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Abstract

With the use of unmanned aerial vehicles (UAVs) becoming more widespread, a need
for precise autonomous landings has arisen. In the maritime setting, precise autonomous
landings will help to provide a safe way to recover UAVs deployed from a ship. On land,
numerous applications have been proposed for UAV and unmanned ground vehicle (UGV)
teams where autonomous docking is required so that the UGVs can either recover or service
a UAV in the field. Current state of the art approaches to solving the problem rely on
expensive inertial measurement sensors and RTK or differential GPS systems. However,
such a solution is not practical for many UAV systems.

A framework to perform precision landings on a moving target using low-cost sensors
is proposed in this thesis. Vision from a downward facing camera is used to track a target
on the landing platform and generate high quality relative pose estimates. The landing
procedure consists of three stages. First, a rendezvous stage commands the quadrotor on
a path to intercept the target. A target acquisition stage then ensures that the quadrotor
is tracking the landing target. Finally, visual measurements of the relative pose to the
landing target are used in the target tracking stage where control and estimation are
performed in a body-planar frame, without the use of GPS or magnetometer measurements.
A comprehensive overview of the control and estimation required to realize the three stage
landing approach is presented.

Critical parts of the landing framework were implemented on an AscTec Pelican testbed.
The AprilTag visual fiducial system is chosen for use as the landing target. Implementation
details to improve the AprilTag detection pipeline are presented. Simulated and experimen-
tal results validate key portions of the landing framework. The novel relative estimation
scheme is evaluated in an indoor positioning system. Tracking and landing on a moving
target is demonstrated in an indoor environment. Outdoor tests also validate the target
tracking performance in the presence of wind.
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Chapter 1

Introduction

1.1 Motivation

As quadrotor unmanned aerial vehicles (UAVs) have become more accessible to commercial,
research, and military users, many applications have been pushing the operating limits of
the vehicles and using them in increasingly difficult settings. For many scenarios, a large
and stationary landing site is no longer guaranteed, which greatly increases the difficulty
for autonomous landings. These scenarios can be generalized to two main areas: maritime
landings and unmanned ground vehicle (UGV) docking. The former includes applications
where UAVs are retrieved on a ship over water. In the latter, UAVs are teamed up with
UGVs to perform more elaborate tasks that require a longer range or longer flight time
than can be achieved by UAVs alone. This cooperation often requires the UAV to be able
to land on the UGV autonomously while in the field. In both cases, a safe and reliable
system for autonomous precision landing would be highly beneficial.

In 2012, researchers from the University of Waterloo deployed a hexacopter from a
ship in order to place a GPS beacon on an iceberg, shown in Figure 1.1. The conditions
throughout this deployment were near ideal for the ship but proved to be very challenging
for the hexacopter. The waves were 1-2 m in height, winds were around 10-20 knots, and
the boat was moving at a significant speed. In the process of recovering the hexacopter,
the human pilot encountered difficulties with wind and as a result the hexacopter crashed
and was no longer operational. This example serves to demonstrate why falling back to
human controlled flight for these difficult landings is not sufficient. In this case, a highly
skilled pilot was still unable to safely recover the UAV.
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Figure 1.1: A hexacopter returns to a ship after dropping a GPS beacon on an iceberg.

A more successful example of maritime UAV deployment comes from researchers at
the University of Alaska Fairbanks. An Aeryon Scout quadrotor system was flown from a
ship to perform wildlife monitoring [28]. The Scout and a photo taken by it are shown in
Figures 1.2a and 1.2b. After the surveying was complete, the UAV recovery was performed
in a semi-autonomous manner. A human operator commanded the quadrotor to descend
to about head-level on the ship while a second operator walked beneath the vehicle to
grab the legs. The first operator then shuts off the motors. A number of other maritime
applications have also been proposed including coastal surveillance [21] and search and
rescue tasks.

While the semi-autonomous UAV recovery method has proven to be effective, that
approach requires multiple skilled operators and greatly increases the likelihood of human
injury. The requirement for skilled operators makes the use of UAVs prohibitively difficult
for many groups. It also eliminates the possibility of more efficient robotic teams that do
not require human operators. Maritime based UAV applications can benefit greatly from
autonomous UAV landings for retrieval.

On land, researchers have proposed coordinated robotic teams comprised of UAVs and
unmanned ground vehicles (UGVs). By teaming up UAVs with UGVs, long range tasks
that go beyond the flight range of a UAV become feasible. These long range tasks include
large-scale infrastructure inspection and search and rescue missions. Since UAVs have
restrictive weight payloads, they often carry lower capacity batteries which limit their flight
time. UGVs have been proposed as mobile charging stations to recharge UAVs without
the need to return to the original launch site. This approach can also be applied to enable
persistent monitoring tasks [14]. While works on coordinated UAV and UGV teams are
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(a) An Aeryon Scout quadrotor in flight. (b) Sea lions surveyed from a Scout quadrotor.

Figure 1.2: Researchers from the University of Alaska Fairbanks used an Aeryon Scout
quadrotor deployed from a ship to monitor sea lion populations in the Aleutian islands [8].

still in their infancy, it is clear that precision landings of the UAVs on the moving UGVs
will be necessary to facilitate recharging during long range missions.

Autonomous landing of a quadrotor UAV on a small moving area poses many chal-
lenges [26, 2]. Low-cost GPS units found on most quadrotor UAVs have errors as high as
5 m. Combined with the GPS errors on the landing target, the relative position estimate
could be off by as much as 10 m if calculated using GPS alone. Attempting a landing with
such low-quality estimates will have a very high probability of failure.

Magnetometers on UAVs are also commonly problematic. They are subject to a barrage
of electrical noise from the motors and computers of the vehicle, resulting in large heading
errors which are further aggravated by operation in polar regions of the Earth. Poor
knowledge of the vehicle’s heading prohibits the generation of purposeful control commands
required for accurate inertial positioning and landing.

In the maritime deployment scenario, the movements of the ship due to the waves adds
an additional layer of difficulty to the precision landing problem. The movement of the ship
is difficult to predict due to waves, ocean currents, and other disturbances. Unexpected
ship movements can cause a UAV to touch down on the ship deck at an inopportune time
where the ship is rising quickly or the attitude of the ship is not suitable for a landing.
Low-quality pose measurements and a moving landing surface make autonomous precision
landing a difficult task to perform.

Fortunately, many popular applications for UAVs, such as surveillance, search, and
mapping missions, inherently require the inclusion of a camera on the UAV platform. The
camera can be used to generate accurate relative pose estimates between the UAV and the
landing area. The relative positioning error can be further improved through the use of
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visual targets mounted on the landing site, which are easily identified and tracked using
the camera. In this work, a downward facing camera mounted on a UAV is leveraged to
track a visual target and produce high quality position estimates. The high-quality vision
based estimates are then used to perform a precision landing on a moving target.

1.2 Related Work

Vision Based Landing

Early on, researchers were interested in the idea of extracting accurate positioning infor-
mation from vision data. The method through which visual data are used has evolved over
time from simple colour tracking to a vision based simultaneous localization and mapping
approach. Shakernia et al. propose a vision based approach extending the ego motion
problem of tracking features in an unstructured environment [23]. The authors extended
existing camera pose estimation algorithms to work with coplanar points located on the
landing pad. Saripalli et al. demonstrated successful landings on a target helipad using
vision to augment the position estimates from DGPS [22]. The authors also present an
image processing scheme to extract the position of the target helipad from a binary image,
a high level state machine to drive the helicopter functions, and a behaviour based control
scheme used to detect the landing target and maintain stability. They do not, however,
consider the effects of wind in the inertial frame, and rely on a precise vehicle model for
nonlinear control. A more recent work by Tribou et al. proposes a method through which a
quadrotor could follow an arbitrary relative trajectory through position based servoing by
tracking features on an object and generating a sparse map. Again, a precise vehicle model
is required for the feedback linearizing controller, and the method was not demonstrated
experimentally [25].

Ground Vehicle Docking

A large focus of precision landings is to facilitate docking with an UGV. Voos and Bou-
Ammar proposed a 2D non-linear tracking controller to accomplish the task [27]. Their
approach comes from classical missile guidance problems. They describe the dynamics of
the two vehicle system with differential equations describing the distance between the two
vehicles and the line-of-sight angle. Then they present a control law which is demonstrated
to be asymptotically stable. As their focus is solely on the control aspect of the problem,
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Voos and Bou-Ammar did not present any experimental results for their proposed con-
troller. They suggest using a differential GPS for the majority of the approach and to
improve the estimation quality with ultrasonic or vision based measurements for the final
landing.

In some scenarios, it is feasible to have a UAV and UGV work in cooperation to fa-
cilitate the docking. A cooperative landing scheme was presented by Daly et al. [2]. In
their approach, the two vehicles use a joint decentralized controller in order to reach a
rendezvous point for landing. The authors also analyse stability of the joint controller
in the presence of time delays and determine an upper bound on acceptable communica-
tion delays. Subsequent experiments [12] have successfully demonstrated their approach in
both indoor and outdoor environments. A real-time kinematic (RTK) GPS provided sub
centimetre level positioning accuracy for the outdoor experiment.

Kim et al. perform a landing on a moving target using visual colour detection and an
adaptive path following controller [10]. The quadrotor testbed they used was equipped with
a smartphone with a fish-eye lens attachment. All image processing and target detection
was performed on the smartphone. An unscented Kalman filter takes the target position
in the camera frame as inputs and estimates the horizontal distance from the quadrotor
to the tag in the world frame. The solution by Kim et al. was developed around the same
time as the solution that is presented in this work. While both approaches are similar, the
solution by Kim et al. differs in many design choices including: target detection method,
estimation framework, and controller design. Their estimation method focuses on the
camera dynamics and the fish-eye lens model rather than quadrotor dynamics.

Maritime Landing

Moving to the maritime setting, the problem becomes a bit more difficult. Ships are
subject to the movements of the waves and can move unpredictably. Researchers in the
maritime setting have a larger focus on estimating the orientation of the ship deck in order
to determine a safe time to land.

Boeing’s Unmanned Little Bird (ULB) is perhaps the best demonstration of a successful
ship landing by a rotary-wing UAV. They have demonstrated over 100 landings on a moving
trailer platform and 16 landings on a ship in the ocean [6]. The system relies on high
accuracy relative position and inertial orientation measurements from a NovAtel RTK
GPS with an integrated IMU, a radar altimeter, and a ship fitted with a Landing Period
Designator (LPD). The LPD measures the wave induced motion and predicts times where
the ship’s movement will be at a minimum. Additionally, a grate and anchor system was
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implemented to ensure that the helicopter would latch onto the landing pad and eliminate
the risk of tip over. Although effective, the solution exceeds the payload capacity and
intended cost of the small UAVs under consideration. Furthermore, the requirements for
an LPD and specialized landing grate are restrictive as they limit the types of ships a UAV
can land on.

Garratt et al. take a different approach and tackle the issue of estimating deck attitude
on a ship. In their work, they look at landing an autonomous helicopter on a large ship
using a narrowband light beacon on the ship and a custom made lidar which scans a circle
on the ship’s deck [5]. The light beacon is detected by an optical camera on the helicopter
and provides a bearing to the landing platform. The lidar, which forms their deck attitude
sensing system (DASS), determines the relative orientation and range of the ship deck.
The DASS performed very well in their experiments, however the added bulk of a custom
lidar would be restrictive given the payload constraints of small UAVs.

Venugopalan et al. present a solution to autonomously land a Parrot AR Drone on a
kayak [26]. The authors approached the problem by using the hover mode of the vehicle to
stabilize the vehicle against disturbances. Images captured by a downward facing camera on
the Parrot were streamed to an offboard computer to calculate the relative position of the
landing pad and send the appropriate commands to close the gap between the quadrotor
and kayak. Also presented is a novel manoeuvre where the quadrotor rolls and pitches
on the spot in order to search beyond the camera’s field of view. Although the authors
successfully demonstrate autonomous landing using a low cost vehicle, the approach is
limited by requiring offboard computation and is demonstrated only in benign conditions
due to the limited flight envelope of the vehicle employed. Venugopalan et al. ignore the
issue of attitude changes on the landing platform.

1.3 Contributions and Approach

This work presents a framework to perform a precise autonomous landing of a vertical take-
off and landing (VTOL) aircraft onto a moving target. The landing is achieved through
three stages. The first stage is a rendezvous, where the quadrotor calculates a rendezvous
point to intercept the landing target. Rendezvous requires low relative pose accuracy and
can rely on GPS and inertial measurement unit (IMU) data. Then a target acquisition
stage ensures that the quadrotor is locked onto the visual target for the final descent. If
necessary, a search pattern will be flown in order to acquire the target. In the final descent,
visual measurements of a target on the landing pad provide high quality pose estimates to
guide the quadrotor to a safe landing.
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During the final descent, a novel relative estimation scheme is used in order to track
the position and velocity of the aircraft with respect to the moving landing target. These
estimates occur in what is defined as the body-planar frame, which eliminates the need to
rely on inaccurate data from both GPS and magnetometers.

Aside from a downward facing camera, this work relies on sensors that are common on
UAV systems. No assumptions are made on the quality of the sensors beyond the minimum
quality required for stable flight. These considerations make the approach presented in this
work easily implementable on a wide variety of VTOL UAVs.

The following chapters will document the design and theory behind this precision land-
ing framework. Chapter 2 describes the dynamics and sensor models involved with a
typical quadrotor system. Chapter 3 presents the control and estimation framework to
accomplish the precision landing. Chapter 4 discusses the experimental setup and results
from simulation and flight testing. Finally, Chapter 5 concludes the findings and results of
this work and proposes future improvements.

7



Chapter 2

System Modelling

In this chapter, the system models relevant to the precision boat landing are presented.
Section 2.1 outlines the major coordinate frames used within this work. Section 2.2.1
describes the dynamics related to the quadrotor vehicle as well as the relative dynamics
between the quadrotor and the moving landing target. The relative dynamics are used
for estimation and control during the target tracking stage of the landing. Finally, sensor
models are presented in Section 2.3.

2.1 Coordinate Conventions

Five main coordinate frames are required in this work. The inertial or east-north-up
(ENU) frame, denoted E, is the basis for GPS measurements and absolute positioning.
East, north, and up will also be referred to as the inertial xE, yE, and zE, respectively.
The quadrotor body frame Q, shown in Figure 2.1 is defined with the xQ-axis along the
line from rotor 2 to rotor 4 emanating from the centre of gravity, yQ along the line from
rotor 1 to rotor 3, and zQ upward. The quadrotor body frame is used to define vehicle
motion and forces when convenient. A camera frame is defined at the optic centre of the
camera with zC axis perpendicular to the image plane. The body-planar frame, denoted
by Q0, is defined as a coordinate frame fixed to the centre of rotation of the quadrotor and
rotated to the same yaw as the quadrotor. The horizontal plane of the body-planar frame
is coplanar with the horizontal plane of the inertial frame, E. Finally, a target or marker
frame, M , is defined as the body frame of the fiducial marker with xM pointing forward, yM
to marker-right, and zM up. The five coordinate frames and the transformations between
them are illustrated in Figure 2.1.
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Figure 2.1: Coordinate frames and transformations. Relative position measurements of a
fiducial marker, M , are taken in the camera frame, C, and then rotated into the body-
planar frame of the quadrotor, Q0, where estimation and control occur for the final sequence
of the landing.

Let RB
A ∈ SO(3) represent the rotation matrix which rotates a point in frame A into

frame B. Let PB
A represent the position of the origin in frame B with respect to frame A.

The homogeneous transformation between frame A and frame B, TBA , can be expressed as

TBA =

[
RB
A PB

A

0 1

]
. (2.1)

Since a large focus of this work focuses on x and y axis translation in the inertial or
body-planar frames, an overbar is used to denote the horizontal components of a vector
R3. For instance,

PE = [xE, yE, zE]T P̄E = [xE, yE]T .

Rotations in R2 about the yaw-axis alone will also be denoted with an overbar,

R̄ψ =

[
cosψ sinψ
− sinψ cosψ

]
.
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(b) Quadrotor free-body diagram.

Figure 2.2: (a) 3-2-1 Euler angles are used to describe the rotations of the quadrotor
system. The angles φ, θ, and ψ illustrate the axis of rotation for roll, pitch, and yaw,
respectively. (b) The primary forces acting on a quadrotor are gravity, thrust, and drag.
Force fi is produced by ith rotor [18].

2.2 System Dynamics

2.2.1 Quadrotor Dynamics

A free-body diagram of quadrotor system is shown in Figure 2.2b. The rotors along the
yQ axis, rotors 1 and 3, spin in the clockwise direction while the rotors along the xQ axis,
rotors 2 and 4, spin in the counter-clockwise direction. Each rotor generates a thrust in
the zQ direction and a torque about the zQ axis, which are used to actuate the quadrotor.

The net thrust generated by all four rotors accelerates the system in the zQ direction.
If either the roll, φ, or pitch, θ, of the vehicle is non-zero, a component of the net thrust
will accelerate the quadrotor in the xE-yE plane. Net torques about the body xQ and yQ
axes can be achieved by varying the amount of thrust produced by opposing rotors. A net
torque about the body zQ is created by differences in the net speeds of counter-rotating
rotors. That is, if the net speed of rotors 1 and 3 is different than the net speed of rotors
2 and 4, there will be a net torque about the zQ axis.

Euler angles are used to describe the attitude of the vehicle through a series of roll,
pitch, and yaw rotations. To avoid singularities with the Euler angles, the rotation angles
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must be restricted to −π
2
< φ < π

2
, −π

2
< θ < π

2
, and −π < ψ < π.

The quadrotor dynamic models used in this work are well established [7, 17], and rely
on mixed-frame rigid body dynamic equations for translation and rotation. The mixed
frame is used since measurements are taken in both the inertial and the body frame. In
particular, the GPS receiver measures the absolute position in the inertial frame while the
accelerometers, gyroscopes, and magnetometers measure accelerations, rotation rates, and
the magnetic field vector in the body frame.

The quadrotor inertial position is denoted

PE = [xE, yE, zE]T ∈ R3

and the body rotation rate is
ωQ = [p, q, r]T ∈ R3.

From rigid body dynamics, the resulting equations of motion are

mP̈E = FE (2.2)

Jω̇Q + ωQ × JωQ = MQ, (2.3)

where m is the mass of the vehicle, FE ∈ R3 denotes the applied forces in the inertial
frame, and MQ ∈ R3 denotes the applied moments in the body frame. The inertia of the
vehicle, J , is the diagonal matrix

J =

 Jx 0 0
0 Jy 0
0 0 Jz

 .
The relationship between the body rotational rates and Euler rates [4, p. 40] is φ̇

θ̇

ψ̇

 =


1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)

0
sin(φ)

cos(θ)

cos(φ)

cos(θ)


 p
q
r

 . (2.4)

In simulation, additional disturbance terms are added to both the translational and
rotational dynamics to represent unmodelled dynamics. The resulting models are then

mP̈E = FE +DE (2.5)

Jω̇Q + ωQ × JωQ = MQ +DQ, (2.6)

where DE ∈ R3 denotes disturbance forces drawn from a zero-mean Gaussian distribution,
N (0,ΣF ), in the inertial frame and DQ ∈ R3 denotes disturbance torques drawn from a
zero-mean Gaussian distribution, N (0,ΣM), in the body frame.
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Translational Dynamics

Forces acting on the vehicle can be modelled as thrust, Ft, drag, Fd, and gravity, mg,
giving the equation

FE = Ft + Fd −mg. (2.7)

The drag term, Fd, is detailed further in Section 2.2.1. Given that the ith rotor produces
a thrust fi in the body zQ direction, the collective thrust is

uz =
4∑
i=1

fi. (2.8)

The collective thrust, uz, is used as an input to the system. Then the resulting thrust in
the inertial frame can be written as

Ft = RE
Q

 0
0
uz

 , (2.9)

which is purely vertical in the body frame.

Rotational Dynamics

The moments applied to the vehicle are most easily expressed in the quadrotor body frame
and include moments generated through differences in rotor thrusts, Mt, and rotational
drag, Md. The rotational dynamics are

MQ = Mt +Md. (2.10)

The torques generated by the rotors are used as the rotational control inputs and are
related to the individual rotor thrusts by

Mt =

 uφ
uθ
uψ

 =

 d(f4 − f2)
d(f1 − f3)

τ(f1 − f2 + f3 − f4)

 , (2.11)

where d denotes the moment arm of the rotor hub about the centre of gravity and τ denotes
the static thrust to torque ratio. The rotational drag Md is described in Section 2.2.1.
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Drag Model

For simulation and estimation purposes, parasitic drag is the only source of translational
drag modelled in this work. Parasitic drag is the resistive force caused by an object moving
through air. A common definition for parasitic drag [17] is

Fdi =
1

2
ρairCiv

2
i , (2.12)

where Fdi is the parasitic drag for axis iE, ρair is the air density, Ci is the aerodynamic
coefficient for axis i, and vi is the relative airspeed of the quadrotor for axis i. The parasitic
drag is in the direction that opposes the relative airspeed of the vehicle. A simplifying
assumption that the parasitic drag acts on the centre of gravity of the quadrotor is made.
Since the vehicle is symmetric and most of the area is in line with the rotor plane, this
assumption is reasonable. The implication of this assumption is that the translational
parasitic drag only applies a translational force on the quadrotor and does not produce a
moment about the centre of gravity of the quadrotor.

Grouping the two constant terms and taking into account the direction of the relative
airspeed, the drag model can be written in vector form as

Fd =

 Fdx
Fdy
Fdz

 = sgn(vw − ṖE) ∗ µtE ∗
(

(vw − ṖE) ∗ (vw − ṖE)
)
, (2.13)

where ∗ denotes element-wise multiplication, vw ∈ R3 is the inertial free stream velocity of
the air (i.e. the wind field in which the quadrotor finds itself), and µtE = RE

Q[µtx, µ
t
y, µ

t
z]
T

is a rotated vector of body frame translational aerodynamic drag coefficient.

Rotational drag is modelled similarly to the translational case. It is treated as a parasitic
drag that is proportional to the square of the angular velocity and in the direction opposing
the angular velocity. This is expressed as

Md = − sgn(ωQ) ∗ µrQ ∗ (ωQ ∗ ωQ) , (2.14)

where µrQ = [µrx, µ
r
y, µ

r
z] is a vector of rotational aerodynamic drag coefficient in the body

frame.

With the drag terms defined, the quadrotor model is complete. The translational
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dynamics are fully described by

mP̈E = RE
Q

 0
0∑4
i=1 fi

+ sgn(vw − ṖE) ∗ µtE

∗
(

(vw − ṖE) ∗ (vw − ṖE)
)
−mg. (2.15)

The rotational dynamics are fully described by

Jω̇Q + ωQ × JωQ =

 d(f4 − f2)
d(f1 − f3)

τ(f1 − f2 + f3 − f4)

− sgn(ωQ) ∗ µrQ ∗ (ωQ ∗ ωQ) . (2.16)

Omitted Dynamics

Within the research community, there is still no general consensus on which aerodynamic
effects are the most significant and should be included in the dynamic model. Mokhtari
and Benallegue model only parasitic drag [17]. Hoffman et al. suggest that, at moderate
speeds, drag forces are less significant than the forces produced by rotor thrust and blade
flapping [7]. On the contrary, other sources neglect blade flapping and suggest that rotor
drag has a significant effect, even at low speeds [13, 11]. Both Martin et al. and Leishman et
al. demonstrate that estimation techniques that take into account rotor drag have improved
performance. Both blade flapping and rotor drag were left out of this work and could be
added as future improvements.

2.2.2 Relative Dynamics

The target tracking stage of the landing process is done using relative positioning between
the quadrotor and the target. The inertial position of the moving landing target is denoted
as PM = [xM , yM , zM ]. The states that are tracked are the position and velocity of the
target, M , in the body-planar frame, Q0. Since the Q0 frame is centred at PE in the inertial
frame, the relative position is defined as

Pr = RQ0

E (PM − PE) =

 xr
yr
zr

 .
14



If the landing target is mounted on a vehicle with known dynamics and inputs, the
landing site vehicle’s dynamic model can be used to propagate the estimated target po-
sition. However, knowledge of the target vehicle’s model and inputs are not guaranteed.
In the maritime landing scenario, the effect of waves is often unpredictable and could be
the dominant dynamics for a slow moving ship. Since this work focuses on developing
control for the quadrotor, independent of the vehicle on which the quadrotor is to land
on, no assumptions are made about the dynamics of the target. The position of the target
determines the commands that are given to the quadrotor, but the position of the target is
not directly controlled and is assumed to operate independently. Thus, a constant velocity
model is used to propagate the states of the landing target. The target’s dynamics can be
written in the continuous time as[

Ṗr
P̈r

]
=

[
0 1
0 0

] [
Pr
Ṗr

]
+Dr, (2.17)

where Dr ∈ R6 is a vector of disturbances drawn from appropriate zero-mean Gaussian
distributions.

Since the moving target is modelled with a constant velocity, the relative dynamics in
the horizontal plane are the negated quadrotor dynamics in the body-planar frame. The
resulting dynamics are similar to the dynamics in Equation (2.7), and are given as

mP̈r = −Ft − Fd −mg. (2.18)

2.3 Sensors

In this section, the sensors assumed available on the quadrotor system and their models
are discussed. Studying the sensor models serves to further justify the choice to disregard
GPS and magnetometer measurements in the final target tracking stage of the landing.

The sensors required for the precision landing framework presented in this work are:
3-axis accelerometer, 3-axis gyroscope, 3-axis magnetometer, GPS receiver, barometer,
sonar, and a downward facing camera. The accelerometers, gyroscopes, and barometer
are used in both the inertial and relative tracking stages of flight. In the rendezvous and
target acquisition stages, control and estimation are performed in the inertial frame. These
two stages rely heavily on the GPS and magnetometer measurements. Then in the target
tracking stage the GPS and magnetometer are ignored as they have unobservable biases
which corrupt their measurements. Instead, pose measurements are obtained through the
use of a downward facing camera to track a fiducial marker.
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2.3.1 Inertial Estimation Sensors

The sensors for inertial frame estimation are used during the rendezvous and target acqui-
sition stages of the landing. These two stages are both discussed in Chapter 3. For the
inertial frame estimation, the sensors used are: accelerometers, gyroscopes, magnetometers,
GPS receiver, barometer, and sonar.

Accelerometers

Accelerometers measure the specific acceleration of the quadrotor [11]. They are subject
to noise from high-frequency vibrations while in flight. Accelerometers are also typically
biased, however the bias is considered slow-changing and can effectively be calibrated out
prior to takeoff. Thus the accelerometer model is

ya = aQ + εa, (2.19)

where ya ∈ R3 is vector of measured accelerations, aQ ∈ R3 is the vector of actual specific
accelerations, and εa ∈ R3 is a noise vector drawn from a zero-mean Gaussian distribution,
N (0,Σa).

Gyroscopes

Gyroscopes measure the body rotational rates: p, q, and r. MEMS gyroscopes are typically
subject to both noise from quadrotor vibrations in flight as well as a time varying bias.
The model is given as

ygyro =

 p
q
r

+ εgyro + bgyro (2.20)

where ygyro ∈ R3 is the output vector of the 3-axis gyroscope, εgyro ∈ R3 is a noise vector
drawn from a zero-mean Gaussian distribution, N (0,Σgyro), and bgyro is a time varying bias
driven by white noise. The bias is also modelled with a decay factor [16]. The resulting
bias update rule is

ḃgyro = −1

τ
bgyro + εb,gyro, (2.21)

where τ is a time constant for the bias and εb,gyro is a noise vector drawn from a zero-mean
Gaussian distribution, N (0,Σb,gyro).
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Magnetometers

Magnetometers once again operate similarly to the GPS receiver and the gyroscopes. The
measurement model is

ym = ψ + εm + bm, (2.22)

where the bias, bm is updated similarly to Equation (2.21). Magnetometers are a large
source of error on a quadrotor system since the motors that actuate the system create
a frequently changing magnetic field. As well, mounting a magnetometer too close to
a computer, other electronic devices, or ferromagnetic metals can also cause a significant
degradation in performance. Yaw errors up to 30◦ have been observed in flight on a low-cost
quadrotor platform.

GPS Receiver

The GPS receiver follows a similar sensor model as the gyroscopes. The measurement
model is

ygps = PE + εgps + bgps. (2.23)

The GPS measurement bias evolves similarly to that of the gyroscopes, presented in Equa-
tion (2.21). For a low-cost GPS receiver, the measurements typically fall within a 5 m
radius of the true position.

Barometer

The barometer measures the absolute altitude of the quadrotor but with a significant time
varying bias. The measurement model is

ybarom = zE + εbarom + bbarom, (2.24)

with the appropriate noise and a bias defined similarly to Equation (2.21). Barometers
measure the air pressure prior to takeoff and use changes in measured air pressure to
determine the current height of the quadrotor. If the local air pressure changes then the
barometer’s bias will change in flight. Wind gusts can affect the air pressure and cause
significant bias changes for a barometer.
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Sonar

The sonar also measures the absolute altitude of the quadrotor. However, it is a bias free
measurement. The measurement model is

ybarom = zE + εbarom. (2.25)

Although the sonar measurements are not biased, sonar measurements are often faulty due
to missed ultrasonic pings, electrical noise, vibrations, or interference from rotor down-
wash [15]. As such, a naive pre-filter is often used to reject erroneous sonar measurements
prior to using the measurement.

Bias Estimation

Although many of the sensors are biased, some of them can be coupled together in order to
eliminate biases. Gyroscope biases can be estimated and corrected through sensor fusion
with accelerometers. When the quadrotor is at a steady state with no net acceleration, or
reasonably close, the accelerometers can be used as an inclinometer to determine the roll
and pitch of the vehicle. This allows the gyroscope bias to be eliminated while in flight so
that the gyroscope measurements are still extremely useful. The yaw gyroscope about the
zQ axis can be bias corrected through fusion with magnetometer measurements.

Similarly, barometer bias can be estimated with sonar. While the quadrotor is below
the maximum height that a sonar can measure, the sonar is typically much more accurate
than the barometer. The reason that a barometer is still useful is in case the sonar receives
a false reading that reports a lower altitude than the actual altitude. As well, barometers
do not have an effective height limit.

The GPS receiver and magnetometer, on the other hand, have unobservable biases.
With the sensors available, there are no non-biased absolute measurements for the inertial
position, PE, or the yaw, ψ. This results in uncorrectable bias corruption on the GPS
receiver and magnetometer measurements. This motivates the decision to ignore mea-
surements from these two sensors in the final target tracking stage of the landing where
accurate measurements are a requirement.

2.3.2 Relative Estimation Sensors

For the target tracking stage of the landing, estimation and control are performed in
a relative frame. The estimation and control are described further in Chapter 3. The
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Figure 2.3: An example of an AprilTag fiducial marker.

primary source of position measurements to drive the relative estimates is vision. GPS and
magnetometer measurements are not used for the relative estimation as they are sources
of significant errors.

In the relative position estimation case, the gyroscopes, accelerometers, sonar, and
barometer are used as they are in the inertial estimation case. The models for these
sensors are identical to those presented in Section 2.3.1.

Target Detection

Since most quadrotor missions require a camera on the quadrotor, vision was selected as a
viable option to obtain high quality pose estimates. Vision also provides a great cost-benefit
ratio as even a low-cost camera can provide significantly improved pose measurements over
fused IMU and GPS measurements.

There are many visual fiducial marker systems currently available. Many of them are
compatible with the framework set out in this work. For the experimental portions of this
work, the AprilTag visual fiducial system [19] was selected to measure the relative pose of
the landing target. This visual fiducial system was chosen over lighter-weight alternatives
for several reasons: it provides a 6-DOF pose estimate, the detection range scales with the
tag size, and it generates few false positives. An example of an AprilTag fiducial marker is
shown in Figure 2.3. The AprilTag is a two-dimensional barcode where data are encoded
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in the black and white pixels. The encoded data correspond with an identification number
that is checked to greatly reduce the likelihood of false positives.

A C++ implementation of the AprilTag system was used [9] with some modifications
in order to increase the computational speed of AprilTag detection, so that a reasonable
measurement update rate could be achieved onboard the quadrotor. The quadrilateral
detection algorithm was replaced with a simpler Canny edge detector and Hough transform
in OpenCV.

The AprilTag detection algorithm returns the relative pose of the tag in the camera
frame TCM . This transformation is converted into the body-planar frame, Q0, through the
transformation TQ0

Q TQC . This gives the equation[
RM
Q0

Pr
0 1

]
= TQ0

Q TQC T
C
M . (2.26)

The relative position, Pr, is then used as the measurement in the relative position estimator.
The rotation RM

Q0
also provides valuable information on the orientation of the landing

target.

The simulated AprilTag detection system provides bias free relative pose estimates with
additive zero-mean Gaussian white noise. This model can be written as

ytarget =


Pr
ψr
θr
φr

+


εP,t
εψ,t
εθ,t
εφ,t

 . (2.27)
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Chapter 3

Quadrotor Control and Estimation

The proposed precision landing process consists of three stages: rendezvous, target ac-
quisition, and target tracking. The three stages are illustrated in Figure 3.1. First, the
quadrotor flies at a constant velocity to a rendezvous point. The rendezvous point is cal-
culated based on the current quadrotor position, the programmed maximum quadrotor
speed, and the current movement of the target as determined by GPS. Then when the
quadrotor is sufficiently close to the target, the target acquisition stage begins. During the
target acquisition stage, the quadrotor regulates its GPS position to that of the target. If
needed, the quadrotor will fly a search pattern around the target in order to gain sight of
it. Once the target is acquired, position control and estimation changes from the inertial
frame to the body-planar frame and the final stage begins. The final stage is the target
tracking stage. During this stage, the camera on the quadrotor is used to provide relative
pose measurements to the target. GPS position measurements and magnetometer data are
no longer used as those sensors have a high degree of error. When the relative position
error is below a certain threshold, the quadrotor begins descending to land on the target.
Throughout the descent, the quadrotor continues to track the target as long as the target
can fit within the camera’s field of view.

The three stages of the flight are performed with different position controllers, which are
described in this chapter. Attitude stabilization and control is assumed to be performed at
a lower-level. The low-level attitude control should rely only on inertial measurement data
from the gyroscopes and accelerometers. There are a large number of multirotor autopilots
commercially available that will perform attitude control so this assumption is reasonable.

The altitude control and simulation attitude control are implemented as described by
Hoffmann et al. [7]. For altitude control, a PID controller tracks the desired height.
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Figure 3.1: The three stages of flight for the precision landing. In the first stage, the
quadrotor approaches the target on a rendezvous trajectory. The second stage is target
acquisition where the quadrotor searches for the target. Then in the final stage, the
quadrotor performs target tracking while it descends to land on the target.

Attitude estimation in simulation is performed using an extended Kalman filter which uses
IMU measurements to estimate φ, θ, ψ, φ̇, θ̇, ψ̇, and gyroscope biases. Attitude control is
performed using a PID controller with an additional double-derivative term which acts on
the angular acceleration.

Yaw control is not discussed in this chapter, nor are yaw reference signals generated.
The relative position estimation framework was designed in such a way that the estimation
is robust to any choice of yaw and changes in yaw. This choice was made to increase
the practical usability of this control and estimation framework. In semi-autonomous or
autonomous operation of a quadrotor, the yaw is typically commanded in such a way to
point an onboard sensor towards an area of interest. While in this work we only assume
one camera that is in a downward facing configuration, some quadrotor platforms have
both a downward facing camera and a forward facing camera. By not placing restrictions
on the yaw, the user, or a high-level mission controller, is free to change the yaw so that
the forward facing camera can make observations in any arbitrary direction throughout
the landing process.

22



3.1 Roll and Pitch Inversion

In all stages of flight, the nonlinear inversion

φd = sin−1

(
muy
uz

)
(3.1)

θd = − sin−1

(
mux

uz cos(φd)

)
, (3.2)

is applied to map desired horizontal accelerations in the body-planar frame, ux and uy, to
commanded roll and pitch angles, φd and θd, respectively [17]. The inversion is obtained by
ignoring the drag term in Equation (2.15) and solving for the roll and pitch that produce
a desired acceleration.

The drag term was ignored in Equations (3.1) and (3.2) since it is accounted for with
a feedforward term applied in all stages of flight. The feedforward term is calculated with

uf =
sgn(vd) ∗ µ̄tE ∗ (vd ∗ vd)

m
(3.3)

where vd ∈ R2 is the desired horizontal velocity in the inertial frame and uf = [uf,x, uf,y]
T

is the feedforward acceleration vector. This relation is obtained by finding the acceleration
required to balance out the drag force defined in Equation (2.13) at the desired velocity.
In Equation (3.3), the desired ground speed of the quadrotor is used as an approximation
for the airspeed in the absence of proper wind estimation. For low airspeeds, this approx-
imation should be reasonable. The addition of a proper wind estimation method is left as
a future improvement to this work.

3.2 Rendezvous

When the autonomous landing sequence is initiated, the current estimated position of the
quadrotor, the position of the target, and the current estimated velocity of the target are
used to calculate a rendezvous point. Two similar triangles are constructed; one with the
positions of the quadrotor, target, and rendezvous point and the other with the target’s
current velocity vector and a constant velocity vector from the quadrotor. Both velocity
vectors are pointing to some rendezvous point which is still unknown, as shown in Figure
3.2. The constant speed at which the quadrotor will approach the rendezvous point is
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Figure 3.2: Similar triangles used to calculate the rendezvous point. The first triangle is
formed by the position of the quadrotor, target, and the rendezvous point to be calculated,
Pd. The second triangle is formed by the target’s current velocity vector and the vector of
the quadrotor moving to the rendezvous point at a fixed speed, vm.

pre-programmed and is denoted vm. It is assumed that vm > |Ṗs| so that a rendezvous is
always possible.

The angle, β, is defined as the angle between the target’s velocity vector, Ṗs, and the
vector between the quadrotor and the target, PE−PM . It can be calculated as β = |α− γ|.
The angle α is the heading of the target’s velocity and the angle γ is the heading of the
distance vector PE − Ps. Using the law of sines, the angle, λ, between the distance vector
of the two vehicles and the rendezvous point can be calculated as

λ = arcsin


∣∣∣ ˙̄Ps

∣∣∣ sin β∣∣∣ ˙̄Pm

∣∣∣
 . (3.4)

By inspection, the desired quadrotor heading, ξ, will be either

ξ = 180◦ − γ + λ

or
ξ = 180◦ − γ − λ.

Both solutions are propagated through to calculate the time to rendezvous, then the neg-
ative or non-minimum time will be discarded.
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The desired speed is rotated into the correct heading to obtain the desired quadrotor
velocity vector,

˙̄Pm = R̄ξ[vm, 0]T . (3.5)

Using the two equations for the rendezvous point, Pd ∈ R2,

Pd = tr
˙̄Ps + P̄s = trṖm + P̄I , (3.6)

two solutions are obtained for the time to rendezvous, tr, one for each value of ξ. Only
the smallest positive value of tr is kept as that is the shortest time to rendezvous. The ξ
that corresponds to the extraneous time is also discarded. The rendezvous point is now
trivially calculated with Equation (3.6). The rendezvous point can be updated as needed
to track a non-constant velocity target motion.

With the rendezvous point calculated, the quadrotor is commanded on a constant
velocity approach to intersect the ship’s path. PID feedback controllers with feedforward
input regulate the along-track and cross-track errors [7]. The along-track and cross-track
errors are defined as [

eat
ect

]
= R̄ξ(P̄0 − P̄E), (3.7)

where P0 is the position of the quadrotor when the current rendezvous point was calculated,
eat is the along-track error which is along the vector from P0 to the rendezvous point, and
ect is the cross-track error which is perpendicular to the vector from P0 to the rendezvous
point.

The integrator in the controller is used to compensate for any wind disturbances. For
the rendezvous stage of the landing, the feedback control laws are

uat = Kat,dėat +Kat,i

∫
ėatdt (3.8)

uct = Kct,pect +Kct,dėct +Kct,i

∫
ectdt, (3.9)

where Kat,d and Kat,i are the derivative and integral gains for the along-track controller,
respectively, and Kct,p, Kct,i, and Kct,d are the proportional, integral, and derivative gains
for the cross-track controller, respectively. Note that in the along track controller the ve-
locity error is integrated as the goal is to ensure that the quadrotor flies at a constant speed
in the along-track direction. Combining the feedback control signals with the feedforward
term and rotating the desired accelerations into the body-planar frame yields[

ux
uy

]
= R̄ψ

(
R̄T
ξ

[
uat
uct

]
+ uf

)
. (3.10)
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Finally the control signals are mapped to the roll and pitch commands as described in
Section 3.1.

Transition to the target acquisition phase of flight can be commanded to occur once
the quadrotor is within a prescribed radius of the ship GPS position, or the rendezvous
time falls below a prescribed minimum value.

3.3 Target Acquisition

Now that the quadrotor is in the vicinity of the landing target, it can begin to search for
the target. As soon as the target is detected, the quadrotor will move to the final stage of
the landing and track the target.

The desired position and velocity for the quadrotor during this stage of the flight are
chosen to match the target position estimates, such that error is defined as

eE = P̄s − P̄E. (3.11)

Depending on the the camera’s field of view, the height at which the quadrotor approaches
the target, and the current GPS measurement errors on the quadrotor and the target
positions, the target may not be in sight of the camera when the GPS positions of the
target and the quadrotor line up. If that is the case, the reference position can be modified
to incorporate a search pattern relative to the target’s current GPS position and velocity
estimate in the inertial frame. The ship’s current estimated velocity is set as the desired
velocity when computing the feedforward command.

Two PID controllers are used for feedback control. The feedback control laws are given
as

uE,x = KE,peE,x +KE,dėE,x +KE,i

∫
eE,xdt (3.12)

uE,y = KE,peE,y +KE,dėE,y +KE,i

∫
eE,ydt, (3.13)

where KE,p, KE,i, and KE,d are the proportional, integral, and derivative gains for the in-
ertial position controller, respectively. The control signals that are mapped to commanded
roll and pitch are [

ux
uy

]
= R̄ψ

([
uE,x
uE,y

]
+ uf

)
. (3.14)
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3.4 Target Tracking

Relative position estimation is done entirely in the body-planar frame using a Kalman fil-
ter. Target detections, transformed into the body-planar frame, provide the measurement
updates for the Kalman filter. Upon the first target detection, the relative position estima-
tor will initialize its position states to the new visual measurements. The velocity states in

the estimator will be initialized to ˙̄Pr = R̄Q0

E ( ˙̄Ps− ˙̄PE), using the current inertial estimates.
Any error in the velocity initialization will be corrected quickly if visual measurements
continue to be received. The quadrotor’s estimated roll, pitch, and collective thrust are
used as inputs to propagate the states of the estimator.

Due to the nature of quadrotor vehicles, as the quadrotor moves towards the target
it points the downward facing camera away from the target. This effect coupled with a
potentially low-field of view camera can result in frequent target losses, where the target is
not visible in the camera image. In order to successfully track the target from any position
other than directly above, it is necessary for the system to be able to deal with frequent

failures in target detection. The estimated states of the relative estimator are x =
[
P̄r

˙̄Pr

]T
and the state prediction equation is

ẋ =

 R̄∆ψ
˙̄Pr

−2
(
ψ̇ × Ṗr

)
+ ¨̄Pr

 , (3.15)

where ¨̄Pr is calculated from the relative dynamics presented in Equation 2.18. At each time
step, ∆ψ is obtained by integrating the z-axis gyroscope and it is used to rotate the current
state estimates. While propagating the state estimates without visual measurements for
a prolonged period will result in significant drift, it will be reasonably accurate for short
periods of time between visual measurements. Thus relative position tracking is abandoned
when target measurements have not been received for some prescribed period of time due
to occlusion. If the quadrotor cannot regain sight of the target within the time limit, the
system reverts to the target acquisition stage until the next target detection occurs.

The prediction step in the relative position estimation is dependent on wind, as the
airspeed directly affects the drag term. Again, a wind estimation scheme is beyond the
scope of this work, so it is expected that the estimation performance may degrade in
extreme wind conditions. Adding wind estimation, such as presented by Waslander and
Wang [29], is left as an area of future work.

Similar to the target acquisition stage of the landing process, the feedback control laws
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are

ur,x = Kr,per,x +Kr,dėr,x +Kr,i

∫
er,xdt (3.16)

ur,y = Kr,per,y +Kr,dėr,y +Kr,i

∫
er,ydt, (3.17)

where Kr,p, Kr,i, and Kr,d are the proportional, integral, and derivative gains for the
inertial position controller, respectively. However, the control signals that are mapped to
commanded roll and pitch are now[

ux
uy

]
=

[
uI,x
uI,y

]
+ R̄ψuf . (3.18)

The major difference is that the feedback control signals are no longer rotated. This
eliminates possible corruption from a biased yaw estimate. GPS measurements are only
used in the feedforward term of the control law. As a result, the main sources of positioning
error have been eliminated from the feedback loop. This allows higher gains to be used for
the target tracking stage which will result in improved tracking performance.

Descent

When the relative position error is sufficiently small, the height command for the quadrotor
is ramped down at a fixed rate. If a disturbance causes the relative position error to increase
beyond a certain threshold during the descent, the height command will freeze and wait
until the relative position error is once again sufficiently small.

As the quadrotor descends, it reaches a point where the target no longer fits in the field
of view of the camera. For a 180◦ field of view fisheye lens and a square target with 30
cm side lengths, the minimum height to observe the target is about 0.5 m. At this point,
the quadrotor continues the descent using the same control laws as the rest of the target
tracking stage. However, the estimates are now based solely on the predictive model in
Equation (3.15). The feedforward term is still applied to match the velocity of the target.
The tracking performance here should be reasonably accurate given that the quadrotor
must have been tracking reasonably up until this point. The remaining descent to land on
the target will not be very long so the estimation without new visual measurements will
not incur significant drift.

A possible consideration for future work would be to incorporate a second, smaller
target for the descent just before landing. In such a scenario, the quadrotor would track
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the original larger target until it is at a low enough height to track the smaller target
properly. At that time, the quadrotor will switch to tracking the smaller target which it
will be able to see until it lands. Smaller targets have the advantage of a smaller minimum
detection range, but at the cost of a smaller maximum detection range. A larger target is
beneficial in the target acquisition stage since it can be detected from a greater altitude,
allowing the quadrotor to fly higher where the camera can capture a larger area in each
image.

3.5 Controller Switching

The transition between inertial and relative control is smoothed by seeding the controller
integrators with the values of the previous stage. While flying in either inertial control
or relative control mode, properly tuned integrators should wind up to cancel the effects
of wind. Rotating the controller integrators from the inertial to relative frame, and vice
versa, provides a good starting estimate of the control effort required to overcome wind.
This initial seeding of the controllers will incorporate both GPS and magnetometer errors,
however the initial integrator values will be closer to what is needed to compensate for
wind than if the integrators were reset when switching controllers. Consequently errors
due to wind should correct more quickly.

In the rendezvous and target acquisition stages, position control integrators are tracked
in the inertial frame. Moving to relative control, the integrators are rotated into the body-
planar frame such that [

Ir,x
Ir,y

]
= R̄ψ

[
IE,x
IE,y

]
, (3.19)

where Ir,x and Ir,y are the x and y error integrators in the body-planar frame, respectively,
and IE,x and IE,y are the x and y error integrators in the inertial frame, respectively.

It is also guaranteed that the controllers will not switch rapidly since the relative
position estimator always attempts to propagate the relative states and regain sight of the
target before switching back to inertial control.
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3.6 Height Control and Estimation

Height Estimation

In the final target tracking stage, the altitude is estimated relative to the visual target’s
altitude. Height information comes from four different sensors: barometer, zQ-axis ac-
celerometer, sonar, and camera. The barometer and accelerometer data are fused on the
low-level platform of the experimental system and the outputs are height (zE) and climb
rate (żE) estimates. The two estimates from the low-level estimator are then treated as
inputs to the height estimator that fuses in the sonar and camera measurements.

The barometer, camera, and sonar provide absolute measurements of height. However,
each sensor measures from slightly different points of reference and the offsets cannot be
calibrated out. The barometer has a significant time varying bias and it is largely affected
by gusts of wind. If the target is on a raised platform but the quadrotor is off to the side of
the platform, the sonar and camera measurements will be different. In order to consistently
fuse height measurements coming from different sensors, a Kalman filter is used and biases
between sensors are estimated in-flight. The estimated states are

xalt =


zE
żE

bbarom
bsonar

 , (3.20)

where bbarom is the height measurement bias between the barometer and the sonar and
bsonar is the height measurement bias between the sonar and the target. Clearly, the two
bias terms can be expanded as

bbarom = zsonar − zbarom (3.21)

and
bsonar = ztarget − zsonar. (3.22)

The measurement matrices for the Kalman filter are then

Cbarom =

[
1 0 1 1
0 1 0 0

]
(3.23)

Csonar =
[

1 0 0 1
]

(3.24)

Ctarget =
[

1 0 0 0
]
. (3.25)
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The zE-component of the dynamic equation presented in Equation (2.2) is used for the
prediction update step. The process noise and measurement noise covariances are hand
tuned. Since the attitude is estimated separately and all of the states for height enter the
dynamic equation linearly, a linear Kalman filter is sufficient.

For the stages of flight based on inertial estimates (rendezvous and target acquisition
stages) a similar height estimator without the target measurements and without the bsonar
state is used.

Height Control

Height control is implemented in a similar fashion to the one described by Hoffmann et
al. [7]. A feedforward term Tnom = mg is applied as a base thrust to cancel out the
force due to gravity. Then a PID feedback controller is used to track to the desired height
command. Finally, compensation for the roll and pitch boosts the thrust to ensure the
desired component of thrust in the zE direction is achieved in the case of non-zero roll and
pitch. The resulting control law is

uz =
1

cosφ cos θ

(
Kz,pez +Kz,i

∫
ezdt+Kz,dėz + Tnorm

)
, (3.26)

where Kz,p, Kz,i, and Kz,d are the proportional, integral, and derivative gains for the height
controller, respectively, and the error ez is difference between the commanded height and
the actual height.
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Chapter 4

Experimental Setup and Results

The framework presented in this thesis was tested fully in simulation and partially im-
plemented on an experimental testbed. The focus of the experimental implementation is
on the relative estimation and control for the target tracking stage of the landing. GPS
based quadrotor flight has already been demonstrated in many other works and we employ
existing methods in this work.

Flight tests were performed on an AscTec Pelican quadrotor, detailed in Section 4.1.
Relative position estimates in the target tracking stage are driven by visual measurements
of an AprilTag fiducial marker. Special considerations in implementing and tuning the
AprilTag detection pipeline are discussed in Section 4.2. Finally, simulated and experi-
mental results are presented and discussed in Section 4.3. The experimental results were
obtained through flight tests both indoors and outdoors. The tests demonstrate successful
target tracking in both the indoor and outdoor environments as well as a successful landing
on a moving UGV in an indoor setting.

4.1 Quadrotor Testbed

Flight tests were performed on an AscTec Pelican quadrotor helicopter, shown in Fig-
ure 4.1a. The Pelican features an Intel Atomboard, which is a 1.6 GHz, dual-core, single-
board computer. This gives the Pelican enough processing power to perform vision based
tasks in near real-time. A Ubuntu operating system is installed on the Atomboard. All of
the custom software runs in a Robot Operating System (ROS) environment in Ubuntu.
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(a) An AscTec Pelican quadrotor
(b) The sonar and downward facing camera
mounted on the bottom of the Pelican

Figure 4.1: (a) An AscTec Pelican quadrotor was used as the testbed for experimental
implementation of the framework described in this thesis. (b) A sonar and a downward
facing camera, with a 180◦ fisheye lens, were mounted on the bottom of the vehicle.

Figure 4.2: Hardware architecture overview for the Pelican quadrotor [24].
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In addition to the Atomboard, the Pelican contains dual microcontrollers integrated
into a flight control unit (FCU). The architecture of the Pelican is shown in Figure 4.2.
The two microcontrollers are the low-level processor and the high-level processor. The
low-level processor runs a closed-source firmware which performs all the tasks required for
basic flight and stability. The high-level processor is user programmable to perform tasks
that are not too computationally expensive.

All of the sensor fusion, estimation, and control that is required for basic flight is
performed on the low-level processor. This includes the attitude control and attitude
estimation which are leveraged in this work. The low-level controller also provides position
level control, however it must be run in the attitude control mode in order to implement the
estimation framework proposed in this work. For roll and pitch control, the closed-source
firmware implements a well tuned PD controller to track desired commands quickly. The
low-level processor takes care of sending motor speed commands to the motor controllers
in order to achieve the desired torques and collective thrust. The interface exposed by the
low-level controller requires four commands: roll, pitch, yaw rate, and collective thrust.

The high-level processor is left open to be programmed to perform custom tasks. For
this work, the asctec mav framework firmware was loaded on the high-level processor.

The sensors included with the Pelican on the FCU are: 3-axis gyroscope, 3-axis ac-
celerometer, 3-axis magnetometer, and barometer. A Maxbotix MB 1240 sonar and uEye
UI-1221LE camera are mounted externally on the quadrotor, shown in Figure 4.1b, and
interface directly with the Atomboard through USB. Further details on the camera are
provided in Section 4.2.

Asctec MAV Framework and ROS

ROS is a modular framework for building robotic software that allows for quick proto-
typing and development. It is a popular framework in the research community since
it facilitates code reuse. In order to communicate with the Pelican through ROS, the
asctec mav framework, released by researchers at ETH Zurich, was used [1].

The asctec mav framework is a ROS driver written specifically for use with the AscTec
line of multirotor vehicles. The asctec mav framework includes custom firmware that
must be flashed onto the high-level processor so that the high-level processor acts as a
communication bridge between the low-level processor and the Atomboard. Through the
asctec mav framework, sensor measurements and attitude estimates on the FCU can be
read on the Atomboard at up to 1 kHz. Attitude commands can also be issued at up to 1
kHz, although such a rate is not practical.
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Figure 4.3: Thrust testing data showing the generated thrust vs thrust command.

Thrust Mapping

The asctec mav framework accepts thrust commands between 0 and 1. These commands
are then interpreted by the low-level processor to generate a collective thrust. In order to
send meaningful thrust commands to the low-level processor, thrust testing was performed
to determine the mapping from thrust command to generated thrust.

The thrust testing was performed by attaching weights to the Pelican and placing it
on a scale. The amount of weight added was well beyond the maximum payload of the
vehicle to prevent it from moving at all thrust levels. The weight of the Pelican with
all the additional weight was recorded. As various thrust commands were issued to the
quadrotor, the change in the measured weight was recorded. The measured change in
weight times the acceleration due to gravity gives the amount of thrust produced for each
thrust command. The results of the thrust testing are shown in Figure 4.3. Excel was used
in order to generate a quadratic best fit function for the measured data. The resulting
thrust mapping is

uz = 23.133u2
z,c + 21.646uz,c − 0.492, (4.1)

where uz,c is the thrust command sent to the Pelican’s low-level processor. This thrust
mapping is rearranged in order to calculate the thrust command, uz,c, to correspond to a
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desired thrust, uz, produced by the height controller described in Section 3.6.

4.2 AprilTag Pose Measurement

Using a uEye UI-1221LE camera with a wide angle lens, monochrome images are captured
with a 180◦ field of view and a 752 × 480 resolution. The UI-1221LE features a global
shutter which greatly reduces the amount of image distortion due to the movement of the
camera. The camera is set to capture images at 20 Hz for AprilTag detection. Three
special considerations were made in order to ensure the quality of the visual measurements
used for estimation,

• The camera exposure and edge detector were tuned to detect the AprilTag and ignore
most other edge features.

• Images are windowed before processing in order to speed up AprilTag detection.

• Camera delays are calibrated and accounted for to match an image with the correct
quadrotor orientation at the time the image was taken.

4.2.1 Camera Exposure and Canny Thresholds

The camera is manually tuned to run with the lowest exposure that still produces usable
contrasts for edge detection. There are two main rationales for choosing a short camera
exposure. First, longer exposure times can result in motion blur which is undesirable. Sec-
ondly, shorter exposure times result in darker images which tend to have fewer detectable
features.

The camera’s exposure time is the duration that the aperture is opened, allowing light to
fall on the camera’s sensor. Movement while the aperture is open causes the image focused
on the camera sensor to change while the image is recording, resulting in a distorted image.
Significant amounts of motion blur causes the AprilTag detection algorithm to fail to detect
the target since the quadrilaterals of the AprilTag cannot be detected in a distorted image.
Any image frame that has motion blur will result in a failed target detection. This results
in a reduced measurement update rate which is detrimental to state estimation.

Reducing the exposure time also allows less light to fall on the camera’s sensor, resulting
in a darker image. Darker images tend to have a lower contrast ratio, making natural
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(a) Image of an AprilTag taken mid flight (b) Edges detected in the AprilTag image

Figure 4.4: (a) A picture of an AprilTag taken mid flight. The image is very dark, but
sufficient for detecting the AprilTag. (b) A picture of an AprilTag with correctly tuned
Canny thresholds. No edges other than the AprilTag appear.

features more difficult to detect. The AprilTag is made of a black shape on a white
background to give the highest possible amount of contrast so it will still be visible in
an image where no natural features can be extracted. This makes it simpler to tune the
Canny edge detector thresholds to detect the edges of the AprilTag and as few additional
edges as possible.

Care must be taken to not set the exposure time too low or the image may be too dark
for the AprilTag to be distinguishable. Indoors, an exposure of 2 ms was found to be a
good balance so that there is no motion blur and the AprilTag provides the only easily
distinguishable edges. Outdoors, the camera is run at its minimum exposure, 0.16 ms. The
Canny edge detector thresholds were then manually tuned so that they consistently detect
the AprilTag. Figure 4.4a shows an image taken indoors while in flight. The low exposure
makes the image dark but the AprilTag is still noticeable. Figure 4.4b shows the result of
performing edge detection on the image in Figure 4.4a. The edges of the target are the
only edges detected.

4.2.2 Image Windowing

At full resolution, the Atomboard does not have enough computational power to run the
AprilTag detection algorithm at 20 Hz, the frame rate at which the camera is set to capture
images. Resizing the images to a resolution of 376×240, a quarter of the native resolution,
allows the Atomboard to process AprilTag detections at the full 20 Hz. However, by
resizing the image, the maximum detection range for the target is also reduced. Instead,
image windowing was implemented so that only a region of interest would be processed for
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Figure 4.5: A window, or region of interest, designated by the white rectangle, is processed
to find the AprilTag. The window is centred at a coordinate determined by rotating the
estimated target position and reprojecting it into the image frame.

AprilTag detection.

The target’s relative position estimate, described in Section 3.4, is used to determine
where to place the detection window. The estimated target position, Pr, is rotated into
the camera frame and reprojected into the image frame. This gives the pixel coordinate
at which the detection window is centred. A window of 376× 240 pixels is formed around
the window centre.

Given the estimated position of the target, Pr, in the body-planar frame, Q0, the
position is rotated back into the camera frame,[

Pr,C
1

]
= TCQ T

Q
Q0

[
Pr
1

]
. (4.2)

The position Pr,C is the relative position of the target in the camera frame, C. The
OpenCV camera model [20] is used to reproject Pr,C into the image frame. The equations
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for reprojection are

x′ =
xr,C
zr,C

(4.3)

y′ =
yr,C
zr,C

(4.4)

r2 = x′2 + y′2 (4.5)

x′′ = x′
(
1 + k1r

2 + k2r
4
)

+ 2p1x
′y′ + p2

(
r2 + 2x′2

)
(4.6)

y′′ = y′
(
1 + k1r

2 + k2r
4
)

+ p1

(
r2 + 2y′2

)
+ 2p2x

′y′ (4.7)

ximage = fxx
′′ + cx (4.8)

yimage = fyy
′′ + cy, (4.9)

where k1 and k2 are radial distortion coefficients, p1 and p2 are tangential distortion co-
efficients, fx and fy are the camera focal lengths, and cx and cy are the optical cen-
tre in pixel coordinates. All of the camera parameters were identified using the ROS
camera calibration tool. The reprojection equations result in the estimated position of
the target in the image frame, Pimage = [ximage, yimage]

T . The detection window will now
be centred at Pimage.

Two opposing corners are required to define the detection window. The upper-left,
wUL, and bottom-right, wBR, corners of the window are chosen to be the representative
corners for the rectangular detection window. They are simply

wUL = PImage −
[

188
120

]
(4.10)

wBR = PImage +

[
188
120

]
. (4.11)

Finally, the corners of the detection window are bounded to ensure that they are still
within the image. In the process of bounding the corners, a check is performed to ensure
that the size of the detection window is not reduced below a prescribed threshold. If
either dimension of the resulting detection window is less than 85% of its original length,
the detection window will not be applied and the entire image will be processed with the
AprilTag detection algorithm. The result of the image windowing is shown in Figure 4.5.

4.2.3 Attitude Compensation for AprilTag Measurements

The AprilTag detection algorithm returns the 6-DOF pose of the target in the camera
frame, TCM . This result needs to be rotated into the body-planar frame, Q0, before it can
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be used in the relative estimator presented in Section 3.4. As shown in Equation (2.26), the
two required transformations are TQC and TQ0

Q . The rotation of the first transformation can
be determined by inspection and the translation from the FCU to the camera is roughly
measured with a ruler. The resulting transformation is

TQC =


0 −1 0 0.06
−1 0 0 0
0 0 −1 −0.09
0 0 0 1

 . (4.12)

The second transformation, TQ0

Q , is a pure rotation but is more difficult to determine.

The transformation TQ0

Q is obtained from the attitude estimates based on IMU mea-
surements. Unfortunately, the camera images and attitude estimates are not synchronized.
This poses a problem since the attitude dynamics are fast and can change significantly in
a short period of time. Applying a transformation, TQ0

Q , on an visual pose measurement
with a mismatched attitude estimate can produce an erroneous result. Thus, the attitude
estimate that corresponds with the time at which the image was captured must be used in
order to correctly determine the pose of the target in the body-planar frame.

There is a significant time delay associated with visual pose measurements. The total
delay has been measured to be between 50 to 120 ms during flight. The delay comes
from two main sources. First, there is a time delay from when the image is taken on the
camera to the time that it is transferred to the Atomboard, through the camera driver, and
accessible in a ROS based program. This delay is denoted as ∆tcamera. Secondly, there is
a delay while the computer runs the AprilTag detection algorithm, denoted as ∆tdetection.
This second delay is variable and depends on the current CPU load and the properties
of the image being processed. If a larger number of edges are detected in an image, the
AprilTag detection algorithm can take a longer time to run. The second time delay is easily
measured through time stamps while the first is not easily measurable. If both time delays
are known, the time at which the image was captured can be calculated by subtracting the
delays,

tcapture = t−∆tdetection −∆tcamera, (4.13)

where t is the current time at which the visual pose measurement is received. Then the
attitude estimate closest to tcapture can be used to construct TQ0

Q . Since ∆tcamera is not
easily measured, it is hand tuned through a calibration test. The delay ∆tcamera is assumed
to be constant since it is mostly determined by the hardware and camera drivers and should
not change noticeably under load.
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The calibration test is performed by having a human physically hold the quadrotor in
their hands. The quadrotor is held directly over a target and rotated on the spot. Either a
roll or a pitch angle is applied sinusoidally, while taking care to ensure that no translations
are occurring. If the attitude estimate and visual pose measurement are synchronized, the
relative position estimate in the horizontal plain will remain near P̄r = [0, 0]T . The time
delay, ∆tcamera, is hand tuned until a reasonable synchronization is achieved. A value of
0.04 ms for ∆tcamera was determined.

Clearly, the accuracy of the visual pose measurement relies heavily on the accuracy of
the attitude estimate. Methods to improve the onboard attitude estimates [13, 11] can be
added as a future extension to further improve the visual measurements.

4.3 Results

4.3.1 Simulated Results

All three segments of the proposed landing framework were simulated in MATLAB. The
simulations validate the rendezvous trajectory planning and the performance of the rel-
ative position estimator in wind. Quadrotor dynamics in simulation are implemented as
described in Section 2.2.1 with the addition of a first order motor model. Wind was simu-
lated by applying a fixed base wind vector of [3,−4, 0.2]T metres/second and adding wind
gusts on top. The wind gusts were generated using the Dryden wind gust model [29]. The
simulation begins with the quadrotor far away from the target at an altitude of 10 m.
The quadrotor moves through the three stages of the landing as it progresses towards, and
ultimately lands on, the target. A 3-dimensional view of the simulated landing approach
is shown in Figure 4.6.

In the first stage, the quadrotor calculates a rendezvous point to reach the target.
GPS measurements for the quadrotor and the target are generated according to the sensor
model presented in Section 2.3 and the noise and bias parameters are tuned to be a gradual
random walk to a maximum of about 5 m error. GPS position updates are generated at
10 Hz with inertial control performed at the same rate. Throughout the simulation, the
target follows an arc trajectory as an arbitrary and independent motion. A Kalman filter
with a constant velocity model is used to smooth the position and estimate a velocity for
the target. The rendezvous point is recalculated every 5 seconds and is only updated if it
differs from the previous rendezvous point by more than 5 metres.

When the quadrotor is within a 15 m radius of the target, the target acquisition stage
begins. The target is simulated as a square with 20 cm side lengths. A downward facing
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Figure 4.6: A 3D view of the simulated quadrotor and ship positions with the quadrotor
orientation overlaid on top of its position.
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Figure 4.7: Simulated relative position errors between the quadrotor and target for the
target acquisition and target tracking stages of the landing. Both the actual relative errors
and the relative errors calculated from GPS are shown. The relative tracking stage begins
at t = 39.8 seconds.
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camera is simulated with a 65◦ field of view and a square aspect ratio. The view of the
camera is rotated with the quadrotor and projected onto the ground plane to determine
what the camera can see. If the four corners of the target fall within the view of the camera,
the target is treated as detected and a relative pose measurement is generated. Gaussian
noise with a standard deviation of 3 cm is applied to relative position measurements. At
an altitude of 10 m, the target typically falls in the field of view of the camera without the
need to fly a search pattern. For the flight shown, the target acquisition stage lasted 4.4
seconds.

As soon as the target is detected by the quadrotor, the target tracking stage begins.
The control rate switches to 20 Hz to take advantage of the higher update rate and higher
accuracy measurements. The gains, shown in Table 4.1, are also increased in the target
tracking stage. Relative errors at the time that the quadrotor switches from inertial to
relative control are shown in Figure 4.7. The Relative GPS errors show the position
discrepancy between the GPS measurements and the actual positions.

Gain Kat,i Kat,d Kct,p Kct,i Kct,d KE,p KE,i KE,d Kr,p Kr,i Kr,d

Value 0.04 0.3 0.2 0.04 0.4 0.2 0.15 0.85 0.6 0.3 0.85

Table 4.1: Simulation controller gains

RMS Errors

Rendezvous
Along Track (m/s) 1.1521
Cross Track (m) 1.1845

Target Acquisition
X-Position (m) 1.1734
Y-Position (m) 2.9955

Target Tracking
X-Position (m) 0.3382
Y-Position (m) 0.7320

Quadrotor GPS
X-Position (m) 2.4769
Y-Position (m) 2.0442

Magnetometer Yaw (◦) 6.8675

Table 4.2: RMS errors in simulation for the three stages of the landing, GPS measurements
throughout the simulation, and magnetometer measurements throughout the simulation.

RMS errors associated with each stage of flight are presented in Table 4.2. As the
system enters the relative tracking stage, the positioning error drops significantly. The
results of the simulation show that the tracking performance is still good in the presence
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(a) Indoor flight testing arena (b) Target used for flight tests

Figure 4.8: (a) A flight arena with motion capture cameras was used for initial indoor
tests to tune and validate control and estimation. (b) A 30 cm × 30 cm AprilTag made
from felt is used for the majority of test flights.

of simulated wind. This demonstrates that the comprehensive solution presented in this
thesis has a strong potential to work on a physical platform.

4.3.2 IPS Test Flights

Test flights were performed in an indoor flight arena with an indoor positioning system
(IPS). The IPS was used in order to evaluate relative estimation and control schemes
with proper ground truth. An OptiTrack motion capture camera system, with 14 cameras
placed in a ring around the testing area, served as the IPS. The setup provided a 3 m × 3
m × 2.5 m flight volume. A photograph of the flight arena is shown in Figure 4.8a.

With the exception of the target orientation measurement tests, all tests used a 30 cm
× 30 cm AprilTag shown in Figure 4.8b. The AprilTag was handmade from a felt material
to eliminate glare from reflections. The centre of the AprilTag was aligned with the origin
of the IPS system prior to testing and the target was left stationary so that all relative
movements between the target and the quadrotor would be due to the quadrotor.

Initial tests were aimed at evaluating the quality of the relative position and velocity
estimates. Tests were also performed to determine how well the AprilTag detection sys-
tem could measure the orientation of a moving target in flight. Once these evaluations
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were complete and the estimation and control systems were confirmed to be performing
sufficiently, autonomous landings were tested.

For all tests, the IPS measurements that serve as ground truth were logged offboard.
The timing between the onboard and offboard measurements were synchronized manually.

Manual Evaluation Flights

Flights were performed with manual position control to collect evaluation data. The height
controller was enabled and commanded to hold an altitude at 1.8 m. The relative position
estimates from one the flights are shown in Figure 4.9. Relative velocity estimates for the
same flight are shown in Figure 4.10. Ground truth for the relative velocity was obtained by
performing a single difference on the position ground truth and applying a central average
smoothing filter.

20 25 30 35 40 45 50 55 60

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

x−
po

si
tio

n 
(m

)

 

 
Relative Estimate
IPS

20 25 30 35 40 45 50 55 60

−0.2

−0.1

0

0.1

0.2

0.3

Time (s)

y−
po

si
tio

n 
(m

)

 

 

Relative Estimate
IPS

Figure 4.9: Plot showing the relative position estimates and the ground truth data for a
test flight with manual position control and a stationary target.

The relative position estimates closely resemble the ground truth. There is a slight
scaling issue where the amplitude of the movement as reported by the relative estimator is
greater than the amplitude measured by the IPS. This error could be a result of quadrotor
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Figure 4.10: Plot showing the relative velocity estimates and the ground truth data for a
test flight with manual position control and a stationary target.

attitude estimation errors when the orientation of the quadrotor is rapidly changing or the
result of a calibration error. The relative velocity estimates closely resemble the trends in
the ground truth, but with additional noise and considerable delay. The delay is measured
to be approximately 460 ms. Efforts to tune the covariances of the relative estimator
produced more noise and worse velocity estimation in terms of following the correct velocity
trend. While delay will set an upper bound on the bandwidth of the position controller,
subsequent tests in Section 4.3.3 demonstrate successful landings in the presence of the
delayed velocity estimates.

Target Orientation Measurements

A test evaluating the AprilTag detection algorithm’s ability to measure the orientation of a
moving target in flight were performed with a tag printed on paper with 15 cm side lengths.
The tag was mounted on a pole and moved around by a human. The tag changed both
position and orientation throughout the flight and its position was tracked autonomously
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by the quadrotor. The resulting measurements and ground truth for this test are presented
in Figure 4.11. All of the measurements have been rotated into the body-planar frame of
the quadrotor. The results of the target orientation measurement tests show that the
AprilTag detection algorithm is very good at measuring the yaw of the target but has
significantly more error when measuring the roll and pitch of the target. Roll and pitch
tend to be more difficult to discern from a visual measurement since they cause the target
to appear skewed in the image. At larger roll and pitch angles, an additional degree of roll
or pitch creates a much smaller pixel change that a one degree change when the target is
at a neutral roll and pitch. Changes in yaw cause a much larger change in pixels since all
of the features of the tag move with it. The results in Figure 4.11 are presented without
any estimation. Estimation could be applied on top of the measurements to come closer
to the ground truth.
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Figure 4.11: Measured AprilTag attitude in the body-planar frame and the ground truth
measurements of the target’s orientation rotated into the quadrotor’s body-planar frame.

While the framework presented in this thesis does not make use of the visually measured
target orientation, these measurements can be used to improve the framework in future
works. The measurements provide information on the orientation of the landing surface. In
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the maritime landing scenario, such information is useful to determine safe landing periods.
Another possible extension would be to use the landing surface’s orientation to plan an
aggressive landing trajectory such as proposed by Dougherty et al. [3].

4.3.3 Indoor Landing Tests

Stationary Target Landing in IPS
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Figure 4.12: Plot showing the relative position estimates and the ground truth data for
an autonomous landing on a stationary target. Dotted black lines at t = 22 seconds and
t = 39 seconds indicate the times at which visual measurements started and stopped.
The gap in IPS data is due to the quadrotor temporarily leaving the volume of the motion
capture setup.

Landing tests were first performed in the flight arena shown in Figure 4.8a with the
motion capture IPS system. The target was left stationary to verify that the descent part
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of the final target tracking stage worked without wind disturbances or target motion. The
error threshold to begin the descent was set to 30 cm. When the relative distance between
the quadrotor and the target exceeds 30 cm, the quadrotor’s height command is frozen.
Once a height command is frozen, the quadrotor continues to track the target until the
relative error is once again below the threshold, at which point the height command will
continue to decrease. A descent rate of −0.4 m/s was chosen as a quick and safe descent
rate.

The estimated relative position and ground truth for the stationary target landing are
shown in Figure 4.12. Takeoff and the initial positioning near the target are performed
manually before engaging autonomous flight. The green Command line on the height plot of
Figure 4.12 indicates when the quadrotor is under autonomous control. The dotted black
lines indicate where visual measurements begin and end, due to the quadrotor being too
low view the complete target. After the second dotted black line the relative estimates are
from propagating the predictive model, which will incur significant drift. However, they
are still displayed in Figure 4.12 since those estimates are used for position control until
the quadrotor has come to a stop on the ground. The results show that the quadrotor
lands well within the 30 cm error threshold for descent. The landing is complete when the
green Command line ends.

As the quadrotor approaches the ground around the 39 second mark, the relative height
estimate begins to falter since visual height measurements are no longer available. This
can likely be corrected through tuning the covariances on the relative height estimator or
switching to an inertial height estimate for control for the final few seconds of the landing.

Indoor Moving Target Landing

Once successful landings were demonstrated on a stationary target, testing was moved to
a larger area to perform testing with a moving target. A photograph of the test area is
displayed in Figure 4.13. A manually driven Clearpath Husky UGV was used to carry and
move the landing target. The UGV was driven in an arc and then a straight line for the
landing. A video of the experiment is available at http://youtu.be/oycwswSWEB8.

The takeoff and initial positioning of the quadrotor over the tag were performed man-
ually. The relative position measurements throughout the flight and autonomous landing
are presented in Figure 4.14. The green Command line on the height plot of Figure 4.14 indi-
cates when the quadrotor is under autonomous control and the black dotted lines indicate
when visual measurements are available. The mean of the absolute error was calculated
for the time interval between 29 and 43 seconds, which is the tracking segment of the flight
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Figure 4.13: Indoor flight test with a moving target.
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Figure 4.14: Plot showing the relative position estimates for an autonomous landing on a
moving target. Dotted black lines at t = 24.7 seconds and t = 47.4 seconds indicate the
times at which visual measurements started and stopped.
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prior to the descent. The average error in the x direction is 0.2812 m and the average error
in the y direction is 0.2411 m. The norm of the average errors is 0.3705 m.

The plots show that the quadrotor was able to maintain within a reasonable following
distance of the target throughout the flight. The large sways in the y-position plot are due
to the arc movement of the UGV. While moving through an arc, the UGV has a constant
acceleration, which breaks the constant velocity assumption made about the target dynam-
ics. This makes it more difficult for the estimator to accurately track the changing velocity.
The quadrotor does not know the movements the UGV will make and must accumulate
error before it can react to changes in the UGV motion. Once the UGV begins to move in
a straight line, the quadrotor tracks the tag more accurately and it begins the landing.

4.3.4 Outdoor Moving Target Tracking

Figure 4.15: An open field where outdoor tests were performed.

The final set of tests were performed in an outdoor environment shown in Figure 4.15.
Attempts at an autonomous landing outdoors were hindered by wind disturbances when
the quadrotor was at a low altitude on the descent. At lower altitudes, the area that the
camera observes is much smaller, making it difficult for the quadrotor to regain sight of
the target after a disturbance forces the target out of view. On several test flights, the
wind consistently pushed the quadrotor away from the target while the quadrotor was
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Figure 4.16: Plot showing the relative position estimates during an autonomous target
tracking flight.

at a low altitude, causing the target to be lost. The quadrotor was unable to recover
tracking and was forced to return to the starting altitude and begin the descent over
again. A more representative dynamic model that accounts for wind would improve the
quadrotor’s ability to recover in such situations. Although the wind caused problems for
the landing sequence, the autonomous position tracking of a moving target, at a higher
altitude, remained successful in the presence of wind. Winds were in the range of 5 to 10
km/h during the experiment. A video of the outdoor test is available at http://youtu.

be/oycwswSWEB8?t=44s.

Takeoff and landing were performed manually for the outdoor test. During autonomous
flight, the quadrotor was commanded to maintain a relative height of 1.9 m. Figure 4.16
shows the relative position estimates during the autonomous tracking segment of the flight.
The mean of the absolute error was calculated for the entire flight segment shown in
Figure 4.16. The average error in the x direction is 0.1991 m while the average error in
the y direction is 0.3339 m. The norm of the average errors is 0.3888. Thus, the errors in
target tracking outdoors are comparable to the errors in target tracking indoors. The height
control, on the other hand, has much more difficulty remaining near the set point. This
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is potentially due to the changing air pressure causing the barometer to report inaccurate
changes in height. Performing covariance tuning in the height estimator to reduce reliance
on the barometer readings may be able to improve the height control performance.

Unfortunately, there is no ground truth in the outdoor environment to evaluate the
relative velocity estimates against. The extent to which the relative velocity estimates
are affected by wind is unknown. Work is currently underway to integrate an RTK GPS
system onto the quadrotor testbed. This would allow for a proper evaluation of the relative
estimator in the presence of wind as a future endeavour.
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Chapter 5

Conclusion

With unmanned air vehicle (UAV) use becoming widespread, a number of current and
proposed applications have raised a demand for precision landing on moving targets. In
the case of maritime landings, autonomous landings will make for easier UAV recovery
when deploying from a ship. This will be beneficial to help guarantee safe recovery of
equipment and to eliminate risk of injury posed to humans from current maritime UAV
recovery techniques. On land, UAV and unmanned ground vehicle (UGV) teams can
benefit from the increased landing autonomy to perform autonomous docking.

Performing a precision landing is difficult for several reasons. Low-cost sensors common
to many UAV systems have significant errors. In particular, GPS receivers are subject to a
large random walk bias and magnetometers receive interference from many of the electrical
components on UAVs. The unpredictable movement of a non-stationary landing target
can also exacerbate the problem. Current state of the art systems rely on high quality
measurements from expensive inertial measurement units and RTK GPS, however it is not
practical to use expensive sensors on all UAV systems. Since many UAVs carry a camera
as their payload, vision is a natural alternative to provide higher quality pose estimates.

This thesis presents a framework for performing precision autonomous UAV landings
by using a downward facing camera for target detection. The benefits of this framework
are: no additional or expensive sensors are required on the UAV, the autonomous landing
framework is independent of the yaw control leaving the possibility for a forward facing
camera to be used during the landing, and the landing target can be placed on any flat
surface as no assumptions are made about the target’s dynamics. The landing is performed
in three stages. The first stage, rendezvous, calculates a course for the UAV to intercept
the target. The second stage, target acquisition, ensures that the UAV is locked onto
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the target. The final stage, target tracking, positions the UAV above the landing target
and commands it to land when the relative error is sufficiently small. Control laws are
presented for all stages of flight and a novel relative estimation scheme is given for the
target tracking stage.

Experimental data collected from a series of test flights has validated the autonomous
landing approach presented. The AprilTag visual fiducial system was selected for use as the
moving target in the experiments. Successful target tracking and landing was documented
in an indoor environment. When tested outdoors, the target tracking was successful while
the autonomous landings encountered problems with unpredictable disturbances. Wind
gusts cause disturbance forces for the quadrotor and make the position error too high to
recover from while in the critical final descent. While the effects of wind on the vehicle
must be addressed prior to full validation of the methodology, this work presents both
simulation results for the whole framework and individual experimental validation of key
components.

Several strategies can be pursued to improve the performance in wind. A proper wind
estimation technique coupled with a control law that actively rejects wind disturbance
forces will help minimize the effect of wind on the quadrotor. The wind estimation opens
the door to using higher order dynamic models that take into account additional non-linear
effects such as bladeflapping and rotor drag. A more representative dynamic model will
improve the ability of the relative estimator to predict motions over short periods of time.
This in turn allows the quadrotor to make better predictions of its position when visual
measurements are lost due to wind. With decent position predictions, thee quadrotor can
navigate back to and regain sight of the target, and then finish the landing. While the
indoor landings presented did not have any problems due to the use of a single target,
the addition of a second, smaller target will also help keep the target in sight during the
descent since it will fit in the camera’s field of view at low altitudes.

The novel relative estimation scheme was presented and validated in this work. The
state estimates produced were adequate for tracking and, in indoor flights, landing. How-
ever, further improvements can be made to the relative estimation that will result in
improved tracking and landing performance. Improved attitude estimates will ensure that
visual target measurements are correctly rotated into the body-planar frame for estima-
tion. Works in the literature suggest that this can be accomplished through the use of
accelerometers and a drag-force model [11, 13]. The addition of a more powerful computer
for vision processing would also result in tangible gains. More computational power will
allow target detections to occur at a greater rate and with less computational delays. This
could help to reduce the delay in the relative velocity estimates.

55



For some time, researchers have been proposing applications for UAV and UGV teams.
Many of these applications have autonomous docking as a prerequisite. It is required in
order to autonomously deploy and retrieve a UAV at a long range or to perform autonomous
charging in the field by using a UGV as a mobile charging station. Both of these tasks
are required for large-scale autonomous robotic missions. The framework presented in this
thesis has the potential to be a viable solution to the autonomous docking problem. With
the improvements discussed, the framework will be more robust. That will take it another
step closer to deployment and provide another stepping stone to reach the goal of fully
autonomous large-scale UAV and UGV teams.
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