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Abstract

Air pollution and rising fuel costs are becoming increasingly important concerns for the
transportation industry. Hybrid electric vehicles (HEVs) are seen as a solution to these
problems as they offer lower emissions and better fuel economy compared to conventional
internal combustion engine vehicles. A typical HEV powertrain consists of an internal
combustion engine, an electric motor/generator, and a power storage device (usually a
battery). Another type of HEV is the plug-in hybrid electric vehicle (PHEV), which is
conceptually similar to the fully electric vehicle. The battery in a PHEV is designed to be
fully charged using a conventional home electric plug or a charging station. As such, the
vehicle can travel further in full-electric mode, which greatly improves the fuel economy of
PHEVs compared to HEVs.

In this study, an optimal energy management system (EMS) for a PHEV is designed
to minimize fuel consumption by considering engine emissions reduction. This is achieved
by using the model predictive control (MPC) approach. MPC is an optimal model-based
approach that can accommodate the many constraints involved in the design of EMSs,
and is suitable for real-time implementations. The design and real-time implementation
of such a control approach involves control-oriented modeling, controller design (including
high-level and low-level controllers), and control scheme performance evaluation. All of
these issues will be addressed in this thesis.

A control-relevant parameter estimation (CRPE) approach is used to make the control-
oriented model more accurate. This improves the EMS performance, while maintaining its
real-time implementation capability.

To reduce the computational complexity, the standard MPC controller is replaced by
its explicit form. The explicit model predictive controller (eMPC) achieves the same per-
formance as the implicit MPC, but requires less computational effort, which leads to a
fast and reliable implementation. The performance of the control scheme is evaluated
through different stages of model-in-the-loop (MIL) simulations with an equation-based
and validated high-fidelity simulation model of a PHEV powertrain.

Finally, the CRPE-eMPC EMS is validated through a hardware-in-the-loop (HIL) test.
HIL simulation shows that the proposed EMS can be implemented to a commercial con-
trol hardware in real time and results in promising fuel economy figures and emissions
performance, while maintaining vehicle drivability.
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ṁf Fuel consumption rate
(mfi) Fuel consumption rate in a driving segment
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Chapter 1

Introduction

Green vehicles or environmentally-friendly forms of transportation, are making a revolu-

tion in the automotive industry. The high cost of fuel and harmful emissions from internal

combustion engines have motivated a transformation in the transportation industry. In an

effort to find alternatives, electricity is emerging as a clean and reliable solution for pro-

pelling future vehicles. Automotive engineers now dream of a fully electric fleet, though

there remain some technical hindrances in the way of making this dream come true. En-

gineers first attempted to reduce the size of the engine while introducing a small number

of electric devices in order to power these so-called hybrid electric vehicles (HEVs). Many

other sources besides the fuel - such as mechanical, hydraulic, or even pneumatic devices

- were considered as choices at this early stage of development; however, electrical equip-

ment seemed to be more promising than its counterparts for passenger cars. Aside from the

rigorous emissions standards, each year the market provides some incentives for customers

to pay for extra equipment on HEVs, with a reward of better fuel economy.

1.1 Motivation and Challenges

Air pollution and rising fuel costs are important concerns for the transportation industry.

Hybrid electric vehicles (HEVs) are seen as a solution to these problems. The main mission
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of HEVs is to offer lower fuel consumption when compared to conventional vehicles pow-

ered only by internal combustion engines. The other sources of energy in HEV powertrains

allow the engines to be smaller and more efficient, which translates into lower emissions

and better fuel economy. HEV powertrains consist of an efficient engine, an electric mo-

tor/generator, and a power storage device that is usually a battery. There must be a device

on board analogous to the fuel tank for storing electricity, which is the most challenging

aspect of a hybrid or electric vehicle. In general, this device is a battery which introduces

problems regarding price and durability of the component. In fact, automotive engineers

are eagerly waiting for battery technology to progress to the point where long-lasting de-

vices can be manufactured at a low cost, which would reduce the total cost of an electric

vehicle. As the current battery technology matures, it will be possible to have larger and

more efficient batteries installed on an HEV. This development would boost the appeal

of HEVs ultimately paving the way for commercializing fully-electric vehicles with desired

performance and range.

With the development of advanced battery technologies, the energy storage capacity of

batteries has improved significantly. Plug-in hybrids have greater battery storage capacity

as compared to that of conventional hybrids. In fact, the plug-in hybrid concept can

be thought of as a bridge connecting the conventional HEV technology to the potential

ultimate transportation solution: the electric vehicle. The plug-in hybrid electric drivetrain

is designed to use (either full or partial) energy from the energy storage component to

replace part of the primary energy source [1]. Since the battery in a plug-in hybrid vehicle

(PHEV) can be fully charged using a conventional home electric plug, the vehicle can travel

further in pure electric mode. As a result, the engine is turned off for a longer period of

time during the trip, which explains the superior fuel economy of PHEVs compared to

conventional hybrids. Moreover, since most urban trips are relatively short, there is a high

probability of always having the engine off when driven in the city [2]. About half of all

daily driving distance is less than 64 km (40 miles) [2]. If a vehicle is designed to travel 64

km (40 miles) in pure electric mode, that vehicle will spend half of its life as a pure electric

vehicle (EV) [1]. Thus, it will rarely be necessary to start the engine on most urban trips

which, again, leads to a better fuel economy of PHEVs compared to conventional hybrids.
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According to the Electric Power Research Institute (EPRI), more than 40% of the U.S.

generation capacity operates at a reduced load overnight, and it is during these off-peak

hours when most PHEVs could be recharged. Recent studies show that if PHEVs replace

one-half of all vehicles on the road by 2050, only an 8% increase in electricity generation

(4% rise in capacity) will be required [3]. At current electricity rates, the incremental cost

of charging a PHEV fleet overnight will range from $90 to $140 per vehicle per year, which

translates to an equivalent gasoline production cost of about 60 cents to 90 cents per gallon

[4]. Thus, PHEVs are a very interesting option for the future of transportation. PHEVs

can be designed with different power source configurations in the drive train as well as

different energy management systems (EMSs).

The EMS is responsible for deciding how much power should be produced by the internal

combustion engine and how much should be stored/released from the auxiliary energy

storage systems to achieve the desired power at the wheels, by enforcing the operating

constraints, and in a way that optimizes fuel economy. The EMS design still remains a

challenging and most critical problem even after more than a decade after hybrid electric

vehicle introduction to the automotive market.

To further improve PHEVs performance, advanced control strategies are needed for

deciding the amount of energy to be produced and stored [5]. Additionally, the performance

of a PHEV is closely related to the way the battery is depleted.

The automotive industry, just like any other high-tech industry, where electronic con-

trols are the main part of each product is looking to reduce their development procedure.

Model-based control design is a time-saving and cost effective approach that results in

an optimized and validated system. Since the controls design can be done with a single

model of a complete system in an integrated software environment, there is no risk that

individual components do not fit together optimally. On the other hand, these controllers

should be real-time implementable to deal with the fast dynamics involved in different

parts of a vehicle. As a result, the automotive industry is actively researching solutions to

the challenges of implementing model-based approaches in terms of designing EMSs.

Recently, the automotive industry has seen a considerable change in the implementation
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process of control systems, with the integration of rapid development tools for products.

The adoption of these rapid-prototyping concepts for vehicle and component testing and

validation, called hardware-in-the-loop (HIL) simulation, is a significant change that in-

volves modeling the plant hardware (engine, transmission, vehicle dynamics, etc.) being

controlled, and interfacing this model with the intended controller. The main benefit of

HIL simulation is that one can see the interface between model and controller during all

phases of testing and the development procedure, which means that the controller issues

can be identified and fixed earlier in the design process. This advanced testing capability

has been shown to significantly reduce the overall development time and greatly improve

the quality and reliability of the final product. Furthermore, automotive suppliers can

validate their individual subsystems using HIL systems which are identical to those used

by the original equipment manufacturers (OEMs). These systems give the test engineer

the ability to simulate a variety of time consuming or expensive scenarios for a vehicle

prototype[6].

In this thesis, a real-time, model-based and near-optimal EMS for Toyota Prius plug-in

hybrid powertrain is proposed and its performance is validated through hardware-in-the

loop simulation.

1.2 Model Predictive Control

In this research, a model-based strategy is proposed using the model predictive control

(MPC) concept. MPC seems to be appropriate for exploiting the potentials of modern

concepts and fulfilling modern automotive requirements, since most of these requirements

can be stated in the form of a constrained multi-input multi-output near-optimal control

problem and MPC provides an approximate solution to this class of problems [7].

In a typical MPC framework, the sequence of optimal control actions/inputs to the

system are determined based on the prediction of the behavior of the system over a finite

time horizon [8]. This is achieved by solving an on-line constrained optimization problem

repetitively, at each sampling instant during which the system state/output measurements
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(or estimates) become available. Only the first input is then applied to the system and the

optimization is repeated at the next sampling time when the new set of measurements are

available [9].

The main drawback of this method is the extensive computational effort required for

each time step of control. Traditionally, MPC has been used primarily for controlling

chemical processes that involve relatively slow dynamics. Thanks to the faster processors

now available, there is an obvious motivation for applying the model-based control method

to fast systems especially for automotive systems. The application of MPC to HEVs

has already been investigated [10, 11]; however, this method has not been applied to the

design of an energy management strategy for a plug-in power-split HEV - the goal we seek

in this research. In general, MPC is the only advanced control technology that has made

a substantial impact on industrial control problems; its success is largely due to its almost

unique ability to simply and effectively handle hard constraints on control and states [12].

Another reason to use MPC synthesis is that, when implemented in a receding horizon

fashion, an optimization problem is solved at every time step. This enables the controller

to adapt to actual working conditions.

Furthermore, the advances in predictive control, particularly the development of explicit

model predictive control (eMPC) schemes and also developments in the field of numerical

computation of optimal solutions, provide new possibilities.

For the implementation, it is desirable to solve the optimization problem off-line in an

explicit manner via a multi-parametric program, instead of direct on-line implementation

of the controller, which yields an explicit and piecewise affine (PWA) control law [13].

1.3 Problem Statement

The goal of the proposed research is to design a near-optimal and real-time EMS for PHEV

powertrains. To this end, the issues listed below must be considered:
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1.3.1 Control-oriented Modeling

Since the model predictive controller is a model-based approach, a sufficiently accurate

model to represent the behavior of the system is needed. Moreover, this model should

be sufficiently simple and fast in order to be suitable for the real-time controller imple-

mentation. There is an obvious trade-off between model complexity and computational

efficiency; therefore, model reduction methods that take control issues into account should

be considered. In this case, the control-relevant parameter estimation (CRPE) method is

used to find an appropriate control-oriented model for use within the controller. At the

initial stages of this research, simple models of the system can be considered to acquire

insight into the problem, and then investigate systematic reduction procedures.

1.3.2 Control Design

The variety of components in the powertrain demands the use of two layers of control.

A supervisory controller is designed based on the MPC concept. As shown in chapter 4,

control parameters are involved in the design of a MPC and they must be carefully chosen

to provide desirable performance. Since the commands of MPC cannot be applied directly

to the power sources on board, a second layer of control will be required to ensure each

component follows MPC commands. For the engine, the sliding mode approach is used for

controlling the engine torque and emissions; for the simplified model of the electric drive,

standard proportional-integral (PI) controllers are used. The direct torque control (DTC)

approach for electric drive control will also be addressed. Indeed, this will only be possible

after replacing the simple electric drive model with a high-fidelity power electronics model.

1.3.3 Control Scheme Evaluation

After the design stage, the performance of the control scheme needs to be evaluated. This

task can be accomplished by using the following strategies: comparing MPC performance

with a global optimization method; model-in-the-loop (MIL) simulation; and hardware-in-

the-loop (HIL) simulation.
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For the first part, dynamic programming (DP) is considered, which has been used exten-

sively in the literature to find a global solution for HEV control strategies. Unfortunately

DP cannot be implemented on-line so it will only be used as a benchmark for developing

heuristic strategies. In the context of optimal control, DP and Pontryagin’s minimum prin-

ciple (PMP) are two different approaches to obtain optimal trajectories for deterministic

optimal control problems. In the minimum fuel consumption problem of HEVs, the DP

method guarantees a globally optimal solution by detecting all possible control options

[14].

For a better estimation of control scheme performance in the real world, MIL simulation

is considered by using a validated high-fidelity simulation model of a Toyota Prius plug-in

hybrid developed in the MapleSim software. A distinguishing feature of this model is that

it contains a chemistry-based model of the battery. Most of the battery models used in

the literature are based on a simple circuit (voltage source and internal resistor) or look-up

tables, whereas, in the high-fidelity PHEV simulation model, a more realistic physics-based

model of the battery is included.

Upon completing the MIL simulation, we will proceed to develop an HIL system. At this

stage, an electronic control unit (ECU) is programmed based on the proposed controller,

and the energy management system performance is evaluated.

Controller parameters will pass through different stages of fine-tuning during each of

these three simulation procedures.

1.4 List of Contributions

The proposed research contributions can be summarized as follows:

• Developed real-time, equation-based, and cross-validated high-fidelity simulation model

of a PHEV powertrain.

To validate the proposed control scheme, a high-fidelity simulation model is required

that includes all essential features of the real plant. Since this high-fidelity simulation
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model is used as the virtual simulation model, it should be real-time capable so it can be

used in the HIL control validation procedure.

This model is developed in the MapleSim software to use the symbolic programming

capability of Maple. Solving a large number of differential-algebraic equations involved in

the equation-based model of the powertrain can be cumbersome. However, the number of

equations can be significantly reduced using the symbolic simplification in MapleSim. This

enables the model to be run in real time.

One distinctive feature of the developed PHEV powertrain model is the chemistry-based

model of the battery as opposed to the existing look-up table or circuit-based models of the

batteries in the literature. This leads to more realistic estimation of PHEV fuel economy

and range. The parameters of this model are identified using the experimental data base

of the Autonomie software [15], which is widely used for energy management design in

industry.

Since the high-fidelity simulation model is equation-based, it can be used for performing

sensitivity analysis, optimization and systematic model reduction techniques to obtain

control-oriented models.

• Model predictive control design and evaluation for a PHEV EMS.

In this research, a model-based strategy is proposed with the use of MPC concept. The

application of MPC to HEVs has already been investigated. Wang et al. [11] integrated

the MPC controller with a proposed real-time control system. The system can be used

for all types of hybrid architectures consisting of an engine and an electric motor. They

used a number of different performance metrics to evaluate the performance of the control

system. By changing the operational weights in the cost function, the power control system

can achieve different goals. The research was limited to series and parallel configurations.

Borhan et al. [10] applied MPC to a non-plug-in power-split HEV; however, they ignored

the dynamics of the powertrain, retaining only the faster dynamics (such as battery dy-

namics) in the model inside the controller. They concluded that the fuel economy achieved

with MPC are better than those reported by the rule-based PSAT (Power System Analysis
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Toolkit) simulation software. In fact, MPC has not been used to design an energy manage-

ment strategy for a plug-in power-split HEV: the goal we seek in this research. It should

be noted that the PHEV powertrain is different from that of conventional HEVs in terms

of the initial conditions and constraints. In a PHEV, the battery capacity is significantly

higher and it can be charged from a source external to the powertrain. A PHEV battery

can be fully charged before the vehicle is started; this is an impossible scenario for a HEV.

In a HEV powertrain, the battery state of charge (SOC) should be maintained within a

definite range (for instance, between 0.60 and 0.65 [10]) and the final SOC value at the end

of the simulation should be the same as initial SOC [1]. In PHEVs, the battery is generally

discharged from a high level, and when the SOC drops to a reference value, the control

strategy attempts to maintain the SOC as close to that value as possible. This reference

value is lower than what it is in an HEV. The strategies that are applied to HEVs can be

implemented on PHEVs, but should be modified for optimal performance. Therefore, the

energy management strategies for HEVs and PHEVs are two different problems with differ-

ent constraints. Furthermore, the chemistry-based model of the battery in the high-fidelity

simulation model helps to more realistically estimate the MPC EMS performance.

• Developed and validated near-optimal and real-time implementable PHEV EMS us-

ing explicit model predictive control (eMPC) approach with simple and innovative

control-oriented model for simpler stability analysis.

Despite MPC’s near-optimal performance in improving fuel economy while handling

the constraints on the problem, there are some real-time implementation problems. As a

result, the eMPC approach is used. As mentioned earlier, eMPC solves the optimization

problem off-line from which some look-up tables can be generated, so the problem is re-

duced from solving a quadratic programming problem to searching in the look-up tables

while implementing the control algorithm. Therefore, eMPC can guarantee a real-time im-

plementation, but the size of the look-up tables may be a concern for accommodating the

data base onto commercial control hardware with limited memory. The eMPC approach

is appropriate for relatively small problems, whereas the dynamics governing a power-split

hybrid electric powertrain put some limitations on the number of state variables that can
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be handled by eMPC in order to result in a fairly-small sized data base. A solution is

to perform current model reduction techniques to come up with a control-oriented model

with fewer state variables, yet the resultant model may contain time-varying parameters

which makes stability analysis more challenging. To address this problem, a simple and in-

novative control-oriented model is proposed. The designed eMPC EMS with the proposed

control-oriented model can be implemented faster than real time and result in promising

fuel economy figures. According to the model-in-the-loop simulation results, the designed

eMPC energy management can be implemented to the high-fidelity simulation model three

times faster that its implicit MPC counterpart.

• Developed control-relevant parameter estimated (CRPE) control-oriented model to

improve performance of eMPC EMS while maintaining its real-time capabilities.

MPC performance is closely related to the accuracy of the control-oriented model that

is used to predict the behavior of the plant. To obtain a simple but sufficiently accurate

model of a PHEV powertrain for control, control-relevant parameter estimation approach is

utilized. Since the PHEV performance and electric range is related to the on-board battery,

the control-relevant parameter estimation is used to improve the battery model inside the

control-oriented model. To this end, the active frequency range of the battery excited

by the EMS is targeted to provide the experimental data for performing the parameter

estimation procedure. It is noteworthy that the number of state variables of the mentioned

model should be kept low enough so that it would not affect the real-time implementation

capabilities of the designed eMPC EMS. Model-in-the-loop simulation showed that the

CRPE-eMPC EMS can reduce the fuel consumption by up to 6.5% when compared to the

eMPC EMS without a control-relevant model.

• Implemented the CRPE-eMPC energy management strategy on a commercial control

hardware with limited computational and memory capabilities.

Hardware-in-the-loop is an essential stage in controls validation procedure. After many

steps of refinement, CRPE-eMPC energy management was modified in such a way that
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it could be implemented on a commercial control hardware, and tested in the real-world

setup. In fact, this modification affects the performance of the CRPE-eMPC EMS. The

aforementioned high-fidelity simulation model is used as the virtual simulation model inside

the real-time target which is connected to the control hardware via CAN bus.

HIL simulation shows that the proposed EMS can be implemented to commercial con-

trol hardware in real time and results in fuel economy improvement of up to 16.5% to the

baseline Toyota Prius plug-in hybrid EMS while controlling the emissions. Note that if the

emissions control is not considered in the control scheme, the fuel economy improvement

is expected to be even higher.

1.5 Thesis Layout

Chapter 2 reviews the literature on PHEV control. Chapter 3 introduces the validated

high-fidelity simulation model of the Toyota Prius plug-in hybrid electric powertrain that

will be used in MIL and HIL tests for the designed controls performance evaluation.

In chapter 4, the EMS is designed based on the MPC approach. This EMS performance

is evaluated by applying to the low-fidelity and high-fidelity simulation models of the PHEV

powertrain and benchmarked by a dynamic programming approach. To conduct the MIL

test using the high-fidelity simulation model, appropriate low-level controls for the engine

and the electric drive are designed.

Chapter 5 discusses the design procedure of EMS using eMPC approach in order to

speed up the simulations. Also, a control-oriented parameter estimation method is intro-

duced to improve the control-oriented model accuracy which leads to better performance

of eMPC controller.

In chapter 6, the eMPC EMS is programmed on a MotoTron electronic management

system hardware to perform HIL testing, followed by conclusions and future work in chapter

7.
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Chapter 2

Literature Review and Background

Triggered by rising fuel prices, stringent legal norms and increasing environmental aware-

ness of the customer, car manufacturers are producing vehicles with high fuel efficiency and

low emissions. This is possible due to new components and technologies that are introduced

in automotive powertrains such as turbo charging, exhaust gas recirculation, continuous

variable transmission, electronic throttle control, and hybrid electric powertrain.

In this chapter, different hybrid electric powertrain architectures are introduced. Then,

studies on model predictive control approach as well as control-relevant parameter estima-

tion method for obtaining more accurate control-oriented model are reviewed. Finally, the

work on controls evaluation procedure through hardware-in-the-loop simulation is investi-

gated.

2.1 Hybrid Powertrain Architectures

This section briefly introduces some known architectures for HEVs - namely series, parallel,

and power split. In series architectures, the engine is not directly connected to the wheels.

Instead, an electric motor propels the vehicle using the energy stored in the battery. Upon

depletion of the battery, the engine is used to turn a generator, which recharges the battery.

12



Figure 2.1 shows a schematic of this architecture. Since the engine is separated from the

wheels, it can be controlled in such a way so as to operate mostly inside its sweet spot

with the least fuel consumption and emissions. However, this architecture suffers from a

relatively low efficiency in comparison with other structures for passenger cars because of

a multi-stage conversion of energy.

Figure 2.1: Series architecture schematic

In parallel architecture, the engine can provide part of the propulsion power directly.

The electric motor assists the engine by means of mechanical coupling (see Figure 2.2).

Figure 2.2: Parallel architecture schematic

Both of these architectures are capable of capturing part of the energy usually dissipated

as heat while braking (regenerative braking). A power-split architecture combines the

advantages of the two architectures mentioned above. In this case, the engine, generator,

and motor are connected to each other by means of a planetary gear set (see Figure 2.3).

Among the different PHEV architectures, the power split has displayed the best fuel

economy for urban driving conditions in comparison with series and parallel configurations
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Figure 2.3: Power-split architecture schematic

[16]. In highway driving conditions, the power-split and parallel architectures showed,

respectively, similar and better efficiency as compared with the series architecture.

2.2 Energy Management Systems

Designing the energy management system is as important as choosing the architecture of

a hybrid electric powertrain; the best architecture may operate poorly if an inappropriate

control strategy is used.

Over recent years, several strategies for HEV energy management have been proposed,

including rule-based methods, dynamic programming (DP), stochastic dynamic program-

ming (SDP), equivalent fuel consumption minimization (ECMS), and model predictive

control (MPC). These strategies optimize the fuel economy by solving the problem where

the fuel consumption explicitly appears in the cost function. Indeed, this will result in

minimum fuel consumption if the full information problem can be solved over the whole

driving cycle (as in the DP approach). However, information about the future driving cy-

cle is not available during conventional driving. In addition, planning for the whole future

driving cycle is computationally demanding. While the use of stochastic models (as in SDP

and in stochastic MPC) alleviates some of these problems, the choice of stochastic model

and its identification still poses several challenges [5].
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One way to design an energy management strategy for a PHEV is to extend the strate-

gies applied to non-plug-in HEVs [17].

On the other hand, there are two main strategies for PHEVs. The first is full electric

drive plus charge sustaining mode. In this strategy, the battery, which is fully charged

at first, provides a considerable range of full electric drive while the engine is off. This

mode continues until the battery state of charge (SOC) drops to a predefined level. The

engine then takes over and keeps the SOC as close as possible to that reference. The

energy management strategy makes the engine operate efficiently with no deterioration in

drivability performance. This mode continues until there is access to an electricity source

in order to fully charge the battery again. It is noteworthy that the engine is allowed to

start in full electric drive mode if the power demanded by the driver is more than what

the battery and motor can provide. In this case, the strategy is charge depletion plus

charge sustenance mode. Some studies have addressed battery health-conscious energy

management scheme for PHEVs. For instance, Moura et al. [18] suggest that in order

to minimize battery degradation, a PHEV energy management scheme should primarily

deplete battery charge quickly, then blend the engine and battery power to avoid charge

sustenance.

The second main strategy which is called blended mode, performs charge depletion

mode throughout the driving schedule. The engine is started more frequently to reduce

the rate of battery charge depletion. This strategy has the potential of improving fuel

economy more than the full electric drive/change sustenance strategy, but it requires trip

information.

Furthermore, several items must be considered in energy management system design

including the choice of the correct objective function that should be minimized, forecasting

the future load based on the information available at runtime, and the characteristics

of the vehicle [19]. It should be noted that most of the strategies used in commercial

HEVs are rule-based heuristics [20]. Rule-based approaches constrain the power split

between different on-board power sources based on the current state of the powertrain

(e.g., vehicle/engine speed, battery charge, and power demand) using maps or rule bases

[21]. A set of rules can then be maintained to ensure that the states of the system are
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as close as possible to the desired scheme. Those decisions can be made by using maps

which can be constructed from engineering expertise and insight, or by using more formal

methods such as optimization [22] or fuzzy logic [23]. The stochastic dynamic programming

(SDP) method is quite appealing in this context because of its ability to optimize the

system performance with respect to a probabilistic distribution of several different drive

cycles [24]. However, this method has some computational complexities [25]. Moura et

al. [26] derived an optimal energy management strategy for a PHEV (with a power-split

architecture) based on stochastic dynamic programming, which rations battery charge by

blending engine and battery power in a manner that improves engine efficiency and reduces

total charge sustenance time. Freyermuth et al. [27] simulated and compared four different

control strategies for a power-split PHEV with a 16 km All Electric Range (AER) battery

pack. Using the Electric Vehicle/Charge Sustaining (EV/CS) strategy, the engine turns

on only when the power demand is higher than the available power of the battery. The

differential Engine Power strategy is similar to EV/CS, but the turn-on threshold for the

engine is lower than the maximum power of the electrical system. Using the Full Engine

Power strategy, if the engine turns on, it will supply all the power demand of the drive

cycle and no power will drain from the battery. The aim of this strategy is to force the

engine to operate at a higher power demand and, consequently, with a higher efficiency.

The Optimal Engine Power strategy is similar to the previous strategy: it seeks to use

the engine more efficiently (at a higher power demand) by restricting the engine operation

close to the peak efficiency. Freyermuth et al. [27] conclude that EV/CS is equivalent to

the Differential Engine Power strategy and Full Engine Power is the best of all (and much

better than Optimal Engine Power).

More advanced control techniques are based on real-time optimization. Also referred

to as causal systems, they rely on real-time feedback to optimize a cost function that is

developed using the past information [17]. Route-based energy management algorithms

require knowledge of future power demand, which is then used to specify the future power

contribution of different sources of energy on board. This type of optimization can be

performed off-line for drive cycles known a priori using deterministic dynamic programming

(DDP) [28], and can also be performed on-line using optimal model predictive control [29].
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Gong et al. [30, 31] suggest that it is possible to improve the control strategy of a PHEV if

the trip information is determined a priori by means of recent advancements in intelligent

transportation systems (ITS), which use data obtained from global positioning system

(GPS) and geographical information system (GIS) infrastructure.

Unfortunately, it seems that the control software of powertrains fall short with respect

to their complexity. While mostly strategies that are based on heuristics and look-up

tables are implemented, it was shown that model predictive control has a large potential

for control of automotive powertrains ([32, 33, 34, 35, 36]).

2.3 Hybrid Powertrain Modeling

The development procedure of HEVs needs a framework with a validated model to simulate

emissions and fuel consumptions. This framework can be used for benchmarking the fuel

economy of alternate hybrid powertrain technologies, component sizing, and performance

evaluation of various supervisory control algorithms for energy management [37].

Designing such a control system requires a sufficiently accurate hybrid powertrain sys-

tem plant model [38]. In terms of plug-in hybrid powertrain, the battery determines the

vehicle full electric range and the emissions performance of the vehicle. Therefore, it is

essential to have an accurate model of this component.

Development of the powertrain management system can be time-consuming, since the

process relies on extensive testing of new control designs and calibration of control hardware

[39]. Using model and hardware-in-the-loop (MIL/HIL) simulations makes the control

evaluation and validation procedures simpler, especially at the early stages of controls

design.

Furthermore, the control design usually involves a large number of iterations and eval-

uations over long driving cycles. Therefore, developing a fast-running model of hybrid

powertrains, especially the engine and battery pack, with sufficient accuracy for control

applications is necessary.
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There are different approaches to find a suitable model for control evaluation purposes.

Some models are based on look-up tables, derived from experiments. Although these

models cannot capture transient behavior of the real plant, they are useful for running

steady-state simulations. Some of the mentioned tools are ADVISOR [40], HE-VESIM

[41], and PSAT [42].

Patil et al. [37] described a simulation framework to predict fuel economy of a series

hydraulic hybrid vehicle for any drive cycle, developed in MATLAB/Simulink. The param-

eter data is chosen to represent a Class 6 medium-duty parcel delivery truck. A complete

plant model of a power-split HEV is developed in [38], which is also validated against ex-

perimental results on the Ford test track. Kim et al. [43] developed a vehicle model and a

controller for the 3rd generation Toyota Prius to reproduce real-world behaviors, and the

simulation results were compared with the testing results. They showed that the developed

vehicle model achieves fuel consumption that is close to the testing value, within 5%, and

the operation of the engine model was similar to that of the real-world engine.

2.4 Model Predictive Control

Model predictive control (MPC) is an advanced control strategy which determines inputs

for a given process that optimize the forecast process behavior with respect to a cost

function. These inputs, or control actions, are calculated repeatedly at each sampling time

using a dynamic process model (control-oriented model) designed for the prediction. To

this end, the fast and reliable solution of quadratic programming (QP) problems in real-

time becomes a crucial ingredient of most MPC algorithms. If the process model is linear

and the cost function quadratic, a setup called linear MPC, the computational cost for

finding near-optimal control actions even reduces to the solution of one single convex QP

problem at each sampling instant [44].

One must be warned, that there exists a tradeoff between model accuracy and complex-

ity of the optimization: the simpler the model (and performance index/constraints), the

easier the solving of the optimization would be. Henceforth, while in building simulation
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models one looks for the most accurate model to numerically reproduce the behavior of the

process as faithfully as possible. However, prediction models used in MPC (as well as in

any other model-based control design techniques, from pole-placement to Bode diagrams,

etc.) are usually very simple, yet representative enough to capture the main dynamical

relations.

In particular, complex non-linear systems can be approximated by linear and piece-

wise linear models whose associated optimal control problem can be solved by relatively

simple numerical procedures. System identification is an excellent tool to obtain the most

representative prediction model within a prescribed bound of model complexity [45].

The reason for the success of MPC in industrial applications is due to its ability to

handle processes with many manipulated and controlled variables and constraints on them

in a rather systematic manner [46]. Furthermore, MPC allows for the specification of an

objective function which is optimized by the controller. Other advantageous MPC features

are the capability of dealing with time delays [47], of rejecting measured and unmeasured

disturbances [48], and by taking advantage from future information [49]. Finally, there

is a philosophical attraction to MPC since it embodies both (receding horizon) optimiza-

tion and feedback adjustment. In fact, model predictive control [50] has been developed

to integrate the performance of optimal control with the robustness of feedback control.

The main appeal of MPC is in being able to enforce pointwise-in-time constraints, while

providing the control designer with direct capability to shape the transient response by

adjusting the weights in the objective function being minimized. MPC controllers can

handle continuous-valued and discrete-valued control inputs, accommodate system param-

eter changes or subsystem faults, as long as they are reflected in the prediction model [51].

Over the past few years, smart electronic devices that monitor and control the me-

chanical components have enabled major advances in automotive applications. Nowadays,

cars have become complex systems in which electronic and mechanical subsystems are

tightly connected and interact to achieve optimal performance. Automotive actuators

have become mechatronic systems in which mechanical components coexist with electron-

ics and computing devices. These mechatronic automotive systems are characterized by

tight operating requirements such as high precision robustness, low power consumption,
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fast transition time, significant non-linearities, as well as input and state constraints which

need to be enforced during system operation. On the other hand, their dynamics may

often be characterized by relatively low-dimensional dynamical models [51]. This has not

only caused an increased interest in MPC for automotive applications, especially for drive

line, but also for engine control [52]. In addition, MPC is suitable because of its receding

horizon implementation that mimics human driving behavior [53].

There are several examples of using MPC approach for automotive applications in the

literature including vehicle traction control [54], suspension [55], direct injection stratified

charge engines [56], automotive powertrains [36, 57], magnetically actuated mass spring

damper system [51], power converters [58, 59], and so on. Recent applications of MPC for

powertrain control include control of diesel engines [52, 60], catalyst control [61, 62], trans-

mission control [63], powertrain actuator control [51, 64], and hybrid electric powertrain

EMSs [65].

Di Cairano et al. [47] have proposed a design flow to develop model predictive con-

trollers targeted to automotive applications, that makes use of simulation model and ex-

perimental data to tune the different parameters of the controller. The procedure has been

applied to an engine idle speed control. An improved idle speed controller can reduce the

need for a spark reserve, and hence consistently improve the fuel efficiency. The results

show that the MPC largely outperforms the available baseline controller.

Model predictive control (MPC) is widely used in the lateral control of vehicles. As

previously mentioned, the effectiveness of the MPC is in the very easy and efficient handling

of linear systems with states and control constraints. In the case of vehicle lateral dynamics

control, limitations on steering angle and steering angle rate are typical constraints. By

introducing appropriate weightings for states and control and by solving a QP problem,

one can easily obtain an MPC controller [66].

Falcone et al. [49] proposed a non-linear MPC approach for coordination of active

steering and braking in an autonomous vehicle navigating along a known trajectory.
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2.5 Explicit Model Predictive Control

Classical model predictive control (MPC) requires on-line optimal solution of linear or

quadratic programming problem at each sample time, using the current states. Such on-

line computation is the main disadvantage that limits applications of MPC in general only

for controlling slow processes [9]. For instance, the first generation of MPC algorithms

was aimed at solving multi-variable constrained control problems typical to the oil and

chemical industries [67]. However, computation speed is not the only limitation: the code

implementing the solver might generate concerns due to software certification issues, a

problem which is particularly acute in safety critical applications [46].

Explicit MPC (eMPC) techniques [68] can be used to synthesize the controller as a

piecewise affine function. With this approach appropriately applied, the MPC can be im-

plemented in a micro-controller without the need for an optimization solver and satisfying

the stringent memory and chronometric constraints of automotive electronic control units

(ECUs) [51].

eMPC allows one to solve the optimization problem off-line for a given range of op-

erating conditions of interest. By exploiting multi-parametric programming techniques,

eMPC computes the optimal control action off-line as an “explicit” function of the state

and reference vectors, so that on-line operations reduce to a simple function evaluation.

Such a function is piecewise affine in most cases, so that the MPC controller maps into

some polyhedral regions that can be stored as a look-up table of linear gains [46].

Automotive actuators can often be adequately characterized by low dimensional mod-

els, and in this case an explicit implementation of the MPC controller becomes possible,

whereby the solution is pre-computed off-line and its representation is stored for on-line

application.

Beside eMPC advantages, this approach suffers from some drawbacks. In practice,

eMPC is limited to relatively small problems (typically 1-2 inputs, up to 5-10 states, up

to 3-4 free control moves) but allows one to reach very high sampling frequencies (up to 1

MHz) and requires a very simple control code to be embedded in the system [46].
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For a fixed number of states and reference signals, the complexity of the solution is

given by the number of regions that form the explicit solution. This number mainly

depends (exponentially, in the worst case) on the number of constraints (and also of binary

variables/system modes in the hybrid case) included in the MPC problem formulation, and

only mildly on the number of state variables. It also depends on the number of optimization

variables. Bemporad [45] has introduced a table which shows such dependencies on random

linear MPC problems. In the multi-parametric QP case, an upper-bound to the number

of regions is 2 to the power of constraints number, which is the number of all possible

combinations of active constraints at optimality [46].

One problem with the approach is that, as the horizon size, the number of states, and

the number of constraints grow, the number of polyhedral regions grows quickly, making

the look-up table approach difficult to implement in practice. Therefore, various eMPC

design and search algorithms with some minor sacrifice of optimality were proposed [67].

Industrial problems addressed through eMPC techniques have been reported in tech-

nical papers, starting from what is probably the first work in this domain (traction con-

trol) [69]. The most suitable applications for eMPC are fast-sampling problems (in the

order of 1-50 ms) and relatively small size. Most of the applications of eMPC have been

reported in the automotive domain and electrical power converters.

Borrelli et al. [54] describe a hybrid model and a MPC strategy for solving a traction

control problem. The problem is tackled in a systematic way from modeling to control

synthesis and implementation. The resultant optimal controller is converted to its equiv-

alent piecewise affine form by employing multi-parametric programming techniques, and

finally experimentally tested on a car prototype. Nausa et al. [53] describe a systematic

approach for the design of a parameterized adaptive cruise control (ACC), based on eMPC.

A unique feature of the synthesized ACC is its parameterization in terms of key character-

istics, which, after the parameterization, makes it easy and intuitive to tune, even for the

driver.

Stewart and Borrelli [60] present the development and implementation of a practi-

cal eMPC approach that allows sub-controllers to receive and accommodate time-varying
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setpoints and constraints from higher levels in standard industrial automotive controller

hierarchies. The proposed approach was demonstrated on production ECU controlling a

real 2.2 litre diesel engine in which the variable-geometry turbocharger (VGT) and exhaust

gas recirculation (EGR) actuators were used to track setpoints on mass air flow (MAF)

and manifold absolute pressure (MAP) sensors while respecting a time-varying constraint

on engine-out NOx emissions. Widd et al. [70] present results on model predictive control

of the combustion phasing in an homogeneous charge compression ignition (HCCI) engine

based on a hybrid model formulation composed of several linearizations of a physics-based

non-linear model. The explicit representation of the MPC was implemented experimentally

and the performance during setpoint changes was compared to that of a switched state

feedback controller. The hybrid MPC produced smoother transients without overshoot

when the setpoint change traversed several linearizations.

Di Cairano et al. [5] have introduced an energy management strategy that focuses on

optimizing the engine efficiency for a series HEV. The experimental results executed on

a fully functional vehicle on a chassis-roll dynamometer using the UDDS cycle, show fuel

economy improvements with respect to two base strategies.

2.6 Control-relevant Parameter Estimation

Effective system identification of highly interactive processes for multi-variable control

purposes has been viewed as a challenging problem by many investigators [71, 72, 73].

Recently, control-relevant parameter estimation has become an important subject to con-

trol researchers, because of its potential to make significant improvements in the field of

model-based control. It is suggested that model identification and controls design should

not be performed independently, and this has led to the iterative design of a model-based

controller. While conventional identification approaches emphasize obtaining an accurate

model, the objective of the control-relevant identification is to find an approximate model

that is appropriate for the design of a high-performance controller.

The goal of control-relevant parameter estimation is to make appropriate choices of
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design variables in the estimation procedure so that the important properties of the plant

with respect to the intended control application are retained in the estimated model [74].

Control-relevant parameter estimation problems naturally arise in reduced-order controller

design ([75, 76]) and system identification [77]. Various control-relevant parameter estima-

tion schemes ([78, 79, 80, 81]) have been proposed and also achieved good results in several

industrial applications ([82, 83]).

Among them, most of the control-relevant identification schemes adopt a time domain

identification technique and use frequency weighting functions in both identification and

controller design stages ([83, 84, 85]). The frequency domain weighting function in the

controller design stage is obtained from differences between estimated and predicted in-

put/output signals during iteration. The cost function is updated at every iteration step

and the results of identification considerably affect the controller gain tuning, which means

that the cost function is changed at every step to minimize the cost function. Jun et

al. [86] describe a MATLAB-based computer-aided design tool, IRA-HPC, which accom-

plishes integrated system identification and robustness analysis for receding horizon control

(RHC), a model predictive control algorithm implemented on the Application Module of

the Honeywell TDC 3000 distributed control system and shows its benefits in terms of

simplifying the choices of design variables in integrated identification and control design.

Lee and Rivera [74] has presented a novel integrated framework for multi-variable system

identification and control system design leading to desirable models for the control of highly

interactive multi-variable process systems. The resulting models serve as a useful nominal

model for a high performance advanced control system, such as model predictive control.

Verboven et al. [87] presents a computational approach for the frequency-domain identi-

fication of multi-variable, discrete-time transfer function models based on a cost function

minimization. The algorithm is optimized for the parametric characterization of complex

high-order multi-variable systems requiring a large number of model parameters, including

sparse matrix methods for the reduction of computation time and memory requirements.

The algorithm supports a multi-variable frequency-dependent weighting, which generally

improves the quality of the transfer function model estimate. The overall approach is suc-

cessfully demonstrated for a typical case encountered in experimental structural dynamics
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modeling (using modal analysis) and compared with related algorithms in order to assess

the gain in computational efficiency.

2.7 Hardware-in-the-loop Simulation

Hardware-in-the-loop (HIL) systems have become efficient tools for strategy and interface

software development. These HIL simulations have given the test engineer the ability to

simulate a variety of scenarios that may be too difficult, time consuming or expensive to

do on a vehicle prototype. The HIL systems allow control function development to be done

and verified ahead of a vehicle build. The HIL systems are also used in the development

of reasonable initial calibration values for the embedded software. The improved software

quality and early verification of software leads to reduced vehicle commissioning time,

which refers to the process whereby an early vehicle prototype is put together and each

function is verified at a gross level, to see if a minimum level of functionality exists before

being handed off to the various engineering teams for further development [6]. Automotive

systems typically contain numerous feedback loops, each consisting of a physical system

or plant to be controlled, related sensors, actuators, a controller, and a setpoint or more

generally, a desired state trajectory. The controller is in fact a computer that uses input

data from the sensors, and calculates appropriate controls which runs the actuators in

such a way that the plant follows the desired state trajectory. Since the related dynamic

equations are generally complex, it is rarely possible to find closed-form solutions.

Carrying out simulation studies within the virtual world of a desktop computer is a

predominant solution to this problem. However, such off-line model-in-the-loop simulation

provides no guarantee that the real-time performance constraints can be met in a sampled-

time embedded computer with real-world I/O. Therefore, the HIL technique is employed to

validate if a controller can meet the real-time performance requirements. In this technique,

either a real plant to a simulated controller or a simulated plant is wired to a real controller.

In either case, the presence of I/O and wires is the distinguishing feature. Simulation and

control start with models of hardware because the actual hardware is not yet available.
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Later, the models of that hardware can be removed and the actual hardware is connected.

Thus, the hardware can be tested on-line several times as early as possible in the design

process. Moreover, HIL requires dynamic models that include all significant interactions

that exist within a particular plant [88].

The advent of microprocessor-based electronic control units (ECUs) for car engines and

powertrain created a need for new tools for testing, calibrating, and validating these ECUs.

HIL simulation met this need, and became a key technology for engine ECU testing and

calibration [89]. Wagner and Furry describe a virtual simulation environment that enables

such HIL simulation [90]. Kimura and Maeda use such HIL simulation for engine ECU

development [91]. Lee et al. show the requirements that a HIL simulator must satisfy to

be effective for ECU development [92]. They also present a formal process for developing

such a HIL simulator that uses automatic code generation to streamline the transition of

control system designs from pure simulation to a commercial embedded code [93]. Song and

Grigoriadis utilize HIL simulation to validate the design of an advanced linear parameter-

varying engine control system [94].

The use of HIL simulation for automotive ECU development is not limited to engine

applications. In fact, HIL simulation has been used effectively for the development, cali-

bration, and validation of transmission and driveline electronic control units. For instance,

the authors in [95, 96] describe the process of developing a HIL simulator for the purpose of

transmission ECU development. Schupbach and Balda [96] demonstrate the versatility of

HIL simulation by using the same HIL setup to simulate the transmissions and drivelines

of several distinct vehicles. Many transmissions use hydraulics as a means for actuation.

Ferreira et al. develop a HIL simulation setup for a hydraulic system, laying particular em-

phasize on the inherent numerical stiffness of hydraulics models and the proper modeling

efforts necessary for simulating such models in real time [97, 98].

Trigui et al. [99] applied the HIL approach to a parallel HEV configuration in order

to analyze fuel reduction benefits due to hybridization without any influence of vehicle

characteristics or engine technology improvement. Winkler et al. [100] showed a brief

overview of the simulation of an HEV using the Micro Hybrid architecture which allows

the use of Start/Stop operation as well as brake energy regeneration via the object-oriented
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modeling language Modelica. The authors presented some simulation results using the new

European driving cycle (NEDC) to show the impact of special sensitivity curves for control

of the battery SOC. Hao et al. [101] presented a design procedure of HIL for electric vehicle

powertrain including BMS (Battery Management System), MCU (Motor Control Unit) and

VMS (vehicle management system), using dSPACE with MATLAB/Simulink, along with

the RTW toolbox (real time workshop). A HIL verification environment for simulations

of heavy-duty hybrids with full-scale hybrid electric power system is presented in [102].

This test facility has been used to measure the efficiencies of electric motors and hydraulic

pumps, to characterize devices and validate plant models, and to make experimental HIL

simulations in order to verify and validate HEV control algorithms.

2.8 Chapter Summary

In this chapter, the main architectures for a PHEV were introduced together with what

have been done for designing an EMS for such a powertrain in the literature. The MPC

and eMPC approaches were briefly reviewed to show their potential for designing optimal

EMSs. Control-relevant parameter estimation was introduced and its advantages in terms

of obtaining more accurate control-oriented models were mentioned. Finally, HIL testing

importance for controls validation in the automotive industry was explained.

27



Chapter 3

High-fidelity Modeling of a Plug-in

Hybrid Electric Powertrain

This chapter introduces the validated high-fidelity simulation model of the Toyota Prius

plug-in hybrid powertrain that will be used in MIL and HIL tests for the designed controls

performance evaluation.

This chapter is organized as follows: after a brief introduction, the Toyota Prius Plug-

in powertrain specifications are given. Then, a high-fidelity PHEV simulation model in

the MapleSim software is introduced. Finally, the validation procedure (especially the

Lithium-ion battery parameters) will be discussed.

3.1 Introduction

A high-fidelity simulation model of the Toyota Prius plug-in hybrid powertrain developed

in the MapleSim software is introduced in this chapter. MapleSim is an environment

for multi-domain system simulation with direct access to system equations to make it

more convenient to do sensitivity analysis, model reduction and optimization. Symbolic

calculation and optimized code generation in MapleSim reduces simulation time and makes
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the model more suitable for MIL and HIL tests. This physics-based model of a power-split

plug-in powertrain contains a chemistry-based Lithium-ion battery pack, which can be

distinguished from other models used in the literature since the performance of a PHEV

greatly depends on its battery.

Developing a proper battery model, in which both simplicity and accuracy is retained,

is one of the most challenging tasks. To enhance the fidelity of the model, a full chemistry-

based Lithium-ion battery model developed by Newman and Tiedemann [103] and Doyle

et al. [104], then simplified by Dao et al. [105], is used in this research. The model is

an isothermal battery model based on concentrated solution theory, porous electrode the-

ory, and the variations in electronic/ionic conductivities and diffusivities. The equations

governing the dynamic behavior of the battery model are non-linear partial differential al-

gebraic equations (PDAEs), which are not suitable for real time applications. As a result,

a simplified version of the full battery model presented by Dao et al. [105], which preserves

the accuracy and significantly reduces the computational cost, is utilized in this thesis.

In their simplification procedure, Dao et al. exploited the nature of the battery equa-

tions along with a combination of several techniques such as volume-averaging, Galerkin’s

method, and curve-fitting. The resulting equations consist of 14 non-linear differential

algebraic equations (DAEs) that carry both accuracy and simplicity for the battery simu-

lation model. Developing any simulation model of a physical system requires parameters

that should be identified with an admissible degree of accuracy. Accordingly, parameter

identification of the Lithium-ion battery plays a key role in evaluating this electrochemi-

cal subsystem of the full vehicle model. Among parameter identification techniques, the

homotopy optimization procedure presented by Vyasarayani et al. [106] seems to be very

reliable due to its capability in approaching to global extremum.

To do cross-validation of the MapleSim model, the Autonomie software of Argonne

National Lab has been used. Autonomie provides reliable component models that have

been validated from a number of testing results [43]. It includes forward-looking models

that allows advanced powertrain designers to develop realistic control strategies and assess

component behaviors in a system environment by using models that are close to reality

[42].
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Figure 3.1: The transmission of Toyota Prius plug-in hybrid

3.2 Toyota Prius Plug-in Hybrid Powertrain

The powertrain of this vehicle is quite similar to the 3rd generation Toyota Prius except

for the battery pack. The larger Lithium-ion battery pack provides longer full electric

driving range while reducing the environmental footprint considerably. As usual, there are

2 electric motors (MG1 and MG2) which are connected to the engine and final drive with

2 planetary gear sets. The schematic of the power-split device [107] is shown in Figure

3.1. Note that GR is the ratio of ring gear teeth number to sun gear teeth number in each

planetary gear set.

One of the two planetary gear sets splits the power flow from the engine like the 2nd

version, but an additional gear is operated as a reduction gear for the motor [43]. MG1

and the engine are connected to the sun gear and carrier of the first planetary gear set,

respectively [107]. The engine of this vehicle runs on the Atkinson cycle. To reduce

mechanical loss, the engine is beltless and its water pump runs on the electric side of the

powertrain similar to the air conditioning compressor. The engine main specifications are

shown in Table 3.1 [108]. A PHEV might have subsequent engine stop-start events during

its trip. Therefore, an exhaust heat recirculation system is designed to heat up the engine

coolant quickly to its normal operating temperature in order to prevent cold start events,

thereby improving fuel economy.
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Table 3.1: Engine specifications

Engine model 2ZR-FXE (Atkinson cycle)
Engine type In-Line 4 cylinder DOHC 16-valve
Displacement 1797 cc
Max. Torque 142 Nm @ 4000 rpm
Max. Power 73 kW @ 5200 rpm
Bore 80.5 mm
Stroke 88.3 mm
Compression ratio 13:1

Table 3.2: MG2 specifications

Type Permanent magnet AC synchronous
Max. Torque 300 Nm
Max. Power 60 kW
Max. Speed 13600 rpm
Voltage 650 V

The generator (MG1) and the traction motor (MG2) are air-cooled permanent magnet

AC synchronous machines. MG1 can start the engine and charge the battery with the

maximum power of 42 kW . The MG2 specification is demonstrated in Table 3.2 [108].

The addition of speed reduction planetary gear set requires the MG2 to operate at high

speed levels.

The Prius Plug-in hybrid contains a newly-developed large capacity Lithium-ion battery

pack (Table 3.3)[108]. This battery has two levels of output power depending on the vehicle

driving mode. The electric mode (EV) range is up to 18 km according to Environmental

Protection Agency (EPA) rating. After partial battery depletion, the energy management

strategy switches to the hybrid mode (HV).
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Table 3.3: Battery-pack specifications

Type Lithium-ion
Number of cells 56
Number of cells in each Module 14
Nominal voltage 207.2 V
Nominal capacity 4.5 kWh
Power output 38 kW
Weight 80 kg

3.3 MapleSim model

MapleSim is an environment for multi-domain system simulation with direct access to

system equations to make it more convenient to do model reduction and optimization.

Symbolic calculation in MapleSim reduces simulation time and makes the model more

suitable for MIL and HIL tests. The high-fidelity simulation model of the Toyota Prius

plug-in hybrid powertrain is developed in MapleSim (Figure 3.2). This model consists of

5 main parts for the power-split architecture: internal combustion engine, electric drive,

battery, driveline and vehicle dynamics.

3.3.1 Mean-value Internal Combustion Engine

In the area of engine modeling, different model complexities are created for different ap-

plications [109, 110]. The engine modeling technique that most researchers have used for

controls development has been a mean-value engine modeling approach [111, 112]. The

PHEV high-fidelity simulation model uses a mean-value engine model which is accurate

and fast enough for powertrain simulation. The mean value engine model consists of 4

parts: engine control unit (ECU), throttle body, intake/exhaust manifold, and combus-

tion chamber. The throttle body receives the throttle angle command from the ECU and

changes it to the air flow entering the intake manifold. In fact, all air that passes the throt-
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Figure 3.2: Toyota Prius plug-in hybrid high-fidelity simulation model in MapleSim

tle cannot enter the combustion chamber. The amount of air depends on intake manifold

pressure and engine speed for naturally aspirated engines like what we have here. This

effect is referred to as engine volumetric efficiency. In the combustion chamber, the power

generated is calculated according to the air fuel ratio, mechanical, and thermal losses.

The first dynamic equation (3.1) is related to the manifold pressure [113]:

Ṗm = −ηvNcylVD ωe
60NengVm

Pm +
RairTman

Vm
(CD ×MA× PRI)Ath (3.1)

where Ath is the throttle area, one of the control inputs. Throttle area can be found

according to throttle angle θ and geometry (dth and Dth are diameter values for input and

output vents and θ0 is the angle when throttle is totally closed):

Ath = dth.Dth
2

(−
√

1− ( dth
Dth

)2 +
√

1− (dthcosθ0
Dthcosθ

)2)

+
D2
th

2
(sin−1(

√
1− ( dth

Dth
)2)− cosθ0

cosθ
sin−1(

√
1− (dthcosθ0

Dthcosθ
)2)) (3.2)
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Moreover ηv is the volumetric efficiency and a function of manifold pressure and engine

speed (ωe), Ncyl is the number of cylinders that is 4 here, Vd and Vm are the engine

displacement and air manifold volume respectively, Neng is 2 for four stroke engine, Rair is

air constant, Tman is the manifold temperature (considered constant for simplicity), CD is

the throttle discharge coefficient, MA = P0√
RairT0

where P0 and T0 are atmosphere pressure

and temperature, and PRI is a non-dimensional value to consider sub and supersonic air

flow which depends on air heat capacity, manifold and atmosphere pressure:

PRI =

 (Pm
P0

)
1
γ

√
( 2γ
γ−1

)(1− (Pm
P0

)
γ−1
γ ) : Pm

P0
> ( 2γ

γ+1
)

γ
γ−1√

γ( 2γ
γ+1

)
γ+1

2(γ+1) : Pm
P0
≤ ( 2γ

γ+1
)

γ
γ−1

(3.3)

where γ is air heat capacity ratio.

The air mass rate entering the cylinders can be found as:

ṁair =
ηvNcylVD ωe
60NengVm

Pm (3.4)

The engine generated torque can be estimated via:

Tind =
ṁair

AFR

Hfη∆ηAFRηi
ωe

(3.5)

where ηi and Hf are engine thermal efficiency (approximately a function of engine speed

and manifold pressure) and gasoline heat of combustion. Meanwhile η∆ and ηAFR are the

efficiencies associated with ignition timing and air/fuel ratio.

The mean value engine model can be used to predict the indicated torque and fuel

consumption based on throttle angle, air/fuel ratio and ignition timing. The main concern

is to adjust the parameters in order to match the fuel consumption map of the mean-value

engine model to the real Toyota Prius plug-in hybrid engine, which will be addressed later
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in this chapter.

3.3.2 Electric Machines

There are components available in MapleSim to model the high-fidelity power electronics

along with permanent magnet AC synchronous machines. But considering the full model

of these components will increase the simulation time, and the powertrain model will no

longer run in real time. As a result, we replace PM synchronous machines with DC motors

with the same power rating. It is assumed that the electric drive is an ideal DC-DC

converter, but the electric parts of the powertrain are modified to consider the associated

efficiencies.

3.3.3 Lithium-ion Battery Pack

The Lithium-ion battery used in the simulation model of the PHEV is developed in

MapleSim as a custom component by which the inputs and outputs are related using an

acausal representation. The differential-algebraic equations are introduced into the custom

component block along with the inputs and outputs required in the design of the control

strategy for the PHEV simulation model. The differential equations are in the form of

∑
:

{
Eẋ = f(x(t), t) +Bu

y(t) = CTx(t)
(3.6)

where E is the state matrix, which is singular due to algebraic constraints, x is the state

vector, y is the output vector, f is the column vector of non-linear functions, B is the input

matrix, and u is the input to the simulation model, which is the current passing through

the battery, ibatt. There are five differential equations and nine algebraic equations that

should be solved simultaneously in each step of simulation. The battery state variables

and parameters have been defined in [105]. The output vector y can be battery voltage,

Vbatt, and/or state of charge, SOC, depending on the control strategy.
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3.3.4 Power-split Device

As seen in Figure 3.2, the power-split device is modeled as two sets of ideal planetary gears

with appropriate gear ratios given in Figure 3.1.

3.3.5 Vehicle Model

The vehicle model has 14 degrees of freedom (DOF), including 6 DOF for the chassis. The

4 suspension displacements and 4 wheel spins add 8 DOF to the model. Moreover, this

vehicle is capable of being steered. Tires on this vehicle are modeled according to the magic

formula by Pacejka including rolling resistance. Although the longitudinal dynamics of the

vehicle is the most important DOF for assessing fuel consumption, the hybrid powertrain

final drive is connected to the wheels of this vehicle model to make the simulation represent

the full 3D vehicle motion and cover different maneuvers possible in standard drive cycles.

The aerodynamic drag force is simulated using an external load acting on the vehicle’s

center of mass.

3.4 Model Validation

For validating the Toyota Prius plug-in hybrid high-fidelity simulation model, the param-

eters of the model should be identified using the experimental data available for each

component. Most of the validation procedure was done using the Autonomie software

experimental data base, which is widely used for energy management design in indus-

try. Autonomie is the updated version of the PSAT software which was developed at

Argonne National Laboratory. Autonomie is developed using MATLAB/Simulink and is a

forward-looking model which simulates vehicle fuel economy, emissions, and performance

in a realistic manner and employs a virtual driver who compares the trace speed and the

actual vehicle speed and controls the vehicle with a torque input [114]. The schematic of

a PHEV powertrain in Autonomie is shown in Figure 3.3.
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Figure 3.3: PHEV powertrain model in Autonomie

3.4.1 Mean-value Internal Combustion Engine

The Toyota Prius plug-in hybrid engine brake specific fuel consumption (BSFC) map (Fig-

ure 3.4) is the validation reference.

The parameters related to the geometry of the engine are used in equations (3.1)-(3.4).

We assume that ηv, η∆ and ηAFR are constant. To match the fuel consumption map of the

mean-value engine model to the reference BSFC map, an equivalent thermal efficiency (ηi)

is defined. It can be indicated that if the thermal efficiency (ηi) picks the values shown

in Figure 3.5, the reference fuel consumption map can be reproduced. So if a surface of

3rd-order polynomial is fit as the equivalent efficiency, the reference fuel consumption map

can be obtained with an error of 2%. This error mostly belongs to the engine low torque

region.
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3.4.2 Electric Machines

As mentioned earlier, DC machines for modeling MG1 and MG2 are used. The parameters

available for DC machines are inductance and resistance of the armature that only affects

the transient response of the machine and also the torque and speed constants. There is no

other model parameter to change the efficiency of the machine. To consider the efficiency

map [107] of the traction motor (MG2), which is shown in Figure 3.6, an energy dissipation

element (a mechanical brake) is added in connection of the machines to the power-split

device. If the brake activation signal follows σTm(1−ηm) the efficiency map given in Figure

3.6 can be reproduced in the MapleSim high-fidelity simulation model. Note that Tm is the

motor torque, α is a constant related to the geometry of the brake, and ηm is the motor

efficiency.

3.4.3 Lithium-ion Battery Pack

To have a more realistic battery model, the parameters for the model should be estimated

based on experimental data, which in this chapter were extracted using the parameters

of the full-order rigorous model used by Dao et al. [105]. In general, converging to local
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minima is one of the most common issues when deterministic methods are utilized in

optimization process of parameter identification. The homotopy method is an effective

solution to obtain the global minimum of the optimization problem [106]. In homotopy

optimization process, the original differential equations of the problem

ξ̇ = G(ξ,Γ , t) (3.7)

in which ξ is the vector of state variables, G is the column vector of non-linear functions,

and Γ is the column vector of the parameters to be identified, are modified by coupling

the vector of experimental data, ξexp, to the original differential equation as [106]

ξ̇ = G(ξ,Γ , t) + υKi(ξexp − ξ) (3.8)

The homotopy parameter υ, which is initially one and decreased by a specified decrement,

has been designed to construct the homotopy transformation as a high-gain observer. The

gain Ki is incorporated to synchronize the experimental data and simulation results. Ac-

cordingly, minimizing the objective function

V (Γ ) =
1

2

n∑
j=1

{∫ T

0

(
ξjexp − ξj(Γ , t)

)2
dt

}
(3.9)

with ξj and ξjexp as the jth component of ξ and ξexp, respectively, is performed based on

sensitivity equations used in evaluating the gradient and Hessian of the objective func-

tion during the identification process. The minimization procedure can be based on an

iterative method such as Gauss-Newton algorithm, with a quadratic rate of convergency.

Accordingly, the parameter vector will be updated based on a recurrence relation

Γ (r+1) = Γ (r) − κ
(
H−1

(Γ (r)) gT (Γ (r))
)

(3.10)

in which κ denotes the step size, g is the gradient vector, and H is the Hessian of the

objective function. The second term in the right-hand side is used as the search direction

in the algorithm whose components are estimated using the following definitions [106]. For

40



gradient:

g(Γ ) =
∂V

∂Γ
= −

n∑
j=1

{∫ T

0

(
ξjexp − ξj(Γ , t)

) ∂ξj
∂Γ

dt

}
(3.11)

and Hessian can be approximated as

H(Γ ) =
∂2V

∂Γ 2
≈ −

n∑
j=1

{∫ T

0

∂ξj

∂Γ

T
∂ξj

∂Γ
dt

}
(3.12)

Starting from unity for υ and a large value of Ki, the experimental data and simulated

response match for any set of parameters to be identified [106]. At the start of each

iteration, the value of υ will be decreased by a specified decrement, then using the optimized

parameters of the previous step as initial guess for Γ , the parameters for the current are

calculated. This process will be continued until υ = 0, for which the optimized parameters

are the same as the original equations. It makes the optimized parameters for different

values of υ lie within the neighborhood of the ones corresponding to the global minima of

the modified mathematical models, when approaching to the original problem for which

υ = 0.

The parameters selected from the full-chemistry battery model are the ones that are

difficult to be estimated or measured, which is essential in parameter identification study.

Volume fraction of separator region (εs), Li+ transference number in the electrolyte (t+),

electronic conductivity of solid phase of electrode n (σn), and initial electrolyte concen-

tration in region s, n, and p (ce0) are identified based on the reference results for the

battery voltage. The physical significance of the parameters can be found in the battery

model developed by Dao et al. [105]. To apply the homotopy optimization procedure in

identifying the battery parameters, the modified equations (3.8) need to be solved during

the optimization process. It is important to note that consistent initial conditions, which

satisfy the algebraic equations in the governing DAEs, play a key role in the accuracy of

the solutions. Hence, the solver parameters should be elaborately adjusted so that the

initial conditions can be updated in each step of the optimization stage for various values

of the model parameters.
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Figure 3.7: Time history of the simulated battery voltage for experimental data and sim-
ulated response using the identified parameters

Only under these conditions, the optimization procedure will converge and the opti-

mized parameters lie within a reasonable range. The goal is to identify some of the battery

model parameters, assuring that the difference between experimental and simulation re-

sults for the battery voltage is less than a desired tolerance ε. A constant discharge current

is applied to the battery and simulation results versus experiments are shown in Figure

3.7. Figure 3.8 shows the convergence trend of the objective function during simulation

process.

A great match signifies the efficacy of the homotopy optimization procedure in identi-

fying the model parameters, which can be used in validating the PHEV simulation model.

The value for the identified parameters are listed in Table 3.4. Based on the estimated

parameters for the simplified model presented, the obtained values are in an acceptable

range for the battery model. Including the identified parameters, the battery discharge

voltage for various battery currents are shown in Figure 3.9, which signifies an appropriate

dynamic behavior of the simulated battery model.
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Figure 3.8: Convergence trend of the objective function during the optimization process

Table 3.4: Identified values for the battery parameters

Parameter Description Value
εs Volume fraction of separator region 0.55
t+ Li+ transference number in the electrolyte 0.21
σn Electronic conductivity of solid phase of electrode n 101.2 (Sm−1)
ce0 Initial electrolyte concentration in region s, n, and p 785.8 (mol m−3)
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Figure 3.9: Time history of the battery voltage for various discharge rates

3.4.4 Power-split Device

The parameters related to the geometry of these gear sets such as gear teeth numbers and

inertia are adjusted according to the real-world Toyota Prius plug-in powertrain.

3.4.5 Vehicle Model

Finally, the whole validated powertrain model can be simulated in MapleSim and com-

pared to the Autonomie model. Figure 3.10 shows the MapleSim and Autonomie models

simulation result based on a charge depletion / charge sustenance (CDCS) strategy along

2 successive UDDS drive cycles. In CDCS, the vehicle goes in pure electric mode first,

so the battery is discharged from a high level, and when battery state of charge (SOC)

drops to a reference value (30%), the control strategy tries to keep it as close as possible

to that level. Indeed, if demanded power in the first part of the travel is more than what

electric motor or battery can provide, the engine will compensate the remaining propulsion

power. In this case, the Autonomie model shows 6% lower fuel consumption compared to

the MapleSim model.
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3.5 Chapter Summary

In this chapter, a high-fidelity simulation model of the Toyota Prius plug-in hybrid pow-

ertrain was developed in MapleSim. To do cross-validation of the MapleSim model, the

Autonomie software has been used. Furthermore, the homotopy optimization approach

was applied to identify the parameters of the chemistry-based Lithium-ion battery pack

model. Since the symbolic computation power of MapleSim can reduce the simulation

time significantly, the developed model can be used to conduct model and hardware-in-

the-loop simulations. Therefore, by developing the MapleSim high-fidelity PHEV model,

one can perform controls evaluation and validation, or come up with a simple and suffi-

ciently accurate control-oriented model to be used for model-based controls design with

more confidence.
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Chapter 4

Non-linear Model Predictive Control

Design

In this chapter, an EMS is designed using the model predictive control approach. This en-

ergy management performance is evaluated by applying to the low-fidelity and high-fidelity

simulation model of the PHEV powertrain and benchmarked by a dynamic programming

approach. To perform MIL tests using the high-fidelity simulation model, appropriate

low-level controls for the engine and the electric drive are designed.

4.1 Introduction

In this chapter, a model-based strategy for a PHEV is proposed with the use of MPC

concept. MPC seems a proper method to exploit the potentials of modern concepts and

to fulfill the automotive requirements since most of them can be stated in the form of

a constrained multi-input multi-output optimal control problem and MPC provides an

approximate solution of this class of problems [7].

In the first part of this chapter, different ways to design an energy management strategy

for a PHEV based on different levels of trip information are addressed, and MPC is used to
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design the strategy in the following cases: 1) No knowledge of trip information 2) Known

travelling distance 3) Known entire trip information 4) Possibility of manually switching

between electric mode and charge sustaining mode. Finally, the effect of weighting param-

eters inside the MPC cost function is investigated along with comparing fuel economy in

different cases based on a UDDS drive cycle.

In the second part, a new control-oriented model is introduced in order to design a new

supervisory controller for the PHEV high-fidelity simulation model along with engine and

electric motor low-level controls.

For the engine low-level controller, a sliding mode control approach is considered to

make the engine follow the MPC-prescribed torque trajectory while minimizing Hydrocar-

bon (HC) emissions, which results from multiple engine starts. This controller is robust

and can guarantee a good performance in the real-world experiment. To design this energy

management scheme, both CDCS and blended mode strategies are investigated. Finally,

the performance of the proposed energy management scheme is evaluated by applying it

to the high-fidelity simulation model. A more reliable trade-off between fuel economy and

emissions using a near-optimal energy management scheme for both CDCS and blended

mode strategies can be obtained.

4.2 Theory of Model Predictive Control (MPC)

4.2.1 Problem Formulation

The general design objective of MPC is to compute the trajectory of a future input to

optimize the future behavior of the plant output. The optimization is performed within a

limited time window based on the information of the plant at the start of the time window.

If a quadratic objective function is used for the optimization, this defines a quadratic pro-

gramming problem. To guarantee the best MPC performance, some requirements should

be considered. The most important requirement is to have a sufficiently accurate yet sim-

ple enough model that captures all features of the original system behavior with a low
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computational effort. The next step is to assess the measurable states and estimate the

other states of the system. The last requirement is the instrument of implementing the

planned activities namely electronic control unit.

A common notation expressions used in MPC is the moving horizon window, which is

the time interval in which the optimization is applied. The length of this window is called

the prediction horizon (Np). It determines to what extent we wish to predict the future.

The prediction horizon length affects the optimal controller performance [115]. The ob-

jective of solving a MPC problem is to find a vector that contains the variation of inputs

in order to reach the desired trajectory of outputs. The length of this vector is called

the control horizon (Nc). Although the optimal trajectory of the future control signal is

completely described within the moving horizon window, if the actual control input to the

plant only takes the first sample of the control signal while neglecting the rest of the tra-

jectory, this principle is called a receding horizon control scheme. In the planning process,

we need information about the state variables at every point in time in order to predict the

future. This information is denoted by x(ti) which is a vector containing many relevant

factors and is either measured directly or estimated. A good dynamic model will provide

an accurate prediction of the future [31]. Meanwhile, an integrator is naturally embedded

into the design, leading to the predictive control system tracking constant references and

rejecting constant disturbances without steady-state errors. Another significant advantage

of this approach is that, in practice, it requires neither the steady-state information about

the control signals (u(k) = u(k − 1) + ∆u(k)) nor the steady-state information about the

state variables. For a linear MPC problem, the model inside the controller is an augmented

one containing an integrator for each output. Consider the following augmented discrete

system:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k) (4.1)

where x, u , and y are the state, input, and output variables of the linear system. The
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relation between the predicted output of the system inside the prediction window (Y ), the

time step ki, the measured states at time ti , and the designed variation of the inputs will

be [31]:

Y = Fx(ki) + Φ∆U (4.2)

where

F =



CA

CA2

CA3

.

.

.

CANp


Φ =



CB 0 ... 0

CAB CB ... 0

CA2B CAB ... 0

. . ... .

. . ... .

. . ... .

CANp−1B CANp−2B ... CANp−NcB



Y =
[
y(ki + 1|ki) ... y(ki +Np|ki)

]T
∆U =

[
∆u(ki + 1|ki) ... ∆u(ki +Nc|ki)

]T
where y(ki + 2 | ki) means the predicted output on step ki + 2 based on the measurement

from step ki and ∆u(ki) is the variation of control input in that time step [31]. The

performance of a control system can deteriorate significantly when the control signals from

the original design meet with operational constraints. By means of a small modification,

however, the degree of performance deterioration can be reduced if the constraints are

incorporated in the implementation, which leads to the idea of constrained control. In

order to modify the controller, all the constraints must be written in the form of variation

in input signal. For the constraints on the amplitude of the inputs, the variation of the

inputs, and the outputs, the following relation can be written:
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 M1

M2

M3

∆U ≤

 N1

N2

N3

 (4.3)

where

M1 =

[
−C2

C2

]
;N1 =

[
−Umin + C1u(ki − 1)

Umax − C1u(ki − 1)

]

M2 =

[
−I
I

]
;N2 =

[
−∆Umin

∆Umax

]

M3 =

[
−Φ

Φ

]
;N3 =

[
−Y min + Fx(ki)

Y max − Fx(ki)

]

In Eq. (4.3), I and 0 are identity and zero matrices of size Nc × Nc , Y min, Y max are

vectors containing the minimum and maximum of all predicted outputs, Umin, Umax are the

minimum and maximum of all inputs, and ∆Umin, ∆Umax are the minimum and maximum

allowable variations for all inputs. As mentioned before, the current optimization problem

can be converted into a quadratic form. Assume that the cost function is written as follows:

J = 1
2
∆UTH∆U + ∆UTE

M∆U ≤ N (4.4)

where M and N are specified by the constraints of (4.3), and H, E are matrices derived

based on the cost function. Note that the inputs for the MPC problem are the inputs

variations over the length of the control horizon. A typical solution to this problem using

Lagrangian multipliers can be found [116]:

∆U = −H−1E −H−1MTλ (4.5)

where λ = −(MH−1MT )−1(N +MH−1E).
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Since this problem must be solved in every time step, a fast approach is required. Iden-

tifying active constraints in each time step would help accelerate the calculation procedure.

In this research, a procedure is used that suggests an iterative approach to identify the

active constraints in order to solve the problem and find the second term in Equation (4.5).

A well-designed controller must be stable and also have desirable performance when

applied to a system. As shown in the literature, model predictive control display promis-

ing performance and the design parameters can be tuned in such a way that controller

instability is avoided.

4.2.2 Stability Analysis

In this section, some theories for MPC stability issues are reviewed. MPC can easily

destabilize the system if short prediction horizon is chosen. To avoid this situation, we can

consider longer (even infinite) prediction horizons which adversely leads to higher compu-

tational effort. Another way to guarantee the stability for any length of prediction horizon

is by considering terminal constraints to ensure that the system states converge to def-

inite values at the end of the prediction horizon [117]. Though easiest to handle from

the viewpoint of mathematical analysis, a significant drawback of this approach is that

the terminal equality constraint can be quite severe; it is hard to satisfy and artificially

imposing such a strict constraint can lead to substantial performance loss. For example,

for such an approach to work, the underlying system needs to be reachable, instead of

just being stabilizable [67]. However, adding constraints might make the optimization in-

feasible. To overcome this problem, the constraint can be relaxed so that the states of

the system converge to a region rather than specific points. In other words, the terminal

constraint points can be changed to terminal constraint sets. Chen and Allgower [118] pre-

sented an approach called quasi-infinite-horizon MPC, where a quadratic terminal penalty

corresponding to the infinite horizon cost of the linearized system is imposed. Because a

terminal constraint is used to force the state to lie within a prescribed terminal region,

within which the system is stabilized by the linear feedback, feasibility alone implies the

asymptotic stability.

51



Another possible approach is to penalize the terminal constraint points inside the cost

function. It has been known for some time (e.g. [119]) that making the horizons infinite

in predictive control leads to guaranteed stability, but it was not known how to handle

constraints with infinite horizons. The key idea is to re-parameterize the predictive control

problem with infinite horizons in terms of a finite number of parameters (instead of the

infinite number of control decisions), so that the optimization can still be performed over

a finite-dimensional space—in fact, it remains a quadratic programming (QP) problem.

In [120], the opinion has been expressed that there is no longer any reason to use finite

horizons—at least with linear models. In the case of changing the horizon length to infinity,

it is necessary to reformulate the problem for both stable and unstable systems. The

essential difference in the latter case is that the unstable modes must be driven to 0 within

Nc steps; otherwise, these modes, which are uncontrolled, would become unbounded and

result in an infinite cost value.

In [119, 121], it is shown that stability can sometimes be guaranteed with finite horizons

even when there is no explicit terminal constraint. The finite horizon predictive control

problem is associated with a time-varying Riccati difference equation, which is intimately

related to the optimal value of the cost function. The Fake Algebraic Riccati Technique

replaces this equation with an algebraic (time-invariant) Riccati equation that resembles

that found in infinite-horizon LQ problems.

Besides the approaches using terminal penalty constraints, other approaches have been

proposed. One notable alternative approach employs a contraction constraint, that re-

quires the size of the state to shrink over the prediction horizon [122]. More generally, it

chooses a positive-definite function of the state and requires this function to decrease over

time in the optimization. To ensure feasibility, the size of the prediction horizon is not set

a priori but is treated as an optimization variable. The whole computed input sequence

can be implemented in open loop until the end of the horizon, as originally suggested,

or the optimization can be repeated after some time as suggested in [123]. Extending

the MPC formulation for constrained linear systems to non-linear systems is conceptually

straightforward but met with practical difficulties. Most of the stability results for the con-

strained linear systems apply to non-linear systems without modification. In fact, many
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of the earlier stability results for constrained optimal control [124, 125] were developed

in the context of a general non-linear system. However, the implementation is greatly

complicated by the computational complexity in finding a globally optimal solution to a

non-convex optimization problem. Computational complexity remains as a major obsta-

cle for designing a practically implementable non-linear MPC algorithm with guaranteed

stability. Naturally the researchers focused on finding a formulation that does not require

a globally optimal solution to be found, just a feasible solution. In Mayne and Michalska

[125] once a feasible solution is found, the subsequent calculation preserves the feasibility

and tries to merely improve the cost.

However, [126] shows that the closed-loop system with MPC controller is globally

asymptotically stable if and only if the optimization problem is feasible.

Therefore, one can prove stability of MPC by ensuring that the solution is always

feasible and the constraints are satisfied all the time.

4.2.3 Robustness Analysis

MPC, being a feedback control method, has some inherent robustness, which was analyzed

by several researchers [127]. Nonetheless, when a quantitative description of the model

uncertainty is available, it may be beneficial to consider all possible future trajectories

under the given uncertainty description in the optimal control calculation. Lee and Yu [128]

presented an argument indicating the deficiency of the open-loop formulation and presented

an alternative formulation based on dynamic programming. With some modifications, they

were able to formulate a MPC algorithm that solves a convex program at each time and

guarantees robust stability. However, such an approach cannot be implemented directly

since the possible control laws do not yield a finite-dimensional parametrization. Kothare,

Balakrishnan and Morari [129] presented an interesting formulation where the minimization

at each sample time searched over all linear state feedback laws to minimize the worst

case error. The problem was formulated as a Linear Matrix Inequality (LMI), which is

convex and can be solved through semi-definite programming. However, MPC integrates

performance of optimal control with the robustness of feedback control.
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4.3 NMPC Performance on the Low-fidelity Power-

train Model

MPC approach is capable of near-optimal control of HEV powertrains. In this section,

different MPC energy management strategies for a PHEV are evaluated, with different

levels of trip information available to the controller, based on fuel economy.

4.3.1 Control-oriented Model

In order to design MPC EMS, a simple and sufficiently accurate model of a PHEV power-

train is needed, which is called a control-oriented model. Among the different architectures

for a HEV, the power-split configuration seems to be the most efficient one for a limited

capacity of battery [130]. In a power-split configuration, the engine, the electric motor and

the generator are connected to each other by means of two planetary gear sets.

For deriving the dynamics of the system it is assumed the mass of the pinion gears is

small, there is no friction, no tire slip, nor efficiency loss in powertrain. By considering

the vehicle longitudinal dynamics and an internal resistance model for the battery, the

equation of the system will be written as (4.6) to (4.8):
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It should be noted that the parameters are adjusted according to a Toyota Prius plug-

in hybrid (See Appendix A). In this system, there are 3 state variables: ring speed (ωr)

which is proportional to the vehicle velocity, engine speed (ωe), and battery state of charge

(SOC). There are 3 inputs: Engine torque (Te), Motor torque (Tm) and Generator Torque

(Tg). ηm and ηg represent motor and generator efficiency, respectively including DC/DC

converter and DC/AC inverter efficiencies. Td is the driver’s demanded torque. When the

battery is discharged k=1, and k=-1 for battery charging. The aforementioned system is

considered as the control-oriented model.

4.3.2 MPC Formulation for a PHEV

There are three inputs that give flexibility to the control problem. In fact, two of these

inputs are independent and the third one can be found through system dynamics. In each

prediction window, a cost function needs to be minimized that results in maximum fuel

economy and tracking a predefined level of battery charge while following a drive cycle.

The cost function is:

J(k) =

Np∑
i=1

[
w1(SOCref (k + i)− SOC(k + i))2 + w2(ṁ(k + i))2

]
(4.9)

The first term is related to keeping the state of charge around a predefined reference.

The second term is intended to minimize the fuel consumption. w1 and w2 are weighting

parameters that are chosen according to the predicted maximum value of the weighted

variables. The effect of these weighting parameters on fuel consumption will be investigated

later in this chapter. Fuel economy is estimated according to UDDS drive cycle. Also there

are some constraints on this problem that are defined as follows:
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Tmin−e < Te < Tmax−e

Tmin−m < Tm < Tmax−m

Tmin−g < Tg < Tmax−g

ωmin−e < ωe < ωmax−e

ωmin−r < ωr < ωmax−r

ωmin−g < ωg < ωmax−g

SOCmin < SOC < SOCmax

For finding a simpler form of the controller and also using the linear MPC, the equations

of the system are linearized for each time step around the operating point. Furthermore,

the fuel consumption map of the engine is estimated as:

ṁf = ᾱω2
e + β̄Teωe (4.10)

where ᾱ and β̄ are constants [131].

Now, different possible control strategies can be evaluated based on the trip information,

by determining an appropriate reference SOC trajectory. This reference SOC is plugged

into (4.9) and a quadratic programming problem is solved for each case as follows.

4.3.3 No Knowledge of Trip Information

When there is no knowledge about the trip information, the best strategy is to get use of

the vehicle full electric range at early stages of driving. Basically, in this control strategy

the battery energy is used until the SOC reaches a predefined level (charge depletion), so

it is independent of the driving cycle and driving distance or any other information like

initial SOC [132]. In fact, the engine might be started in charge depletion mode at some

points, where demanded power exceeds what motor and battery can provide. When the
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SOC drops to the lower limit, the strategy enters a loop run by MPC. This controller tries

to keep the state of charge around the reference and simultaneously minimizes the fuel

consumption (charge sustenance). Here, the lower limit is assumed to be 0.3 because of

battery health factors. It should be noted that charge depletion/charge sustenance (CDCS)

strategy might be very useful to extend battery life cycle [133].

4.3.4 Known Travelling Distance

In this case, we have knowledge of travelling distance to the next charging station. If

travelling distance is less than the vehicle all electric range, the best strategy would be

going in pure electric mode. Otherwise we should follow another strategy. As mentioned

earlier, it was shown that making a delay in charge sustaining stage would improve fuel

economy. Therefore, one can assume the battery SOC is linearly decreased with the vehicle

travelled distance according to the following relation [134]:

SOCref =
SOChigh − SOClow

Distancetotal
X + SOClow (4.11)

where SOChigh, SOClow and X are initial battery state of charge, the lowest possible charge

level of battery and distance travelled.

To implement this strategy, we have to plug the linear trajectory into the cost function,

and MPC minimizes fuel consumption while making state of charge follow the reference.

4.3.5 Known Entire Trip Information

Here, we assume to have access to some information about vehicle velocity determined by

road traffic using GPS. The objective is to find an optimized SOC trajectory that can be

found based on the longitudinal model of the PHEV to minimize the fuel consumption up to

the next charging station (See [135]). To reach this goal, a curve is fit to the vehicle velocity

data as shown in Figure 4.1. Then, the velocity schedule is divided into some appropriate

segments. Based on the initial and final velocities in each segment and travelling time,
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Figure 4.1: GPS information and segments for one UDDS drive cycle

the power demanded in each segment can be calculated. At this moment, an optimization

parameter (PR) defined as in Equation (4.12) is introduced.

Pmot = PR× Pdem (4.12)

where Pdem and Pmot are demanded and motor power respectively. PR determines the

contribution of each power source in drivetrain to provide propulsion power. The opti-

mization parameters are electric power ratios (PRi), and the cost function is the total fuel

consumption which is the summation of fuel consumption in each segment (mfi).

min
PR1,PR2,...,PRn

(mf1 ,mf2 , ...,mfn) (4.13)

Based on the motor speed, that is proportional to the vehicle velocity, the motor torque

can be obtained and plugged into equation (4.6) and (4.7).

Some constraints on the problem are considered (like SOC value at the end of the trip)

as a non-linear constraint which is a function of electric power ratio (PR) that could be

calculated according to each segment SOC depleting from Equation (4.8).

It should be mentioned that consideration of segments will improve the prediction for an

optimized SOC trajectory. But, it definitely increases computational effort for optimization

problem. So, there would be a trade off between number of segments and fuel economy
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improvement.

4.3.6 Manual Charge Depletion Charge Sustenance

This strategy seems to be a more practical way to reduce fuel consumption, although

its efficacy is limited and cannot be compared to the blended mode approach. In this

strategy, the driver is able to manually switch between full electric and charge sustenance

(CS) mode. The driver can find out switching occasion based on his/her experience and

road traffic knowledge or using GPS information. According to the engine efficiency, it is

better to drive in full electric mode in the city, where there are frequent stops and starts.

While driving on the highway, it is suggested to switch to charge sustenance mode. It is

evident that this switching is possible when there is enough energy stored in the battery.

When the state of charge drops to the lowest allowed limit, it is no longer possible to do

the switching. Now, we try to divide the UDDS drive cycle into some sections where the

driver is willing to switch between modes. In the UDDS schedule, there is one micro cycle

(180 < t < 360) with higher average speed. We assume that it happens while driving on

the highway. In this section, the driver switches to CS mode, but for the rest of drive cycle,

the vehicle is driven in EV mode, while there are lots of stop and start occasions or even

micro cycles with lower average velocity ahead, before the SOC drops to its lowest allowed

limit.

It is obvious that one can suggest different schedules for switching between 2 modes.

But, here we try to show that this simple strategy, leads to a significant improvement in

fuel economy without committing to any other complex optimization method. Moreover,

GPS information can be used as a guideline for the driver to recognize appropriate time

for switching between 2 modes.

4.3.7 Simulation Results

The simulation was done in the MATLAB environment. The demanded torque was cal-

culated based on the UDDS drive cycle. This torque serves as one of the inputs to the
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controller. EMS uses this input and a linearized model of the powertrain to predict the

future contribution of each power source on board. Outputs of the controller are applied

to the non-linear model of the powertrain (Equations (4.6) to (4.8)) so that we can find

out system state variables like battery state of charge, vehicle velocity and especially fuel

consumption. Results of simulation are presented in Figures 4.2 to 4.5. Figure 4.6 depicts

fuel economy for different levels of trip information, for different values of the ratio of

weighting parameters (w2

w1
) introduced in Equation(4.9). Readers may refer to [115] for an

study on prediction and control horizon length effects on fuel consumption. Note that for

pure electric driving, the battery provides all the power needed to propel the vehicle. As

a result, if the required propulsion power does not exceed what battery or electric motor

can provide, there is no need to run the MPC controller.

In each case, control input plots are shown to prove that they meet the constraints on

the problem. According to Figure 4.2-a the battery is fully charged at the beginning of the

drive cycle and the vehicle goes in pure electric mode and the engine is off (Figure 4.2-b),

until the state of charge drops to 0.3 which is the predefined reference state of charge.

Fuel consumption in this period is zero. Now, the main controller switches to the MPC

mode and tries to maintain the state of charge as close to the reference as possible while

minimizing the fuel consumption. Fuel economy in this case is found to be 105 MPG.

In this study, the vehicle’s fuel economy is reported in miles per gallon (MPG). However,

EPA considers miles per gallon gasoline equivalent (MPGe) as a measure of the average

distance travelled per unit of energy consumed for alternative fuel vehicles, PHEVs and

EVs. In this rating, 33.7 kWh of electricity is equivalent to one gallon of gasoline.

In Figure 4.3-a, SOC follows the linear profile versus travelled distance and the engine

operation is distributed along entire drive cycle (Figure 4.3-b), which results in 112 MPG.

Therefore, known travelling distance will improve fuel economy by 6.86 %.

In Figure 4.4-a, SOC follows the optimized trajectory. Here, we have better fuel econ-

omy since we have access to more information about trip (9.66% improvement in compar-

ison to known travelling distance case).

Figure 4.5-a shows the result of simulation for manually switching between EV and CS
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Figure 4.2: Charge depletion/charge sustenance strategy: (a) SOC along 2 UDDS drive
cycles (b) Power source torques
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Figure 4.3: Blended mode strategy (Known travelling distance): (a) SOC along 2 UDDS
drive cycles (b) Power source torques
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Figure 4.4: Blended mode strategy (Entire trip information): (a) SOC along 2 UDDS drive
cycles (b) Power source torques
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Figure 4.5: Manually switching between EV and CS: (a) SOC along 2 UDDS drive cycles
(b) Power source torques
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Table 4.1: Fuel economy for different control strategies

Control Strategy MPG
Charge Depletion/Charge Sustenance 105

Blended Mode (Known travelling distance) 112
Blended Mode (Entire trip information) 123

Manually switching between EV and CS mode 121

mode. First the vehicle goes in pure electric mode. By getting closer to the high speed

micro cycle, the driver switches to CS mode and MPC keeps the SOC constant around

SOC value at the beginning of this micro cycle. After, high speed micro cycle, the vehicle

goes in pure electric mode where we have a quick battery depletion and the engine is off

(shown in Figure 4.5-b). At t=1600s, again we have a high speed stage and driver switches

to CS mode. This time, the state of charge is lower and closer to the reference, so it is

obvious that the vehicle can travel less in pure electric mode. Finally at t=1967s, the

vehicle goes in CS mode when it is not possible to switch to EV mode any longer.

The performance of the MPC controller depends on weighting parameters inside the

cost function as well as predication and control horizon length. The effect of prediction

and control horizon values is investigated in [115]. Figure 4.6 shows that CDCS strategy

and the blended mode strategy for known trip distance, result in lower fuel economy

in comparison with other two strategies. It is shown that manually switching between

EV and CS suggests a very close or even better (for some weighting parameter values)

fuel economy as compared with blended mode with entire trip information. However, the

maximum possible fuel economy that can be reached by using the entire trip information is

greater than other strategies. The maximum fuel economy for different control strategies

is reviewed in Table 4.1. Indeed, one expects to see better fuel economy by decreasing

w2/w1. But, we cannot see this improvement in fuel economy for some of w2/w1 values,

due to the constraints and especially maintaining drivability.

Computationally, it took 35.4 second in real time for 2828 seconds of simulation (for

two successive UDDS drive cycles) to be completed. The simulation is conducted on a
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Figure 4.6: Fuel economy versus ratio of weighting parameters in the cost function

machine which is powered by a 3.16 GHz dual core CPU and a 4 GB memory. It would

be even faster if the controller was implemented as a C-code. Also it takes 20.2 seconds in

real time for finding the optimized SOC trajectory based on trip information on the same

machine.

4.4 NMPC Performance Benchmarking

To compare MPC results, we solved a dynamic programming (DP) problem for this problem

with the same dynamics and constraints. DP has been extensively used in the literature

to find a global solution for HEVs control strategies. DP cannot be implemented on-line.

Therefore it is just a benchmark for developing heuristic strategies. In the minimum fuel

consumption problem of HEVs, the DP method guarantees a global optimal solution by

detecting all possible control options. The results of DP in charge sustaining mode are

illustrated in Figures 4.7 to 4.10. According to Figure 4.9, the average speed of the engine

is more than what it is in MPC. This brings the operating points closer to the engine

sweet spot. Therefore, the resultant fuel consumption is 326 g (123 MPG), although the

engine never stops operating. The fuel consumption for MPC without considering input

64



2000 2100 2200 2300 2400 2500 2600 2700 2800 2900
0

100

200

T
or

qu
e(

N
.m

)

(a)

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900
0

2000

4000

S
pe

ed
 (

rp
m

)

(b)

2000 2100 2200 2300 2400 2500 2600 2700 2800 2900

0.7

0.8

0.9

1

E
ffi

ci
en

cy

Time (s)

(c)

Figure 4.7: DP result: (a) MG2 Torque (b) MG2 Speed (c) MG2 efficiency

variation inside MPC cost function while SOCref = 0.3 is 381 g (105 MPG). This shows

14.4% increase in fuel consumption compared to DP result.

4.5 NMPC Performance on the High-fidelity Power-

train Model

In this part, an EMS based on MPC is developed and applied to the high-fidelity simulation

model introduced in chapter 3. In order to apply the EMS to the MapleSim model, low-

level controllers are required for the engine and electrical drive. Reducing engine emissions

has been considered as an objective for designing low-level controls.

As mentioned earlier, PHEVs have the potential for considerable fuel consumption

reductions, but possibly at the expense of increased tailpipe emissions due to multiple cold

starts and improper use of the engine for PHEV specific operation [136]. It seems that the
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Figure 4.8: DP result: (a) MG1 Torque (b) MG1 Speed (c) MG1 efficiency
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Figure 4.10: SOC comparison for DP and MPC in charge sustenance mode

catalyst temperature management for reduced tailpipe emissions is a challenging control

problem due to the frequent and extended engine shut-down and catalyst cool-down [137].

Throughout the literature there are different approaches to address this emissions prob-

lem. For instance, it is possible to use a separate hardware in addition to the catalyst to

resolve the concerns on different engine start events. In [138], the authors investigate the

addition of hydrocarbon (HC) absorber traps and activated carbon fiber canister in tradi-

tional exhaust after-treatment system. These traps can store HC temporarily and release it

after the temperature reaches the light-off temperature of exhaust after-treatment device.

Therefore, the HC will be catalyzed by exhaust after-treatment even at low temperatures.

The same happens to NOx that is translated to N2.

A number of articles have presented models for a three-way catalytic converter (TWC)

to describe the heat/mass transfer in the after-treatment system and conversion efficiency

as a function of the catalyst brick temperature and air to fuel ratio [139, 140]. These models

are primarily used for design and evaluation and are too complex for the development

of control algorithms. Using simpler models of catalyst conversion efficiency makes it

possible to design a specific model-based emissions control for the engine. For instance,

[141] proposed a simplified model of an internal combustion engine to derive a sliding mode

control law for emissions reduction. In [142] the authors used a PMP approach to do real-
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time optimal control of cold start via an experimentally verified control-oriented model of

the engine.

In most optimization problems for HEVs, minimizing fuel consumption is the only

objective, and emissions limitation is considered as a constraint of the process; as long

as emissions are within predefined limits, it does not influence the optimization process

[143]. Recent HEV studies have considered emission reduction as a part of the control

objective and analyzed the trade-off between fuel economy and emissions [144, 145]. Most

of those studies considered minimization of fuel consumption and engine-out emissions

instead of tailpipe emissions [144, 146]. Although reducing engine emissions can reduce

tailpipe emissions as well, it is not the key factor. Since the conversion efficiency of a

cold catalyst is very low, fast catalyst warm-up and sustainment are the key factors to

minimizing tailpipe emissions [147]. In [148] the authors designed a control scheme using

multi-objective genetic algorithms to develop a fuzzy controller to reduce fuel consumption

and emissions of a parallel HEV simultaneously. Sagha et al. [149] proposed a modified

equivalent consumption minimization strategy (ECMS) to include fuel consumption and

also a NOx reduction control for a lightweight through-the-road architecture HEV. The

control strategy has been able to reduce NOx emissions near to Euro 4 restrictions and also

maintain CO and HC emissions below the restrictions of Euro 4 and 5 standards. Gao et al.

[150] investigate the effect of an absorber which can substantially reduce the hydrocarbon

and nitrogen oxide emissions by temporarily storing them until the three-way catalyst

is sufficiently warm to remove them from the exhaust. It is shown that the mentioned

absorber has a substantial effect on reducing emissions for a PHEV in comparison to a

HEV.

Smith et al. [136] experimentally verify a vehicle supervisory control system for a

pre-transmission parallel PHEV powertrain architecture, where tailpipe emissions from

a PHEV test platform have been reduced through the development and refinement of

vehicle supervisory control methods. The focus of the enhancements was to replace high

engine torque demands during starting with clean electric motor torque through some rule-

based methods. This approach proved very effective for the reduction of NOx emissions.

However, the model-based control approaches suggest even better performance for different
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operating conditions. In [137], the authors used dynamic programming approach and

came up with an adaptive supervisory powertrain controller (SPC) that optimally adjusts

the engine on/off, gear-shift, and power-split strategies under various Energy-to-Distance

Ratios (EDR) and catalyst temperature conditions for a pre-transmission parallel plug-in

hybrid electric compact SUV in order to achieve near-optimal fuel economy and emission

performance. In fact, the authors used a simple simulation model of the powertrain to

evaluate their proposed scheme. Also, they assumed that air to fuel ratio and spark

ignition timing of the engine are controlled for the optimal performance.

The controls design procedure is quite similar to section 4.3 but with a modified cost

function and of course a different control-oriented model.

4.5.1 Control-oriented Model inside the High-level Controller

In a power-split configuration, the engine, the electric motor and the generator are con-

nected to each other by means of two planetary gear sets (See Figure 3.1). Since the

driveline dynamics is faster than any other dynamic of the whole system, by neglecting the

loss power in planetary gear sets, the relation between torques will be [151]:

zTe = (1 + z)Tg

Tg = z(Tf − Tr) (4.14)

where Tf is load as seen before the final drive and Tr = r2
s2
Tm. Also z = s1/r1, where

r1 and s1 are the number of ring and sun gear teeth of PSG1, respectively. Instead of a

high-fidelity chemistry-based battery model, a simple circuit model of the battery with a

voltage source and an internal resistance is used, i.e. a linearized form of Equation (4.8).

In brief, the equation of controller model is:
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˙SOC = A SOC +B

[
Tm

ωe

]
+ B̃

 Td

V

1



y = C SOC +D

[
Tm

ωe

]
+ D̃

 Td

V

1

 (4.15)

This model will be discretized before plugging into the controller equations. A, B, B̃,

C, D, and D̃ can be found after linearization for each time step around the operating

point. The control inputs of system are motor torque (Tm) and engine speed (ωe). The

only state is the battery SOC and disturbances to this system are driver demanded torque

(according to gas pedal) (Td) and vehicle velocity (V ) which can be found according to

demanded torque separately:

a1
dV

dt
+ a2V

2 + a3 = Td (4.16)

where a1 = mRtire, a2 = 0.5.ρair.Ad.cd.Rtire, and a3 = fr.m.g.Rtire

The parameters m, Rtire, ρair, Ad, cd, and fr are vehicle mass, tire radius, air density,

vehicle frontal area, drag coefficient, and tire rolling resistance. Moreover, a receding

horizon control principle is used where the actual control input to the plant only takes the

first sample of the control input signal, while neglecting the rest of the trajectory.
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4.5.2 NMPC Energy Management System

The modified cost function is:

J(k) =

Np∑
i=1

((w1(SOCref (k + i)− SOC(k + i))2 + w2(ṁf (k + i))2))

+
Nc∑
j=1

(w3(∆Tg(k + j))2) + w4(∆Tm(k + j))2). (4.17)

The first term is related to keeping the state of charge around reference. The second

term is for minimizing the fuel consumption. Two last terms are considered for making

control inputs as smooth as possible, where ∆Tm and ∆Tg are the variation of motor and

generator torque. w1, w2 , w3, and w4 are weighting parameters chosen according to the

predicted maximum value of the weighted variables. These weighting parameters have a

significant effect on controller performance. Readers may refer to [135] for more details on

determining weighting parameters. To solve this problem we keep the constraints on (4.9)

unchanged:

Tmin−e < Te < Tmax−e

Tmin−m < Tm < Tmax−m

Tmin−g < Tg < Tmax−g

ωmin−e < ωe < ωmax−e

ωmin−r < ωr < ωmax−r

ωmin−g < ωg < ωmax−g

SOCmin < SOC < SOCmax

Now, different possible control strategies can be investigated, based on trip information,

by determining an appropriate reference SOC trajectory. Here, SOCref for CDCS and

known travelling distance are considered to evaluate controls performance.
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4.6 Low-level Controllers

From the last section, setpoints for engine, motor and generator torque are available. To

make these sources follow the setpoints, the low-level controls need to be tuned. For

electric drives, a standard PI controller can be used. However, Appendix B reviews the

design procedure of a direct torque controller for high-fidelity simulation model of the

electric drive. But for the engine we would look for a different approach. Since we are to

apply the engine torque setpoint originated from MPC to a mean value gasoline engine

model which captures some non-linear phenomena in the engine, we need an appropriate

method to be robust, able to ensure stability and maintain good system performance under

adverse operating conditions. Sliding mode control (SMC) can be designed in such a way

that there is good disturbance rejection and trajectory tracking, fast dynamic response,

and good stability [152].

SMC is a reliable model-based control method for engine torque management in practi-

cal cases, since it is capable of handling the model uncertainties. Here, we look at emissions

control as well; the engine low-level controller should be capable of tracking the designated

engine torque while minimizing engine emissions. The main control input is the throttle

angle. Other inputs, like injected fuel rate and ignition timing, highly affect the transient

behavior of the engine. According to legislation to have the best fuel economy and emis-

sion for the engine, we are not allowed to change these two parameters away from their

optimum values for a long time [153]. Therefore, throttle angle is generally more reliable

and dominating engine input to change the steady state response in this case. But, we need

to determine the amount of injected fuel as well to control air-fuel ratio which basically

contributes to engine emissions.

Engine torque management can be done in two ways: The first approach is using

engine torque sensor to measure crankshaft torque for feedback control. We consider the

effects of the engine combustion torque, friction torque, pumping torque, and all accessory

loads by following this approach. As mentioned before, spark timing and air fuel ratio

affect transient engine torque response. However, doing torque control based on these

two parameters as the major inputs, makes them remain away from the optimal ranges.
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Thus, torque control in this way cannot guarantee low emissions, but it would reduce

uncertainties especially in the case of engine aging. The second approach is to measure

and control manifold pressure, since the engine torque is a function of cylinder air flow

which in turn is a function of the manifold pressure. Indeed, air-fuel ratio is another

parameter that determines engine combustion torque. In case of assuming constant air

to fuel ratio and ignition timing, the control goal can be changed to make the manifold

pressure follow the desired value. If the throttle is used to control manifold pressure,

ignition timing and air to fuel ratio on combustion torque do affect the torque control. So

the disadvantage of this second approach is a larger amount of calibration needed to find a

proper conversion from desired torque to desired manifold pressure for all engine operating

conditions. However, use of this strategy will not require a torque sensor [153]. In this

research, we use the second approach along with controlling the air to fuel ratio to get a

desirable emission performance [154].

4.6.1 Engine Control-oriented Model

To reduce emissions, we focus on maximizing catalytic converter efficiency for different

operating conditions of the engine. The conversion efficiencies are generally measured over

a range of air to fuel ratios and catalytic converter body temperatures, requiring extensive

data fitting and look-up tables. The conversion efficiency can be described by the S-shaped

Wiebe function as proposed in [142]:

ηconv = (1− exp{−c1(
AFR− λ0

∆λ
)m1})(1− exp{c2(

Texh − T0

∆T
)m2}) (4.18)

where c1, c2, m1, m2, λ0, ∆λ, T0, and ∆T are constants that are determined by curve

fitting to experimental data. AFR and Texh stand for air to fuel ratio and exhaust gas

temperature.

For the engine torque control, a simplified model of a mean value engine is required(See

(3.1) to (3.5)). In these equations, Pm, ṁact,fuel, and Texh are the state variables that define

the manifold pressure, actual fuel rate, and exhaust temperature.
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Figure 4.11: Engine torque change with air to fuel ratio and ignition timing

To estimate the combustion torque, we need to know how much fuel goes into the

engine. In fact, all injected fuel cannot get into the cylinders because of vaporization. To

consider this, we use another dynamic equation for wall-wetting effect:

m̈act,fuel =
1

τf
(−ṁact,fuel + ṁinj,fuel) (4.19)

where τf is a constant.The injected amount of fuel (ṁinj,fuel) is another control input in

the problem. Now, the engine generated torque can be estimated via:

Tind =
ṁact,fuel.Hf .η∆.ηAFR.ηi

ωe
(4.20)

where ηi, and Hf are engine thermal efficiency (approximately a function of engine speed

and manifold pressure) and gasoline heat of combustion. Readers may refer to [113] for a

table of numeric parameters used in this engine model. Figure 4.11 shows the air to fuel

ratio and ignition timing efficiencies (ηAFR and η∆).

Air to fuel ratio can be described as:

AFR =
ṁair

ṁact,fuel

(4.21)
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According to [155], the third dynamic equation to estimate the exhaust gas temperature

can be written as:

Ṫexh =
ωe
2π

[−Texh + ST.AFI] (4.22)

where AFI = cos(0.13(AFR− 13.5)) , ST = 7.5∆ + 600 and ∆ is the angle of crankshaft

in degree at which the ignition occurs. Here, it is assumed that the catalytic converter

body temperature is proportional to exhaust temperature [156].

4.6.2 Engine Controls Design

To control the engine torque and catalytic converter efficiency using sliding mode control,

three different sliding surfaces should be defined [157]: S1, S2, and S3 for torque, air to

fuel ratio, and exhaust temperature control.

Let S1 = Tind−Tdes, where Tdes is the reference engine torque dictated by the high-level

controller. By taking the derivative of S1 we have:

Ṡ1 = Ṫind − Ṫdes =
ηv.Ncyl.VD.Hf .η∆.ηAFR.ηi

60Neng.RairTman
.
Pm
AFR

− Ṫdes (4.23)

By using Equation (4.20) and rearranging the terms of Equation (4.23) we can find the

control input for the first sliding surface:

Ath = Vm
Rair.Tman.CD.MA.PRI

[ 60Neng .RairTman
ηv .Ncyl.VD.Hf .η∆.ηAFR.ηi

(Ṡ1 + Ṫdes).AFR

+(
ηvNcylVDωe
60NengVm

+
˙AFR

AFR
Pm)] (4.24)

For the second sliding surface, we assume S2 = AFR − AFRdes, where AFRdes is the

desired air to fuel ratio value. By differentiating S2 and taking time derivative of AFR, we

can write:
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Ṡ2 = ˙AFR− ˙AFRdes =
m̈air − AFR.m̈act,fuel

ṁact,fuel

(4.25)

By using Equation(4.20) and Equation(4.26) the injected fuel rate can be found as

another manipulated input:

ṁinj,fuel =
τf

AFR
{m̈air − ṁact,fuel(Ṡ2 + ˙AFRdes)}+ ṁact,fuel (4.26)

The desired air to fuel ratio is constant (stoichiometry) so ˙AFRdes = 0.

The last sliding surface belongs to exhaust temperature control. By taking time deriva-

tive of S3 = Texh− Texh,des and (4.22), we can find appropriate ignition timing as the third

control input:

∆ =
1

7.5
[
Texh + (2π/ωe)(Ṡ3 + Ṫexh,des)

cos(0.13(AFR− 13.5))
− 600] (4.27)

where Texh,des is the desired exhaust gas temperature. Indeed, the exhaust temperature

shouldn’t be too high to prevent damaging the catalytic converter.

Now, Ṡ1, Ṡ2 and Ṡ3 can be designed to satisfy reachability condition (ṠS < 0) and

find an acceptable torque and emissions generation for the engine, accordingly. Actually,

the two first sliding surfaces are coupled and make it more difficult to control the engine

torque and AFR separately. Also, ignition timing and AFR changing can deteriorate engine

torque performance (according to Equation (4.20)). But, using appropriate functions and

coefficients will make it possible to have a good performance, as the results show.

4.7 Results of Simulation

In the simulation procedure (Figure 4.12) there is a driver who follows the predefined

drive cycle with gas and brake pedals. Command from gas pedal is calibrated to give

the demanded torque, which directly goes to the control system. Also, the mechanical
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Figure 4.12: Simulation procedure

brake is an standard PI controller. The demanded torque and the vehicle velocity, which is

found through Equation (4.16), are fed to the control system and the high-level controller

calculates the control inputs every 2 seconds. Generator speed and torque, engine torque,

battery SOC and its variation are other information that the high-level controller needs to

predict proper controls for drivability, fuel economy and maintaining battery SOC around

the predefined level. According to control inputs, new setpoints can be calculated for

engine, motor and generator torque. Low-level controllers are in charge of tracking these

setpoints as closely as possible and reducing emissions as explained below.

For evaluating controls in MATLAB environment, the high-fidelity MapleSim model is

converted to an optimized S-function.

4.7.1 Without Emissions Control

Figure 4.13-a shows the vehicle follows two successive UDDS drive cycles for the blended

mode strategy without controlling the emissions. As it is seen, the battery state of charge

drops to the minimum possible level at the end of the trip. In fact, if the horizontal axis

displays the travelled distance, the depletion trajectory will be a near linear profile. There-

fore, the high-level controller has maintained drivability while keeping the final SOC above
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Figure 4.13: Blended mode MPC strategy without emission control: (a) Velocity and
Battery SOC (b) MG2 Torque (c) Engine Torque (d) Fuel Consumption
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the minimum level. Figure 4.13-b and Figure 4.13-c show that the low-level controllers

have made the engine and MG2 torque follow the MPC-prescribed trajectory. According

to Figure 4.13-d, the resultant fuel consumption is 1.66l/100km(142MPG) .

Figure 4.14-a demonstrates the drivability of vehicle in CDCS strategy , where the

vehicle goes in pure electric mode at the beginning of its trip. When the battery state

of charge drops to SOC = 0.3 at t = 1714s, the engine kicks in and maintains the SOC

around SOCref . Figure 4.14-b shows that the vehicle is propelled only by MG2 up to

15.83km. In this part of the trip the engine is off (Figure 4.14-c). This strategy results

in higher fuel consumption of 1.83l/100km(128MPG) in comparison to the blended mode

strategy, according to Figure 4.14-d.

4.7.2 With Emissions Control

Figure 4.15-a shows the drivability of the vehicle in blended mode while controlling the

engine emissions. Figure 4.15-b shows more frequent operation of MG2 in comparison to

the case where the engine emission is not controlled (Figure 4.13-b). The reason is the

failure of the engine to provide adequate torque to propel the vehicle for all time steps.

This failure is due to the extra heat loss that occurs inside the engine. As mentioned

earlier, one way to have less emission is to keep the catalyst temperature high. To reach

this goal, the temperature of the gas inside the exhaust manifold needs to be increased.

Changing the ignition timing makes it possible to have more heat loss and exhaust gas with

higher temperature at the expense of higher fuel consumption. In brief, to warm up the

catalyst, a larger amount of the combustion energy should be dissipated as heat instead

of producing mechanical energy inside the engine. Figure 4.15-b,c shows the SMC and

PI controllers are successful in making the engine and MG2 follow the MPC-prescribed

trajectories. Changing ignition timing and AFR result in a decrease of engine combustion

torque which is shown by corresponding efficiencies in Equation(4.20). Therefore, Figure

4.15-d indicates more fuel consumption of 1.89l/100km(124MPG).

Figure 4.16 shows the results for the CDCS strategy. Here, the fuel consumption has

risen to 2.05l/100km(115MPG).
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As mentioned earlier, exhaust temperature is closely related to the catalytic converter

body temperature that contributes to conversion efficiency. Ignition timing has a consid-

erable effect on determining exhaust temperature. Figure 4.17-a shows ignition timing

throughout the vehicle trip. For the sake of combustion stability, we confine the ignition

timing within ∆ ∈ [0, 20]. As a result, exhaust temperature (Texh) remains high enough

for the whole trip.

Figure 4.17-b shows the manifold pressure as compared with ignition timing and AFR

versus throttle angle for different time steps. Figure 4.17-c shows AFR which is determined

by the second level of sliding mode control. As seen, AFR is alternating around the

stoichiometry ratio and is confined within an acceptable range. Figure 4.17-d shows the

conversion efficiency that mostly remains at its maximum level.

Figure 4.18 demonstrates different results for engine emission control in the CDCS
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Table 4.2: Fuel consumption comparison

Strategy Fuel consumption (l/100km) Consumption increase by
w/o e-control w e-control e-control (%)

CDCS 1.83 (128 MPG) 2.05 (115 MPG) 12.02
Blended mode 1.66 (142 MPG) 1.89 (124 MPG) 13.86
e-control=emissions control, w=with, w/o=without

Figure 4.19: Catalyst conversion efficiency for (a) CDCS (b) Blended mode strategies:
without emission control(bullet marker)/with emission control (cross marker)

strategy. It is evident that the engine emission is zero for the full electric mode of driving.

The results are summarized in Table 4.2. Figure 4.19 shows the distribution of catalyst

operating point for two mentioned strategies. Moreover, the readers are referred to [158]

for the performance comparison of the current high-level controls with that of the adaptive

ECMS power management system.

4.8 Chapter Summary

In the first part of this chapter, an energy management strategy for a PHEV was designed

using a discrete MPC concept for different levels of trip information. The system was

chosen close to the specification of Toyota Prius Plug-in hybrid. The model inside the
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controller was linearized and discretized, and the simulation time was comparable to the

time needed for implementing the controller on-line in a practical situation. Simulation

shows that the fuel economy can be improved by up to 17% by considering an optimized

SOC trajectory based on entire trip information, in comparison to charge depletion/charge

sustenance strategy, where there is no knowledge about the vehicle speed schedule.

In the second part, an energy management scheme was designed including high-level

and low-level controllers to reduce fuel consumption and engine emissions of a power-

split PHEV. The previous model predictive control EMS was modified with a different

control-oriented model. To design a low-level controller for the gasoline engine, the sliding

mode control approach was used to make the engine follow a desirable torque and emis-

sions performance. The control scheme was applied to a high-fidelity simulation model

of the vehicle, including a chemistry-based model of the lithium-ion battery developed in

MapleSim 6.1, to get more realistic results. The simulation was done for both charge de-

pletion/charge sustenance and blended mode strategies. The results showed a promising

fuel consumption of 1.89 l/100 km (124 MPG) and 2.05 l/100km (115 MPG) for blended

and CDCS strategies, respectively, while the engine emissions were controlled during the

vehicle trip. It was shown that engine emissions control can increase fuel consumption by

13% on the average.
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Chapter 5

Explicit Model Predictive Control

Design

This chapter discusses the design procedure of EMS using the explicit model predictive

control (eMPC) approach in order to reduce optimal control computational time. Also, a

control-oriented parameter estimation method is introduced to improve the control-oriented

model accuracy which leads to better performance of the eMPC controller.

5.1 Introduction

Despite the demonstrated benefits of MPC, its capabilities are limited due to the com-

putational effort required for solving the on-line optimization problem. This MPC short-

coming can be overcome by using the so-called explicit/multi-parametric MPC (eMPC or

mp-MPC) methods. In eMPC, the on-line optimization problem involved in the MPC is

solved off-line using multi-parametric programming approaches and the control variables

and the value function of the optimization problem are derived as explicit functions of

the system state variables, as well as the critical regions of the state-space where these

functions are valid. This significantly reduces the computational effort required for the

MPC implementation [9].
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In this chapter, a near-optimal, real-time implementable solution for a PHEV EMS is

proposed, using explicit model predictive control. Di Cairano et al. [5] have used eMPC

solution for a series HEV. But, to the best of our knowledge, this is the first time that

an explicit model predictive controller is designed and implemented for the Toyota Prius

plug-in hybrid power-split architecture. In this way, there are some challenges for finding

an appropriate control-oriented model. Using eMPC is only practical for relatively small

problems, since the size of controls database is exponentially increased by the number of

state variables. The control-oriented model should be very simple, but accurate enough to

capture the complex dynamics of a power-split PHEV powertrain. Moreover, the control-

oriented model and the optimization cost function should be chosen in such a way that

they guarantee feasible solution beside optimality, stability and desirable performance for

the controller. The proposed control system is a switched discrete-time one. As a result,

a stability analysis is required to make sure that the control system keeps its performance

for all possible PHEV operating points. Therefore, an innovative control-oriented model is

introduced to be very simple and also addresses the aforementioned issues.

The performance of the eMPC controller is closely related to how accurate is the control-

oriented model. In this chapter, a control-relevant parameter estimation method is pro-

posed to obtain a better control-oriented model that is still simple but captures more

dynamical relations of the powertrain. Based on the new model, the EMS is redesigned to

see how effective is control-oriented model improvement.

First of all, the energy management strategy design and implementation is discussed by

developing an appropriate control-oriented model. In section 5.3, the resultant polytopes

from solving eMPC are presented in addition to the physical interpretation of different

regions.

Section 5.4 discusses the stability of the closed-loop system. In section 5.5, the designed

controller is applied to the simulation model, and the results are compared to the MPC

approach results.

Then, the control-oriented parameter estimation approach is followed by a new control-

oriented model to design another eMPC EMS. Finally, the performance of the newly-
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designed eMPC EMS is validated through MIL simulation.

5.2 eMPC Energy Management Strategy Design

In this section, an energy management strategy for Toyota Prius plug-in hybrid is designed

by using the eMPC approach. Bemporad et al. [68] presented a technique to determine

the linear quadratic regulator for constrained systems through off-line multi-parametric

linear programming (mp-LP) and multi-parametric quadratic programming (mp-QP). The

control law was shown to be piecewise linear and continuous, and could be implemented as

a look-up table, i.e., different linear state feedback laws were applied to different polyhedral

regions. Therefore, the on-line control computation is reduced to determining the region

associated with the current state and then applying the stored control law associated on

that region. The design procedure of the controller can be divided into two different stages:

off-line and on-line procedures. The objective of the off-line procedure is to populate some

look-up tables using a control-oriented model which contain the appropriate control actions

for different system operating points. In this procedure, a multi-parametric programming

problem is solved with an initial condition. The result would be a polytope with a specific

control action. Then, the whole state space is explored to find the other polytopes and

control actions. There may be a huge number of look-up tables as the result of solving the

optimization problem. In this case, region reduction methods can be used to remove some

redundant constraints in the optimization problem in order to downsize the look-up tables

and improve controller speed in the implementation stage. The on-line procedure happens

during controls implementation. Here, a fast and efficient searching algorithm is needed

to look up the mentioned tables to find which one of those polytopes contains the initial

state variable. This algorithm is called point location. Once, the corresponding polytope

is found, the eMPC law can be obtained. These steps are shown in Figure 5.1.

In the following subsections, each step is addressed separately.
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Figure 5.1: eMPC design procedure

5.2.1 Control-oriented model

A relatively simple model is required to take advantage of the explicit model predictive

control approach. To end up with smaller look-up tables and make it possible to implement

the controller to a commercial control hardware with a limited amount of memory and

computational power, the following model inside the controller is used:

Z(k + 1) = AZ(k) + BU(k) (5.1)

where Z =
[
SOE, E

]T
and U =

[
PBAT , PENG, PBRK

]T
.

A =

[
1 0

0 1

]

B =

[
a1 0 a2

a3 a4 a5

]

There are two state variables in this model: battery state of energy (SOE) and tractive

energy E. Battery SOE is defined as the ratio of battery stored/released energy to the
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battery total usable energy. E is defined as the tractive energy that is required to propel

the vehicle, i. e. the power required in a time step. Two sources of energy are available

in the powertrain: the battery and the fuel. Two control inputs are considered to address

the mentioned sources as PBAT and PENG which are the battery and the engine power,

respectively. In fact, the battery power is the power summation of two electrical motors

power on board. Braking power is added to the array of control actions to stop the vehicle.

The coefficients are a function of efficiencies (electrical and mechanical) as well as the

control period that is considered in the design procedure.

5.2.2 Optimization problem formulation

For hybridizing a vehicle, it is important to improve the fuel economy and emissions per-

formance in comparison to the baseline vehicle while maintaining the vehicle drivability.

In a PHEV, fuel economy is closely related to the battery depletion trajectory. As a

result, a tracking term inside the cost function is considered that SOE should follow at

each time step (SOEref ). To address drivability, another term is added inside the cost

function to ensure that the hybrid powertrain provides adequate propulsion power to the

driver’s request (Eref ). On the other hand, the fuel consumption should be reduced as

another important objective. The engine fuel consumption is assumed to be proportional

to the engine generated power. Therefore, the engine power can be minimized as one of the

assumed control actions. The cost function and constraints along the prediction horizon

can be written as follows:

minU
∑Np

j=1

{
Y T (j)QY (j) + UT (j)RU(j)

}
s.t.[

SOEmin

Emin

]
≤

[
SOE

E

]
≤

[
SOEmax

Emax

]
Umin ≤ U ≤ Umax (5.2)
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where Y =
[
SOE − SOEref , E − Eref

]T
, and Np is the prediction horizon length.

Q =

[
ω1 0

0 ω2

]

R =

 ω3 0 0

0 ω4 0

0 0 ω5


The above cost optimization is subjected to the constraints on state variables and

control actions. ω′is are the weighting parameters that should be tuned for the best per-

formance.

We have 4 unknowns in the cost function: 2 state variables and 2 setpoints. In order to

separate the unknowns from each other, Equation (5.2) should be rewritten in the following

way:

minU
∑Np

j=1

{
XT (j)HX(j) + UT (j)RU(j)

}
s.t.

GU ≤W + SX

(5.3)

where X =
[
SOE, , E SOEref , Eref

]T
, Xmin =

[
SOEmin, Emin

]T
, and Xmax =[

SOEmax, Emax

]T
,
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H =


ω1 −ω1 0 0

0 0 ω2 −ω2

−ω1 ω1 0 0

0 0 −ω2 ω2


G =

 −I3×3

I3×3

O4×4



W =


−Umin
Umax

−Xmin

Xmax



S =


O6×4

1 0 0 0

0 1 0 0

−1 0 0 0

0 −1 0 0


In multi-parametric programming, the objective is to find the optimizer U∗ for a whole

range of parameters X, i.e. U∗(X) as an explicit function of the parameter X. The cost

function is quadratic, so a multi-parametric quadratic programming (mp-QP) problem is

solved. As shown in [159], we wish to solve problem (5.3) for all X within the polyhedral

set of feasible values XN . According to [160], if the multi-parametric quadratic program

(5.3) is considered, then the set of feasible parameters XN is convex, the optimizer U∗ is

continuous and piecewise affine (PWA), and the optimal value function J∗ is continuous,

convex and piecewise quadratic.

U∗(X) = fiX + gi, X ∈ Ti = {X | hiX ≤ ki} ; i = 1, ..., N (5.4)
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Each {Ti}Ni=1 defines a polytope which will be referred to as a region. Note that the

evaluation of the PWA solution (5.4) of the mp-QP provides the same result as solving

the quadratic program, i.e. for any given parameter X, the optimizer U∗(X) is identical

to the optimizer obtained by solving the quadratic program (5.3) for X.

To solve the mp-QP problem, we need to solve the active constraint identification

problem. A feasible parameter X̂ is determined and the associated QP (5.3) is solved.

This will yield the optimiser U∗ and active constraints defined as inequalities that are

active at solution. The rows indexed by the active constraints are extracted from the

constraint matrices G, W and S to form the matrices GA, WA and SA.

It is possible to use the Karush-Kuhn-Tucker (KKT) conditions to obtain an explicit

representation of the optimiser UN(x) which is valid in some neighborhood of X̂:

HU + GTλ = 0

λT
(
GU −W− SX̂

)
= 0

λ ≥ 0

GU ≤W + SX̂

(5.5)

We can find the optimized variable U = −H−1GTλ . For inactive constraints, it

holds that λ = 0. For active constraints with the corresponding Lagrange multipliers λA,

inequality constraints are changed to equalities. Substituting for U from (5.4) into equality

constraints gives:

−GAH−1GT
AλA + WA + SAX̂ = 0

=⇒ λA = −(GAH−1GT
A)−1(SAX̂ + WA) (5.6)

The optimal control trajectory U are given as affine functions of X̂

U∗(X̂) = H−1GT
A(GAH

−1GT
A)−1(SAX̂ + WA) = fiX̂ + gi (5.7)
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In the next step, the set of states is determined where the optimizer U∗ satisfies the

same active constraints and is optimal. Such a region is characterized by two inequalities

written compactly as hiX ≤ ki where

hi =

[
Gfi − S

(GAH−1GT
A)−1SA

]

ki =

[
W−Ggi

−(GAH−1GT
A)−1WA

]

Once the controller region is computed, the algorithm proceeds iteratively until the

entire feasible state space XN is covered with controller regions Ti, i.e. XN = ∪i=1,...,NTi

in order to explore the whole state space.

5.2.3 Region reduction

At the implementation stage, a small number of constraints defining a region is preferable

since the controller quickly checks the constraints to find the appropriate control action.

Therefore, computation of the minimal representations of the controller regions Ti where

hi and ki are given according to (5.8) can significantly reduce the computational load in

most multi-parametric programming solvers [161].

Starting with a given piecewise affine solution, in [162] the authors provide an approach

to reduce the number of partitions by optimally merging regions where the affine gain is

the same, so that the original solution is maintained but equivalently expressed with a

minimal number of partitions. However, techniques for achieving a more drastic reduction

of complexity require changing the solution, by accepting a certain level of sub-optimality

with respect to the original problem formulation [46]. In [163, 164] the authors propose

recursive rectangular partitions of the parameter space to determine a sub-optimal solu-

tion to general classes of multi-parametric programming problems. Based on a dynamic

programming formulation of the finite-horizon optimal control problem, in [165], the au-
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thors propose an approach to relax optimality within a prescribed bound in favor of the

reduced complexity of the solution, which in the case of linear systems and piecewise affine

convex costs leads to another form of computing approximate mp-LP (multi-parametric

linear programming) solutions.

In this way, there are a couple of approaches to identify redundant constraints and

remove them in order to reduce the number of regions. An ordinary way to address this

problem is to solve n LPs (in the worst-case of n− 1 constraints) for each region to detect

and remove all redundant constraints according to [166]. Another approach is called ray

shooting [167], which is suitable for the cases where the fraction of redundant constraints

is low. On the other hand, the bounding box approach is most useful for polytopes with

many easily detected redundant constraints. The region reduction that is used here is a

combination of ray shooting and bounding box in order to find the redundant constraints

even faster [168].

5.2.4 Point location problem

In this part, the point-location or set membership problem is addressed for the class of

discrete-time control problems with linear state and input constraints for which an explicit

time-invariant piecewise state feedback control law over a set of overlapping polyhedral

regions is given. The point-location problem comes into play on-line when evaluating the

control law. One must identify the state space region in which the measured state lies at the

current sampling instance. As the number of defining regions grows, a purely sequential

search through the regions is too lengthy to achieve high sampling rates. Hence, it is

important to find an efficient on-line search strategy to evaluate the control action in time.

By exploiting the properties of multi-parametric linear and quadratic solutions, in [169],

two new algorithms are proposed that avoid storing the redundant polyhedral regions,

significantly reducing the on-line storage demands and computational complexity of the

evaluation of control. In [170] the authors suggest to organize the hyperplanes defining the

regions on a binary search tree (possibly further subdividing some of the regions), so that
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the time to locate the state vector on-line within the partition becomes logarithmic in the

number of stored cells, and memory space is saved.

Here, the well-known concept of interval trees [171] is used in order to find a list

of candidates that are possible solutions to the point-location problem. Standard interval

trees are efficiently ordered binary search trees for determining a set of possibly overlapping

one-dimensional line segments that contain a given point or line segment. The mentioned

line segments can be found through the bounding box approach. Then, a local search needs

to be done on the list of candidates to determine the polytope to which the current state

variable belongs [168]. All the optimization problem has been solved in multi-parametric

toolbox [172]. After solving the mp-QP problem, we come up with many look-up tables

and control actions. The following section discusses the resulting look-up tables further.

5.3 Energy Management Polytopes

Based on the drive cycle maximum demanded power and also the battery state of charge

we can discretize the SOEref and Eref range. Here, we define 9 levels for each of them. By

solving the mp-QP problem, we end up with 81 different sets of polytopes; each contains a

definite control action. The total number of the mentioned polytopes is 3153. Figure 5.2

shows how the polytopes are distributed for different SOEref and Eref levels. By doing

region reduction, one can reduce the total number of polytopes to 3123.

To get more insight to the problem, we can consider the set which belongs to Eref = 0

and SOEref = 60. It consists of 33 polytopes. As shown in Figure 5.3, the number of

polytopes around the reference setpoints is higher. The reason is that the eMPC controller

is supposed to track a predefined level of SOE and E.

Figure 5.4 shows the control action versus different measured values of SOE and E

(initial conditions) at current sampling instance. It contains 33 polytopes. We can analyze

Figure 5.3 in 4 different regions:

Region(I) E > Eref and SOE < SOEref : In this part, the controller has to increase

the battery state of charge and slow down the vehicle. There are two ways to do that.
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Figure 5.2: Number of polytopes for different levels of Eref and SOEref
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Figure 5.3: Polytope set for Eref = 0 and SOEref = 60%
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Figure 5.4: Control actions for Eref = 0 and SOEref = 60% based on different initial
conditions (a) battery power (b) engine power (c) braking power
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One is to increase the engine power to charge the battery. The other one is to increase

the braking power to get use of regenerative braking. Figure 5.4 shows that the controller

uses both ways to get to the objective in region (I). The battery power should be negative

indicating that it is being charged (Figure 5.4-a). Moreover, if δE = |E − Eref | is high,

the braking power will be more (as shown in Figure 5.4-c)

Region(II) E < Eref and SOE < SOEref : Since E < Eref , the powertrain is required

to provide propulsion power from the engine and/or the electric drive. But, in this case,

the battery state of energy is less than the reference value (SOE < SOEref ), so we cannot

use electric drive to assist the engine to propel the vehicle by depleting the battery further.

On the other hand, we cannot use the regenerative braking for charging the battery (zero

in Figure 5.4-c), since we cannot stop the vehicle. As a result, the engine plays a key role

in this case. As shown in Figure 5.4-a, PBAT < 0, because SOE is less than the reference

value. Region (II) is the worst case for fuel consumption among all other propulsion

scenarios.

Region(III) E < Eref and SOE > SOEref : In this region, we should accelerate the

vehicle (PBRK = 0). The electric drive can assist the engine since we have enough charge

in the battery. Another objective of the controller is to minimize the engine power (in

order to reduce fuel consumption). In region (III), there is no need to increase SOE so

the electric drive can take care of propelling the vehicle. Moreover, the engine power is

changing based on the magnitude of δE (as shown in Fig. 5.b)

Region(IV) E > Eref and SOE > SOEref : In this case, we neither need propulsion

power nor battery charging. So, there is no need to run the engine (for the sake of fuel

consumption); as a result the engine power is zero throughout this region. But, we need

to stop the vehicle so PBRK 6= 0. On the other hand PBAT > 0 to deplete the battery to

return SOE closer to SOEref .

Figure 5.5 shows the continuous cost function over the mentioned set of polytopes which

is piece-wise quadratic. In the next section, this function is used for stability analysis.
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5.4 Stability notes

As mentioned earlier, the closed-loop system with MPC controller is globally asymptotically

stable if and only if the optimization problem is feasible.

For the eMPC problem, feasibility of the solution is not adequate for proving stability.

Since we have a switched discrete-time system, the stability of the closed-loop system

should be investigated in 3 levels. Firstly, the local stability of the closed-loop system

around the equilibrium point in each of 81 sets of polytopes should be proven. Secondly,

the global stability of the mentioned controller throughout that specific set of polytopes

is proven. Finally, the stability of the closed-loop system must be investigated, while the

controller switches between different sets of polytopes based on reference SOE and E.

In each set of polytopes which belongs to a definite SOEref , Eref , the controller

drives the state variables to the mentioned reference values in finite time steps and Z0 =

[SOEref , Eref ]T is the equilibrium point in each set. To prove the local stability of the

closed-loop system, we pick the polytope which contains Z0. The control corresponding to
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that polytope is:

Û = f0Ẑ + g0 (5.8)

By applying the above control to the control-oriented model we can find the closed-loop

system equation as:

Z(k + 1) = (A + Bf0)Z(k) + Bg0 (5.9)

By defining Z̃ = Z − Z0, we transfer the state variables to the equilibrium point. As a

result we have:

Z̃(k + 1) = (A + Bf0)Z̃(k) + Bg0 + (A + Bf0 − I2×2)Z0 = ÃZ̃(k) + B̃ (5.10)

Now, we can investigate the stability of (5.10) around Z̃ = 0. First, we show that Ã is

locally and asymptotically stable for all 81 sets of polytopes. We have a discrete switching

system and need to make sure that the spectral radius of Ã is less than unity. Figure 5.6

shows that the spectral radius of Ã is less than unity.

We show that if Ã is stable and B̃ is bounded then the closed-loop system (5.10) is

stable. For a discrete system, if V1(Z̃k) > 0 exists and ∆V1(Z̃k+1, Z̃k) = V1(Z̃k+1)−V1(Z̃k) <

0 then the system is exponentially stable in the sense of Lyapunov [173]. Since Ã is stable,

we can find P1 > 0 and Q > 0 such that:

Ã
T
P1Ã− P1 +Q = 0 (5.11)

We assume that V1(Z̃k) = Z̃T
k P1Z̃k
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Figure 5.6: Spectral radius of Ã for different levels of Eref and SOEref

∆V1(Z̃k+1, Z̃k) = Z̃T
k+1P1Z̃k+1 − Z̃T

k P1Z̃k

= Z̃T
k (Ã

T
P1Ã− P1)Z̃k + B̃

T
P1Z̃k+1 + B̃

T
P1Z̃k

If Q = I2×2 in (5.11) we can write:

∆V1(Z̃k+1, Z̃k) = −Z̃T
k Z̃k + B̃

T
P1Z̃k+1 + B̃

T
P1Z̃k (5.12)

Suppose that in (5.11) we take P1 = I2×2 and Q > 0, then we can say Ã
T
Ã ≤ I2×2 and

‖Z̃k‖ is monotonically convergent:

‖Z̃k+1‖ ≤ ‖Ã‖‖Z̃k‖ ≤ ‖Z̃k‖ (5.13)

Therefore:

∆V1(Z̃k+1, Z̃k) ≤ −‖Z̃k‖2 + 2‖B̃‖‖P1‖‖Z̃k‖ (5.14)

If B̃ is bounded, there is a β > 0 such that ‖B̃‖ < β‖Z̃k‖2. As a result:
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∆V (Z̃k+1, Z̃k) ≤ ‖Z̃k‖2(1− 2β‖P1‖‖Z̃k‖) (5.15)

For ‖Z̃k‖ < (1/2β‖P1‖), ∆V1(Z̃k+1, Z̃k) < 0 and (5.10) would be stable. In this problem,

β = 10−8.

Now, we have to investigate the global stability of the closed-loop system for each set

of polytopes.

Theorem. The equilibrium x = 0 is exponentially stable on sets of polytopes if there

exist a function V̄ (x) where (α,$ > 0):

α‖x‖2 < V̄ (x) < $‖x‖2 (5.16)

with a negative forward difference ∆V̄ (xk+1, xk) = V̄ (xk+1) − V̄ (xk) < 0 when xk ∈ Tj\0
and xk+1 ∈ Ti [174].

We introduce the following function as a positive definite candidate (since Q > 0) for

V :

V̄ (Z̃) =

Np∑
j=1

{Z̃T (j)QZ̃(j)} (5.17)

which is a part of the cost function. We previously proved that ‖Z̃k+1‖ ≤ ‖Z̃k‖ so we

can easily get ∆V̄ (Z̃k+1, Z̃k) < 0. As a result, the closed-loop system is globally and

exponentially stable.

Up to now, the stability of the closed-loop system of each set of polytopes is investigated,

whereas the controller switches between different sets of polytopes to cover all operating

points. A switched system is stable if all individual subsystems are stable and the switching

is sufficiently slow, so as to allow the transient effects to dissipate after each switch. In

[175], this property is formulated and justified using multiple Lyapunov techniques. In this

work, the switching frequency depends on the dynamics of (SOEref , Eref ). As mentioned

before, (SOEref , Eref ) are bounded values. As a result, we assume the following equations

govern the dynamics of those reference values.
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[
SOEref (k + 1)

Eref (k + 1)

]
=

[
1/ζ 0

0 1/ζ

][
SOEref (k)

Eref (k)

]
+ Γ (5.18)

where ζ should be chosen in such a way that guarantees (5.19) stability and also make the

switching system slower than the control-oriented model. For stability, ζ should be greater

than unity, so that the poles of (5.18) are located inside the unity circle in z-plane. On the

other hand, these poles should be far enough from the center of unity circle to slow down

the system (5.18) response. We assume that ρ is the largest spectral radius of Ã for all 81

sets of polytopes. The driving behavior determines ζ. If we choose 1/ζ > ρ , the switching

system will be slower than the control-oriented model. As a result, if ζ is determined in

such a way that the poles of the switching system are located inside the dark ring of Figure

5.7, the switched system will be stable.

We append the control-oriented model to the switching system:

X(k + 1) =

[
I2×2 O2×2

O2×2 (1/ζ)I2×2

]
X(k)

+

[
B

O2×3

]
U(k) +

[
O2×1

Γ

]
(5.19)

where 1 < ζ < 1/ρ. For the closed-loop system, (5.20) can be transformed to:[
Z̃k+1

Z̃0,k+1

]
=

[
Ã O2×2

O2×2 (1/ζ)I2×2

][
Z̃k

Z̃0,k

]
+

[
B̃

Γ

]
(5.20)

Since the spectral radius of (1/ζ)I2×2 is less than unity and Γ is bounded (‖Γ‖ <
115), according to the above discussion there is a V2(Z̃0,k) = Z̃T

0,kP2Z̃0,k > 0 such that

∆V2(Z̃0,k+1, Z̃0,k) ≤ 0 where P2 > 0.

For the whole system, we introduce a positive definite V (P1, P2 > 0) such that:
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Figure 5.7: The locus of switching system poles in z-plane

V (

[
Z̃k

Z̃0,k

]
) =

[
Z̃k Z̃0,k

] [ P1 O2×2

O2×2 P2

][
Z̃k

Z̃0,k

]
= Z̃T

k P1Z̃k + Z̃T
0,kP2Z̃0,k = V1 + V2 (5.21)

We proved that ∆V1 < 0 and ∆V2 < 0, so that ∆V = ∆V1 + ∆V2 < 0. Now, we can

say that the closed-loop system (5.19) is stable.

5.5 eMPC Performance on the High-fidelity Power-

train Model

After finding the polytopes and the corresponding control actions, we need to implement

the controller to the simulation model by using low-level controls. Basically, we have to

change the provided power to torque and speed for different components. Figure 5.8 shows

the procedure that is done at each control time step. At the beginning, we have Eref

and SOEref as well as initial SOE and demanded energy that are given to the eMPC

controllers. By using the mentioned point location algorithm, the appropriate controls

among the polytopes can be found. We are looking for Te, Tm, and ωg. By having Te we

can control the engine throttle to the desired engine torque. On the propulsion side, we
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Figure 5.8: Low-level controls implementation

have PBAT and PENG. Once we got PENG, we can use the optimal operating line of the

engine, which gives us the most efficient operating point for the given PENG. Now, we have

the engine speed and torque for the optimum operating point. The engine torque setpoint

can directly be given to the engine low-level controller. If we measure the vehicle velocity,

we will be able to get the MG1 speed setpoint by using the speed constraint relation on

the first planetary gear set (z = s1
r1

). Meanwhile, if we use static torque relation on the

planetary gear set, we can find the MG1 torque based on the engine torque. Now MG1

power is calculated and we can find the MG2 power, since we have got the PBAT from

eMPC controller. By measuring the MG2 speed at the current time step, we are able to

find the last setpoint value which is MG2 torque. Now, we can implement the controller

to the simulation model.

In this section, the eMPC EMS is applied to the high-fidelity simulation model including

the low-level controls (see section 4.6). The results of MIL simulation are reviewed in Figure

5.9 to Figure 5.14.
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Figure 5.9: CDCS eMPC strategy with emission control: (a) Velocity and Battery SOC
(b) MG2 Torque (c) Engine Torque

5.5.1 No Knowledge of Trip Information

Figure 5.9-a shows that the vehicle follows 2 UDDS drive cycles for CDCS strategy. Figures

5.9-b,c show the performance of low-level controls in tracking the setpoints determined by

the eMPC EMS. Figure 5.10 demonstrates the emissions control performance in terms of

maximizing HC conversion of catalytic converter along with engine transients. The sliding

mode controller keeps the HC conversion efficiency around unity by controlling the air-fuel

ratio and ignition timing as shown in Figure 5.11. PHEV fuel consumption will be reduced

to 2.09l/100km(113MPG) by using eMPC EMS.
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Figure 5.10: CDCS eMPC strategy with emission control: (a) Engine Torque (b) HC
conversion efficiency (c) Air-to-fuel ratio (AFR)
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Figure 5.11: Catalyst conversion efficiency for CDCS eMPC strategy
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Figure 5.12: Blended eMPC strategy with emission control: (a) Velocity and Battery SOC
(b) MG2 Torque (c) Engine Torque

5.5.2 Known Travelling Distance

Figures 5.12 to 5.14 show similar results for the blended mode strategy. Fuel consumption

for this strategy is 1.81l/100km(130MPG) by considering engine emissions control.

5.5.3 Discussions

Fuel economy for MIL testing using the high-fidelity simulation model is compared in

Table 5.1. Table 5.1 shows that explicit model predictive control reduces fuel economy

by 1.74% and improves it by 4.84% for CDCS and blended mode strategies, respectively

when compared to the MPC approach. But note that the primary purpose of considering
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Figure 5.13: Blended eMPC strategy with emission control: (a) Engine Torque (b) HC
conversion efficiency (c) Air-to-fuel ratio (AFR)
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Figure 5.14: Catalyst conversion efficiency for Blended eMPC strategy
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explicit model predictive control was to maintain the performance of MPC while make it

faster during implementation stage. The MIL simulation takes 1885 s for simulating 2828

s, which is three times faster than MIL using the MPC EMS on the average. This shows

that eMPC has a superior potential to be implemented to a commercial control hardware

with limited computational power. As a measure of drivability performance, eMPC EMS

can follow the designated drive cycle with the root mean square error of 0.87 km/h and

0.89 km/h for CDCS and Blended mode strategies, respectively.

Table 5.1: MIL with the high-fidelity powertrain model: Fuel economy for different control
strategies

Control Strategy MPC eMPC improvement
(MPG) (MPG) (%)

Charge Depletion/Charge Sustenance 115 113 -1.74
Linear blended mode 124 130 4.84

5.6 Control-relevant Parameter Estimation (CRPE)

Parameter estimation is an essential step in modeling. Control relevance in parameter esti-

mation refers to the suitable selection of design variables in the estimation algorithm given

that the intended purpose of the model is control system design. Its basis lies in the fact

that if the bias distribution is appropriately shaped, then low-order representations of the

plant will be obtained which will capture all the essential plant dynamics for control system

design [176]. Real-time implementability of model predictive controller is closely related to

how simple is the control-oriented model. Simple models may not be so accurate to capture

the essential dynamics of the main plant. In this way, such simple models are preferable

that their parameters are estimated in a way that captures all dynamics of the plant. But

finding the parameters to make the control-oriented model cover all the operating points

of the plant may not be feasible. Instead, one can do the parameter identification within

a specific range of the plant operating points that is essential according to controls design
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Figure 5.15: Thevenin equivalent model of the battery

requirements. The derived control-oriented model is only valid for an active frequency

range that the controls require. The control-oriented model may not represent the plant

for the whole range of its operating points, but it is simple and adequately accurate to

pass the real-time implementability requirements needed for designing predictive controls.

5.6.1 Battery Thevenin Model

As mentioned earlier in this chapter, the performance of model predictive controller is

closely related to the accuracy of the control-oriented model inside it. As a result, we

address a method to improve PHEV control-oriented model accuracy in such a way that

it remains simple enough to keep the size of eMPC look-up tables small enough for real-

time implementation purposes. Since the battery pack plays the most important role in

determining full electric range as well as PHEV fuel economy and emissions performance,

we consider a more detailed model of this component inside the control-oriented model.

The previous control-oriented model (5.1) contains two state variables. In this section, one

extra state variable is added to the previous model. One added state variable belongs to

the battery component. In the new control-oriented model, we replace the power-based

model of the battery with the Thevenin equivalent model of it (Figure 5.15).

According to the definition of battery state of charge:

˙SOC = −ibatt
Q

= − 1

RbattQ
(Voc − V − Vbatt) (5.22)

where Q and V are battery pack capacity and the voltage across RC-component of Figure
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5.15, respectively. One can find a differential equation for V as:

V̇ = − V

RC
+

1

RbattC
(Voc − V − Vbatt) (5.23)

The control input in (5.22) and (5.23) is Vbatt. On the other hand, we find an expression

which can relate Vbatt to PBAT as battery power is directly related to the total propulsion

power. Therefore,

PBAT = ibattVbatt =
Vbatt
Rbatt

(Voc − V − Vbatt) (5.24)

which can be rewritten as:

Vbatt =
1

2
{(Voc + V )−

√
(Voc + V )2 + 4RbattPBAT} = f(V, PBAT ) (5.25)

In order to get a linear control-oriented model, f(V, Pbatt) can be linearized within

operating range of V and PBAT . If f(V, PBAT ) = b1V + b2PBAT + b3 the battery control-

oriented model can be written as

˙SOC = − 1
RbattQ

{Voc − b3 − (1− b2)V − b2PBAT}

V̇ = − V
RC

+ 1
RbattC

{Voc − b3 − (1− b2)V − b2PBAT} (5.26)

(5.26) in combination with (5.27) makes the new control-oriented model with 3 state

variables

Ė = PBAT + PENG − PBRK (5.27)

Now, the four parameters of Thevenin equivalent model of battery should be estimated

according to controls requirements in order to get more realistic behavior of the battery.

This will be addressed in the following section.
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Figure 5.16: Time history of the battery power, applying eMPC to the PHEV for UDDS
driving cycle

5.6.2 Battery Parameters Estimation

In this part, the battery parameters within the operating range of the EMS are estimated.

To this end, we find the battery active frequency range based on a great deal of simulations

that have been already done. Therefore, the experimental data needed for parameter

estimation is derived from that specific frequency range. As the battery model parameters

are identified, the new control-oriented model can be determined which is followed by a

new eMPC EMS design. The new EMS is expected to have better performance over the

previous one.

A global parameter estimation scheme is required to evaluate parameters for the equiva-

lent battery model, considering battery power and state-of-the-charge as input and output

to the model, respectively. To this end, the power associated with the high-fidelity battery

model along with its state of charge are estimated using eMPC, assuming a UDDS driving

cycle for the PHEV.

As shown in Figure 5.16, the power signal contains high-frequency oscillations, which

makes the process of parameter estimation much harder.

To facilitate the identification process, the dominant frequency range of the power signal

can be extracted using a spectrum analysis, after which a low-pass filter should be designed
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Figure 5.17: Power spectral density analysis of the chemistry-based battery power signal,
when an eMPC scheme is applied to the PHEV

to regenerate the modified signal. Based on both Welch and Fast Fourier Transform (FFT)

power spectral estimate (as shown in Figure 5.17), the frequencies higher than 5 Hz have

less contribution in representing the battery power signal.

Accordingly, a digital filter with finite-duration impulse response such as least-square

approaches, seems to be promising candidate in this case, by which the refined power

signal to the battery can be regenerated. The state of charge is then extracted, applying

the refined power signal to the high-fidelity battery model. Assuming the acquired input-

output to the battery as the reference data, the parameters for the equivalent circuit

model can be estimated [177]. In this work, a dual polarization equivalent circuit model

with a double-RC circuit (Figure 5.18) is utilized, by which two key physical phenomena in

lithium-ion batteries are incorporated in the equivalent system. The model, which includes

polarizations of different time scales, has been experimentally examined for lithium-ion

batteries in terms of dynamic performance and the state-of-the-charge estimation [178].

Although, Thevenin equivalent model is appropriate for control-oriented modeling, it

cannot represent the physics of lithium-ion battery as properly as a dual-polarization

model. As such, the parameters of the dual-polarization model are estimated first. Then,

the dual-polarization model is approximated by a Thevenin equivalent model. In other

words, the impendence of two RC circuits are approximated with only one RC circuit:

116



Figure 5.18: Dual-polarization model of the battery
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Figure 5.19: Time history of the SOC profile for the dual-polarization equivalent and
chemistry-based battery model

R1

R1C1s+ 1
+

R2

R2C2s+ 1
∼=

R

RCs+ 1
(5.28)

Simulation results for the state of charge of the equivalent battery model, compared to

the experimental ones derived from the full chemistry-based battery model, are shown in

Figure 5.19. A great match signifies the efficacy of the homotopy optimization procedure in

identifying the model parameters, which was used earlier in validating the PHEV simulation

model.

A homotopy gain of 200 (Ki, i = 1) and a decremental step of 0.25 in the homotopy

parameter (∆υ) show a reasonable match between the original data and the results obtained

from the dual-polarization model with identified parameters. The value for the identified
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Table 5.2: Identified values for the parameters of the equivalent dual-polarization circuit
model

Parameter Parameter description Identified value (unit)
Voc Open-circuit voltage 388.6 (V )
Rbatt Battery resistance 0.31 (Ω)
Rc(R1) Concentration polarization resistance 0.13 (Ω)
Re(R2) Electrochemical polarization resistance 0.052 (Ω)
τc(R1C1) Concentration polarization time constant 101.5 (s)
τe(R2C2) Electrochemical polarization time constant 11.3 (s)

parameters are listed in Table 5.2.

5.6.3 CRPE Control-oriented Model

We found the battery model parameters as Voc = 388.64V , Rbatt = 0.3147Ω,Qbatt =

75428A.s, R = 0.0831Ω, and C = 168.5173F , so the discrete version of the new control-

oriented model is

Z̄(k + 1) = ĀZ̄(k) + B̄U(k) + F̄ (5.29)

where Z̄ =
[
SOC, Vbatt, E

]T
and U =

[
PBAT , PENG, PBRK

]T
.
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Ā =

 1 ā1 0

0 ā2 1

0 0 1



B̄ =

 ā3 0 0

ā4 0 0

1 0 −1



F̄ =

 ā5

ā6

0


(5.30)

Note that SOC, V , and E are in percent, volt and kWs respectively. In the new

control-oriented model we use battery state of charge instead of battery state of energy.

5.7 CRPE-eMPC Formulation for a PHEV

We can rewrite (5.31) in the way of (5.3) but here we added one parameter to the multi-

parametric quadratic programming problem. So the new problem has 5 parameters, be-

cause of one added state variable in the new control-oriented model. Now, the control-

relevant parameter estimated eMPC (CRPE-eMPC) energy management can be designed.
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minU
∑Np

j=1

{
Ȳ T (j)Q̄Ȳ (j) + UT (j)R̄U(j)

}
s.t. SOCmin

Vbatt,min

Emin

 ≤
 SOC

Vbatt

E

 ≤
 SOCmax

Vbatt,max

Emax


Umin ≤ U ≤ Umax (5.31)

Where Ȳ =
[
SOC − SOCref , E − Eref

]T
, and Np is the prediction horizon length.

Q̄ =

[
ω̄1 0

0 ω̄2

]

R̄ =

 ω̄3 0 0

0 ω̄4 0

0 0 ω̄5



5.7.1 CRPE-eMPC Controls Regions

By solving the multi-parametric quadratic problem, the number of polytopes can be seen

in Figure 5.20:

Total number of polytopes is 8439. The resultant polytopes set for Eref = 0 and

SOCref = 60% is demonstrated in Figure 5.23.

As it is seen, there is one added dimension to the polytope set in Figure 5.21 as compared

to Figure 5.3. For any given Vbatt, any cross section which contains (SOC − E) generally

looks similar to Figure 5.3.

In this case, we cannot visualize the control actions like Figure 5.4. But for any cross

section of Figure 5.21 for any given Vbatt, the analysis on E and SOC remains valid.
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Figure 5.20: Number of polytopes for different levels of Eref and SOCref

Figure 5.21: Polytope set for Eref = 0 and SOCref = 60%
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Figure 5.22 shows the control actions versus different measured values of SOC and E

(initial conditions) at current sampling instance for Vbatt = 180V .

5.7.2 CRPE-eMPC Stability Notes

Here we can exactly follow what is mentioned in section 5.4. In each set of polytopes

which belongs to a definite SOCref , Eref , the controller drives the state variables to the

mentioned reference values in finite time steps. To prove the local stability of the closed-

loop system, we pick the polytope which contains Z̄0. The control corresponding to that

polytope is:

ˆ̄U = f̄0
ˆ̄Z + ḡ0 (5.32)

By applying the above control to the control-oriented model we can find the closed-loop

system equation as:

Z̄(k + 1) = (Ā + B̄f̄0)Z̄(k) + B̄ḡ0 (5.33)

By defining ˜̄Z = Z̄ − Z̄0, we transfer the state variables to the equilibrium point. As a

result we have:

˜̄Z(k + 1) = (Ā + B̄f̄0) ˜̄Z(k)

+B̄ḡ0 + (Ā + B̄f̄0 − I2×2)Z̄0 = ˜̄A ˜̄Z(k) + ˜̄B (5.34)

First we show that ˜̄A is locally and asymptotically stable for all 81 sets of polytopes.

We have a discrete switching system and need to make sure that the spectral radius of ˜̄A

is less than unity. Also, ˜̄B is bounded, so the closed-loop system (5.34) is locally stable.

On the other hand, by using the cost function over each set of polytopes, it is proven

that there is a Q̄ > 0 the closed-loop system is globally and exponentially stable:
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Figure 5.22: Control actions for Vbatt = 180V , Eref = 0, and SOCref = 60% based on
different initial conditions (a) battery power (b) engine power (c) braking power
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V̄ ( ˜̄Z) =

Np∑
j=1

{ ˜̄ZT (j)Q̄ ˜̄Z(j)} > 0⇒ ∆V̄ ( ˜̄Zk+1,
˜̄Zk) < 0 (5.35)

For investigating the stability of the switched system, we assume that (5.35) remains

valid and ρ̄ is the largest spectral radius of ˜̄A for all 81 sets of polytopes. If ζ̄ is chosen

greater than ρ̄−1 , the switched system will be stable.

[
SOCref (k + 1)

Eref (k + 1)

]
=

[
1/ζ̄ 0

0 1/ζ̄

][
SOCref (k)

Eref (k)

]
+ Γ (5.36)

5.8 CRPE-eMPC Performance on the High-fidelity

Powertrain Model

In this part, the CRPE-eMPC EMS is applied to the high-fidelity simulation model con-

sidering the low-level controls (see section 4.6). The results of MIL simulation are reviewed

in Figures 5.23 to 5.28.

5.8.1 No Knowledge of Trip Information

Figure 5.23-a shows the vehicle drivability performance along two UDDS drive cycles for

the CDCS strategy. Figures 5.23-b,c show the performance of low-level controls in tracking

the setpoints determined by CRPE-eMPC EMS. Figure 5.24 demonstrates the emissions

control performance. The sliding mode controller keeps the HC conversion efficiency around

unity by controlling the air-fuel ratio and ignition timing as shown in Figure 5.25. PHEV

fuel consumption is reduced to 1.97l/100km(119MPG) by using the CRPE-eMPC EMS.
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Figure 5.23: CDCS CRPE-eMPC strategy with emission control: (a) Velocity and Battery
SOC (b) MG2 Torque (c) Engine Torque
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Figure 5.24: CDCS CRPE-eMPC strategy with emission control: (a) Engine Torque (b)
HC conversion efficiency (c) Air-to-fuel ratio (AFR)
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Figure 5.25: Catalyst conversion efficiency for CDCS CRPE-eMPC strategy
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Figure 5.26: Blended CRPE-eMPC strategy with emission control: (a) Velocity and Bat-
tery SOC (b) MG2 Torque (c) Engine Torque

5.8.2 Known Travelling Distance

Figures 5.26 to 5.28 show the results for the blended mode strategy. Fuel consumption in

this simulation is 1.68l/100km(140MPG) by considering engine emissions control.

5.8.3 Discussions

Fuel economy for MIL testing by using CRPE-eMPC EMS is reviewed in Table 5.3. It shows

that CRPE-eMPC EMS improves fuel economy by 5.31% and 7.69% for CDCS and blended

mode strategies, respectively in comparison to the eMPC high-level controller which was

designed based on a control-oriented model with 2 state variables. The MIL simulation
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Figure 5.27: Blended CRPE-eMPC strategy with emission control: (a) Engine Torque (b)
HC conversion efficiency (c) Air-to-fuel ratio (AFR)
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Figure 5.28: Catalyst conversion efficiency for Blended CRPE-eMPC strategy
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Table 5.3: MIL with the high-fidelity powertrain model: Fuel economy for different control
strategies

Control Strategy eMPC CRPE-eMPC improvement
(MPG) (MPG) (%)

Charge Depletion/Charge Sustenance 113 119 5.31
Linear blended mode 130 140 7.69

can still be performed 1.5 times faster than real time. Therefore adding one state variable

to the previous control-oriented model (section 5.2.1) doesn’t slow down the simulation.

In fact, the performance of the controller is also improved in terms of fuel economy while

maintaining the emissions performance. As a measure of drivability performance, CRPE-

eMPC EMS can follow the designated drive cycle with the root mean square error of 0.45

km/h and 0.97 km/h for CDCS and Blended mode strategies, respectively.

Figure 5.29 shows why the fuel economy has been improved by using CRPE-eMPC ap-

proach for designing EMS. More accurate battery model inside the control-oriented model

has led to greater PBAT which has reduced the PENG and consequently reduced fuel con-

sumption.

5.9 Chapter Summary

In this chapter, the explicit model predictive control approach was used to design an energy

management strategy for a plug-in hybrid powertrain. In this way, a new control-oriented

model was proposed with two state variables. We implemented the developed controller

to a PHEV simulation model and reduced the simulation time by 44% and improved fuel

economy by 16% on average in comparison to MPC.

According to the model-in-the-loop simulation results, the designed eMPC energy man-

agement can be applied to the high-fidelity simulation model three times faster that its

implicit MPC counterpart, while maintaining the expected performance.
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Figure 5.29: eMPC vs. CRPE-eMPC:(a)Battery power (b)Engine power (c)Battery power
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In order to make the control-oriented model more accurate which in turn improves the

performance of the EMS, control-relevant parameter estimation approach was used. The

MIL simulation results showed that by adding one battery state variable to the previ-

ous control-oriented model, and designing CRPE-eMPC energy management system, fuel

consumption was reduced by up to 6.5% as compared to the eMPC energy management

system, and the real-time implementation capabilities were maintained.
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Chapter 6

Hardware-in-the-loop Simulation

In this chapter, the essential elements for performing hardware-in-the-loop (HIL) testing

are introduced. Then, the eMPC EMS is programmed on a MotoTron electronic control

system (ECU) hardware and its performance is evaluated through HIL testing.

6.1 Introduction

An effective approach for rapid prototyping and evaluation of vehicle control system is real

time hardware-in-the-loop testing. Real-time simulation and support for HIL are increas-

ingly recognized as essential tools for engineering design [179]. This reduces dependence on

prototype vehicles, especially in the early stages of a program, and subsequently reduces

the time, effort and resources required to build and support them. The objective is to

build the first full prototype car much later in a development program, and in such a way

that it does not require major modification before going into mass production [180].

HIL simulation often requires significantly less hardware than physical prototyping,

therefore being cheaper and quicker to build. HIL simulators often achieve fidelity levels

unattainable through purely virtual simulation by prototyping those components whose

dynamics or other attributes (e.g. transient emission formation in engines) are not fully
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understood. On the other hand, HIL simulations of complex physical phenomena run faster

than purely virtual simulations of the same phenomena (e.g. IC engine simulations based

on Computational Fluid Dynamics). Systems that normally operate in highly variable

environments (e.g., off-road vehicle suspension systems) can often be tested in controlled

lab settings through HIL simulation, which significantly increases repeatability, and often

makes it possible to simulate a given system over a much broader range of operating

conditions than what is feasible via purely physical prototyping. Moreover, HIL simulation

makes it possible to simulate destructive events without incurring a costly destruction.

HIL simulators can be used to train human operators (e.g., airplane pilots) of safety-

critical systems (e.g., supersonic aircraft) in significantly safer environments (e.g., flight

simulators). It is noteworthy that HIL simulation allows different teams to develop different

parts of a system in hardware without losing sight of integration issues, thereby enabling

concurrent systems engineering [89]. In this chapter, we present the HIL testing procedure

of the proposed eMPC EMS for Toyota Prius plug-in hybrid powertrain.

6.1.1 ECU Validation Procedure

The electronic control unit (ECU) strategy prove-out is done in successive steps on off-

line simulations on a desktop, HIL, dynamometer, and vehicle, with each step bringing

in additional ”real” substitutes for the virtual models. ECU strategy procedure in this

sequence has some advantages. First, it ensures that component-level testing is done prior

to subsystem and system level testing. Second, it capitalizes on the fact that ECUs are

usually available much sooner than vehicle hardware prototypes, enabling a large amount

of testing to be completed prior to vehicle manufacturing [6]. Figure 6.1 shows the steps

in ECU validation [181].

The off-line simulations used within the early phases of the development process are

often called model-in-the-loop simulations (MIL). For the modeling of the vehicle and

functions at the MIL stage, standard tools such as MATLAB/Simulink and MapleSim can

be used. Next step is software-in-the-loop (SIL) simulation, where the functional model of

an ECU is replaced by C-code and coding errors can be found independent of the future
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Figure 6.1: ECU validation procedure

ECU hardware. In the next step, actual hardware of the ECU is available and the tests

can be supported by HIL simulation. The HIL simulation consists of two parts: open-loop

integration and closed-loop strategy testing [181]. Open-loop test platform uses a simpler

model inside a real-time computer in order to check the functionality of user inputs and

low-level I/O interfaces, for instance, push button start, or gear shift command. Closed-

loop test platform needs the dynamical model of the plant implemented to the real-time

computer which provides feedback information from the plant.

After the software tests are successfully passed, the calibration of the ECUs can be done

on the test-bench or in the vehicle. At this point, changes to the functions and system

specifications are time consuming, expensive, and in most cases not possible [100].

The explained validation procedure presents some challenges for HEV control system

unit such as [6]: (1) adequate computational power required to execute not just an engine

plant model, but models of other controller units as well as a complete vehicle model, and

(2) capability of extensive CAN communication support, since the HEV controllers that

are communicating with the ECU should be modeled [182].

134



6.1.2 Virtual Simulation Model Requirements

Since the performance of the ECU is tested in a virtual vehicle environment, the appropriate

vehicle dynamics need to be modeled. There are four important elements to the HIL

system model that is used for ECU testing: physical model of the plant (such as engine,

transmission, battery, motor, etc.), sensors (such as sensors for engine speed, engine intake

manifold pressure, battery voltage, etc.), actuators (such as electronic throttle body, fuel

injector, etc.), and external systems that interact with the vehicle model (such as human

driver, road grade, etc.) [182]. The scope of the HIL system model is primarily driven

by the level of functional testing required. On one hand, the HIL test bed could be used

as an open-loop tester to verify some low-level (input/output driver level) ECU software

functionality. In this case, the vehicle model could be constant values or uncorrelated

signal traces that drive all the inputs of the controller. On the other hand, the HIL test

bed could be used for verifying closed-loop dynamic functionality [6].

To use the HIL simulation, real-time capable simulation models are needed. Developing

those models is a real challenge since they have to be accurate and fast enough at the

same time [100]. The virtual models within a HIL simulator must typically meet two

requirements. First, they must capture the essential dynamics of the virtually prototyped

systems accurately enough to enable the HIL simulator to achieve its required design

goals. Secondly, they must run in real time, a requirement that often translates into a

bound on model complexity. These two requirements, that are, fidelity and simplicity,

typically conflict [89]. The literature recognizes this conflict and considers a dynamic

system model to be proper if it optimally balances these two requirements. The MapleSim

high-fidelity simulation model in chapter 3 is physics-based and captures transients in

comparison to look-up table models, and real-time capable at the same time, which has

been cross-validated with experimental data available in the Autonomie software.
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6.1.3 Real-time Target Requirements

Since the interactions between the physical and virtual components of a HIL simulator are

bidirectional, it is crucial that the time frames of these components match exactly. There-

fore, the virtual components must run in real time, which apply tight requirements on the

HIL simulator’s microprocessor, operator system, and integration routine. Furthermore,

even with fast processors (such as field-programmable gate array or FPGA), running a HIL

simulator in real time requires a special kind of operating system that executes integration

steps at regular intervals signaled by clock interrupts. Also, the solver used for simulating

the virtual components of a HIL setup should ensure the completion of every integration

step within the real-time step corresponding to it. This can be difficult if the solver uses

variable step-size integration, which explains the prevalence of fixed step-size integration

routines in the context of HIL simulation [89].

Fixed step-size integration introduces some challenges for HIL simulators of hybrid dis-

crete/continuous systems, as the transitions between the discrete states of such systems

may occur during integration time steps. For instance, a clutch in a car transmission may

engage halfway through an integration step. [183] discusses this difficulty and explores

some of its possible remedies. Another common problem in HIL simulation is virtual

model stiffness, defined as a large disparity between the characteristic speeds of different

components of a virtual model. Stiff models can be seen in many disciplines, particularly

mechatronics, where mechanical and electrical components typically exhibit markedly dis-

parate response speeds [89]. Proper modeling techniques can often reduce model stiffness

by eliminating fast dynamics from a given model in favor of slower dynamics [184]. This

may not be feasible if capturing the relatively fast dynamics of a system is a simulation

requirement. When the disparity between the fast and slow dynamics in a virtual model

cannot be eliminated, it is common to integrate these dynamics separately at different

integration rates. Such multirate integration may take place on one processor via multi-

threading, but is more often achieved using multiple processors. [185, 186] have discussed

multirate integration issues with particular focus on different methods that each processor

can use to synchronize with other processors.
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6.2 Hardware Description

In the HIL simulation, the high-fidelity simulation model of the plant is solved in real-time

using a powerful computer. A HIL simulation setup provides a more realistic environment

for controller evaluation purposes, as it can take into consideration different aspects of the

control loop that are neglected in model-in-the-loop simulations, such as communication

issues and controller computational limitations. In this section, the details of the HIL

simulation setup will be discussed. The two main components in an HIL setup are: 1) an

independent processing unit to run the controller procedure, and 2) a powerful real-time

processing unit to run the plant model. For our HIL simulation, the designed controller is

programmed into an ECU, and the high-fidelity powertrain model is solved by a real-time

target to provide the accurate sampling which the controller requires. The communication

channel between the ECU and the plant (real-time target) is the Control Area Network

(CAN) bus. The following parts contain details of the hardware used in this setup.

6.2.1 MotoTron

The HIL simulation results are more reliable when the controller prototype is the same as

the controller used in the real plant. For EMS application, a MotoTron ECU is used to serve

as the powertrain controller. This ECU is from the ECM-5554-112 family of controllers

from Woodward that uses an 80MHz Motorola MPC5554 processor. The commercial

version of this controller is used in automotive and marine applications. The automotive-

based design of this ECU makes it an ideal choice for the HIL simulations. To program the

controller code into the ECU, the code needs to be compiled by the MotoHawk Green Hill

compiler. Then, the generated code can be programmed into the ECU by the MotoTune

software. The controller used in this setup is a version that can be calibrated and provides

controller tuning features in real time using MotoTune. This feature is specifically useful

in tuning controller parameters without encountering the need to reprogram the controller

itself. The easiest way to program the controller is to download the generated code into

the controller via CAN bus using the MotoTune software. To this end, a USB-to-CAN
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adapter is provided by MotoTune to facilitate the programming procedure. The controller

code itself can be easily complied using Woodward’s Green Hill compiler, which compiles

the required code directly from a Simulink model.

6.2.2 PXI Real-time Target

To satisfy real-time requirements, and achieve enhanced accuracy of the simulations, it is

necessary to use a real-time computer to solve the plant model deterministically. For this

purpose, a PXI platform from National Instrument (NI) is used as the real-time target. The

processing unit of this computer is a PXI-8110, which is powered by a 2.26 GHz quad-core

CPU and has 2GB of RAM. This PXI platform runs the LabVIEW real-time operating

system, which responds to an interrupt or performs a task before a specified deadline as

opposed to non-real-time operating systems where tasks are prioritized based on different

criteria such as maintaining the hardware/software functionality. Therefore, by making

use of such real-time operating systems, the model can be solved with greater consistency,

and the communication delay can be minimized. Our real-time target (NI PXI computer)

runs LabVIEW real-time 2011 operating system.

To run a program on this platform, a LabVIEW program must be deployed. LabVIEW

is a graphical programming language that facilitates communication with external hard-

ware and expedites the development of multi-threaded applications. LabVIEW programs

are made in Virtual Instrument (VI) files. These VI programs are made in the host lap-

top which runs a Windows version of LabVIEW. The VI programs are then utilized into

the real-time target via Ethernet connection. Once the program is successfully deployed,

the real-time target begins to run the program, and the user can see the outputs or send

commands using the host computer. To use this platform for solving the powertrain high-

fidelity model in real time, the model has to be converted into a C-code and then into a

Digital Link Library (DLL) in order to be used in the LabVIEW environment. To this

end, the MapleSim EMI component block generator toolbox provides seamless solution to

convert the high-fidelity simulation model into an appropriate DLL file that can be used

in the NI LabVIEW environment.

138



Figure 6.2: Schematic of the HIL setup

Major responsibilities of the real-time target are shown in Figure 6.2. Each core of the

real-time target CPU runs a different application. The first core is responsible for running

the application to PXI-host communication. This application is solely used to send and

receive variables to and from the laptop host via Ethernet connection. The second CPU

core runs the CAN communication application. The last core is responsible for solving the

high-fidelity vehicle model.

6.2.3 CAN Bus

A HEV has several critical subsystems with individual control modules such as the en-

gine, battery, driveline and brakes. The controllers communicate with each other and with

the vehicle system controller on a CAN-based communication network. CAN is a stan-

dard message-based protocol, which was initially developed for in-vehicle communications,

because of its robustness and ease of operation. The behaviors of these subsystems are

strongly influenced by their individual controllers. Not all of these control modules were

connected in the HIL setup. Those controllers that were not connected as hardware pieces

were simulated as models along with the plant dynamics on the HIL system. So, the

communication between controllers and the controller functionalities had to be modeled

carefully to ensure a good compromise between functional accuracy and real-time con-

straints [6]. On a CAN bus, each of the nodes are directly connected to the bus, and there
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Table 6.1: CAN message definition for the HIL simulation

CAN message MotoHawk LabVIEW
message arbitration message variable start bit start bit

name ID length name bit length bit length
PXI to ECU 1 7 bytes Eref 48 8 8 8

SOCref 40 8 16 8
E 24 16 24 16

SOC 16 8 40 8
Vbatt 8 8 48 8

ECU to PXI 2 7 bytes PBAT 40 16 8 16
PENG 24 16 24 16
PBRK 8 16 40 16

is no central control unit to regulate the communications. Instead, CAN bus is a serial

message-based protocol, where each node can send and receive messages when the bus is

free. When two nodes start to send messages simultaneously, the message with higher

priority prevails, and the lower-priority message waits until the bus is free. The priority of

each message is identified by an arbitration ID (Appendix C), where lower IDs have the

higher priority.

The EMS requires three readings from the plant: the current battery state of charge,

the current demanded tractive energy, and the battery voltage. The three measurements

are calculated by the real-time target by solving the high-fidelity simulation model. Also,

it takes two readings from SOCref and Eref . The real-time target then sends these four

pieces of information, in a single CAN message to the ECU. The controller processes the

information and calculates PBAT , PENG, and PBRK and send them back to the real-time

target in another message.

Table 6.1 shows the variables, and the position of the variable in the CAN messages

for ECU-PXI communication.

In the base CAN frame format (CAN 2.0 A protocol), the identifier portion of the

message (arbitration ID) contains 11 bits following the start bit. The main data frame can
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contain up to 8 bytes (64 bits). Combined with all other regulatory bits, a CAN message

is comprised of up to 108 bits. Depending on the bit-rate of the CAN channel, a limited

number of messages can be sent on a CAN bus. In this HIL setup, the CAN channels

work with a bit rate of 500 kbps (kilo-bits per second); therefore, the maximum capacity

of each CAN channel is roughly 4600 messages per second. The communication program

on the real-time target runs at every 1ms and sends a message (PXI to ECU) in each run

of the loop. The controller program also runs every 5ms and sends one message (ECU to

PXI). Thus, 1200 messages are sent in each second, and this load occupies 26% of the CAN

channel capacity.

6.3 Controls Implementation Notes

For implementing the eMPC EMS onto the ECU, a database with the size of 1.5 MB plus

the eMPC search algorithm should be stored in the hardware memory. The search algo-

rithm code is not in-lined, and cannot be compiled to the MotoTron ECU. Unfortunately,

by in-lining the algorithm code, the size of code plus eMPC database exceeds 2MB flash

memory size of the ECU.

To solve this problem, the eMPC energy management was modified. The control action

surfaces (See Figure 5.4 and 5.24) versus state variables were approximated with some new

look-up tables. Using this technique, we reduced the size of the controller from 2 MB to

143 kB for the larger CRPE-eMPC EMS.

Figure 6.3 shows different parts of the high-fidelity simulation model inside the real-time

computer.

The ECU passes 3 control actions: PBAT , PENG, and PBRK to the real-time target

via CAN bus at every 5 milliseconds. The real-time target runs the higher-fidelity model

and corresponding low-level controls at every 1 ms. As shown in Figure 6.3, PBAT and

PENG are fed into the setpoint configurer where the setpoints for the low level controllers

are determined. Then, Tm, ωg, and Te are transferred to the electric drive and engine

low-level controls. By applying the low-level controls commands to each component of the
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Figure 6.3: High-fidelity model inside the real-time computer

powertrain model, SOC, E, Vbatt, SOCref , and Eref are measured at each 1 ms and passed

to the ECU via CAN bus.

6.4 eMPC on the Low-fidelity Model

In Figure 6.4-a, the vehicle drivability performance and battery state of charge for CDCS

strategy are demonstrated. In Figure 6.4-b, we can see that the driver’s demanded power

is followed by propulsion power. This shows that the powertrain is able to provide the

required propulsion power, so the vehicle velocity can follow the predefined UDDS schedule.

Figure 6.4-c shows the index of demanded power as well as SOE index which are determined

according to the number of polytopes set. Figure 6.5 shows these results for the blended

mode strategy. Note that the engine operation has reduced the battery SOC depletion

slope which results in better fuel economy as compared to CDCS strategy.

Table 6.2 shows the HIL fuel economy for applying eMPC EMS to low-fidelity power-
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Figure 6.4: Charge depletion/ charge sustenance strategy (a) vehicle velocity and battery
depletion profile (b) demanded and propulsion power (c) demanded power and SOE indices
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Figure 6.5: Blended mode strategy (a) vehicle velocity and battery depletion profile (b)
demanded and propulsion power (c) demanded power and SOE indices
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Table 6.2: eMPC MIL and HIL test using low-fidelity powertrain model: Fuel economy for
different control strategies

Control Strategy MIL HIL
(MPG) (MPG)

Charge Depletion/Charge Sustenance 119 116
Linear blended mode 133 127

train model.

Note that if we use the same controller and simulation model for MIL and HIL test, the

simulation results should be the same. By comparing the results in this section to what

was discussed in section 5.5, some discrepancies are seen in terms of vehicle drivability and

fuel economy. The oscillations of the vehicle velocity shown in Figure 6.4 and Figure 6.5 as

compared to Figure 5.9 and Figure 5.10, is due to switching between different polytope sets

found by considering 9 divisions for Eref and SOEref along the drive cycle. Fuel economy

for CDCS and blended mode strategies in HIL testing are worsened by 2.5% and 4.5% as

compared to MIL test. This error is due to replacing the eMPC data base and its search

algorithm with the approximated look-up tables. As a measure of drivability performance,

eMPC EMS can follow the designated drive cycle with the root mean square error of 0.91

km/h and 1.12 km/h for CDCS and Blended mode strategies, respectively. In brief, the

difference between MIL and HIL simulation results is due to the difference between the

originally designed and modified CRPE-eMPC EMS.

6.5 CRPE-eMPC on the High-fidelity Model

Figure 6.6-a shows the vehicle drivability performance along 2 UDDS drive cycles for CDCS

strategy. The performance of the low-level controls in tracking the CRPE-eMPC EMS

setpoints is shown in Figure 6.6-b,c. The emissions control performance is demonstrated

in Figure 6.7 and Figure 6.8. PHEV fuel consumption is reduced to 2.06 l/100 km by using
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Figure 6.6: HIL simulation, CDCS CRPE-eMPC strategy with emission control: (a) Ve-
locity and Battery SOC (b) MG2 Torque (c) Engine Torque

CRPE-eMPC EMS.

Figure 6.9 to Figure 6.11 show the results for blended mode strategy. Fuel consumption

in this simulation is 1.73 l/100km by considering engine emissions control.

Table 6.3 shows the HIL predicted fuel economy for applying CRPE-eMPC EMS to the

high-fidelity powertrain model.

Presumably, the results of MIL test which was discussed in section 5.9 should be the

same as what we get from HIL test. But fuel economy for CDCS and blended mode

strategies in HIL testing are worsened by 5% and 3.6% as compared to the MIL test. As

mentioned earlier, the current controller has been changed in comparison to the EMS vali-

dated in section 5.9, since the CRPE-eMPC controller was modified in order to implement
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Figure 6.7: HIL simulation, CDCS CRPE-eMPC strategy with emission control: (a) Engine
Torque (b) HC conversion efficiency (c) Air-to-fuel ratio (AFR)
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Figure 6.8: HIL simulation, catalyst conversion efficiency for CDCS CRPE-eMPC strategy
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Figure 6.9: HIL simulation, Blended CRPE-eMPC strategy with emission control: (a)
Velocity and Battery SOC (b) MG2 Torque (c) Engine Torque

Table 6.3: CRPE-eMPC MIL and HIL test using high-fidelity powertrain model: Fuel
economy for different control strategies

Control Strategy MIL HIL
(MPG) (MPG)

Charge Depletion/Charge Sustenance 119 113
Linear blended mode 140 135
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Figure 6.10: HIL simulation, Blended CRPE-eMPC strategy with emission control: (a)
Engine Torque (b) HC conversion efficiency (c) Air-to-fuel ratio (AFR)
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Figure 6.11: HIL simulation, catalyst conversion efficiency for blended CRPE-eMPC strat-
egy
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Table 6.4: Fuel economy summary

Control Strategy CDCS Blended mode
Fuel economy (MPG) (MPG)

MIL Autonomie rule-based EMS without emissions control 97 -
MIL MPC EMS without emissions control 128 142
MIL MPC EMS with emissions control 115 124
MIL eMPC EMS with emissions control 113 130
MIL CRPE-eMPC EMS with emissions control 119 140
HIL CRPE-eMPC EMS with emissions control 113 135

the EMS into MotoTron hardware. Note that if the emissions control is not considered in

the control scheme, the fuel economy improvement is expected to reach up to 132 MPG

and 156 MPG for CDCS and blended mode strategies, respectively.

Table 6.4 summarizes the resulted fuel economy by applying different EMSs to the

PHEV high-fidelity model. We can compare the fuel economy with the baseline rule-based

EMS of Autonomie software which is 97 MPG. As a measure of drivability performance,

CRPE-eMPC EMS can follow the designated drive cycle with the root mean square error

of 1.27 km/h and 0.21 km/h for CDCS and Blended mode strategies, respectively.

6.6 Chapter Summary

In this chapter, the designed EMS performance was validated through HIL test. In order to

implement the EMS to the control hardware with limited memory size and computational

capability, some modifications were applied to the original control scheme. HIL simulation

shows that the proposed EMS can be implemented to a commercial control hardware in

real time and results in a promising fuel economy improvement up to 16.5% compared to

the baseline strategy by controlling the emissions. Note that if the emissions control is not

considered in the control scheme, the fuel economy improvement is expected to be even

higher.
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Chapter 7

Conclusions

7.1 Summary

In this thesis, a near-optimal EMS for a plug-in hybrid electric powertrain was proposed

to minimize both fuel consumption and emissions, using a model predictive control (MPC)

approach.

At first, a real-time, equation-based, and validated high-fidelity simulation model of a

plug-in hybrid electric powertrain was developed in the MapleSim software in order to be

used in controls performance evaluation procedure such as model-in-the-loop (MIL) and

hardware-in-the-loop (HIL) simulations. The chemistry-based model of the battery in the

powertrain model, leads to more realistic estimation of the PHEV fuel economy and range.

The parameters of PHEV powertrain model were adjusted based on the experimental

database of the Autonomie software, which is widely used for energy management design

in industry. The symbolic programming capability of Maple allows reducing the number

of equations involved in the powertrain model significantly, and makes it run in real time,

which is essential for performing HIL tests.

For implementing the EMS to the high-fidelity simulation model, another level of con-

trols were designed for the engine and electric drive, using sliding mode control and field-
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oriented control approaches, respectively. One of the features of the engine control system

is improving hydrocarbon conversion efficiency of the catalytic converter.

Due to some real-time implementation problems of MPC despite its near-optimal perfor-

mance in improving fuel economy, another PHEV EMS was designed using explicit model

predictive control (eMPC), which solves the optimization problem off-line to create some

look-up tables. Therefore, the problem is reduced from solving a quadratic programming

problem at each control sampling time, to searching in look-up tables while implementing

the control algorithm. As a result, eMPC can guarantee real-time implementation for a

fairly small control-oriented model. In order to keep the size of mentioned look-up tables

small enough to be implemented to a commercial control hardware with limited amount

of flash memory, a simple and innovative control-oriented model was proposed. According

to MIL simulation results, the designed eMPC energy management can be implemented to

the high-fidelity simulation model three times faster that its implicit MPC counterpart.

For further improvement of energy management strategy performance, a control-relevant

parameter estimation (CRPE) approach was used to make the control-oriented model more

accurate. The resultant CRPE-control-oriented model is accurate within a specific fre-

quency range that is excited by the EMS. Based on the newly-developed control-oriented

model, CRPE-eMPC EMS was designed. The MIL simulation revealed that the CRPE-

eMPC EMS could reduce the fuel consumption up to 6.5% as compared to the eMPC

EMS.

Finally, the CRPE-eMPC energy management strategy was implemented on MotoTron

hardware with limited computation and memory capabilities. The aforementioned high-

fidelity simulation model was used as the virtual simulation model inside the real-time

target which was connected to the hardware via CAN bus. The HIL simulation showed

that the proposed EMS could be implemented in real time and result in a promising fuel

economy improvement up to 16.5% as compared to the baseline strategy by controlling the

emissions. Note that if the emissions control is not considered in the control scheme, the

fuel economy improvement is even higher.

The proposed research contributions can be summarized as follows:
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• Developed real-time, equation-based, and cross-validated high-fidelity simulation model

of a PHEV powertrain.

• Model predictive control design and evaluation for a PHEV EMS.

• Developed and validated near-optimal and real-time implementable PHEV EMS us-

ing explicit model predictive control (eMPC) approach with simple and innovative

control-oriented model for simpler stability analysis.

• Developed control-relevant parameter estimated (CRPE) control-oriented model to

improve performance of eMPC EMS while maintaining its real-time capabilities.

• Implemented the CRPE-eMPC energy management strategy on a commercial control

hardware with limited computational and memory capabilities.

7.2 Recommendations for Future Research

Although the performance of the proposed EMS for improving fuel economy was shown

through MIL and HIL simulations, there is still room for improvement in both controls

design and validation stages. The recommended future research for each part is separately

mentioned below:

7.2.1 Controls Design

Virtual Simulation Model Improvement

The proposed MapleSim model of PHEV in chapter 3, should be run in a real-time target

with multi-threaded CPU in order to include the power electronics high-fidelity simulation

model. Furthermore, the model parameters can be validated through the data from a

prototype on a rig or a test bench of powertrain real components for even more realistic

estimation of powertrain behavior.
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Smart PHEV

As mentioned, PHEV performance is closely related to the battery depletion profile along

the driving schedule. More information from the trip can significantly improve EMS per-

formance. This improvement can be made in two ways:

• Short horizon vehicle velocity prediction in order to take advantage of MPC predictive

feature by using global positioning system (GPS), geographic information system

(GIS), and intelligent traffic systems (ITS).

• Optimized SOC depletion profile (as shown in chapter 4).

By considering the above items, one can design a smart EMS which pushes the PHEV

performance to its ultimate limit.

Fast MPC Approach

Basically, two approaches to fast quadratic programming (QP) solution in MPC can be

distinguished: first, the explicit, or off-line QP solution, as used in this thesis, which is

limited to models with small state dimensions and few process inputs. Second, the on-line

QP solution is the classical way to treat the sequence of QPs in MPC for varying initial

process values.

As a result, for the designed MPC EMS in chapter 4, faster QP solvers (e.g. active set

method) can be used. By using this fast MPC approach there is a possibility of improving

MPC energy management real-time capabilities. Then, fast MPC performance can be

compared to eMPC energy management as proposed in chapter 5.

Sensitivity Analysis

Sensitivity analysis can be done on the parameters of EMS such as control and prediction

horizon length as well as cost function weighting parameters by using either classical MPC
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or the explicit version. This analysis is helpful during the energy management calibration

stage for expediting the procedure and taking advantage of a model-based control approach.

Control-oriented Model Improvement

Control-relevant parameter estimation (CRPE) for control-oriented model can be done for

different driving schedules in order to find a more precise active frequency range for the

battery. This leads to a more accurate control-oriented model and consequently guarantees

EMS’s best performance along any driving scenario. Moreover, CRPE can be performed

for control-oriented models with higher order to obtain the most accurate control-oriented

model while maintaining real-time capability of the EMS.

In this way, one can find a relation between control-oriented model fidelity and real-time

capability of eMPC.

7.2.2 Controls Validation

Energy Management System Calibration

ECU calibration is an iterative process of measurement and calibration at runtime to

optimally tune the parameters of the ECU algorithms. The parameters of the proposed

EMS should be tuned during calibration procedure, for the best possible performance on

a PHEV prototype.

Obviously, the model-based control approach can expedite this stage and make tuning

of the parameters and weights more systematic.

Energy Management System on a PHEV Test Bench

In order to find real-world performance of the EMS, it should be implemented to the real

components of a PHEV on a test bench.
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Appendix A

Model Parameters and Variables

Table A.1 reviews model parameters and variables.

I
′
v = m

R2
tire

K
+ I

′
mK + I

′
rK

I
′
g = Ig + Is

I
′
e = Ie + IC

Td = mgfrRtire + 0.5ρairAdcd(ωr/K)2R3
tire

( r2
s2

)ωrr1 + ωgs1 = ωe(r1 + s1)
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Table A.1: Variables and Parameters Value

Symbol Unit Value
ᾱ (kg/h)(rad/s)−2 0.02
β̄ (kg/h)W−1 1.86
ṁf (kg/h) -
Ig kgm2 0.1
Is kgm2 0.1
Ie kgm2 0.5
IC kgm2 0.1
Im kgm2 0.1
Ir kgm2 0.1
Rtire m 0.3
K - 4.11
m kg 1380
g m/s2 9.81
fr - 0.02
ρair kg/m3 1.2
Ad m2 2.5
cd - 0.2
r1 - 78
s1 - 30
r2 - 78
s2 - 30
Voc V 345.6
Rbatt Ω 0.93
Qbatt kWh 4.4
Tmin−e Nm 0
Tmax−e Nm 142
Tmin−m Nm -300
Tmax−m Nm 300
Tmin−g Nm 0
Tmax−g Nm 40
ωmin−e rpm 0
ωmax−e rpm 6000
ωmin−m rpm -13600
ωmax−m rpm 13600
ωmin−g rpm -10000
ωmax−g rpm 10000
SOCmin - 0
SOCmax - 1
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Appendix B

Controls Design for Electric Drive

B.1 Electric Drive Control

Semiconductor improvements in both power and signal electronics have enabled the devel-
opment of effective AC drive controllers with lower power dissipation hardware and more
accurate control structures.

The electrical drive controls become more accurate since only the DC current and
voltage are controlled, but the three-phase currents and voltages are also managed by
so-called vector controls. One of the most efficient forms of vector control scheme is the
Field-oriented Control (FOC). It is based on three major points: the machine current and
voltage space vectors, the transformation of a three-phase speed- and time-dependent sys-
tem into a two-coordinate time-invariant system, and effective Pulse Width Modulation
pattern generation. Based on these factors, the control of an AC machine acquires ev-
ery advantage of DC machine control and frees itself from the mechanical commutation
drawbacks. Furthermore, by achieving a very accurate steady-state and transient response
control, this control structure leads to high dynamic performance in terms of response
times and power conversion [187].

AC motor control structures generally apply three 120 spatially displaced sinusoidal
voltages to the three stator phases. In most classic AC drives, the generation of the
three sine waves is based on motor electromechanical characteristics and on an equivalent
model for the motor in its steady state. Furthermore, the control looks like three sepa-
rate single-phase system controls rather than one control of a three-phase system. The
Field-oriented Control (FOC) consists of controlling the stator currents represented by a
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Figure B.1: d-q representation of a permanent magnet synchronous motor

vector. This control is based on projections that transform a three-phase time- and speed-
dependent system into a two-coordinate (d and q coordinates) time-invariant system (Fig-
ure B.1). These projections lead to a structure similar to that of a DC machine controller.
FOC-controlled machines need two constants as input references: the torque component
(aligned with the q coordinate) and the flux component (aligned with the d coordinate).
As Field-orientated Control is simply based on projections, the control structure handles
instantaneous electrical quantities. This makes the control accurate in every working oper-
ation (steady-state and transient) and independent of the limited-bandwidth mathematical
model [1].

However, FOC scheme is complex in terms of implementation due to its dependance
on the motor parameters. These parameters should be continuously estimated, since their
values are changing during the machine operation. On the other hand, Direct torque
control (DTC) approach only requires the stator resistance to estimate the torque and
flux.

In DTC approach, electromagnetic torque and flux can be controlled independently
through a switching table. Selecting the inverter switching mode limits the torque and
flux error in comparison to their desired values within hysteresis bands. The basic DTC
scheme consists of two comparators for torque and flux which will be introduced in the
following sections.

DTC control suggests a more robust scheme with simpler implements beside less de-
pendency on the machine parameters in comparison to FOC approach. Nevertheless, it is
difficult to control the torque and flux at low speed with this approach. High torque ripple,
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Figure B.2: Direct torque control scheme

a high sampling frequency required for digital implementation of hysteresis controllers, and
current and torque distortion during the change of sectors are other DTC approach down
sides. One way to minimize torque ripples is using the space vector modulation (SVM).
The objective of DTC-SVM is to estimate a reference stator voltage vector and modulate it
with SVM technique in order to drive power gates of the inverter with a constant switching
frequency. As a result, the inverter can produce a voltage vector of any direction and mag-
nitude. This means that the stator flux can be produced in any direction and magnitude
which smoothen the resultant torque [188].

The DTC scheme is shown in Figure B.2.

B.1.1 Clarke Transformation

For stator voltage and currents we can write:

~VS = Vae
j0 + Vbe

j 2π
3 + Vce

j 4π
3

~IS = Iae
j0 + Ibe

j 2π
3 + Ice

j 4π
3 (B.1)
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Now we can change them to d-q coordinates. We call this, forward Clarke transforma-
tion. The forward Clarke transformation converts a 3-phase system (a, b, c) to a 2-phase
coordinate system (d,q). Assuming that the a axis and the d axis are in the same direction,
the quadrature-phase stator voltages and currents (Vd,Vq), (Id,Iq) are related to the actual
3-phase stator currents as follows:

Vd = 2
3
{Va − 1

2
(Vb + Vc)}

Vq = 2
3
{
√

3
2

(Vb − Vc)}
Id = 2

3
{Ia − 1

2
(Ib + Ic)}

Iq = 2
3
{
√

3
2

(Ib − Ic)} (B.2)

For the non-power-invariant transformation, the quantities Vd and Va are equal. If it
is assumed that Va + Vb + Vc = 0 , the quadrature-phase components can be expressed
utilizing only two phases of the 3-phase system for the voltage and the current:

Vd = Va

Vq = 1√
3
{Va + 2Vb}

Id = Ia

Iq = 1√
3
{Ia + 2Ib} (B.3)

So the inverse Clarke transformation will be:

Va = Vd

Vb = −1
2
Vd +

√
3

2
Vq

Vc = −1
2
Vd −

√
3

2
Vq

Ia = Id

Ib = −1
2
Id +

√
3

2
Iq

Ic = −1
2
Id −

√
3

2
Iq (B.4)
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B.1.2 Flux and Torque Estimation

Using vector notation of Kirchhoff voltage law and by assuming the same resistance for
each phase in stator, the equation of the stator winding for each phase can be written
as [1]:

~VS = RS
~IS +

d

dt
~λS (B.5)

By considering integration period of Ts, the corresponding flux can be approximated in
d-q coordinates as:

λdS = (Vd −RSId)Ts + λdS0

λqS = (Vq −RSIq)Ts + λqS0 (B.6)

where RS is the stator equivalent resistance. λdS0 and λqS0 are the initial value of flux
in the d and q directions at each sampling time. The magnitude and the phase of the flux
can be found as:

λS =
√
λ2
dS + λ2

qS

θr = tan−1(
λqS
λdS

) (B.7)

Now, the phase difference between the rotor and stator equivalent flux vectors can be
calculated as:

δ = θr −
∫
ωmdt (B.8)

The motor produced torque is proportional to the cross product of the rotor and stator
equivalent flux vectors. As a result, the torque magnitude can be estimated as:

Test =
3

2
pλSλpmsinδ (B.9)
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Figure B.3: MG2 inverter schematic

B.1.3 Direct Torque Control

According to Figure B.2, the torque and flux errors are required for DTC scheme. Based
on the setpoint torque magnitude (T ∗), the stator desired flux (λ∗S) is calculated.

λ∗S =
2T ∗

3pλpm
(B.10)

The schematic of the IGBTs of the electric drive is shown in Figure B.3. By turning
the corresponding insulated gate bipolar transistors(IGBTs)on and off, different voltage
values can be applied to the three phases of the motor.

Table B.1 shows how inverter switching scheme can produce different voltage vectors.
These voltage vectors are presented in Figure B.4 which make six sectors on the motor
phase plane (Θi).

Based on the sector where the stator flux vector is located at each time step, a specific
voltage vector can be chosen to change the flux and torque magnitude. Choosing the
appropriate voltage vector can alternate λS magnitude and δ in order to remove flux (dλ)
and torque (dT ) error, respectively. Note that δ increase to 90◦ leads to the maximum
produced torque magnitude. Assuming λS is located in sector Θ1, choosing ~v2 increases
the torque, but ~v6 leads to torque decrease.
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Table B.1: Switching table

voltage vector a b c
v0 0 0 0
v1 1 0 0
v2 1 1 0
v3 0 1 0
v4 0 1 1
v5 0 0 1
v6 1 0 1
v7 1 1 1

Figure B.4: Six sectors representation

183



Figure B.5: Voltage vector selection scheme

Table B.2: Torque and flux hysteresis

bλ = 1 for dλ < −ελ
bλ = 0 for dλ > ελ
bT = 1 for dT < −εT
bT = 0 for dT = 0
bT = −1 for dT > εT

Torque (bT ) and flux (bλ) variation indices can be found based on the torque (dT ) and
flux (dλ) errors according to Table B.2.

For different values of bλ and bT , one can populate the Takahashi and Naguchi switching
table [189] in order to control the motor torque.

In the next section, the design scheme is applied to the high-fidelity model of electric
drive which is developed in the MapleSim software.

B.2 Power Electronics High-fidelity Model

The permanent magnet synchronous motor and the associated inverter average model of
MG2 is shown in Figure B.6.

184



Table B.3: Takahashi and Noguchi switching table

Flux variation Torque variation Θ1 Θ2 Θ3 Θ4 Θ5 Θ6

bT = −1 v6 v1 v2 v3 v4 v5

bλ = 1 bT = 0 0 0 0 0 0 0
bT = +1 v2 v3 v4 v5 v6 v1

bT = −1 v5 v6 v1 v2 v3 v4

bλ = 0 bT = 0 0 0 0 0 0 0
bT = +1 v3 v4 v5 v6 v1 v2

Figure B.6: Electric drive high-fidelity model in MapleSim
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Figure B.7: (a) MG2 torque along one UDDS drive cycle for Blended mode CRPE-eMPC
strategy (b) MG2 Torque tracking error (c)zoomed view for t ∈ [780, 860]s

This model consists of three main parts: inverter average model, current/voltage
sensors, and permanent magnet synchronous motor. The chemistry-based model of the
Lithium-ion battery pack is considered to determine the maximum available DC voltage at
each time step (Vdc in Figure B.3). The exerted torque load on the electric drive from the
powertrain is also shown in Figure B.6. We can also consider the same model for MG1.

B.3 Results of Simulation

The control scheme should be able to follow all MG2 torque setpoints which are discussed
in chapter 4,5, and 6. In this section, the performance of the control scheme is evaluated
by considering the torque setpoints of Figure 6.11.

The result of simulations for the motor torque is shown in Figure B.7. Figure B.7-b
demonstrates the setpoint tracking performance of designed control scheme within 80s.
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Figure B.8 presents the result for different variables which are involved in controlling
the motor torque with data acquisition frequency of 50 Hz. Figure B.9 shows how fast
the switches are turning on and off to make the motor produce the desired torque within
smaller time period of 40 ms. Here, the data acquisition frequency is 5 kHz.
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Figure B.8: (a) MG2 equivalent stator flux (b)MG2 torque (c) flux and torque varia-
tion indices (d) flux vector direction (e) dq current (f) dq voltage (g) Measured currents
(h)Applied voltages (i) IGBTs on/off status for measurement sampling time of 20 ms
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Figure B.9: (a) MG2 equivalent stator flux (b)MG2 torque (c) flux and torque varia-
tion indices (d) flux vector direction (e) dq current (f) dq voltage (g) Measured currents
(h)Applied voltages (i) IGBTs on/off status for measurement sampling time of 20 µs
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Appendix C

CAN Bus Arbitration ID

On a CAN bus, each of the nodes are directly connected to the bus, and there is no central
control unit to regulate the communications. Instead, CAN bus is a serial message-based
protocol, where each node can send and receive messages when the bus is free. The priority
of each message is identified by an arbitration ID, where lower IDs have the higher priority.

The arbitration ID also serves as the name tag for each message. When a node transmits
a message on the CAN bus, the message is received by every node on the bus. Each node
can then ignore the message, or do a specific task based on the ID and the contents of
the message. The other part of a CAN message is the data frame. A CAN data frame
is defined byte-wise, i.e., the message consists of groups of bytes that contain an integer
number. Thus, to send a variable, it should be scaled to an integer number, based on its
range and required accuracy. When the variable is transmitted and received, it is scaled
back to its original format. When a variable requires more than one data byte to be
transmitted (when its range exceeds [0,255]), it is divided into a number of bytes. Careful
attention is required during the processes of turning the variable into separate bytes and
the ordering of bits in each byte. In a CAN message, the bits are sent one by one as a serial
signal. When the whole message is sent, it is interpreted as a number of bytes. However,
the way the bits are grouped into bytes shows inconsistency between different devices and
software packages. For example, the Woodward compiler takes the first eight bits of the
message as the byte 7, but LabVIEW considers the same order of bits as byte 0 (see Figure
C.1).

There are also various ways to interpret the multi-byte numbers. This is referred to as
the endianness. In little endian format (Intel), the least significant byte is first and has
lower index, whereas in big endian format (Motorola), the least significant byte is sent last
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Figure C.1: Different byte allocation methods in CAN data frame

Figure C.2: An example for different endianness definitions

and has the highest index. The difference in endianness is illustrated in Figure C.2. In our
setup, the little endian mode is used to interpret data bytes.
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