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Abstract 

 In using automatic differentiation (AD) for Hessian computation, efficiency can be 

achieved by exploiting the sparsity existing in the derivative matrix. However, in the case where 

the Hessian is dense, this cannot be done and the space requirements to compute the Hessian can 

become very large. But if the underlying function can be expressed in a structured form, a 

“deeper” sparsity can be exploited to minimize the space requirement. In this thesis, we provide 

a summary of automatic differentiation (AD) techniques, as applied to Jacobian and Hessian 

matrix determination, as well as the graph coloring techniques involved in exploiting their 

sparsity. We then discuss how structure in the underlying function can be used to greatly 

improve efficiency in gradient/Jacobian computation. We then propose structured methods for 

Hessian computation that substantially reduce the space required. Finally, we propose a method 

for Hessian computation where the structure of the function is not provided. 
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1 Introduction 
Equation Chapter (Next) Section 1 

1.1 Overview 
Scientific computing is an (almost) all-encompassing field in modern research, with a large 

variety of disciplines utilizing it for modelling and quantitative analysis of various phenomena. 

Efficiency in computation is the chief concern in these applications, and often the computation of 

derivatives is what requires the most time. 

Automatic differentiation provides a very practical method to compute these derivatives. 

Unlike finite differencing methods, automatic differentiation does not incur truncation errors, 

and calculates derivatives to working precision. Unlike in symbolic differentiation, automatic 

differentiation only requires the computer code to evaluate a function, in order to determine its 

derivatives. It does not have to form potentially very complicated derivative function expressions 

in order to do so. 

Automatic differentiation is becoming more and more widely utilized throughout scientific 

research, with fluid dynamics [30], mathematical biology [22], ship propulsion optimization 

[31], option pricing [27], and thermodynamics [28] being just a few of its many applications.  

Often the Hessian matrix associated with a scalar-valued function is required in these 

applications and automatic differentiation performs efficiently in obtaining it in many situations. 

It does so by exploiting the sparsity inherent in the underlying function. However, for functions 

corresponding to a complicated computation where the Hessian is dense, sparse techniques are 

not very useful and the space required can become so large that using automatic differentiation 

becomes infeasible. 

 Thus if methods can be developed to use automatic differentiation in such a way as to 

mitigate the large space requirements for the Hessian matrix without significantly infringing on 

the efficiency in computing time, automatic differentiation becomes more generally applicable. 

This is the topic of this thesis. 
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1.2 Structure of Thesis 
In this thesis we discuss structured methods to reduce space requirements in Hessian 

computation using automatic differentiation. We consider both the case where the function in 

question is provided in a structured form, and when it is not. Chapter 2 provides an overview of 

automatic differentiation, with a focus on a matrix representation of AD. Chapter 3 discusses 

how sparsity in the derivative matrix can be used to increase computational efficiency, and how 

graph theoretic concepts are invoked in doing so. Chapter 4 outlines the concept of structure, 

and how it can be used to improve efficiency in Jacobian and gradient calculations. In Chapter 

5, we consider methods to exploit structure in Hessian computation while limiting the memory 

required, and numerical results are presented. In Chapter 6, we look at a structured method for 

the Hessian when the function is not provided in a structured form. Finally, Chapter 7 contains 

concluding remarks on the thesis and potential avenues for further research. 
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2 Automatic Differentiation 
Equation Chapter (Next) Section 1 

2.1 Overview 
Automatic differentiation (AD) is a numerical method for determining derivative matrices 

of a real-valued function, given a computer program to evaluate the function. AD makes use of 

the fact that every computer code for evaluating a function uses a finite set of elementary 

operations and functions as defined by the programming language. This is done in such a way 

that the function computed by the computer program is simply a composition of these elementary 

functions and operations.  The reason these elementary functions ( )sin,cos,exp, log,  and 

operations ( ), , , /,+ − ×  are very useful in differentiation is that their derivatives and 

corresponding derivative operations, with respect to their inputs, are known and are easy to 

compute.  

AD breaks the computer code for the function down into a partially ordered sequence of its 

elementary functions (we call this an evaluation procedure [26]). Then through repeated use of 

the chain rule, it calculates the function’s derivatives accurately to working precision. Generally, 

for a function : n mF →   the evaluation procedure is a three part process:  

 ( )
1

1

1 0

i n i

i i j j i

m i p i

v x i n

v v i p

F v i m

φ

−

∀ <

− −

= =

= =

= = −







 

Figure 2.1: General Evaluation Procedure for AD 

The input variables are converted to intermediate variables, a new intermediate variable is 

defined for every elementary operation iφ , and finally the output variables for the function are 

extracted from the final intermediate variables. This evaluation procedure is used in two distinct 

ways to compute the derivative of the function, forward mode and reverse mode, which are 

discussed in Section 2.2 and 2.3, respectively. 
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2.2 Forward Mode AD 
As mentioned before, automatic differentiation is essentially repeated application of the 

chain rule. Suppose we have a composite function of the following form: 

 ( ) ( ( ( ( ))))f x g h s t x=   (2.1) 

then performing the chain rule on (2.1), with respect to x yields 

 df dg dh ds dt
dx dh ds dt dx

=  (2.2) 

Forward mode AD traverses the chain from right to left to obtain the function’s derivative, as 

you would when evaluating the function. This allows for the function value and derivative to be 

computed concurrently [12]. We demonstrate this with an example in the succeeding section. 

 

2.2.1 An Example of Forward Mode 

Suppose we have a function 3 2:F →   defined as: 

 
1 2 31

2 3 1 2

sin( )
exp( )

x x xF
F x x x

+  
=    −   

  (2.3) 

and we would like to determine the Jacobian matrix m nJ ×∈ , of F . AD determines the 

evaluation procedure of F as in Figure 2.1, by breaking down the function into a partially 

ordered set of elementary operations [26]. The evaluation procedure for (2.3) can be found in 

Figure 2.2. 
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2 1

1 2

0 3

1 2 1

2 1

3 0

4 1 3

5 0 2

1 4

2 5

Input
variables

exp( )
Intermediate

sin( )
variables

Output
variables

v x
v x
v x

v v v
v v
v v
v v v
v v v

F v
F v

−

−

− −

=


= 
= 
= ⋅


= 
= 
= + 
= − 

= 
= 

 

Figure 2.2: Evaluation Procedure of (2.3) 

Now suppose we want to compute the derivative of F with respect to 2x , in other words we 

want the derivatives 1

2

F
x
∂
∂

 and 2

2

F
x
∂
∂

. In forward mode AD, since we traverse the chain of 

elementary operations in the same direction as we do when evaluating the function, we can 

compute these derivative as we compute the function value. We define
2

i
i

dvv
dx

= , so then 1 1v− =  

and 2 0 0v v− = =   as they are independent variables. Putting this all together, we get the evaluation 

procedure for forward mode AD for the partial derivatives with respect to 2x . 
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2 1 2

1 2 1

0 3 0

1 2 1 1 2 1 2 1 2

2 1 2 1 1 1 2

3 0 3 0 0

4 1 3 4 1 3 2

5 0 2 5 0 2 1 2

1 4

2 5

0
1
0

exp( ) exp( ) exp( )
sin( ) cos( ) 0

exp( )

v x v
v x v
v x v
v v v v v v v v v
v v v v v v v
v v v v v
v v v v v v v
v v v v v v v v

F v F
F v

− −

− −

− − − − − − −

−

−

−

= =
= =
= =
= ⋅ = ⋅ + ⋅ =
= = ⋅ = ⋅
= = ⋅ =
= + = + =
= − = − = − ⋅

=
=







  

 

 

  

  



1 4

2 5

v
F v
=

=







 

Figure 2.3: An Evaluation Procedure for Forward Mode AD 

We can see in Figure 2.3 that with one “sweep” through the function, we have recovered all the 

partial derivatives with respect to 2x ; this corresponds to one column of the Jacobian. We can 

also see that the additional work required to get these partial derivatives is comparable to the 

work required to evaluate the function. So, if we define ( )Fω  as the work required to evaluate  

F , we can say that: 

 1 2

2 2

, ~ ( )F F F
x x

ω ω
 ∂ ∂
 ∂ ∂ 

  (2.4) 

However, in order to fully compute the Jacobian J , we need these partial derivatives with 

respect to each one of the input variables. Unfortunately, as should be apparent from how we 

defined 2 1 0, ,v v v− −   , for each input variable we must redefine these initial iv ’s and compute a new 

sweep through the function F . Since F  has n input variables, we come to the result that 

computing the Jacobian matrix using forward mode AD has cost: 

 ( ) ~ ( )J n Fω ω⋅  (2.5) 

 Additionally, since we are computing the derivative concurrently with evaluating the 

function, the space required to compute the derivative is just some multiple of the space required 

to evaluate the function. So if we define ( )Fσ  as the space required in evaluating the function 

F , we can say that: 
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 ( ) ~ ( )J Fσ σ   (2.6)  

 

2.3 Reverse Mode AD 
Examining (2.1) again, we have a composite function ( ) ( ( ( ( ))))f x g h s t x= , performing the 

chain rule with respect to x  again yields:  

 df dg dh ds dt
dx dh ds dt dx

=  (2.7) 

Reverse mode AD traverses the chain from left to right. Since it begins with the output of the 

function, the function must be evaluated first to get the evaluation procedure. The procedure 

consisting of the intermediate values and operations done is saved to a “computational tape”. 

Then the derivative is calculated by travelling backwards through the tape, until reaching the 

beginning of the tape where the derivative is recorded. 

 In order to record the derivatives as we travel back through the tape, we define a set of 

adjoint variables iv , corresponding to the existing intermediate variables iv  such that [12, 26]: 

 k k
i k

k i k ii k i i

dF dFv v
dv dv v v

φ φ
∀ > ∀ >

∂ ∂
= = =

∂ ∂∑ ∑  (2.8) 

where ( )k k j j k
v vφ

<
= . We initialize these adjoint variables to 0, then add to them incrementally 

as we traverse the tape backwards, until we reach the beginning of the tape and have fully 

accumulated the derivatives. 

 Generally, for a function : n mF →  , the evaluation procedure for performing reverse 

mode AD is as follows [26]: 
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( )

0 1
1 Function
1 evaluation

1 0

0 1
Derivative

 for 1
evaluation

1

i

i n i

i i j j i

m i p i

p i m i

i
j j i

j

i i n

v i n p
v x i n

v v i p

F v i m

v y i m

v v v j i i p
v

x v i n

φ

φ

−

∀ <

− −

− −

−

= = − 
= = 
= = 
= = − 
= = −


∂ = + < = ∂ 
= = 















 

Figure 2.4: General Evaluation Procedure for Reverse Mode AD 

We will further illustrate reverse mode AD through an example in the next section. 

 

2.3.1 An Example of Reverse Mode 

Using the same example as in Section 2.2.1, we have a function 3 2:F → 
 such that: 

 
1 2 31

2 3 1 2

sin( )
exp( )

x x xF
F x x x

+  
=    −   

  (2.9) 

Suppose we want to determine the Jacobian m nJ ×∈ , of F . As was the case with forward 

mode AD, the function is broken down into a partially ordered set of elementary operations. 

However, in reverse mode, the function is evaluated in its entirety first, saving the ordered 

operations to a computational tape. Then the last m adjoint variables are initialized to user-

specified values depending on with respect to which output the derivative is to be computed. 

Afterwards, the derivative is computed by sweeping through the tape in reverse. 

 For our example, we will compute the partial derivatives of 1F , which correspond to the 

first row of the Jacobian matrix. Following the general evaluation procedure for reverse mode in 

Figure 2.4, we first define the adjoint variables 4 1v =  and 5 0v =  (if we were getting the 

derivatives of 2F , we would define the adjoint variables as 4 0v =  and 5 1v =  instead). The 

evaluation procedure for the example is as follows: 
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( )
( )

( )
( )
( ) ( )

( )

2 1

1 2

0 3

1 2 1

2 1

3 0

4 1 3

5 0 2

1 4

2 5

5

4

2 2 5

0 0 5

1 1 4 4

3 3 4 4

0 0 3 0 0

1 1 2 1 1 2 2

1 1

0, 2 3

exp( )
sin( )

0
1

1 0

1 0

1 1

1 1

cos cos

exp 1

iv i
v x

v x
v x

v v v
v v

v v
v v v

v v v
F v

F v
v

v
v v v

v v v

v v v v

v v v v

v v v v v

v v v v v v v
v v

−

−

− −

− −

= = −
=
=
=
= ⋅
=
=
= +
= −
=
=
=

=

= + ⋅ − =

= + ⋅ =

= + ⋅ = =

= + ⋅ = =

= + ⋅ =

= + ⋅ = + ⋅ =

= +



1 2 2

2 2 1 1 1

3 0

2 1

1 2

v v v
v v v v v

x v
x v

x v

− −

− − − −

−

−

⋅ =
= + ⋅ =

=
=

=

 

Figure 2.5: An Evaluation Procedure for Reverse Mode AD 

Although AD does all this numerically, analytically Figure 2.5 yields the results: 

 ( )1 1 1
2 1 3

1 2 3

, , cosF F Fx x x
x x x
∂ ∂ ∂

= = =
∂ ∂ ∂

  (2.10) 

By looking at (2.9), it can be easily verified that the results in (2.10) are correct. With one sweep 

through the function we have recovered all the partial derivatives of the first output variable; and 

looking at Figure 2.5 we see that computing these derivatives only costs a small multiple of the 
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cost to evaluate the function itself. Since the function F  has m output variables (ie. the Jacobian 

has m rows), we can conclude that the work required to compute the Jacobian of a function F is: 

 ( ) ~ ( )J m Fω ω⋅   (2.11) 

 Additionally, since we have to save the entire computational tape from evaluating the 

function, in order to evaluate the derivative; reverse mode AD has space requirement: 

 ( ) ~ ( )J Fσ ω   (2.12) 

where typically, ( ) ( )F Fω σ>> . Reverse mode AD tends to have much higher storage demands 

than forward mode. However, its work’s dependence on the number of output variables (rather 

than inputs), can be extremely useful. This is especially true for scalar-valued functions ( )1m = , 

where the gradient would be computed. 

 

2.4 Matrix Representation of AD 
An alternative, but very useful way to look at AD is through the lens of matrix algebra. 

Suppose we have a program that evaluates the function ( ), : n mz F x F= →  . Evaluating the 

function using AD generates the partially ordered sequence of intermediate variables 

( )1 2, , , py y y , where typically ,p m n>> . Each intermediate variable iy  comes from an 

elementary operation on one ( )sin,cos,exp, log, , or two ( ), , , /,+ − ×   of the previously 

computed intermediate and independent variables.  

If we allow EF to represent the “extended” version of the function F , we can express its 

decomposition into intermediate elementary functions as follows [15]: 

 

1 1 1

2 2 2 1

1 2 1

1 2

solve : ( ) 0
solve : ( , ) 0

solve : ( , , , , ) 0

solve output : ( , , , , ) 0

E

E

E
p p p p

p

y y F x
y y F x y

y y F x y y y

z z f x y y y
−

− =

− =

− =

− =

 





  (2.13) 
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Differentiating the process in (2.13) with respect to all the independent and intermediate 

variables yields a ( ) ( )p m n p+ × +  matrix C of partial derivatives, representing an extended 

Jacobian of F . If we order the independent and intermediate variables as

( )1 2 1 2, , , , , , ,n px x x y y y  , then C can be written as: 

 
E E

x y

x y

F F
C

f f
 

=   
 

  (2.14) 

where: 

 

1 1 1

1 1

1 1

1 11 1

11

1 1

0

, ,

,

E E E

n
E E

x y
E E E E

p p p p

n p

pn

x y

m m m m

n p

F F F
x x y

F F
F F F F
x x y y

f ff f
y yx x

f f
f f f f
x x y y

  ∂ ∂ ∂
  

∂ ∂ ∂  
  = =   
 ∂ ∂ ∂ ∂ 
    ∂ ∂ ∂ ∂   

 ∂ ∂ ∂ ∂
   ∂ ∂∂ ∂   
  = =
  

∂ ∂ ∂ ∂  
 ∂ ∂ ∂ ∂   

 

     

 





     

  

  (2.15) 

C is a sparse matrix, since each elementary operation has at most two inputs, there are at most 

three non-zeroes in each row of C . It is also important to note that E
yF is a lower triangular 

matrix, since each elementary function can only depend on the intermediate variables already 

calculated, and not the ones coming after it. 

 The Jacobian of F  with respect to the independent variables x, can be recovered from 

(2.14) by a Schur complement computation: 

 ( ) 1E E
x y y xJ f f F F

−
= −   (2.16) 

There are two principal ways to compute the Schur complement in (2.16) that differ in their 

order of operations, and they correspond to forward mode and reverse mode AD. 

11 
 



2.4.1 Forward Mode 
The first method for computing (2.16) is: 

 ( ) 1E E
x y y xJ f f F F

− = −   
  (2.17) 

Computing ( ) 1E E
y xF F

−
 requires the linear system E E

y xF W F= to be solved for W : 

 

1 11

11 1

1 1

0
E EE

n

E E E E
pp p p p

p n

F FF
x xy W

WF F F F
y y x x

   ∂ ∂∂
   

  ∂ ∂∂       =      ∂ ∂ ∂ ∂  
    ∂ ∂ ∂ ∂  



      

 

 (2.18) 

Since E
yF  is lower-triangular, the 'siW  can be determined from top to bottom. Since the matrix 

C  is also created from top to bottom, as the function F is evaluated. We never need to store the 

entire matrix C . Thus the computational tape is only traversed in the forward direction, yielding 

forward mode AD, and so we have the space requirement in (2.6) [23]. 

We can also recover the same time complexity result for forward mode as in (2.5) [23], 

by examining (2.17). In forward mode AD, the Jacobian is computed column-wise, so we will 

determine the cost of computing the first column of the Jacobian.  

Clearly, the first column of xf  is required, and looking at (2.15), this corresponds to the 

partial derivatives of f  with respect to 1x . So this requires a forward sweep through the 

function, with cost proportional to that of evaluating the function, ( )Fω . The first column of 

yf W , where ( ) 1E E
y xW F F

−
= , is also required. This corresponds to the first column of W , as 

well as the partial derivatives of f  with respect to the intermediate variables iy . This derivative 

information is recovered in the forward sweep, so there is no additional cost. Finally, from 

examining (2.15), we find that the first column of W  requires the partial derivatives of EF  with 

respect to the intermediate variables iy , and the partial derivatives of EF with respect to 1x ; both 

of which are also recovered in the forward sweep. Thus the cost of computing the first column of 
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the Jacobian, ignoring the cost of matrix multiplications and a sparse triangular system solve as 

this should be negligible in comparison to evaluating the function, is proportional to ( )Fω . 

The Jacobian m nJ ×∈ , has n  columns, thus requiring n  sweeps through the 

computational tape. We cannot do better than that here, because as we saw in Section 2.2.1 we 

can only compute derivatives with respect to one of the input variables per forward sweep; and 

we have n  input variables. Thus we can conclude from a matrix approach just as we did in (2.5), 

that the cost of computing the Jacobian matrix of F  is: 

 ( ) ~ ( )J n Fω ω⋅  (2.19) 

 

2.4.2 Reverse Mode 
The second method for computing (2.16) is: 

 ( ) 1E E
x y y xJ f f F F

− = −   
  (2.20) 

Computing ( ) 1E
y yf F

−
 requires the linear system ( )TE T T

y yF W f= to be solved for W : 

 ( )

1 1

1 1 1 1

1

10

EE
p m

T T
p

E
p m

p pp

F fF f
y y y y

W W
F ff

y yy

   ∂ ∂∂ ∂
   
∂ ∂ ∂ ∂   

   =   
 ∂ ∂∂ 
     ∂ ∂∂   

 

      





  (2.21) 

This system is somewhat similar to (2.18), however since we are now dealing with ( )E T
yF  rather 

than E
yF , the left hand side of (2.21) is an upper-triangular matrix. This means it has to be solved 

bottom to top. However the matrix C  is formed from top to bottom in evaluating F , so the 

entire matrix E
yF  (ie. the computational tape) has to be stored in order to compute (2.20).  The 

computational tape is then traversed in the backwards direction, thus we have reverse mode AD. 

 Due to saving the computational tape in its entirety, we have the space complexity result 

( ) ~ ( )J Fσ ω  found in (2.12). We could also recover the time complexity result in the same way 

13 
 



we have done for forward mode in Section 2.4.1, yielding ( ) ~ ( )J m Fω ω⋅  as found in (2.11) 

[23]. 

 

2.4.3 Hessian Computation 

Suppose we have a function ( ), : nz f x f= →  . In order to determine the gradient, 

f∇ , which is the transpose of the Jacobian for a scalar-valued function, we would use reverse 

mode AD as 1m n=  . Following (2.20), we can outline the procedure for determining the 

gradient : 

 
Solve and differentiate (2.14) to obtain : ( , ) 0
Solve for : ( ) 0

Solve for : ( ) 0

E

E T T
y y

E T T
x x

C F x y
w F w f

f F w f f

=

+ =

∇ + −∇ =

 (2.22) 

Then assuming all functions involved are twice differentiable, we differentiate (2.22) with 

respect to ( ), ,x y w  to obtain an extended Hessian [14]: 

 ( ) ( ) ( )
( ) ( ) ( )

0E E
x y

T T TE E E
E yx yx yy yy y

T T TE E E
xx xx xy xy x

F F

H F w f F w f F

F w f F w f F

 
 
 = + + 
  + + 

  (2.23) 

Then we obtain the Hessian matrix 2 ( )H f x≡ ∇  by partitioning EH : 

 ( ) ( ) ( )
( ) ( ) ( )

0E E
x y

T T TE E E
E yx yx yy yy y

T T TE E E
xx xx xy xy x

F F
A L

H F w f F w f F
B M

F w f F w f F

 
 

  = + + =       + + 

  (2.24) 

and then computing a Schur complement of EH , as was done with C  for Jacobian calculation 

[14]. 

 1H B ML A−= −   (2.25) 
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In order to compute the extended matrix 
EH  we have essentially differentiated the gradient 

routine, ( ) : n nf x∇ →  . Since the input and output variables are the same size there is no 

advantage in terms of work required to compute using either forward or reverse mode. There is 

no discernible space advantage either, since in the gradient routine we used reverse mode storing 

all of the computational tape, we already have it and would not incur significant additional space 

requirements by using it again. Thus we have the work complexity result for computing the 

Hessian H by AD of [23]: 

 ( ) ~ ( )H n fω ω⋅  (2.26) 

 

2.4.4 Derivative Matrix Products 
A very useful property of automatic differentiation is that it can be used to compute 

Jacobian-matrix (and Hessian-matrix) products directly, without first explicitly computing the 

derivative matrix. 

For a function : n mF →  , with Jacobian m nJ ×∈ , suppose we have two matrices 

,V W  such that vn tV ×∈  and wm tW ×∈ . Then we can determine the product JV by forward 

mode AD in time proportional to ( )vt Fω⋅ , and the product TW J  by reverse mode AD in time 

proportional to ( )wt Fω⋅  [23, 24]. 

From (2.16), we have that: 

 1JV BV M L AV− = −     (2.27) 

 1T T TW J W B W ML A− = −     (2.28) 

Using the same argument as in Section 2.4.1, JV has Vt  columns and TW J  has Wt  rows, thus 

requiring Vt forward sweeps, and Wt  backward sweeps respectively. Each sweep costs ( )Fω , and 

thus we have the time complexity results [23, 24]: 

 ( ) ~ ( )VJV t Fω ω⋅  (2.29) 
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 ( ) ~ ( )T
WW J t Fω ω⋅  (2.30) 

 Alternatively, the cost of computing the Jacobian and then afterwards the product JV , 

costs ( )n Fω⋅  plus the cost of the matrix product [23]. So computing the product directly can 

result in significant time savings when the number of columns in V or W , is less than the 

number of columns, or rows respectively, in J . 

We will see how useful this property can be in reducing the cost of AD when sparsity is 

accounted for, in the next chapter. 
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3 Sparsity and Coloring 
Equation Chapter (Next) Section 1 

3.1 Exploiting Sparsity 
Typically in problems of large dimension, the Jacobian (or Hessian), exhibits some level of 

sparsity. Fortunately, AD can take advantage of this sparsity to enhance the efficiency of these 

derivative matrix computations [2, 3, 4]. As we’ve seen in Chapter 2, ignoring sparsity the 

(dense) Jacobian J of a function : n mF → 
 can be computed using forward mode AD with 

cost proportional to ( )n Fω⋅ , or reverse mode AD with cost proportional to ( )m Fω⋅  [23]. From 

a derivative matrix product standpoint as introduced in Section 2.4.4, these are equivalent to 

choosing [24]: 

 nV I=   (3.1) 

 mW I=   (3.2) 

(where kI  represents the k k×  identity matrix) and then computing the products JV and   
TW J , for forward and reverse mode AD respectively. 

However, if the Jacobian J  is sparse, we can potentially choose thin matrices (ie. matrices 

with column dimension ,m n ) V and/or W  such that all the non-zeroes of J  can be 

recovered from the products JV  and/or TW J . Thus computing the Jacobian can be done much 

more efficiently than if the identity matrices were used [8, 19]. We will consider a few often 

referenced examples to illustrate the potential for increased efficiency [12, 13]. 

Suppose we have a function : n nF → 
, whose Jacobian is differentiable and has the 

structure (for 5n = ): 

 

11

21 22

31 33

41 44

51 55

J
J J

J J J
J J
J J

 
 
 
 =
 
 
 
 

  (3.3) 
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where ijJ  represent the nonzero entries. If we were to ignore the sparsity in J and treat it as a 

dense matrix, computing it would require work proportional to 5 ( )Fω⋅  regardless of whether 

forward or reverse mode was used. However, if we select the thin matrix: 

 

1 0
0 1
0 1
0 1
0 1

V

 
 
 
 =
 
 
 
 

  (3.4) 

Then the computation of JV by forward mode AD yields: 

 

11

21 22

31 33

41 44

51 55

0J
J J

JV J J
J J
J J

 
 
 
 =
 
 
 
 

  (3.5) 

Comparing (3.5) to (3.3), all the nonzeros of J are contained within JV . Since V only has 2 

columns, we have determined all the nonzeroes of J  with work proportional to only 2 ( )Fω⋅  

[24]. This is much more efficient than the 5 ( )Fω⋅ required if sparsity is ignored. The most 

astonishing result however, is that if we extend the problem to arbitrarily large size n (instead of 

5), V still only needs to have 2 columns. Whereas dense forward mode AD now requires work 

proportional to ( )n Fω⋅ . When 2n  , we obtain significant cost reduction by exploiting the 

sparsity in J . 

 Let’s now consider a similar example, but this time using reverse mode AD. Suppose the 

sparsity structure of J  is: 

 

11 12 13 14 15

22

33

44

55

J J J J J
J

J J
J

J

 
 
 
 =
 
 
 
 

  (3.6) 
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This time we select the thin matrix: 

 

1 0
0 1
0 1
0 1
0 1

W

 
 
 
 =
 
 
 
 

  (3.7) 

and using reverse mode AD compute: 

 11 12 13 14 15

22 33 44 550
T J J J J J

W J
J J J J

 
=  
 

  (3.8) 

Once again, comparing (3.8) to (3.6), we have recovered all the nonzeroes of J  in TW J . Since 

W  has 2 columns, computing the nonzeroes of J  requires work proportional to 2 ( )Fω⋅  [24]. 

This is much more efficient than if sparsity is ignored where the cost is proportional to 5 ( )Fω⋅ . 

If we extend the problem to size n with the same sparsity in the Jacobian, again the sparse 

method still costs 2 ( )Fω⋅ , whereas using AD without considering sparsity now costs ( )n Fω⋅ . 

So for large n, exploiting sparsity can yield huge gains in efficiency of Jacobian calculation. 

 However, the potential savings in exploiting sparsity are not always as apparent as in the 

previous two examples. Now suppose the Jacobian has the following structure [32]: 

 

11 12 13 14 15

21 22

31 33

41 44

51 55

J J J J J
J J

J J J
J J
J J

 
 
 
 =
 
 
 
 

  (3.9) 

 It turns out that because we have a fully dense row, forward mode AD cannot do better than 

( )n Fω⋅ . Also, since we have a fully dense column, reverse mode AD cannot do better than 

( )n Fω⋅  either. However, if we use a combination of forward and reverse modes, we can still 

reduce the work required. Suppose we let: 
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1
0
0
0
0

V

 
 
 
 =
 
 
 
 

  (3.10) 

 

1 0
0 1
0 1
0 1
0 1

W

 
 
 
 =
 
 
 
 

  (3.11) 

Then forward mode AD yields: 

 

11

21

31

41

51

J
J

JV J
J
J

 
 
 
 =
 
 
 
 

  (3.12) 

and reverse mode AD yields: 

 11 12 13 14 15

22 33 44 55

T J J J J J
W J

X J J J J
 

=  
 

  (3.13) 

Note that the entry X  in TW J  is nonzero, but not useful to us, so we discard it. Comparing 

(3.12), and (3.13) to (3.9), we have recovered all the nonzeroes of J , with cost proportional to 

3 ( )Fω⋅ , since V  has one column and W  has two [24]. This provides significant savings over 

the cost of only using one mode of AD, ( )n Fω⋅ . So generally, we may exploit sparsity by using 

a combination of both forward and reverse mode AD. 

 Then the question becomes, for a Jacobian J  (or Hessian H ) with general sparsity 

structure, how do we determine the most appropriate thin matrices V and/or W such that all the 

nonzeroes of J  can be recovered from the products , TJV W J ? We will see in Section 3.2 and 
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Section 3.3 that this can be done in a number of ways by solving an associated graph coloring 

problem.  

 

3.2 Coloring Jacobians 
 

3.2.1 One-sided Methods 
A one-sided method for automatic differentiation is one that utilizes just one of forward 

and reverse mode, but not both. Determining an appropriate matrix V (or W ) to recover the 

nonzeroes of the Jacobian J is equivalent to finding a partition of the columns (or rows) of J . 

A partition of the columns (or rows) of J  is the division of the columns (or rows) into 

groups such that each column (or row) belongs to one and only one group. A column partition is 

said to be consistent with the direct determination of J if for each nonzero element ijJ , all the 

other columns that are in the same group as column j do not have a nonzero in row i (ie. each 

group consists of a structurally orthogonal set of columns). Similarly, a row partition is 

consistent with direct determination of J , if each group’s set of rows is structurally orthogonal 

[11]. 

It is relatively easy to see how such a partition leads to a direct determination of J . We 

will demonstrate this for a consistent column partition. Suppose we have determined a column 

partition with groups 1 2, , , pC C C , we define a set of column vectors ( ), 1, ,iv i p=   such that: 

 ( ) 1 if 
0 if 

j ii

j
j i

c C
v

c C
∈

=  ∉
  (3.14) 

where , 1, ,jc j n=   is the thn  column of J . Then we concatenate the set of vectors into a 

matrix such that: 

 1 2 pV v v v
 
 =  
 
 

   (3.15) 
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We now have our matrix V  such that all the nonzeros of J can be recovered from the product 

JV , which is computed by forward mode AD. Since each group in the consistent column 

partition is structurally orthogonal, every entry in JV can only correspond to at most one 

nonzero entry in J . And since the partition covers all columns of J , we have directly 

determined all nonzero entries in J . The same argument can be made for a row partition 

consistent with direct determination. 

 We have shown that determining matrix V  (or W ) for derivative-matrix product 

computation is equivalent to finding a partition of the columns (or rows) of J  consistent with 

direct determination of J . Each group in such a partition corresponds to a column in V (or W ), 

and in order to be most efficient we need the matrix V (or W ) to be as thin as possible. This 

means we can reformulate the problem presented at the end of Section 3.1, to find the thinnest 

matrix V (or W ) such that all the nonzeros of J can be recovered, as a partitioning problem. 

The partitioning problem is to find a consistent column (or row) partition of J , requiring the 

least number of groups [11].  

 It turns out that this partitioning problem is equivalent to a certain graph-coloring 

problem. If we have a graph ( ),G V E= , a coloring of the graph, { }: 1, 2, ,V pφ →  , is a 

labelling of the graph’s vertices such that no two vertices sharing an edge have the same color. 

The chromatic number of the graph, ( )Gχ  , is the minimum number of colors required to color 

the graph. Determining the optimal coloring of an arbitrary graph, one with ( )Gχ  colors, is an 

NP-complete problem [29], so typically a heuristic algorithm is used to determine a near-optimal 

graph coloring. 

 If a consistent column partition is desired, the equivalent graph coloring problem is to 

find an optimal coloring of the column intersection graph of J , ( )( ) ,UG J V E=  where the 

vertex set { }1 2, , , nV c c c=   corresponds to the columns of J , and there exists an edge ( ),i jc c  

if and only if both the thi  and thj  columns of J  have a nonzero in the same row position         

[11, 20]. 

We will illustrate this equivalency by looking back at the example in (3.3). The column 

intersection graph associated with J  in (3.3) is: 
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Figure 3.1: Column Intersection Graph of (3.3) 

This is a relatively simple graph, so we can see that the optimal coloring would be: 

 

Figure 3.2: Optimal Coloring of Column Intersection Graph 

 If we allow each color to represent a group, then by (3.14) and (3.15), we have recovered the 

matrix V in (3.4).  

 Analogously, the consistent row partition corresponds to coloring the Jacobian’s 

associated row intersection graph ( )( ) ,UG J V E= . Where the vertex set { }1 2, , , mV r r r=   

corresponds to the rows of J , and there exists an edge ( ),i jr r  if and only if both the thi  and thj  

rows of J  have a nonzero in the same column position. We will not demonstrate this with an 

example like we did for the column case, as the resulting graph and coloring are identical to 

those found in Figure 3.1 and Figure 3.2. 
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 There are several algorithms that can be used to determine a near optimal coloring of the 

graph, such that the number of colors used, ( )p Jχ≈  , where ( )Jχ  is the chromatic number of 

the column (or row) intersection graph of J [8, 11, 20]. ( )Jχ  gives us a lower bound on the 

number of colors required and it is always true that ( )J nχ ≤  (or m), since we can always assign 

a different color to each vertex and have a permissible coloring. This means that by exploiting 

sparsity, we can compute the nonzeroes of J  using a one-sided method with work: 

 ( )( ) ~ ( )J J Fω χ ω⋅  (3.16) 

and this will always cost no more than it would have if we had ignored sparsity [11].  

 

3.2.2 Bicoloring Methods 

As we have seen in examining the sparsity structure of J  in (3.9), a one-sided method 

cannot always take advantage of the sparsity in J . We claimed that this was the case because 

(3.9) contained both a dense column and row. Now we will demonstrate why this is the case by 

looking at the column intersection graph of (3.9) (the row intersection graph is identical): 

 

Figure 3.3: Column Intersection Graph of (3.9) 

It is apparent from Figure 3.3 that a coloring of this graph must have n (or m) colors, and so there 

is no improvement in time complexity compared to if we had ignored the sparsity. 

 However, as we saw in (3.10)-(3.13) the computation of the nonzeroes of J  in (3.9) can 

be done much more efficiently if we use a combination of forward and reverse mode AD, by 
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what is called a bicoloring method [13]. A similar method for determining a sparse Jacobian by 

both columns and rows is given by Hossain and Steihaug [33]. In order to do this, we need a 

bipartition of the Jacobian J . A bipartition of J is a pair ( ),R CG G  where RG  is a row partition 

of a subset of the rows of J , and CG  is a column partition of a subset of the columns of J . A 

bipartition ( ),R CG G  is consistent with direct determination if for every nonzero entry in J , ija , 

either column j is in a group of CG  which has no other column having a nonzero in row i; or row 

i is in a group of RG  which has no other rows having a nonzero in column j [13]. 

 The analogous bipartitioning problem is to find a consistent bipartition such that 

R CG G+  is as small as possible, where CG  represents the number of groups in CG  and RG  

represents the number of groups in RG  [13]. As shown in the one-sided case, given a bipartition 

consistent with direct determination, it is simple to construct matrices Cn GV ×∈  and 
Rm GW ×∈  such that J  can be directly determined from the products JV and TW J . 

 The bipartitioning problem can be interpreted as a restricted graph coloring problem. This 

time we need a bipartite graph associated with the Jacobian. Given a matrix m nJ ×∈ , we define 

a bipartite graph ( ) [ ]( )1 2, ,bG J V V E=  where the vertex sets correspond to the set of columns of 

J , { }1 1 2, , , nV c c c=  , and the set of rows of J , { }2 1 2, , , mV r r r=  ; edges exist only between 

the two vertex sets such that there exists an edge ( ),j ic r  if and only if the ijJ  entry of J  is 

nonzero. The associated bipartite graph of  (3.9) is: 
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Figure 3.4: Associated Bipartite Graph of (3.9) 

 We then need to find a bipartite path p-coloring of ( )bG J . A bipartite path p-coloring is 

a coloring using p colors, [ ] { }1 2: , 0,1, ,V V pφ →  , with the additional properties that every path 

of at least three edges must use at least three colors, and color 0 corresponds to a lack of an 

actual color assignment. The minimum number of colors required for a path p-coloring of graph 

( )bG J , is ( )( )p bG Jχ , which we will call the direct bichromatic number [13]. An optimal path 

3-coloring for the bipartite graph in Figure 3.4 is:  

 

Figure 3.5: Path p-coloring of Bipartite Graph 
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where the white nodes correspond to the 0-color. Since we do not consider the 0-color a true 

color, this path 3-coloring corresponds to a bipartitioning ( ),R CG G  where { }[1], [2,3, 4,5]RG =  

and { }[1]CG = . This bipartitioning in turn corresponds to matrices ,V W  where: 

 

1 1 0
0 0 1

,  and 0 0 1
0 0 1
0 0 1

V W

   
   
   
   = =
   
   
   
   

  (3.17) 

as in (3.10), and (3.11). 

 Generally, finding an optimal path p-coloring of ( )bG J  cannot be done efficiently. 

However, there exists heuristics [1, 13, 20] that yield a near optimal path p-coloring such that 

( )pp Jχ≈ , where ( )p Jχ  is the direct bichromatic number for the graph ( )bG J . This leads to the 

time complexity result for Jacobian computation using the direct bicoloring method of: 

 ( )( ) ~ ( )pJ J Fω χ ω⋅  (3.18) 

 It is important to note that the direct bicoloring method will always perform at least as 

well as the direct one-sided methods [13]: 

 ( ) ( )p J Jχ χ≤  (3.19) 

This is because the path p-coloring problem for the graph ( )bG J , can be made equivalent to 

coloring the column intersection graph ( )UG J , by simply requiring that the path coloring

[ ] { }1 2: , 0,1, ,V V pφ →  , maps the vertex set corresponding to the rows to the 0-color (ie. 

[ ] { }2: 0Vφ → ) and the column set to the positive colors (ie. [ ] { }1: 1, 2, ,V pφ →  ); and vice 

versa for the row intersection graph. 

 We can further improve on the time complexity bound found in (3.18) if we relax our 

requirement that all the nonzeroes of the Jacobian are directly determined, and instead allow for 

them to be determined by a substitution method.  

27 
 



This substitution method requires a new bipartition, one that is consistent with 

determination by substitution. A bipartition ( ),R CG G  is consistent with determination by 

substitution if there exists an ordering π  on elements ija  such that for every nonzero ija  of A, 

either column j is in a group where all nonzeros in row i from other columns in the group are 

ordered lower than ija ; or row i is in a group where all the nonzeros in column j from other rows 

in the group are ordered lower than ija . The bipartitioning problem is to find such a consistent 

bipartitioning where R CG G+  is minimized [13]. 

Once again, the bipartitioning problem can be interpreted as a graph coloring problem. 

As with the direct bicoloring method, the graph in question is the bipartite graph associated with 

the Jacobian, ( ) [ ]( )1 2, ,bG J V V E= , where the vertex sets correspond to the columns and rows, 

and there exists an edge ( ),j ic r  if and only if the ijJ  entry of J  is nonzero. For the substitution 

method, we require a bipartite cyclic p-coloring of ( )bG J . A bipartite cyclic p-coloring is a 

coloring using p colors, [ ] { }1 2: , 0,1, ,V V pφ →  , with the additional properties that every cycle 

must use at least three colors, and color 0 corresponds to a lack of an actual color assignment 

[13, 20]. 

The minimum number of colors required for a valid bipartite cyclic p-coloring is ( )c Jχ , 

which we will call the substitution bichromatic number. This leads to the time complexity bound 

for the substitution bicoloring method of AD: 

 ( )( ) ~ ( )cJ J Fω χ ω⋅  (3.20) 

It should be relatively clear that the substitution method will always perform at least as well as 

the direct method. This is because the requirements for a cyclic p-coloring are not as strict as 

those for a path p-coloring. A cyclic p-coloring requires that all cycles use at least 3 colors, but 

every cycle is a path of at least 3 edges (cycles with 1 or 2 edges are impermissible). This means 

that every path p-coloring is a cyclic p-coloring, but the converse is clearly not true. Thus leading 

to the result regarding the bichromatic numbers that: 

 ( ) ( )c pJ Jχ χ≤  (3.21) 
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 Combining the inequalities in (3.19) and (3.21) we have that: 

 ( ) ( ) ( )c pJ J Jχ χ χ≤ ≤  (3.22) 

This shows that the substitution bicoloring AD method performs better than the direct bicoloring 

AD method, which in turn performs better than both one-sided AD methods. 

 Substitution methods force another thing to be considered, the propagation of error 

through substitutions. However, it has been showed that with certain conditions this can be well 

mitigated [13]. 

 

3.3 Coloring Hessians 

The Hessian matrix of a function : nf →   is a symmetric matrix 2 n nf ×∇ ∈ . The 

chief difference when dealing with the sparsity of a Hessian, versus that of a Jacobian, is this 

symmetry which typically does not exist in a Jacobian. This symmetry opens new avenues for 

exploiting sparsity [6, 7, 10, 32]. Naturally, if we choose to ignore the symmetry in 2 f∇ , all of 

the methods discussed in Section 3.2 are applicable. However, we will demonstrate how 

exploiting the existing symmetry in 2 f∇  can lead to further gains in efficiency. 

We can demonstrate this rather simply by looking back at the sparsity structure in (3.9), 

but now we consider it as a symmetric Hessian’s structure [32]: 

 

11 12 13 14 15

21 22
2

31 33

41 44

51 55

h h h h h
h h

f h h
h h
h h

 
 
 
 ∇ =
 
 
 
 

  (3.23) 

If the symmetry is ignored, we saw in Section 3.2 that one sided methods yielded a partition 

consistent with direct determination containing 5 groups, whereas the direct bicoloring method 

yielded a bipartition consistent with direct determination containing only 3 groups. However, if 

we exploit the symmetry in (3.23), we can form a valid partition consisting of only 2 groups. 
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 Suppose we choose to partition the columns of 2 f∇ such that we have the two groups: 

{ }1 1C = , and { }2 2,3, 4,5C = . This partitioning leads to the seed matrix: 

 

1 0
0 1
0 1
0 1
0 1

V

 
 
 
 =
 
 
 
 

  (3.24) 

and the Hessian-matrix product computed by AD: 

 

11

21 22

31 33

41 44

51 55

0h
h h

HV h h
h h
h h

 
 
 
 =
 
 
 
 

  (3.25) 

Now, it may not appear so initially, but because the Hessian 2 f∇  is symmetric, we have directly 

recovered all the nonzeroes of 2 f∇  in the product HV . Since 2 f∇  is symmetric, we have the 

property that , ,ij jih h i j= ∀ ; so in determining the first column of 2 f∇  (in the first column of 

HV ) we have determined the first row of 2 f∇  as well. Then we get the remaining nonzeroes on 

the diagonal from the second column of HV . Thus we have recovered the nonzeroes of the 

Hessian with only 2 groups, better than both methods ignoring symmetry. 

 Generally, exploiting the sparsity and symmetry of the Hessian to recover its nonzeroes 

requires a symmetrically consistent partition of the columns of 2 f∇ . A partition is 

symmetrically consistent with direct determination of 2 f∇  if whenever ijh  is a nonzero element 

of 2 f∇  then the group containing column j has no other column with a nonzero in row i; or the 

group with column i has no other column with a nonzero in row j [10]. Note that the definition of 

a symmetrically consistent partition is not as strict as that of a consistent partition. The 

partitioning problem is then to find a symmetrically consistent partition of the columns of 2 f∇  

containing as few groups as possible. 
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 The graph theoretic interpretation of this partitioning problem involves the adjacency 

graph associated with the Hessian, ( )SG H . The adjacency graph is defined such that the vertex 

set { }1 2, , , nV h h h=   corresponds to the columns of the Hessian, and there exists edge ( ),i jh h  if 

and only if i j≠  and 0ijh ≠ . We then require a symmetric p-coloring of the graph ( )SG H . A 

symmetric p-coloring is a coloring using p colors, [ ] { }: 1, ,V pφ →  , with the additional 

property that every path of length 3 uses 3 colors [10]. Note that this is very similar to the path p-

coloring definition for the unsymmetric direct bicoloring method [13], but we do not require the 

graph to be bipartite here. The minimum number of colours required for a valid symmetric p-

coloring is ( )Hσχ , which we will call the symmetric chromatic number. Thus we have the time 

complexity result for symmetric direct determination of the Hessian using AD of: 

 ( )2 2( ) ~ ( )f f Fσω χ ω∇ ∇ ⋅  (3.26) 

 Let us consider an example where the Hessian has tridiagonal sparsity structure: 

 

11 12

21 22 23
2

32 33 34

43 44 45

54 55

h h
h h h

f h h h
h h h

h h

 
 
 
 ∇ =
 
 
 
 

  (3.27) 

This Hessian has the corresponding adjacency graph:  

 

Figure 3.6: Associated Adjacency Graph for (3.27) 

Since this is a very simple graph, we can easily determine a minimum symmetric 3-coloring: 
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Figure 3.7: Symmetric p-coloring of Adjacency Graph 

We can show how this coloring leads to direct determination of the Hessian by coloring its 

entries directly determined with their corresponding color: 

 

Figure 3.8: Sparsity Structure with Associated Colors 

Thus we can compute the nonzeroes of the Hessian directly from a partition consisting of only 3 

groups. 

 As with the unsymmetric bicoloring methods, we can further improve the efficiency of 

the Hessian calculation by allowing for entries to be determined by substitution. In order to do 

this, we need a partition consistent with determination by substitution. Generally, a partition of 

the columns of the Hessian induces a substitution method if there exists an ordering of the 

nonzeroes such that whenever ijh  is a nonzero element of 2 f∇ , the group containing column j 

can only have another column with a nonzero in row i if that nonzero is previously ordered; or 

the group with column i only has another column with a nonzero in row j if that nonzero is 

previously ordered [6]. 

 The graph theoretic approach to finding a smallest partition consistent with substitution 

involves finding a cyclic p-coloring of the associated adjacency graph, ( )SG H ; which we defined 

in Section 3.2.2 for a bipartite graph. However in this context, we define the minimum number 
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of colors required for a valid cyclic p-coloring as the cyclic chromatic number, 0 ( )Hχ  [6]. 

Similar to how it was done in Section 3.2.2, it can be demonstrated that the substitution method 

will always perform at least as well as the direct method since: 

 ( ) ( )o H Hσχ χ≤  (3.28) 

 We can demonstrate this by looking back at the sparsity structure in (3.27). A minimum 

cyclic 2-coloring for the associated adjacency graph is given in Figure 3.9. 

 

Figure 3.9: Cyclic p-coloring of Adjacency Graph 

This corresponds to the seed matrix and Hessian-matrix product: 

 

11 12

21 23 22

33 32 34

43 45 44

55 54

1 0
0 1

,1 0
0 1
1 0

h h
h h h

V HV h h h
h h h

h h

  
   +  
  = = +
  

+  
      

  (3.29) 

Then if we choose to order the nonzeroes using ordering S , where: 

 { }11 22 33 44 55 12 54 21 45 23 43 32 34, , , , , , , , , , , ,S h h h h h h h h h h h h h=   (3.30) 

Then we can determine all the nonzeroes of 2 f∇  by substitution using a partition consisting of 

only two groups; compared to needing three groups when doing so directly. 

 Generally, there exist many schemes for determining a near-optimal cyclic p-coloring, 

and corresponding permissible orderings of the nonzeroes [6, 21]. 
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4 Structure 
Equation Chapter (Next) Section 1 

4.1 General Framework 
We have examined methods to exploit sparsity in Jacobian and Hessian computations, 

allowing considerable speedup in AD implementation. But oftentimes we may deal with a 

function resulting in a large computation that does not have sparsity in its Jacobian or Hessian. 

Thus, when AD is applied in a straightforward manner, it becomes prohibitively expensive, from 

a time and/or space standpoint [9]. However, we can take advantage of the underlying structure 

in the function that often exists. This allows us to get to sparsity that can be exploited, and 

greatly decrease the cost of Jacobian computation. 

 For example, suppose we have a composite function ( )z F x= , with the following 

structure which is very common for large-scale problems [15]: 

 ( ) ( )F x F y=  (4.1) 

where y  is the solution to a large, sparse, positive definite system: 

 ( ) ( )A x y F x=   (4.2) 

Through use of the chain rule, we can determine the Jacobian J , of ( )F x : 

 
( )dF dF y dF dy dyJ J

dx dx dy dx dx
= = = ⋅ = ⋅   (4.3) 

where J  is the Jacobian of F . If we differentiate (4.2) with respect to x , we can determine dy
dx

: 

 

( ) ( )

( )1

( ) ( )

x

x

d dA x y F x
dx dx

dyA y A J
dx

dy A J A y
dx

−

=

+ =

= −







  (4.4) 
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where J  is the Jacobian of F , and xA y  is the Jacobian of the mapping ( )A x y . Thus from (4.3) 

and (4.4) we have the expression for the Jacobian: 

 ( )1
xJ JA J A y−= −   (4.5) 

Because of the application of 1A− , the Jacobian J will almost always be dense, even when 

, , and  xJ J A y  are sparse matrices. Thus, if we apply the sparse AD techniques discussed in 

Chapter 3 to determine the Jacobian, we make no gains in efficiency. However, if we exploit the 

structure in this function, we can find underlying sparsity in the function at a deeper level. 

Consider the following procedure to evaluate the function ( )z F x=  at a given x  [15]: 

 
1 1

2 2 1

2

Solve for : ( ) 0
Solve for : 0
Solve for : ( ) 0

y y F x
y Ay y
z z F y

− =
− =

− =



  (4.6) 

 If we consider this procedure as an extended function EF  with respect to ( )1 2, ,x y y  where: 

 ( )
1

1 2 2 1

2

( )
, , ( )

( )
E

y F x
F x y y A x y y

F y

 −
 

= − 
 − 



  (4.7) 

Then differentiating (4.7) with respect to ( )1 2, ,x y y  yields the extended Jacobian: 

 2

0

0 0
E x

J I
J A y I A

J

 −
 

= − 
 − 



  (4.8) 

Clearly EJ  is sparse, and thus we can use sparse AD techniques, such as the bicoloring method 

of Section 3.2.2, to compute it. This would require work: 

 ( ) ~ ( ) ( ) ( ) ( )E b E E b EJ J F J Fω χ ω χ ω⋅ = ⋅   (4.9) 

since the extended function EF  is just an alternative representation of the function F  [13]. 

Typically, the bichromatic number ( ) ,b EJ m nχ  . To what extent depends on how sparse EJ  is, 
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so computing EJ  requires much less work than computing the dense J . Then the Jacobian J  

can be recovered from EJ  by a Schur complement computation [15] such that: 

 ( )1
xJ JA J A y−= −   (4.10) 

The algebraic work required for the Schur complement is typically small compared to that of 

determining EJ , and so using structure to allow for sparsity exploitation can yield large gains in 

efficiency. 

 There are many well-known problems that exhibit structure that can be utilized, with 

partially-separable functions, dynamic systems and composite functions being a few. Restricting 

ourselves to scalar-valued functions, we represent a general structured computation of 

( ) : nz f x= →   as follows [14]: 

 

( )
( )

( )
( )

1 1 1 1

2 2 2 2 1

1 2 1

1 2

Solve for : 0

Solve for : , 0

Solve for : , , , , 0

Solve for output : , , , , 0

p p p p p

p

y M y F x

y M y F x y

y M y F x y y y

z z f x y y y

−

− =

− =

− =

− =







 

Figure 4.1: General Structured Computation 

where the iF ’s ( 1: )i p=  and f  are intermediate functions, and the intermediate variables are 

, 1:in
iy i p∈ = . In Figure 4.1, each iM  is nonsingular and its order is equal to the length of 

vector iy .  The corresponding extended Jacobian can be written as: 

 

1

1 1

1

1
1

2 2
2

p

p

x

x y

E
p p p
x y y p

T T T
x y y

J M
J J M

J
J J J M

f f f
−

 −
 

− 
 =  

− 
 
 ∇ ∇ ∇ 

   



 

  (4.11) 
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If we partition EJ  as: 

 
1

1 1

1

1
1

2 2
2 ˆ ˆ

p

p

x

x y E E
x y

E T T
p p p x y
x y y p

T T T
x y y

J M
J J M

J J
J

f fJ J J M

f f f
−

 −
 

−    = =     ∇ ∇ − 
 
 ∇ ∇ ∇ 

   



 

  (4.12) 

then the gradient of f  satisfies: 

 ( ) 1ˆ ˆT T T E E
x x y y xf f f J J

−
∇ = ∇ −∇   (4.13) 

Computing the gradient in this way requires work on the order of ( ) ( )b EJ fχ ω⋅   [13] and 

space on the order of 
1

( ) ( ) ( )
p

i
i

f f Fω ω ω
=

= +∑ ; whereas direct application of reverse mode AD 

has the same space requirement and only requires work proportional to ( )fω  [23]. Since 

( ) 1b EJχ ≥ , it appears as if reverse mode AD outperforms the method outlined in Figure 4.1 and 

(4.11) - (4.13). However, as we will see in Section 4.2 we can use the structure of f  to match 

the work complexity of reverse mode, and greatly reduce the memory required. This is 

important, as the reverse mode requirement to save the entire computational tape can be 

prohibitively expensive memory-wise for large-scale problems. 

 We can extend the structured method to the Hessian, by differentiating the process by 

which the gradient is determined; similarly to that which is outlined in Section 2.4.3. If we 

represent the structured computation in Figure 4.1 as ( , ) 0EF x y = , we can write the gradient 

process as [14]: 

 

Solve and differentiate to obtain : ( , ) 0
ˆSolve for : ( ) 0
ˆSolve for : ( ) 0

E
E

E T T
y y

E T T T
x x

J F x y

w J w f

f J w f f

=

+∇ =

∇ +∇ −∇ =

  (4.14) 

Then differentiating (4.14) with respect to ( ), ,x y w  yields the extended Hessian: 
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 ( ) ( ) ( )
( ) ( ) ( )

2 2

2 2

ˆ ˆ 0

ˆ ˆ ˆ

ˆ ˆ ˆ

E E
x y

T T TE E E
E yx yx yy yy y

T T TE E E
xx xx xy xy x

J J

H J w f J w f J

J w f J w f J

 
 
 

= +∇ +∇ 
 
 +∇ +∇ 

  (4.15) 

If we define a function: 

 
1

( , ) ( , ) ( , )
p

T
i i

i
g x y f x y w F x y

=

= +∑   (4.16) 

then we can partition the extended Hessian as follows: 

 2 2

2 2

ˆ ˆ 0
ˆ( )
ˆ( )

E E
x y

E T
E yx yy y

E T
xx xy x

J J
A L

H g g J
B M

g g J

 
   

= ∇ ∇ =   
   ∇ ∇ 

  (4.17) 

We can also achieve symmetry in the extended Hessian by block permutations [14]: 

 2 2

2 2

ˆ ˆ0
ˆ( )
ˆ( )

E E
y x

S E T
E y yy yx

E T
x xy xx

J J

H J g g

J g g

 
 

= ∇ ∇ 
  ∇ ∇ 

  (4.18) 

The Hessian matrix H  can then be recovered from the partitioned extended Hessian in (4.17) by 

the Schur complement computation: 

 1H B ML A−= −   (4.19) 

This structured method for computing the Hessian requires work proportional to 

( ) ( )EH fσχ ω⋅ , and space proportional to 
1

( ) ( ) ( )
p

i
i

f f Fω ω ω
=

= +∑ . While using reverse-mode 

AD straightforwardly has the same space requirement and needs work proportional to ( )n fω⋅ . 

The relationship between n  and ( )EHσχ  depends on the sparsity of EH , which is problem-

specific so we cannot conclude which is more efficient. However, we will show in Section 5 that 

if we approach (4.19) in a certain way, we can significantly reduce the memory required to 

compute the Hessian. 
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4.2 Structured Gradient Computation 
For large-scale problems, gradient computation by reverse-mode AD is much more 

efficient than forward mode with respect to time complexity as 1m n=   [23]. However, 

reverse mode requires the entire computational tape to be saved and this can become an 

infeasibly large storage requirement. If the machine being used to do this computation runs out 

of fast memory, having to save the tape to secondary memory can have negative effects on 

computation time as well [9]. 

However, when the function to be differentiated exhibits structure as in Figure 4.1, we can 

compute the gradient in such a way as to vastly reduce the storage required. The key to this 

method is that we can recover the gradient ( )f x∇ , without ever having to explicitly compute the 

derivative matrices ˆ ˆ,E E
x yJ J  [17]. To see this we examine the computation in (4.13), which is 

required to recover the gradient from the extended Jacobian EJ . Computing (4.13) by reverse 

mode is very similar to the process outlined in Section 2.4.2. We need to compute 

( ) 1ˆ ˆT E E
y y xT f J J

−
= ∇ , the first step of which is to determine the product: 

 ( ) 1ˆT E
y yW f J

−
= ∇   (4.20) 

which we rewrite in the following more convenient form: 

 ( )ˆ TE T
y yJ W f= ∇   (4.21) 

This corresponds to the upper triangular system [17]: 

 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( )

1 1 1 1

2 2 1

2

2 2

1

1

2 3 1
1

13
2

2

3 3

1

1

1

p p

p

p
p

T T T Tp p
y y y y

T xT Tp
Ty y y

T
y

T T
p p
y y

T
ypT

p Tp y p y

p

M J J J J
fw

M J J fw
M fw

J J
fw

M J w f
M

− −

−

−

−

−

−

−

 −   ∇     − ∇       −   ∇     =         ∇     −     ∇     − 



 

  





  (4.22) 
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then 

 ( ) 1 1 2 1
1 2 1

ˆ ˆ ˆT E E E p p
y y x x x x p x p xT f J J W J w J w J w J w J

−
−

−= ∇ = ⋅ = + + + +   (4.23) 

Note that since we are dealing with a scalar-valued function ( )ie. 1m = , , , 1:i

i

n
i yw f i p∇ ∈ =  

are vectors, but otherwise would be matrices with corresponding notation ,
ii yW J , for 1m > . 

 Solving (4.22) requires working through the ' siw  from bottom to top. The first few ' siw  

are calculated as follows: 

 
1

:
p

p

T
p p p y

T
p p y

w M w f

w M f−

− = ∇

= − ∇
  (4.24) 

 ( )
( )

1 1

1 1

1 1 1

1
1 1

:
p p

p p

T
T p T

p p p y p y

T p
p p y p y

w M w J w f

w M f w J

− −

− −

− − −

−
− −

− + = ∇

= −∇ +
  (4.25) 

 ( ) ( )
( )

2 2 2

2 2 2

1
2 2 2 1

1 1
2 2 1

:
p p p

p p p

T T
T p T p T

p p p y p y p y

T p p
p p y p y p y

w M w J w J w f

w M f w J w J

− − −

− − −

−
− − − −

− −
− − −

− + + = ∇

= −∇ + +
  (4.26)  

Note that in each iw , we only require blocks from ˆ E
yJ  in the form of matrix-matrix products, so 

we can avoid computing ˆ E
yJ  explicitly. 

  Then T  can be computed by explicitly differentiating the final intermediate function f   

and then solving for the ' siw  as in (4.24) - (4.26). The computing process is outlined as follows 

[17]: 

1. 1
p

T
p p yw M f−= − ∇   

2. Use reverse-mode AD on ( )1 1, , ,p pF x y y −  with seed matrix T
pw  to determine 

1 1
and , ,

p

p p p
p x p y p yw J w J w J

−
  

3. ( )1 1

1
1 1 p p

T p
p p y p yw M f w J

− −

−
− −= −∇ +  
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4. Use reverse-mode AD on ( )1 1 2, , ,p pF x y y− −  with seed matrix 1
T
pw −  to determine 

1 2

1 1 1
1 1 1and , ,

p

p p p
p x p y p yw J w J w J

−

− − −
− − −  

5. ( )2 2 2

1 1
2 2 1p p p

T p p
p p y p y p yw M f w J w J

− − −

− −
− − −= −∇ + +  

6. Continue process back until 1p =  

Note that we also only require ˆ E
xJ  in the form of matrix-matrix products, and so it does not need 

to be calculated explicitly either. 

 We now present the algorithm for structured gradient computation [17]. It can be 

represented as a 3-step algorithm. The first step is to calculate all of the intermediate variables 

1 2, , , py y y  from top to bottom. The second step is to differentiate the final intermediate 

function f  to get the derivative vectors ( )1
, , ,

p

T T T
x y yf f f∇ ∇ ∇

 by reverse-mode AD. The 

final step computes the gradient by (4.13), implementing steps 1 through 6 above in an efficient 

way. 
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Algorithm Structure-2 (S-2) 

Inputs: System as in Figure 4.1, vector nx∈  

Outputs: Function value ( )z f x= , and gradient n
x f∇ ∈  

1.       Following Figure 4.1 evaluate 1 2,...,, py y y   

2. Evaluate 1( , ,..., )pz f x y y=  and apply reverse-mode AD to f  to obtain 

1
( , ,..., )

p

T T T T
x y yf f f f∇ = ∇ ∇ ∇  .  

3. I) Initialize: 0, 1: .iv i p= =  x xf f∇ =∇   
II) For , 1,...,1j p p= −   

 Solve for :
jj j j y jw M w f v= ∇ −   

 Evaluate 1 1( , ,..., )j jF x y y −  and apply reverse-mode AD with vector jw  to   

 get 
1 1

( , ,..., )
j

T j j j
j x y yw J J J

−
⋅ . Set  ( 1,..., 1)

i

T T T j
i i j yv v w J i j= + ⋅ = −   

            Update: T T T j
x x j xf f w J∇ ←∇ +   

Figure 4.2: Algorithm S-2 

Analyzing the complexity of S-2, we have that step 1 requires time proportional to 

1
( )

p

i
i

Fω
=
∑  and space proportional to ( )Fσ . Step 2 requires a reverse mode AD computation, and 

since we are dealing with a scalar valued underlying function, the time and space required are 

proportional to ( )fω . Step 3 requires p reverse mode AD computations, and since the ' siw  are 

vectors, this requires time proportional to 
1

( )
p

i
i

Fω
=
∑  and space proportional to 

{ }max ( ), 1:iF i pω = . Putting all this together, we have that the S-2 algorithm requires time and 

space: 

 ( ) ( ) ( )2
1

p

S i
i

f F fω ω ω ω−
=

= + =∑   (4.27) 

 { }2 max ( ), ( ), 1:S if F i pσ ω ω− = =   (4.28) 
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Compare this to applying reverse mode AD to the underlying function, where the time and space 

requirements are ( )rm fω ω=  and ( )rm fσ ω= . The S-2 algorithm has the same time complexity 

as reverse mode AD, but since ( ) ( )
1

( )
p

i
i

f f Fω ω ω
=

= +∑ , we have that 2S rmσ σ−   [17]. Since 

we only use reverse mode AD on one intermediate function at a time, rather than the whole 

underlying function; the space required is greatly reduced without sacrificing efficiency in 

computing time. 
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5 Structured Hessian Computation 
Equation Chapter (Next) Section 1 

One of the main contributions of this thesis is an extension of the ideas involved in 

developing Algorithm  S-2 for gradient computation [17], and applying them to Hessian 

computation. We will consider three methods for computing the Hessian matrix when the 

function ( )z f x=  is given in the form of Figure 4.1: an implicit method very similar to 

Algorithm  S-2, an explicit method where sparsity is exploited, but the extended Jacobian 

matrices ˆ E
xJ , ˆ E

yJ  are computed, and a gradient differencing method where S-2 is used to compute 

the gradients. 

First, the equation for Hessian computation 

 1H B ML A−= −   (5.1) 

must be presented in a more tractable form. Note that we can write 

 2 12

ˆ 0 ˆ0 0
ˆ ˆˆ ( ) ( ) 0( )

E E
y y

E E TE T
yy y yyy y

IJ JL
g J J Ig J −

     
 = = ⋅      ∇∇    

  (5.2) 

and both matrices in the product on the right hand side are nonsingular. Therefore 

 
11

1
2 1

0ˆ 0
ˆ ˆ( ) ( )0

E
y

E E T
yy y y

IJL
g J JI

−−

−
−

  
= ⋅    ∇   

  (5.3) 

and 

 
11

1
2 1

0ˆ 0( ) ( )ˆ ˆ( ) ( )0

E
y

E E T
yy y y

IJML A M A
g J JI

−−

−
−

  
= ⋅     ∇   

  (5.4) 

Then from (5.1) we have: 

 ( )( ) ( ) ( ) ( )( )1 11 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆT TE E E E E E
xx xy y x x y yx yy y xH B ML A g g J J J J g g J J

− − −−= − = ∇ − ∇ ⋅ ⋅ − ⋅ ∇ − ∇  
  

 (5.5) 
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5.1 Implicit Method 
Extending the structured gradient approach from Section 4.2, we propose a new method to 

solve for the Hessian H of f without explicitly computing ( )ˆ ˆ,E E
x yJ J . Our approach is based on the 

following observation.  

Observation 1: Let V be a matrix with r columns and row dimension equal to the size of the 

intermediate vector y from Figure 4.1. Assume ( )z f x=  is a scalar-valued function with 

structure defined by (1) and let lower triangular matrix ˆ EJ  be defined by (4.11). Then the matrix 

ˆ( )E T
yW J V−= can be computed w/o precomputing matrix ˆ E

yJ . Specifically, the block-rows of W 

are computed where the computation of block jW  involves the application of reverse-mode AD 

to function jF  with matrix jW . The computing time is proportional to ( )r fω⋅  and the space 

required is proportional to { }max ( )i iFω  [17]. 

 

Algorithm Implicit-Inverse-Product (IIP) 

Inputs: System as in Figure 4.1, vector nx∈ , and matrix 1

p

i
i

n r

V =

×∑
∈   

Outputs: Matrix 1

p

i
i

n r

W =

×∑
∈ satisfying ˆ( )E T

yW J V−=  

1. Following Figure 4.1, evaluate 1 2,...,, py y y  

2.       I) Initialize: 0, 1:iT i p= =   
II) For , 1,...,1j p p= −   

 Solve for : T
j j j j jW M W T V= −   

 Evaluate 1 1( , ,..., )j jF x y y −  and apply reverse-mode AD with vector jW  to   

 Get 
1 1

( ,..., )
j

T j j
j y yW J J

−
⋅ .  

Set  ( 1,..., 1)
i

T j
i i j yT T W J i j= + ⋅ = −   

Figure 5.1: Algorithm IIP 
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Algorithm IIP shows how Observation 1 can be implemented, since W has r columns the total 

time cost is: 

 
1

( ) ( )
p

i
i

r F r fω ω ω
=

⋅ ≤ ⋅∑   (5.6) 

Since we only use reverse-mode AD on one intermediate function at a time, the space cost is: 

 { }max ( )ii
Fσ ω

  (5.7) 

Due to form (5.5), we can solve for H without explicitly computing ˆ E
yJ , through repeated use of 

IIP according to the following algorithm, where we have included the time and space 

requirements for each step: 
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Algorithm Implicit-Compute-Hessian (ICH) 

Inputs: System as in Figure 4.1, vector nx∈  

Outputs: Function value ( )z f x= , gradient n
x f∇ ∈ , and Hessian 2 n nf ×∇ ∈  

1. Evaluate 1 2,...,, py y y                

{ }( ),  max ( )ii
f Fω ω σ ω 

     

2. ˆSolve ( )E T
y yJ w f= −∇  to obtain w, using S-2           

{ }( ),  max ( )ii
f Fω ω σ ω 

     

3. Let 
1

( , ) ( , ) ( , )
p

T
i i

i
g x y f x y w F x y

=

= +∑  and compute its Hessian 

( )
2 2

2 2 2
2 2

1

p
xx xy T

i i
iyx yy

g g
g f w F

g g =

 ∇ ∇
∇ = = ∇ + ∇ ∇ ∇  

∑  using sparse AD.    

      ( ) ( ) ( ) ( ) ( ){ }2 2

1
,  max ( ),

p
T

i i i iii
f f w F F F fω χ ω χ ω σ ω ω

=

 
∇ ⋅ + ∇ ⋅ 

 
∑   

4. Using IIP, compute ( ) ( )2ˆ T TT E
y xyR J g

−
= ∇         { }( ),  max ( )ii

n f Fω ω σ ω ⋅     

5. Using IIP, compute ( ) ( )2ˆ T TT E
y yyC J g

−
= ∇  

 { }
1

( ),  max ( )
p

i iii
n f Fω ω σ ω

=

 
⋅ 

 
∑   

6. Using reverse-mode AD, compute 1
1

ˆ E p
x x p xT C J C J C J= ⋅ = + +                                                                                          

{ }( ),  max ( )ii
f Fω ω σ ω 

     

7. Using IIP, compute ( ) 2ˆ TE
y yxS J g T

−
 = ∇ −   

 { }
1

( ),  max ( )
p

i iii
n f Fω ω σ ω

=

 
⋅ 

 
∑   

8. Using reverse-mode AD, compute 
1

p
i

i x
i

R J
=
∑  and 

1

p
T i

i x
i

S J
=
∑                                                                                   

{ }
1

( ),  max ( )
p

i iii
n f Fω ω σ ω

=

 
⋅ 

 
∑   

9. Set 2 2

1 1

p p
i T i

xx i x i x
i i

f g R J S J
= =

∇ = ∇ − −∑ ∑   

Figure 5.2: Algorithm ICH 
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So from ICH, it is clear that our method requires time and space: 

 
( ) ( ) ( )

( ) ( ){ }

2 2

1 1
( ) ( ) ( )

max ,

p p
T

i i i i
i i

ii

n n f w F F f f

F f

ω ω χ ω χ ω

σ ω ω

= =

   + ⋅ + ∇ ⋅ + ∇ ⋅    
∑ ∑



  (5.8) 

This time complexity comes from the fact that 1 1

n n

i i
i i

n n

C = =

×∑ ∑
∈ , and  12 ,

n

i
i

n n

yx g T =

×∑
∇ ∈ , and so by 

Observation 1, steps 5 and 7 have their corresponding complexity. We can compare this to the 

time and space required in using sparse AD without structure: 

 ( ) ( )2( )  and f f fσω χ ω σ ω∇ ⋅   (5.9) 

Due to how the general structure is defined, we know that ( ) ( ){ } ( )max ,ii
F f fω ω ω≤  so 

ICH requires less space, and depending on the specific structure, potentially considerably less 

space than sparse AD. However the structured method does incur a loss in efficiency with 

respect to time, as 2

1
( )

p

i
i

f n nσχ
=

∇ ≤ <∑ . So we will have to see if this trade off of time for 

memory efficiency is worthwhile in some numerical experiments. 

 

5.2 Explicit Method 
In analyzing the ICH algorithm, it is apparent that large matrix-Jacobian products must be 

computed by AD (eg. Step 5 of ICH requires the product of two 
1 1

p p

i i
i i

n n
= =

×∑ ∑  matrices) and this 

is responsible for Algorithm ICH’s relatively high time complexity. So we also consider a more 

explicit approach to computing the exact Hessian that avoids using AD to calculate these large 

products. Again using the form for the Hessian given in (5.5), now we first explicitly compute 

the extended Jacobian matrices ˆ ˆ,E E
x yJ J , then directly calculate the matrix products as needed. 

This method requires modified versions of the S-2 and IIP algorithms to account for the 

direct matrix product calculations: 
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 Algorithm Explicit Structure-2 (ES-2). 

Inputs: System as in Figure 4.1, vector nx∈ , matrices 1ˆ
p

i
i

n n
E
xJ =

×∑
∈ and 1 1ˆ

p p

i i
i i

n n
E
yJ = =

×∑ ∑
∈  

Outputs: Function value ( )z f x= , and gradient n
x f∇ ∈  

1.  Following Figure 4.1, evaluate 1 2,...,, py y y   

2. Evaluate 1( , ,..., )pz f x y y=  and apply reverse-mode AD to f  to obtain 

1
( , ,..., )

p

T T T T
x y yf f f f∇ = ∇ ∇ ∇  .  

3. I) Initialize: 0, 1: .iv i p= =  x xf f∇ =∇   
II) For , 1,...,1j p p= −   

Solve for jw :  
jj j y jM w f v= ∇ −    

 Set  ( 1,..., 1)
i

T T T j
i i j yv v w J i j= + ⋅ = −   

            Update: T T T j
x x j xf f w J∇ ←∇ +   

Figure 5.3: Algorithm ES-2 

 

Algorithm Explicit-Inverse-Product (EIP)   For ˆ( )E T
yW J V−=  

Inputs: System as in Figure 4.1, vector nx∈ , matrices 1

p

i
i

n r

V =

×∑
∈ and 1 1ˆ

p p

i i
i i

n n
E
yJ = =

×∑ ∑
∈  

Outputs: Matrix 1

p

i
i

n r

W =

×∑
∈  satisfying ˆ( )E T

yW J V−=  

1. Following Figure 4.1, evaluate 1 2,...,, py y y  

2.       I) Initialize: 0, 1:iT i p= =  
II) For , 1,...,1j p p= −   

 Solve for jW :  T
j j j jM W T V= −     

Set  ( 1,..., 1)
i

T j
i i j yT T W J i j= + ⋅ = −  

Figure 5.4: Algorithm EIP 
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This leads to our explicit Hessian computation algorithm: 

Algorithm Explicit-Compute-Hessian (ECH) 

Inputs: System as in Figure 4.1, vector nx∈  

Outputs: Function value ( )z f x= , gradient n
x f∇ ∈ , and Hessian 2 n nf ×∇ ∈  

1. Evaluate 1 2,...,, py y y        

2. For 1,2,...,i p=  

Compute ,
j

i i
y xJ J  ( 1,..., 1)j i= −  using direct bicoloring AD. 

3. ˆSolve ( )E T
y yJ w f= −∇  to obtain w, using ES-2. 

4. Let 
1

( , ) ( , ) ( , )
p

T
i i

i
g x y f x y w F x y

=

= +∑  and compute its Hessian 

( )
2 2

2 2 2
2 2

1

p
xx xy T

i i
iyx yy

g g
g f w F

g g =

 ∇ ∇
∇ = = ∇ + ∇ ∇ ∇  

∑  using sparse AD.  

5. Using EIP, compute ( ) ( )2ˆ T TT E
y xyR J g

−
= ∇  and  ( ) ( )2ˆ T TT E

y yyC J g
−

= ∇  

6. Compute 1
1

ˆ E p
x x p xT C J C J C J= ⋅ = + +  

7. Using EIP, compute ( ) 2ˆ TE
y yxS J g T

−
 = ∇ −   

8. 2 2

1 1

p p
i T i

xx i x i x
i i

f g R J S J
= =

∇ = ∇ − −∑ ∑  

Figure 5.5: Algorithm ECH 

The most expensive components of the ECH algorithm are the blockwise computations of the 

extended Jacobian ( , )
j

i i
y xJ J ,  as well as computing the Hessians of the intermediate functions 

( , )iF f . The time and space costs of the latter are given in Algorihm ICH, while each blockwise 

extended Jacobian computation requires time and space: 

 ( ) ( ) and ( )
j j

i i
b y i i y nnz

J F F Jω χ ω σ ω⋅ +    (5.10) 

where 
j

i
y nnz

J  represents the space required to store the nonzeros of 
j

i
yJ . The total time and space 

requirements for ECH are: 
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( ) ( )

( ){ }

2 2

1 1
( ) ( ) ( ) ( ) + ( )

max ( ),

j

p i
i i T

b x b y i i i
i j

E innz i

J J w F F f f

J F f

σ σω χ χ χ ω χ ω

σ ω ω

= =

 
+ + ∇ ⋅ ∇ ⋅ 

 

+

∑ ∑



  (5.11) 

Comparing the costs for ECH to that of unstructured sparse AD in (5.9), its unclear if ECH has 

lower time complexity as execution time depends on the sparsity of all the functions involved. 

However, as with ICH, ECH is much more efficient memory-wise. 

 Comparing the costs of ECH to ICH, in terms of memory the explicit method is slightly 

more costly as it requires the entire extended Jacobian to be stored, unlike the implicit method. In 

terms of computing time, due to the exploitation of sparsity the explicit method is at worst 

equivalent to the implicit method, and at best significantly more efficient, depending on how 

sparse the intermediate functions ( ), 1:iF i p=  are. 

 

5.3 Gradient Differencing 
If we do not require the exact Hessian matrix, we can use a structured forward finite 

differencing approach to produce a good approximation. We use forward differencing rather than 

central because since we are looking for an approximation to the Hessian, speed in the 

computation is prioritized over accuracy. Gradient evaluations are relatively inexpensive, so we 

choose to difference gradient evaluations in order to piece together the Hessian. 

For a function ( ) : nf x →  , a gradient forward difference is presented as: 

 ( )2 ( ) ( )f x hd f xf x d
h

∇ + −∇
∇ ⋅ =   (5.12) 

where d is a chosen direction vector. If sparsity in the Hessian is ignored, the Hessian can still 

always be recovered with n  differences. Differencing is done column-wise, so this would 

require setting i id e= , where ie  represents the thi  column of the identity matrix, and thus each 

difference would correspond to one column of the Hessian [32]. 

If we take sparsity into account, and have the sparsity structure of ( )2 f x∇  in hand, 

finding a suitable set of direction vectors can be done by finding a near-optimal coloring of the 
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column intersection graph associated with ( )2 f x∇ . The type of coloring required is dependent 

on whether a direct [10, 32], or substitution [6, 21] method is desired, as described in Section 

3.2.1. This is because differencing can only be done column-wise, and so is analogous to forward 

mode AD, but no such differencing analog exists for reverse mode AD; which means neither 

symmetric nor bicoloring methods can be used here. 

What makes our approach novel is that instead of performing these gradient evaluations 

in a traditional way, we do so using the structured gradient approach outlined in algorithm S-2 

[17]. We outline this structured gradient forward differencing method in the following algorithm: 

 

Algorithm Structured Forward Difference Hessian (SFDH) 

Inputs: System as in Figure 4.1, vector nx∈  

Outputs: Function value ( )z f x= , and gradient n
x f∇ ∈ , and Hessian 2 n nf ×∇ ∈  

1. Determine suitable set of direction vectors 1 2, , , kd d d  (where ( )2 ( )k f xχ≈ ∇ ) 

2. Using S-2, compute ( )f x∇   

3. For 1, 2, ,j k= 
 

a. Using S-2, compute ( )if x hd∇ +  

b. Compute forward difference ( )2 ( ) ( )i
i

f x hd f xf x d
h

∇ + −∇
∇ ⋅ =  

c. Recover the calculated components of ( )2 f x∇  

Figure 5.6: Algorithm SFDH 

The dominating component of SFDH with respect to time and memory is the structured gradient 

computation. From the preceding structured gradient section, we have that one such computation 

requires work proportional to ( )fω , and space proportional to { }max ( ), ( ),  1,...if F i pω ω = . 

SFDH requires 1k +  structured gradient computations, so it has time and space costs of: 

 ( ) ( ) ( ) ( ){ }1  and max ,ii
k f F fω ω σ ω ω+ ⋅    (13) 
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We can see that this method, like ICH and ECH, has a significantly smaller space requirement 

than sparse AD; while also having a time requirement that is comparable to that of sparse AD. In 

the following experiments we compare this method to using sparse AD for the gradient 

evaluations to see if there are any realized advantages in computing time. 

 

5.4 Test Functions 
In the subsequent numerical experiments, we consider three test problems for the 

structured Hessian computation. There are two extreme cases: the dynamic system and the 

generalized partially separable problem. In the dynamic system each intermediate variable 

depends only on the intermediate variable preceding it, while in the general partially separable 

problem each intermediate variable depends only on the input variable x. The third problem 

represents a mix of these two extreme cases (Coleman and Xu). 

 

5.4.1 Dynamic System 

 The dynamic system ( )z f x=  is defined structurally as follows: 

 ( )
0

1

1

                       
Solve for :    0      for 1, 2, ,

Solve for z:     ( , , , ) z 0
i i i

p

y x
y y S y i p

f x y y
−

=

− = =

− =





  (5.14) 

For our experiments, the intermediate function S is defined as the Broyden function [5]: 

 

1 1 1 2

1 1

1

  j 1:  
(3 2 ) 2 1

  i 2 : n 1
(3 2 ) 2 1,     2,3, , 1

(3 2 ) 1

i i i i i

n n n n

for inner p
y v v v
for

y v v v v i n
end
y v v v

end

− +

−

=
= − − +

= −
= − − − + = −

= − − +

   (5.15) 

where inner p is a variable allowing us to control the workload of the intermediate functions. The 

last intermediate function f  is defined as the Brown function: 
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( )
( )

2
1

2

12

12
1

1

             1, , 1

      1, , 1

i

i

v

i i

v

i i i

n
ii

y v i n

y y v i n

z y

+ +

+

+

=

= = −

= + = −

=∑



   (5.16) 

and is only dependent on the last intermediate variable, py . 

The structure of this function’s extended Jacobian is as follows: 

 E

X X
X X

J

X X
X

 
 
 
 

=  
 
 
  
 

 

 

  (5.17) 

5.4.2 Generalized Partial Separability 

 The generalized partially separable function ( )z f x=  is defined as follows: 

 
( )

1

Solve for :    0      for 1, 2, ,

Solve for z:     ( , , , ) z 0
i i i

p

y F x y i p

f x y y

− = =

− =





  (5.18) 

For our experiments, each intermediate function iF  is defined as the Broyden function in 

(5.15), and f  is defined as the Brown function in (5.16), but now it is dependent on all the 

intermediate variables 1 2, , , py y y  instead of just the final one [25]. 

The structure of this function’s extended Jacobian is as follows: 

 E

X X
X X

J

X X
X X X X X

 
 
 
 

=  
 
 
  
 

 

 

  (5.19) 
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5.4.3 General Case 
 We also look at a more general case, which is a cross between the dynamic system and 

generalized partial separability cases, where ( )z f x=  is defined as follows: 

 

( )
( )( )
( )( )
( )( )

( )( )
( )( )

1 2

2 3 4

5 6

7 8

8 9

2007 7 7

3008 8 8

2009 9 9

20010 10 10

20011 11 11

Solve for :     1, ,6

Solve for :    

Solve for :  

Solve for :  

Solve for :  

Solve for :  

Solve for z:  z (

i i i

y y

y y y

y y

y y

y y

y y T x i

y y T

y y T

y y T

y y T

y y T

f

+

+ +

+

+

+

− =

−

−

−

−

−

−



1, , ,y )px y
















  (5.20) 

 Where ( )  ( 1, ,6)iT x i =   are defined as in (5.15) and ( )  ( 7, ,11)iT x i =   are defined as: 

 

( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )

1 3 2 1 . 1 2 2 1

3 2 . 1 2 1 2,1 ,     2, , 1

3 2 . 2 1 1

y x x x

y i x i x i x i x i ones n i n

y n x n x n x n

= − ∗ − +

= − ∗ − − − + + − = −

= − ∗ − − +

   (5.21) 

And f  is defined as in (5.16). 

The structure of this function’s extended Jacobian is as follows: 
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 E

X X
X X
X X
X X
X X
X X

J
X X X

X X X X
X X X

X X X
X X X

X X X

 
 
 
 
 
 
 
 
 =  
 
 
 
 
 
 
 
 
 

  (5.22) 

 

5.5 Numerical Results 
We carried out experiments comparing the time and space requirements of the ICH, 

ECH, and SFDH algorithms to that of sparse AD for computing the Hessian matrix of each of the 

three testing functions. All the experiments were carried out using the ADMAT 2.0 package [35] 

on a computer running Windows Server 2008 with a 2.9 GHz quad-core Intel X5570 Xeon CPU, 

and 90 GB of RAM using Matlab R2012b. 

 Space requirement was measured by the largest computational tape required during each 

method’s computation, and the space needed to store the extended Jacobian, when applicable. 

Since we are dealing with large problems, in most cases the space required to store the actual 

matrices and intermediate data is negligible relative to the size of the tape. 

 

5.5.1 Exact Hessian 
 In the experiments for exact Hessian computation we used an inner p of 5 for the 

intermediate functions because for larger problem sizes, the memory required was too large to be 

able to increase the workload on the intermediate functions and still get results for unstructured 

sparse AD. In the forthcoming tables, “Sparse AD” refers to the unstructured sparse AD method 
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(evalh in ADMAT 2.0), “Implicit Structured” refers to the structured method outlined by ICH, 

and “Explicit Structured” refers to ECH. 

Table 1: Running time (s) and memory usage (MB) for Hessian computation using sparse AD and both 
structured methods for the dynamic system with p = 10, inner p = 5. 

n Sparse AD Implicit Structured Explicit Structured 
100 37.24 15.48 4.20 

  10850 3 56 
200 69.03 24.66 9.59 

  23076 15 153 
400 224.58 70.19 15.61 

  69608 58 353 
600 308.98 121.03 22.35 

  89822 130 684 
800 out of memory 216.85 21.22 

    277 567 
1000 out of memory 319.06 35.07 

    356 1072 
2000 out of memory 1115.86 60.55 

    1243 1884 
 

 

Table 2: Running time (s) and memory usage (MB) for Hessian computation using sparse AD and both 
structured methods for the generalized partial separability problem with p = 20, inner p = 5. 

n Sparse AD Implicit Structured Explicit Structured 
100 20.36 16.95 10.11 

  7435 15 108 
200 47.93 20.81 12.56 

  22295 43 119 
400 78.18 54.29 33.70 

  39996 114 352 
600 128.23 105.50 58.77 

  63357 256 733 
800 out of memory 187.79 52.48 

   455 607 
1000 out of memory 205.35 65.85 

   711 879 
2000 out of memory 491.72 136.09 

   2474 2018 
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Table 3: Running time (s) and memory usage (MB) for Hessian computation using sparse AD and both 
structured methods for the general problem with inner p = 5. 

n Sparse AD Implicit Structured Explicit Structured 
100 9.55 7.51 4.99 

  3659 51 51 
200 22.19 15.05 9.24 

  9284 216 216 
400 42.09 33.35 12.85 

  22083 404 405 
600 92.88 63.16 16.45 

  48511 606 607 
800 81.43 105.35 17.39 

  44161 707 708 
1000 87.65 146.91 18.56 

  46402 766 768 
2000 out of memory 582.32 46.49 

   2840 2433 
 

Both structured methods required significantly less memory than sparse AD, and the 

explicit structured method also performed much faster.  

Comparing the two structured methods, Algorithm ECH performed considerably faster 

than ICH, across all three test problems. We can infer that this is because ECH exploits the 

sparsity of ˆ ˆ,E E
x yJ J  in its derivative calculations, which cannot be done for the matrix-Jacobian 

products in ICH. 

When comparing memory used, we see that the difference between the two methods 

appears to be negligible. However in Table 1 and Table 2, we see that the space required for 

ECH scales better than ICH does, and so the difference in space required should increase as 

problem size is increased.  

Comparing ICH to unstructured sparse AD, we see across the 3 test functions that as the 

problem size increases, the relative performance of ICH with respect to time worsens. In Table 1 

and Table 2, while the structured method is faster, the gap between the two methods decreases as 

n increases. The worsening relative performance of ICH is most noticeable in Table 3, for 

example at 200n =  the structured method performs 30%  faster than sparse AD, but then at 
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1000n = it performs 70%  slower. So we can see that in all 3 cases the time required for the 

implicit structured method does not scale relatively well with respect to problem size. 

Comparing ECH to unstructured sparse AD, we find that ECH is much more efficient 

with respect to time for each test problem. And unlike for ICH, ECH does not have an issue with 

scaling with respect to problem size. For example, in Table 3 at 200n = ECH performs 60%  

faster than sparse AD, then at 1000n = it performs 80% faster. In fact, ECH appears to scale 

better than unstructured sparse AD.  

If we compare the memory required for the structured methods with that of unstructured 

sparse AD, we see that the structured methods vastly outperforms sparse AD. In Table 3 we have 

a 98 99%−  reduction in memory used; while in Table 1 and Table 2 we have a reduction of 

99%> . This stark improvement means we can solve much larger problems with either 

structured approach than we could with sparse AD. As in Table 1 and Table 2, sparse AD cannot 

be used at 600n ≥  because the memory requirement is too high; whereas we could continue 

using the structured methods with no storage difficulties for 600n >> . 

The results show that the structured methods yield lower memory usage, but that the 

implicit method can yield higher computing times at large problem sizes. However, if a 

restriction is placed on the amount of RAM available, having to save data to slower accessible 

memory could lead to gains in computation time as well. In order to examine how this would 

actually affect the relative computation time of the two methods, looking at the general problem 

we simulated restricting the RAM available to 8 GB by having any computational tape larger 

than 8 GB in size saved to the HDD then loaded back up again when needed. 

Table 4: Running time (s) for Hessian computation using sparse AD and both structured methods for the 
general problem with inner p = 5, and RAM restricted to 8 GB. 

n Sparse AD Implicit Structured Explicit Structured 
100 9.55 7.51 4.99 
200 74.45 15.05 9.24 
400 176.72 33.35 12.85 
600 481.96 63.16 16.45 
800 387.68 105.35 17.39 
1000 419.01 146.91 18.56 
1500 846.32 314.92 25.81 
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While the explicit structured method still has by far the lowest computing time, the 

results in Table 4 show that with a memory restriction in place, the implicit structured method 

performs significantly faster than sparse AD. The large increase in time for sparse AD at 

200n = is due to the 8 GB threshold being passed at this point. Unlike in the unrestricted case, 

the implicit structured method’s computing time does not appear to scale any worse than sparse 

AD does. So we have that when a restriction is placed on memory available, both structured 

methods can now perform much faster than sparse AD. 

 

5.5.2 Approximate Hessian 
 For approximate Hessian computation (ie. forward finite differencing) we looked only at 

the general case problem, this time with an inner p of 100, as finite differencing requires much 

less memory. We compared the time and space requirements for our SFDH algorithm, with that 

of a similar method where unstructured gradient computations are used instead. 

Table 5: Running time (s) and memory usage (MB) for Hessian computation using unstructured and 
structured finite differencing method for the general problem with inner p = 100. 

n Unstructured Gradient FD Structured Gradient FD 
100 494.69 412.16 

  82 7 
200 576.71 492.41 

  136 10 
500 922.78 754.68 

  295 20 
1000 1498.60 1192.60 

  561 37 
2000 2720.20 2088.40 

  1092 70 
 

 The results in Table 5 show that the structured finite differencing method requires 

substantially less memory than unstructured finite differencing, using less than 10%  of the 

memory the unstructured method did. The structured method also requires less computing time, 

20%  less, and scales at a better rate than the unstructured method. If memory was restricted, 

the difference in computing times would be even larger. So when only an approximate Hessian is 
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required, the SFDH algorithm is more efficient with respect to time and space requirements than 

the corresponding unstructured method. 
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6 Structure Revealing Methods 
Equation Chapter (Next) Section 1 

 In our discussions of structure thus far, we have assumed that the function to be 

differentiated is provided in a form analogous to that in Figure 4.1. However, this may not 

always be the case, as the function could be presented in such a way that its structure is not 

apparent. Thus, if we can automatically determine a structured form of a function, regardless of 

what form the function is provided in, we can utilize the structured methods described in Chapter 

5 to determine Hessian matrices efficiently for a much wider range of functions. 

 Coleman, Xiong, and Xu [16] developed methods for determining a structured form of a 

function for Jacobian computation, involving inserting directed edge separators into the 

computational graph generated by AD in evaluating the function. We will review their work, and 

propose how it can be extended to use in Hessian computations. 

 

6.1 Background 
We first need to define the computational graph of a function. Consider a vector-valued 

function : n mF →  . In Section 2.1, we discussed how automatic differentiation breaks down 

the evaluation of a function into a partially ordered set of elementary operations, which we called 

the evaluation procedure of that function. The (directed) computational graph for a function 

evaluation, ( ) ( , )G F V E= , is simply a graph representation of this evaluation procedure.  

V consists of three sets of vertices such that { }, ,x y zV V V V= , where xV  represents the input 

variables ( )1, , nx x , each vertex in yV  represents an elementary operation (which takes one or 

two inputs) and its single outputted intermediate variable, and finally zV  represents the output 

variables ( )1, , mF F . The edge-set E  represents the relative dependency of the variables. So, 

there exists a directed edge ( ),
i jij y ye v v E= ∈  if and only if the intermediate variable iy  is 

required by the elementary operation contained in node 
jyv to produce the intermediate variable 

jy . We also refer to 
iyv  as the tail node, and 

jyv  as the head node of ije . Since the evaluation 
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procedure makes the function evaluation into a straight line computation, as long as F  is well-

defined, ( )G F  is an acyclic graph. [16]  

We then need to define a directed edge separator. dE E⊂  is a directed edge separator for 

the graph ( )G F , if the graph { }dG E−  consists of two disjoint subgraphs 1G  and 2G  where all 

edges in dE  have the same orientation relative to 1 2,G G   [16], in other words: 

( ) 1 2, , ,
i j i jij y y d y ye v v E v G v G∀ = ∈ ∈ ∈ . 

For example, we refer back to the example function, 3 2:F →   in Section 2.2.1: 

 1 2 31

2 3 1 2

sin( )
exp( )

x x xF
F x x x

+  
=    −   

  (6.1) 

The computational graph for this function, and the graph with a possible directed edge separator 

are as follows: 

 

Figure 6.1: Example Computational Graph 
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Figure 6.2: Example Computational Graph with Directed Edge Separator dE  

Then with this edge separator dE , the function can be separated into two parts as defined by the 

two disjoint subgraphs 1G , 2G  of the computational graph G : 

 
( )

( )
1

2

Solve for : 0

Solve for output : , 0

y My F x

z z F x y

− =

− =
  (6.2) 

where y  represents the intermediate variables, as defined by the tail vertices of the edges 

belonging to the edge separator; and ( )z F x= . 

 We can generalize the application of a directed edge separator to the case where multiple 

(disjoint) directed separators are applied to the graph ( )G F . We then have the directed edge 

separators { }1 2
, , ,

kd d dE E E , such that { } { }
1 2 1 2 1, , , , , ,

kd d d kG E E E G G G +− =  ; where 

{ }1 2 1, , , kG G G +  are disjoint and oriented such that ( ), , ,
i j l i jij y y d y m y le v v E v G v G∀ = ∈ ∈ ∈  

where m l< . Then we can break down the evaluation of ( )F x  as follows: 
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( )
( )

( )
( )

1 1 1 1

2 2 2 2 1

1 2 1

1 1 2

Solve for : 0

Solve for : , 0

Solve for : , , , , 0

Solve for output : , , , , 0
k k k k k

k k

y M y F x

y M y F x y

y M y F x y y y

z z F x y y y
−

+

− =

− =

− =

− =







  (6.3) 

where iy  is the intermediate variable defined by the tail vertices of the edge separator 
idE , and is 

composed of nodes belonging to iG . In (6.3), the function ( )F x  is now in the form presented in 

Figure 4.1. Thus the structured techniques in Chapter 4 can be used to determine its Jacobian. If 

the function in question is scalar valued ( ): nf →   , we can then apply the structured Hessian 

techniques developed in Chapter 5. 

 

6.2 Determining Separators 
One way in which to determine the directed edge separators, is by what is called natural 

order [16]. When reverse-mode AD is used in differentiating a function, it generates a 

computational tape that essentially lists the elementary operations required in order of their 

evaluation. So, if we cut the tape at a point, this is equivalent to introducing a directed edge 

separator at this point. 

Suppose we have the computational graph G , and the corresponding computational tape 

T  with length ( )V G , since every node in G  corresponds to one elementary operation and 

each elementary operation corresponds to one cell in the tape. If we choose to cut the tape at the 

thi  cell, we can partition the graph G  into 2 disjoint subgraphs ( )1 2,G G  by defining 

( )1 (1: )G G T i=  and ( )( )( )2 1:G G T i V G= +  . Since the cells in the tape are set in the order 

they are evaluated, all the elementary operations in 1G  will be evaluated before those in 2G . 

Therefore, all edges between 1G  and 2G  have their tail node in 1G , and their head node in 2G ; 

which means that this set of edges defines a directed edge separator. [16] 
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Using these natural order edge separators, we can insert as many separators as we would 

like, allowing us to choose how long the tape is in each segment. This can be very useful as it 

allows the memory usage to be controlled; however selecting tape segment lengths that are too 

small in order to minimize storage requirements could have an adverse effect on computation 

time in structured computation of derivatives. 

 

6.3 Hessian Computation 
We can now apply the structure revealing technique of natural order directed edge 

separators to our methods for structured Hessian computation. Since the explicit method 

presented in Section 5.2, Algorithm ECH, was most successful we will modify it to incorporate 

the structure revealing capability. 

We first present the modified algorithm for Hessian computation when the function ( )f x , 

with corresponding computational graph ( ),G V E=  and computational tape T,  is not provided 

in structured form: 
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Algorithm Explicit-Structure-Revealing-Compute-Hessian (ESRCH) 

Inputs: System as in Figure 4.1, vector nx∈  

Outputs: Function value ( )z f x= , gradient n
x f∇ ∈ , and Hessian 2 n nf ×∇ ∈  

1. Choose desired tape segment length L. 

2. Evaluate ( )f x , and generate the tape T. 

3. Let 
( )V G

p
L

 
=  
 

  

4. Generate edge separators
1 2
, , ,

pd d dE E E : 

( )( ) ( )( )( )1 1: , 1: 1
idE E T i L i L T i L i L= − ⋅ + ⋅ ⋅ + + ⋅  for 1, ,i p= 

    

5. For 1,2,..., 1i p= +   
Generate subgraph of G:  ( )( )( )1 1:iG G T i L i L= − ⋅ + ⋅   

Define iF  as computation corresponding to graph iG  

Define ( ){ }| , ,
ii i d iy v V e v w E w V= ∈ ∃ = ∈ ∉    

Compute ,
j

i i
x yJ J  ( 1,..., 1)j i= −  using sparse AD. 

6. ˆSolve ( )E T
y yJ w f= −∇  to obtain w, using ES-2. 

7. Let 
1

( , ) ( , ) ( , )
p

T
i i

i
g x y f x y w F x y

=

= +∑  and compute its Hessian 

( )
2 2

2 2 2
2 2

1

p
xx yx T

i i
ixy yy

g g
g f w F

g g =

 ∇ ∇
∇ = = ∇ + ∇ ∇ ∇  

∑  using sparse AD.  

8. Using EIP, compute ( ) ( )2ˆ T TT E
y xyR J g

−
= ∇  and  ( ) ( )2ˆ T TT E

y yyC J g
−

= ∇  

9. Compute 1
1

ˆ E p
x x p xT C J C J C J= ⋅ = + +  

10. Using EIP, compute ( ) 2ˆ TE
y yxS J g T

−
 = ∇ −   

11. 2 2

1 1

p p
i T i

xx i x i x
i i

f g R J S J
= =

∇ = ∇ − −∑ ∑  

Figure 6.3: Algorithm ESRCH 
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Assuming the cost of determining the edge separators is negligible relative to the rest of 

the computation, which is reasonable due to the technique for choosing them being relatively 

simple; the time and space costs for Algorithm ESRCH are the same as those of Algorithm ECH: 

 
( ) ( )

{ }

2 2
1 1

1 1
( ) ( ) ( ) ( ) + ( )

max ( )

j

p i
i i T

b x b y i i i p p
i j

E innz i

J J w F F F F

J F

σ σω χ χ χ ω χ ω

σ ω

+ +
= =

 
+ + ∇ ⋅ ∇ ⋅ 

 
+

∑ ∑



  (6.4) 

Since iF  is determined by how long we choose the tape segment to be, ( ) ~iF Lω  and we can 

simplify (6.4) as follows: 

 

( ) ( )2 2
1

1 1
( ) ( ) ( )  +

j

p i
i i T

b x b y i i p
i j

E nnz

J J w F L F L

J L

σ σω χ χ χ χ

σ

+
= =

 
+ + ∇ ⋅ ∇ ⋅ 

 
+

∑ ∑

   (6.5) 

The complexity results in (6.5) make it apparent how our choice of tape segment length L, has a 

large effect on the space required for the Hessian computation. The effect on computing time is 

not as apparent, because as L decreases, p increases as well; implying that there is an optimal 

length L* to minimize the computing time. This is a subject for future research. 
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7 Conclusions 
 

Automatic differentiation is a growing discipline in the field of scientific computing, as it 

provides methods to determine derivatives in a quick and accurate fashion. In many optimization 

problems, the Hessian matrix of an objective function is required, and can be determined using 

automatic differentiation. Much effort has been expended in determining how to exploit sparsity 

in a derivative matrix, in order to compute it most efficiently by automatic differentiation         

[2, 6, 13, 33]. However, if the Hessian is dense and does not exhibit sparsity, automatic 

differentiation can potentially require so much memory that completing the computation 

becomes infeasible [9].  

The underlying structure in a function has been considered, and shown to be successful in 

reducing the memory requirement for gradient computation without compromising computation 

time efficiency [17]. Thus, in this thesis we sought to determine whether the underlying structure 

of a function can also be exploited to more efficiently compute its Hessian matrix by automatic 

differentiation, in the same manner. 

Through our analysis, we have found that when a function is provided in a structured form 

as in Figure 4.1, this structure can be exploited to significantly reduce the space requirement in 

Hessian matrix computation, using either Algorithm ECH or ICH. In the case of Algorithm  

ECH, savings in computing time can be achieved as well. When a (finite-difference) 

approximation to the Hessian matrix is acceptable, the structured gradient differencing method 

outlined in Algorithm SFDH consistently outperformed the corresponding gradient differencing 

method that ignored structure with respect to computing time. 

When the function to be differentiated is not provided in a structured form or the structure is 

not apparent, we have shown that introducing directed edge separators into the computational 

tape to induce a structured form of the function can yield very large savings in the space 

required. However, our scheme for choosing the edge separators was relatively simple: they were 

determined strictly based on how long each tape segment was desired to be. 

This implies that future work should be done to determine methods to more optimally 

determine where and how frequently edge separators should be inserted into the computational 
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tape. Ideally, if we have a function whose structured form is known, we would like our method 

to choose edge separators such that this same structure is recovered. Future work should also be 

done on efficiently implementing the structure revealing Hessian computation method 

(Algorithm ESRCH), as well as other potentially more efficient edge separator selection 

techniques for Hessian computation. 
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