically sparse and
the initial adjacency graph will not be a complete graph. The number of edges will be
substantially less than c(c — 1)/2 which implies reasonable storage requirements. This
also implies the computational effort will be reduced since fewer entries will be present
in the heap. Its creation, as well as the continual insertions and deletions during the
updating step will proceed in a more timely manner. The sparsity of the netlist also
implies that only a few edges will have to be considered during the updating step of the
heuristic, since it is unlikely that a single node will be adjacent to every other node in the
graph. Finally, since the clustering heuristic is never allowed to merge all nodes together
(due to the size penalty and maximum cluster size imposed on the heuristic), the outer
loop of the heuristic will not be executed ¢ ~ 1 times, implying fewer updating operations
and so forth.

We make several final observations to explain an “objective function” associated with
the proposed clustering heuristic. Let the set of cells in cluster k be denoted by Bj.
Furthermore, define the objective function

B

> Y  (MNB|-luw;. (8.3)

k=1 (Vi|N:nB,#0}
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This objective function “counts” the total weight of the nets absorbed into a cluster when
each net in the circuit netlist is represented as a tree. Note that when all cells for a given
net ¢ are merged into the same cluster, the total contribution to this objective function
is 1. Conversely, when only one cell on any net i is placed into a cluster, the contribution
to the objective function is 0. Therefore, since the proposed clustering heuristic is based
on merging highly connected cells, it may be considered a greedy method for maximizing

the total number of edges abosrbed into the clusters.

8.2.2 Incorporating Clustering into the Constructive Method

Incorporating circuit clustering into the constructive placement method is illustrated in
Figure 8.4. When clustering is included, the circuit netlist is clustered once, prior to
beginning the relative placement and circuit partitioning iterations. When the iterations
begin, the relative placement problem is formulated using the condensed netlist produced
by the clustering heuristic. Since the clustered netlist is smaller, the resulting optimization
problems will require fewer variables and less storage, implying an overall reduction in
the computational effort. When the solution of the relative placement problem is found,
the relative positions of the clusters are known rather than the positions of the individual
cells. Cells are assigned to the position of their assigned cluster.

Cell positions are provided to the circuit partitioning portion of the constructive
method as usual, and the circuit partitioning proceeds as previously described in Chap-
ter 5. In other words, the circuit partitioning portion of the method is still applied to the
cells, and is not directly affected by the circuit clustering. Once the partitioning is com-
pleted, it is necessary to revise the clustered netlist prior to revising the constraints and
variable bounds of the relative placement problem. During the circuit partitioning, cells
within the same cluster may be assigned to different regions. Therefore, it is necessary to

“check” each cluster in the condensed netlist. Any clusters containing cells assigned to
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Figure 8.4: Incorporating circuit clustering into the placement method.
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different regions of the placement area are “broken” into smaller pieces to account for the
separation of the cluster during the partitioning. Once completed, the relative placement
problem is revised using the circuit partitioning information and reformulated using the
revised condensed netlist. The termination of the algorithm (that is, when each region
in the placement area contained fewer than a preselected number of cells) is identical to

that previously described in Chapter 5.

8.3 Numerical Results

In this section, we consider numerical aspects of the clustering heuristic proposed in
this chapter. We consider the reductions in the circuit sizes when clustering is applied
and the amount of computational effort required by the clustering heuristic. The effects
of circuit clustering on the performance of the proposed placement heuristic are also
considered. Specifically, when clustering is implemented within the constructive phase of
the placement heuristic, we consider the quality of the initial and final legal placements,
as well as the computational effort required to produce the placements. Both QP and
LP formulations of the relative placement problem are considered (although numerical
results presented in previous chapters indicate that the QP formulation of the relative

placement problem is the preferred choice).

8.3.1 Computational Effort and Impact on Netlist Sizes

The effects of the clustering heuristic when applied to the set of test circuits are shown
in Table 8.1. In performing the clustering, the target cluster size was set to 54 and the
maximum cluster size to 104, where A is the average area of the cells. The size penalty
parameter was set to 10. The number of cells and nets in the original and clustered

circuits are presented in Table 8.1. The improvement is the number of cells and nets



CHAPTER 8. CIRCUIT CLUSTERING 100
Circuit | Original Netlist | Clustered Netlist | Improv. “Time

[Cells Nets | Cells  Nets | Cells Nets | (CPU Secs)
circuitl 833 983 | 214 555 | 0.26 0.56 143
circuit2 3014 3136 | 770 1616 | 0.26 0.51 13.03
biomed 6417 5742 | 1864 1746 | 0.29 0.30 14.76
industryl | 2271 2478 | 743 1427 | 0.33 057 11.93
industry2 | 12142 13419 | 3096 7214 | 0.25 0.53 177.01
industry3 | 15059 21938 | 3754 14202 | 0.25 0.64 181.43

Table 8.1: Effects of clustering on netlist sizes.

(measures and the number of cells (nets) in the clustered netlist divided by the number
of nets (cells) in the original netlist) is also provided. Finally, the computational effort
required by the clustering heuristic is also presented.

Table 8.1 clearly illustrates that the clustering heuristic requires little computational
effort to cluster each test circuit (compared to those times previously presented in Chapter
6 for the creation of the initial legal placements). Therefore, the clustering heuristic
will not degrade the constructive placement method from the perspective of the required
computational effort. The numerical results in Table 8.1 also illustrates that the clustering
heuristic is very effective at reducing circuits. Although the number of cells permitted
within each cluster is relatively small (always less than 104), the number of nets effectively
removed from the clustered netlists is typically greater than 50 percent for all test circuits,

which is clearly a significant amount.

8.3.2 Computational Effort and Quality of Initial Placements

We now consider the effects of circuit clustering on the initial legal placements created by
the constructive placement method. The computational effort required to create initial
legal placements, both with and without clustering, is illustrated in Table 8.2. Both the
QP and LP relative placement formulations are considered. We note that the running

times presented in Table 8.2 without clustering are taken from the results previously
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Circuit | QP Form. (CPU Secs) | Improv. | LP Form. (CPU Secs) | Improv.
Without With Without With
circuitl 48.01 23.45 049 | 437.35 174.89 0.40
circuit2 325.62 167.61 0.51 | 2281.67 958.16 0.42
biomed 888.75 402.38 0.45 | 4129.96 1308.81 0.32
industryl 188.67 116.84 0.62 | 1349.75 598.08 0.44
industry2 | 2575.91 1216.03 0.47 | 12360.83 6904.00 0.56
industry3 | 4004.96 1883.53 0.47 | 28096.89  15910.45 0.56

101

Table 8.2: Computational effort with and without clustering.

~ Circuit | QP Form. (um) | Improv. | LP Form. (um) | Improv.
| Without With Without With
circuitl 6380 6230 0.98 6270 6370 1.02
circuit2 12500 12460 1.00 12540 12450 1.00
biomed 8368 8376 1.00 8392 8390 1.00
industryl 4822 4806 1.00 4810 4808 1.00
industry?2 14344 14336 1.00 14352 14352 1.00
industry3 28296 28288 1.00 28280 28248 1.00

Table 8.3: Row lengths with and without circuit clustering.

presented in Chapter 6. Additionally, when circuit clustering is used, the times reported
in Table 8.2 include the computational effort required to cluster the netlist. Taking the
ratio of the time required with clustering to that required without clustering, the results
presented in Table 8.2 clearly indicate that circuit clustering results in substantial savings
in the required computational effort, yielding a typical savings around 50 percent for all
test circuits.

The longest row lengths in the initial legal placements are presented in Table 8.3.
The results presented in Table 8.3 indicate that the longest row lengths, and therefore
the placement area, are not effected by circuit clustering.

Estimates of the total wire lengths for all test circuits are presented in Table 8.4.
Again, both relative placement formulations are considered. The results presented in
Table 8.4 illustrate that the incorporation of circuit clustering results in initial legal

placements of either comparable or better estimates of wire length when compared to
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[ Circuit QP Form. (m) | Improv. | LP Form. (m) | Improv.
Without With Without  With

circuitl 1.6154 1.5743 097 [ L5101 1.6030 1.06

circuit2 6.3227 6.5673 1.04 | 58707 5.9814 1.02

biomed 4.0053  3.2970 0.82 | 3.5557 3.1739 0.89

industryl 2.1200 2.0162 0.95 1.9053 1.8722 0.98
industry2 29.3326 27.4624 0.94 | 29.3229 27.4941 0.94
industry3 77.6508 75.2041 0.97 | 73.1003 72.3994 0.99

Table 8.4: Estimates of wire lengths with and without circuit clustering.

those initial placements obtained without clustering (especially on the larger test cir-
cuits). In other words, circuit clustering has a positive impact on the quality of the initial

placements while requiring less computational effort.

8.3.3 Computational Effort and Quality of Final Placements

Although clustering has no direct impact on the local improvement heuristic (of course,
different initial placements are created by the constructive method when clustering is used
which in turn effects the final results of the local improvement heuristic), we still consider
the final placements obtained after the application of local improvement when clustering
is used during the creation of the initial placements. Essentially, it is these numerical
results which represent the final results (placements) of the proposed placement heuristic
since all components (that is, the constructive method, the iterative improvement method
and the clustering heuristic) proposed in this thesis are used in combination.

Table 8.5 presents the total computational effort required by the constructive method
with clustering (taken from Table 8.2) and the iterative improvement method. Previously,
it was shown in Chapter 7, that the constructive method typically required either com-
parable or more time than the iterative improvement method. However, Table 8.5 clearly
demonstrates that the effect of clustering is to “shift” the computational burden away

from the constructive method. In other words, the computational effort required by the
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Circuit QP Form. (CPU Secs) | lmprov. | LP Form. (CPU Secs) | Improv.
Construct. Iter. Improv. | Passes | Construct. [Iter. Improv. | Passes
circuitl 23.45 218.43 12 174.89 234.52 12
circuit2 167.61 844.45 12 958.16 930.94 12
biomed 402.38 1061.72 12 1308.81 1216.65 12
industryl 116.84 476.95 12 598.08 477.16 12
industry2 1216.03 4110.14 12 6904.00 4273.66 12
industry3 1883.53 3118.23 12 15910.45 3321.28 12
Table 8.5: Constructive and iterative improvement times.
Circuit | CPU Time (CPU Secs) | Imp. (Clustering) | Imp. (No Clustering)
QP LP SA_ | (QP/SA) (LP/SA) | (QP/SA) (LP/SA) |
circuit] 241 405 656 0.37 0.62 0.31 0.88
circuit2 1010 1877 3961 0.25 0.47 0.26 0.76
biomed 1412 2482 10309 0.14 0.24 0.18 0.50
industryl | 590 1067 2629 0.22 0.41 0.22 0.65
industry2 | 5317 11056 25405 0.21 0.44 0.24 0.62
industry3 | 4985 19070 36267 0.14 0.53 0.18 0.85

Table 8.6: Final solution times.

iterative improvement method becomes comparable, or larger, than that required by the
constructive method. Of course, using the LP relative placement formulation for the
larger circuits (industry2 and industry3) still requires more computational effort during
the constructive method (this difference may be further offset by increasing the desired
cluster size, resuiting in smaller LP problems during the initial stages of the constructive
method).

The final solution times comparing our placement heuristic using the QP formulation
and the LP formulation to the Simulated Annealing placement heuristic are presented in
Table 8.6. As previously demonstrated in Chapter 7, our placement heuristic requires less
computational effort than the Simulated Annealing heuristic, regardless of the relative
placement formulation. Circuit clustering serves to further improve this result as illus-
trated in Table 8.6. A comparison of the results presented in Table 8.6 to those previously
presented in Table 7.2 (the results presented in the last two columns of Table 8.6 are re-

produced directly from Table 7.2 to faciliate the comparison of results with and without
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Circuit | Max. Row Length (um) | Imp. (Clustering) | Imp. (No Clustering)
" QP __LP ____SA | (QP/SA) (LP/SA) | (QP/SA) (LP/SA) |
crcuitl 6280 6280 6260 1.003 1.003 1.003 1.003
circuit? | 12500 12500 13010 0.961 0.961 0.961 0.961
biomed 8424 8424 8464 0.995 0.995 0.995 0.995
industryl | 4842 4842 5366 0.902 0.902 0.902 0.902
industry2 | 14432 14432 15240 0.947 0.947 0.947 0.947
industry3 | 28480 28472 31768 0.896 0.896 0.896 0.896

Table 8.7: Final placement areas.

clustering) illustrates that circuit clustering reduces the overall computational effort by
a significant amount (this observation is especially true for the LP relative placement
formulation, since it is the LP formulation which benfits the most from the reduction in
the optimization problem sizes during the constructive method).

Table 8.7 illustrates that the final placement areas, as measured by the length of
the longest row in the final placement, are better than those obtained by the Simulated
Annealing heuristic. A comparision of the row lengths presented in Table 8.7 to those
obtained without circuit clustering previously presented in Table 7.3 (results previously
reported in Table 7.3 are reproduced in the last two columns of Table 8.7 for comparision
purposes) illustrates that clustering has no effect on the final row lengths resulting from
our placement heuristic.

The final estimates of wire length obtained using our placement heuristic (with both
the QP and LP relative placement formulations) and Simulated Annealing are presented
in Table 8.8 (of course, the Simulated Annealing results are reproduced from Chapter
7). Our placement heuristic with clustering results in placements with final estimates of
wire lengths which are either comparable to or better than those obtained with Simulated
Annealing. Several additional observations must be made concering the results presented
in Table 8.8 to fully analyse the effects of clustering. A comparison of the final estimated
wire lengths obtained with and without clustering (results obtained without clustering are
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[ Circuit Est. HPWL (m) Tmp. (Clustering) | Imp. (No Clustering)

QP LP SA | (QP/SA) (LP/SA) | (QP/SA (LP/sKﬁ
circuitl 1.191 1.193 1.186 1.004 1.006 0.995 0.996
circuit2 5161 4.946 4.822 1.070 1.026 0.968 0.974
biomed 2.752 2708 2.572 1.070 1.053 1.105 1.034
industryl | 1.739 1.628 1.933 0.899 0.842 0.902 0.856
industry? | 20.628 20.145 21.716 0.950 0.928 0.889 0.906
industry3 | 58.611 66.737 68.589 0.855 0.973 0.828 0.943

Table 8.8: Final estimates of wire length.

taken from Table 7.4 and are reproduced in the last two columns of Table 8.8 to facilitate
the comparison), illustrates that the placements obtained with clustering experience a
slight degradation in quality. This result occurs despite the fact that the initial placements
created with clustering are better than those created without clustering.

Despite this observation regarding the slight degradation in the quality of the place-
ments as a result of clustering, the application of clustering is still important. Clustering
has a positive impact on the quality of the initial placements and results in a signifi-
cant reduction in the computational effort required to construct the initial placements
(which also implies a reduction in the total computational effort required by the entire
placement heuristic). Good quality final placements are still obtained (especially for the
larger circuits such as industry2 and industry3) and are comparable to or better than
those provided by Simulated Annealing. Therefore, an important future path is to focus

on the enhancement of the iterative improvement method.

8.4 Summary

In this chapter, we have proposed a new clustering heuristic based on circuit connectivity.
The heuristic was illustrated to be greedy in nature, and capable of producing a large
number of clusters of nearly equal size. The complexity of the heuristic was illustrated

to be polynomial in the number of cells in the circuit. The incorporation of the circuit
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clustering heuristic into the constructive placement method was also described.

Numerical results indicated that the clustering heuristic was quite effective at reducing
the sizes of the netlists while requiring little computational effort to do so. When applied
to the comstructive method, an overall reduction in the computational effort required to
create an initial placement was achieved, regardless of the relative placement formulation
used. Furthermore, clustering resulted in better initial placements when compared to
those initial placements created without circuit clustering. Therefore, circuit clustering
represents an important extension to the constructive method since: (i) it aids in the cre-
ation of better initial placements and (ii) significantly reduces the required computational
effort.

Numerical results were also presented to investigate the final placements obtained once
the initial placements (created using clustering) were subjected to the iterative improve-
ment method previously proposed in Chapter 7. These final placements were compared
to those obtained using Simulated Annealing. As expected, circuit clustering reduced the
overall computational effort of our placement heuristic (regardless of the formulation of
the relative placement problem), making our heuristic even more attractive than Simu-
lated Annealing from a computational point of view. Additionally, the estimated wire
lengths of the final placements were comparable to or better than those obtained using
Simulated Annealing. Unfortunately, final placements with clustering were slightly infe-
rior to those placements obtained without clustering (as previously presented in Chapter
7). This observation was despite that fact that clustering aided the constructive method
in creating better initial placements. This observation, do not detract from the bene-
fits of circuit clustering (significant reduction in computational effort and good quality
placements), but rather demonstrates the potential benefit of further enhancements to

the iterative improvement method previously described in Chapter 7.



Chapter 9

Conclusions and Future Directions

The division of the integrated circuit design procedure into a sequence of interacting
design steps is an appropriate decision, given the complexity of modern integrated circuits.
Unfortunately, the division of the procedure does not represent a complete solution to all
the difficulties associated with integrated circuit design. Each individual design step, even
when considerd as a single problem, still remains difficult. Continual research is therefore
required to develop more effective, efficient and robust techniques for each problem which
arises during the design of integrated circuits. Only through the continual development
of such techniques will circuit designers be capable of designing more complex circuits
which take advantage of both existing and future technologies.

When solving any problem associated with integrated circuit design, it is common that
only an approzimate solution of the exact problem may be possible. Techniques capable
of providing near optimal solutions while requiring reasonable computational effort must
be implemented. Furthermore, different solution methodologies, such as mathematical
programming, combinatorial optimization, search heuristics, and so forth, may all prove
useful for tackling a given problem. Finally, it is necessary to consider the combination of

techniques in situations where one particular solution methodology is not sufficent for the
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solution of a specific problem. These issues have been illustrated in this thesis through
the investigation of the cell placement problem, a difficult subproblem associated with a
single design step in the circuit design procedure.

In this closing chapter, we summarize the contents of this thesis. The various contribu-
tions made towards the development of a better heuristic for cell placement are described.
Contributions made on related subproblems encountered during the development of the
placement heuristic are also described. We describe potential avenues for future research
which we consider to be important for the enhancement of placement heuristics. Finally,

closing comments are provided.

9.1 Summary and Contributions

In Chapter 2, cell placement for semi-custom design was described. Placement heuris-
tics were classified as either constructive or iterative improvement methods, where the
classification was shown to depend on how cell placements were obtained. Through a
description of the advantages and disadvantages of the both methods, it was proposed
that a combination of methods would prove beneficial as a means of exploiting the ad-
vantages of both constructive and iterative improvement methods, while avoiding the

disadvantages associated with each method.

9.1.1 Constructive Placement

Chapters 3 through 6 were dedicated to the description of a constructive method for
creating an initial legal placement. It was illustrated that several iterations of relative
placement and circuit partitioning provided a good distribution of cell positions through-
out the placement area. This iterative combination of different approaches provided useful

information for positioning cells in an initial legal cell placement.
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In Chapter 3, the relative placement problem was described as a means of determin-
ing the general positions of the cells while ignoring several placement restrictions. Two
formulations of the relative placement problem were described. Depending on the esti-
mate of wire length, the relative placement problem was formulated as both a quadratic
program and a linear program. An analysis of the two formulations revealed that the
quadratic program formulation resulted in smaller optimization problems (in terms of
the number of unknowns, constraints and required storage) than the equivalent linear
program formulation.

A primal-dual interior point method was proposed for solving both relative place-
ment formulations in Chapter 4. Interior point methods have typically been ignored
for solving the relative placement problem, despite their efficient implementations and
polynomial-time complexities. However, when compared to previously proposed solution
methodologies, the proposed interior point method was illustrated to represent a more ef-
ficient and flexible solution methodology since it is capable of handling a reasonably wide
variety of constraints. Numerical results presented in Chapter 4 also confirmed the advan-
tages of the quadratic program relative placement formulation in terms of computational
efficiency and storage requirements when compared to the linear program formulation.

Several issues regarding the efficient implementation of the interior point method
were also illustrated in Chapter 4. The computational “bottleneck” of the interior point
method was identified as the solution of the augmented equations at each iteration of the
method. Typically, direct methods have been proposed [46] for solving the augmented
equations. However, we introduced the concept of iterative methods which were illustrated
to offer several potential benefits in terms of computational efficiency and storage require-
ments when compared to their direct method counterparts. The importance of generating
a good preconditioning matrix when using an iterative method was described and drop

tolerance preconditioning was considered as an effective approach. Furthermore, it was
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illustrated that it was possible to guarantee the existence of the preconditioning matrix
by applying diagonal modifications during the generation of the preconditioning matrix.
Numerical results indicated the iterative method performed favourably in comparision
with direct methods when applied to large, sparse optimization problems arising from
the formulations of the relative placement problem. Iterative methods typically resulted
in a reduction in the computational effort and storage requirements of the interior point
method. Therefore, we concluded that for large and sparse problems such as the rela-
tive placement problem, which do not require a high degree of accuracy in the solution,
iterative methods are beneficial.

In Chapter 5, it was illustrated that the solution of a single relative placement problem
was not sufficient for providing useful information regarding final cell positions in an
initial legal placement. Therefore, circuit partitioning was introduced as a means of
improving the distribution of cells by forcing cells, in an intelligent manner, into under
utilized portions of the placement area. The combination of relative placement and circuit
partitioning was illustrated to result in an iterative procedure for determining “good”
relative cell positions. Furthermore, the relative placement and circuit partitioning steps
interacted with each other, where the information from one problem was used as input
for improving the results of the other problem.

The creation of initial placements was illustrated in Chapter 6. Since the relative
placement and circuit partitioning iterations provided a good indication of the initial cell
positions, a simple and effective heuristic based on sorted cell positions was proposed
for eliminating placement violations and creating an initial legal placement. Numerical
results were presented to illustrate many aspects of the constructive placement method
proposed in this thesis. Regardless of the relative placement formulation used, the solution
of the optimization problems resulting from the formulation of the relative placement

problem was identified as the computational “bottleneck” of the constructive placement
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method. Therefore, it was identified that any improvements in the interior point method
or the relative placement formulations would be benficial for the computational efficiency
of the overall placement heuristic.

Differences in the relative placement formulations were also illustrated. It was con-
firmed empirically that the quadratic program formulation of the relative placement prob-
lem required significantly less computational effort than the equivalent linear program for-
mulation. However, the numerical results indicated that the linear program formulation
resulted in initial placements with overall lower estimates of wire length. This represented
an important observation regarding the constructive method, namely the potential trade-
off in quality of the placement versus the required computational effort. Finally, it was
also confirmed that a single relative placement was not sufficient for the creation of an
initial legal placement. Numerical results indicated that the quality of the initial place-
ments generated from a single relative placement problem were substantially worse than
those obtained when several iterations of relative placement and circuit partitioning were

performed.

9.1.2 Improved Placement

In Chapter 7, a simple iterative improvement method based on localized cell moves and
cell swaps was proposed for repositioning cells to achieve a further improvment in the cell
placement. The application of iterative improvement was illustrated to be necessary for
the detailed placement of cells, since the constructive method only provided globally good
information. Conversely, the iterative improvement method was illustrated to benefit
from the exploitation of the a priori knowledge of the global goodness of the initial
placement.

Numerical results indicated the computational effort required by the iterative im-

provement method was linear in its duration, whereas the improvement in the quality of



CHAPTER 9. CONCLUSIONS AND FUTURE DIRECTIONS 112

the placement increased most rapidly during the initial portion of the iterative improve-
ment. This was illustrated to be beneficial since a reduction in the computational effort
of the iterative improvement method was possible by simply shorting its duration while
still maintaining a reasonable improvement in the quality of the placement.
Comparisions with an established Simulated Annealing placement heuristic were pre-
sented to illustrated that the combination of constructive and iterative improvement
methods was effective when compared to established methods. In all cases, our heuristic
produced placements of comparable or superior quality, both in terms of the widths of
the required placement areas and the total estimates of wire length. Additionally, our
heuristic required less computational effort to produce these higher quality placements.
Comparisions of the final placements also illustrated several important aspects re-
garding the relative placement formulations. Although the initial placements provided
by the linear program formulation of the relative placement problem were illustrated to
be better than the equivalent quadratic program formulation, the application of iterative
improvement eliminated the differences in quality. That is, the application of iterative
improvement resulted in placements of equal quality regardless of the relative placement
formulation. The savings in computational effort for the creation of the initial placement
using the quadratic versus the linear program was reflected in the final computational
times of the overall placement heuristic. Therefore,we concluded that our placement
heuristic, with the relative placement problem formulated as a quadratic program, was

the preferable placement heuristic.

9.1.3 Placement Enhancements

In Chapter 8, we considered circuit clustering as a means for reducing the computational
effort required by the constructive placement method. By initially clustering the circuit,

the solution to a sequence of smaller relative placement problems was required, imply-
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ing an overall reduction in the computational effort and storage requirements. A greedy
clustering heuristic based on circuit connectivity was proposed. The heuristic was illus-
trated to be capable of generating a large number of clusters, each containing a few cells,
of nearly equal size. Furthermore, the complexity of the heurstic was illustrated to be
polynomial in the size of the circuit. When applied to practical circuits, the heurstic was
illustrated to be efficiently implemented with reasonable storage requirements.
Numerical results indicated that the proposed clustering heuristic was effective at
reducing circuit sizes. Furthermore, when incorporated into the constructive placement
method, circuit clustering was found to reduce computational efforts substantially, while

simultaneously improving the quality of the resulting initial placements.

9.2 Future Directions

Many possible extensions may be applied to the basic techniques proposed in this the-
sis and we consider several possibilities in this section for enhancing and extending the

placement heuristic.

9.2.1 Improved Cell Distribution

As illustrated in this thesis, the relative placement and circuit partitioning iterations
are required to obtain a good distribution of cells throughout the placement area. It
may prove useful to include additional constraints directly into the relative placement
formulation (in addition to the first moment constraints) to prevent the grouping of cells
towards the middle of the placement area. That is, additional “spreading constraints”
incorporated into the relative placement problem may prove useful for eliminating overlap
by effectively forcing cells apart. One example constraint (although it is likely that

additional consideration may reveal “better” constraints) would be a second moment
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(variance) constraint applied to the cells within each region [48].

The consequence of including such constraints is twofold. By forcing cells further
apart during the relative placement, the circuit partitioning may proceed in a more timely
fashion since forcing cells apart results in less indecision during the creation of the initial
partitions (since cells would have less tendency to collapse onto the cut lines). Therefore,
it may be sufficient to create partitions of the cells and the placement area based strictly
on sorted cell positions while avoiding the necessity of performing cell interchanges. Fur-
thermore, additional spreading of cells into less utilized portions of the placement area
would result in better initial partitions as well as a better indication of where cells belong
in an initial placement earlier during the relative placement and partitioning iterations.

Several disadvantages may arise, however, when such constraints are included into the
problem. Appropriate constraints for improving cell separation may be nonlinear implying
modifications to the proposed interior point method. Furthermore, the constraints may
be nonconvex implying that it may only be possible to guarantee a locally optimal solution
to the relative placement problem. Despite these difficulties, the inclusion of constraints
directly within the relative placement formulation to improve cell separation earlier on in

the relative placement and circuit partitioning iterations would prove beneficial.

9.2.2 Interior Point Methods

Since the computational bottleneck of the constructive method is the solution of the
relative placement problems, any additional enhancements to the solution methodology
would be beneficial. For the interior point method, reduction in computational effort
would require a reduction in the number of interior point iterations necessary to reach
optimality or a reduction in the effort spent during each iteration.

Iterative versus direct methods for solving the augmented equations deserve more

consideration. In general, iterative methods may not perform as well as their direct
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method counterparts on optimization problem requiring high degrees of accuracy (that is,
many digits of agreement between the primal and dual objective values, feasibility norms
approaching zero, and so forth). However, for optimization problems which are large,
sparse and require only approximate solutions (such as the relative placement problem),
iterative methods are useful.

Another interesting possibility is the extension of the interior point method to handle
nonlinear (and possibly nonconvex) constraints. The development of such an interior
point method would significantly enhance the flexiblity of the solution methodology and
allow a greater variety of constraints to be included into the relative placement formula-

tion.

9.2.3 Iterative Improvement

Iterative improvement methods are typically based on the application of search heuristics
to repositions cells, and this is the approach which was followed in this thesis. Although it
was illustrated that a simple iterative improvement method was capable of providing high
quality final cell positions (assuming a globally good initial placement), enhancements
may still be possible.

Additional computationally efficient search heuristics, such as GRASP [9] or genetic
algorithms [2], for rearranging cells within localized portions of the placement area may
prove useful. Additionally, incorporation of meta-heuristics such as Tabu Search [15]
may prove useful guiding the search heuristic to better quality placements. The effects
of improvements to the search heuristic used within the iterative improvement method
would result in several benefits. First, by making more “intelligent” perturbations to an
existing placement, better final placements would be possible without an increase in the
required computational effort. Additionally, a reduction in the computational effort for

a single perturbation would imply that more perturbations could be attempted over the
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entire duration of the iterative improvement method.

9.2.4 Performance Driven Placement

Finally, an important direction for the enhancement of the cell placement heuristic is in
the direction of performance-driven placement [23, 38, 39, 42]. For combinational circuits,
it is essential that a signal propagating along a net from a driver to a set of sinks arrives
quickly enough in order to guarantee the proper functionality of the circuit. For instance,
each functional element in a circuit has a required arrival time which represents the latest
time that all signals must be present at the element’s inputs in order to guarantee the
element provides the correct outputs. Timing information is typically obtained from
a timing analysis or a circuit simulation. This is especially important in today’s high
speed circuitry where timing violations are common occurances during the design of an
integrated circuit, and can result in extended design cycles costing substantial time and
money.

Previous research for performance driven placement has been done in the context of
constructive placement methods {23, 38, 39, 42]. However, these previous approaches
have used rather simplistic delay models to estimate the timing effects. Therefore, the
inclusion of more accurate delay models (whether nonlinear, nonconvex, and so forth) into
the relative placement formulation (and therefore the constructive placement method),
along with a suitable solution methodology, would represent an extremely useful extension

to the overall placement heuristic.

9.3 Epilogue

The investigation of the cell placement problem has proven to be an extremely interesting

area of research. Application of the ideas and techniques presented within this thesis may
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also prove to be very effective when applied to other VLSI problems, and may extend to
many other problems to which I have not yet been exposed.

The continuing evolution of mathematical programming techniques and advances in
different types of search heuristics will continue to facilitate the creation of better, more
powerful, algorithms for solving many different problems. As research never ceases to
provide an avenue for both creativity and learning, I expect to be very busy in the years

to come.



Appendix A

Derivation of the Augmented

Equations

We are interested in deriving the augmented equations which yield the search direction
at each iteration of the interior point method described in Chapter 4. The first order

optimality conditions for the logarithmic barrier problems were shown to be given by

Ax+p = b
X+8 = u

ATy +w+r-Qx = ¢

W+r =

(A1)
yt+rs = 0
XR, = pe
SR; = pe
PR3y = pe

118



APPENDIX A. DERIVATION OF THE AUGMENTED EQUATIONS 119

Applying Newton’s method to these first order conditions results in the system of equa-

tions given by

i

AAx+ Ap b-Ax-p
Ax+As = u-x-s = T
ATAy +Aw+Ar; - QAx = c-ATy-w-r+Qx = o

i
©

Aw+Ar; = -w-r =
: : b (A2)
Ay+Ars = -y-n; = v
Ax+R{'XAr; = pRi'e-Xe = ¢
As+R;'SAr; = pR;'e-Se = ¢
Ap + R;'PAr; = pR;'e—Pe = ¢
This system of equations can be written in the following matrix form:
- 11 - -,
R{'X I Ary é
R;'S I Ar; 2
R;'P I Ar; ¢3
I -Q AT 1 Ax o
= (A.3)
I  § As B
I I Ap T
A I Ay P
| I I | | Aw | T
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The pivot blocks R;'X, R;'S and R;!P can be used to eliminate the variables Ar;,

Ar; and Arj, respectively as follows:

Ar,
Ar,
Ar;

R X"1(¢, — Ax)
R,S~1(¢; — As)
RsP~1(¢3 — Ap)

With these substitutions, the system of equations is reduced to the following:

-Q-R, X!
—st-l
A
| ) § 4
where
o
A
¥

-R;'P 1

i

- -~

AT 1
I

o—-R1X ¢,
B — RaS~14,,
v—-R3P14;.

Ax

|

(A.4)
-
8
| (A.5)
P
| 7
(A-6)

Next use the pivot blocks —R2S~! and ~R3P~! to eliminate the variables As and Ap,

respectively as follows:

As
Ap

~R;!S( - Aw)
-R7'P(7 - Ay)

(A.7)

With these substitutions, the system of equations is reduced to the following:

-Q-R; X! AT I

A R;'P

I R;'s

Ax 4
Ay | =| p+R3'Py
Aw r+R;'S3

Q

(A.8)

]
h-1)

-
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Finally, the pivot block R;‘S can be used to eliminate the variables Aw as follows:
Aw = R;S"l(# - Ax) (A.9)

Making this final substitution, we arrive at the following system of equations:

[ Ax [ & —R,S~17 ]
- (A.10)
Ay

This final system of equations is symmetric quasi-definite, which is the desired result.

-Q-R;X1-_R,s! AT
A R;'P

p
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Publications

The following publications are a consequence of the work done in this thesis.

e A. Vannelli, A. Kennings and P. Chin, Interior point approaches for the VLSI
placement problem, In Interior Point Methods of Mathematical Programming, Ed.
T. Terlaky, Kluwer Academic Publishers, pp. 501-528, 1996.

e A. Kennings and A. Vannelli, An efficient interior point approach for QP and LP
models of the relative placement problem, In Midwest Symposium on Circuits and
Systems, Ames, Iowa, August 18-21, 1996.

e A. Kennings and M. Frazer, Circuit clustering and its effects on a multiway cir-
cuit partitioning heuristic, In Ceanadian Conference on Electrical and Computer

Engineering, St. John'’s, Newfoundland, May 25-28, 1997.

e A. Kennings and A. Vannelli, VLSI placement using quadratic programming and
network partitioning techniques, Submitted International Trensactions on Opera-

tions Research, 1996.
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