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Abstract

The physiological energy requirements of prosthetic gait in lower-limb amputees have been

observed to be significantly greater than those for able-bodied subjects. However, existing

models of energy flow in walking have not been very successful in explaining the reasons

for this additional energy cost. Existing mechanical models fail to capture all of the

components of energy cost involved in human walking.

In this thesis, a new model is developed that estimates the physiological cost of walking

for an able-bodied individual; the same cost of walking is then computed using a variation

of the model that represents a bi-lateral below-knee amputee. The results indicate a

higher physiological cost for the amputee model, suggesting that the model more accurately

represents the relative metabolic costs of able-bodied and amputee walking gait.

The model is based on a two-dimensional multi-body mechanical model that computes

the joint torques required for a specified pattern of joint kinematics. In contrast to other

models, the mechanical model includes a balance controller component that dynamically

maintains the stability of the model during the walking simulation. This allows for anal-

ysis of many consecutive steps, and includes in the metabolic cost estimation the energy

required to maintain balance.

A muscle stress based calculation is used to determine the optimal muscle force dis-

tribution required to achieve the joint torques computed by the mechanical model. This

calculation is also used as a measure of the metabolic energy cost of the walking simulation.

Finally, an optimization algorithm is applied to the joint kinematic patterns to find the

optimal walking motion for the model. This approach allows the simulation to find the

most energy efficient gait for the model, mimicking the natural human tendency to walk

with the most efficient stride length and speed.
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Chapter 1

Introduction

1.1 History of Gait Analysis

The study of human locomotion has a long and distinguished history. Kinesiology, the

science of the movement of the body, has its roots in ancient Greece, where Aristotle

(384-322 B.C.) began the field of study with his treatises Parts of Animals, Movement

of Animals, and Progression of Animals. His writings contain the first description of the

actions of muscles in producing movement, and geometrical descriptions of the process of

walking by conversion of rotary joint motion into forward progression [6].

1800 years later, Leonardo da Vinci (1452-1519) described the mechanics of various

human movements, including standing up, walking, and running [52]. However, early

studies of the mechanics of walking were restricted to qualitative discussions of the motions

and forces involved.

By the early 1900s the development of motion capture systems using cinematography

allowed for more detailed and quantitative research. Fischer [29] derived the equations

of motion for a mechanical model of human walking in 1906, and in the 1930s Elftman

used motion captured on film to complete by hand a full inverse-dynamics analysis of the

torques required at each lower limb joint during the gait cycle [28]. The methods pioneered

by Fischer and Elftman have been refined and adapted to study different facets of human

walking over the past decades, as will be discussed in Chapter 2.

1



2 Determinants of Increased Energy Cost in Prosthetic Gait

1.2 Motivation

Recent studies in human locomotion have aimed to discover the advantages of particular

walking motions by examining the patterns of motion in the body, and the resulting forces

within the muscles and joints that produce that motion. Once the forces and motions have

been measured, they can be used to determine the flow of energy between muscles and

limbs during gait. From an analysis of the motion, force, and energy flow patterns, we can

begin to understand the reasons for certain features of gait, such as our preference to walk

at a particular speed and with a particular stride length.

In addition to the general advancement of scientific knowledge, there are numerous

practical applications that continue to motivate this research. The results can be applied

to improve methods of sports training, rehabilitation programs, ergonomics, and the design

of bipedal robots, to name but a few.

Another application that could be greatly aided by a better understanding of the flow of

energy between muscles and limbs in walking is the design of prosthetic legs for amputees.

Numerous experimental studies have demonstrated that amputees expend substantially

more metabolic energy in walking a given distance as compared to a healthy individual

[18], [65], [66]. However, existing models of energy flow in walking have not been very

successful in explaining the reasons for this additional energy consumption, such as the

analysis by Gitter et al. using center-of-mass dynamics to predict energy cost [34].

The challenge of determining the factors affecting metabolic energy consumption in

amputee gait is apparent from studies that compare the effect of simple design changes, such

as varying the mass of the prosthetic limb. Popular beliefs suggest that lighter prosthetics

are better, since less energy is required to carry the extra mass; this has led to the use of

more exotic and expensive materials to design the lightest possible limbs. By minimizing

the mass, however, the dynamics of the swinging motion are also changed, and become less

symmetric with the remaining limb. The reduction in mass, change in dynamics, and loss

of symmetry may have the opposite of the desired effect, and increase the energy required

for the amputee to walk [21].

The value of an accurate model of walking gait with prosthetic legs is clear. By varying

the parameters of the model, the effect of design changes to prosthetic limbs on the energy

cost of walking could be determined. Using such a model, the designers of prosthetic
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limbs could find optimal designs that reduce the energy required for amputees to walk,

and provide them with maximum mobility and independence.

1.3 Goals and Contributions

As explained in more detail in Chapter 2, the energy cost of walking is the rate at which

metabolic energy is consumed by the muscles while walking. This cost can be estimated

experimentally by having a subject walk at a given pace and measuring the rate of oxygen

consumption.

Externally, the energy cost of walking may be estimated by considering the motion

of the body as a mechanical system, and determining the amount of energy required to

move the body through an observed walking motion. Ideally, this would give the same

result as the experimentally determined energy consumption. By comparing the motion of

a mechanical model of normal gait to that of prosthetic gait, we should therefore be able

to observe a corresponding difference in energy consumption.

Unfortunately, the results of these two methods rarely agree, for a variety of confounding

reasons. Purely mechanical models of the human body usually fail to take into account a

number of factors: the efficiency of conversion of metabolic energy into mechanical motion;

the metabolic energy cost of a muscle holding a static position under stress but performing

no mechanical work; and the need for co-contraction, the result of two muscles acting in

opposition to each other to increase joint stiffness.

The first goal of this thesis is to develop a model of human walking that is based on a

multi-body mechanical simulation, while taking into account the factors mentioned above

in estimating the metabolic energy cost of a particular gait pattern.

The second goal is to incorporate the hypothesis that the human body attempts to

minimize energy consumption and muscle fatigue when walking. This tendency to minimize

energy cost has been shown in numerous studies [1] [18] [72]. The principle can be applied

to two sub-problems: finding the distribution of muscle forces within the leg required to

generate the joint torques for walking using the least amount of energy; and finding a gait

pattern for the model that is representative of natural energy-optimal human walking.

Using this model of energy consumption and the minimal-energy gait pattern simu-
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lations, an optimal gait pattern for both a normal and prosthetic walking model will be

determined. This will establish a method for evaluating and comparing gait efficiency in

useful terms, and provide insight into the additional energy cost of prosthetic gait.

1.4 Thesis Outline

The theory, implementation, and results of the model development are presented in the

following chapters.

Chapter 2 gives a review of background material and prior research into walking gait

analysis and metabolic energy consumption.

Chapter 3 presents an overview of the system, and describes the interfaces between the

optimization loop, the mechanical model, and the metabolic energy model components of

the system.

Chapter 4 reviews the methods of mechanical system analysis, followed by details of

the mechanical simulation design for the normal and prosthetic walking models.

Chapter 5 describes the model used for determining muscle forces required by the

simulation, and the calculations used to estimate the metabolic energy cost of motion.

Chapter 6 discusses the problem of maintaining balance in a forward-dynamics bipedal

walking simulation, and presents the stabilizing control system that is used in the model.

Chapter 7 presents and compares the results of the optimization solutions for the normal

and the prosthetic models.

Chapter 8 discusses conclusions that can be drawn from this work and areas where the

model may be enhanced through future development.



Chapter 2

Background Literature Review

2.1 Walking Gait Analysis

Most experimental analyses of human walking gait, such as those of Bianchi and Borghese

[11] [9], begin with the measurement of the kinematics (motion) of the body and limb

segments. Numerous measurement methods have been used, ranging from simple pho-

tographic capture to more sophisticated three-dimensional sensing of markers placed at

known positions on the body [69]. From the position data, captured over a sequence

of frames spanning one or more periods of the gait cycle, other kinematic data can be

approximated, such as the joint angles and velocities as functions of time.

The second component of gait analysis is the measurement of the kinetics (forces and

moments) applied on and within the body [69]. External forces applied during walking

are relatively easy to determine using force-plates on the ground. Vertical and horizontal

ground reaction forces applied at the feet and their point of application can be measured

directly, and are useful in identifying the net forces and moments applied to the body.

A more challenging problem is computing the forces and moments that are present at

the joints within the body. These are of particular interest to this research because they

provide insight into the efficiency of energy flow between limb segments, as discussed later

in this chapter.

A third component of gait analysis is energy consumption, which gives a measure of

the energy required to walk a given distance [70]. Energy can be measured in terms

5
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of metabolic consumption (the amount of energy used by the muscles), or in mechanical

energy terms computed from the kinematic and kinetic measurements discussed above. The

measurement methods and correlations between these two approaches to energy analysis

are the primary subjects of the remainder of this chapter.

2.1.1 Normal Human Gait

In two articles on human locomotion, Edmond Ayyappa gives an introduction to mea-

surement and analysis techniques. The first article reviews the phases of the gait cycle

and parameters and terminology used in gait measurement [7]. A second article reviews

kinematic and kinetic measurement techniques [8]. These articles provide a useful baseline

for normal human locomotion, to which prosthetic gait variations can be compared.

2.1.1.1 Phases of Gait

To identify and refer to different motion patterns that occur during a walking stride, the

gait cycle is commonly broken down into a set of phases, defined by events and time

intervals in the stride. For the purposes of normal and amputee gait analysis, a common

definition of phases based on certain identifiable events is sufficient, as used by MacFarlane

[43]. The events within the gait cycle are defined in Table 2.1.

Heel-strike Instant of initial foot contact with the ground

Midstance Instant of crossing of midshanks

(corresponds to contralateral midswing event)

Toe-off Instant of loss of foot contact with the ground

Midswing Instant of crossing of midshanks

(corresponds to contralateral midstance event)

Table 2.1: Gait Events

The phases of gait identify periods of time within the gait cycle, and are defined in

Table 2.2 as the time between identifiable events.
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Early stance phase Time from heel-strike to midstance

Late stance phase Time from midstance to toe-off

Early swing phase Time from toe-off to midswing

Late swing phase Time from midswing to heel-strike

Table 2.2: Gait Phases

2.1.2 Variations in Prosthetic Gait

When part of a lower limb is lost and replaced with a prosthesis, changes to the normal

gait patterns are expected due to the loss of muscular control of the lower joints. Changes

to the rate of energy consumption during walking have also been observed, as discussed in

the following sections.

2.1.2.1 Kinematics and Kinetics

To maintain stability without active ankle or knee joint control, amputees must make

a number of changes to their gait kinematics, as observed by Czerniecki [20]. During

stance, there is typically no knee flexion in the first 30% to 40% of the stance phase, to

avoid buckling of the knee. This requires additional hip extension to maintain the knee

extension at heel-strike. Approaching the swing phase, the amputee must compensate for

the lack of gastrocnemius and soleus muscle power at the ankle by increasing hip flexor

power, despite the reduced mass of the prosthetic limb relative to a normal leg. Based on

his analysis, Czerniecki noted that:

Part of the impetus for the development of new prosthetic components and

socket designs has been to reduce the metabolic costs of ambulation. In spite of

the biomechanical evidence that supports the energy absorption and restoration

of energy-storing feet, they have not been shown to significantly reduce the

metabolic costs of walking in the majority of studies.
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2.1.2.2 Metabolic Energy Cost

Hoffman et al. [38] examined aerobic demands in bilateral above-knee amputees compared

to matched able-bodied subjects. The comparison showed a preferred walking speed 21%

slower and aerobic demands 49% higher for the amputees. At specified speeds, aerobic

demands were 55% to 83% higher for the amputee subjects. The explanatory model in-

dicates the higher metabolic costs are due to greater demands for maintenance of balance

and posture, and for performing the walking movement.

These observations summarize the need for further development of walking analysis,

particularly in the area of amputee gait. While the energy consumption of amputees is

substantially higher than for normal subjects, current analysis methods that are used for

prosthetic design (such as the centre-of-mass dynamics approach used by Gitter et al. [34])

are not correctly predicting the actual changes in metabolic energy cost for the users. The

reasons for the failure of some of these methods when applied to amputee gait will be

discussed in the following sections.

2.2 Metabolic Energy in Gait

The rate of energy consumption during normal walking has been the subject of numerous

studies by many researchers, such as Booyens in the 1950s [10], and more recently Waters

[63], [66]. A measure of the amount of energy consumed per minute or per unit distance

travelled can be used to determine differences in metabolic efficiency, for example between

normal subjects and trained athletes as shown by Waters [61]. Waters has also investigated

the additional metabolic cost due to various pathologies and disabilities, such as arthrodesis

[64], the use of crutches [62], paraplegia [63], and amputation [65].

2.2.1 Oxygen Consumption

To determine the amount of energy consumed by the body over time, an indirect calori-

metric method is used, based on the measurement of energy produced in a calorimeter by

combustion of carbohydrate, fat, and protein with oxygen [61]. By the conservation of

energy, the complete metabolization of the same food in a metabolic system will produce
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an equal amount of energy (approximately 4.82 kcal in one litre of O2 [61]) that is used to

generate mechanical motion, or is eventually released as heat.

Mechanical energy is produced from biochemical energy by the conversion of adenosine

triphosphate (ATP) into adenosine diphosphate (ADP), which frees one phosphate atom

and releases energy that shortens the contractile elements in muscle:

ATP → ADP + P + Energy (2.1)

During aerobic exercise, such as walking, ATP is generated by aerobic oxidation, which

consumes O2 and releases CO2. Using the assumption that the oxygen transfer that takes

place at the cellular level is equally represented by oxygen consumption and carbon dioxide

expulsion during breathing, the rate of ATP and energy production in the body can be

determined by measuring the volumetric rate of O2 consumption, or V̇ O2.

2.2.2 Energy Calculations

To determine the amount of energy consumed based on oxygen analysis, a scaling factor

dependent on the food source is required. This is termed the respiratory quotient (RQ);

for a typical diet of 60% metabolized fats and 40% metabolized carbohydrates, the RQ is

0.82, resulting in 4.8 calories of energy per ml O2 consumed [61]. Using the conversion of

4.18 Joules per calorie, the metabolic energy rate is given by

Ė = 20.1 · V̇ O2 (2.2)

where Ė is in units of Watts and the oxygen uptake rate V̇ O2 is in units of ml/s.

Subject Mass Speed Oxygen rate Energy rate Normalized Energy

Group (kg)
(

m
s

) (
ml
s

) (
J
s

) (
J

kg·m

)

Able-bodied 62.8 0.9 10.3 207.7 3.7

Amputees 64.1 0.8 15 301.5 5.9

Table 2.3: Metabolic Energy Consumption Calculation based on [38]
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Table 2.3 compares the metabolic energy consumption between an average able-bodied

subject and an amputee. The masses and oxygen consumption rates are taken from the

average values of the five bilateral above-knee amputee subjects and the matched able-

bodied control subjects used in Hoffman’s analysis [38]. The energy rate in Table 2.3 is

computed using Equation (2.2), and the normalized energy consumption is computed by

dividing by mass and walking speed.

2.3 Mechanical Energy in Gait

One of the fundamental problems in the study of biomechanics has been in the calculation of

forces and torques generated internally in the muscles and joints during human motion. The

value of such information is significant in the case of locomotion. For example, knowledge

of the forces generated in muscles and tendons can be used to determine which muscles

provide energy for propulsion during particular phases of gait. This may give insight into

the reasons for gait variations resulting from pathologies affecting certain muscles.

Determining the internal forces during gait is also one means of measuring the efficiency

of locomotion. If the force generated by a muscle is known along with the excursion of the

muscle (it’s length change over time), the mechanical work performed by the muscle can

be simply calculated using the product of force and distance:

W = ~F · ~d (2.3)

or, integrating velocity over the period of a motion:

W =

∫
~F (t) · ~v(t)dt. (2.4)

Once calculated and summed across all active muscles, the mechanical work can be com-

pared to the metabolic energy consumed to determine the efficiency of the conversion from

metabolic to mechanical energy. Conversely, in the case of locomotion, the work performed

can be divided by the distance travelled to compute a cost of locomotion, or a measure of

the efficiency of a particular gait pattern in terms of mechanical energy.

In practice, directly measuring the forces in vivo would require invasive and impractical

methods, such as the attachment of strain gauges to each of the muscles under investigation.
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Instead, numerous methods have been used, with varying degrees of success, to estimate

the actual mechanical work performed by the muscles, based on externally observable

measurements. The most common methods are reviewed and compared here, along with

a summary of the results of various studies using the various calculations.

2.3.1 Energy Calculation Methods

Numerous different methods have been used to estimate the energy consumed in the motion

of biological systems by representing the system with a mechanical model and computing

the mechanical energy consumed by the model. This section reviews the most frequently

used methods, in order of increasing model complexity.

2.3.1.1 Centre of Mass

One of the simplest methods of estimating the amount of work performed by the muscles

during walking is to simply observe the motion of the centre of mass of the body. This

method measures only the external work performed; that is, no measure is made of the

work performed to move the limbs relative to the torso.

Cavagna et al. [16] measured the translational kinetic and potential energy of the body

using the centre of mass motion over a range of walking speeds; the rotational kinetic

motion was assumed to be negligible. This gave a simple expression of the total energy of

the body:

Etot = Ep + Ekf + Ekv (2.5)

where Ep is the potential energy and Ekf and Ekv are the kinetic energies in the forward

and vertical directions respectively. Cavagna notes that during walking gait, the sum of

potential and kinetic energies oscillates with lower amplitude than either of the individual

components. Hence, there is presumably an efficient transfer of energy between potential

and kinetic forms during gait. However, this simple model gives no insight into the work

involved in moving the limb segments relative to the centre of mass.



12 Determinants of Increased Energy Cost in Prosthetic Gait

2.3.1.2 Segmental Energy Analysis

This method is based on measurements of the kinetic and potential energies of each of the

limb segments, using known mass distribution properties of the segments and kinematic

data gathered for a particular motion. It is an attempt to estimate the energy provided

by the muscles to move the limbs during a prescribed motion; that is, an estimate of

internal work required by the motion. (“Internal work” is used to describe the work done

to move the limbs relative to the body centre of mass, while “external work” refers to work

performed on the environment and work that moves the body centre of mass [69].)

Winter [70] gives a description of the use of instantaneous segment energies in gait

analysis and gives details of the calculation based on kinematic data captured on film. The

total energy of a limb segment (Ei), if treated as a rigid body, can be simply calculated as

the sum of its translational and rotational kinetic energy (KEi +REi) and its gravitational

potential (PEi) energy:

Ei = KEi + REi + PEi. (2.6)

Substituting the common expressions for kinetic energy of a rigid body in two dimensions

gives the instantaneous energy in terms of the measured kinematic velocities:

Ei =
1

2
miv

2
i +

1

2
Iiω

2
i + migh (2.7)

where mi is the mass of the segment, Ii is its moment of inertia about the centre of mass,

h is the height above some fixed datum, and v and ω are the linear and angular speeds

respectively.

The variation in the total energy of a segment over a small period of time represents

the amount of energy flow into or out of that segment. Thus, by summation of the changes

in energy over time (an approximate integral of the energy rate), an estimate of the work

done on a limb segment can be calculated. For a series of n samples in time, the summation

gives a net amount of energy flow into the segment as:

WNeti =
n∑

k=1

∆KEi,k + ∆REi,k + ∆PEi,k. (2.8)

This gives a simple expression for the net work done on a limb segment. However,

problems quickly arise when applied to a cyclic motion, such as human gait. In cyclic
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motion, the energy of each limb segment is the same at the beginning and end of each

cycle; the positive and negative energy flows are equal and cancel to give a net work of

zero. In terms of mechanical analysis, the result is correct; by the definition of mechanical

work, no net work has been done. In a biological system however, metabolic energy is

usually required to perform both positive and negative work.

Experimental studies of muscle dynamics have shown that the amount of metabolic

effort required for positive work (accelerating a body) is greater than that for negative

work (decelerating a body). A classic example has two subjects on stationary bicycles

that are driving the same flywheel [69]. The first subject must pedal to accelerate the

wheel (performing positive work) while the second subject pedals to decelerate the wheel

(performing negative work). As would be expected, the first subject will require more

energy and tire much more quickly than the second subject, since the negative work involves

partially passive absorption of energy by the muscles, rather than the constant active

generation of energy by the muscles of the first subject.

Although this has demonstrated that negative work requires less metabolic energy, it is

common in many studies for the positive and negative energy flows to be weighted equally

by taking the absolute value of the energy changes in each limb segment. This gives an

expression used by Norman et al. [47] for the work performed on each segment:

WToti =
n∑

k=1

|∆KEi,k|+ |∆REi,k|+ |∆PEi,k|. (2.9)

This effectively accounts for all mechanical energy gained and lost in the segment.

Again, however, a flaw can be seen by a simple example. If the lower leg of a seated

person is considered as a simple pendulum, swinging freely from the knee, there is no

metabolic work required by the muscles, except to overcome the minimal friction in the

knee. However, there is a continual transfer of energy between forms, from potential when

the leg stops at the top of the swing to kinetic when it moves through the bottom of the

arc. Norman’s expression will account for all of these energy transfers as work performed

on the limb segment, when in fact no work is done. This will lead to over-estimations of

the actual work done by the muscles when passive energy transfer takes place within a

segment.

To allow the transfer of energy between translational, rotational, and kinetic forms,
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all forms of mechanical energy in the segment may be summed before taking the absolute

value:

WToti =
n∑

k=1

|∆(KEi,k + REi,k + PEi,k)| . (2.10)

This allows for passive transfer between energy forms within a segment, since conversion

between kinetic and potential energy will negate each other.

However, passive energy transfer may also take place between limb segments. In a freely

swinging double pendulum model of the leg, for example, energy is continually transferred

between the upper and lower limb segments. Again, the energy transfer will be accounted

for twice, once as it leaves one segment, and again as it enters the other, when in fact no

mechanical or metabolic energy is involved. Winter [68] therefore suggested measuring the

changes in the mechanical energy of the entire body of n segments over m samples using:

WBody =
m∑

i=1

∣∣∣∣∣∆
n∑

k=1

(KEi,k + REi,k + PEi,k)

∣∣∣∣∣ (2.11)

which effectively allows for passive transfer of any mechanical energy between any limb

segments in the body. However, it will underestimate the work performed by the muscles in

the case where some segments are actively accelerated and others are actively decelerated.

Shorten [56] discusses these various models and notes that an energy flow model of the

human body, defining all possible means of energy transfer between limb segments, would

be required to use segment energies to accurately estimate the actual mechanical work

performed.

The results of segmental analysis methods also give no indication of the source of

the energy in each segment. By examination of the energy curves of two limb segments,

one increasing in energy and the other decreasing, one may speculate that there is a

passive transfer of energy between the two. However, it is equally possible that active

muscle contraction is providing the energy increase to one segment, and an independent

contraction is absorbing the energy of the other.

Despite its application in relatively recent research such as Bianchi’s examination of

kinematic coordination in gait [9], the segmental energy method of estimating internal work

has serious flaws. Williams [67] summarized the results of numerous studies using segmental

energy analysis for measuring the power output requirements of running, and found results
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ranging between 172 and 1650 Watts. Williams also found the power calculations highly

sensitive to filtering of the kinematic data; varying the cutoff frequency of the digital filter

between 4 and 10 Hz caused a variation in power estimation of over 50%.

The segmental analysis requires many assumptions to be made about energy transfer

within and between segments. To accurately estimate the work performed by the muscles,

and obtain any insight into the flow of energy through the biomechanical system, another

method of analysis is required. A method based on a rigorous accounting of the forces

and torques acting at each joint reveals the actual flow of mechanical energy between limb

segments; this method is termed Joint Powers.

2.3.1.3 Joint Powers

The method of joint powers uses a technique from mechanical systems analysis called

inverse dynamics to estimate more accurately the sources of power and the flow of energy

through the joints in the biomechanical model. This method requires a more complex

computation than the segmental energy method, but provides insight into the joints where

energy is being supplied or absorbed, and accounts for passive energy transfer between

limb segments.

To determine the forces and moments at the joints for a specified kinematic motion,

the limb segments are modeled as a set of rigid bodies connected by ideal joints.

The equations of motion for the rigid bodies in 2-D are the familiar

~F = m · ~a (2.12)

and
~M = I · ~α (2.13)

where ~F and ~M are the forces and moments applied to the body, m and I are the mass

and moment of inertia, and ~a and ~α are the linear and angular accelerations of the body.

The equations of motion for all of the bodies in the system are combined with the

constraint equations of the joints that relate the relative position of the joint centres of

connected segments. Given the linear and angular accelerations of each segment, and the

externally applied (ground reaction) forces, this set of equations can be solved for the

unknown forces and torques in each joint at each instant in time.
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Once the forces and torques have been calculated, the instantaneous power into segment

i is given by [54]:

Pi = ~Fd · ~vd + ~Fp · ~vp + ~Md · ~̇θd + ~Mp · ~̇θp (2.14)

where subscripts p and d represent proximal (closer to the torso) and distal (farther from

the torso) joints respectively. The total work performed by the body can be found by

summing across all of the segments, and integrating over the period of the motion. For all

joint force terms between two segments ( ~F · ~v), the force applied to one segment will be

equal and opposite to the force applied to the other segment; the velocities at the pin joint

must be equal as required by the joint constraint equations. These terms therefore cancel

out when calculating the power of the entire body [9]. For gait analysis, the remaining

force terms are between the foot and the ground, where the velocity is zero, removing that

term from the power expression.

After cancellation, the expression for total mechanical power of the n-segment body

reduces to:

P (t) =
n∑

i=1

~Mi · ~̇θi (2.15)

where ~̇θi is the net joint velocity ( ~̇θd − ~̇θp) and ~Mi is the net joint torque.

As in the segmental energy analysis, over a cyclic motion with minimal external work

such as walking, the positive and negative powers are approximately equal and cancel out

when integrated over time. In a similar approach to the segmental energy cancellation

problem, an assumption is made that the positive and negative mechanical powers require

equal muscle power, resulting in an expression for estimated muscle work [14]:

W =

∫ ∣∣∣∣∣
n∑

i=1

~Mi · ~̇θi

∣∣∣∣∣ dt (2.16)

This method was used in early research into walking gait by Elftman [28], where the

kinematic data was gathered by cinematic film of a subject walking behind a rectangular

grid, and ground reaction forces were measured from a force plate. Accelerations were

determined by double graphical differentiation of the plots of the limb positions, and the

forces and torques in the joints were determined by solving the equations of motion for

each segment, beginning at the foot where the ground reaction forces were known. Elftman
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generated plots of the energy flow into each segment to describe the energy flow between

limb segments and the torso through the gait cycle.

From his analysis, Elftman notes a key feature of energy analysis in biomechanical

models: “Muscles not only provide forces that guide the limbs into trajectories impossible

for compound pendulums, but they also regulate the energy distribution of the body.”

It is the metabolic cost of this energy distribution that is most challenging to quantify;

the energy flow is observable as a change in segmental energy, but may take place with

isometric muscle contraction. Hence, no mechanical work is performed as calculated with

the joint powers method (θ̇i = 0), and a metabolic cost of the muscle contraction remains

unaccounted.

Though not perfect, this method has some significant advantages over the segmental

energy approach. First, it includes both internal and external work [69]; as external loads

increase, so do the reaction forces applied to the model. This results in increased joint

moments calculated from the rigid body equations, and increased power output to perform

the additional external work. The joint powers method also gives insight into the sources

of energy and the mechanisms of energy transfer within the system that are unobservable

with the joint segments technique.

However, the joint powers method cannot account for the metabolic energy required

to maintain a constant torque at a joint that performs no work. For this, a model that

estimates the metabolic cost of force generation, rather than mechanical work, is required.

2.3.2 Relation to metabolic cost

To be of value in predicting physiological effort, the results of a mechanical energy analysis

should have some correlation to the metabolic energy requirements of performing the same

motion. Numerous studies have investigated this correlation by measuring the metabolic

energy consumption of a cyclic motion while capturing the kinematic and kinetic data

required to calculate the mechanical energy cost. The two resulting cost measures are then

compared, usually over a range of speeds of motion.
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2.3.2.1 Correlation of metabolic and mechanical energy costs

A correlation between metabolic and mechanical energy cost was established by Burdett et

al. [13] by measuring the metabolic energy consumption of quiet standing and walking at

5 different speeds. Metabolic energy cost was determined using the oxygen consumption

rate (V̇ O2), and was normalized by body mass. The mechanical energy for each walk was

calculated using 3 methods: total energy of the center of the mass, determined by inte-

gration of ground reaction forces; segmental energy, using the sum of kinetic and potential

energy changes for each segment; and joint moments, integrating over time the product of

angular acceleration and moment at each joint over the walking gait cycle. The correlation

is measured using r, the correlation coefficient. (A value of r = 1 indicates a perfect linear

correlation, and a value of r = 0 indicates no linear correlation.)

Burdett’s results show that the metabolic energy consumption rate was closely cor-

related with velocity squared (r = 0.93), in agreement with other researchers [74]. The

mechanical energy rates from all methods of calculation also increased with velocity, and

reasonably correlated with both velocity and velocity squared (r = 0.81− 0.91). Compar-

ing the metabolic rate to mechanical energy rate at each velocity, the strongest correlation

was found using the centre of mass energy calculation (r = 0.89) followed by the joint

moment calculation (r = 0.85) followed by the segmental work method (r = 0.79). While

the center of mass calculation neglects the movement of the limbs in the calculation, it

requires only force plate data to be measured, and is less subject to errors in measurement

and calculation. This was proposed as a possible reason for improved correlation with

metabolic energy rate over the segment energy and joint moment calculation methods.

2.3.2.2 Failure of Segment Kinematics and Joint Moments Methods

Martin et al. [44] investigated the relationships between aerobic energy demand and esti-

mates of mechanical power and energy transfer. The purpose of this study was to deter-

mine if individual differences in metabolic energy (V̇ O2) are correlated with differences in

mechanical power output and efficiency gained through inter-segmental energy transfers.

Again, mechanical energy requirements were calculated using three methods: the center of

mass method; the segment kinematics; and joint torques. Calculations were also made with

varying allowable energy transfers, from no energy transfer (defined by Equation (2.8)) to
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allowing energy transfer between kinetic and potential energy (Equation (2.10)) or allowing

energy transfer between limb segments (Equation (2.11)). The energy transfer could then

be determined by taking the difference between the energy required when no transfers were

assumed, and when full energy transfer was assumed.

The results gave relatively poor correlations between metabolic and mechanical energy

requirements, with very low correlations (r = 0.14 − 0.17 for walking) with the segmen-

tal energy method and even negative correlations when measuring joint powers. Their

conclusions suggest that mechanical energy estimates are insufficient to draw conclusions

regarding corresponding individual metabolic energy requirements.

2.3.2.3 Use of Mechanical Models to Estimate Variation in Energy Cost

In more recent work, Donelan et al. [26] used a mechanical model to predict the metabolic

cost of walking with varying step width. A three-dimensional model of passive-dynamic

walking [40] was used, from which a mechanical cost of transport is measured based on

the energy lost in the transition from one stance leg to the next. This model has been

used to accurately predict the preferred speed-step relationships observed in human gait

[41]. Based on the increased effort required to redirect the body centre of mass when

walking with a wide stance, Donelan predicted an increase in metabolic cost correlated

with the square of the step width. Experimental data including kinematic, kinetic, and

metabolic rates based on V̇ O2 consumption was gathered. The mechanical cost of step-

to-step transitions was determined using the negative external mechanical work performed

by the leading leg during double support. In addition, the external work was determined

as calculated using Cavagna’s combined-limb method from force-plate data [15].

As predicted by the model, the mechanical cost of transport based on negative work

done during step-to-step transitions increased with the square of step width, as did the

metabolic cost, suggesting that the step transition energy is a good estimate of metabolic

cost of transport. In contrast, the external work as calculated by Cavagna provided a very

poor correlation, remaining approximately constant throughout the range of step widths.

The flaw in Cavagna’s approach is that it measures the net force of both limbs on the

force plate during double support; at the time of heel-strike, there is both negative work

performed by the leading foot and positive work by the trailing foot, which maintains the
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net energy of the body [27]. In Cavagna’s calculations, the two powers are summed and

cancel out, underestimating the actual work performed. The success of Donelan’s model

in predicting metabolic cost increases as a function of a specific gait parameter indicates

the practicality of the mechanical analysis, as well as the importance of the selection of an

appropriate measure of mechanical energy cost.

2.3.2.4 Summary

The studies cited in this section appear to give conflicting conclusions regarding the value

of mechanical model analysis in estimating metabolic energy cost. Examining the results,

however, gives some useful insight into the type of comparisons where a mechanical model

is appropriate.

Martin’s work compared the metabolic energy consumption of different subjects to the

computed mechanical power output of the individual. The poor correlations in the results

suggest that the mechanical models do not accurately capture all of the components of

metabolic energy cost; some subjects may walk much more efficiently than others without

a mechanically observable explanation. This may be due to a more efficient energy con-

version or storage within the muscles. For example, muscles have an elastic component

which can store mechanical energy for short periods of time when stretched. By selecting

an appropriate gait pattern, the body may use this elastic property of the muscle to store

energy as the soleus is stretched during the late stance phase and release it at toe-off pro-

viding efficient propulsion. This efficiency would not be observable in a purely mechanical

model.

The work by Burdett and Donelan, however, demonstrated that the change in metabolic

energy cost for an individual is closely correlated with the changes in energy for a mechan-

ical model where some parameter of gait, such as step length or speed, is varied. This

suggests that the use of mechanical model analysis should be constrained to understanding

the effect of varying parameters for one individual, and should not be used to compare the

efficiency of gait patterns across multiple subjects.
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2.4 Energy Optimization

2.4.1 Optimization in Nature

Numerous studies have demonstrated the energy-optimal properties of animal and human

gait. Like other animals, humans have a “preferred walking speed” at which they walk if

not otherwise constrained [1]. Based on oxygen consumption measurements, it has been

repeatedly observed that the metabolic cost of locomotion (in energy consumption per unit

distance traveled) is at a minimum at the preferred walking speeds, and increases at both

faster and slower walking speeds [18], [72].

Hoffman et al. [38], in studies comparing energy requirements of amputee gait, also

found that the speed chosen by both unilateral and bilateral amputees tended to minimize

the metabolic cost per distance travelled. For unilateral amputees, this corresponds to a

walking speed slow enough to maintain a metabolic rate equal to that of an able-bodied

subject. For bilateral amputees, the speed is reduced further, but the metabolic rate is still

higher than that for able-bodied gait, suggesting that reducing the metabolic rate further

would require moving so slowly that the cost per distance travelled would increase.

Zarrugh et al. [75] investigated the effect on energy consumption of varying step speed

and step length independently. For freely selected step speed and length, the results of

several studies including a total of 86 subjects were compiled to arrive at an average

equation for the energy expenditure per minute per kilogram:

Ew = 32 + 0.0050v2 (2.17)

where Ew is the energy rate in (cal/min)/kg, and v is the walking speed in metres per

minute. Dividing by v and setting the derivative to zero, Zarrugh finds a minimum energy

cost per metre of Em = 0.8cal/m/kg at a speed of 80m/min.

Experiments with constrained walking, where the subject is required to walk at a spec-

ified speed, found that as either step speed or length is increased independently, metabolic

energy cost increases quadratically. The minimal energy requirement across the range of

normal walking speeds corresponds to step speed and length increasing proportionally, as

is found in freely selected gait.

Donelan et al. [26] found a similar optimal pattern in the freely selected step width in



22 Determinants of Increased Energy Cost in Prosthetic Gait

human walking. In experiments where the subjects were forced to walk with either a wider

or narrower step width, the metabolic cost of transport increased with the square of the

variation from the freely selected width. This suggests that metabolic energy cost may be

a strong determinant in the kinematic patterns selected in normal walking.

While investigating the kinematics patterns in gait, Borghese et al. [11] sought a kine-

matic parameter that was consistent across various speeds of gait and individual subjects.

Step rate and length vary proportionally with speed, as discussed above, and joint angle

trajectories vary depending on the individual and walking speed. One measure of gait

that was relatively consistent was the relative elevation angles of the limb segments. (The

elevation angle of a segment is a measure of the rotation of the limb segment in the sagittal

plane.) When the elevation angle measurements for a complete cycle of gait are plotted

in the three dimensional position space of the foot, shank, and thigh, the gait trajectories

form loops on a plane, as shown in Figure 2.1. The figure was generated using the meth-

ods described by Borghese [11] and the experimental measures of Winter [69]; the points

correspond to samples at instants during the walking gait, and the line is the plane of best

fit for all the points.

The plane containing the elevation angle trajectory loop was termed the “plane of

covariation.” Borghese proposed that this “law of intersegmental co-ordination” was a

means of maintaining dynamic equilibrium that was a fundamental feature of walking gait

at any speed.

Bianchi et al. [9] followed up on this work, and noted that the orientation of the plane

varied slightly with speed. As walking speed increased, the trajectory of limb elevation

angles rotated about an axis lying in the plane. This rotation reflects a change in relative

elevation angles of the limb segments during the gait cycle. Bianchi speculated that this

change was correlated to an energy minimization as speed increased. Using the segmental

energy analysis method, the mechanical power required for walking at varying speeds

was measured and plotted against the rotation of the plane of covariation. The results

demonstrated again that the changes in gait kinematics are driven by a goal of minimizing

metabolic energy cost.
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Figure 2.1: Plane of covariation

2.4.2 Optimization in Models

Based on the observations of energy cost minimization in biological systems, it is reasonable

to incorporate similar optimization goals into biomechanical models. Minetti and Saibene

[45] for example, used a simple mathematical model of a planar bipedal walker to estimate

energy cost of locomotion at varying stride frequencies. Optimization of the energy cost

was successfully used to predict the preferred stride frequency as a function of walking

speed, verified against experimental data from human subjects walking on a treadmill.

Minetti’s model was simple enough to derive an analytical solution for the optimal stride

frequency. In general, however, numerical techniques are required to minimize the energy

cost function in more complex models.

Optimization is also applicable to the problem of determining force distribution among

muscles. Because multiple muscles may be able to contribute to a required moment about

a joint, there is no single solution to which muscle, or set of muscles, should be activated;

this is sometimes referred to as a redundant actuation problem. To find the muscle acti-
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vations that achieve the desired joint moments with a minimal metabolic energy cost, an

optimization approach is required to solve the force distribution problem in the model.

2.4.3 Static and Dynamic Optimization Solutions

Two different approaches have be used to find an optimal set of muscle force patterns that

will generate an efficient walking gait, as reviewed by Yamaguchi [73].

The first method is a static optimization of muscle forces this is used in conjunction

with an inverse dynamics mechanical model analysis. The inverse dynamics analysis begins

with the specified measured (or desired) kinematic motion of the body, and computes the

joint torques required to generate that motion. From this solution, the optimal muscle

forces that can generate the required joint torques are computed at each instant in time.

The optimization is termed static because the dynamics of the muscle and skeletal model

are not considered in the optimization; the optimal solution at each instant is independent

of time, and no muscle state information is required.

Silva and Ambrosio [58] review the theory and details of the static optimization method

for solving the redundant actuation problem, and discuss the effect of varying the objective

function used in the optimization process [57]. The method has become popular among

researchers interested in more general body motion than just walking gait, and has been

developed into the relatively generic human motion analysis package AnyBody described

by Damsgaard, Christensen and Rasmussen [22].

The alternative method for finding an optimal solution is termed a direct-dynamic

simulation. Rather than working backward from known kinematics to the required muscle

forces, a forward-dynamics musculoskeletal simulation is driven by a selected muscle force

pattern. The resulting kinematic patterns are then compared to the desired kinematics

to determine the suitability of the current muscle force patterns. This method is much

more computationally expensive than the static optimization approach: the solution of

the forward-dynamics system equations is more complex than for the inverse-dynamics

problem; and the optimization algorithm must operate on a continuous function of the

muscle activation patterns over the entire simulation time instead of solving each instant

in isolation.

Some early simulations using direct-dynamic simulations were developed in the 1980s
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by Pandy and Berme [48] and Davy and Audu [23]. Yamaguchi notes in his review [73]

that, because of computational constraints, these simulations were very limited to very

few degrees of freedom. More recently, a more complex direct-dynamic simulation was

developed by Anderson and Pandy [2] based on a three-dimensional model with 23 degrees

of freedom and 24 muscles. Simulation of one complete cycle of gait required over 10,000

hours of CPU processing time using 8 parallel processors on IBM SP-2 and Cray T3E

supercomputers.

To evaluate the benefit of the additional computational resources required for direct-

dynamic simulations, Anderson and Pandy compared the results of a static optimization

analysis of gait with a forward dynamics simulation of the same problem [4]. They conclude

that:

The striking similarity between the dynamic and static optimization solutions

provides strong evidence that static optimization is entirely adequate for pre-

dicting joint contact forces during gait, provided that the net joint torques

exerted by the muscles are known with confidence. Similarity between the two

solutions implies that (1) activation dynamics may be neglected in the static

optimization problem for gait and (2) there is a functional equivalence between

minimizing metabolic energy over the entire gait cycle (a time-dependent per-

formance criterion) and minimizing the sum of muscle forces squared at any

instant (a time-independent performance criterion).

Based on Anderson and Pandy’s results, a model based on inverse dynamics and static

optimization was proposed for the development of this thesis.

2.4.4 Fatigue as an Objective Function

For any optimization problem, an objective function is required to compute a measure of

the quality of a particular solution. In the case of gait analysis, the desired objective to

minimize is the metabolic energy cost. As discussed in Section 2.3, however, deriving an

estimate of actual metabolic cost from the results of a mechanical model is not a simple

problem. Even when the forces and moments at each joint are determined from the model,
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there may be metabolic energy costs due to isometric muscle contraction that do not appear

in the mechanical energy cost analysis.

A solution based on fatigue rate was proposed by Crowninshield [19] as an objective

function for solving the force distribution problem. The term fatigue was used as a mea-

sure of the rate at which a muscle tired while maintaining a specified force. Since the joint

torques and moment arms of each muscle are known from the model, the instantaneous fa-

tigue can be computed for a given muscle force distribution. The physiological justification

and derivation of the method is discussed in detail in Chapter 5.

This fatigue measure proved effective for solving the redundant force problem, and

when integrated over the period of the gait cycle also provides a useful objective function

measure for the optimization of the walking simulation kinematics.

2.5 Walking Model Control Systems

Bipedal walking generally requires an active control system to maintain a continuous and

stable walking gait. Of notable exception are the passive-dynamic walking models created

by Tad McGeer and Art Kuo [40]. The models, after a great deal of careful tuning, were

capable of maintaining a regular gait while walking down a smooth incline.

In the general case, however, a system is required to control the vertical orientation of

the torso and the forward velocity of the model. Jerry Pratt has made some significant

observations and developments in the area of control systems for bipedal robots in both

his Masters [49] and PhD [50] research.

Using both computer simulations and physical robots, Pratt has developed successful

strategies for maintaining stable and efficient gait. He observes that, when viewed as

generic mechanical dynamic systems, bipedal walking mechanisms present an extremely

difficult control problem. The system includes non-linear dynamics that change discretely

at step transitions; the system is a multi-input multi-output (MIMO) model; and the biped

is statically unstable. For these reasons, traditional controller design techniques are not

well suited for the problem [50].

In contrast, if treated as a specific rather than general mechanism, certain features

of the system dynamics can be used to advantage, and the problem can be solved by
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decomposing it into subproblems that can be tackled at an intuitive level. His algorithms

are based on a number of fundamental principles: control laws should be simple (linear and

low-order); the problem should be decoupled into subproblems, such as maintaining pitch

and maintaining velocity; and the controller should be intuitively based on the physics of

the system, with parameters that are physically meaningful [50].

Pratt [49] notes that because bipedal robots are nonlinear, nominally unstable, time

variant systems,

...it is difficult, if not impossible, to perform an acceptable mathematical anal-

ysis of why the control algorithms employed on these robots are successful in

making them run.

Though lacking a mathematical proof of the control theory, the general methods proposed

by Pratt were successfully applied to the control problems encountered in the development

of this thesis.

2.6 Summary

Many methods have been developed in an attempt to accurately estimate the metabolic

cost of walking using mechanical models of biological systems. While spanning a wide

range of complexity, none of the traditional methods reviewed effectively accounts for

all of the metabolic costs of motion, or for the tendency of biological systems to find a

minimal-energy solution for a required motion.

By combining the techniques of inverse dynamics analysis, muscle fatigue, and nu-

merical optimization, a more realistic model may be created that gives insight into the

differences in energy consumption between normal and prosthetic gait.



Chapter 3

Optimization Model Overview

Nature creates nothing without a purpose, but always the best possible in each

kind of living creature by reference to its essential constitution. Accordingly if

one way is better than another that is the way of Nature.

- Aristotle, On the Gait of Animals, 350 B.C.

translated by A. S. L. Farquharson

3.1 Motivation for Optimization

People can walk in many different ways, all of which accomplish the task of getting from

one place to another. The different forms of walking are simple to distinguish; ambling,

shuffling and marching all bring to mind very different motions, yet all produce forward

progression. What is it then, that determines the natural gait patterns people select when

walking freely?

This question was considered by Aristotle over 2300 years ago; his treatise On the Gait

of Animals [6] reflects his observation that Nature tends to select the best possible solution

available. The motion we observe is therefore Nature’s optimal solution for the locomotion

of a particular animal. This hypothesis has been tested many times by modern science,

and found to hold true for human walking when the “optimal solution” means the most

28
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energy-efficient motion [1], [18]. People naturally walk in whatever way gets them to their

destination using the least amount of energy.

Numerous studies have observed the minimization of energy cost in human gait. Like

other animals, humans have a “preferred walking speed” at which they walk if not otherwise

constrained, as shown by Alexander [1]. Using oxygen consumption measurements, it

has been repeatedly observed that the metabolic cost of locomotion (measured as energy

consumption per unit distance traveled) is at a minimum at the preferred walking speeds,

and increases at both faster and slower walking speeds [18], [72].

More recently, research by Donelan [26] has shown that subjects also have preferred

values of other parameters of gait, such as step-width. Similar to deviations from the

preferred walking speed, walking with a wider or narrower step than the naturally selected

width results in greater energy consumption.

It seems reasonable then that a simulation of walking that is used to analyze the

efficiency of gait should incorporate a similar cost optimization, in order to model the

natural selection of energy-efficient walking motion.

3.1.1 Optimization in Simulation

This section gives an overview of the optimization method applied to the walking simu-

lation, using the terms commonly used to define an optimization problem. Each of these

elements of optimization are discussed in more detail in the remainder of the chapter.

3.1.1.1 Optimization Variables

The optimization variables are the parameters of the model that can be changed during the

optimization process. For the walking simulation, the optimization variables are discrete

values that are used to compute the hip, knee, and ankle kinematic joint trajectories. The

optimization process is therefore modifying the kinematic patterns of the lower limb joints

for each execution of the walking simulation.
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3.1.1.2 Objective Function

To evaluate the quality of a particular set of values of the optimization variables, an

objective function is required. The objective function gives a numerical result, the objective

value, which represents the relative quality of the current set of optimization variable values.

In this walking simulation, the objective function computes an estimate of the metabolic

cost of walking a given distance, based on a calculation of muscle fatigue [19], discussed in

detail in Chapter 5.

3.1.1.3 Search Algorithm

The goal of the search algorithm is to modify the optimization variables in such a way

as to find the values that minimize or maximize the objective function. Depending on

the nature of the problem this may be accomplished in several different ways. Often an

iterative approach is used, where each step of the algorithm depends on the objective value

of the previous step, which has led to the term optimization loop. Numerous texts give an

introductory review of some common search algorithms that may be applied to this type

of problem [25]. In this case, a pattern search algorithm [42] varies the joint kinematics

and attempts to find the trajectories that minimize the total muscle fatigue over a given

distance.

3.1.1.4 Expected Results

As with any model, this model of energy optimization is only an approximate representation

of the behaviour observed in the real world, and is limited by our ability to represent the

actual processes. The objective function, for example, does not attempt to compute the

actual metabolic energy cost of the simulated motion, and does not include other factors

that may contribute to human gait patterns (such as minimization of internal joint forces

for example). Instead, the fatigue calculation gives a measure that is well correlated with

metabolic cost [19], and therefore serves to guide the search algorithm in an appropriate

direction.

Supposing that this model reasonably represents the tendency of humans to walk in a

way that minimizes energy cost, the result of the optimization process should be a set of
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joint kinematics that reasonably match those measured in experimental studies of walking

gait.

3.1.2 Effect of Optimization on Parameter Measurement Errors

In addition to finding kinematic patterns that are based on energy-minimization goals

similar to natural human gait, a potential benefit of an optimization loop around the

simulation is that the effects of errors in model parameters may be reduced. When building

a mechanical simulation of walking based on experimentally measured data, some errors

will always be present. For example, measurement of the moments of inertia and mass

centres of limb segments are not exact, because the limb segment cannot be removed from

the body and measured precisely.

By incorporating a cost minimization in the model, the result of the simulation is not

the cost of an approximate representation of a person forced to walk following the trajectory

of a slightly different person. Instead, the result reflects the optimal cost of walking for the

model, which need not be identical to the parameters of the original subject. As shown in

this section, when simulating oscillatory systems such as simple pendulums and walking

motion, the optimization of the motion can lead to a substantial difference in energy cost

for a very small change in the motion of the system.

To estimate the effect of inaccuracies in model measurements, consider a simple model

of a frictionless pendulum, driven by a motor torque τ at the pin joint and swinging

through a small angle, as shown in Figure 3.1. This example is particularly relevant to

the simulation of walking, since the leg can swing with a pendulum-like motion during the

swing phase of the gait cycle, and the joint torques are created by muscles.

For this example, the variable of interest is the frequency ω at which the pendulum is

driven by the motor; the goal is to find the value of ω that requires the minimum amount

of energy from the motor. A reasonable estimate for the optimal value of ω is the natural

frequency of the pendulum if it were swinging freely. The impact of a small error in the

estimate and the effectiveness of optimization in reducing this impact are investigated in

the remainder of this subsection.

If the torque of the motor is set to zero, the pendulum swings freely at its natural

frequency, requiring no energy input. For rotations of small magnitude A, using the linear
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Figure 3.1: Driven Pendulum Model

approximation θ ≈ sin(θ), the motion of the pendulum is given by:

θ(t) = A cos(ω0t) (3.1)

when the pendulum is released from rest at θ(0) = A. The natural frequency of the

pendulum, ω0, is computed from the mass m, the acceleration of gravity g, distance d from

the center of mass to the pivot point, and moment of inertia I:

ω0 =

√
mgd

I
(3.2)

For this example, using g = 9.81m/s2 and assuming the pendulum is a uniform thin

rod with mass m = 1.0kg and length l = 2m, the computed natural frequency is ω0 =

2.711rad/s.

If the motor drives the pendulum through a specified trajectory given by

θ = A cos(ωt) (3.3)

where A is a small angle as used in Equation (3.1) and ω is close to the natural frequency

ω0, the energy required by the motor should be close to zero, since the dynamics of the

pendulum produce almost the same kinematics with no applied torque. However, some
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energy will be required because the trajectory equation and natural frequency were derived

using a linear approximation of the non-linear system, and are therefore not exact.

To estimate the error introduced in the energy calculation of the model due to the

approximation used to calculate ω0, a simulation of the driven pendulum was generated in

Working Model 2D [53]. A kinematic driver was used to control the joint angle according

to Equation (3.3), with an amplitude of A = 5◦ for a duration of 6 seconds. Working Model

includes a simple optimization script that varies one parameter within a specified range to

minimize a single measure. The optimization was configured to vary the frequency ω (the

optimization variable) and to minimize the total energy consumed by the torque driver

at the joint (the objective function) over a fixed period of time. The objective function

was calculated by integrating the product of the torque and joint velocity over time, to

compute the total mechanical work performed by the torque driver:

W =

∫ 6

0

τ θ̇dt (3.4)

The optimization loop was started with an initial value of ω = 2.711rad/s, equal to

the computed natural frequency. It then found the optimal driving frequency for minimal

energy consumption ωopt, and the corresponding amount of energy required to drive the

motor.

The results of the simulations are summarized in Table 3.1. The first column shows the

simulation results of driving the motor at the computed natural frequency ω = ω0. In the

second column are the results of the simulation driven at the optimal frequency ω = ωopt.

The third column shows the error in the computed natural frequency and the additional

energy cost of driving the motor at the computed frequency.

Computed (ω0) Optimized (ωopt) Error in Computed

ω( rad
s

) 2.711 2.915 −0.204(−7%)

W (J) 0.961 0.019 0.942(4957%)

Table 3.1: Sensitivity of energy analysis to parameter error

From the third column, note that the computed natural frequency is 7% less than the

optimal frequency; however, the energy required to drive the simulation at this frequency
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is almost 50 times the amount required at the optimal frequency. The magnitude of this

error is a function of the amplitude of the pendulum motion; the larger the amplitude,

the greater the error in the linear approximation of the natural frequency. While in this

example the parameter error was due to a linear approximation of a non-linear system, an

error in measurement of the physical system parameters (mass or moment of inertia for

example) would have a similar effect since it would result in a different natural frequency

for the model than for the actual system.

Since walking motion involves similar cyclic and pendulum-like motion of the legs, it

is likely that unavoidable small errors in the model parameters and un-modelled dynamics

of the system may result in significant errors in the energy consumption estimates for the

simulated model. The use of an optimization algorithm in the simulation eliminates these

errors by finding the optimal kinematics for the modeled system, effectively correcting for

errors in measurement of the original system.

3.1.3 Comparison of Results with Model Variations

Another benefit of this optimization approach is that more useful comparisons can now be

made between simulations with different models. For example, when simulating a model

with a prosthetic leg, the change in efficiency of the most optimal gait can be observed as

the mass distribution of the prosthesis is changed. The desired or expected motion of the

models being compared is not required to run the simulation; instead the optimal motion

is generated by the simulation itself.

3.2 Optimization Loop Components

The components of the optimization loop and the flow of computed variables between

components are shown in Figure 3.2. In the variable names, the subscript Init represents

the initial guess for the search algorithm, it represents the variables at each iteration of

the loop, and Opt represents the final values found by the system. The components in the

block diagram are described in the remainder of this chapter.
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Figure 3.2: Fatigue-Minimization Optimization Loop

3.2.1 Joint Trajectory Variables

The optimization variables being controlled are the kinematic trajectories of the ankle,

knee, and hip joints as functions of time for one period of steady-state walking motion.

One period consists of a complete cycle from heel contact to the following heel contact

of the same foot. To represent the trajectories (which are continuous functions) in terms

of a set of discrete optimization variables, a Fourier series representation is used. This

representation is ideal for this problem since the trajectories are periodic with one period

per stride.

A five-term series was used for each joint function θj(t), as defined in Equation (3.5):

θj(t) = C0 +
5∑

k=1

[
Ak sin

(
2πkt

period

)
+ Bk cos

(
2πkt

period

)]
(3.5)

where C0 is the DC (constant offset) coefficient, Ak and Bk are the coefficients of the sin

and cos terms at the kth multiple of the fundamental frequency (f = 1/periodHz), and

period is the length of one complete gait cycle in seconds.
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To find initial values for the coefficients, a curve-fitting method was used to match the

Fourier series function to empirical data measured from human subjects [69]. The curve-

fitting method fits functions to data points by solving an optimization problem where the

optimization variables are the function parameters and the objective function is the sum

of the mean squared error between each data point and the corresponding value of the

curve function. In this case, the method was used to solve for the values of the coefficients

of the Fourier series function that most closely fit the experimentally measured data. For

details of the implementation and the computed coefficient values, refer to Appendix A.

The measured data and the Fourier series curves for the joints of one limb are shown in

Figure 3.3.
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To generate the kinematic trajectories for the opposite leg, the functions are simply

shifted in phase by 180 degrees:

θj(t) = C0 +
5∑

k=1

[
Ak sin

(
2πkt

period
+ kπ

)
+ Bk cos

(
2πkt

period
+ kπ

)]
(3.6)

Given this representation, the optimization algorithm can completely specify the joint

kinematic trajectories, containing components up to a frequency of 5 times the gait cycle

frequency, by varying the Fourier series coefficients.

3.2.2 Search Algorithm

The purpose of the optimization search algorithm is to vary the optimization variables to

find the set of values that minimizes the objective function. The optimization algorithm

uses the change in objective value to determine the relative quality of the current kinematic

trajectories of the joints, and to guide the search for an improved trajectory.

There are a wide variety of search algorithms available to solve non-linear optimiza-

tion problems [25]. Many are gradient based methods that require an expression for the

derivative of the objective function in terms of the optimization variables. For the walking

gait optimization, numerical simulations are required to compute the joint torques, muscle

forces, and muscle fatigue to evaluate the objective function, as described in Section 3.2.5.

There is therefore no analytical expression relating the value of the objective function to

the optimization variables, making gradient based methods less practical.

Instead, a pattern search algorithm is used, which is one form of the direct search

optimization techniques commonly applied to such numerical non-linear problems. The

pattern search method is relatively straightforward in concept and implementation, and

is described in detail by Lewis and Torczon [42]. Conceptually, a search is performed by

varying each of the optimization variables by steps of a given value, which is called the

grid size. The initial value of the grid size is relatively large, allowing large steps to be

taken around the search space.

By following a pattern that decreases the value of the objective function, the optimal

point is found in the search space for the current grid size. Starting at this new base point,

the grid size is then reduced by a factor of 2, and the pattern search is repeated, to find
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a more accurate minimum within a smaller search space. This algorithm is repeated until

the grid size is reduced to the desired resolution of accuracy of the optimization variables.

An initial grid size for the pattern search is specified that determines the variation

applied to each variable at each iteration. A value of 0.25 radians was selected to allow

for variations in the trajectories of approximately 15 degrees with each optimization step.

This was found to be the largest practical variation in the kinematics while maintaining a

reasonable gait pattern. As the search progresses and new optimal points are found, the

grid size is reduced to refine the search.

The algorithm is terminated after the grid size is reduced to a pre-defined value. A value

of 0.0025 radians was selected, based on observation of the convergence of objective function

as the variation in the trajectory variables was reduced to that value. At termination, the

optimal objective value, joint trajectories, and muscle forces are saved as the final result

of the optimization loop.

3.2.3 Mechanical Model

The joint trajectories selected by the search algorithm are used to drive a mechanical

model simulation, implemented using the MSC.ADAMS dynamics simulation package.

This mechanical model attempts to drive the joints through the specified trajectories, and

computes the torques required to drive the model through the specified trajectories at each

joint. The output of this model is the set of joint torques over time that correspond to the

kinematics of the current iteration. The design and implementation details of the model

are presented in detail in Chapter 4.

3.2.4 Muscle Force Distribution Model

The purpose of the muscle model is to determine the muscle forces required to generate

the torques computed by the mechanical model, by considering the contribution of each

muscle group in the lower limb. Nine major muscle groups involved in locomotion are

included in the muscle model. For each muscle group that crosses a particular joint, the

torque generated around that joint is the product of the contractile force in the muscle and

the moment arm between the muscle and the joint centre.
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The expression relating the three joint torques (ankle, knee, and hip) to the nine muscle

forces at an instant in time is therefore:

τ = MF (3.7)

where τ is a 3× 1 vector of torques, F is a 9 × 1 vector of muscle forces, and M is 3 × 9

matrix of moment arms, where each element (i, j) is the shortest distance between joint

i and muscle j. The moment arms are approximated as constant in this work, since the

rotations of the joints during normal walking are relatively small.

The determination of the muscle force patterns required to produce the calculated joint

torques is a non-trivial problem, since for any instant in time, Equation (3.7) has an infinite

number of solutions for F, given τ and M. Physically, most of these solutions correspond

to various levels of co-contraction, which is the activation of opposing muscles across one

joint. Solutions containing negative values in F are invalid, since muscles can only produce

contractile (positive) force.

To find a unique and valid solution, another optimization process is applied, which

determines the set of muscle forces that can produce the required joint torques while min-

imizing the total muscle fatigue, computed as a function of the stress in each muscle. This

component is based on the muscle force distribution method proposed by Crowninshield

[19], and is described in detail in Chapter 5.

3.2.5 Objective Function Calculation

The objective for the walking model is to minimize total muscle fatigue while covering the

greatest distance possible. The objective value Φ is computed by integrating the muscle

fatigue rates computed by the muscle model component, summing across all of the muscles,

and dividing by the distance traveled by the centre of mass of the model (dCM):

Fatigue =

nmuscles∑
m=1

∫
FatigueRatemdt (3.8)

Φ =
Fatigue

dCM

(3.9)

Chapter 5 includes details of the computation of the fatigue rate for each muscle.



Chapter 4

Mechanical Model

4.1 Model Design

To determine the joint torques required to generate the motions observed in human walking,

a mechanical model of the body is required. The underlying principles of mechanical model

analysis of human gait are well established, and have been used since the work of Fischer

in 1906 [29] and Elftman in the 1930s [28].

A two-dimensional (2D) multibody mechanical model of the body is typically con-

structed by representing each limb segment as a rigid body, and each joint as a constraint

upon the relative motion of the rigid bodies, as shown in Figure 4.1. Each leg is modelled

as 3 rigid bodies representing the foot, shank, and thigh, connected by revolute (pin) joints

representing the ankle, and knee. The upper body consisting of the head, arms, and trunk

(HAT) is modelled as a single rigid body, connected to the legs by two revolute joints

representing the hips.

Other than the gravitational force on each limb segment, the only externally applied

forces are the ground reaction forces (GRF) applied to the feet. For each foot, the reaction

force consists of a vertical component that supports the weight of the body, and a hori-

zontal component representing friction with the ground. Depending on how the model is

used, these forces may be known from measured force-place data (for an inverse-dynamics

analysis), or may be generated during the simulation (for a forward-dynamics simulation).

40
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Figure 4.1: Typical multi-body mechanical walking model

4.1.1 Model Complexity Considerations

Many improvements can be made to this simple model to better reflect the true mechanics

of the human body. The upper body could include shoulder and elbow joints allowing

for swinging arm motion. The torso could be modelled as a flexible body reflecting the

flexibility of the spine. The hip and ankle joints would be more accurately modelled as

spherical joints, allowing rotation about all three axes instead of one, and the joint centres

could be determined as a function of the joint angle to accurately reflect the rolling motion

of biological joints.

However, determining an appropriate degree of fidelity in the model involves a tradeoff

between computational complexity and the improvements in results given by a more ac-

curate model. A finely detailed model that includes all of the subtleties of human motion

may produce more accurate results; but if the model includes too much detail, the problem

becomes intractable due to the increased complexity in solving the equations of motion,

and the model is of no value at all.
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4.1.2 Selection of a 2D vs 3D Model

For the development of this model, a 2D analysis was selected over a 3D model. This

selection was based on a number of factors. Primarily, the vast majority of limb motion

during steady level walking is in the sagittal plane, and a common modelling approach is to

assume that motion in the transverse and frontal planes is negligible. This is particularly

relevant for comparison of results to other studies of both models and human subjects,

since often only sagittal plane results are available, such as those by Anderson and Pandy

[3] and Winter [69].

Extending the joint model to support 3D motion is relatively trivial. Additional revo-

lute joints can be added at the ankle and the hip to support rotation around three axes.

However, many other aspects of the simulation become more complex. Solving the muscle

force distribution problem (discussed in Chapter 5) becomes substantially more difficult

since each muscle may generate a torque about an arbitrary 3D axis at each joint. Stabi-

lization of the model also becomes more challenging since the sway (about the sagittal axis)

and yaw (about the vertical axis) of the torso must be controlled, in addition to the pitch

stabilization required for a 2D model. This stabilization problem is discussed in more detail

in Chapter 6. Since the interest of this study is the substantial energy transfer between

limb segments, which occurs primarily in the sagittal plane, the additional complexity of

a 3D model was not justified.

4.1.3 Foot Contact Model

Modelling the reaction force of the ground is one of the most challenging aspects of the

model developed in this thesis. In most analyses of walking where data is taken from a

human subject, the reaction forces are measured by having the subject walk across a force

plate on the ground, such as those by Burdett [13] and Gitter [34]. The measured reaction

forces are then used as external forces applied to the mechanical model.

In the simulations developed in this thesis, however, the reaction force data must be

generated by the model as each variation in gait is analysed. This requires a model of foot

contact at the floor that includes a vertical reaction force supporting the weight of the

model and a horizontal force representing friction between the foot and the ground.
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To allow for a realistic analysis of the full gait cycle, a foot-floor contact model was cre-

ated within the ADAMS simulation package. Refer to Appendix A for more details regard-

ing the simulation implementation details. Contact forces are defined as a force between

two ADAMS geometry elements, which may be certain combinations of one-dimensional

(points), two dimensional (planes and surfaces) or three-dimensional geometries. Simu-

lations were created with two different contact models: one based on three-dimensional

models, where the floor was a rectangular box and the foot was represented as an ellipsoid;

and a second simpler model where the floor was a flat plane and the contact with each foot

was defined for two points, one at the foot and one at the heel.

The three-dimensional contact model was expected to give better results, since the

ellipsoidal foot shape would allow the foot to roll more naturally over the floor from heel

contact to toe-off. However, computing the contact conditions of overlap between the two

three-dimensional objects is very computationally expensive, and resulted in extremely

slow simulations, requiring 10 minutes for a simulation of two steps on a 1.8GHz Pentium

4 PC.

The point-to-plane contact model is a computationally simpler model, requiring only a

calculation of the distance between each point and the plane of the floor to determine the

contact conditions. The resulting simulation ran approximately 20 times faster, requiring

only 30 seconds for a simulation of two steps. The reaction forces from the simpler model

were also found to match the reaction forces measured from experimental force place data

reasonably accurately. The contact model for one heel contact point is shown in Figure

4.2, and defined in Equation (4.1).

Figure 4.2: Point-to-plane contact model

When a contact condition is detected, the model computes the normal (vertical) contact
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force on the foot FNormal using a non-linear spring and damper expression:

FNormal = k(ye) + Step(y, 0, 0, dmax, cmax)ẏ (4.1)

where y is the penetration between the contact point and floor contact surface, and ẏ is

the penetration rate. In the first term, the contact parameters k and e determine the

spring coefficient and spring exponent. In the second term, a damping force is added that

is proportional to the penetration rate ẏ. The damping coefficient is a function that varies

linearly between 0 and cmax (maximum damping coefficient) as y varies between 0 and

dmax (overlap required for maximum damping). The damping coefficient is 0 for y < 0,

and cmax for y > dmax. This step function smoothly ramps up the damping force as contact

penetration increases. This avoids the instantaneous normal force that would otherwise be

created at initial contact by a simple damping term such as (cmaxẏ).

The horizontal force (FFriction) at the contact point is modelled using a coulomb friction

force given by the expression:

FFriction = µNsgn(ẋ) (4.2)

where ẋ is the relative horizontal velocity of the contact point to the floor, and µ is the

coefficient of friction; the sgn(ẋ) term ensures that FFriction acts in a direction opposing the

relative motion. A more complex friction model including transitions between static and

dynamic friction coefficients was considered. In this application, however, it was found by

experimentation to be sufficient to use a constant coefficient, since slipping and dynamic

friction effects were negligible.

Nominal values of the contact force parameters were taken from ADAMS documentation

for contact between nylon and steel to approximate the contact surface between the sole

of a shoe and a hard floor. To further approximate the behaviour of realistic contact

forces during normal human walking, the contact model parameters were tuned to generate

ground reaction forces similar to those measured by Winter [69] using a force plate (refer

to Figure 4.3). Table 4.1 summarizes the contact model parameters used in the model.

The ground reaction forces were computed for 15 consecutive steps of the walking

model, and the average and standard deviation are plotted in Figure 4.3.
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Figure 4.3: Computed Ground Reaction Contact Forces
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Parameter Symbol Value

Spring Coefficient k 2.06N/m

Spring Exponent e 2.2

Max Damping Coefficient cmax 1500N/(m/s)

Max Damping Penetration dmax 1mm

Friction Coefficient µ 0.4

Table 4.1: Contact Model Parameters

4.1.4 Degrees of Freedom and Torso Constraints

For a 2D model containing only revolute joints, the number of degrees of freedom (DOF)

is given by the expression DOF = 3nb − 2nj, where nb is the number of rigid bodies

in the system, and nj is the number of revolute joints. Each body has three DOF (two

translational and one rotational), and each revolute joint removes two DOF.

For the model consisting of a HAT, three limb segments per leg, and three joints per leg

(see Figure 4.1), DOF = 3× 7− 2× 6 = 9. By specifying the trajectories of all six joints

with kinematic drivers, six DOF are removed, leaving DOF = 3. These can be considered

the vertical and horizontal position of the torso and its orientation, with the positions and

orientations of the rest of the limb segments specified relative to the torso.

4.1.5 Prosthetic Modelling

To model the effect of a below-knee prosthetic limb, two different variations were made to

the model. In the first, the kinematic driver controlling the ankle joint was replaced with a

torsional spring-damper, representing a flexible ankle joint with energy storage capability.

In the second variation, the ankle was replaced with a fixed joint allowing no rotation

and no energy storage, representing a simple solid-ankle-cushioned-heel (SACH) prosthetic

foot.
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4.1.5.1 Spring-Damper Ankle Joint Model

The spring stiffness parameter was initially determined by dividing the maximum joint

torque measured in the normal model by the maximum joint deflection angle. This re-

sulted in the spring generating a torque and range of motion similar to the normal angle

driver. The passive ankle parameters were then included as optimization variables in the

optimization algorithm to allow the model to find the optimal values to minimize energy

consumption.

4.1.5.2 SACH Ankle Joint Model

The fixed joint at the ankle was implemented with a motion driver with a fixed rotation.

The use of a motion driver allowed the ankle torque to be measured while removing one

degree of freedom from each leg.

4.2 Equations of Motion for a Multibody System

4.2.1 Kinematic and Dynamic Equations

Based on a multibody mechanical model of the human system, a set of equations can

be derived that describe the motion of the system over time. The first set of equations

are dynamic equations based on Newton’s Second Law, ~F = m~a in vector form, and the

corresponding equation for rotational motion ~τ = I~α. In terms of the acceleration of

the position vector (~̈r = ~a) and orientation angle (~̈θ = ~α), these give second-order vector

differential equations of motion for each body.

Writing these vector equations in matrix form allows simpler manipulation of the equa-

tions for multiple bodies. Using bold symbols to represent column matrices where each

element contains a component of the corresponding vector gives:

mr̈ = F (4.3)

Iθ̈ = τ (4.4)
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A second set of equations represents the kinematic constraints imposed by the joints

in the model. The formulation of equations for a variety of kinematic constraints is given

in [36]. For this model, equations for only revolute joints are required; these algebraic

equations equate the position vectors of the connection points between pairs of connected

bodies. Where ri gives the position of the center of mass of body i and sP
i is a vector

from the center of mass to the joint position P on body i, the joint constraint between two

bodies i and j is defined by requiring the position of the joint on both bodies to be equal:

(ri + sP
i ) = (rj + sP

j ) (4.5)

A solution to the set of these equations for all the joints in the system gives the positions

and orientations of each of the bodies in a feasible configuration.

4.2.2 Formulation of Kinematic Equations

More formally, the equations of motion for a constrained multibody system can be sys-

tematically assembled for solution by a computer algorithm as described in [36]. In such

a formulation, the position and orientation of all bodies in the system are defined by a

column matrix of generalized coordinates q.

The kinematic constraint equations can then be written in terms of q, and the set of

all constraint equations are denoted by the column matrix of equations:

Φ(q, t) = 0 (4.6)

Additionally, the velocity and acceleration of common joint points on bodies i and j

must be equal. Differentiating the position constraint expression Φ(q, t) = 0 with respect

to time (using the chain rule) gives the velocity constraint equation:

Φqq̇ + Φt = 0 (4.7)

where Φq is the Jacobian matrix, obtained by taking the partial derivative of each of the

equations in Φ with respect to each of the generalized coordinates in q, and Φt is the partial

derivative of Φ with respect to time. Repeating the differentiation gives the acceleration

constraint equations:

Φqq̈ + (Φqq̇)qq̇ + 2Φqtq̇ + Φtt = 0 (4.8)
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The position, velocity, and acceleration constraint equations must all be satisfied at

each instant in time during the model simulation.

4.2.3 Formulation of Dynamic Equations

In terms of the generalized coordinates and generalized forces, the dynamic equations of

motion for an unconstrained system are given by:

Mq̈ = Q (4.9)

where M is a mass matrix containing the mass and moments of inertia of each of the rigid

bodies, and Q includes the applied forces and torques acting on the system. The sets of

dynamic and kinematic constraint equations, along with initial conditions q0 and q̇0 at

time t = 0, describe the behaviour of the system for any time t > 0.

4.2.4 Method of Lagrange Multipliers

The method of Lagrange multipliers is used to incorporate the constraint equations into the

dynamic equations of motion, and is described in detail in texts on classical dynamics, such

as [33]. The Lagrange Multiplier Theorem [36] guarantees that if the constraint equations

Φqδq = 0 hold for all δq (variations in q) that satisfy the dynamic equations, then there

must exist a vector λ such that, for any δq,

(Mq̈ + ΦT
qλ−Q)δq = 0 (4.10)

Since δq may take arbitrary values, the first term must be zero. Using this result gives

the Lagrange multipliers form of the equations of motion:

Mq̈ + ΦT
qλ = Q (4.11)

In this expression, the column of Lagrange multipliers λ represents the reaction forces

of the constraints in the system. For pin joints, solving for the Lagrange multipliers gives

the magnitude of the internal forces required to hold the two bodies together at that

joint. Where a kinematic driving constraint is used to specify the motion of the system, a
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corresponding Lagrange multiplier term represents the applied torque required to achieve

the desired motion.

4.2.5 Solution of Dynamics Equations

Equations (4.9) and (4.11) together form a set of differential algebraic equations (DAEs)

that define the response of the system to specified applied forces. Due to the complexity

and nonlinearity of these equations of motion, it is generally not possible to find a closed-

form solution. Instead, a numerical integration method is required to solve these equations

of motion for the position qt+1 given qt.

A variety of numerical methods are available, with differing degrees of speed, accuracy,

and robustness. The selection of an appropriate algorithm depends on the stiffness of the

system being modelled, the nature of the applied forces (being continuous vs intermittent,

as in the case of contact forces), and the relative importance of accuracy vs speed of

convergence.

To determine an appropriate integration step size, and to ensure that the integrator

numerical error was acceptably small, a convergence study was performed. In such a

study, the simulation is repeated with progressively smaller integration step sizes. When

the difference between results of consecutive simulations is sufficiently small, the step size

is appropriate for the model and the selected integrator.

After experimentation with various integrator methods and formulations available, the

Gear stiff (GSTIFF) integrator method and I3 formulation were found to give accurate

results and reasonably fast simulations with a step size of 0.01 seconds.

The joint torques were computed for 15 consecutive steps of the walking model, and

the average and standard deviation are plotted in Figure 4.4.

4.3 Implementation

4.3.1 Multibody Model

Rigid bodies are used to represent each lower limb segment, and the torso. The hip, knee

and ankle are modelled as revolute joints connecting the lower limb segments and the
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Figure 4.4: Computed Joint Torques
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torso, completing the model components required for the simulation. Since the joints have

parallel axes, the motion of the model is planar.

Additional rigid bodies for the pelvis, upper torso, neck and head are included to com-

plete the visual representation and to correctly represent the mass distribution. However,

all of the rigid bodies above the lower limbs are connected with rigid joints preventing any

relative motion. For the purposes of the simulation, they can be considered a single rigid

body.

The hip, knee and ankle joints are driven by feedback control torques. The expression

for each joint torque drives the joint position through the desired kinematic pattern selected

by the optimization algorithm, with an additional control component to maintain the

balance of the model. The details of the control algorithm and joint torque calculations

are described in Chapter 6.

The resulting model is shown in Figure 4.5. The applied joint torques are indicated at

the hip, knee, and ankle joints, while the upper body components are rigidly connected.

Figure 4.5: Mechanical model

The multibody model dimensions, moments of inertia, and joint positions were based

on data from the LifeMOD Biomechanics Modeler, produced by Biomechanics Research

Group Inc. The values are determined from the statistical average values for a 25 year old

North American male subject. Table 4.2 summarizes the segment parameters used in the
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model.

Segment Mass (kg) Izz (kg ·m2) Length (mm)

Head 5.03 2.70E-02 256

Neck 1.30 2.61E-03 145

Torso (including arms) 21.63 1.74E-01 348

Central Torso 7.47 4.94E-02 77

Lower Torso 8.63 6.77E-02 92

Upper Leg 7.88 1.49E-01 440

Lower Leg 3.54 3.96E-02 376

Foot 2.05 8.53E-03 220

Table 4.2: Limb Segment Parameters



Chapter 5

Muscle Model

5.1 The Muscle Force Distribution Problem

To obtain an estimate of the physiological energy cost of a given motion, a measure of

the muscle forces involved is required. At each joint in the leg model, two or more muscle

groups act in tension to produce a net joint moment on the two limb segments at that

joint. The contribution of each muscle to the net moment is equal to the instantaneous

muscle force times the moment arm between the muscle and the joint centre.

For a set of m muscles acting around n joints, the force to torque relationship may be

summarized by the following equation:

τ (n×1) = M(n×m)F(m×1) (5.1)

where τ is the column matrix of joint torques required at an instant in time and F is the

column of muscle forces. M is a matrix of moment arms, where the element M(i, j) is the

moment arm of muscle j about joint i.

The muscle force distribution problem is to solve Equation (5.1) for the muscle forces

F given a set of joint torques τ . The problem is in general non-trivial because, as will

be shown for the leg muscle model, the system contains more variables than equations

(m > n).

In the human body, the moment arm of each muscle varies as a function of the angle of

the joint it crosses, as does the joint centre. For the purposes of this model, the moment

54
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arms are assumed to be constant, and the average moment arms are taken from the nominal

values given by Raikova [51]. This assumption is common in models of human walking,

since the range of joint motion is relatively small, resulting in a relatively small variation

in the position of the joint centers and the muscle moment arms.

Figure 5.1: Lower Limb Muscle Model
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Figure 5.1 shows the major muscle groups included in the model. The selected muscle

groups are the primary actuators involved in the sagittal plane leg motion, and have been

used in similar analyses, such as that by Spagele [60].

From the dynamic analysis of the mechanical model for a particular kinematic motion,

the required joint moments are known for each instant in time of the simulation. The

muscle force distribution problem is to determine the muscle forces that would be used

to generate these joint torques. If a unique pair of muscles crossed each joint this would

be a trivial problem; the active muscle would be selected based on the direction of the

joint torque, and the force would be calculated by dividing the torque by the length of the

moment arm.

As can be seen in Figure 5.1, the problem is complicated by the distribution of muscles

in the leg. All of the joints are crossed by more than two muscles, which may all contribute

to the net torque. In addition, some muscle groups (such as the hamstrings and rectus

femoris) cross more than one joint; activation of the hamstrings will generate a torque

around both the hip and knee joints. Table 5.1 lists the moment arms of the muscles about

each joint, measured in cm [51]. A positive value indicates that a contractile force in the

muscle will generate a positive torque about the joint; a negative value indicates a negative

torque about the joint.

Muscle Hip Knee Ankle

Rectus femoris -4.0 -4.5 0.0

Biceps femoris long 9.0 4.5 0.0

Vasti 0.0 -4.5 0.0

Biceps femoris 0.0 4.5 0.0

Iliacus -2.5 0.0 0.0

Gluteus 10.0 0.0 0.0

Gastroc 0.0 6.5 6.0

Tibialis anterior 0.0 0.0 -4.5

Soleus 0.0 0.0 6.0

Table 5.1: Muscle Moment Arms (cm)
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With the additional complexities resulting from nine muscle groups available to generate

only three joint torques, there are an infinite number of possible solutions to the muscle

force distribution problem for each instant in time. The remainder of this chapter discusses

the method used to find a unique solution while simultaneously evaluating the objective

function of the outer optimization loop.

5.2 Solving the Force Distribution Problem

To find a unique set of muscle forces for a given set of joint torques, an additional assump-

tion must be made about the body’s selection of muscle groups. As in the motivation for

the main optimization loop, the hypothesis is that biological systems tend to minimize

energy consumption. The predicted muscle forces should reflect this objective, and should

produce the required torques with the minimal metabolic energy cost.

The force distribution problem, sometimes referred to as ‘the redundant problem in

biomechanics,’ may be described in terms of an optimization problem:

Find the set of muscle forces (the optimization variables)

that minimize some energy consumption estimate (the cost function)

while generating the required joint torques (the constraint equations).

Given this description, the formulation of an optimization solution is relatively straight-

forward, with the exception of determining an appropriate cost function to estimate the

energy consumption.

5.2.1 Physiological Cost Functions

The cost function must be an expression for the rate of metabolic energy consumption in

terms of the specified muscle forces. Such an expression is not obvious, and depends on

the efficiency of the muscles in converting metabolic energy into force at varying levels of

activation.

Fortunately, this is not a new problem, and a significant amount of research has already

been done to determine a relationship between force and metabolic energy cost. A recent
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paper by Silva [57] gives an overview of the problem, and reviews a variety of different cost

functions that have been proposed for solving for the force distribution at an instant in

time, such as:

• summing the individual muscle forces;

• summing the cubes of the muscle stress;

• summing the squares of the normalized muscular forces.

After solving for the muscle forces in a simulation of walking gait with the latter two of

these methods, Silva notes that the results for some subsets of the muscle model compared

well with the results found by some authors, while other subsets of the model compared

well with the results of other authors. In addition, Silva repeated the optimization with two

locally convergent algorithms and found the results to be dependent on the optimization

algorithm used; while different optimization packages found different solutions, they both

satisfied the joint torque constraints and found a local minimum for the cost function.

This method, therefore, should not be expected to produce muscle force and activation

patterns that exactly match those produced by direct EMG measurements in experimental

studies. Some physiological factors, such as reducing repetitive stress of particular muscles,

cannot be taken into account with an algorithm that only considers a single instant in time;

such factors will always result in variations in experimental data that do not appear in the

model. However, the optimization solution gives one reasonable muscle force solution that

minimizes an estimate of energy consumption, and this can be used to estimate at least

the relative difference in metabolic cost between two different sets of muscle forces.

Of the various cost functions considered, the summation of the cube of muscle stress

model, first proposed by Crowninshield [19], was found to be effective and well supported

by experimental data and physiological arguments. That measure, which Crowninshield

termed ‘fatigue’, is discussed in more detail in the remainder of this chapter.
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5.3 Fatigue Based Force Distribution

5.3.1 Physiological Basis for Force Distribution Method

Crowninshield [19] solved the force distribution problem by considering muscle fatigue as

the objective to be minimized in muscle force distribution. He used the term fatigue rate

to mean the inverse of the length of time a muscle could exert a constant force. The longer

a muscle contraction could be maintained, the lower the fatigue rate of the muscle, and

vice versa. By relating fatigue to muscle force exerted over time, Crowninshield developed

a method to determine an optimal force distribution among the muscles acting at a joint.

Based on experimental measurements of endurance while maintaining a constant con-

tractile force, a force-endurance relationship was found to be of the following form:

log T = −n log f + c1 (5.2)

where T is the maximum time (in seconds) that the muscle contraction could be held,

f is the normalized muscle force (scaled by the maximum contractile force that can be

generated by the muscle: f = F
Fmax

), and n and c1 are constants that were determined by

fitting the equation to the experimental data.

In addition, Crowninshield considered the maximum contractile force of a muscle as

approximately proportional to muscle cross-sectional area. Dividing contractile force F

by the physiological cross sectional area (PCSA = volume/length) of the muscle gives a

measure of the stress σ in a muscle:

σ =
F

PCSA
(5.3)

This scaling by PCSA gives an intuitively reasonable result; smaller muscles will fa-

tigue faster than larger ones exerting an equal force, and this is reflected in the higher

muscle stress. A force distribution algorithm based on muscle stress measures will there-

fore allocate proportionally more force to the larger muscle groups.

Since the maximum muscle force was found to be proportional to the PCSA, the

normalized force f in Equation (5.2) can be replaced with the muscle stress σ without

changing the form of the endurance relationship. Substituting f ∝ σ into Equation (5.2)
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and solving for T gives:

T = c2
1

σn
(5.4)

where c2 is a constant of proportionality that depends on the units of force and cross-

sectional area. Note, however, that the exponential constant n is independent of the units

and is the same constant as in Equation (5.2).

After fitting the experimental data from a variety of muscles across a range of forces,

Crowninshield found the constant n to range from 2.54 to 3.14, with an average around

3. Using the substitution of n = 3 gives the proportional relationship from experimental

data:

T ∝ 1

σ3
(5.5)

To maximize the endurance T (or equivalently to minimize the fatigue rate) for a set of

m muscles, the σ3 terms for all muscles must be minimized. For the set of m = 9 muscles in

the leg model, this can be formulated as a constrained optimization problem to minimize:

FatigueRate = 3

√√√√
9∑

i=1

(
Fi

PCSAi

)3

(5.6)

subject to the constraints of generating the required joint torques:

τ = MF (5.7)

and the constraints that muscle forces always be non-negative:

F ≥ 0 (5.8)

The solution F to this optimization problem is the set of muscle forces that generate

the required joint torques while minimizing the muscle fatigue rate at one instant in time

during the simulation. The FatigueRate corresponding to the optimal solution gives a

measure of the physiological cost involved in generating the required muscle forces at an

instant in time.
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5.3.2 Calculation of Total Muscle Fatigue

To compute an estimate of the total muscle fatigue over the gait cycle, the fatigue rate is

integrated over the time of the simulation:

Fatigue =

∫
FatigueRatedt (5.9)

Numerically, using the results of the above optimization for each time instant, the total

fatigue is calculated using a trapezoidal approximation:

Fatigue =
m∑

i=2

FatigueRatei−1 + FatigueRatei

2
(ti − ti−1) (5.10)

where m is the number of time-steps in the simulation; for a typical simulation of 5 seconds

of gait, each time-step is (ti − ti−1) = 0.01s and m = 500.

To compute an objective value Φ for the outer loop optimization algorithm, the measure

of fatigue is divided by the distance traveled in the simulation (dCM). This gives an

estimate of the physiological energy cost per unit distance traveled of the current kinematic

trajectories.

Φ =
Fatigue

dCM

(5.11)

5.4 Model Limitations and Alternatives

As with any model, the fatigue based muscle model is an approximation of the physical

system it represents, and has limitations that should be investigated and understood before

applying it to new problems. As already discussed, the results are dependent on the

optimization algorithm used and the approximation of metabolic energy consumption and

fatigue. In addition, the method presented has a number of other limitations.

5.4.1 Hill Model Relationships

One simplification of the model is that the force-length and force-velocity relationships

of biological muscle are not taken into account. These relationships were modelled and
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quantified in pioneering research by A. V. Hill [37]. His work has led to the creation of

many variations of ‘Hill’ muscle models, which represent muscles as a combination of an

active contractile element (CE) connected in parallel with a spring and damper passive

element (PE) and in series with a serial elastic element (SEE). A Hill-type muscle model

is shown in Figure 5.2,

Figure 5.2: Hill-type Muscle Model

The force generated by the passive elements (PE and SEE) are functions of the instan-

taneous length (l(t)) and rate of change of length (l̇(t)) of each element and the maximum

isometric force the muscle can produce (F0).

The force generated by the CE is a product of three terms, as shown in Equation (5.12)

[57]. The first term is a function of the length of the CE, the second term a function of its

rate of change, and the third term is the activation level a(t), which varies between 0 and

1 and represents the level of neural stimulation of the muscle.

FCE(t) =
Fl(l(t))Fl̇(l̇(t))a(t)

F0

(5.12)

Approximate analytic expressions for the passive element forces and the length and ve-

locity dependent terms can be determined by fitting curves to experimental data. Examples
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of these functions are given in [57].

The Hill muscle model requires a significantly different implementation than the fatigue

calculation method. While the fatigue method operates only on the instantaneous muscle

force, a Hill model is a dynamic system with state memory, and therefore requires an opti-

mization over multiple simulation time-steps to find the optimal muscle force distribution

over time.

To investigate the possibility of using a Hill based muscle model, the Virtual Muscle

model presented by Brown et al [12] and Cheng et al [17] was considered.

5.4.2 The Virtual Muscle Simulation Package

The Virtual Muscle system is based on the Hill model, and includes detailed muscle pa-

rameters including mass, fascicle and tendon lengths, fibre types and recruitment patterns.

An implementation of the model is available as a Matlab/Simulink package that computes

the force output of the muscle over time given the activation level, length, and velocity.

While the detail included in the Virtual Muscle model may eliminate many assumptions

and approximations that exist in the fatigue model, it did not prove to be practical for this

application. Since the goal of this piece of the system is to find the optimal muscle force

patterns for a set of muscles, the muscle simulation would have be executed many times

in the course of the optimization process. Because of the detail included in the Simulink

model, the model required several minutes of CPU time for a simulation of two steps of

walking gait. Finding an optimal solution for one kinematic pattern (and the corresponding

set of joint torques) may have been feasible; however, this process was required for every

iteration of the outer optimization loop searching for the optimal kinematic patterns, and

was therefore too detailed and too slow to be practical.

The fatigue method, though approximate, was much faster than a dynamic simulation,

and was found to be a sufficiently accurate model for solving the muscle force distribution

problem. The optimal muscle forces for 15 consecutive steps of the walking model were

computed, and the average and standard deviation are plotted in 5.3.

The results compare reasonably to the simulation results produced by Silva [57] and

Crowninshield [19].
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Figure 5.3: Computed Muscle Force Distribution



Chapter 6

Balance Controller Design

6.1 Balance Controller Overview and Requirements

Maintaining balance is a fundamental prerequisite for unaided human walking. While this

ability is often taken for granted after it is learned early in life, balancing while walking

involves a complex coordination of motion. In systems engineering terms, bipedal walking

systems, whether biological or mechanical, are typically unstable dynamic systems; that is,

a small bounded disturbance to the system (a push from behind) can lead to unbounded

output (the system falling over) [30]. This is an inevitable side-effect of walking upright

where, like an inverted pendulum, the centre of mass is relatively high and the base of

support is relatively small, provided by a single foot during most of the gait cycle.

In human walking, the central nervous system dynamically maintains balance by con-

tinually moving the limbs in such a way as to keep the centre of gravity within a step-length

of the base of support. One study has also found that the intrinsic properties of muscle

can also contribute to the stability of human walking by absorbing dynamic perturbations

[32].

When simulating human walking, the mechanical system model (as presented in Chap-

ter 4) is also an unstable dynamic system, and does not have the benefit of a central

nervous system or biological muscle to compensate for disturbances. The need for a mech-

anism to stabilize the mechanical model was evident from early experiments using forward

dynamic simulations. Without a constraint to maintain the orientation of the torso, the

65
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disturbance due to the kinematic motion of the lower limbs would eventually cause the

model to fall over, as would be expected for an unstable dynamic system model. Since

the motion is constrained to two dimensions, the instability led to either falling forward or

falling backward, and was a function of the relative speed of the torso to the speed of the

lower limbs. If the speed of the torso was too slow, the lower limb would walk out from

under the centre of gravity, leaving the model to fall over backwards; if the speed of the

torso was too high, the centre of mass would move ahead of the base of support during

initial foot contact, and the model would stumble forwards.

This chapter discusses the development of a feedback control system required to main-

tain balance in the mechanical walking simulation.

6.1.1 Balance Control and Energy Consumption

The goal of this thesis is to investigate the change in metabolic energy consumption associ-

ated with changes to the model parameters and kinematics, particularly for amputee gait.

One possible explanation for the observed increase in energy cost in amputee gait is that

maintaining balance while walking is more difficult with a prosthetic limb and requires

more metabolic energy from the remaining muscles.

To include this effect in the model, the simulation is executed for several periods of

the gait cycle, and the model must maintain its balance throughout the simulation. If the

metabolic cost of balancing the torso is greater for the prosthetic model, it should appear

as an increased measure of total fatigue from the muscle force distribution model.

6.1.2 Existing Balance Control Algorithms

Control systems for balancing walking models have been the subject of numerous studies

[31], [35], [39], [49]. This previous research has primarily investigated control algorithms

applicable to physical bipedal walking systems, with the corresponding challenges of three-

dimensional motion and unknown terrain. The balance controller required for the walking

simulation in this thesis has somewhat different requirements than a physical model. The

walking surface is known to be perfectly flat, and the motion is constrained to two dimen-

sions, which simplifies the problem substantially.
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However, the goal of the model is also different from most physical models, which adds

some additional requirements to the balance controller. The purpose is not to simply

walk with any possible stable gait, but to follow as closely as possible the pre-defined joint

trajectories specified by the optimization algorithm. This requirement removes the freedom

to arbitrarily control the joint positions to generate a stable gait pattern. Instead, a control

system is required that closely follows the specified joint trajectories while maintaining the

balance of the model. Because of these different requirements, the algorithms presented in

most physical biped walking control papers are not directly applicable to the simulation

control problem. However, some of the general design methods and philosophies can be

adapted, particularly those proposed by Pratt [49], [50].

In studies of gait that use forward dynamic simulation, the balance problem has been

largely ignored by only simulating and analysing a single step of the walking cycle [46], [2].

These simulations use an optimization of muscle activation patterns in order to drive the

simulation of human walking. The objective of such studies is to find the optimal muscle

activations that reproduce the joint kinematics observed by experimental measurements

of human subjects. (As the goal is to track a pre-defined trajectory, this is referred to as

a tracking problem). Since these simulations only operate for a single walking step, the

long-term balance of the model is not a problem.

In a dynamic optimization by Anderson and Pandy [3], the goal was again to find the

optimal muscle activation patterns to produce walking motion; however, the simulation

was allowed to follow any kinematic trajectory produced by the muscle forces, rather than

matching specified kinematics. Unlike the tracking problem investigations, this allowed

for arbitrary motion during the simulation, and the only constraint imposed was that the

initial and final states of the system be the same. This constraint would ensure that each

step would start from the same initial conditions, and therefore produce a stable gait.

However, the simulation was again only optimized over a single step, so no balance control

was required to compensate for accumulated error over multiple steps. As a result, these

prior walking simulation studies provided little insight into the balance control problem.
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6.2 Initial Balance Control Designs

A number of different approaches were considered for solving the balance control problem.

While the three methods reviewed in this section were not used in the final model, they

are discussed briefly as they provide some background for the final controller design that

follows in Section 6.3.

6.2.1 Perfect Initial Conditions

The balance of the walking model is associated with the relative speed of the torso and

the lower limbs. In theory, if these are perfectly matched, the kinematic motion of the

limbs driven at exactly the right speed would move the base of support (the feet) forward

at precisely the same speed as the torso. In control terms, this would be an open-loop

system. This would maintain the center of mass above the base of support, and keep the

model balanced. The problem is then to find the speed of the torso that matches the speed

of the lower limb kinematics, and set the torso to this speed as an initial condition.

To find the initial speed required, the optimization algorithm used for finding optimal

joint kinematics was used, with some modifications. The optimization variable was the

initial torso speed, and the objective function (to be maximized) was the distance travelled

before losing balance.

Unfortunately, the dynamic system is extremely sensitive to the initial conditions after

even a single period of the gait cycle. A change in the value of the initial speed of less than

0.1% will change the result of the simulation from falling backwards to stumbling forwards

after only two steps. Solving for the required initial conditions after each modification of

the joint trajectories would require an impractical amount of simulation time, and given

the extreme sensitivity of the model to a single parameter, would be of questionable value.

6.2.2 Kinematically Driven Torso Orientation

Another solution considered was the addition of an external constraint on the torso, which

would allow for translation in the horizontal and vertical directions, but fix the orientation

of the torso relative to the ground. A rotational kinematic driver was applied to the torso
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from the ground reference frame, and the orientation of the torso was driven to follow the

pattern of torso sway measured from human walking in [69]. This approach is similar to

one used by Skelly and Chizeck [59] where a “velocity controller” was used to apply an

external force and torque on the torso relative to the reference frame.

The addition of the external constraint gave reasonable kinematic results, since it left

the torso with only two degrees of freedom – vertical and horizontal translation. However,

the joint torque results of the inverse dynamics simulation proved to be less useful after

the addition of the new constraint.

The torso orientation constraint introduced an externally applied torque on the system

that did not correspond to any forces in the body. The model was supported by the external

constraint, and the energy optimization took advantage of the constraint by converging to

walking patterns that used very little energy in the limb joints, but leaned back on the

external constraint that was providing a support torque at no metabolic cost.

Since the energy introduced by the external constraint could not be measured in terms

of metabolic energy cost, this approach was rejected. A balance controller was required

that would give the model torso a rotational degree of freedom, and that could control

the balance of the system using only the lower limb joint torques. The energy cost of

maintaining balance would then be reflected in the metabolic energy cost of driving the

joint torques.

6.2.3 Inverted Double Pendulum Controller

To actively control the balance of the model without external constraints, a design was

considered that modelled the body as an inverted double pendulum. In this control model,

the hip joint motion was modified from the original specified kinematic trajectories to

control the orientation of the torso above the hips. The controller then computed torques

used to drive the hip joints to the modified trajectories; the mechanical model was driven

in a forward dynamics simulation with these computed torques. The ankle and knee joints

were driven by kinematic drivers and were not included in the control loop.
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6.2.3.1 Double Pendulum Representation

To design a balance controller based on a double pendulum representation, a simplified

mathematical model of the system was required, in which the mechanical system was

approximated as two links connected by a single joint. The torso represented the upper

link, connected by a revolute joint at the hips to the lower limb assembly representing

the other link. Controlling the common-mode motion of the two hips corresponded to

controlling the centre joint in the double pendulum.

The multi-segment assembly of the lower limbs was approximated as a single rigid

body since the knee and ankle joint positions were kinematically driven, and could not be

influenced by the controller. Finally, the foot contact force was represented by a revolute

joint between the lower link and the ground. This approximation was based on a single

contact point for one foot, assuming a high friction coefficient and minimal slipping between

the foot and the floor. The double-pendulum representation is shown in Figure 6.1.

Figure 6.1: Double-Pendulum Representation of the Model
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A controller for the system requires an expression for each of the system state variables;

in this case, the angular position and velocity of the two links. The measurements of the

upper link is readily available from the torso orientation computed in the mechanical

simulation. The lower link, however, does not generally align with any elements in the

mechanical model, so the measurement cannot be made directly. Instead, the effective

orientation is measured by computing the average error of the absolute orientation of the

thighs, relative to the desired hip joint angles.

The expression for this measure is given in Equation (6.1).

θ1 mea = ((θrthigh mea − θrhip kin) + (θlthigh mea − θlhip kin)) /2 (6.1)

where θrthigh mea and θlthigh mea are measured orientations of the right and left thigh angles

in absolute coordinates, and θrhip kin and θlhip kin are the specified kinematic angles of the

right and left hip joints.

6.2.3.2 Required Controller Behaviour

To gain some intuitive understanding of the behaviour of the inverted double pendulum

model of the system and the required controller response, consider the control problem of

compensating for the body falling backwards from the desired vertical orientation. This

instability was observed in ADAMS simulations with no balance controller or torso orien-

tation constraint, and occurs when there is insufficient momentum from push-off at the

trailing foot to propel the torso over the stance leg. The condition is shown in the first

box of Figure 6.2.

One intuitive response is to decrease the angle of both hip joints, essentially bending

the torso forward from the hip joints. This will pull the torso and centre of gravity forward,

which should stabilize the model.

However, since no part of the system is fixed to a ground reference frame, no segment

of the model can be controlled in isolation. Modifying the joint trajectory at the hips

will affect the orientation of both legs as well as the torso. The final orientation of the

system depends on the ground contact forces at the feet and on the relative inertias of the

segments on either side of the joint being controlled. As shown in the second diagram in

Figure 6.2, the resulting effect may be the desired stabilizing control. Conversely, if the
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foot contact forces do not resist the motion of the leg segments, the result may be an even

less stable configuration, as shown in the third diagram. The orientation of the torso is

moved closer to the vertical as desired, but at the same time the limb segments below are

forced into a less stable configuration.

Figure 6.2: Two Results of Hip Joint Controller Compensation

From this simple example, it is clear that an intuitive algorithm of directly controlling

the hip joint trajectories as a simple function of the torso angle will not result in an effective

solution. A more complete model is required for the controller design, including measures

of the full state of the system.

6.2.3.3 Controller Design

To construct a stabilizing controller based on the inverted double pendulum representation,

the dynamic equations of motion were derived based on the mass and geometry of the two

links (using the methods reviewed in Chapter 4).
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The equations were linearized about the vertical position to allow for the use of linear

control design methods, and a proportional-derivative (PD) controller was designed using

a state-space model and linear quadratic regulator (LQR) techniques. The reference input

for the controller is the orientation of the two links, which are both zero in the vertical

configuration. The state variables included the absolute orientations of the two links, and

the output of the controller is the desired joint angle at the hip joints.

For a full discussion of the derivation of the equations of motion, analysis of observability

and controllability, and LQR controller design for an inverted double pendulum system,

refer to the recent work by Demirci [24].

6.2.3.4 Controller Performance

In a numerical simulation of the controller driving an inverted double pendulum model,

the controller was found to be effective in maintaining balance after injecting small dis-

turbances, in agreement with the results in [24]. However, when applied to the walking

simulation, the controller failed to maintain the stability of the system.

The failure of the controller was due to a number of problems. First, significant approx-

imations were required to represent the walking model as a double pendulum, particularly

the treatment of the lower limbs as a rigid segment. This approximation neglected the

influence of the dynamics of the motion of the joints within the lower limbs. As well,

the inertial properties of the lower link were treated as constant, while in the simulation

they are functions of the configuration of the limb joints. The controller design proved to

be quite sensitive to the inertial properties of each link; as the configuration of the lower

limbs changed from the vertical stance assumed during the design, the inertial properties

changed and the controller failed to stabilize the system.

The second reason for the controller failure is the representation of the foot contact

as a pin joint. This approximation is only valid during the period of stance on one foot,

as long as no slipping occurs. The transition from toe-off on one foot to heel contact on

the other creates an instantaneous change in state that was not modelled in the controller

design and destabilized the system.
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6.2.3.5 Observations

The inverted double pendulum representation of the walking model was not suitable for

the walking simulation balance controller. However, it was a useful exercise, as it led

to the state variable representation of the net orientation of the lower limbs in Equation

(6.1). This variable measures the difference between the desired hip joint position and the

absolute orientation of the thigh. Assuming the torso is in the desired vertical position,

this gives a measure of the error in absolute position of each leg; by averaging the values

for both legs, the effective orientation of the lower body is computed. This representation

proved to be useful in the final controller design that follows.

The failure of the double pendulum model led to a different approach to solving the

balance control problem. Instead of viewing the problem as a generic non-linear unstable

mechanical system, some features of the walking model can be used to advantage. Knowing

the expected system behaviour from experience, the control problem can be broken down

into smaller subproblems, each of which can be solved with a relatively simple linear

controller and some intuitive design.

This approach is similar to that proposed by Pratt for controlling bipedal robots [49],

[50], and led to the development of the velocity feedback balance controller that is discussed

in the remainder of this chapter.

6.3 Velocity Feedback Balance Controller

Based on the results and observations discussed in Section 6.2, the control problem was

broken into smaller blocks, and a feedback controller was designed as shown in Figure 6.3.

In Figure 6.3 and in the equations to follow in this chapter, unless otherwise noted, θ

refers to the angle of an arbitrary joint (ankle, knee, or hip), and τ refers to the torque

applied to one joint. The same symbols in bold (θ or τ ) refer to a column matrix containing

the set of angles or torques applied to a set of joints.

For joint angle variables, the following subscripts are used to identify the purpose of

the variable:

θkin identifies variables that are the kinematic joint trajectories specified prior to the be-
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Figure 6.3: Velocity Feedback Control Structure

ginning of the simulation, and expressed as a Fourier series expansion.

θdes identifies a desired joint position at an instant during the simulation. This desired

value is computed based on the kinematic joint trajectories but modified according

to the stability algorithm.

θmea identifies a variable at an instant in time that is measured from the model. These

are used as state feedback variables for the control system.

θerr identifies the error signal in the controller, which is computed as the difference between

the desired and measured variables for a joint or body orientation.

θnom identifies a nominal value for a variable.

The remaining variables are defined for the controller equations:

Vdes identifies the desired average forward speed of the centre of mass of the torso.

Vmea identifies the measured forward speed of the centre of mass of the torso.

θ1 identifies the absolute orientation of all of the lower limb segments as computed in

Equation (6.1).
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In this control structure, all of the lower limb joints in the mechanical model are driven

by torques computed by a feedback controller. The calculation of joint torques by the feed-

back controller is performed in two stages. The first stage in the feedback controller is the

kinematic stability control block, which modifies the specified kinematic joint trajectories

of the lower limb joints as required to maintain the balance of the model. This block uses

feedback of the torso velocity and orientation from the mechanical model simulation; these

two variables were observed to be the most significant factors in maintaining balance in

the previous designs. The design of the kinematic stability controller is discussed in detail

in Section 6.3.1.

The second stage in the feedback controller is the joint position control block. Since the

desired joint positions are now dynamically computed by the stability controller, the joint

motion cannot be driven by pre-determined kinematic functions of time. This restriction

is imposed by the ADAMS simulation package; kinematic drivers may not be functions

of measurements computed during the simulation. Instead, the joint position controller

is used, which computes the control torques required to drive the joints to the desired

trajectories determined by the kinematic stability controller. The torques are computed

based on the desired joint positions and the feedback of the current joint positions and

velocities of the simulation. Details of the joint position controller are discussed in Section

6.3.3.

The model is now driven in a forward-dynamics simulation with two nested feedback

loops. The outer loop controls the orientation of the torso by modifying the original joint

kinematics at each time step in response to changes in the orientation of the model. The

inner loop drives the joints to the modified trajectories by computing a control torque to

be applied at each joint. These computed joint torques are stored for each time step of

the simulation, and are later used to estimate the muscle fatigue resulting from the actual

simulation motion.

6.3.1 Kinematic Stability Controller Block Design

The goal of this control block is to modify the specified hip, knee, and ankle kinematic joint

trajectories in such a way as to maintain the balance of the model. This loosely stated

objective is indicative of the challenge in the design of the controller. The relationships
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between the individual joint motions and the overall motion of the model (particularly the

torso) is not intuitively obvious, and a number of different approaches were considered to

implement the controller.

Analysis of the model as it lost balance indicated that the instability was closely coupled

with a change in forward translational speed of the torso. As the model proceeded over

several steps, it would either gain or lose speed, depending on the initial conditions. If it

gained speed, eventually it would fall forward, since the motion of the feet did not keep

up with the increasing speed of the torso; if it lost speed, it would topple backwards.

Accordingly, it seemed reasonable that one factor in effectively maintaining balance is

maintaining a relatively constant forward speed of the torso.

The torso velocity, however, cannot be directly controlled by the joint positions that

the controller can vary. Instead, the torso velocity was found to be a function of the overall

body orientation, as measured by the net lower limb orientation calculation developed in

the inverted double pendulum model. To increase the torso velocity, the whole body must

pitch forward more; to slow down, it must pitch forward less.

Again, the whole body motion cannot be simply controlled by modifying the joint

positions to set a new orientation. The effect of changing any individual joint trajectory

is dependent on the position of both legs, the phase of gait, and the current orientation

of the torso. However, varying the speed of the lower limb motion effectively controls the

pitch of the body by varying only a single parameter: the rate of the time variable used

in evaluating the joint trajectories. By driving the legs through the walking gait faster,

the lower body moves faster than the torso, decreasing the forward pitch of the body. By

slowing the motion of the legs, the torso moves ahead of the feet, increasing the pitch of

the body.

Figure 6.4 shows the subdivision of the stability controller block into simpler compo-

nents, using the observed relationships between joint kinematics, torso pitch, and torso

velocity.

6.3.1.1 Velocity Controller

The Velocity Controller is a proportional-integral (PI) controller block that attempts to

maintain the forward velocity of the torso at the value specified. The block uses a reference
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Figure 6.4: Kinematic Stability Controller Components

input of the desired torso velocity Vdes and a state feedback input of the current torso

velocity Vmea and generates an output that is the desired body pitch angle, θ1 des. Since

the block is operating on a velocity measure, the proportional term operates on the velocity

error, and the integral term operates on the position error, correcting for the accumulation

of the velocity error over time. A derivative term (in a full PID controller) would operate

on the acceleration of the torso, and was found to be unnecessary. The block has two gain

parameters, proportional Kpvel and integral Kivel, used in the following control law:

θ1 des = θ1 nom −KpvelVerr −Kivel

∫
Verrdt (6.2)

where Verr = Vmea−Vdes is the error in the forward velocity of the torso. θ1 nom is a nominal

offset representing the desired body pitch when the measured velocity reaches the desired

velocity.

The effect of this control block is to increase the desired pitch angle of the body if the

torso velocity decreases below the desired target velocity, and vice versa.

6.3.1.2 Pitch Controller

The Pitch Controller is a PI controller block with a reference input of the desired pitch, as

computed by the torso Velocity Controller block. The state feedback for this block is the

measure of θ1 mea, as computed in Equation (6.1). The output of the Pitch Controller is an

offset tofs that is added to the time variable when computing the desired joint trajectories.
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The output is determined by two gains, proportional Kppitch and integral Kipitch, used in

the following control law:

tofs = −1

(
Kppitchθ1 err + Kipitch

∫
θ1 errdt

)
(6.3)

where θ1 err = θ1 mea − θ1 des is the net error in the orientation of the lower limbs.

The effect of this block is to increase the time offset (and hence the speed of the legs as

they move through the walking motion) if the pitch of the body is greater than the desired

pitch, as determined in Equation (6.2), and vice versa.

6.3.1.3 Joint Trajectory Calculation

The final block within the stability controller is the joint trajectory calculation, which

computes the desired joint positions at each time step of the simulation. Using the time

offset computed in Equation (6.3), this block gives the updated joint angle at time = t:

θdes(t) = θkin(t + tofs) (6.4)

where θkin(t) is one of the six joint trajectories (hip, knee, or ankle for the left or right leg)

specified as a Fourier series function of time before starting the simulation.

The output of this block is the set of joint angles that will maintain the stability of the

model while approximating the specified kinematic joint trajectories. These joint angles

will be used as the input to the position controller, as shown in Figure 6.3. For details of

the implementation of the measures and control blocks, refer to Appendix A.

6.3.2 Controller Parameter Tuning

Determining appropriate values for all of the gains in the feedback control system is an

interesting challenge. Although all of the controller blocks are linear systems, the behaviour

of the walking model (or the plant, in control systems terms) is not readily described as a

linear system. For example, an expression for the body pitch θ1 mea in terms of the time

offset tofs control is a non-linear and time-varying relationship since it depends on the

current phase of the gait cycle. Linear control design theory is therefore not helpful in

selecting appropriate gains for the control blocks.
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Conveniently, however, the optimization algorithm that is used to vary the joint tra-

jectories to find energy-optimal motions can be equally well applied to the variation of

controller gains to optimize a controller quality objective. An optimization was designed

that repeatedly ran the simulation with the same kinematic joint trajectories, while the

controller gains of a particular control block were used as optimization variables and varied

for each iteration. The objective function used was a measure of the error in the control

variable for the block, as described for each block in the following sections.

6.3.2.1 Pitch Controller Block Tuning Results

The Pitch Controller block was tuned by varying the controller gains Kppitch and Kipitch,

while attempting to minimize the error between the desired pitch (specified by the Velocity

Controller) and the measured pitch θ1 mea. The objective function is given in Equation

(6.5).

Φpitch =

∫
(θ1mea − θ1des)

2 dt + 10000Pstab (6.5)

where Pstab is a penalty term that is added if the model loses balance (at time t = tfailure)

before completing the simulation:

Pstab = (tsim length − tfailure) (6.6)

The large penalty coefficient of 10000 ensures that the penalty term is the most signif-

icant component in the objective if the model loses balance. The optimization first tunes

the controller parameters to keep the model upright as long as possible, then fine-tunes

the parameters to follow the desired pitch as accurately as possible.

Results of the optimization of the Pitch Controller are shown in Figure 6.5 (the results

using an initial guess for the gain parameters) and Figure 6.6 (the results after optimiza-

tion). In each figure, the plot on the left shows the desired pitch, measured pitch and error,

and the plot on the right shows the controller output, the tofs variable.

Note that the controller performance was very poor using the initial guess for gain

parameters. In Figure 6.5, the model lost balance falling forward at approximately t = 2.5

seconds, resulting in a large penalty term.

The results of the optimized controller demonstrate the controller maintaining balance

for the duration of the simulation, and the orientation closely tracking the desired pitch.
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The spikes in the pitch error signal are due to rapid changes in the desired orientation

during changes in ground contact conditions. Heel contact and toe-off events result in

changes in the torso velocity, which are passed through the Velocity Controller in the

forms of rapid changes in desired pitch of approximately 3◦. Since these spikes will also

result in large joint torques (and therefore large muscle forces), they will increase the total

fatigue calculation for the simulation. The optimization of joint kinematics to minimize

fatigue will tend to minimize these spikes, as shown in the optimization results of Chapter

7.

6.3.2.2 Velocity Controller Block Tuning Results

The Velocity Controller block was tuned by varying the controller gains Kpvel and Kivel,

while attempting to minimize the error in between the desired velocity (specified as an

input to the simulation) and the measured torso velocity.

The objective function is given in Equation (6.7).

Φvel =

∫
(Vmea − Vdes)

2 dt + 10000Pstab (6.7)

where Pstab is the same penalty term used in Equation (6.7).

Results of the optimization of the Velocity Controller are shown in Figure 6.7 (the

results using an initial guess for the gain parameters) and Figure 6.8 (the results after

optimization). In each figure, the plot on the left shows the desired velocity, measured

velocity and error, and the plot on the right shows the controller output, the desired pitch.

After the first 7 seconds of the simulation, the torso velocity approaches a steady-state

value. Using the initial gain values, the steady-state velocity is approximately 0.2m
s

below

the specified Vdes = 1.2m
s

After optimization of the Velocity Controller gains, the objective

value is reduced by half, and the average steady-state velocity is approximately the desired

Vdes = 1.2m
s

The optimal gains found by the controller optimizations were used in the stabilizing

controller for the metabolic energy optimizations, and are listed in Table 6.1.
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Gain Parameter Optimized Value

Kppitch

(
s

degree

)
0.01

Kipitch

(
s

s·degree

)
2.65

Kpvel

(
degree·s

(m)

)
3.75

Kivel

(
degree

m

)
0.27

Table 6.1: Feedback Controller Gains

6.3.3 Joint Position Controller

The joint position controller, the second block in Figure 6.3, is required to compute torques

that will drive the joint angles in the model to the desired positions, as determined by the

stability control block. This is a position tracking problem, which can be modelled at each

joint as a single torque driving a rigid link to a desired reference position, which varies as

a function of time. Unlike the kinematic stability controller, this problem can be solved

using a proportional-derivative (PD) controller and linear control design methods, with

some simplifying assumptions.

The joint controller consists of one controller for each joint, as shown in Figure 6.9.

The controller uses two gains, Kp and Kd, to compute the applied torque τctrl:

τctrl = Kp(θdes − θmea) + Kd(θ̇des − θ̇mea) (6.8)

τctrl is the computed torque required to track the desired joint angle, θdes, based on the

error between the actual and desired position and velocity of the joint.

To find reasonable values for the controller gains, a model of the dynamics of the plant

is required. In the walking simulation, the dynamics of the system at each joint change

depending on the phase of gait. For example, during the swing phase the ankle joint needs

a relatively small gain since it only has to overcome the inertia of the foot to track a

desired trajectory. During the stance phase, however, a much larger gain is required, since

the ankle joint torque must be large enough to control the inertia of the entire body that

is balanced above it.

To simplify the design problem, the worst case (highest gain) scenario is used for de-
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Figure 6.9: Joint Controller Model

termining appropriate gains, and the same gains are used at all joints throughout the

simulation. The side effect of using gains that are higher than actually required is that the

tracking error will be even less than the maximum tolerance used in the controller design,

and higher joint torques may be generated. However, since the goal of the final optimization

is to find trajectories that minimize energy (which will generally minimize joint torques),

the optimization algorithm should avoid any trajectories that lead to unreasonably high

joint torques despite larger than required controller gains.

For the worst case control problem, the plant model is straightforward. The torque at

the ankle joint is controlling the position of the entire mass of the body, which is balanced
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above it, as shown in Figure 6.10.

Figure 6.10: Rigid Body Model For Joint Controller Parameter Estimation

Neglecting the external torque due to gravity, (since the gravity vector acts primarily

through the ankle joint and therefore has a negligible moment arm), the dynamic equation

is simply:

τctrl = Iθ̈ (6.9)

where I is the moment of inertia about the ankle joint, and can be approximated by

I = 1
2
ml2. For a body mass of m = 75kg and height l = 1.85m, this gives I = 128kg ·m2.

To determine reasonable gains for the controller, the dynamic equation can be converted

to a state-space representation, with the state vector x containing the state variables θ and

θ̇:

ẋ = Ax + Bu (6.10)

x(0) = 0 (6.11)

where u is the control torque τ , x(0) is the initial condition, and the constant matrices A

and B are given by:

A =

[
0 1

0 0

]
(6.12)
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B =

[
0
1
I

]
(6.13)

In this form, the linear quadratic regulator (LQR) method can be applied to find the

optimal controller feedback matrix F required to supply the control torque u(t) = Fx(t).

The optimal control input is defined as that which minimizes the performance integral:

Φ =

∫ ∞

0

(xTQx + uTRu)dt (6.14)

The elements Q and R in the performance equation allow a weighting between minimiza-

tion of tracking error (xTQx) and minimization of control effort (uTRu). For this control

problem, the goal is optimal tracking of the specified joint kinematics; the Q element is

therefore weighted more heavily.

Given the state-space description of the system and the values of Q and R in the

performance equation, the LQR algorithm finds an optimal feedback matrix F by solving

the algebraic Riccati equation:

AT Pc + PcA− PcBR−1BT Pc + Q = 0 (6.15)

Refer to [5] for details regarding the solution of the Riccati equation.

The LQR method was used to solve for the controller feedback gains with an initial set

of performance weights:

Q =

[
100 0

0 106

]
(6.16)

and

R =
[

1
]

(6.17)

The value of 100 in the Q matrix represents the weight applied to the velocity tracking

error of θ̇, while the value of 106 represents the weight applied to the position tracking

error. As discussed, the values in Q are given a much greater weight than the control

cost term (R = 1) because the control effort should not be minimized at this controller.

The energy cost of a large control torque will be reflected in the fatigue calculations of the

energy optimization loop, which should lead to a more efficient kinematic pattern in the

following iterations.
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The LQR algorithm gives an optimal gain matrix of F = [ 10 1000 ], which corre-

sponds to proportional and derivative gains of Kp = 1000 and Kd = 10 respectively.

The results of the LQR method give optimal gains for the linearized system including

significant assumptions. To find the optimal gain parameters for the actual model, the

optimization method applied to the Velocity and Pitch control blocks was applied to the

joint position controller. Using the LQR design values as an initial guess for all of the

joints, the optimal values were found as listed in Table 6.2.

Gain Parameter Optimized Value

Kphip 2625(N ·m)/(degree)

Kpknee 1984(N ·m)/(degree)

Kpankle 1996(N ·m)/(degree)

Kdhip 19.4(N ·m)/(degree · s)
Kdknee 12.5(N ·m)/(degree · s)
Kdankle 27.5(N ·m)/(degree · s)

Table 6.2: Joint Position Controller Gains

6.4 Summary

The balance control of a bipedal walking model is a challenging project in itself. The

attempts to design a controller while treating the walking model as a generic mechanical

system resulted in a complex and unsuccessful control algorithm. However, breaking the

control problem down into a sequence of subproblems (velocity, pitch, joint trajectory

speed, and joint position), each of which could be solved with a simple linear controller,

resulted in an effective control system, as shown in the results in Chapter 7.

The velocity feedback controller allows the model to walk without external support

constraints, and enables the metabolic cost of maintaining balance to be included in the

fatigue calculations that follow.
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Results and Discussion

7.1 Introduction

The data presented in this chapter are the final results of the fatigue-minimization op-

timization process. This optimization varied the joint kinematic trajectories to find an

optimal walking gait for the model, minimizing the cost function

Φ =
Fatigue

dCM

(7.1)

where Fatigue is the total fatigue for the duration of the simulation, summed across all

muscles in the model, and dCM is the horizontal distance travelled by the centre of mass

of the torso. This expression of the cost of locomotion leads the optimization routine to a

solution that minimizes the estimate of metabolic energy consumption while maximizing

distance travelled.

Detailed results are presented for the normal walking model, including comparisons to

data gathered from experimental studies [69]. The results demonstrate the effectiveness of

the optimization approach for finding a minimal-fatigue walking gait for the model.

Following the normal walking model data, results are presented for two variations,

modelling a bi-lateral below knee amputee, as shown in Figure 7.1. In the first variation,

the ankle joints torque drivers are replaced with passive rotational spring-dampers, rep-

resenting energy-storing prosthetic joints. In the second variation, the ankle joint torque

89
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Figure 7.1: Normal and Prosthetic Ankle Joint Models

drivers are replaced with fixed joints, modelling solid-ankle cushioned-heel (SACH) pros-

thetics. The results of the prosthetic model simulations are discussed with comparison to

experimental measurements of below-knee amputee gait made by Winter and Sienko [71].

7.1.1 Processing and Plotting of Results

The results presented in this chapter were determined by averaging the data for several

consecutive steps of simulated walking, taken after the balance controller reached a steady

state walking speed. Where applicable, the average and standard deviations are shown.

Typical experimental kinematic data must be filtered to remove noise from analog sen-

sors. The experimental results included in this chapter for comparison to simulation results

are taken from Winter [69], and have been appropriately low-pass filtered as described in

[69]. The simulation results, however, have no sensor error, negating the need for filtering.

The plots of simulation results are therefore based on the raw, un-filtered data. Some

plots contain higher frequency components than would be found in actual human motion,

due primarily to the behaviour of the balance controller. Rather than low-pass filter these

results, the higher frequency components are included to illustrate the actual behaviour of

the model.
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In all figures showing the horizontal time scale as a percentage of the gait cycle, the

plot begins at t = 0, corresponding to the instant of expected heel contact based on the

original (experimental) kinematic data. For the experimental data (labelled Winter in the

figures), this is exactly the moment of right heel contact. For the simulation results, heel

contact may occur earlier or later in the plots, as will be seen in the floor reaction force

figures. This allows for comparison of the timing of heel contact and toe-off events, relative

to the joint kinematics that define the time scale of the plots.

7.2 Normal Model Results

7.2.1 Motion Snapshots

The motion of the walking model is captured in Figure 7.2, containing 15 snapshots of

the model spaced at 0.1 second intervals. While individual images cannot capture the

dynamics of the motion, they provide some reference points for comparison to human

motion captured on film.

7.2.2 Joint Kinematics

Figure 7.3 shows the optimized joint kinematics found by the optimization process for the

normal model. The dotted lines show the joint trajectories measured in normal walking

gait, taken from [69]. The solid lines plot the optimally computed solution that minimizes

muscle fatigue for the model, averaged over 10 seconds of the walking simulation. The

dashed lines show ±1 standard deviation from the average.

The optimized hip joint kinematics are relatively close to the original experimental data.

The knee motion shows some significant variation at the end of the gait cycle, where the

extension of the knee is delayed by approximately 15% of the gait cycle. This additional

flexion may be caused by the lack of pelvis rotation and torso sway in the 2-D model.

Lacking the rotation at the pelvis to raise the entire leg during the swing phase, additional

knee flexion is required for the foot to clear the ground.

The ankle joint kinematics produced by the optimization are also significantly different

than the original data. During part of the stance phase (15% - 40% of the gait cycle) there is
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Figure 7.2: Optimized Model Walking Motion
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Figure 7.3: Normal Model Joint Kinematics
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much greater dorsiflexion in the simulation results, which may be due to the approximation

of the foot contact model using only two contact points. This simple model was required

for speed of simulation execution, and did not represent the continuous contact surface

of the foot, which may have affected the rolling motion of the ankle over the foot during

stance. During push-off, the optimally computed ankle motion matches the experimental

data very closely. In the swing phase, more dorsiflexion is again observed compared to the

experimental results, which would tend to increase toe clearance for the model simulation.

The additional clearance would be required for the model for the same reasons as the

increased knee flexion discussed above.

7.2.3 Computed Ground Reaction Forces

Figure 7.4 shows the computed ground reaction forces of the optimized solution for the

normal model. The dotted lines show the reaction forces measured in normal walking gait,

taken from [69]. The solid lines plot results of the optimized simulation, averaged over 10

seconds of the walking simulation. The dashed lines show ±1 standard deviation from the

average.

The magnitude of the vertical contact reaction forces match the experimental data

reasonably closely, with peaks at about 1.1% of the body weight. The standard deviation

range indicates a significant variability in the contact force just following heel contact,

which is partially due to the step-to-step variation in timing of the heel contact event. The

horizontal reaction forces have greater variation from the experimental data, showing a

more abrupt braking effect following heel contact, followed by a forward propulsion early

in the stance phase.

The behaviour of the horizontal friction force is strongly influenced by the balance

controller, which attempts to maintain a constant speed and orientation of the torso. To

maintain the orientation of the torso, the controller accelerates or decelerates the motion

of the lower limbs, and this in turn generates friction forces at the ground contact points

to maintain balance. When the controller attempts to maintain a constant speed, rather

than anticipating the typical acceleration of the pelvis during push-off and deceleration

during weight acceptance, it produces some additional frictional forces that are not seen

in experimental data. These variations might be reduced by a feed-forward term in the



Results and Discussion 95

0 10 20 30 40 50 60 70 80 90 100
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Vertical Contact Reaction Force

Time (% of gait cycle)

F
or

ce
/B

W

Winter
Mean
+/−1 SD

0 10 20 30 40 50 60 70 80 90 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Horizontal Contact Reaction Force

Time (% of gait cycle)

F
ric

tio
n 

F
or

ce
/B

W

Winter
Mean
+/−1 SD

Figure 7.4: Normal Model Ground Reaction Forces
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Figure 7.5: Normal Model Joint Torques

controller to anticipate the variation in torso speed at particular phases of the gait cycle.

7.2.4 Joint Torques

Figure 7.5 shows the joint torques computed by the optimized normal model simulation.

The dotted lines show the joint torques computed by Winter [69] from experimentally

measured gait kinematics and an inverse dynamics solution. The solid lines plot the opti-

mized solution that minimizes muscle fatigue for the model, averaged over 10 seconds of

the walking simulation. The dashed lines show ±1 standard deviation from the average.

The joint torques at the hip and knee show some oscillatory behaviour at the heel
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contact events (of both left and right limbs). This appears to be coupled to the horizontal

friction forces that are generated at those instances by the balance controller, as discussed

in subsection 7.2.3. Note that the friction contact force has a moment arm about the

knee joint equal to the length of the shank, and about the hip joint equal to the length

of the shank and thigh. The joint position controller generates the additional torques to

compensate for the effect of the ground contact forces.

Outside of the heel contact events, the knee and hip joint data matches the experimental

data reasonably well. The knee joint requires some additional flexion torque at push off,

likely to increase clearance during the swing phase.

The ankle joint torques are not significantly affected by the balance controller and the

horizontal ground reaction forces because of the small moment arm about the ankle joint.

The ankle torques match the experimental data in magnitude, with a more rapid generation

of power at the push-off phase.

7.2.5 Muscle Forces

Figure 7.6 shows the computed muscle forces for the optimized solution of the normal

walking model. The numbers in the title of each sub-plot correspond to the numbering of

muscle groups used in Figure 5.1.

The muscle forces computed are those that produce the required joint torques (shown

in subsection 7.2.4) while minimizing the total muscle fatigue rate at each instant in time,

using the method proposed by Crowninshield [19] described in Chapter 5.

The timing of most of the muscle activations, discussed below, is reasonably well corre-

lated with results of experimental EMG measurements of human walking and other walking

simulations [3] [19].

At the ankle joint, the soleus and gastrocs show the typical power generation at late

stance to toe-off (30% - 50% of the gait cycle), providing the plantarflexor torque required

for propulsion. Following toe-off (60%-70%) the tibialis anterior shows activation, lifting

the toe to clear the floor during the swing phase.

At the knee joint, the continued force of the gastrocs and activation of the biceps

femoris following toe-off serve to flex the knee in preparation for the swing phase. The

rectus femoris and vasti groups provide an extensor torque at the end of the gait cycle as
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Figure 7.6: Normal Model Computed Muscle Forces
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the knee is extended for heel contact.

At the hip joint, the rectus femoris and illiacus groups are active at the beginning of the

swing phase (60%-70%), providing acceleration of the entire leg through the swing motion.

The gluteous muscles are active through the stance phase, providing a propulsive extensor

torque at the hip.

In comparison to the results found in simulation by Anderson and Pandy [3], the rectus

femoris, biceps femoris, iliacus and gluteus display some larger than expected forces at

the heel contact events. These forces correspond to the large torques about the knee and

hip due to the frictional forces on the ground, and are a result of the balance controller’s

reaction to the change in torso speed at heel contact. Although the behaviour of the bal-

ance controller injects some additional high-frequency torques (and corresponding muscle

forces) into the solution, the results outside of the heel contact periods indicate that the

optimization methods reasonably model the muscle force distribution in human walking.

As discussed in [19], the correlation of predicted muscle forces with experimental EMG

measurements does not in itself prove that the force distribution algorithm based on muscle

fatigue minimization is the same as that used by the human body when walking. However,

the plots of muscle forces presented here demonstrate the effectiveness of the optimization

method in finding a suitable set of muscle forces that is a solution to the redundant force

problem in Equation 5.1.

Based on these muscle forces, the muscle stress and muscle fatigue rates are computed

as defined in Equations 5.3 and 5.6. Integrating the fatigue rates over the period of the

simulation gives the total muscle fatigues, summarized at the end of the chapter in Table

7.1.

7.3 Prosthetic Ankle Model Results

The data presented in this section are the results of the same optimization used in the

normal model, with the exception that the ankle joint torque drivers were replaced with

passive joints, and the muscle groups crossing the ankles (the gastrocs, soleus, and tibialis

anterior) were removed from the muscle model. The limb segment dimensions and mass

properties were not changed from the normal model. Results are presented for two pros-
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Figure 7.7: Prosthetic Ankle Model Joint Kinematics

thetic models: the flexible ankle model, where the ankle joint is modelled by a rotational

spring-damper joint; and the solid-ankle-cushion-heel (SACH) model, where the ankle is

modelled as a fixed joint.

7.3.1 Joint Kinematics

Figure 7.7 shows the optimized joint kinematics found by the optimization process for the

two prosthetic ankle models. The hip and knee joint kinematics were varied relatively

little from the experimental data used to initialize the optimization for both the flexible
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and solid ankle models. The ankle joint in the flexible ankle model, however, follows a

different kinematic pattern than the normal walking model, since it is not actively driven.

There is no plantarflexion motion driving the push-off phase, and no dorsiflexion to lift

the foot during the swing phase. In the solid ankle model, there is of course no kinematic

motion of the ankle.

7.3.2 Computed Ground Reaction Forces

Figure 7.8 shows the computed ground reaction forces of the optimized solution for the

prosthetic models. The time scale of plots is derived from the expected heel contact times

based on the original kinematic trajectories, rather than the actual heel contact times

during the simulation. This allows for comparison of the heel contact event time in relation

to the joint kinematics.

The magnitudes of the ground reaction forces are similar to those for the normal walking

model. However, the timing of the reaction force data displays a prominent difference

between the normal and prosthetic model simulations. For the flexible ankle model, heel

contact occurs about 75% into the gait cycle, as the foot hits the ground before the knee

is extended, and the stance phase lasts for approximately 70% of the gait cycle, rather

than the 60% expected in normal walking gait. This extension of the stance period is in

agreement with observations of amputee gait by Winter [71], who reported stance periods

of 64% and 68% for amputee subjects.

The increased contact period results in a longer period of double-support, where the

model has both feet on the ground. The optimization may have converged to this solution

to improve balance control. During the double-support phase, the model has a longer base

of support; this would lead to a more stable configuration, which would require less active

work by the balance controller to keep the model upright. That is, without active control

of the ankle joints, the most efficient method of maintaining balance for the model may be

to increase the statically stable period of double-support.

7.3.3 Joint Torques

Figure 7.9 shows the joint torques computed by the prosthetic model simulations. The
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Figure 7.8: Prosthetic Model Ground Reaction Forces
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Figure 7.9: Prosthetic Model Joint Torques
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pattern of passive ankle joint torques are surprisingly similar for the flexible and solid

ankle models. Despite the rigid joint, the SACH model creates a typical plantarflexion

torque during the push-off phase, which behaves similarly to the flexible and normal ankle

models in torque response. The peak magnitudes of the flexible and SACH ankle model

torques (70 − 90Nm) are less than those for the normal model (125Nm). This is in

agreement with the observations of Winter [71] that found amputee gait producing only

about 2/3 of the plantarflexion torque seen in normal gait.

The knee and hip joint torques are greater for the prosthetic models than for the

normal model, making up for the lack of power generation at the ankle. In addition, part

of the increase in hip torque is likely due to greater control forces generated by the balance

controller operating with passive ankle joints. This additional torque is reflected in the

corresponding muscle forces and total muscle fatigue for the prosthetic models.

7.3.4 Muscle Forces

Figure 7.10 shows the computed muscle forces for the optimized solution for the prosthetic

walking models. The muscle forces computed are those that produce the required joint

torques while minimizing the total muscle fatigue rate at each instant in time.

The computed forces for the six remaining muscles in the prosthetic models are gen-

erally more active than those in the normal model, as required to generate the increased

propulsion and control torques, particularly at the hip. This general trend is in agreement

with the experimental results in [71], which found greater EMG activity in most leg mus-

cle groups throughout the gait cycle for the amputee subjects. The EMG measurements,

however, show a great deal of hyperactivity and co-contraction that is not present in the

simulation results. For example, the EMG results indicate significant activation of both

the gluteus maximus (hip extensor) and rectus femoris (hip flexor) groups throughout the

stance period. This behaviour is not seen in the model simulation results, where the hip

extensors are generally passive when the flexors are active, and vice versa. Similar co-

contraction behaviour is seen for the knee joint in the experimental EMG results of [71],

and is absent in the simulated results.

Muscle co-contraction serves to increase the stiffness of a joint [69], which leads to

increased control of the joint. This is likely a significant factor in amputee gait, where
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Figure 7.10: Prosthetic Model Computed Muscle Forces
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additional joint stiffness is desired for safety and control. This factor is not considered

in the simulated muscle fatigue distribution model. Instead, the objective of the model

is to minimize total muscle fatigue, which minimizes muscle co-contraction except where

required to generate the specified joint torques. While the model does not include the

additional cost of control in terms of joint stiffness and muscle co-contraction, the additional

work required to maintain the balance of the model is represented by the higher muscle

forces in the prosthetic model.

Comparing the flexible and solid ankle models, with the exception of the vasti and

gluteus groups, the peak muscle forces are noticeably greater in the solid ankle model.

This suggests that greater control torques (and hence faster muscle fatigue) are required

than for the flexible ankle model.

As for the normal walking model, the muscle stress and muscle fatigue rates are com-

puted from these force curves, and the total muscle fatigues are summarized in Table 7.1.

7.4 Total Fatigue Comparison

Table 7.1 summarizes the results of the total computed muscle fatigue for the optimized

simulation of each model. The fatigue measure is computed for each muscle by integrat-

ing the individual muscle fatigue rate, as described in Chapter 5, over the duration of

the walking simulation (approximately 10 seconds). The values in Table 7.1 have been

normalized by dividing by the total muscle fatigue for the normal model and multiplying

by 100. This normalization shows the percentage of the total fatigue for each muscle in

the normal model, and shows the relative increase in total fatigue for the two prosthetic

models.

These results show the redistribution of muscle fatigue in the prosthetic models. Where

the muscles crossing the ankle joint have been removed, the fatigue in the remaining muscles

is increased for the flexible ankle model, and increased further for the solid ankle model.

To compute a physiological cost of walking, the total fatigue is divided by the horizon-

tal distance travelled by the center of mass. This normalizes the results for simulations

that generated a faster or slower walking speed, and is the objective function used in the

optimization of joint kinematics. The normalized results are listed in Table 7.2.
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Muscle Normal Flexible Ankle Solid Ankle

Rectus femoris 22.28 47.52 67.82

Biceps femoris long 6.93 15.35 28.71

Vasti 3.47 9.41 8.42

Biceps femoris 7.43 29.70 39.60

Iliacus 24.26 64.36 89.60

Gluteus 4.46 7.43 6.44

Gastroc 7.92 N/A N/A

Tibialis anterior 17.33 N/A N/A

Soleus 5.94 N/A N/A

Total muscle fatigue 100.0 173.76 240.59

Table 7.1: Muscle Fatigue Distribution

Normal Flexible Ankle Solid Ankle

Total muscle fatigue 2.02 3.51 4.86

Distance Travelled (m) 15.4 15.2 9.74

Fatigue / Distance 0.13 0.23 0.50

Table 7.2: Muscle Fatigue per Unit Distance Travelled
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The optimized results indicate that the model correctly predicts a higher cost of walking

per unit distance travelled for the prosthetic models than the normal model. This result

agrees with the observations of metabolic energy consumption in experimental studies [38],

and suggests that the model takes into account factors that have been ignored in simpler

analyses [34].

The results also show that the flexible prosthetic ankle model, which allows for energy

storage in the ankle joints during the stance phase, involves a lower level of fatigue than

the simple SACH ankle prosthetic model. While the total muscle fatigue for the SACH

model was greater, the distance travelled was less. This was due to the balance controller

slowing the walking motion for the SACH model; without flexibility in the ankle joint, the

controller required a more vertical stance and slower gait to maintain stability. The lower

fatigue requirements for the flexible ankle model agree with the results of experimental

studies comparing the metabolic energy consumption of amputees using an energy-storing

ankle joint [43].



Chapter 8

Conclusions and Future Development

The development of this research required the use of several methods of gait analysis in

addition to the common multi-body mechanical tools. These methods included optimiza-

tion of kinematics to minimize energy consumption; a method of muscle force distribution

to solve the redundant force problem; a stabilizing controller design to maintain balance;

and a prosthetic model that could be used to explore the difference in muscle forces and

energy flow from the normal walking model.

In this chapter, the effectiveness of each of these methods is discussed, and conclusions

from the results in Chapter 7 are presented. The chapter concludes with a discussion of

some features that may improve the model and some directions for future research.

8.1 Optimization Methods in Gait Analysis

The use of an optimization method in the model was motivated by the hypothesis that the

pattern of normal human walking is selected to minimize metabolic energy requirements.

Three different applications were found for optimization to be used to find an optimal gait

pattern, which are discussed below.

109
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8.1.1 Kinematic Trajectory Selection

To find an optimal gait pattern for the model, the joint trajectories were modified by the

optimization algorithm to minimize the total fatigue per unit distance travelled. The effect

of this optimization was significant. Optimization of kinematics for the normal model

reduced the computed total fatigue measure by approximately a factor of two from the

fatigue computed for the initial joint kinematic trajectories. While the actual variation in

the kinematics selected by the optimization was relatively small, the effect on the estimated

metabolic cost of walking was substantial.

The pattern search algorithm worked well for this problem. It is suitable for nonlinear

problems in which there is no analytical expression for the objective function, as is the

case in these simulations. The pattern search is not a global optimization method; unlike

a genetic-algorithm search for example, it does not attempt to find a global minimum so-

lution. Instead, it finds a local minimum within a configurable search range, starting from

a suitable initial guess. This feature is appropriate for the walking simulation problem,

since an appropriate initial guess is available from the kinematic measurements in exper-

imental studies. The purpose of the kinematic optimization was to tune the gait pattern

to compensate for the variation in the model from the original walking subject, and it

accomplished this effectively.

8.1.2 Muscle Force Distribution

The determination of the set of muscle forces used to generate the necessary joint torques

at each instant of the simulation also required an optimization method. This optimization

selected one of an infinite number of possible muscle force solutions, by finding the solution

that minimizes the total instantaneous fatigue rate.

For this problem, the MATLAB fmincon function was used, which uses an SQP (se-

quential quadratic programming) search algorithm to find an optimal solution X to the

matrix equation A = BX while minimizing an objective function (the total instantaneous

fatigue rate) and satisfying a set of constraint equations (the generation of required joint

torques from muscle forces).

The difficulty in this optimization is in the selection of an appropriate objective function
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that reasonably represents the muscle recruitment patterns observed in animals. The

fatigue model, based on the work of Crowninshield [19], uses a static optimization at each

time step, and was found to be satisfactory despite its limitations, such as a lack of dynamic

state memory as discussed in Chapter 5. The success of the static optimization results are

in agreement with those of Anderson and Pandy [4], who found that optimization of gait

based on muscle activity using both static and more computationally intensive dynamic

optimization methods gave very similar results.

With additional computational resources, the fatigue model could easily be replaced

with a more sophisticated model that includes the force versus length and force versus

velocity relationships of muscle. A Hill-based muscle model, as reviewed in Chapter 5,

would more accurately represent the behaviour of muscle in the system, and could be used

to compute a more accurate measure of metabolic energy cost. Incorporating such a model

into the system would be a straightforward replacement of the metabolic cost calculation

in the objective function for the optimization loop. For practical purposes on a single

CPU machine, however, the simulation of a Hill-based dynamic muscle model required an

unacceptable amount of computation time compared to the static optimization approach.

8.1.3 Balance Controller Optimization

The tuning of the balance controller also relied on an optimization approach to select

appropriate values for the gain parameters.

The control problem was broken down into three stages that could be designed with

a physically intuitive approach, similar to the methods proposed by Pratt for controlling

bipedal robots [50]. After an initial attempt at solving the stability problem with a mono-

lithic nonlinear controller, the intuitive strategy proved to be straightforward to understand

and more effective in controlling the model.

Because of the very nonlinear nature of the problem, traditional control design methods

could not be used to determine the controller gains. Instead, the same method used to

optimize the joint kinematics was used to find optimal values for the gains by minimizing

the variation in stride period between each step.

The resulting controller was very effective in maintaining the balance of the model for

a simulation of arbitrary user-specified length. With the controller maintaining balance
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during the simulation, many consecutive steps could be analyzed, in contrast to the typical

analysis of only a single-step [3]. Since the controller drove the joint torques, and did not

rely on any external support for the model, the total muscle fatigue calculations include

the energy cost of maintaining balance.

8.2 Increased Energy Cost in Prosthetic Models

The results of the three models, normal, flexible ankle prosthesis, and solid ankle prosthe-

sis, show variations in total muscle fatigue that are in agreement with those observed in

physiological studies [38]. The normal model with an actuated ankle produced the least

muscle fatigue; the passive flexible ankle model involved greater fatigue; and the solid ankle

model produced the greatest total muscle fatigue.

The higher levels of fatigue for the prosthetic models correlate with the higher energy

cost of amputee gait observed by Hoffman [38] and Waters [65]. The reduced levels of

fatigue for the flexible ankle over the solid ankle prosthetic model correlate with the ob-

servations of Macfarlane [43] when comparing the energy cost of amputees using flexible

and solid prosthetic ankle joints.

These results contrast favourably with those of Gitter [34], which found that center-

of-mass dynamic analysis models predicted that prosthetic gait should require less energy

than normal gait.

However, a comparison of the computed muscle force patterns for the prosthetic model

to the EMG muscle activation patterns observed in amputee gait by Winter and Seinko

[71] show a distinct contrast. The experimentally measured activation patterns indicate a

significant amount of muscle co-contraction at the hip and knee joints, which is not present

in the simulated model results. The net results of the simulation are correct, predicting

a higher metabolic cost for amputees. This additional cost is computed as a result of

higher individual muscle forces creating control torques at the knee and hip, whereas in

the physiological system a higher level of muscle co-contraction is used to increase joint

stiffness and control. An enhancement to the simulation may model this physiological

behaviour by including a factor in the joint position controller that increases the control

gains or joint damping as a function of the co-contraction around the joint.
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8.3 Contributions

This thesis represents two contributions to research into the modelling and simulation of

human locomotion. First, a method of stabilizing a forward dynamics simulation of human

walking has been described. This method uses feedback control to modulate the speed of

the lower limbs in such a way as to maintain the balance of the walking model. The use of

such a balance controller allows for steady-state analysis of many steps of the walking gait,

and enables investigation into the changes in stability and cost of locomotion for different

models.

The second contribution is the development of a mechanical and metabolic energy cost

estimation model, which was applied to the comparison of normal and amputee gait. This

model successfully generated results indicating a higher cost of locomotion for amputees,

in agreement with experimental studies.

8.4 Future Development

The model presented can be enhanced in a number of areas, and may be applied to nu-

merous investigations into energy cost of walking gait.

8.4.1 More Efficient Dynamic Model

The ADAMS mechanical simulation package was selected for the development of this model

for ease of design and visualization of the model behaviour. However, now that the model

has been developed, a more efficient dynamic simulation package would be appropriate to

reduce the computational cost of the simulation and optimization processes. For example, a

system such as DynaFlex [55] can be used to symbolically generate a smaller set of dynamic

equations based on a linear graph representation of the mechanical system. Optimized C

code can then be generated to compute the numerical solutions for the system simulation.

A more efficient simulation system will enable more detailed modeling in future research,

such as incorporation of dynamic muscle models into the mechanical system.

In addition to improved computational efficiency, an improved implementation of the

model will allow for the use of a more distributed simulation architecture on a networked
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cluster of computers. This will enable the parallel execution of many simulations, greatly

speeding the optimization process.

8.4.2 Improved Muscle Model

The muscle stress based estimation of energy cost was selected for the initial implemen-

tation of the walking model because it showed reasonable correlation with physiological

data [19] and was computationally efficient, as required for the optimization methods. To

improve the fidelity of the model, this calculation block could be replaced with a more

realistic expression of metabolic energy cost as a function of muscle force, length, and

velocity, using one of the many models based on the work of Hill [37].

The muscle model could also be improved with the addition of a spring component

to account for energy storage in dynamic muscle motion. The work of Brown and Cheng

[12] may provide some insights into a more comprehensive muscle model, though their

implementation is too detailed and CPU-intensive to be practical in this application.

8.4.3 Improved Objective Function

A number of alternative objective functions have been suggested for solving the muscle

force distribution problem, and would also be suitable for computing the objective value

of the kinematic optimization loop. Some of these are reviewed by Silva [57], as discussed

in Chapter 5, and could be incorporated easily into the model for comparison with the

current results.

Additional components may be added to the objective function to model other physio-

logical goals of human walking. For example, there may be a tendency to minimize internal

joint forces between limb segments; this could lead to a gait with less shock at the instant

of heel contact. There may also be a physiological goal of minimizing vertical displacement

or velocity of the head. Including these factors with appropriate weights in the objective

function could lead the optimization to a more natural and smoother simulation of walking

gait.
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8.4.4 Improved Controller Design

The balance controller effectively stabilizes the model, but could be improved to produce

a more natural behaviour. One feature of the controller is an extremely fast response.

This is generally desirable in a feedback controller design, since it minimizes the feedback

delay that can lead to an unstable system. However, the speed of the controller and

simulated actuator is much faster than a physiological muscle system; this leads to the high-

frequency signals in the muscle force and joint torque results that could not be generated

by a physiological system. To better model the human control system, the output of the

controller could be low-pass filtered and delayed to approximate the force generation and

twitch response time of muscle. This would produce smoother force and torque results

that resemble more closely those measured in experimental studies.

However, this change alone will degrade the controller performance, and likely make

it difficult to find controller gains that can balance the model. To compensate, one or

more feed-forward terms could be added to the controller. The current design uses only

feedback control; that is, the controller can only respond to errors in the current state

of the system. By adding feed-forward control components, the controller would be able

to reduce tracking errors by predicting the future required controller output based on the

current state.

Feed-forward controller terms would reasonably model a biological control system,

which produces muscle activations in anticipation of required forces, particularly in cyclic

motion such as walking. In combination with a bandwidth-limited response, the controller

would more accurately model human walking behaviour.

8.4.5 Prosthetic Limb Design Applications

One of the goals of this thesis was to develop a model that could be used to improve the

design of prosthetic limbs. While the current model has been developed as a research

platform, the methods presented here could be used in the development of a prosthetic

design tool that allows prosthetic designers to evaluate the effect of parameter changes on

the efficiency of gait.

An initial investigation could examine the effect of varying the mass and mass dis-
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tribution of the limb segments in the prosthetic model. By making the mass of one leg

an optimization variable, the ideal mass to minimize muscle fatigue can be found by the

optimization algorithm. The results of such a study would provide insights into the value

of lighter and more costly materials for prosthetic limb design.

By replacing the knee joint with a passive model, the relative metabolic energy cost of a

wide variety of existing prosthetic knee designs can be investigated. To effectively evaluate

these more complex designs, the model will likely need to consider additional optimization

goals, such as joint stiffness and static stability, which become more significant in above-

knee amputees.

8.4.6 Summary

The model presented has demonstrated an effective estimation of the relative energy cost

for amputee gait from a mechanical model simulation. The application of the methods

developed in this thesis will hopefully lead to improved prosthetic design and greater

mobility for lower-limb amputees.



Appendix A

Implementation Details

A.1 Modelling and simulation software packages

Two software packages were used for the implementation of the methods developed in this

thesis. ADAMS was used to develop and simulate the mechanical model, and MATLAB

was used to run the optimization algorithm, including computation of the muscle forces

and fatigue.

A.2 ADAMS modelling and simulation package

ADAMS is a mechanical system modelling and simulation package available from MSC

Software. For the implementation of this project, MSC.ADAMS Version 12 was used. It

provides a graphical interface for developing 3D mechanical models (ADAMS/View), and

a simulation engine for both kinematic and dynamic analysis (ADAMS/Solver).

A.2.1 Simulation configuration and execution

To enable scripted automation and repeatability of the simulation, the model was built

using ADAMS command files that describe each component of the model, the constraints,

and the simulation parameters in text. For each run of the simulation, the parameters

of the model can be varied by generating a text command file that sets the appropriate
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parameters. The model was generated using rigid bodies connected by revolute joints,

based on the parameters listed in Chapter 4.

By default, ADAMS creates 3D models. To restrict the analysis to motion in the sagittal

plane, the torso was connected to the ground via a constraint allowing only vertical and

horizontal translation, and rotation in the sagittal plane.

A.2.2 Simulation parameters

The following parameters were used for the ADAMS solver for the dynamics equations.

Parameter Value

Formulation I3

Integrator GSTIFF

Integrator Tolerance 1.0E-5

Time Step 0.01s

Table A.1: ADAMS simulation parameters

A.3 MATLAB

MATLAB Version 6.5 was used to implement the energy optimization algorithm and muscle

force distribution calculation described in Chapter 3.

A.3.1 Initial trajectory coefficients

The optimization of joint trajectories requires an initial guess for the values of the opti-

mization variables, in this case, coefficients of the Fourier series expressions for the joint

motions. The MATLAB function lsqcurvefit was used to compute the initial values for

the coefficients. The lsqcurvefit function fits functions to data points by solving an op-

timization problem where the optimization variables are the function parameters and the

objective function is the sum of the mean squared error between each data point and the

corresponding value of the curve function.
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The equation for each joint has the form of Equation A.1.

θj(t) = C0 +
5∑

k=1

[
Ak sin

(
2πkt

period

)
+ Bk cos

(
2πkt

period

)]
(A.1)

For each joint, lsqcurvefit was used to solve for C0, Ak and Bk, for k = 1...5, while fitting

the equation to the data given in [69]. The resulting computed coefficients are given in

Table A.2.

Coefficient Hip Joint Knee Joint Ankle Joint

C0 -0.1256 0.4177 -0.0400

A1 0.1175 -0.3847 0.1095

B1 -0.1851 -0.1410 0.0093

A2 0.0035 0.1891 -0.1320

B2 0.0679 -0.2619 0.0025

A3 -0.0356 0.0729 0.0164

B3 0.0153 0.0056 -0.0360

A4 0.0017 0.0134 -0.0252

B4 0.0027 -0.0174 0.0387

A5 0.0045 0.0079 -0.0173

B5 0.0114 -0.0039 -0.0070

Table A.2: Initial values of Fourier series coefficients

A.4 ADAMS/MATLAB Interface

ADAMS supports a number of interfaces for implementing control systems, including a

MATLAB interface and an internal control systems interface. For this design, however,

the simplest mechanism was to implement control blocks using ADAMS measures and dif-

ferential equation expressions. The required state variables are either available as ADAMS

measures or computed from available measures, and the output of each block is imple-

mented as a function measure, which is computed at each time step. The control gains are

all created as design variables, so they may be easily set and modified.
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ADAMS operates in either an interactive mode with a graphical user interface, or in a

non-interactive ‘batch’ mode where it executes a sequence of instructions from a command

file. The second mode was used to implement the simulation interface between ADAMS

and MATLAB Version 6.5. A command file was created that loaded the mechanical model,

then read a parameter command file specifying model parameters and joint trajectories,

executed the simulation over several steps of the gait cycle, and finally wrote the kinematic

and kinetic results to text files.

For every iteration of the optimization algorithm running in MATLAB, the ADAMS

simulation had to be executed with a particular set of parameters and joint trajectories.

The parameters and trajectories were written to the ADAMS parameter command file. The

MATLAB dos() function was then used to execute ADAMS with the simulation command

file that generated the kinematic and kinetic results corresponding to the optimization

variables of the current iteration.

The MATLAB dlmread() function read the results from the text files into MATLAB

arrays, where they were available for further calculations. Based on the joint torque data,

the required muscle forces are calculated (as described in Chapter 5). The total fatigue

computed from the muscle forces over the gait cycle was then used to evaluate the objective

function for one iteration of the optimization algorithm.
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