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Abstract 

Polymer and Surfactants are widely used to improve the oil recovery from a reservoir. 

One of the main issues with injection of these chemicals is their adsorption over reservoir 

rock surfaces. The first part of this study focuses on understanding the adsorption 

characteristics of a newly proposed polymer “Schizophyllan” for application in high 

temperature (120°C) and high salinity (250 g/l) carbonate reservoirs which are typical in 

Middle East. In the static adsorption experiments, the effect of parameters like mineral 

type, salinity, background ions, and temperature on adsorption was investigated.  We find 

that adsorption density over minerals decreases with salinity and temperature. The 

adsorption of the polymer is higher on carbonate rocks compared to silica and kaolin.  

Dynamic adsorption using the core flow experiments is also studied. The adsorption in 

the presence of oil is low compared to the adsorption when there was no oil in the core. 

The change in viscosity of polymer as a result of flowing through the core has also been 

reported.  

        In the second part we study the adsorption of a switchable surfactant (Neutral to 

Cationic) which is a promising candidate for CO2 foam for mobility control. The 

adsorption shows a significant reduction with an increase in salinity and temperature. 

This is a promising result for further selection of this surfactant for the field applications.  
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: Introduction Chapter 1

1.1 Introduction  

Enhanced Oil Recovery (EOR) is a well-established & proven technology to increase the 

recovery factor of depleting oil reservoirs. During its lifetime a reservoir passes through 

primary, secondary and tertiary stages of production. It is primarily during the tertiary 

stage that external materials are injected into the reservoir to enhance the production. The 

injection techniques used during this stage are known as EOR techniques. One such 

technique is the mixing of water soluble polymers with the injection brine to increase its 

viscosity which results in enhanced oil production. The increment in oil production 

happens as a result of reduced mobility of water because of its higher viscosity than 

before which is attributed to the polymers. Polymers are mixed with the injection brine 

for the purpose of enhanced viscosity which results in mobility control of water. 

However, as the polymer slug propagates in the reservoir it interacts with the porous 

media. Such interaction results in the loss or retention of polymer which makes the 

propagating polymer slug lean. Retention of polymer will lead to loss of polymer which 

will increase the total amount of polymer which has to be injected to achieve the recovery 

goal. This will increase the overall cost of the project. Apart from the direct economic 

consequences it may also decrease the reservoir permeability. Of course, some projects 

have experienced severe problems because of the higher adsorption [1] .It will also result 

in advancement of water bank ahead of polymer solution which will greatly reduce the 
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affectivity of the process. In some cases a desired value of adsorption is required to 

obtain the expected residual resistance factor. In a very heterogeneous reservoir, the 

injected fluids follow the high permeability path which leads in shutting these zones thus 

making a positive impact. This will lead to more of the fluid going to the low 

permeability zones which will result in better vertical sweep efficiency. The polymer 

flooding project in Minnelusa in Wyoming utilized this mechanism to improve the oil 

recovery [2-4].The adsorption estimated in the lab greatly varies from the adsorption 

experienced in the field. Thus to optimize a polymer slug it is important to know and 

manage the maximum amount of polymer adsorption[5]. 

Another method which has gained lot of attention nowadays is the use of CO2 in EOR. 

CO2 EOR has exhibited strong growth in the past 30 years and has expanded despite 

fluctuations in oil price. However, there are several issues challenging the oil recovery, 

economic efficiency and applicability of the process. The oil recovery efficiency is low 

and the CO2 utilization rate, the amount of CO2 injected to recover an incremental barrel 

of oil, is high. This is due to the low viscosity of CO2 compared to oil and water and the 

resulting unfavorable mobility ratio. This, combined with reservoir heterogeneities, leads 

to poor sweep efficiency and bypass of un-contacted oil. This issue can be prevented by 

injected surfactant with CO2. The role of the surfactant is to generate in situ a CO2 in 

water emulsion/foam with reduced mobility as to improve sweep efficiency beyond that 

possible with the WAG process. This process is also known as CO2 foam mobility 
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control. The surfactant chosen for this process should also exhibit low adsorption on the 

reservoir rocks.  

1.2 Objectives 

The main objective of this research is to study the adsorption behavior of Schizophyllan 

and Ethomeen-C12 over carbonate minerals. The effect of different parameters on 

adsorption density will be investigated. The over plan is: 

Adsorption of Schizophyllan: 

a. Concentration measurement of Schizophyllan 

b. Adsorption kinetics at different temperature 

c. Adsorption on different minerals (Natural, Reservoir) 

d. Effect of Salinity level on adsorption 

e. Effect of background ions on adsorption  

f. Effect of conditioning on adsorption 

g. Effect of temperature on adsorption 

h. Effect of adsorption on MWD of polymer 

i. Microcalorimetry of adsorption 

j. Adsorption in core flow experiments 

k. Mechanical degradation of polymer in core flow experiments 

Adsorption of Ethomeen-C12: 

a. Concentration measurement of Ethomeen-C12 
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b. MWD of Ethomeen C-12 

c. Solubility of Ethomeen in DI water and brine 

d. Adsorption on different minerals (Natural, Reservoir) 

e. Effect of temperature on adsorption 
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1.3 Thesis Structure 

Chapter 2 describes the technical background which is followed by the literature review 

of retention of polymers in porous media.  

Chapter 3 focuses on the static adsorption of Schizophyllan. The effects of parameters 

like mineral type, salinity, background ions and temperature have been studied.  

Chapter 4 presents the dynamic adsorption of Schizophyllan which is measured using 

core flow experiments. The viscosity of the core flooding effluents has also been 

presented. 

Chapter 5 presents the adsorption of Ethomeen C-12 on carbonate minerals. Solubility, 

MWD of C-12 has also been studied. 

Chapter 6 summarizes the thesis and provides some future recommendations.  
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: Technical Background and Literature Review Chapter 2

2.1 The significance of EOR  

Global energy demand will increase by 52% over the period 2010-2035 with fossil fuels 

accounting for the 84% of this surge. Out of this increment, oil will retain the largest 

share. Given this fact in place ,oil demand will increase from 81.2 to 100.2  mboe/d from 

2010 to 2035 [6]. This demand will be fulfilled by available and the newly to be 

discovered oil fields. According to the current trends the rate of replacement of depleting 

fields by newly discovered fields is declining at a fast rate [7]. According to the analysis 

of 1600 fields by IEA, the production from a field declines at an average rate of 6% once 

it has surpassed the peak production. [8].Therefore keeping in mind the prospective 

shortage in oil resources with difficult findings of new oil fields, the only available option 

to avoid this crisis is taking the most oil out of the reserves in place by utilizing the 

enhanced recovery methods. A 1% increase in the total global recovery factor has the 

potential to deliver three years of oil consumption at today’s level which would be around 

88 billion barrels[9].Given the fact that middle east has majority of the oil reserves in the 

world , the  EOR potential is also likewise.  
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2.2 Enhanced Oil Recovery Overview     

2.2.1 Three stages of oil field development 

After the completion of oil wells the field becomes ready/online for production. At this 

stage oil recovery which is the extraction of oil from subsurface to the surface starts. 

During its life a field will pass through three phases of production. The first phase of its 

life is known as primary recovery phase which means production using the natural energy 

or pressure within the reservoir. This energy is derived from one or a combination of six 

driving mechanisms which are: Rock & liquid expansion, depletion drive, gas cap drive, 

water drive and gravity drainage drive[10].As the time passes these drives start 

weakening resulting in pressure reduction. During the primary recovery stage only a 

small percentage (around 10%) of total oil in place is recovered. At a certain point of 

time when because of the low reservoir pressure the production becomes diminutive 

enough resulting in uneconomical operation of the field, production team starts assessing 

the pressure maintenance strategies. This is done by water/gas injection and this process 

or phase is known as secondary recovery method or phase. The aim of the secondary 

recovery process is to push hydrocarbons towards the well bore while maintaining the 

pressure. The secondary stage is called off when the water cut reaches an uneconomical 

level. This production problem is also known as excessive water 

production[11].Incorporated, primary and secondary phases result in around 15% to 40% 

of original oil in place[12]. After these two phases are over there is still lot of oil left in 

the reservoir which can’t be recovered and this oil is known as residual oil. This oil is still 
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in place because it was not contacted and swept or it is trapped by capillary forces. This 

residual oil is recovered during the third phase known as tertiary recovery or enhanced oil 

recovery. Injecting external materials which were not initially present in the reservoir to 

recover residual oil is known as enhanced oil recovery (EOR) [13].Depending upon the 

basic recovering mechanism, EOR is classified into 

 Chemical methods which works on alteration of capillary and viscous forces 

 Miscible gas injection which extracts oil with a solvent and 

 Thermal methods which rely upon reduction of residual oil viscosity.  

Figure 2-1 shows the overall recovery stages and Table 2-1 presents the classification of 

EOR processes whereas Table 2-2 presents the preferred EOR methodology according to 

the properties of the field. 

 

Figure 2-1: 3 Stages of Recovery 
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Table 2-1: Current and Past EOR methods [14] 

Chemical EOR 

- Alcohol-miscible solvent flooding 

- ASP Flooding 

- Gels for water shutoff  

- Low IFT waterflooding 

- Microbial injection 

- Micellar/polymer(surfactant) flooding 

- Polymer Flooding 

Gas Injection EOR 

- CO2 Flooding 

- Flue gas injection 

- Inert gas injection 

- Nitrogen injection 

Hydrocarbon injection 

- Enriched gas drive 

- High pressure gas drive 

- Miscible solvent flooding 

Thermal Methods 

- Hot water flooding 

- In-Situ combustion 

- Reverse combustion 

- Standard forward combustion 

- Steam flooding 

- Steam and hot water injection 

- Steam stimulation 

- Surface mining and extraction 
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Table 2-2: Screening Criterion for EOR Methods 

EOR Method Formation type 
Viscosity 

(cp) 

Gravity 

(°API) 

Oil Sat. 

(%PV) 

Avg. Perm. 

(md) 

Depth 

(ft) 

Chemical EOR 

Micellar/ Polymer, ASP and Alkaline 

Flooding 
Sandstone preferred <35 >20 >35 >10 <9000 

Polymer Flooding 
Sandstone preferred can 

work in carbonates   
<150,>10 >15 >50 >10 <9000 

Gas Injection EOR 

CO2 Sandstone or carbonate <10 >22 >20 Not Critical >2500 

Hydrocarbon Sandstone or carbonate <3 >23 >30 Not Critical >4000 

Nitrogen and flue gas Sandstone or carbonate <0.4 >35 >40 Not critical >6000 

Immiscible gases Sandstone or carbonate 
<600 

 

>12 

 

>35 

 
Not Critical >1800 

Thermal EOR 

Combustion High porosity sandstone <5000 >10 >35 >50 <11,500 

Steam High porosity sandstone <100,000 8-25 >40 >200 <5000 
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2.2.2 EOR by Formation Type (Lithology) 

Reservoir formation type(carbonate or sandstone)  is one of the main considerations for 

EOR methods, often restricting the applicability of specific EOR methods [14, 15]. Most 

of the EOR projects as shown in Figure2-2  have been implemented in sandstone 

reservoirs, as derived from the data gathered by Vladimir and Manrique [7]  from some 

1,507 international EOR projects. It is also very clear that thermal and chemical EOR 

projects are the preferred and most suitable methods in sandstone as well as carbonate 

reservoirs with carbonate formations suiting for chemical EOR.  

 

Figure 2-2: EOR Methods in different lithology 
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It is well known that majority of the world’s hydrocarbon reserves are in carbonate 

reservoirs with 60% of world’s oil and 40% gas[16]. Compared to sandstone reservoirs, 

which normally are homogenous or single-porosity formations, carbonate reservoirs are 

multiple-porosity exhibiting petrophysical heterogeneities[17]. Carbonate reservoirs 

usually have low porosity and can be fractured easily. These two characteristics with the 

oil-to-mixed wet rock characteristics of carbonate reservoirs lead to the low recovery 

factor from these reservoirs. As a consequence of heterogeneity the injected EOR fluids 

flow through the fracture network and ultimately bypassing the oil in the rock matrix 

which contributes nothing to the recovery factor. The high permeability in the fractured 

or heterogeneous zones with low equivalent porous fraction results in an early 

breakthrough of the injected fluids.  A number of EOR field projects have been 

implemented and referenced in carbonate reservoirs in the literature [18-21]. Most of 

these fields have been implemented with gas injection EOR methods with CO2 remaining 

the top utilized method. Polymer flooding assisted with surfactants has been the only 

famous and most utilized chemical EOR methods in carbonate formations. There are a 

number of increasing polymer projects in Canada, U.S and Middle East. Polymer 

flooding is also gaining interest in heavy crude oil recovery in Canada[22].  
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2.2.3 Introduction to Chemical EOR 

Based on the material balance the overall recovery efficiency from a reservoir is defined 

as: 

    
  

 
 

                  

                                 
                                    Equation 2-1 

In a simple manner, recovery factor can also be mathematically written as[23]  

                                               Equation 2-2 

To improve total oil recovery both the weep and displacement are evaluated for an 

improvement[10] 

Sweep efficiency is also known as macroscopic displacement efficiency. It is the 

efficiency of displacing fluid to sweep in horizontal and vertical direction with effectively 

moving the displaced oil towards the production well. So that the overall sweep 

efficiency is the product of horizontal and vertical sweep efficiency. 

                   
        

                                    Equation 2-3 

It depends on the thickness of the reservoir, heterogeneities present, fractures, gas-oil and 

oil-water contacts position, flow rate, pattern of injection, density difference between the 

displacing and displaced fluid etc. [24].  The sweep efficiency is improved by injecting 

fluids which are more viscous compared to connate fluids. This is done by adding small 

concentrations of polymer in injecting water which can impart it high viscosities. This 

will provide a better mobility and viscous fingering control which will help in 

overcoming the reservoir heterogeneities[25]. The mobility of a fluid is defined as:  
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                                                                       Equation 2-4 

Where, µ and k are fluid viscosity and permeability of reservoir to the fluid respectively. 

The mobility ratio is the ratio between water mobility and oil mobility.  

                 
  

                                         Equation 2-5 

The desired value of this ratio to get a plug like flow for the displacement of oil by water 

is less than 1. Given this value less than 1, the fingering of water in oil zones is depressed 

as a result a greater volume of reservoir will be contacted and swept by water. The effect 

of polymer on mobility control is shown in Figure 2-3[26] .Polymer flooding does not 

improve the local displacement efficiency [27]. 

 

Figure 2-3: Mobility Control by Polymer Flooding 
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The displacement efficiency is the efficiency of displacing fluid to displace and mobilize 

the oil while contacting at pore scale. It can be written as ratio of amount of oil recovered 

to the amount initially present in swept volume. 

                        
(       )

   
               Equation 2-6 

                                                                 . 

The displacement efficiency is also known as microscopic displacement efficiency. 

During waterflooding even if all the oil is contacted, there is still small bob of oil which 

is trapped within pores as shown in Figure 2-4[26] . This is because the viscous or gravity 

drive forces are not able to overcome the capillary forces. The oil droplets are trapped by 

capillary forces due to the high interfacial forces between oil and water. The 

dimensionless capillary number which is the ratio of viscous to capillary forces 

determines the extent to which oil is trapped by the pores. 

 

Figure 2-4: Trapped Oil inside Pores 

 



 

16 

It can be written as: 

   
    

 
                                      Equation 2-7 

Where   is the velocity   is the viscosity and σ is the interfacial tension. 

As per the definition of capillary number the higher its value the more oil can be 

mobilized. This number should be of the order of 10
-3

 to reduce the residual oil saturation 

to near zero. The effect of capillary number on residual oil saturation is shown in Figure 

2-5 [26] Now mathematically, to increase this number either the fluid velocity should be 

increased or  the interfacial tension should be brought down. The velocity increment by 

several magnitudes to achieve the desired capillary number is difficult compared to 

reduction of interfacial tension (IFT). So, the most logical step to increase the 

microscopic efficiency is by the reduction of IFT which is achieved by the use of 

surfactants[24].This increment in capillary number is not achieved by polymer[28].Table 

2-3 presents some commercially successful polymer flooding projects. Table 2-4 presents 

the type of EOR methods with their recovery mechanisms.  
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Figure 2-5: Residual Oil as a function of Capillary Number 

Table 2-3: Polymer Flood Field Project 

Property 

Median 

(171 

projects) 

Marmul Oerrel Courtenay Daqing 

Permeability (md) 75 15,000 2,000 2,000 870 

%OOIP at startup 76 92 81.5 78 71 

HPAM Conc.(ppm) 460 1000 1500 900 1000 

WOR at startup 3 1 4 8 10 

Reservoir temperature 

(°F) 
120 115 136 86 113 

Projected IOR,%OOIP 4.9 25
*
 13 30 11 

Projected bbl oil/lbm 

polymer 
27 461 230 499 155 
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Table 2-4: Mechanism of EOR Methods 

EOR Method 
Pressure 

Support 

Sweep 

Improvement 

IFT 

Reduction 

Wettability 

Alteration 

Viscosity 

Reduction 

Oil 

Swelling 

Incremental 

Recovery Factor 

Chemical 

Polymer   
    

Low 

Surfactant  
 

  
  

Moderate 

ASP     
  

High 

         

Water Flood Water Flood  
     

Base Case 

         

Gasflood 

immiscible 

Hydrocarbon 
     

 Moderate 

CO2 
    

  High 

Nitrogen  
     

Moderate 

         

Gasflood 

miscible 

Hydrocarbon   
  

  High 

CO2   
  

  High 

CO2 WAG   
  

  Highest 

         

Thermal 
Steam 

    
 

 
High 

High P Air 
    

  High 
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2.3 Polymer Flooding 

Polymer flooding is a mature method for the recovery improvement of a depleting oil 

reservoir. The largest implemented polymer flooding project is in the Daqing field in 

China which as of 2005 has experienced about 220,000 barrels per day incremental oil 

production with a 12% OOIP incremental oil recovery. Some of the best polymer field 

projects have given an increment of 1STB per $2 of polymer injected[29]. Over the past 

40 years a large number of polymer flooding projects have been implemented in 

reservoirs at different conditions. The reservoir temperatures have been from 10 to 

110°C, brine salinities from 0.3 to 21.3%, permeabilites from 0.6 to 15000 md and the 

percentage of OOIP from 36 to 97.1%[20]. Compared to carbonates, most of these 

projects have been implemented in sandstone reservoirs[30]. So conceptually, polymer 

flooding has the potential to improve the oil recovery from a reservoir. However, there 

are number of factors which have restricted the use of this EOR method. Those factors 

are discussed one by one.     

2.3.1 Cost Effectiveness 

The mobility reduction per unit cost of polymer or viscosity provided per unit cost under 

the reservoir conditions is one of the most important criterions whiles selecting a 

polymer. Low cost of the polymer would mean higher concentrations and larger polymer 

slug sizes will be economical which will lead to greater oil recovery, more profits and 

potential applications of the polymers. Compared to 1970s, the oil price which was 
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around USD 3/bbl has gone up to more than USD 100 while the cost of the most widely 

used EOR polymers, Polyacrylamide copolymers or hydrolyzed polyacrylamide (HPAM) 

has stayed the same at USD 1.50/lb. The quality of commercial HPAM polymer and the 

molecular weight has also improved dramatically. This is the reason behind an impulsive 

increment in the number of polymer flooding projects. Earlier projects were done at a 

relatively small amounts of polymer (i.e., low polymer concentration sand small pore 

volumes of polymer solution), but now we know the more we inject the better the 

polymer flood will be, which is easier at today’s polymer price. So, we can say that this 

factor has been in control and would not be a worrying criterion for the successfulness of 

the project[31].        

2.3.2 Thermal and Chemical Degradation 

While in the reservoir, the injected polymer should remain intact for a long time in order 

to get a technically and economically successful polymer flood project. The traditional 

polymers HPAM and Xanthan which have been utilized in some of the biggest and 

successful polymer projects degrade or precipitate in very high-temperature, high-salinity 

reservoirs[32]. This is the biggest issue with the traditional EOR polymers which is 

responsible for limiting the use of polymer EOR only in low temperature and low salinity 

reservoirs compared to harsh environments [33]. In fact, some study shows that due to the 

unavailability of a suitable polymer candidate the selection of another EOR method over 

polymer flooding was preferred for some reservoirs which were most suited for polymer 

EOR[34, 35]. Most of the HPAM field applications have been in fields with low 



 

21 

temperature (<70°C) and low salinity. Higher temperature promotes the rate of hydrolysis 

of HPAM which increases the amount of polyacrylic acid in the backbone which is very 

sensitive to hardness, as a result of increasing salinity the polymer precipitates[36]. Also, 

the coil conformation of HPAM molecules makes them very sensitive to ionic 

environments[37, 38]. So this poor temperature and salinity tolerance make them 

unsuitable in such fields. 

Xanthan, a biopolymer which is a polysaccharide is another very famous polymer which 

has got ample attention for EOR. It has a very similar backbone to glucose which is 

neutral while having the charged side chains. The side chains are the acetate and pyruvate 

groups which makes it a polyelectrolyte polymer. Besides its ionic nature, viscosity is not 

affected much by salinity which is attributed to its high molecular weight and rigidity of 

chains [39, 40].Relative to HPAM it has better high temperature response. Its viscosity 

remains unaffected or it does not degrade thermally till 80°C after which it gets destroyed 

at above 100°C[41, 42]. Thus, it can be concluded that much of these problems which 

arises because of the thermal degradation, salinity intolerance will be sorted out if a new 

candidate polymer capable of handling these is available in market. Figure 2-6 shows the 

current salinity and temperature envelope with in which today’s chemical EOR can be 

implemented as compared to some famous chemical EOR projects[43]. Thus there is a 

great need to identify a polymer which can exceed these limits. In our case this-limit has 

been defined according to the Abu Dhabi reservoirs. The overall criterion provided for 

the selection of a polymer is: 
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Figure 2-6: Limitations of Chemical EOR 

 Rheological behavior: Polymer which has a high thickening ability at a low 

concentration is required so that it is economical. It should exhibit shear 

thinning behavior so that the cost of injection is also low and it does not have 

any problem in flowing through the low permeability portions of the reservoir.  

 Thermal stability: It should have great resistance to thermal degradation so that 

the viscosity of the polymer solution is maintained at the high reservoir 

temperature for periods of months or years.  

 High salinity tolerance: The selected polymer should have excellent tolerance 

to very high salinity levels (up to 250000 ppm)) in order to maintain appreciable 

viscosity level. 
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 Manageable Adsorption: Low adsorption level is required in order to 

minimize losses which otherwise will result in higher costs and other technical 

problems.   

After screening a number of polymers supplied by different chemical suppliers, our group 

at The Petroleum Institute -Abu Dhabi was able to select a polymer which is showing 

excellent character and has passed all the first three preliminary selection criterions. This 

polymer ‘Schizophyllan’(SPG) which is a β-1,3:β-1,6 glucan polysaccharide was first 

evaluated by Udo Rau et al.[44] in 1992 for its potential in high temperature and high 

salinity reservoirs. However, due to the low oil price during that time the work did not go 

through. Later on in 2011, Leonhardt et al. [45] from Wintershall-Germany presented 

their work on this polymer for use in EOR. This polymer is showing exceptional salinity 

and temperature resistance. Another work done on this polymer during 1985 talks about 

its remarkable thermal properties, the stable  structure of this polymer  till 135 °C has 

been reported[46].Long term thermal studies done in our lab has shown very little loss in 

viscosity due to thermal degradation in high salinity brine (250 g/l). The thermal stability 

of this polymer is attributed to its triple helical structure which is stable till 140°C 

because of the intramolecular hydrogen bonding [47, 48]. It transforms to a single chain 

above this temperature. Figure 2-7[45] shows the viscosity vs temperature of 

Schizophyllan compared to xanthan and sulfonated PAAM. It clearly shows no change in 

viscosity but after 140°C. Its non-ionic nature also makes it tolerant to very high salinity. 

 



 

24 

 

Figure 2-7: Viscosity of SPG vs Temperature 

2.3.3 Adsorption/Retention   

After the first three preliminary screening criterions listed earlier have been passed, the 

next screening criterion is adsorption characteristics of this polymer over carbonate 

minerals, which is also the focus of this thesis. The adsorption of EOR polymers is of 

great importance and can be a big problem in low permeability polymer flooding projects 

[49, 50].  
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2.4 EOR Chemical’s Retention  

2.4.1 Polymer Retention in porous media 

There are three main mechanisms by which polymer retention occurs in a porous media. 

Depending upon the nature of the field combination of these may prevail in a polymer 

flood. These are: 

 Hydrodynamic Retention 

 Mechanical Entrapment  

 Polymer Adsorption 

 

Figure 2-8: Polymer retention mechanisms 
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2.4.2 Hydrodynamic Retention 

Hydrodynamic retention is one of the most complicated and least understood mechanisms 

of retention. It was first noticed by changing the flow rate in experiments which already 

attained the steady state or the dependence of retention on flow rate in experiments [51-

53]. It is characterized by abnormal production of polymer when flow rate is reduced 

suddenly[54].Because of this it is possible to produce the effluents of high concentration 

than the injected sample. This type of retention seems to be reversible as the amount of 

polymer retained during the increase in flow rate is produced as the flow rate is 

reduced[51].Another way to demonstrate it is by stopping the flow and then restarting. 

This will also result in an increment in the concentration of effluent. This was studied by  

Zaitoun and Kohler [55] in xanthan adsorption experiment in sand and kaolinite packs. 

Another study by Sorbie et al[56] on HPAM also showed the same thing. Chauveteau and  

Lecourtier [57] explained the criterion for the hydrodynamic entrapment to occur. They 

concluded that the radius of gyration of molecule should be more than half the dimension 

of restriction in pore structure. The Peclet number for the polymer flow should be high 

enough to avoid the diffusion of molecules towards the region of large restriction and 

hydrodynamic barriers are small enough not being able to force the molecules through 

restrictions. The high Peclet number requirement is the reason why hydrodynamic 

entrapment is observed when the flow rate is increased. The first condition of radius of 

gyration is met in flow through low permeability and small particle size. They also 

concluded that hydrodynamic entrapment of semi-rigid polymers such as xanthan is less 



 

27 

likely to occur as its structure makes it possible for hydrodynamic orientation to be 

parallel with the opening axes. Overall, it can be summarized that the hydrodynamic 

retention is a rate-dependent mechanism which is less understood and can be avoided. 

Also, the contribution of this retention mechanism is not very large to the overall levels 

of polymer retention hence it is not a very important effect in field-scale polymer floods. 

However, it should be understood carefully to draw proper conclusion and adsorption 

results from the core flooding experiments. 

2.4.3 Mechanical Entrapment 

Mechanical retention of polymer molecules is similar to a filtration process where large 

molecules are retained by small pores or lodged in narrow flow channels. This type of 

retention may lead to blocking of the reservoir if the entrapment is acting upon the 

average size of distribution. Polymer showing such type of behavior will not be selected 

for polymer flooding. This type of entrapment mechanism dominates in the porous media 

where pore radius (rp) < 3* radius of gyration(RG), which happens in low permeability 

media [58]. This is one big reason that the polymer flood is used in high permeability 

formations [59-61]. Gogarty [62] estimated the molecular size of HPAM molecules in the 

porous media and compared it with the pore size, concluding a significant retention as it 

flows through the  Berea sample. In one of his experiments it took 10 pore volumes of the 

polymer injection to reach the input level concentration confirming significant 

mechanical retention. This can be visualized by assuming  the pore structure as  a large 

interconnected network with a huge number of alternative 'routes' connecting the inlet 
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and the outlet of a core. Some of these network paths would consist of narrow pore 

throats. Thus, as the polymer solution pass through these narrow paths, the molecules 

would be trapped. This will block these pores and there may even more upstream of the 

blockage. If this representation of mechanical entrapment is correct then the 

concentration in effluent would reach the injected concentration after many pore volumes 

have been injected. Mechanical entrapment is confirmed when the static adsorption is 

less or negligible compared to dynamic adsorption because the extra amount accumulated 

in flow experiment is attributed to mechanical entrapment. This was studied by Szabo[63, 

64] .He injected HPAM in Berea cores and  sandpack and compared the static adsorption 

results which were of the level of  3-4  g/g and independent of the polymer concentration 

used to the retention levels observed in the dynamic flow tests which were up to five 

times larger than these figures, indicating the leading role of mechanical entrapment. He 

injected two concentrations 600ppm and 1200ppm and found the retention to be 15   g/g 

and 50  g/g respectively. The dependence of retention on concentration also provides an 

evidence of the presence of mechanical entrapment.  Another study done by Dominguez 

and Willhite [52] on HPAM also showed the same effect of concentration. Vela et al. 

[65] studied the effect of permeability and concentration on the retention of 

polyacrylamide. They concluded the retention to be concentration and permeability 

dependent. Figure 2.9 shows the retention level as a function of permeability.  
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Figure 2-9: Polymer retention as a function of permeability 

 

As discussed above the process of mechanical entrapment is very similar to filtration. 

This filterability of high molecular weight hydrolyzed polyacrylamide was investigated 

by Gogarty  and Smith  independently[62, 66]. Gogarty passed a 400ppm of polymer 

solution through different sizes nuclepore filters. The effective size determined by him is 

from 0.5 to about 2.0 microns in a solution free from electrolyte while it is from 0.4 to 

about 1.5 microns in a 600 ppm NaCl solution. This also shows the effect of salts on the 

hydrodynamic molecular size of ionic polymers. Smith predicted the size of the same 

polymer in 0.5% NaCl solution which came in the range of 0.3 to about 1 micron. Figure 

2-10 shows the results from Gogarty. 
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Figure 2-10: Filtration of HPAM with Different Size Nuclepore Filters 

 

Possible sites of polymer retention by mechanical retention are shown in Figure 2.11. The 

first site i.e. the surface sites are occupied during the adsorption which will be discussed 

later in other section. The remaining retention sites illustrates how because of mechanical 

forces, the size of the constriction or the size of the polymer coil the polymer molecules 

could become entrapped.[67, 68]. Crevice sites are the sites which capture the polymer 

coils by wedging it in the contact areas near two grains or the convex surfaces of two 

grains. Constriction sites on the other hand are those sites which seize the molecules 

because they have pores which are too small for the polymer coil to penetrate. Cavern 

sites can be visualized as those sites which capture the molecules because of a decrease in 
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velocity caused by a tortuosity in flow path or a reduction in permeability in the direction 

of flow[69]. 

 

Figure 2-11: Polymer retention sites in porous media 

 

A widely used and important term in polymer flooding is inaccessible pore volume which 

is closely related to the mechanical entrapment mechanism. This effect was first reported 

in 1972 by Dawson and Lantz[70]. They observed that when there is no adsorption or the 

adsorption level in porous media has reached the saturation the polymer molecules run 

faster than the tracer.  
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Figure 2-12: Early breakthrough of polymer due to IPV 

This was because the polymer molecules flow only through the pores which are larger in 

size leaving behind a considerable amount of pores which can’t be accessed by the 

molecules. They termed it ‘inaccessible pore volume’ IPV. The same effect is shown in 

figure 2.12. IPV has been experienced with all the polymers (synthetic, biopolymers) 

flowing in different types of porous media. The IPV could range from 1to 30% or more 

depending upon the type of porous media[71]. IPV becomes more pronounced as the 

ratio of permeability to porosity decreases[13]. 
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2.4.4 Polymer Adsorption 

Adsorption is a more fundamental property of polymer-rock system and can’t not be 

avoided or reduced to the level to which the other two retention mechanisms can be 

prevented. It is reported as mass of polymer/ mass of rock or by mass of polymer/unit 

area of rock. Polymer adsorption is generally classified based upon the type of interaction 

between the surface and polymer. If the energy change during the process is more than 

twice of kBT the adsorption is termed as chemisorption and considered irreversible due to 

the presence of high desorption energy. Chemisorption involves the formation of a 

covalent bond between the polymer and surface which hold it firmly. If the attraction is 

weak and is of the order of kBT , it is termed as physisorption[72].Physisorption proceeds 

through Van der Waal forces , electrostatic interactions or hydrogen bonding[73]. Figure 

1.4 shows the two cases. For large polymer molecules the sum of the adsorption energies 

of monomers will lead to a high energy change which makes physisorption irreversible. 

This leads to  isotherms which have a high-affinity nature, i.e. at low concentrations, the 

adsorption density rises sharply, while at higher concentrations it reaches a pseudo-

plateau [72]. Adsorption of polymer over surface only proceeds if the attractive 

interaction exceeds the entropy lost associated with adsorption[74]. The adsorption of a 

polymer molecule from bulk solution to being fully attached on to the surface can be seen 

as a mechanism involving number of stages as a function of time. Initially, the molecule 

diffuses nearby the surface and makes a stagnant layer. Then the molecule approaches 

near the surface so as to be attracted by the surface resulting in adsorption which is faster 
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than the bulk diffusion. After it the polymer molecule collapses and spread onto the 

surface[75].On a whole, the polymer molecules set  their conformations which 

correspond to minimum free energy[76]. It is thought that the polymer adsorbs as a series 

of trains, loops and trails over the solid surface as shown in Figure 2-14[11, 76].  

 

Figure 2-13: Types of Adsorption (a) Physisorption (b) Chemisorption 

Trains are the segments of the polymer molecule which are attached to the surface and 

are the bound section of the molecule acting as the anchors of molecule. The extended 

parts at both the ends of the molecule are referred as tails. In between the trains are the 

loops which extend into the solution. Trains are the longest portion of the molecule and 

have a dominating role in effective hydrodynamic thickness of the adsorbed layer[77]. 

The polymer segment density as a function of distance from the interface can be viewed 

as shown in Figure 2-15[25].During the adsorption of the molecule a number of 
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thermodynamic interactions take place. These are between the segment-surface, segment-

solvent and segment-segment. These interactions have an enthalpy associated to them. 

The conformational entropy term which is a measure of the number of chain 

configurations available to the adsorbed molecule to the number available for a free 

molecule in solution also governs the process. The entropy change by the displacement of 

solvent molecules from the surface by the polymer molecules is also responsible for the 

thermodynamics of the process. It is also important that the adsorbed polymer does not 

have a fixed configuration; rather different segments of the polymer chain are in constant 

motion changing from attached train segments to unattached loop or tail segments[11]. 

 

Figure 2-14: Conformation of adsorbed molecule over the surface 
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Figure 2-15: Segment distribution function 

 

The plateau Γp adsorption density strongly depends on polymer flexibility. For polymer 

like xanthan which is rigid and is flattened on the surface, Γp is independent of molecular 

weight and is governed by polymer-polymer electrostatic interactions so that the 

adsorption value increases from100 µg/m² to 600-800 µg/m² as the electrostatic repulsion 

decreases. For polymers which are flexible such as polyacrylamides, adsorption density 

goes up with molecular weight primarily at high adsorption energy such as in the case of 

anionic HPAM adsorbing on a negative surface like sand and above critical salinity , the 

adsorption value may vary intensely from low values of 80 µg/m² which corresponds to 

0.3 monolayer when adsorption energy is nearly zero, to very high values (8000 µg/m² or 

30 monolayers) when adsorption occurs on a positively charged surface at low 
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salinity[78-80].There is another view on dependence of  adsorption capacity on molecular 

weight which says the adsorption density will decrease with increasing molecular weight 

because the adsorption sites are more accessible to low molecular weight molecules than 

the higher ones[81]. 

One other important factor in adsorption studies is the time required to attain the 

equilibrium. Most of the time the equilibration time is dependent upon the time of access 

to the surface. As discussed previously as the macromolecules reach the surface a number 

of changes are expected to occur. These changes are: 

 Conformation change from bulk to adsorbed state 

 Adjustment in conformation due to the arrival of new molecules 

 Exchange of molecules due to the preferential adsorption of high molecular 

weight fractions 

 Change in charge density near the surface which results in retrogradation of 

polymer and surface ionization. [25, 82] 

During the early stages of adsorption, each macromolecule will have the same 

conformation as in solution. As the thermodynamic equilibrium is approached molecular 

conformation is expected to be modified with an increasing number of segments which 

will be in contact with the solid surface for both flexible and rigid polymers. For 

polyelectrolytes the adsorbed train will align in an increasing number. This 

reorganization inside the adsorbed layer occurs irrespective of the presence of free 

molecules on top of the adsorbed layer. However, the presence of free molecules on the 
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top will decrease the reorganization time tR. This reorganization i.e. desorption and re-

adsorption of these trains in other sites and the desorption step which is assumed to be the 

slower step is accelerated if free molecules start competing to decrease the probability of 

re-adsorption at the same location. This is the reason  for an increment in exchange rate 

with an increment in polymer concentration [83]. Since the reorganization time tR is 

assumed to be a function of time of desorption of trains and loop reorganization, it is (tR) 

is expected to increase both with segmental adsorption energy and the average number of 

segments in a train[57]. The exchange of macromolecules between solution and adsorbed 

layer occurs even with a strictly monodisperse polymer. This exchange requires 

penetration of free molecules through adsorbed layer overcoming osmotic pressure due to 

higher polymer concentration inside adsorbed layer. Although penetration implies a 

reputation process expected to be slow, this time is thought to be negligible compared to 

train desorption time. However, the rate of exchange is molecular weight dependent and 

is higher when high molecular weight molecules replace lower molecular weight ones in 

the adsorbed layer, leading to a preferential adsorption of high molecular weight 

molecules. In other words, the proportion of high molecular weight molecules is expected 

to be higher in adsorbed layer than in free polymer solution at thermodynamic 

equilibrium [57, 84]. Thus, the adsorption of polymers over rock surface depends on a 

number of factors like type and size of polymer molecules, concentration of the polymer, 

and type of rock, salinity and temperature. It may take several days to reach the 

adsorption equilibrium in laboratory 
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2.4.4.1 Effect of Concentration on Adsorption Level 

The effect of concentration on adsorption of polymers onto rock surface has been a topic 

of immense interest and controversy. There is an ample amount of literature present to 

address this issue with some researchers favoring the Langmuir type adsorption isotherm 

of polymers [85-90]. Langmuir isotherm assumes the adsorption to be reversible and 

concentration dependent is used in simulators to represent the polymer retention 

(adsorption) in porous media [91-93]. On the other hand, researchers also concluded the 

adsorption of macromolecules on surfaces to be an irreversible process [54, 94, 95]. 

Guoyin et al.[96] investigated the effect of concentration of hydrolyzed polyacrylamide 

retention in porous media. They break the adsorption curve in three regimes depending 

upon the concentration. The first regime is the diluted regime and the adsorption in this 

regime is independent of concentration, similar to this is the third regime i.e. the 

concentrated regime which is also concentration independent. The middle portion in the 

curve is semi-dilute regime which is concentration depended and the adsorption increases 

with an increase in concentration. In the dilute region, polymer molecules are as a free 

coil in solution and take a flat orientation on the rock surface during adsorption. Most of 

the polymer is in contact with the surface and it is given a term 2D by Peterson and Kwei 

[97] . Polymer adsorption is continued until the maximum surface coverage is reached. 

This region can be utilized to reduce the polymer retention by injecting a low 

concentration of sacrificial polymer. The semi dilute regime is termed as 3D adsorption 

regime. In this regime, some polymer molecules will be adsorbed with all their segments 
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in contact with the surface and some partially. So, an increase in concentration will 

increase the total adsorption. In the third regime one end of the polymer is attached to the 

rock surface while majority of molecule’s portion is in free solution. Increasing the 

concentration will not affect the adsorption as all the adsorption sites have been filled or 

occupied, so the adsorption is concentration independent. This whole mechanism is 

shown in Figure 2-16.  

 

Figure 2-16: Proposed polymer adsorption mechanism by Seright 
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2.4.4.2 Reported Adsorption Plateau Levels for EOR Polymers [54]  

Table 2-5: Adsorption of HPAM 

Polymer 
Conc. 

(ppm) 

TDS 

(ppm) 

Porous Media 

(ppm) 

Permeability 

(md) 

Retention 

µg/g 
 

HPAM 500 Brine Miocene Sand 53 120  

HPAM 500 0 Ottawa Sand - 160  

Pusher 

700 
500 Surfactant Reservoir Core 80 13  

HPAM 300 13,340 Reservoir Core 17 100  

Pusher 

500 
750 20,000 Berea Sandstone 550 26  

Pusher 

700 
750 20,000 Berea Sandstone 550 23  

Pusher 

1000 
750 20,000 Berea Sandstone 550 28  

HPAM 750 1,000 Reservoir Rock 200 7  

HPAM 750 70,000 Reservoir Rock 300 72  

HPAM 750 1,270 Reservoir Rock 1500 27  
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Table 2-6: Adsorption of Xanthan 

Polymer 
Conc. 

(ppm) 

TDS 

(ppm) 

Porous Media 

(ppm) 

Permeability 

(md) 

Retention 

µg/g 
 

Kelzan M 750 Brine Nevada Sand 6000 9  

Xanflood 750 20,000 Berea Sandstone 550 14  

Xanthan 

Broth 
750 Surfactant Reservoir Core 80 13  

Biopoly

mer  
750 Brine Berea Sandstone 550 13.5  

Xanthan 1,350 - - - 151  

Xanthan 2,450 - - - 114  

Scleroglu

can 
560 - Sand - 58  

Scleroglu

can 
850 - Sand - 117  

Scleroglu

can 
1,450 - Sand - 149  

Xanthan 500 - Reservoir Rock 1500 76  
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2.5 Chemistry of Schizophyllan 

Schizophyllan is a non-ionic, homoglucan polysaccharide which is an extracellular 

product of Schizophyllum Commune. It has backbone of β glucopyranose (Figure 2-17) 

residue units linked at 13 position with a single β glucopyranose linked via 16 

linkage to every third unit of the backbone (Figure 2-18).In aqueous solutions it adopts a 

triple helical structure which is the ground behind its well-known viscosifying properties 

and thermal stability up to 120°C[98].It dissociates into a single chain dimethyl 

sulfoxide(DMSO) and regains the triple helical structure if DMSO is exchanged with 

water[99]. The triple helix has a pitch (per residue) of 0.30± 0.02nm and diameter of 

2.6±0.4nm.The triple helix structure is stabilized by interchain hydrogen bonds[100]. It 

forms physical gels with borate ions B(OH)4 as a result of chelation of borate ions 

through the hydroxyl groups[98]. It has a molecular weight  

  

Figure 2-17: Structure of β-D-

Glucose 

Figure 2-18: Structure of Schizophyllan 
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2.6 Mechanism of Adsorption 

Starch which is a polysaccharide is used in mineral floatation since it was patented by 

Lange as a selective adsorbate for the removal or depression of phosphate from quartz   

[101].Carboxymethyl cellulose and guar gum are used to depress hydrophobic gangue 

minerals such as talc and graphite. Guar gum is also used in potash floatation process to 

adsorbed preferentially over slimes such as clays, carbonates and quartz so that these 

particles do not adsorb a cationic amine collector which is meant for the floatation of 

potash    [102].Despite the extensive use of polysaccharides in adsorption applications, 

the adsorption mechanism of polysaccharides over mineral surface is not completely 

understood. Several mechanisms have been proposed over time which will be discussed 

one by one. 

2.6.1 Hydrogen Bonding 

Despite the low strength of hydrogen bond which is of the order of 2×104 joule/mole the 

cumulative energy of adsorption becomes significant for polysaccharides with high 

molecular weight[103].Hydrogen bonding occurs between the hydrogen atom of 

polysaccharide and oxygen atoms present on mineral surface. If the polysaccharide is 

able to form hydrogen bonds with mineral surface oxygen atoms, then before adsorption 

each of the species should be involved in hydrogen bonding either with water or  

internally so that the formation of a polysaccharide-mineral hydrogen bond is a result of 

two hydrogen bonds split-up. Because the energetics of such a process is not easily 

justified this mechanism can only be applied if there are factors available which will 
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contribute to the polysaccharide-mineral hydrogen bond stability[104].Some results have 

also been published including one which uses urea a hydrogen bonding breaker to 

examine the role of hydrogen bonding. The results show a decrease in adsorption value of 

polysaccharide in the presence of urea giving this mechanism a ray of hope and can not to 

be ruled out completely[105, 106].  

2.6.2 Electrostatic Interactions &Salt linkage  

Electrostatic interactions are important while dealing with ionic polymers. In our case the 

polymer is a polysaccharide which is a non-ionic polymer. This leaves a very narrow 

space for these types of attractive or repulsive interactions. However as discussed 

previously, Schizophyllan forms a physical gel with borate ions which raises the 

probability of cations present in the brine acting as a bridge for the adsorption and hence 

the possibility of adsorption proceeding through this type of mechanism. 

2.6.3 Acid-Base Interaction 

The hydroxyl groups (-OH) present in polysaccharide and over the mineral surface have 

been proposes to play an important role in adsorption mechanism. The hydroxyl groups 

on mineral surface depending upon the metal ion to which it is attached can act as a 

Bronsted acid (proton donor) or Bronsted base (proton gainer).It has been proposed that 

mineral surface will donate an –OH group with two protons coming from the 

polysaccharide hydroxyl groups to form a five membered polysaccharide-metal ring 

complex. According to this mechanism, during the interaction with polysaccharide 
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mineral surface metal-hydroxylated species act as a Bronsted base so that stronger 

basicity of the mineral surface will lead to stronger adsorption. Also, the natural 

polysaccharides such as dextrin, guar gum and starch adsorb strongly over metal 

oxides/hydroxides of Pb, Ni, Ca, and Mg compared to Si. This is because the former are 

more basic as compared to later which is acidic[107]. This has been supported by the fact 

that glucose adsorbed in a considerably large amount on alumina surface than on acidic 

alumina surface[108].It is known that the isoelectric point(iep) of solid oxides is an 

indication of Bronsted character with higher iep representing a basic surface compared to 

lower iep value which depicts an acidic surface. Now, the ieps of calcite, lead, nickel and 

magnesium are between 9 -12, compared to quartz which has an iep 2[109-112]. This 

indicates stronger adsorption over basic surface compared to acidic. This iep concept is 

also supported from the use of starch in separation of oxide minerals from quartz. Quartz 

which has an iep around 2 deprives itself from polysaccharide adsorption while iron 

oxide minerals which have ipes around 6-7 preferentially allows polysaccharide to get 

adsorbed over its surface and is depressed[107].Apart from the basicity of the surface, the 

density of surface metal hydroxyl groups also affects the adsorption with higher densities 

resulting in stronger adsorption. This was confirmed by the fact that the adsorption of 

Baker dextrin on Pb-coated quartz was much lesser than on the galena surface because of 

the lower density of hydroxylated groups on the Pb-coated quartz surface [113, 

114].However, the adsorption of guar gum over oxide minerals have been reported to be 
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pH independent indicating no role of acid-base interactions rather than supporting the 

proposed hydrogen bonding theory[115].       
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: Static Adsorption of Schizophyllan Chapter 3

3.1 Materials and Methods for Static Adsorption of Schizophyllan 

Minerals: Four minerals calcite, dolomite, kaolin and silica as shown in Table 3-1 are 

used in static adsorption experiments. These are the same minerals which were used by 

Kun Ma[116]  at Rice University, a collaborator university of The Petroleum Institute. 

The same minerals were used by Leyu Cui in his experiments[117] .The BET surface 

area of these minerals was measured using a Quantachrome Autosorb-3b BET Surface 

Analyzer which uses multipoint BET to fit the adsorption of the Nitrogen gas. Minerals 

from the same stock were shipped from Rice University for the adsorption experiments. 

BET Surface area, particle size and the zeta potential at the adjusted pH is listed in Table 

3-1. This zeta potential was measured in 0.01 mol/L NaCl solution with a suspension of 

1.0 wt% absorbent material. Further analysis of these rocks will be presented in the 

following chapter. 

Table 3-1: Characterization of minerals used 

Mineral 
BET Surface 

Area (m²/g) 
Size(μm) Resource   potential (mV) 

Calcite 1.67 5 Alfa Aesar 4.2 ± 7.2 (pH 9.8) 

Dolomite 0.97 ≤74 Car Pool Co. 8.0 ± 3.5 (pH 10) 

Kaolin 26.60 0.1 – 4 Sigma Aldrich -38.0 ± 7.6 (pH 4.8) 

Silica 1.16 ≤10 US Silica Co. -47.3 ± 2.5 (pH 6.0) 
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Reservoir Minerals: The other set of minerals used were supplied by ADNOC from 

their fields. The minerals were crushed in a basic analytic mill from IKA (Cat #: 

IKA2900000) to make them homogenize and be able to use it for adsorption experiments. 

Table 3-2: Reservoir Rocks Used for Adsorption 

Mineral      Resource 

R-5 ADNOC 

R-9 ADNOC 

R-11 ADNOC 

R-138 ADNOC 

 

The BET surface area of these reservoir minerals was measured according to the method 

explained later on in this chapter. 

3.1.1  Chemicals &Salts  

Schizophyllan 

Schizophyllan was supplied by Wintershall-Germany as a broth. Solutions of different 

concentration in brine were prepared by diluting the stock solution. A lyophilized powder 

form was also received from Invivogen-France.  MW as specified by the supplier is 3-4 

M- Dalton.  

Salts 

CaCl2.2H2O, KCl, MgCl2.6H2O, NaHCO3, NaCl, Urea were obtained from Merck – 

Germany.  
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3.1.2 Characterization of carbonate minerals 

X-ray diffraction (XRD): The crystallographic structure of the carbonaceous materials to 

know the physic-chemical makeup was studied using an X-ray Diffractometer 

(PANalytical, X’pert Pro MPD), with a Cu-Kα radiation (Figure 3-1, [118]). 

 

Figure 3-1: PANalytical  X'Pert Pro MPD X-ray Diffractometer 

Scanning Electron Microscope (SEM): An SEM was used to study the morphology and 

mineral identification of the samples. Approximately 20 µg of the samples were set on 

standard aluminium SEM sample holders (stabs) using conductive super glue and an FEI 

Quanta 250 FEG SEM (Figure 3-2, [119]) was used for analysis. Imaging studies were 

performed at 20kV. 
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Figure 3-2: Quanta SEM 

 

Fourier Transform Infrared Spectroscopy (FTIR): FTIR spectra of Schizophyllan and 

all the minerals used was done using Fischer Scientific FTIR instrument.  For all samples 

the number of scans was set at 64 with a resolution of 4 cm
-1 

. 
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N2 Adsorption: Nitrogen isotherm at 77K was used to determine the surface area of the 

samples by means of a surface area and pore size analyzer (Quantachrome, Autosorb 

6iSA). Degassing of samples was done for 8 hours at 423K prior to N2 adsorption, in 

order to remove any residual water and/or organic vapors. The Barrett-Joyner-Halenda 

method (BJH) was used to determine the pore size distribution (PSD). 

 

Figure 3-3: Quantachrome surface area and pore size analyzer 
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3.2 Schizophyllan Concentration Determination 

Concentration determination is a critical step in studying the adsorption behavior of 

polymers, especially for polysaccharides. A number of methods like size exclusion 

chromatography, radioactive labelling, organic carbon content, metachromatic method, 

precipitation, viscosity measurement, refractive index etc. have been reported [120]. Each 

of the method has some technical inefficiency because of which a different method is 

used. This method is known as Phenol-Sulphuric Acid method. It was first introduced by 

Dubois in 1956 [121].The method developed is one of the most widely utilized method to 

determine the total sugar content in samples and the work has been cited more than 

30,000 times since it was reported.  This method works on the breakdown of 

polysaccharide into monosaccharides which are then dehydrated in the presence of 

Sulphuric acid to give hydroxymethylfurfuraldehydes, which reacts with phenol to form a 

golden color complex proportional to the polymer concentration(at a fixed phenol 

amount) with a peak at around 480-195 nm. The whole reaction scheme is shown in 

Figure 3-4: 
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Figure 3-4: Phenol Sulphuric Acid Method Reaction Pathway 

 

Calibration line: Calibration line is generated by measuring the absorbance of known 

concentration samples. This line is used to estimate the concentration of supernatant 

sample after adsorption. The first experiment to validate the authenticity of the method 

was run for polymer solutions in reservoir brine obtained from ADNOC. The entire 

procedure is as follows:  

Step1: Prepare multiple samples of known concentration, 5,10,15,20 and 25 ppm. To 

check the error in the method seven different samples of each concentration was made. 

Step2: Take 200 µl of solution from the sample prepared and pour into the 15ml tube 

which already has 2800 µl water. To this total solution of 3000 µl add 50 µl of phenol 

(80% by weight in water). Repeat the same procedure for all the concentrations and their 

replicates. 

Step3: To each of these tubes, add 5ml of conc. (95%) H2SO4. This would result in an 

exothermic reaction which will give a golden color complex.  

Step4: Wait for the reaction to complete the tube is back to normal temperature which 

will take around 2 hours. 



 

55 

Step5: Measure the absorbance of each tube to get an absorbance vs concentration curve. 

Table 3-3 shows the absorbance value of each concentration with all their replicates 

along with the average of the seven values with standard deviation. Figure 3-5 shows the 

calibration line with the error bars. As clear from the standard deviation, the method is 

reproducible with minor error of less than 3%.  

 

Table 3-3: Absorbance vs Concentration off all replicates 

Conc. 

(ppm) 

Replicate Number 
St.dev. 

1 2 3 4 5 6 7 Avg. 

5 0.234 0.210 0.218 0.212 0.185 0.204 0.201 0.209 0.015 

10 0.363 0.353 0.362 0.357 0.33 0.362 0.389 0.359 0.017 

15 0.452 0.440 0.460 0.436 0.464 0.445 0.444 0.449 0.010 

20 0.558 0.547 0.605 0.551 0.566 0.547 0.545 0.560 0.021 

25 0.700 0.657 0.702 0.683 0.687 0.694 0.690 0.687 0.015 
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Figure 3-5: Absorbance Vs Concentration 

 

3.3 Adsorption Experiment (Static) 

(a) Firstly, a stock solution of required salinity and biopolymer was made by diluting the 

stock solution received from Wintershall. For some experiments reservoir brine obtained 

from ADNOC is also used.   

(b)A known amount of rock samples/crushed rock was added to the known volume of 

polymer solution in a 50 ml corning centrifuge tube (Corning Product #430290). 

(c)The tube was flushed repeatedly with nitrogen gas and then sealed. Nitrogen blanket 

was used in all the experiments to prevent biodegradation. 
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(d)The tube was placed over a reciprocating water bath shaker at 200 rpm for time 

required to attain the equilibrium. The temperature of the shaker can be maintained from 

room to 99°C by placing a top lid to prevent the evaporation of water. 

(e)After that, the tube was kept static over night before it was centrifuged for 30 minutes 

to settle down all the rocks. 

(f)The above process was replicated in parallel for another tube without any addition of 

rock. This tube served the purpose of calibration standard. This will be called reference 

sample in this thesis.  

(g)After the centrifugation, supernatant samples were used for titration. From each tube 

three samples were drawn to act as replicates.  

(h) The adsorbed amount was calculated by getting the final concentration from 

calibration curve.  
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3.4 Experiment Scheme 

Effect of several parameters on adsorption capacity to understand the adsorption 

mechanism is studied. The experiment plan is presented in Table 3-4. 

Experiment 

Condition 
Mineral Type Temp.(°C) Salinity 

Background 

Ions 

Levels 4Natural,4 Reservoir   Different       Different      Different 

 

More details of the entire experiment with experiment condition will be included in 

results section.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

59 

3.5 GPC of Supernatant after Adsorption:  

GPC of the supernatant after adsorption experiment was done in order to characterize the 

type of chains which are adsorbing over the calcite surface. If the higher molecular 

weight molecules are adsorbing in greater extent we will see a diminishing peak 

corresponding to the molecular weight. The GPC was done using Agilent 1260 HPLC 

System with a RI Detector. The column used is PL aquagel-OH MIXED-M 8 μm column 

.The schematic of the system is shown in Figure 3-6[122]. A flow rate of 0.5 ml/minute 

and 2 injections were used for the experiment. The system was stabilized for 24 hours 

before use and the single experiment time was 30 minutes.  
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Figure 3-6: Schematic of GPC 
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3.6 Microcalorimetry of Static Adsorption 

The enthalpy of adsorption as determined by the famous Clausius-Clapeyron equation 

can lead to erroneous and completely misrepresented results. There have been cases when 

the enthalpy evaluated by this equation is positive while the actual enthalpy is 

negative[123]. To avoid this, the enthalpy of adsorption is calculated by using Precision 

Solution Calorimetry using the TAM III instrument from TA Instrument[124]. TAM III 

employs the thermostat technology to precisely control the liquid bath temperature to 

within 0.0001 °C, and can be operated in isothermal, step-isothermal or temperature-

scanning mode. It has a baseline drift of 1-4 mJ with an accuracy of less than 0.1%. The 

polymer solution is filled in the vessel and the powder mineral is filled in SolCal 

Ampoules which is mounted on the mixer. The whole setup is lowered into the TAM III 

and once the system stabilizes the ampoule is crushed which is the start of the adsorption 

process. The system keeps a track of temperature which can be converted to Heat Flow. 

Figure 3-7 shows the SolCal setup which is lowered into the TAM III. 

 

 

 

 Figure 3-7: SolCal Setup 
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3.7 Static Adsorption: Results and Discussion 

3.7.1 Characterization of material used 

a. Schizophyllan:  

Figure 3-10 shows the FTIR spectra of Schizophyllan. The peak around 3300-3450 cm
-1

 

corresponds to stretching vibrations of OH groups[125].Another peak around 2930 cm
-1 

is assigned to C-H stretching vibrations. The band near 1640 cm-1 is due to the 

associated water. Absorption in this range is common for polysaccharides. The band 

890cm
-1

 is attributed to C-H variable angle vibration of β-pyranoside. This confirms the 

β-glycosidic band and pyranose ring in Schizophyllan. The absorption at 1034 cm
-1

 could 

be assigned to C-O stretching of polysaccharide [126] 

 

Figure 3-8: FTIR Spectra of Schizophyllan 
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b. Minerals 

FTIR:  

Calcite: The presence of peaks at 876 and 712cm
-1 

confirms the calcite nature of rock 

Dolomite: The presence of a peak at 730 cm
-1

 which is the in plane bending mode of 

CO3
-2

confirms the mineral to be Dolomite[127].  

Kaolin: The presence of 3685, 3620 cm
-1 

doublet which is the characteristic for the 

kaolin group confirms the rock to be Kaolin[128]  

Silica: The bands at 780 & 1080 cm-1 corresponds to Si-O symmetrical & asymmetrical 

stretching vibrations respectively. While the band at 685 cm-1 corresponds to Si-O 

symmetrical bending vibration[129]. This confirms the Silicate nature of the rock. 

R-5, R-9, R-11: All the three rocks have a characteristic peaks (876&712) of a calcite 

rock which confirms their nature to be Calcite.   
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Figure 3-9: FTIR Spectra of pure Calcite 

 

Figure 3-10: FTIR Spectra of pure Dolomite 
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Figure 3-11: FTIR Spectra of pure Kaolin 

 

Figure 3-12: FTIR Spectra of pure Silica 
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Figure 3-13: FTIR Spectra of R-5 

 

Figure 3-14: FTIR Spectra of R-9 

 

 

600.001,600.002,600.003,600.004,600.00

Tr
a

n
sm

it
ta

n
ce

(a
.u

) 

Wavenumber(cm-1) 

60011001600210026003100360041004600

Tr
a

n
sm

it
ta

n
ce

(a
.u

) 

Wavenumber(cm-1) 

876 

872-876 

712 

712 



 

67 

 

Figure 3-15: FTIR Spectra of R-11 
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X-Ray Diffraction: The X-RD spectrograph of all the minerals used is presented in 

Appendix A. Table 3-4 presents the mineralogical composition of each mineral used.  

Table 3-4: X-RD Analysis of Minerals Used 

Mineral  % Calcite  %Dolomite %Quartz Kaolinite 

Calcite 96.95 3.05 0 0 

Dolomite 0.024 99.97 0 0 

Kaolin 0 0 0 100 

Silica 0 0 100 0 

R-5 83 17 0 0 

R-9 92.85 7.15 0 0 

R-11 96.09 3.90 0 0 

 

The natural minerals are necessarily in their purest form. While the Quantitative phase 

analysis of X-RD reveals that the Reservoir rocks are mostly calcite and dolomite with 

traces of silica.  
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SEM of Reservoir Rock: 

R-5: Figure 3-18 shows the SEM image of rock R-5. The Energy-dispersive X-ray 

spectroscopy (EDX) of this rock gives the following elemental composition (Table3-6). 

The analysis shows that it is purely carbonate in nature. The particle size is less than 10 

µm.                                        

                                              Table 3-5: EDX of R-5 

                                      

 

 

 

 

Figure 3-16: SEM of R-5 

 

Element  Wt. %  At % 

 C  37.60 51.94 

 O  35.68 37.00 

 Ca 26.72 11.06 
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R-9: Table 3-7 presents the elemental makeup of rock R-9. It seems to have some traces 

of Aluminium. Figure 3-19 shows its image. The average particle size is around 8µm.  

                                           Table 3-6: EDX of R-9 

Element  Wt. %  At % 

 C  36.50 52.52 

 O  30.45 32.89 

 Al 01.61 01.03 

 Ca 31.44 13.56 

 

 

Figure 3-17: SEM image of R-9 
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R-11: Table 3-8 presents the elemental makeup of rock R-11. It seems to have some 

traces of Aluminium. Figure 3-19 shows its image. The average particle size in this case 

is also close to 8µm. 

                                          Table 3-7: EDX of R-11 

Element  Wt. %  At % 

 C  19.38 31.13 

 O  41.48 50.02 

 Ca 39.14 18.84 

 

 

Figure 3-18: SEM image of R-11 
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3.7.2 Adsorption Kinetics 

a. Room Temperature (25°C): 

Rock Salinity/Brine Polymer to Rock 

(mg/g) 

Temp(°C) Cinitial 

(ppm) 

Calcite Reservoir Brine 20 25 200 

Dolomite Reservoir Brine 20 25 200 

Kaolin Reservoir Brine 20 25 200 

Silica Reservoir Brine 20 25 200 

 

 

 

Figure 3-19: Time required in reaching equilibrium at 25°C 
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b. Temperature=75°C 

Rock Salinity/Brine Polymer to 

Rock 

(mg/g) 

Temp(°C) C initial (ppm) 

 

 Calcite Reservoir Brine         20 75 200 

Dolomite Reservoir Brine         20 75 200 

Kaolin Reservoir Brine         20 75 200 

Silica Reservoir Brine         20 75 200 

 

 

 

Figure 3-20: Time required in reaching equilibrium at 75°C 
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3.7.3 Adsorption on different minerals  

 

 

Figure 3-21: Adsorption over different minerals 
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Figure 3-22: Adsorption over Formation mineral compared to Calcite 
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3.7.4 Effect of Salinity on Adsorption 

 

Where 100% Salinity corresponds to:  

TDS 100% 

  

NaCl, g/L 181.8 

CaCl2, g/L 58.2 

MgCl2, g/L 12.0 

   

 

 

 

 

 

 

 

Figure 3-23: Effect of Salinity on adsorption over Calcite with Ci=200ppm 
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Figure 3-24: Effect of Salinity on adsorption over Calcite with Ci=500ppm 
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Figure 3-25: Effect of Salinity on Adsorption over four minerals 
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Figure 3-26: Effect of Salinity on Adsorption over Formation Minerals 
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3.7.5 Effect of Background Ions on Adsorption 

a. Effect of NaHCO3 & Na2CO3 

 

Apart from the NaHCO3 &Na2CO3, the other salts were according to  

Salt g/l 

NaCl 134.6 

CaCl2 25.6 

MgCl2 5.60 

KCl  1.4 

Rock Salinity/Brine Polymer to Rock 

(mg/g) 

Temp(°C) C initial 

(ppm) 

Calcite 1.54g/l NaHCO3 10,15,20,30,40 25 200 

Calcite 3.04g/l NaHCO3 10,15,30,40,50 25 200 

Calcite 3.04g/l NaHCO3 10,15,30,40,50 25 200 
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Figure 3-27: Effect of NaHCO3 & Na2CO3 on Adsorption 
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b. Effect of Urea 

Apart from urea and NaHCO3, following salts were included in both 

 

 

 

 

 

Figure 3-28: Effect of Urea on Adsorption 
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c. Effect of individual ions 

 

 

Figure 3-29: Effect of individual salts on Adsorption 
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c. Effect of conditioning 

Rock was conditioned for 36 hours before the polymer was added to make the final 

concentration 200ppm. This is the point where actual adsorption o polymer started. 

 

 

 

 

 

Figure 3-30: Effect of Conditioning on Adsorption 
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3.7.6 Effect of Temperature 

Where 50% corresponds to the one in section 3.7.4 

 

Figure 3-31: Effect of Temperature on Adsorption over Four Minerals in Reservoir 

Brine 
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Figure 3-32: Effect of Temperature on Adsorption over Four Minerals at 50% 

Salinity 

 

Figure 3-33: Effect of Temperature on Adsorption over Calcite 
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3.7.7 Discussion of Adsorption Results: 

Time required for equilibration: From the Figure 3-19 & 3-20 it is clear that the 

adsorption reaches equilibrium faster at 75°C compared to 25°C. The time required to 

reach equilibrium is different for all the rocks. At 25°C, the adsorption over Calcite and 

Dolomite equilibrate in around 8-10 days. The same amount of  time ( around 7 days) has 

also been reported by Tempio et al. [130] for adsorption of Xanthan over Calcite and by  

El’tekov et al. [131] for the adsorption of Dextran over Sibunit powder. El’tekov et al. 

[131] further concluded that  adsorption of polymers over minerals proceeds quickly 

during the initial stage of adsorption which is characterized by the adsorption values 

equal to about 60–70% of the equilibrium, while subsequent stages may last for days.In 

our case 50-60% of the equilibrium is achieved during the first 36 hours and the rest of 

the adsorption process which is slow proceeded during the next 8 days. However the rate 

of adsorption is bumped up with an increase in temperature. The time required to reach 

90% of the equilibrium in case of 75 °C is around 30 hours which is way less than the 

time required to reach the same amount of adsorption at 25°C. Dolomite also exhibits 

behavior similar to Calcite.    

Silica is the first one which reaches equilibrium or maximum adsorption requiring 

approximately 150 hours at 25°C and 12 hours at 75°C. Kaolin takes around 240 hours at 

25°C and 24 hours at 75°C. The time required for Kaolin is higher compared to Silica 

even though the adsorption capacity for Kaolin is low. This be attributed to the high 
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specific surface area of Kaolin (26.6 m²/g) used in the experiment even though the 

capacity on Kaolin is low.  

Adsorption on Different Minerals: Adsorption in the reservoir brine is maximum on 

Dolomite with plateau value of 1.58 mg/m². For Silica and Calcite this value is 1.30 and 1 

mg/m² respectively. While for Kaolin this value is less than 0.05 mg/m². The adsorption 

isotherms on these minerals are represented in Figure 3-21. The adsorption level 

measured for carbonate minerals (Calcite & Dolomite) is in the same range as reported by 

Somasundaran [132] for the adsorption of starch over calcite( 1.3mg/m²) . Rinaudo & 

Noik [133] also reported the adsorption of amylopectin on calcite (13 mg/g). Xia & 

Marek  [115] reported the adsorption of guar gum ( a polysaccharide)  on quartz surface 

,the maximum value of adsorption attained in their case is 0.4 mg/m². Xia [134] in 

another paper reported the adsorption level of starch on quartz to be around 1.5 mg/m². 

The results reported above are at different salinity and some even in DI water. Although 

the adsorption level obtained in our case is close to those reported in literature it is still 

difficult to relate these results as those experiments were performed at different condition 

and with different polymers than ours.  

Effect of Salinity on Adsorption: Figure 3-23 & Figure 3-24 show the effect of salinity 

on adsorption level for all the four minerals with initial concentration of 200ppm and 

500ppm respectively. As evident from the figures, adsorption level goes down with an 

increase in salinity for all the minerals and for the initial concentrations, 200ppm as well 

as 500ppm. This effect is in contradiction with the normal trend of polymer adsorption 
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with salinity. For HPAM as well as Xanthan, an increase in salinity results in an 

increment of adsorption density[25].The difference in the results may be attributed to the 

nature of the polymer “Schizophyllan” or the salinity level we are using because most of 

the reported results are at lower salinities compared to ours.  

Effect of temperature: Figure 3-31 shows the effect of temperature on adsorption. As 

expected for a typical adsorption process the adsorption density has gown down from 1.2 

mg/m² to .84 mg/m² with an increase in temperature from 25°C to 80°C. Same effect has 

been reported by Sorbie [25] 
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3.8 GPC Result & Discussion 

Figure 3-34 shows the comparison of GPC profiles for a fresh polymer of 200ppm and 

the same polymer after adsorption taken from the supernatant. The GPC profile shifts in 

the right hand side suggesting a decrease in MW of the remaining polymer solution. This 

may be either the high M.W chains are preferentially getting adsorbed over the rock 

surface or there may be a mechanical degradation of the sample as it was placed over 

shaker at 250rpm for 10 days. The second case may get an upper hand in analysis as there 

is a small MW shoulder in the after adsorption GPC profile 

 

Figure 3-34: GPC of SPG before and after Adsorption 
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3.9 Microcalorimetry Results & Discussion 

a. Calcite 

 

Figure 3-34 shows the heat released during the course of adsorption. This is also known 

as Heat Flow. As illustrated from the figure, there is a major heat flow during the first 3 

hours of the adsorption after which there is no or very little heat flow. This heat flow is so 

negligibly small that the instrument is not able to detect it. This is the reason behind the 

long time required for the adsorption to reach equilibrium. The heat flow analysis is done 

as follows:      

Heat released during the adsorption=258.37 J 

Heat released per gram of the rock = 258.37/0.150 = 1.7KJ/g 

Heat released per m² of the rock= 1.7/1.67 =1 KJ/m² 
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Figure 3-35: Heat Flow with Calcite Rock 

 

Figure 3-36: 12 point moving average of Heat Flow 
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: Dynamic Adsorption of Schizophyllan Chapter 4

4.1 Adsorption Experiment (Dynamic)  

4.1.1 Available Methods 

The measurement of polymer retention in dynamic /core flooding experiments is 

generating a concentration profile of the effluent samples and then applying the material 

balance to calculate the retention[60]. There are two approaches illustrated by Willhite 

and Dominguez[52] to measure the dynamic adsorption. Figure 3-6 shows the two 

methodologies (method A &B).  

 

Figure 4-1: Two methods for dynamic adsorption measurement 
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In Method A, a polymer solution is injected into the core at a constant frontal-advance 

rate until the effluent concentration reaches the injected polymer concentration. However, 

there may be some inaccessible pore volume which must be taken into account in order to 

interpret the results correctly. The adsorption value calculated by this method also 

involves the reversible adsorption plus if there is a chance of hydrodynamic entrapment 

that will also be included in the results. So, this method has a great chance to produce 

false results. On the other hand, Method B includes the first method (Method A) along 

with a brine post flush which can produce the reversibly adsorbed polymer.  Thus, one is 

inevitably led to Method B in any case where a complete mass balance is possible. 

4.1.2 Core Properties & Preparation  

The carbonate cores used in the core flow experiments were obtained from Kocurek 

Industries. The cores were supplied in 1.5" Dia x 12" Length which was later on cut to 

make them 1.5" Dia x 3" Length. The properties of the cores provided by the supplier are 

mentioned in Table 4-1.  

Table 4-1: Properties of Cores provided by supplier 

Core Gas 

Permeability(mD) 

Brine 

Permeability(mD 

Porosity Catalogue# 

8A 200 70 18% B101C 

2A 15-20 8-10 14% B101B 
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The core properties, Gas Permeability and Porosity were determined once again in the lab 

in order to match the values provide by the supplier.  

Core Cleaning: After cutting and trimming the cores to make their surface leveled so as 

to make them perfect cylinder, cleaning was done using Soxhlet extraction unit to remove 

any contamination. Then the cores were dried in a drying oven at 90°C for 24 hours. 

Gas Permeability: The gas permeability of the cores was determined using a steady state 

digital gas permeameter as shown in Figure 3-7. Permeability was determined using the 

Darcy’s law.  

Gas Porosity: The gas porosity of the cores was determined using the helium gas 

expansion method. Digital helium expansion gas porosimeter from Ergotech[119] as 

shown in Figure 3-8 was used. 
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Figure 4-2: Reslab digital gas permeameter 

 

Figure 4-3: Ergotech helium gas expansion digital porosimeter 
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4.1.3 Core Flow Experiment Scheme 

4.1.4 Experiment1: 

a. The core used in this experiment was 8-A. 

b. The core was first saturated in a brine of composition presented in Table 3-5.   

c. Brine was injected into the core at three rates (0.5, 1, 1.5 cm
3
/min) to determine 

the average absolute permeability.  

d. A 200 ppm polymer solution was injected at three different rates (2.2, 1.1, 0.22 

cm
3
/min). Three different rates were used to analyze the hydrodynamic 

entrapment of the polymer. The polymer solution was made in the same brine 

composition. The flow rate was changed once the ΔP was constant. 

e. After the polymer injection, brine was injected (at 0.22 cm
3
/min) until the ΔP 

was constant. 

f. Effluent samples were collected (in 15 ml corning tubes) right after the polymer 

injection started until the experiment was stopped.  

g. Viscosity, MWD and Concentration of the samples was determined using the 

methods described. 
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Table 4-2: Brine Composition 

Salt g/l 

NaCl 134.675 

KCl 1.427 

CaCl2 25.644 

MgCl2 5.679 

NaHCO3 1.524213 

TDS 167.425 

 

 

4.1.5 Experiment2: 

a. The objective of this experiment was to see the influence which the oil already 

presented in the core would make on the adsorption behavior of polymer.  

b. The core used in this experiment was 2-A. 

c. The core was first saturated in a brine of composition presented in Table 3-5.   

d. Brine was injected into the core at three rates (0.5, 1, 1.5 cm
3
/min) to determine 

the average absolute permeability.  

e. Crude oil was injected into the core (at 0.2 cm
3
/min) until no more water was 

produced. This brought the core to Swi.  

f. After the previous step, brine was injected at 0.2cm
3
/min until ΔP was constant. 

It resulted in oil production which stopped after some time.  
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g. Polymer injection was started at this point, it also produced oil which is the 

incremental oil recovered after water flooding. Polymer injection was continued 

until the ΔP was constant. 

h. Brine was again injected to produce the reversibly adsorbed and entrapped 

polymer. This step was terminated once no more polymer produced.  

i. The viscosity and concentration of effluents was calculated using the same 

procedure as described previously.  

j. Residual Resistance Factor (RRF) for both the experiments is calculated using: 

    
                         

                          
 

k. The whole experimental scheme can be represented as:  

 

Figure 4-4: Experimental Scheme of Core Flooding 2 
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4.1.6 Viscosity of Core Flooding Effluents 

The viscosity of the core flooding effluents was measured in order to study the effect of 

degradation of polymer on its viscosity when it flows through the porous media/core. 

Viscosity was also used as an online criterion to stop the core flow experiment during the 

brine post flush. The viscosity of the samples was measured using the Discovery Series 

Rheometer from TA Instruments (Figure3-9,[135]) . The geometry used for measurement 

was 40 mm with 3° cone angle one peltier plate.  

 

Figure 4-5: DHR3 Rheometer from TA Instruments 
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4.2 Results  

4.2.1 Core Properties 

The calculated values of brine permeability and porosity is given in Table 4-2  

Table 4-3: Core Properties determined in the Lab 

Core  Permeability(mD) Porosity Pore Volume(cm
3
) 

8A         162.5        17.26%     14.28 

2A         18        13.05%    10.36 

 

FTIR Spectra of Cores: 

Figure 4-6 and Figure 4-7 show the FTIR Spectra of the two cores used in experiments. 

The presence of the calcite peaks confirms the carbonate nature of the material of cores.  
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Figure 4-6: FTIR of 8A 

 

Figure 4-7: FTIR of 2A 
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4.2.2 Core Flooding Number 1 

Figure 4-8 shows the effluent samples normalized concentration on primary y-axis and 

normalized viscosity on secondary y-axis. The normalized viscosity is at a shear rate of 

13.33 s-
1
. A total of around 20 pore volumes are injected out of which initial 9 are the 

polymer injection volumes. The PV required to reach the maximum normalized 

concentration is around 7 at which the normalized concentration reached 0.75. The 

concentration never reached the injected concentration. There can be numerous reasons 

behind this, out of which one is the high adsorption inside the core. After 9 PV of 

polymer injection brine injection was started to produce the reversibly adsorbed polymer. 

In fact 22% of the total polymer produced during this entire experiment was during the 

post brine flush which tells the total amount of reversibly adsorbed polymer. The other 

calculations are as follows:     

Total Polymer Injected=25.4 mg 

Total Polymer Produced Before Post Brine Flush=14.16 mg------- (A) 

Polymer Produced as a result of Post Brine Flush=4.06------- (B) 

Total Polymer Produced= A+B=18.22 mg 

Polymer Adsorbed (Trapped) = (25.4-18.22) mg =7.18mg 

Adsorption (per gram of core rock)=7.18mg/178.88g=40.138µg/g of core weight. 
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Figure 4-8: Core Flooding 1 

 

Figure 4-9: Shear Profile of 200ppm Schizophyllan 
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Figure 4-10: Shear Profile of Core Flooding Effluents 
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4.2.3 Core Flooding Number 2 

Figure 4-11 shows the normalized concentration viscosity. After producing the oil using 

water, polymer was injected till 17 pore volumes which resulted in incremental oil 

recovery. After 17 pore volumes the injection line was switched to brine which was 

injected till 23
rd

 PV.  

Total Polymer Injected=35.4 mg 

Total Polymer Produced Before Post Brine Flush= 30.45 mg------- (A) 

Polymer Produced as a result of Post Brine Flush=3.59------- (B) 

Total Polymer Produced= A+B=34.04 mg 

Polymer Adsorbed (Trapped) = (35.4-34.04) mg =1.35mg 

Adsorption (per gram of core rock)=1.35mg/194.55g=7µg/g of core weight. 
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Figure 4-11: Core Flooding 2 

 

Figure 4-12: Shear Profile of Core Flooding Effluents 
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4.3 Discussion 

Adsorption in second case is when there was initial oil present is less than the adsorption 

in first case when there was no oil used. This may be linked to the oil wetting property of 

carbonate rocks. The initial oil present may have occupied all the adsorption sites which 

left no room for polymer adsorption. The maximum normalized viscosity achieved in 

first case is only after 10 pore volumes of injection whereas for second case it reaches in 

6-7 pore volumes. This also shows the extent of adsorption is less in second core flow 

experiment. The degradation of polymer during core flow which is characterized by the 

viscosity effluents can be seen on secondary axes of Figure 4-8 and 4-11. In both the 

cases the maximum normalized viscosity reached is 0.40 which shows a significant 

degradation.  
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: Adsorption of Switchable Surfactant: Materials and Chapter 5

Experimental Method 

5.1 Material 

Minerals: Four minerals Calcite, Dolomite, Kaolin and Silica were from the same batch 

which was used for Schizophyllan adsorption. A different reservoir rock was received 

from ADNOC to run the adsorption experiment. The reservoir rock is referred as R-168 

in this thesis. 

 

Surfactants & Chemicals 

Ethomeen C12: This switchable surfactant was obtained from AKZO NOBEL Co. C-12 

is a tertiary amine surfactant which consists of one coco alkyl group (which is a mixture 

of alkyl chains from C8 to C18) and two EO groups as branches attached to the Nitrogen 

atom. Figure 5-1 shows its structure. It is a nonionic surfactant molecule at neutral and 

high pH which does not dissolve in water. It can be switched to cationic surfactant by 

adjusting the pH towards the acidic end. It will protonate and dissolve at low pH.  

 

x=y=1; R=Coco group, Mixture of 6 to 18 carbon 

Figure 5-1: Structure of C-12 
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Sodium Dodecyl Sulfate (SDS): SDS was supplied by Sigma-Aldrich. Accurate weight 

of SDS (activity ≥99.0%) was dissolved in DI water to calibrate the cationic surfactant 

TEGO. 

TEGO: 1, 3-Didecyl-2-methylimidazolium chloride (TEGO trant A 100) was supplied 

by Metrohm. It is a cationic surfactant which was used to calibrate the anionic surfactant 

SDES. 

SDES: STEOL CS-330 is a sodium lauryl ether sulfate ethoxylated to an average of 3 

moles. It was obtained from Stepan. It was used for the titration of C-12. It was used in 

place of SDS because of its greater salt tolerance than SDS.  

The complete titration flow can be represented as (Figure 5-2): 

 

Figure 5-2: Titration Scheme 
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Methylene Blue (MB): 30 mg of methylene blue hydrate is added to 1 liter of KCl-HCl 

solution. The composition of this solution is 5.52 g/l KCl and 126mM HCl. 

Chloroform: Obtained from Sigma-Aldrich (catalog # 439142) 

5.2 Titration 

5.2.1 TEGO Standardization using SDS:  

TEGO is a cationic surfactant which is used as a standard cationic titrant in place of 

Hyamine 1622 because of its better response in potentionmetric titrations[136].However, 

It can absorb water and thus need to be standardized. SDS is used for this purpose 

because of its high activity (≥99.0%). TEGO has a molecular weight of M =399.7 g/mol 

while SDS is 288.372g/mol. 1.60 g of TEGO was added to 1 liter DI water to make an 

approximate solution of 4mM. This was titrated with 10 mg of SDS in 20 ml DI water. 

The  Metrohm 905 Titrando with optrode electrode was used for titration.[137].Figure 5-

3 shows the end point of titration. The concentration of TEGO came out to be 3.84 mM 

which means the activity is 96%. 
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Figure 5-3: Standardization of TEGO 

5.2.2 SDES Standardization using TEGO:  

SDES standardization was done using the same method which was used for titration of C-

12. The concentration used throughout this chapter for SDES after standardization is 

0.412 mM. The procedure is described in the next section. 

5.2.3 Concentration Determination of C-12:   

A number of different methods like acid base titration, chromatographic analysis, infrared 

spectroscopy and NMR are used for the quantitative analysis of surfactants[138]. But the 

one which has been used in this thesis for Ethomeen C-12 is known as Epton’s 

calorimetric titration. This methods was first proposed by Epton in 1947[139]. 
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1st step: Add 5 mL Chloroform and 2 mL methylene blue solution in a glass vial. 

2nd step: Add a certain amount of C12 sample in the glass vial. All the methylene blue 

will stay in the upper aqueous phase while the lower chloroform phase is colorless. 

3rd step: Start titrating the surfactant sample with SDES. After adding some SDES 

solution, vigorously shake the vial by hand, in order to partition all the ion-pairs into 

chloroform phase. If the color of upper aqueous phase just turns from slightly blue to 

colorless after one drop of SDES, the endpoint is reached. The endpoint can’t be judged 

until two phases are completely separated due to the blue chloroform phase dispersed in 

aqueous phase. It takes a long time to completely separate two phases by gravity. So, 

centrifuge can be used to accelerate the phase separation process. The actual end point is 

reached when the absorbance of the upper layer reaches less than 0.05.  

4th step: A blank need to be done to calibrate the titration results. Prepare a sample with 5 

mL chloroform and 2 mL methylene blue solution without any C12 solution. Add DI 

water in the vial to reach the similar final aqueous volume of C12 titration case. Repeat 

3rd step. The titrant consumed by blank should be subtracted from the sample titration, as 

shown in following equation:  

         
    

 
  

                               
   

  
 

          
                         Equation 5-1 
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Each sample should be titrated three times with different amount. The plot: C12 amount 

vs. SDES volume should be linear. The R2 of the linear regression should be greater than 

0.9. The C12 sample concentration can be calculated from the slope of the linear 

regression and SDES titrant concentration, as shown in Figure 5-4. 

 

 

 

Figure 5-4: Titration of C12 sample mass vs. SDES volume 
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5.3 Solubility of C-12 

C-12 is mostly insoluble at neutral and high pH. At these conditions it is a neutral 

molecule which can be protonated to change its behavior. As soon as its molecules get 

proton they combine to form a cationic molecule which makes it water soluble at low pH. 

The dissolution reaction can be written as: 

RN(EO)2 + H+   RN
+
H(EO)2        Equation 5-2 

The cloud point is the temperature above which a surfactant solution becomes turbid or 

no more soluble. For CO2 Foam EOR at high temperature, the greater this parameter is 

the better it is. For C-12 this parameter varies with the pH of system. Figure5-4   Shows 

the effect of pH on cloud point of C-12[140]. It increases to 140°C at a pH of 4 from 

almost insoluble at pH of 8 or higher. The pH of the system in our case is lowered by 

dissolving CO2 in the brine.  
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Figure 5-5: Cloud point of C-12 as a function of pH 

 

The pH of the system at different CO2 pressure can be simulated by using PHREEQC 

software [141]. Figure 5-5 & 5-6 shows the pH as a function of CO2 pressure in DI water 

& 22% salinity water at 120°C and 25°C. Thus applying CO2 pressure will make the 

surfactant dissolve in DI water/brine. Figure 5-7 shows the effect of CO2 dissolution on 

C-12 solubility. The first case is when there is no CO2 pressure applied which gives a 

cloudy solution referring to insolubility of C-12 at the prevailing pH while the clear 

solution is obtained after a CO2 pressure of 2 atm is applied in a Swagelok cylinder(Part 

No. 304L-HDF4-1000-PD) and the solution is poured back to bottle. The solution thus 

obtained remains clear or surfactant remains soluble for a long time after removing it 

from the pressurized cylinder.  
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Figure 5-6: pH as a function of CO2 pressure in DI water 
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Figure 5-7: pH as a function of CO2 pressure in 22% salinity brine 

 

Figure 5-8: C-12 in DI water before and after CO2 pressure of 2atm 
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5.4 Adsorption Experiment Procedure 

Adsorption at 25°C: (1) A stock solution of desired concentration was prepared in 1 

Liter glass bottle (Duran, Item #21801545). The resulting cloudy solution was poured 

into the 1 Liter Swagelok Cylinder (Part#304L-HDF4-1000-PD) and pressurized with 

3atm CO2. After three hours the pressure was released and the clear solution obtained 

was poured back to the glass bottle. The concentration of this solution was measured 

using MB two- phase titration.  

(2) Different weighed amounts of mineral and C-12 solution was loaded into the 150 ml 

Swagelok Cylinders (Part #304L-HDF4-150-T-PD). The cylinder was purged several 

times with CO2 to reduce the fraction of other gases in solution.  

(3) The cylinder was finally pressurized with 3 atm CO2 

(4) The cylinder was kept on shaker for 24 hours after which it was kept vertical to settle 

down all the rocks. 

(5) The supernatant of the cylinder was withdrawn and centrifuged for 10 minutes to 

settle down all the minerals. 

(6) The concentration of supernatant obtained in step 5 is determined using the MB two-

phase titration method.  

Adsorption at 90°C: The adsorption at high temperature needs higher pressure of CO2 to 

maintain the required pH. At 90°C the pressure of CO2 required to prevent the 

precipitation of C-12 or to achieve a pH of 4.5 is 7atm. This pressure also has to be 

during the time of taking the supernatant sample otherwise even a slight decrease in 
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pressure may result in pH reduction which will cause precipitation and hence erroneous 

adsorption value. This issue was solved by using an outage tube (Swagelok Part# M-

DTM4-F4-104) for sampling from the cylinder. After the adsorption at 90°C the cylinder 

is placed to settle the rock and supernatant sample is drawn from the outage tube while 

applying a pressure from the other end. Figure 5-8 shows the same setup.  

 

 

 
Figure 5-9: High Temperature Adsorption Setup 
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5.5 Direct Sample Analysis 

AxION Direct Sample Analysis (DSA) system integrated with the AxION 2 Time-of-

Flight (TOF) mass spectrometer was used for the direct measurement of molecular 

weight of C-12.The system is collectively known as DSA/TOF system (PerkinElmer, 

Waltham, MA)[142]. The DSA operates on principles of atmospheric pressure chemical 

ionization (APCI)  and directly ionize the sample at the entrance to the mass spectrometer 

The AxION is a high-resolution mass spectrometer, meaning it can record ion masses to 

better than five parts-per-million (ppm) precision relative to their expected masses. The 

procedure requires no sample preparation, method development and upfront 

chromatographic separation which allow it to do the complete analysis in less than 20 

seconds. Figure 5-9 shows the DSA setup[143].  

 

 

 

 

 

 

 

   Figure 5-10: DSA Setup 

 



 

122 

5.6 Results & Discussion 

5.6.1 Characterization of Formation Rock Used (R-164) 

Figure 5-10 shows the FTIR spectra of the reservoir rock used for adsorption. This 

spectrum is very similar to the spectra of pure calcite (Figure 3-9). The peaks at 876 and 

712 cm
-1

 confirm the nature of the rock to be calcite. Appendix B shows the X-RD of the 

same rock. Table 5-1 shows the EDX of reservoir rock and Figure 5-12 shows its SEM 

image. The average particle size is around 6 µm. 

 

Figure 5-11: FTIR of R-164 
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                                        Table 5-1: EDX of R-164 

 

 

 

 

 

 

 

 

5-12: SEM of R-164 

 

Element  Wt. %  At % 

 C  50.79 64.05 

 O  29.16 27.61 

 Ca 16.78 6.34 

Mg 2.99 1.86 

K 0.27 0.13 
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5.6.2 M. W of Ethomeen C-12:  

The M.W of C-12 is 288g/mol as reported by AkzoNobel Co. Leyu Cui[140] reported the 

activity of C-12 to be around 91-94% which is less than the activity reported by the 

company (97-100%). The difference arises from the fact that company assumes the 

surfactant’s coco alkyl group has chains of C6 to C18 carbon. However, our Leyu’s 

analysis revealed that the C12 surfactant contains negligible amount of C6 to C10 

components. In our Direct Sample Analysis (DSA) C-12 is found to have coco alkyl 

group chains from C8-C12 molecules with no C6 chains detected. Figure 5-4 shows the 

fraction of different molecular weight molecules in the system. It clearly shows  the 

chains of as high as 355 g/mol MW and as low as 217 g/mol MW which corresponds to 

C8 & C18 respectively. The major fraction (around 55-60%) is of the molecules with 

coco alkyl group chain length of 12.  Table 5-1 presents the chain length with their 

percentage.  

Table 5-2: Fraction of Chain Lengths in C-12 

Chain 

Length   % 

C8 5.724194 

C10 11.77582 

C12 55.54892 

C14 12.13205 

C16 10.30165 

C18 4.51737 
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Figure 5-13: MWD of C-12 
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5.6.3 Adsorption 

a. Adsorption without CO2 Pressure:  

The first adsorption experiment was run by first preparing a clear solution of C-12 in a 

Swagelok cylinder (Part No. 304L-HDF4-1000-PD) using CO2 pressure of 3atm. After 

the clear C-12 solution was obtained the adsorption was run in 50 ml Corning tubes (Part 

No: 430291). Since the tube does not have two open ends so, no CO2 pressure was used. 

This will result in CO2 stripping from the solution during the shaking as a result of which 

the C-12 will precipitate and would adsorb in more quantity than the normal capacity. 

The aim of this experiment was to see the effect of C-12 precipitation on adsorption. The 

experiment was run at 25°C and in 0% Salinity. The initial concentration of surfactant 

used was 1%. Figure 5-5 to 5-8 shows the adsorption isotherm on different minerals. The 

maximum adsorption is obtained for Silica 6.64 mg/m² and minimum for calcite which is 

1.30 mg/m².  
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Figure 5-14: Adsorption over Calcite without CO2 Pressure 

 

Figure 5-15: Adsorption over Dolomite without CO2 Pressure 
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Figure 5-16: Adsorption over Kaolin without CO2 Pressure 

 

Figure 5-17: Adsorption over Silica without CO2 Pressure 
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Figure 5-18: Adsorption Plateau over four minerals without CO2 Pressure 
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b. Adsorption on Calcite with CO2 Pressure 

This experiment was run with a CO2 pressure of 3atm. The adsorption procedure with 

CO2 has already been explained in previous section (5.4). Cylinder with pressurized CO2 

will have a pH sufficiently low to dissolve the C-12. In this case no precipitation of C-12 

will expectedly result in less adsorption compared to previous case. Two experiments 

were run one with different initial concentration of Surfactant (0.5% and 1% by wt.).  The 

adsorption plateau from both the experiments is 0.23 mg/m². 
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Figure 5-19: Adsorption 1 over Calcite with CO2 Pressure 

 

Figure 5-20: Adsorption 2 over Calcite with CO2 Pressure 
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c. Adsorption on Pure Silica: Effect of Salinity and Temperature  

This experiment was performed to study the effect of salinity and temperature on 

adsorption of C-12 on Silica. Figure 5-12 shows the decreasing trend of adsorption as 

salinity is raised from 0% to 22%. The adsorption also goes down significantly with an 

increase in temperature. The adsorption plateau has decreased from 6.05mg/m² to 2.3 mg 

mg/m².     

 

 

 

Figure 5-21: Effect of Salinity and Temperature on Adsorption over Silica 
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d. Adsorption on Formation Rock: Effect of Temperature 

This experiment shows the adsorption of C-12 on formation mineral which is mainly 

calcite. The adsorption as expected is low. Figure 5-13 shows the comparison of two 

adsorption level with same condition except the temperature. The effect of Temperature 

is quite promising for adsorption on formation minerals as it has gone down to almost 

zero 

 

 

 

Figure 5-22: Effect of Temperature on Adsorption over Formation Rock-164 
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5.6.4 Discussion of Adsorption Results 

Figure 5-17 shows the adsorption plateaus without CO2 pressure on all the four minerals. 

The maximum adsorption is obtained for Silica which is because of the negative charge 

present over silica surface. C-12 being a cationic surfactant has a greater tendency to 

adsorb strongly over silica. The next level of adsorption density is on kaolin. Kaolin also 

has a negative charge over its surface. For Calcite and Dolomite the adsorption is low and 

equal this is because of the positive surface charge over both of these carbonate rocks.      

Adsorption on calcite rock reduces to 0.23 mg/m² from 1.30 mg/m² when run under CO2 

pressure. CO2 pressure maintained the enough pH so as to make the C-12 always soluble 

in the solution or it prevented C-12 from precipitating.  

Effect of salinity and temperature on adsorption density on silica is shown in Figure5-20. 

The salinity and temperature both have the same effect of decreasing the adsorption as 

both of these are increased. The effect of salinity on adsorption has already been 

explained by Leyu et al. [117] where they explained the adsorption site neutralization( 

sites with negative charge) by the positive charge ions present in the solution. For 

temperature, the adsorption is a physical process which decreases with temperature. So 

we are also getting the same results.  

Adsorption on reservoir rock was expected to be low because of the pure carbonate 

nature of the rock. It also decreases with temperature and almost no adsorption occurs at 

90°C. This is a promising result for the use of this surfactant in the carbonate reservoirs at 

high temperature.   
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: Conclusions & Future Work Chapter 6

6.1 Conclusion 

The static adsorption results over different minerals shows Schizophyllan to be 

adsorption maximum over carbonate minerals compared to siliceous minerals. However 

due to the presence of siliceous impurities in reservoir rocks the adsorption is low 

compared to pure calcite. The adsorption level also goes down with salinity, temperature 

and background ions like Na
+
, Ca

+2
 and Mg

+2
. The results are promising for the fields 

with higher salinity. The GPC result shows the preferential adsorption of bigger chain 

molecules compared to smaller chains. This is expected behavior for polymers adsorbing 

over surfaces. 

Dynamic adsorption of Schizophyllan is low compared to static adsorption value. This 

is attributed to the large time of equilibration required by the Schizophyllan to adsorb 

over the carbonate surface. Adsorption in the presence of oil is 7µg/g compared to 40µg/g 

when there is no original oil in place. This is because lot of adsorption sites were already 

taken or occupied by the crude oil resulting in low adsorption. This is again a very 

promising aspect of Schizophyllan injection into fields. There is a significant reduction in 

viscosity of the Schizophyllan while flowing through core. The maximum viscosity 

reached by any effluent in both the cases is around 40% to the injected viscosity.  
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Adsorption of C-12 without any CO2 pressure is high which is attributed to its 

precipitation during the adsorption test as a result of CO2 stripping from the solution. 

Adsorption on calcite goes down to 0.23 mg/m² with CO2 pressure from 1.30 mg/m² with 

no CO2 pressure. Adsorption over silica is high in DI water (6 mg/m²) and decreases with 

salinity (4.5 mg/m²) and temperature (2.3 mg/m² at 90°). Adsorption over reservoir rock 

is relatively high (0.32mg/m²) compared to pure calcite (0.23 mg/m²) which is because of 

the siliceous impurities present in the rock. Adsorption on reservoir rock goes down to 

almost zero at 90°C compared to 0.32 mg/m².          

6.2 Future Work 

 Static as well as Dynamic Adsorption of Schizophyllan at 120°C and in formation 

brine is proposed. 

 Dynamic Adsorption in the presence of tracer is also proposed so as to evaluate 

the IPV and better understand the injectability of polymer. 

 Adsorption of C-12 should be studied at higher temperatures equal to field of 

application 

 Thermal degradation characteristics of the C-12 should also be examined before 

finalizing it for field application. 

 

  



137 

Appendix A 

X-RD of minerals used for Polymer Adsorption 

 
Figure A- 1:X-RD of Calcite 

 

 
Figure A- 2:X-RD of Dolomite 
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Figure A- 3: X-RD of Kaolin 

 

 

 

 

 
Figure A- 4: X-RD of Silica 
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Figure A- 5: X-RD of R-5 

 

 

 

 
Figure A- 6: X-RD of R-9 
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Figure A- 7: X-RD of R-11 
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Appendix B 

X-RD of Reservoir Rock used for C-12 Adsorption 

 

 

Figure B- 1: X-RD of R-164 
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