
Hardware Implementations of the
WG-16 Stream Cipher with
Composite Field Arithmetic

by

Nusa Zidaric

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2014

c© Nusa Zidaric 2014

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The WG stream cipher family consists of stream ciphers based on the Welch-Gong (WG)
transformations that are used as a nonlinear filter applied to the output of a linear feedback
shift register (LFSR). The aim of this thesis is an exploration of the design space of the
WG-16 stream cipher. Five different representations of the field elements were analyzed,
namely the polynomial basis representation, the normal basis representation and three
isomorphic tower field constructions of F216 : F(((22)2)2)2 , F(24)4 and F(28)2 . Each design
option begins with an in-depth description of different field constructions and their impact
on the top-level WG transformation circuit. Normal basis representation of elements for
each level of the tower was chosen for field constructions F(((22)2)2)2 and F(24)4 , and a mixed
basis, with polynomial basis for the lower and normal basis for the higher level of the
tower for F(28)2 . Representation of field elements affects the field arithmetic, which in
turn affects the entire design. Targeting high throughput, pipelined architectures were
developed, and pipelining was based on the particular field construction: each extension
over the prime field offers a new pipelining possibility. Pipelining at a lower level of
the tower field reduces the clock period. Most flexible pipelining options are possible for
F(((22)2)2)2 , a highly regular construction, which permits an algebraic optimization of the
WG transformation resulting in two multiplications being removed. High speed, achieved
by adequate pipelining granularity, and smaller area due to removed multipliers deem the
F(((22)2)2)2 to be the most suitable field construction for the implementation of WG-16.
The best WG-16 modules achieve a throughput of 222 Mbit/s with 476 slices used on the
Xilinx Spartan-6 FPGA device xc6slx9 (using Xilinx Synthesis Tool (XST) for synthesis
and ISE for implementation [47]) and a throughput of 529 Mbit/s with area cost of 12215
GEs for ASIC implementation, using the 65 nm CMOS technology (using Synopsys Design
Compiler for synthesis [45] and Cadence SoC Encounter to complete the Place-and-Route
phase).

iii

Acknowledgements

I would like to thank my supervisors Guang Gong and Mark Aagaard for all the help and
support and their endless patience in the past two years. I would also like to thank Xinxin
Fan and Yin Tan for tireless explanations. Finally, a quick thanks to Aleksandar Jurisic,
for sending me on this incredible journey.

iv

Table of Contents

List of Tables ix

List of Figures xii

1 Introduction 1

2 Background, WG-16 stream cipher and related work 6

2.1 Implementation technologies: FPGAs and ASICs 6

2.1.1 Xilinx Spartan-6 FPGA . 7

2.1.2 ASIC . 8

2.1.3 Implementation efficiency and different metrics 8

2.1.4 FPGA vs. ASIC . 10

2.2 Mathematical background . 11

2.2.1 Definitions and terminology . 11

2.2.2 Irreducible polynomials and field constructions 15

2.2.3 Bases, conjugates and trace function 17

2.3 Stream ciphers . 19

2.3.1 General structure . 19

2.3.2 A brief discussion on design principles 20

2.4 The WG stream cipher . 25

2.4.1 Structure of WG-16 . 25

v

2.4.2 Security of the WG . 32

2.5 Related work . 33

2.5.1 WG hardware implementations . 33

2.5.2 3GPP confidentiality and integrity algorithms: Snow3G and ZUC . 35

2.5.3 The eSTREAM project: Grain and Trivium 40

2.5.4 Composite field arithmetic . 45

3 WGP T module and different field constructions 48

3.1 Finite field F216 - overview of field constructions 49

3.2 F216 with polynomial basis . 52

3.2.1 Field construction . 52

3.2.2 WGP T module . 52

3.3 F216 with normal basis . 54

3.3.1 Field construction . 54

3.3.2 WGP T module . 54

3.4 Tower construction F(((22)2)2)2
∼= F216 . 57

3.4.1 Field construction . 57

3.4.2 Conversion matrices . 64

3.4.3 Module WGP T . 69

3.5 Tower construction F(24)4
∼= F216 . 84

3.5.1 Field construction . 84

3.5.2 Conversion matrices . 88

3.5.3 Module WGP T . 90

3.6 Tower construction F(28)2
∼= F216 . 93

3.6.1 Field construction . 94

3.6.2 Conversion matrices . 95

3.6.3 Module WGP T . 96

3.7 Finite field F216 - summary of field constructions 98

vi

4 Implementation 100

4.1 The WG-16 LFSR . 103

4.1.1 Multiplication with ω2743 . 104

4.1.2 Serial vs. parallel loading phase . 105

4.2 F216 with polynomial basis - implementation 107

4.2.1 Analysis of Basic Building Blocks 107

4.2.2 Module WGP T using polynomial basis 110

4.3 F216 with normal basis - implementation 113

4.3.1 Analysis of Basic Building Blocks 113

4.3.2 Module WGP T using normal basis 116

4.4 Tower construction F(((22)2)2)2
∼= F216 - implementation 117

4.4.1 Analysis of Basic Building Blocks 117

4.4.2 Initial Design of Pipelined Architecture 130

4.4.3 Optimizations and final choice for module WGP T 141

4.4.4 The FSM . 147

4.4.5 The WG-16 module . 155

4.5 Tower construction F(24)4
∼= F216 - implementation 157

4.5.1 Analysis of Basic Building Blocks 157

4.5.2 Module WGP T - Design of Pipelined Architecture 166

4.6 Tower construction F(28)2
∼= F216 - implementation 168

4.6.1 Analysis of Basic Building Blocks 168

4.6.2 Module WGP T - Design of Pipelined Architecture 174

4.7 Summary of implementations . 176

4.7.1 The WGP T PB and the WGP T NB . 178

4.7.2 The WGP T A16 2 BC8 and WGP T A8 2 BC8 178

4.7.3 The WGP T A4 2 BC4 and WGP T M4 I4 T2 179

4.7.4 The WGP T M8 I8 T3 . 179

4.7.5 Optimality analysis . 180

4.7.6 The LFSR and the FSM . 180

4.7.7 The WG-16 . 181

vii

5 Conclusion and future work 183

Appendix 186

A Xilinx Spartan-6 FPGA 186

A.1 Basic structure . 186

A.1.1 CLB - Configurable Logic Block . 187

A.1.2 IOB - Input/Output Block . 190

A.1.3 Interconnects . 190

A.2 FPGA design flow . 191

A.2.1 Levels of abstraction . 191

A.2.2 Design flow . 193

B More detailed discussions and additional material on field constructions
and module WGP T 195

B.1 Tower construction F216
∼= F(((22)2)2)2 . 195

B.1.1 Extension field F24
∼= F(22)2 . 195

B.1.2 Efficient conversion matrices between normal basis and tower field
representation of F(((22)2)2)2 . 197

B.2 Tower construction F216
∼= F(24)4 . 201

B.2.1 Different representations of the finite field with 16 elements and cor-
responding transition matrices . 201

C Xilinx specific optimization for the serial LFSR 203

D Extended Euclidean Algorithm for inversion in polynomial basis 207

E Detailed gate count 215

Bibliography 218

viii

List of Tables

2.1 Resources available on a Xilinx Spartan-6 FPGA xc6slx9-csg324 7

2.2 Three phases of the WG-16 operation . 30

2.3 Implementation results for Snow3G and ZUC found in literature 39

2.4 Implementation results for Grain and Trivium found in literature 44

3.1 Tower construction of F(((22)2)2)2 . 57

3.2 Elements of F22 . 59

3.3 Addition in F22 . 59

3.4 Multiplication in F22 . 59

3.5 Addition in F22 . 60

3.6 Multiplication in F22 . 60

3.7 Values of f(x) = x2 + x+ α for elements of F22 61

3.8 Elements of F(22)2 . 62

3.9 Candidates for irreducible polynomials g(x) = x2 + x+ λi of degree 2 over F(22)2 . . . 63

3.10 Elements µ2i ∈ F((22)2)2 . 71

3.11 Allocation table for the reused blocks . 82

3.12 Tower construction of F(24)4 . 84

3.13 Candidates for irreducible polynomials of degree 4 over F2 86

3.14 Elements of the finite field of order 16 . 87

3.15 Candidates for irreducible polynomials of degree 4 over F24 88

3.16 Tower construction of F(28)2 . 94

ix

4.1 The LFSR module - values of the control signals 104

4.2 The LFSR module - implementation results . 104

4.3 The LFSR module compared with parallelLFSR 107

4.4 Basic building blocks for polynomial basis arithmetic - implementation results 110

4.5 Polynomial basis inversion I16 and WGP T module WGP T PB - implementation results . . 112

4.6 Normal basis multiplier - generation of vectors vi for i = 1, . . . , 8 115

4.7 Normal basis multiplier - implementation results 116

4.8 The WGP T module WGP T PB - implementation results 117

4.9 Basis transition and exponentiation in F(((22)2)2)2 - implementation results 128

4.10 Gate count: area and time complexities of building blocks in F(((22)2)2)2 129

4.11 Basic building blocks for arithmetic in tower field F(((22)2)2)2 - implementation results . 129

4.12 Path X → Xd - implementation results . 132

4.13 Path X → Y −1 - implementation results . 134

4.14 Module moduleA - implementation results . 136

4.15 Module moduleB - implementation results . 139

4.16 Module moduleC in two versions - implementation results 140

4.17 The fist WGP T implementation . 141

4.18 Optimized moduleA - implementation results . 143

4.19 Module moduleBC pipelined at different levels of the tower F(((22)2)2)2 - implementation

results . 146

4.20 Module WGP T , pipelined at different levels of the tower F(((22)2)2)2 - implementation

results . 147

4.21 Passing the same value three times . 149

4.22 Six states for the WG-16 operation - values of the control signals 151

4.23 Module FSM with different parameters P, S and T - implementation results 152

4.24 Module WG A16 BC8 - behavior in initialization phase 154

4.25 Top module WG-16, pipelined at different levels of the tower F(((22)2)2)2 - implementation

results . 155

x

4.26 Top module WG-16, pipelined at different levels of the tower F(((22)2)2)2 - pipeline length

and initialization phase . 156

4.27 Comparison of M4 blocks using different tower constructions 159

4.28 Basic building blocks for arithmetic in tower field F(24)4 - implementation results . . . 165

4.29 Module WGP T M4 I4 T2 using tower construction F(24)4 pipelined at M4 /I4 level - imple-

mentation results . 166

4.30 Multipliers M8 , M8 d and M8 b - implementation results 171

4.31 Basic building blocks for arithmetic in F28 - implementation results 172

4.32 Basic building blocks for arithmetic in tower field F(28)2 - implementation results . . . 174

4.33 Module WGP T M8 I8 T3 using tower construction F(28)2 pipelined at M8 /I8 level - imple-

mentation results . 175

4.34 Summary of WGP T modules for all five field constructions 177

B.1 Elements of F24 in polynomial basis {1, y, y2, y3} and as powers of y 196

B.2 Different representations of F24 over F2 viewed as vector spaces of dimension 4 201

C.1 Module LFSR - register count . 204

D.1 EEA inversion in polynomial basis - implementation results 213

E.1 Area and time complexities of building blocks in Section 4.3 in terms of NAND gates . . 216

E.2 Area and time complexities of building blocks in Section 4.4.1 in terms of NAND gates . . 217

E.3 Area and time complexities of building blocks in Section 4.5.1 in terms of NAND gates . . 217

xi

List of Figures

2.1 Behavioral model of a stream cipher: (a) encryption and (b) decryption . 20

2.2 Structural model of a nonlinear filter generator 21

2.3 The WG-16 LFSR . 26

2.4 Architecture of WG-16 stream cipher . 30

2.5 Three phases of the WG-16 operation . 31

2.6 Contents of the LFSR after the loading . 32

2.7 The structure of Snow3G stream cipher . 36

2.8 The structure of ZUC stream cipher . 38

2.9 The structure of Grain stream cipher . 41

2.10 The structure of Trivium stream cipher . 42

3.1 Architecture of module WGP T . 49

3.2 Finite filed F216 - possible tower constructions 51

3.3 Module WGP T for field elements in polynomial basis representation 53

3.4 Module WGP T for field elements in normal basis representation 55

3.5 Conversion between normal basis and tower field representation 65

3.6 A tree structure for the element A =
∑15

j=0 ājtj in the tower construction
F(((22)2)2)2 . 66

3.7 Transitivity of trace function in F(((22)2)2)2 76

3.8 Data-dependency graph for WGT-16(Xd) computation 79

3.9 Dataflow diagram for WGP-16(Xd) computation 81

xii

3.10 Module WGP T with multiplier reuse using tower field F(((22)2)2)2 83

3.11 Module WGP T using tower field construction F(24)4 90

3.12 Module WGP T with multiplier reuse using tower field F(((22)2)2)2 98

3.13 Module WGP T for all other field constructions 99

4.1 Chapters 3 and 4 - roadmap . 102

4.2 The LFSR module, connected to module WGP T 104

4.3 The parallelLFSR module - parallel key/IV loading [15] 106

4.4 Inversion sumbmodule I16 for inversion in polynomial basis 112

4.5 Module WGP T PB - pipelined architecture for module WGP T in polynomial
basis . 112

4.6 Normal basis multiplier M16 - computation of coefficient xj,i with k = (i+ j)
mod m in block M16 in F216 . 114

4.7 Squaring and inversion block S2 in F22 . 118

4.8 Straightforward multiplication (a0, a1)(b0, b1) = (c′0, c
′
1) from equation 4.6 . 119

4.9 More efficient multiplication (a0, a1)(b0, b1) = (c0, c1) from equation 4.7 . . 119

4.10 Multiplication by α and α2 in F22 . 119

4.11 Squaring and multiplication in F(22)2 . 120

4.12 Inversion block I4 in F(22)2 . 122

4.13 Block Mλ . 122

4.14 Block Mλ2 . 122

4.15 Block Mβ . 122

4.16 Block Mαβ . 122

4.17 Multiplication, squaring, and inversion in F((22)2)2 124

4.18 Block Mµ . 124

4.19 Squaring and multiplication in F(((22)2)2)2 125

4.20 Inversion block I16 in F(((22)2)2)2 . 126

4.21 Multiplication, squaring, and inversion with: Mσ = Mα for n = 4 in F(22)2 ,
Mσ = Mλ for n = 8 in F((22)2)2 and Mσ = Mµ for n = 16 in F(((22)2)2)2 . . . 127

xiii

4.22 Basis transition and exponentiation . 127

4.23 Path X → Xd and different levels of pipelining 132

4.24 Module path2 M8 I8 - path X → Y −1 pipelined at M8 /I8 level 133

4.25 First decomposition of the WGP T circuit into submodules moduleA, moduleB
and moduleC . 135

4.26 Modular view of submodules moduleA, moduleB and moduleC and connect-
ing signals . 135

4.27 Module moduleA - pipelined at M16 /I8 level 135

4.28 Module moduleB - splitting into two pipeline stages (dashed line) 137

4.29 Module moduleB . 138

4.30 XORing the 16 bits for the trace computation 139

4.31 Module moduleC with two different insterstage register placings 140

4.32 Module moduleA - pipelined at M16 /I8 level 142

4.33 Module moduleBC - merging moduleB and moduleC 143

4.34 Module moduleBC8 with two pipeline stages and with grey vertical line in-
dicating the old pipleine stage border . 145

4.35 The WG-16: modules LFSR, WGP T and FSM connected 150

4.36 Six states for the WG-16 operation - the state transition diagram 152

4.37 Block M4 in F24 - computation of coefficient ci 158

4.38 Inversion block I4 in F24 . 159

4.39 Inversion block I4 in F24 - computation of coefficient ii 161

4.40 Block M16 in F(24)4 - component conv4(s0, s1) 162

4.41 Multiplication block M16 in F(24)4 . 164

4.42 Inversion block I16 in F(24)4 . 164

4.43 Module WGP T M4 I4 T2 - pipelined architecture for module WGP T using
tower field construction F(24)4 . 167

4.44 Module WGP T M8 I8 T3 - pipelined architecture for module WGP T using
tower field construction F(28)2 . 167

4.45 Multiplication block M16 in F(28)2 . 173

xiv

4.46 Inversion block I16 in F(28)2 . 173

A.1 Basic structure of an FPGA: CLBs - the large grey blocks, IOBs - smaller
white blocks, vertical and horisontal interconnects 186

A.2 Arrangement of slices within the CLB [60] 186

A.3 Diagram of SLICEX [60] . 188

A.4 Realization of 7 or 8-input Boolean functions using multiple slice LUTs . . 189

A.5 Interconnect types [60] . 191

A.6 Interconnects: (a) switchbox; (b) different connections between CLBs . . . 191

A.7 Levels of abstraction . 192

A.8 Design flow . 192

C.1 Module LFSR - Xilinx-ISE technology map view of SRL’s 206

D.1 EEA inversion in polynomial basis - schematic for new r1 212

E.1 Area and delay of NOT, AND, OR and XOR gates in terms of NAND gates . . 216

xv

Chapter 1

Introduction

Over the past decades, society has come to recognize the importance of communication
security, and security solutions are now applied in many different areas. Cryptography
offers a variety of primitives that are used to construct mechanisms to address different
security objectives.Communication security is a wide area and we focus on the confiden-
tiality aspect of information security. Confidentiality is achieved by means of encryption
and decryption, and the cryptographic tool used to encrypt/decrypt a message is called a
cipher. We further narrow down this area to symmetric-key ciphers, which can be divided
into two groups: the block ciphers and the stream ciphers, and focus on the latter. As the
name suggests, block ciphers encrypt the message block-by-block, whereby the term block
refers to a fixed number of message bits. Stream ciphers on the other hand encrypt the mes-
sage character by character, where character often refers to one bit, or maybe a 32-bit word.

Let us take a look at some applications that motivate the design of stream ciphers. We
are surrounded by various devices and gadgets, such as cell phones, tablets and e-readers
with wireless support, etc. or the less-noticeable resource-constrained devices, such as
Radio-Frequency Identification (RFID) tags or sensor networks, and much communication
is conducted over a wireless link. The wireless channel is more prone to transmission er-
rors and no error-propagation is one of the strengths of stream ciphers: a single bit error
affects the decryption of the entire block when a block cipher is used, but when a stream
cipher is used, only the character in question is affected. In stream ciphers, the encryption
itself is a simple modulo-2 addition of the message character and the keystream charac-
ter, which is a simple and very fast operation. However the security of the stream cipher
depends on the randomness properties of the keystream and the efficiency of the cipher

1

depends on the efficiency of the keystream generator. Hardware implementations are well
suited for applications demanding high speed and high throughput solutions; examples of
streams cipher falling into this category are Snow-3G and ZUC, which are used in the
security architecture of the cellular 4G-LTE system [14, 16]. The second notable group of
applications are the aforementioned hardware applications with restricted resources such
as limited storage, gate count, or power consumption. The security concerns for resource
constrained devices are addressed in the form of lighweight cryptography (both block and
stream cipher, as well as some hybrid solutions exist). In 2004, a call for new stream
ciphers appeared: the eSTREAM project [25], which targeted two specific groups, one
of them being stream ciphers for hardware applications with highly restricted resources,
denoted Profile 2. Examples of Profile 2 candidates that were included in the eSTREAM
portfolio are the stream ciphers Grain and Trivium [23, 22].

A member of the Welch-Gong (WG) stream cipher family, WG-29 [3], entered the eS-
TREAM competition and proceeded to the Phase 2. Later on, lightweight variants WG-5
[9], WG-7 [10] and WG-8 [11] were proposed, to be used in RFID tags. The WG stream ci-
pher family consists of stream ciphers based on the Welch-Gong (WG) transformation that
is used as a nonlinear filter applied to the elements of an maximum-length sequence gener-
ated by an linear feedback shift register (LFSR). WG stream ciphers generate keystreams
with mathematically proven randomness properties, such as long period, balance, ideal
two-level autocorrelation etc. The WG-16 stream cipher, intended to be used in 4G-LTE
networks, inherits these randomness properties, and is able to withstand the known at-
tacks against the stream ciphers [8]. Cellular systems have high demands for speed and
throughput and hardware solutions are more efficient in such environments. In this work,
we present different hardware implementations of the WG-16 stream cipher.

The WG stream ciphers are composed of three components: the LFSR, the WG trans-
formation and the finite state machine (FSM) controlling its operation. Both the LFSR
and the WG transformation are defined over the finite field F216 . The implementation of
the LFSR is quite straightforward, but the WG transformation is more complex and is the
critical component in the WG stream cipher, so we focus on the implementation of the
WG transformation. We will call this component the WGP T for the rest of this work. The
WGP T involves several exponentiations to powers of two, multiplications and an inversion
of the F216 field elements. Although the finite field F216 is considered to be small, the
aforementioned operations, especially inversion, are quite time and area consuming.

Generally speaking, there are several approaches to optimization of a hardware implemen-

2

tation. For example area reductions can be achieved by reusing resources, pipelining at
different levels of granularity, etc. High throughput comes at the cost of area increase, for
example exploiting the maximum level of parallelism, pipelining at a finer granularity and
so on, and we must find the best trade-off between the area and the throughput. Algebraic
optimizations also reduce the number of resources needed and are in some cases performed
by the synthesis tools.

Another level of optimization begins by choosing the appropriate architecture for the de-
sign. For WG-16 we choose different field constructions and different representations of
field elements, and explore the effects of our choices on the F216 arithmetic and the WGP T.
Polynomial bases and normal bases are quite common for finite field implementations.
Both have their own advantages, for example exponentiation to powers of two is very sim-
ple when normal bases are used, but for F216 , optimal normal bases, which would give the
best architecture, do not exist. Motivated by research on the AES S-boxes, which require
F28 arithmetic: possible field constructions of F28 were thoroughly explored, including the
tower field F((22)2)2 with different bases for each level of the tower. We decide to explore
the isomorphic tower field constructions of F216 and analyze five different representations
of the field elements: the polynomial basis representation, the normal basis representation
and three different tower field representations, namely F(((22)2)2)2 , F(24)4 and F(28)2 . For
each representation we first conduct an analysis of the basic building blocks, that is the
field operations needed for the WGP T. Inverters and multipliers can serve as good indica-
tors of overall system area cost and delay. However, since we decide to base the pipelining
granularity on the “granularity” of the tower field construction used, we must compare the
blocks at the same level of the tower field. For example the normal basis implementation
will include atomic multipliers working with 16-bit operands within a pipeline stage, while
the F(24)4 will include a multiplier working with 4-bit operands. We will denote the level of
the pipelining with the width of the operands and letter M for multiplier and I for inverter;
that would be M16 level and M4 level of pipelining for the previous example. Furthermore,
the aforementioned algebraic optimizations performed by synthesis tools result in discrep-
ancies between the theoretical gate count and delay and the implementation results, thus
providing another motivation for an actual implementation of the modules.

Let us briefly summarize the implementation results. The polynomial and normal basis
WGP T modules were implemented to provide a frame of reference for the tower field imple-
mentations. For field constructions F(((22)2)2)2 and F(24)4 , we chose to use the normal basis
representation of elements for each level of the tower. For the construction F(28)2 a mixed
basis was chosen: using polynomial basis representation and table look-up algorithms for

3

arithmetic operations at the lower level of the tower F28 , and normal basis representa-
tion of elements at the top level of the tower. Due to the large number of look-up tables
and a relatively large table size, this implementation produced the biggest WGP T module
with the longest clock period. The tower construction F(24)4 permitted a single reasonable
pipelining option for the WGP T module, namely the pipelining at the M4 /I4 level. In terms
of speed, this module was a top candidate, but in terms of area cost it is very close to the
polynomial basis WGP T module. It also exhibited a highly regular structure that allowed
many algebraic optimizations. The tower construction F(((22)2)2)2 is also highly regular,
giving very similar basic building blocks, that differ only in the width of the operands and
gates, at each level of the tower. Different levels of pipelining are facilitated by F(((22)2)2)2 :
the M16 /I8 level, the M8 /I8 level and the M4 /I4 level. Pipelining at a lower level of the
tower field reduces the clock period. For the tower construction F(((22)2)2)2 an algebraic
optimization that removes two multiplications was possible: consequently, the F(((22)2)2)2

based WGP T modules result in the best overall design in terms of performance and area
among all the FPGA implementations.

This work is organized into three large parts: Chapter 2 covers the background, the defi-
nition of WG-16 and the related work; Chapter 3 gives an in-depth description of different
field constructions and their impact on the WGP T circuit; and Chapter 4 presents the
implementations of the WGP T circuits obtained in Chapter 3. The background material
covered in Chapter 2 includes hardware implementation technologies (Section 2.1), mathe-
matical background (Section 2.2) and stream ciphers (Section 2.3). The description of the
WG-16 stream cipher is provided in Section 2.4. The related work covered includes the
stream ciphers currently used in 4G-LTE networks (Section 2.5.2), the eSTREAM project
finalists Grain and Trivium (Section 2.5.3), and the implementations using composite field
arithmetic (Section 2.5.4). Chapter 3 is theoretical; it begins with an overview of field con-
structions, continues with a separate Section dedicated to each one of those constructions,
and provides an overview at the end. The five different constructions narrow down to two
different top-level designs for the WGP T module, one for the F(((22)2)2)2 and one for all other
field constructions. Chapter 4 is the “implementation” Chapter and it closely follows the
structure of Chapter 3. It explains the algorithms used for the arithmetic operations, i.e.
the basic building blocks, which are then used in the WGP T pipelines. In Chapter 5 we
give the summary of results, provide conclusions and briefly discuss future work.

Readers primarily interested in the hardware aspects of this work may wish to focus on
Chapter 4, and refer back as necessary to Chapter 3 to understand the five field construc-

4

tions and to Section 2.2 for the mathematical background. Readers primarily interested in
the field constructions may wish to focus on Chapter 3 and Section 4.4, which describes the
most optimal hardware implementation. Chapter 3 contains many examples to illustrate
the theory of finite fields, that was summarized in Section 2.2. Throughout Chapters 3 and
4, supporting observations and examples appear as comments and may be skipped without
loss. These remarks are distinguished by a smaller font size and are enclosed in “�”.

5

Chapter 2

Background, WG-16 stream cipher
and related work

This Chapter begins with three preliminary sections: hardware implementations, mathe-
matical background and stream ciphers. These three sections cover the background mate-
rial needed for the contents of this thesis. Then the core section follows: the presentation
of WG-16 stream cipher. The supplementary literature survey at the end of this chapter is
needed to put the entire work into perspective: it covers the stream ciphers currently used
in 4G/LTE networks, the eSTREAM project and the implementations using composite
field arithmetic.

2.1 Implementation technologies: FPGAs and ASICs

FPGA (Field Programmable Gate Arrays) devices provide a high number of gates (in
millions) and built-in high-level system functions, such as embedded processors, clock
management systems, memory modules, DSP (digital signal processing) modules, serial
transmitters, etc., integrated in a single device [48]. The greatest advantage of SRAM-
based FPGAs is their flexibility; modifying the designed and even implemented circuit is
fast and easy. Compared to ASIC FPGAs have a big advantage when time-to-market is
critical due to a shorter development cycle. Nevertheless, when comparing speed, area and
power consumption, an equivalent ASIC circuit is always preferable. But an ASIC solution
is also extremely time consuming and expensive. Furthermore, once fabricated it cannot
be altered. An extensive comparison of FPGAs and ASICs was performed in [44], and a

6

brief review of their findings is given at the end of this section. Nowadays, FPGAs can be
found almost everywhere: in satellites, airplanes, modems, Mars Rover, face recognition
systems, etc.

2.1.1 Xilinx Spartan-6 FPGA

For this thesis, a Xilinx Spartan-6 FPGA was chosen (xc6slx9-csg324). Here we give
a short description of Xilinx FPGA’s. A more detailed description of FPGA features in
terms of Spartan-6 family can be found in Appendix A. From a users point of view, the
most important part of an FPGA are the Configurable Logic Blocks (CLBs), that are basic
building blocks of the circuit. Each CLB is divided into two slices and each slice contains
four Look-up Tables (LUTs), four primary and four secondary 1-bit storage elements and
multiplexers to control the routing within the slice. The storage elements can be config-
ured either as D-type flip-flops (DFFs) or latches; since using latches is considered a bad
practice we shall only use DFFs, and will refer to storage elements as flip-flops or simply
FFs from now on. LUTs are basically just memory arrays that hold the truth table of
a Boolean function they implement. The CLBs are organized into a matrix, interwoven
with configurable interconnects, and surrounded by special Input/Output Blocks (IOBs).
The resources available on the chosen target device xc6slx9-csg324 are listed in Table 2.1.

of Slices 1430
of LUTs 5720

slice registers 11440
of user IOBs 200

Table 2.1: Resources available on a Xilinx Spartan-6 FPGA xc6slx9-csg324

The design flow for FPGAs is described in detail in Appendix A. We used VHDL for de-
sign entry, Xilinx Synthesis Tool (XST) for synthesis and ISE for implementation [47]. The
designs were verified using ModelSim [46] to run simulations for individual basic building
blocks, for WGP T modules and finally for the top-module itself.

7

2.1.2 ASIC

In this work, the term ASIC refers to Standard-Cell-Based ASIC: the logic components
are pre-designed, pre-tested and pre-characterized [43], and finally stored in a library as
standard cells. The design flow for ASICs starts with design entry, where the same code
that was used for the FPGA implementation can be reused, but the rest of the process is
different. Without going into details, let us just say that the CAD tools use the library
cells to convert the VHDL design into a chip layout.
For this thesis, the CAD tools for ASIC were run only for the WG-16 designs that have
shown the best performance on the FPGA. The results were obtained for the 65nm CMOS
technology using Synopsis Design Compiler and Cadence SoC Encounter [45].

2.1.3 Implementation efficiency and different metrics

Performance of FPGA and ASIC implementations is described with three key metrics
(dimensions): area, time and power. Other derived metrics are sometimes used, because
they make predictions and comparisons between different design options easier.

The primary time metrics of a design are latency, clock period (and its reciprocal clock
frequency) and total time. These terms apply in the same manner to both, FPGAs and
ASICs. Latency is the time that elapses from the moment when the input data is available
to the moment the results appear on the outputs, that is the delay between the input and
the output [66]. In general, latency can refer to a particular module or the FPGA/ASIC
itself, if we are talking about the top-module. If an algorithm can be realized with a
purely combinational circuit (without storage elements), the time complexity equals to the
delay of the signal along the critical path (a path is a sequence of interconnects and logical
elements [48]). In sequential circuits, the time complexity is given by two parameters, the
clock period, which depends on the critical path, and total time, which is the product
of the clock period and the number of clock cycles needed. Because we are targeting for
a pipelined design we will be primarily interested in clock period and throughput. The
throughput measures the amount of data processed per unit of time, mostly given in
bits per second [bps]. Another similar metric is data rate measured in bits-per-cycle, and
throughput is computed by multiplying data rate with clock frequency.

The area complexity in FPGAs is given in terms of resources used by the design, for
example the number of used slices, LUTs, storage elements, IOBs, etc. Data about re-
sources available on our target device xc6slx9-csg324 are presented in Table 2.1. Area
complexity for ASICs is measured by the amount of silicon used and can be given either

8

in µm2 or in Gate Equivalents (GE). The latter is the area in µm2 divided by the area of
a two-input NAND gate.

Power is another metric in hardware performance evaluations, and its importance is be-
coming more and more significant for various reasons: it affects battery life, can force us
to limit the clock frequency, causes higher temperatures which in turn reduces the lifetime
of the device, increases dissipated heat of hand-held devices etc. In general, total power
consumption depends on the number of logic cells in the circuit, on connections between
them, on the underlying technology being used and finally on data that is being processed.
In CMOS circuits, the total power consumption has two components: static power and
dynamic power. Dynamic power is proportional to how often the signals change their
value and on clock frequency. It is attributed to the evaluation of logic cell outputs and
depends on two factors, the load capacitance of the cell that needs to be charged and the
short circuit current occurring when the output of a cell is switched. The static power is
caused by leakage currents and increases with decreasing size of transistors. It is roughly
proportional to the area [31].
Note that the above is a very simplified description. In reality, power consumption depends
on many factors in a complicated way: often changing one parameter that would make an
improvement for example to dynamic component, would increase the static component of
power consumption.

Since it is difficult to compare two designs based on more than one metric (for example
the clock period and the area), we use the so called derived metrics, for example the
time-area product or with the power consumption being more and more important, the
time-area-power product. These two metrics are, just like the clock period and area, “the
smaller the better”. However, it is more natural for us to look for the opposite, the “bigger
number”, which is also one of the reasons why frequency is often preferred to clock period.
Taking the reciprocal of these two products and keeping throughput in mind, we come
up with another set of commonly used metrics, namely the throughput per area ratio T

A

and throughput per product of area and power T
AP

. Because power analysis is tedious we
often approximate it with area, thus obtaining the T

A2 . The T
A2 ratio is also preferred to

the T
AP

, because of sensitivity of power analysis to differences between the cell libraries
and to tool configurations [9]. There is yet another viewpoint to these metrics, namely
the fact that high throughput comes at the cost of area increase, for example exploiting
maximum level of parallelism or unrolling an iterative implementation into a pipeline [67],
or by increasing the frequency, which in turn causes increased area and power consumption.
Metrics like T

A
and T

A2 put a better perspective on the actual improvement of the design

9

by some optimization attempt; they emphasize the trade-offs between the throughput and
area.

In this thesis, we will report the area cost by listing the number of flip-flops, number
of LUTs, and number of slices used by the design and will give the time parameters in
terms of clock period for registered modules and block delay for the combinational modules
implemented on the FPGA. The total numbers of resources available on the chosen target
device xc6slx9-csg324 are listed in Table 2.1. We use the T

A2 metric when the benefits
of certain design options are not immediately clear. In such cases it is also beneficial to
obtain the ASIC results as well. For the best FPGA design we also provide ASIC results
obtained for the 65nm CMOS technology, in terms of gate equivalents for the area and
clock period or block delay for the time dimension.

2.1.4 FPGA vs. ASIC

As already mentioned, compared to ASIC, the area is always larger when the same de-
sign is implemented an an FPGA. Comparing the performance of a 90-nm CMOS FPGA
and 90-nm CMOS standard-cell ASIC using implementations of carefully designed bench-
marks, [44] reports that the area complexity when implemented on an FPGA is in average
approximately 35 times larger in comparison with the ASIC implementation, when com-
paring circuits that use logic only (that is only LUTs and interconnects), and that for other
circuits the gap in area complexity can be reduced when using dedicated blocks in FPGAs
(listing the use of multiply-accumulate logic in special DSP slices available on some FP-
GAs). The same author also directs attention towards two facts about FPGAs: first, they
come in fixed discrete sizes and second, if only one resource within a cell is utilized, the cell
is counted as used (also pointing out that the CAD tools give less effort to optimizations
when the design is small relative to the device on which it is implemented). But, they
also find that FPGAs are better equipped to handle larger designs, and that with same
designs on an ASIC, area overhead occurs in order to maintain speed and signal integrity
for longer connections.
In [44], ASIC implementations were compared to implementations on the fastest and slow-
est FPGA speed grades. For the fastest speed grade FPGAs, they found the FPGA
implementations to be on the average 3.4 times slower for logic only designs. Again, the
factor could be slightly reduced when using dedicated blocks on FPGAs, but only if there
are enough dedicated blocks available. Another general observation made by the authors
of [44] is that efficient usage of dedicated blocks in FPGAs reduces dynamic power con-
sumption (due to smaller area and less interconnects).

10

In general, a huge percentage of an FPGA device is used to provide the programmability.
Furthermore, since the general FPGA structure is fixed, there are always unused CLBs left
over. Sometimes they even cannot be used because they end up isolated; there are just
not enough routing resources available to reach them. In general, interconnect switching
in FPGAs is slow, programmable routing takes up a lot of area and these interconnects
have higher capacitance hence higher power consumption. Due to [64], some 40%-80% of
overall design delay, 90% of area and up to 80% of total power dissipation are attributed
to interconnects. Another problem due to the fixed interconnects: a signal path in an
equivalent ASIC circuit could be much shorter, hence lower delay.
In the FPGA world, there are two layers to be taken into account: the high-level architec-
ture of the design and the FPGA itself, fixed in structure. The latter problem is addressed
through CAD tools provided by FPGA vendors, and the user has only little influence on
how the resources are actually used.

2.2 Mathematical background

In the following section we will cover basic definitions and properties of finite fields, exten-
sion fields and their defining polynomials. We will introduce polynomial and normal bases
and conclude the Section with the notion of trace function. Extensive literature on the
subject exists, for example [69] or [70]. Further properties of finite fields will be presented
in the remaining text when needed. Numerous examples illustrating the theory presented
in this section will be encountered in Chapter 3.

2.2.1 Definitions and terminology

Unfortunately, we cannot begin this discussion without briefly introducing the notion of a
group and a ring. We proceed with definition of a field, [73].

Definition 2.1 A nonempty set G, together with a binary operation ◦ : G × G → G,
constitutes a group G = (G, ◦), if

i. for ∀ a, b ∈ G : a ◦ b ∈ G (G is closed under ◦),

ii. for ∀ a, b, c ∈ G: (a ◦ b) ◦ c = a ◦ (b ◦ c) (associativity),

11

iii. there ∃ and element e ∈ G 3: ∀g ∈ G : e ◦ g = g ◦ e = g (identity),

iv. for ∀ g ∈ G there ∃ f ∈ G 3: g ◦ f = f ◦ g = e (inverse).

G is called commutative or Abelian group if its operation is commutative,
i.e. for ∀ a, b ∈ G: a ◦ b = b ◦ a.

If the underlying set G is finite, then G is a finite group, otherwise G is infinite. The order
of group G is the number of elements in G, denoted |G|. The order of element g ∈ G is the
smallest positive integer r such that g ◦ g ◦ · · · ◦ g︸ ︷︷ ︸

r

= e; it is denoted ord(g) = r. The order

of an element must divide the order of the group, i.e. for ∀g ∈ G : ord(g)
∣∣ |G|.

Definition 2.2 A (multiplicative) group G is cyclic, if there exists an element g ∈ G such
that for any a ∈ G, there exists an integer i for which a = gi.

The element g is called generator of the cyclic group and we write G =< g >= {gi; i ∈ Z}.
If G is a finite group of order n, then < g >= {e, g, g2, . . . , gn−1} and ord(g) = n.

Definition 2.3 A ring R = (R,+, ∗) is a set R, together with two binary operations +
(addition) and ∗ (multiplication) on R, satisfying the following properties:

i. (R,+) is a commutative group with additive identity denoted 0,

ii. operation ∗ is associative: a ∗ (b ∗ c) = (a ∗ b) ∗ c for ∀a, b, c ∈ R

iii. multiplication is distributive over addition: a ∗ (b+ c) = a ∗ b+ a ∗ c and (b+ c) ∗ a =
b ∗ a+ c ∗ a for ∀a, b, c ∈ R

Definition 2.4 A nonempty set F , together with two binary operations addition “+ ”and
multiplication “∗” is a field F = (F,+, ∗), if

i. (F,+) is a commutative group with (additive) identity 0

ii. (F\{0}, ∗) is a commutative group with identity 1

iii. multiplication is distributive over addition: a ∗ (b+ c) = a ∗ b+ a ∗ c for ∀a, b, c ∈ F

12

If the underlying set F has a finite number of elements, then F is a finite field. We will
use the notation Fq to denote a finite field with q elements. The order of a finite field is
the number of elements in the field.

Very important fact, also referred to as generalization of Fermats little theorem ([76, 69]),
states that every element α of a finite field of order q satisfies the identity:

αq = α (2.1)

Let F = (F,+, ∗) be a field. A subset K ⊆ F together with operations operations +
and ∗ forms a subfield K = (K,+, ∗) of F , if (K) is itself a field with respect to the two
operations. We also refer to F as an extension field of K, denoted F/K. If K 6= F and
K 6= {0}, then K is a proper subfield of F . A field that has no proper subfields is called a
prime field. The smallest subfield of any field is a prime subfield. We can also consider F
as a vector space over K. The dimension of F over K is called degree of extension, denoted
[F : K], [69].

Definition 2.5 Let F = (F,+, ∗) be a field. The smallest positive integer p such that
1 + 1 + · · ·+ 1︸ ︷︷ ︸

p

= 0 is called the characteristic of F , denoted char(F) = p. If such an

integer does not exist, we say the field has characteristic 0, [69, 72, 76].

If char(F) > 0, then it is a prime number. The characteristic of a finite field is the order
of its prime subfield. It is also the additive order of the multiplicative identity 1. For
arbitrary elements α, β ∈ F , where char(F) = p, the following holds for any k ≥ 1:

(α + β)p
k

= αp
k

+ βp
k

. (2.2)

We now summarize some facts about finite fields.

The theorem about the existence and uniqueness of finite fields states, that for every prime
number p and each positive integer n, there exists a finite field with q = pn elements.
Furthermore, this field is unique up to field isomorphism (see [69, 71]).

The finite field Fq has order q = pm, where p = char(Fq) and m is the degree of extension of
Fq over its prime subfield Fp, i.e. [Fpm : Fp] = m. Any set {a0, a1, . . . , am−1} of m linearly
independent elements ai ∈ Fq forms a basis of the vector space Fq over Fp. For further
details see [69, 70]. Let us now state another important result connected to order of finite
field and degree of extension, namely the subfield criterion ([69]).

13

Theorem 2.1 [Subfield criterion] Let Fq be a finite field with q = pm elements. Then
every subfeild of Fq has order pn, where n is a positive divisor of m. Conversely, if n is a
positive divisor of m, then there is exact;y one subfeild of Fq with pn elements.

Speaking of subfields of a finite field we adopt a “top-down ”point of view. A “bottom-
up”approach reveals the following: for a composite integer m = n1 · . . . · nk, where
ni, i = 1 . . . k are positive integers (not necessarily primes), we can build Fpm as a tower of
extensions F(...((pn1)n2)...)nk over its prime subfield Fp. Field constructions will be discussed
in detail in the next section and concrete examples will follow in Chapter 3, however we
have covered enough basics to explain the notion of a tower field. In general, instead of
constructing Fpm as a single extension of degree m over the prime field Fp, we proceed in
k steps, building an extension of degree ni at step i, where ni is a factor in decomposition
of m. Using notation K0 = Fp, Ki = F(...((pn1)n2)...)ni , we proceed as follows:
We construct K1 = Fpn1 as an extension of degree [K1 : K0] = n1 over prime field Fp, then
field K2 = F(pn1)n2 as an extension of degree [K2 : K1] = n2 over K2 = Fpn1 , and continue
the process until we reach the final extension Kk = F(...((pn1)n2)...)nk , which is an extension
of degree [Kk : Kk−1] = nk over Kk−1.
So, in each step i ,i = 1, . . . , k, we build an extension Ki over Ki−1, with degree of exten-
sion [Ki : Ki−1] = ni . We will call Ki−1 the base field for this extension (to differentiate
it from the prime field).The base field Ki−1 is now embedded in Ki as a subfield, which
we will denote with the inclusion symbol, namely Ki−1 ⊂ Ki. The result of the procedure
described above is a sequence of subfields:

Fp = K0 ⊂ K1 ⊂ · · · ⊂ Kk−1 ⊂ Kk
∼= Fpm (2.3)

with their corresponding orders

p ≤ pn1 ≤ pn1·n2 ≤ · · · ≤ pn1·...nk = pm,wherem = n1 · . . . · nk

Note at this point, that the field obtained with each extension is isomorphic to a field whose
order is p to the power of partial product of extension degrees up till now, for example
F(pn1)n2

∼= Fpn1·n2 . Also, since m = n1 · . . . nk, the product of extension degrees equals the
degree of extension of Fpm over Fp, namely [Kk : K] = [Kk : Kk−1] · · · · · [K2 : K1] · [K1 : K0].

We refer to the sequence of fields in expression (2.3) as tower field or composite field. The
notion tower field indicates that the field was obtained as a tower of extensions, and the
notion composite field is related to compositness of m; we use the factors of m to build the
tower of extensions.

14

2.2.2 Irreducible polynomials and field constructions

After stating the basic facts about finite fields, we now move toward field constructions.

Let K[x] be a set of polynomials f(x) in the indeterminate x with coefficients from field
K:

f(x) =
∞∑
i=0

aix
i , ai ∈ K.

Let n be the index of the last nonzero coefficient in f , i.e. an 6= 0 but aj = 0 for ∀j > n.
Then an is called the leading coefficient of f and f is a polynomial of degree n. A polynomial
with an = 1 is called monic. The coefficient a0 is called the constant term, and polynomials
that have a0 6= 0 but aj = 0 for ∀j > 0 are called constant polynomials and have degree 0.
The degree of the zero polynomial (i.e. aj = 0 for ∀j) is defined to be −∞.

Let f, g ∈ K[x] be two polynomials of degrees n and m respectively:

f(x) =
∞∑
i=0

aix
i and g(x) =

∞∑
i=0

bix
i.

Their sum is defined as

f(x) + g(x) =
max{n,m}∑

i=0

(ai + bi)x
i

and their product as

f(x) · g(x) =
m+n∑
k=0

ckx
i where ck =

∑
i+j=k

aibj

The set of polynomials K[x] over field K, with addition and multiplication defined as above,
is a commutative polynomial ring (see 2.3) with additive identity f0(x) = 0 and multiplica-
tive identity f1(x) = 1, and has no divisors of zero, see [69].

Definition 2.6 A polynomial f ∈ K[x] is said to be irreducible over K, if it has a
positive degree and f = g ·h, for some g, h ∈ K[x] , implies that either g or h is a constant
polynomial.

15

An element α ∈ K[x] is a root of a nonzero polynomial f ∈ K[x] if f(α) = 0, i.e. when x
takes on the value α the polynomial f evaluates to 0. Then we can write f(x) = (x−α)·g(x)
for some g ∈ K[x] . A polynomial of degree n will have at most n distinct roots in K (or
any of its extensions), see [69]. The lowest degree monic polynomial in K[x], having a root
α is called the minimal polynomial of α, [76].

We now have all the tools required to start a discussion about extension fields. Noting that
a polynomial that is irreducible over K has no roots in K, we can construct an extension
field of K by adjoining its roots to the base field K. We will refer to the polynomial whose
root was used as the defining polynomial of the extension field.

Definition 2.7 Let F be an extension of K . An element α ∈F is algebraic over K , if
there exists a nonzero polynomial f ∈K [x] having α as root: f(α) = 0.

If every element α ∈F is algebraic over K , then F is an algebraic extension of K . The
minimal polynomial of an algebraic element α ∈F is irreducible in K [x]. The degree of α
is defined to be the degree of its minimal polynomial, [69].

Theorem 2.2 Let K be a subfield of F and α ∈F an algebraic element of degree n over
K . The simple algebraic extension of K obtained by adjoining α is

K (α) =K [α] = {
n−1∑
i=0

aiα
i; ai ∈K}

K (α) is an extension field of Kwith α as its defining element, and can be considered as a
n-dimensional vector space over K (i.e. [K (α):K]=n) with basis {1, α, α2, . . . αn−1}.

As already mentioned, a polynomial of degree n can have at most n distinct roots. The
finite fields obtained by adjoining different distinct roots of an irreducible polynomial over
K are isomorphic. For the finite field Fq over Fp, q = pn, the multiplicative group F∗q is
cyclic. Its generator is an element of order q − 1 and is called a primitive element. An ir-
reducible polynomial having a primitive element as its root is called a primitive polynomial.

16

2.2.3 Bases, conjugates and trace function

Let q = pn. An element α ∈ Fqm generates the polynomial basis {1, α, α2, . . . αm−1} of Fqm
over Fq if and only if α is a root of an irreducible polynomial f ∈ Fq[x] of degree m (i.e. f
is the defining polynomial of Fqm over Fq). For every finite field Fq and any positive integer
m, an irreducible polynomial in Fq[x] of degree m always exists. Furthermore, there exists
at least one polynomial basis of Fqm over any of its subfields, see [69]. Elements of Fqm with
defining polynomial f ∈ Fq[x] of degree m, can be viewed as polynomials in Fq[x], reduced
modulo f . Each element A ∈ Fqm can be represented in polynomial basis as follows:

A =
m−1∑
i=0

aiα
i; ai ∈ Fq

The polynomial f is irreducible over Fq, but it has a root in Fqm , say α ∈ Fqm . Further-
more, it has m distinct simple roots, given by the conjugates : α, αq, αq

2
, . . . , αq

m−1
. If the

roots of the defining polynomial are linearly independent, they generate the normal basis
{α, αq, αq2 , . . . , αqm−1} of Fqm over Fq. Each element A ∈ Fqm can be represented in normal
basis as :

A =
m−1∑
i=0

aiα
qi ; ai ∈ Fq

For any finite field Fqm there exists a normal basis over its prime subfield and it consists
of primitive elements of Fqm . Furthermore, there always exists at least one normal basis of
Fqm over any of its subfields, [69]. The element α ∈ Fqm , that generates a normal basis of
Fqm over Fq is called a normal element and the defining polynomial a normal polynomial,
i.e. N-polynomial.

Normal bases will be discussed in more detail in Section 3.1
The conjugates of α ∈ Fqm with respect to Fq can be obtained by applying the mappings

σi(α) = αq
i

, 0 ≤ i ≤ m− 1

to α. For all i, 0 ≤ i ≤ m − 1, σi : Fqm 7→ Fqm is an automorphism. Note that the
mappings σ0, σ1, . . . σm−1 are distinct. The automorphism σ1(α) = αq is called Frobenius
automorphism of Fqm over Fq, see [69], and for all i, 0 ≤ i ≤ m− 1, σi can be obtained as
a composition of σ1, namely σi = σi1.

17

Recall the subfield criterion, which states that the subfields of Fqm are exactly the fields
Fqn where n|m. The mapping σn = σn1 fixes the elements of the subfield Fqn , i.e.:
σn(α) = α if and only if α ∈ Fqn , see [71].

Another interesting function, defined on a finite field, that involves conjugates of an ele-
ment, is the trace function:

Tr
Fqm

Fq
=

m−1∑
i=0

αq
i

= αq
0

+ αq
1

+ · · ·+ αq
m−1

The mapping Tr
Fqm

Fq
: Fqm → Fq, as defined above, is called the trace of the element α ∈ Fqm

with respect to the underlying subfield Fq. If Fq is a prime subfield, Tr
Fqm

Fq
is called absolute

trace, see [69]. Note that the number of terms in the expression above equals the degree of
extension m = [Fqm : Fq], i.e. it runs through all conjugates of α. The trace is independent
of the chosen basis. We will now give some useful properties of trace function.

Theorem 2.3 Let F = Fqm and K = Fq. Then the trace function TrFK satisfies the
following properties:

i. TrFK(α + β) = TrFK(α) + TrFK(β) for all α, β ∈ F

ii. TrFK(cα) = cTrFK(α) for all c ∈ K, α ∈ F

iii. TrFK is a linear transformation from F onto K,
where both F and K are viewed as vector spaces over K

iv. TrFK(a) = ma for all a ∈ K

v. TrFK(αq) = TrFK(α) for all α ∈ F

Theorem 2.4 [Transitivity of trace] Let K be a finite field, let F be a finite extension of
K and E a finite extension of F . Then

TrEK(α) =
(
TrEF ◦ TrFK

)
(α) = TrFK

(
TrEF (α)

)
, for all α ∈ E

18

2.3 Stream ciphers

2.3.1 General structure

The story of stream ciphers began with Vernam’s shield, i.e. the one-time pad, in the
early 20th century [72]. It encrypts the plaintext one character at a time by XORing it
with a keystream character; the ciphertext is decrypted in the same manner, by XORing a
cyphertext character with the keystream character that was used for its encryption. Note
that such encryption and decryption are very fast. Despite the fact that it is the only
provable secure system ever used in practice (assuming a truly random keystream), it has
one immediately obvious drawback: the one-time pad uses a keystream of the same length
as the plaintext, and this keystream is shared between the sender and the receiver, which
requires a secure transmission of the keystream itself. This is a general problem that
is encountered in all symmetric-key cryptosystems and is solved by means provided by
public-key cryptosystems and handshake protocols. But using these methods to exchange
the key for one-time pad would be pointless, and redundant: why encrypt and send the key
if we could do that with the message as well? But public-key systems are computationally
way more demanding than symmetric key systems, and are hence used only for shorter
messages, for example the pre-shared secret key.

To address these problems, today’s stream ciphers use a short pre-shared key and a pseudo-
random sequence generator (PRSG) to produce a sufficiently long keystream. The security
of the stream cipher is now reduced to the security of the PRSG. The attackers goal is to
recover the secret key (seed) and the security of the PRSG is measured by the complexity
of this task.

Figure 2.1 shows the general behavioral model of encryption and decryption using a stream
cipher. The only difference between encryption and decryption is the “direction”: encryp-
tion takes the plaintext as an input and outputs the ciphertext and decryption takes the
ciphertext as an input and produces the plaintext as the output. The sender and the
receiver are using the same PRSG with the same seed (pre-shared secret key and initial
vector (IV)), to obtain the same keystream. The cipher operates in two phases: a key
initialization phase (denoted KI in Figure 2.1) and the running phase, when the PRSG al-
gorithm outputs the keystream (denoted PRSG in Figure 2.1), refer to [77] for details. The
task of KI is to scramble the key and initialization value IV to produce the initial state for
the PRSG. It is executed once per encryption session, it must be able to withstand known
attacks and is designed to get the keystream as random as possible to make the task of
recovering the secret key more difficult [77]. The KI itself is usually the PRSG algorithm

19

running for a certain number of steps either with output discarded or output added to the
feedback of PRSG (for example dashed line in Figure 2.2). The first keystream character
is produced when cipher enters its running phase.

PRSGKIk
IV

ki

mi ci

(a) encryption

PRSGKIk
IV

ki

c i mi

(b) decryption

k - the pre-shared seret key
IV - the initial vector
m - the plaintext charateri
k - the keystream charateri
c - the cphertext charateri

KI - key initialization
PRSG - pseudo-random

 sequence generator

Figure 2.1: Behavioral model of a stream cipher: (a) encryption and (b) decryption

We use the word character when talking about the plaintext, keystream and ciphertext to
avoid the distinction between word-oriented and bit-oriented stream ciphers. In a word-
oriented stream cipher, the PRSG will produce a word of keystream per clock cycle, for
example 8 or 32 bits, and the plaintext will be encrypted word by word, whereas a bit-
oriented stream cipher produces one bit of keystream per clock cycle. Note that in the latter
case, the plaintext can be encrypted bit by bit, or the keystream bits can be accumulated
into words for word by word encryption. As already mentioned, the plaintext character
is encrypted with a keystream character, and the obtained ciphertext must be decrypted
using the same keystream character, which induces the requirement for synchronisation
between the two parties involved; such ciphers are called synchronous stream ciphers.

2.3.2 A brief discussion on design principles

Here we present some design principles for stream ciphers and PRSGs (for details refer to
[77]):

• efficiency in both hardware and software

• high throughput

• large period

• good randomness properties

• ability to resist known attacks

Efficiency in both hardware and software would be ideal, but in reality, some stream ciphers
are more suited for software implementations and others for hardware implementations.

20

In general, word-oriented stream ciphers have a higher throughput, but it is more difficult
to explore and to prove their randomness properties [3].

Randomness criteria for PRSG are statistical properties of the output sequence, which are
meant to assure its indistinguishability from a truly random sequence: the balance prop-
erty, run property, 2-level autocorrelation, low cross-correlation, ideal k-tuple distribution,
etc. These randomness properties will be discussed in more detail in Section 2.3.2. A
variety of test suites is available, for example NIST statistical test suite ([33]), to test these
properties. But even if the keystream is able to pass these tests, it can still succumb to
certain attacks, as will be discussed shortly.

In this work we focus on feedback shift register (FSR) based stream ciphers and their
hardware implementations. Linear FSR’s (LFSR) are easy to implement in hardware and
have desired randomness properties. But stream ciphers based on LFSR’s only cannot
withstand known plaintext attacks, that is attempts to recover the key from the ciphertext
and its corresponding plaintext; they succumb to techniques such as Berlekamp-Messey
algorithm (BMA) or solving a system of linear equations to recover missing state bits
([77, 72]). An answer to these problems lies in introducing nonlinearity to the keystream,
for example by using a nonlinear filtering function applied to the output(s) of the LFSR(s)
(such designs are called “nonlinear filter generators”), using NLFSR’s (nonlinear FSR’s),
irregular clocking of LFSR’s, etc. General structure of a nonlinear filter generator is shown
in Figure 2.2. The dashed line represents the output added to the LFSR feedback in the
KI phase.

feedback function

nonlinear filter

LFSR

keystream
character

Figure 2.2: Structural model of a nonlinear filter generator

Nonetheless, stream ciphers still suffer from the same problem as one-time pad: they
keystream should only be used once (hence the name one-time). Namely as soon as both,
plaintext and ciphertext are knows, the keystream can be recovered by simply XORing the

21

two, which makes decryption of any other ciphertext encrypted using the same key trivial
[72]. To address this problem we need keystreams with sufficiently long period. In addi-
tion, initial vectors (IV’s) are used to obtain different keystreams from the same key, and
once the IV’s run out the key should be changed (note that the IV is a publicly known
parameter that is incremented with each session, and we must ensure it has a sufficient
number of bits, based on the target application).

Randomness properties

Here we list and briefly describe the criteria that must be met by the binary pseudo-random
sequence with period N . More detailed descriptions can be found in [76, 77].

1. Long period: we need a keystream of sufficient length and do not allow the sequence
to repeat (ie, we take only one period as the keystream)

2. Balance property: a binary sequence has the balance property if in every period,
the number of ones and zeros is nearly equal

3. Run property: A run of lengths k of zeros (or ones) is a subsequence of k consecutive
zeros (or ones). The output sequence is said to have the run property, if in every
period, half of runs have length one, one-fourth have length two, one-eight have
length three, etc., and there are equally many runs of zeros and of ones.

4. k-tuple distribution: for k = dlogNe, each binary k-tuple occurs nearly equally
many times in one period.

5. Two-level autocorrelation: In depth explanation and formula for computation of
the autocorrelation function for a periodic sequence can be found in [76, 77]. For this
thesis it is enough to say that the autocorrelation counts agreements and disagree-
ments between two sequences. The two-level autocorrelation property is satisfied, if
the autocorrelation, computed between the sequence and its shifted version, takes on
one of two possible values: (i.) value N , if the sequence is shifted by a multiple of
N , or (ii.) t for all other shifts, where t = −1 for odd N and t = 0 for even N .

6. Low-level cross correlation: Detailed description of the cross correlation between
a sequence and a shifted version of another sequence can be found in [76, 77]. For
our purposes it is enough to say that we consider the cross correlation for sequences
of same period N , and that we say the cross correlation is low, if its absolute value
is limited by c

√
N for some positive constant c.

22

7. Large linear span: Linear span of a binary sequence is defined to be the length
of the shortest LFSR that can generate that sequence. Large linear span protects
against the aforementioned BMA (note that the attack is also known as “linear span
attack”) For details refer to [77].

Properties 2,3 and 5 are also known as Golomb’s randomness postulates, that can be
extended for nonbinary sequences, that is sequences over Fq, where q is some prime power,
for details refer to [76].

Attacks

Cryptography and cryptanalysis are inseparable in many aspects: not only does cryptanal-
ysis provide tools to asses security of a given cryptographic primitive, but also influences
its design; the resistance against known attacks is an inevitable requirement. Just like
other cryptographic primitives, stream ciphers too must obey the Kerckhoff’s principle
demanding that all but the secret key must be publicly known. An attempt to recover this
secret information is called “key recovery attack”. While it is the most powerful attack
on a stream cipher, it is not the only possible goal of the attacker. A “message recov-
ery attack”concentrates on decryption of a single message and a “distinguisher”aims at
extracting some information about the encryption [78]. Another attack, that has a big
impact in the world of stream ciphers, is the “state recovery attack”; not as severe as key
recovery, but enables the attacker to generate the rest of the keystream and thus decrypt
all future ciphertexts.

Whether aiming for key or state recovery, an exhaustive search can always be launched:
the attacker tries all possible keys/states until the correct one if found. To avert exhaus-
tive search the number of possible keys/states must be large enough to render the attack
useless. For a k-bit key, the complexity of the exhaustive search is of the order of 2k−1

operations (expecting to find the correct key after searching about half of them)[72]. At-
tacker is interested in finding ways of accomplishing his task more efficient in comparison
to exhaustive key search. A classification of attacks on stream ciphers can be found in [77]:

1. cryptanalysis (correlation attacks, algebraic attacks, linear cryptanalysis)

2. time-memory-data (TMD) trade-off attacks (exhaustive search with reduced com-
plexity at the cost of using memory)

3. side-channel attacks (exploiting leakage: timing, power)

23

4. system and implementation attacks.

As was mentioned before, these attacks affect the design of the cipher itself. Recalling the
nonlinear filter generator from Figure 2.2, let us describe two attempts of recovering the
internal state of the LFSR from a known portion of the keystream, namely the correlation
attack and the algebraic attack. The nonlinear filter used is a n-input Boolean function
f , that must meet certain cryptographic properties, some of them arising from following
attacks. The reader should refer to [77, 78] for details.

Correlation attack: In this scenario, the keystream is regarded as a noisy version of the
LFSR sequence [3]. The actual nonlinear filtering function is approximated with some
linear function, that can be used to derive a generator matrix for a linear code and the
internal state recovered using maximum likelihood decoding. To protect against correlation
attacks, we must use a Boolean function f , that is “correlation immune”, that is, the
output of f (keystream) is uncorrelated to inputs of f (LFSR state).

Algebraic attack: These attacks are build upon the notion of describing the Boolean func-
tion f with a large system of multivariate polynomial equations over a finite field. The
attack consists of two phases, first phase is finding the system of equations and the second
phase solving it to obtain the internal state of the LFSR. To resist algebraic attacks the
Boolean function used must have large “algebraic immunity”.

Resynchronisation attacks: These types of attacks are directed towards the initialization
phase of the stream cipher using linear or differential cryptanalysis to recover partial or the
entire secret key. Resynchronisation attacks point out the importance of the nonlinearity
and the need for sufficiently many initialization steps to hide differential trails. A proper
choice of the LFSR polynomial is also important [8, 12].

These are of course not all known attacks, but merely some examples of the threats. The
lessons learned dictate some desired properties for the Boolean function f , that can be
briefly summarized as follows: f should be balanced, have a high algebraic degree and
algebraic immunity, must be highly nonlinear and correlation immune. We state these as
facts, without going into details; interested reader should refer to [76, 77, 4, 7].

24

2.4 The WG stream cipher

The WG stream cipher is a bit-oriented stream cipher which generates a keystream with
proven randomness and cryptographic properties. It was first proposed by Nawaz and
Gong in 2005 and the profile 2 candidate WG-29 reached the phase 2 of the eSTREAM
competition, [3]. The WG stream cipher is a synchronous stream cipher based on the
Welch-Gong (WG) transformations, and the WG stream cipher family consists of WG
stream ciphers and their decimated variants. We begin this section by first presenting
individual components that are crucial to understanding the overall structure of the WG-
16 stream cipher, which is explained in Section 2.4.1. We conclude this section with a short
review of security of WG-16 in Section 2.4.2.

2.4.1 Structure of WG-16

The WG stream cipher is composed of an LFSR over an extension field, that outputs an
m-sequence, which is then filtered with the WG transformation over the same extension
field. Two key concepts were introduced in the sentence above: an LFSR and the Welch-
Gong (WG) transformation; we shall first take a closer look at each of these components
and then present the WG-16 stream cipher.

The LFSR

We have already briefly mentioned the LFSRs in Section 2.3 in the discussion about stream
ciphers. An n-stage shift register over an extension field F2m is an array of n registers, each
of them holding an m-bit value (an element from F2m). These registers are also referred to
as stages, and are denoted Si, i = n−1, . . . , 0. This memory array is shifted with each step:
the contents of a register Si are passed on to the neighboring register Si−1 and the vacant
(first) register Sn−1 is updated with a new value obtained from the feedback function. The
feedback function is a simple expression that involves only multiplications of field elements
by constants and addition in F2m . The field elements entering the feedback function are
just the contents of the LFSR. One of the n registers is chosen to be the output: in this
way, the LFSR produces a sequence of F2m field elements. For more details on LFSRs refer
to [76, 77, 69].

The WG-16 has a 32 stage LFSR described by the polynomial

`(x) = x32 + x25 + x16 + x7 + ω2743 (2.4)

25

over F216 , where ω is the root of the defining polynomial p(x) = x16 + x5 + x3 + x2 + 1 of
the extension field F216 . The polynomial `(x) is a primitive polynomial, which ensures that
the LFSR generates a maximal length sequence (m-sequence) with period (216)32− 1. The
feedback function associated with the polynomial `(x) from equation (2.4) is a function
from F32

216 → F216 given by

f(x0, x1, . . . , x31) = ω2743x0 + x7 + x16 + x25 (2.5)

� Remark: The element ω2743 was chosen because the multiplication matrix for S0 ·ω2743 has the lowest
Hamming weight, specifically 110. �

With each step, the LFSR is updated as follows:

(S0, S1, . . . , S31)→ (S1, S2, . . . , S31, S32) ,

where S32 = f (S0, S1, . . . , S31)=f is computed as defined by equation (2.5).

The LFSR used in WG-16 is shown in Figure 2.3. When referring to “a step of the LFSR”,
we mean that the contents of the registers are shifted to the right and the register S31 is
updated with the feedback f, also denoted S32. Another commonly used term is “clocking
of the LFSR”, i.e. we will be using clocked as a synonym for shifted or for performing
one step. The LFSR stages S25, S16, S7 and S0 are referred to as “taps”, meaning that the
LFSR described by polynomial `(x) from equation (2.4) has “tap positions” 25, 16, 7 and
0.

s31 s25 s16 s7 s0

16 16 16 16
16

2743ω

16
16

f

X

Figure 2.3: The WG-16 LFSR

The LFSR output is the stage S31, marked X in Figure 2.3. Each time the LFSR is clocked,
it produces a new output, so we get an output sequence X = X1, X2, The “internal
state” of the LFSR at step k are just the contents of all its registers: (Sk, Sk+1, . . . , Sk+31),
where Sk+i denotes the element in LFSR stage Si for i = 0, 1, . . . , 31 at step k = 0, 1,
Note that the LFSR in Figure 2.3 has an internal state of 512 bits. For k = 0, 1, . . . , the
(k + 1)-st element of the output sequence is

Xk+1 = f (Sk, Sk+1, . . . , Sk+31) .

26

Note that the LFSR is first loaded with some non-zero initial state (corresponding to
k = 0), after that, its behavior is completely determined by the recursive relationship
Sk+1+31 = f (Sk, Sk+1, . . . , Sk+31), k = 0, 1, Note that in the first step after the LFSR
has been initialized, i.e. for k = 0, this gives the S32, which was mentioned in the description
above. The initialization of the LFSR will be discussed in detail together with the WG-16
cipher itself in Section 2.4.1.

The WG transformation

Let m be an integer that is not a multiple of 3, that is m mod 3 6= 0. Then the WG
transformation from F2m to F2 is defined by

f(x) = Tr(q(x+ 1) + 1), for x ∈ F2m . (2.6)

Equation (2.6) can be split into two parts: the WG permutation WGP(x) (equation (2.7)),
and the WG transformation WGT(x) (equation (2.8)), which is the absolute trace applied
to the result of the WG permutation.

WGP(x) = q(x+ 1) + 1 (2.7)

WGT(x) = Tr(WGP(x)), (2.8)

The polynomial q(x) = x+ xr1 + xr2 + xr3 + xr4 is a permutation polynomial from F2m to
F2m . For a positive integer k, such that 3k ≡ 1 mod m, the exponents are obtained as
follows:

r1 = 2k + 1

r2 = 22k + 2k + 1

r3 = 22k − 2k + 1

r4 = 22k + 2k − 1

For m = 16 parameter k = 11 was used, yielding the following coefficients:

r1 = 2k + 1

= 211 + 1

r2 = 22k + 2k + 1

= 222 + 211 + 1

= 26 + 211 + 1

r3 = 22k − 2k + 1

= 222 − 211 + 1

= 26 − 211 + 1

r4 = 22k + 2k − 1

= 222 + 211 − 1

= 26 + 211 − 1

27

In computations above we used the finite field analogue of Fermat’s little theorem 2.1 for
a finite field element x ∈ F216 :

x2
22

=
(
x2

16
)26

= x2
6

Intuitively, a d decimation of an m-sequence is a transformation which, provided that
gcd(d, 2m−1) = 1, produces a new m-sequence by taking every d-th element of the original
sequence until all elements of the original sequence are used up. Decimation can improve
cryptographic properties of the produced keystream [7].

The WG-16 is a decimated stream cipher using decimation exponent d = 1057. We can
now describe the WG-16 transformation of an element X ∈ F216 with the following four
equations:

Y = Xd + 1 (2.9)

q(Y) = Y + Y 211+1 + Y 26+211+1 + Y 26−211+1 + Y 26+211−1 (2.10)

WGP-16(Xd) = q(Y) + 1 (2.11)

WGT-16(Xd) = Tr(WGP-16(Xd)), (2.12)

These four equations describe decimated WG-16 permutation followed by the trace com-
putation and are grouped together into a component denoted WGP T , that can be seen in
Figure 2.4 shaded grey.

The WG-16 stream cipher

In the introductory text on stream ciphers (Section 2.3) we mentioned that modern stream
ciphers operate in two phases, namely the key initialization phase (which will be referred
to as initialization phase from now on) and the running phase, both of them using the
same PRSG algorithm with minor differences. The PRSG algorithm used by members
of WG stream cipher family is the WG transformation applied to the LFSR sequence.
During the running phase, the LFSR is updated by the feedback f= f(Sk, Sk+1, . . . , Sk+31)
and each time the LFSR is clocked the WG-16 produces one bit of the keystream as
WGT-16(WGP-16(Sdk+31)). At each LFSR step k = 0, 1, . . . , 63 during the initialization
phase, the LFSR is updated with the sum w of the LFSR feedback f and the element WGP,
which is obtained by the decimated WG-16 permutation:

f = f (Sk, Sk+1, . . . , Sk+31)

28

WGP = WGP-16(Sdk+31)

w = f + WGP

The element WGP adds nonlinearity to the linear feedback f. The initialization phase
takes 64 LFSR steps, which means that each parcel runs through the LFSR twice, or in
other words, each LFSR stage Si is updated 64 times. During the initialization phase the
keystream bit is discarded.

The recurrence relations for updating the LFSR during the initialization and the running
phase are summarized as follows:

Sk+1+31 =

{
ω2743Sk + Sk+7 + Sk+16 + Sk+25 + WGP-16(Sdk+31) , 0 ≤ k < 64
ω2743Sk + Sk+7 + Sk+16 + Sk+25 , k ≥ 64

.

We must not forget the loading phase, during which the intial LFSR state (S0, S1, . . . , S31)
is loaded into the LFSR. The values S0, S1, S2 . . . appear on the DIN (data-in) input seri-
ally: first the value S0 is loaded into LFSR stage S31, then the LFSR is shifted and element
S1 is loaded into stage S31, etc To load all 32 field elements serially, the LFSR must
be clocked 32 times. A detailed description of the initial state follows at the end of this
section in 2.4.1. At this point we want to give the top-level structure of WG-16, and need
to stress out that we are using the term WG-16 a bit loose: the schematic in Figure 2.4 is
showing the architecture of WG stream cipher generator WG(16,32). The actual stream
cipher then uses this component to generate the keystream and perform the encryption or
decryption. For this thesis we only implement the keystream generator WG(16,32), and
refer to it as WG-16.

� Remark: In notation WG(m,n): parameter m denotes the underlying finite field Fm2 and parameter
n the degree of the LFSR polynomial `. �

The two crucial components of WG-16, the LFSR and the WGP T , were already introduced,
and the three operating phases of the WG-16 were discussed above. The input to the
LFSR stage S31 is different in each phase, and the number of LFSR steps also differs with
phase. The three phases with corresponding S31 inputs and number of steps per phase are
summarized in Table 2.2 below.

The three different inputs for S31 call for a 3/1 16-bit wide multiplexer at the S31 input.
A third component, an FSM, is needed to control this multiplexer and the the keystream

29

WG-16 input # of steps
phase to S31 per phase

loading DIN 32
initialization w=f+WGP 64

running f †

Table 2.2: Three phases of the WG-16 operation

† upperbounded by the period
of the LFSR sequence

s31 s25 s16 s7 s0

16

16 16 16 16
16

16

X

16

WGP-16(X)d

Tr()

1

WGT-16(WGP-16(X))d

2743ω
f

WGP

16

16

16
DIN

w

WGP_T

FSM

M
U
X

Figure 2.4: Architecture of WG-16 stream cipher

output. The top-level schematic of WG-16 with the LFSR, the WGP T and the FSM is
shown in Figure 2.4.

30

The FSM has three states, corresponding to
the three phases: load for loading, init for
initialization, and run for the running phase.
The state transition diagram for the FSM is
shown in Figure 2.5 on the right. The counter
count keeps track of the number of LFSR
steps required for each phase, see Table 2.2
for details.

run load

init

step<32

step<96

step=32step=96

reset=1

Figure 2.5: Three phases of the WG-16
operation

The initial state of the LFSR - the key and IV mixing

Recall the loading phase as it was described above: the initial state (S0, S1, . . . , S31) is
loaded into the LFSR serially in 32 consecutive clock cycles through the 16-bit data input
DIN. Here we want to explain how the initial state is obtained; this process is sometimes
called the initial key and IV mixing. The initial state of the LFSR is composed of a 128-
bit key and 128-bit IV. Using notation K = (k0, k1, . . . , k127), IV = (iv0, iv1, . . . , iv127)
and (S0, S1, . . . , S31) for the initial state of the LFSR, where Si = (si,0, si,1, . . . , si,15) for
i = 0, 1, . . . , 31, the stage Si is loaded as follows:

Si =

{
(k8i, k8i+1, . . . , k8i+7, iv8i, iv8i+1, . . . , iv8i+7) , i = 0, 1, . . . 15
Si−16 , i = 16, . . . 31

. (2.13)

During the loading phase, the key, IV and the LFSR stages are viewed as collections of
8-bit data:

• K = (K0,K1, . . . ,K15) where Ki = (k8i, k8i+1, . . . , k8i+7) for i = 0, 1, . . . , 15

• IV = (IV0, IV1, . . . , IV15) where IVi = (iv8i, iv8i+1, . . . , iv8i+7) for i = 0, 1, . . . , 15

• Si = (Si,0, Si,1) where Si,j = (si,8j , si,8j+1, . . . , si,8j+7) for j = 0, 1 and i = 0, 1, . . . , 31

Using this notation, we can rewrite the loading rule from equiation (2.13) as two separate
rules for Si,0 and Si,1, i = 0, . . . , 31:

Si,0 =

{
Ki , i = 0, 1, . . . 15
Si−16,0 , i = 16, . . . 31

. (2.14) Si,1 =

{
IVi , i = 0, 1, . . . 15
Si−16,1 , i = 16, . . . 31

. (2.15)

The contents of the LFSR after the loading phase are shown in Figure 2.6. Stages Si for
i = 0, . . . , 15 are shaded grey and the unshaded stages Si for i = 16, . . . , 31 are just an
exact copy of the shaded stages. The LFSR in Figure 2.6 is split into half horizontally,

31

separating the two bytes Si,0 and Si,1. If we look at the “lower half”of the LSFR as an
array of 8 bit registers Si,0, i = 0, . . . , 31, we see that it contains exactly two copies of the
128-bit key K, which corresponds to the loading rule given in (2.14). Similarly, the “upper
half”contains two copies of the 128-bit IV, corresponding to the loading rule (2.15).

31 16 15 1 0
7

0
7

0

}
}

SSSSS

i,1S

i,0S

0IV1IV0IV 1IV51IV5

0K1K0K 1K 51K 5

Figure 2.6: Contents of the LFSR after the loading

2.4.2 Security of the WG

Cryptographic properties of WG generators were first discussed in [2] from two different
perspectives:

• as WG transformation sequences, to show their randomness properties (recall discussion
in Section 2.3.2), and

• as Boolean functions, for which the nonlinearity, algebraic degree, resilient property and
linear span was established.

The keystream, produced by the WG(16,32) generator has the following randomness
properties [8]:

• its period is 2512 − 1

• it is balanced

• it has ideal 2-level autocorrelation

• it has ideal k-tuple distribution for 1 ≤ k ≤ 32

• it has a large linear span that can be determined exactly as 279.046

A 2014 paper [7] discussing the decimated WG transformation provides selection criteria
for optimal parameters for the WG cipher family in order to achieve the maximum level
of security. Optimal decimation value d should be chosen in such a way that in addition
to gcd(d, 2m− 1) = 1, both, the algebraic degree and algebraic immunity for WGT-16(Xd)
are maximum. For WG-16, there are 31 decimation values that meet the above criteria.
Additional (cryptographic) properties, such as low Hamming weight of d, large nonlinearity

32

of WGT-16(Xd) , etc, help us to select the optimal decimation value d = 1057.

Extensive cryptanalysis of the WG-16 and its resistance to known attacks can be found in
[8]. The same paper also provides a proposal for the use of WG-16 in 4G-LTE network.
Here we provide a short summary of their results in terms of time complexity of the attack:

• Exhaustive search: O(2511)

• TMD trade-off: O(2256)

• Algebraic attack: O(2155.764)

• Correlation attack:O(2121.31)

Note that the above are just the time complexities. The attacker also needs to collect some
data, for example to launch the algebraic attack he needs about 256.622 keystream bits. The
64 steps of initialization phase protect against differential attack and the cube attack [8].

2.5 Related work

This section is organized into four parts. In Section 2.5.1 we briefly summarize the existing
WG hardware implementations. In Section 2.5.2 we present the stream ciphers that are
currently being used 3GPP confidentiality and integrity algorithms Snow3G and ZUC.
Then we talk about the eSTREAM project and briefly present the finalists Grain and
Trivium. In Section 2.5.4 we review the use composite field arithmetic in cryptography
and focus on the tower field constructions of the finite field F((22)2)2 used in AES hardware
implementations.

2.5.1 WG hardware implementations

The first member of WG stream cipher family to be implemented in hardware was the eS-
TREAM candidate WG-29 [3]. For the F229 , a type II optimal normal basis exists, which
allows efficient field arithmetic. In [5], useful properties of the trace function were found,
that allowed elimination of two multipliers. Switching to the polynomial basis representa-
tion of field elements, the same group later on improved their implementation results for
WG-29 in [13]. The same paper also reports efficient polynomial basis implementations of
WG-16.

33

An interesting variant of WG stream ciphers, the multi-output WG (MOWG) was pro-
posed in [10]. In MOWG the trace function was replaced by a multi-output Boolean
function. The MOWG was implemented over F27 , F211 and F229 , with output widths 3, 6
and 17 respectively, and different LFSR polynomials were chosen for both F27 and F211 .
Also, for those two ciphers, table look-up based design was chosen and implemented us-
ing either random logic or ROM. Note that the tables were not used to implement the
finite field arithmetic, but the WG itself, that is, one table was holding the WGP values
for initialization phase and another table the MOWG values for the running phase. The
WG(29,11,17) was implemented using superpipelined multiplier (multiplier pipelined into
two stages) with multiplier reuse.

An implementation of a lightweight WG stream cipher WG-5, targeting passive RFIDs,
was reported in [9]. The defining polynomial of F25 , the characteristic polynomial for the
LFSR and the decimation value were chosen not only based on resulting cryptographic
properties but to produce the most optimal hardware. Based on ASIC implementation
results for chosen frequencies of 100 and 200 kHz, WG-5 outperforms the ciphers it was
compared to, including Grain and Trivium.

Another instance of lightweight WG stream ciphers, the recently implemented WG-8, was
reported in [11]. It explores four different hardware architectures. The first implementa-
tion is a table look-up based design (with one table holding the WGP values and one table
holding the WGT values). Then two tower constructions F(24)2 were implemented, using
different defining polynomials for the first extension. One of them used polynomial basis
for F24 and table look-up based field arithmetic, and the other one type I optimal normal
basis, yielding efficient field arithmetic. The fourth design used the tower construction
F((22)2)2 , with normal basis representation of elements at each level of the tower, similar to
the work in this thesis (the WG-8 work was conducted in parallel with WG-16). FPGA
and ASIC implementation results were given for 1-bit and for 11-bit output versions for
all four designs. Since the cipher is small enough, best results were achieved for the table
look-up based design.

34

2.5.2 3GPP confidentiality and integrity algorithms: Snow3G
and ZUC

The current 4G-LTE standards reuse the authentication and key agreement of UMTS and
the confidentiality and integrity algorithms abbreviated UEA/UIA (USIM Encryption/In-
tegrity Algorithm) for UMTS and were adopted in LTE and are known as EEA/EIA (EPS
Encryption/Integrity Algorithm). In this section we give results of some other stream ci-
phers used nowadays. We begin by exploring Snow3G and ZUC, currently used as 3GPP
confidentiality and integrity algorithms for protecting the radio interface in UMTS/LTE
systems. Third instance, AES will be discussed separately at the end of this section, with
focus on its tower field implementations.

Both Snow3G and ZUC are word-oriented stream ciphers that produce 32-bit keywords,
using a 128-bit key and IV of the same length. They both have a 16-stage LFSR that
is clocked 32 times during the initialization phase with nonlinear filter/function output
F added to the LFSR feedback. Both of them employ bitwise XOR operation, modular
addition and S-boxes.

Snow3G

The structure of Snow3G can be seen in Figure 2.7. The cipher is composed of three parts:
a 16-stage LFSR over F232 , a FSM with three registers and a filter applied to LFSR stage
s15. The finite field F232 is constructed as a tower field F(28)4 by adjoining the root α of a
degree 4 irreducible polynomial to the base field F28 . The LFSR feedback function involves
multiplications of LFSR elements with α and α−1. Both the FSM and the filter use bitwise
XOR, denoted ⊕ in Figure 2.7, and integer addition modulo (232 − 1), denoted �. The
FSM uses three registers R1, R2 and R3, holding 32 bits each, that are manipulated via
two Rijandel based S-boxes S1 and S2; these S-boxes are the main source of nonlinearity
in Snow3G. More precisely, the registers R2 and R3 are updated as follows: R2←S1(R1),
R3← S2(R2) and R1 is updated with a value obtained from old values in registers R2, R3
and s5 as R1←R2�(R3⊕s5). The FSM takes the LFSR state s5 as input and produces
two outputs that are used in the filter where they are combined with LFSR state s15 to
produce the value F= (s15�R1)⊕R2. The filter output F is either XORed with LFSR feed-
back during the initialization phase (marked with a dashed arrow in Figure 2.7) or XORed
with LFSR state s0 in the running phase to produce a keyword (marked with solid lines in
Figure 2.7).

35

Figure 2.7: The structure of Snow3G stream cipher

The above description of Snow3G follows the 3GPP standard ([14]), which also gives the
S-boxes and specifies efficient multiplication with α and α−1 using look-up Tables. As
usual, all published papers give a lookup Table implementation of the S- boxes. In [15] an
ASIC implementation of snow3G by P. Kistos, another phase is added to the cipher oper-
ation, the so called “initial operations”, whose task is to mix the key and IV as specified
in standard ([14]). Usually, the key/IV mixing is done in software and and than loaded
into the LFSR serially, stage by stage. The ASIC design in question enables a fast loading
phase at the cost of wider inputs (256 bits for the key and IV) and additional logic needed
for the mixing itself. The same paper identifies the critical path for Snow3G to be the
modular addition and proposes a carry lookahead adder to obtain the result in one clock
cycle, thus significantly improving the throughput in comparison with a multi-cycle adder
architecture. An FPGA implementation of Snow3G on an FPGA Spartan-3 device, also
published by P. Kistos, is given in [20]. This paper provides implementations of several
stream ciphers and their comparisons, and we shall revisit it at the end of this section.
Two additional FPGA implementations of Snow3G were given in [21], both aiming at
optimizing the look-up Tables used in feedback computation and for S-boxes. The first
implementation (denoted “[21]-ver.I”in Table 2.3) uses Block RAM available on Xilinx
Virtex-5 to reduce area complexity of their design. Using BRAM requires some changes to
the algorithm itself, since the BRAM output is available in the next clock cycle. In their
second version (denoted “[21]-ver.II”in Table 2.3), they implement Snow3G lookup-Tables

36

using Slice LUTs, which shows the expected area increase.

Implementation results for the Snow3G implementations mentioned above are listed in
Table 2.3.

ZUC

ZUC is composed of three logical layers: a 16 stage LFSR with 31 bits per stage, bit reor-
ganization layer BR and nonlinear function F. The architecture of the cipher can be seen
in Figure 2.8. The LFSR feedback function involves left cyclic shifts and five additions
modulo (231 − 1). BR layer extracts four 32-bit words from the LFSR cells that are then
used as inputs to function F and in formation of keywords. The nonlinear function F
uses two 32-bit registers whose values are manipulated using two linear transformations, a
nonlinear S-box and left cyclic shifts. Other operations performed by ZUC algorithm are
the bitwise XOR and addition modulo 232. For details refer to [16].

All implementations of ZUC identify the addition modulo 231− 1 to be the critical path in
ZUC. An FPGA implementation on a Virtex-5 device was given by P.Kistos in [19]. They
implemented additions module 231 − 1 and modulo 232 using available DSP blocks. This
approach reduces the area complexity and increases the frequency. Also , the feedback
function that requires 5 modular additions was implemented by first computing partial
sums and then summing them up, which reduced the critical path of the feedback cal-
culation. Further area reduction was achieved by implementing the S-box in ROM. The
second paper by P. Kistos [20] gives a Spartan-3 implementation of ZUC, but no detailed
description of optimization approaches is provided. A pipelined implementation of ZUC on
a Xilinx VIrtex-5 is reported in [17, 18]. The critical path for the LFSR feedback computa-
tion was pipelined into five stages, performing one modulo (231−1) addition per stage. The
LFSR does not shift till the pipeline is full, after that it produces one keyword per cycle.
Note that the tap positions were added to accommodate for the LFSR not shifting: adder
inputs were equipped with multiplexers to choose between the “real”and “pipeline”taps.
In comparison with other implementations, this causes an increase in area, but shows the
highest throughput so far. Two other optimizations of the feedback computation were ex-
plored in [18]. First option (denoted ”[18]-opt.I” in Table 2.3) computes the feedback over
two consecutive clock cycles by computing the partial sums in the first cycle and summing
them up in the second. Another area reducing optimization was made possible by the
additional clock cycle: the ZUC S-box is composed of four smaller S-boxes, out of which
two and two are alike. Instead of having 4 separate look-up tables , two lookup-tables,

37

Figure 2.8: The structure of ZUC stream cipher

each used twice, suffice. As expected, this implementation has lowest throughput among
the three implementations reported in [18]; the optimization did shorten the critical path
and hence the clock period, but it takes two clock cycles for one keyword, which has a
significant impact on the throughput. The last option (denoted ”[18]-opt.II” in Table 2.3)
uses Carry Save Adder tree structure to compute the feedback; it takes up more area, but
computes the feedback in a single clock cycle.

As promised, we return to Kistos’ paper [20]. This paper compares implementations of
different stream ciphers on an Spartan3 FPGA. Snow3G and ZUC were the only two word-
oriented stream ciphers explored, all others (Grain, Mickey, Trivium and E0) are bit ori-
ented. In order to compare word-oriented and bit-oriented stream ciphers, the metric of

throughput-to-area consumption (T
A

[
Mbps
#slices

]
) was used. Even though at this point we

are comparing only two ciphers that produce keywords of same width, this metric allows
an assessment of the trade-off between the throughput and the hardware resources used.
Note that we do not compute the T

A
for the ASIC implementation and for implementations

using BRAM and ROM. The last column in Table 2.3 identifies implementation [21]-ver.II

38

Stream Source Device Area Frequency Throughput T T
A

Cipher [# of Slices] [MHz] [Mbps]

Snow3G

[15] ASIC (0.13µm) 25KGates 249 7.968 -

[20] XC3S700A 3559 104 3328 0.935

[21]-ver.I Virtex-5 188 322 10304 -

[21]-ver.II Virtex-5 356 376 12036 33.808

ZUC

[19] Virtex-5 285 65 2080 7.29

[20] XC3S700A 1147 38 1216 1.060

[17, 18] Virtex-5 575 222.4 7111 12.367

[18]-opt.I Virtex-5 311 126 2016 6.482

[18]-opt.II Virtex-5 356 108 3456 9.708

[21] Virtex-5 395 172 5504 32

Table 2.3: Implementation results for Snow3G and ZUC found in literature

as the most efficient Snow3G implementation. But we only have one other implementation
for comparison and there is one fact that cannot be overlooked: the clock speeds that can
be achieved on Virtex devices are always greater in comparison with Spartan devices, due
to a different technology used for Spartans and Virtex’. Furthermore, the Spartan3 has
four 4-input LUTs per slice, and the question how can we compare the number of slices to
Virtex-5, which uses four 6-input LUTs per slice. Unfortunately, no detailed description
was provided for this implementation.
Nonetheless, all implementations of Snow3G result in a higher frequency in comparison
with ZUC. Best ZUC implementation was the version with fully pipelined LFSR feedback
computation reported in [17, 18], but does not really come close to Snow3G [21]-ver.II.

When comparing Snow3G and ZUC to WG from the hardware implementation point of
view, a few differences are immediately obvious. Firstly, WG is a bit-oriented stream ci-
pher and will not reach the high throughput of Snow3G and ZUC. Never the less, the T

A

ratio achieved by some bit oriented ciphers reported in [20] is higher then 0.935 achieved
by proposed Snow3G implementation; this serves as an example that even a high through-
put can not justify a huge area cost. Secondly, the main focus of optimizations in the
implementations described above, was the modular addition, which is not present in WG
computation. An interesting option is the pipelined LFSR feedback function, but the WG
feedback is trivial in comparison with WG transformation, hence there is no need for a
pipeline. Also worth mentioning at this point is the computation of the feedback over two

39

consecutive clock cycles in [18]-opt.I.

2.5.3 The eSTREAM project: Grain and Trivium

eSTREAM project started in 2004 with objective to promote research in stream cipher
design [25]. Two specific goals were identified : stream ciphers for software applications
with high throughput (Profile 1) and stream ciphers for hardware applications with highly
restricted resources (Profile 2). The latter is of our particular interest. Evaluation crite-
ria includes security, performance (in comparison with AES and other other eSTREAM
candidates), justification and supporting analysis, simplicity, flexibility, etc. The proposed
ciphers went trough three phases of evaluation: the first round was flexible and allowed for
changes to the ciphers to remove identified weaknesses before entering the second phase.
The design of a secure stream cipher proved to be a difficult task.

Here we focus on eSTREAM Profile 2. In Phase 3, three ciphers were selected and included
in the eSTREAM portfolio: Grain v1, MICKEY 2.0 and Trivium. For Profile 2, FPGA
and ASIC implementation results were considered, but there were problems in identifying
a the most relevant metric for comparison. An discussion on this topic can be found in
[31]. In the Phase 3, the primary criteria besides security was the area complexity [25]. All
three ciphers included in the eSTREAM portfolio have smaller area than AES, see [26].
Another metric that was commonly used to compare the performance of the candidates
was the aforementioned throughput-to-area ratio CITE THEM. In this section, we present
Grain and Trivium and omit MICKEY due to its larger area complexity.

Both Grain and Trivium are FSR based and involve only simple binary operations (XOR, AND).
They both have a small area allow the possibility of increasing the throughput by simply
implementing multiple filtering functions and jumping multiple FSR stages. In both cases,
the key/IV must be loaded bit-by-bit.

Grain

There are two versions of Grain: the original 80-bit version (using an 80-bit secret key
and 64-bit IV, called Grain v1, included in eSTREAM Portfolio) and Grain-128 (using a
128-bit key and IV of same length). We will give a short description of Grain v1 and then
list the differences made in Grain-128. From now on when we talk of Grain we refer to

40

Grain v1.
The structure of Grain can be seen in Figure 2.9. Grain is composed of an 80-bit LFSR
and an 80-bit NLFSR, giving a total internal state of 160 bits. The NLFSR is updated by
a nonlinear feedback polynomial that is further XORed by a bit from LFSR. Five bits (four
from the LFSR and 1 from NLFSR) are chosen from the FSR’s and used as an input to a
Boolean function (that was chosen to meet certain desired cryptographic properties). The
keystream bit is obtained by XORing the output of this function with 7 satae bits from the
NLFSR. The initialization phase takes 160 cycles, during which this bit is XORed to update
values for both FSR’s.
The Grain-128 FSR’s are 128 bits long, and have different feedbacks. The Boolean function
is also changed and has a bigger number of inputs from both FSR’s. At the end, an
additional bit from the LFSR is XORed to form the keystream bit. Note that the number
of tap positions is not only increased but also changed. The initialization phase now lasts
256 cycles.
For more details on Grain, refer to [23, 24].

Figure 2.9: The structure of Grain stream cipher

Trivium

Trivium has a very simple design and can generate keystreams of length up to 264 using
an 80-bit secret key and IV of same length. It is composed of three FSR’s of lengths 93,
84 and 111 bits respectively, which sums up to total internal state of 288 bits. These three
FSR’s can be arranged into a circular shape, as can be seen in Figure 2.10. From FSR
point of view, the update functions of the three FSR’s differ only in the tap positions.
Each FSR has 5 tap positions used by the filtering function in two ways:

• to update the FSR’s (using 4 bits from the previous FSR and one bit from the FSR
being updated)

41

• to compute the keystream bit (by XORing 6 state bits, two from each FSR)

Initialization phase is equal to the running phase without keystream output and runs for
4 · 288 = 1152 clock cycles.
For more details on Trvium, refer to [22].

Figure 2.10: The structure of Trivium stream cipher

An ASIC implementation of eSTREAM candidates, reposted in [26], is using the term
radix for the number of bits simultaneously generated by the algorithm. Without details,
they mention Grain implementations with radices up to 16 and possibility of radix 32.
For Trivum, they state that implementations with radix less than 64 would be wasteful
and report a 54% increase in area, only 10% lower clock speed and a 40 times higher
throughput-to-area ratio compared to Trivium with radix 1. Only the the results for radix
1 for both ciphers, and for the increased throughput versions radix 16 for Grain and radix
64 for Trivium are listed in Table 2.4. Only Grain-128 was implemented with radix 32 in
[32, 31].

Another paper [27] identifies Grain and Trivium as the smallest and most efficient among
the eSTREAM candidates and emphasizes their potential for higher radix. In [29], authors

42

report an FPGA implementation of Phase 2 candidates on a Xilinx Virtex-II, gaining re-
markable area reductions from the use of SRL16 primitive (use of SRL16 is discussed in
more detail in Section 4.1). They implemented Grain-128 and found the area increase
caused by transition to 128-bit version unnoticeable. Authors of [28] provided detailed
FPGA and ASIC results for five eSTREAM candidates, including Grain and Trivum, fo-
cusing on paralelization possibilities (aiming at increased throughput). They identified
Grain as the cipher with minimum area complexity and Trivium as the cipher with maxi-
mum throughput-to-area ratio.
An FPGA implementation of Grain and Trivium, consciously refraining from use of SRL
primitives, based on justification that it is device and design specific, was reported in [20].
Interesting implementation alternatives were explored by Rogawski [30]. He identified
the feedback function for the NLFSR to be the critical path in Grain, and tried imple-
mentations using a lookup table for the feedback, but the straightforward combinational
implementation remained superior in terms of area, power and throughput, so in Table 2.4
we omit results for the tabulated version. The same work also concentrates on the initial-
ization phase. He identified the control unit as the critical component in Trivium. The
1552 clock cycle initialization was controlled by a combination of a 18-state and 64-state
one-hot state machine for Trivium with radix 1 and a single 18-state one-hot state ma-
chine for Trivium with radix 64. Alternative implementation, called Trivium-64 enhanced,
employed state-machine consisting of one 2-state and two 3-state one-hot state machines.
Trivium-64 enhanced gave slightly better results.

ASIC implementations of Phase 3 candidates, are reported in [31], considering many differ-
ent performance metrics. They provide general guidelines for low-resource hardware stream
ciphers, recommending a nonlinear filter function that is not demanding in terms of area
complexity, mentioning the importance of feedback tap selection for the shift registers (to
ease the replication of filtering function(s)), avoiding S-boxes, since they are significant
consumer of area and power, among others.

As a conclusion, let us state that Grain triumphs with smallest area while Trivium clearly
exhibits the highest throughput-to-area ratio. From hardware perspective, WG-16 has a
larger internal state (512 bits) and way more complicated filtering function: it involves
several multiplications and exponentiations in F16

2 , which can hardly compare to addition
and multiplication in F2 in Grain and Trivium. It is demanding in terms of both, area
and time complexity, and prevents the increase in throughput by simply replicating the
WGT-16 .

43

Stream Source Device Area Frequency radix Throughput T T
ACipher [# of Slices]∗ [MHz] [Mbps]

Grain

[26] ASIC (0.25µm) 119.821∗ 300 16 4475 37346∗

[27] XC2S15 48 105 1 105 2.19

[29]† Virtex-II 48 181 1 181 3.77

[28]

XC3S50
122 193 1 193 1.58

356 155 16 2480 6.97

ASIC (0.09µm)
4911∗ 565 1 565 0.115∗

10548∗ 495 16 7920 0.751∗

[30] Cyclone
219 242 1 242 1.11

508 512 16 3440 6.77

[20] XC3S700A 318 177 1 177 0.56

[31] ASIC (0.13µm)
1294GE 724.6 1 724.6 -

3239GE 617.3 16 9876.5 -

† 1857GE 925.9 1 926 -

4617GE 452.5 32 14480 -

[32]

XC3S50

44 196 1 196 4.45

348 130 16 2080 5.98

† 50 196 1 196 3.92

534 133 32 4256 7.97

Trivium

[26] ASIC (0.25µm) 144.128∗ 312 64 1856 128833∗

[27] XC2S15 40 102 1 102 2.55

[29]† Virtex-II 41 207 1 207 5.05

[28]

XC3S50
188 201 1 201 1.07

388 190 64 12160 31.34

ASIC (0.09µm)
7428∗ 840 1 840 0.113∗

13440∗ 800 64 51200 3.81∗

[30]
Cyclone

393 295 1 295 0.75

710 245 64 15680 22.08

†† 700 255 64 16320 23.31

[20] XC3S700A 149 326 1 326 2.19

[31] ASIC (0.13µm)
2580GE 327.9 1 327.9 -

1921GE 348.4 64 22299.6 -

[32] XC3S50
50 240 1 240 4.8

344 211 64 13504 39.26

Table 2.4: Implementation results for Grain and Trivium found in literature

† marks implementations of Grain-128,
†† marks the implementation of Trivium-64 enhanced,
∗ denotes that the metric uses µm2 instead of # of Slices

44

2.5.4 Composite field arithmetic

In this section we want to provide a brief overview of finite field arithmetic based on iso-
morphic tower constructions. We cover finite fields of small order and continue with large
finite fields, including both software and hardware implementation. At the end of this
section, we present the tower field implementations of AES in more detail, since they are
closely related to the work presented in this thesis.

Let us begin with a paper [80] from 1974, published by D.H. Green and I.S. Taylor, that
presents five tables listing irreducible polynomials of small degrees over finite fields Fq of
small order, specifically q = 4, 8, 9, 16. Their preferred method of representing the field
elements powers of the generator, and they also provide primitive polynomials of small
degrees over the aforementioned base fields. The remainder of the paper is dedicated to
applications of composite field arithmetic in error-correcting codes and FSR-based sequence
generators. Also one of the oldest applications of isomorphic tower constructions that is of
our interest, is an inversion algorithm for elements of Fqm with q = 2n, proposed in 1988 by
T. Itoh and S. Tsuji [81]. Using normal bases for both extensions, they compute the inverse
in Fqm using subfield inversion (performed by cyclic shifts over F2 and multiplications if
Fq), cyclic shifts over Fq and multiplications in Fqm . At that time, many authors described
multiplication and inversion in F2m taking advantage of the arithmetic in the subfield F

2
m
2

,
for example [82, 83, 84, 85].

There is a series of papers from the 90’s published by Christof Paar [87, 88, 89, 90],
reporting gate counts for VLSI implementations of finite field arithmetic in composite
fields using polynomial basis representation for all extensions; most of these results are a
part of his PhD thesis [86]. He provided block diagrams for parallel multipliers, based on
Karatsuba-Oftman algorithm, over F((2n)m) and their optimizations for special cases F((2n)2)

and F((2n)4). in his work he adapts the Itoh-Tsuji approach to inversion and relates it to
the work in [83]. He also provided tables of m, n and the primitive polynomial used for
the second extension, resulting in the most efficient implementation for the particular F2k ,
for k = nm ≤ 32 with k even. Then in 1997, C. Paar published a paper [91] describing
hybrid components that use parallel circuits for arithmetic in the underlying base field
F2n as building blocks for serial circuits performing the arithmetic in the top-level F((2n)m).
Further optimization was possible by subfield decomposition F2n

∼= F
(2

n
2)2

. This work was

targeting larger finite fields of order n ·m > 140 with coprime n,m, for use in elliptic curve
cryptography. The paper provides experimental results for elliptic curve arithmetic over
F2152

∼= F(28)19 for a 2µm ASIC implementation. He revisited Itoh-Tsuji inversion in large

45

fields in 2002 paper [92]: the extension fields were constructed using either all-one poly-
nomials (AOPs) or equally-spaced polynomials (ESPs), the field elements represented in
polynomial basis, and exponentiation in F((2n)m) for coprime n,m optimized using iterates
of the Frobenius map.

One of the oldest papers dealing with larger fields with the title “Public-key Cryptosystems
with Very Small Key Lengths” is from 1993 [93]. It talks about elliptic-curve cryptosystems
and one of their chosen underlying finite fields was F2104 , implemented as composite field
F(28)13 . Elements of F(28)13 were represented as polynomials over F28 and table lookup al-
gorithms were used for arithmetic in the base field. The paper reports significant speed-up
when compared to an implementation of elliptic curve arithmetic over F2105 using normal
basis, and concludes that the implementation with the 8-bit base field elements is very
suitable for a software implementation.

A 1999 technical report on composite field arithmetic [94] by Savas and Koc reports soft-
ware implementations for certain fields of the form F((2n)m), with n = 13, 14, 15, 16 and m
chosen so that n ·m < 512 and n,m coprime. They report comparison of total time needed
for squaring, multiplication and inversion implemented using polynomial basis to optimal
normal basis 1 (ONB1) or to optimal normal basis 2 (ONB2) representation. In all cases
table look-up algorithms in polynomial basis representation were used. Multiplication was
not conducted directly in ONB1/ONB2, instead they used converted the elements to a
different basis representation where the multiplcation was performed and then the product
converted back to the ONB, namely to (a) shifted polynomial basis for ONB1 (for details
refer to [95]), and (b) a permutation of the ONB2 for ONB2 (for details refer to [96]). For
both cases they used inversion based on Extended Euclidean Algorithm in polynomial basis
representation of elements, also needing basis conversion. For multiplication and inversion
the purely polynomial basis implementation outperforms both ONBs, and as expected,
squaring in PB is slower (but absolutely negligible in comparison with multiplication or
inversion). In a paper [97] from 2003, Sunar, Savas and Koc provide methods for efficient
conversion between the binary field F2k and the composite field F((2n)m), where k = nm for
large k and n,m coprime.

Recall the tower construction F(28)4 used in Snow3G: the [14] specification of the cipher
assumes an implementation using table lookups for the first level of the tower.

46

Use of tower field constructions for AES hardware implementations
In the past decade, many implementations of AES benefited from a tower construction of
F28 . In 2001, Rijmen proposed to use the tower construction F(24)2 for the AES S-box,
[34]. This tower construction was used by A. Rudra et. al [?] for both, hardware and
software implementation of AES. They employed tower field arithmetic for the ByteSub
and MixColumn transformations. Their hardware results (without specifying the process
used) show a circuit only half the size of other AES implementations at that time and it
achieves four times higher throughput. Also in 2001, Satoh et. al [36] described a compact
data path architecture for AES using the tower field construction F((22)2)2 to perform the
inversion within the S-boxes, and thus achieving a 20% smaller S-box than the authors
of [?]. Tow years later, Satoh and Morioka [37] published another paper, that identifies
the S-box as the critical component fromn the point of view of power consumption; us-
ing a multi-stage Positive Polarity Reed-Muller form they optimized the aforementioned
composite field S-box, reducing the power consumption from 136µW to 29µW at 10MHz
using 0.13µm 1.5V CMOS technology. Mentens et. al [38] improves the original S-box
of Satoh et. al [36] by choosing the irreducible polynomials that minimize the Hamming
weight of the basis conversion matrices, the matrix for constant multiplication used in the
inverter and the matrix for the affine transformation used in the S-box, leading to an 5%
area reduction. All the aforementioned tower field constructions isomorphic to F28 use
polynomial bases at each level of the tower. D. Canright [39] conducted an exhaustive
search and tree structure analysis to find the best matrices while testing both, the polyno-
mial and the normal bases at each level of the tower F((22)2)2 . In his work, Canright was
focusing on area reduction and not examining the delay. In 2010 a mixed basis tower field
construction for F((22)2)2 was reported by [41]; their Itoh-Tsuji inverters accept an input
in normal basis representation and output its inverse represented in the polynomial basis.
Their choice for the polynomial basis representation of the inverse was based on a slightly
more efficient matrix for the affine transformation. They also emphasize the link between
the HAmming weights of individual rows of transition matrices and between the critical
path delays. A very interesting application of tower field constructions was presented in
[42]. The authors propose to use random tower construction as a countermeasure against
side-channel attacks. They chose the F(24)2 and fixed the defining polynomial for the lower
level F24 . For the second extension they use a polynomial of the form p(x) = x2 + x + λ,
whereby the element λ ∈ F24 is chosen randomly so that p(x) is primitive.

47

Chapter 3

WGP T module and different field
constructions

The architecture of WG-16 was given in Figure 2.4 in Section 2.4.1. It consists of three
main parts: the LFSR, the WGP T component and the FSM. These three components will
be implemented as three separate modules, and from now on, when we speak of WGP T we
refer to the WGP T module. From description of WG transformation (2.4.1) it is obvious,
that the WGP T module is the most demanding component in WG-16 so it received the most
attention. To achieve the best tradeoff between performance and area, different implemen-
tations of WGP T, based on different field constructions, were explored. In this Chapter we
present the different field constructions and give the design for the WGP T modules for each
field construction. The implementation of the particular circuit follows in chapter 4.

The LFSR module remains unchanged regardless of the WGP T implementation and will
only be discussed in Chapter 4. The general description of the FSM was already given
in Section 2.4.1 and detailed structure of FSM is closely related to each particular WGP T

implementation. The actual FSM module was implemented only for the promising WGP T

modules and will be discussed in Chapter 4 when appropriate.

48

The top view of the WGP T module is given in Fig-
ure 3.1 on the right. The WG-16 transformation as
depicted in Figure 3.1 consists of two parts: the WG-
16 permutation WGP-16(Xd) and the trace compu-
tation Tr(·). The 16-bit output WGP=WGP-16(Xd)
is used as a nonlinear feedback to the LSFR during
the initialization phase. In the running phase, the
WGP T module produces one keybit, denoted WGT, by
applying the trace function to the WGP signal, that is
WGT= WGT-16(WGP-16(Xd)).

16

X

16

WGP-16(X)d

Tr()

1

WGT

WGP

WGP_T

16

Figure 3.1: Architecture of module
WGP T

We begin this chapter with an overview of possible constructions of the finite field F216 and
choose five constructions, that are discussed in five separate sections.

3.1 Finite field F216 - overview of field constructions

A simple approach is the construction of the finite field F216 as an algebraic extension of
the prime field F2, using the primitive polynomial p(x) = x16 + x5 + x3 + x2 + 1. The root
of p(x) is a primitive element of F216 , and will be denoted with ω, i.e. p(ω) = 0. Hence,
we write the polynomial basis of F216 over F2 as follows:

P = {1, ω, ω2, . . . , ω15}

To find a normal basis we must first find a normal element; we use the following theorem,
given in [74]:

Theorem 3.1 Let θ be an element in Fqm. Then θ is a normal element of Fqm/Fq if and

only if the polynomials xm − 1 and
∑m−1

i=0 θq
i
xi in Fqm [x] are relatively prime.

Once we have found a normal element θ ∈ F216 , we can write down the normal basis:

N = {θ, θ2, . . . θ215}

Different normal elements generate different normal bases, and that has an impact on
complexity of the arithmetic performed with field elements in normal basis representation.

49

To evaluate different normal bases we use the (m ×m) matrix T = [tij] over F2, defined
for a particular normal element θ ∈ F216 , in such a way that the coefficients tij satisfy:

θ · θqi =
m−1∑
j=0

tijθ
qj for 0 ≤ i ≤ m− 1. (3.1)

The complexity CN of normal basis generated by θ ∈ F216 is defined as the number of
nonzero elements in matrix T , for details see [70]. In general CN ≥ 2m − 1, and when
CN = 2m − 1 the normal basis is said to be optimal [75]. Matrix T is also called mul-
tiplication matrix, as will be explained in Section 4.3.1 in more detail; at this point we
only mention that CN corresponds to complexity of computation needed to obtain one
coefficient of the product.
We perform an exhaustive search (with the GAP system [1]), using Theorem 3.1 and find
2048 normal elements in F216 , and none of them generates an optimal normal basis; the
minimum complexity that can be achieved is CN = 85 [74]. The first normal element found
is ω11 with CN = 123. Complexity CN = 85 was found for ω1117, their T matrices are given
in Appendix B.1.

Let us now turn our attention to tower field constructions. The subfield criterion 2.1 states
that for a finite field Fq with q = pm elements, there exists exactly one subfield of Fq with
pn elements for each integer n that divides m. In case m = 16, possible values of n are
2, 4 and 8. The diagram in Figure 3.2 below shows possible constructions. The value on
the connecting line represents the degree of extension [F : K] for the extension F over
K, depicted with this line. The degree of extension equals the degree of the irreducible
polynomial used to construct the extension and is also the number of elements in the basis
of F over K.

Following field constructions were explored in order to optimize the WGP T module:

• construction of F216 with polynomial basis representation of elements (Section 3.2)

• construction of F216 with normal basis representation of elements (Section 3.3)

• tower construction F(((22)2)2)2 (Section 3.4)

• tower construction F(24)4 (Section 3.5)

• tower construction F(28)2 (Section 3.6)

First construction listed above uses the polynomial basis with root ω of the defining polyno-
mial p(x) that was mentioned at the beginning of this section. For the second construction,
the aforementioned ω1117 is selected to be the normal element generating the normal basis

50

F216

F28

�

2

F24

4

-

2

-

F22
8

-

4

-

�
2

F2
�

1
6

8

-

�

4

�

2

Figure 3.2: Finite filed F216 - possible tower constructions

of F216/F2. The remaining three field constructions use towers of extension fields. If we
recall the permutation polynomial q(Y) (see equation (2.10) in Section 2.4.1) we see the
common occurrence of exponentiation to powers of two: this operation can be performed
very efficiently in normal basis representation, namely with a simple right cyclic shift.
But that requires basis conversion between normal basis representation and tower field
representation, and we will select the normal element that gives the most efficient conver-
sion matrices. This will be discussed in more detail for each tower construction individually.

The rest of this chapter is dedicated to the five field constructions listed above, one con-
struction per section. All the sections begin with a detailed description of the field con-
struction and end with a schematic showing the top-level structure of the WGP T module.
The three tower constructions also need conversions between the tower field basis and nor-
mal basis, so another section describing the conversion is inserted before the WGP T section.
We will observe that all WGP T modules, except the one using tower construction F(((22)2)2)2 ,
have basically the same top-level structure with only difference being the representation of
element 1 using different bases. From implementation point of view, significant differences
will occur, since different bases lead to different circuits for the basic field arithmetic. Al-
gebraic optimization is possible for module WGP T using tower construction F(((22)2)2)2 ; this
will be explained in more detail in Section 3.4.3.

51

3.2 F216 with polynomial basis

3.2.1 Field construction

Let us recall the polynomial basis construction of F216 over its prime subfield F2 from
Section 3.1. The polynomial basis is the set {1, ω, ω2, . . . , ω15}, where ω is a root of the
irreducible polynomial x16 +x5 +x3 +x2 + 1. Thus, a field element A ∈ F216 is represented
as a linear combination of basis elements with coefficients ai, i = 0, . . . , 15 from the prime
subfield F2:

A =
15∑
i=0

aiω
i ; ai ∈ F2

3.2.2 WGP T module

We begin by inspecting computation WGP-16(Xd) = q(Xd ⊕
16

1) ⊕
16

1, where X is an arbi-

trary nonzero element of F216 and d = 1057 the chosen decimation value. The decimation
1057 is represented as “10000100001” in binary and can be computed with 10 squarings
and 2 multiplications. Let Y = Xd ⊕

16
1 ∈ F216 . Inspecting the permutation polynomial

q(Y) = Y ⊕
16

(Y 211⊗
16
Y) ⊕

16
(Y 211⊗

16
Y 26⊗

16
Y) ⊕

16
(Y 26⊗

16
Y −2

11⊗
16
Y) ⊕

16
(Y 211⊗

16
Y 26⊗

16
Y −1) (3.2)

we see that we require 11 squarers (6 to obtain Y 26 and further 5 for Y 211), 7 multipliers and
2 inverters. Together with the 10 squarers and 2 multipliers required for the decimation
Xd, we end up with a total of 21 squarers, 9 multipliers and 2 inverters. Since inversion is
expensive, we replace two separate calculations of (Y 211)−1 and Y −1 by just one inversion
Y −1 followed by the computation (Y −1)2

11
, i.e. we can omit one inverter at the cost of 11

squarers and now have 32 squarers in total. Using distributivity we rewrite equation (3.2)
as

q(Y) = Y ⊕
16

(
Y ⊗

16
(Y 211 ⊕

16
(Y −1)2

11 ⊗
16
Y 26)

)
⊕
16

(
Y 26 ⊗

16
Y 211 ⊗

16
(Y ⊕

16
Y −1)

)
(3.3)

which reduces the number of multipliers from 7 to 4. The total WGP-16(Xd) computation
now requires 32 squarers, 6 multipliers and 1 inverter.

52

Using notation

• Y = Xd ⊕
16

1 with d = 1057 = 210 + 25 + 1,

• A = Y ⊗
16

(Y 211 ⊕
16

(Y −1)2
11 ⊗

16
Y 26), and

• B = Y 26 ⊗
16
Y 211 ⊗

16
(Y ⊕

16
Y −1),

we can summarize WGT-16 with three simple equations:

• q(Y) = Y ⊕
16

A ⊕
16

B,

• WGP-16(Xd) = q(Y) ⊕
16

1 and finally

• WGT-16(Xd) = Tr(WGP-16(Xd)).

The architecture obtained following equation (3.3) can be seen in Figure 3.3.

Y

Y2 +26 11

Y2 -26 11

Y211

Y Y-1+

Tr()

WGP

WGT
16

1

Y

Y-1

M16M16

xd

x

sq5

10

I16

1

6

1

11 M16

M16

M16

M16
A

B
sq

sq

sq

sq

1 1

Figure 3.3: Module WGP T for field elements in polynomial basis representation

For an arbitrary element A ∈ F216 , using modular reduction by ω16 + ω5 + ω3 + ω2 + 1, we
obtain

Tr(A) = A ⊕
16

A2 ⊕
16

A22 ⊕
16

. . . ⊕
16

A215 = a11 ⊕ a13, whereA =
15∑
i=0

aiω
i.

53

3.3 F216 with normal basis

3.3.1 Field construction

The next field construction we are going to explore is the normal basis construction. Recall
from Section 2.2.3 that a normal basis consist of conjugates of a normal element of F216

over F2. In Section 3.1 we found 2048 normal elements in F216 , none of which generate an
optimal normal basis. Finding a normal basis of low complexity is essential for efficient
multiplication of field elements ([70]). The normal element yielding the matrix T with low-
est complexity CN = 85 is the element ω1117, where ω is the root of irreducible polynomial
p(x) = x16 + x5 + x3 + x2 + 1 (the matrix T for ω1117 can be seen at the end of Section
B.1.2 in Appendix B.1.1). We use this element to generate the normal basis of F216 over
F2:

N = {θ, θ2, . . . θ215},where θ = ω1117 ∈ F216 and p(ω) = 0.

An element A ∈ F216 is now represented as

A =
15∑
i=0

aiθ
2i ; ai ∈ F2

3.3.2 WGP T module

This sectionis organized as follows: we give the schematic for module WGP T first and then
explain the exponentiation to powers of two and the trace computation in detail.
The WGP T module using normal basis representation of elements is very similar to the
WGP T module using polynomial basis, which was described in Section 3.2. The only dif-
ferences between the two modules arise from the different bases used. Using normal basis
representation of field elements:

• the exponentiation to powers of two can be efficiently implemented by a simple right
cyclic shift,

• the element 1 is represented as 1 = θ + θ2 + · · · + θ2
15

, that is as (1,1,...,1), so
the XORing of a field element with the constant 1 can be implemented by a simple
bitwise NOT operator, and

• the trace of an field element A ∈ F216 can be computed as Tr(A) =
⊕15

i=0 ai.

54

Recall the WGT-16 presentation that was used to obtain the WGP T module using poly-
nomial basis in Section 3.2:

• Y = Xd ⊕
16

1 with d = 1057 = 210 + 25 + 1,

• A = Y ⊗
16

(Y 211 ⊕
16

(Y −1)2
11 ⊗

16
Y 26),

• B = Y 26 ⊗
16
Y 211 ⊗

16
(Y ⊕

16
Y −1),

• q(Y) = Y ⊕
16

A ⊕
16

B,

• WGP-16(Xd) = q(Y) ⊕
16

1 and finally

• WGT-16(Xd) = Tr(WGP-16(Xd)).

Y

Y2 +26 11

Y2 -26 11

Y211

Y Y-1+

Tr()

WGP

WGT
16

1

Y

Y-1

M16M16

xd

x

>>

>>

5

10

I16

>>1

>>6

1

>>11 M16

M16

M16

M16
A

B

Figure 3.4: Module WGP T for field elements in normal basis representation

Exponentiation to powers of two

For an element A ∈ F2m , with coefficients ai ∈ F2, A
2k is computed as follows:

A2k =

(
m−1∑
i=0

aiα
qi

)2k

=
m−1∑
i=0

ai(α
qi)2

k

= a0α
2k + a1α

2·2k + · · ·+ am−2α
2m−2·2k + am−1α

2m−1·2k

For k = 1, . . . , 15, the (m− k)-th term becomes the first term since

am−kα
2m−k·2k = am−kα

2m = am−kα

55

Similarly, the (m− k + 1)-th term becomes the the second term and so on, hence a right
cyclic shift by k positions. For k = 1, we get:

A2 = a0α
2 + a1α

22 + · · ·+ am−2α
2m−1

+ am−1α
2m

= amα + a0α
2 + a1α

22 + · · ·+ am−2α
2m−1

In the Figure 3.4, the blocks denoted with >>k represent the exponentiation A2k .

Trace computation

For an arbitrary element A ∈ F216 , represented using normal basis N = {θ, θ2, . . . θ215}, the
trace is obtained as follows:

Tr(A) = A ⊕
16

A2 ⊕
16

A22 ⊕
16

. . . ⊕
16

A215

= (a0θ + a1θ
2 + · · ·+ a15θ

215)

+ (a15θ + a0θ
2 + · · ·+ a14θ

215)

+ . . .

+ (a1θ + a2θ
2 + · · ·+ a0θ

215)

=

(
15∑
i=0

ai

)
θ +

(
15∑
i=0

ai

)
θ2 + · · ·+

(
15∑
i=0

ai

)
θ2

15

=

(
15∑
i=0

ai

)(
θ + θ2 + · · ·+ θ2

15
)

=
15∑
i=0

ai

=
15⊕
i=0

ai

From equation above we can see, that the trace function can be computed by XORing the
coefficients of element A.

56

3.4 Tower construction F(((22)2)2)2
∼= F216

This section is divided into three subsections: the construction of the tower field, conversion
between different basis representation of elements, and the module WGP T itself.

3.4.1 Field construction

The tower construction F(((22)2)2)2 uses extensions of degree two on each level of the tower,
hence we need an irreducible polynomial of degree two on each step:

F2
e(x)−−→ F22

f(x)−−→ F(22)2
g(x)−−→ F((22)2)2

h(x)−−→ F(((22)2)2)2 .

The completed tower construction for F(((22)2)2)2 is summarized in Table 3.1 below:

Finite Filed F2n Normal Basis Normal element Defining polynomial

over F2(n
2) as power of ω

F216
∼= F(((22)2)2)2 {δ, δ256} δ = ω45049 h(x) = x2 + x+ µ, where µ = β + λγ

F28
∼= F((22)2)2 {γ, γ16} γ = ω14392 g(x) = x2 + x+ λ ,where λ = α2β

F24
∼= F(22)2 {β, β4} β = ω4369 f(x) = x2 + x+ α

F22
∼= F(2)2 {α, α2} α = ω21845 e(X) = x2 + x+ 1

Table 3.1: Tower construction of F(((22)2)2)2

ω is a root of polynomial x16 + x5 + x3 + x2 + 1, used to construct the isomorphic field F16

α a root of e(x), β a root of f(x), γ a root of g(x) and δ a root of h(x)

A reader satisfied with information provided in Table 3.1 can proceed to Section 3.4.2.

The remainder of this section is organized as follows: first we give some additional theoret-
ical results that can be applied to tower construction F(((22)2)2)2 . Lower levels of the tower
have a small order and are easily manageable, hence described in more detail to illustrate
the theory that was presented in Section 2.2. While moving up the tower we are forced to
conduct an exhaustive search for irreducible polynomials.

57

Additional mathematical background

Noting that the degree of extensions equals the characteristic of the field, we list a theorem
and its corollary that helps us in the search for irreducible polynomials, [69]:

Theorem 3.2 Let σ ∈ Fq and char(Fq)= p. Then the trinomial xp − x− σ is irreducible
in Fq[x] if and only if it has no root in Fq.

Corollary 3.3 With the notation of Theorem 3.2, the trinomial xp − x− σ is irreducible
in Fq[x] if and only if TrFq(σ) 6= 0.

We decide to use normal basis representation of elements at each level of the tower. This
facilitates an efficient implementation of squaring using a simple right cyclic shift. To
ensure that the irreducible polynomial used for the extension is also an N-polynomial we
use the following result and present it as a fact:

Fact 3.4 [70, Corollary 4.20] Let f(x) = x2 + a1x + a2 be an irreducible quadratic poly-
nomial over Fq. Then f(x) is a N-polynomial if and only if a1 6= 0.

Extension field F22

For construction of the first extension F22 we need a polynomial from F2[x], that is irre-
ducible over the prime field F2, and has degree 2. Polynomials x2 and x2 +x are obviously
reducible and x2 + 1 has root 1 ∈ F2, so they cannot be used. We have to try a trinomial:
the trinomial e(x) = x2 + x+ 1 is the only polynomial of degree 2 that is irreducible over
F2, hence the only polynomial that can be used to construct F22 . Note that F22 is a finite
field with 4 elements and with F2 embedded as a subfield. So two elements of F22 are
already known, namely elements 0 and 1 from F2. F22 is constructed by adjoining the
root of defining polynomial e(x) to the elements {0, 1} of the underlying base field F2. We
denote this root α, that is e(α) = 0. The first element to join the set is α. Now all we
have to do is to add all the elements that are needed for {0, 1, α} to become closed under
addition and multiplication. From e(α) = α2 + α + 1 it follows that:

α2 = α + 1, (3.4)

58

so α2 is the next element to join the set. The set {0, 1, α, α2} is now closed for addition,
as can be seen from Table 3.3. We now check to see if this set is closed for multiplication
by computing α2 · α, which can be obtained by simply multiplying equation (3.4) by α:

α3 = α2 + α = 1. (3.5)

Obtained product α3 = 1 is already contained in the set. We can also verify this using the
finite field analog of Fermat’s little theorem (equation (2.1)) with q = 22: αq−1 = α3 = 1.
Table 3.4 shows that the set {0, 1, α, α2} is indeed closed for multiplication. We have found
all four elements of the finite field F22 . From addition and multiplication tables given in
Tables 3.3 and 3.4 respectively we can see that (F(((22)2)2)2 ,+) is a commutative group
with additive identity 0 and (F(((22)2)2)2\{0}, ·) is a commutative group with multiplicative
identity 1. To satisfy all conditions that are listed in the definition 2.4 of a field in Section
2.2, the reader can check the distributivity of multiplication and addition.
By the fact 3.4, the polynomial e(x) = x2 + x + 1 is also a N-polynomial, which makes
its root α a normal element of F22/F2. An arbitrary element A ∈ F22 can be represented
with normal basis {α, α2} as follows: A = a0α + a1α

2, a0, a1 ∈ F2. The elements of
F22 in their normal basis representation are given in Table 3.2, which was obtained using
equation (3.4). The coordinates for element 1 (second row in the Table 3.2) were obtained
from equation (3.5).

A ∈ F22 a0 a1
0 0 0
1 1 1
α 1 0
α2 0 1

Table 3.2: Elements of F22

+ 0 1 α α2

0 0 1 α α2

1 1 0 α2 α
α α α2 0 1
α2 α2 α 1 0

Table 3.3: Addition in F22

· 0 1 α α2

0 0 0 0 0
1 0 1 α α2

α 0 α α2 1
α2 0 α2 1 α

Table 3.4: Multiplication in F22

Extension field F(22)2

The next level of the tower construction is F(22)2 , and we want to find the normal basis of
F(22)2 over F22 . This is an extension of degree 2 so we expect the normal basis to contain
two elements. We could just find a normal and over F22 irreducible polynomial, that is a
N-polynomial of degree two and use the fact that the conjugates of its root, that is the
basis elements, sum up to 1 to complete the construction. This fact will be further explored
in Section 3.4.3 later in this chapter.

59

� Remark: Here we first take a little detour and explore the isomorphic field F24 to illustrate the
subfield criterion 2.1 by presenting F(22)2 as subfield of F24 , and to show how the Frobenius mapping
deternimes the subfeild elements.

Extension of degree 4 over the prime field F2 - the finite field F24/F2
The finite field F(22)2 is isomorphic to F24 . The latter can be constructed using the irreducible polynomial

x4+x+1 and its root y. Element A ∈ F24 can be represented in the polynomial basis {1, y, y2, y3} as a poly-
nomial of degree less than four of the form A = a0 + a1y+ a2y

2 + a3y
3 with coefficients ai ∈ F2, 0 ≤ i ≤ 3.

The 16 elements of F24 , obtained using the relationship y4 + y+ 1 = 0, are given in Table B.1 in Appendix
B.1.1.

F22 as subfield of F24 : The subfield criterion ensures that the field F22 must be embedded in F24 as a
subfield. We use the Frobenius mapping σ2

1 where σ : F24 7→ F24 and σ1(x) = x2 to find this subfield:

σ2
1(x) = x4 = x ⇔ x ∈ F22

The results of σ2
1 are listed in the fourth column of Table B.1 in Appendix B.1.1. We can see the four

elements 0, 1 y5 and y10 that remain fixed under σ2
1 ; they are the four elements of F22 . We can check that

the set {0, 1, y5, y10} is closed under addition and multiplication by writing the addition and multiplication
tables for these elements (Tables 3.5 and 3.6). From the tables it is trivial to check that ({0, 1, y5, y10},+, ·)
has the properties of a field as listed in Definition 2.4, which means that {0, 1, y5, y10} is a subfield of F24 .
We can also check that both y5 and y10 are roots of polynomial e(x) = x2 + x+ 1.

+ 0 1 y5 y10

0 0 1 y5 y10

1 1 0 y10 y5

y5 y5 y10 0 1

y10 y10 y5 1 0

Table 3.5: Addition in F22

· 0 1 y5 y10

0 0 0 0 0

1 0 1 y5 y10

y5 0 y5 y10 1

y10 0 y10 1 y5

Table 3.6: Multiplication in F22

e(y5) = (y5)2 + y5 + 1

= y10 + y5 + 1

= 1 + y + y2 + y + y2 + 1

= 0

e(y10) = (y10)2 + y10 + 1

= y5 + y10 + 1

= y + y2 + 1 + y + y2 + 1

= 0

With mapping α 7→ y5 we obtain a field isomorphism between ({0, 1, α, α2},+, ·), from the first level
of the tower construction, and the current subfield of interest ({0, 1, y5, y10},+, ·). Choosing α 7→ y10

only results in a different isomorphism. Identifying the isomorphism between ({0, 1, α, α2},+, ·) and
({0, 1, y5, y10},+, ·) is enough: it saves the time checking whether ({0, 1, y5, y10},+, ·) is a field. �

Extension of degree 2 over the ground field F22 - the finite field F(22)2

To construct F(22)2 as an extension of F22 , we need a polynomial of degree 2 with coefficients
from F22 that is irreducible over F22 . This polynomial will have the form f(x) = f2x

2 +
f1x + f0 ∈ F22 [x]. The polynomial with f2 = f1 = f0 = 1 is the polynomial e(x) that was
used to construct the base field F22 itself and is obviously not irreducible over F22 . The
next logical choice is f2 = f1 = 1 and f0 = α, that is the trinomial f(x) = x2 + x + α.
Following Theorem 3.2, we find that this polynomial does not have a root in F22 (see Table
3.7) and is therefore irreducible over F22 .

60

A ∈ F22 f(A)

0 α
1 α
α α2

α2 α2

Table 3.7: Values of f(x) = x2 + x+ α for elements of F22

We now know that we can construct F(22)2 using f(x) = x2 + x + α, by adjoining its root
β to elements in F22 . Furthermore, due to 3.4, f(x) is a N-polynomial and β is a normal
element generating the normal basis {β, β4} of F(22)2/F22 .

� Remark: Recall from Section 2.2.3 that an irreducible polynomial of degree 2 has two distinct simple
roots, β and its conjugate β4. Closer inspection of polynomial f(x) reveals the following: if we write
α = y5 = y+y2 we see that f(y) = y2 +y+y5 = y5 +y5 = 0, hence y is a root of f(x) which implies y = β
or y = β4. In either case, both β and β4 are two of the four roots of irreducible polynomial x4 + x + 1,
which was used to construct F24/F2. Relationship β4 + β + 1 = 0 can be used to check that conjugates of
β are linearly independent and thus constitute a normal basis of F(22)2/F22 . �

Using the normal basis {β, β4} we can represent an element B ∈ F(22)2 as a polynomial
B = b0β + b1β

4 with coefficients b0, b1 ∈ F22 . Elements of F(22)2 in their normal basis
representation are given in the grey column in Table 3.8. They were obtained using rela-
tionships β2 + β + α = 0 and β4 + β + 1 = 0. In the last column, we give the order of the
element in the multiplicative group F∗(22)2 : we see that β is a primitive element of F(22)2

and thus generates the entire F∗(22)2 .

The tower field basis for the tower of extensions F2 ⊂ F22 ⊂ F(22)2 is obtained by rewriting
the coefficients of an element B ∈ F(22)2 using normal bases {β, β4} of F(22)2 over F22 and
{α, α2} of F22 over F2 as follows:

B = b0β + b1β
4

= (b00α + b01α
2)β + (b10α + b11α

2)β4

= b00αβ + b01α
2β + b10αβ

4 + b11α
2β4

= b00β
6 + b01β

11 + b10β
9 + b11β

14

In the last line of the expression above we used the relationships α = β5 and α2 = β10.
Note that elements β6, β11, β9 and β14 are linearly independent which means that the set
{β6, β11, β9, β14} with four elements constitutes a basis of F24 over F2; this is the tower

61

field basis we were looking for. The tower field representation of elements is given in the
first four columns of Table 3.8: the coefficients b00, b01, b10, b11 correspond to basis elements
β6, β11, β9, β14 respectively. For reference, the conversion matrices between the tower field
basis and polynomial basis {1, β, β2, β3} are given in Section B.1.1 in Appendix B.1.1.

tower field basis normal basis

F24 over F2 F(22)2

b†0 b†1 over F22 B as order

β6 β11 β9 β14 β β4 power of B

b00 b01 b10 b11 b0 b1 of β in F∗(22)2

0 0 0 0 0 0 / /

0 0 0 1 0 α2 β14 15

0 0 1 0 0 α β9 5

0 0 1 1 0 1 β4 15

0 1 0 0 α2 0 β11 15

0 1 0 1 α2 α2 β10 3

0 1 1 0 α2 α β2 15

0 1 1 1 α2 1 β13 15

1 0 0 0 α 0 β6 5

1 0 0 1 α α2 β8 15

1 0 1 0 α α β5 15

1 0 1 1 α 1 β12 5

1 1 0 0 1 0 β 15

1 1 0 1 1 α2 β7 15

1 1 1 0 1 α β3 5

1 1 1 1 1 1 β15 1

Table 3.8: Elements of F(22)2

in tower field basis {β6, β11, β9, β14} of F24/F2,
in normal basis {β, β4} of F(22)2/F22 - shaded grey
and as powers of the generator β

� Remark: The nonzero elements of subfield F22 , embedded in F(22)2 , are represented as follows:
1 = β + β4 α = α · 1 α2 = α2 · 1

= β15 = α · (β + β4) = α2 · (β + β4)
= αβ + αβ4 = α2β + α2β4

= β5 = β10

�

62

Extension field F((22)2)2

For the extension F((22)2)2 over F(22)2 we look for a polynomial of the form g(x) = x2+x+λ ∈
F(22)2 [x]. We want a simple expression for λ ∈ F(22)2 , so we try four different values
composed of basis elements of F(22)2 and of its subfield F22 (refer to Table 3.8) and check
if the polynomial is irreducible. The four candidates are listed in Table 3.9 below. Note
that the four values λi, i = 0, . . . , 3, are exactly the elements of the tower field basis of F24

over F2.

Candidate λi irreducible primitive

λ1 = αβ = β6 X

λ2 = α2β = β11 X X

λ3 = αβ4 = β9 X

λ4 = α2β4 = β14 X X

Table 3.9: Candidates for irreducible polynomials g(x) = x2 + x+ λi of degree 2 over F(22)2

All four polynomials are irreducible, but only the two with a primitive constant term (λ2
and λ4) are also primitive. We choose λ = λ2 = β11 = α2β ∈ F(22)2 .

� Remark: Following corollary 3.3, let us compute the absolute trace of the constant term λ to show
that g(x) is indeed irreducible over F(22)2 :

Tr(λ) = λ+ λ2 + λ2
2

+ λ2
3

= β11 + β7 + β14 + β13

= α2β + β + α2β4 + α2β4 + α2β + β4

= β + β4

= 1

In the third line of the trace computation above, elements β11, β7, β13, β14 ∈ F(22)2 were represented in

the normal basis {β, β4} (see the grey column of Table 3.8). �

Elements of F((22)2)2 are represented with normal basis {γ, γ16}, where γ is a root of g(x),
that is, an element A ∈ F((22)2)2 can be written as a linear combination A = a0γ + a1γ

16

with coefficients a0, a1 from the base field F(22)2 .

Extension field F(((22)2)2)2

The last extension F(((22)2)2)2 was obtained using the polynomial h(x) = x2 + x+ µ, where
µ = β + λγ. The constant term µ was chosen based on exhaustive search for the best

63

conversion matrices, described in Section 3.4.2. In Section 3.4.3 we show, that the abso-
lute trace Tr(µ) = 1, hence by corollary 3.3 the polynomial h(x) is indeed irreducible over
F((22)2)2 .

The normal basis of F(((22)2)2)2 over F((22)2)2 is the set {δ, δ256} with δ being the root of the
polynomial h(x), and the elements of F(((22)2)2)2 can be represented as A = a0δ + a1δ

256,
where a0, a1 ∈ F((22)2)2 .

3.4.2 Conversion matrices

In Section 3.4 we have seen a bottom-up approach for the tower construction. In this section
we descend back down the tower to find conversion matrices between the tower field basis
representation of elements. We also describe the exhaustive search for the normal element
of F216 that gives the most efficient conversion matrices between the tower field and normal
basis representation.

If we recall the permutation polynomial q(Y) = Y + Y 211+1 + Y 211+26+1 + Y 26−211+1 +
Y 211+26−1 from Section 2.4.1, we see that exponentiation to powers of two is a very common
operation, that can be performed either

• as a sequence of squarings (which was used in the field construction with polynomial
basis in Section 3.2),

• or by transitioning to normal basis representation, performing the exponentiation
in normal basis, and transitioning back to tower field representation of elements.
Exponentiation to powers of two for elements in their normal basis representation
was explained in Section 3.3: it is realized with a simple cyclic shift.

We decide for the second option: the cyclic shift is trivial, but we need basis conversion
between normal basis representation and tower field representation of the elements.
For now, we will treat the finite field F216 over F2 as a vector space V of dimension 16 over
F2. We can represent the elements of F216 over F2 using

• polynomial basis P,

• normal basis N, and

• tower field basis T.

64

The conversion matrix is the matrix of identity map id : V 7→ V relative to the two
bases [68]. We will denote the conversion matrix from basis A to basis B representation
with MA

B . The transition matrix in the opposite direction is simply the inverse matrix:
MB

A = (MA
B)−1.

Let us denote the vector space V in polynomial basis representation as VP , in normal basis
representation as VN , and in tower field representation as VT , and draw a diagram:

VN
MN

P - VP

VT

MP
T

?

M
N

T
-

Figure 3.5: Conversion between normal basis and tower field representation

From the diagram in figure 3.5, we see that the transition from VN to VT is a composition
of two identity maps idNT = idNP ◦ idPT and so we can obtain the matrix MN

T of idNT by simple
matrix multiplication:

MN
T = MP

T ∗MN
P

We first compute the two transition matrices relative to polynomial basis P = {1, ω, . . . , ω15},
that is uniquely defined with the root ω of the defining polynomial x16 + x5 + x3 + x2 + 1
(see Section 3.1). To find the conversion matrices between the tower field representation
and the polynomial basis representation let us now descend through the tower field to find
the 16 basis elements of T . An element A ∈ F(((22)2)2)2 can be written as: A = d0δ+d1δ

256,
with coefficients d0, d1 ∈ F((22)2)2 . Those can be written in basis {γ, γ16} of F((22)2)2 as
d0 = c00γ + c01γ

16 and d1 = c10γ + c11γ
16. If we continue this procedure we obtain a tree

structure that can be seen in Figure 3.6. The full expression for A is:

65

A =
[(

(a0000α + a0001α
2)β + (a0010α + a0011α

2)β4
)
γ

+
(
(a0100α + a0101α

2)β + (a0110α + a0111α
2)β4

)
γ16
]
δ

+
[(

(a1000α + a1001α
2)β + (a1010α + a1011α

2)β4
)
γ

+
(
(a1100α + a1101α

2)β + (a1110α + a1111α
2)β4

)
γ16
]
δ256,

where a0000, a0001, . . . , a1111 ∈ F2. (3.6)

A

a0000

b000

a0001

2

a0010

b001

a0011

2

c00

4

a0100

b010

a0101

2

a0110

b011

a0111

2

c01

4

d0

16

a1000

b100

a1001

2

a1010

b101

a1011

2

c10

4

a1100

b110

a1101

2

a1110

b111

a1111

2

c11

4

d1

16

256

FI2

FI22

FI(2)2 2

FI (2)2 2()
2

FI (2)2 2()
2()

2

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

Figure 3.6: A tree structure for the element A =
∑15
j=0 ājtj in the tower construction F(((22)2)2)2

Following the paths from the 16 leaves to the root of the tree in Figure 3.6, we can simply
read the elements of basis T = {t0, . . . , t15}. If we think of the subscripts of coefficients
a0000, a0001, . . . , a1111 ∈ F2 as 4-bit binary numbers, we can rewrite the leaf elements of the
tree in Figure 3.6 as āj, j = 0, . . . , 15; corresponding elements āj can be seen at the bottom
of the tree below the solid line. We can now write the field element A ∈ F(((22)2)2)2 as a

linear combination of basis T elements: A =
∑15

j=0 ājtj. Considering the representation
of the basis elements as a power the root ω of defining (primitive) polynomial of F216 :
α = ω21845, β = ω4369, γ = ω14392 and δ = ω45049, we obtain the basis elements tj and their
polynomial basis representations:

66

t0 = αβγδ = ω20120 = ω + ω6 + ω10 + ω12 + ω13

t1 = α2βγδ = ω41965 = 1 + ω + ω2 + ω3 + ω4 + ω5 + ω6 + ω9 + ω10 + ω11 + ω12 + ω15

t2 = αβ4γδ = ω33227 = ω2 + ω3 + ω4 + ω7 + ω9 + ω10 + ω11 + ω14

t3 = α2β4γδ = ω55072 = 1 + ω2 + ω4 + ω7 + ω8 + ω11 + ω12 + ω14

t4 = αβγ16δ = ω39395 = 1 + ω + ω2 + ω7 + ω8 + ω9 + ω11 + ω15

t5 = α2βγ16δ = ω61240 = ω2 + ω5 + ω6 + ω8 + ω10 + ω12 + ω13 + ω14 + ω15

t6 = αβ4γ16δ = ω52502 = ω2 + ω4 + ω6 + ω9 + ω11 + ω15

t7 = α2β4γ16δ = ω8812 = ω3 + ω4 + ω5 + ω8 + ω9 + ω10 + ω11 + ω14

t8 = αβγδ256 = ω28590 = ω + ω2 + ω4 + ω8 + ω13

t9 = α2βγδ256 = ω50435 = ω + ω3 + ω5 + ω6 + ω7 + ω8 + ω9 + ω13 + ω14 + ω15

t10 = αβ4γδ256 = ω41697 = ω2 + ω3 + ω5 + ω9 + ω11 + ω12

t11 = α2β4γδ256 = ω63542 = ω3 + ω4 + ω6 + ω9 + ω10 + ω12 + ω13 + ω15

t12 = αβγ16δ256 = ω47865 = ω2 + ω3 + ω5 + ω6 + ω7 + ω11 + ω15

t13 = α2βγ16δ256 = ω4175 = 1 + ω6 + ω7 + ω9 + ω13 + ω15

t14 = αβ4γ16δ256 = ω60972 = 1 + ω4 + ω10 + ω13 + ω14

t15 = α2β4γ16δ256 = ω17282 = ω + ω2 + ω3 + ω9 + ω10 + ω13

Note that the elements t0, . . . , t15 above can also be obtained from equation 3.6. We
can now directly write the conversion matrix MT

P from tower field representation to poly-
nomial basis representation by writing the tower field elements tj for j = 0, . . . , 15 in
their polynomials representing as column vectors, starting with t0 = (0100001000101100)T ,
t1 = (1111111001111001)T , etc. Conversion matrix MP

T is obtained as inverse of MT
P .

MT
P =



0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0
1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 1
0 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1
0 1 1 0 0 0 0 1 0 1 1 1 1 0 0 1
0 1 1 1 0 0 1 1 1 0 0 1 0 0 1 0
0 1 0 0 0 1 0 1 0 1 1 0 1 0 0 0
1 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0
0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 0
0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0
0 1 1 0 1 0 1 1 0 1 1 1 0 1 0 1
1 1 1 0 0 1 0 1 0 0 0 1 0 0 1 1
0 1 1 1 1 0 1 1 0 0 1 0 1 0 0 0
1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0
1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 1
0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0
0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 0



MP
T =



1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 1
1 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0
1 1 0 1 0 0 1 1 0 0 1 1 0 1 1 0
1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1
1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 0
1 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0
1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1
1 1 0 0 1 1 1 1 1 1 1 0 0 1 0 1
1 0 0 1 0 1 0 1 0 1 1 1 0 1 1 0
1 0 1 1 0 0 0 0 1 1 1 0 1 0 0 0
1 1 0 0 1 0 1 0 0 1 0 0 0 0 0 1
1 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1
1 0 1 0 1 1 0 0 0 1 0 1 0 0 0 0
1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1
1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0
1 1 1 1 1 0 0 0 1 0 0 1 1 0 0 1



67

As already mentioned in Section 3.1 there are 2048 normal elements in F216 . An exhaustive
search revealed that the element θ = ω1091 gives the optimal conversion matrices for the
tower construction F(((22)2)2)2 . Using θ = ω1091 we obtain the following normal basis N =

{ni}, where ni = θ2
i

for 0 ≤ i ≤ 15:
n0 = ω1091 = 1 + ω + ω5 + ω7 + ω11 + ω12 + ω14

n1 = ω2182 = 1 + ω + ω2 + ω3 + ω4 + ω9 + ω12 + ω13 + ω15

n2 = ω4364 = ω + ω2 + ω3 + ω4 + ω5 + ω6 + ω7 + ω8 + ω11 + ω12 + ω14 + ω15

n3 = ω8728 = ω2 + ω3 + ω4 + ω5 + ω6 + ω9 + ω13 + ω14 + ω15

n4 = ω174560 = 1 + ω5 + ω7 + ω12 + ω13

n5 = ω34912 = 1 + ω8 + ω10 + ω11 + ω12 + ω14 + ω15

n6 = ω4289 = 1 + ω3 + ω4 + ω5 + ω6 + ω7 + ω8 + ω10 + ω12 + ω13 + ω15

n7 = ω8578 = 1 + ω + ω5 + ω7 + ω8 + ω9 + ω10 + ω11 + ω15

n8 = ω17156 = 1 + ω + ω4 + ω10 + ω11

n9 = ω34312 = 1 + ω2 + ω4 + ω7 + ω11

n10 = ω3089 = 1 + ω4 + ω6 + ω9 + ω11 + ω14

n11 = ω6178 = 1 + ω + ω2 + ω3 + ω5 + ω7 + ω9 + ω11 + ω14 + ω15

n12 = ω12356 = ω2 + ω5 + ω6 + ω7 + ω9 + ω10 + ω11 + ω12 + ω14 + ω15

n13 = ω24712 = 1 + ω4 + ω5 + ω6 + ω8 + ω13 + ω14 + ω15

n14 = ω49424 = 1 + ω3 + ω5 + ω6 + ω12 + ω13

n15 = ω33313 = 1 + ω6 + ω8 + ω10 + ω11 + ω15

From elements ni in their polynomial basis representation we can write the conversion
matrix MN

P and obtain the inverse MP
N :

MN
P =



1 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1
1 1 1 0 0 0 0 1 1 0 0 1 0 0 0 0
0 1 1 1 0 0 0 0 0 1 0 1 1 0 0 0
0 1 1 1 0 0 1 0 0 0 0 1 0 0 1 0
0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 0
1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 0
0 0 1 1 0 0 1 0 0 0 1 0 1 1 1 1
1 0 1 0 1 0 1 1 0 1 0 1 1 0 0 0
0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 1
0 1 0 1 0 0 0 1 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1
1 0 1 0 0 1 0 1 1 1 1 1 1 0 0 1
1 1 1 0 1 1 1 0 0 0 0 0 1 0 1 0
0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0
1 0 1 1 0 1 0 0 0 0 1 1 1 1 0 0
0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1



MP
N =



1 1 0 1 0 0 0 1 0 0 0 0 1 1 1 1
1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 1
1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0
1 1 1 1 0 1 1 0 1 1 0 0 0 0 1 1
1 0 1 0 1 1 1 0 0 0 1 1 1 0 0 0
1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 1
1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 0
1 1 1 1 1 0 1 0 0 1 0 1 0 1 1 1
1 1 1 0 1 0 1 1 1 1 0 0 1 1 0 1
1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1
1 1 1 1 1 0 1 0 1 0 0 1 0 1 1 0
1 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0
1 0 1 0 1 1 1 1 1 1 0 0 1 0 0 1
1 0 0 1 1 1 0 1 1 0 1 1 1 0 1 0
1 0 0 1 0 1 1 1 1 1 1 0 0 1 1 0
1 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0


.

Finally we can compute MN
T = MP

T ∗MN
P and its inverse MT

N :

68

MN
T =



1 1 0 1 0 0 0 1 1 0 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 1 0 0 1 0
1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0
0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 1
1 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1
0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0
0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 1
1 0 1 1 0 0 0 0 1 1 0 1 0 0 0 1
0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1
0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1
1 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0
0 0 0 1 0 1 1 1 0 0 0 0 0 0 1 0
0 0 1 1 1 1 1 0 0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0



MT
N =



1 1 1 0 0 0 1 0 0 0 0 0 1 0 1 1
1 1 0 1 1 0 0 0 1 0 0 0 1 0 0 1
1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 1
0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0
1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0
1 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1
0 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0
1 0 0 0 1 0 0 1 1 1 0 1 1 0 0 0
1 1 1 0 1 1 0 1 1 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0
0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0
0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1


.

Using the normal element θ = ω1091 and the tower construction from previous Section we
obtained optimal (i.e. minimum Hamming weight) conversion matrices MN

T and MT
N with

Hamming weights 92 and 100 respectively.
The constant term µ = β + λγ for the polynomial h(x) = x2 + x + µ used to construct
the extension F(((22)2)2)2/F((22)2)2 was also chosen based on exhaustive search involving dif-
ferent normal elements and different values of of µ (taking primitive elements of F((22)2)2

as candidates for µ) with minimal sum of the Hamming weights of MN
T and MT

N as search
criterion. Other choices of µ in combination with different normal elements θ gave slightly
worse results. For example when constructing the last level of the tower using µ = γ11

as the constant term in polynomial h(x), the best conversion matrices are obtained for
normal element ω713; their Hamming weights are 92 and 108, which is slightly worse than
chosen θ = ω1091 with µ = β + λγ.

3.4.3 Module WGP T

The tower field construction F(((22)2)2)2 , as presented in previous Section (3.4.1), gives rise
to some interesting properties of the trace function, that allow for optimization of the WGP T

module. This sectionis composed of three parts:

• Section 3.4.3 gives a retrospective on the tower construction using normal basis,
ending with tower field basis representation of element 1,

69

• in Section 3.4.3 we explore the trace function and show how trace computation ben-
efits from the regularity of the tower construction F(((22)2)2)2 , and finally

• in Section 3.4.3 we use the results from Section 3.4.3 to optimize the WGP T module.

By re-examining the tower field F(((22)2)2)2 we observe a highly regular structure with a
similar construction for each extension; we can introduce the following notation, which
applies to each level of the tower, and will be used throughout this section:

Let F = Fq2 be an extension of degree 2 over field K = Fq, obtained using the defining
polynomial p(x) = x2 + x+ σ with σ ∈ K. The normal basis of F over K is the set {ρ, ρq},
where ρ is a root of p(x). This yields the following representation for an arbitrary field
element A ∈ F : A = a0ρ + a1ρ

q. Then, the trace of element A ∈ F with respect to K is
computed as TrFK(A) = A+ Aq.

Relationship between the trinomial p(x) and the normal basis {ρ, ρq}

It is well known that the normal basis elements sum up to 1 (i.e. ρ+ρq = 1, a relationship
that was used throughput Section 3.4.1) , or in other words, that the trace of a basis
element with respect to K equals 1, that is TrFK(ρ) = TrFK(ρq) = 1. In this section we
give a lemma arising from the relationship between the trinomial p(x) and the normal
basis {ρ, ρq}, and then use this lemma to show that ρ + ρq = 1 really holds. Using this
relationship for all levels of F(((22)2)2)2 , we show that the element 1, represented in the tower
field basis, is a 16-bit vector of ones.

� Remark: Detailed analysis of the trace function in tower construction F(((22)2)2)2

We analyze the trace of the basis elements for each level of the tower construction F(((22)2)2)2 .

The first level of the tower is the extension F = F22 over the base field K = F2 with defining polynomial
e(x) = x2 + x + 1 and normal basis {α, α2}. From e(α) = 0 we obtain the relationship α2 + α + 1 = 0,

which yields TrFK(α) = α+ α2 = 1 and TrFK(α2) = α2 + α4 = 1.

The next extension is F(22)2 over F22 with defining polynomial f(x) = x2 + x + α. Using previously
introduced notation: F = F(22)2 , K = F22 , q = 4, σ = α and a root of defining polynomial ρ = β giving

the normal basis {β, β4}. Again, we obtain a relationship β2 + β + α = 0 which allows for β4 = (β2)2 =
(β + α)2 = β2 + α2 = β + α + α2 = β + 1. Using this last relationship, β4 = β + 1, we obtain the

traces of basis elements β and β4 with respect to the subfield K, namely TrFK(β) = β + β4 = 1 and

TrFK(β4) = β4 + β16 = β4 + β = 1.

Moving up another level of the tower field, we have F = F((22)2)2 , K = F(22)2 , q = 16, σ = λ and a root ρ = γ

of the defining polynomial x2 + x+ λ, giving the normal basis {γ, γ16}. From relationship γ2 = γ + λ we
obtain an expression for the basis element γ16 as a sequence of squares: γ2, γ4 = (γ2)2, γ8 = (γ4)2, γ16 =

70

(γ8)2 = γ+λ+λ2 +λ4 +λ8. Using λ = β11 (see Section 3.4.1), we can compute λ+λ2 +λ4 +λ8 = 1, thus
obtaining expected relationship γ16 = γ + 1. Note that F((22)2)2 is a field with 256 elements and hence

γ256 = γ. The traces of basis elements follow: TrFK(γ) = γ + γ16 = 1 and TrFK(γ16) = γ16 + γ256 = 1.

The top level extension is F = F(((22)2)2)2 over K = F((22)2)2

with q = 256, σ = µ and basis {δ, δ256} where δ is a root of
polynomial x2 +x+µ, yielding the relationship δ2 = δ+µ. The
expression for δ256 can be obtained by squaring δ:

δ2 = δ + µ

δ4 = δ + µ+ µ2

δ8 = δ + µ+ µ2 + µ4

δ16 = δ + µ+ µ2 + µ4 + µ8

δ32 = δ + µ+ µ2 + µ4 + µ8 + µ16

δ64 = δ + µ+ µ2 + µ4 + µ8 + µ16 + µ32

δ128 = δ + µ+ µ2 + µ4 + µ8 + µ16 + µ32 + µ64

δ256 = δ + µ+ µ2 + µ4 + µ8 + µ16 + µ32 + µ64 + µ128

i µ2i γ γ16

0 µ β6 β

1 µ2 β10 β6

2 µ4 1 β3

3 µ8 β7 β5

4 µ16 β β6

5 µ32 β6 β10

6 µ64 β3 1

7 µ128 β5 β7

sum
∑7
i=0 µ

2i 1 1

Table 3.10: Elements µ2i ∈ F((22)2)2

for i = 0, . . . , 7 and their sum

We obtain δ256 = δ +
∑7
i=0 µ

2i . The elements µ2i ∈ F((22)2)2 represented in normal basis {γ, γ16} and

their sum are summarized in Table 3.10 on the right. We obtain
∑7
i=0 µ

2i = γ + γ16 = 1, which results in

δ256 = δ + 1, and furthermore TrFK(δ) = δ + δ256 = 1 and TrFK(δ256) = δ256 + δ65536 = δ256 + δ = 1. �

The purpose of this detailed analysis was to identify an interesting connection between
the basis elements {ρ, ρq}, which holds on every level of construction F(((22)2)2)2 , which we
present in the following Lemma:

Lemma 1 Let F = Fq2 be an extension of degree 2 over field K = Fq, obtained using the
defining polynomial p(x) = x2 + x+ σ with σ ∈ K, where q = 2m for some integer m. Let
{ρ, ρq} be the normal basis of F over K, where ρ is a root of p(x). Then, the following
relationship holds:

ρq = ρ+ TrK(σ),

where TrK(σ) is the absolute trace of the constant term σ of defining polynomial p(x) of F
over K. Furthermore, TrK(σ) = 1.

71

Proof

ρ+ ρq = ρ+ (ρ2 + ρ2) + (ρ2 + ρ2) + · · ·+ (ρ
q
2 + ρ

q
2) + ρq (3.7)

= (ρ+ ρ2) + (ρ2 + ρ4) + · · ·+ (ρ
q
2 + ρq) (3.8)

= (ρ+ ρ2) + (ρ2 + ρ4) + · · ·+ (ρ2
m−1

+ ρ2
m

) (3.9)

= (ρ+ ρ2) + (ρ+ ρ2)2 + · · ·+ (ρ+ ρ2)2
m−1

(3.10)

= σ20 + σ21 + · · ·+ σ2m−1

(3.11)

= TrK(σ) (3.12)

For clarity, we assumed m > 2, but the argument above holds for any positive integer m.
In the first line (3.8) we used the fact that in binary fields, A+A = 0 holds for an arbitrary
field element A ∈ F. In next two lines, we simply regrouped the terms, and then inserted
q = 2m in line (3.10). In line (3.11) we use the fact that since ρ is a root of p(x), we have
ρ2 + ρ = σ, and it is evident that this is the exact definition of TrK(σ) for K = Fq, where
q = 2m.

Finally, recall corollary 3.3, which uses TrK(σ) 6= 0 as a condition for the irreducibility
of the polynomial p(x) and that the absolute trace is a mapping onto the prime subfield,
which in our case is the field F2 = {0, 1}, hence TrK(σ) = 1. 2

Lemma 1 basically shows that ρ + ρq = 1, and since TrFK(ρ) = ρq
0

+ ρq
1

= ρ + ρq and
TrFK(ρq) = (ρq)q

0
+ (ρq)q

1
= ρq + ρq

2
= ρq + ρ, it follows that TrFK(ρ) = TrFK(ρq) = 1. The

latter will be of importance when computing the trace function of a product of two field
elements (see equation 3.14).

Tower field representation of element 1
Element 1 is an element of the prime field F2, and is also an element of fields F22 , F(22)2 ,
F((22)2)2 and F(((22)2)2)2 , hence can be represented as an element of each of these fields. Here
we want to take a closer look at the tower field basis T = {t0, t1, . . . , t15 representation
element 1∈ F(((22)2)2)2 . Recall that the tower field basis T was derived in Section 3.4.2
with help of equation 3.6 and Figure 3.6. To distinguish between the element 1 in different
(sub)fields F22 , F(22)2 , F((22)2)2 and F(((22)2)2)2 , we introduce a notation using indices: 11 ∈
F2, 12 ∈ F22/F2, 14 ∈ F(22)2/F22 , 18 ∈ F((22)2)2/F(22)2 , and finally 116 ∈ F(((22)2)2)2/F((22)2)2 .
Keeping in mind that we used a normal basis representation of elements with basis {ρ, ρq}
for each extension in the composite field F(((22)2)2)2 , we obtain the following representations
of element 1:

• 12 = 11α + 11α
2 ∈ F22/F2,

• 14 = 12β + 12β
4 ∈ F(22)2/F22 ,

72

• 18 = 14γ + 14γ
16 ∈ F((22)2)2/F(22)2 , and

• 116 = 18δ + a8δ
256 ∈ F(((22)2)2)2/F((22)2)2 .

Using relationships above, we obtain the following:

116 = 18δ + a8δ
256

= (14γ + 14γ
16)δ + (14γ + 14γ

16)δ256

=
(
(12β + 12β

4)γ + (12β + 12β
4)γ16

)
δ

+
(
(12β + 12β

4)γ + (12β + 12β
4)γ16

)
δ256

=
[(

(11α + 11α
2)β + (11α + 11α

2)β4
)
γ

+
(
(11α + 11α

2)β + (11α + 11α
2)β4

)
γ16
]
δ

+
[(

(11α + 11α
2)β + (11α + 11α

2)β4
)
γ

+
(
(11α + 11α

2)β + (11α + 11α
2)β4

)
γ16
]
δ256

= 11αβγδ + 11α
2βγδ + · · ·+ 11α

2β4γ16δ256

= 11t0 + 11t1 + · · ·+ 11t15

In the last two rows we skipped the detailed expansion; a reader can check the tower field
basis elements tj in Section 3.4.2. The element 116, represented in this basis, is a 16-bit
vector of ones. Furthermore, the element 1 is a vector of ones at each level of this tower
of extensions. Same holds for any composite field construction using normal basis at each
level of the tower. Let us conclude this discussion with a practical consequence: in the
tower construction F(((22)2)2)2 element 1 is represented as (1,1,...,1), hence adding the
element 1 is achieved by a simple bitwise NOT operator.

Regularity of F(((22)2)2)2 and transitivity of trace

Results presented in the current Section were also published in [6]. The regularity of tower
construction F(((22)2)2)2 was discussed in the previous Section 3.4.3: the trinomials used
to construct all four extensions have the same form, namely x2 + x + σ, of course with
a different σ at each level. This symmetry has a nice consequence: multiplication of two
field elements can be described with one equation for all levels of the tower field. Similar
holds for squaring and inversion. Detailed description of these basic arithmetic operations
will follow in Section 4.4.1. Schematic of the circuit performing multiplication as dictated
by the equation (3.13) below can be seen in Figure 4.21(b) in Section 4.4.1.

73

The product of A,B ∈ F, in their normal basis representation A = a0ρ + a1ρ
q and B =

b0ρ+ b1ρ
q, ai, bi ∈ K, i = 0, 1, can be computed as follows:

AB = ((a0 + a1)(b0 + b1)σ + a0b0)ρ+ ((a0 + a1)(b0 + b1)σ + a1b1)ρ
q (3.13)

Using this equation we obtain the following expression for the trace of the product with
respect to subfield K:

TrFK(AB) = TrFK(((a0 + a1)(b0 + b1)σ + a0b0)ρ+ ((a0 + a1)(b0 + b1)σ + a1b1)ρ
q)

= ((a0 + a1)(b0 + b1)σ + a0b0)TrFK(ρ) + ((a0 + a1)(b0 + b1)σ + a1b1)TrFK(ρq)

= (a0 + a1)(b0 + b1)σ + a0b0 + (a0 + a1)(b0 + b1)σ + a1b1

= a0b0 + a1b1 (3.14)

In computation 3.14 above, trace properties i. and ii. from Theorem 2.3 were used to
obtain the second line of equation. The third line follows by using TrFK(ρ) = TrFK(ρq) = 1,
upon which the two terms containing σ cancel out, yielding the result.

Recall that [F:K]=2, which means that F ∼= F2n and K ∼= F
2
n
2

for n = 2, 4, 8, 16. Using
the symbol ⊕

n
2

for addition and ⊗
n
2

for multiplication of two elements in Fn
2

we can write

a generalized form for the trace expression in 3.14 as follows:

TrFK(A⊗
n
B) = (a0 ⊗

n
2

b0) ⊕
n
2

(a1 ⊗
n
2

b1) (3.15)

As we are slowly closing in on a circuit for the WGP T module, we switch from the implicite
notation of a product to the use of ⊗

n
2

and replace + with ⊕
n
2

. At this high level of

abstraction we regard both operators as 2-input/1-output gates. But there is an important
difference: the multiplication ⊗

n
2

, as given in equation 3.13 with q = 2
n
2 , is quite complicated

compared to the addition ⊕
n
2

, which is in binary fields performed by a simple bitwise XOR

gate. We now show that we can obtain the trace of the product without actually computing
the product itself.

Proposition 1 The absolute trace of the product AB of arbitrary field elements A,B ∈
F(((22)2)2)2 can be computed as modulo-2 sum of the coordinates of the bitwise AND of elements
A = (a0 . . . a15) and B = (b0 . . . b15) , that is

Tr(AB) =
15⊕
i=0

(
ai �

1
bi

)
.

74

Proof For simplicity we denote the levels of the tower construction with K0 = F2, K1 = F22 , K2 = F(22)2 ,
K3 = F((22)2)2 , and K4 = F(((22)2)2)2 . Using an example, let us introduce a notation to simplify the
computation below: the 16-bit vector (a0a1 . . . a15), denoted with a0...15, “splits” in half with each trace
computation, where a0...7 represents the 8-bit vector (a0 . . . a7) and a8...15 represents the 8-bit vector
(a8 . . . a15). We now derive the expression for the absolute trace of the product A⊗

n
B for A,B ∈ K4:

Tr(AB) (3.16)

= TrK4

K0
(A⊗

n
B)

=
(

TrK4

K3
◦ TrK3

K2
◦ TrK2

K1
◦ TrK1

K0

)
(A⊗

n
B) (3.17)

= TrK1

K0

(
TrK2

K1

(
TrK3

K2

(
TrK4

K3
(AB)

)))
(3.18)

= TrK1

K0

(
TrK2

K1

(
TrK3

K2

((
a0...7 ⊗

8
b0...7

)
⊕
8

(
a8...15 ⊗

8
b8...15

))))
(3.19)

= TrK1

K0

(
TrK2

K1

(
TrK3

K2

(
a0...7 ⊗

8
b0...7

)
⊕
4

TrK3

K2

(
a8...15 ⊗

8
b8...15

)))
(3.20)

= TrK1

K0

(
TrK2

K1

((
a0...3 ⊗

4
b0...3

)
⊕
4

(
a4...7 ⊗

4
b4...7

)
⊕
4

((
a8...11 ⊗

4
b8...11

)
⊕
4

(
a12...15 ⊗

4
b12...15

))))

= TrK1

K0

(
TrK2

K1

((
a0...3 ⊗

4
b0...3

)
⊕
4

(
a4...7 ⊗

4
b4...7

))
⊕
2

TrK2

K1

((
a8...11 ⊗

4
b8...11

)
⊕
4

(
a12...15 ⊗

4
b12...15

)))

= TrK1

K0

(
a0,1 ⊗

2
b0,1

)
⊕
1

TrK1

K0

(
a2,3 ⊗

2
b2,3

)
⊕
1

TrK1

K0

(
a4,5 ⊗

2
b4,5

)
⊕
1

TrK1

K0

(
a6,7 ⊗

2
b6,7

)
⊕
1

TrK1

K0

(
a8,9 ⊗

2
b8,9

)
⊕
1

TrK1

K0

(
a10,11 ⊗

2
b10,11

)
⊕
1

TrK1

K0

(
a12,13 ⊗

2
b12,13

)
⊕
1

TrK1

K0

(
a14,15 ⊗

2
b14,15

)

=

(
a0 ⊗

1
b0

)
⊕
1

(
a1 ⊗

1
b1

)
⊕
1

(
a2 ⊗

1
b2

)
⊕
1

(
a3 ⊗

1
b3

)
⊕
1
. . . ⊕

1

(
a15 ⊗

1
b15

)

=

15⊕
i=0

(
ai ⊗

1
bi

)

=

15⊕
i=0

(
ai �

1
bi

)
(3.21)

75

The first steps in above computation make use of the tran-
sitivity property of trace function (Theorem 2.4), for the
compositions of trace functions (steps (3.18) and (3.19)) on
the tower refer to the commutative diagram in Figure 3.7
on the right. Line 3.20 was obtained using equation 3.15,
and line 3.21 using the trace property i. from Theorem
2.3. These two steps are then repeated two more times to
obtain the final result in line 3.21, which is a simple and
elegant expression involving one-bit addition and multipli-
cation. The one-bit multiplication ⊗

1
at the lowest level

is a simple 1-bit AND gate, denoted with �
1

(⊗
1

was simply

replaced with �
1

in the last step). 2

K4

K3

Tr K
4K

3 -

K2

Tr K
3K

2 -

K1

Tr
K2
K1

?

K0

Tr
K1
K0

?

T
r K

4K
0

-

Figure 3.7: Transitivity of trace
function in F(((22)2)2)2

Corollary 1 For any elements X = (x0 . . . x15), A = (a0 . . . a15) and B = (b0 . . . b15) in
F(((22)2)2)2 we have Tr(X2w) = Tr(X) =

⊕15
i=0 xi and Tr(AB) = Tr(A2w �

16
B2w) where w is

an integer.

Proof First part of Corollary 1 follows directly from Proposition 1 with A = X and
B = 1 = (1 . . . 1), giving Tr(X) =

⊕15
i=0(xi �

1
1) =

⊕15
i=0 xi.

Noting that the absolute trace of an element from F2m is but a sum of all of its m distinct
conjugates, the absolute trace of the element raised to a power of 2 will also be the sum
of the same conjugates, since X2m = X and hence the summands begin to cycle at some
point.

Alternatively we can write Tr(X2w) =
∑m−1

i=0 (X2w)2
i

=
∑m−1

i=0 (X2i)2
w
, and since we are

working with binary fields
∑m−1

i=0 (X2i)2
w

=
(∑m−1

i=0 X2i
)2w

= (Tr(X))2
w

, and (Tr(X))2
w

=

Tr(X) because the absolute trace maps onto the prime field F2.

Say we can write X as a bitwise AND of elements A and B, i.e. X = A�
16
B. From the first

part of this corollary we obtain Tr(X) =
⊕15

i=0 xi =
⊕15

i=0(ai �
1
bi) and from proposition 1

76

Tr(AB) =
⊕15

i=0(ai �
1
bi), hence Tr(AB) = Tr(A �

16
B). And since Tr(X) = Tr(X2w), the

result follows: Tr(AB) = Tr((AB)2
w
) = Tr(A2wB2w) = Tr(A2w �

16
B2w). 2

Corollary 2 For any elements A = (a0 . . . a15), B = (b0 . . . b15) and C = (c0 . . . c15) in
F(((22)2)2)2 we have Tr(A�

16
C) ⊕

1
Tr(B �

16
C) = Tr((A ⊕

16
B)�

16
C).

For proof refer to [5].

Algebraic optimization arising from F(((22)2)2)2

Finally, we are ready to take a look at WGT-16(Xd) and begin with a short description of
the decimation. Then we direct our attention to the WGT-16(Xd) , simplify its computa-
tion using the results from the previous Section 3.4.3, “translate” the obtained equation
for WGT-16(Xd) into hardware and show its data-dependency graph. Finally we examine
the WGP-16(Xd) that is needed during the initialization. We conclude the Section with
WGP T module constructed as an integrated hardware that can compute both WGT-16(Xd)
and WGP-16(Xd) .

The decimation

As already mentioned in Section 3.2, d = 1057 can be written as “10000100001” in binary,
that is 210 + 25 + 1, resulting in Xd = X210 ⊗

16
X25 ⊗

16
X. For a field element in its normal

basis representation, value X2k can be computed by a with a right cyclic shift for k posi-
tions. As was already slightly indicated in Section 3.4.2 with conversion matrices and in
the proof of proposition 1, multiplication is carried out in the tower field, hence we must
convert the three factors X210 , X25 and X into their tower field representation before multi-
plying. Transformation WGT-16(Xd) is computed as the absolute trace Tr(q(Xd ⊕

16
) ⊕

16
1).

77

The WGT-16(Xd) computation in running phase

Let Y = Xd ⊕
16

1. Recalling that Tr(1) = 0 and using trace property i. from Theorem 2.3

we obtain the following expression for WGT-16(Xd) :

WGT-16(Xd)

= Tr(q(Y) ⊕
16

1)

= Tr(q(Y)) ⊕
1

Tr(1)

= Tr(q(Y))

= Tr

(
Y ⊕

16
Y 211+1 ⊕

16
Y 26−211+1 ⊕

16
Y 211+26+1 ⊕

16
Y 211+26−1

)
= Tr

(
Y ⊕

16
Y 211+1

)
⊕
1

Tr
(
Y 26−211+1

)
⊕
1

Tr

(
Y 211+26+1 ⊕

16
Y 211+26−1

)
(3.22)

Let us now take a look at the second trace function in 3.22 and rewrite:

Y 26−211+1 = Y ⊗
16
Y 26−211

= Y ⊗
16
Y 211(211−1)

The relationship X222 = X26 (due to 2.1) was used above. Following Corollary 1 we get
the following expressions for the second and the last trace function in 3.22:

Tr

(
Y ⊗

16
Y 211(211−1)

)
= Tr

((
Y ⊗

16
Y 211(211−1)

)26
)

= Tr

(
Y 26 �

16
Y 26·211(211−1)

)
= Tr

(
Y 26 �

16
Y 2(211−1)

)
(3.23)

Tr

(
Y 211+26+1 ⊕

16
Y 211+26−1

)
= Tr

(
Y 26 �

16

(
Y 211+1 ⊕

16
Y 211−1

))
(3.24)

We then merge the terms 3.23 and 3.24 using corollary 2. Putting it all together we obtain

WGT-16(Xd) = Tr

(
Y ⊕

16
Y 211+1

)
⊕
1

Tr

(
Y 26 �

16

(
Y 2(211−1) ⊕

16
Y 211+1 ⊕

16
Y 211−1

))
(3.25)

The elements occurring in (3.25) can be computed as follows:

78

1. Y 211+1 = Y 211 ⊗
16
Y and Y 211−1 = Y 211 ⊗

16
Y −1, which requires a cyclic shift for 11 positions, denoted

>>11, to compute Y 211 , an inverter for Y −1 and two multipliers;

2. Y 2(211−1) =
(
Y 211−1

)2
requires an additional shift for one position;

3. Y 26 requires a cyclic shift for 6 positions, that is >>6;

4. two computations of the form
⊕15

i=0 xi, one for each trace function;

5. remaining operations require 16-bit XOR and AND gates, and of course the final 1-bit XOR for adding
up the two traces;

Let us briefly revisit the terms in 3.23 and 3.24. The original 16-bit multiplication
Y ⊗

16
Y 211(211−1) in 3.23 was replaced with a far more efficient 16-bit AND due to proper-

ties that arise from F(((22)2)2)2 tower construction. Similarly, we use a 16-bit AND instead
of a multiplier in 3.24. Furthermore, Corollary 2 enabled us to merge the two terms, thus
eliminating one of the 16-bit AND gates.

The data-dependency graph for the WGT-16(Xd) computation is shown in Figure 3.8.

M16

A

Y211

Y26

Y-1

1>>

Y

M16

B

Tr()Tr()

WGT

11

1

16 16

a

c

e

fd

t1 t2

b

Figure 3.8: Data-dependency graph for
WGT-16(Xd) computation

For clarity, we introduce the follow-
ing notation to be used in Figure
3.8 on the left:

a = Y 211+1 e = b2 ⊕
16

c

b = Y 211−1 f = Y 26 �
16
e

c = a ⊕
16

b t1 = Tr(d)

d = Y ⊕
16

a t2 = Tr(f)

The WGT-16(Xd) from equa-
tion 3.25 is now computed as
WGT-16(Xd) = t1 ⊕

1
t2

79

The WGT-16(Xd) computation shown in Figure 3.8 does not begin with input X, but as-
sumes the values Y = Xd ⊕

16
1, Y 211 , Y 26 and Y −1 have already been obtained. Exponen-

tiations Y 2k are just cyclic shifts, as was explained in Section 3.3.2, but require transition
to normal bass and back to tower basis representation. Inversion is more complex and
will be explained in detail in Section 4.4.1. In Figure 3.8, we can see the two multipliers,
denoted A and B, performing multiplications Y 211 ⊗

16
Y and Y 211 ⊗

16
Y −1. The shift >>1

denotes the exponentiation b2
1
, i.e. the squaring that produces the value Y 2(211−1). Shift-

ing is performed in normal basis representation and the basis conversion is omitted from
Figure 3.8 for simplicity. The final two blocks marked Tr(•) perform the trace operations⊕15

i=0 di and
⊕15

i=0 fi. This concludes the computation conducted during the running phase.

The WGP-16(Xd) computation - the initialization phase

Let us now look at the WGP-16(Xd) = q(Y) ⊕
16

1 needed during initialization phase:

WGP-16(Xd)

= q(Y) ⊕
16

1

= 1 ⊕
16

Y ⊕
16

Y 211+1 ⊕
16

(
Y ⊗

16
Y 211(211−1)

)
⊕
16

(
Y 26 ⊗

16

(
Y 211+1 ⊕

16
Y 211−1

))
=

(
Xd ⊕

16
Y 211+1

)
⊕
16

(
Y ⊗

16
Y 211(211−1)

)
⊕
16

(
Y 26 ⊗

16

(
Y 211+1 ⊕

16
Y 211−1

))
(3.26)

Examining WGT-16(Xd) (expression 3.25) and WGP-16(Xd) (expression 3.26), we identify
the common terms occurring in both expressions, namely: a = Y 211+1, b = Y 211−1 and
c = a ⊕

16
b. Instead of drawing a completely new diagram for WGP-16(Xd) computation,

we simply expand the WGT-16(Xd) data-dependency graph in Figure 3.8; the new diagram
is shown in Figure 3.9: the solid lines indicate the WGT-16(Xd) computation and the
dotted lines indicate the new elements that were added for the WGP-16(Xd) computation.

80

M16

A

Y211

Y26

Y-1

1>>

Y

M16

B

Tr()Tr()

11

16 16

a

c
e

fd

t1 t2

b

1>> 1

M16

A

Y26

Y

M16

B

a

c

b1 1

1

c

WGPWGT

1 16

h

g

Xd

Figure 3.9: Dataflow diagram for WGP-16(Xd) computation

Additional notation

g = Xd ⊕
16

a

h = b2
11

a1 = Y 26 ⊗
16
c

b1 = Y ⊗
16
h

c1 = a1 ⊕
16

b1

The WGT-16(Xd) from equa-
tion 3.26 is now computed as
WGP-16(Xd) = g1 = g ⊕

16
c1

The two 16-bit multiplications, that were eliminated due to properties exhibited by the
trace in tower construction F(((22)2)2)2 , have to be performed: there are now four multipliers
in Figure 3.9. Computation of WGP-16(Xd) is needed only in the initialization phase, and
has to be computed exactly 64 times. In the running phase we compute WGT-16(Xd)
without computing WGP-16(Xd) first. The 64 iterations of the initialization phase are
negligible compared to the running phase, so we find that a trade-off can be made: instead
of having two additional multipliers we can reuse the two existing ones that are also used
to compute the WGT-16(Xd) and serially compute WGP-16(Xd) over two consecutive
clock cycles. We add clock boundary lines (grey horizontal lines in Figure 3.9); for the
same reason, the two dotted multipliers were marked A and B, just as the two solid-lined
multipliers, to indicate that they are the same piece of hardware. We also notice that
since now the computation is stretched over two clock cycles, we can use the same XOR

gate to compute g = Xd ⊕
16

a in the first clock cycle and WGP-16(Xd) = g ⊕
16

c1 in the

next clock cycle. To indicate the reuse, the two XOR gates are shaded grey in the Figure
3.9. Allocation table for the reused components (multipliers A and B and the XOR gate)
can be seen in Table 3.11 below. It shows that we need six additional multiplexers MUXi
(i = 1, 2, . . . , 6), one for each input port (all the reused components have two input ports,

81

denoted i1 and i2 in Table 3.11). The six multiplexers are listed in the last line of Table
3.11, and the values in the first column (column clock cycle) can be used as the control
signal sel to control the multiplexer outputs.

clock Multiplier Multiplier

cycle M16 M16 XOR

/sel A B gate

i1 i2 i1 i2 i1 i2

0 Y 211 Y Y −1 Y 211 Xd a

1 c Y 26 h Y g c1

MUX1 MUX2 MUX3 MUX4 MUX5 MUX6

Table 3.11: Allocation table for the reused blocks

During the first clock cycle, the control signal sel is at low logic level and thus MUXi
(i = 1, 2, . . . , 6) generate the signals Y 211 , Y, Y −1, Y 211 , Xd and a = Y 211+1 at their outputs,
respectively. At this time the intermediate products a = Y 211 ⊗

16
Y and b = Y −1⊗

16
Y 211 and

the value g = Xd ⊕
16
a are computed. In the next clock cycle, the control signal sel is pulled

up, which enables six multiplexers to feed correct operands to multipliers and XOR gate and

the two multipliers are reused to obtain values a1 = Y 26 ⊗
16
c = Y 26 ⊗

16

(
Y 211+1 ⊕16 Y

211−1
)

and b1 = Y ⊗
16
h = Y ⊗

16
Y 211(211−1). The inputs Y and Y 26 have the same value as in the

first clock cycle, that is they are held constant. Three additional registers will be needed
to hold the intermediate values, that is, the values that must be returned to the inputs in
the second clock cycle:

• Reg1 for value c = Y 211+1 ⊕
16

Y 211−1,

• Reg2 for value h = Y 211(211−1), and

• Reg3 for value g = Xd ⊕
16

Y 211+1.

82

The WGP T module

The integrated hardware architecture, that can compute both the WGP-16(Xd) in the
initialization phase and WGT-16(Xd) in the running phase, can be seen in Figure 3.10.
On the left we see the field element X entering the module in normal basis representa-
tion: the initial exponentiations are carried out in the normal basis as right cyclic shifts
denoted >>5 and >>10, immediately followed by the conversion to tower field basis repre-
sentation. From this moment on, all operations except for the exponentiations are carried
out in the tower field. The respective basis conversions are denoted with blocks MNT and
MTN . There are four multipliers M16, performing 16-bit multiplications ⊗

16
. The two mul-

tipliers on the left are needed for the initial decimation. The remaining two multipliers
in the middle are (re)used to compute the keystream WGT-16(Xd) and the initialization
feedback WGP-16(Xd) : they are marked A and B to keep consistency with the dataflow
diagram for the WGP-16(Xd) computation in Figure 3.9 and the part of the circuit used
for WGP-16(Xd) only is shown with dotted lines and blocks. Figure 3.10 is fitted with
same notation as the dataflow diagram in Figure 3.9. The six multiplexers from Table 3.11
and the three registers Reg1, Reg2 and Reg3 can be seen in the Figure 3.10. Same notation
was used:
a = Y 211+1 c = a ⊕

16
b e = b2 ⊕

16
c g = Xd ⊕

16
a a1 = Y 26 ⊗

16
c

b = Y 211−1 d = Y ⊕
16

a f = Y 26 �
16
e h = b2

11

b1 = Y ⊗
16
h

t1 = Tr(d) t2 = Tr(f) c1 = a1 ⊕
16

b1

The keystream (denoted with WGT in Figure 3.10) is computed as WGT-16(Xd) = t1 ⊕
1
t2, and the

initialization feedback WGP as WGP-16(Xd) = g1 = g ⊕
16

c1.

A1

2

4

3

5

6
Y

211
Y

211
Y

Y

Y

26
Y

Y-1

26
Y

WGP

WGT

16

1

Y-1

26
Y

211
Y

a
a1

b
b1

c
c1

b2

h

e

d

f

c

Tr()

Tr()

t1

t2

a

xd

c1

g
g1

g

YM16M16
xd

x

I16

c

h

g

MNT

MNT

>>5

MNT>>10

MTN

MNT>>11

MNT>>6

MNT>>11

MTN

MNT>>1

MNT

Reg
2

h

Reg
1

c

Reg
3

g

M16

B
M16

Figure 3.10: Module WGP T with multiplier reuse using tower field F(((22)2)2)2

83

3.5 Tower construction F(24)4
∼= F216

3.5.1 Field construction

Tower construction F(24)4 has two levels above the prime field F2. To construct the top
level F(24)4

∼= F216 we will need two irreducible polynomials of degree four; polynomial
e(x) ∈ F2[x] and polynomial f(x) ∈ F24 [x]:

F2
e(x)−−→ F24

f(x)−−→ F(24)4 .

The construction F(24)4 is summarized in the following Table 3.12:

Finite Filed F2n Normal Basis Normal element Defining polynomial

over F2(n
4) as power of ω

F216
∼= F(24)4 {β, β16, β256, β4096} β = ω2206 f(x) = x4 + x3 + x2 + λ†

F24 {α, α2, α4, α3} α = ω13107 e(x) = x4 + x3 + x2 + x+ 1

Table 3.12: Tower construction of F(24)4

ω is a root of polynomial x16 + x5 + x3 + x2 + 1, used to construct the isomorphic field F216

†λ = α+ α3

A reader satisfied with information provided in Table 3.12 can proceed to Section 3.5.2.

The rest of the Section provides a detailed analysis of the tower construction and discussion
about the choice of defining polynomials, some based on theoretical background and some
on exhaustive search.

Additional mathematical background

Theoretical results that could help prove the irreducibility of polynomials, do not exist
for this construction, so we are forced to conduct an exhaustive search for best suitable
polynomials. The first level of the construction if still a small field, so we can go into more
details. For the second level of the tower, we have many more options and need to find a
way to narrow them down.

84

We decide to use normal basis representation of elements at at both levels of the tower,
therefore we need N-polynomials. To ensure that the irreducible polynomial used for the
extension is also a N-polynomial, i.e. a normal polynomial, we use the following fact:

Fact 3.5 [70, Corollary 4.19] Let m = pe and f(x) = xm + a1x
m−1 + · · · + am be an

irreducible polynomial over Fq. Then f(x) is a N-polynomial if and only if a1 6= 0.

Note that 3.4 used in Section 3.4.1, is actually a special case of the fact 3.5.

Extension field F24

� Search for an irreducible polynomial
We begin the tower construction by finding an irreducible polynomial of degree 4 with coefficients from F2.
Such a polynomial will have the form e(x) = x4 + e3x

3 + e2x
2 + e1x+ 1 of course with leading coefficient 1

and with a nonzero constant term; otherwise, e(x) would have the factor x and would be reducible. Also,
a polynomial over F2 needs an odd number of nonzero terms, otherwise it would be divisible by x + 1 .
Considering these facts, the choice narrows down to a trinomial or the all one polynomial, abbreviated
AOP, of degree 4, that is polynomial x4 +x3 +x2 +x+1. The four candidates are listed in Table 3.13. The
polynomial e2(x) = x4 + x2 + 1 can be written as (x2 + x+ 1)2, but other three polynomials e1(x), e3(x)
and e4(x) are irreducible over F2. We can easily check irreducibility of binary polynomials of such a small
degree with exhaustive search, even by hand if need be, but let us provide some helpful mathematical
background. For details refer to [69].

Definition 3.1 Let p(x) be a polynomial of degree m with coefficients in Fq, such that p(0) 6= 0. The
smallest positive integer s, for which p(x)|(xs − 1), is called the order of polynomial p(x), denoted ord(p).

If the above defined polynomial p(x) is irreducible over Fq, then its order divides qm−1, [69]. Furthermore,
p(x) is primitive over Fq if and only if it is monic, does not have element 0 as root (that is p(0) 6= 0), and
has the maximum order , that is ord(p) = qm − 1.

For F24 we have q = 2 and m = 4, which gives maximum order 15. Only possible orders of the the
elements of F24 , and therefore only possible orders of their minimal polynomials, are 15,5,3 and 1. So if
any of the remaining candidates e1(x), e3(x) and e4(x) are primitive, they will have order 24 − 1 = 15. If
the polynomial is irreducible, but not primitive its root and hence the polynomial itself, will have oder 5
(order 3 is not possible since m > 3). Orders of all four candidates are given in Table 3.13: trinomials
e1(x) and e3(x) are primitive, AOP is (only) irreducible and, as expected ord(e2(x)) = 6 - 15 since e2(x)
is reducible.

We found three candidates for construction of F24 , but the roots of e1(x) are not linearly independent (let

e1(α) = 0, then α23 = α8 = α + α2 + α22), and therefore do not form a normal basis and the polynomial
e1(x) is not a N-polynomial. The fifth column in Table 3.13 is labeled “normal”: due to fact 3.5, the
polynomials e3(x) and e4(x) are N-polynomials. Only two polynomials left are e3(x) = x4 + x3 + 1 and
the AOP e4(x). We check the weight CN of their T matrices and find CN = 7 = 2m − 1 for the AOP
and CN = 9 for e3(x). We choose AOP e4(x) as defining polynomial of F24 since it produces an optimal
normal basis. �

85

Polynomial ord(ei(x)) irreducible primitive normal CN

e1(x) = x4 + x+ 1 15 X X

e2(x) = x4 + x2 + 1 6

e3(x) = x4 + x3 + 1 15 X X X 9

e4(x) = x4 + x3 + x2 + x+ 1 5 X X 7

Table 3.13: Candidates for irreducible polynomials of degree 4 over F2

We construct the finite field F24 by adjoining the root α of the all one polynomial (AOP)
e4(x) = x4 + x3 + x2 + x+ 1 (shaded grey in Table 3.13) to the elements of prime field F2.
From the AOP we obtain the relationships α4 = α3 + α2 + α + 1 and α23 = α8 = α3 used
for the representation with normal basis {α, α2, α4, α3} . Note that normal basis elements
have order 5, the same as AOP. In Table 3.14, the elements A ∈ F24 (obtained by AOP
with root α) are represented using:

i. polynomial basis {1, α, α2, α3}: A = p0 + p1α+ p2α
2 + p3α

3 - first column of Table 3.14 and

ii. normal basis {α, α2, α4, α3}: A = n0α+ n1α
2 + n2α

4 + n3α
3 - fifth (shaded grey) column of Table

3.14;

Table 3.14 is divided into two parts: the five columns on the left belong to the current tower
construction F24 over F2 using AOP of degree 4. The normal basis representation shown
in column four of Table 3.14 is the sixth representation of F24 we have seen so far; three
other bases for the finite field with 16 elements were found in Section 3.4.1. An interested
reader might see a discussion on different representations and conversion between them in
Appendix B.2.1.
Since the root of the AOP α is not a primitive element (because ord(α) = 5, see Table 3.13)
and does not generate F∗24 , we take the primitive element α+ α3 = λ for representation of
field elements as powers of λ.

� Remark: Conversion matrices
Transition matrices between polynomial (i.) and normal (ii.) basis representation, relevant for the current
construction F24 , are given below. �

MN
P =


0 0 1 0
1 0 1 0
0 1 1 0
0 0 1 1

 MP
N =


1 1 0 0
1 0 1 0
1 0 0 0
1 0 0 1



86

F 2
4

-
cu

rr
en

t
fi

el
d

co
n

st
ru

ct
io

n
F (

2
2
)2

-
fi

el
d

co
n

st
ru

ct
io

n
fr

o
m

S
ec

ti
o
n

3
.4

.1

p
ol

y
n

om
ia

l
b

as
is

n
o
rm

a
l

b
a
si

s
to

w
er

fi
el

d
b

a
si

s
n

o
rm

a
l

b
a
si

s

F 2
4

ov
er

F 2
A

a
s

F 2
4

ov
er

F 2
F 2

4
ov

er
F 2

F (
2
2
)2

ov
er

F 2
2

A
a
s

1
α

α
2

α
3

A
as

o
rd

er
p

ow
er

α
α
2

α
4

α
3

β
6

β
1
1

β
9

β
1
4

β
β
4

p
ow

er

p
0

p
1

p
2

p
3

p
ol

y
n

om
ia

l
o
f
A

o
f
λ

n
0

n
1

n
2

n
3

t 0
t 1

t 2
t 3

b 0
b 1

o
f
β

0
0

0
0

0
/

/
0

0
0

0
0

0
0

0
0

0
/

0
0

0
1

α
3

5
λ
9

0
0

0
1

0
0

1
0

0
α

β
9

0
0

1
0

α
2

5
λ
6

0
1

0
0

1
0

0
0

α
0

β
6

0
0

1
1

α
2

+
α
3

3
λ
5

0
1

0
1

1
0

1
0

α
α

β
5

0
1

0
0

α
5

λ
3

1
0

0
0

1
1

1
0

1
α

β
3

0
1

0
1

α
+
α
3

1
5

λ
1

0
0

1
1

1
0

0
1

0
β

0
1

1
0

α
+
α
2

1
5

λ
2

1
1

0
0

0
1

1
0

α
2

α
β
2

0
1

1
1

α
+
α
2

+
α
3

1
5

λ
1
1

1
1

0
1

0
1

0
0

α
2

0
β
1
1

1
0

0
0

1
1

λ
1
5

1
1

1
1

1
1

1
1

1
1

β
1
5

1
0

0
1

1
+
α
3

1
5

λ
7

1
1

1
0

1
1

0
1

1
α
2

β
7

1
0

1
0

1
+
α
2

1
5

λ
1
3

1
0

1
1

0
1

1
1

α
2

1
β
1
3

1
0

1
1

1
+
α
2

+
α
3

3
λ
1
0

1
0

1
0

0
1

0
1

α
2

α
2

β
1
0

1
1

0
0

1
+
α

1
5

λ
1
4

0
1

1
1

0
0

0
1

0
α
2

β
1
4

1
1

0
1

1
+
α

+
α
3

1
5

λ
4

0
1

1
0

0
0

1
1

0
1

β
4

1
1

1
0

1
+
α

+
α
2

1
5

λ
8

0
0

1
1

1
0

0
1

α
α
2

β
8

1
1

1
1

1
+
α

+
α
2

+
α
3

5
λ
1
2

0
0

1
0

1
0

1
1

α
1

β
1
2

T
a
b

le
3
.1

4
:

E
le

m
en

ts
o
f

th
e

fi
n

it
e

fi
el

d
o
f

o
rd

er
1
6

F 2
4
/F

2
-

on
th

e
le

ft
:

w
it

h
n

o
rm

a
l

b
a
si

s
{α
,α

2
,α

4
,α

3
}

re
p

re
se

n
ta

ti
o
n

sh
a
d

ed
g
re

y
F (

2
2
)2
/F

2
2

-
on

th
e

ri
gh

t:
to

w
er

fi
el

d
re

p
re

se
n
ta

ti
o
n

a
n

d
n

o
rm

a
l

b
a
si

s
re

p
re

se
n
ta

ti
o
n

fr
o
m

T
a
b

le
3
.8

in
S

ec
ti

o
n

3
.4

.1

Extension field F(24)4

The extension F(24)4 over F24 is obtained by adjoining the root β of the irreducible poly-
nomial f(x) = x4 + x3 + x2 + λ, yielding the normal basis {β, β16, β256, β4096}. The choice
of the defining polynomial is discussed below.

� Search for an irreducible polynomial
Now we need to find a suitable polynomial f(x), irreducible over F24 , for the second level of the tower
construction. We want a simple expression for f(x), so we try polynomials of the form f(x) = x4 +
f3x

3 + f2x
2 + f1x + f0 with coefficients fi from F24 ; the term simple referring to values fi, i = 3, 2, 1,

say 0 or 1. From experience with the previous tower construction F(((22)2)2)2 , we choose the constant
term f0 to be either the element 1, or a primitive element of the subfield, or an element from the nor-
mal basis of the subfield. Note that the AOP is not irreducible over F24 . According to this empirical
“rules”, the most interesting candidates among 16320 irreducible polynomials over F24 are listed in Table
3.15 below. Nonzero field elements represented as powers of λ are given in the fourth column of Table 3.14.

Polynomial irreducible

f1(x) = x4 + x3 + x2 + x+ δ where δ ∈ {1, λ, α, α2, α4, α3}
f2(x) = x4 + x3 + x2 + λ(2

i) for i = 0, 1, 2, 3 X

f3(x) = x4 + x3 + x+ λ(2
i) for i = 0, 1, 2, 3 X

Table 3.15: Candidates for irreducible polynomials of degree 4 over F24

Note that f2 and f3 actually stand for a “family”of polynomials that differ only in the constant term: it
can be either λ or one of its conjugates.
Among the 8 candidates from the f2 and f3 family we chose the polynomial in the same manner as when
searching for polynomials for the previous tower F(((22)2)2)2 : by conducting an exhaustive search for the

normal element of F216 with defining polynomial x16 + x5 + x3 + x2 + 1 that gives the lowest Hamming
weight conversion matrices between the normal basis of F216 and the tower field representation in question.
All eight polynomials give transition matrices whose Hamming weights sum up to 176, with the normal
element ω5053 for polynomials f2 and ω7759 for polynomials f3. Transition matrices are of course different
for each particular normal element and conjugate of λ. �

3.5.2 Conversion matrices

Efficient conversion matrices between the normal basis and tower field representation of
F(24)4 elements are needed for exponentiation to powers of two. Conversion matrices be-
tween the described tower field basis of F(24)4 and the normal basis of are obtained as
follows:

88

A =
(
a00α + a01α

2 + a02α
4 + a03α

3
)
β +

(
a10α + a11α

2 + a12α
4 + a13α

3
)
β16 +(

a20α + a21α
2 + a22α

4 + a23α
3
)
β256 +

(
a30α + a31α

2 + a32α
4 + a33α

3
)
β4096,

where aij ∈ F2 for i, j = 0, 1, 2, 3.

The basis elements represented as a power the root of the defining polynomial of F216 are
α = ω13107 and β = ω2206. The tower basis of F(24)4 consists of elements

t0 = αβ t4 = αβ16 t8 = αβ256 t12 = αβ4096

t1 = α2β t5 = α2β16 t9 = α2β256 t13 = α2β4096

t2 = α4β t6 = α4β16 t10 = α4β256 t14 = α4β4096

t3 = α3β t7 = α3β16 t11 = α3β256 t15 = α3β4096

In the exhaustive search over all normal elements of F216 with defining polynomial x16 +
x5 + x3 + x2 + 1, we find the best conversion matrices for the normal element ω5053. The
conversion matrices MT

N and MN
T , with their respective Hamming weights 80 and 96, are

given below (since the procedure is the same as was used in finding conversion matrices
for F(((22)2)2)2 in Section 3.4.2, we omit some intermediate steps).

MT
N =



0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1
0 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1
1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 1
0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0
0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 1
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1
0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1
0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0
0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 0



MN
T =



0 1 1 0 1 0 0 1 0 1 1 1 0 0 0 0
0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0
0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1
0 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1
0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 1
0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1
0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0
0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1
0 1 1 1 0 0 0 0 0 1 1 0 1 0 0 1
0 0 1 1 0 1 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1
1 0 0 1 0 1 1 1 0 0 0 0 0 1 1 0
0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 1
0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0
0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 0


89

3.5.3 Module WGP T

The previous tower construction F(((22)2)2)2 gave rise to some useful properties of the trace
function presented in Section 3.4.3, that significantly simplified the module WGP T . How-
ever, the tower construction F(24)4 in this section does not allow such optimizations. Hence,
we are left with no other option but to first compute the value WGP-16(Xd) and then com-
pute its trace.

We follow the equation 3.3 which was used for module WGP T in polynomial basis repre-
sentation of field elements in Section 3.2:

• Y = Xd ⊕
16

1 with d = 1057 = 210 + 25 + 1,

• A = Y ⊗
16

(Y 211 ⊕
16

(Y −1)2
11 ⊗

16
Y 26),

• B = Y 26 ⊗
16
Y 211 ⊗

16
(Y ⊕

16
Y −1),

• q(Y) = Y ⊕
16

A ⊕
16

B,

• WGP-16(Xd) = q(Y) ⊕
16

1 and finally

• WGT-16(Xd) = Tr(WGP-16(Xd)).

The new module WGP T is similar to the module used with F216 in polynomial basis with a
few differences:

• exponentiation to powers of 2 is implemented with a right cyclic shift in normal basis
representation,

• element 1 is represented by a vector of ones (1,1,...,1) (derived similarly as was
done in Section 3.4.3), hence adding 1 to an element is done by inverting its bits,
that is

• different computation of the trace function, which will be discussed shortly

Obtained circuit is shown in Figure (3.11).

Y

Y2 +26 11

Y2 -26 11

Y211

Y Y-1+

Tr()

WGP

WGT
16

1

Y

Y-1

MNT

MNT

MNT

M16M16

xd

x

>>

>>

5

10

I16

MTN

>>1

>>6

1

>>11MTN MNT

MNT

MNT

M16

M16

M16

M16
A

B

Figure 3.11: Module WGP T using tower field construction F(24)4

90

Trace computation
As was mentioned above, we first compute Z =WGP-16(Xd) and then obtain its trace
Tr(Z). We have three options for computing the trace:

1. computing TrK1
K

(
TrK2

K1
(Z)
)

in tower field F(24)4 where K = F2, K1 = F24 and K2 =
F(24)4

2. converting to normal basis representation and computing the absolute trace TrFK(ZN) =⊕15
i=0 zNi of ZN = MT

N · Z directly, F = F216 and K = F2

3. converting to polynomial basis representation and computing the absolute trace
TrFK(ZP) = zP11 ⊕ zP13 of ZP = MT

P · Z, where F = F216 and K = F2

Based on the short discussion below we decide for the option 1, i.e. computing the trace
directly in the tower field representation. At the end of this section we will derive the
expression TrK1

K

(
TrK2

K1
(Z)
)

=
⊕15

k=0 zk.

The second option seems to be the least promising: the trace is computed as modulo-2
addition of the coefficients, but we need a conversion to normal basis first. Comparing
to the first option, which also comes down to a simple modulo-2 sum of coefficients, the
transition to normal bases needed for option 2 is an overhead.
The third option seems to be very simple, but we are still discouraged by the basis con-
version. And that is not even the biggest downside: it is impossible to beat the total of
15 XOR gates that are needed for computing the trace as described in option 1. In fact, we
expect about 15 XOR gates to obtain only 2 out of 16 coefficients of ZP .

� Remark:
Matrix MT

P on the right is the transition
matrix from tower field basis to polyno-
mial basis. Let Z be the element repre-
sented in the tower field basis and ZP the
polynomial basis representation of element
Z, which is obtained as ZP = MT

P · Z.
Instead of computing ZP , we decide to
only compute the two components that we
need, namely the zP11 and zP13; their cor-
responding rows in matrix MT

P are shaded
grey. We can see the two rows are ex-
act complement of each other and that the
zP11 ⊕ zP13 is just a modulo-2 sum of the
coefficients of element Z. Since the trace
function is basis independent, this is not a
surprising result.

MT
P =



0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1
1 1 0 1 0 1 0 1 1 0 1 0 1 1 1 0
0 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0
1 1 1 0 0 0 1 0 1 0 1 1 1 0 1 1
1 1 1 0 0 0 1 0 1 0 1 0 1 0 0 1
0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0
1 0 0 1 1 0 1 1 1 0 0 1 0 0 1 0
1 0 0 1 1 1 0 1 0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0
0 0 1 1 1 0 1 0 1 0 0 0 1 1 1 0
0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 1
1 1 0 0 1 0 0 0 1 0 0 0 1 1 1 1
1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1
0 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1
0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 1


zP11 ⊕ zP13 =

⊕15
i=0 zi

�

91

Trace computation in the tower field
Using notationK = F2, K1 = F24 andK2 = F(24)4 , let us compute the trace TrK1

K

(
TrK2

K1
(Z)
)
.

We begin with computation of TrK2
K1

(Z), that is with the trace of element Z with respect

to the subfield F24 , hence we write the element Z in terms of basis {β, β16, β162 , β163 of
F(24)4/FE, that is Z = z0β+ z1β

16 + z2β
162 + z3β

163 ∈ F(24)4 , with zi ∈ F24 for i = 0, . . . , 3:

TrK2
K1

(Z) = Z + Z16 + Z162 + Z163

= z0β + z1β
16 + z2β

162 + z3β
163

+ z1β + z2β
16 + z3β

162 + z0β
163

+ z2β + z3β
16 + z0β

162 + z1β
163

+ z3β + z0β
16 + z1β

162 + z2β
163

= (z0 + z1 + z2 + z3)(β + β16 + β162 + β163)

= z0 + z1 + z2 + z3

In the second line of expression above we use the fact that exponentiation to powers of 16
in the tower field F(24)4 equals to right cyclic shifts, as will be explained in the remark “By
the power of Q” below. The last line of the expression was obtained using the fact that
the basis elements sum up to 1.

� Remark: By the power of Q: With Fq4 , where q = 24 = 16, we can write:

Zq = (z0β + z1β
q + z2β

q2 + z3β
q3)q = z0β

q + z1β
q2 + z2β

q3 + z3β,

since by the analogue of Fermat’s little theorem 2.1 we have βq
4

= β and zqi = zi for i = 0, . . . , 3. �

If we now expand elements zi ∈ F24 into the form zi = zi,0α+ zi,1α
2 + zi,2α

22 + zi,3α
3 with

coefficients zi,j ∈ F2 for i, j = 0, . . . , 3, we can rewrite the expression above as follows:

z0 + z1 + z2 + z3

= (z0,0 + z1,0 + z2,0 + z3,0)α

+ (z0,1 + z1,1 + z2,1 + z3,1)α
2

+ (z0,2 + z1,2 + z2,2 + z3,2)α
22

+ (z0,3 + z1,3 + z2,3 + z3,3)α
23

= w0α + w1α
2 + w2α

22 + w3α
23 = W

From the last line of this second expression, where we used notation wj = z0,j +z1,j +z2,j +
z3,j, it is easier to see that TrK2

K1
(Z) is indeed an element of K1 = F24 . We now continue to

92

compute the second trace, using relationships α5 = 1 and α + α2 + α22 + α23 = 1:

TrK1
K (W) = W +W 2 +W 22 +W 23

= w0α + w1α
2 + w2α

22 + w3α
23

+ w1α + w2α
2 + w3α

22 + w0α
23

+ w2α + w3α
2 + w0α

22 + w1α
23

+ w3α + w0α
2 + w1α

22 + w2α
23

= (w0 + w1 + w2 + w3)(α + α2 + α22 + α23)

= w0 + w1 + w2 + w3

If we now put it all together, replacing wj with z0,j + z1,j + z2,j + z3,j for j = 0, . . . , 3, we
obtain the following expression for the absolute trace of element Z ∈ F(24)4 :

Tr(Z) = TrK1
K

(
TrK2

K1
(Z)
)

= (z0,0 + z1,0 + z2,0 + z3,0)

+ (z0,1 + z1,1 + z2,1 + z3,1)

+ (z0,2 + z1,2 + z2,2 + z3,2)

+ (z0,3 + z1,3 + z2,3 + z3,3)

=
3⊕
j=0

(
3⊕
i=0

zi,j

)
(3.27)

=
15⊕
k=0

zk (3.28)

The last line of computation 3.28 was obtained as follows: the indices i, j in line 3.28 can
be interpreted as base-4 notation, yielding k = 4i+ j, which means that only the order of
summation is different z0 + z4 + z8 + . . . , and since the addition in F2 is commutative, we
can just change the order of the summation.

3.6 Tower construction F(28)2
∼= F216

Our last WGP T implementation based on composite fields is the tower construction F(28)2 .
The purpose of this implementation was to explore possible advantages of algorithms that
are based on table look-ups; these methods have shown speedups in software applications
(see 2.5.4).

93

3.6.1 Field construction

The tower construction F(28)2
∼= F216 has two levels above the prime field F2. We con-

struct the composite field using two irreducible polynomials: polynomial e(x) ∈ F2[x] and
polynomial f(x) ∈ F28 [x]:

F2
e(x)−−→ F28

f(x)−−→ F(28)2 .

The construction F(28)2 is summarized in the following Table 3.16:

Finite Filed F2n Basis of The root Defining polynomial

F2n over F2(n
4) as power of ω

F216
∼= F(28)2 {β, β256} β = ω20921 f(x) = x2 + x+ λ†

F28 {1, α, α2, α3, α4, α5, α6, α7} α = ω257 e(x) = x8 + x4 + x3 + x2 + 1

Table 3.16: Tower construction of F(28)2

ω is a root of polynomial x16 + x5 + x3 + x2 + 1, used to construct the isomorphic field F216

†λ = α11

A reader satisfied with information provided in Table 3.16 can proceed to Section 3.6.2.

Extension field F28

Following the same routine as with previous tower constructions, we first need to select
an irreducible polynomial of degree 8 over the prime field. In order to use table look-
up methods for F28 arithmetic, we need a primitive polynomial, that is a polynomial
whose root generates the multiplicative group F∗28 . There are no irreducible trinomials of
degree 8, so we have to try a pentanomial. The exhaustive search reveals 17 irreducible
pentanomials, 12 out of which are also primitive. We choose the first primitive polynomial
found, that is the polynomial e(x) = x8 + x4 + x3 + x2 + 1 and use polynomial basis
{1, α, α2, α3, α4, α5, α6, α7}, where α is the root of e(x), to represent the elements of F28 .
We will discuss the table look-up based methods in detail in Section 4.6.1; nothing more
needs to be said at this point, so we proceed to the next extension.

94

Extension field F(28)2

In order to construct an extension of degree 2 over F28 , we need a polynomial of the
form f(x) = x2 + x + λ that is irreducible over F28 . Exhaustive search for the constant
term λ ∈ F28 yielding an irreducible f(x), reveals five candidates: α5, α9, α10, α11 and α15.
Among the five irreducible polynomials only one is also primitive, namely the polynomial
f(x) = x2 + x+ α11.

� Remark: We can check the irreducibility of f(x) = x2 + x + λ in accordance with Corollary 3.3 by
computing the absolute trace of λ = α11:

Tr(λ) = λ+ λ2 + λ2
2

+ λ2
3

+ λ2
4

+ λ2
5

+ λ2
6

+ λ2
7

= α7 + α6 + α5 + α3 + α7 + α6 + α5 + α3 + α

+ α7 + α6 + α5 + α3 + α2 + α+ α7 + α6 + α5 + α4 + α3 + α2 + α

+ α7 + α6 + α5 + α+ 1 + α7 + α5 + α3 + α2 + α+ 1 + α5 + α4 + α

+ α6 + α5 + α3 + α2 + 1 = 1

�

The normal basis of F(28)2/F28 is {β, β28}, where β is the root of f(x) = x2 + x + α11.
The field element A ∈ F(28)2 can be represented as A = a0β + a1β

256, with coefficients
a0, a1 ∈ F28 .

3.6.2 Conversion matrices

As before, we need to find the matrices for efficient conversion between the obtained tower
field basis of F(28)2 and a normal basis of F216 with defining polynomial x16+x5+x3+x2+1.
The exhaustive search reveals the normal element producing the normal basis of F216 , for
which the conversion matrices have the minimum Hamming weight 208, to be ω1789.

The element A ∈ F(28)2 can be expanded as follows:

A =
(
a00 + a01α + a02α

2 + a03α
3 + a04α

4 + a05α
5 + a06α

6 + a07α
7
)
β +(

a10 + a11α + a12α
2 + a13α

3 + a14α
4 + a15α

5 + a16α
6 + a17α

7
)
β256

where aij ∈ F2 for i = 0, 1 and j = 0, 1, 2, 3, 4, 5, 6, 7.

The basis elements represented as a power the root of defining polynomial of F216 are
α = ω257 and β = ω20921, giving the 16 elements of the tower field basis:

95

t0 = β t4 = α4β t8 = β256 t12 = α4β256

t1 = αβ t5 = α5β t9 = αβ256 t13 = α5β256

t2 = α2β t6 = α6β t10 = α2β256 t14 = α6β256

t3 = α3β t7 = α7β t11 = α3β256 t15 = α7β256

Below are the obtained conversion matrices MT
N and MN

T with their Hamming weights 106
and 102.

MN
T =



1 1 1 0 0 1 0 1 1 0 1 1 0 0 1 0
1 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1
1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0
1 0 0 1 0 1 1 0 1 0 1 1 0 1 1 1
1 1 1 0 1 1 0 1 0 0 0 0 1 1 0 0
1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0
1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 0
0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 1
0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 0
0 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1
0 1 1 0 1 0 1 0 1 1 0 0 0 0 1 1
1 1 0 0 1 1 0 0 0 1 0 1 1 0 0 1
0 1 0 1 0 1 0 0 1 1 1 0 1 0 1 0
0 0 1 1 0 0 1 1 1 0 1 0 0 1 1 0
0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1



MT
N =



1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 0
1 1 1 0 0 0 0 0 0 1 0 1 1 0 1 1
1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0
1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0
1 1 0 1 0 1 0 0 1 0 1 0 0 0 0 1
1 0 1 1 0 0 1 1 0 1 1 0 0 1 0 0
1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1
1 0 1 1 0 1 0 0 1 0 1 0 1 1 1 0
1 0 0 0 1 0 1 1 0 0 1 1 0 1 0 1
1 1 0 1 0 0 0 0 1 1 0 1 1 0 1 0
1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0
1 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0
1 1 1 0 1 0 0 1 1 0 0 0 1 0 1 0
1 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0
1 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0
1 0 0 1 0 1 1 0 1 1 1 0 1 0 1 0



3.6.3 Module WGP T

This tower construction yields a circuit for WGP T that is almost identical to the circuit in
Figure 3.11, which was obtained for the tower construction F(24)4 . There are two differences:

• instead of NOT operator that was used for addition of element 1 in the previous two
tower constructions, we now perform modulo-2 addition with element x“8080”, and

• the expression for the trace computation is different from expression obtained in 3.28
for tower construction F(24)4

96

If we consider replacing the two NOT operators in Figure 3.11, as was described above, and
think of M16 , I16 and Tr(•) modules as black boxes, there is no need to provide a separate
schematic for the module WGP T for the current tower construction F(28)2 .

� Remark: The value x“8080” above is the element 1 represented in tower field basis of F(28)2/F2.

Namely, the element 1 can be rewritten as 1 = β+β256 = 18 ·β+18 ·β256 with the two coefficients 18 ∈ F28 .
Element 18 ∈ F28 is written in polynomial basis as “10000000”, which equals x“80” in hexadecimal
representation. �

Trace computation in the tower field
Let us now take a look at the trace computation, using similar notation as before: K = F2,
K1 = F28 and K2 = F(28)2 . Using associativity of the trace function we compute the trace
of the element Z = z0β + z1β

256 ∈ F(28)2 , with zi ∈ F28 for i = 0, 1 as follows:

TrK2
K1

(Z) = Z + Z28

= z0β + z1β
256 + (z0β + z1β

256)2
8

= (z0 + z1)(β + β256)

= z0 + z1

In the third line of expression above we use the fact that β216 = β, and in the last line the
relationship β + β256 = 1. Since the z0, z1 belong to the subfeild F28 , we can rewrite them
in terms of the polynomial basis {1, α, α2, α3, α4, α5, α6, α7} as follows:

zi =
7∑
j=0

zi,jα
j,

where i = 0, 1 and zi,j ∈ F2. Using notation wj = z0,j+z1,j, for j = 0, . . . , 7, the sum z0+z1
becomes W =

∑7
j=0wjα

j ∈ F28 . Omitting the details, the bottom level trace function then
yields:

TrK1
K (W) = W +W 2 +W 22 +W 23 +W 24 +W 25 +W 26 +W 27

= w5

= z0,5 + z1,5 (3.29)

If we now rewrite 3.29 using k = 8i+ j, that is understanding the indices of zi,j as a base-8
notation, we obtain the following expression for the trace function of the element in its
tower field basis representation Z =

∑15
k=0 zk · tk ∈ F(28)2 :

Tr(Z) = TrK1
K

(
TrK2

K1
(Z)
)

= z5 + z13 (3.30)

97

3.7 Finite field F216 - summary of field constructions

We can summarize this chapter as follows: due to the properties of the trace function
arising from the highly regular tower construction F(((22)2)2)2 , optimizations were possible
in the computation of WGT-16(Xd). Resulting WGP T module in Figure 3.12 has only 4
multipliers and two of them are reused for the WGP-16(Xd) computation during the ini-
tialization phase. All other constructions lead to the same top-level architecture with 6
multipliers that can be seen in Figure 3.13.

Architecture 1 - multiplier reuse in F(((22)2)2)2

Here we just repeat the circuit from from Section 3.4.3, that was obtained by multiplier
reuse permitted by the use of construction F(((22)2)2)2 . Notation used:
a = Y 211+1 c = a ⊕

16
b e = b2 ⊕

16
c g = Xd ⊕

16
a a1 = Y 26 ⊗

16
c

b = Y 211−1 d = Y ⊕
16

a f = Y 26 �
16
e h = b2

11

b1 = Y ⊗
16
h

t1 = Tr(d) t2 = Tr(f) c1 = a1 ⊕
16

b1

The keystream WGT is computed as WGT-16(Xd) = t1 ⊕
1
t2, and the initialization feedback WGP as

WGP-16(Xd) = g1 = g ⊕
16

c1. A detailed description of the circuit can be found at the end of Section

3.4.3.

A1

2

4

3

5

6
Y

211
Y

211
Y

Y

Y

26
Y

Y-1

26
Y

WGP

WGT

16

1

Y-1

26
Y

211
Y

a
a1

b
b1

c
c1

b2

h

e

d

f

c

Tr()

Tr()

t1

t2

a

xd

c1

g
g1

g

YM16M16
xd

x

I16

c

h

g

MNT

MNT

>>5

MNT>>10

MTN

MNT>>11

MNT>>6

MNT>>11

MTN

MNT>>1

MNT

Reg
2

h

Reg
1

c

Reg
3

g

M16

B
M16

Figure 3.12: Module WGP T with multiplier reuse using tower field F(((22)2)2)2

98

Architecture 2 - all other field constructions
The remaining four WGP T modules differ at the top-level only in the exponentiations to
the powers of 2, representation of element 1 and different trace computation. At this point
we consider the multiplier and the inverter as black boxes, but these submodules in fact
differ significantly for each field construction. Marking the exponentiation blocks with 2k,
we show the unified top-level schematic for the WGP T module in Figure 3.13. Notation
used:

• Y = Xd ⊕
16

1 with d = 1057 = 210 + 25 + 1,

• A = Y ⊗
16

(Y 211 ⊕
16

(Y −1)2
11 ⊗

16
Y 26),

• B = Y 26 ⊗
16
Y 211 ⊗

16
(Y ⊕

16
Y −1),

• q(Y) = Y ⊕
16

A ⊕
16

B,

• WGP-16(Xd) = q(Y) ⊕
16

1 and finally

• WGT-16(Xd) = Tr(WGP-16(Xd)).

Y

Y2 +26 11

Y2 -26 11

Y211

Y Y-1+

Tr()

WGP

WGT
16

1

Y

Y-1

M16M16

xd

x

I16
M16

M16

M16

M16
A

B
1 1

211

210

26

25 211

Figure 3.13: Module WGP T for all other field constructions

For details and differences refer to the following Sections:

• construction of F216 with polynomial basis representation of elements (Section 3.2)

• construction of F216 with normal basis representation of elements (Section 3.3)

• tower construction F(24)4 (Section 3.5)

• tower construction F(28)2 (Section 3.6)

99

Chapter 4

Implementation

Chapter 4 closely follows the structure of Chapter 3, as can be seen in Figure 4.1: with the
exception of Section 4.1 all the Sections in Chapters 3 and 4 are paralleled. In Chapter 3 we
represented each field construction and developed the top-view circuit of the WGP T mod-
ule. The exponentiation to the powers of two, representation of the element 1 and trace
computation were explained, but the multiplication and inversion blocks were regarded
as black boxes because they are closely linked with the field construction itself, i.e. they
depend on the basis chosen for representation of the field elements. While the Chapter 3
could be called “theoretical”, the Chapter 4 is dedicated to the actual implementation on
a FPGA. Sections 4.2 to 4.6, paralleled with their respective field constructions in Sections
3.2 to 3.6, give detailed descriptions of the five WGP T modules and their implementations.
Each of these Sections begins with the description and implementation of the basic building
blocks (the submodules performing the finite field arithmetic in the particular basis) and
continues with implementation of the WGP T module. In order to achieve a higher through-
put, we decide to pipeline the WGP T modules; that is, we divide the WGP T circuit into
smaller parts (pipeline stages) and separate them by registers. The benefit of a pipelined
architecture is twofold: (a) the critical path between the registers is shorter, resulting in
shorter clock period, and (b) a different chunk of data (also called parcel) can be processed
in each stage at the same time and finally passed on to the next pipeline stage, which
means that there is a certain level of overlapping for each new computation. The decision
about the number of pipeline stages for the WGP T module depends on the module itself
(meaning that the top-view circuits developed in the Chapter 3 naturally dictate the in-
sertion of interstage registers at certain positions) and on the particular field construction,
which leads to differences in the basic building blocks for the WGP T module. Decisions
about the pipelining granularity also affect the third component in WG-16, the FSM. It

100

is not surprising that the FSM will be different for each particular WGP T implementation.
We avoid actually implementing the corresponding FSM’s and wait for the WGP T imple-
mentation results: the FSM (and finally the entire WG-16 itself) will be implemented only
for the best WGP T modules. Section 4.7 of Chapter 4 gives an overview and a detailed
analysis of the implementation results.

Remark: We report the FPGA implementation results for particular modules in terms of resources used

by the module: number of flip-flops, denoted #FFs, number of LUTs, denoted #LUTs and number of

slices #Slices. The “route-thru” LUTs and memory LUTs were taken into account the same as the LUTs

used for logic. For the time complexity we give the clock period for registered modules and block delay

for the combinational modules, both denoted as t, given in nanoseconds. The total resources available on

the chosen Xilinx Spartan-6 FPGA xc6slx9-csg324 were listed in Table 2.1 in Section 2.1. We report

the post place-and-route results obtained using Xilinx-ISE v14.5 [47]. For the best design we also provide

ASIC results obtained for the 65nm CMOS technology, using Synopsys Design Compiler for synthesis [45]

and Cadence SoC Encounter to complete the Place-and-Route phase, in terms of gate equivalents GE for

the area and clock period or block delay t for the time complexity. We used VHDL (Very-High-Speed

Integrated Circuit HDL, where HDL stands for Hardware Description Language) for design entry.

The implementation results show that pipleining at a lower level of the tower field reduces
the clock period, while increasing the area. As was explained in Section 3.4.3, the tower
construction F(((22)2)2)2 leads to algebraic optimizations, which remove two multipliers.
This field construction also allows the biggest freedom in choosing appropriate pipelining
granularity. It is thus not surprising that F(((22)2)2)2 turns out to be the best option for
implementation of WGP T .

101

3

Finite field
overview

FI2163.1

 with
polynomial basis

FI2163.2
3.2.1 field construction
3.2.2 WGP_T module

 with
normal basis

FI2163.3
3.3.1 field construction
3.3.2 WGP_T module

3.4
3.4.1 field construction
3.4.2 conversion matrices
3.4.3 WGT_P module

tower FI (2)2 2()
2()

2

3.5
3.5.1 field construction
3.5.2 conversion matrices
3.5.3 WGP_T module

tower FI(2)4 4

3.6
3.6.1 field construction
3.6.2 conversion matrices
3.6.3 WGP_T module

tower FI(2)8 2

finite field
summary

FI2163.7

WGP_T module and
different

field constructions
4

the WG-16
LFSR4.1

 with
polynomial basis

FI2164.2
4.2.1 basic building blocks
4.2.2 WGP_T module

 with
normal basis

FI2164.3
4.3.1 basic building blocks
4.3.2 WGP_T module

4.4
 4.4.1 basic building blocks
4.4.2,3 WGP_T module
 4.4.4 the FSM
 4.4.5 the WG-16

tower FI (2)2 2()
2()

2

4.5
4.5.1 basic building blocks
4.5.2 WGP_T module

tower FI(2)4 4

4.6
4.6.1 basic building blocks
4.6.2 WGP_T module

tower FI(2)8 2

summary and
conclusions4.7

implementation

Chapter 3 Chapter 4

Figure 4.1: Chapters 3 and 4 - roadmap

102

4.1 The WG-16 LFSR

As already mentioned in Section 2.4.1, the WGd(16, 32) LFSR uses the feedback polynomial
`(x) = x32 +x25 +x16 +x7 +ω2743. The LFSR has 32 stages, denoted Sk, i.e. it is composed
of 32 serially connected 16-bit registers. The operation of this memory array is controlled
with a 1-bit lfsr en control signal: when lfsr en is set, the registers shift to the right
and the register S31 takes a new value; otherwise, the registers hold their values. The
enable signal lfsr en is needed because the LFSR steps do not correspond to clock cycles.
Namely, during:

• loading phase: a new value for the LFSR is received every clock cycle, through the
16-bit data input DIN;

• initialization phase: a new value for the LFSR is available when the WGP(Sd31) is
computed - the number of cycles required for the WGP(Sd31) computation depends
on the particular implementation of the WGP T module. The result WGP(Sd31) is then
XOR-ed with the LFSR feedback value f;

• running phase: the LFSR is updated every clock cycle with the LFSR feedback f.

The LFSR feedback due to `(x): f= (ω2743 �
16
S0) ⊕

16
S7 ⊕

16
S16 ⊕

16
S25.

To feed the LFSR with the appropriate value, two multiplexers (and two corresponding
control signals) are needed, as can be seen in Figure 4.2. Multiplexer 1, controlled with
signal load, chooses between the data input DIN and multiplexer 2 output. Multiplexer 2
is controlled with signal init; it will pass the value w=WGP(Sd31) ⊕

16
f when init is set and

the feedback value f otherwise. Note that all multiplexer inputs and outputs are 16-bits
wide. The input/output tables for the two multiplexers can be seen in Figure 4.2. The
circuit for module LFSR is shaded in Figure 4.2. Table 4.2 shows the implementation results
for module LFSR.

The values of the control signals for the LFSR module are given in the Table 4.1. These
values will be set by the FSM control circuit. During the initialization phase, the signal
lfsr en will be driven by the output signal doneWGP that is set when the new WGP(Sd31) is
available. During the running phase, we want to be able to stop the cipher - which means
we need to stop the LFSR as well - for that purpose, a chip enable ce signal will drive the
lfsr en signal. The load and init signals choose which value the LFSR is updated with
(as was explained in the beginning of this section); the update value a (i.e. the value of
the signal a in Figure 4.2) is listed in the last column of the Table 4.1.

103

2 b

1 a s31 s25 s16 s7 s0

f

w
DIN

init load

lfsr_en
reset

clk

WGP_T

16

WGP

1

keystream

sel
reset

clk
1

key_valid

 mux 1
load a
 0 b

 1 DIN

 mux 2
 init b
 0 f
 1 w

16

16

16

16 16 16 16
16 16

2743ω

1

doneWGP

Figure 4.2: The LFSR module, connected to module WGP T

lfsr en load init a

loading 1 1 0 DIN

initialization doneWGP 0 1 w

running ce 0 0 f

Table 4.1: The LFSR module - values of the control signals

and the input a of the LFSR, depending on loading, initialization and running phase

FPGA Results

Module #FFs #LUTs #Slices t [ns]

LFSR 152 145 47 3.191

Table 4.2: The LFSR module - implementation results

4.1.1 Multiplication with ω2743

The LFSR stays the same for all five WGP T modules with only one difference: the multipli-
cation with the constant ω2743, which depends on the choice of basis for the representation
of field elements. It is implemented in a separate submodule based on the multiplication
matrix, and when we change the WGP T module we must change the multiplication matrix

104

accordingly. The matrix given below was derived for tower construction F(((22)2)2)2 , using
the normal element θ = ω1091. Note that choice of element s = ω2743 gives the optimal
multiplication matrix with Hamming weight 110 when θ = ω1091 is used. The matrix was
obtained by taking the normal basis representation of elements s · θ2i , 0 ≤ i ≤ 15:



1 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1
1 0 0 1 1 0 1 0 1 1 1 1 1 1 1 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0
0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 1
0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 0
0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1
1 0 0 0 0 0 1 1 0 0 1 1 1 0 1 1
1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0
1 1 1 0 1 0 0 1 0 0 1 1 0 1 1 0
1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0
1 1 1 0 0 1 1 0 0 0 1 1 1 1 0 1
0 0 1 1 0 0 0 1 0 0 0 0 1 0 1 0
0 0 0 1 1 1 1 0 1 0 0 0 1 1 0 1
1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0


4.1.2 Serial vs. parallel loading phase

We begin this section by discussing a parallel loading phase that allows to fill the LFSR in
only one clock cycle. We compare the parallel implementation to the serial loading phase
used and explain advantages of the latter design option when implemented on a Xilinx
FPGA device.

Snow3G and ZUC implementations reported by [15] and [19] use a parallel loading of
key/IV, implemented via OR gates between the LFSR stages, as can be seen in Figure 4.3:

• in the loading phase, the contents of LFSR registers Si are set to zero, while the
corresponding key/IV values appear on the second input to the OR gate, hence, at
the end of the clock cycle, register Si+1 is updated to the corresponding key/IV value;

• during the running phase, the second input to the OR gate is set to zero, so that the
OR gates just propagate the values trough the LFSR states.

The Snow3G LFSR consists of 16 stages, 32 bit each, hence the OR gate inputs are 32-bit
wide. Top level architecture has two 128-bit inputs for the key and IV respectively. A sub-
module called Initial Operations then mixes the key and the IV to form 16 32-bit values
that are then routed to OR gates between the LFSR registers. No further details on Initial
Operations were given in the original paper [15], but we can assume the parallel key/IV
loading is done in a single clock cycle.

105

Figure 4.3: The parallelLFSR module - parallel key/IV loading [15]

A serial loading phase (as is used in this WG-16 implementation) for Snow3G would take
16 clock cycles, but only needs a 32-bit input for the “premixed” LFSR initial values.
The Initial Operations circuit would be omitted completely. Since the initialization phase
for Snow3G takes 32 clock cycles, discards the first output after initialization, then enters
running phase where it produces a new keystream word every clock cycle, the additional re-
sources needed for Initial Operations , OR gates to accommodate parallel loading and wider
input signals seems to be a reasonable area-time trade-off compared to a serial loading
phase.

As was explained in Section 2.4.1, the initial mixing of the key and IV are not a part
of WG-16 circuit; the initial LFSR values are precomputed and the loaded into LFSR
registers serially in 32 cycles through a 16-bit input port DIN, as is shown in Figure 4.3.
Another consideration, which renders parallel loading of initial key/IV values unnecessary,
is the long initialization phase. The latter requires 64 steps, and each step requires a
computation of new WGP value. We are aiming for a pipelined architecture of the WGP T

module, having P pipeline stages. Even for a low P = 5 (which is extremely optimistic),
the initialization phase would take 320 clock cycles. A 32 cycle loading phase diminishes
in comparison with long initialization phase.

To change our implementation according to [15] we insert the OR gates between the LFSR
registers and change the input ports to the LFSR submodule. Also, the multiplexer MUX1

from Figure 4.2 is omitted and the OR gate at the input to S31 connected directly to the
MUX2 output b. Now we need two 128-bit inputs for key and IV. A problem arises: the
selected FPGA Spartan6 xc6slx9-3csg324 has only 200 IOBs. In order to compare the two
LFSR modules, we run implementation on xc6slx45-csg484, that has a sufficient number of
available IOBs. The results of this modified module called parallelLFSR are listed in Table
4.3 (note that the results from original LFSR module are included for easier comparison).

We immediately see that the LFSR with parallel key/IV loading is twice the size of the

106

FPGA Results

Module #FFs #LUTs #Slices t [ns]

LFSR 152 145 47 3.191

parallelLFSR 512 297 86 4.777

Table 4.3: The LFSR module compared with parallelLFSR

original module. It also has a longer clock period.

Another interesting observation is the big difference in number of flip-flops used. In the
original serial LFSR design, Xilinx-ISE tools had more freedom for optimization. The
tools were able to implement several Sections of LFSR, more specifically, the Sections be-
tween the feedback tap positions, using shift register primitives SRL16 available on SLICEM

LUTs. A detailed analysis and register count is provided in Appendix C. Note that we do
not have a corresponding ASIC library cell for the SRLs - the ASIC version of WG-16 will
thus implement a full 512 registers LFSR.
If we now return to the LFSR with parallel load, we find exactly 512 registers. The inferred
OR gates at the register inputs prevent the use of SRL16 [57]. Also, the 32 additional 32-bit
OR gates require some additional logic. Since the 512 FFs are no mystery, the parallel
module was not inspected thoroughly.

4.2 F216 with polynomial basis - implementation

In this section we present the implementation of module WGP T with polynomial basis,
which was described in Section 3.2. The first part of this section presents the implemen-
tation of the basic building blocks for each level of the tower and the second part the
implementation of module WGP T itself.

4.2.1 Analysis of Basic Building Blocks

Reduction in polynomial basis: Multiplication and squaring of polynomials of degree
less than 16 results in a polynomial d(x) of degree less than 31 and modular reduction is

107

required. The reduction is carried out based on relationship x16 = x5 + x3 + x2 + 1 and its
multiplications by x as follows:

x16 = x5 + x3 + x2 + 1
x17 = x6 + x4 + x3 + x
x18 = x7 + x5 + x4 + x2

x19 = x8 + x6 + x5 + x3

. . .
x27 = x14 + x13 + x11 + x5 + x3 + x2 + 1
x28 = x15 + x14 + x12 + x6 + x4 + x3 + x
x29 = x15 + x13 + x7 + x4 + x3 + 1
x30 = x14 + x8 + x4 + x3 + x2 + x+ 1

(4.1)

Note that there are no irreducible trinomials of degree 16 over F2, so the reduction is not
optimal; for example the computation of the coefficient c3 of term x3 of the reduced result
requires 7 XOR gates:
c3 = d3 ⊕ d16 ⊕ d17 ⊕ d19 ⊕ d27 ⊕ d28 ⊕ d28 ⊕ d29 ⊕ d30, where di are the coefficients of the
double-length polynomial d(x).

The results of submodule reduction are given in Table 4.4.

Squaring: An element A(x) ∈ F216 has coefficients ai ∈ F2 and (ai +aj)
2 = a2i +a2j holds

for some i, j = 0, 1, . . . , 15, i 6= j, therefore the square A2(x) can be written as follows:

A(x) · A(x) ≡

(
m−1∑
i=0

aix
i

)
·

(
m−1∑
i=0

aix
i

)
≡

m−1∑
i=0

aix
2i (mod x16x5 + x3 + x2 + 1) (4.2)

The equation (4.2) basically says that the bits of vector A are spread and middle (odd) bits
set to 0: a0a1 . . . a14a15 ⇒ a0 0 a1 0 . . . a14 0 a15. This step is then followed by reduction.
Results of submodule sq16, that includes reduction, are listed in Table 4.4.

Exponentiation to powers of 2: Exponentiation to powers of 2 in polynomial basis is
simple but by far not as trivial as in normal basis, which is basically just a simple shift (see
Section 3.3.2). When polynomial basis representation of the field elements is used, A2k(x)
can be implemented as a sequence of k squarers. As a reference, the implementation results
of a submodule that connects 5 squarers, sq16 5 are given Table 4.4 as well. Additional

108

pen and paper analysis, that might simplify the consecutive expansions followed by reduc-
tions to a simple expression for each individual bit of the result was not performed; we
relied on the synthesis tools for optimization.

Multiplication: Multiplication of two polynomials A(x), B(x) ∈ F216 can be imple-
mented as a simple convolution. The product D(x) = A(x)B(x) is a polynomial of degree
less than 31, and needs to be reduced. Coefficients of D(x) are computed as follows:

dk =


k∑
i=0

aibk−i, k = 0, . . . , 15;

30∑
i=k

ak−i+15bi−15i, k = 16, . . . , 30;

(4.3)

Different multiplication algorithms could give better implementation results, however the
above 2-step classic multiplication simple and appropriate enough for a field as small as
F216 . The results of the multiplier mul16, that includes reduction, are listed in Table 4.4.

� Remark: Outline of an alternative design: Since we aim for a pipelined design, we could use
for, for example, Montgomery representation of field elements, performing the transition to Montgomery
representation at the beginning of the pipeline, and transition back to polynomial basis just before the
trace computation. All the operations in between can easily be conducted for Montgomery operands. This
would allow to spread one operation into several pipeline stages, for example 4 stages, computing 4 bits
of the product per stage. �

Inversion: The critical element in circuit from Figure 3.3 from Section 3.2 is the in-
version. Two different approaches to inversion were investigated: the Extended Euclidean
Algorithm (EEA) and a square and multiply method. A detailed description of EEA im-
plementation can be found in Appendix D.

The square and multiply method starts with the finite field analogue of Fermat’s little
theorem Y −1 = Y 2m−2. For a nonzero element Y ∈ F216 we can write:

Y −1 = Y 216−2 = (Y 215−1)2

Y 215−1 = Y · Y −1 · Y 215−1 = Y · Y 215−2 = Y · (Y 214−1)2

Y 214−1 = Y (27−1)(27+1) = Y (27−1)·27 · Y 27−1

109

Continuing the procedure we obtain:

U = Y 27−1 = Y · (Y 26−1)2

V = Y 26−1 = Y (23−1)(23+1) = Y (23−1)·23 · Y 23−1

W = Y 23−1 = Y · (Y 22−1)2 = Y · (Y 3)2

Y 3 = Y · Y 2

Putting this back together, we can compute the inverse as

Y −1 =

(
Y ·
(
U27 · U

)2)2

where U = Y ·
(
W 23 ·W

)2
and W = Y · (Y 3)2. (4.4)

The circuit obtained in such a way can be implemented in a six stage pipeline, and it
was implemented in the submodule I16 . Its schematic is shown in Figure 4.4: the grey
vertical dashed lines represent the pipeline stage borders and a 16-bit interstage register
is implemented for each signal crossing the border. Since it is a pipelined module the
implementation results for the inverter are listed in Table 4.5 instead of in Table 4.4; the
latter shows the results for other combinational arithmetic modules.

Basic FPGA Results
Building # of # of

Block LUTs Slices t [ns]

reduction 17 10 8.122

sq16 8 6 7.301

sq16 5 19 9 8.070

mul16 119 46 11.812

Table 4.4: Basic building blocks for polynomial basis arithmetic - implementation results

4.2.2 Module WGP T using polynomial basis

Following the circuit in Figure 3.3 derived in Section 3.2 and pipelined structure of inverter
I16 we develop a 12 stage pipeline for implementation of the WGT module; it can be seen
in Figure 4.5. The grey shaded area is the inversion submodule I16 . For better perfor-
mance, the blocks SQ6 and SQ5 in Figure 3.3 have been broken up and distributed among
the pipeline stages of the inverter. One multiplier was also embedded in the last stage of
the inverter pipeline. Implementation results for wgtPB module, together with the results

110

for the inverter I16 , are given in Table 4.5. We can see that inversion takes up roughly a
third of the entire area complexity, which is not surprising, since inversion is considered
one of the most expensive operations in general.

111

FPGA Results

Module #FFs #LUTs #Slices t [ns]

I16 248 1054 369 7.271

WGP T PB 616 1827 603 7.438

Table 4.5: Polynomial basis inversion
I16 and WGP T module WGP T PB - imple-
mentation results

Y
S
Q

M

S
Q

M
Y
3

W

S
Q
3

M
V

S
Q

M
U

S
Q
7

M
S
Q

M
S
Q

Y
-1

Figure 4.4: Inversion sumbmodule I16 for
inversion in polynomial basis

S
Q

S
Q

S
Q

3

S
Q

S
Q

7

S
Q

S
Q

S
Q

5
xd

x
S

Q
5

1

Y

x2
 +

1
5

x2
10

x2
5

S
Q

S
Q

S
Q

3
S

Q
S

Q
5

Y
2

6
Y

2
11

Y
2

 +
2

6

 1
1

Y
2

11

Y
2

6

Y
-1

Y

S
Q

Y
 Y

-1
+

11

1

B

T
r(

)

W
G

P

W
G

T
16 1

M
16

M
16

M
16

M
16

M
16

M
16

M
16

M
16

M
16

M
16

M
16

M
16

Figure 4.5: Module WGP T PB - pipelined
architecture for module WGP T in polyno-
mial basis

112

4.3 F216 with normal basis - implementation

The normal basis representation of F216 elements was first introduced in Section 3.1, where
we mentioned the exhaustive search for the the normal element, and then revisited in
Section 3.3, where the top-level schematic of the WGP T module was presented.

4.3.1 Analysis of Basic Building Blocks

In Section 3.3.2 we discussed the exponentiation of field elements to powers of two and
have explained that it can be implemented as a simple cyclic shift. The inversion of field
elements can be implemented using the square and multiply method, which was discussed
in the previous Section 4.2.1 and summarized in equation (4.4). The inversion submodule
using the normal basis representation of field elements looks similar to inv16 in Figure
4.4, with the squaring blocks replaced by right cyclic shifts for the appropriate number of
bits. The inversion submodule employs the multiplication block. Hence, multiplication is
the fundamental building block of the normal basis implementation. We used the Massey-
Omura parallel multiplier, that was designed in [99]. In this section we provide a brief
description of the multiplier; interested reader should refer to [99, 65].

Recall from Section 3.1 the representation of the element A ∈ F2m in normal basis N=
{θ, θ2, . . . , θ2m−1} :

A =
m−1∑
i=0

aiθ
2i = a0θ + a1θ

2 + · · ·+ am−1θ
2m−1

where ai ∈ F2

The above sum can also be written as a product of two vectors, one of them being the
vector a = (a0, a1, . . . , am−1) of coefficients of the element A and the other a (transposed,
marked with T) vector of basis elements θ = (θ, θ2, . . . , θ2

m−1
), as follows:

A = aθT = θaT

The product C of two elements A,B ∈ F2m can now be written as:

C = AB

= (aθT)(θbT)

= a(θTθ)bT

= aMbT

113

The (m×m) matrix M is also called multiplication matrix and the element of this matrix
in row i and column j, where i, j = 0, . . . ,m−1, is the product of two basis elements θ2

i
θ2

j
,

hence M =
[
θ2

i+2j
]m−1
i,j=0

. Note that this matrix should not be mistaken with multiplication

matrix T defined with equation (3.1) in Section 3.1. The i-th row of matrix T is the normal
basis representation of the element θ · θ2i , for i = 0, . . . ,m − 1, which makes the matrix
T the multiplication matrix of the normal element θ. Matrix M is a symmetric matrix
with normal basis elements on its diagonal, and can be decomposed as M = D + U + UT .
Matrix U is a triangular matrix whose nonzero components can be expressed in terms of
powers of δi, where δi = θ1+2i for i = 1, . . . , v, v = dm−1

2
e, for more details refer to [99].

Using the δi and xj,i = (ajb(i+j) mod m+a(i+j) mod mbj), where i = 1, . . . , v, j = 0, . . . ,m−1
and v = dm−1

2
e and for m even, the product C is finally given as

C =
m−1∑
j=0

ajbjθ
2(j+1) mod m

+
v−1∑
i=1

m−1∑
j=0

xj,iδ
2j

i +
v−1∑
i=1

xj,vδ
2j

v (4.5)

We now transform the equation 4.5 into
a circuit, beginning with the middle sum.
Let us first take a closer look at the term
xj,i = (ajb(i+j) mod m + a(i+j) mod mbj). Setting
k = (i+ j) mod m, we define conv(j,k)=
ajbk + akbj.

ak
bj

aj
bk

Figure 4.6: Normal basis multiplier
M16 - computation of coefficient xj,i
with k = (i + j) mod m in block
M16 in F216

For m = 16, we get v = 8, which means that we need the values of δi for i = 1, . . . , 7
to compute the middle sum in equation 4.5. Each δi generates the vector vi, which we
denote partial product, by first obtaining the vector x = (x0,i, x1,i, . . . , x15,i), then gen-
erating shifted versions of xi as dictated by δi and XORing them with xi. The procedure
is summarized in Table 4.6 below. The second column of the table shows the normal
basis representation of the element δi, and completely dictates the generation of the cor-
responding vi =

⊕
`∈L(xi<<`) (notation will be explained shortly): the index set L is

listed in the fourth column. The third column shows how the jth bit of vector xi is ob-
tained by listing the values (u, k) for xi(j) = conv((j+u) mod 16, (j+k) mod 16), where
k = (i+ u) mod m and u is the value above a certain bit in the representation of δi. The
distance between the 1’s in δi equals the number of bits the xi is shifted to the left: we
shall use notation (xi<<`) for a left cyclic shift for ` positions where the starting point is
considered to be the bit with the mark u. The last column of Table 4.6 shows the Hamming
weight of δi, which equals the number of 16-bit XOR gates needed to obtain the vector vi.

114

i δi in normal basis (u, k) L HW(δi)
2

1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 (2, 3) 0, 1, 2, 3 4
5

2 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 (5, 7) 0, 3, 4, 7 4
0 0, 2, 3, 7,

3 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 (0, 3) 9, 10, 11, 15 8
2 0, 1, 3, 4,

4 0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 0 (2, 6) 7, 12, 13 7
0 0, 4, 5,

5 1 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 (0, 5) 6, 7, 9 6
0

6 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 (0, 6) 0, 1, 3, 5, 7 5
1 0, 1, 3, 5,

7 0 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1 (1, 8) 10, 11, 14 7

2
8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 (2, 10) - -

Table 4.6: Normal basis multiplier - generation of vectors vi for i = 1, . . . , 8

� Remark: note at this point that the 9 vectors δi for i = 0, . . . , 8 exactly correspond to the first 9 rows
of the multiplication matrix T for the normal basis obtained by the element θ = ω1117, which is listed in
B.1.2. �

For example to generate vector v2 we first obtain x2(j) = conv((j + 5) mod 16, (j + 7)
mod 16)) where j = 0 . . . , 15. Then we generate the shifted versions of x2 and XOR them
together:

v2 = x2 ⊕ (x2<<3)⊕ (x2<<4)⊕ (x2<<7).

Generation of v2 requires two 16-bit AND gates and four 16-bit XOR gates; note that the
number of 16-bit XOR gates corresponds to the hamming weight of δ2.

The last sum in equation (4.5) is simple: the value δ8 is included in Table 4.6 and
v8(j) = conv((j + 2) mod 16, (j + 10) mod 16)) where j ∈ {0, . . . , 15}\{6, 14} and
v8(j) = 0 for j = 6, 14. The first sum in equation (4.5) is also very simple: v0 = (a�b)>>1,
that is v0 is obtained by a 16-bit AND of the two factors and a right cyclic shift for one bit.

The vector c of the product C = AB is now obtained by adding these vectors: c =
⊕8

i=0 vi.
The FPGA results of the implemented multiplier M16 are listed in table 4.7 below.

115

Basic FPGA Results
Building # of # of

Block LUTs Slices t [ns]

M16 285 102 13.923

Table 4.7: Normal basis multiplier - implementation results

� Remark: Gate count: Generation of vectors vi for i = 1, . . . , 7 takes the area of 41 16-bit XOR
gates and 14 16-bit AND gates. There are additional 9 16-bit XOR gates needed to sum up the vectors vi,
which gives a total of 800 XOR gates and 224 AND gates. In addition, the deepest XOR tree is needed for
computation of v3, which gives a delay of 3 XOR gates and one AND gate, and additional delay of 4 XOR

gates is inferred by the final
⊕8

i=0 vi, resulting in TA + 7TX delay through the multiplier block. Detailed
gate count in terms of NAND gates can be seen in Table E.1 in Appendix E. The authors of [99] predict
a circuit with m2 AND gates and m

2 (CN + m − 2) XOR gates with a delay of TA + dlog2(CN + 1)eTx. For
m = 16 and CN = 85 this equals to 256 AND gates, 792 XOR gates and a delay of TA + 7Tx, which is very
close to our multiplier.
Note that this is an optimized multiplier, with reduced redundancy; the straightforwards parallel multi-
plication requires mCN AND gates and m(CN − 1) XOR gates, which would be 1360 AND gates and 1344 XOR
gates: the optimization resulting from the use of reduced redundancy multiplier [99] is significant. �

4.3.2 Module WGP T using normal basis

The differences between the module WGP T using polynomial basis from the previous Section
4.2 and WGP T using normal basis are:

• right cyclic shifts replace squaring

• different multiplication module

• different representation of element 1 (adding 1 is implemented with a NOT)

• different trace computation for A ∈ F216 : Tr(A) =
⊕15

i=0 ai

Keeping these differences in mind, we construct an 11 stage pipeline, which looks exactly
like the pipeline in Figure 4.5 showing the WGP T module with polynomial basis, with one
more difference: we omit the first pipeline border between the initial shifting and the first
multiplier. The implementation results are listed in Table 4.8.

Although the normal basis implementation has its advantages, for example the trivial
exponentiations to the powers of two, the difference in area between the polynomial basis
multiplier and the normal basis multiplier is significant, and is of course reflected in the
area of the two WGP T modules: even though they reach practically the same clock period,
the area of the WGP T module in the normal basis implementation is doubled.

116

FPGA Results
of # of # of

Module FFs LUTs Slices t [ns]

WGP T NB 606 3835 1168 7.576

Table 4.8: The WGP T module WGP T PB - implementation results

4.4 Tower construction F(((22)2)2)2
∼= F216 - implementa-

tion

We now present the implementation of the first tower field based WGP T module. In Section
4.4.1 we analyze the basic building blocks for each level of the tower field F(((22)2)2)2 . The
tower construction F(((22)2)2)2 offers many pipelining possibilities that are explored in Sec-
tion 4.4.2. The initial pipeline developed in Section 4.4.2 is then subjected to optimizations
(Section 4.4.3), and the best modules are chosen to be connected to the WG-16 module;
for the chosen pipelines the FSM had to be implemented as well. The FSM is presented in
Section 4.4.4, and the final results for the WG-16 modules are presented in Section 4.4.5.

4.4.1 Analysis of Basic Building Blocks

For an implementation using tower field construction F(((22)2)2)2 we need to implement sev-
eral arithmetic operations on each level of the tower. The field construction was presented
in detail in Section 3.4. We will need finite field squaring, multiplication and inversion.
Exponentiations to powers of 2 are performed in the top level of tower construction in
normal basis representation, which requires efficient transition matrices, that were listed in
Section 3.4.2. In this section we discuss the basic building blocks and their implementation
as we ascend through the tower field.

117

Arithmetic operations in F22.

Squaring: For a non-zero element A ∈ F22 , the square of A is calculated as follows:

A2 = (a0α + a1α
2)2

= a0α
2 + a1α

4

= a1α + a0α
2

= s0α + s1α
2 = S.

a

a

0

1

s

s

0

1
1

1

1

1

Figure 4.7: Squaring and inver-
sion block S2 in F22

The coordinates of the square are s0 = a1 and s1 = a0, which is implemented by simply
rewiring the inputs a0, a1 (see Figure 4.7). Note that the inverse of A ∈ F22 is equivalent
to the square, since A−1 = A22−2 = A2.

Multiplication: Multiplication of elements A = a0α+ a1α
2 and B = b0α+ b1α

2, where
a0, a1, b0, b1 ∈ F2, is computed as follows:

AB = (a0α + a1α
2)(b0α + b1α

2) (4.6)

= (a0b1 + a1b0 + a1b1)α + (a0b1 + a1b0 + a0b0)α
2

= c′0α + c′1α
2 = C.

We can rewrite the coefficients to get more efficient multiplication (similar to Karatsuba
Algorithm, for details refer to [79]):

a0b1 + a1b0 + a1b1 = (a0 + a1)(b0 + b1) + a0b0 = c0
a0b1 + a1b0 + a0b0 = (a0 + a1)(b0 + b1) + a1b1 = c1

(4.7)

Computing coefficients as shown in equations 4.7 allows a more efficient implementation,
as can also be seen from Figures 4.8 and 4.9. In 4.8 we see the straightforward multi-
plication as given by equation 4.6, which requires 4 AND gates and 3 XOR gates. Figure
4.9 from equation 4.7 contains 3 AND gates and 4 XOR gates. On this level there really is
no difference. But when we go up the tower construction, we will replace the AND gates
by multiplication modules (for example, in module M4 for multiplication in F(22)2 , the AND

gates will be replaced by modules M2), then, the extra AND gate, i.e. extra multiplication
module, will have a significant impact on the performance. The multiplication modules
will be revisited in more detail, including the gate count, at the end of this section. The
second, more efficient design (Figure 4.9), is implemented in module M2 .

118

a

b

1

0

c'

c'

0

1

1

1

1

1

AND

b1
1

AND

XOR

AND

ANDa0
1

XOR

XOR

Figure 4.8: Straightforward multiplication
(a0, a1)(b0, b1) = (c′0, c

′
1) from equation 4.6

a

a

0

1

c

c

0

1

1

1

1

1

XOR

b0
1

XOR

AND

ANDb1
1

XOR

XOR

AND

Figure 4.9: More efficient multiplication
(a0, a1)(b0, b1) = (c0, c1) from equation 4.7

Auxiliary computations in F22:

The multiplications of A ∈ F22 with constants α and α2 are carried out as follows (see
Figure 4.10):

αA = a0α
2 + a1(α + α2) = a1α + (a0 + a1)α

2,
α2A = a0(α + α2) + a1α = (a0 + a1)α + a0α

2.
(4.8)

a

a

0

1
1

1

1

1

(a) Block Mα

a

a

0

1
1

1

1

1

(b) Block Mα2

Figure 4.10: Multiplication by α and α2 in F22

Arithmetic operations in F(22)2.

Squaring: An element A ∈ F(22)2 is represented with normal basis {β, β4} as A = a0β +
a1β

4, where a0, a1 ∈ F22 . For a non-zero element A ∈ F(22)2 , the square of A is calculated
as follows (see Figure 4.11(a)):

A2 = (a0β + a1β
4)2 = a20β

2 + a21β
8

= a20[(α + 1)β + αβ4] + a21[αβ + (α + 1)β4]

= [(a20 + a21)α + a20]β + [(a20 + a21)α + a21]β
4

= s0β + s1β
4 = S.

119

Multiplication: Let A = a0β + a1β
4 and B = b0β + b1β

4, where a0, a1, b0, b1 ∈ F22 . A
multiplication C = AB in F(22)2 is computed as follows (see Figure 4.11(b)):

AB = (a0β + a1β
4)(b0β + b1β

4)

= a0b0β
2 + (a0b1 + a1b0)β

5 + a1b1β
8

= [(a0 + a1)(b0 + b1)α + a0b0]β + [(a0 + a1)(b0 + b1)α + a1b1]β
4

= c0β + c1β
4 = C.

a0 s

s

0

1

2

2

2

a1

S2

S2
2

M

(a) Squaring block S4

a

a

0

1

c

c

0

1

2

2

2

2

b0
2

b1
2

M2

M2

M2

M

(b) Multiplication block M4

Figure 4.11: Squaring and multiplication in F(22)2

In Figure 4.11(a) we can see two squarers S2 from the lower level of the tower construction
being used to obtain the terms a20 and a21. Module M4 in Figure 4.11(b) contains three
parallel multipliers M2 for the computation of partial products (a0 + a1)(b0 + b1), a0b0 and
a1b1. Both S4 and M4 also use the submodule Mα.

Inversion: For the computation of inverse in composite fields we used the Itoh-Tsuji
algorithm (for details refer to the original paper [81], or to [86]).
The inverse of a non-zero element A ∈ F(2n)m is computed as

A−1 = (Ar)−1 · Ar−1, r =
2n·m − 1

2n − 1
(4.9)

Note that for any A ∈ Fqm and for r = qm−1
q−1 , the element Ar belongs to the subfield Fq.

For A = a0β + a1β
4 ∈ F(22)2 , we have r = 5 and and want to compute A−1 = (A5)−1A4.

120

Let us first look at the second factor A4 because it is easily
obtained and easily implemented (by simply rewiring the
inputs); the computation can be seen on the right. Recall
that q = 22 and so A22 is the Frobenius mapping of A with
respect to F22 , which is the 4th power operation, a simple
cyclic shift.

A5−1 = A4

= (a0β + a1β
4)4

= a0β
4 + a1β

16

= a1β + a0β
4.

The first factor D = A5 can be computed using A4 as follows:

D = A5 = AA4 = (a0β + a1β
4)(a1β + a0β

4) (4.10)

= a0a1β
2 + a20β

5 + a21β
5 + a0a1β

8

= a0a1(β
2 + β8) + (a0 + a1)

2α(β + β4)

= a0a1 + (a0 + a1)
2α

In the computation above we used the relationships β + β4 = 1, β2 + β8 = 1 and β5 =
αβ + αβ4 (refer to Table 3.8 in Section 3.4.1).

To check that A5 is indeed an element of the
subfield the equation in 4.10 is rewritten on
the right: since a0, a1, α, α

2 ∈ F22 , obviously
A5 ∈ F22 .

A5 = (a0 + a1)
2α + a0a1(α + α2)

= ((a0 + a1)
2 + a0a1)α + a0a1α

2

But this means that the inverse D−1 = (A5)−1 can be computed using the inverter module
S2 from the lower level of the tower construction. The inverse I = A−1 is now obtained
using (4.9) as follows:

A−1 = D−1 · A4

= D−1(a1β + a0β
4)

= a1D
−1β + a0D

−1β4

= i0β + i1β
4 = I.

The inversion module I4 can be seen in Figure 4.12. Blocks M2 , S2 and Mα are used to
obtain the value A5, which is then lead through inverter I2 (which in fact is the block S2)
to obtain D−1 = (A5)−1. Note that a0, a1 and D in the computation above are elements of
the subfield F22 ; thus we can obtain their products i0 and i1 with two parallel multiplication
blocks M2 .

Auxiliary computations in F(22)2: At a higher level of the tower construction multipli-
cations of A ∈ F(22)2 with constants λ, λ2, β and αβ will be applied. The equations (on the
left) and their corresponding circuits (on the right) can be seen below:

121

a0
2

a1

S2
2 M2 M2

M2

I 2M

i

i

0

1
2

2

Figure 4.12: Inversion block I4 in F(22)2

λA = α2βA

= a0α
2[(α + 1)β + αβ4] + a1α

2(αβ + αβ4)

= (a0α + a1)β + (a0 + a1)β
4

a

a

0

1
2

2 2

2

Figure 4.13: Block Mλ

λ2A = αβ2A

= a0αβ
3 + a1αβ

6 = a0α(β + αβ4) + a1α
2β

= (a0α + a1α
2)β + (a0α

2)β4

a

a

0

1
2

2 2

2

MM

M 2

Figure 4.14: Block Mλ2

βA = a0[(α + 1)β + αβ4] + a1(αβ + αβ4)

= [a0 + (a0 + a1)α]β + [(a0 + a1)α]β4

a0
2

2

2

a1
2

M

Figure 4.15: Block Mβ

αβA = a0(β + α2β4) + a1(α
2β + α2β4)

= (a0 + a1α
2)β + (a0α

2 + a1α
2)β4

a

a

0

1
2

2 2

2M 2

M 2

Figure 4.16: Block Mαβ

Note that on this level of the tower all arithmetic blocks (modules) use submodules Mα and
Mα2 (Figure 4.10)

122

Arithmetic operations in F((22)2)2.

Squaring: For a non-zero element A ∈ F((22)2)2 , the square of A is calculated as follows:

A2 = (a0γ + a1γ
16)2 = a20γ

2 + a21γ
32

= a20[(λ+ 1)γ + λγ16] + a21[λγ + (λ+ 1)γ16]

= [(a20 + a21)λ+ a20]γ + [(a20 + a21)λ+ a21]γ
16

= s0γ + s1γ
16 = S.

The squarer S8 can be seen in Figure 4.17(a). Again, we see two squarers S4 from the lower
level of the tower, but now the module Mα is replaced by Mλ. The highly regular structure
of this tower construction is becoming apparent. We will shortly see that the multiplica-
tion block M8 also strongly resembles the multiplication blocks from lower levels of the tower.

Multiplication: Let A = a0γ + a1γ
16 and B = b0γ + b1γ

16, where a0, a1, b0, b1 ∈ F(22)2 .
A multiplication C = AB in F((22)2)2 is carried out as follows (see Figure 4.17(b)):

AB = (a0γ + a1γ
16)(b0γ + b1γ

16)

= a0b0γ
2 + (a0b1 + a1b0)γ

17 + a1b1γ
32

= [(a0 + a1)(b0 + b1)λ+ a0b0]γ +

[(a0 + a1)(b0 + b1)λ+ a1b1]γ
16

= c0γ + c1γ
16 = C.

Inversion: Using Itoh-Tsuji algorithm (4.9), the inverse of a non-zero element A =
a0γ + a1γ

16 ∈ F((22)2)2 is computed as A−1 = D−1A16, where D = A17.

The Frobenius mapping of A with re-
spect to F24 , which is the 16th power op-
eration, is computed on the right. Again,
it is a simple rewiring of the inputs.

A16 = (a0γ + a1γ
16)16

= a0γ
16 + a1γ

256

= a1γ + a0γ
16

On the right, we see the equation for
D = A17. We used the relationships
γ32 + γ2 = 1 and γ17 = λ.

D = A17

= AA16

= (a0γ + a1γ
16)(a1γ + a0γ

16)
= a0a1γ

2 + a20γ
17 + a21γ

17 + a0a1γ
32

= a0a1(γ
2 + γ32) + (a0 + a1)

2λ
= a0a1 + (a0 + a1)

2λ

123

The inverse I of A is calculated as :

A−1 = D−1 · A16

= D−1(a1γ + a0γ
16)

= a1D
−1γ + a0D

−1γ16

= i0γ + i1γ
16 = I,

where D−1 = (A17)−1 can be computed with subfield F(22)2 inversion block I4 . The corre-
sponding circuit can be seen in Figure 4.17(c).

a0 s

s

0

1

4

4

4

a1

S4

S4
4

M

(a) Squaring block S8

a

a

0

1

c

c

0

1

4

4

4

4

b0
4

b1
4

M4

M4

M4

M

(b) Multiplication block M8

a0 i

i

0

1

4

4

8

a1

S4
4 M4 M4

M4

I4M

(c) Inversion block I8

Figure 4.17: Multiplication, squaring, and inversion in F((22)2)2

Auxiliary computations in F((22)2)2: The multiplication of A ∈ F((22)2)2 with constant
µ = β + λγ ∈ F((22)2)2 is carried out as follows:

µA = (β + λγ)(a0γ + a1γ
16)

= a0βγ + a1βγ
16 + a0λγ

2 + a1λγ
17

= [a0(αβ) + (a0 + a1)λ
2]γ +

[a1β + (a0 + a1)λ
2]γ16

a0 s

s

0

1

4

4

4

a1
4

M

M

M

2

Figure 4.18: Block Mµ

124

Arithmetic operations in F(((22)2)2)2

Squaring: For a non-zero element A ∈ F(((22)2)2)2 , the square of A is calculated as follows
(see Figure 4.19(a)):

A2 = (a0δ + a1δ
256)2 = a20δ

2 + a21δ
512

= a20[(µ+ 1)δ + µδ256] + a21[µδ + (µ+ 1)δ256]

= [(a20 + a21)µ+ a20]δ + [(a20 + a21)µ+ a21]δ
256

= s0δ + s1δ
256 = S.

Multiplication: Let A = a0δ+a1δ
256 and B = b0δ+b1δ

256, where a0, a1, b0, b1 ∈ F((22)2)2 .
A multiplication C = AB in F(((22)2)2)2 is computed as follows (see Figure 4.19(b)):

AB = (a0δ + a1δ
256)(b0δ + b1δ

256)

= a0b0δ
2 + (a0b1 + a1b0)δ

257 + a1b1δ
512

= [(a0 + a1)(b0 + b1)µ+ a0b0]δ +

[(a0 + a1)(b0 + b1)µ+ a1b1]δ
256

= c0δ + c1δ
256 = C.

a0 s

s

0

1

8

8

8

a1

S8

S8
8

M

(a) Squaring block S16

a

a

0

1

c

c

0

1

8

8

8

8

b0
8

b1
8

M8

M8

M8

M

(b) Multiplication block M16

Figure 4.19: Squaring and multiplication in F(((22)2)2)2

Inversion: Similar to the lower levels of the tower,
we begin by writing the Frobenius mapping of element
A = a0δ + a1δ

256 with respect to F28 . The expression can
be seen on the right, and once again, it dictates a simple
rewiring of the inputs.

A256 = (a0δ + a1δ
256)256

= a0δ
256 + a1δ

65536

= a1δ + a0δ
256

Letting A be a non-zero element in F(((22)2)2)2 , the inverse I of A can be calculated using

125

(4.9) as follows (see Figure 4.20):

A−1 = D−1 · A256

= D−1(a1δ + a0δ
256)

= (a1D
−1δ + a0D

−1δ256)

= i0δ + i1δ
256 = I,

where D−1 = (A257)−1 can be computed with subfield F((22)2)2 inversion block I8 , and the
value D by:

D = A257 = AA256 = (a0δ + a1δ
256)(a1δ + a0δ

256)

= a0a1δ
2 + a20δ

257 + a21δ
257 + a0a1δ

5122

= a0a1(δ
2 + δ512) + (a0 + a1)

2µ

= a0a1 + (a0 + a1)
2µ

In the expression above the relationships δ2 + δ512 = 1 and δ257 = µ were used.

a0 i

i

0

1

8

8

8

a1

S8
8 M8 M8

M8

I8M

Figure 4.20: Inversion block I16 in F(((22)2)2)2

Summary of Basic Building Blocks in F(((22)2)2)2

In this section we wish to point out the regularity of this tower construction by summarizing
the basic building blocks for F(((22)2)2)2 arithmetic: using the common notation introduced
in Section 3.4.3, we can depict the arithmetic blocks for each level of the tower with a
common schematic, as seen in Figure 4.4.1. The inverter I2 is of course an exception.

126

a0 s

s

0

1a1

M

S
2
n2

n

S
2
n2

n

2
n

2
n

(a) Squaring block Sn

a

a

0

1

c

c

0

1

b0

b1

2
n

2
n

2
n

2
n

M
2
n

M
2
n

M
2
n

M

2
n

2
n

(b) Multiplication block Mn

a0 i

i

0

1a1

I

2
n

2
n

S
2
n

M
2
n

2
nM

M
2
n

M
2
n
2
n

2
n

(c) Inversion block In

Figure 4.21: Multiplication, squaring, and inversion with: Mσ = Mα for n = 4 in F(22)2 ,
Mσ = Mλ for n = 8 in F((22)2)2 and Mσ = Mµ for n = 16 in F(((22)2)2)2

Exponentiation to powers of 2

The most efficient approach is computing the value A2k ∈ F2m in the normal basis repre-
sentation, where the actual exponentiation can be done with a simple right cyclic shift by
k positions, as was explained in Section 3.3.2.

A shift can be implemented by simply rewiring the outputs and inputs. But since all other
computations are performed on elements in tower field representation, a transition from
tower field representation to normal basis representation is required. Efficient conversion
matrices were given in Section 3.4.2. Figure 4.22 shows the entire datapath:

MNTTNM >>

Figure 4.22: Basis transition and exponentiation

Submodules MNT and MTN perform the multiplication of a vector (a finite field element)

127

with the transition matrix.

Implementation results for the conversion modules MNT and MTN are given in Table 4.9.
Results for the entire datapath S1: MTN → >>1 → MNT , as is depicted in Figure 4.22, are
given in the last two columns of Table 4.9: S1 as purely combinational circuit, and since
we are aiming at a pipelined design, S1p connected between two registers.

MNT MTN S1 S1p

FFs / / / 32

LUTs 17 18 25 29

Slices 7 7 11 12

T 7.788 8.195 8.653 2.825

Table 4.9: Basis transition and exponentiation in F(((22)2)2)2 - implementation results

Implementation results for basic building blocks

� Remark: Gate count
We summarize area and time complexities of the building blocks in tower construction with normal bases
in Table 4.10, where NX (resp. TX) and NA (resp. TA) denote the number (resp. the delay) of XOR gates
and AND gates, respectively.

The tower construction described in this section allows a hardware architecture with a highly regular
structure, having almost identical basic building blocks for each layer, as can be observed in Figure 4.4.1.
This high level of regularity allows accurate prediction of area complexities for basic building blocks on
higher lever of the tower field, based on results obtained in the base field. If we refer to Table 4.10 and
compare area complexities for multipliers M2 and M4 , we can observe that M4 will contain three M2 blocks
(so 12 XOR gates and 2 AND gates), a Mα block (one XOR gate) and four 2-bit XOR gates, adding up to
a total of 21 XOR gates and 9 AND gates in multiplier M4 . �

The basic building blocks for performing the tower field arithmetic have been implemented
as combinational circuits on the target FPGA and ASIC platforms; the implementation
results are summarized in Table 4.11.

The FPGA device (i.e., Spartan-6 XC6SLLX9) used in our implementation features 6-input
and 2-output LUTs, which can implement any 6-input Boolean functions. For example,
recall that the two output bits c0 and c1 of M2 , namely

c0 = (a0 + a1)(b0 + b1) + a0b0

c1 = (a0 + a1)(b0 + b1) + a1b1,

128

Tower Building Block NX NA Critical Path
Field Delay

F22
Squaring (S2) 0 0 0
Multiplication (M2) 4 3 2TX + TA

F(22)2

Squaring (S4) 7 0 3TX
Multiplication (M4) 21 9 5TX + TA
Inversion (I4) 17 9 5TX + 2TA

F((22)2)2

Squaring (S8) 31 0 7TX
Multiplication (M8) 84 27 9TX + TA
Inversion (I8) 100 36 17TX + 3TA

F(((22)2)2)2

Squaring (S16) 114 0 13TX
Multiplication (M16) 312 81 15TX + TA
Inversion (I16) 427 117 39TX + 4TA

Conversion MNT 76 0 3TX
Conversion MTN 84 0 4TX

Table 4.10: Gate count: area and time complexities of building blocks in F(((22)2)2)2

Basic FPGA Results ASIC Results
Building # of # of Area

Block LUTs Slices t [ns] [GE] t [ns]

S2 /I2 0 0 5.512 0.0 0.00

M2 1 1 6.669 22.9 0.17

S4 2 2 6.984 25.0 0.28

M4 11 5 8.517 10.3 0.57

I4 2 2 6.984 75.4 0.56

S8 6 3 7.118 116 0.73

M8 40 14 10.613 401 1.13

I8 41 15 12.915 400 2.13

S16 24 10 8.322 442 1.49

M16 148 52 13.925 1440 2.09

I16 147 60 22.826 1684 5.02

MNT 17 7 7.800 219 0.33

MTN 18 8 7.963 210 0.36

Table 4.11: Basic building blocks for arithmetic in tower field F(((22)2)2)2 - implementation results

129

are 4-input Boolean functions, computed on the same values of inputs a0, a1, b0 and b1.
Hence, the M2 multiplication can be realized on one LUT, using both outputs. In M4 block,
we expect to find four LUTs connected to the four output bits (the product) and the three
LUTs for three M2 blocks, which gives the minimum of 7 LUTs. The remaining LUTs are
inferred to implement the XOR gates at the inputs. Similarly, going to the M8 level, we
expect 8 LUTs on the outputs, together with the 33 LUTs for the three M4 multipliers.
Note that the lower level blocks M4 ’s are not integrated into M8 directly. Instead they are
broken down and their signals are rerouted without altering the functionality. Moreover,
parts of M4 blocks are combined with the last XORs, merged with computations from Mλ

block, and realized in the LUTs connected directly to the M8 outputs. Note that time and
area complexities strongly depend on placement and routing of on the actual FPGA device
and that it is difficult to predict which optimization will be performed automatically by
Xilinx-ISE. Nevertheless, an approximate area complexity estimation still can be made
and we can expect to find at least 16 output LUTs and 120 LUTs for M8 multiplications in
M16 block.

4.4.2 Initial Design of Pipelined Architecture

In this section we are further exploring our first tower construction by pipelining the WGP T

module at different levels of the tower. The implementation results of the basic building
blocks in Table 4.11 provide some insight about how the complexities change with each
level of the tower. To determine appropriate pipeline stages for the circuit in Figure 3.10
we begin with a critical path analysis for different paths through the circuit pipelined at
different levels (Section 4.4.2). We then continue with the first decomposition of the WGP T

module into submodules (Section 4.4.2) and then analyze these submodules individually
(in Sections 4.4.2, 4.4.2 and 4.4.2). In Section 4.4.2 we present the first WGP T module using
the tower construction F(((22)2)2)2 , obtained by connecting the aforementioned submodules.

Critical path analysis - pipelining granularity

The first, and most natural option is using basic building blocks from the top level of the
tower F(((22)2)2)2 , i.e. the blocks S16 , M16 and I16 ; this is the level of pipelining that was done
for the previous modules WGP T described in Sections 4.2 and 4.3. Another option is going
lower to the level F((22)2)2 and pipelining at a finer granularity with building blocks S8 ,
M8 and I8 or at lower S4 , M4 and I4 . To analyze the behavior of multipliers the datapath
X → Xd (the decimation on the left corner of Figure 3.10) was chosen and implemented
in four versions:

130

• no pipeline (module path1)

• pipelined at M16 level - 3 pipeline stages (Figure 4.23(a) - module path1 M16)

• pipelined at M8 level - 5 pipeline stages (module path1 M8)

• pipelined at M4 level - 7 pipeline stages (module path1 M4)

The module without a pipeline was implemented as a reference for the pipelined versions.
Note that the initial exponentiations X25 and X210 , together with basis conversion, are
carried out in the first stage of the pipeline in all pipelined modules. In the second design
option (i.e., pipelining at M16 level), the two multiplications XX25 and X210X25+1 are com-
puted atomically, with two M16 modules placed in two consecutive pipeline stages (Figure
4.23(a)). The third design option, referred to as pipelining at M8 level, is simply implement-
ing multipliers M16 with inter-stage registers inserted between three parallel M8 modules and
the Mµ module. With the pipelining at an even lower level, we pipeline the M8 multipliers by
inserting another stage border between the parallel M4 modules and the Mλ modules. The
positions of the new stage borders splitting the M16 and M8 can be seen in Figure 4.23(b);
the accurate schematics of M16 and M8 were shown in Figures 4.19(b) and 4.17(b) in Section
4.4.1. The five stages of module path1 M8 with the two M16 multipliers pipelined at M8 level
can be seen in the first half of the circuit in Figure 4.24.
Figure 4.23(c) shows the multiplier M16 pipelined at the M4 level into three pipeline stages.
In he first stage we can see the 9 M4 modules in parallel, followed by three Mλ modules in
the second stage; they belong to the three parallel M8 multipliers (shaded grey) that are
now segregated. The M16 multiplication is concluded in the third stage, that contained the
module Mµ .

The implementation results of the four modules are given in Table 4.12. We can clearly see
how pipelining at a lower granularity reduces the clock period. The difference in number
of LUTs when comparing module path1 M16 to other three modules seems surprising, but
a closer examination reveals that the synthesis tools are responsible for this difference: all
other three modules have a high number of LUTs where both LUT outputs were used.

Examining implementation results of the basic building blocks in Table 4.11, we can see
that even though multiplier M16 and inverter I16 are very similar in terms of area, there is
a very long block delay for the inverter I16 ; it is obvious that using the inversion module
I16 inside a pipeline stage is not the best option. We identify the critical path X → Y −1

(decimation followed by inversion) and explore the following pipelining options:

• pipelined at M16 /I16 level - 4 pipeline stages (module path2 M16 I16)

• pipelined at M16 /I8 level - 7 pipeline stages (module path2 M16 I8)

131

MNT

MNT

>>5

>>

MNT

M16 xd

x

M16

10

(a) Module path1 M16- path X → Xd -
pipelined at M16 level

M8

M8

M8

M16

M4

M4

M4

M8

(b) Module M16 - pipelined at M8 level
and Module M8 - pipelined at M4 level

M4

M4

M4

M8

M16

M4

M4

M4

M8

M4

M4

M4

M8

(c) Module M16 - pipelined at M4 level

Figure 4.23: Path X → Xd and different levels of pipelining

FPGA Results

Module #FFs #LUTs #Slices t [ns]

path1 - 398 144 23.796

path1 M16 112 510 167 6.399

path1 M8 76 430 145 5.072

path1 M4 280 398 140 4.195

Table 4.12: Path X → Xd - implementation results

132

• pipelined at M8 /I8 level - 9 pipeline stages (module path2 M8 I8, see Figure 4.24(c))

• pipelined at M4 /I4 level - 16 pipeline stages (module path2 M4 I4)

The inverter I16 pipelined at M8 /I8 level has been implemented in four pipeline stages:
1. the initial multiplication module M8 and squaring module S8 in parallel
2. the Mµ module
3. the inversion I8 module
4. the last two multiplication modules M8 in parallel

These pipeline stages can be seen in (Figure 4.24) - the part of the circuit that belongs to
the inverter I16 is shaded grey. The five pipeline stages on the left of the inverter are the
module path1 M8. To pipeline I16 at level M4 /I4 , we further split the stages above and
obtain an inverter that stretches over 9 pipeline stages:

1. the initial multiplication module M8 and squaring module S8 in parallel:
1.1. the 3 M4 and 2 S4 in parallel
1.2. the two Mλ modules

2. the Mµ module
3. the inversion I8 module:

3.1. the M4 and the S4 in parallel
3.2. the two Mλ module
3.3. the I4 module
3.4. the two M4 modules

4. the last two multiplication modules M8 in parallel:
4.1. the 6 M4 modules in parallel
4.2. the two Mλ modules

MNT

MNT

MNT

M8

M8

M8

M8

M8

M8

x

M8

S8

M8

M8I8 Y-1xd Y
>>

>>

5

10

Figure 4.24: Module path2 M8 I8 - path X → Y −1 pipelined at M8 /I8 level

The implementation results of module path2 M16 I16 confirm the prediction that we
should avoid block I16 inside a pipeline stage. Area complexity, apart from the num-
ber of registers, of the first three modules is very similar. There is a jump in number of
slices used for the module path2 M4 I4, which is a result of a high number of registers
needed, but the clock period is clearly in favor of this module. However, due to the big
area consumption, the combined metric T

A2 listed in the last column of Table 4.13 favors
the module path2 M8 I8.

133

FPGA Results T
A2

Module #FFs #LUTs #Slices t [ns]

path2 M16 I16 128 575 167 14.214 2.5

path2 M16 I8 208 602 189 7.328 3.8

path2 M8 I8 272 544 168 5.930 5.9

path2 M4 I4 546 575 226 4.328 4.5

Table 4.13: Path X → Y −1 - implementation results

Module WGP T - First decomposition into submodules

For creating a pipelined design, the integrated hardware architecture WGP T in Figure 3.10
from Section 3.4.1 has been decomposed into three submodules moduleA, moduleB and
moduleC, as shown in Figure 4.25. On the left, marked with a dashed line and shaded dark
grey, we see the moduleA containing the common computational components that are
shared by the initialization and running phase, and outputting the values Y 26 , Y 211 , Y −1

and Xd. The two multipliers that are reused during the initialization phase, together with
registers and multiplexers that aid this computation, are implemented in moduleB (in the
middle of Figure 4.25, marked with a solid line, shaded light grey). This module outputs the
values Y ⊕

16
Y 211+1, Y 26 , Y 211+1 ⊕

16
Y 211−1 and Y 2(211−1) needed for the trace computation

in running phase, and the value WGP for feedback to the LSFR in the initialization phase.
The module moduleC on the right in 4.25, marked with a dotted line and shaded dark
gray, conducts the final trace computations.

Figure 4.26 shows the decomposition described above from a higher level, with the three
submodules as black boxes, and clearly visible signals that pass from one submodule to
another.

Module moduleA

The first submodule moduleA is basically the path X → Y −1, i.e. path2 from the previous
Section, together with exponentiations Y 26 and Y 211 . Module moduleA M16 I8, that can
be seen in Figure 4.27 below, is actually module path2 M16 I8 with two exponentiation
circuits added to pipeline stages 4 and 6. Similarly, the two exponentiation circuits were
added to pipeline stages 6 and 8 of module path2 M8 I8 to obtain moduleA M8 I8, and to
pipeline stages 15 and 16 of module module path2 M4 I4 to get moduleA M4 I4.

134

A1

2

4

3

5

6
Y

211
Y

211
Y

Y

Y

26
Y

Y-1

26
Y

WGP

WGT

16

1

Y-1

26
Y

211
Y

a
a1

b
b1

c
c1

b2

h

e

d

f

c

Tr()

Tr()

t1

t2

a

xd

c1

g
g1

g

YM16M16
xd

x

I16

c

h

g

MNT

MNT

>>5

MNT>>10

MTN

MNT>>11

MNT>>6

MNT>>11

MTN

MNT>>1

MNT

Reg
2

h

Reg
1

c

Reg
3

g

M16

B
M16

module A

module B

module C

Figure 4.25: First decomposition of the WGP T circuit into submodules moduleA, moduleB and moduleC

module
A

module
B

module
C

211
Y2

6

-1

xd
WGP

x WGT1

16

16
Y
Y

Y2
6

b2

d
c

Figure 4.26: Modular view of submodules moduleA, moduleB and moduleC and connecting signals

MNT

MNT

MNT

M16M16

M8

S8

M8

M8I8
Y-1

xd Y

x

>>

>>

5

10

26>>

>>

6

11

MNT

MNT

MTN

Y

21Y
1

xd

Figure 4.27: Module moduleA - pipelined at M16 /I8 level

It is desirable to have the ability to pause the keystream; a chip enable signal, acting as a
stop and go control, is needed for that. We add a control signal ce to the pipeline of the
WGP T module, to control the operation of the registers: if ce is set the module operates
normally and updates the registers at the end of each clock cycle, if ce is cleared, the
registers keep their old value - the pipeline is stopped. A select signal sel will be needed
to control the operation of multiplexers in module moduleB; for the operation of sel please
see Table 3.11 in Section 3.4.3. The two control signals ce and sel will propagate through
the pipeline together with the input from the LFSR; we need to add two 1-bit registers at

135

each stage border.

FPGA Results T
A2

Module #FFs #LUTs #Slices t [ns]

moduleA M16 I8 382 659 235 7.154 2.5

moduleA M8 I8 468 599 225 6.000 3.3

moduleA M4 I4 626 633 277 4.172 3.1

Table 4.14: Module moduleA - implementation results

All three modules listed in Table 4.14 show an expected increase in area but approximately
the same clock period; in the case of moduleA M16 I8 and moduleA M4 I4 the period is even
a little bit shorter. The difference between the three modules is in terms of T

A2 now smaller,
but still in favor of the moduleA M16 I8.

Module moduleB

During initialization phase, moduleB computes the value WGP-16(Xd), and during running
phase prepares the values needed for the final trace computation in moduleC, described in
the next Section 4.4.2. For the WGP-16(Xd) computation, the two multipliers belonging to
moduleB (we denoted them multiplier A and B) can be reused as explained in Section 3.4.3.
The module moduleB was pipelined into two stages, B1performing the multiplications atom-
ically (using modules M16), and B2 performing conversions between the bases and exponen-
tiation. The pipeline stage border is shown in Figure 4.28 with a dashed vertical line. The
inputs (Xd, Y 26 , Y 211 and Y −1) and outputs (d = Y ⊕

16
Y 211+1, Y 26 , c = Y 211+1 ⊕

16
Y 211−1

and b2 = Y 2(211−1)) are omitted from the figure and they are all 16 bit wide. Circuit
implementing moduleB, including all the registers is depicted in Figure 4.29.

Let us first discuss WGP-16(Xd) computation. For the operation of sel please see Table
3.11 in Section 3.4.3: for example, when sel=0, the multiplexer MUX1 passes the value
Y 211 to the multipler A. In pipeline stage B1, with control signal sel= 0, the multiplier A
produces the intermediate product a = Y 211Y and multiplier B the product b = Y −1Y 211

(recall that Y = Xd ⊕
16

1). The latter value b is used in two ways: (a) it is passed un-

changed to interstage register regB and (b) it is XORed with the product from multiplier
A to produce the value c = a ⊕

16
b, which is passed on to interstage register regAB. The

136

A1

2

4

3

5

6
Y

211
Y

211
Y

Y

Y

26
Y

Y-1

26
Y

WGP
16

1

a
a1

b
b1

c
c1

b2

h

e

d

f

c

Tr()

Tr()

t1

t2

a

xd

c1

g
g1

g

c

h

g

MNT>>11

MTN

MNT>>1

MNT

Reg
2

h

Reg
1

c

Reg
3

g

M16

B
M16

B1 B2

Figure 4.28: Module moduleB - splitting into two pipeline stages (dashed line)

product a from multiplier A is also used to compute g = Xd ⊕
16

a; this value is passed to

interstage register regG.

The value h = b2
11

is obtained in the second stage B2 from the regB value b by transi-
tioning to normal basis representation and raising the obtained normal basis element to
the power 211, i.e. a right cyclic shift for 11 bits, followed by conversion back to tower
field representation. This result is stored in register reg2. To keep events synchronized we
pass the two values from interstage registers regAB and regW through stage B2 unchanged
and store them in registers reg1 and reg2 respectively. This concludes the first round of
WGP-16(Xd) computation. In the second round of WGP-16(Xd) computation we need to
compute a1 = Y 26 ⊗

16
c and b1 = Y ⊗

16
h (by reusing multipliers A and B) and XOR these

two values with the previously computed g. Factors c, h and the value g are available
on signals back1, back2, and back3 respectively. The missing values Y 26 and Y are
basically just the moduleB input Y 26 and the inverted input Xd. Instead of passing them
through B1 and B2 and then returning them to the multipliers in B1 we choose the following
approach: we simply send each input X through moduleA three times, with different val-
ues for the control signal sel, a detailed description of the FSM will follow in Section 4.4.4.

During the running phase we do not need to reuse the multipliers and the control signal sel
remains low the entire time. Module moduleC needs the inputs(d = Y ⊕

16
Y 211+1, Y 26 , c =

Y 211+1 ⊕
16
Y 211−1 and b2 = Y 2(211−1)). Value Y 26 is just passed through the module moduleB

137

M16

A
1

2

M16

B
4

3

5

6

211

Y2
6

-1

back1

back2

back3

xd

reg
G

reg
AY

reg
6

reg
AB

reg
B

reg
3

reg
Y0

reg
Y6

reg
Y3

reg
2

reg
1

reg
WGP

back1

back2

back3

MNT

TNM

MNT

TNM

1>>

1>>1

2

WGP

B1 B2

Y

Y

Y2
6

d

c

b

g

1g
g

1g

d

d

a

1a

b

1b

c

1c

b

1b

c

1c

c

h

g

a

1c

Figure 4.29: Module moduleB

and the value c was already discussed (it is kept in register reg1). Value d is obtained
by XORing the output of multiplier A with the inverted input Xd. It is passed to register
regAY and then to regY0. Value b2 is obtained in stage B2 by squaring the product from
multiplier B, which is kept in register regB; the square is passed on to register regY3.

Implementation results for module moduleB, pipelined at the M16 level, are listed in Table
4.15 below. Comparing moduleB with moduleA M16 I8 , also pipelined at the M16 level,
we immediately notice the increase of clock period. This higher period is a consequence of
the multiplexers at the M16 inputs and the additional logic (XOR gates and even multiplexers)
at the M16 outputs. Note also that the stages B1 and B2 are not exactly balanced: stage B1

requires much more logic and routing elements. To optimize moduleB we will try to: (a)
merge modules moduleB and moduleC, (b) pipeline moduleB at a lower level and (c) take
the part of the stage B1 circuit and move it over the pipeline stage border into stage B2.

138

These measures will be discussed in Section 4.4.3.

FPGA Results

Module #FFs #LUTs #Slices t [ns]

moduleB 196 665 220 7.600

Table 4.15: Module moduleB - implementation results

Module moduleC

As we can see in Figure 4.25, moduleC finalizes the computation of trace value WGT-16(Xd).
In Section 3.4.3 we summarized the trace computation in equation (3.25) as follows:

e = b2 ⊕
16

c f = Y 26 �
16
e

t1 = Tr(d) t2 = Tr(f)

WGT-16(Xd) = t1 ⊕
1
t2

From Corollary 1 in Section 3.4.3 we see that the actual computation of the two trace
values can be carried out by XORing the bits of their arguments.

1

1

1x

x

0

5

x

x

6

11

15x

12x

LUT

LUT

LUT y

Figure 4.30: XORing the 16 bits for the
trace computation

Since Spartan-6 LUTs have 6 available inputs,
the value y can be obtained with 3 LUTs XORing
their inputs as shown in Figure 4.30 on the left.
Two versions of this module, moduleC1 and
moduleC2, shown in Figures 4.31(a) and 4.31(b)
respectively, with different placing of the
interstage registers, were explored, to reduce
latency as much as possible. Their results are
listed in Table 4.16. Both modules are
insignificant in comparison with moduleB.

139

1

1

1
LUT

LUT

LUT

1

1

1
LUT

LUT

LUT WGT

0

5
6

15

12

11

0

5
6

1

15

12

1

d

Y2
6

c
e f

b
2

t1

2t

16

16

(a) moduleC1

1

1

1
0

5
6

15

12

LUT

LUT

LUT

11

1

1
0

5
6

LUT

LUT

1

15

12

1

WGT

1LUT

d

Y2
6

c
e f

b
2

t1

2t

16

16

(b) moduleC2

Figure 4.31: Module moduleC with two different insterstage register placings

FPGA Results

Module #FFs #LUTs #Slices t [ns]

moduleC1 34 23 13 1.782

moduleC2 17 17 8 2.290

Table 4.16: Module moduleC in two versions - implementation results

Module WGP T

This is the first implementation of WGP T submodule and directly follows the image 4.26;
it is a simple concatenation of modules A, B and C. Two versions were implemented, using
two differently pipelined modules moduleA, namely the pipelining at the level M16 /I8 and
at the level M8 /I8 . Since module moduleB was pipelined at the M16 level, there is no
point in using the submodule moduleA M4 I4 at this time, but we will revisit this option
when we optimize module moduleB. The two implemented WGP T modules WGP T ABC16

and WGP T ABC8 differ in the number of pipeline stages:

• WGP T ABC16: moduleA M16 I8⇒ modulB⇒ moduleC2 having a 7+2+2=11 stage
pipeline.

• WGP T ABC8: moduleA M8 I8⇒ modulB⇒ moduleC2, having a 9+2+2=13 stage pipeline;

140

The implementation results given in Table 4.17 below indicate that the two modules are
quite equivalent: surprisingly, the WGP T ABC16 even has a slightly shorter clock period.
Compared with results obtained for module moduleA, see Table 4.14, we see that due to
the stage B1 the advantages of pipelining at M8 level have been lost completely.

FPGA Results

Module #FFs #LUTs #Slices t [ns]

WGP T ABC16 605 1322 488 8.663

WGP T ABC8 671 1243 444 8.191

Table 4.17: The fist WGP T implementation

WGP T ABC16 - submodule moduleA pipelined at M16 level
WGP T ABC8 - submodule A pipelined at M8 level

4.4.3 Optimizations and final choice for module WGP T

In this section we discuss some modifications of the original moduleA, moduleB and moduleC

described in previous Section. For the first part of the circuit, moduleA, we identify and
remove redundant registers. Three possible optimization approaches were mentioned at
the end of Section 4.4.2, namely (a) merge modules moduleB and moduleC, (b) pipeline
moduleB at a lower level and (c) take the part of the stage B1 circuit and move it over
the pipeline stage border into stage B2. They were realized as follows: in Section 4.4.3
we describe the option (a). Then we try to pipeline the obtained merged module at
the M8 level and it turns out that we have to rearrange the two piepeline stages to do
so; the resulting module moduleBC8 combining the three approaches (a), (b) and (c) is
described in Section 4.4.3. Both optimized modules are still not ready to be used with
the module moduleA M4 I4, hence we explore another possibility: we pipeline the merged
module moduleBC at the M4 level; the obtained module moduleBC4 is described in Section
4.4.3. Finally in Section 4.4.3 we give the implementation results for the WGP T modules
using these optimizations.

Module moduleA - reducing the number of registers

In Figure 4.32 below we show the second half (after the decimation computation) of
moduleA M16 I8 from Figure 4.27, equipped with register names below the stage borders:

141

the names of the 16-bit registers are shown in black and the names of the 8-bit registers in
grey. The arrows between them indicate how the values propagate between the registers:
a solid arrow between two registers means that the value was simply passed through the
pipeline stage unchanged, while the dashed line indicates that in this stage the value was
somehow changed. For clarity we show the moduleA M16 I8 pipeline stage numbers at the
top of the Figure 4.32. Taking a closer look at the registers at the border between stage
3 and stage 4 we see two 16-bit and two 8-bit registers that are basically all holding the
same value - the decimated input, its inverse, and the two halves of the inverse:

reg30 reg35 reg31 reg32

Xd Y =not(Xd) YHI YLO

M8

S8

M8

M8I8

regX
regY6
regY11
regYinv

Y-1

xd
Y

26>>

>>

6

11

MNT

MNT

MTN

Y

21Y
1

xd

reg30
reg35
reg31
reg32

reg41
reg42
reg43
reg44

reg40
reg45

reg51
reg52
reg53

reg50
reg55

reg61
reg62
reg63

reg60
reg66
reg611

Y
xd xd

26Y
21Y
1

Y-1

4 5 6 7

Figure 4.32: Module moduleA - pipelined at M16 /I8 level

In stage 4 of the pipeline the inverse computation begins using the values in 8-bit registers
reg31 and reg32. The same two values are also needed for the final two multiplications
inside inversion, so they will be propagated unchanged through the next three pipeline
stages. We can completely remove these half-registers by letting 16-bit register reg30 hold
the value Y =not(Xd) and in stage 4 routing its contents to (a) transition submodule MTN
and (b) to M8 and S8 submodules. For these two submodules we need to split the signal
into two halves, YHI = Y8...15 and YLO = Y0...7. In the end we invert the value of reg30
and output (Xd). This way, we eliminated 32 FFs (reg35, reg31 and reg32) at the end
of decimation computation, but now also the registers reg41,reg42,reg51,reg52,reg61

and reg62 become obsolete, so we save 80 FFs altogether. Implementation results for the
moduleA M16 I8 2 with changes described above are given in Table 4.18, together with the
results of the original moduleA for comparison. We can see the area reduction as well as a

142

shorter clock period. The numbers differ from the estimated 80 FFs, because Xilinx-ISE

automatically removed registers reg31, reg32 and connected values from reg35 instead,
thus saving two 8-bit registers in the original implementation moduleA M16 I8, not the
really the best effort. We provide the ASIC results as well: due to more flexible routing,
we can only observe an area reduction.

FPGA Results ASIC Results
of # of # of Area

Module FFs LUTs Slices t [ns] [GE] t [ns]

moduleA M16 I8 382 659 235 7.154 5956 1.59

moduleA M16 I8 2 318 659 227 6.738 5417 1.59

moduleA M8 I8 468 599 225 6.000 - -

moduleA M8 I8 2 404 604 211 6.261 - -

Table 4.18: Optimized moduleA - implementation results

Module moduleBC - merging moduleB and moduleC

The two stage pipeline for moduleB can be seen in Figure 4.29 in Section 4.4.2. The two
pipeline stages B1 and B2 are unbalanced, so we integrate the module moduleC into stage
B2 while leaving the stage B1 unchanged. Resulting circuit is shown in Figure 4.33.

A1

2

4

3

5

6
Y

211
Y

211
Y

Y

Y

26
Y

Y-1

26
Y

WGP
16

1

a
a1

b
b1

c
c1

b2

h

e

d

f

c

Tr()

Tr()

t1

t2

a

xd

c1

g
g1

g

c

h

g

MNT>>11

MTN

MNT>>1

MNT

Reg
2

h

Reg
1

c

Reg
3

g

M16

B
M16

B1 B2

WGT

211
Y

26
Y

Y-1

xd

Figure 4.33: Module moduleBC - merging moduleB and moduleC

This implementation has two advantages: it saves 2 pipeline stages and the values WGP-16(Xd)
and WGT-16(Xd) are both available at the end of B2. Implementation results for moduleBC

143

are given in Table 4.19, together with implementation results of moduleBC8 and moduleBC4,
and (repeated) moduleB results. Comparing the new module moduleBC to moduleB we
find the two modules practically equivalent, with decreased number of FFs but a slight
increase in the number of slices. We did save 2 pipeline stages and are now able to output
WGP-16(Xd) and WGT-16(Xd) at the end of the pipeline.

Module moduleBC8 - pipelining at the M8 level

As mentioned earlier, the effects of pipelining at the M8 level are nullified by the use of
atomic M16 multipliers in the moduleBC. Hence, we decide for a finer granularity and instead
of using two parallel M16 multipliers in the first stage, we break them up and move the
pipeline stage between M8 and Mµ modules, as can be seen in Figure 4.34. The input values
for the six M8 multipliers are still selected by the same four multiplexers and the control
signal sel. Figure 4.34 also shows the additional logic that splits the selected values into
two 8-bit parts (denoted LO and HI) and XORes the values for multipliers A2 and B2 (refer
to Figure 4.21(b) in Section 4.4.1). There are six 8-bit registers to hold the results of six
8-bit multipliers M8 (the multipliers and registers are marked A1,A2,A3 and B1,B2,B3 for
reference to M16 multipliers A and B used in moduleBC). The 16-bit registers are colored
grey in Figure 4.34 for better visibility.

Instead of simply inserting another pipeline stage between the M8 and Mµ blocks and having
a three stage pipeline, we merge the rest of the multiplication with the “old” moduleBC

stage B2 - in Figure 4.34 we can see the “old” pipeline stage shown with a dashed grey
vertical line. In stage B2 we see two Mµ blocks, marked µA and µB. The results of these
two modules are XORed with other partial 8-bit products from stage B1 and the final 16-bit
products a and b (or a1 and b1 in the second round) are recomposed by concatenating
corresponding LO and HI halves. The two products are then used in the exact same way
as in moduleBC. Since the computation of WGP-16(Xd) always needs one of the products
(inputs to multiplexer 6), we moved the multiplexers 5 and 6 over into the second pipeline
stage B2. The rest of the circuit in stage B2 remains unchanged.

In fact, all we did was to move the moduleBC stage border between the M8 multipliers and
the Mµ blocks. Implementation results for this module are listed in Table 4.19. We can
see improvement in area and time complexity compared to both moduleB and moduleBC.
Note that implementation results of moduleA pipelined at M8 /IB level indicate that we
can expect better performance from moduleB as well. To achieve it, we could proceed as
follows: first we insert a pipeline stage border right at the inputs of the six M8 multipliers
(to separate the overhead created by the multiplexers and the routing circuit splitting

144

A

a

back1

back2

B1

M8
A11

2

4

3

back1

back2

xd

m1

m2m2

m
2 L

O

HI

m1LO

m
1 H

I

16

8

8

16 8

m3

m4m4

m
4 L

O

HI

m3LO

m
3 H

I

16

8

8

16 8

M8
A2

M8
A3

M8
B1

M8
B2

M8
B3

reg
A1

reg
A2

reg
A3

reg
B1

reg
B2

reg
B3

reg
6

reg
X

b
MNT

MNT

TNM
1>>1

1>>

Reg
2

Reg
1

5

6

back3

xd

168

168

8

8

TNM
WGP

1

Reg
3back3

WGT

B2

b
H

I
a

H
I

a LO

LOb

16

1

B

8

8

8

8

8

8

8

8

8

8

8

8

1616

16

b

1b

c

1c

a

1c

211

Y26

-1

Y

Y

Y

Y

g

1g

d
Tr()

Tr()

g

e

f

t1

t2

c

2b

h

g

c

Figure 4.34: Module moduleBC8 with two pipeline stages and with grey vertical line indicating the old
pipleine stage border

the operands for the multipliers), then insert another stage border with registers storing
the 16-bit products after the Mµ blocks but pushing the multiplexers 5 and 6 over this
stage border into the last (that is fourth) pipeline stage. We decide to keep a two-stage
moduleBC8 module and implement another version of moduleBC, pipelined at the M4 level.

Module moduleBC4 - pipelining at the M4 level

The moduleBC4 module was pipelined at the M4 level. It results in a six stage pipeline with
following pipeline stages:

1. the initial multiplexers and and the routing circuit splitting the operands for the multipliers

2. the 18 parallel M4 modules

3. the 6 parallel Mλ modules

4. the 2 parallel Mµ modules

5. the multiplexers 5 and 6 and the shift modules

6. final trace computation (moduleC)

The three stages for the M16 multiplications, that is stages 2, 3 and 4, contain two parallel
M16 ’s pipelined as shown in Figure 4.23(c). At the end of stage 5, the values c, h and g

145

that are being reused for the WGP-16(Xd) computation are ready. The value WGP-16(Xd)
itself is also ready at the end of stage 5 in the second round of computation. Stage 6 is
actually the moduleC, but was implemented without the stage border: we have seen in
Section 4.4.2 that moduleC is not a critical module (see implementation results in Table
4.16) Implementation results for the new module are listed in Table 4.19: it is the most
promising moduleBC implementation so far.

FPGA Results T
A2

Module #FFs #LUTs #Slices t [ns]

moduleB 196 665 220 7.600 2.7

moduleBC 147 688 225 7.624 2.6

moduleBC8 154 575 208 7.000 3.3

moduleBC4 503 472 165 4.428 8.3

Table 4.19: Module moduleBC pipelined at different levels of the tower F(((22)2)2)2 - implementation results

We can immediately see the big difference between the number of slices used by moduleBC4
in comparison to all other versions of moduleBC. The main reason for such a big difference
is the peculiarity of Xilinx-ISE; 40% of LUTs in module moduleBC4 use both outputs,
while this percentage drops to 13% for module moduleBC8, and below 10% for module
moduleBC. As expected, the module moduleBC8 showed better results than moduleBC. So
far the M4 I4 pipelining resulted in the shortest period but the T

A2 metric was in favor of
the M8 /I8 pipelining with smaller area. For the first time, the T

A2 metric is in favor of
M4 pipelining.

Module WGP T with different vesions of module A and moduleBC

Now we inspect the WGP T module with different versions of moduleA and moduleBC. WGP T
modules are named so that they reflect which submodules were used; moduleA16 2 BC8 for
example indicates that submodules moduleA M16 I8 2 and moduleBC8 were used. Based on
the implementation results for different variants of moduleBC (see Table 4.19) we choose
moduleBC8 for implementation with both moduleA M16 I8 2 and moduleA M8 I8 2. For
pipelining at the M4 level we have only one possibility. Following modules were implemented
(we include moduleABC16 and moduleABC8 from Section 4.4.2 as a reference point):

• WGP T ABC16: moduleA M16 I8 ⇒ moduleB ⇒ moduleC2

• WGP T A16 2 BC8: moduleA M16 I8 2 ⇒ moduleBC8

146

• WGP T ABC8: moduleA M8 I8 ⇒ moduleB ⇒ moduleC2

• WGP T A8 2 BC8: moduleA M8 I8 2 ⇒ moduleBC8

• WGP T A4 2 BC4: moduleA M4 I4 ⇒ moduleBC4

FPGA Results T
A2

Module #FFs #LUTs #Slices t [ns]

WGP T ABC16 605 1322 488 8.663 4.9

WGP T A16 2 BC8 467 1262 474 6.601 6.7

WGP T ABC8 671 1243 444 8.191 6.2

WGP T A8 2 BC8 535 1195 436 6.519 8.1

WGP T A4 2 BC4 1129 1128 401 4.939 12.6

Table 4.20: Module WGP T , pipelined at different levels of the tower F(((22)2)2)2 - implementation results

Both optimized WGP T modules WGP T A16 2 BC8 and WGP T A8 2 BC8 show significant re-
duction in clock period in comparison with the initial WGP T ABC16 and WGP T ABC8 respec-
tively. The area reduction is not so significant: we saved 14 slices using the WGP T A16 2 BC8

and 8 slices with WGP T A8 2 BC8. The impact of module moduleBC4 is clearly visible:
theWGP T A4 2 BC4 is not only the fastest but also the smallest WGP T module.

4.4.4 The FSM

Finally, we are ready to discuss the FSM running the two submodules (LFSR and WGP T)
in detail. We have already mentioned a few things about the FSM:

i. the cipher operates in three phases: the loading phase, initialization phase and run-
ning phase (see Figure 2.5 in Section 2.4.1);

ii. during initialization phase the LFSR is updated 64 times (see Table 2.2 in Section
2.4.1);

iii. LFSR is controlled by three signals: lfsr en, load and init (see Table 4.1 in
Section 4.1 or Table 4.22 below);

147

iv. a control signal sel is needed to control the multiplexers in moduleB (see Table 3.11
in Section 3.4.3);

v. we only allow to stop the keystream during the running phase - the control signal ce
takes in top level input value ce i only during the running phase, otherwise it is set
to 1 (Section 4.1);

The loading phase
The diagram in Figure 2.5 from Section 2.4.1 shows three phases of WG-16, the loading
phase, the initialization phase and the running phase. For the rest of this section, we will
use the term “phase” when referring to the diagram in Figure 2.5 and the term “state”
when referring to the actual implementation of the FSM. The first change to the simpli-
fied FSM in Figure 2.5 is adding the idle state and a start input, that causes the state
transition to loading phase. The loading phase is straightforward: in M = 32 consecutive
clock cycles 32 key/IV values are loaded into the LFSR serially. We need a single counter
l count to leave the loading phase (state load in Figure 4.36) after M clock cycles. Re-
call from Section 4.1 that the lfsr en signal stays active during the entire loading phase,
causing the LFSR to shift in every clock cycle, i.e. the LFSR steps coincide with the clock
cycles. The values of the remaining two control signals load and init are set to values 1
and 0 respectively, to allow the input from the data input port DIN to be loaded into the
LFSR, see Table 4.22.

The initialization phase
The most complex part of the FSM is related to the initialization phase. The integrated
hardware architecture WGP T, which implements both WGP-16(Xd) and WGT-16(Xd) com-
putation, is basically a P + S + T stage pipeline, where P denotes the number of pipeline
stages in moduleA, S denotes the number of stages in moduleB and T the number of
stages in moduleC. During the initialization the LFSR shifts only once with each com-
puted WGP =WGP-16(Xd) value, and a new WGP is available after P + 2S clock cycles;
the plus 2S is caused by reusing the components. Let us first describe how to simply
reuse the multipliers on the example moduleBC (see Figure 4.33); the case when S = 2 (this
is the case with modules moduleB, moduleBC, moduleBC8, the only exception is moduleBC4).

� Case study - module moduleBC
As was just mentioned, a new WGP is available every P +4 clock cycles. Instead of storing the values for the
second round of computation if moduleBC, we just resend the same input value X 3 times with different
control signals sel. Let Xi represent the value X sent in cycle i, and let the pair (X,sel) indicate the
value and its corresponding select signal. In three consecutive clock cycles, we send the values (X1, 0),
(X2, 0) and (X3, 1) through the pipeline, see Table 4.21. Note that X1, X2 and X3 are the same finite

148

field element, but enter the pipeline in different clock cycles. The bubble © in Table 4.21 belongs to the
previous WGP computation and the “dont care” element − belongs to the same WGP computation.

B1 B2

P + 1 (X1, 0) (©, 0)

P + 2 (X2, 0) (X1, 0)

P + 3 (X3, 1) (X2, 0)

P + 4 (−, 0) (X3, 1)

Table 4.21: Passing the same value three times

After P clock cycles, module B gets the following input values, computed from X1: Xd, Y 26 , Y 211 , Y −1.
We purposely omit the subscript 1 to emphasize that inputs X1, X2 and X3 produce the same moduleA
outputs, i.e. the same values will appear on the moduleBC inputs in three consecutive clock cycles. Actually
we do not really care what happens in clock cycle P + 2 with parcel (X2, 0); the value could easily be
another bubble propagating through the pipeline. Sending the value (X2, 0) in the second clock cycle
simplifies the FSM. In clock cycle P + 3 (that is at the beginning of the second round of WGP-16(Xd)
computation in stage B1) the value sel=1 enables the values on signals back1, back2, and back3 to be
used in stage B1. These three signals route the values from registers reg1, reg2 and reg3 respectively.
In cycle P + 3 computed products are XORed to the value c1. Multiplexers 5 and 6 now pass through the
values g and c1, which are XORed to obtain the value g1. In cycle P +4 this value is converted to its normal
basis representation and passed to register regWGP; the calculation of WGP-16(Xd) is hereby finished. �

To reuse the components in moduleB we need to pass the same input X through the
pipeline S times with the control signal sel=0 (that is input (Xi, 0) for i = 0, . . . , S − 1)
and then one more time with control signal sel=1 (that is input (XS, 1)). We do not
really care about the computations in WGP T for the remaining P + (S − 1) clock cycles:
we could choose to send bubbles, but this would require a 16-bit wide 2-to-1 multiplexer
on the input to moduleA (the multiplexer would pass value s31 in states initI, runI and
runII and the bubble otherwise). We removed registers at the beginning of WGP T and
consider s31 as a part of the pipeline: inserting a multiplexer at this pint would add logic
to the first pipeline stage and increase the clock period. Instead, we just keep sending
the same value X, but will refer to this “don’t care” X as “bubble”, marked ©, for the
remaining discussion. The WGP T data input is hard-wired to LFSR state s31, which is
holding the value X. As just mentioned, we consider the LFSR stage s31 as a part of the
pipeline, which adds another “bubble” cycle before the new input value for WGP T module
is available, resulting in P + S bubbles. Based on valid inputs vs. bubbles, we split the
initialization phase into two states:

• initI: new inputs (Xi, 0) for i = 0, . . . , S − 1 and (XS, 1), where X is the value in
LFSR state s31

• init II: filling P + S bubbles into WGP T pipeline: (©, 0)

149

We need 2M = 64 initialization steps to complete the initialization phase. The first valid
WGT =WGT-16(Xd) will be available after P + S + T clock cycles. We start the running
phase, but break it into two states:

• runI: new inputs from LFSR state s31, but no output

• runII: normal running phase producing valid WGT-16(Xd) outputs

By setting the number of clock cycles spent in runI to P + S + T − 1, we produce the
first valid output keystream in the first clock cycle of runII. From this point on, the WG

module produces a new keystream bit every clock cycle, unless the keystream is intention-
ally paused by ce i input. By setting ce i=0, the LFSR stops and the WGP T pipeline
outputs another P + S + T keystream bits before setting the output valid signal o v to
0. In the running phase the signal sel is set to 0 for WGT-16(Xd) computation. Control
signals load and init are both set to 0, so now the LFSR operates without the WGP input,
updating the state s31 only from feedback f, as is indicated in the column a in Table
4.22. Top view of the module WG with all three components (the LFSR, the WGP T module
and the FSM) and corresponding control signals can be seen in figure 4.35. The inputs of
WG are the 1-bit control signals clk, reset, ce i and start, and the 16-bit data input
DIN used for the key/IV loading. The two 1-bit output signals are the keystream and the
key valid bit. The operation of multiplexers 1 and 2 was already discussed in Section 4.1
and is also clear from the Table 4.22. The multiplexer 3 disconnects the WGT bit from the
keystream output when o v=0.

2
1 a s31 s25 s16 s7 s0

f

w
DIN

init

load

lfsr_en reset
clk

WGP_T

16

WGP

1

WGT

sel

reset
clk

1

o_v

16

16
16 16 16 16

16

init

load

sel

ce_o

ce_o

FSM

LFSR
reset
clk

ce_i
start

1 doneWGT

3
1

keystream

1

key_valid

0

16

2743ω

o_v

Figure 4.35: The WG-16: modules LFSR, WGP T and FSM connected

150

target submodule

LFSR WGP T

phase state lfsr en load init a† ce o sel o v

idle idle 0 0 0 f 0 0 0

loading load 1 1 0 DIN 0 0 0

initialization
initI 0 0 1 w 1 0‖0‖1 0

initII d 0 1 w 1 0 0

running
runI ce i 0 0 f ce i 0 0

runII ce i 0 0 f ce i 0 1

Table 4.22: Six states for the WG-16 operation - values of the control signals

DIN - topl-level data input f - LFSR feedback
ce i - top-level chip enable input w - f + WGP

d - the doneWGP signal † - the LFSR input

The state initI is controlled with a counter s count: when s count=S the input (XS, 1)
enters WGP T pipeline and FSM moves to state initII where s count is reset. In state
initII we send P +S bubbles into WGP T by setting the control signal sel to 0 and letting
the same input X roam through the pipeline. A counter p count increments every clock
cycle. We treat the s31 as part of the pipeline (either last or first). Signal lfsr en is tied
to signal d which is only set when the new WGP-16(Xd) value is ready (denoted doneWGP

in the legend for Table 4.22 and in Figure 4.2 and Table 4.1 in Section 4.1) and that is when
p count = P + (S − 1). At the same time, a decision is made whether to return to state
initI and start the next initialization step or jump to first step of running phase (runI).
A counter count is used to keep track of number of initialization steps: if count < 2M − 1
continue initialization, if count = 2M − 1 the 64 steps of initialization are completed and
we start the running phase. Note that counter p count is reset in first initialization stage,
that is the state initI. At the transition from initialization phase to running phase, we
leave the counter counter p count running and need to clear another P + S + T bubbles,
therefore we set the condition for transition to the state runII to 2(P + (S − 1)) + T + 1.

Implementation results for the FSM module for different parameters of P, S and T are listed
in Table 4.23. We can see that apart from a different number of registers (due to different
length of counters) the three modules are almost identical in terms of complexity. The FSM

is indeed very simple and is not a critical component in the WG-16.

151

start='1'

l_count = M-1

l_count < M-1

reset='1'

s_count = S

s_count < S
p_count = P+(S-1)
 & count < 2M-1

p_count = P+(S-1)
 & count = 2M-1

p_count < P+(S-1)p_count < 2(P+(S-1))+T+1

p_count = 2(P+(S-1))+T+1

initI

initII

runII

runI

idle load

Figure 4.36: Six states for the WG-16 operation - the state transition diagram

Parameter FPGA Results

P S T #FFs #LUTs #Slices t [ns]

7 2 0 28 42 13 2.460

9 2 0 28 40 13 2.730

16 5 1 31 43 13 2.534

Table 4.23: Module FSM with different parameters P, S and T - implementation results

152

� Case study - module WG A16 BC8 initialization phase

In Table 4.24 we show the computation of the first WGP-16(Xd) value in the initialization phase of the
WG A16 BC8 with FSM parameters P = 7, S = 2 and T = 0. The columns are the consecutive clock cycles
(denoted clk), the clock cycle 0 denoting the last cycle of the loading phase. The first row is the LFSR
state s31: that is the value that enters the pipeline, i.e. the parcel moving through the pipeline. The
next three lines give the corresponding control signals for the LFSR: (load, init, lfsr en)=(1,0,1) for
load and (load, init, lfsr en)=(0,1,0) for initI. When the control signal changes (is the value in the
row changes), the change is marked explicitly. When the signal holds its value, we mark it with ◦ if the
unchanged value is 0 and with • if the unchanged value is 1. For values of the signals that are more than
1-bit wide we use . . . to indicate the value had not changed. The © is again used for bubbles. In row
“input” we can see the current input to the pipeline. The rows below, separated with a double horizontal
line, are the contents of the interstage registers: the row A1 shows the parcel in the registers between the
first and the second pipeline stage in moduleA, that is the stable value that is currently manipulated in
the second stage of the pipeline. A single vertical line marks the end of moduleA and the beginning of
moduleBC8. Another double horizontal line marks the end of the pipeline registers. Below this line we can
see the remaining FSM signals:

• the state signal

• the s count counter (counting from 0 to S)

• the control signal sel

• the p count signal (counting to P + (S − 1))

• the count signal

• the signal d for the lfsr en update

Note that sel is an output of the FSM, included at this spot for clarity because it depends on the value of
the s count counter, while the remaining signals at the bottom of table 4.24 are internal to the FSM. The
signal s count is implemented as one-hot (S + 1)-bit counter, but for visibility we listed the position of
the bit 1 within the counter. The value sel is hardwired to the bit S in s count.
As mentioned before, one initialization step takes P + 2S clock cycles, that is 12 clock cycles for this

example. The first WGP value is computed from the input α: in state initI (clock cycles 1,2 and 3) the
values (α1, 0), (α2, 0) and (α3, 1) are sent through the pipeline. The transition to initII phase occurs when
s count = 2. In clock cycle 4 the s count is reset and the counter p count is incremented. The first WGP
value is available on the WGP T output in clock cycle 12, where also the signal d is set to 1 (this signal
is tied the the lfsr en signal) and the value p count = 8 triggers transition to state initI, because the
current value of count is 0. At the same time count is incremented and its new value is visible in clock
cycle 13. These 12 clock cycles, corresponding to one initialization step are separated with double vertical
lines on the left and on the right. The new input to the WGP T β is available in the 13th clock cycle - this
is the beginning of the next initialization step. �

153

cl
k

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7
..

.

s
3
1

©
α

α
α

α
α

..
.

..
.

..
.

..
.

..
.

..
.

α
β

β
β

β
β
..

.
l
o
a
d

1
0

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦.

..
i
n
i
t

0
1

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•
•.

..
l
f
s
r
e
n

1
0

◦
◦

◦
◦

◦
◦

◦
◦

◦
0

1
0

◦
◦

◦
◦.

..
in

p
u
t

α
1

α
2

α
3

©
©

©
©

©
©

©
©

©
β
1

β
2

β
3

©
©

..
.

A
1

©
α
1

α
2

α
3

©
©

©
©

©
©

©
©

©
β
1

β
2

β
3

©
..

.
A

2
©

α
1

α
2

α
3

©
©

©
©

©
©

©
©

©
β
1

β
2

β
3
..

.
A

3
©

α
1

α
2

α
3

©
©

©
©

©
©

©
©

©
β
1

β
2
..

.
A

4
©

α
1

α
2

α
3

©
©

©
©

©
©

©
©

©
β
1
..

.
A

5
©

α
1

α
2

α
3

©
©

©
©

©
©

©
©

©
..

.
A

6
©

α
1

α
2

α
3

©
©

©
©

©
©

©
©

..
.

A
7

©
α
1

α
2

α
3

©
©

©
©

©
©

©
..

.
B

1
©

α
1

α
2

α
3

©
©

©
©

©
©

..
.

B
2

©
α
1

α
2

α
3

©
©

©
©

©
..

.

s
t
a
t
e

lo
a
d

in
it
I

..
.

..
.

in
it
II

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

in
it
I

..
.

..
.

in
it
II

..
..

..
s
c
o
u
n
t

0
0

1
2

0
..

.
..

.
..

.
..

.
..

.
..

.
..

.
..

.
0

1
2

0
..

..
..

s
e
l

0
0

0
1

0
◦

◦
◦

◦
◦

◦
◦

◦
0

0
1

0
◦.

..
p
c
o
u
n
t

0
0

0
0

0
1

2
3

4
5

6
7

8
9

0
0

0
1
..

.
c
o
u
n
t

0
..

.
..

.
..

.
..

.
..

.
..

.
..

.
..

.
..

.
..

.
..

.
0

1
..

.
..

.
..

.
..

..
..

d
0

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

0
1

0
◦

◦
◦

◦.
..

T
ab

le
4
.2

4
:

M
o
d

u
le

W
G
A
1
6
B
C
8

-
b

eh
av

io
r

in
in

it
ia

li
za

ti
o
n

p
h

a
se

u
si

n
g

p
a
ra

m
et

er
s:
P

=
7,
S

=
2

a
n

d
T

=
0

154

4.4.5 The WG-16 module

The following top-level WG-16 modules were implemented:

• WG A16 BC8 with WGP T A16 2 BC8 (moduleA M16 I8 2 ⇒ moduleBC8)

• WG A8 BC8 with WGP T A8 2 BC8 (moduleA M8 I8 2 ⇒ moduleBC8)

• WG A4 BC4 with WGP T A4 2 BC4 (moduleA M4 I4 ⇒ moduleBC4)

Implementation results for the three WG-16 modules are listed in Table 4.25.

FPGA Results ASIC Results

of # of # of T
A2

Area T
A2

Module FFs LUTs Slices t [ns] [GE] t [ns]

WG A16 BC8 647 1450 441 7.495 6.8 12215 1.89 3.5

WG A8 BC8 715 1389 461 7.129 6.6 12695 1.82 3.4

WG A4 BC4 1388 1364 476 4.504 9.8 14628 1.46 3.2

Table 4.25: Top module WG-16, pipelined at different levels of the tower F(((22)2)2)2 - implementation
results

As expected, the WG A4 BC4 using the WGP T pipelined at the M4 /I4 level results in the
FPGA implementation with the shortest clock period, and although it is the biggest WG-
16 module it shows the best T

A2 . We are a bit surprised at the results for the other two
modules, WG A16 BC8 and WG A8 BC8: based on the FPGA implementation results for the
corresponding two WGP T modules (the optimized version in Table 4.20), we would expect
the WG-16 using the M8 /I8 level pipelining to outperform the M16 /I16 level pipelining. The
clock period of WG A8 BC8 is shorter, but due to area, the T

A2 metric favors the WG A16 BC8

module. We might be surprised that the number of slices used increases by the lower level
of pipelining. Recalling the results for the WGP T modules (Table 4.20), where we observed
the decreasing numbers of slices, and since the changes in the FSM for each WGP T and
negligible and the LFSR stays he same, this increase appears inconsistent. Number of
slices for area cost is sometimes not the best metric: the number of LUTs is decreasing
with finer pipelining in both Table 4.20 and Table 4.25, and considering the 145 LUTs for
the LFSR (Table 4.2) and approximately 40 LUTs for the FSM (Table 4.23), the number
of LUTs for the WG-16 modules in Table 4.25 are as expected. The differences in the
number of slices used are most likely due to place and route. If considering the clock
period, ASIC results draw a similar picture: the shortest clock period was achieved by

155

WG A4 BC4, and the other two modules are very close together. But the area gap between
the FPGA modules is insignificant in comparison with the differences between the ASIC
implementations: we find an area increase of approximately 2000 GEs when changing from
the M8 /I8 level to the M4 /I4 level of pipelining. This area increase is also captured by the
T
A2 metric in the last column of Table 4.25, that was obtained using the ASIC results.
Based in T

A2 , the most efficient ASIC implementation is the module WG A16 BC8 us-
ing the pipeline WGP T A16 2 BC8 composed of moduleA pipelined at the M16 /I8 level and
moduleBC pipelined at the M8 level. That is, the multipliers used in the decimation were
not pipelined, and the multipliers that had to be reused were pipelined at the M8 level. The
big difference in area is caused by the increased number of registers. In the FPGA, each
LUT output can be paired with a FF for free, and the long pipeline penalty is not visible
(yet). The M4 / I4 level pipelining is the most optimal choice for the FPGA, but at the
same time the worst choice for the ASIC implementation.

An important consideration for the choice of the WG-16 module is also the number of
pipeline stages (i.e. the depth of the pipeline). The initialization phase namely takes
64 · (P + 2S) clock cycles. The depth of the pipeline, data-rate during initialization, mea-
sured in WGP per cycle and the total number of clock cycles needed for the initialization are
given in table 4.26. Based on implementation results listed in Table 4.25 and on a shorter
initialization phase of WG A16 BC8, the WG A16 BC8 is a better choice than WG A8 BC8. How-
ever, if the initialization phase is negligible compared to the length of the keystream needed,
once initialized the WG A4 BC4 gives the highest frequency.

depth of data-rate # cycles

pipeline (init) for

Module as P + S + T [WGP/cycle] init

WG A16 BC8 7+2+0 1
11 704

WG A8 BC8 9+2+0 1
13 832

WG A4 BC4 16+5+1 1
26 1664

Table 4.26: Top module WG-16, pipelined at different levels of the tower F(((22)2)2)2 - pipeline length and
initialization phase

156

4.5 Tower construction F(24)4
∼= F216 - implementation

In this section we present implementation of module WGP T using tower construction F(24)4 ,
that was described in Section 3.5.1. First part of this section presents implementation of
basic building blocks for each level of the tower and the second part the implementation
of module WGP T itself.

4.5.1 Analysis of Basic Building Blocks

Arithmetic operations in F24.

Basic arithmetic operations needed for WGP T are multiplication and inversion. We omit
squaring, because it is only needed in inversion block I4 , and since that module uses ex-
ponentiations to powers of 2 as well, we decide to perform squaring by transitioning to
normal basis representation of F216 and shifting. At the end of this section we present
some auxiliary submodules, that will be needed on the higher level of the tower.
For details about the finite field F24 , that was constructed as an extension of degree 4 using
the AOP e(x) = x4 + x3 + x2 + x+ 1, refer to Section 3.5.1.

Multiplication in F24: Let A = a0α+a1α
2+a2α

4+a3α
3 and B = b0α+b1α

2+b2α
4+b3α

3,
where ai, bi ∈ F2, for i = 0, 1, 2, 3. The product C = AB in F(22)2 is computed as follows
(relationships α6 = α, α7 = α2 and α8 = α3, derived from e(α) = 0, were used below):

AB = (a0α + a1α
2 + a2α

4 + a3α
3)(b0α + b1α

2 + b2α
4 + b3α

3)

= (a1b2 + a2b1 + a3b3)α

+ (a2b3 + a3b2 + a0b0)α
2

+ (a3b0 + a0b3 + a1b1)α
4

+ (a0b1 + a1b0 + a2b2)α
3

+ (a0b2 + a2b0 + a1b3 + a3b1)α
5

In the expression above the last component α5 was left unreduced to aid the implemen-
tation: due to the AOP used in field construction, we find α5 = 1 = α + α2 + α4 + α3,
which means that the value F = a0b2 + a2b0 + a1b3 + a3b1 will be added to every other

157

component of the product. Let us define conv(j,k)= ajbk + akbj and s(n)= anbn and
rewrite coefficients of the product C = AB = c0α + c1α

2 + c2α
4 + c3α

3:

c0 = conv(1, 2) + s(3) + F

c1 = conv(2, 3) + s(0) + F

c2 = conv(3, 0) + s(1) + F

c3 = conv(0, 1) + s(2) + F

So for i = 0, 1, 2, 3, the coefficient ci is computed as

ci = conv((i + 1) mod 4, (i + 2) mod 4) + s((i + 3) mod 4) + F,

where F can be obtained using the same function conv

F = conv(0, 2) + conv(1, 3).

We obtained a Massey-Omura like multiplier (for details see [98]), that uses the same
function with different (shifted) inputs for all components of the product. The circuit for
computation of a single coefficient ci is shown in Figure 4.37. The grey block represents the
conv(j,k) computation and s(n) is the AND gate below the conv block. The following
index notation was used in Figure 4.37: j = (i + 1) mod 4, k = (i + 2) mod 4 and
n = (i+ 3) mod 4.

ci

an
bn

F

ak
bj

aj
bk

Figure 4.37: Block M4 in F24 - computation of coefficient ci

Let us look at the gate count to compare this M4 with M4 from tower construction F(((22)2)2)2

in terms of AND and XOR gates and in terms of NAND gates (columns 5 and 6 of Table 4.27),
because mere comparison of AND and XOR gates becomes difficult otherwise. For details
see Appendix E. Inspecting the gate count, we find that this M4 has a bigger area, but a

158

M4 Gate Count FPGA Results

Tower Area Critical Path Area Critical Path # of # of Delay
Field NA NX Delay - TA and TX N Delay - T LUTs Slices [ns]

F(24)4 16 15 TA + 3TX 92 11 10 4 7.781

F(((22)2)2)2 21 9 TA + 5TX 66 14 11 5 8.517

Table 4.27: Comparison of M4 blocks using different tower constructions

F(24)4 vs. F(((22)2)2)2 (Section 4.4.1) in terms of gate count and actual FPGA implementation results:
NA, TA area and delay of one AND gate, NX , TX area and delay of one XOR gate,

N, T area and delay of one NAND gate

shorter delay. However, FPGA implementation results in the last three columns of Table
4.27 show that current M4 has an advantage in terms of area and delay, indicating successful
optimizations done by Xilinx ISE. The difference between the modules is minimal.

Inversion in F24: Using the generalization of Fermat’s little Theorem we can compute
the inverse of an element A ∈ F24 as

A−1 = A24−2 = A14 = A2 · A4 · A8 = A2 · A22 · A23 .

The three factors above can be obtained by a right cyclic shift for 1, 2 and 3 positions
respectively. Two blocks M4 are used to obtain the inverse. The circuit of block I4 can be
seen in Figure 4.38

MNT

MNT

MNT

M4M4 A-1

A

>>

>>

1

3

>>2MNT

A2

A4

A8

Figure 4.38: Inversion block I4 in F24

The shift operations are considered for free, if we disregard the transition matrices, since
they are a simple rewiring of the inputs. But a single multiplier occupies the area of 92
NAND gates and has a delay of 11 NAND gates. We end up with area od 184 and delay of
22 NAND gates for inversion block I4 . This area complexity looks terrifying in comparison
with the multiplier and even worse when compared with area of 50 NAND gates and delay

159

of 22 NAND gates for module I4 form tower construction F(((22)2)2)2 .
The big area complexity motivates some additional optimization that was achieved by
computing the two products; since F24 is a small field, we can afford such computational
effort. We start by computing the product A2 · A4:

A2 · A4 = (a3α + a0α
2 + a1α

4 + a2α
3)(a2α + a3α

2 + a0α
4 + a1α

3)

= (a1(a2 + a3) + a0)α + (a2(a0 + a3) + a1)α
2

+ (a3(a0 + a1) + a2)α
4 + (a0(a1 + a2) + a3)α

3

+ (a0a3 + a0a1 + a1a2 + a2a3)α
5

Once again, the component α5 was left separated to ease the rest of the computation. The
second step is multiplying the obtained product by A8 = a3α + a0α

2 + a1α
4 + a2α

3 and
using the relationship α5 = α4 + α3 + α2 + α. Note that coefficients a0, a1, a2, a3 ∈ F2,
thus the addition ai + 1 inverts the bit ai and we can freely use notation ai = ai + 1. The
following relationships for the coefficients of the inverse A−1 = i0α + i1α

2 + i2α
4 + i3α

3

were obtained:

i0 = (a3 + a0)a1a2 + a2a3a0

i1 = (a0 + a1)a2a3 + a3a0a1

i2 = (a1 + a2)a3a0 + a0a1a2

i3 = (a2 + a3)a0a1 + a1a2a3

Again, we are able to find a pattern: ii = (ai3 + ai0)ai1ai2 + ai2ai3ai0, where i0 = i,
i1 = (i+ 1) mod 4, i2 = (i+ 2) mod 4 and i3 = (i+ 3) mod 4. In terms of FPGA, the
equations show that each output bit of the inversion block is a Boolean function of 4 input
bits, hence 1 LUT for 2 output bits using both LUT outputs O5 and O6. The part of the
inversion block I4 circuit for obtaining one coefficient is shown in Figure 4.39. Now we can
estimate the area and the delay of the new inversion module (note that ai indicates a NOT

gate, and to avoid further complications in gate count, we will just give the gate count
in terms of NAND gates: we obtain the area/delay of 19/9 NAND gates for one coefficient of
the inverse ii, which gives a total area of 76 and delay of 9 NAND gates. Not only is the
optimized inversion block smaller than the non-optimized version, it also has a significantly
shorter propagation delay. We also notice better results compared with M4 from this tower
construction, and a significantly shorter delay, but an increase when compared to the in-
version module I4 from tower construction F(((22)2)2)2 (please refer to Appendix E Tables

160

E.2 and E.3 for details). The FPGA implementation results for the original I4 module (de-
noted I4 - bad) and the optimized module (denoted I4 - good) can be seen in Table 4.28.
We notice the modules are practically identical: a closer inspection of LUT contents re-
veals Xilinx ISE was able to perform the same optimizations as our pen-and-paper method.

ii

ai3
ai4

ai1
ai2

Figure 4.39: Inversion block I4 in F24 - computation of coefficient ii

Auxiliary computations in F24: Other basic building blocks that will be needed for
arithmetic in upper level of the tower are multiplications of A = (a0, a1, a2, a3) ∈ F24 with
different constants. Recall from Section 3.5.1 that α is the normal element and λ = α+α3

the generator of F24 . These auxiliary submodules needed are the following:

• Aλ2 = a3α + (a0 + a2 + a3)α
2 + (a1 + a2)α

4 + (a0 + a1 + a2 + a3)α
3

• Aλα2 = (a0 + a1 + a3)α + a2α
2 + (a0 + a1 + a2)α

4 + (a1 + a3)α
3

• Aλα3 = (a0 + a1 + a2)α + (a2 + a3)α
2 + (a0 + a2 + a3)α

4 + (a0 + a1)α
3

• Aλ2α4 = (a0 + a2)α + (a0 + a1 + a2)α
2 + a3α

4 + (a1 + a2 + a3)α
3

All of four multiplications above can be implemented with a circuit that has a delay of 2
and area of 4 XOR gates (i.e. delay 6 and area of 16 NAND gates). An exception is the
module for multiplication with λ2, which has the area of 5 XOR gates. Separate modules for
the above computations prove to be more efficient than using a cascade of two modules.
Let us demonstrate this with an example: using a module for multiplication by λα is more
efficient than multiplication by λ followed by multiplication by α, as can be seen from the
equations for all three multiplications given below:

• Aλ = (a1 + a2 + a3)α + (a0 + a1)α
2 + (a0 + a1 + a2 + a3)α

4 + a2α
3

• Aα = a2α + (a0 + a2)α
2 + (a2 + a3)α

4 + (a1 + a2)α
3

• Aλα = (a0 + a1 + a2 + a3)α + a0α
2 + (a0 + a1 + a3)α

4 + (a2 + a3)α
3

161

Multiplication with λ and multiplication with α require a delay of 2 and area of 4 XOR

gates each, giving a delay of 4 and area of 8 XOR gates in total. At the same time, the
multiplication with λα has a delay of 2 and area of 4 XOR gates. For sure, synthesis tools
would perform this optimization as well.

Arithmetic operations in F(24)4

We now proceed to the arithmetic in the top level of the tower, and discuss multiplication
and inversion in F(24)4 . A discussion of operations such as squaring or exponentiation to
powers of 16 is not necessary, since this is the top level and those operations can be carried
out by conversion to normal basis representation and shifting.

Multiplication in F(24)4: The circuit for the product C = AB, where A,B ∈ F(24)4 ,
A = a0β + a1β

16 + a2β
256 + a3β

4096, B = b0β + b1β
16 + b2β

256 + b3β
4096, with ai, bi ∈ F24 ,

i = 01, 2, 3 was derived as follows:

(a0β + a1β
16 + a2β

256 + a3β
4096)(b0β + b1β

16 + b2β
256 + b3β

4096)

= a0b0β
2 + (a0b1 + a1b0)β

17 + a1b1β
32

+ (a0b2 + a2b0)β
257 + (a1b2 + a2b1)β

272 + a2b2β
512

+ (a0b3 + a3b0)β
4097 + (a1b3 + a3b1)β

4112 + (a3b2 + a2b3)β
4352 + a3b3β

8192,

using relationships below:

β2 = α2β + λα3β16 + λ2α2β256 + α4β4096 β32 = (β2)16 β512 = (β2)16
2

β17 = λ2β + λα3β256 + λα2β4096 β272 = (β17)16 β4352 = (β17)16
2

β257 = λ2α4β + λ2α4β256 β4112 = (β257)16 β8192 = (β2)16
3

β4097 = (β17)16
3

Let us now introduce some
additional notation:

s0 = a0b0

s1 = a1b1

s2 = a2b2

s3 = a3b3

k0 = (a0 + a1)(b0 + b1)

k1 = (a1 + a2)(b1 + b2)

k2 = (a2 + a3)(b2 + b3)

k3 = (a0 + a2)(b0 + b2)

k4 = (a0 + a3)(b0 + b3)

k5 = (a1 + a3)(b1 + b3)

M4

4

as0 as1 bs0 bs1

ks

44

Figure 4.40: Block M16
in F(24)4 - component
conv4(s0, s1)

162

The four components of C = c0β + c1β
16 + c2β

256 + c3β
4096 simplify to the following:

c0 = k0λ
2 + k1λα

2 + k2λα
3 + k3λ

2α4 + s0

c1 = k1λ
2 + k2λα

2 + k4λα
3 + k5λ

2α4 + s1

c2 = k2λ
2 + k4λα

2 + k0λα
3 + k3λ

2α4 + s2

c3 = k4λ
2 + k0λα

2 + k1λα
3 + k5λ

2α4 + s3

Inserting ks = (as0 + as1)(bs0 + bs1) for s = 1, . . . 5 and s0, s1 = 0, . . . , 3 as defined above,
and using notation (as0 + as1)(bs0 + bs1) = conv4(s0, s1) we find the following pattern:

ci = conv4(i, i1) · λ2 + conv4(i1, i2) · λα2 + conv4(i2, i3) · λα3 + conv4(i, i2) · λ2α4 + si

where i0 = i, i1 = (i+ 1) mod 4, i2 = (i+ 2) mod 4 and i3 = (i+ 3) mod 4.

Elements si and ks = conv4(s0, s1) are somewhat similar to the elements s(i) and conv(i, j)
from the lover level, but use the subfield multiplication block M4. Also notice the reverse
order modulo-2 addition and multiplication in modules conv4. Schematic for conv4 can be
seen in Figure 4.40.

Schematic of the multiplication block M16 can be seen in Figure 4.41. Gate count reveals an
area of 1480 and the delay of 32 NAND gates. In comparison with M16 multiplication block
that was obtained using tower construction F(((22)2)2)2 , the current M16 block is a bit bigger
but has a smaller delay. However, the FPGA results in Table 4.28 are not so encouraging:
the area gap between the two M16 blocks is over 30 slices in favor of M16 from F(((22)2)2)2

implementation, but the current M16 module is still faster.

Inversion in F(24)4: For inversion we can again use the Itoh-Tsuji algorithm, that was
explained in detail in Section 4.4.1. The inverse of element A ∈ F(24)4 is computed as

A−1 = (Ar)−1Ar−1, where r = 24·4−1
24−1 = 4369. Decomposition Ar−1 = A163+162+16 leads

to the circuit that can be seen in Figure 4.42. The shift blocks on the Figure are shaded
grey to emphasize the exponentiation to powers of 16 (instead of powers of 2 we have
encountered so far). There is another grey block in Figure 4.42, namely the inversion block
I4 . This block is emphasized since it operates on elements of the base field F24 ; it takes
a 4-bit input and produces a 4-bit output. The question arises: which 4 bits are to be
connected to the inputs of I4 ? The input to I4 is element Ar, which is an element of the
subfield F24 (4.4.1), say Ar = b ∈ F24 . We can write:

b = b · 1
= b(β + β16 + β162 + β163)

= bβ + bβ16 + bβ162 + bβ163 ∈ F(24)4

163

M4

a0 a1 b0 b1

k0

λ2 λα2 λα3 λα42

conv4

c0

s0
M4

a1 a2 b1 b2

k1

λ2 λα2 λα3

conv4

c1

s1
M4

a2 a3 b2 b3

k2

λ2 λα2 λα3

conv4

c2

s2

a0 a2 b0 b2

k3
conv4 M4

a0 a3 b0 b3

k4

λ2 λα2 λα3

conv4

c3

s0

λα42

a1 a3 b1 b3

k5
conv4

Figure 4.41: Multiplication block M16 in F(24)4

This was the last missing peace: before computing (Ar)−1 we must represent Ar as a 4 bit
element. Based on the discussion above we simply take first 4 bits of the 16-bit Ar and
connect them to I4 input. The I4 output is then expanded to its 16-bit form by copying
the 4 output bits into remaining 12 bits, thus representing the inverse (Ar)−1 in basis
{β, β16, β162 , β163}. We can now use the M16 multiplier to obtain the inverse A−1 = I ∈ F(24)4

we were trying to find.

M16
Ar-1

A

>>

>>

1

3

>>2

A16

A

A

16

16

2

3

M16 M16
Ar

I4 M16

(A)r -1
A-1

Figure 4.42: Inversion block I16 in F(24)4

When designing the inverter I4 for inversion in the subfield F24 , we used an algebraic
optimization that was able to significantly reduce the delay and the gate count. But it
turns out that synthesis tools were able to perform the optimization as well, which resulted
in two inverters having the same time and area complexity. Hence we rely on the tools to
be able to perform atleast some optimization for I16 . Problem might arise when using the

164

inversion in pipelined WGP T : inserting a pipeline stage between the first two multipliers
might prevent the tools from finding a good solution. Implementation results for module
I16 are a bit disappointing: the module is very greedy in terms of both, the area and the
delay. The tools were not able to perform many optimization, most likely because the value
Ar−1 is used again in the final multiplication (see Figure 4.42). Module I16 from current
tower F(24)4 is four times bigger and more than 3 ns slower compared to module I16 from
tower F(((22)2)2)2 .

Area and time complexities of basic building blocks

The FPGA implementation results of basic building blocks for tower field construction
F(24)4 are collected in Table 4.28. Results for submodules that perform multiplications
with constants F24 level of the tower were omitted.

Basic FPGA Results
Building # of # of

Block LUTs Slices t [ns]

M4 10 4 7.781

I4 - bad 2 2 6.883

I4 - good 2 2 6.861

M16 240 84 13.340

I16 611 251 26.109

MNT 18 8 7.982

MTN 15 9 7.961

Table 4.28: Basic building blocks for arithmetic in tower field F(24)4 - implementation results

The trace computation

The last missing puzzle in need of our attention, before we go on to the module WGP T ,
is the implementation of the trace function. At the end of Section in equation 3.28, the
following expression for the absolute trace of element Z ∈ F(24)4 was obtained:

Tr(Z) =
15⊕
k=0

zk

165

Hence, the absolute trace of an element from F(24)4 is nothing else but just the modulo-2
sum, that is XOR, of its 16 coordinates. Therefore, we can just reuse the trace computation
that was developed for tower construction F(((22)2)2)2 in Section 4.4.2.

4.5.2 Module WGP T - Design of Pipelined Architecture

The entire idea of using tower field constructions is based on the possibility of pipelining
the modules at a finer granularity. Considering poor performance of submodules M16 and
I16 , the only reasonable pipelining option for tower construction F(24)4 is pipelining at
M4 /I4 level. Module M16 interstage registers were inserted at the position indicated by the
grey dashed horizontal line in Figure 4.41 showing the circuit for M16 . Note that the modules
above the line consist solely of one layer of XOR gates and one layer of M4 submodules. The
layer below the pipeline border consists of multiplications with constants followed by three
layers of XOR gates. The decision where to insert the pipeline registers was based on the
gate count for module M16 : delay of 14 NANAD gates above and 15 NAND gates below the
border is the most balanced pipelining option.

Top level schematic of module WGP T for tower construction F(24)4 is shown in Figure 3.11.
The implemented 20-stage pipeline can be seen in Figure 4.43. Implementation results for
module WGP T using tower construction F(24)4 pipelined at M4 /I4 level are given in Table
4.29 below:

FPGA Results

Module #FFs #LUTs #Slices t [ns]

WGP T M4 I4 T2 1050 1722 589 4.918

Table 4.29: Module WGP T M4 I4 T2 using tower construction F(24)4 pipelined at M4 /I4 level - implemen-
tation results

Although we have a bigger area the clock period is comparable with the one achieved by
the M4 /I4 level WGP T module from tower construction F(((22)2)2)2 .

166

Y
M

N
T

M
N

T

M
N

T

M
16

M
16

xd

x

>> >>

5 10

M
16

r-
1

>> >>

1 3

>>
2

16 16 16

2 3

M
16

M
16

r
I 4

M
16

(Y
)r

-1
-1

YY Y

Y
Y

Y

M
T

N

M
N

T

M
N

T

>>>>

16 1

M
16

M
16

T
r(

)

W
G

P

W
G

T
16 1

M
T

N
M

N
T

>>
11

M
16

M
16

M
16

M
16

F
ig

u
re

4.
43

:
M

o
d

u
le

W
G
P
T
M
4
I
4
T
2

-
p

ip
el

in
ed

a
rc

h
it

ec
tu

re
fo

r
m

o
d

u
le

W
G
P
T

u
si

n
g

to
w

er
fi

el
d

co
n

st
ru

ct
io

n
F (

2
4
)4

M
N

T

M
N

T

M
N

T
x

xd
Y

>> >>

5 10

M
8

M
8

M
8

λ

M
8

M
8

M
8

λ
M

8

S
8

M
8

M
8

I 8
λ

1

1

T
r(

)

W
G

P

W
G

T
16 1

M
N

T

M
N

T

T
N

M

1
>>

1 6
>>

M
N

T
1

>>
1

T
N

M

M
8

M
8

M
8

λ

M
8

M
8

M
8

λ

M
8

M
8

M
8

λ

M
8

M
8

M
8

λ

F
ig

u
re

4.
44

:
M

o
d

u
le

W
G
P
T
M
8
I
8
T
3

-
p

ip
el

in
ed

a
rc

h
it

ec
tu

re
fo

r
m

o
d

u
le

W
G
P
T

u
si

n
g

to
w

er
fi

el
d

co
n

st
ru

ct
io

n
F (

2
8
)2

167

4.6 Tower construction F(28)2
∼= F216 - implementation

4.6.1 Analysis of Basic Building Blocks

As already mentioned in Section 3.6.1, this tower construction is aiming at the implemen-
tation of table look-up based algorithms. The tower field basis for F(28)2 is a mixed basis,
using polynomial basis for the lower level of the tower F28 and normal basis for the top
level. The polynomial basis for F28 was chosen, because it is a common practice to imple-
ment the table look-up methods using polynomial basis, but there is no particular reason
for doing so.

Arithmetic in F28

One of the earliest applications of table look-ups for F28 arithmetic used in cryptography
dates back to 1992, see [93]. The field F28 was constructed by adjoining the root α of
a primitive polynomial to the prime field F2, and thus all the elements of F∗28 can be
represented as powers of the generator α: let āi = (a0, . . . , a7) be the vector representation
of the element A = αi =

∑7
j=0 ajα

j for i = 0, . . . , 254. Two look-up tables are precomputed
and stored:

• the ”log” table ltable storing the exponents of F∗28 elements: vector āi serves as
ltable index, by which we access the exponent i, and

• the ”antilog” table atable, storing the elements of F∗28 : now he exponent i serves as
the index by which we access the value āi.

The two tables are given below. Let us take a look at a couple of short examples to
demonstrate how the tables are accessed:

• element 1 ∈ F28 can be represented as 1 = α0, so it is the element aTable[0], and
since the binary representation of 1 is “10000000”, the exponent x“0”is stored at
ltable[128];

• element α + α3 + α4 + α5 = α9 ∈ F28 is the element atable[9], and since its
binary representation “01011100” equals decimal 92, the value x“09” is stored in
ltable[92].

Note that the polynomial basis representation is least-significant bit (LSB) first, and is
later interpreted as most-significant bit (MSB) first when used to access the tables. There

168

is a simple reason for that, namely, we want the tables to work as a regular memory arrays
(which makes the implementation easier), and most systems are MSB first.

atable:

{0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01, 0xb8, 0x5c, 0x2e, 0x17, 0xb3, 0xe1, 0xc8, 0x64
0x32, 0x19, 0xb4, 0x5a, 0x2d, 0xae, 0x57, 0x93, 0xf1, 0xc0, 0x60, 0x30, 0x18, 0x0c, 0x06, 0x03
0xb9, 0xe4, 0x72, 0x39, 0xa4, 0x52, 0x29, 0xac, 0x56, 0x2b, 0xad, 0xee, 0x77, 0x83, 0xf9, 0xc4
0x62, 0x31, 0xa0, 0x50, 0x28, 0x14, 0x0a, 0x05, 0xba, 0x5d, 0x96, 0x4b, 0x9d, 0xf6, 0x7b, 0x85
0xfa, 0x7d, 0x86, 0x43, 0x99, 0xf4, 0x7a, 0x3d, 0xa6, 0x53, 0x91, 0xf0, 0x78, 0x3c, 0x1e, 0x0f
0xbf, 0xe7, 0xcb, 0xdd, 0xd6, 0x6b, 0x8d, 0xfe, 0x7f, 0x87, 0xfb, 0xc5, 0xda, 0x6d, 0x8e, 0x47
0x9b, 0xf5, 0xc2, 0x61, 0x88, 0x44, 0x22, 0x11, 0xb0, 0x58, 0x2c, 0x16, 0x0b, 0xbd, 0xe6, 0x73
0x81, 0xf8, 0x7c, 0x3e, 0x1f, 0xb7, 0xe3, 0xc9, 0xdc, 0x6e, 0x37, 0xa3, 0xe9, 0xcc, 0x66, 0x33
0xa1, 0xe8, 0x74, 0x3a, 0x1d, 0xb6, 0x5b, 0x95, 0xf2, 0x79, 0x84, 0x42, 0x21, 0xa8, 0x54, 0x2a
0x15, 0xb2, 0x59, 0x94, 0x4a, 0x25, 0xaa, 0x55, 0x92, 0x49, 0x9c, 0x4e, 0x27, 0xab, 0xed, 0xce
0x67, 0x8b, 0xfd, 0xc6, 0x63, 0x89, 0xfc, 0x7e, 0x3f, 0xa7, 0xeb, 0xcd, 0xde, 0x6f, 0x8f, 0xff
0xc7, 0xdb, 0xd5, 0xd2, 0x69, 0x8c, 0x46, 0x23, 0xa9, 0xec, 0x76, 0x3b, 0xa5, 0xea, 0x75, 0x82
0x41, 0x98, 0x4c, 0x26, 0x13, 0xb1, 0xe0, 0x70, 0x38, 0x1c, 0x0e, 0x07, 0xbb, 0xe5, 0xca, 0x65
0x8a, 0x45, 0x9a, 0x4d, 0x9e, 0x4f, 0x9f, 0xf7, 0xc3, 0xd9, 0xd4, 0x6a, 0x35, 0xa2, 0x51, 0x90
0x48, 0x24, 0x12, 0x09, 0xbc, 0x5e, 0x2f, 0xaf, 0xef, 0xcf, 0xdf, 0xd7, 0xd3, 0xd1, 0xd0, 0x68
0x34, 0x1a, 0x0d, 0xbe, 0x5f, 0x97, 0xf3, 0xc1, 0xd8, 0x6c, 0x36, 0x1b, 0xb5, 0xe2, 0x71, 0x00}

ltable:

{0xff, 0x07, 0x06, 0x1f, 0x05, 0x37, 0x1e, 0xcb, 0x04, 0xe3, 0x36, 0x6c, 0x1d, 0xf2, 0xca, 0x4f
0x03, 0x67, 0xe2, 0xc4, 0x35, 0x90, 0x6b, 0xb, 0x1c, 0x11, 0xf1, 0xfb, 0xc9, 0x84, 0x4e, 0x74
0x02, 0x8c, 0x66, 0xb7, 0xe1, 0x95, 0xc3, 0x9c, 0x34, 0x26, 0x8f, 0x29, 0x6a, 0x14, 0x0a, 0xe6
0x1b, 0x31, 0x10, 0x7f, 0xf0, 0xdc, 0xfa, 0x7a, 0xc8, 0x23, 0x83, 0xbb, 0x4d, 0x47, 0x73, 0xa8
0x01, 0xc0, 0x8b, 0x43, 0x65, 0xd1, 0xb6, 0x5f, 0xe0, 0x99, 0x94, 0x3b, 0xc2, 0xd3, 0x9b, 0xd5
0x33, 0xde, 0x25, 0x49, 0x8e, 0x97, 0x28, 0x16, 0x69, 0x92, 0x13, 0x86, 0x09, 0x39, 0xe5, 0xf4
0x1a, 0x63, 0x30, 0xa4, 0x0f, 0xcf, 0x7e, 0xa0, 0xef, 0xb4, 0xdb, 0x55, 0xf9, 0x5d, 0x79, 0xad
0xc7, 0xfe, 0x22, 0x6f, 0x82, 0xbe, 0xba, 0x2c, 0x4c, 0x89, 0x46, 0x3e, 0x72, 0x41, 0xa7, 0x58
0x00, 0x70, 0xbf, 0x2d, 0x8a, 0x3f, 0x42, 0x59, 0x64, 0xa5, 0xd0, 0xa1, 0xb5, 0x56, 0x5e, 0xae
0xdf, 0x4a, 0x98, 0x17, 0x93, 0x87, 0x3a, 0xf5, 0xc1, 0x44, 0xd2, 0x60, 0x9a, 0x3c, 0xd4, 0xd6
0x32, 0x80, 0xdd, 0x7b, 0x24, 0xbc, 0x48, 0xa9, 0x8d, 0xb8, 0x96, 0x9d, 0x27, 0x2a, 0x15, 0xe7
0x68, 0xc5, 0x91, 0x0c, 0x12, 0xfc, 0x85, 0x75, 0x08, 0x20, 0x38, 0xcc, 0xe4, 0x6d, 0xf3, 0x50
0x19, 0xf7, 0x62, 0xd8, 0x2f, 0x5b, 0xa3, 0xb0, 0x0e, 0x77, 0xce, 0x52, 0x7d, 0xab, 0x9f, 0xe9
0xee, 0xed, 0xb3, 0xec, 0xda, 0xb2, 0x54, 0xeb, 0xf8, 0xd9, 0x5c, 0xb1, 0x78, 0x53, 0xac, 0xea
0xc6, 0xd, 0xfd, 0x76, 0x21, 0xcd, 0x6e, 0x51, 0x81, 0x7c, 0xbd, 0xaa, 0xb9, 0x9e, 0x2b, 0xe8
0x4b, 0x18, 0x88, 0xf6, 0x45, 0x61, 0x3d, 0xd7, 0x71, 0x2e, 0x40, 0x5a, 0xa6, 0xa2, 0x57, 0xaf}

Multiplication in F28: Two F28 elements A = αi and B = αj, represented as powers of
the generator α, can be multiplied as follows:

A ·B = αi · αj = α(i+j) mod 28−1

This is the basic idea behind the table look-up multiplication: first, we need to access the
ltable twice to obtain both indices (by reading the ltable contents at addresses āi and
āj), then we add them up modulo 28 − 1, and use the obtained reduced sum for accessing
atable:

A ·B = atable[(ltable[āi] + ltable[āj]) mod 255]

Inversion in F28: To obtain the inverse of the element A = αi ∈ F28 , we proceed by
rewriting (note the use of relationship α28 = 1):

A−1 = α−i = 1 · α−i = α255 · α−i = α255−i

169

Reduction of the exponent modulo 28−1 can be omitted, because 0 ≤ i ≤ 254. This yields
the following look-up method for inversion:

A−1 = atable[255− ltable[āi]]

Squaring in F28: Examining the relationship

A2 = (αi)2 = α(2i) mod 28−1

the squaring can be implemented as follows:

A2 = atable[(2 · ltable[āi]) mod 255]

Multiplication by λ in F28: Recall from Section 3.6.1 that the second level of the tower
was constructed using a polynomial with the constant term λ; we can easily imagine that
multiplication of a field element A = αi ∈ F28 with λ = α11 ∈ F28 will be required at the
top level of the tower. Relationship

λ · A = α11 · αi = α(11+i) mod 28−1

dictates the following implementation:

λ · A = atable[(11 + ltable[āi]) mod 255]

The primitive root α can only represent the elements of the multiplicative group F∗28 . To
keep the table access simple, we add the element at the beginning of ltable: this way,
ltable is accessible by āi directly (otherwise we would have to decrement the index āi be-
fore accessing memory). Similarly, we add the remaining element 0 at the end of atable.
Note that these two elements are never actually accessed.
Each of the two tables stores 256 8-bit values, requiring a total memory of 512 bytes.

Xilinx FPGA implementation options

On a Xilinx FPGA, there are three options for the implementation of the look-up tables:

• logic only,

• distributed RAM, and

• block RAM (BRAM).

170

FPGA Results

Module #LUTs #Slices t [ns]

M8 124 37 15.227
logic only

M8d 132 39 17.000
distributed RAM

M8b 31 12 9.806
block RAM

Table 4.30: Multipliers M8 , M8 d and M8 b - implementation results

We explore these variations on the multiplier block M8 , since its is the most demanding one
in terms of table look-ups: it needs to access the ltable twice and atable once, reading
3 8-bit words of memory all together. The implementation results of the multipliers M8 -
logic only, M8d - distributed RAM and M8b - block RAM are given in Table 4.30.

� Remark: Detailed description of the three implementation options

Multiplier M8 - implementation with logic only: Let t̄ denote the 8-bit value stored at ltable[āi]. In this

case, the tables are stored in SLICEL LUTs, for details refer to Section A.3 in Appendix. To read a single

bit t̄i of memory, all four slice LUTs are being used: 6 bits of āi are used as LUT inputs, then two and two

LUTs are connected together via the F7AMUX and F7BMUX respectively, with one of the unused bits of

āi as the control signal for the multiplexers, and finally, the two outputs of F7AMUX and F7BMUX are

connected to the F8MUX that is controlled by the last remaining bit of āi.

All four slice LUTs are used for one bit of t̄, for the entire t̄ we need 32 LUTs, and for all three 8-bit

memory words 96 LUTs. The remaining LUTs in M8 module are used for modular addition.

Multiplier M8d- implementation with distributed RAM: SLICEM LUTs can be used as normal function

generators, as SRLs (see Sections A and C in Appendix for details) or as distributed RAM. For this

implementation, we use a dual-port RAM with one synchronous write port (even though it is written only

when initialized) and two asynchronous read ports for ltable and a single-port RAM with synchronous

write and asynchronous read for atable, and set the attribute ram style ”distributed” for both RAMs.

Multiplier M8b - implementation with block RAM: Yet another memory is available on the Spartan-6:

special block RAM that is organized into special columns at the borders of the FPGA. Both , read and

write operation are synchronous. Again, we implement a dual-port RAM for the ltable and a single-port

RAM for the atable, both with the attribute ram style set to ”block”. �

171

Comparing the three multipliers, we find the block RAM module M8b to give best results.
But since it is our intention to compare this WGP T module with the ones from previous
tower constructions, we do not want to force the use of BRAM. We decide to build the re-
maining modules using just combinational logic and let the synthesis tools infer distributed
or block RAM when possible. Implementation results of the modules for F28 arithmetic
are summarized in Table 4.31 below. Note the bigger area of the multiplier M8 , which is
the result of three table look-ups that are required for the multiplication, while all other
operations need only two look-ups and hence only two tables.

Basic FPGA Results
Building # of # of

Block LUTs Slices t [ns]

M8 124 37 15.227

I8 72 21 10.728

S8 76 21 12.891

Mλ 79 26 12.546

Table 4.31: Basic building blocks for arithmetic in F28 - implementation results

Arithmetic in F(28)2

Multiplication in F(28)2: Let A = a0β + a1β
256 and B = b0β + b1β

256 be two elements
in F(28)2 , with coefficients a0, a1, b0, b1 ∈ F28 . Using the relationships β2 + β + λ = 0 and
β + β256, we can compute the product AB as follows:

AB = (a0β + a1β
256)(b0β + b1β

256)

= a0b0β
2 + (a0b1 + a1b0)β

257 + a1b1β
512

= a0b0((1 + λ)β + λβ256) + (a0b1 + a1b0)(λβ + λβ256) + a1b1(λβ + (1 + λ)β256)

= ((a0 + a1)(b0 + b1)λ+ a0b0)β + ((a0 + a1)(b0 + b1)λ+ a1b1)β
256

The multiplication block M16 is shown in Figure 4.45. Please note the similarity of this
block to the M16 from tower construction F(((22)2)2)2 that can be seen in Figure 4.19(b): the
two circuits are virtually the same apart from the multiplication with the constant, that
is λ in case of F(28)2 and µ in case of F(((22)2)2)2 . The submodules M8 are of course different
as well.

Inversion in F(28)2: Just as multiplication, inversion is also very similar to inversion in
F(((22)2)2)2 , (4.20). We begin the computation of inverse of A = a0β + a1β

256 by computing

172

M8
a0

a1

b0

b1

M8

M8

c0

c1

8

8

8

8

8

8

M

⊕8

8

⊕8

⊕8

⊕

⊕
λ

Figure 4.45: Multiplication block M16 in F(28)2

the Frobenius mapping of A with respect to F28 :

A28 = (a0β + a1β
256)256 = a0β

256 + a1β
65536 = a1β + a0β

256.

The inverse of A is computed using the Itoh-Tsuji algorithm, described in Section 4.9, as
follows:

A−1 = D−1 · A256 = D−1(a1β + a0β
256) = (a1D

−1β + a0D
−1β256) = i0β + i1β

256,

where D−1 for D = (A257) can be computed with subfield F((22)2)2 inversion block I8 . Using
the Frobenius mapping of A the expression for D simplifies as follows:

D = A257 = A · A28

= (a0β + a1β
256)(a1β + a0β

256)

= a0a1 + (a0 + a1)
2λ

M8

a0

a1

I 8S8

i 0
88

8

M

i 1

M8

M8
8

⊕8 ⊕8
λ

Figure 4.46: Inversion block I16 in F(28)2

Implementation results of basic building blocks are given in Table 4.32. Based on compari-
son of logic only, distributed RAM and block RAM variants of module M8 , all basic building
blocks below use the logic only implementation of table look-ups.

173

Basic FPGA Results
Building # of # of

Block LUTs Slices t [ns]

M8 124 14 15.227

I8 72 21 10.728

M16 463 141 26.437

I16 610 185 40.144

Table 4.32: Basic building blocks for arithmetic in tower field F(28)2 - implementation results

We can observe a poor performance of basic building blocks for the tower construction
F(28)2 in comparison to the basic building blocks for tower constructions F(((22)2)2)2 and
F(24)4 . The straight-forward table look-up based methods seem to be inconvenient for
hardware implementation, the benefits in software, described in literature (see Section
2.5.4), seem to be lost.

4.6.2 Module WGP T - Design of Pipelined Architecture

In Section 3.6.3, we described the circuit for WGP T , that is almost identical to the top
level module for F(24)4 implementation shown in Figure 3.11, with NOT operator replaced
by XOR with element x“8080”, and a different expression for the trace function. However,
different basic building blocks in the two towerings affect the decisions about the number
of pipeline stages. Again, it is only logical to pipeline at a finer granularity, that is at
the M8 /I8 level. The pipelined architecture, resulting in 15 pipeline stages, can be seen in
Figure 4.44.

Note that since the basic building blocks at the top level of the tower are very similar for
F(((22)2)2)2 and for F(28)2 , the actual pipelining of WGP T for F(28)2 looks similar to pipelining
for the tower construction F(((22)2)2)2 as well. The implementation results for the F(28)2

WGP T are listed in Table 4.33

For reasons discussed in previous Section, we do not subject the WGP T module to any con-
straints regarding the implementation of table look-up: we use the modules described as
logic only, and let the Xilinx-ISE optimize the module by inferring distributed RAM and
block RAM when possible. There are 21 multiplication blocks M8 , 7 blocks for multiplica-
tion with constant Mλ , one squarer and one inverter in WGP T , and since three look-ups

174

FPGA Results

Module #FFs #LUTs #Slices t [ns]

WGP T M8 I8 T3 693 3013 932 11.936

Table 4.33: Module WGP T M8 I8 T3 using tower construction F(28)2 pipelined at M8 /I8 level - implemen-
tation results

are needed per multiplier and two look-ups per any other block, there are 81 268x8-bit

look-up tables in WGP T . The synthesis tools chose to implement 25 of total 30 tables
atable in block RAM and the remaining 56 tables distributed RAM. The choice seems
logical, since the ltable outputs (i.e. the exponents) are always manipulated with, while
the atable outputs serve as module outputs as well. The remaining 5 tables atable were
implemented as distributed RAM instead of block RAM, because there was no more block
RAM available.

175

4.7 Summary of implementations

We explored five different field constructions that lead to seven WGP T pipelines; their
FPGA implementation results are collected in Table 4.34. Table 4.34 is divided into two
parts. The upper part of the table contains the FPGA results for the WGP T modules and
the computed T

A2 , followed by some additional information about the pipelines, such as the
total number of multipliers in WGP T, the level at which the multipliers and the inverters
were pipelined, and the depth of the resulting pipeline. In the bottom part of Table 4.34 we
show the implementation results for the two most important building blocks, the inverter
and the multiplier. The results are given for building blocks that correspond to the level of
pipelining, for example if the pipelining was done at the M4 level, the “biggest” multiplier
that was used atomically within a pipeline stage is the multiplier M4 , whose results are
shown in the table. In the following discussion we grouped the modules based on their
performance, i.e. the clock period.

In the first two rows we can see the module WGP T PB using polynomial basis representation
of elements (Section 4.2) and the module WGP T NB using normal basis representation of
elements (Section 4.3). Both finite fields were constructed as extensions of degree 16 over
the prime field so we chose to pipeline the modules at the M16 level. The tower construction
F(((22)2)2)2 offers many pipelining possibilities, and we present the results for three different
versions, pipelined at different levels. All three of them have a short clock period and the
smallest area on the FPGA. The first two modules WGP T A16 2 BC8 and WGP T A8 2 BC8

have a similar structure and comparable performance, and will be discussed together. The
third F(((22)2)2)2 design WGP T A4 2 BC4, pipelined at the M4 /I4 level of the tower, will be dis-
cussed together with the module WGP T M4 I4 T2 that was pipelined at the same granularity
and has practically the same clock period. Finally we discuss the module WGP T M8 I8 T3,
pipelined at the M8 /I8 level, that uses table look-ups for the arithmetic operations at the
first level of the tower F(28)2 .

176

W
G
P
T

m
o
d

u
le

T A
2

#
o
f

p
ip

e
li

n
e

#
F

F
s

#
L

U
T

s
#

S
li

c
e
s

t
[n

s]
m

u
lt

.
le

v
e
l

d
e
p

th
†

F 2
1
6

W
G
P
T
P
B

6
1
6

1
8
2
7

6
0
3

7
.4

3
8

3
.7

6
M
1
6

1
2

F 2
1
6

W
G
P
T
N
B

6
0
6

3
8
3
5

1
1
6
8

7
.5

7
6

0
.9

6
M
1
6

1
1

F (
((
2
2
)2

)2
)2

W
G
P
T
A
1
6
2
B
C
8

4
6
7

1
2
6
2

4
7
4

6
.6

0
1

6
.7

4

M
1
6

/
I
8

9
/
1
1
†

W
G
P
T
A
8
2
B
C
8

5
3
5

1
1
9
5

4
3
6

6
.5

1
9

8
.1

M
8

/I
8

1
1/

1
3
†

W
G
P
T
A
4
2
B
C
4

1
1
2
9

1
1
2
8

4
0
1

4
.9

3
9

1
2
.6

M
4

/I
4

2
2/

2
6
†

F (
2
4
)4

W
G
P
T
M
4
I
4
T
2

1
0
5
0

1
7
2
2

5
8
9

4
.9

1
8

5
.8

6
M
4

/I
4

2
0

F (
2
8
)2

W
G
P
T
M
8
I
8
T
3

6
9
3

3
0
1
3

9
3
2

1
1
.9

3
6

0
.9

6
M
8

/I
8

1
5

W
G
P
T

In
v
e
rt

e
r

W
G
P
T

M
u

lt
ip

li
e
r

le
v
e
l

#
L

U
T

s
#

S
li

c
e
s

t
[n

s]
le

v
e
l

#
L

U
T

s
#

S
li

c
e
s

t
[n

s]

F 2
1
6

W
G
P
T
P
B

2
4
8
∗

1
0
5
4

3
6
9

7
.2

7
1

M
1
6

1
1
9

4
6

1
1
.8

1
2

F 2
1
6

W
G
P
T
N
B

2
9
3
∗

1
8
7
5

6
0
7

8
.3

0
9

M
1
6

2
8
5

1
0
2

1
3
.9

2
3

F (
((
2
2
)2

)2
)2

W
G
P
T
A
1
6
2
B
C
8

I
8

4
1

1
5

1
2
.9

1
5

M
1
6
?

1
4
8

5
2

1
3
.9

2
5

W
G
P
T
A
8
2
B
C
8

I
8

4
1

1
5

1
2
.9

1
5

M
8

4
0

1
4

1
0
.6

1
3

W
G
P
T
A
4
2
B
C
4

I
4

2
2

6
.9

8
4

M
4

1
1

5
8
.5

1
7

F (
2
4
)4

W
G
P
T
M
4
I
4
T
2

I
4

2
2

6
.8

6
1

M
4

1
0

4
7
.7

8
1

F (
2
8
)2

W
G
P
T
M
8
I
8
T
3

I
8

7
2

2
1

1
0
.7

2
8

M
8

1
2
4

1
4

1
5
.2

2
7

T
ab

le
4.

3
4
:

S
u

m
m

a
ry

o
f
W
G
P
T

m
o
d

u
le

s
fo

r
a
ll

fi
ve

fi
el

d
co

n
st

ru
ct

io
n
s

to
p

:
th

e
F

P
G

A
re

su
lt

s
fo

r
th

e
W
G
P
T

m
o
d

u
le

s
b

ot
to

m
:

th
e

F
P

G
A

re
su

lt
s

fo
r

th
e

in
v
er

te
rs

a
n

d
m

u
lt

ip
li

er
s

u
se

d
b
y

th
e

co
rr

es
p

o
n

d
in

g
W
G
P
T

m
o
d

u
le

s
†

th
e

va
lu

es
ar

e
g
iv

en
fo

r
th

e
ru

n
n
in

g
/
in

it
ia

li
za

ti
o
n

p
h

a
se

∗
th

e
n
u

m
b

er
of

in
te

rs
ta

g
e

re
g
is

te
rs

in
th

e
p

ip
el

in
ed

sq
u

a
re

a
n

d
m

u
lt

ip
ly

in
ve

rs
io

n
?

th
e

m
u

lt
ip

li
er

s
in

th
e

d
ec

im
a
ti

o
n

p
a
rt

w
er

e
p

ip
el

in
ed

a
t
M
1
6

a
n

d
th

e
tw

o
re

u
se

d
m

u
lt

ip
p

li
er

s
a
t
M
8

le
ve

l

177

4.7.1 The WGP T PB and the WGP T NB

Both designs use the square and multiply inversion, based on equation (4.4), and were
implemented with the same placement of interstage registers, with one exception: the first
and the second stage were merged in the normal basis variant. This decision was based
on the simplicity of the exponentiation of normal basis elements to the powers of two,
which is cyclic shift of the corresponding vector. The inversion pipeline stages in module
WGP T NB basically contain only M16 multipliers with shifted inputs. The exponentiation in
polynomial basis is not as trivial as a cyclic shift, but still quite simple: it can be performed
by a series of squarings. Due to a bit more complicated exponentiations, we can say the
module WGP T PB was coarsely pipelined, containing an entire M16 multiplier accompanied
by a squarer or a series of squarers inside a single pipeline stage. We could choose a pipeline
where only M16 multipliers are contained within a stage, but that would add 7 stages to the
pipeline. We wanted to keep the WGP T PB and WGP T NB pipelines as similar as possible
to get a better intuition about how the underlying arithmetic affects the overall design.
The two WGP T modules achieve an almost identical clock period. However, due to an
approximately two times bigger normal basis multiplier, the size of the WGP T NB is also
roughly twice the size of WGP T PB.

4.7.2 The WGP T A16 2 BC8 and WGP T A8 2 BC8

Due to the algebraic optimization (Section 3.4.3) that was able to remove two multipliers,
we consider the circuit WGP T in Figure 3.10 to be the most promising one, hence the most
effort was spent for its optimization. A thorough discussion comparing the three modules,
pipelined at different granularities, can be found in Section 4.4.5. The pipelining for WGP T

was chosen to avoid the use of I16 inverter and was initially targeting for a pipeline of
approximately the same depth as the pipelines for the polynomial and the normal basis
modules. The multipliers were pipelined in the following way: in module WGP T A16 2 BC8,
the two decimation M16s were kept complete, and remaining two multipliers pipelined at
the M8 level; the second module WGP T A8 2 BC8 is similar, with the decimation multipliers
pipelined at the M8 level as well. These two modules achieve practically the same clock
period, and surprisingly, the number of slices needed for the longer pipeline drops. How-
ever, when the corresponding WG-16 modules were implemented, the longer pipeline also
resulted in the larger area, and both FPGA and ASIC results (see Table 4.25) are clearly
in favor of module WGP T A16 2 BC8, that also has a shorter pipeline and hence a shorter
initialization phase.

178

4.7.3 The WGP T A4 2 BC4 and WGP T M4 I4 T2

Considering the behavior of the two F(((22)2)2)2 pipelines discussed above (Section 4.7.2),
the comparison of the two WGP T modules pipelined at the M4 /I4 level leads to a very im-
portant conclusion: pipleining at a lower level of the tower field will reduce the clock period
(and of course increase the area and the depth of the pipeline), and the true benefit of the
F(((22)2)2)2 tower construction lies in the trace property, that removes two multipliers and
thus causes an adequate area reduction.

The third F(((22)2)2)2 module WGP T A4 2 BC4 was pipelined at the M4 /I4 level and resulted
in a very long pipeline; but also a very short clock period and small number of used slices.
The WGP T M4 I4 T2 module was obtained using the F(24)4 tower construction. It is also
pipelined at the M4 /I4 level, it has a shorter pipeline and slightly shorter clock period,
but needs 188 slices more, and so exhibits a smaller T

A2 . Taking a closer look at the two
I4 inverters and the two M4 multipliers, we find the following: the building blocks obtained
with F(24)4 tower construction have a shorter period and a smaller (M4) or comparable (I4)
area. The F(24)4 module needs 6 multipliers, while the F(((22)2)2)2 module WGP T A4 2 BC4

only needs 4 and the inversion I16 is smaller for the tower construction F(((22)2)2)2 .

We can now declare the F(((22)2)2)2 tower construction to be the most appropriate for the
implementation of WG-16.

4.7.4 The WGP T M8 I8 T3

Our final pipeline is the module WGP T M8 I8 T3 that was obtained for the tower con-
struction F(28)2 . This module uses table look-up algorithms for the lower level arithmetic.
Despite different optimization attempts by the synthesis tools, we find a large area and a
slow clock period. We cannot say that the ground field F28 is too large for a table look-
up design, but the WGP T needs too many tables, namely three tables for multiplication
and two tables for all other operations, and since we are using a pipelined design, each
operation needs its own set of look-up tables. The block RAM is used up and the use of
distributed RAM increases the clock period. Note that these kinds of optimizations are
FPGA specific.

179

4.7.5 Optimality analysis

We have already established that the three F(((22)2)2)2 modules result in the smallest area
and have short clock periods. The low area cost of these modules is a direct consequence
of the reduced number of multipliers. The metric T

A2 was used to asses the optimality of
the WGP T modules, and it clearly favors the M4 /I4 level F(((22)2)2)2 module WGP T A4 2 BC4.
From performance point of view, the F(24)4 module WGP T M4 I4 T2 is a competitive de-
sign. However, the T

A2 metric ranks all three F(((22)2)2)2 modules above the F(24)4 design; a
clear testimony to the importance of the area reduction facilitated by the F(((22)2)2)2 tower
construction.

Based on the optimality, the polynomial basis design WGP T PB is next in line. The polyno-
mial basis M16 multiplier we used is a simple multiplication followed by the reduction, but
based on implementation results, this is the smallest M16 with the shortest delay among the
five top-level multipliers. Further exploration could lead to a smaller and faster multiplier,
and potentially a better overall WGP T design. A polynomial basis approach using an opti-
mized polynomial basis multiplier was used in [13]. They also rearranged the exponents in
the permutation polynomial q(Y) to avoid a direct computation of inverse, thus eliminat-
ing three multiplies that are need in our design. Their ASIC implementation results show
a fast pipelined module with a smaller area.

The performance of our normal basis implementation WGP T NB might be comparable with
our polynomial basis design WGP T PB, but it needs twice the area. The T

A2 metric places
it at the bottom of our optimality scale, together with the WGP T M8 I8 T3 module, which
is not only area-demanding but also very slow due to table look-ups.

4.7.6 The LFSR and the FSM

Implementation of the LFSR is straightforward and the FPGA implementation results are
listed in Table 4.2 in Section 4.1. With 47 slices and a clock period just above 3 ns, this
module is not critical in any way. For the selected target FPGA, the Xilinx-ISE tools
perform an optimization: instead of implementing a series of registers between two tap po-
sitions, special LUTs, capable of implementing a shift register, were used. The optimized
version uses less than 30% of the original number of FFs needed. This optimization is not
possible for an ASIC implementation, where we expect to find all 512 FFs.

180

The FSM was implemented only for the F(((22)2)2)2 modules, and the same FSM (with
different parameters) was used. The FSM is simple, small and fast.

4.7.7 The WG-16

Based on the FPGA results in Table 4.34, we conclude that the F(((22)2)2)2 tower con-
struction is the most beneficial choice for WGP T. Three WG-16 modules, using the three
pipelines given by the F(((22)2)2)2 tower construction, were implemented (Section 4.4.5).
The FPGA and ASIC implementation results are listed in Table 4.25 and are followed by
an in-depth discussion and comparison of the three modules. Please note the difference
between the FPGA and the ASIC results for the WG-16 that were implemented using the
three F(((22)2)2)2 pipelines, revealing the impact of the large number of registers on the area
used by the ASIC implementation (see Table 4.25). Consequently, the same T

A2 metric us-
ing the results of the ASIC implementation points to a different choice, namely the module
WGP T A16 2 BC8. Comparing the FPGA results of the three WG-16 modules, the WGP T

module WGP T A4 2 BC4 remains the best overall design.

Taking a closer look at the results of the three WG-16 modules (both the FPGA and the
ASIC implementation results), we can observe the effects of the level of pipelining: moving
to a finer granularity, which corresponds to descending to a lower level of the F(((22)2)2)2

tower field, reflects in a decreased clock period and increased area cost.

Comparison with other stream ciphers
In Chapter 2 we presented some other stream ciphers in two separate sections. In Section
2.5.2 we covered two stream ciphers used in 3GPP confidentiality and integrity algorithms,
Snow3G and ZUC, and in Section 2.5.3 two ciphers, that were included in the eSTREAM
portfolio, namely Grain and Trivium. We do not attempt to compare WG-16 to the
eSTREAM candidates, because WGT-16(Xd) 16 is not intended for constrained environ-
ments. There are other members of WG family, that were designed for such applications
(and hence comparable with Grain and Trivium), for example WG-5 [9] or WG-8 [11].

WG-16 based confidentiality and integrity algorithms were proposed in [8], but since both
Snow3G and ZUC are word-oriented stream ciphers, producing a 32-bit keyword per cycle,
their comparison with the bit-oriented WG-16 is difficult. Besides the high throughput,
which is a direct consequence of a 32-bit keyword produced each clock cycle, that can be

181

observed in Table 2.3, another thing immediately draws our attention: the device chosen
for the implementation of Snow3G and ZUC was, in most cases, a Virtex-5 FPGA. Both,
Virtex-5 and Spartan-6 have 6-input/2-output LUTs, so we can compare the designs in
terms of area (ignoring the F(28)2 design since Spartan-6 can not compare to Virtex-5 in
term of memory resources). Also, Virtex devices are in general always faster than the same
generation Spartan, and the Virtex-5 is still faster than Spartan-6. However, WG stream
ciphers also have provable randomness and cryptographic properties.

182

Chapter 5

Conclusion and future work

In Chapter 3 we presented five isomorphic field constructions for F216 . The first construc-
tion we explored uses the defining polynomial of F216 , which is given with the specification
of WG-16, and polynomial basis representation of the field elements. Next we used the
normal element, yielding the multiplication matrix with the smallest Hamming weight, for
the normal basis representation of F216 elements. For the three composite fields, we had to
find an appropriate irreducible polynomial for each extension. For the lower levels of towers
of extensions, we relied on pen-and-paper methods based on the theoretical background
from Section 2.2. As the order of the extension fields grew, we used the computer algebra
system GAP, that was also used to conduct the exhaustive search for best conversion ma-
trices for each tower field.

We encounter three different ways of raising the field element to powers of two, namely
the series of squarings when polynomial basis was used, a simple right cyclic shift when
normal basis was used, and transition to normal basis representation followed by a shift
and a transition back to the tower field representation. The five field constructions also
give different representations of the element 1. The trace function may be independent
of the basis, but when taking the basis into account, simplified expressions, resulting in
simple hardware, were found. For tower construction F(((22)2)2)2 some interesting properties
exist that allowed us to remove two multipliers. At the end of Chapter 3 we summarized
the five top-level circuits obtained with different field constructions into two groups: the
F(((22)2)2)2 WGP T module with 4 multipliers (Figure 3.12) and the WGP T module with 6
multipliers for all other field constructions (Figure 3.13).

183

In Chapter 3 we treated the basic building blocks, that is the submodules implementing
the basic finite field arithmetic, as black boxes and focused on the top-level architecture
for WGP T. In Chapter 4, we discuss the algorithms for the field arithmetic for each field
construction individually; the algorithms are closely dependent on the basis that is used
to represent the field elements. Based on the field construction and on FPGA results of
the basic building blocks we made decisions about the pipelining: how many stages, where
to insert the stage borders etc. The FPGA implementation results for the basic building
blocks and finally for the four WGP T modules that share the top-level architecture show
the following: the differences in the implementation results between the four WGP T mod-
ules, sharing the same top-level architecture, do not lie in the method of exponentiation
to powers of two, representation of element 1 or in trace computation, but in the basic
building blocks and in the level of pipelining; needless to say, the differences are enormous,
and the structural similarity of these four modules is lost with the actual field arithmetic.

The tower construction F(((22)2)2)2 is also highly regular, giving very similar basic building
blocks that differ only in the width of the operands and gates, at each level of the tower. For
the tower construction F(((22)2)2)2 , which offers many pipelining possibilities, three different
WGP T modules, pipelined at different levels were implemented, and pipelining at a lower
level of the tower field reduces the clock period. Since the F(((22)2)2)2 based WGP T modules
only need four multipliers, they also have the smallest area cost. A WG-16 module was
implemented for each of the three F(((22)2)2)2 WGP T pipelines. Two WGP T modules were
chosen, the module pipelined at the M4 /I4 level for the FPGA implementations and the
module pipelined at the M16 /I8 level for ASIC implementations. The low level of pipelin-
ing means more registers and less space for optimizations within the stage. With FPGAs,
registers are so to say free, already there. But in ASIC, pipelining at a finer granular-
ity comes at the cost of area increase, and the M4 /I4 option is no longer the best overall
design, although it stays the fastest design and could be preferred when area and power
consumption are not critical.

The presented work is an exploration of the design space for WG-16. Note that WG-16 is
very complex, but it benefits from the tower construction F(((22)2)2)2 in three ways: by the
existence of efficient basic building blocks for arithmetic in F(((22)2)2)2 , by having several
options for the level of pipelining and by the algebraic optimization, which reduces the
number of multipliers needed.

Another extremely important task is a survey of existing optimized hardware multipliers
and inverters for finite fields using polynomial and normal basis representation of field

184

elements. Surely we did not exhaust all possibilities for F216 . For example an interesting
choice would the tower construction F(28)2 with the optimal dual basis representation for
the F28 elements. For different finite fields F2m , with a composite m ≥ 14 other bases,
could prove advantageous.

185

Appendix A

Xilinx Spartan-6 FPGA

A.1 Basic structure

For this thesis, a Xilinx Spartan-6 FPGA was chosen (xc6slx9-csg324). Therefore, we
will describe some general FPGA features in terms of Spartan-6 family.

FPGAs are composed of a large number of Configurable Logic Blocks (CLBs), that are
the basic building blocks of the circuit. CLBs are organized into a matrix, surrounded
by special Input/Output Blocks (IOBs), interwoven with configurable interconnects that
convey signals between CLBs and between CLBs and IOBs. [53, 58]. The basic structure
of an FPGA device is depicted in Figure A.1.

Figure A.1: Basic structure of an FPGA:
CLBs - the large grey blocks,
IOBs - smaller white blocks,
vertical and horisontal interconnects

Figure A.2: Arrangement of slices within the CLB
[60]

186

A.1.1 CLB - Configurable Logic Block

Spartan-6 CLB contains two (similar) slices (Figure A.2). A slice contains 4 LUTs (Look-
up Tables), also called function generators, storage elements and multipleksers to control
memory inputs and slice outputs. Figure A.3 shows the diagram of the basic slice called
SLICEX, which is contained in every CLB. The second slice in the CLB is either SLICEM
or SLICEL. They have the basic structure of SLICEX, but contain additional logic. Both
SLICEM and SLICEL contain wide-function multiplexers and dedicated carry logic to
perform fast arithmetic addition and substraction. The two slices inside the CLB are not
directly connected, but the carry structure connects SLICEM/SLICEL from neighboring
CLBs vertically upwards, as can bee seen in Figure A.2. SLICEM LUTs are modified
(with additional data inputs and write enable) in a way that allows the LUTs to be used
as 64-bit distributed RAM or variable-length shift registers.

187

Figure A.3: Diagram of SLICEX [60]

188

LUT

The n-input/1-output LUT is a 2n-word memory array that holds the truth Table of the
desired n-input Boolean function. The LUT inputs are address signals that choose the
appropriate word whose content is transferred to the LUT output. Spartan-6 FPGAs have
6-input/2-output LUTs (the two outputs are denoted O6 and O5). A single LUT can
implement one 6-input Boolean function, whose output is available on O6 or two 5-input
Boolean functions with outputs O6 and O5 (the two functions must operate on the same
input values). The LUT outputs can be:

• connected directly to the slice output (both O6 and O5)

• used in additional logic (both O6 and O5)

• connected as input to a memory element (O6 only)

• connected as input of one of the three wide-funtion multiplexers for realization of 7 or
8-input Boolean functions (O6 in SLICEM/SLICEL only)

Figure A.4 shows how the two wide-function multiplexers F7AMUX and F7BMUX fa-
cilitate the realization of a 7-input Boolean function by choosing an output from one of
the two LUTS connected to them. For an 8-input Boolean function an additional multi-
plexer F8MUX, that connects all four LUTs is available. Boolean functions in more than
8 variables can be implemented using several slices [60].

LUT

O6

O5

D
Inputs

6 1

1

LUT

O6

O5

C
Inputs

6 1

1

LUT

O6

O5

B
Inputs

6 1

1

LUT

O6

O5

A
Inputs

6 1

1

F7BMUX

F7AMUX

F8MUX

Figure A.4: Realization of 7 or 8-input Boolean functions using multiple slice LUTs

189

Storage elements

Two storage elements belong to each LUT in the slice, one for each LUT output [60]. The
storage element driven by the LUT output O6 can be configured either as a D-type flipflop
(DFF) or a latch (Note: this storage element actually gets its input from a multiplexer
that chooses between O6 and the direct slice input). The second storage element takes O5

LUT output; it operates as a DFF and can only be used when the first storage element is
configured as DFF.
Throughout this work, whenever we speak of flipflops or registers in an FPGA design, we
refer to D-type flipflops.

A.1.2 IOB - Input/Output Block

As seen in Figure A.1, the matrix of CLBs is surrounded by IOBs. They provide config-
uration of pins as inputs or outputs and include storage elements to accommodate signal
delay and serial-to-parallel/parallel-to-serial converters[62]. It is also possible to control
output strength and slew rate, they provide on-chip termination and can be configured to
a variety of I/O standards. The chosen xc6slx9-csg324 FPGA device provides 200 IO
pins that can be configured by the user.

A.1.3 Interconnects

Interconnect is a programmable network of vertical and horizontal routing channels, com-
posed of the connection segments of different lengths and pass transistors to enable inputs
and outputs of of CLBs and IOBs [58]. Using segments of different lengths reduces the
latency of a particular data-path and this facilitates optimal connectivity. Global signals
and clock signals use longlines, that do not have any switches that would slow down the
signal. So called fast interconnects are used to route outputs back to inputs, single inter-
connects are used to connect neighboring blocks and “diagonal” connections are achieved
with double and quad interconnects, as can be seen in Figure A.5. The vertical and hor-
izontal segments are connected through so called switchboxes composed of SRAM cells
(Figure A.6(a)); if the SRAM cell holds the value ’1’, the switch between two segments
is closed and the connection established [61]. Figure A.6 (b) shows the interconnects and
switchboxes, the thick lines mark different established connections [50].

190

Figure A.5: Interconnect types [60]

(b)(a)

Figure A.6: Interconnects: (a) switchbox; (b) different connections between CLBs

A.2 FPGA design flow

A.2.1 Levels of abstraction

In order to explain the FPGA design flow we first need to introduce level of abstraction.
There are different ways to make the distinction between the levels, depending on how
much detail we want to include (for example, transistor level could be divided into two
levels, the upper switch level and the actual transistor level). The hierarchy depicted in
Figure A.7 is sufficient for this thesis.

191

BEHAVIORAL
LEVEL

REGISTER TRANSFER
LEVEL

GATE
LEVEL

TRANSISTOR
LEVEL

Figure A.7: Levels of abstraction

design entry

design synthesis

TRANSLATE

MAP

PLACE
AND

ROUTE

front-end
verification

back-end
verification

program the
target device

Figure A.8: Design flow

We will present the four levels of abstraction from a top-down approach, since this is more
natural from the developers point of view. A good explanation of what an abstraction
actually is was given in [66]: ”An abstraction is a simplified model of the system, showing
only the selected features and ignoring associated details. The purpose of an abstraction is
to reduce the amount of data to a manageable level, so that only the critical information
is presented.”

As the name behavioral level indicates, this level describes the behavior of the system in
terms of data-path and algorithm and is not concerned with details like registers, logic cells
and connection between them. This leads directly to the next lower level of abstraction,
the register transfer level (RTL). The line between behavioral level and RTL is thin and
sometimes they are not distinguished at all. The basic building blocks of RTL are modules.
A module is basically a black box with inputs and outputs. Signals pass through functional
units, storage units and routing units, and are usually grouped together into more complex
data types. So basically, RTL captures the architecture of the circuit in terms of registers
and combinational signals and uses a common clock signal for the storage elements, i.e.

192

the events are synchronized to the rising/falling edge of the clock signal[66]. Beyond that,
RTL is technology independent. Going to the next lower level, the gate level, we enter
the binary world, i.e. all the signals are treated as logic ’1’ or logic ’0’. Functionality
of the circuit (input-output relationship) is described using Boolean functions. Building
blocks are simple gates (XOR, OR, NOT, ...) and we are looking at a network of gates and
registers from a certain library - we enter technology specific domain. Also, the technology
specific propagation delay of a gate is known. Area complexity at this level is given with
a technology independent measure called gate count, the basic gate usually being the two-
input NAND gate. Gates are nothing else but circuits consisting of transistors. Including
this detail, we proceed to the next level, Transistor level (sometimes called switch level),
which is the lowest level. It is a network of capacitors and resistors, and a detailed layout of
components and their interconnections is available. Here we enter the domain of continu-
ous time, voltages and currents, and the behavior is described by differential equations [66].

A.2.2 Design flow

Programming an FPGA device begins with specifying the digital circuit (this step is usu-
ally called design entry, refer to Figure A.8). Here we have two options: describing its
functionality using some HDL (Hardware Description language) or building the schematics
of the circuit using a graphical interface and available circuit elements. In the thesis we are
using VHDL (Very-High-Speed Integrated Circuit HDL), which results in a RTL descrip-
tion of the circuit. The next step is design synthesis. Synthesis generates a logic circuit
from the VHDL description [66]. VHDL code is checked for possible syntax errors; if none
are found, the compiler translates the VDHL to corresponding components, such as adders,
LUTs, registers, finite state machines, etc. , and connects all signals. Note that all of the
above is on a structural level and does not yet contain details about the target device. For
a example, at this stage, a 3-input Boolean function will be mapped to a 3-input LUT,
even though the target device only contains 6-input LUTs. Netlist file is generated during
the process [54]. Synthesis tools, including Xilinx-ISE, will also perform optimizations,
such as finding the canonical disjunctive normal form for a boolean function, at this step.

At this stage of the design, front-end verification should be carried out. This includes
formal verification (i.e. formal proofs of the correctness of the design using mathematical
methods), functional simulation and static timing analysis. Functional simulation intends
to verify the behavioral and structural design. Behavioral simulation, just like the behav-
ioral level of abstraction, will be the fastest one, but will not provide much information (for

193

example, no timing information can be obtained). Structural simulation needs more details
and can be performed after the synthesis. It allows to verify the functional correctness and
includes static timing (i.e. events are synchronized to rising/falling edge of the clock sig-
nal). Simulations at this stage are based on estimated parameters of the circuit[51]. More
detailed simulations can be done in later stages of development cycle.

The first step in design implementation is translate. It combines all the netlist files
and timing constraints into a single netlist that holds the entire design. It also identifies
appropriate system library components. The output of this process is a gate level logical
description of the entire design and preserves its original hierarchy [49].

Next step, called map, maps the logical design to the available resources on the target
device (IOBs, CLBs, etc.). While grouping the gates into physical components different
optimizations are performed. Unused signals and duplicated logic are removed. Another
example of a task performed by MAP is decomposing an 8-input Boolean function and
implementing using all the slice LUTs, their outputs connected via multiplexers, as was
described in SectionA.1.1; MAP must make sure that the outcome is functionally equiva-
lent to the original function. Optimizations must also consider different timing and area
constraints. The output of this process is a mapped netlist file containing the physical
representation of the design [49].

The actual “physical design”is the place and route (PAR) process. The placement
process selects a location for each (logic) component from the mapped netlist file. To find
the best placement of the components, the process is executed in several phases trying
different locations for each component. Besides timing constraints, the placement also
depends on the routing. Routing process establishes connections between the cells and can
also change the placement if needed.

During implementation a back-end verification can be performed, with more accurate in-
formation about the design and the target device after each implementation step. For
example, a detailed timing simulation with accurate estimates of block and routing delays
can be performed after PAR.

If the design meets the specifications and performance goals, the programming file (bit
stream) is generated and loaded onto the target device.

194

Appendix B

More detailed discussions and
additional material on field
constructions and module WGP T

B.1 Tower construction F216
∼= F(((22)2)2)2

B.1.1 Extension field F24
∼= F(22)2

Extension of degree 4
Elements of F24 , constructed as extension of degree 4 over the prime field using the ir-
reducible polynomial x4 + x + 1 and its root y, in their polynomial basis representation
{1, y, y2, y3} are given in Table B.1 below:

195

F24 with defining polynomial x4 + x+ 1 in polynomial basis

1 y y2 y3

a0 a1 a2 a3 polynomial power of y σ2
1

0 0 0 0 0 / 0

0 0 0 1 y3 y3 y12

0 0 1 0 y2 y2 y8

0 0 1 1 y2 + y3 y6 y9

0 1 0 0 y y y4

0 1 0 1 y + y3 y9 y6

0 1 1 0 y + y2 y5 y5

0 1 1 1 y + y2 + y3 y11 y14

1 0 0 0 1 y15 1

1 0 0 1 1 + y3 y14 y11

1 0 1 0 1 + y2 y8 y2

1 0 1 1 1 + y2 + y3 y13 y7

1 1 0 0 1 + y y4 y

1 1 0 1 1 + y + y3 y7 y13

1 1 1 0 1 + y + y2 y10 y10

1 1 1 1 1 + y + y2 + y3 y12 y3

Table B.1: Elements of F24 in polynomial basis {1, y, y2, y3} and as powers of y

196

Conversion matrices between polynomial basis and tower field representation

The matrix MT
P for transition from tower field representation to polynomial basis repre-

sentation is obtained by simply rewriting the four tower field basis elements in polynomial
basis {1, β, β2, β3} as ti =

∑3
j=0 tijβ

j, using Table B.1 with y = β, which yields vectors
ti = (ti0, ti1, ti2, ti3). These vectors are columns of transition matrix, that is ti is the i-th
column of MT

P . Matrix MP
T is obtained as inverse of MT

P .

t0 = β6 = β2 + β3 7→ (0, 0, 1, 1)
t1 = β11 = β + β2 + β3 7→ (0, 1, 1, 1)
t2 = β9 = β + β3 7→ (0, 1, 0, 1)
t3 = β14 = 1 + β3 7→ (1, 0, 0, 1)

MT
P =


0 0 0 1
0 1 1 0
1 1 0 0
1 1 1 1

 MP
T =


1 1 0 1
1 1 1 1
1 0 1 1
1 0 0 0


An element represented in polynomial basis can be converted into tower field representation
by multiplication MPT · vP = vT , where vP denotes the vector in polynomial basis and vT
the vector of the element in tower field representation. For example β12 = 1 + β + β2 + β3

gives vP = (1, 1, 1, 1), so we have :

MP
T · vP =

1 1 0 1
1 1 1 1
1 0 1 1
1 0 0 0

 ·
1

1
1
1

 =

1
0
1
1

 = vT

Let us check that vT indeed represents β12:

β6 + β9 + β14 = αβ + αβ4 + α2β4 = αβ + β4 = β12

B.1.2 Efficient conversion matrices between normal basis and
tower field representation of F(((22)2)2)2

Here we give the matrix T and conversion matrices for three different normal elements,
the first normal element found ω11, the normal element giving lowest Hamming weight
conversion matrices ω1091, and the normal element ω1117 giving the matrix T with best CN ,
but very high Hamming weight for the conversion matrices. The value µ = β+λγ was used.

Normal element θ = ω11:

Matrix T has CN = 123, Hamming weight of both conversion matrices is 124.

197

T =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1
1 1 1 1 0 0 0 0 0 1 1 0 1 0 1 0
0 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1
0 0 0 1 1 0 1 1 1 1 0 0 1 1 0 0
1 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1
1 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1
1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 1
1 1 1 0 1 1 0 0 1 1 1 0 1 1 0 0
0 0 0 0 1 1 0 1 1 1 1 1 0 1 1 0
0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 0
1 0 1 0 0 1 1 0 0 1 1 1 0 0 0 1
1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1
1 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0
1 1 0 0 0 0 0 1 1 0 1 0 1 0 1 1
0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0



MNP =



0 0 1 0 1 1 1 0 0 1 1 1 1 0 0 1
0 0 0 0 1 0 0 1 0 1 0 1 1 1 1 1
0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 0
0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1
0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0
0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0
0 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0
0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0
0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 0
0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0
0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0
1 1 1 0 1 1 0 1 0 1 1 1 1 0 0 0
0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1
0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 1
0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1



MPN =



1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 0
1 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0
1 0 0 1 0 1 0 1 1 1 1 0 0 0 1 1
1 1 0 0 0 0 1 1 0 1 1 0 0 1 1 0
1 0 1 1 0 1 0 1 0 0 0 0 1 0 1 0
1 0 0 1 1 0 1 1 0 1 1 0 0 0 1 1
1 0 0 0 0 1 1 0 1 0 0 0 1 1 1 0
1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1
1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1
1 0 1 1 1 1 0 1 0 0 0 0 0 0 1 1
1 1 0 0 1 1 1 0 1 0 1 0 0 0 1 1
1 0 1 0 0 1 0 0 1 1 1 0 1 0 0 0
1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1
1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1
1 1 0 1 0 1 1 0 0 1 0 0 0 0 0 1
1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1



MTN =



1 0 1 0 1 0 0 1 0 0 0 1 1 1 0 0
0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 0
1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 1
0 1 0 1 0 0 0 1 0 0 1 0 0 1 0 0
1 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 1
1 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1
1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 1 0 1 0 1 0 0 1
0 0 1 1 0 0 1 0 0 1 1 1 1 1 1 0
1 1 1 0 0 0 1 1 1 0 1 0 1 1 0 0
0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1
1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1
1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1
0 1 0 1 0 1 1 1 1 0 1 0 0 0 1 1
1 0 1 1 1 0 0 0 1 1 1 0 1 1 1 1



198

MNT =



0 1 1 1 0 1 0 0 1 0 1 0 1 1 0 1
0 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0
1 0 1 1 0 0 1 1 0 0 0 0 1 0 0 1
0 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0
0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 0
1 0 0 0 1 0 0 1 0 0 0 1 1 1 0 1
1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1
0 1 0 0 1 0 0 1 1 0 0 0 0 0 1 0
1 0 1 0 1 1 0 1 0 1 1 1 0 1 0 0
0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 1
0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 1
1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 0
1 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1
0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 1
0 1 1 0 0 1 0 1 1 1 0 0 1 1 1 0
1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1


Normal element θ = ω1091:

Matrix T has CN = 115, Hamming weights of conversion matrices MN
T and MT

N , listed in
Section 3.4.2, are 100 and 92 respectively.

T =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 1 0 0 0 0 1 1 1 0 1
0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 0
1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0
1 1 1 1 1 1 0 1 1 0 1 1 0 0 0 1
1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1
1 1 1 0 1 1 1 1 1 1 1 1 0 0 1 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 1
0 1 1 0 1 0 1 0 0 1 1 1 0 1 0 1
1 0 1 1 0 1 1 0 0 0 1 1 1 1 1 1
1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1
0 1 1 1 0 1 1 0 0 0 1 1 0 0 0 0
0 0 0 1 0 1 0 0 0 0 1 1 1 0 1 1


Normal element θ = ω1117:

Matrix T has CN = 85, Hamming weights of the conversion matrices are 116 in 140.

T =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0
0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0
1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0
0 1 1 0 0 0 0 1 0 0 1 1 0 1 1 0
1 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0
1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 1 0 1 0 1 1 0 1 0 0 1 1 0
0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 0
0 0 1 0 1 1 1 1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0
0 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0
0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0



199

MNP =



0 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0
0 1 1 1 0 1 0 1 0 1 1 1 0 0 1 1
0 0 1 0 0 1 1 0 0 1 1 0 1 0 0 0
1 0 0 1 0 0 1 0 0 1 1 1 1 0 1 0
0 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1
0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0
1 0 0 1 1 0 0 1 0 1 1 0 1 0 1 0
0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 0
1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1
0 1 1 0 1 0 1 1 0 1 0 1 0 1 1 1
0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 1
1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 1
1 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0
0 1 0 0 1 1 1 1 1 1 0 0 1 1 1 0
0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 1
1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1



MPN =



1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0
1 1 1 0 1 0 1 1 0 1 1 0 1 0 0 0
1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0
1 0 0 1 1 1 1 0 1 0 1 1 0 0 0 0
1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0
1 1 1 0 0 1 1 1 0 1 1 0 1 0 1 0
1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0
1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0
1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 1
1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1
1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1
1 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1
1 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0



MTN =



1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0
0 0 1 1 1 0 0 1 1 0 1 1 1 0 1 0
0 1 1 1 0 0 1 0 0 1 1 0 0 0 0 1
0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0
0 0 1 1 1 0 1 0 0 0 0 0 0 0 1 0
1 0 1 1 1 1 0 1 1 0 0 0 1 1 0 0
0 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0 1 0 1 1 0 0 1 1
1 0 1 1 1 0 1 0 0 0 1 1 1 0 0 1
0 1 1 0 0 0 0 1 0 1 1 1 0 0 1 0
0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0
0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0
1 0 0 0 1 1 0 0 1 0 1 1 1 1 0 1
1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1



MNT =



1 0 1 0 0 1 1 0 0 1 1 1 0 0 1 1
0 0 1 1 0 1 1 1 1 0 0 1 0 1 1 0
1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0
1 1 0 0 1 1 1 1 0 1 1 1 1 0 1 0
1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0
1 0 1 1 1 1 1 0 1 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0
1 1 1 1 1 0 0 1 1 0 1 0 0 0 1 0
0 1 1 1 0 0 1 1 1 0 1 0 0 1 1 0
1 0 0 1 0 1 1 0 0 0 1 1 0 1 1 1
0 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0
0 1 1 1 1 0 1 0 1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 0 1 0 1 0 0 0 1 1
1 0 1 0 0 1 0 0 1 0 1 1 1 1 1 0
1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 1 0 1 1 1 1 1 0 0 1



200

B.2 Tower construction F216
∼= F(24)4

B.2.1 Different representations of the finite field with 16 ele-
ments and corresponding transition matrices

In the Section 3.4.1 we presented the finite field F24 in following three ways:

vi. F24 as an extension field of degree 4 over F2, using the defining polynomial x4 + x+ 1 with root y
and polynomial basis {1, y, y2, y3} - see Table B.1
(note that this is polynomial e1(x) from Table 3.13);

vii. F(22)2 as an extension of degree 2 over F22 , using the defining polynomial x2 + x + α with root β
and normal basis {β, β4} - the elements of this field were originally represented in Table 3.8 and are
now listed in column 8 in Table 3.14 in appropriate order as A = b0β + b1β

4;

viii. F24 over F2 with tower field basis resulting from aforementioned construction F(22)2 with basis
{β6, β11, β9, β14}. Field elements represented in this basis were originally represented in first column
of Table 3.8 and are now listed in column 7 in Table 3.14 in appropriate order as A = t0β

6 + t1β
11 +

t2β
9 + t3β

14;

All five representations of F24 are isomorphic to one another, they describe elements of one
and only finite field of order 16. At this point we will take a closer look at the constructions
that consider F24 as an extension of degree 4 over F2 and will treat them as four dimensional
vector spaces; for clarity we list the vector spaces and their bases in Table B.2.

Vector
space basis †
Ve1 P1 = {1, y, y2, y3} with y as root of e1(x) iii.
VT T = {β6, β11, β9, β14} with β = y as root of e1(x) v.
Ve4 P4 = {1, α, α2, α3} with α as root of AOP e4(x) i.
VN N = {α, α2, α4, α3} with α as root of AOP e4(x) ii.

Table B.2: Different representations of F24 over F2 viewed as vector spaces of dimension 4

† reference to the field construction as listed in this section

To construct a transition matrix from VN to VT we start by finding a transition matrix
between Ve1 and Ve4 , that is between the two polynomial basis representations. To achieve
this, we take a generator of the finite field defined by AOP e4(x) and map it to generator

201

y ∈ P1 of field defined by e1(x). Note that α ∈ P2 has order 5 and cannot generate the
15 elements of the multiplicative group, so we take an element of order 15, for example
λ = α + α3; this element generates the F∗24 obtained with AOP. Transition mapping is
obtained as follows:

y 7→ λ = α+ α3

y2 7→ λ2 = α+ α2

y3 7→ λ3 = α
y15 7→ λ15 = 1

MP1

P4
=


1 0 0 0
0 1 1 1
0 0 1 0
0 1 0 0



Ve4 �
MP1

P4 Ve1

F24

VN

MP4

N

?
�

MT
N

VT

MT
P1

6

Commutative diagram showing transition
from tower field basis to normal basis

representation

Then we compute matrix MT
N as dictated by the commutative diagram above, that is

MT
N = MP4

N ·M
P1
P4
·MT

P1
and obtain its inverse MN

T . Matrix MP4
N was derived earlier in this

section and matrix MT
P1

in Section 3.4.1.

MT
N =


0 1 0 0
1 1 0 1
0 0 0 1
0 1 1 1

 MN
T =


1 1 1 0
1 0 0 0
1 0 1 1
0 0 1 0


Elements of column 7 in Table 3.14 were obtained from elements in column 5 using the
transition matrix MN

T .

202

Appendix C

Xilinx specific optimization for the
serial LFSR

In this section we explain in detail the Xilinx-ISE optimization for the LFSR using serial
loading phase (see Section 4.1.2). Below is a small Section from Synthesis report for mod-
ule LFSR:

Code

1 Final Register Report

3 Macro Statistics
4 # Registers : 16
5 Flip -Flops : 16
6 # Shift Registers : 64
7 6-bit shift register : 16
8 7-bit shift register : 16
9 9-bit shift register : 32

We see that the optimization tools will use shift registers. As mentioned in Section A,
SLICEM can be used to implement a shift register. There are two primitives: a 16-bit
shift register SRL16 and a 32-bit shift register SRL32. The latter cannot be used because of
the tap positions determined by the LFSR polynomial `(x). This situation is mirrored in
the synthesis report above : a 6-bit shift register ends with S25, a 9-bit shift register ends
with S16, a 9-bit shift register ends with S7, and finally a 7-bit shift register ends with S0.

A closer analysis in FPGA Editor reveals the following. For LFSR stage S31, 8 slices
SLICEX, each with two registered outputs (primary registers conFigured as fdre - a D-
type flip flop with synchronous reset and enable signal) were used, resulting in total of 16

203

FFs for 16-bit state S31. These registered outputs were then routed to two SLICEM’s as
follows: a single SLICEM contains 4 LUTs conFigured as the SLR16 primitive, and two
outputs connected to their corresponding registers, which gives us 8 SRL16’s per SLICEM
and a total count of 8 output slice registers, conFigured as fde. The two SLICEM’s
together account for 16 FFs. These 16 registered output signals are then routed to four
slices SLICEX, each of them using the four primary output registers conFigured as fdre;
these hold the content of S25 and are then routed for the feedback computation and to the
next two SRL16’s (i.e. two SLICEM’s) for obtaining the state S16. This SLICEM/SLICEX
sequence continues down to state S0. The slices and registers used for the entire LFSR
are listed in the Table C.1 below, to show exactly why the LFSR needs only 152 registers
instead of the expected 32 · 16-bit= 512 registers.

of used # of FFs # of used # of FFs DFFs
SLICEX per SLICEX SLICEM per SLICEM subtotal

S31 8 2 16
S26 2 8 16
S25 4 4 16
S17 2 8 16
S16 4 4 16
S8 2 8 16
S7 4 4 16
S1 2 8 16
S0 3 4 12
S0 1 4 4

reset5...8 4 4
reset1...4 1 4 4

of FFs for the entire LFSR 152

Table C.1: Module LFSR - register count

To account for the remaining 8 FFs (for signals reset1, reset2, . . . , reset8 listed in Table
C.1), we need to explain a bit more about SLICEM (see A). Compared to the regular
6-input/2-output LUTSs that can be found in SLICEL and SLICEX, the SLICEM LUTs
have additional inputs and outputs and can be conFigured as distributed RAM element or
a Shift Register LUT (SRL). For the later, there are two configurations, namely SRL32 (a
32-bit shift register with one input DI1 and output O5) or SRL16 implementing a 16-bit
shift register. It is possible to implement two SRL16 primitives inside one LUT, using two
inputs DI1, DI2 and both outputs O5 and O6. When conFigured as SRL, the 6 “regu-
lar ”LUT inputs act as address signals to enable asynchronous read needed to implement
shorter shift registers, [56].

204

Each of the 8 SLICEM used for the LFSR has two SRL16’s per LUT, with two LUT
outputs connected to two corresponding FF’s implementing synchronous read. Recall the
register report given above: 5-bit shift register implements LFSR stages s30,...,s26 with
s30,...,s27 in the actual LUT and the 5-th stage s26 being the corresponding FF, ie the
SRL16 is set to realize a 4 + 1 shift register. Bit 6 of the 6-bit shift register found by the
synthesis tool is the corresponding state s25 bit, located in a separate SLICEX. Figure C.1
shows the two bits of the first two LFSR stages, s31<0>, s31<1> and s25<0>, s25<1>.
Elements in the Figure are grouped together into two grey blocks, left for the elements
belonging to SLICEM, followed by the elements of SLICEX on the right. The two tall
elements in SLICEM are the two SRL16 primitives (Mshreg s25 0 and Mshreg s25 1),
that are implemented in a single SLICEM LUT. They shift the two bits through the LFSR
stages s30, ..., s27 with the two output FFs s25 01 and s25 11 as the 5th resgister
in the sequence, holding the bits 0 and 1 of s26. A very important detail is that when the
LUTs are conFigured as SRL’s, the SLICEM registers cannot be set or reset, [56]. WG
implementation uses a synchronous reset, which has to be implemented for all LFSR stages
as well. Since the bits currently contained in SLICEM cannot be reset directly, the reset
is realized by routing the output s25 01, which holds the bit s26<0>, to a SLICEX LUT
s25 011 implementing an AND operation with a signal that simulates the reset, the reset5.
The result of this operation is then stored in s25 0 FF, which holds bit 0 of LFSR stage
s25. This flip flop is the actual tap position.

There are 8 serially connected flip flops of type fdre (dark grey blocks in Figure C.1
denoted reset IBUF shift1, ..., reset IBUF shift1), first one of them connected to
logical ’1’. When the module is in its normal operation, these registers propagate the
value ’1’. The output of the 5th register (marked reset5, denoted with a solid line in
Figure C.1) is connected to the SLICEX LUT as one of the inputs to the AND gate. When
reset5 = 1, the LUT s25 011 just passes trough the value from the SLICEM shift register.
When the reset signal is set (dashed line in Figure C.1), the SLICEX registers s31 0,

s31 1, s25 0, s25 1 and all the “reset ”registers are cleared. In this way, the 8 “re-
set”registers produce 8 values ’0’, ie a “reset chain”. For the next 5 clock cycles, the value
of reset5 will be set to ’0’ and will clear the bits coming from the SLICEM SRL, namely
the stages s30, ..., s26, via the AND gate.

The next 4 SLICEM’s in the design are used to implement stages s24, ...,s17 and
s15, ...,s8, both as 8-bit SRLs, using the signal reset8 from the “reset chain”. The last
two SLICEM’s implement stages s6, ...,s1 as 6-bit SRL, using the reset signal reset6.
Thus, all 152 FFs have been accounted for.

205

SL
IC

EM
SL

IC
EX

re
se
t 5

F
ig

u
re

C
.1

:
M

o
d

u
le

L
F
S
R

-
X
i
l
i
n
x
-
I
S
E

te
ch

n
o
lo

g
y

m
a
p

v
ie

w
o
f

S
R

L
’s

206

Appendix D

Extended Euclidean Algorithm for
inversion in polynomial basis

The division algorithm for polynomials states that for a nonzero polynomial a(x) and a
polynomial f(x), deg(f) ≥ deg(a), there exists a nonzero polynomial q0(x) and a poly-
nomial r0(x), such that f(x) = q0(x)a(x) + r0(x), where 0 ≤ deg(r0) < deg(a). If
r0(x) 6= 0, we repeat the procedure: we now need to find q1(x) and r1(x) such that
a(x) = q1(x)r0(x) + r1(x), 0 ≤ deg(r1) < deg(r0). Continuing this procedure we obtain a
strictly decreasing sequence
deg(ri) : deg(r0) > deg(r1) > · · · ≥ 0, eventually obtaining zero polynomial rn(x) = 0 after
finite number of steps n ∈ N. For simplicity, we will write a instead of a(x).

r−2 = f = q0a+ r0 0 ≤ deg(r0) < deg(a)
r−1 = a = q1r0 + r1 0 ≤ deg(r1) < deg(r0)

r0 = q2r1 + r2 0 ≤ deg(r2) < deg(r1)
...

rn−3 = qn−1rn−2 + rn−1 0 ≤ deg(rn−1) < deg(rn−2)
rn−2 = qnrn−1 + rn 0 = deg(rn) < deg(rn−1)

(D.1)

Equations (D.1) can be rewritten in the form ri = ri−2 − qiri−1 for i = 0, 1, . . . , n.

The value rn−1 is the greatest common divisor of a and f :

gcd(a, f) = gcd(r−2, r−1) = gcd(r−1, r0) = · · · = gcd(rn−1, rn) = rn−1

Before last equality holds because rn = 0 in gcd(rn−1, 0) = rn−1.

207

The EEA does not only find the gcd(a, f), but also gives the solution of the equation

ax+ fy = gcd(a, f) (D.2)

It starts from two extremes:
a · 0 + f · 1 = f
a · 1 + f · 0 = a

(D.3)

and finds two sequences {pi} and {qi}, for which the following holds: api + fqi = ri.
Equations D.3 give the initial values r−2 = b, p−2 = 0, p−1 = 1, r−1 = a, p−1 = 1 and
q−1 = 0. Then following the example (D.1), in each step we look for si and ri, such that
ri−2 = siri−1 + ri, where 0 ≤ deg(ri) < deg(ri−1). This allows the computation of

pi = pi−2 − sipi−1
qi = qi−2 − siqi−1

(D.4)

As allready mentioned, the procedure terminates with rn = 0, obtaining the solution to
the equation (D.2): x = pn−1, y = qn−1, rn−1 = gcd(a, f)

Our goal is to find the inverse p(x) of polynomial a(x) ∈ F2m , i.e. we are solving the
congruence a(x)p(x) ≡ 1 (mod f(x)), with f(x) being the defining polynomial of F2m .We
can rewrite it as a(x)p(x) + f(x)q(x) = 1 and find the inverse p(x) using EEA.
We are working in a binary field, so - in equations (D.4) becomes + and since we are only
interested in the inverse p(x), we skip the calculation of the sequence {qi} and only return
the inverse (EEA frinds the gcd and both, x and y from equation (D.2)).
Since f(x) is defining polynomial of the field, all the field elements are reduced modulo
f(x) and hence coprime to f(x); we know that the greatest common divisor (the value
rn−1) will be 1. We skip the last line in equations (D.1) and terminate when register r1
becomes rn−1 = 1, a constant polynomial of degree 0; hence choosing deg(r1) 6= 0 for the
loop condition. At that point the desired inverse is also obtained and held in register p1.
The procedure described above is held in the following algorithm:

208

Algoritem 1 EEA for polynomials 1

VHOD: polynomial a
IZHOD: polynomial p (inverse a−1)
1: r2 ← f , p2 ← 0
2: r1 ← a, p1 ← 1
3: while deg(r1) 6= 0 do
4: s← r2 div r1
5: r ← r2 + sr1
6: p← p2 + sp1
7: r2 ← r1, r1 ← r
8: p2 ← p1, p1 ← p
9: end while

10: return p1

Command div in step 4 of alg. 1 returns the corresponding qi from equations (D.1). Of
course it is not the actual division, but instead, the polynomial r1 is multiplied by x until
deg(r1)=deg(r2), ie:
d = deg(r2)− deg(r1)
s← xd

r ← r2 + s · r1
We now get rid of redundant registers s and r by setting
d = deg(r2)− deg(r1)
r2 ← r2 + xd · r1
p2 ← p2 + xd · p1
If d < 0 we swap registers: r1 ↔ r2 and p1 ↔ p2.

Algoritem 2 EEA for polynomials 2

VHOD: polynomial a
IZHOD: polynomial p (inverse a−1)
1: r2 ← f , p2 ← 0
2: r1 ← a, p1 ← 1
3: while deg(r1) 6= 0 do
4: d← deg(r2)− deg(r1)
5: if d < 0 then
6: r2 ↔ r1, p2 ↔ p1, d← −d
7: end if
8: r2 ← r2 ⊕ xdr1
9: p2 ← p2 ⊕ xdp1

10: end while
11: return p1

209

Each iteration in algorithm 2 reduces either degree of r2 or degree of r1 for d: worse case
being d = 1 in each iteration, which results in maximum possible number of iterations
(2m − 1). Multiplication by xd can be implemented by simple shifting. Nonetheless, two
problems remain: how to keep track of degree of a polynomial and the while loop (the
latter is VHDL specific - you cannot implement a loop without knowing the exact number
of iterations). Both problems can be solved at once: instead of multiplying once by xd we
multiply by x dtimes.

Algorithm 3 keeps track of d by increasing it when r1 is begin multiplied and decreasing
it when r2 is begin multiplied by x. When both polynomials have the same degree (both
leading coefficients are 1), they are added together (XOR) - this is done in steps 10 and
11. Since this will decrease the degree of r2, we know it will have to be multiplied by x
(step 13), so d will be set to 1 (step 17) and the registers swapped (steps 15 and 16).

Note: in step 19 we divide p1 instead of multiplying p2 and decrease d.

210

Algoritem 3 EEA for polynomials 3

VHOD: polynomial a
IZHOD: polynomial p (inverse a−1)
1: r2 ← f , p2 ← 0
2: r1 ← a, p1 ← 1
3: for i = 0 to 2m− 1 do
4: if r1(m) = 0 then
5: r1 ← xr1
6: p1 ← xp1
7: d← d+ 1
8: else
9: if r2(m) = 1 then

10: r2 ← r2 ⊕ r1
11: p2 ← p2 ⊕ p1
12: end if
13: r2 ← xr2
14: if d = 0 then
15: {r2 ↔ r1}
16: {p1 ← xp2, p2 ← p1}
17: d← 1
18: else
19: p1 ← p1/x
20: d← d− 1
21: end if
22: end if
23: i← i+ 1
24: end for
25: return p1

211

Let us examine what happens in lines 4 to 22 of the above algorithm. Using new r1,

new r2, new p1, new p2 and new d for registers that hold the updated values for each
iteration, and setting MSB bits rm1=r1(m), rm2=r2(m) and dbit=0 for d = 0 and dbit=1
for d > 0, we get the following:

new r1 =


xr1 , rm1 = 0;
r1 , rm1 = 1, dbit = 1;
xr2 , rm1 = 1, dbit = 0, rm2 = 0;
x(r2 + r1) , rm1 = 1, dbit = 0, rm2 = 1;

new p1 =


xp1 , rm1 = 0;
p1/x , rm1 = 1, dbit = 1;
xp2 , rm1 = 1, dbit = 0, rm2 = 0;
x(p2 + p1) , rm1 = 1, dbit = 0, rm2 = 1;

new r2 =


r2 , rm1 = 0;
r1 , rm1 = 1, dbit = 1;
xr2 , rm1 = 1, dbit = 0, rm2 = 0;
x(r2 + r1) , rm1 = 1, dbit = 0, rm2 = 1;

new p2 =


p2 , rm1 = 0;
p1 , rm1 = 1, dbit = 1;
p2 , rm1 = 1, dbit = 0, rm2 = 0;
p2 + p1 , rm1 = 1, dbit = 0, rm2 = 1;

0

1

0

1
0

1

xr1xr2

r1

x(r2+r1)
new_r1

rm2 rm1

dbit

Figure D.1: EEA inversion in polynomial
basis - schematic for new r1

Instead of having an integer d we can take a register of the same length as r1 and r2 and
have all values but the one set to zero. We start with 10...0 and shift it right for one
bit for d+ 1 and for d− 1 shift left. (note: when we enter the iteration for the first time,
r2 will hold the irreducible polynomial, hence rm2=1, and r1 will hold polynomial a(x), we
need to add a condition that will set the shift reg to 10...0 in the first iteration).

new d =

{
1 , [rm1 = 0, dbit = 0] or [rm1 = 1, dbit = 0];
d+ 1 , rm1 = 0, dbit = 1;
d− 1 , rm1 = 1, dbit = 1;

The above expressions for new r1, new r2, new p1, new p2 and new d are implemented
in a submodule called eea step, which computes one iteration of the algorithm 3. This
submodule must be connected either in a FSM running the 2m iterations or into a pipeline
of the same length. As already mentioned, we can terminate one step earlier, but must not
forget the final shift of the new p1 register, ie the inverse is p = p1/x.

212

Inversion 2

Implementation results for inversion modules
We are constructing a pipelined WGT module, so we choose a to implement inversion in a
pipeline. There are several options regarding the level of pipelining when using EEA:

1. a single eea step in a pipeline stage, resulting in 31 stage pipeline (module invP1)

2. two steps in a pipeline stage (module eea 2 step), resulting in a 16 stage pipeline (module invP2)

3. four steps in a pipeline stage (module eea 4 step), resulting in a 8 stage pipeline (module invP4)

4. eight steps in a pipeline stage (module eea 8 step), resulting in a 4 stage pipeline (module invP8)

Note that for options 2 to 4, the last pipeline stage contains one step less than other stages.
The second inversion module inv16 was implemented directly from schematic in Figure ??.

Implementation results of all inversion modules are given in Table D.1 below:

Basic FPGA Results
Building # of # of # of Block

Block FFs LUTs Slices Delay [ns]

eea step / 86 36 15.338

invP1 2635 2847 919 6.149

eea 2 step / 181 76 18.990

invP2 1361 3561 1193 7.843

eea 4 step / 362 150 21.387

invP4 680 3849 1217 9.039

eea 8 step / 742 343 32.919

invP8 344 3827 1193 15.866

inv16 248 1054 369 7.271

Table D.1: EEA inversion in polynomial basis - implementation results

The invP1 module alone is already twice the size of the entire WGT-16 implementation
using tower construction 1, therefore, we do not continue the implementation using EEA.
The square and multiply method (module inv16) gives way better results; it takes up less
than 35% of the area of invP1, but has approximately 15% longer clock period. However,

213

module inv16 has a 6 stage pipeline, which results in approximately 43ns delay through the
module, whereas the 31 stage pipeline of invP1 gives about 190 ns delay trough the inverter.
In comparison, that means more than 75% speedup using module inv16. Implementation
results of inverter inv16 encourage the implementation of WGT module using polynomial
basis.

214

Appendix E

Detailed gate count

In this section we provide a detailed gate count to allow us to compare basic building
blocks from different tower constructions. Number of AND and XOR gates proves to be
insufficient for the task due to big differences in architecture of individual modules. It also
gives a better understanding of relative sizes of squarer and inverter blocks compared to
the multiplier blocks at the same level of the tower within a particular tower construction.
We provide area complexity and critical path delay through the gate in terms of area and
delay of 1 NAND gate. The numbers used here are given in Figure E.1. Note that the actual
gate equivalence numbers from ASIC designers might different from these.
For an FPGA design, gate equivalents are irrelevant, because LUTs are used to implement
boolean functions; in this case, we only need to know the number of inputs the function
has.

215

N = area of 1 NAND gate
T = delay through 1 NAND gate

GATE
EQUIVALENT CIRCUIT

WITH NAND GATES AREA DELAY

1N 1T

2N 2T

3N 2T

4N 3T

Figure E.1: Area and delay of NOT, AND, OR and XOR gates in terms of NAND gates

F216 Building Block Area Critical Path
NB N Delay - T

Multiplication (M16) 3648 23

Table E.1: Area and time complexities of building blocks in Section 4.3 in terms of NAND gates

216

Tower Building Block Area Critical Path
Field N Delay - T

F22
Squaring (S2) 0 0
Multiplication (M2) 10 8
Mα 4 3
Mα2 4 3

F(22)2

Squaring (S4) 28 9
Multiplication (M4) 66 14
Inversion (I4) 50 22
Mλ 20 6
Mλ2 28 6
Mβ 20 9
Mαβ 24 6

F((22)2)2

Squaring (S8) 124 21
Multiplication (M8) 302 23
Inversion (I8) 348 68
Mµ 110 15

F(((22)2)2)2

Squaring (S16) 454 42
Multiplication (M16) 1264 41
Inversion (I16) 1452 153

Table E.2: Area and time complexities of building blocks in Section 4.4.1 in terms of NAND gates

Tower Building Block Area Critical Path
Field N Delay - T

Multiplication (M4) 92 11
Inversion (I4) - bad 184 22
Inversion (I4) - GOOD 76 9

F(24)4

Multiplication (M16) 1480 32
Inversion (I16) † / /

Table E.3: Area and time complexities of building blocks in Section 4.5.1 in terms of NAND gates

217

Bibliography

[1] GAP - Groups, Algorithms, Programming - a System for Computational Discrete
Algebra, available at http://www.gap-system.org/

[2] G. Gong, A.M. Youssef,“Cryptographic Properties of the Welch-Gong Transforma-
tion Sequence Generators”, IEEE Trans. on Information Theory, 48(11):2837-2846,
November 2002

[3] Y. Nawaz and G. Gong, “The WG Stream Cipher”, eSTREAM PHASE 2 Archive,
available at http://www.ecrypt.eu.org/stream/p2ciphers/wg/wg_p2.pdf, 2005.

[4] Y. Nawaz,“Design of Stream Ciphers and Cryptographic Properties of Nonlinear Func-
tions”, PhD thesis, Univ. of Waterloo, 2007

[5] H. El-Razouk, A. Reyhani-Masoleh and G. Gong, “New Implementations of the
WG Stream Cipher”, Technical Reports, CACR 2012-31, available at http://cacr.

uwaterloo.ca/techreports/2012/cacr2012-31.pdf

[6] X. Fan, N. Zidaric, M. Aagaard, and G. Gong, “Efficient Hardware Implementation of
the Stream Cipher WG-16 with Composite Field Arithmetic”, TrustED@CCS 2013:
21-34 available at http://cacr.uwaterloo.ca/techreports/2013/cacr2013-23.

pdf

[7] K. Mandal, G. Gong, X. Fan, M. Aagaard, “Optimal parameters for the WG stream
cipher family”, Cryptography and Communications (2014)6:117-135, available at
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-15.pdf

[8] X. Fan and G. Gong, “Specification of the Stream Cipher WG-16 Based Confidentiality
and Integrity Algorithms”, Technical Reports, CACR 2013-06, available at http:

//cacr.uwaterloo.ca/techreports/2013/cacr2013-06.pdf

218

http://www.gap-system.org/
http://www.ecrypt.eu.org/stream/p2ciphers/wg/wg_p2.pdf
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-31.pdf
http://cacr.uwaterloo.ca/techreports/2012/cacr2012-31.pdf
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-23.pdf
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-23.pdf
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-15.pdf
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-06.pdf
http://cacr.uwaterloo.ca/techreports/2013/cacr2013-06.pdf

[9] M.D. Aagaard, G. Gong, R.K. Mota, “Hardware Implementations of the WG-5 Cipher
for Passive RFID Tags”, HOST 2013: 29-34

[10] C.H. Lam, M. Aagaard, and G. Gong,“Hardware Implementations of Multi-
output Welch-Gong Ciphers”, March 2009, available at http://cacr.uwaterloo.

ca/techreports/2011/cacr2011-01.pdf

[11] G. Yang, X. Fan, M. Aagaard and G. Gong,“Design Space Exploration of the
Lightweight Stream Cipher WG-8 for FPGAs and ASICs”, The 8th Workshop on
Embedded Systems Security (WESS’13), ACM Press, Article No. 8, September 29,
2013,

[12] H. Wu,“Cryptanalysis and Design of Stream Ciphers,, PhD thesis, Katholieke Univer-
siteit Leuven, Belgium, July 2008

[13] H. El-Razouk, A. Reyhani-Masoleh, and G. Gong. “New Hardware Implementations of
WG(29;11) and WG-16 Stream Ciphers Using Polynomial Basis,” Accepted to IEEE
Trans. on Computers, available at http://cacr.uwaterloo.ca/techreports/2014/
cacr2014-02.pdf

[14] ETSI/SAGE Specification version 1.1: “Specification of the 3GPP Confidentiality
and Integrity Algorithms UEA2 & UIA2. Document 2: SNOW 3G Specification”,
Sept. 2006, available at
http://www.gsma.com/technicalprojects/wp-content/uploads/2012/04/

snow3gspec.pdf

[15] P. Kitsos,G. Selimis, and O. Koufopavlou, “High Performance ASIC Implementation
of the SNOW 3G Stream Cipher”, available at http://dsmc.eap.gr/en/members/

pkitsos/papers/Kitsos_c35.pdf

[16] ETSI/SAGE Specification version 1.6: “Specification of the 3GPP Confidentiality
and Integrity Algorithms 128-EEA3 & 128-EIA3. Document 2: ZUC Specification”,
June 2011, available at
http://www.gsma.com/technicalprojects/wp-content/uploads/2012/04/

eea3eia3zucv16.pdf

[17] Z. Liu, L. Zhang, J. Jing, and W. Pan, “Efficient Pipleined Stream Cipher ZUC
Algorithm in FPGA”, The first International workshop on ZUC algorithm

[18] L.Wang, J. Jing, Z. Liu, L. Zhang, and W. Pan, “Evaluating Optimized Implementa-
tions of Stream Cipher ZUC Algorithm on FPGA”, ICICS 2011, LCNS 7043

219

http://cacr.uwaterloo.ca/techreports/2011/cacr2011-01.pdf
http://cacr.uwaterloo.ca/techreports/2011/cacr2011-01.pdf
http://cacr.uwaterloo.ca/techreports/2014/cacr2014-02.pdf
http://cacr.uwaterloo.ca/techreports/2014/cacr2014-02.pdf
http://www.gsma.com/technicalprojects/wp-content/uploads/2012/04/snow3gspec.pdf
http://www.gsma.com/technicalprojects/wp-content/uploads/2012/04/snow3gspec.pdf
http://dsmc.eap.gr/en/members/pkitsos/papers/Kitsos_c35.pdf
http://dsmc.eap.gr/en/members/pkitsos/papers/Kitsos_c35.pdf
http://www.gsma.com/technicalprojects/wp-content/uploads/2012/04/eea3eia3zucv16.pdf
http://www.gsma.com/technicalprojects/wp-content/uploads/2012/04/eea3eia3zucv16.pdf

[19] P. Kitsos,N. Sklavos, and A.N. Skodras, “An FPGA Implementation of the ZUC
Stream Cipher”, DSD 2011

[20] P.Kitsos,N. Sklavos,G. Provelengios, and A.N. Skodras, “FPGA-based performance
analysis of stream ciphers ZUC, Snow3g, Grain V1, Mickey V2 Trivium and E0”,
Microprocessors & Microsystems , Volume 37, Issue 2, March, 2013 ,pp. 235-245

[21] L. Zhang, L. Xia, Z. Liu, J. Jing and Y. Ma, “Evaluating the Optimized Implemen-
tations of SNOW3G and ZUC on FPGA”, TrustCom 2012: 436-442

[22] C.De Canniere and B.Preneel, “Trivium”, New Stream Cipher Designs - the eS-
TREAM finalists, Springer-Verlag, Berlin Heidelberg, 2008

[23] M. Hell, T. Johansson, and W. Meier, “Grain - A Stream Cipher for Constrained
Environments”, available at http://www.ecrypt.eu.org/stream/ciphers/grain/

grain.pdf

[24] M. Hell, T. Johansson, A. Maximov, and W. Meier, “The Grain Family of Stream
Ciphers”,, New Stream Cipher Designs - the eSTREAM finalists, Springer-Verlag,
Berlin Heidelberg, 2008

[25] M. Robshaw, “The eSTREAM Project”, New Stream Cipher Designs - The eSTREAM
Finalists, Springer-Verlag, Berlin Heidelberg, 2008

[26] F.K. GĂĽrkaynak, P. Luethi, N. Bernold, R. Blattmann, V. Goode, M. Marghitola, H.
Kaeslin, N. Felber, and W. Fichtner, “Hardware Evaluation of eSTREAM Candidates:
Achterbahn, Grain, MICKEY, MOSQUITO, SFINKS, Trivium, VEST, ZK-Crypt”,
availabe at http://www.ecrypt.eu.org/stream/papersdir/2006/015.pdf

[27] T. Good, W. Chelton, and M. Benaissa, “Review of stream cipher candidates from
a low resource hardware perspective”, available at http://www.ecrypt.eu.org/

stream/papersdir/2006/016.pdf

[28] K. Gaj, G. Southern, and R. Bachimanchi, “Comparison of hardware performance of
selected Phase II eSTREAM candidates”, available at http://www.ecrypt.eu.org/

stream/papersdir/2007/026.pdf

[29] P. Bulens, K. Kalach, F. Standaert, and J. Quisquater, “FPGA Implementations
of eSTREAM Phase-2 Focus Candidates with Hardware Profile”, available at http:

//www.ecrypt.eu.org/stream/papersdir/2007/024.pdf

220

http://www.ecrypt.eu.org/stream/ciphers/grain/grain.pdf
http://www.ecrypt.eu.org/stream/ciphers/grain/grain.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/015.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/016.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/016.pdf
http://www.ecrypt.eu.org/stream/papersdir/2007/026.pdf
http://www.ecrypt.eu.org/stream/papersdir/2007/026.pdf
http://www.ecrypt.eu.org/stream/papersdir/2007/024.pdf
http://www.ecrypt.eu.org/stream/papersdir/2007/024.pdf

[30] M. Rogawski ,“Hardware evaluation of eSTREAM Candidates: Grain, Lex,
Mickey128, Salsa20 and Trivium”, available at http://www.ecrypt.eu.org/stream/
papersdir/2007/025.pdf

[31] T. Good and M. Benaissa, “ASIC Hardware Performance”, New Stream Cipher De-
signs - The eSTREAM Finalists, Springer-Verlag, Berlin Heidelberg, 2008

[32] D. Hwang, M. Chaney, S. Karanam, N. Ton, and K. Gaj, “Comparison of FPGA-
Targeted Hardware Implementations of eSTREAM Stream Cipher Candidates” , avail-
able at http://ece.gmu.edu/~kgaj/publications/conferences/GMU_SASC_2008.

pdf

[33] “A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications”, Special Publication 800-22, available at http://csrc.

nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf

[34] V. Rijmen, “Efficient Implemenetation of the Rijandael S-box”, available at http:

//www.networkdls.com/Articles/sbox.pdf

[35] A. Rudra, P.K. Dubey, C. S. Jutla, V. Kumar, J. R. Rao, and P. Rohatgi,“Efficient
Rijndael Encryption Implementation with Composite Field Arithmetic”, CHES 2001,
LNCS 2162:171-184

[36] A. Satoh, S. Morioka, K. Takano, and S. Munetoh,“A Compact Rijndael Hardware
Architecture with S-Box Optimization”, Advances In Cryptology - ASIACRYPT 2001,
LNCS 2248, 2001, pp 239-254

[37] S. Morioka and A. Satoh, “An Optimized S-Box Circuit Architecture for Low Power
AES Design”,CHES 2002, LNCS 2523:172-186, 2003

[38] N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede, “A Systematic Evaluation of
Compact Hardware Implementations for the Rijndael S-Box”,CT-RSA 2005, LNCS
3376, 2005, pp 323-333

[39] D. Canright,“A Very Compact S-Box for AES”, CHES 2005 , LNCS 3659, 2005, pp
441-455

[40] S. Nikova, V. Rijmen, and M. Schlaeffer,“Using Normal Bases for Compact Hardware
Implementations of the AES S-Box”, Security and Cryptography for Networks, LNCS
5229, 2008, pp 236-245

221

http://www.ecrypt.eu.org/stream/papersdir/2007/025.pdf
http://www.ecrypt.eu.org/stream/papersdir/2007/025.pdf
http://ece.gmu.edu/~kgaj/publications/conferences/GMU_SASC_2008.pdf
http://ece.gmu.edu/~kgaj/publications/conferences/GMU_SASC_2008.pdf
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf
http://www.networkdls.com/Articles/sbox.pdf
http://www.networkdls.com/Articles/sbox.pdf

[41] Y. Nogami, K. Nekado, T. Toyota, N. Hongo, and Y. Morikawa,“Mixed Bases for
Efficient Inversion in F((22)2)2 and Conversion Matrices of SubBytes of AES”, CHES
2010, LNCS 6225, 2010, pp 234-247

[42] A. Bonnecaze, P. Liardet, and A. Venelli,“AES side-channel countermeasure using
random tower field constructions”, Designs, Codes and Cryptography , December
2013, Volume 69, Issue 3, pp 331-349

[43] Michael John Sebastian Smith, “Application-specific integrated circuits”, Addison-
Wesley 1998, available at http://iroi.seu.edu.cn/books/asics/ASICs.htm

[44] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs”,IEEE Trans
on Computer-aided Design of IntegratedCircuits and Systems , Volume 26, Issue 2,
February 2007, pp.203 - 215

[45] Synopsys Design Compiler, http://www.synopsys.com/Tools/Implementation/

RTLSynthesis/

[46] ModelSim, http://www.mentor.com/products/fv/modelsim/

[47] Xilinx, http://www.xilinx.com/

[48] (2011) Xilinx - Glossary (UG659)
available at http://people.wallawalla.edu/~larry.aamodt/engr433/xilinx_

10/xilinx_10_gls.pdf

[49] (2008) Xilinx - Developement System Reference Guide (10.1)
available at http://www.xilinx.com/itp/xilinx10/books/docs/dev/dev.pdf

[50] T. Huffmire, C. Irvine, Thudy D. Nguyen, T. Levin, R. Kastner, and T. Sherwood,
Handbook of FPGA Design Security, Springer , 2010

[51] Stefan Mangard, Elisabeth Oswald, and Thomas Popp, Power analysis attacks - Re-
vealing the secrets of smart cards, Springer, 2007

[52] Francisco Rodriguez-Henriquey, N.A. Saqib, A. Diaz Perez, and Cetin Kaya Koc,
Cryptographic Algorithms on Reconfigurable Hardware, Springer , 2006

[53] (2008) Xilinx - Programmable Logic Design - Quick Start Guide (UG500(v1.0))
available at http://www.xilinx.com/support/documentation/boards_and_kits/

ug500.pdf

222

http://iroi.seu.edu.cn/books/asics/ASICs.htm
http://www.synopsys. com/Tools/Implementation/RTLSynthesis/
http://www.synopsys. com/Tools/Implementation/RTLSynthesis/
http://www.mentor.com/products/fv/modelsim/
http://www.xilinx.com/
http://people.wallawalla.edu/~larry.aamodt/engr433/xilinx_10/xilinx_10_gls.pdf
http://people.wallawalla.edu/~larry.aamodt/engr433/xilinx_10/xilinx_10_gls.pdf
http://www.xilinx.com/itp/xilinx10/books/docs/dev/dev.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug500.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug500.pdf

[54] S. Brown and Z. Vranesic, Fundamentals of digital logic with VHDL design, 3rd ed. ,
McGraw-Hill, 2009

[55] Xilinx - FPGA Design Flow Overview
available at http://www.xilinx.com/itp/xilinx10/isehelp/ise_c_fpga_

design_flow_overview.htm

[56] Xilinx -Spartan-6 FPGA Configurable Logic Block, UG384
available at http://www.xilinx.com/support/documentation/user_guides/

ug384.pdf

[57] Xilinx - XST User Guide, UG627
available at http://www.xilinx.com/support/documentation/sw_manuals/

xilinx11/xst.pdf

[58] S. Brown and J.N Rose, “Architecture of FPGAs and CPLDs: A Tutorial”, IEEE
Design and Test of Computers, Vol. 13, No. 2, pp. 42-57, 1996. available at http:

//www.eecg.toronto.edu/~jayar/pubs/brown/survey.pdf

[59] (2011) Xilinx - Spartan-6 Family Overview (DS160(v2.0))
available at http://www.xilinx.com/support/documentation/data_sheets/

ds160.pdf

[60] (2010) Xilinx - Spartan-6 FPGA Configurable Logic Block - User Guide (UG384(v1.1))
available at http://www.xilinx.com/support/documentation/user_guides/

ug384.pdf

[61] J. Rose, A.El Gamal, and A. Sangiovanni-Vincentelli, “Architecture of Field-
Programmable Gate Arrays”, Proc. of the IEEE, Vol.81, No. 7, July 1993 available at
http://www.eecg.toronto.edu/~jayar/pubs/rose/PIEEE93a.pdf

[62] (2013) Xilinx - Spartan-6 FPGA SelectIO Resources - User Guide (UG381(v1.5))
available at http://www.xilinx.com/support/documentation/user_guides/

ug381.pdf

[63] A. Telikepalli, “Power vs. Performance: The 90 nm Inflection Point”, WP223 (v1.1)
May 12, 2005

[64] A. Rahman, S. Das, A. Chandrakasan, and R. Reif, “Wiring Requirement and Three-
Dimensional Integration Technology for Field Programmable Gate Arrays”, IEEE
Trans. Very Large Scale Integration (VLSI) Systems, Vol.11,No.1,February 2003

223

http://www.xilinx.com/itp/xilinx10/isehelp/ise_c_fpga_design_flow_overview.htm
http://www.xilinx.com/itp/xilinx10/isehelp/ise_c_fpga_design_flow_overview.htm
http://www.xilinx.com/support/documentation/user_guides/ug384.pdf
http://www.xilinx.com/support/documentation/user_guides/ug384.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/xst.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/xst.pdf
http://www.eecg.toronto.edu/~jayar/pubs/brown/survey.pdf
http://www.eecg.toronto.edu/~jayar/pubs/brown/survey.pdf
 http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
 http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
 http://www.xilinx.com/support/documentation/user_guides/ug384.pdf
 http://www.xilinx.com/support/documentation/user_guides/ug384.pdf
http://www.eecg.toronto.edu/~jayar/pubs/rose/PIEEE93a.pdf
 http://www.xilinx.com/support/documentation/user_guides/ug381.pdf
 http://www.xilinx.com/support/documentation/user_guides/ug381.pdf

[65] J. Deschamps, J.L. Imana and G. D. Sutter , Hardware Implementation of Finite-Field
Arithmetic, McGraw-Hill,2009

[66] Pong P. Chu, RTL HARDWARE DESIGN USING VHDL - coding for Efficiency,
Portability, and Scalability, Wiley & Sons, 2006

[67] Steve Kilts,Advanced FPGA design - Architecure, Implementation, and Optimization,
Wiley & Sons, 2007

[68] S. MacLane and G. Birkhoff,Algebra, The Macmillan Company, 1967

[69] R. Lidl and H. Niederreiter, Finite fields, Encyclopedia of Mathematics and its Ap-
plications, Vol.20, Cambridge University Press, 1997

[70] A. Menezes, I. Blake, S. Gao, R. Mullin, S. Vanstone, and T. Yaghoobian, Applications
of Finite Fields , Kluwer Academic Publishers, 1993

[71] G.L.Mullen and D.Panario, Handbook of Finite Fields, CRC Press, 2013

[72] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of applied cryptog-
raphy, CRC Press , 1996

[73] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptography,
Springer-Verlag, 2004

[74] A. Masuda, L. Moura, D. Panario, and D. Thomson,“Low Complexity Normal El-
ements over Finite Fields of Characteristic Two”, IEEE Trans. Computers, 57, pp.
990-1001, 2008

[75] R.C.Mullin, I.M. Onyszchuk, S.A. Vanstone, R.M. Wilson, “ Optimal Normal Bases
in GF(pn)”, Discrete Applied Mathematics 22 (1988/89) 149-161, North-Holland

[76] S.W. Golomb and G. Gong,Signal Design for Good Correlation: For Wireless Com-
munication, Cryptography, and Radar, Cambridge University Press, 2005

[77] L.Chen and G. Gong, Communication System Security , CRC Press, 2012

[78] A. Joux, “Algorithmic cryptanalysis”, CRC Press, 2009

[79] J. von zur Gathen and J Shokrollahi, “Efficient FPGA-based Karatsuba multipliers
for polynomials over F2”, SAC 2005, LNCS Vol. 3897, 2006, pp. 359-369

224

[80] D. H. Green and I. S. Taylor, “Irreducible polynomials over composite Galois fields
and their applications in coding techniques”, PROC. IEE, Vol.121, No.9, September
1974

[81] T. Itoh and S. Tsuji, “A Fast Algorithm for Computing Multiplicative Inverses in
GF(2m) Using Normal Bases”, Information and Computation 78,171-177 (1988)

[82] I.S. Hsu, T.K. Truong, I.S. Reed, and N. Glover, “A VLSI architecture for performing
finite field arithmetic with reduced table lookup”, Linear Algebra and its Applications,
98:249-262, 1988

[83] M. Morii and M. Kasahara, “Efficient construction of gate circuit for computing mul-
tiplicative inverses over GF2m”, Transactions of the IEICE, E72(1):37-42, January
1989

[84] V.B. Afanasyev, “Complexity of VLSI implementation of finite field arithmetic”, II.
International Workshop on Algebraic and Combinatorial Coding Theory, pages 6-7,
Leningrad, USSR, September 1990

[85] V.B. Afanasyev, “On the complexity of finite field arithmetic”, 5th Joint Soviet-
Swedish International Workshop on Information Theory, pages 9-12, Moscow, USSR,
January 1991

[86] C. Paar, “Efficient VLSI Architectures for Bit-Parallel Computation in Galois Fields,”
PhD thesis, (English translation), Inst. for Experimental Mathematics, Univ. of Essen,
Essen, Germany, June 1994

[87] C. Paar, “Fast finite field arithmetic for VLSI design”, 3rd Benelux-Japan Workshop
on Coding and Information Theory, page 7, Institute for Experimental Mathematics,
University of Essen, Germany, August 1993

[88] C. Paar, “A parallel Galois field multiplier with low complexity based on composite
fields”, 6th Joint Swedish-Russian Workshop on Information Theory, pages 320-324,
Molle, Sweden, August 1993

[89] C. Paar, “Low complexity parallel multipliers for Galois fields GF((2n)4) based on
special types of primitive polynomials”, 1994 IEEE International Symposium on In-
formation Theory, Trondheim, Norway, June 1994

[90] C. Paar, “A new architecture for a Parallel Finite Field Multiplier with Low Com-
plexity Based on Composite Fields”, IEEE Trans. Computers, Vol. 45, No. 7, July
1996

225

[91] C. Paar, “Fast Arithmetic Architectures for Public-Key Algorithms over Galois Fields
GF((2n)m)”, EUROCRYPT ’97, LNCS 1233, 1997, pp. 363-378

[92] J. Guajardo and C. Paar, “Itoh-Tsuji Inversion in Standard Basis and Its Applica-
tion n Cryptography and Codes”, Designs, Codes and Cryptography, 25(2):207-216,
February 2002

[93] G.Harper, A.Menezes, and S. Vanstone, “Public-Key Cryptosystems with Very Small
Key Lengths”, Advances in Cryptology - EUROCRYPT ’92, Workshop on the Theory
and Application of of Cryptographic Techniques, BalatonfĂĽred, Hungary, May 24-28,
1992, Proceedings

[94] E. Savas and C. K. Koc, “Efficient methods for Composite Field Arithmetic”, Techni-
cal Report, December 1999, available at http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.82.532

[95] C.K. Koc and B. Sunar,“Low-Complexity Bit-Parallel Canonical and Normal Ba-
sis Multipliers for a Class of Finite Fields”, IEEE Trans. Computers, 47(3):353-356,
March 1998

[96] B. Sunar and C.K. Koc,“An efficient optimal normal basis type II multiplier”, IEEE
Trans. Computers, 50(1):83-87-356, January 2001

[97] B. Sunar, E. Savas, and C.K. Koc,“ Constructing Composite Field Representations
for Efficient Conversion”, IEEE Trans. Computers , 52(11):1391-1398, November 2003

[98] J.L. Massey and J.K. Omura, Computational Method and Apparatus for Finite Field
Arithmetic, US Patent No. 4587627, 1986

[99] A. Reyhani-Masoleh and M.A. Hasan, “A New Construction of Massey-Omura Parallel
Multiplier over GF (2m)”,IEEE Trans. Computers, 51(5):511-520, May 2002

226

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.82.532
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.82.532

	List of Tables
	List of Figures
	Introduction
	Background, WG-16 stream cipher and related work
	Implementation technologies: FPGAs and ASICs
	 Xilinx Spartan-6 FPGA
	ASIC
	Implementation efficiency and different metrics
	FPGA vs. ASIC

	Mathematical background
	Definitions and terminology
	Irreducible polynomials and field constructions
	Bases, conjugates and trace function

	Stream ciphers
	General structure
	A brief discussion on design principles

	The WG stream cipher
	Structure of WG-16
	Security of the WG

	Related work
	WG hardware implementations
	3GPP confidentiality and integrity algorithms: Snow3G and ZUC
	The eSTREAM project: Grain and Trivium
	Composite field arithmetic

	WGP_T module and different field constructions
	Finite field F216 - overview of field constructions
	F216 with polynomial basis
	Field construction
	WGP_T module

	F216 with normal basis
	Field construction
	WGP_T module

	Tower construction F(((22)2)2)2.5-.5.5-.5.5-.5.5-.5F216
	Field construction
	Conversion matrices
	Module WGP_T

	Tower construction F(24)4.5-.5.5-.5.5-.5.5-.5F216
	Field construction
	Conversion matrices
	Module WGP_T

	Tower construction F(28)2.5-.5.5-.5.5-.5.5-.5F216
	Field construction
	Conversion matrices
	Module WGP_T

	Finite field F216 - summary of field constructions

	Implementation
	The WG-16 LFSR
	Multiplication with 2743
	Serial vs. parallel loading phase

	F216 with polynomial basis - implementation
	Analysis of Basic Building Blocks
	Module WGP_T using polynomial basis

	F216 with normal basis - implementation
	Analysis of Basic Building Blocks
	Module WGP_T using normal basis

	Tower construction F(((22)2)2)2.5-.5.5-.5.5-.5.5-.5F216 - implementation
	Analysis of Basic Building Blocks
	Initial Design of Pipelined Architecture
	Optimizations and final choice for module WGP_T
	The FSM
	The WG-16 module

	Tower construction F(24)4.5-.5.5-.5.5-.5.5-.5F216 - implementation
	Analysis of Basic Building Blocks
	Module WGP_T - Design of Pipelined Architecture

	Tower construction F(28)2.5-.5.5-.5.5-.5.5-.5F216 - implementation
	Analysis of Basic Building Blocks
	Module WGP_T - Design of Pipelined Architecture

	Summary of implementations
	The WGP_T_PB and the WGP_T_NB
	The WGP_T_A16_2_BC8 and WGP_T_A8_2_BC8
	The WGP_T_A4_2_BC4 and WGP_T_M4_I4_T2
	The WGP_T_M8_I8_T3
	Optimality analysis
	The LFSR and the FSM
	The WG-16

	Conclusion and future work
	Appendix
	Xilinx Spartan-6 FPGA
	Basic structure
	CLB - Configurable Logic Block
	IOB - Input/Output Block
	Interconnects

	FPGA design flow
	Levels of abstraction
	Design flow

	More detailed discussions and additional material on field constructions and module WGP_T
	Tower construction F216.5-.5.5-.5.5-.5.5-.5F(((22)2)2)2
	Extension field F24.5-.5.5-.5.5-.5.5-.5F(22)2
	Efficient conversion matrices between normal basis and tower field representation of F(((22)2)2)2

	Tower construction F216.5-.5.5-.5.5-.5.5-.5F(24)4
	Different representations of the finite field with 16 elements and corresponding transition matrices

	Xilinx specific optimization for the serial LFSR
	Extended Euclidean Algorithm for inversion in polynomial basis
	Detailed gate count
	Bibliography

