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Abstract

Mobility improvement for patients is one of the primary concerns of physiotherapy reha-
bilitation. In a typical physiotherapy session, the patient is instructed to perform multiple
exercises, based on a specific regimen recommended by the physiotherapist for each patient.
The physiotherapist then evaluates the patient’s progress based on his or her performance
during the exercises. Providing the physiotherapist and the patient with a quantified and
objective measure of progress, based on both individual exercises and the exercise set, can
be beneficial for monitoring the patient’s performance. The quantified measure can also
be beneficial when the physiotherapist is not available, e.g., crowded gym or rehabilitation
at home.

In this thesis, two approaches are introduced for quantifying patient performance. One
approach describes the movement timeseries by statistical measures and the other by a
stochastic model. Both approaches formulate a distance between patient data and the
healthy population as the measure of performance. Distance measures are defined to
capture the performance of one repetition of an exercise or multiple repetitions of the same
exercise. To capture patient progress across multiple exercises, a quality measure and
overall score are formulated based on the distance measures and are used to quantify the
overall performance for each session.

The proposed approaches are compared to several existing approaches, including sam-
ple distribution approaches (two sample kernel), classifier-based approaches (Naive Bayes,
Support Vector Machines, and Kullback-Leibler Divergence), and dynamical movement
primitives. In their original formulation, existing approaches are not capable of estimating
measures of performance for multiple exercises. Therefore, the measures of performance
for multiple repetitions of the same exercise are estimated using the existing approaches,
while the formulation proposed in this thesis is used to estimate the overall performance
for multiple exercises in one session.

The effects of different variabilities in human motion on the performance of the pro-
posed approaches and the comparison approaches are investigated with both synthetic and
patient data. The patient data consists of rehabilitation data recorded from patients re-
covering from knee or hip replacement surgery, the associated exercise regimen and phys-
iotherapist evaluations of progress. The methods are evaluated quantitatively based on
correlation between methods, correlation with exercise regimen difficulty, and qualitatively
based on the patients’ medical charts. The proposed approaches are capable of capturing
the trend of progress for the synthetic dataset and are superior to the existing approaches
in presence of multiple sources of variability. For patient data, the proposed approaches
correlate moderately with the score obtained from the exercise regimen, and qualitatively
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correspond with the patients’ medical charts. The results indicate that the quantified mea-
sures of progress obtained from the proposed approaches are promising tools for supporting
physiotherapy practice through monitoring patient progress.
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Chapter 1

Introduction

The application of machine learning techniques to human motion analysis has grown rapidly
over the past few years. Machine learning for human motion analysis has been used for
gesture recognition during human-machine interaction [36], action recognition [1], and
sport science [66]. A particularly promising application is in the field of rehabilitation
and physiotherapy. Measurement and analysis of physiotherapy data have the potential to
provide an objective and quantitative measure of patient progress leading to improvement
in physiotherapy treatment. A short version of this work has appeared in [97].

During a typical physiotherapy session, the physiotherapist instructs the patient to
perform a number of exercises, each with several repetitions. The set of exercises chosen and
the number of repetitions may be customized for each patient. The physiotherapist then
evaluates the patient’s progress based on their performance. In current clinical practice,
the patient’s performance is typically assessed using visual observation of the patient’s
motions, questionnaires, and goniometry. Questionnaires such as the Falls Efficacy Scale
[142] are used to determine the patient’s confidence in performing a task. Activity based
tests such as the Community Balance and Mobility Scale [45] are used to assign a score to
the patient’s motion capabilities.

Goniometry is a technique of measuring joint angles which isolates a single body joint
in order to evaluate a subject’s range of motion [87]. While goniometry can be effective
when measuring the motion of a single joint, it is a technique of measuring joint angles
which isolates a single body joint in order to evaluate a subject’s range of motion [87].
Goniometry is not accurate when determining the range of motion for multiple degrees of
freedom during complex 3D motions.

The current measurement and assessment techniques require additional physiotherapist
effort and monitoring, and are of limited utility when measuring complex whole body move-
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ments. Automation of patient observation would support physiotherapy practice through
automated assessment and evaluation of exercise performance and more accurate mea-
surement of complex multi-joint movements. An automated system could also provide
the therapist with numerical metrics to assess the patient’s recovery process and poten-
tially allow physiotherapists to assess the effectiveness of various treatment protocols over
a population of patients.

Patient data analysis for progress monitoring is a challenging task because of the com-
plexity of human motion. In particular, there are a number of challenges that need to
be addressed: (1) high dimensionality of the data, (2) spatial and temporal variability
of movement, and (3) variability of the patient population and the associated treatment
regimens. Human movement consists of synchronous recruitment of multiple degrees of
freedom (DoF), making single DoF comparisons (e.g., only comparing the range of motion
in one joint) incomplete and possibly unreliable.

Human motion has significant temporal and spatial variability for different repetitions of
the same exercise. Since humans differ in their characteristics, such as age, gender, height,
and weight, variability between different subjects is also observed. When recovering from
an illness or surgery there are variabilities caused by progress and improvement through
rehabilitation, differing levels of pain during the course of treatment, as well as differing
levels of fatigue over the course of a session. During the course of rehabilitation, patients
frequently are observed to exhibit compensation. Compensation is a term that refers to
recruitment of additional or different degrees of freedom [72] while performing a certain
exercise. Other sources of variability include the measurement system and the algorithms
used for deriving the joint angles, such as integration drift, initial sensor positioning, and
sensor position change.

The purpose of progress monitoring is isolate the changes in movement associated with
recovery1 and improvement2. The presence of multiple other sources of variability makes
this task challenging. Furthermore, the exercises are performed based on a specific regimen
instructed by the physiotherapist for each patient. The regimen differs from patient to
patient depending on their health status, age, and special conditions. Therefore the same
exercises are not performed by an individual patient over the course of treatment, nor is the
same sequence of exercises used across different patients. The proposed approach should
be flexible to detect changes in the patient’s performance for any set of exercises.

In this thesis, a previously developed body-worn sensor system and associated algo-

1Changes in patient performance which are due to the healing of the surgical wound, reduction of
swelling, and reduction of the pain level.

2Changes in patient performance which are due to improvement in range of motion, improvement in
muscle control, and improvement in speed of motion.
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rithms for measuring human movement during rehabilitation is used. The system esti-
mates the human pose at each measurement instance in terms of joint angles [76], and
segments individual exercise repetitions from the continuous time series data [77]. The
overall system is illustrated in Fig. 1.1. The data is collected from body worn inertial
measurement unit (IMU) sensors attached to the patient and the joint angle position, ve-
locity, and acceleration are derived. The joint angle position, velocity, and acceleration
data are then segmented such that each segment begins with the start of an exercise rep-
etition and ends when the exercise repetition is finished. In this thesis, we focus on the
last two steps depicted in Fig. 1.1, i.e., extracting informative features and developing
measures of performance.

1.1 Contributions

This thesis addresses the following challenges in the assessment of exercise performance
during physiotherapy:

1- How to assess the patient performance for one repetition of an exercise.

2- How to assess the patient performance for multiple repetitions of the same exercise.

3- How to assess the patient performance for multiple repetitions of different exercises.

We propose two approaches for progress estimation based on the segmented motion data,
based on a comparison between patient movement and healthy population movement.

Feature-based method for individual exercise and exercise set assessment: In
the first approach, descriptive features are extracted from joint angle positions, velocities,
and accelerations. The feature extraction method proposed in this approach is motivated
by the biomechanics literature [117] [146]. For each exercise, informative features are
selected from the feature set. The measure of performance for a repetition timeseries is
computed using the distance between the feature vector of the patient and the mean of the
healthy population in the feature space. The measure of performance for a repetition set
is calculated by computing the average of the measures of performance of the repetition
timeseries. The measure of performance for an exercise set is calculated by calculating the
weighted average of the measures of performance of the different repetition sets.
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Stochastic model based method for individual exercise set assessment: In the
second approach, the descriptive features are extracted from the HMM of the joint angle
positions, velocities, and accelerations. The feature extraction method proposed in the
second approach provides a model of the timeseries, which is more common in the machine
learning literature [67] [71] [3]. For each exercise, the informative features are selected from
the feature set. The measure of performance for a repetition set is determined using the
distance between the feature vector of the patient and the mean of the healthy population
in the feature space. The measure of performance for an exercise set is calculated by
computing the weighted average of the measures of performance of the repetition sets.

Progress estimation from multiple exercises: The distance measures obtained us-
ing each proposed approach are utilized to quantify the performance quality of a single
repetition of an exercise, a set of repetitions of the same exercise by comparing the perfor-
mance of patients with the performance of the healthy population. The overall measure of
performance for a set of different exercises is obtained by computing the weighted average
of the measures of performance of the repetition sets in the exercise set, while consider-
ing the number of repetitions for each exercise and exercise difficulty. These measures
are used to provide the patients and the physiotherapists with feedback on the patient’s
performance during rehabilitation.

Systematic comparison and evaluation of proposed and existing methods on
synthetic data: The proposed approaches are compared to several existing approaches,
including sample distribution approach, classifier based approaches, and the DMP-based
approach. The sample distribution approach is based on the similarity of the sample dis-
tributions for two timeseries, and is also a common approach in the machine learning
literature [39]. This method enables the detection of the small perturbations in human
motion and is therefore capable of capturing differences in the smoothness of the motion.
The classifier-based approach uses the same statistical features as the first proposed ap-
proach. In this approach, a classifier is trained to separate the healthy population from
the patients and the classification criterion is used as the measure of performance. The
DMP-based approach uses the features extracted from the DMP models of the joint angle
positions, velocities, and accelerations, and uses the distance between the features of the
healthy population with those of the patient population as a measure of progress.

The proposed approaches and the existing approaches are evaluated using a synthetic
dataset. The synthetic dataset is used to systematically investigate the effects of the
variabilities typically seen in human motion on the performance of the proposed approaches
and the existing approaches.
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Figure 1.1: An overview of the complete measurement and analysis system. The IMU sen-
sors are mounted on the patient’s knee and ankle. Angular velocity and linear acceleration
are collected from the sensors and the five joint angles are estimated using the extended
Kalman filter [76] (q1: extension/flexion of the hip, q2: internal/external rotation of the hip,
q3: abduction/adduction of the hip, q4: extension/flexion of the knee, q5: internal/external
rotation of the lower limb). The data is then segmented [77] so that each segment starts
with the beginning of one repetition timeseries and ends when the repetition is completed.
Features are extracted from the joint angles’ segmented timeseries and are used to obtain
the measures of progress.

Validation of proposed method on patient dataset: The clinical dataset is used to
assess the performance of the approaches for real patient data. The performance of both
proposed approaches and the existing approaches are evaluated on the real patient data.
The physiotherapist assessment can be implicitly obtained from patients exercise regimen.
The result of each approach is compared to the score obtained from the exercise regimen.
Furthermore, the results of the proposed approaches are compared to patient’s medical
chart.
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1.2 Outline

This thesis is organized as follows: Chapter 2 overviews the related work and motivates the
application of continuous measures in physiotherapy rehabilitation. The current state of
the art mostly consists of works that either use a classifier for distinguishing two populations
based on their motion, or use classification criteria as a measure of similarity between two
populations. Very few existing methods consider the gradual changes occurring in patient
performance and none of the works are extended to include exercise sets with more than
one exercise type. Furthermore, many of the related works are not validated on a patient
dataset.

Chapter 3 overviews the mathematical background on machine learning techniques
that are used in Chapters 4-6. The Naive Bayes, Support Vector Machines, and Kullback-
Leibler divergence classification approaches are described in this chapter and are later used
for comparison with the proposed approaches.

Chapter 4 presents the proposed approaches for estimating patient progress during
physiotherapy rehabilitation. The proposed approaches consist of the feature-based ap-
proach, and the HMM-based approach for assessing individual exercises, as well as an
approach for assessing progress based on a set of multiple exercises. Furthermore, this
chapter provides the formulation for the comparison approaches, including the kernel-based
approach, the DMP-based approach , and the classifier-based approach.

Chapter 5 presents the results of applying each of the proposed approaches on a syn-
thetic dataset. The dataset is designed to simulate progress in patients’ range of motion
and speed differences. The data set is then subjected to the different types of possible
variabilities similar to those observed in human motion, and the results of each approach
under each enforced condition are evaluated.

Chapter 6 presents the results of applying each of the proposed approaches on a real
patient dataset. The dataset contains the motion data for 18 patients undergoing reha-
bilitation after a knee or a hip replacement surgery. The results of each approach are
compared to the qualitative assessment of the patients’ motion, which are obtained from
medical charts, and a quantitative estimate of performance based on the exercise regimen
difficulty instructed by the physiotherapist during rehabilitation.

Lastly, Chapter 7 discusses the properties of the proposed approaches, summarizes the
key contributions of the thesis, and outlines directions for the future work.

6



Chapter 2

Related Work

This chapter provides an overview of the related work on human motion analysis and
its application to rehabilitation. In Sec. 2.1, different applications of human movement
analysis are introduced, and examples of techniques utilized by each field of application
are provided. Sec. 2.2 describes the current state of the art for human motion analysis in
rehabilitation. The methodology used by each publication in this category is introduced
and a comparison between different approaches is provided.

2.1 Human Motion Analysis

Human movement analysis is an active area of research with a wide range of applica-
tions including action recognition [1], gait recognition [6], gait identification [93] [32] [54],
gesture recognition [36], motion imitation in robotics [84] [67], affective human computer
interaction [48], sport science [66], medical diagnosis [125], and rehabilitation [2].

Most works in the action recognition category focus on correctly labelling a motion
using a classifier [96] [7] [38] [49] [81]. A common approach in this application field is to
train classifiers based on a known motion set and then use the classifiers to label motions
performed by the demonstrator [124] [7] [50]. For example, Udin et al. [124] assume that
the demonstrator performs a motion from a specific set of motions. They train HMM
models for each motion and for every new motion performed by the demonstrator. They
compute the probability of the sequence belonging to each model, and choose the most
probable model as the label.

The gait recognition category focuses on labelling different types of gait, such as healthy
and elderly gait patterns [6]. In most cases, features are extracted from the collected
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timeseries, they are then used in training classifiers for a specific set of gait motions. The
classifiers are then used to label different types of gait [6] [31] [136].

In gait identification applications, the objective is either to distinguish between different
individuals based on gait data collected from each subject (between subject differences) or
to detect differences between multiple trials of one subject’s gait patterns (within subject
changes). For example, Kale et al. [54] use the width of the outer contour of the silhouette
of a walking person as the image features. A set of key stances during the walking cycle
are chosen, and the Euclidean distance of a given image from this stance set is considered
as the set of the lower dimensional features. A continuous Hidden Markov Model is trained
using several such lower dimensional vectors, and is used for gait identification.

Making human-computer interaction more intuitive is the main objective of affective
human computer interaction. One of the means to facilitate this interaction is for the
computer to detect different poses and gestures performed by the user [48].

In the gesture recognition field, the objective is to assign labels to human postures and
gestures. Camurri et al. [17] detect expressive gestures by analysing motion data collected
from participants. They introduce new features that correspond to tempo changes, un-
derlying rhythm of the motion, and contraction or expansion of limbs with respect to the
body center. They use these features to train a decision tree, which is then used to classify
different expressive gestures.

In motion imitation for robotics, the focus is on transferring human knowledge of move-
ment to a robot. Nakazawa et al. [84] use a motion capture system to collect human motion
data. They detect the motion primitives by using the correlation index of the end effec-
tor’s position between different trials. They generate new movements by concatenating
multiple motion primitives. The resulting motions are implemented on a humanoid robot
using inverse kinematics and a dynamic balancing technique. Kulic et al. [67] use an in-
cremental clustering algorithm to incrementally learn different motions performed by the
demonstrator without prior knowledge about the motion set.

In the sport science field, some works focus on detecting gradual motion changes that
occur due to sports training [66] [35]. Kulic et al. [66] use an HMM-based model for
modelling human motion and then use Kullback-Leibler divergence to capture the changes
in human motion as a result of sports training.

Human motion analysis is also used for medical diagnosis purposes. Most of the pub-
lications in this category focus on distinguishing the healthy population from the patient
population using classification algorithms [120] [125] [28]. Toro et al. [120] use a hierar-
chical analysis on sagittal kinematic gait data derived from healthy children and children
with cerebral palsy to distinguish between the two populations.
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The objective of the above-mentioned applications is either to recognize what movement
is performed, e.g., [49] or how a movement is performed, e.g., [36]. Often, human motion
analysis is divided into four stages as follows:

• Collecting and Preprocessing the Data

• Feature Extraction and Feature Selection

• Classification or Regression

• Validation

Depending on the application, the existing works differ in how they approach the dif-
ferent stages of human motion analysis.

2.1.1 Collecting and Preprocessing the Data

The data collection procedure depends significantly on the application and the purpose of
the study. The collected data often contains undesirable variabilities caused by the limi-
tations of the data collection procedure. Therefore, often preprocessing steps are required
to lessen the effect of such variabilities on the data.

Camera and other visual tools are typically used to collect data where ease of data
collection is essential and sensors or markers cannot be placed on the subjects either due
to mobility concerns, e.g., children with cerebral palsy [31], or due to application, e.g.,
video surveillance [133]. The data collected using visual cameras require image processing
techniques to extract human motion from image frames. This can be a hard task because
often extracting motion information is affected by the background scene, occlusion and
self-occlusion, color and lighting variability, noise, and other well known computer vision
challenges [129]. Preprocessing the data to extract human motion from the image frames
often involves motion segmentation and object classification, where the former aims at de-
tecting regions corresponding to moving objects such as people and vehicles, and the latter
focuses on distinguishing the relevant targets from other moving figures. Common motion
segmentation techniques include background subtraction, temporal differencing, and op-
tical flow, and common object classification techniques include shape-based classification,
and motion-based classification [129].

In cases where mobility, motion accuracy, and the privacy of participants are important,
wearable sensors that collect information about speed, angle, position, and acceleration are
utilized. This data collection approach allows collecting the acceleration and velocity of
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each limb directly but is susceptible to sensor noise and is affected by communication issues
between the sensors and the database recorder. The source of undesired variations in the
data collected from wearable sensors depends on the sensor type. The accelerometers are
often affected by high frequency noise. Some common approaches for removing the high
frequency noise include wavelet decomposition [33], and low pass filtering [76]. Further-
more, the sensors are not always mounted in a consistent way between different trials, and
could rotate during a single trial. This results in alignment differences between different
trials, and the samples of the same trial. This source of variability can be reduced by
initializing the values of the sensors while maintaining a specific posture [73] [33]. The
gyroscopes have a floating initial value, which is affected by temperature and acceleration.
This type of variability can be lessened using a number of calibration techniques [33] [90].

Some of the works use motion capture to collect data [147] [109] [63]. In this method,
reflective markers are placed on selected relevant landmarks which are often close to each
joint, and the position of the markers are either utilized directly for motion analysis,
or are utilized to derive the joint angles using inverse kinematics. The system is very
accurate in estimating the position of the markers and is therefore a common approach
in the biomechanics and robotics literature [80] [11]. The cameras in the motion capture
system need to be fixed which makes the system immobile. Furthermore, the approach
requires specific hardware and special software programs, and the cost of the software and
the equipment can be prohibitive. The collected data can contain missing markers due
to self occlusion. Moreover, if the markers are placed too close to each other, the system
can mistakenly interchange the position of each marker. These errors need to be fixed
during post processing by correcting the marker labels and interpolating the position of
the missing markers.

The mentioned approaches are not the only methods proposed for collecting the data
and data collection approaches could be customized based on the application of the study.
For instance, Sun et al. [113] use ultrasonic modules and calculate joint angles from the
distances measured by the modules.

2.1.2 Feature Extraction and Feature Selection

Depending on the application and the data collection approach, different feature extraction
and feature selection techniques are utilized. When the collected data is available in the
form of image sequences, some studies use active contours to model the motion of the
moving object, where the idea is to have a representation of the bounding contour of the
object and update it dynamically over time. The other common approach is to track the
motion using features such as points, lines, or blobs [129].
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Where the data is collected using wearable inertial sensors, some studies use the time
series of the collected data to estimate the joint angles of the human body for better com-
prehension [76], whereas others use the raw data to avoid inaccuracies caused by inaccurate
modelling, and integrating or differentiating variabilities caused by sensor limitations [117].

To avoid losing information, some studies use the entire timeseries for their analy-
sis [117]. However, this approach increases the calculation complexity, and increases the
feature space. Some studies use statistical features extracted from the timeseries [125],
whereas others use a model the timeseries in their analysis [67]. The former is a common
approach in the biomechanical literature [103] and is fast to compute, and the latter is
a common approach in the machine learning literature, and reduces the effect of outliers
while considering the temporal and spatial variabilities and attributes [146] [66].

For example, Sun et al. [113] use the time series directly as the feature, whereas Zhang
et al. [144] and Uddin et al. [124] extract the temporal and spatial characteristics of the
time series and consider those as their features. Statistical characteristics are one of the
very common features chosen by most works. Świtonński et al. [115] also consider frequency
based features such as the first five values of the Fourier Transform on the time series in
their feature sets, and Glowinski et al. [36] include energy and jerkiness in their feature
set to detect frustration. Some works use the projection of the data as their features; for
example, Jiang et al. [50] use the left eigenvector of the singular value decomposition of
the observation matrix.

2.1.3 Classification and Regression Techniques

Based on the purpose of the study, classifiers or regression techniques are used. Classifi-
cation techniques are used when the purpose of the study is to distinguish two or more
classes from each other. Classifiers are trained using either the descriptive features, e.g.,
[146] [50], or the model of the timeseries, e.g., [67]. Regression techniques are often used
when the purpose of the study is to assign a continuum value as the degree of membership
of a subject to a certain class. The regression techniques often utilized the descriptive
features of a timeseries to construct a regression function, e.g., [115].

For example, Sun et al. [113] creates a model for the time series using robust fitting and
check if the subject’s time series falls in the prediction interval. In this case, the subject
is considered healthy. Taylor et al. [117] use an Adaboost classifier to distinguish correct
motions from incorrect motions.

In a few cases, a combination of classification and regression is utilized. Dao and
Tho [28] use a predictive decision tree for regression purposes, where each node contains
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the degree of belief for cerebral palsy pathology after certain gait patterns are observed.
Bayesian Networks are commonly considered for providing a degree of belief of a subject
having a condition given certain observations. Van Gestel et al. [125] use the Bayesian
Network to decide on whether a subject has a gait pattern characteristic of cerebral palsy.

2.1.4 Validation

Proposed techniques for human motion analysis for rehabilitation and medical diagnosis
are often hard to validate because the medical science cannot be used to validate the
results of some works, e.g., [125], expert labels are often based on subjective tests and
evaluation, e.g., [117], expert labels are often not available, e.g., [115], there is limited
access to clinical data, e.g., [146] [117]. Due to such limitations, most works validate their
results utilizing cross validation, generalization to new subjects, simulation, figures and
charts, and comparison with other techniques.

For validation, most papers chose 10-fold cross validation [117] [53]; However, Van Ges-
tel et al. [125] use 80% of the data for training and 20% for testing. Dao and Tho [28]
choose within individual cross validation, between individual cross validation, and leave
one out as their testing methods. Furthermore, this work checks the generalization success
of the classifier when facing a new subject. Jung et al. [53] use real patients for their vali-
dation; Taylor et al. [117] use weights and wearable joint supporters as a means to enforce
faulty motion.

2.2 Rehabilitation Motion Analysis

Automatic human movement analysis of rehabilitation exercises analyses the quality of
motion to discriminate between movements performed by healthy and patient populations
[113] and to perform illness diagnosis [120].

Typically, for a set of movements, key elements of human movement performance are
extracted. The important features are used to separate the unhealthy population from the
healthy population. Most studies base their methods on classifiers that can discriminate
between the two populations, e.g., [125] [144] [132] [28]. These studies rely on a patient
database for training such a classifier [28] [132]. For example, Van Gestel et al. train a BN
classifier based on clinically relevant three dimensional gait analysis (3D gait) parameters
extracted from motion data collected from patients with cerebral palsy and the healthy
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population, and use it to distinguish between the two. In addition to both healthy popula-
tion data and patient data, the BN classifier requires prior knowledge, which in this work
is obtained from clinical experts.

There are also studies that focus on monitoring features that change when a certain
medication or treatment is applied to a group of patients [115] [103], or focus on detecting
features that are specific to the patient population [64]. Switonski et al. [115], for example,
use a set of discriminating frequency based features in a classifier to discriminate between
Parkinson’s patient data before and after treatments such as medication and electrical
stimulation is applied.

Unlike classification methods which distinguish only between two classes (healthy vs.
patient), the focus of this thesis is on patient monitoring and the detection of gradual
changes in patient performance due to rehabilitation. To date, only a few studies have
focused on assessing the correctness of exercises performed [117] and analysing continuous
changes in the movement performed [53] [146].

Post stroke upper body functionality of patients is considered in [53]. The data is
collected using a robotic exoskeleton, and sixteen neural subnetworks provide the feature
vector. The data is collected from 77 healthy control subjects and 46 stroke patients
and both data sets are used in feature selection and classifier training. A multi-layered
neural network classifier is used to distinguish between healthy and patient populations.
The summation of outputs in the last layer is used to estimate the continuous measure of
progress for patients. The analysis is performed on sessions up to 50 days apart with 46
patients performing one exercise [53].

Taylor et al. [117] focus on multiple knee osteoarthritis rehabilitation exercises and
record the movements with wearable accelerometers. The exercises included in their study
are the standing hamstring curl, reverse hip abduction, and lying straight leg raise, which
are commonly prescribed to patients with knee osteoarthritis. They implement a classifier
to distinguish the correct performance of an exercise from several types of incorrect ones.
Descriptive features such as the mean, minimum, and maximum are calculated from the
sensor readings. No intermediate feature selection is performed, and the features are di-
rectly used in the classifier. Only data collected from a healthy population is used in the
analysis. They use the Adaboost algorithm applied to linear classifiers for each feature.
The healthy population data is labelled using expert opinion, and analysis is performed on
motions that have recognizable differences. They classify the remaining healthy data into
the predefined labels, including a correct class and several incorrect classes.

Zhang et al. [146] focus on post stroke rehabilitation. Motion data is collected with
IMUs, and raw sensor output is used for feature extraction after basic filtering. The time-
series data for each sensor is partitioned for different exercises. Partitions that correlate
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least with corresponding partitions of other exercises are considered as motion templates.
The patient data is then cross-correlated with the templates, and the peak values of the
cross-correlation are considered as the features. Data is collected from rehabilitation pro-
fessionals and a single patient is used for testing. K- Nearest Neighbours is used to classify
patient motions, and the distance from the center of the cluster is the estimate of contin-
uous progress.

The three studies consider different types of data, i.e., position, velocity, and acceler-
ation, and concatenate the numerical values in a common feature vector [53] [117] [146].
All three studies use classifiers as the basis of their analysis [53] [117] [146]. When contin-
uous labeling is desired, it is based on the decision criteria of the classifiers used [53] [146].
The classifiers are utilized to label the motions performed by patients [117], separate the
healthy population from the unhealthy population and monitor progress [53], and detect
whether patients perform motions correctly [146]. Neural network classifiers are the basis
of analysis in [53], and often need fine tuning or are hard to replicate or extend because
their structure makes clinical interpretation difficult.

Patient data is often hard to collect. Therefore in many cases patient data is not avail-
able and the validation is based on a healthy population imitating unhealthy movements
[117]. There are also cases were a small number of patients (less than 5) is used for vali-
dation, e.g., one patient in [146]. Generalizability to new patients can be evaluated when
the classifier is trained on the data of a subset of patients and tested on the data of the
remaining subjects. Only a few studies consider generalization to new patients, e.g., Jung
et al. [53] use 46 patients performing one exercise in their validation.

Validation of studies considering continuous labelling (e.g., [53]) is a difficult task be-
cause an objective quantitative ground truth of continuous progress is rarely available.
Quantitative assessment scores are often not collected for each physiotherapy session of
a patient due to the limited time in each session. Therefore, visual graphs and cross
validations (e.g., comparison to other classifiers’ performance) are common methods for
validation [53] [117] [146].

2.3 Summary

Analysing human motion for rehabilitation purposes is a challenging task due to the mul-
tiple sources of variability in human motion data, limitations of data collection, different
exercise regimens for each session and each patient, and within and between subject vari-
abilities. The current state of the art develops models for healthy and patient populations
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[117] [53] [146] and therefore is capable of assigning the class labels ”healthy” or ”un-
healthy” to captured movement sequences. The disadvantage of classification techniques
is that they cannot explicitly model the continuous progress in the patient motion and
therefore are not suitable for continuous monitoring purposes. Many of the works in the
state of the art focus on classifying healthy or unhealthy movements based on one specific
exercise [146] [53]. This is a limitation for monitoring patients over the course of reha-
bilitation because the exercise regimen consists of more than one exercise, and the set of
exercises performed changes over the course of the treatment. Furthermore, many of the
current works [53] [117] validate their methods based on synthetic and simulated data due
to lack of patient data.

In this work, we propose a technique that estimates the continuous measure of patient
improvement, and is capable of handling a variety of exercises. We validate our proposed
approaches based on both synthetic and clinical data. Of the challenges summarized above,
we address capturing the variability caused by improvement in human motion, validating
the proposed approaches based on clinical data, and handling different exercise regimens
for each patient and each session. We do not address factors such as pain and fatigue that
affect human motion, and we do not address the identification of causes for improvement
or degradation in performance.
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Chapter 3

Background

The progress estimation algorithms to be discussed in subsequent chapters involve mod-
elling human motion, and utilizing classification and regression techniques to distinguish
the healthy population from the patient population and capture patient progress. In
this chapter, the computational techniques used for developing the motion analysis tech-
niques are reviewed, including Hidden Markov Models (HMM), Support Vector Machines
(SVM), Naive Bayes (NB), and HMM and Kullback-Leibler (KL) divergence, Least Abso-
lute Shrinkage and Selection Operator (LASSO), kernel based approach for a two-sample
problem, and Dynamical Movement Primitives (DMP).

3.1 Hidden Markov Models

Modelling time series data (signals) allows capturing the main attributes and information
of a signal and representing them in a meaningful and compact manner. HMMs [98] are
a stochastic modelling approach that characterize the statistical properties of the signal.
This modelling technique captures both temporal and spatial variability of the timeseries,
and has been therefore applied in modelling human motion [67] [129].

The HMM represents the timeseries signal by an evolving unobservable state variable
(see Fig. 3.1a). The state variable transitions through a discrete set of values, and the
probability of these transitions is determined by the state transition matrix. At each time
step the system either remains in its current state or transitions to another state (see Fig.
3.1b). The state follows the Markov property, i.e., at each time step the state only depends
on its previous value. When modelling a timeseries using an HMM, the state is not directly
observable. The hidden state is inferred by the probabilistic relation between the state,
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Figure 3.1: (a) Depicts the HMM representation of a timeseries, at each time step the
hidden state s∗t+1 can be inferred by the probabilistic relation between the state, its
observable output and the previous state. (b) Depicts the state transition matrix, which
is illustrated as a directed graph.

its observable output and the previous state. To characterize an HMM λ the following
parameters are needed:

• State Transition Matrix A: This matrix determines the probability of transition-
ing from one state value to another. If a transition is possible between all the states
in an HMM, called an ergodic HMM, the transition matrix will not have any zero
elements. However, in cases that transitions are not possible between all states, the
elements of the matrix that correspond to disconnected states are zero. In this thesis,
we use a left-right HMM, in which each state can transit to one subsequent state and
itself.

• Observation Probability bi: In the continuous HMM, the probability of the ob-
servable outputs for each state is often represented using a mixture of Gaussian dis-
tributions. Human motion is a continuous phenomenon and therefore in this research
we use continuous HMMs. Based on our observations from the data, a single Gaus-
sian distribution is sufficient for modelling human motion. In this case, the mean, µ,
of the output distribution represents the most probable value for the output and the
covariance, Σ, of the output distribution represents the range of variability.

• Initial State Distribution π: This vector determines the probability that the
signal sequence begins with each state. In a left-to-right HMM, it is often assumed
that the signal begins in its initial state.
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The forward algorithm calculates the likelihood that the observation data O is generated
by the model λ as follows:

P (Q|λ) = π1a1,2a2,3 . . . aT−1,T (3.1)

P (O|Q, λ) = b1(O1)b2(O2) . . . bT (OT ) (3.2)

P (O|λ) = P (O|Q, λ)P (Q|λ), (3.3)

where Q is the state sequence, and, given the model λ, a is the probability of Q occurring
and b is the probability of O occurring.

The Baum-Welsh algorithm is an expectation maximization algorithm utilized to train
the HMM model in an iterative fashion [98]. In the first step, the expected value E is
calculated for the nth iteration model λn by taking the expectation of the log-likelihood of
the observation O, state sequence Q, and the model of the previous iteration λn−1 using
the following equation.

E(λn|λn−1) = E[log(P (O,Q|λn))|O, λn−1] (3.4)

In the maximization step the following equation is solved for λ to update the model pa-
rameters.

∂ log(O|λ)

∂λ
= 0 (3.5)

The two steps are repeated until the model parameters converge or the maximum number
of iterations is reached. In this research, the maximum number of iterations is 200.

3.2 Kullback-Leibler Divergence

Given two HMMs, λ1 and λ2, the Kullback-Leibler divergence (KL) measures the similarity
of the two models. This measure of difference between the two HMMs, λ1 and λ2, is defined
as

D(λ1, λ2) =
1

T
[logP (O(2)|λ1)− logP (O(2)|λ2)] (3.6)

where O(2) = O1O2O3 . . . OT is a sequence of observations generated by model λ2. As
can be seen from the formulation, Eq. 3.6 is a measure of how well λ1 matches the data
generated from λ2 compared to how well λ2 matches data generated from itself [98]. The
symmetric distance is:

Ds =
D(λ1, λ2) +D(λ2, λ1)

2
(3.7)
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3.3 Support Vector Machine

The Support Vector Machine (SVM) is a method that constructs a halfspace in any dimen-
sion n, and can be used for classification or regression tasks. Intuitively, a good separation
is achieved by the hyperplane that has the largest distance to the nearest training data
point of any class (functional margin), because in general the larger the margin of a clas-
sifier the lower the generalization error. The SVM formulation as given in [25] [114] is
obtained using the following procedure. Given a training dataset of size N i.e. (Lk,vk)

N
k=1

where vk ∈ Rn is the k-th feature vector and Lk ∈ {1, 0} is the kth class output value, the
SVM aims to construct a classifier of the form:

L(v) = sign(
N∑
k=1

αkLkψ(v,vk) + b) (3.8)

where αk ≥ 0 is the support vector coefficient, b ∈ R is the bias term, and ψ(v,vk) is the
kernel function which for the case of linear SVM is the same as dot product. The slack
variable ξk controls the allowable degree of misclassification of the data vi. The risk bound
is minimized by formulating the optimization problem

min
w,ξk

J1(w, ξk) =
1

2
wTw + c

N∑
k=1

ξk (3.9)

subject to:
Lk(w

Tφ(vk) + b) ≥ 1 , ξk ≥ 0 , k = 1, ..., N (3.10)

where w is the vector that defines the half space constructed by the SVM, c is a constant,
and N is the total number of data points. Fig. 3.2 illustrates an SVM classifier.

3.4 Naive Bayes

The Naive Bayes (NB) algorithm is a classification algorithm which is based on the Bayes
rule, and assumes that given the label of the classes, Y , the probability of the attributes,
v1 . . . vn, are independent of each other (see Fig. 3.3) [116]. The NB is a simplified version of
the Bayesian Network, where the probability of each node affects all the nodes connected to
it directly or indirectly. The NB representation allows for a simplified representation of the
probability of the input attributes given the label, i.e., P (V |Y ), and therefore simplifies the
problem of estimating this probability from the training data. In general, when V contains
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d

Figure 3.2: SVM model, illustrating the decision boundary of SVM, ξ is the amount of
misclassification, d is the distance of the support vectors from the decision boundary, which
is maximized by the algorithm.

n attributes which are conditionally independent of one another given Y , the probability
of attributes given the class labels is [116]

P (v1 . . . vn|Y ) =
n∏
i=1

P (vi|Y ) (3.11)

In NB classifiers, the objective is to train a classifier that will output the probability
distribution over the different outputs, Y , for every new observation of the input attributes,
V . The probability of a label given the new instance of the data is calculated using

P (Y = yk|v1 . . . vn) =
P (Y = yk)

∏
i P (vi|Y = yk)∑

j P (Y = yj)
∏

i P (vi|Y = yj)
(3.12)

The most probable class label for a new instance of data is the label which maximizes Eq.
3.6.

3.5 Dynamical Movement Primitives

Many fields of science such as robotics, human motion analysis, and neuroscience use
nonlinear dynamical systems to model complex behaviours. It is difficult to model and
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Figure 3.3: Naive Bayes

control the behaviour of non linear systems due to their parameter sensitivity, complex
phase transitions, and difficulty of analysing their long term behaviour.

The Dynamical Movement Primitives (DMP) [47], uses a set of linear differential equa-
tions as the base system. The method transforms the linear system into a weak nonlinear
system with desired attractor dynamics. The desired attractor dynamics is achieved by
adding a learnable nonlinear term to the the differential equations of the system. Ijspeert
et al. [47] use a damped spring model as the simple dynamical system therefore the system
model is

τ ÿ = αz(βz(ym − y)− ẏ) + f, (3.13)

where τ is a time constant, αz and βz are positive constants and are set such that the
linear system is critically damped, i.e., βz = αz

4
, f represents the attractor dynamics and

is called the forcing term, ym is the base of oscillation, y is the system’s position, ẏ is the
system’s velocity, and ÿ is the system’s acceleration [47].

The forcing term, f , is the term that adds the weak nonlinearity to the simple dynamical
system. f can be chosen such that the system has weak nonlinearities, and periodicity is
introduced to the system, i.e., limit cycle attractor [47].

In the limit cycle case, the forcing term f is obtained using the following equations

f(φ, r) =

∑N
i=1 Ψi(φ)wi∑N
i=1 Ψi(φ)

r, (3.14)

Ψi(φ) = e((cos(φ−ci)−1)), (3.15)

τ φ̇ = 1, (3.16)
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where Eq. (3.16) is a phase oscillator utilized for learning the limit cycle attractor, r
is the amplitude of the oscillator and in this thesis r = 1, φ ∈ [0, 2π] is the phase, Ψi are
Gaussian like periodic basis functions, and ci are the center of each basis function [47].
The weights of each basis function, wi, describe the shape of the original timeseries in the
effective region of each basis function. Therefore this wi can be utilized to determine the
difference between two timeseries.

3.6 A Kernel Based Approach for a Two-sample Prob-

lem

Statistical tests designed to distinguish between two sample distributions have a wide
range of applications. In bioinformatics, they are used to detect the effects of different
experimental procedures on micro arrays generated from the same tissue [39]. In database
attribute matching, where merging multiple fields are desirable, they are used to detect
the fields that correspond to each other [39].

Gretton et al. [39] propose a statistical test that determines whether two samples
are drawn from similar distributions, i.e., given that samples from two distributions are
available the test determines how similar the two distributions are. The statistical test
is defined as the largest difference in expectation of the functions in the unit ball of a
reproducing kernel Hilbert space. The statistical test as formulated in [39] becomes

MMD [P,R] =

 1

m2

m∑
i,j=1

k(pi, pj)−
2

mn

m,n∑
i,j=1

k(pi, rj)

+
1

n2

n∑
i,j=1

k(ri, rj)

 1
2

, (3.17)

where pi is the ith sample drawn from distribution P , ri is the ith sample drawn from
distribution R, k(., .) is the kernel function, m is the number of samples available from
distribution P , n is the number of samples available from distribution R, and MMD
is the measure of distribution similarity. For a set of samples drawn from two different
distributions, a large MMD value indicates that the samples are generated by different
distributions. As the distributions become more similar the value of MMD decreases. The
test value for samples of two distributions is then compared to a certain threshold. If the
MMD statistic falls above the threshold, the null hypothesis is rejected, and therefore the
difference of the distributions is statistically significant.
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3.7 Least Absolute Shrinkage and Selection Operator

Least Absolute Shrinkage and Selection Operator (LASSO) is a regression tool which is of-
ten used for estimating linear models [118]. LASSO minimizes the residual sum of squares
subject to the sum of the absolute value of the coefficients being less than a tuning param-
eter. This formulation of LASSO results in a zero value for some coefficients. The number
of zero coefficients depends on the tuning parameter. This property of LASSO makes it
useful for feature selection.

When applying LASSO for feature selection, for a set of inputs f1, f2, . . . , fk, an output
y and the following linear model

ŷ = w0 + w1f1 + w2f2 + w3f3 + . . .+ wkfk , (3.18)

LASSO adjusts the weights w0, . . . , wk such that
∑

(ŷ− y)2 is minimized and
∑k

i=0wi < t
where t ≥ 0 is a tuning parameter [118]. The parameter t is selected so that the weights
w are larger than zero for only a specific number of features. When wi becomes zero, the
input fi does not contribute to minimizing

∑
(ŷ− y)2, i.e., fi is either uninformative or its

information is redundant. Therefore the features with zero coefficients are not considered
as informative features, and only features with non zero coefficients are selected.

3.8 Kruskal Wallis

The Kruskal Wallis (KW) [65] one-way analysis of variance is a non parametric approach
that determines how likely it is for samples of multiple datasets to be from the same
distribution. For an input vector fi =

[
trial1, . . . , trialN

]
and label set Y =

[
y1, . . . , yN

]
,

the test ranks the data from 1 to N in an ascending order without considering the labels.
The test statistic is then calculated using

K =
12

N(N + 1)

∑ R2
i

ni
− 3(N + 1) ,

where Ri is the sum of the ranks in group i, and ni is the number of values in group i. The
probability of being from the same distribution (p) is approximated by Pr(χ2

g−1 ≥ K). A
lower value of p indicates that it is more likely for the datasets to have different underlying
distributions and that they are more likely to be separable. In our study, Fi contains the
values of the ith feature over the different trials of the healthy and patient populations.
The label set Y contains label values y ∈ {0, 1}. y is 1 if the feature value is from the
healthy population and 0 if the feature value is from the patient population. The features
with the lowest value of p are considered as the most informative features.
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Chapter 4

Patient Progress Estimation from
Rehabilitation Exercises

In this chapter, the proposed approaches for formulating the measures of performance for
repetitions of one or multiple exercises are presented. Furthermore, the application of
existing approaches to estimating measures of performance for repetitions of one exercise
is provided.

During each physiotherapy session, the patient is instructed to perform repetitions of
different exercises. The physiotherapist assesses the patient’s performance based on his
or her performance during each repetition of each exercise. Therefore, analysing patient
progress during physiotherapy requires answering the following questions:

1- How to assess one repetition of one exercise performed by a patient?

2- How to assess multiple repetitions of one exercise performed by a patient?

3- How to combine the evaluations from different exercises and obtain a score that
denotes the overall performance of a patient in a single session?

In this thesis, we aim to identify a composite index of movement features which can
quantify exercise performance. To address the above questions, we propose two approaches.
Each of the approaches proposed utilizes the difference between the patient’s motion and
the healthy population’s motion as the measure of performance for one or multiple rep-
etitions of an exercise. The exercise difficulty is then estimated based on the healthy
population’s performance, by assuming that as the exercises become harder, the variance
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Figure 4.1: The repetition timeseries and the repetition set provide the performance mea-
sures δ, and ∆. The overall score S assesses an exercise set of a session. During the knee
extension exercise, the subject performs a full knee extension/flexion without moving any
other joints. During the knee hip extension exercise the subject lies on the ground and
performs a full knee hip extension/flexion. During the squat the subject bends his knees
and hips while standing.

of the measure of performance between the healthy population increases. Lastly, utiliz-
ing the measure of performance for each exercise, and the exercise difficulty, the overall
performance score is calculated.

For both approaches, we assume that the motion data is available in the form of joint
angle positions, velocities, and accelerations. We also assume that motion data is available
from a healthy population performing the same set of exercises. We make the assumption
that, at the time of the analysis, we know which exercise is being performed, that the data
is segmented such that one single repetition of a certain exercise is a repetition timeseries
ω =

[
γ(1) γ(2) ... γ(T )

]
, where T is the duration of the repetition for that exercise,

and γ is a vector of joint kinematics γ =
[
q1 q2 . . . q̇1 q̇2 . . . q̈1 q̈2 . . .

]
. Multiple

repetitions of the same exercise performed in the same session are the repetition set for that
exercise Ω = {ω1, . . . ωn} where n is the number of repetitions. The set of multiple exercises
performed in the same session are the exercise set of that session Γ = {Ω1, . . . ,Ωm} where
m is the number of different exercises performed in the session (See Fig. 4.1).
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4.1 Proposed Measures of Performance for a Repeti-

tion Timeseries and a Repetition Set

In this section, we propose two approaches for estimating the measure of performance for
a single repetition timeseries of an exercise, and multiple repetition timeseries of the same
exercise. We also describe the procedure for obtaining the measure of performance for a
single repetition timeseries and a repetition set based on the related works. The proposed
approaches are based on comparing the patient’s motion to that of the healthy population.

4.1.1 Feature-Based Approach

In the feature-based method, the mean, minimum, maximum, skew, and range of motion
of the joint angle positions, velocities, and accelerations plus the duration of each repetition
timeseries are considered as the feature vector.

v =
[
µq1 minq1 maxq1 skewq1 romq1 µq2 . . . duration

]
(4.1)

skewqi =
1
T

∑T
j=1(qij − µqi)3

(
√

1
T

∑T
j=1(qij − µqi)2)3

(4.2)

romqi = maxqi −minqi (4.3)

This definition of the feature vector is desirable because it allows modelling the timeseries
of the data using statistical features. This method is fast to compute and can capture
the attributes of the timeseries from one example. However, since the features are defined
directly from the timeseries, the approach can be adversely affected by unwanted variabil-
ities such as noise. The feature vectors are extracted for each repetition of every exercise
performed over the course of rehabilitation. These features are also extracted from the
healthy population data for the same exercises. If the number of repetition timeseries is
larger than the number of features, features that reflect what changes most throughout the
rehabilitation are chosen using Least Absolute Shrinkage and Selection Operator (LASSO)
[118] (See Sec. 3.7). If the number of repetition timeseries is smaller than the number of
features, LASSO does not have enough samples to perform the regression task correctly.
In this case, we use Kruskal Wallis one-way variance analysis (KW) to select the most
informative features (See Sec. 3.8).

The distance measure is defined as the difference between the considered set of kine-
matic parameters and the mean of the healthy data. The healthy data is then considered
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Figure 4.2: Feature-Based Approach: In the first step, data is collected from the patient
using IMU sensors, and the joint angles are estimated. The data is then segmented such
that each segment begins with the beginning of an exercise, and the segment ends when
one repetition of the exercise is completed. Statistical features are extracted from the joint
angles’ timeseries, and the most descriptive features are selected using LASSO/KW as
described in Sec. 4.1.1. Lastly, the measures of performance for a repetition timeseries,
a repetition set, and an exercise set are calculated using a weighted distance between the
patient population and the healthy population in the feature space.

as the reference and the distance considering a set of kinematic parameters to the mean of
this reference dataset is the measure of progress for each exercise. The results of different
exercises are normalized by the mean and variance of their corresponding healthy dataset.
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The measures are then combined to obtain an overall score for each patient’s performance
in a given session.

Feature Selection

To assess the performance, it is essential to extract the informative features from the feature
vector and exclude those that are uninformative or redundant. The informative features
extracted from the feature vector are the top features. Different features may be informative
for different exercises, therefore the top features are selected automatically from the data by
looking for those features which show the most variation over the course of treatment and
are most different from the healthy population. As there are multiple sources of variations
in human motion, we cannot assume that there is a linear relationship between the number
of days in treatment and motion features. We use a linear model only for feature selection,
i.e., for identifying which features change during the course of treatment. When including
healthy population data, a linear model can be used to estimate the suitability of features
to discriminate between the healthy population and patient data while considering also a
possible linear dependence between feature and session number.

In our study, we use LASSO or KW for feature selection (See Secs. 3.7 and 3.8). For
LASSO the inputs f1, f2, . . . , fk are the features of the repetition timeseries and the output
y is the corresponding session number. The session numbers are normalized between 0 and
1, such that 0 corresponds to a patient’s first session, and 1 corresponds to a patient’s
last session. We select features that change with every session and among these features
the ones that most correspond to a linear relationship. This selection allows us to find
the features that are changing as patients progress through the sessions. For the purposes
of feature selection, we also consider the healthy population data in this regression. For
the healthy population, the label y is set to be 100 times larger than the patients’ last
session. Introducing this outlier forces the regression to be in the direction of the healthy
population data and helps to detect the features that not only change with the progress
of the patients but also separate the healthy population from patients. The value of y for
the healthy population directly affects the value of the weights, but the chosen features are
not changed as long as y is sufficiently large. We do not use the values of the weights in
our analysis and only use the features selected by this method.

The tuning parameter t is set such that five non zero coefficients remain. The remaining
5 features, which correspond to the five non zero coefficients, are considered as the top
features in the subsequent analysis. Preliminary experiments showed that the algorithm
is not sensitive to this value. Any value of t resulting in a range of 5-25 features results in
the same performance measures.
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For KW, for each feature, the inputs are the different trials fi = [trial1, . . . , trialN ],
and the output y is the label of the classes, healthy or patient, for each trial. The five
features with the smallest probability statistic p are considered as the top features.

Measure of Performance

To obtain a measurement for the performance of one exercise, the feature vectors are
extracted for the patient (VP ) and healthy population (VH) data as described in Sec. 4.1.1.

V
′

H = VH(topfeatures) (4.4)

V
′

P = VP (topfeatures) (4.5)

Based on our observations, to a smaller degree, healthy individuals employ the same
compensation strategies that patients use when performing an exercise, i.e., healthy sub-
jects show the same compensation strategies due to mental and physical fatigue, lack of
physical readiness, and misunderstanding the exercise instructions. For example, in the
knee hip extension exercise, the correct form of the exercise is to perform a full range of
knee extension while minimizing motion in the other joints. Based on our observations,
the healthy population often compensates during this motion by also rotating the exten-
sion/flexion hip joint. We assume that among the features chosen by LASSO or KW, the
ones with higher variance in the healthy population are more informative, because the
highly variant features are either features of the moving joint or are the features describing
the compensation strategy. Therefore more weight is given to the more variant features
in defining the distance measure. The distance δ between the patient repetition and the
healthy population data evaluates each repetition:

µH = mean(V
′

H) (4.6)

ΣH = diag(std(V
′

H)) (4.7)

δi = (V
′

Pi
− µH)TΣH(V

′

Pi
− µH) (4.8)

Where V
′
H is the healthy population top feature vector, V

′
Pi

is the patient’s top feature vector
for the ith repetition timeseries, µH is the mean of the healthy population’s top feature
vectors, ΣH is the diagonal matrix of standard deviations for the healthy population top
feature vectors, and δi is the distance between one repetition of the exercise performed and
the healthy group’s performance. We assume that as patients improve they get closer to
the healthy data and therefore a decrease in the value of δ over the course of rehabilitation
indicates improvement.
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Measure of Performance for Multiple Repetitions of the Same Exercise

For each patient, δ represents the measure of performance for one repetition of an exer-
cise. The median of the distance measures (δ) calculated for one exercise over the set is
considered as the overall distance measure for the repetition set of that exercise

∆Ω = median(δΩ) , (4.9)

where ∆Ω is the overall performance of one exercise in one session and δΩ is the vector
of distance measures calculated for every repetition timeseries data ωi in the repetition set
Ω. The median is used to lessen the sensitivity of the approach to outliers. The process of
calculating the measures of performance using the feature-based approach is illustrated in
Fig. 4.2.

4.1.2 HMM-Based Approach

The Hidden Markov Model (HMM) [98] based approach relies on features extracted from
HMM modelling of the joint angle timeseries. HMMs are trained on the repetition set of
each exercise for the healthy and patient populations.

Individual HMMs are learned for each member of the healthy population and for each
session of each patient; each repetition set is modelled using a 3 state, left-to-right model.
States 1, 2, and 3 correspond to attempting to reach the desired posture, reaching the
desired posture and pausing, and returning to the starting posture. The observations of
the HMMs are the position, velocity, and acceleration of the joint angles. The mean and
variance of the observation distributions in each state are considered as the feature vector.

v =
[
µstate1q1

σstate1q1
µstate2q1

. . . µstate3q̈5
σstate3q̈5

]
(4.10)

The feature selection is performed using LASSO or KW as described in section 4.1.1.

Measure of Performance

If the number of features is smaller than the number of the repetition sets, the top features
are selected using LASSO. If the number of features is larger than the number of the
repetition sets, the top features are selected using KW. We assume that among the top
features chosen by LASSO or KW those that are highly variant in the healthy population
indicate the rehabilitation process better. Therefore, we use the same procedure as section
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Figure 4.3: HMM-Based Approach: After motion recording and segmentation, a three-
state HMM is trained for each repetition set. The mean and standard deviation of the
observation for each state are considered as features. The most informative features are
selected using LASSO or KW, and the most informative features are selected using KW,
and the measures of performance for the repetition sets, and the overall exercise set are
calculated.

4.1.1 to calculate distance measures. The five features chosen by LASSO or KW are chosen
as the top features. The distance measure ∆HMM for a repetition set is obtained using the
HMM-based feature vectors and Eqs. 4.5-4.8.

The HMM is capable of capturing the statistical essence of a dynamic timeseries. Such a
definition of the feature vector is beneficial, because it models the most likely timeseries and
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the probability of variations. Furthermore, the feature-based approach requires expertise in
predefining the features whereas the HMM captures the features that describe the pattern
of the data automatically. The HMM is computationally more expensive than the feature-
based approach and to be effective, it requires multiple samples of the timeseries data
which may not be available. When the availability of data is not a concern, an advantage
of the HMM is that it can be trained using several timeseries and that it represents the
most likely timeseries. For this reason, training HMMs for each repetition timeseries is
not necessary to assess the performance for an exercise set or to assess an overall score.
Fig. 4.3 illustrates the required steps for calculating measures of performance utilizing the
HMM-based approach.

4.2 Comparison Approaches for Determining a Mea-

sure of Performance for a Repetition Timeseries

4.2.1 Classifier-Based Approaches

Classifiers are a common technique often used in the human motion analysis literature
for separating healthy population from patients [125] or to detect the changes in motion
for one exercise [53]. In this thesis, we compare the performance of the classifier-based
approaches in estimating the measures of performance for one exercise with the proposed
approaches and the remaining related works. The features are extracted from the timeseries
as described in Sec. 4.1.1. The most informative features are chosen using LASSO or KW
as described in Sec. 4.1.1.

Support Vector Machine

The SVM is a common classification technique, which is often utilized in the bio-mechanical
literature (See Sec. 3.3). When trained on the the entire feature set chosen by LASSO
or KW, the SVM performs poorly and is not capable of capturing the trend of progress.
The performance is improved when the SVM is trained using the top features chosen by
LASSO or KW weighted by the variance of the features in the healthy population. In this
work, the best results are reported, using the variance-weighted features.

Measure of Performance The SVM is trained using a subset of the data from both
classes (patient and healthy). The label L is 1 for the healthy population data and 0 for
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Figure 4.4: Classifier Based Approach: A classifier (NB, SVM, or KL-divergence) is trained
using half of the patient data, and the healthy population data. The measure of perfor-
mance for one repetition timeseries is calculated based on the classification criterion. The
measures of performance for a repetition set, and exercise set are then calculated.

the patient data. The classification decision of the SVM is based on

sign(
N∑
k=1

αkLkψ(v,vk) + b) (4.11)

This value corresponds to each training point’s distance from the decision boundary. We
consider the

∑N
k=1 αkLkψ(v,vk) + b value as the distance measure δSVM for repetition

timeseries of an exercise in each session. The median of these values is considered as the
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overall distance measure ∆SVM for a repetition set.

Naive Bayes

In this thesis, NB (See Sec. 3.4) is trained using the top features selected by LASSO or KW
in 4.1.1 on data from a subset of patients and the healthy population data following the
procedure described in Sec. 3.4. The probability of belonging to the healthy population
class normalized by the summation of probabilities of belonging to the healthy or patient
class is considered as the distance measure δNB for each repetition timeseries.

δNB =
Pr(y = healthy|v)

Pr(y = healthy|v) + Pr(y = patient|v)
(4.12)

Kullback-Leibler Divergence

The KL divergence measures the similarity of two HMMs. In the bio-mechanics literature
it is often the case that a class of data is modelled using HMMs and it is desired to detect
whether the rest of the data is from the same class. In such situations the KL divergence
is used as the classification measure [98].

Measure of Performance For the KL divergence, an HMM is trained for the entire
healthy population data and on every repetition set of every exercise and each patient. The
symmetric KL divergence DKLD for each patient is calculated for each repetition timeseries
using the procedure described in Sec. 3.2. The KL divergence is considered as the distance
measure δKLD of each repetition timeseries.

δKLD = DKLD(λ1, λ2) (4.13)

Fig. 4.4 illustrates the overall procedure of the classifier-based approaches.

4.2.2 DMP-Based Approach

In the DMP-based approach each timeseries is modelled using a non-linear dynamical
system. The non-linear component of the model is learned from the data as a set of weighted
basis functions. The weights of the nonlinear term are considered as the features and the
measures of performance are obtained by calculating the Euclidean distance between the
feature vectors.
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Figure 4.5: Illustrates the phase configuration and the basis configuration of the DMP-
based approach

Feature Extraction

We use DMPs (See Sec. 3.5) with limit cycle attractors to model each repetition set of the
patient population data. A DMP model is trained separately for each DoF, i.e., joint angle.
Therefore in this thesis, for each repetition set five DMP models are trained. An overall
DMP-model is trained for the healthy population, using the entire timeseries available in
the healthy population. To provide enough periods for the DMP to correctly estimate the
weights of the basis functions in the patient population, wi, the data for the repetition set of
each session is considered. The phase variable, φ, as given in 3.16, has a linear relationship
with time and is equal to 0 at the beginning of each repetition timeseries, and is equal to
2π at the end of each repetition timeseries. To provide the synchronization between all
DoFs, the same phase variable, φ, is used for modelling each DoF. The phase is divided
into n equal segments for each repetition timeseries, where n is the number of the basis
functions. The center of each segment is considered as center of the corresponding basis
function, ci (See Fig. 4.5). The amplitude r is set to 1. The values of the basis functions
are dependant on the value of the phase and are obtained using Eq. 3.15. For each DoF,
the joint angle position, velocity, and acceleration are available. The weights of the basis
functions are computed by utilizing least squares for Eq. 3.13.

The weight of the basis functions, w, for all DoFs are concatenated, and are then
considered as the feature vector.

v =
[
w1 w2 . . . wK

]
, (4.14)

where K is the number of basis functions used to model the repetition timeseries, n, times
the number of joint angles, i.e., K = n × numJointAngles. In this thesis, the DMP models
consist of ten basis functions, n = 10 1.

1From our observations the results do not change significantly when n is between 10 and 25
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Measure of Performance

The feature vectors are calculated for the healthy population and the patient population
using the procedure described in Sec. 4.2.2. The Euclidean distance is calculated between
the feature vectors obtained for each repetition set of each patient, and the weights of
the overall model of the healthy population. The calculated distance is considered as the
measure of performance, ∆, for the patient’s repetition set. The formulation becomes

vP = [w1, w2, . . . wK ], (4.15)

vH = [w
′

1, w
′

2, . . . w
′

K ], (4.16)

∆ = Norm(vP − vHi
), (4.17)

where vP is the feature vector calculated for one repetition timeseries of a specific
patient P , vH is the feature vector for a repetition timeseries in the healthy population,
K is the number of elements in the feature vector, wj is the weight of the jth basis
function, ∆ is the measure of performance for a repetition set, and is computed as the
Euclidean distance between the feature vectors of the patient’s repetition timeseries and
the feature vectors of the healthy population’s model. Figure 4.6 illustrates the procedure
for calculating the measures of performance using the DMP-based approach.

4.2.3 Kernel-Based Approach

In the kernel-based approach, the sample distribution of the patient’s motion is compared
to the sample distribution of the healthy population’s motion. We assume that as patients
improve, the sample distribution of their motion becomes more similar to that of the
healthy population. In this approach, temporal information is not considered, only spatial
variabilities are used for comparison.

Measure of Performance

For estimating patient progress during physiotherapy rehabilitation we use the two sample
kernel method as described in Sec. 3.6. We assume that the p samples of each repetition
timeseries for a specific patient collected at each time step are drawn independently from
the distribution P and the samples r of all repetition timeseries of the healthy population
are drawn independently from distribution R. The temporal dependence of the samples is
neglected in this approach and the timeseries data is considered as a concatenation of sam-
ples r or p. The measure of performance for each repetition timeseries, δ, can be obtained
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Figure 4.6: DMP Based Approach: A DMP model is trained for each repetition set of the
patient population. The weights computed for each basis function are considered as features
and the Euclidean distance between the features from the healthy population model and
the features calculated for the repetition set is considered as the measure of performance
for the repetition set. The measure of performance for an exercise set is calculated.

by measuring the similarity between distributions P and R, i.e., the similarity between
the patient’s performance in one repetition timeseries can be compared to a repetition
timeseries from the healthy population by comparing the distributions P and R.

We define the samples for each repetition timeseries as the vector of joint angle posi-
tions, velocities, and accelerations at each time step.

pi =
[
q1p(i), q2p(i), ..., q̇1p(i), ..., q̈1p(i), ...

]
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Figure 4.7: Kernel Based Approach: The timeseries is divided into n subsections, and
the distribution of each subsection is calculated. The measure of performance for each
repetition timeseries is obtained by calculating the similarity of the healthy populations’
distribution and the distribution calculated for the repetition timeseries. Then the mea-
sures of performance for a repetition set, and a exercise set are calculated.

ri = [q1h(i), q2h(i), ..., q̇1h(i), ..., q̈1h(i), ...] ,

where ri is the ith sample drawn from healthy population’s distribution R, pi is the ith
sample drawn from the patient’s distribution P , [qp1(i), qp2(i), ..., ˙qp1(i), ..., q̈p1(i), ...] is the
patient population’s vector of joint kinematics at time i for one repetition timeseries, and
[qh1(i), qh2(i), ..., ˙qh1(i), ..., ¨qh1(i), ...] is the healthy population’s vector of joint kinematics
at time i for one repetition timeseries.
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Figure 4.8: The procedure for obtaining an average model for the repetition timeseries of
the healthy population. The first half and the second half of the motion are divided into
equidistant segments. The mean of each segment is calculated for each repetition timeseries
and the average of the segment averages over all repetition timeseries are interpolated to
yield the average repetition timeseries model for the healthy population.

To reduce calculation complexity, each repetition timeseries of the healthy population
is divided into 82 segments, where the first half and the second half of the motion are
divided into 4 equal segments. The averages of of each segment, µBi

, over all repetition
timseries in the healthy population data are calculated:

µBij
= mean(γBij

) (4.18)

µaverageBi
= mean(µBij

)j=1...m (4.19)

where µBij
is the average of the ith segment for the jth repetition timeseries, γBij

is the
kinematic vector of the timeseries of the ith segment for the jth repetition timeseries, and
µaverageBi

is the average of averages over all repetition timeseries, i.e., 1 . . .m.

The average of the segments are interpolated to obtain an average model of the healthy
population’s motion for each joint angle. This procedure results in one average repeti-
tion timeseries for each exercise in the healthy population. The interpolation reduces the
calculation complexity and the time complexity of the approach considerably without sig-
nificantly affecting the performance of the algorithm. Fig. 4.8 depicts the procedure for
obtaining the average healthy population model.

Due to the way MMD is formulated and the way the samples are defined in this thesis,
the time evolution of the motion is neglected. Therefore, certain motions that have the
same joint angle position, velocity, and acceleration values with different evolution over

2Values between 8 and 20 result in similar average time series, 8 is chosen to reduce the calculation
complexity.
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time result in a small MMD measure. To avoid comparing different stages of motion,
each repetition timeseries ω is further segmented into subgroups , φω, based on the joint
angle position of the most variant degree of freedom. The distance measure, δkω , for the
kth subgroup, φkω , is obtained by calculating the MMD measure for the samples of the
corresponding subgroup in the patient’s repetition timeseries and the healthy population’s
average model.

δkω = MMD(Pφkω , Rφkω
) (4.20)

δω = {δ1ω , ...} (4.21)

The measure of performance, δ, for the repetition timeseries, ω, is calculated as the
mean of the distance measures, δω, calculated for all subgroups.

δ = mean(δω) (4.22)

The measure of performance for a repetition set is calculated using Eq. 4.9.

4.3 Measure of Performance for a Combination of Ex-

ercises

The distance ∆Ω describes the patient’s performance for one exercise (i.e. Ωj) in each
session which is obtained using one of the approaches described in Sec. 4.1. However,
there are multiple exercises performed in each physiotherapy session (i.e. Γ) that need to
be considered together for overall patient progress assessment. In this section, we assume
that the measures of progress for each repetition timeseries, δ, are obtained using one of
the approaches described in Sec. 4.1, and the proposed approach for estimating the overall
measure of performance, S, for multiple exercises in one session is presented.

Quality and quantity are the two factors that affect scoring an exercise. We use the
variance of distance measures δ calculated for the healthy population as a measure of exer-
cise difficulty. Based on our observations, the features computed from exercises performed
by the healthy population have larger variances when the exercise is more difficult. We
therefore assume that the distance measures of the healthy population have larger variance
for more difficult exercises.

The measure of performance for a repetition timeseries is calculated for every repetition
timeseries of the healthy population data according to each method’s formulation for δ (See
Sec. 4.1), and is considered as the comparison reference. The healthy population distance
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measure vector δHj
is the vector of the distance measures calculated for every repetition

timeseries of exercise Ωj in the healthy population data. The patient distance measures
(∆Pj

) are calculated for the repetition set of every exercise Ωj in the exercise set Γ. The
mean and standard deviation of δHj

are considered as the measure of exercise difficulty:

µδHj
= mean(δHj

) (4.23)

σδHj
= std(δHj

) , (4.24)

where µδHj
is the mean of the healthy population distance measure vector δHj

and σδHj
is

the standard deviation of the healthy population distance measure vector δHj
.

We define the measure of quality for a repetition set of an exercise j performed by the
patient as

Qj =
(∆Pj

− µδHj
)

σaδHj

, (4.25)

where ∆Pj
is the patient’s distance measure for the repetition set of exercise j, and a is

the index that penalizes Q based on the exercise difficulty, i.e., the larger a is the more
important the exercise difficulty becomes. The best value for a was found to be 2, which
can be interpreted as the inverted dispersion index [26]. A perfect performance over any
repetition set Ω results in a value of zero for the overall distance measure (∆Ω = 0). The
overall score for the patient in a specific session is calculated as the difference between
the norm of the score resulting from a perfect performance and the norm of the weighted
quality measures. The quality measure Qj of an exercise j is weighted by its number of
repetitions. The score of the patient for a given session is calculated using the following
equation

S =

√√√√∑
Ω∈Γ

(
nΩ∑

Ω∈Γ

nΩ

µdHΩ

σadHΩ

)2 −
√∑

Ω∈Γ

(
nΩ∑

Ω∈Γ

nΩ

QΩ)2
, (4.26)

where Γ is the exercise set, Ω is an exercise in the Γ, nΩ is the number of repetitions
for exercise Ω, and QΩ is the quality measure calculated for exercise Ω using (4.25). The
score S is formulated such that performing a difficult exercise in a session would improve a
patient’s score. Furthermore, we assume that exercises with more repetitions in one session
are the main focus of that session and therefore, the quality measures Q are weighted by the
number of repetitions for each exercise. The score S is defined as the difference between a
perfect weighted quality measure and the patient’s weighted quality measure hence progress
is assumed to result in smaller values for this measure.
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The healthy population’s distance values are often small and have a small variance com-
pared to patient data. In some cases the healthy population’s distance measure variance
σδHj

becomes smaller than 1. In (4.25), the quality measure is normalized according to

the healthy population performance. To avoid dividing the quality measure with a value
less than 1, all the δ values are scaled uniformly for the healthy population and patient
data such that all variance values of the healthy population’s distance measures become
greater than 1. The algorithm flexibility in defining any exercise set allows us to calculate
the overall score for any arbitrary set of exercises.

4.4 Summary

In this chapter, two approaches for estimating progress in patient performance during
rehabilitation were proposed, and several comparison approaches for estimating progress
based on existing methods were provided. The proposed feature-based approach uses the
statistical features calculated from the joint angle timeseries as its feature vector. After
feature selection by LASSO or KW the weighted distance between the feature vectors
of the patient data and the healthy population data are considered as the measure of
progress. The proposed HMM-based approach uses the mean and variance of the HMM
trained for each repetition set as its feature vector and after feature selection by LASSO
or KW, the weighted distance of the feature vectors for the healthy population and the
patients are considered as the measure of performance. Three comparison methods based
on existing approaches were also formulated. In the DMP-based approach, the weights of
the basis functions are used as features and the Euclidean distances between the patient
data and the healthy population data are considered as the measure of progress. The kernel-
based approach uses the timeseries of the data as distribution samples and calculates the
difference between the healthy population and the patient population distributions as the
measure of progress. This method does not consider the time evolution of the timeseries.
The classifier-based approach uses the statistical features, selects features by LASSO or
KW, and the classification criterion is considered as the measure of progress. Table 4.1
summarizes the attributes of each method. To allow an estimate of progress across differing
sets of exercises, the overall measure of progress, S is proposed. The measure of progress
is computed for an exercise set based on the distance measures computed from one of the
above methods, and formulated such that more weight is given to the exercise with more
repetitions in each session. Furthermore, the more difficult exercises have a larger effect
on the overall score.
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Table 4.1: Approach Comparison
Method Feature

Extrac-
tion

Feature
Selection

Advantages Disadvantages

Feature-
Based
Approach

Statistical
Features

LASSO/KW Calculation sim-
plicity

Highly affected by
variables that affect
features

HMM-
Based
Approach

HMM-
based
Features

LASSO/KW Generates a model
from multiple repe-
titions

Requires multiple
samples for train-
ing, can have a
large calculation
complexity

Kernel-
Based
Approach

— — No training re-
quired, capable
of detecting small
perturbations

Does not consider
time evolution

DMP-
Based
Approach

DMP-
based
Features

— Generates a model
of the timeseries

Highly affected by
variability in seg-
ments

Classifier-
Based
Approach

Statistical
Features

LASSO/KW Common approach Training data re-
quired from on
both healthy and
patient population

43



Chapter 5

Synthetic Data Experiments

Clinical data may contain multiple sources of variability , e.g., noise, sensor motion, pa-
tient progress, and etc. Furthermore, there are often no expert labels or quantified scores
of performance available for each exercise repetition. The above-mentioned reasons make
it difficult to evaluate the performance of the proposed approaches under controlled con-
ditions and with known ground truth. Therefore, in this chapter, we evaluate the results
of the different approaches using a synthetic dataset. The approaches will be subsequently
evaluated on a clinical dataset in Chapter 6.

5.1 Generation of the Synthetic Dataset

The synthetic data set is designed to evaluate the proposed approaches with a known
ground truth signal, i.e., the proposed approaches are evaluated based on a dataset with
a known rate of progress and variability. The synthetic data is generated for the position,
velocity, and acceleration of one joint angle and for two exercises. The joint angle position is
generated as an upward bell curve for the first exercise, and as a downward bell curve for the
second exercise. The joint angle velocity and acceleration are calculated by differentiation.

We assume that the healthy range of motion is always above 90% of the possible range of
motion and that the execution time is between 1−1.5 seconds. We allow random temporal
and spatial variability between the ranges specified. We assume that the second exercise is
the harder exercise, thus we allow a wider range of temporal and spatial variability for the
data generated based on this exercise. The range of motion considered for the hard exercise
for the healthy population is above 70% of the complete range of motion and completion
time for this exercise is between 1− 2.5 seconds.
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Figure 5.1: The synthetic timeseries of the healthy population and the patient population
are constructed to model human motion variability.

We assume that the patients start with a small range of motion on their first session,
20%−25% of the full range of motion for the easy exercise and 10%−15% of the full range
of motion for the hard exercise, and gradually improve through five sessions until they
reach 80% − 85% of the full range for the easy exercise and 50% − 55% of the full range
of motion for the hard exercise. The patients’ execution times considered for the exercises
are high for the first session, 5 − 6 seconds for the hard exercise and 4 − 5 seconds for
the easy exercise, and gradually decrease to smaller values during the five sessions, where
on the fifth session the execution time is between 2 − 3 seconds for the easy exercise and
3− 4 seconds for the hard exercise. For different repetitions, we allow random spatial and
temporal variability in the generated data within the specified ranges. Figs. 5.1 and 5.2
depict the design of the synthetic data.

The synthetic healthy dataset consists of 20 healthy members with 10 repetition time-
series each. The synthetic patient dataset consists of 20 patients where the number of
repetition timeseries for each individual is chosen randomly between five and eight. The
variabilities caused by the individual differences between different subjects are neglected.
We consider this data as our ground truth, i.e., the data contains only random spatial and
temporal variabilties and variabilities caused by the progress.

For each approach, the overall score, S, is calculated for all the patients for every
session. Since the 20 generated patients are not different, their scores on each session are
averaged to obtain an overall score ξ which is used for comparing the approaches with each
other.
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Figure 5.2: Synthetic data modelling patient progress from day 1 to day 5. When the
motion performance of the patients improves, the range of motion and the speed increase.
In the synthetic dataset, the healthy population always has a larger range of motion and
speed compared to the patient population.

ξimethod
= mean({Sikmethod

})
Ξmethod = [ξ1method

, ..., ξlmethod
]

k = 1, ..., N

i = 1, ..., l,

(5.1)

where Sikmethod
is the overall score calculated using approach method for the kth patient on

the ith session, N is the number of patients in the dataset, l is the number of sessions for
the patients, ξimethod

is the overall performance of approach method for session i, Ξmethod is
the vector of score averages over all sessions for approach method and is used for comparing
the three approaches with each other.

5.2 Results

The HMM-based approach, feature-based approach, kernel-based approach, DMP-based
approach, and SVM based approach 1 are applied on the synthetic data. When all the
data is available to all methods, the correlation in average patient scores between the three
methods is over 97%. Therefore, we consider this value of Ξ for each method as the ground
truth, ΞGT , and to investigate the effects of other sources of variabilities we always compare

1The SVM is chosen for comparison with the proposed approaches because of the results obtained with
the clinical data this information can be found in chapter 6
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the average results with the ground truth, ΞGT . We consider the variability-free, full data
case as the ground truth and investigate how correlations between this ground truth and
the results from the various approaches are affected under the following conditions: (1)
noisy data, (2) poor segmentation, (3) temporal variability, and (4) incomplete data. We
provide both Normalized Mean Square Error (NMSE) analysis and correlation analysis.
We formulate the NMSE as:

NMSE =
Norm(ξmethod,ΞGT )

max(ΞGT )−min(ΞGT )
(5.2)

We depict log(NMSE) in the NMSE analysis. If the value of the log becomes zero it
means that there is no difference between the obtained measure and the ground truth. If
the value of log becomes smaller than zero, it indicates that the difference between the
obtained score and the ground truth is less than range of the trend of progress in the
ground truth. If the value of the log becomes greater than 0 it means that the difference
between the obtained score and the ground truth is greater than the trend of progress in
the ground truth.

In the first set of tests, the effect of noise on the the overall scores generated by each
method is investigated. A noise signal with a standard uniform distribution is added to the
joint angle position of the patient dataset. The range of the noise is between 1% to 80% of
the range of the corresponding joint angle position. The effect of noise on the overall score
of all the approaches using the correlation and NMSE analysis is depicted in Figs. 5.3a and
5.4a. As can be seen from the figures, the HMM-based approach is the least affected by the
noise in the correlation analysis and MSE analysis. The feature-based and the SVM-based
approaches are highly affected by the noise based on the results of the correlation and the
NMSE analysis. The DMP-based approach is less affected compared to the SVM-based
approach. The DMP based approach is less affected than the HMM-based approach in
the MSE analysis. The reason for the superior performance of the HMM-based approach
and the DMP-based approaches is that the HMM-based approach generates a model based
on a repetition set and therefore it considers the average of all repetition timeseries. The
DMP-based approach also models the timeseries using Gaussian kernels, and therefore is
less affected by the noise compared to the feature based approach and the SVM-based
approach. The kernel-based approach performs better than the SVM-based approach, the
DMP-based approach, and the feature-based approach in both the correlation analysis and
the NMSE analysus. The kernel-based approach is less affected by the noise particularly
when the noise added is up to 30%. The reason for this observation is that adding noise
with zero mean and a small range of percentage does not affect the sample distributions
of the patient population and the healthy population significantly. The feature-based
approach and the SVM have the poorest performance because the features of the feature
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vector are directly affected by the noise and therefore the noise directly affects the results
of the measures of performance. The SVM based approach is highly affected in the NMSE
analysis because the captured trend of progress in its ground truth is very small.

In the second set of tests, the effect of poor segmentation on the results of the five
approaches is investigated. The poor segmentation is modelled by adding points with a
constant value to the end of the joint angle position in the patient dataset. The number
of points added to the end of the time series varies from 1 to the length of the corre-
sponding repetition timeseries, which by design is 30 points on average. The effects of
poor segmentation are illustrated in Figs. 5.3b and 5.4b. As can be seen from the figures,
the feature-based approach and the kernel-based approach are the least affected, while the
HMM-based approach is affected when the number of points are significant enough to alter
the states (middle points in Figs. 5.3b and 5.4b). For this test we have assumed that
the segmentation happens after the patient has returned to the initial posture. There-
fore, the value of the inaccurately segmented point is close to zero. Values close to zero
do not change the sample distribution due to the formulation of MMD. However if the
inaccurate segmentation adds points with values other than zero to the timeseries, the
kernel-based approach will be more affected. The SVM is also affected in the NMSE anal-
ysis because the changes in the obtained score are much larger than the trend of progress
in the ground truth. The DMP-based approach is affected the most, this happens because
the DMP-based approach divides the timeseries into equal segments and trains the weight
of the basis function for each segment. Adding extra points to the end of the times series
influences these segments significantly and changes the stage of the motion each segment
corresponds to and therefore the estimated measure of performance is highly affected.

In the third set of tests, the effect of scaling the length of the timeseries in the patient
dataset is analysed. The duration of the repetition timeseries for the patient data is
increased from 10% to 200% of its original duration. The effect of time scaling is shown in
Figs. 5.3d and 5.4d. As can be seen from the results, most approaches are not significantly
affected by this variability except for SVM in the NMSE analysis where the range of the
trend of progress is small and any change in the score results in large differences.

In the fourth set of tests, the effects of an incomplete repetition timeseries on the overall
results are investigated. In this test, the percentage of the available time series is changed
from 10% to 200%, where the percentages more than 100% correspond to the poor seg-
mentation of two timeseries and the percentages which are less than 100% correspond to
incomplete motion or early segmentation. The results of this test are depicted in Figs.
5.3c and 5.4c. Not being affected by this variability is a limitation because the patient
could perform only half of the exercise and receive the same score as when she/he performs
the entire exercise. The feature-based and SVM based approaches are not much affected
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Table 5.1: Synthetic Analysis Summary
Method Observation Discussion

Feature-Based
Approach

Highly affected by noise in both MSE
and correlation analysis. Is not af-
fected by other variabilities. Cannot
detect incomplete motion.

Noise affects features directly. As
long as statistical features remain the
same can’t detect the difference in the
timsereis.

HMM-Based
Approach

Affected by inaccurate segmentation
in both MSE and correlation analysis
if the inaccurate segmentation points
are more than 60% of the length of the
data. Detects incomplete motions.

The large segmentation error causes a
change in states. The HMM models
the timeseries and can detect incom-
plete timeseries.

Kernel-Based
Approach

Cannot detect incomplete timeseries. Does not consider time evolution.

DMP-Based
Approach

Is highly affected by inaccurate seg-
mentation test in both MSE and cor-
relation analysis. Is Affected by noise
in the correlation analysis. Can de-
tect incomplete timeseries

The weights correspond to a different
stage of motion. Is modelling time-
series so can detect incomplete time-
series.

SVM-Based
Approach 2

Is highly affected by all variabilities in
the MSE analysis. Is highly affected
by noise in the correlation analysis.

The range of the trend of progress de-
tected is very small.

1 The KL and NB based approaches work very poorly on clinical data and therefore there are not
considered in our analysis.

by this variability and cannot capture the temporal information of the timeseries. This is
a limitation of the predefined features since they do not consider the timing and do not
include enough information to capture the difference between a complete timeseries and
an incomplete timeseries. The kernel-based approach is also incapable of capturing such a
change in the timeseries very well since the temporal information does not affect its formu-
lation, and therefore is not affected by this test. However, the HMM constructs a statistical
model of the timeseries and is significantly affected by the incomplete data. Therefore, the
HMM is superior to the other approaches in this test, because the significant difference
in the shape of the timeseries affects its result. The DMP-based approach also models
the timeseries and can capture the difference when the difference between the complete
timeseries and the incomplete time series becomes significant. Table 5.1 summarizes the
observations for each approach in the synthetic analysis.

As mentioned earlier, the exercise regimen differs from one session to the other. The
fifth test is designed to investigate the effects of set sparsity when data of hard or easy
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exercises are not available in one session. Fig. 5.5 shows the values of the average overall
score, Ξ, for each exercise when the hard or the easy exercises are not available. It can be
seen from the results that set sparsity results in jumps and inconsistencies in the overall
score. As can be seen from the figures, when only the hard exercise is available the scores
are higher compared to when only the easy exercise is available in 4 out of 5 cases. If on
any day the easy or the hard exercise is not available, this would result in a jump compared
to when all the data is available. This is a limitation of our exercise difficulty formulation.

As the patients improve they perform more difficult exercises. However, since these
exercises are difficult, patients often have a poorer performance compared to when per-
forming the easy exercises. If we do not consider the exercise difficulty, the harder exercises
are only assessed based on the performance and therefore will result in a poorer score. The
sixth test is designed to investigate the effects not considering the exercise difficulty (See
Fig. 5.6). As can be seen from the figure, when the quality measure, Q, is not normalized
by the exercise difficulty, all the approaches assign a poorer score to the harder exercises.

The eighth test is designed to investigate whether the proposed and the existing ap-
proaches can detect progress due to changes in the smoothness of the motion. We generate
data for two synthetic patients, one with pauses during their motion and one with a shaky
motion (See Fig. 5.7).

We assume that each patient starts their rehabilitation with 80% shaky motions and
20% smooth motions, and in their last rehabilitation day the patients only perform smooth
motions. Figs. 5.9 and 5.8 show that all the approaches can capture this progress.
The kernel-based approach detects this type of progress better because it has a larger
max(SPause)−min(SPause)
max(SGT )−min(SGT )

and
max(SShaky)−min(SShaky)

max(SGT )−min(SGT )
.

5.3 Summary

In this chapter, the proposed approaches and the existing approaches were applied to a
synthetic dataset. The HMM-based approach is superior to the rest of the approaches in
presence of noise, and segmentation inaccuracy. The SVM-based approach and the feature-
based approach, which use statistical features obtained directly from the time series, are
highly affected by the noise. The DMP-based approach and the HMM-based approach can
detect when the motion timeseries is incomplete and therefore are superior to the rest of
the approaches in terms of capturing the temporal information of a timeseries. The time
scaling test reveals that none of the approaches are dependant on temporal scaling. The
kernel-based approach performs moderately well in presence of noise and performs well in
the presence of inaccurate segmentation. The kernel-based approach does not include time
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evolution of the timeseries, and therefore does not perform well in the incomplete timeseries
test. The set sparsity test shows that a sparse exercise set results in inconsistencies and
jumps in the overall score S. Normalizing the quality measure by the exercise difficulty
is important to consider since otherwise harder exercises will be given a poorer score. All
the approaches can capture the progress due to motion smoothness, with the kernel-based
approach being superior in this test.
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Figure 5.3: The effect of each source of variability on the correlation index between the
average score, Ξ, of each method and the ground truth average score ΞGT .
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Figure 5.4: The effect of each source of variability on the Normalized Mean Square Error
(NMSE) between the average score, Ξ, of each method and the ground truth average score
ΞGT .
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Figure 5.5: The results of removing each set of exercise on the average overall score for each
of the approaches. Note that scales are not comparable between the different approaches.
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Figure 5.6: The results of not including exercise difficulty in the score when the exercise
contains hard and/or easy exercises.
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Pause Distortion

Figure 5.7: Instances of distorted motions.
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Figure 5.8: The results of the scores for the synthetic patient with distortion in his/her
motion.
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Figure 5.9: The results of the scores for the synthetic patient with pause in his/her motion.
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Chapter 6

Experimental Evaluation

The feature-based approach, the HMM-based approach, the Kernel-based approach, and
the DMP-based approach are evaluated on patient data collected at the Toronto Rehabili-
tation Institute. We focus on patients recovering from knee or hip replacement surgery. In
this type of rehabilitation, the following exercises are commonly performed: knee exten-
sion/flexion while seated, knee and hip extension/flexion while supine, and squat1. Data of
these exercises was also recorded for a healthy population. Furthermore, the feature-based
and the HMM-based approaches are evaluated for two cases: 1) healthy population and
a subset of patient data is available for training, and 2) only healthy population data is
available for training. The healthy population data is only used to learn a reference model,
and results are presented for the patient data. Moreover, each method’s performance in
capturing the patient progress is analysed and the advantages and the disadvantages of
each method are discussed. A qualitative comparison between the results of the approaches
and patients’ medical chart is provided, and a quantitative comparison between the result
of the approaches and the score measure obtained from the exercise regimen is presented.
Furthermore, the results of the regression techniques are compared with the classifier-based
approaches.

6.1 Data Collection and Pre-processing

Patient data was collected from eighteen inpatients during their rehabilitation at the
Toronto Rehabilitation Institute [76]. Each patient performs one session per day and

1The patients do not perform the full squat but lower their torso only slightly (i.e., knee bend of 15
degs)
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the session typically lasts between 45-60 minutes. The number of days a patient stays in
the hospital varies from 4− 12 days and depends on the patient’s needs and health status.
The set of exercises specified by the therapist in each session differs between patients and
sessions. Therefore the repetition set of one specific exercise is not available for every ses-
sion. The healthy population data consists of 10 subjects (age: 23± 4.5) performing each
exercise 10-20 times. The patient population tends to be elderly. Therefore, the healthy
population performed the exercises slowly to consider the speed difference between the two
populations.

The following results are discussed for the data of all patients. Plots and information
for all 18 patients can be found in appendices D and E. A randomly selected subset of the
patient data is used for feature selection (patient 1,2,3,5,6,7) and the remaining patient
data is used for testing. We selected patients 2, 8, and 18 to graphically illustrate the
results within this thesis. Patient 2 is an example of the patients included in the feature
selection algorithms and shows gradual improvement during the rehabilitation process.
Patients 8 and 18 are examples of patients whose data is not used for feature selection and
plots of subjects 8 and 18 illustrate the performance of estimating progress for subjects
whose data is unseen during training. Patient 18 is an example of a patient who shows
a rapid progress in the course of their rehabilitation, while patient 8 is an example of
a patient with a common duration of recovery. General information for patients 1-18 is
summarized in Table 6.1 including any unique circumstances as recorded in the patient’s
medical chart. All patients were admitted to the in-patient program within a day of their
surgery and commenced rehabilitation the following day.

Motion data is collected from the healthy and the patient populations using Shimmer
sensors [15] mounted at the knee and ankle providing angular velocity and linear accelera-
tion data (128 Hz). Position q, velocity q̇, and acceleration q̈ of five joint angles consisting
of knee flexion, knee rotation, hip flexion, hip abduction, and hip rotation are estimated
from the sensor data based on a kinematic model and an Extended Kalman Filter [76],
see Fig. 1.1. The Extended Kalman Filter results in a small phase lag between the ve-
locity and the acceleration timeseries which is problematic for the DMP-based approach.
Therefore, for the DMP-based approach the accelerations q̈ of the five joint angles of knee
flexion, knee rotation, hip flexion, hip abduction, and hip rotation are calculated by differ-
entiation. The data is filtered using a low-pass Butterworth filter with a cut-off frequency
of 10Hz. For the HMM-based approach the data is downsampled to include a 100 points
for each repetition timeseries. Fig. 6.1 illustrates the joint angles’ position, velocity, and
acceleration for one repetition timeseries.

60



Table 6.1: Patient Information. Patients in bold are used to illustrate the results in this
chapter.

Patient
ID (Age)

Sex BMI Type of Re-
placement
Surgery

Discharge
Session

Special Conditions

1 (62) F 33.5 Hip Joint 8 Colostomy
2 (80) F 29.1 Hip Joint 11 Discharged and Readmit-

ted
3 (84) F 28.2 Hip Joint 7 None
4 (62) M 28.4 Both Knee

Joints
3 None

5 (80) M 24.9 Knee Joint 14 None
6 (68) F – Knee Joint 12 Chronic Pain
7 (70) M 28.1 Hip Joint 4 None
8 (59) F 42.1 Hip Joint 9 None
9 (76) F 31.2 Hip Joint 8 None
10 (81) F 38.6 Hip Joint 7 None
11 (83) F 25.5 Hip Joint 8 None
13 (86) F 20 Knee Joint 10 Hip Fracture
14(48) F 40.8 Knee Joint 11 None
15(48) F 32.5 Knee Joint 3 None
16(85) F 24.7 Knee Joint 6 None
17(83) M 25.3 Hip Joint 8 Aortic Valve Replacement
18(86) F 32.9 Knee Joint 9 Pain
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Figure 6.1: The joint angle positions, velocities, and accelerations for one repetition time-
series.

6.2 Feature-Based Approach

In the following analysis, we first illustrate the distribution of the most informative kine-
matic parameters for the patient data and the healthy population data. We then discuss
the results for training on both a subset of the patient data and healthy population data
and finally investigate the performance of the proposed approaches when only healthy
population data is available for training.
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Figure 6.2: Knee Extension Flexion Exercise: Patient data and healthy population data
are separable for the most informative features. The star indicates the first day the pa-
tients have performed the exercises and the triangle indicates the last day the patients
have performed the exercises (only 1 session available for patient 5). q4 is the joint angle
corresponding to knee extension.
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Figure 6.3: Knee Hip Extension Flexion Exercise: Patient data and healthy population
data are separable for the most informative features. The star indicates the first day the
patients have performed the exercises and the triangle indicates the last day the patients
have performed the exercises (only 1 session available for patient 5). q4 is the joint angle
corresponding to knee extension.

6.2.1 Feature Selection

The number of repetition timeseries is greater than the number of features. Therefore, the
LASSO technique described in section 4.1.1 is used for feature selection. Figs. 6.2, 6.3,
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joint angle corresponding to knee extension.
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Figure 6.5: Measure of performance for each repetition timeseries δ is illustrated for session
2 of patient 2 performing the knee extension/flexion exercise.

and 6.4 show the distribution of the repetition timeseries of the healthy population and the
training subset of the patient data over the two features selected by LASSO that have the
largest variance in the healthy population. The clusters of the healthy population data and
the patient data are separable. Furthermore, Figs. 6.2, 6.3, and 6.4 show that a patient’s
progress is in the direction of the variance of the healthy population data and moves
towards the mean of the healthy population as the patients improve their performance
during rehabilitation.

6.2.2 Measure of Performance for Repetition Set

Fig. 6.5 illustrates the values of δ for the second session of patient 2. Fig. 6.6 shows the
calculated distance measure ∆ and the distribution of δ for the 3 example patients. The
exercise regimen is specific to each patient. The exercises are performed in a subset of
the sessions, e.g., patient 2 performs knee extensions in session 1, 2, 7, 8 and 10. Fur-
thermore factors such as pain, fatigue, psychological status, and environmental conditions
contribute to patients’ performance and it can not be expected that the patient progress
increases monotonically. For all three patients an overall improvement over the course of
the physiotherapy treatment can be observed. Some patients show rapid progress and are
discharged early, e.g., patient 18 (in Fig. 6.6b). The distance measure for a repetition set
is more reliable when the number of repetitions available for that exercise is larger. The
feature-based approach generalizes to unseen patient data, e.g., the data of patients 8 and
18 was not used for the feature selection and the distance measure ∆ shows the patient’s
progress throughout the rehabilitation as demonstrated in Fig. 6.6c.
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Figure 6.6: Results for the distance measure ∆ calculated using the feature-based approach
are shown for three exercises. The red circle illustrates the median of the distance mea-
sures (i.e. ∆) in each session and the blue bar depicts the variance of the distance measures
δ in one session. The size of the circle indicates the number of repetitions available in each
repetition set. For knee extension, the top features are minq4 ,meanq1 ,meanq̈4 , romq4 , time

6.2.3 Measure of Performance for Exercise Set

The quality measure Q and the overall score S for each session are obtained according
to (4.25) and (4.26) using the overall distance measure ∆ calculated for every repetition
set of each session. We assume that as patients improve, the overall score increases from
negative values towards zero.

Fig. 6.7 shows the score measures for each patient. It can be seen from the figures
that the trend of the score shows progress but there are some inconsistencies in patient 2
session 8 (in Fig. 6.7a). These inconsistencies could be partially due to the small number
of performed exercise repetitions. The other reason for these inconsistencies could be that
the patient progress is not monotonic, and a decrease in the overall score could mean a
decrease in the patient’s performance.

Due to differences in health status, the exercise regimen of each session is different from
one patient to the other. Among the three exercises chosen for analysis in this study, there
are sessions where only one of these exercises is performed and therefore the score is based
solely on the performance quality of that single exercise. This results in inconsistencies
in the improvement trend of the score measure since a poor performance in one exercise
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Figure 6.7: An overall score S ( ) is calculated for a exercise set, combining individual
distance measures ∆ of knee extension, knee-hip extension, and squat. The size of the
marker indicates the number of exercises available in each session. The green line
shows the best score of the patients in their last physiotherapy session.

is not an accurate measure of the patient’s overall status. The score measure estimates
the patient’s overall status more accurately when more exercise data from each session is
available.

6.2.4 Measures of Performance with Feature Selection using Only
Healthy Population Data

Visual analysis of the distribution of the most relevant features (see Figs. 6.2, 6.3, and
6.4) motivates to investigate whether only healthy population data is sufficient to select
the most relevant features. Such an approach is beneficial when a physiotherapist may
include a new exercise into the exercise regimen and patient data is not yet available
for this exercise. Healthy population data can be easily collected by the physiotherapist
him/herself performing the new exercise. We investigate this extension by using only
healthy population data for feature selection. As can be seen in Figs. 6.2, 6.3, and 6.4,
the top features capturing patient progress are highly variant in the healthy population.
This motivates us to perform the feature-based approach using the most variant features in
the healthy population. Variabilities caused by initial posture and sensor positioning are
highly variant in the healthy population. Because we are only considering the variation
in the healthy population, such features could get selected using our current approach.
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To avoid this, features obtained from joint angle positions were removed from the feature
vector. The top features are chosen from the fifteen most variant features that correlate
less than .5 with each other. Equation (4.8) is used to calculate the distance measure for
each repetition timeseries, (4.9) is used to calculate the distance measure for the repetition
set, and (4.25) and (4.26) are used to calculate the overall score for each session.

Fig. 6.10a shows the correlation between the overall score from the feature-based ap-
proach when using healthy and patient population data for feature selection and when
using only healthy population data for feature selection. As can be seen from the figure,
the results correlate highly (over .65) for most patients. Even though feature selection
based only on healthy population data does not take compensation strategies specific to
the patient population into account, the extension using only healthy population data
for feature selection shows promising results in detecting patient progress. Some incon-
sistencies between performing the feature selection only on the healthy population and
performing the feature selection on the healthy and patient populations occur when the
overall performance of a patient is constantly high (patient 7 and 15) or low (patient 5)
over the course of the rehabilitation, and changes in the scores are small. In these cases,
the correlation index can be low, because the two techniques differ when assessing small
changes in performance.

6.3 HMM-Based Approach

6.3.1 Measure of Performance for Repetition Set

The number of repetition sets are less than the number of features, therefore KW is chosen
for feature selection. Fig. 6.8 shows the overall distance measure ∆ (see Sec. 4.1.2)
calculated for the sessions when patients 2, 8, and 18 performed the knee extension exercise.
The features chosen by KW indicate the progress in unseen data by decreasing δ values
over the course of the rehabilitation sessions, e.g., shown for patient 8 in Fig. 6.8c.

6.3.2 Measure of Performance for Exercise Set

Based on the quality measure Q (see (4.25)) of each exercise in one session the overall score
S for an entire exercise set is calculated using (4.26). Fig. 6.9 shows the scores SHMM

for each patient. The scores show an overall trend of improvement for most patients. As
before, the reliability of the score measure depends on the number of available exercises,
i.e., outliers are usually observed when only one exercise is available to calculate the score.
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Figure 6.8: The HMM-based distance measure ∆HMM ( ) shows the trend in progress
over the sessions, here illustrated for patients 2, 8, and 18. The marker size indicates the
number of repetitions available in the repetition set.

The features chosen by KW generalize well to the unseen data e.g., patient 8 whose trend
of improvement is captured by the approach (in Fig. 6.9c). Furthermore, the method
captures the rapid improvement of patient 18 (in Fig. 6.9b), who is discharged earlier than
other patients.

6.3.3 Measure of Performance with Feature Selection using Only
Healthy Population

Moreover, we investigate whether healthy population data is sufficient for feature selection
for the HMM-based approach. Feature extraction for the healthy population is described
in section 4.1.2. Among the first fifteen most variant features in the healthy population,
those that correlate least with each other (less than .5) are chosen as the top features. The
distance measure ∆HMM and the overall score SHMM for each patient and each session are
calculated following Sec. 4.1.2. The correlation between the overall score using healthy
and patient population data for feature selection and using only healthy population data
for feature selection is above .65 for most patients (see Fig. 6.10b). Negative correlation
indices are observed when the changes in a patient’s overall score are small.
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Figure 6.9: The overall score SHMM ( ) shows the trend of progress during rehabilitation.
The marker size indicates the number of exercises available for each session. shows the
best score of the patients in their last session of performing the three exercises.

6.3.4 Effect of Number of States in the HMM

We also tried using an HMM with 5 states in our HMM based Approach. We assumed
that the 5 states would correspond to: beginning of the movement, acceleration, pause,
deacceleration, and ending of the movement. The models were trained on healthy and
patient population for every repetition set and the distance measures for each exercise
were calculated. The results were unable to capture the progress. Fig. 6.11 shows the the
time series of three repetition set for three patients and the mean of states obtained from
the 3-state and 5-state HMM models trained on these repetition sets. As can be seen from
Fig.6.11, due to patients individual characteristics the same states in different patients
correspond to different stages. Therefore the feature selection method cannot detect the
features that correspond to variability caused by physical improvement in different sessions.
On the other hand, the states of the 3 state HMM models always correspond to the same
stages and are more appropriate for our purpose.

6.3.5 Comparison to Existing HMM-based Approaches

If only healthy population data is available, an intuitive distance measure δ for the HMM-
based approach is the loglikelihood. Utilizing loglikelihood as a comparison tool between
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Figure 6.10: The correlation index between approaches with feature selection on healthy
and unhealthy data and approaches with feature selection only on healthy data are for
most patients over .65.
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Figure 6.11: Effects of adding more states to the HMM

different HMMs is a popular approach in gesture and motion recognition literature [3] [12]
[71]. The method is formulated such that a repetition timeseries of a patient is generated
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by an HMM trained only on healthy population data. The median of the log likelihoods
is considered as the distance measure ∆ for a repetition set. We assume that as patients
improve, their performance becomes more similar to the healthy population and the log
likelihood increases towards zero and positive values through rehabilitation. This method
does not capture the trend of progress for 80% of patients since distance measures ∆ 2-3
times larger than their average range are observed for many repetition sets.

6.4 Comparison to Existing Approaches

6.4.1 Comparison with Classifier-Based Approaches Based on
Both Healthy and Patient Data

We provide a comparison of the proposed measures predicting patient progress to classifier-
based approaches using both healthy and patient data. Popular approaches in the human
motion literature are Naive Bayes (NB) [60], Kullback-Leibler (KL) divergence [66], and
Support Vector Machines [105], which require training on both the patient data and healthy
population data.

The measure of performance for SVM, NB, and KL divergence are computed using the
procedure described in Sec. 4.2.1. The ∆ values are calculated for the three approaches,
i.e., Naive Bayes, KL divergence, and SVM. However, among the three methods only SVM
was able to capture patient progress and therefore is selected as a comparison basis.

Fig. 6.12 depicts the of measure of performance, ∆, for patient 8 using the NB-based
approach and the KL-based approach. With the NB-based approach, the measures of
performance have large variances in many sessions for most patients, and are not reliable for
detecting the trend of progress. With the KL-based approach, jumps 5-6 times greater than
the average of the rest of the sessions can be observed in the measures of progress for most
patients, which makes the result of the algorithm unreliable for detecting progress. The
reason for this observation for the NB could be due to its input independence assumption
which is violated by the features in this study. The reason for the jumps in the KL-based
approach can be due to the attributes of KL distance, which results in small values when
the models are similar and much larger values when the models are not similar.

The SVM-based approach is very dependant on the decision boundary. If the progress
in a specific direction of the feature vector is not included in the training set for the SVM,
the distance to the decision boundary is no longer a reliable measure of performance (See
Fig. 6.13). Therefore, the SVM-based approach does not capture the trend of progress for
some exercises of some patients in the dataset.
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Figure 6.12: The measure of progress ∆ of knee extension/flexion exercise calculated for
patient 8. As can be seen from the figure, no visible trend of progressed is observed for the
two methods.

6.4.2 DMP-Based Approach

In this section, the results of applying the DMP-based approach to the clinical data are
discussed. A DMP model with ten basis functions is trained for each repetition set ac-
cording to the procedure described in Sec. 4.2.2. We have also tried the approach with
the number of basis functions ranging between 5-25. Ten basis functions is the smallest
number of weights which results in higher correlation with the exercise regimen difficulty
measure described in Sec. 6.5.1, and therefore is chosen for our analysis. The feature
vectors are calculated by concatenating the weights of the basis functions computed for
each repetition set as described in Sec. 4.2.2. The measure of performance, ∆, for each
repetition set of each session for each patient is obtained by calculating the the euclidean
distance between the corresponding feature vector and the feature vector of the healthy
population according to Eq. 4.17. The measure of performance for the overall score for
the exercise set, S, are calculated using Eq. 4.26.
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Figure 6.13: The SVM-based approach is highly affected by the training dataset. For
example, if the red patient’s data is the only data available during the training of SVM,
the resulting SVM cannot capture the trend of progress for the cyan patient.

Measure of Performance for Repetition Set

Fig. 6.16 illustrates the results for the measures of performance, ∆, for the knee exten-
sion/flexion repetition set, for the exemplar patients. The approach is capable of capturing
the trend of progress for patient 18 (Fig. 6.16c), and patient 8 (Fig. 6.16b); However
it does not capture the trend of progress for patient 2 (Fig. 6.16a). The reason for this
observation is that, as seen in Sec. 5, the DMP based approach is highly sensitive to
inaccurate segmentation (See Fig. 6.14). Our clinical data is manually segmented and
has small delays in the beginning and the ending of each repetition. These small delays
affect the performance of the DMP-based approach. The other reason for this observation
is that individuals have different temporal variability when performing the same exercise,
e.g., fast or slow reaching the hold position, short or long duration of the hold position,
and fast or slow reaching the rest position. Therefore the basis functions do not always
correspond to the same stage of the motion across individuals, and the weights of the basis
functions do not always correspond to the same stage of the motion. When the stages are
misaligned, comparison of their weights is error-prone (See Fig. 6.15). As can be seen from
Fig. 6.15, segments 1 and 2 correspond to reaching the desired posture in (a), whereas in
(b), these segments correspond to reaching the desired posture and holding this posture.
This reduces the performance of the DMP-based approach.
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Figure 6.14: The inaccuracy in segmentation affects the DMP-based approach. Segmenta-
tion is delayed in (b) and segment w4 models the rest position whereas segment w4 models
reaching the rest position in (a).
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Figure 6.15: Different temporal variabilities affect the DMP-based approach since each
weight corresponds to a different stage of the motion.

Measure of Progress for Exercise Set

Fig. 6.17 shows the results of calculating the score for the exemplar patients using the
DMP-based approach. The trend of progress is captured for patient 18 as can be seen in
Fig. 6.17b, however, for patients 2 and 8 the trend of progress is not visibly captured.
This is partially due to the limitations of the DMP-based approach. It is also partially
due to the sparsity of the exercise set as discussed in Sec. 5. Furthermore, the patients
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Figure 6.16: The measure of performance ∆ for the repetition set of the same exercise over
multiple sessions utilizing the DMP-based approach.
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Figure 6.17: An overall score S ( ) calculated for an exercise set, combining individual
distance measures ∆ of knee extension, knee-hip extension, and squat using the DMP-
based approach. The size of the marker indicates the number of exercises available in each
session. The green line shows the best score of the patients in their last physiotherapy
session.

performance improvement is not always monotonic.
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Phase Adjustment in DMPs

To remove the effect of the temporal variability on the DMP-based approach, we also tried
two phase adjusted DMP-based approaches, where the phase of each repetition timeseries
in the patient population is adjusted based on the timeseries generated from the DMP
model of the healthy population. In the phase adjusted DMP-based approach, the adjusted
phase vectors are used to train a DMP model of each repetition set and the weights of the
DMP model are considered as features (See Appendix A for details on the approach). The
phase adjusted DMP-based approach is not capable of capturing the trend of progress in
the patient population. When performing the phase adjustment, the temporal information
contained in the patient motion is neglected. However, a part of patient progress is due
to temporal improvement, and when this information is neglected the approach does not
perform well.

6.4.3 Kernel-Based Approach

In the model-based approaches such as the HMM-based and the DMP-based approach,
the information about a few distorted motions in a movement in one repetition set is often
lost. The kernel-based method is capable of capturing the difference between the patient
population and the healthy population when the patients’ motions are shaky or consist
of pauses (See Fig. 6.18). In this section, we discuss the results of applying the kernel-
based method on the clinical data for estimating patient progress through physiotherapy
rehabilitation. First, we use the entire healthy population’s data to obtain the measure
of progress for each repetition timeseries of the patients. The kernel-based approach is
computationally expensive, and therefore it is preferred if the measures of performance
could be obtained using the data of only one healthy member. In the following section, we
discuss how the results will change if the healthy population consists of one member only
compared to when all the healthy members are included, e.g., when the data is collected
from the physiotherapist for a customized exercise set.

Measure of Performance for Repetition Set

The distance measure for a repetition timeseries is calculated using Eq. 4.22 following the
procedure described in Sec. 4.2.3. The number of subgroups for the exercises included in
this thesis is two. The first monotonic subgroup in all the exercises corresponds to reaching
the desired posture, and the second monotonic subgroup corresponds to returning to the
initial posture. All the members of the healthy population are considered for obtaining the
average model of the repetition timeseries for the healthy population.
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Figure 6.18: The figures in each row have different sample distribution. The first row
illustrates the timeseries of a shaky motion, and the second row depicts the pauses that
happen in patients’ motion. (a) corresponds to the motion of the healthy population in
the first monotonic subgroup. (b) are the examples of pauses and shakes in the motion of
patients.

The performance measure for a repetition set in one session, ∆, is calculated using
Eq. 4.9. We assume that as patients improve, their motion distribution becomes closer
to the healthy population, resulting in smaller values for the performance measure. Fig.
6.20 shows the calculated distance measure, ∆, for the exemplar patients. Fig. 6.20a
shows that the algorithm is capable of capturing the trend of progress for patient 2, and
inconsistencies can be observed for patient 8 in Fig 6.20b. The inconsistencies are both
due to the jumps caused by exercise set sparsity and the algorithm’s limitations (See Sec.
5).

Furthermore, the kernel-based approach neglects the temporal evolution of the time-
series and therefore there are different cases where the motion timeseries look very different
but have a small difference based on theMMD value (See Fig. 6.19), which also contributes
to the algorithm’s performance. As can be seen in Fig. 6.19, using the MMD measure,
motions with perturbations which are common during the first days of rehabilitation do not
differ from motions with pauses in between which are more common during the last days
of rehabilitation. Furthermore, scaling a motion through time does not change the MMD
measure. Therefore, there are certain aspects of progress that MMD cannot capture.
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Figure 6.19: The figures in each row have the same sample distribution even though they
look very different.

Measure of Performance for Exercise Set

The quality measure, Q, and the overall score, S, for each session are obtained using Eqs.
4.25 and 4.26. We assume that as patients improve the score value increases from negative
values to zero. Fig. 6.21 illustrates the score measures for the exemplar patients. As can be
seen from the figure, the trend of improvement is captured by the approach but there are
some inconsistencies. The inconsistencies and jumps could be partially due to the exercise
set sparsity and the small number of performed exercises. The patient’s progress is not
monotonic. As will be discussed in Sec. 6.5.2, the inconsistencies could be due to the
patient’s decrease of performance in some sessions. Therefore, the reliability of the score
depends on the number of available exercises in the exercise set.
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Figure 6.20: The measure of performance ∆ for the repetition set of the same exercise over
multiple sessions utilizing the kernel-based approach.
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Figure 6.21: An overall score S ( ) is calculated for an exercise set, combining individual
distance measures ∆ of knee extension, knee-hip extension, and squat. The size of the
marker indicates the number of exercises available in each session. The green line
shows the best score of the patients in their last physiotherapy session.

The kernel-based approach is based on distinguishing the distribution of the two time-
series. Due to the formulation of the method, it does not require training on the patient
population data and therefore is ideal for cases where the patient data is not available in
advance, e.g., customized exercises. The kernel-based approach is capable of capturing the
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trends of progress that are due to increase in range of motion. It can also capture the trend
of progress due to the improvement of motion smoothness (See Sec. 5). This approach
is not capable of capturing the trend of progress which is due to temporal improvements
only.

Effect of Having one Healthy Member

As mentioned earlier, the kernel-based approach is computationally expensive. Therefore,
it is beneficial to investigate whether one healthy member in the healthy population is
sufficient for the analysis. The analysis is redone 20 times, each time including only one
member in the healthy dataset. The average correlation index of the distance measures for
the subgroups, δkω , is calculated for the case where all the healthy members are considered
in the healthy dataset vs. the case where only one healthy member is considered in the
healthy population. The results indicate that having only one member in the healthy
population correlates highly with the case were the all the healthy members are considered
in the healthy population (over .87).

6.5 Validation

The patient’s physical status is visually assessed by the physiotherapist in each rehabilita-
tion session. The physiotherapist uses this assessment to formulate the patient’s regimen
and decide his or her treatment duration. This evaluation is subjective and does not
have a quantified interpretation. Moreover, the evaluations of each session have not been
documented regularly in the dataset used for this study.

While direct quantified expert evaluation is not available for comparison, exercise dif-
ficulty and duration can be used as an indirect measure of PT assessment. In the first
sessions of rehabilitation, exercises recommended by the physiotherapist are mostly com-
posed of supine and sitting exercises with very few repetitions. As patients improve, the
recommended exercise regimen becomes harder, i.e., includes standing and gait exercises.
Furthermore, the number of repetitions of the exercises increase. Therefore, the exercise
regimen can be utilized to obtain an estimate of the clinical assessment of the patient’s
overall performance, i.e., overall score. Therefore, to validate our approaches, we perform
the following experiments:

- Comparison of the score measures with an estimate of patient progress calculated
based on their exercise regimen
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- Qualitative comparison of the score measures with the physiotherapist notes in the
patient health charts

6.5.1 Comparison of the Score Measures Based one Estimation
of Patients Progress Calculated Based on Their Exercise
Regimen

To estimate the true measure of patient progress from the exercise regimen, we use the
complete information of all exercise sets available from all patients. We consider the
exercises performed in the last session for patients with fewer than 4 sessions, and the
exercises performed in the last two sessions for patients with more than 4 sessions as the
hard exercise set. We consider the last two sessions because for most patients the last
session is a last check up and contains very few exercises. The first session exercises are
considered as the easy exercise set. For each exercise, the number of patients who have
performed this exercise in their last day are counted and this number is divided by the
total number of patients to obtain the probability that the exercise belongs to the hard
exercise set, pH(Ω). We eliminate the exercises performed by fewer than three patients, i.e.,
exercises with probability less than .15, from the hard exercise set. The same procedure
is performed to determine the probability of belonging to the easy exercise set, pE(Ω). If
an exercise is not in the hard exercise set the probability that this exercise belongs to the
hard exercise set, p(H|Ω), is assigned a value of .01:

p(H|Ω) =

{
pH(Ω), if Ω ∈ ΓH

.01, otherwise
(6.1)

p(E|Ω) =

{
pE(Ω), if Ω ∈ ΓE

.01, otherwise
, (6.2)

where Ω is the exercise from the exercise set, ΓH is the hard exercise set, and ΓE is the easy
exercise set. The overall measure of progress for each session and each patient is calculated
as

SiGT
=

∑
Ω∈Γ log(p(H|Ω))∑
Ω∈Γ log(p(E|Ω))

SGT = [S1GT
, S2GT

, ...],

(6.3)

where i is the number of sessions, SiGT
is the ground truth overall score for each session,

and SGT is the overall score for all the sessions.
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Fig. 6.22 shows the correlation index comparing each method’s overall score, S, for
each patient with the overall score obtained from Eq. 6.3. The feature-based and the
HMM-based approaches correlate moderately (correlation over 0.4 value) in most cases
(over 55% of patients for the feature-based approach and over 56% of patients for the
HMM-based approach). Low correlations occur mostly in cases where for many of the
sessions few exercises are available for evaluation, e.g., patient 4 and 3. As mentioned in
Sec. 5 the inconsistency in the number of available exercises between different sessions can
cause jumps in the overall score, which in turn results in a poor correlation with the ground
truth. The cases where the clinical assessment does not correlate well with our proposed
approaches are either caused by patients who do not show a visible change in their overall
score or are caused by patients who have inconsistency in the number of available exercises
in more than half their sessions. When these patients are excluded (9 patients out of 16
remain) the mean of the correlation becomes 67% for the feature-based approach and 72%
for the HMM-based approach.

The kernel-based approach correlates moderately (correlation over 0.4 value) with the
overall score from Eq. 6.3 for 43% of the cases, and the DMP-based approach correlates
moderately with the overall score for 43% of the cases. The poor performance of the
DMP-approach is partially due to the fact that it is sensitive to segmentation, and that
the basis functions are highly affected by the motion temporal variability. The kernel-
based approach has a poorer performance compared to the feature-based approach and the
HMM-based approach. This is a result of the algorithm’s inability to capture the temporal
information in the human motion.

The SVM-based approach correlates moderately with the overall score calculated uti-
lizing Eq. 6.3 for 43% of cases. The SVM-based approach is highly affected by the decision
boundary and performs very poorly on most of the on unseen data.

6.5.2 Qualitative Comparison of the Score Measures with the
Patient Health Charts

Physiotherapists assess and record patient performance and condition on admission. Even
though these assessment forms often contain unfilled sections and are mostly qualitative,
they include information about the initial status of the patients. Furthermore, patient
performance during rehabilitation is sometimes recorded by the physiotherapists in the
daily charts. We have studied these forms and charts for each patient. In this section,
we provide the physiotherapist assessments for the exemplar patients and compare these
evaluations to the HMM-based and feature-based approaches’ proposed overall score.
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Figure 6.22: Correlation between the overall score calculated for each method and the
ground truth for each patient. The data of patients 10 and 11 has only 1 session available
and therefore correlation cannot be calculated.

Patient 2 was admitted to the hospital after a hip joint replacement surgery. Based on
the first day assessment, she was forbidden to perform hip abduction due to hip precautions.
She was capable of bearing her weight on her feet, but needed assistance for rolling in bed
and transferring from bed to wheelchair. She used a 2 wheel walker and was capable of
walking for 2 meters only. The range of motion score in the recovering leg for different DoFs
(e.g., hip abduction, and etc.) was 8

18
and the patient had a high risk of fall according to her

stability test results. On the night before session 5, the patient fell in the bathroom causing
pain in her lower extremity joints and therefore affecting her performance on session 5. This
information matches the overall scores calculated for both of the proposed approaches in
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Figs. 7 and 9. The patient is sent back to the ER on session 8 due to complications
unrelated to her surgery; The effects of this incident on her performance are captured by
both of the proposed approaches in Figs. 6.7 and 6.9. The patient comes back a week later
to continue her physical rehabilitation. On session 9 the patient is able to walk 70 meters
with a 2 wheel walker with supervision and her range of motion score for the rehabilitated
leg’s DoF becomes 18

18
. This progress is captured in the 9th and 10th session by both the

HMM and feature-based approaches in Figs. 6.7 and 6.9.

Patient 8 was admitted to the hospital after a hip joint replacement surgery. Based
on her first day assessment, she was capable of bearing her own weight but was feeling
severe pain. She had high bed mobility but needed assistance in transitioning from bed
to wheelchair. She had a high fall risk according to her stability test and was capable
of walking for 10 meters only. Her range of motion score was 12

18
and she could perform

the exercises with assistance. On her second session she was capable of performing all
her transfers independently and was capable of walking 50 meters independently using a 2
wheel walker. the proposed overall score for both approaches capture the progress for this
patient between sessions 1 and 3 in Figs. 6.7 and 6.9. In her 9th session she performed
20 repetitions of bilateral exercises which indicates improvement in her performance. The
physiotherapy did not record the range of motion score at discharge.

Patient 18 was admitted to the hospital due to knee replacement surgery. He had a
high risk of fall and had a somewhat normal bed mobility. He needed supervision for bed
to wheelchair transfer. He could walk 30 meters with supervision. In session 3 he had two
physiotherapy sessions where he walked 40 meters supervised using a 4 wheel walker in
the morning and 70 meters in the afternoon. Our scores capture this rapid progress for
this patient between the first and third sessions in Figs. 6.7 and 6.9. For Patient 18, the
physiotherapist did not record the motion score, either at admittance or at discharge.

The proposed approaches qualitatively correlate with the medical charts of the patients.
However, the notes in the medical chart often do not contain a quantified measure of the
patient’s performance, and are often subjective. For example, the patient’s level of pain
is dependent on the patient’s perception of his/her pain, and it is not obvious from the
notes how this pain may have affected the patient’s performance. Furthermore, while the
overall quantity or duration of the exercises the patient has performed may be recorded,
e.g., 70 meters walking, detailed assessment of how well the task was performed is not
recorded. Therefore, in the sessions that pain is reported for the patient, we cannot be
sure if this pain has affected the patient’s performance, or, when the quantity or duration
of the exercise that the patient performs increases, we cannot be sure that the patient’s
performance has also improved.
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Table 6.2: Experimental Evaluation Summary
Method Observation Discussion 3

Feature-Based
Approach

Captures trend of progress for ex-
emplar patients, there are jumps
and some inconsistencies in the
measures of performance

The approach is highly affected
by noise

HMM-Based
Approach

Captures trend of progress for ex-
emplar patients, there are jumps
and some inconsistencies in the
measures of performance

—

Kernel-Based
Approach

Does not capture trend of
progress for patient 8

Does not consider time evolution

DMP-Based
Approach

Does not capture trend of
progress for patient 2

Highly affected by temporal vari-
ability and segmentation inaccu-
racy

Classifier-
Based Ap-
proach

Captures trend of progress for ex-
emplar patients, there are jumps
and some inconsistencies in the
measures of performance

Dependence on training data and
decision boundary

1 Common possible causes for inconsistencies in the overall score: patient progress is
not always monotonic, small number of data points.

6.6 Summary

Quantified and continuous 2 measure of performance can be beneficial for monitoring pa-
tient progress during the course of physiotherapy rehabilitation. This work introduces two
approaches, feature-based and HMM-based, for capturing the continuous change in patient
data. A distance measure is introduced as a measure of performance for a repetition time-
series and repetition set. The overall score is then calculated for the exercise set in each
session and captures the overall performance of the patient. The proposed approaches are
evaluated on data of exercises commonly performed after hip or knee replacement surgery.
The results show that the proposed approach is promising for tracking patient progress
over the course of treatment. The proposed approaches have a higher correlation with the
score obtained from the exercise regimen compared with the existing approaches. Further-
more, the proposed approaches correspond qualitatively with the patients’ medical charts.
Table 6.2 summarizes the results for the experimental evaluation.

2The measure is provided after each repetition of an exercise.
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The proposed approaches show promising results for capturing patient progress. How-
ever, the proposed approaches are not capable of detecting progress in the current data
set when the changes in the patient’s performance are small. Furthermore, it is difficult
to estimate the patient’s performance when only a few samples of the patient’s motion are
available. Moreover, in this study we only consider a subset of the exercises and general-
ization to additional exercises remains to be investigated. When considering an exercise
set , we have used exercise difficulty to ensure that the exercises with different levels of
difficulty are comparable. This consideration however is imperfect and requires further
investigation and improvement.
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Chapter 7

Conclusions and Future Work

Monitoring exercise performance during physiotherapy can provide an objective measure of
patient progress. Movement performance shows temporal and spatial variability caused by
multiple sources including the stochastic nature of muscle recruitment, as well as individual
differences in height, age, pain, fatigue, and progress. The objective of the proposed dis-
tance measures and the overall score are to capture the variability caused by improvement
and progress over the course of the physiotherapy treatment.

7.1 Conclusions

In this thesis, we estimate a continuous1 measure of patient performance to capture their
progress through rehabilitation, whereas most existing works [117] [146] can only separate
healthy from patient data using classification. We formulate a measure of performance
for an exercise set, whereas most current works [53] [146] consider only a single exercise.
Moreover, we evaluate our approach both on synthetic and patient data, whereas many of
the current works focus on synthetic analysis and simulated data only. Furthermore, the
HMM-based approach and the feature-based approach can be applied when patient data
for a motion is not available whereas the classification techniques require both healthy
and patient data for training. Both proposed approaches achieve generalization to new
patients by including healthy population data as reference. Furthermore the score measure
formulations can be applied to any set of exercises as long as the corresponding healthy
population data is available. This flexibility enables the physiotherapist to include patient

1The measure of performance is provided after each repetition of the exercise.
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specific or novel exercises requiring only a healthy reference set. The score measure is
formulated in a way to handle individual exercise regimens and a variable number and
type of exercises.

To enable feature selection when little or no patient data is available using the feature-
based approach and the HMM-based approach, we assumed that the healthy population
exhibits the same compensation strategies as the patients to a smaller degree. This hy-
pothesis is formulated on the basis that difficult motions result in compensatory strategies
in human motion. This assumption is supported for the three exercises discussed in this
thesis as shown in Figs. 6.2, 6.3, and 6.4. In the absence of patient data, we considered
the most variant features in the healthy population as the top features. However, feature
selection using both healthy and patient population data is more accurate because it al-
lows the method to detect the compensatory strategies which are specific to the patient
population.

For both the feature-based and the HMM-based approach, the distance measure ∆ for
a repetition set and the overall score S for a exercise set assess patient progress. The
feature-based approach is faster to compute whereas the HMM-based approach provides
details about each stage of the motion.

Of the comparison methods considered, the kernel-based approach and the DMP-based
approach do not perform as well as the HMM-based approach and the feature-based ap-
proach. The DMP-based approach is highly affected by segmentation inaccuracy, and
temporal variability of motion execution. The kernel-based approach does not include the
temporal information of the motion, and therefore is not capable of capturing certain types
of change in human motion.

We also compared the proposed approach to estimating patient progress based on the
magnitude of the SVM-margin between the healthy and patient population data. Our
proposed approach has a high degree of correlation with the SVM-based approach, while
requiring less training data. SVM requires feature selection on top of our LASSO feature
selection to identify the most variant features, and requires training data from both the
healthy and patient population. In its current form, the SVM is not capable of capturing
the progress based on different exercises. We combine the SVM approach for generating
distances with our approach to generate the overall performance score for multiple exercises
using the SVM. The results obtained with synthetic data illustrate that the proposed
approaches are superior to this classification method in the presence of noise, inaccurate
segmentation, and incomplete timeseries.

We also compared the HMM-based approach and the feature-based approach to physio-
therapist evaluations by computing the correlation between progress estimate and advance-
ment of the exercise regimen, and qualitatively. The results indicate that both proposed
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approaches correlate moderately with the score obtained from the exercise regimen in 56%
of the cases. Furthermore, the method qualitatively correlates with physiotherapist evalu-
ations. The proposed approaches are superior to the existing approaches when comparing
to the score obtained from the exercise regimen.

The proposed approaches are not capable of explaining the cause of the patient’s
progress or lack of progress. Furthermore, the proposed approaches do not include a
generative model of progress incorporating physiological principles. The causes of change
in the motion profile of a patient cannot be differentiated by the proposed approaches.
Moreover, the validation of the proposed approaches is impeded due to lack of clinical
ground truth.

7.2 Future Work

The proposed measures consider the improvement due to exercise performance; other fac-
tors such as pain and psychological status are not included in our analysis. Different pain
treatments can affect motion performance, e.g., reducing pain killer medication may lead to
a decrease in observed exercise performance even though the overall health status improves.

The order of exercises performed in obtaining the overall score is not considered in the
proposed formulation and effects of fatigue on movement performance are not included.
Exercises vary in their difficulty and the variance of the healthy population’s performance
is considered as an estimate of exercise difficulty. Considering patients, exercise difficulty
may further depend on the type of surgery. Variance in the healthy population depends
further on fitness level and familiarity with an exercise.

The proposed approaches can be used both to provide information about how well a
patient performs a specific task and repetitions of that task, and also to identify what is
different between the ideal motion and the patient’s motion. However, since the proposed
approaches calculate the performance measures based on a set of features, the information
about the contribution of each feature and the reasons for the observed difference between
the patient’s performance and the healthy performance is not captured. To determine
the cause of the difference in performance between the patient and the healthy popula-
tion, either the features need to be further investigated or the hypothesized causes of the
difference should be explicitly modelled, e.g. for fatigue [57].

In the current evaluation, the healthy population consists of individuals between 22-35,
and the patient population consists of older population between 48-86 years old. There
may be differences in performance between the two populations due to the age difference.
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Furthermore, as observed from the data, the healthy population’s motion is not always
completely correct, and often some form of compensation is observed in their data. More-
over, in this thesis, we have only considered three exercises. Therefore, future work includes
evaluating with an age matched healthy population or physiotherapist demonstrations, and
evaluating on a larger set of exercises.

Patients perform different exercises during one physiotherapy session. The fatigue
and/or pain after each exercise could affect the performance in the following exercises.
Therefore, the proposed approach could also be enhanced by considering the order of the
exercises in the formulation.

Each patient has a unique medical history, and a different physical fitness and status.
Furthermore, patients could be recovering from different surgeries. Therefore a possible
future direction for the measures of progress are subject independent measures of exercise
difficulty, and fatigue and pain.

The classifiers considered for the existing classifier based approaches are common linear
separators. More powerful classifiers may yield better performance.

Future directions may also investigate the smallest clinical important difference of the
proposed score and whether physiotherapists using the new distance metrics gain additional
clinically relevant information not available through visual observation alone.
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Appendix A

Phase Adjusted DMP

The DMP-based approach can be modified to account for the timing difference between the
patients’ motions and the healthy population’s motion. In the basic DMP-based approach,
the phase evolves linearly with time for each repetition timeseries, i.e., the phase is equal
to zero at the beginning of each repetition timeseries and is equal to 2π at the end of
each repetition timeseries, and has a linear relationship with time. This phase assignment
causes the same value of phase to correspond to different stages of motion between different
trials(See Fig. A.1). This limitation of the basic DMP-based approach results in a poor
performance for some patients.

0

2

t

t

t

Figure A.1: The different stages of motion correspond to the same phase value.

To avoid this limitation, we use a DMP-based approach, which relies on phase adjust-
ment between the patient population and the healthy population. In the phase-adjusted
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DMP-based approach, the DMP model for the healthy population is trained on all the rep-
etition timeseries in the healthy population. The phase of each repetition timeseries in the
patient data is adjusted based on the generated timeseries from the healthy population’s
model. The DMP model for each repetition set is then trained using the adjusted phase
vectors of the repetition timeseries. The measures of performance for each repetition set
are the difference between the weights of the healthy population model, and the obtained
weights for each repetition set.

In the first step of this approach a DMP model is trained for each DoF, i.e., joint angle
positions, based on all repetition time series in the healthy population. For each of these
repetition timeseries, the phase variable φ is considered to vary linearly with time with 0 at
the beginning of each repetition timeseries and 2π at the end of each repetition timeseries
(See Fig. A.2).

0

2

t

Phase

t

Timeseries

Figure A.2: The timeseries and the phase values used for training the DMP model for the
healthy population.

To adjust the phase for each patient’s repetition timeseries, we assume that the human
motion is synchronous and we consider the most variable joint angle for phase adjustment.
For the most variable joint of each repetition timeseries in the patient population, a healthy
population timeseries is generated using the DMP model of the most variable joint in the
healthy population. A constant value is added to the generated timeseries of the healthy
population to make the initial value of the two timeseries the same. The generated time-
series of the healthy population is then scaled so that the maximum of the two timeseries
become equal (See Fig. A.3).

At each time step in the generated timeseries of the healthy population, the value of
the generated timeseries is compared to the values of the patient’s repetition timeseries.
The closest equal value in the patient’s repetition timeseries is assigned the same phase as
the generated timeseries at the given time step. If a value does not exist in the patient’s
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Figure A.3: The generated timeseries of the healthy population is scaled and added to an
offset so that the beginning of the generated timeseries and the maximum of the generated
timeseries match those of the patient’s repetition timeseries.

repetition timeseries, we assume that the phase remains constant until the next equal value
is found. Furthermore, we assume that the phase at the end of the patient’s repetition
timeseries is 2π (See Fig. A.5). Fig. A.4 illustrates the resulting phase for one repetition
timeseries.

After the phase vector is generated for the patient’s repetition timeseries, a DMP model
is trained for the repetition set. The weights of the resulting DMP model are considered as
the feature vector for this repetition set. The measure of performance for each repetition set
is then calculated as the Euclidean distance between the weights of each repetition set and
the weights of the healthy population model. Fig. A.6a depicts the result of this approach
for knee extension/flexion of patient 8. As can be seen from the figure, the approach is
not capable of capturing the trend of progress. This observation can be explained by the
fact that the temporal information of patients’ motions contain valuable information about
their progress. By training the DMPs using the phase adjustment approach, this temporal
information is neglected.
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Figure A.4: The resulting phase for a repetition timeseries.

97



tt0
t1

Phase patient (t1)=Phase healthy (t0)

Figure A.5: The phase for the patient population is generated based on the generated
timeseries of the healthy population. At each timestep, the value equal to the generated
timeseries of the healthy population is found in the patient’s repetition timeseries, and the
phase of the point is assigned equal to that of the generated timeseries. If an equal value
is not found it is assumed that the phased has remained constant. The motion of patients
often contains perturbation when they reach the desired posture. This perturbation results
in jumps in phase as can be seen in the figure.
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Figure A.6: The measure of progress ∆ of knee extension/flexion exercise calculated for
patient 8. As can be seen from the figure, no visible trend of progressed is observed for the
two methods.
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Appendix B

Patient Information

Table 6.1 summarizes the patient information and any confounding factors. Some patients
are discharged significantly earlier than others indicating an early onset of acceptable
performance through rehabilitation. Our approaches are able to identify this for patients
16 and 7. Some patients suffer from special circumstances which may have influenced their
performance through rehabilitation , e.g., patient 6 suffers from chronic pain.
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Appendix C

Top Features

Table 2 summarizes the feature selection results for the feature based method. Table 3
summarizes the feature selection results for the HMM based method.
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Table C.1: Top features selected by Lasso for feature based method.

Knee Extension Knee Hip Extension Squat
minq4 minq4 minq̇1
meanq1 meanq2 maxq4
meanq̈4 maxq2 maxq̇4
romq4 romq4 romq1

time time time

Table C.2: Top features selected by Lasso for HMM based method.

Knee Extension Knee Hip Extension Squat
σ3q̇4

σ2q4
µ2q1

σ1q̇3
σ2q̈3

σ1q2

σ1q̇5
σ2q1

µ1q̈1

σ1q4
σ3q2

σ3q̇4

σ3q̇5
σ3q4

µ2q1
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Appendix D

Measure of Performance ∆

Figs. D.1, D.2, D.3, D.4, D.5, and D.6 illustrate the results for the distance measures
∆ calculated for each repetition set using feature-based approach with feature selection
on healthy and patient population (FBA FHP). Fig. D.7, D.8, D.9, D.10,D.11, and D.12
depict the results for the distance measures ∆ calculated for each repetition set using
feature-based approach with feature selection on healthy population (FBA FH).
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Figure D.1: Results for the distance measure δ for patients 1-3 calculated using the FBA
FHP are shown for three exercises. The red circle illustrates the median of the distance
measures (i.e. ∆) in each session and the blue bar depicts the variance of the distance
measures δ in one session. The size of the circle indicates the number of repetitions available
in each repetition set.
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Figure D.2: Results for the distance measure δ for patients 4-6 calculated using the FBA
FHP are shown for three exercises. The red circle illustrates the median of the distance
measures (i.e. ∆) in each session and the blue bar depicts the variance of the distance
measures δ in one session. The size of the circle indicates the number of repetitions available
in each repetition set.
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Figure D.3: Results for the distance measure δ calculated for patients 7-9 using the FBA
FHP are shown for three exercises. The red circle illustrates the median of the distance
measures (i.e. ∆) in each session and the blue bar depicts the variance of the distance
measures δ in one session. The size of the circle indicates the number of repetitions available
in each repetition set.
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Figure D.4: Results for the distance measure δ calculated for patients 10-12 using the
FBA FHP are shown for three exercises. The red circle illustrates the median of the
distance measures (i.e. ∆) in each session and the blue bar depicts the variance of the
distance measures δ in one session. The size of the circle indicates the number of repetitions
available in each repetition set.
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Figure D.5: Results for the distance measure δ calculated for patients 13-16 using the
FBA FHP are shown for three exercises. The red circle illustrates the median of the
distance measures (i.e. ∆) in each session and the blue bar depicts the variance of the
distance measures δ in one session. The size of the circle indicates the number of repetitions
available in each repetition set.

108



0 0.5 1
0

0.2

0.4

0.6

0.8

1

∆
[a
rb
.
u
n
it
]

Session

Exercise Not Performed

(a) P16 knee exten-
sion

0 5 10
−0.5

0

0.5

1

1.5

2

∆
[a
rb
.
u
n
it
]

Session

(b) P16 knee hip ex-
tension/Flexion

0 5 10
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

∆
[a
rb
.
u
n
it
]

Session

(c) P16 squat

0 0.5 1
0

0.2

0.4

0.6

0.8

1

∆
[a
rb
.
u
n
it
]

Session

Exercise Not Performed

(d) P17 knee exten-
sion

0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
∆

[a
rb
.
u
n
it
]

Session

(e) P17 knee hip ex-
tension/Flexion

0 5 10
0.5

0.6

0.7

0.8

0.9

1

∆
[a
rb
.
u
n
it
]

Session

(f) P17 squat

0 5 10
0.2

0.3

0.4

0.5

0.6

0.7

∆
[a
rb
.
u
n
it
]

Session

(g) P18 knee exten-
sion

0 0.5 1
0

0.2

0.4

0.6

0.8

1

∆
[a
rb
.
u
n
it
]

Session

Exercise Not Performed

(h) P18 knee hip ex-
tension/Flexion

0 5 10
0.8

0.85

0.9

0.95

1

1.05

∆
[a
rb
.
u
n
it
]

Session

(i) P18 squat

Figure D.6: Results for the distance measure δ for patients 16-18 calculated using the
FBA FHP are shown for three exercises. The red circle illustrates the median of the
distance measures (i.e. ∆) in each session and the blue bar depicts the variance of the
distance measures δ in one session. The size of the circle indicates the number of repetitions
available in each repetition set.
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Figure D.7: Results for the distance measure δ for patients 1-3 calculated using the FBA
FH are shown for three exercises. The red circle illustrates the median of the distance
measures (i.e. ∆) in each session and the blue bar depicts the variance of the distance
measures δ in one session. The size of the circle indicates the number of repetitions available
in each repetition set.
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Figure D.8: Results for the distance measure δ for patients 4-6 calculated using the FBA
FH are shown for three exercises. The red circle illustrates the median of the distance
measures (i.e. ∆) in each session and the blue bar depicts the variance of the distance
measures δ in one session. The size of the circle indicates the number of repetitions available
in each repetition set.

111



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆
[a
rb
.
u
n
it
]

Session

patient7

Exercise Not Performed

(a) P7 knee exten-
sion

0 2 4 6 8 10 12
0.469

0.4695

0.47

0.4705

0.471

0.4715

0.472

0.4725

0.473

0.4735

0.474

Session

∆
[a
rb
.
u
n
it
]

patient7

Score

(b) P7 knee hip ex-
tension/Flexion

0 2 4 6 8 10 12
3.324

3.326

3.328

3.33

3.332

3.334

3.336

3.338

Session

∆
[a
rb
.
u
n
it
]

patient7

Score

(c) P7 squat

0 2 4 6 8 10 12
1.57

1.575

1.58

1.585

1.59

1.595

1.6

1.605

Session

∆
[a
rb
.
u
n
it
]

patient8

Score

(d) P8 knee exten-
sion

0 2 4 6 8 10 12
0.466

0.468

0.47

0.472

0.474

0.476

0.478

Session

∆
[a
rb
.
u
n
it
]

patient8

Score

(e) P8 knee hip ex-
tension/Flexion

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆
[a
rb
.
u
n
it
]

Session

patient8

Exercise Not Performed

(f) P8 squat

0 2 4 6 8 10 12
1.58

1.585

1.59

1.595

1.6

1.605

1.61

1.615

Session

∆
[a
rb
.
u
n
it
]

patient9

Score

(g) P9 knee exten-
sion

0 2 4 6 8 10 12
0.46

0.465

0.47

0.475

0.48

0.485

Session

∆
[a
rb
.
u
n
it
]

patient9

Score

(h) P9 knee hip ex-
tension/Flexion

0 2 4 6 8 10 12
3.33

3.332

3.334

3.336

3.338

3.34

3.342

3.344

3.346

3.348

Session

∆
[a
rb
.
u
n
it
]

patient9

Score

(i) P9 squat

Figure D.9: Results for the distance measure δ calculated for patients 7-9 using the FBA
FH are shown for three exercises. The red circle illustrates the median of the distance
measures (i.e. ∆) in each session and the blue bar depicts the variance of the distance
measures δ in one session. The size of the circle indicates the number of repetitions available
in each repetition set.
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Figure D.10: Results for the distance measure δ calculated for patients 10-12 using the
FBA FH are shown for three exercises. The red circle illustrates the median of the
distance measures (i.e. ∆) in each session and the blue bar depicts the variance of the
distance measures δ in one session. The size of the circle indicates the number of repetitions
available in each repetition set.
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Figure D.11: Results for the distance measure δ calculated for patients 13-15 using the
FBA FH are shown for three exercises. The red circle illustrates the median of the
distance measures (i.e. ∆) in each session and the blue bar depicts the variance of the
distance measures δ in one session. The size of the circle indicates the number of repetitions
available in each repetition set.
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Figure D.12: Results for the distance measure δ for patients 16-18 calculated using the
FBA FH are shown for three exercises. The red circle illustrates the median of the
distance measures (i.e. ∆) in each session and the blue bar depicts the variance of the
distance measures δ in one session. The size of the circle indicates the number of repetitions
available in each repetition set.
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Appendix E

Overall Score S

E.1 The Feature-Based Approach and The HMM-Based

Approach

Figs. E.1, E.2, E.3, E.4, E.5, and E.6 show the score measure S for each patient for
every session performing the three exercises. The score measure S is calculated using the
feature-based approach with feature selection on healthy and patient population (FBA
FHP), feature-based approach with feature selection on healthy population (FBA FH),
HMM-based approach with feature selection on healthy and patient population (HMM BA
FHP), and HMM-based approach with feature selection on healthy population (HMM BA
FH). These four methods capture the same trend of progress for more than 85% of the
cases and differences occur mostly when the patient’s condition remains unchanged over
the course of rehabilitation. Only patients 1, 2, 3, 5, 6, 7 are included in feature selection
for FBA FHP and HMM BA FHP. The score is formulated to account for exercise difficulty.
As the exercises become more difficult, the score focuses more on the fact that the patient
is able to perform them rather than focusing on how well they are performed. This can
be seen in the results of patient 13 where the individual exercises in Figs. D.5a, D.5b,
D.5c do not show an absolute trend of progress but the score considers the difficulty of the
exercises and the number of repetitions and therefore patient improvement can be seen in
the score as shown in Fig. E.5a.
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Figure E.1: Figures depict the score measure S ( ) for patients 1-3. The green line
shows the best score of the patients in their last physiotherapy session.
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Figure E.2: Figures depict the score measure S ( ) for patients 4-6. The green line
shows the best score of the patients in their last physiotherapy session.

E.2 The DMP-Based Approach and The Kernel-Based

Approach

Figs. E.7, E.8, E.11, and E.12 show the score measure S for each patient for every session
performing the three exercises. The score measure S is calculated using the kernel-based
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Figure E.3: Figures depict the score measure S ( ) for patients 7-9 The green line
shows the best score of the patients in their last physiotherapy session.

approach, and the DMP-based approach. Both approaches are capable of capturing the
trend of progress for some patients,
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Figure E.4: Figures depict the score measure S ( ) for patients 10-12. The green line
shows the best score of the patients in their last physiotherapy session.
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Figure E.5: Figures depict the score measure S ( ) for patients 13-15. The green line
shows the best score of the patients in their last physiotherapy session.

121



0 5 10

−400

−300

−200

−100

0

S
[a
rb
.
u
n
it
]

Session

(a) Patient 16 FBA
FHP

0 5 10
−50

−40

−30

−20

−10

0

Session

S
[a
rb
.
u
n
it
]

(b) Patient 16 FBA
FH

0 5 10
−1.5

−1

−0.5

0x 10
−4

Session

S
[a
rb
.
u
n
it
]

(c) Patient 16 HMM
BA FHP

0 5 10
−35

−30

−25

−20

−15

−10

−5

0

Session

S
[a
rb
.
u
n
it
]

(d) Patient 16
HMM BA FH

0 5 10

−400

−300

−200

−100

0

S
[a
rb
.
u
n
it
]

Session

(e) Patient 17 FBA
FHP

0 5 10
−50

−40

−30

−20

−10

0

Session

S
[a
rb
.
u
n
it
]

(f) Patient 17 FBA
FH

0 5 10
−1

−0.5

0x 10
−3

Session

S
[a
rb
.
u
n
it
]

(g) Patient 17
HMM BA FHP

0 5 10
−35

−30

−25

−20

−15

−10

−5

0

Session

S
[a
rb
.
u
n
it
]

(h) Patient 17
HMM BA FH

0 2 4

−400

−300

−200

−100

0

S
[a
rb
.
u
n
it
]

Session

(i) Patient 18 FBA
FHP

0 2 4
−50

−40

−30

−20

−10

0

Session

S
[a
rb
.
u
n
it
]

(j) Patient 18 FBA
FH

0 2 4
−6

−4

−2

0x 10
−4

Session

S
[a
rb
.
u
n
it
]

(k) Patient 18
HMM BA FHP

0 2 4
−35

−30

−25

−20

−15

−10

−5

0

Session

S
[a
rb
.
u
n
it
]

(l) Patient 18 HMM
BA FH

Figure E.6: Figures depict the score measure S ( ) for patients 16-18. The green line
shows the best score of the patients in their last physiotherapy session.
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Figure E.7: Figures depict the score measure S ( ) for patients 1-3. The green line
shows the best score of the patients in their last physiotherapy session.
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Figure E.8: Figures depict the score measure S ( ) for patients 4-6. The green line
shows the best score of the patients in their last physiotherapy session.
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Figure E.9: Figures depict the score measure S ( ) for patients 7-9. The green line
shows the best score of the patients in their last physiotherapy session.
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Figure E.10: Figures depict the score measure S ( ) for patients 10-12. The green line
shows the best score of the patients in their last physiotherapy session.
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Figure E.11: Figures depict the score measure S ( ) for patients 13-15. The green line
shows the best score of the patients in their last physiotherapy session.
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Figure E.12: Figures depict the score measure S ( ) for patients 16-18. The green line
shows the best score of the patients in their last physiotherapy session.
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[34] J F-S Lin and D Kulić. Segmenting human motion for automated rehabilitation
exercise analysis. In EMBC, pages 2881–2884, 2012.

[35] T J Gabbett and M J Mulvey. Time-motion analysis of small-sided training games
and competition in elite women soccer players. JSCR, 22(2):543–552, 2008.

[36] D Glowinski, N Dael, A Camurri, G Volpe, M Mortillaro, and K Scherer. Toward a
minimal representation of affective gestures. T-AFFC, 2:106–118, 2011.

131



[37] M Gönen and E Alpaydın. Multiple kernel learning algorithms. JMLR, 999999:
2211–2268, 2011.

[38] R D Green and L Guan. Quantifying and recognizing human movement patterns
from monocular video images-part i: a new framework for modeling human motion.
CSVT, 14(2):179–190, 2004.

[39] A Gretton, K M Borgwardt, M J Rasch, B Schölkopf, and A Smola. A kernel two-
sample test. JMLR, 13:723–773, 2012.

[40] Ju Han and Bir Bhanu. Individual recognition using gait energy image. PAMI, 28
(2):316–322, 2006.

[41] H Hatze. The complete optimization of a human motion. Math Biosci, 28(1):99–135,
1976.

[42] H Hatze. A comprehensive model for human motion simulation and its application
to the take-off phase of the long jump. J BIOMECH, 14(3):135–142, 1981.

[43] H Hatze. Quantitative analysis, synthesis and optimization of human motion. HUM
MOVEMENT SCI, 3(1):5–25, 1984.

[44] J B Hayfron-Acquah, M S Nixon, and J N Carter. Automatic gait recognition by
symmetry analysis. PATTERN RECOGN LETT, 24(13):2175–2183, 2003.

[45] J. A. Howe, E. L. Inness, A. Venturini, J. I. Williams, and M. C. Verrier. The com-
munity balance and mobility scale-a balance measure for individuals with traumatic
brain injury. Clinical Rehabilitation, 20:885–895, 2006.

[46] T Huynh and B Schiele. Analyzing features for activity recognition. In Proceedings
of the 2005 joint conference on Smart objects and ambient intelligence: innovative
context-aware services: usages and technologies, pages 159–163. ACM, 2005.

[47] A J Ijspeert, J Nakanishi, H Hoffmann, P Pastor, and S Schaal. Dynamical movement
primitives: learning attractor models for motor behaviors. Neural computation, 25
(2):328–373, 2013.

[48] A Jaimes and N Sebe. Multimodal human–computer interaction: A survey. COM-
PUT VIS IMAGE UND, 108:116–134, 2007.

[49] K Jia and D-Y Yeung. Human action recognition using local spatio-temporal dis-
criminant embedding. In CVPR, pages 1–8, 2008.

132



[50] Y Jiang, I Hayashi, and S Wang. Embodied knowledge extraction from human motion
using singular value decomposition. In FUZZ-IEEE, pages 1–8. IEEE, 2012.

[51] E Jovanov, A Milenkovic, C Otto, and P C De Groen. A wireless body area net-
work of intelligent motion sensors for computer assisted physical rehabilitation. J
NEUROENG REHABIL, 2(1):6, 2005.

[52] S X Ju, M J Black, S Minneman, and D Kimber. Summarization of videotaped
presentations: automatic analysis of motion and gesture. CSVT, 8(5):686–696, 1998.

[53] Jae-Yoon Jung, Janice I Glasgow, and Stephen H Scott. Feature selection and clas-
sification for assessment of chronic stroke impairment. In BIBE, pages 1–5, 2008.

[54] A Kale, N Cuntoor, B Yegnanarayana, AN Rajagopalan, and R Chellappa. Gait
analysis for human identification. In AVBPA, pages 706–714. Springer, 2003.

[55] A Kanaujia, C Sminchisescu, and D Metaxas. Semi-supervised hierarchical models
for 3d human pose reconstruction. In CVPR, pages 1–8. IEEE, 2007.

[56] M Kapadia, I-k Chiang, T Thomas, N I Badler, J T Kider Jr, et al. Efficient
motion retrieval in large motion databases. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, pages 19–28. ACM, 2013.

[57] M Karg, G Venture, J Hoey, and D Kulic. Human movement analysis as a measure
for fatigue: A hidden markov-based approach. 2014.

[58] J J Kavanagh and H B Menz. Accelerometry: a technique for quantifying movement
patterns during walking. GAIT POSTURE, 28(1):1–15, 2008.

[59] Y. Ke, R Sukthankar, and M Hebert. Efficient visual event detection using volumetric
features. In ICCV, volume 1, pages 166–173. IEEE, 2005.

[60] N Kern, B Schiele, and A Schmidt. Multi-sensor activity context detection for wear-
able computing. In Emile Aarts, RenW. Collier, Evert Loenen, and Boris Ruyter,
editors, Ambient Intelligence, volume 2875 of Lecture Notes in Computer Science,
pages 220–232. Springer, 2003. ISBN 978-3-540-20418-3.
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