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Abstract

In this work we perform numerical experiments using the MITgcm to simulate the
interaction of a mode-one internal tide with barotropic and baroclinic mode-one mesoscale
eddies. We also employ the ray tracing equations to track mode-one and mode-two internal
tides through barotropic eddies.

Results show that barotropic eddies interact with a mode-one internal tide to produce
beam-like regions of increased/decreased energy flux which we term hot/cold spots. The
energy flux magnitude in the hot spots can reach twice that of the incident energy flux,
while in the cold spots it can reach nearly zero.

The interaction between a mode-one internal tide and mode-one baroclinic eddies results
in the production of internal tides at modes two and higher. The generated waves emanate
from the eddy in beam-like patterns. A novel energy budget technique is developed to
measure the generation rate at each mode, finding that the energy supplied to the higher
modes is extracted from the incident mode-one wave, and that the eddy does not exchange
net energy with the waves. For the parameter regime explored here, up to 13 percent of
the incident energy is scattered to the higher modes for eddies of diameter 120 km.

The implication for the open ocean is an increase in vertical mixing local to mesoscale
eddies, at the expense of reduced vertical mixing at remote coastlines. The vortex Rossby
numbers are order one, corresponding to energetic mesoscale eddies found primarily in
western boundary current extensions and in the southern ocean. We expect that these
interactions will frequently form in locations where these phenomena coexist.

Ray tracing mode-one and two internal tides through barotropic eddies yielded four
classes of ray paths, two of which are bounded by caustics. We use a wave field reconstruc-
tion technique to synthesise MITgcm outputs for a suite of eddies ranging from mesoscale to
basin scale, demonstrating the improvement of the synthesis as eddy size increases. While
the results are poor for low-mode waves interacting with a mesoscale eddy, the technique
is viable for higher mode waves or larger scale eddies.
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Chapter 1

Introduction

The world’s oceans are richly populated with dynamical features with spatial and temporal
scales spanning several decades. Among these are oceanic internal waves and these ubiqui-
tous waves have received much attention in recent years as they have many roles in ocean
dynamics. Contributions to oceanic vertical mixing (Polzin et al., 1997; Ledwell et al.,
2000; Wunsch and Ferrari, 2004) are believed to be among the most important effects, but
they also contribute to the upwelling of nutrients (Sharples et al., 2007; Schafstall et al.,
2010) and to the transport of energy (Alford, 2003; Simmons and Alford, 2012). Shaping
of the continental shelves has also been ascribed in part to internal waves (Cacchione et al.,
2002; Puig et al., 2004; Klymak et al., 2011).

Internal tides (internal waves of tidal frequency) are an energetic subset of oceanic
internal waves and the generation of internal tides has been studied by many authors.
Understanding the fate of the internal tide once generated—where it propagates, with
which oceanic features it interacts, and where it dissipates energy—is an active area of
research. There has been an increasing awareness in recent years that the internal wave field
is difficult to predict away from generation sites. Low-mode waves that leave generation
sites propagate large distances, and are subject to various mesoscale currents and eddies
which adjust propagation speeds and directions (Alford et al., 2012; Nash et al., 2012a,b;
Kerry et al., 2013). Analysis of satellite altimetry data reveals that mode-one internal
tides can propagate thousands of kilometers from their generation site (Zhao et al., 2012).
A recent survey of ARGO profiler data by Whalen et al. (2012) found intensified mixing
occurring in regions where mesoscale eddy kinetic energy is high, and proposed that internal
waves interacting with these high energy eddies are responsible. Polzin (2010) revisited
current meter data collected during the POLYMODE Local Dynamics Experiment in 1978–
79 looking for evidence of internal wave-mesoscale interactions, and concluded that such
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interactions play a first order role in the internal wave field’s energy budget.

In this work we contribute to this understanding by investigating the effects that
mesoscale eddies have on an internal tide field. We restrict attention to low mode in-
ternal tides of the M2 frequency, and study the interaction with both isolated barotropic
and baroclinic eddies. The tools used include a fully nonlinear numerical model to di-
rectly simulate the interaction and a novel modal energy budget technique that helps in
interpreting the results. The numerical simulations and energy budgets are reported on in
Dunphy and Lamb (2014). Lastly, under the Wentzel-Kramers-Brillouin-Jeffreys (WKBJ)
approximation, we use the ray tracing equations to explain some of the model results.

By studying the impact of mesoscale eddies on the internal tide, we increase our un-
derstanding of how and where internal tide energy is dissipated and where vertical mixing
is enhanced. Improved knowledge of the distribution of vertical mixing in the ocean is
a key ingredient in improving ocean model forecasts, which in turn contribute to better
atmosphere and climate predictions.

The thesis is organised in the following manner. Background material and previous
work appears in Chapter 2 and the numerical methods are described in Chapter 3. In
Chapter 4 we describe the methods used to analyse energy exchange between internal tide
modes. Chapter 5 benchmarks the numerical methods, while Chapters 6 and 7 report on the
interaction of a mode-one internal tide with barotropic and baroclinic eddies, respectively.
Ray tracing is addressed in Chapter 8. Finally, conclusions and a discussion reside in
Chapter 9.
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Chapter 2

Background

This chapter discusses the background material relevant to the thesis. We first discuss the
governing equations and the relevant approximations that lead to the Boussinesq equations.
A section on both internal waves and mesoscale eddies follows. Lastly, we have a section
summarising previous work relating to wave-eddy interactions.

2.1 Equations of Motion

We begin with the incompressible rotating Navier-Stokes equations, the incompressible
continuity equation, temperature and salinity tracer equations and an equation of state,
each in Cartesian coordinates:

ρ
D~u

Dt
+ ρ2~Ω× ~u+∇p− ρ~g − µ∇2~u = ρ~F , (2.1a)

∇ · ~u = 0, (2.1b)

DΘ

Dt
− κΘ∇2Θ = FΘ, (2.1c)

DS

Dt
− κS∇2S = FS, (2.1d)

ρ = ρ(S,Θ, p), (2.1e)

where ρ is the density, D
Dt

= ∂
∂t

+ ~u · ∇ is the material derivative, ~u = (u, v, w) is the

velocity vector, ~Ω is the angular velocity of the rotating frame, ∇ is the gradient operator,
p is the pressure, ~g = (0, 0,−g) is the gravitational attraction vector, µ is the dynamic
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viscosity coefficient, ∇2 is the Laplacian operator, ~F = (Fu, Fv, Fw) is the momentum
forcing vector, Θ and S are the temperature and salinity, κΘ and κS are the temperature
and salinity diffusivity coefficients, FΘ and FS are the temperature and salinity forcing
terms, and ρ(S,Θ, p) is the equation of state.

These equations are a simplified form of the complete Navier-Stokes equations, however
we make additional approximations and describe them in the following subsections. In this
work, the forcing terms are zero except in relaxation regions (see Section 3.5).

2.1.1 Scales of Motion

The scales of interest are those of mesoscale eddies and the most energetic internal tides
which happen to be the lowest modes. The horizontal eddy scales are order 50–200 km,
and the low mode waves are order 25–100 km. Eddies evolve on the time scale of weeks to
months, and internal tides on time scales of hours. A focus on these scales will help guide
the approximation of the governing equations.

2.1.2 Inviscid Approximation

The Reynolds number,

Re =
ρUL

µ
, (2.2)

is a measure of how important the inertial forces are as compared to the viscous forces.
For water, µ ≈ 1 × 10−3 kg (ms)−1 and ρ ≈ 1 × 103 kg m−3. The smallest length scale
here is L ≈ 1 × 104 m and smallest velocity scale U ≈ 1 × 10−2 m/s. The corresponding
Reynolds number is ≈ 108, which means that the inertial forces dominate for these flows,
so we neglect viscous effects by setting µ = 0. This approximation breaks down in viscous
boundary layers where velocity gradients may become large. However, for this thesis we
do not resolve boundary layers and are not concerned with boundary layer effects.

2.1.3 Nondiffusive Approximation

The Péclet number,

Pe =
UL

κ
, (2.3)
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is a measure of the importance of the advective term as compared to the diffusive term.
For water, the thermal diffusivity is κΘ ≈ 1×10−7 m s−2 and molecular diffusivity of salt is
κS ≈ 1× 10−9 m s−2. Using the same U and L scales as for the Reynolds number, we find
Péclet numbers of ≈ 109 and ≈ 1011 for heat and salt, and neglect the diffusion of each by
setting κΘ = κS = 0. Much like in the inviscid approximation, we can justify neglecting
these diffusive terms everywhere except in areas where the temperature/salinity gradients
become large.

2.1.4 Equation of State

Having neglected the diffusivity of temperature and salinity, we can combine (2.1c) and (2.1d)
with an appropriate choice of (2.1e). We choose the linear equation of state,

ρ(S,Θ) = ρ0(1− α(Θ−Θ0) + β(S − S0)), (2.4)

where ρ0 = 1028 kg m−3, Θ0 = 10 oC and S0 = 35 psu are values for reference density,
temperature, and salinity; and α = 1.7×10−4 oC−1 is the thermal expansion coefficient and
β = 7.6× 10−4 psu−1 is the haline contraction coefficient. The combined equation reads

Dρ

Dt
= Fρ, (2.5)

where Fρ is the density forcing term, which reads

Fρ = ρ0(−αFΘ + βFS). (2.6)

Nonzero density forcing arises via nonzero temperature or salinity forcing, occurring through
addition or removal of heat or salt.

2.1.5 f-plane

The f -plane approximation is a simplification of the second term in the Navier-Stokes
equations, 2~Ω×~u, also known as the Coriolis term. On Earth, the angular velocity ~Ω takes
the form

~Ω = (0, cos φ̂, sin φ̂) Ω (2.7)

where φ̂ is the latitude and

Ω =
2π

24× 60× 60 s
≈ 0.727× 10−4 rad s−1. (2.8)
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Substituting this into the Coriolis term reveals the three component vector,

2~Ω× ~u = 2Ω(w cos φ̂− v sin φ̂, u sin φ̂, u cos φ̂). (2.9)

The f -plane approximation uses a constant latitude and amounts to two adjustments to
the full Coriolis term. First, we assume w � v and drop the w cos φ̂ part from the first
component. Next, we drop the third component u cos φ̂ as it is very small when compared
to the gravitational term ~g in the vertical momentum equation. These two adjustments
are equivalent to dropping the second component of the angular velocity, leaving only

~Ω = (0, 0, sin φ̂) Ω, (2.10)

which is the traditional component. By defining

f = 2Ω sin φ̂ (2.11)

as the Coriolis parameter and ~f = (0, 0, f), we can simplify the Coriolis term to

2~Ω× ~u = (−fv, fu, 0) = ~f × ~u. (2.12)

2.1.6 Boussinesq Approximation

The Boussinesq approximation (Cushman-Roisin and Beckers, 2011) makes simplifications
concerning the density anomaly. We write the total density as the sum of a constant
reference density plus the space and time varying density anomaly,

ρ = ρ0 + ρa(x, y, z, t). (2.13)

When ρa � ρ0, we neglect ρa in the Navier-Stokes equations everywhere except in the
gravitational acceleration term (also known as the buoyancy term), yielding

ρ0
D~u

Dt
+ ρ0

~f × ~u+∇p− (ρ0 + ρa)~g = ρ0
~F . (2.14)

(2.15)

The hydrostatic pressure is that associated with the weight of the fluid above it, or

p = g

ˆ 0

z

ρ dz, (2.16)
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and that associated with the constant reference density is

p0(z) = g

ˆ 0

z

ρ0 dz. (2.17)

By writing the pressure as

p = p0(z) + pa(x, y, z, t), (2.18)

we can remove it from (2.14), yielding

ρ0
D~u

Dt
+ ρ0

~f × ~u+∇pa − ρa~g = ρ0
~F . (2.19)

(2.20)

2.1.7 Hydrostatic Approximation

The hydrostatic approximation (Cushman-Roisin and Beckers, 2011) is a simplification of
the vertical momentum equation,

ρ0
Dw

Dt
+
∂pa
∂z

+ ρag = ρ0Fw, (2.21)

where Fw is the vertical momentum forcing. A scaling analysis finds that when the aspect
ratio of the flow is small (H/L� 1), the dominant balance involves the pressure gradient
and buoyancy terms,

∂pa
∂z
≈ −ρag, (2.22)

amounting to dropping the material derivative and forcing terms.
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2.1.8 Boussinesq Equations

Applying these approximations and dividing the momentum equations by ρ0 leaves us with
the inviscid incompressible Boussinesq equations, which read

D~uh
Dt

+ fk̂ × ~uh +
1

ρ0

∇hpa = ~Fh, (2.23a)

εnh
Dw

Dt
+
gρa
ρ0

+
1

ρ0

∂pa
∂z

= εnhFw, (2.23b)

∇h · ~uh +
∂w

∂z
= 0, (2.23c)

Dρa
Dt

= Fρ, (2.23d)

where ~uh = (u, v) is the horizontal velocity vector, k̂ is the unit vector pointing in the

positive z direction, ∇h is the horizontal gradient operator, ~Fh = (Fu, Fv) is the horizontal
momentum forcing vector, and εnh is a switch, equal to 0 or 1, to control whether the
hydrostatic approximation is active.

2.1.9 Perturbation Boussinesq Equations

We can further decompose the density anomaly into a background stratification part and
a perturbation part (Gill, 1982),

ρa(x, y, z, t) = ρ1(z) + ρ′(x, y, z, t). (2.24)

We can find the hydrostatic pressure associated with the background stratification,

p1(z) = g

ˆ 0

z

ρ1(z) dz, (2.25)

and subtract it from the vertical momentum equation. We also substitute (2.24) into the
density equation, and make use of the buoyancy frequency

N2(z) = − g

ρ0

dρ1(z)

dz
, (2.26)
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which yields the perturbation Boussinesq equations

D~uh
Dt

+ fk̂ × ~uh +
1

ρ0

∇hp
′ = ~Fh, (2.27a)

εnh
Dw

Dt
+
gρ′

ρ0

+
1

ρ0

∂p′

∂z
= εnhFw, (2.27b)

∇h · ~uh +
∂w

∂z
= 0, (2.27c)

Dρ′

Dt
− ρ0N

2(z)

g
w = Fρ. (2.27d)

2.2 Internal Gravity Waves

Gravity waves are waves that require both gravity and inertia. A well known example of a
gravity wave is the surface wave found at air-water boundaries such as the surface of lakes
and oceans. Internal gravity waves are a subclass of gravity waves found in stratified fluids.
The ocean and atmosphere are such fluids and are well known to contain internal waves of
various forms. For example, lee waves are a form of internal gravity wave formed primarily
by steady flow over topography such as mountains or submarine topography, and solitary
waves are a class of nonlinear internal gravity waves that maintain their shape as they
propagate. Internal gravity waves may also be oscillatory with a characteristic frequency.
In the ocean, when the characteristic frequency is a tidal frequency then they are often
called internal tides, and are the internal gravity waves of interest in this work. This section
will briefly discuss the generation of the oceanic internal tide, summarise linear, vertically
trapped internal tide solutions, and present the ray tracing equations for tracing internal
tides through a barotropic background flow.

2.2.1 Generation

A variety of mechanisms are responsible for generating internal gravity waves, among
which are surface forcing, flow-topography interactions, and numerous types of instability.
However, the primary generation mechanism for internal tides is tidal flow interacting
with submarine topography. As a barotropic (surface) tide oscillates across topography, it
sheds energy to baroclinic (internal) tide modes which then propagate away. Globally, an
estimated 2.5 TW of power is input to the barotropic mode at the principle lunar tide M2

(3.7 TW across all constituents), and 25–30% of that barotropic tidal power is converted to
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internal tide modes (Egbert and Ray, 2001). The Hawaiian ridge is a well known example
that converts 15 GW from the barotropic tide and injects it into the first mode internal
tide (Ray, 1997). The review article by Garrett and Kunze (2007) discusses more details
of the theoretical and numerical work concerning the generation processes.

Once generated, the internal tide interacts with numerous oceanic features, such as
eddies, currents, and other waves. Many of these interactions will transfer energy between
spatial and temporal scales via the quadratic nonlinearity in the advective term of the gov-
erning equations. Consequently, the ocean is a “noisy” place filled with waves of a variety
of frequencies and wavenumbers, and attempts have been made to describe a universal
oceanic internal wave spectrum from observations. A well known example is the Garrett-
Munk spectrum (Garrett and Munk, 1979) but other work indicates that the spectrum is
not universal, and deviates spatially and temporally.

2.2.2 Linearised Equations

Internal wave solutions may be found through the linearised governing equations (Cushman-
Roisin and Beckers, 2011). We linearise the perturbation equations (2.27) by dropping the
forcing and quadratic terms in the material derivative. The remaining terms form govern-
ing equations for small amplitude signals, and read

∂u

∂t
− fv = − 1

ρ0

∂p′

∂x
, (2.28a)

∂v

∂t
+ fu = − 1

ρ0

∂p′

∂y
, (2.28b)

εnh
∂w

∂t
= − 1

ρ0

∂p′

∂z
− g

ρ0

ρ′, (2.28c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.28d)

∂ρ′

∂t
− ρ0N

2(z)

g
w = 0. (2.28e)

Combining these equations yields a wave equation for the vertical velocity,

∂2

∂t2

(
εnh

(
∂2

∂x2
+

∂2

∂y2

)
+

∂2

∂z2

)
w +N2(z)

(
∂2

∂x2
+

∂2

∂y2

)
w + f 2 ∂

2

∂z2
w = 0. (2.29)
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2.2.3 Vertically Trapped Solutions

We consider here a horizontally unbounded ocean of constant depth with a rigid lid, within
which internal waves will be vertically trapped and can only propagate horizontally. Thus
we substitute the horizontal plane wave ansatz with a general vertical structure

w = φn(z)ei(kx+ly−ωt), (2.30)

into the wave equation (2.29) and obtain a Sturm-Liouville problem,

dφn(z)

dz2
+ κ2

n

(
N2(z)− εnhω2

ω2 − f 2

)
φn(z) = 0, (2.31)

subject to the no-normal flow boundary conditions at the top and bottom

φn(0) = φn(−H) = 0,

where κn =
√
k2 + l2 is the horizontal wavenumber, φn(z) is the vertical structure function,

H is the water depth, N(z) is the buoyancy frequency, ω is the frequency and f is the
Coriolis parameter. In general finding solutions requires a numerical method (Dunphy
(2009) shows one such approach) but with a constant buoyancy frequency N(z) = N0,
analytic solutions are available and have the form

φn = sin(mnz), (2.32)

where

mn =
nπ

H
, (2.33)

and

κn = mn

(
ω2 − f 2

N2
0 − εnhω2

)1/2

. (2.34)

We assume here that the wave frequency ω is a fixed parameter such that the eigenvalue
is the horizontal wavenumber κn and the eigenfunction φn(z) is the associated vertical
structure. It is possible to take κn as the parameter and ω as the eigenvalue, although we
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do not do it here. Substituting the vertical structure function (2.32) into (2.31) yields the
dispersion relation for the vertically trapped waves

ω2 =
N2

0κ
2
n + f 2m2

n

εnhκ2
n +m2

n

. (2.35)

The frequency divided by the horizontal wavenumber yields the phase speed,

cp =
ω

κn
=

1

κn

√
N2

0κ
2
n + f 2m2

n

εnhκ2
n +m2

n

, (2.36)

and the wavenumber gradient of the frequency gives the group velocity,

~cg0 = ∇~k ω =
m2
n(N2

0 − εnhf 2)

ω(εnhκ2
n +m2

n)2 (k, l), (2.37)

which simplifies under the hydrostatic approximation to

~cg0 =
N2

0

ωm2
n

(k, l).

Polarisation Relations

We take the real part of (2.30) with amplitude w0 as the vertical velocity

w = w0 sin(mnz) cos(kx+ ly − ωt), (2.38a)

and substitute it into the linearised equations (2.28), to obtain the polarisation relations

u = w0

(
− mn

κ2
nω

)
cos(mnz)

(
kω sin(kx+ ly − ωt) + lf cos(kx+ ly − ωt)

)
, (2.38b)

v = w0

(
− mn

κ2
nω

)
cos(mnz)

(
lω sin(kx+ ly − ωt)− kf cos(kx+ ly − ωt)

)
, (2.38c)

p′ = w0

(
−ρ0(N2

0 − εnhω2)

ωmn

)
cos(mnz) sin(kx+ ly − ωt), (2.38d)

ρ′ = w0

(
−ρ0N

2
0

ωg

)
sin(mnz) sin(kx+ ly − ωt). (2.38e)
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The vertically integrated kinetic energy density, averaged over one horizontal wavelength,
is

KE =
ρ0w

2
0H

8

m2
n

κ2
n

(
1 +

f 2

ω2
+ εnh

κ2
n

m2
n

)
, (2.39)

and the corresponding available potential energy density is

APE =
ρ0w

2
0H

8

N2
0

ω2
, (2.40)

which sum to give the pseudo-energy density

E = KE + APE. (2.41)

2.2.4 Ray Tracing

Rays are the paths followed by wave packets and the ray tracing technique relies on the
WKBJ approximation. The approximation states that the wavelength of the wave packet is
short compared to the length scales over which the background flow varies. The parameter
ε is the ratio of the wave packet’s wavelength to the background flow lengthscale and we
require ε � 1 for the ray tracing method to be valid. This subsection summarises the
ray tracing equations by following Chavanne et al. (2010) while simplifying for vertically
trapped internal waves propagating through a barotropic background flow.

Background State

The background flow field is barotropic, steady, divergence free, and varies only in the
horizontal, taking the form ~Uh(x, y) = (U(x, y), V (x, y)). A surface pressure gradient drives
the barotropic flow, so the corresponding background density is horizontally uniform with
a constant buoyancy frequency N0.

Governing Equations

We use the perturbation Boussinesq equations (2.27) with the hydrostatic approximation
applied via εnh = 0. We drop the forcing terms and substitute the horizontal velocity

~uh = ~Uh + ~u′h. (2.42)
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The equations are linearised by dropping terms quadratic in the perturbation quantities,
and gradients of the background flow ~Uh are also neglected, reflecting the slowly varying
nature of the background field. The resulting set of governing equations is

∂u′

∂t
+ U

∂u′

∂x
+ V

∂u′

∂y
− fv′ = − 1

ρ0

∂p′

∂x
, (2.43a)

∂v′

∂t
+ U

∂v′

∂x
+ V

∂v′

∂y
+ fu′ = − 1

ρ0

∂p′

∂y
, (2.43b)

0 = − 1

ρ0

∂p′

∂z
− g

ρ0

ρ′, (2.43c)

∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0, (2.43d)

∂ρ′

∂t
− ρ0N

2
0

g
w′ = 0. (2.43e)

Next, we substitute a local plane wave ansatz

(u′, v′, w′, p′, ρ′) = (u′0, v
′
0, w

′
0, p
′
0, ρ
′
0)ei(

~k·~x−ωt), (2.44)

where the amplitudes vary on slow scales and ~k = (k, l,mn), and with some algebra (not
shown here), find the local dispersion relation which takes the form

ω = ωr + ~kh · ~Uh, (2.45)

where ~kh = (k, l). The constant absolute frequency ω is that measured by a stationary
observer. In a reference frame moving with the local background velocity, the relative
frequency ωr satisfies the dispersion relation (2.35). The local dispersion relation (2.45) is
viewed as a Doppler shift equation that relates the absolute and relative frequencies.

Wave packets propagate with the local group velocity

d~x

dt
= ~cg = ∇~k ω = ~cg0 + ~Uh, (2.46a)

where d
dt

= ∂
∂t

+~cg · ∇ and ~cg0 is the group velocity in the moving reference frame (that is,
relative to the fluid). The wavenumber of the packet evolves by

d~k

dt
= −∂ω

∂~x
= −k∂U

∂~x
− l ∂V

∂~x
. (2.46b)

Given an initial position ~x and wavevector ~kh, solving the differential equations (2.46) will
determine the trajectory and wavenumber of a wave packet as it propagates through a
barotropic flow.
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Energetics

We estimate the wave packet energy using the conservation of wave action,

dÂ

dt
+ Â∇ · ~cg =

∂Â

∂t
+∇ · (~cgÂ) = 0, (2.47)

where Â = E/ωr is the wave action density. An equivalent statement is the energy budget

dE

dt
= −E∇ · ~cg +

E

ωr

dωr
dt

(2.48)

that governs the energy of the wave packet as it moves through the nonuniform background
flow. The first term on the right arises from the convergence or divergence of rays. If
∇ · ~cg is positive, energy decreases due to ray divergence, and conversely increases due to
ray convergence when ∇ · ~cg is negative. The second term accounts for energy exchange
between the wave and the background flow. Waves gain energy (at the expense of the
background flow) when they propagate into regions of increasing ωr, and lose energy to
the background flow when propagating through decreasing ωr. Equation (2.45) shows
that ωr is larger where waves propagate against the background current and smaller when
propagating with the current.

Caustics

Caustics are regions where adjacent ray paths intersect and the wave amplitude rapidly
increases toward infinity. The WKBJ assumption of slowly varying wave properties is
broken in such regions and the ray tracing predictions deemed of poor quality. In general,
the formation of caustics depends on the formulation of the ray model, and dealing with
them is nontrivial. A buoyancy frequency turning point is a classic example of a caustic
where rays reverse their vertical direction of propagation, and Lighthill (1978) uses an Airy
function to “heal” it. The review article by Broutman et al. (2004) looks at ray methods
and caustics in more detail.

2.3 Mesoscale Eddies

Eddies are persistent rotating coherent vortices found in the ocean and their lifetime greatly
exceeds their rotational period (Cushman-Roisin and Beckers, 2011). Mesoscale eddies have
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length scales of order 100 km and are approximately axisymmetric. The gradient wind
balance (or cyclo-geostrophic balance) equation describes the eddy in polar coordinates,

u2
θ

r
+ fuθ =

1

ρ0

∂p′

∂r
, (2.49)

where, from left to right, we have the centrifugal term, Coriolis term and pressure term.
The quantity uθ is the azimuthal velocity (counterclockwise positive), f is the Coriolis
parameter, p′ is the pressure perturbation and ρ0 is a constant reference density. If we
scale uθ by the peak azimuthal velocity Umax and r by the radius of peak velocity rmax,
and divide the centrifugal term by the Coriolis term, we get the vortex Rossby number

Ro =
Umax

frmax

. (2.50)

The vortex Rossby number provides a simple way to classify eddies. When the dominant
balance is between the last two terms (R0 � 1) the eddy is in geostrophic balance and
designated a geostrophic eddy. Similarly, a cyclostrophic eddy (Ro � 1) balances the first
and last terms, and a cyclo-geostrophic eddy (Ro ≈ 1) draws a balance between all three
terms.

Mesoscale eddies may be further classified as cyclones or anticyclones. Cyclones rotate
in the same direction as the ambient rotation, which is counterclockwise at positive latitude
and clockwise at negative latitude. Anticyclones, conversely, rotate in the opposite direc-
tion as the ambient rotation; clockwise (counterclockwise) north (south) of the equator
(Cushman-Roisin and Beckers, 2011).

2.3.1 Vertical Structure

Use of the quasi-geostrophic equations of motion provides insight on the vertical structure
of eddies. Carton (2001) showed that the vertical structure Φ(z) of the horizontal velocities
is composed of solutions to the Sturm-Liouville problem

d

dz

f 2

N2(z)

dΦn

dz
+

1

R2
d,n

Φn = 0, (2.51)

subject to the boundary conditions

dΦn(0)

dz
=

dΦn(−H)

dz
= 0,
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where the Rd,n is the nth baroclinic radius of deformation. A numerical method is needed
for general N(z) (Dunphy (2009) shows one approach), but for a linear stratification where
N(z) = N0 we can find analytic solutions of the form

Φn = cos(mnz), (2.52)

where

mn =
nπ

H
, (2.53)

and

Rd,n =
f

N0

mn. (2.54)

2.3.2 Generation Mechanism

Well known mesoscale eddy generation mechanisms include barotropic and baroclinic in-
stability of jets. Barotropic instability extracts energy from a horizontally sheared flow,
while baroclinic instability is powered by a release of potential energy. Both instabilities
feed the extracted energy into unstable perturbations which grow into meanders. Ini-
tial perturbations to an unstable jet (which may contain both barotropic and baroclinic
components) grow into meanders and may eventually undergo occlusion, yielding an eddy
(Cushman-Roisin and Beckers, 2011).

Western boundary currents such as the Kuroshio or the Gulf Stream/North Atlantic
Current system are well known generation sites for energetic mesoscale eddies. Such eddies
are called “rings” and are produced in warm core and cold core variants. Warm core rings
are anticyclones and are found poleward of the western boundary current, where they
encircle warm water. Conversely, cold core rings are cyclones, found equatorward of the
current, and encircle cold water (Olson, 1991). As these eddies propagate they bring their
core of anomalously warm or cold water, making them an effective means of transporting
water mass properties large distances across the ocean.

Flow past an oceanic obstacle such as a deep island can generate lee eddies, similar to
how flow past an obstacle produces a von Kármán vortex street. Variations in atmospheric
wind shear can also lead to eddy production (Jia et al., 2011).
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2.3.3 Observations

Eddies in the open ocean often have an associated sea-surface height signature. Chelton
et al. (2011) conducted an extensive survey of sixteen years worth of sea-surface height
data collected from satellite altimeters in an effort to characterise the ocean’s eddy field.
They found that 90 percent of the observed eddies had length scales falling in the 50–
150 km band, which compares well with the Rossby radius of deformation away from the
tropics. In terms of longevity, roughly 75 percent of the eddies had a lifetime exceeding
16 weeks. The vortex Rossby number in equation (2.50) was below 0.1 for most of the
eddies, indicating that eddies are primarily geostrophically balanced. Most of the surveyed
eddies propagate nearly due west and have an advective nonlinearity parameter U/c > 1,
indicating that they efficiently transport trapped cores of water as they propagate.

Satellite altimeter data is not useful to detect eddies without a sea-surface height sig-
nature or eddies trapped below ice cover. However, hydrographic sections collected from
surface vessels may reveal subsurface eddies, a well known example of which are “meddies”
(Mediterranean eddies). Meddies form when warm salty water overflows from the Strait
of Gibraltar, descends to a depth of 500–1500 m, and eventually separates to produce
anticyclonic lenses with diameters ranging from 40 to 100 km. Azimuthal velocities reach
30 cm/s, and the meddies transport their warm salty water westward across the North
Atlantic until they either spin down or collide with seamounts (Richardson, 2000).

Eddies trapped below ice cover may be observed from hydrographic sections collected
via submarines. An example is the Canada Basin eddy observed by Muench et al. (2000)
which had velocities exceeding 20 cm/s and a diameter of 20 km. Ice tethered profilers are
also used to observe eddies in the Canada Basin, and Timmermans et al. (2008) reported
on observations of numerous eddies with horizontal scales at or below 10 km and velocities
spanning 9 to 26 cm/s.

Wunsch (1997) examined current meter data and concluded that the barotropic and
first baroclinic mode dominate the vertical structure of mesoscale eddies. Zhang et al.
(2013) surveyed ARGO float and satellite altimeter data in search of a universal structure
of mesoscale eddies. They presented evidence indicating that the horizontal structure of
the pressure roughly follows

ψ(r) =

[
1− 1

2

(
r

LE

)2
]
e
− 1

2

(
r

LE

)2

(2.55)

where LE is an eddy length scale. They further found that the pressure’s vertical structure
is well explained by a fit to the barotropic mode plus the first baroclinic mode, consistent
with Wunsch (1997).
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2.4 Previous Work

The interaction between internal tides and mesoscale eddies has been looked at by a few
other authors. This section summarises the work that is closely related to this thesis.

2.4.1 Barotropic Tide

Recent work by Lelong and Kunze (2013) looked at interactions between the barotropic
tide and mesoscale eddies as a potential generation mechanism for internal tides. They
found that a horizontally uniform barotropic tide produced no interaction, and that optimal
interaction occurs when the eddy lengthscale is comparable to the horizontal lengthscale
of the barotropic tide. In the ocean, this compatibility is seldom found, and the authors
concluded that the large difference in length scales between the two phenomena precluded
their interaction from efficiently producing internal tides.

2.4.2 Wave Capture

Bühler and McIntyre (2005) discuss a wave capture mechanism where internal wave packets
extract energy from a shear flow as they propagate through. The wavelength of the packet
decreases and its energy increases, leading to deformation and eventual breaking. Ferrari
and Wunsch (2009) noted that this mechanism may work as an eddy viscosity acting on
the large scale shear flow, and thus help close the ocean’s eddy kinetic energy budget.

2.4.3 Resonant Triads

Under the assumption of a constant buoyancy fluid, Lelong and Riley (1991) showed that
resonant triad interactions (McComas and Bretherton, 1977) can be found between a vor-
tical mode and two internal wave modes. The interaction is interesting because the vortex
does not exchange energy with the wave modes, rather the wave modes exchange energy
with each other and the vortex acts simply as a catalyst. The vortical mode has zero
frequency, ω2 = 0, and thus the two wave modes will have the same frequency as a conse-
quence of the resonant frequency condition

ω1 ± ω2 ± ω3 = 0. (2.56)
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A side effect of matching frequencies is that the wave vector of both internal wave modes
are found on a constant frequency cone in wavenumber space. The wavenumbers of each
satisfy the resonant wavenumber condition

~k1 ± ~k2 ± ~k3 = 0. (2.57)

The wave and vortical modes considered here are periodic and Riley et al. (1991) demon-
strated the energy exchange numerically using a periodic domain. Lelong and Riley (1991)
did not consider rotational effects, but Bartello (1995) found that the same wave-wave-
vortex triads form on an f -plane. Both of these authors have described wave-wave-vortex
triads as easy to form.

Ward and Dewar (2010) used a shallow water model to investigate the scattering of
gravity modes by a periodic potential vorticity field, finding that the gravity waves were
scattered into modes with similar wavelengths but a wide array of propagation directions.

2.4.4 Ray Tracing

Ray tracing has been used by a number of authors in the context of internal waves and
mesoscale currents. Kunze (1985) traced near-inertial wave packets through a geostrophic
shear, and found that waves were trapped in regions of negative vorticity, reflected from
critical layers in the horizontal, and stalled at critical layers in the vertical.

Rainville and Pinkel (2006) used a two dimensional ray tracing formulation to track
low mode internal tides as they propagate from a generation site through a barotropic
mesoscale current field. Results showed that the propagation path of mode-one waves is
only mildly affected by the mesoscale currents and that the phase becomes random as
the distance propagated increases. Modes three and higher suffered a dramatic loss in
coherence resulting from their passing through the currents.

Three dimensional ray tracing of internal tides was used by Chavanne et al. (2010) to
study their propagation away from the Hawaiian Ridge and through two idealised mesoscale
currents. Propagation through a mesoscale cyclone intensified surface internal wave energy,
and propagation through a vortex Rossby wave yielded surface wave energy that increased
or decreased depending on their phase.

Hertzog et al. (2002) derived a transport equation for phase-space wave-action density
for gravity waves. Muraschko et al. (2014) used the transport equation in one dimension in
the context of vertically propagating atmospheric gravity waves, and included comparisons
with results from weakly and fully nonlinear numerical models.
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2.4.5 Interference Pattern Reconstruction

Rainville et al. (2010) constructed line sources that approximate the generation of the
M2 internal tide at modes one and two at the Hawaiian Ridge. Four line sources were
analytically prescribed which describe internal tide beams that radially spread as they
propagate away from the ridge on the south side. The superposition of the beams yields
an interference pattern that agreed reasonably well with a fully nonlinear high-resolution
numerical model.

Zhao et al. (2010) decomposed sea-surface height anomaly data collected north of French
Frigate Shoals near Hawaii into northward and southward propagating mode-one M2 com-
ponents. A plane wave is constructed for each, and their superposition yielded an interfer-
ence pattern that resembles the observed sea-surface height anomaly.
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Chapter 3

MITgcm

This work looks at the interaction between the internal tide and mesoscale features, par-
ticularly mesoscale eddies. We use a numerical model to simulate the interaction of these
features and examine the model output to draw conclusions.

The chosen model is the MIT General Circulation Model or MITgcm (Marshall et al.,
1997), a finite volume model designed for simulating both the atmosphere and the ocean.
When used for the atmosphere it uses pressure coordinates while it uses z-coordinates for
the ocean. In this section we discuss the MITgcm configuration, leaving the experiment
specifics for later.
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3.1 Governing Equations

The equations of motion that MITgcm solves for the ocean are,

D~uh
Dt

+ fk̂ × ~uh +
1

ρ0

∇hpa = ~Fh, (3.1a)

εnh
Dw

Dt
+
gρa
ρ0

+
1

ρ0

∂pa
∂z

= εnhFw, (3.1b)

∇h · ~uh +
∂w

∂z
= 0, (3.1c)

ρa = ρ(Θ, S, p0(z))− ρ0, (3.1d)

DS

Dt
= FS, (3.1e)

DΘ

Dt
= FΘ, (3.1f)

where ~uh is the horizontal velocity vector, w is the vertical velocity, ρ0 is a constant reference
density, ρa is the density anomaly, p0(z) is the hydrostatic pressure profile associated with
ρ0, pa is the pressure perturbation, f is the Coriolis parameter, g is the gravitational
acceleration constant, k̂ is the vertical unit vector, ∇h is the horizontal gradient operator,
~Fh is the horizontal momentum forcing term, Fw is the vertical momentum forcing term,
εnh is a non hydrostatic switch, S is the salinity, FS is the salinity forcing, Θ is the
potential temperature, and FΘ is the temperature forcing. The forcing terms here include
contributions from viscosity and diffusivity.

In this work we hold temperature constant, salt is the active tracer, and the equation
of state is linear. Viscosity and diffusivity are neglected, eliminating parts of the forcing
terms. The governing equations simplify to

D~uh
Dt

+ fk̂ × ~uh +
1

ρ0

∇hpa = ~Fh, (3.2a)

εnh
Dw

Dt
+
gρa
ρ0

+
1

ρ0

∂pa
∂z

= εnhFw, (3.2b)

∇h · ~uh +
∂w

∂z
= 0. (3.2c)

Dρa
Dt

= Fρ, (3.2d)

With these adjustments, the equations solved by MITgcm are consistent with the incom-
pressible Boussinesq equations (2.23). All simulations use the hydrostatic approximation,
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which sets εnh = 0. We use the centred second order advection scheme for both momentum
and salinity.

3.2 Model Domain

The model uses a rectangular domain of dimensions Lx×Ly on a f -plane, with a rigid lid,
constant buoyancy frequency N0, and constant depth H. The north-south boundaries are
periodic, the east closed, and the west forced.

3.3 Mesoscale Eddy Prescription

The internal tide-eddy interaction experiments use an isolated mesoscale eddy as the initial
condition, which we describe by the streamfunction

Ψ(r, z) = ψh(r)Φ(z) = −5
5
2

64
UELE sech4

(
r

LE

)
Φ(z). (3.3)

The location of the eddy centre is (xc, yc) and with r2 = (x− xc)2 + (y − yc)2, ψ(r)
and Φ(z) describe the horizontal and vertical structure. The constant scaling factor of
−55/2/64 ensures that ψr yields a peak azimuthal velocity of Umax = UE at r = rmax =
LE tanh−1(

√
5/5) ≈ 0.48LE. The eddy’s vortex Rossby number (2.50) uses these values of

Umax and rmax. The parameter LE is the length scale of the eddy, and the peak velocity
drops to below 2 percent at a radial distance of 2LE, corresponding to an eddy diameter
DE = 4LE. The eddy’s azimuthal velocity is

uθ =
∂Ψ

∂r
= −5

5
2

16
UE sech4

(
r

LE

)
tanh

(
r

LE

)
Φ(z), (3.4)

which converts to Cartesian form for model initialisation by

(U, V ) = (− sin θ, cos θ)uθ, (3.5)

where

θ = tan−1

(
y − yc
x− xc

)
. (3.6)
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To find a balanced density field we start with the cyclo-geostrophic balance in cylindrical
coordinates

u2
θ

r
+ fuθ =

1

ρ0

∂p′

∂r
, (3.7)

take a derivative in the vertical,

2

r

∂uθ
∂z

uθ + f
∂uθ
∂z

=
1

ρ0

∂2p′

∂r∂z
, (3.8)

multiply by ρ0 and integrate radially,

ρ0

ˆ (
2

r

∂uθ
∂z

uθ + f
∂uθ
∂z

)
dr =

∂p′

∂z
. (3.9)

Lastly, we substitute the hydrostatic balance

−gρ′ = ∂p′

∂z
(3.10)

and divide by −g which gives the desired density field

ρ′ =
−ρ0

g

ˆ (
2

r

∂uθ
∂z

uθ + f
∂uθ
∂z

)
dr. (3.11)

The integral is evaluated numerically due to the r−1 found in the integrand and the farfield
condition ρ′(r = ∞) = 0 resolves the constant of integration. A quick inspection reveals
that the density perturbation is zero when the azimuthal velocity is depth-independent
(barotropic).

We study two types of eddies, the first being a cyclonic barotropic eddy where Φ(z) = 1,
and the second a mode-one baroclinic eddy where Φ(z) = cos(πz/H). The baroclinic eddy
is cyclonic at the ocean surface but anticyclonic at the ocean floor. Figure 3.1 shows
the meridional velocity extracted from a cross section of an eddy along a y = yc section.
The peak velocity occurs at x/LE ≈ 0.48 and the majority of the signal is constrained to
|x/LE| < 1.

3.4 Internal Tide Forcing

We use MITgcm’s open boundary conditions package obcs to produce the internal tide.
At the west boundary, we prescribe the normal component of the velocity as

u(x = 0, z, t) = Ut sin(ω0(t− T0)) cos
(nπz
H

)
R(t− T0), t ≥ T0, (3.12)
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Figure 3.1: Velocity cross section of a baroclinic eddy in m/s for UE = 0.2 m/s.
The x-axis is normalised by LE.

where n is the vertical mode number, Ut and ω0 are the internal tide amplitude and M2

tidal frequency, T0 is the time where we switch on the forcing, and

R(τ) = 0.5(1− cos(ω0τ/4)), τ ≤ 2T, (3.13)

is a ramp-up function used to smoothly ramp the forcing up over two tidal periods and
takes on a value of unity afterwards.

3.5 Relaxation Scheme

Following Martinsen and Engedahl (1987), we implement the flow relaxation scheme for
both the horizontal momentum and salinity tracer equations. The vertical momentum
equation is not relaxed due to use of the hydrostatic approximation. At the end of each
time step, we restore the dynamic variables (ũ, ṽ, S̃) toward a background state according
to

~uh = α̂~̄uh + (1− α̂)~̃uh, (3.14a)

S = α̂S̄ + (1− α̂)S̃, (3.14b)
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where α̂(x, y) is a unitless restoration strength and 0 ≤ α̂(x, y) ≤ 1. Areas where α̂ is zero
experience no restoration while areas where α̂ = 1 are completely restored. We restore
toward the quiescent state with horizontally uniform stratification, (~̄uh, S̄) = (~0, S̄), so this
flow relaxation scheme amounts to a simple sponge region. Use of some algebra (Martinsen
and Engedahl, 1987) shows that this adjustment is equivalent to using forcing terms of the
form

~Fh = −Q(~uh − ~̄uh) = −Q~uh, (3.15)

in the horizontal momentum equations and

FS = −Q(S − S̄) = −QS ′ (3.16)

in the salinity tracer equation, where use of (2.4) converts it to the density forcing form

Fρ = −Q(ρ− ρ̄) = −Qρ′. (3.17)

The quantity Q assumes the form

Q =
1

∆t

α̂

(1− α̂)
, (3.18)

which amounts to a relaxation scheme that is time-step dependent, meaning that changing
the model time step will change the relaxation strength. A preferred form for Q that does
not depend on the time step is

Q =
1

τr

α0

(1− α0)
, (3.19)

where τr is a fixed relaxation time scale and α0 is the desired relaxation strength. Equating
these two expressions for Q and solving for α̂ yields

α̂ =
α0∆t

τr − τrα0 + α0∆t
. (3.20)

The relaxation scheme implementation takes α0, τr, and ∆t as inputs and computes α̂
online to ensure consistent relaxation strength across changes in ∆t.
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Table 3.1: Parameters common to all MITgcm simulations.

Parameter Value

N0 1.0× 10−3 s−1

ω0 1.4053× 10−4 s−1 (M2 tide)
T 44712 s (one tidal period)
g 9.81 m s−2

ρ0 1028 kg m−3

τr 7452 s

3.6 Scaling Analysis

The interaction experiments have eight parameters: three frequencies (f , ω0 and N0), the
internal tide amplitude (Ut) and mode number (n), the water depth (H), and the eddy
length scale (LE) and peak velocity (UE). From these, we can construct six independent
dimensionless parameters, which we take as n, ω0/N0, Ut/N0H, f/N0, UE/N0H and LE/H.
In the MITgcm experiments that follow, we do not vary the first three, we use two values
of the fourth via changing latitude and vary the fifth and sixth via changes in UE and LE.
In the ray tracing experiments, we vary the first, fifth and sixth. Our results for an ocean
of depth H = 5 km scale to an ocean of depth H2 by multiplying LE, Ut and UE by H2/H.

3.7 Model Parameters

We consider two f -planes. The first is a low-latitude regime where f = 0.5× 10−4 s−1 (ap-
proximately 20◦N) and the second is mid-latitude where f = 1.0×10−4 s−1 (approximately
43◦N). The critical latitude for the M2 tide, where f = 0.5ω0, is found at 28.9◦N. Latitudes
poleward of this value do not exhibit parametric subharmonic instability (PSI) (MacKin-
non and Winters, 2005), thus we expect to find evidence of PSI only in the low-latitude
regime.

Table 3.1 lists the parameters common to all of the MITgcm simulations. The domain
size, resolution, eddy position, forcing magnitude and time step vary between experiment
sets and are listed in the experiment descriptions of Chapters 5-8. All simulations are
based on MITgcm version checkpoint63b. The changes made to the source code include
the western open boundary forcing, the relaxation scheme, and routines to compute energy
diagnostics. The energy diagnostics and their implementation are described in Chapter 4.
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Chapter 4

Energetics

In this chapter we use the perturbation governing equations to derive both global kinetic
and available potential energy budgets. Also contained in this chapter is the novel energy
analysis aspect of this work. We begin by applying a modal decomposition to the momen-
tum and density equations to find what we call projected momentum and density equations.
We use these projected equations to derive pseudo-energy budgets for the barotropic mode
and each baroclinic mode. A summary links the global budgets with the modal budgets in
an intuitive manner, and we include an overview of the online computation of the energy
budget terms using the MITgcm.

4.1 Global Energy Budgets

To derive a kinetic energy budget, we start by taking the dot product between ρ0~uh and
the unforced horizontal momentum equation (2.27a) (Gill, 1982), producing

ρ0~uh ·
(
D~uh
Dt

+ fk̂ × ~uh +
1

ρ0

∇hp
′
)

= 0. (4.1)

Use of the product rule and a bit of algebra produces

ρ0
∂

∂t

1

2
(u2 + v2) +∇ ·

(
~u[p′ + ρ0

1

2
(u2 + v2)]

)
+ ρ′gw = 0. (4.2)
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which is a conservation equation that governs the evolution of kinetic energy density.
Integrating over a volume V produces the kinetic energy budget

d

dt

˚

V

ρ0
1

2
(u2 + v2) dV +

¨

δV

~u · n̂[p′ + ρ0
1

2
(u2 + v2)] dS +

˚

V

ρ′gw dV = 0, (4.3)

where

K ≡ ρ0

2

˚

V

(u2 + v2) dV (4.4)

is the total kinetic energy in V ,

W ≡
‹

δV

p′~u · n̂ dS (4.5)

is the work done at the boundaries of V ,

Kf ≡
ρ0

2

‹

δV

(u2 + v2)~u · n̂ dS (4.6)

is the nonlinear flux of kinetic energy through the boundaries of V and

C ≡
˚

V

ρ′gw dV (4.7)

is the available potential-kinetic energy conversion term. We take n̂ to be the unit outward
normal to V . All terms are quadratic in terms of a perturbation quantity except Kf which
is cubic, thus we expect Kf to be much smaller than the others.

We find the available potential energy budget by multiplying the unforced density

equation (2.27d) by
g2ρ′

ρ0N2
0

, giving

g2ρ′

ρ0N2
0

(
Dρ′

Dt
− ρ0w

g
N2

0

)
= 0, (4.8)

and use some algebra to arrive at

∂

∂t

g2ρ′2

2ρ0N2
0

+
g2

2ρ0N2
0

∇ · (~uρ′2)− ρ′gw = 0, (4.9)
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which is a governing equation for available potential energy density. Integrating over a
volume V produces the available potential energy budget

d

dt

˚

V

g2ρ′2

2N2
0ρ0

dV +
g2

2ρ0N2
0

¨

δV

~u · n̂ρ′2 dS −
˚

V

ρ′gw dV = 0, (4.10)

where

A ≡ g2

2ρ0N2
0

˚

V

ρ′2 dV (4.11)

is the total available potential energy in volume V ,

Af ≡
g2

2ρ0N2
0

‹

δV

ρ′2~u · n̂ dS (4.12)

is the nonlinear flux of available potential energy through the boundaries of V , and the
last term is (4.7) with the opposite sign. As in the kinetic energy budget, only Af is cubic
in terms of a perturbation quantity, so we expect it to be much smaller than the others.

Flow relaxation scheme

The forcing terms associated with the relaxation scheme described in Section 3.5 contribute
to the energy budget in the form of energy sinks. Taking the dot product between (3.15)
and ρ0~u, and integrating over the volume V gives the contribution to the kinetic energy
budget

FK ≡ ρ0

˚

V

Q(u2 + v2) dV. (4.13)

Similarly, scaling (3.17) by
g2ρ′

ρ0N2
0

and integrating over the same volume V gives the con-

tribution to the available potential energy budget,

FA ≡
˚

V

Q
g2ρ′2

ρ0N2
0

dV. (4.14)

The integrand of both (4.13) and (4.14) are always non-negative, which means the terms
FK and FA are either energy sinks or equal to zero, but are never energy sources.
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4.2 Projected Governing Equations

We use the vertical structure function from the polarization relations described in Sec-
tion 2.2.3 to decompose the model flow fields into contributions from each vertical mode
via

{~uh, p′} ={~uh0 , p′0}+
∞∑
n=1

{~uhn , p′n} cos(mnz), (4.15)

{w, ρ′} =
∞∑
n=1

{wn, ρ′n} sin(mnz), (4.16)

where the coefficients are functions of x, y and t. To find the projected horizontal mo-
mentum equations, we substitute the decompositions (4.15) and (4.16) into the unforced
horizontal momentum equation (2.27a) and collect terms at each vertical mode. The linear
terms are straightforward,

∂~uh
∂t

=
∂

∂t

(
~uh0 +

∞∑
n=1

~uhn cos(mnz)

)
=
∂~uh0
∂t

+
∞∑
n=1

∂~uhn
∂t

cos(mnz), (4.17)

~f × ~uh = ~f ×
(
~uh0 +

∞∑
n=1

~uhn cos(mnz)

)
= ~f × ~uh0 +

∞∑
n=1

~f × ~uhn cos(mnz), (4.18)

− 1

ρ0

∇hp
′ = − 1

ρ0

∇h

(
p′0 +

∞∑
n=1

p′n cos(mnz)

)
= − 1

ρ0

∇hp
′
0 −

1

ρ0

∞∑
n=1

∇hp
′
n cos(mnz). (4.19)

We hande the nonlinear terms in two parts via

(~u · ∇)~uh = (~uh · ∇h)~uh + w
∂~uh
∂z
≡ ~Nu. (4.20)
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Substituting the decomposition into the first part yields

(~uh · ∇h)~uh =

([
~uh0 +

∞∑
i=1

~uhi cos(miz)

]
· ∇h

)(
~uh0 +

∞∑
j=1

~uhj cos(mjz)

)
,

=

(
~uh0 · ∇h +

∞∑
i=1

~uhi cos(miz) · ∇h

)(
~uh0 +

∞∑
j=1

~uhj cos(mjz)

)
,

= (~uh0 · ∇h)~uh0 +

(
~uh0 · ∇h

[ ∞∑
i=1

~uhi

]
+

[ ∞∑
i=1

~uhi · ∇h

]
~uh0

)
cosmiz

+

([ ∞∑
i=1

~uhi

]
· ∇h

[ ∞∑
j=1

~uhj

])
cos(miz) cos(mjz),

= (~uh0 · ∇h)~uh0 +

( ∞∑
i=1

(~uh0 · ∇h)~uhi + (~uhi · ∇h)~uh0

)
cos(miz)

+

( ∞∑
i=1

∞∑
j=1

(~uhi · ∇h)~uhj

)
cos(miz) cos(mjz),

= (~uh0 · ∇h)~uh0 +
∞∑
i=1

(
(~uh0 · ∇h)~uhi + (~uhi · ∇h)~uh0

)
cos(miz)

+
1

2

( ∞∑
i=1

∞∑
j=1

(~uhi · ∇h)~uhj

)[
cos((mi −mj)z) + cos((mi +mj)z)

]
,

33



and we collect terms with the same vertical mode,

(~uh · ∇h)~uh = (~uh0 · ∇h)~uh0 +
1

2

∞∑
i=1

(~uhi · ∇h)~uhi

+

[
((~uh0 · ∇h)~uh1 + (~uh1 · ∇h)~uh0)

+
1

2

∞∑
i=1

(
(~uhi · ∇h)~uhi+1

+ (~uhi+1
· ∇h)~uhi

) ]
cos(m1z)

+

[
((~uh0 · ∇h)~uh2 + (~uh2 · ∇h)~uh0) +

1

2
(~uh1 · ∇h)~uh1

+
1

2

∞∑
i=1

(
(~uhi · ∇h)~uhi+2

+ (~uhi+2
· ∇h)~uhi

) ]
cos(m2z)

+

[
((~uh0 · ∇h)~uh3 + (~uh3 · ∇h)~uh0) +

1

2
((~uh1 · ∇h)~uh2 + (~uh2 · ∇h)~uh1)

+
1

2

∞∑
i=1

(
(~uhi · ∇h)~uhi+3

+ (~uhi+3
· ∇h)~uhi

) ]
cos(m3z)

+ . . . . (4.21)

Substituting the decomposition into the second part yields

w
∂~uh
∂z

=

( ∞∑
i=1

wi sin(miz)

)(
−
∞∑
j=1

~uhjmj sin(mjz)

)
,

=−
∞∑
i=1

∞∑
j=1

wi~uhjmj sin(miz) sin(mjz),

=
1

2

∞∑
i=1

∞∑
j=1

wi~uhjmj

(
cos((mi +mj)z)− cos((mi −mj)z)

)
,

34



and again collect terms with the same vertical mode,

w
∂~uh
∂z

=− 1

2

∞∑
i=1

wi~uhimi −
1

2

[ ∞∑
i=1

wi~uhi+1
mi+1 + wi+1~uhimi

]
cos(m1z)

+
1

2

[
w1~uh1m1 −

∞∑
i=1

(wi~uhi+2
mi+2 + wi+2~uhimi)

]
cos(m2z)

+
1

2

[
w2~uh1m1 + w1~uh2m2 −

∞∑
i=1

(wi~uhi+3
mi+3 + wi+3~uhimi)

]
cos(m3z)

+ . . . . (4.22)

Combining these results yields

~Nu = (~uh · ∇h)~uh + w
∂~uh
∂z

= ~Nu
0 +

∞∑
n=1

~Nu
n cos(mnz), (4.23)
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where

~Nu
0 = (~uh0 · ∇h)~uh0 +

1

2

∞∑
i=1

(~uhi · ∇h)~uhi −
1

2

∞∑
i=1

wi~uhimi, (4.24)

~Nu
1 =

[
((~uh0 · ∇h)~uh1 + (~uh1 · ∇h)~uh0) +

1

2

∞∑
i=1

(
(~uhi · ∇h)~uhi+1

+ (~uhi+1
· ∇h)~uhi

) ]
− 1

2

[ ∞∑
i=1

wi~uhi+1
mi+1 + wi+1~uhimi

]
, (4.25)

~Nu
2 =

[
((~uh0 · ∇h)~uh2 + (~uh2 · ∇h)~uh0) +

1

2
(~uh1 · ∇h)~uh1

+
1

2

∞∑
i=1

(
(~uhi · ∇h)~uhi+2

+ (~uhi+2
· ∇h)~uhi

) ]
+

1

2

[
w1~uh1m1 −

∞∑
i=1

(wi~uhi+2
mi+2 + wi+2~uhimi)

]
(4.26)

~Nu
3 =

[
((~uh0 · ∇h)~uh3 + (~uh3 · ∇h)~uh0) +

1

2
((~uh1 · ∇h)~uh2 + (~uh2 · ∇h)~uh1)

+
1

2

∞∑
i=1

(
(~uhi · ∇h)~uhi+3

+ (~uhi+3
· ∇h)~uhi

) ]
+

1

2

[
w2~uh1m1 + w1~uh2m2 −

∞∑
i=1

(wi~uhi+3
mi+3 + wi+3~uhimi)

]
(4.27)

~Nu
4 = . . . .

We now write the total horizontal momentum equation (2.27a) as a sum of the contributions
from each vertical modes

D~uh
Dt

+ fk̂ × ~uh +
1

ρ0

∇hp
′ = ~M0 +

∞∑
n=1

~Mn cos(mnz) = 0, (4.28)

where the coefficients of each vertical mode sum to zero, yielding the barotropic and baro-
clinic momentum equations

~M0 =
∂~uh0
∂t

+Nu
0 + ~f × ~uh0 +

1

ρ0

∇hp
′
0 = 0, (4.29)

~Mn =
∂~uhn
∂t

+Nu
n + ~f × ~uhn +

1

ρ0

∇hp
′
n = 0, n ∈ N. (4.30)
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Substituting the decompositions (4.15) and (4.16) into the vertical momentum equa-
tion (2.27b), gives

∂p′

∂z
= −gρ′ (4.31)

∂

∂z

(
p′0 +

∞∑
n=1

p′n cos(mnz)

)
= −g

( ∞∑
n=1

ρ′n sin(mnz)

)
(4.32)

−
∞∑
n=1

p′nmn sin(mnz) = −g
∞∑
n=1

ρ′n sin(mnz) (4.33)

and equating the coefficients of each mode yields

p′nmn = gρ′n. (4.34)

Lastly, upon substitution of (4.15) and (4.16) into the unforced density equation (2.27d),
we quickly find the linear terms,

∂ρ′

∂t
=

∂

∂t

∞∑
n=1

ρ′n sin(mnz) =
∞∑
n=1

∂ρ′n
∂t

sin(mnz), (4.35)

−ρ0N
2
0

g
w =

−ρ0N
2
0

g

∞∑
n=1

wn sin(mnz) (4.36)

and break the nonlinear term into two parts,

(~u · ∇)ρ′ = (~uh · ∇h)ρ
′ + w

∂ρ′

∂z
≡ Nρ. (4.37)
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Substituting the decompositions into the first part yields

(~uh · ∇h)ρ
′ =

([
~uh0 +

∞∑
i=1

~uhi cos(miz)

]
· ∇h

)( ∞∑
j=1

ρ′j sin(mjz)

)
,

=

(
~uh0 · ∇h +

∞∑
i=1

~uhi cos(miz) · ∇h

)( ∞∑
j=1

ρ′j sin(mjz)

)
,

= (~uh0 · ∇h)

( ∞∑
j=1

ρ′j sin(mjz)

)
+

[ ∞∑
i=1

∞∑
j=1

(~uhi · ∇h)ρ
′
j

]
cos(miz) sin(mjz),

= (~uh0 · ∇h)

( ∞∑
j=1

ρ′j sin(mjz)

)

+
1

2

∞∑
i=1

∞∑
j=1

(~uhi · ∇h)ρ
′
j

[
sin((mi +mj)z)− sin((mi −mj)z)

]
, (4.38)

and we collect terms with the same vertical mode,

(~uh · ∇h)ρ
′ =

[
(~uh0 · ∇h)(ρ

′
1) +

1

2

∞∑
i=1

(
(~uhi · ∇h)ρ

′
i+1 − (~uhi+1

· ∇h)ρ
′
i

)]
sin(m1z)

+

[
(~uh0 · ∇h)(ρ

′
2) +

1

2

∞∑
i=1

(
(~uhi · ∇h)ρ

′
i+2 − (~uhi+2

· ∇h)ρ
′
i

)
(4.39)

+
1

2
(~uh1 · ∇h)ρ

′
1

]
sin(m2z)

+

[
(~uh0 · ∇h)(ρ

′
3) +

1

2

∞∑
i=1

(
(~uhi · ∇h)ρ

′
i+3 − (~uhi+3

· ∇h)ρ
′
i

)
+

1

2

(
(~uh1 · ∇h)ρ

′
2 + (~uh2 · ∇h)ρ

′
1

)]
sin(m3z)

+ . . . . (4.40)

38



Substitution into the second term yields

w
∂ρ′

∂z
=

( ∞∑
i=1

wi sin(miz)

)( ∞∑
j=1

ρ′jmj cos(mjz)

)
,

=
∞∑
i=1

∞∑
j=1

wiρ
′
jmj sin(miz) cos(mjz),

=
1

2

∞∑
i=1

∞∑
j=1

wiρ
′
jmj

[
sin((mi +mj)z) + sin((mi −mj)z)

]
, (4.41)

and we collect terms at each vertical mode,

w
∂ρ′

∂z
=

1

2

∞∑
i=1

(
wi+1ρ

′
imi − wiρ′i+1mi+1

)
sin(m1z)

+
1

2

[
wiρ

′
1m1 +

∞∑
i=1

(
wi+2ρ

′
imi − wiρ′i+2mi+2

)]
sin(m2z)

+
1

2

[
w2ρ

′
1m1 + w1ρ

′
2m2 +

∞∑
i=1

(
wi+3ρ

′
imi − wiρ′i+3mi+3

)]
sin(m3z)

+ . . . . (4.42)

Combining these results yields

Nρ = (~uh · ∇h)ρ
′ + w

∂ρ′

∂z
=
∞∑
n=1

Nρ
n sin(mnz), (4.43)
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where

Nρ
1 =

[
(~uh0 · ∇h)(ρ

′
1) +

1

2

∞∑
i=1

(
(~uhi · ∇h)ρ

′
i+1 − (~uhi+1

· ∇h)ρ
′
i

)]
+

1

2

∞∑
i=1

(
wi+1ρ

′
imi − wiρ′i+1mi+1

)
(4.44)

Nρ
2 =

[
(~uh0 · ∇h)(ρ

′
2) +

1

2

∞∑
i=1

(
(~uhi · ∇h)ρ

′
i+2 − (~uhi+2

· ∇h)ρ
′
i

)
+

1

2
(~uh1 · ∇h)ρ

′
1

]
+

1

2

[
w1ρ

′
1m1 +

∞∑
i=1

(
wi+2ρ

′
imi − wiρ′i+2mi+2

)]
(4.45)

Nρ
3 =

[
(~uh0 · ∇h)(ρ

′
3) +

1

2

∞∑
i=1

(
(~uhi · ∇h)ρ

′
i+3 − (~uhi+3

· ∇h)ρ
′
i

)
+

1

2

(
(~uh1 · ∇h)ρ

′
2 + (~uh2 · ∇h)ρ

′
1

)]
+

1

2

[
w2ρ

′
1m1 + w1ρ

′
2m2 +

∞∑
i=1

(
wi+3ρ

′
imi − wiρ′i+3mi+3

)]
(4.46)

Nρ
4 = . . . .

We write the density equation as a sum of contributions from each vertical mode,

Dρ′

Dt
− ρ0N

2
0

g
w =

∞∑
n=1

Dn sin(mnz) = 0, (4.47)

where the coefficients of each mode sum to zero, yielding modal density equations

Dn =
∂ρ′n
∂t

+Nρ
n −

ρ0N
2
0

g
wn = 0, n ∈ N. (4.48)

4.3 Modal Energy Budgets

We desire an evolution equation for the kinetic energy at each mode, and begin with the
barotropic mode by taking the dot product between ρ0H~uh0 and the barotropic momentum
equation ~M0, giving

ρ0H

(
~uh0 ·

∂~uh0
∂t

+ ~uh0 · ~Nu
0 + ~uh0 · ~f × ~uh0 +

1

ρ0

~uh0 · ∇hp
′
0

)
= 0. (4.49)
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We then use ~uh0 · ~f × ~uh0 = 0 and ∇h · ~uh0 = 0 to get

ρ0
H

2

∂(u2
0 + v2

0)

∂t
+ ρ0H~uh0 · ~Nu

0 +H∇h · (~uh0p′0) = 0. (4.50)

This is an evolution equation for the vertically integrated barotropic kinetic energy density.
Integrating over an area A yields

ρ0
H

2

d

dt

¨

A

(u2
0 + v2

0) dA+ ρ0H

¨

A

~uh0 · ~Nu
0 dA+H

¨

A

∇h · (~uh0p′0) dA = 0, (4.51)

and use of the divergence theorem leaves the barotropic kinetic energy budget

ρ0
H

2

d

dt

¨

A

(u2
0 + v2

0) dA+ ρ0H

¨

A

~uh0 · ~Nu
0 dA+H

˛

δA

(~uh0 · n̂)p′0 dS = 0. (4.52)

We identify

K0 ≡ ρ0
H

2

¨

A

(u2
0 + v2

0) dA (4.53)

as the total barotropic kinetic energy,

S0 ≡ ρ0H

¨

A

~uh0 · ~Nu
0 dA (4.54)

as the barotropic kinetic energy sink, and

W0 ≡ H

˛

δA

(~uh0 · n̂)p′0 dS (4.55)

as the total barotropic work at the boundaries. We use a similar procedure for each of the
n baroclinic modes, which is to take the dot product (ρ0H/2)~uhn · ~Mn

ρ0H

2

(
~uhn ·

∂~uhn
∂t

+ ~uhn · ~Nu
n + ~uhn · ~f × ~uhn +

1

ρ0

~uhn · ∇hp
′
n

)
= 0, (4.56)

then use ~uhn · ~f × ~uhn = 0 and ∇h · (p′n~uhn) = ~uhn · ∇p′n + p′n∇h · ~uhn to get

ρ0H

4

∂(u2
n + v2

n)

∂t
+
ρ0H

2
~uhn · ~Nu

n +
H

2
(∇h · (p′n~uhn)− p′n∇h · ~uhn) = 0, (4.57)
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and finally apply ∇h · ~uhn = −mnwn to get

ρ0H

4

∂(u2
n + v2

n)

∂t
+
ρ0H

2
~uhn · ~Nu

n +
H

2
(∇h · (p′n~uhn) + p′nmnwn) = 0, (4.58)

which is an evolution equation for the vertically integrated kinetic energy density at mode-
n. Integrating over an area A, using the divergence theorem, and substituting (4.34) yields
the baroclinic kinetic energy budget at mode-n

ρ0H

4

d

dt

¨

A

(u2
n + v2

n) dA+
ρ0H

2

¨

A

~uhn · ~Nu
n dA+

H

2

˛

δA

(~uhn · n̂)p′n dS +
Hg

2

¨

A

ρ′nwn dA = 0.

(4.59)

We identify

Kn ≡
ρ0H

4

¨

A

(u2
n + v2

n) dA (4.60)

as the total kinetic energy at mode-n,

Sun ≡
ρ0H

2

¨

A

~uhn · ~Nu
n dA (4.61)

as the kinetic energy sink at mode-n,

Wn ≡
H

2

˛

δA

p′n~uhn · n̂ dS (4.62)

as the work done at the boundaries at mode-n, and

Cn ≡
Hg

2

¨

A

ρ′nwn dA (4.63)

as the kinetic-available potential energy conversion term at mode-n. Lastly, we multiply
Dn by (Hg2/2ρ0N

2
0 )ρ′n, producing

g2H

4ρ0N2
0

∂

∂t
ρ′ 2n +

g2H

2ρ0N2
0

ρ′nN
ρ
n −

Hg

2
ρ′nwn = 0, (4.64)
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which is a governing equation for vertically integrated available potential energy density at
mode-n. Integrating over an area A gives the available potential energy budget at mode-n

g2H

4ρ0N2
0

d

dt

¨

A

ρ′ 2n dA+
g2H

2ρ0N2
0

¨

A

ρ′nN
ρ
n dA− Hg

2

¨

A

ρ′nwn dA = 0, (4.65)

and we identify

An ≡
g2H

4ρ0N2
0

¨

A

ρ′ 2n dA (4.66)

as the available potential energy at mode-n, and

Sρn ≡
g2H

2ρ0N2
0

¨

A

ρ′nN
ρ
n dA (4.67)

as the available potential energy sink at mode-n. The last term is the same as (4.63) but
with the opposite sign.

Flow relaxation term

Substituting the decompositions (4.15) and (4.16) into (3.15) and collecting terms at each
vertical mode, we find the projected horizontal momentum forcing

~Fh = Q~uh0 +
∞∑
n=1

Q~uhn cos(mnz) ≡ ~Fh0 +
∞∑
n=1

~Fhn cos(mnz), (4.68)

and similarly substituting into (3.17) gives the projected density forcing

Fρ =
∞∑
n=1

Qρ′n sin(mnz) ≡
∞∑
n=1

Fρn sin(mnz). (4.69)

Following same dot product and integrate procedure as above, we find the contribution to
the barotropic kinetic energy budget due to forcing is

FK0 =

¨

A

ρ0H~uh0 ·Q~uh0dA = ρ0H

¨

A

Q(u2
0 + v2

0)dA. (4.70)
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Similarly for the mode-n baroclinic budget we find

FKn =

¨

A

ρ0H

2
~uhn ·Q~uhndA =

ρ0H

2

¨

A

Q(u2
n + v2

n)dA, (4.71)

and for the mode-n available potential energy budget we find

FAn =

¨

A

g2Hρ′n
2ρ0N2

0

Qρ′ndA =
g2H

2ρ0N2
0

¨

A

Qρ′ 2n dA. (4.72)

As in the global energy budgets, these terms are always non-negative, making them energy
sinks and never sources.

4.4 Summary

To summarise, the total kinetic energy budget is

d

dt
K +W +Kf + C + FK = 0, (4.73)

and the available potential energy budget is

d

dt
A+ Af − C + FA = 0. (4.74)

Assigning

P ≡ A+K (4.75)

as the total pseudo-energy, and

F ≡ FA + FK (4.76)

as the total rate of change of pesudo-energy due to the relaxation scheme, then we can add
the budget equations (4.73) and (4.74) to find the pseudo-energy budget

d

dt
P +W +Kf + Af + F = 0. (4.77)

We interpret this budget to say that the rate of change of pseudo-energy P in a volume
V balances with the fluxes through the boundaries W , Kf and Af , and the rate that
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pesudo-energy changes due to forcing. The energy conversion term C does not make an
appearance in the pseudo-energy budget as it only represents energy conversion between
kinetic and available potential energy.

The modal budget derivations left us with the barotropic kinetic energy budget

d

dt
K0 + S0 +W0 + FK0 = 0, (4.78)

the baroclinic kinetic energy budget at mode-n

d

dt
Kn + Sun +Wn + Cn + FKn = 0, (4.79)

and the available potential energy budget at mode-n

d

dt
An + Sρn − Cn + FAn = 0. (4.80)

If we assign

Pn ≡ Kn + An (4.81)

as the pseudo-energy at mode-n,

Sn ≡ Sun + Sρn (4.82)

as the total sink of pseudo-energy at mode-n, and

Fn ≡ FKn + FAn (4.83)

as the total rate of change of pesudo-energy due to the relaxation scheme at mode-n, then
we can add (4.79) and (4.80) to get the pseudo-energy budget at mode-n

d

dt
Pn + Sn +Wn + Fn = 0. (4.84)
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Relation between budgets

Working term by term, we can sum the barotropic and baroclinic budgets to form the total
budgets. The pseudo-energy, work, and forcing term sums are intuitive

d

dt
K0 +

∞∑
n=1

d

dt
Pn =

d

dt
P, (4.85)

W0 +
∞∑
n=1

Wn = W, (4.86)

FK0 +
∞∑
n=1

Fn = F. (4.87)

The remaining terms are the sinks and nonlinear fluxes, which sum following

S0 +
∞∑
n=1

Sn = Kf + Af . (4.88)

4.5 Implementation in MITgcm

The MITgcm can compute an extensive set of diagnostics online, and we extend the ca-
pability to compute both the global and modal energy budget terms as follows. First, at
t = kTS (where TS = 414 s is the sampling period and k ∈ N) we find the coefficients
in (4.15) and (4.16) for use in modal budget terms by projecting the model flow fields onto
the vertical structure functions,

{~uh0 , p′0} =
1

H

ˆ 0

−H
{~uh, p′} dz, (4.89)

{~uhn , p′n} =
2

H

ˆ 0

−H
{~uh, p′} cos(mnz) dz, (4.90)

{wn, ρ′n} =
2

H

ˆ 0

−H
{w, ρ′} sin(mnz) dz. (4.91)

Next, we compute the integrand of each energy budget term (except the time derivative
terms). We pass the integrand to MITgcm’s diagnostic package which manages the
area/volume integration and saves the result, yielding a time series for each energy bud-
get term. We handle the time derivative terms differently: we save a time series of the

46



differentiated quantities (P , K0, etc) at t = kTS±∆t, and compute the time derivative of-
fline using centred second order differences. These online diagnostics consume roughly one
quarter of the model runtime. Performing the computations online eliminates the need to
save the complete wavefields at high time resolution for offline computation of the energy
budget terms.
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Chapter 5

Benchmark Case

This chapter describes the benchmark experiments where we verify that the forcing and
energy diagnostics are working as desired.

5.1 Experiment Design

These experiments are the benchmark cases where the internal tide forcing at the western
boundary forcing is used but no eddy prescribed. Figure 5.1 shows the domain and Ta-
ble 5.1 shows the chosen parameters. The 120 km radius dashed circle centred at (250, 200)
km is the energy analysis region over which the energy budget diagnostics are computed
(volume V for the total budgets and area A for the modal budgets). One experiment is
conducted at low-latitude and one at mid-latitude, and each used 64 cores on the gpc

cluster at SciNet for 11.6 hours.

We initialise the model with a quiescent initial state and apply the mode-one internal
tide forcing (3.12) to the west boundary, which ramps up over two tidal periods. The
generated wave propagates eastward, crossing the energy analysis region, and eventually
reaches the east boundary where the sponging region removes it. The relaxation map (via
Equation (3.19)) is given by

Qτr =
α0

1− α0

=
1

2
[1 + tanh(S1(x− S2)/L)] (5.1)

(5.2)
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Figure 5.1: The domain used for the benchmark (eddy free) cases. The shaded
area indicates Qτr, the strength of the sponge region.

where S1 = 30, S2 = L − 35 km, and L is the domain length. These parameters are
chosen such that the sponge region ramps up slowly, ensuring that waves are not reflected
westward.

5.2 Results

Figure 5.2 shows the tidally averaged time series of the W and dP̄ /dt terms from the
total pseudo-energy budget (4.77). No signal is present until the wave front reaches the

Table 5.1: Parameters used for the benchmark cases.

Parameter Value

Lx × Ly ×H 720 km × 400 km × 5000 m
∆x × ∆y × ∆z 0.5 km × 0.5 km × 100 m
Nx ×Ny ×Nz 1440× 800× 50
Ut 5 cm/s
∆t 69 s
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Figure 5.2: The tidally averaged linear terms from the pseudo-energy bud-
get (4.77) where W̄ is red and dP̄ /dt is blue. The low-latitude case is solid
and mid-latitude case dashed.

west edge of the energy analysis region at about t = 3T . As the wave propagates across,
the outward energy flux is negative (W̄ < 0), approximately balancing the rise in pseudo-
energy (dP̄ /dt > 0). Eventually the wave saturates the energy analysis domain, and by
t = 15T it has achieved a quasi-steady state. These two terms make up the dominant
balance for (4.77), dP̄ /dt+ W̄ ≈ 0.

Figure 5.3 shows the tidally averaged nonlinear flux terms in the total pseudo-energy
budget (4.77) and also the first four sink terms from the barotropic and baroclinic bud-
gets (4.78) and (4.84). The vertical scale here is three orders of magnitude smaller than in
Figure 5.2. There is a signal present at the mode-one (S̄1) and mode-two (S̄2) sinks, with
the low- (mid-) latitude cases showing levels around 0.2 MW (0.1 MW) in quasi-steady
state, which is comparable to the nonlinear terms K̄f +Āf . The barotropic (S̄0) and mode-
three (S̄3) sinks are negligible. The dominant balance for (4.88) is K̄f + Āf ≈ S̄1 + S̄2.

Figure 5.4 shows a snapshot of the projection coefficients u1 and u2 at t = 10T with
the upper (lower) panel showing the low- (mid-) latitude case. The black curve shows the
expected 5 cm/s mode-one signal that spans most of the domain. As the wavelength and
group speed depend on the Coriolis parameter f , the black curves differ in both wavelength
and propagation extent between the upper and lower panels.

In red (and on a different scale) is a much weaker mode-two signal. The signal for
the low-latitude case has two components: a long wavelength part coincident with the
mode-one signal that is due to PSI, and a short wavelength part that is due to the crude
forcing at the western boundary that corresponds to a wave of twice the tidal frequency.
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Figure 5.4: Snapshot of the projection coefficients u1 (black) and u2 (red) from
the benchmark cases at t = 10T . The top panel shows the low-latitude case and
the bottom panels shows mid-latitude.
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The mid-latitude case is similar, however it lacks the large wavelength component, which
is expected as the mid-latitude case exceeds the critical latitude above which PSI does
not occur. The larger mode-two velocity signal in the low-latitude case is consistent with
the larger mode-two sink signal in Figure 5.3. The mode-two signal has a non-zero mean
produced by mode-one self interaction, particularly radiation stress convergence, in the
wave front where the mode-one amplitude increases.

The tidally averaged eastward energy flux is 4.78 and 3.68 kW/m for the low- and
mid-latitude cases.

This chapter showed that the forcing and diagnostics function as designed. Further,
we have measured the sink terms for the eddy-free case. These terms provide a baseline
estimate of inter-mode scattering in the absence of an eddy; we shall contrast them with
cases that include an eddy in the next two chapters.
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Chapter 6

Barotropic Eddy

In this chapter we examine the interaction of an internal tide field with barotropic eddies.

6.1 Experiment Design

In these experiments, we prescribe a barotropic eddy (Φ(z) = 1) and permit it to ad-
just for five tidal periods (0 ≤ t ≤ 5T , where T = 44712 s = 12.42 hr). During this
adjustment process, the relaxation scheme (Martinsen and Engedahl, 1987) is activated
surrounding the eddy to damp out emitted waves as shown in the left panel of Figure 6.1.
A small adjustment takes place resulting from numerical discretisation errors in the eddy
initialisation. The initial eddy is otherwise an exact solution of the model’s equations of
motion.

Once the adjustment period is complete, the relaxation scheme is moved to only the
east boundary as shown in the right panel of Figure 6.1. At this time the western boundary
forcing is switched on, and ramps up over 5T ≤ t ≤ 7T . Table 6.1 shows the eddy position
and domain parameters. The energy analysis is performed over the same 120 km radius
circle as in the benchmark experiments, centred at (xc, yc). We conduct a suite of barotropic
eddy cases, varying the eddy size LE and velocity magnitude UE as shown in Table 6.2.
These simulations used 64 cores on the gpc cluster at SciNet where the mean runtime was
20.5 hours.
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Figure 6.1: The domain used for the barotropic eddy cases during (left) the
adjustment phase and (right) the forced phase. The black regions are restored to
no flow by the relaxation scheme, the asterisk denotes the centre of the eddy, the
arrows show the propagation direction of the forced wave, and the circle shows
the energy analysis domain.
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Table 6.1: Parameters used for the barotropic eddy cases.

Parameter Value

Lx × Ly ×H 600 km × 800 km × 5000 m
∆x×∆y ×∆z 0.5 km × 0.5 km × 200 m
Nx ×Ny ×Nz 1200× 1600× 25
(xc, yc) (250, 400) km
Ut 5 cm/s
∆t 69 s

Table 6.2: The parameters varied in this set of experiments. The table entries
are the vortex Rossby number (2.50) for the low-latitude cases. The mid-latitude
values are one half of these values.

LE (km)

UE (cm/s) 20 30 40 50

30 0.42
45 0.94 0.62 0.47 0.37
60 0.83
75 1.04
90 1.25
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Figure 6.2: (top) Snapshots at t =
16T from the case where (f, LE, UE)
= (0.5× 10−4 s−1, 50 km, 45 cm/s),
showing (left) the density perturba-
tion at mode one ρ′1, and (right) the
difference between ρ′1 (kg/m3) and a
reference eddy free case. (bottom)
Magnitude of mode-one energy flux
(kW/m) averaged over 15T ≤ t ≤
16T .
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Figure 6.3: Same as Figure 6.2, ex-
cept for parameters (f, LE, UE) =
(0.5× 10−4 s−1, 30 km, 45 cm/s).
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Figure 6.4: Same as Figure 6.2, ex-
cept for parameters (f, LE, UE) =
(0.5× 10−4 s−1, 30 km, 90 cm/s).
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Figure 6.5: Same as Figure 6.2, ex-
cept for parameters (f, LE, UE) =
(0.5× 10−4 s−1, 50 km, −45 cm/s).
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Figure 6.6: Same as Figure 6.2, ex-
cept for parameters (f, LE, UE) =
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6.2 Results

Figure 6.2 shows three visualisations of the modified mode-one internal tide field after
interacting with a barotropic eddy with parameters (f, LE, UE) = (0.5× 10−4 s−1, 50 km,
45 cm/s). The first is the density perturbation at mode-one, ρ′1, and the second is the
difference in ρ′1 between the eddy case and a reference eddy-free case. Both snapshots are
taken at t = 16T . The third uses the modal energy flux magnitude,

En(x, y) = |p′n~un| =
√
p′ 2n (u2

n + v2
n), (6.1)

where the mode-one energy flux magnitude, E1(x, y), has been averaged over 15T ≤ t ≤
16T .

From the mode-one density perturbation, we see that the density field is distorted by a
barotropic eddy, and the strongest distortion is localised to the east and north of the eddy.
Some parts of the density perturbation have been enhanced, while others are diminished.
The density difference signal shows a well defined beam emanating from the eddy centre
travelling roughly east-southeast, and weaker but wider beam travelling roughly northeast.
These beams have a wavelength matching the forced mode-one wavelength of 76.1 km and
a magnitude of ≈ 0.006 kg/m3, which is comparable to that of the reference mode-one
density signal of ≈ 0.008 kg/m3. Barotropic eddies with the chosen parameters have an
order-one effect on the internal tide.

An inspection of the energy flux plot shows that hot and cold beams of energy flux have
been produced and are superimposed on the incoming energy flux of 4.78 kW/m. The area
where the beams are present is roughly coincident with the area where the difference signal
is present. The region of no energy flux along the east boundary is due to the relaxation
scheme. The variation in energy flux about the incoming energy flux is of the same order
of magnitude as the incoming level itself, further supporting that barotropic eddies have
order-one effects on the internal tide.

In Figure 6.3 we show the same plots for a smaller eddy with LE = 30 km, and see
that the density distortion, density difference signal, and hot and cold spots have all been
reduced in magnitude. In Figure 6.4 we see that raising the eddy velocity has effect
of increasing the magnitude and extent of the distortion, difference, and hot/cold spot
production.

In a similar vein, changing to an anticyclonic (negative UE) eddy simply has the effect
of mirroring the fields about y = 400 km as shown in Figure 6.5. Lastly, increasing f to
1.0× 10−4 s−1 in Figure 6.6 shows a similar picture as at low-latitude; the order-one effect
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persists at faster rotation. We use a later time for illustration in this case because the
mode-one waves propagate slower at higher f .

Figure 6.7 shows the same averaged energy flux magnitude evaluated along x = 400
km and plotted as a function of y, for each of the low-latitude cases of Table 6.2. In the
first panel we vary the eddy length scale LE and vary the strength of the eddy UE in the
second panel. The third and fourth panel show the same curves for the mid latitude case.

From these plots we see that increasing the eddy size and eddy velocity both have the
effect of intensifying the hot and cold spots. The position of the beams (as inferred from
the local maxima of the curves) move slightly. Most striking is that the energy flux is
reduced to nearly zero in some cold spots (black lines of the first and third panels), and
also enhanced to more than double the incident flux in some hot spots (cyan line, second
panel). The effect at mid-latitude resembles that observed at low-latitude.

Finally, a look at the sink terms from the energy budgets shows that S̄0 through S̄3

are similar to those obtained in the forcing only case (Figure 5.3), indicating that the
barotropic eddy does not efficiently scatter internal tide energy between vertical modes
(not shown here).
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Chapter 7

Baroclinic Eddy

This chapter looks at the effects that a mesoscale baroclinic eddy has on an internal tide
field. The first section describes a set of experiments conducted, followed by a section that
details the results. Following this is a verification experiment designed to confirm one of
the main results.

7.1 Experiment Design

These experiments use a mode-one baroclinic eddy with Φ(z) = cos(πz/H) and the same
adjustment followed by forcing schedule as in the barotropic eddy chapter. The domain
size is different (see Figure 7.1), Table 7.1 lists the chosen parameters, and Table 7.2 lists
the suite of cases which vary the values of LE and UE. The simulations in this chapter
used 64 cores on the gpc cluster at SciNet where the mean runtime was about 12.5 hours.

7.2 Results

For the baroclinic eddy cases we illustrate the results with the case (f, LE, UE) = (0.5×10−4

s−1, 35 km, 45 cm/s) in Figure 7.2. The top row shows snapshots of the density perturbation
at modes two and three taken at t = 15T . At the bottom is the modal energy flux
magnitude (6.1) for n = 2, 3, averaged over 14T ≤ t ≤ 15T .

The plots depict the production of higher mode internal tide beams which emanate from
the eddy centre. At mode two the beam-like packets are about five wavelengths long and
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Figure 7.1: The domain used for the baroclinic eddy cases during (top) the ad-
justment phase and (bottom) the forced phase.
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Table 7.1: The domain parameters used for the baroclinic eddy cases.

Parameter Value

Lx × Ly ×H 720 km × 400 km × 5000 m
∆x×∆y ×∆z 0.5 km × 0.5 km × 100 m
Nx ×Ny ×Nz 1440× 800× 50
(xc, yc) (250, 200) km
Ut 5 cm/s
∆t 69 s

Table 7.2: The parameter values used in this set of experiments. The table entries
are the vortex Rossby number (2.50) for the low-latitude case. Mid-latitude values
are half of the listed value.

LE (km)

UE (cm/s) 15 20 25 30 35 40 45 50 55

30 0.83 0.62 0.50 0.42 0.36 0.31 0.28 0.25 0.23
45 0.94 0.75 0.62 0.53 0.47 0.42 0.37 0.34
60 0.83 0.71 0.62 0.55 0.50 0.45
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is strongest in magnitude in two main beams, although the signal is present at all angles
about the eddy. One beam travels roughly east-northeast and the other east-southeast.
Between the beams is a phase shift of roughly π. There is weak signal visible to the west
of the eddy (faint vertical lines) corresponding to the weak mode-two signal of Figure 5.4.
The magnitude of the produced beams swamps the weak signal to the east of the eddy.

The energy flux signal highlights the beams where the energy flux is most concentrated,
also revealing that the east-southeast beam is somewhat stronger in magnitude than the
east-northeast beam. Radial spreading reduces the amplitude of the beams as they get
further from the eddy centre.

Three beams are produced at mode three: one travels roughly north-northeast, one
south-southeast and one due east. The eastward beam has the largest amplitude, and the
south-southeast beam is somewhat stronger than the north-northeast beam. Similarly, a
phase shift of roughly π is present between the due-east beam and the other two beams.

In Figure 7.3 we show the same mode two and three density plots for the cases where
UE = −45 cm/s at the top and f = −0.5 × 10−4 s−1 at the bottom. Switching the sign
of the velocity results in a phase shift of π in the mode-two beams but maintains the
asymmetry in mode-two beam strength and maintains the mode-three phase. The energy
flux magnitude plots remain the same (not shown). Switching the sign of the rotation
mirrors the plots about y = 200 km.

Figure 7.4 shows the same plots as Figure 7.2 except for modes four and five. At mode
four, two main beams are formed propagating in roughly the same directions as those at
mode two, including the magnitude asymmetry that favours the south side. A very weak
third beam is found propagating roughly south. The mode-five picture is similar to mode-
three: a primary due-east beam and weaker side beams. The magnitudes in both density
and energy flux are considerably weaker at modes four and five than that seen at modes
two and three.

Figure 7.5 shows the averaged mode-two energy flux normal to an 80 km radius circle
centred at the eddy for the cases where LE = 35 km (θ = 0 is due east) with low latitude
at the top and mid latitude at the bottom. The curves show that increasing the eddy
velocity has the effect of increasing the energy flux, and also that the east-southeast beam
is consistently stronger in magnitude than the east-northeast beam. We also note that the
angle of propagation at mid latitude is higher than for low-latitude. The same plot for the
other values of LE are similar (not shown).
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Figure 7.2: (top) Snapshots at t = 15T for the case (f, LE, UE) = (0.5× 10−4 s−1, 35 km,
45 cm/s), showing density perturbation at mode two (left) and three (right). (bottom)
Magnitude of energy flux at mode two (left) and mode three (right) averaged over 14T ≤
t ≤ 15T .
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Figure 7.3: Same as the top row of Figure 7.2 except (top) UE = −45 cm/s, and (bottom)
f = −0.5× 10−4 s−1.
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Figure 7.4: Same as Figure 7.2 except (left) mode-four and (right) mode-five.
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ponent.
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Figure 7.7: Same as Figure 5.3 except for the illustrative baroclinic eddy case.

7.2.1 Beam Asymmetry

The prescribed eddy velocities follow a mode-one vertical profile, however the correspond-
ing density perturbation profile is asymmetric about mid-depth, as shown in Figure 7.6.
The cyclo-geostrophic balance equation is used in computing the eddy’s density profile,
which has a mode-one component which balances the Coriolis term, and a mode-two com-
ponent that balances the nonlinear term. This asymmetry is the likely explanation for the
asymmetry in the generated north and south beams at mode-two.

The sign of the mode-one component of the density perturbation switches when switch-
ing the sign of UE. However, the cyclostrophic term is quadratic in UE, thus the mode-two
density component is not affected by the sign change. The preservation of mode-two beam
asymmetry with UE = −45 cm/s as shown in Figure 7.3 is consistent with this explanation.

Further, the vortex Rossby number (2.50) is the ratio of the cyclostrophic term to
geostrophic term at r=rmax. The value of this parameter for the cases shown in Figure 7.5
are (0.36, 0.53, 0.71) at low latitude and (0.72, 1.06, 1.41) at mid latitude. The asym-
metry of the beams increases with this parameter, further supporting the cyclostrophic
explanation for the asymmetry.
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Figure 7.8: Quasi-steady state sink term at mode-one (top), mode-two (middle)
and mode-three (bottom) for the (left column) low-latitude cases and (right col-
umn) mid-latitude cases. The upper axis is eddy diameter (DE = 4LE) and the
lower axis is power incident to the eddy. The data points are S̄n evaluated at
t = 25T . The gray contours show the sink terms as a percentage of the incident
power.
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7.2.2 Generation Rates

Figure 7.7 shows the tidally averaged sink terms for the illustrative case. Following initial-
isation for 1T ≤ t ≤ 5T , a small signal is evident depicting the small adjustment of the
eddy. When t ≥ 5T , the forcing turns on and waves propagate inward, reaching the eddy
around t = 9T , and begin interacting with the eddy. The oscillations between t = 9T and
t = 12T are partly an artifact of the sliding mean used for tidal averaging and are not par-
ticularly revealing other than to indicate that the interaction has begun. At t = 13T , the
sink terms have reached quasi-steady state, and we interpret the value as a net conversion
rate where a positive (negative) value indicates a sink (source). The K̄f + Āf and S̄0 terms
are small compared to S̄1, S̄2 and S̄3. The mode-one, two and three signals are about two
orders of magnitude larger here than those from the benchmark case shown in Figure 5.3.
The dominant balance here is S̄1 + S̄2 + S̄3 ≈ 0.

Figure 7.8 shows the quasi-steady sink terms for both the low- and mid-latitude cases
by evaluating S̄n at t = 25T . The top panel shows the quasi-steady sink at mode-one, the
middle shows mode-two and the bottom mode three, and the left (right) panel shows the
low (mid) latitude case. The upper axis is eddy diameter (DE = 4LE) and the lower axis
is power incident to the eddy (incoming energy flux times eddy diameter).

The top panels show that the sink at mode-one is always positive and that mid-latitude
evokes a larger magnitude than the low-latitude cases. For the parameters explored here,
the low-latitude cases lose up to about 50 MW and the mid-latitude lose up to about 70
MW. Peaks appear in each curve near DE = 140 km (LE = 35 km) for low-latitude and
near DE = 180 km (LE = 45 km) for mid-latitude. In all cases, raising the eddy velocity
UE yields a larger sink signal.

The contours on the plot show the sink as a fraction of incident power, expressed as a
percentage. This value is interpreted as the fraction of power removed from the mode-one
tide as it crosses the eddy. At low latitude, losses reach 8 percent, but reach 13 percent
at mid latitude. The fractional losses peak at a smaller diameter than the absolute losses;
near DE = 120 km (LE = 30 km) for low-latitude and L = 140 km (LE = 35 km) for
mid-latitude.

At the middle panel, we see that the mode-two sink is always negative, which makes it
a source. The shape of the curves follow that of the mode-one sinks but with magnitude
reduced to 60–80 percent. The peaks are comparable to those at mode-one. The lower
panel shows similar negative sinks at mode three, much smaller magnitude, and comparable
peaks.
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7.2.3 Frequency Spectrum

Synthetic mooring data is extracted from two locations: the first is in a mode-two beam
at (x, y) = (325, 250) km and the second in a mode-three beam at (x, y) = (325, 200) km.
The reference benchmark case is also sampled at (x, y) = (325, 250). The synthetic vertical
velocity w(z, t) is projected onto vertical modes one through five, giving a time series for
each mode wn(t). Lastly, the power spectral density is estimated using MATLAB’s pwelch
function and plotted in Figure 7.9.

The top panels show the benchmark case, which reveals that the forced mode-one wave
dwarfs all other signals. A small signal is evident in mode-two at the second harmonic in
both latitude regimes, which we ascribe to the mode-two signals of Figure 5.4. The low
latitude has an even smaller mode-two signal at half of the forced frequency, due to PSI.

The middle panels show the spectrum within a mode-two beam. A strong mode-two
signal is visible at the forced frequency, undoubtedly corresponding to the mode-two beam
itself. Modes three, four and five are also visible at the forced frequency, but with a smaller
magnitude. A variety of weaker signals are discernible at each harmonic, representing
scattering of energy to higher frequencies due to numerous wave-wave interactions.

The bottom panels show the mode-three beam spectrums and they paint a similar
picture, with mode-three taking the place of mode-two as the second strongest signal at
the forced frequency. The strong mode-two signal at the second harmonic is comparable
in magnitude to the mode-three signal at the first harmonic. The likely candidate for its
generation is interaction between the forced mode-one wave and the generated mode-three
beam. Signals at higher frequency harmonics are also present at this location.

7.3 Verification Experiment

The baroclinic eddy verification experiment is conducted to see if the eddy exchanges net
energy with the internal tide as it crosses. The expectation is that it will not exchange any
net energy, but rather act as a catalyst to enable energy exchange as described by Lelong
and Riley (1991).

The modal energy budget approach described in Chapter 4 combines, at modes one
and two, the energy of the eddy with the energy of the internal tides. A net sink observed
at mode-one may be due to losses in either the mode-one eddy, the mode-one internal tide,
or both.
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Figure 7.9: Power spectral density estimated for synthetic mooring data after
projection onto modes one through five. The top panel shows the reference forcing
only case sampled at (x, y) = (325, 250) km. The middle and bottom panels show
the illustrative baroclinic eddy case sampled at (325, 250) km and (325, 200) km.
The left (right) column shows the low- (mid-) latitude case.
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Relaxation regions are added to the domain along the north and south boundaries of
the domain, and the width expanded from 400 km to 500 km to make room for these
regions as shown in Figure 7.10. An unforced simulation is run out to t = 45T to measure
the spindown of the eddy due to numerical viscosity. A second simulation of the same
length is conducted where the forcing is ramped up over 5T < t < 7T and ramped down
over 20T < t < 22T for a forcing duration of 15T . Once the forcing is ramped down,
the waves propagate from the energy analysis region and get absorbed in the expanded
relaxation regions. Comparing P (t) between the forced and unforced case once the waves
have left the domain gives an estimate of how much energy the eddy has lost following
15T of interaction with the forced internal tide. We consider one case with parameters
(f, LE, UE) = (1.0× 10−4 s−1, 35 km, 45 cm/s).

Figure 7.11 shows a time series of the change in total pseudo-energy within the energy
analysis domain (normalised to the initial pseudo-energy). In the absence of any waves,
this is a direct measure of the change in the eddy’s pseudo-energy. In the unforced case,
the eddy undergoes a small adjustment during the first three tidal periods and loses under
one thousandth of one percent of its pseudo-energy. The average change in energy during
adjustment is roughly [P (5T )−P (0)]/5T = −18.3 kW, and that over the remainder of the
simulation is roughly [P (45T )− P (5T )]/40T = −0.15 kW.

In the forced case, the curve matches the unforced case during adjustment period and
until the forced waves begin to enter the energy analysis region. The energy analysis domain
saturates by about t = 13T . Forcing rampdown begins at t = 20T and the pseudo-energy
in the analysis domain begins to drop as waves propagate from the analysis domain around
t = 24T and by t = 35T has dropped to within one hundredth of one percent of the initial
pseudo-energy, remaining remains below this level through to the end of the simulation.
We estimate the average change as [P (35T )− P (5T )]/30T = 25.2 kW.

These estimates for the average eddy energy change are small compared to the mode-
one sink and mode-two source that are three orders of magnitude larger. Thus it is fair
to deduce that the energy source of the mode two and mode three waves is the forced
mode-one wave and not the baroclinic eddy. The eddy does not exchange net energy
with the waves, supporting a wave-wave-vortex triad explanation as the energy scattering
mechanism.

7.4 Convergence

We conduct a convergence check to confirm the use of sufficient resolution. The illustrative
case is re-simulated at 4, 2, 1, and 0.25 km horizontal resolution. We use a time step of
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Figure 7.10: The domain used for the baroclinic eddy verification case during
(top) the adjustment phase and (bottom) the forced phase.
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Figure 7.11: The difference between the eddy’s total pseudo-energy P (t) and the
pseudo-energy upon initialisation P (0), normalised by P (0). The black curve
shows the unforced reference case and red shows the verification experiment.

69 s for all cases except 0.25 km, where we use 23 s. The top figure of Figure 7.12 shows
the residual in the global pseudo-energy budget (4.77) for each case and the lower panel
shows the maximum absolute residual over 15T < t < 30T as a function of resolution.

A large residual is present while the energy analysis region is saturating (8T < t < 13T ),
but drops to a consistent smaller value once reaching quasi-steady state (13T < t < 30T ).
The maximum absolute residual at the 0.5 km resolution is about 0.11 MW, a value small
compared to the sink values reported earlier in this chapter. A 60% drop in residual results
when moving from 4 km to 2 km resolution. Improvements beyond that are modest— a
four fold increase in resolution moving from 2 km to 0.5 km only reduces the residual by
34%. The last drop to 0.25 km resolution yields a residual reduction of 40%, and is likely
due in large part to the time step reduction used as well. We conclude that the horizontal
resolution of 0.5 km used here is appropriate.
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Chapter 8

Ray Tracing

In this chapter we investigate the utility of ray tracing to predict the result of mode-one
and two internal tides interacting with a barotropic eddy. We begin by outlining a set
of fully nonlinear numerical experiments conducted with the MITgcm which we use as a
reference. Time stepping the ray tracing equations produces ray paths corresponding to
parameters from the MITgcm cases, and we analyse five of the resulting paths.

To enable comparisons between ray tracing results and fully nonlinear numerical sim-
ulation outputs, we use a ray tracing methodology and post processing procedure which
reconstructs a complete wave field using numerous ray paths. We build reconstructions for
five of the numerical experiments and compare them with the numerical results to evaluate
the reconstruction approach.

8.1 Numerical Experiments

The numerical experiments conducted for this chapter are similar to those conducted in
Chapter 6. Each experiment uses a forcing amplitude of Ut = 2.5 cm/s and the low-
latitude Coriolis parameter of f = 0.5 × 10−4 s−1. Table 8.1 lists the four domains used
and the varied parameters are the forcing mode (we consider modes one and two), and
the eddy velocity and length scale. Table 8.2 lists the chosen values, and also includes the
corresponding vortex Rossby number (2.50), the ratio of internal tide wavelength to eddy
length scale ε = λ/LE, and the ratio of peak eddy velocity to group velocity, δ = UE/|~cg|.
The simulations run until the leading edge of the forced internal tide reaches the sponge
region at the east boundary.
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Table 8.1: Domains used for ray tracing investigation.

Domain ∆t (s) xc (km) yc (km) L×W ×H (km) ∆x×∆y ×∆z (km)

A 69 180 337.5 675 × 675 × 5 1 × 1 × 0.25
B 69 405 675 1080 × 1350 × 5 1 × 1 × 0.25
C 69 675 1125 1800 × 2250 × 5 1 × 1 × 0.25
D 103.5 1350 2250 3600 × 4500 × 5 1.5 × 1.5 × 0.25

Table 8.2: Set of runs conducted for ray tracing.

Case LE (km) Mode UE (cm/s) ε =
λ

LE
δ =

UE
|~cg|

Ro =
UE

0.48fLE

A1a 45 1 10 1.69 0.067 0.093
A1b 45 1 20 1.69 0.13 0.19
A1c 45 1 30 1.69 0.20 0.28
A2a 45 2 10 0.85 0.13 0.093
A2b 45 2 20 0.85 0.27 0.19
A2c 45 2 30 0.85 0.40 0.28
B1a 135 1 10 0.56 0.067 0.031
B1b 135 1 20 0.56 0.13 0.062
B1c 135 1 30 0.56 0.20 0.093
B2a 135 2 10 0.28 0.13 0.031
B2b 135 2 20 0.28 0.27 0.062
B2c 135 2 30 0.28 0.40 0.093
C2a 225 2 10 0.17 0.13 0.019
D1b 450 1 20 0.17 0.13 0.019
D2a 450 2 10 0.085 0.13 0.0093
D2b 450 2 20 0.085 0.27 0.0093
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8.2 Ray Paths

We compute ray paths by time stepping equations (2.46) numerically with the forward
Euler stepping scheme. We employ three rays that form a triangle centred about a nominal
initial position to handle energy evolution. Upon initialisation, we find the initial wave
action density Â = E/ωr and the triangle area a. After each time step of equations (2.46),
we find the new triangle area an+1 and use the conservation of wave action, Ânan =
Ân+1an+1, to find the post-time step wave action density Ân+1, and use (2.45) to find ωn+1

r .
Lastly the post-time step energy is En+1 = Ân+1ωn+1

r .

We compute ray paths and energies for nine wave packets entering an eddy from the
west along y = yc + aLE for a = (0,±0.5,±1,±1.5,±2). For illustrative purposes, we
choose the MITgcm case A2b and use the parameters from Table 8.2. Figure 8.1 shows the
ray paths on a pseudo-colour backdrop of the eddy velocity and velocity gradients, which
reveals that

• the wave that enters the eddy along y = yc (black curve) is strongly deflected to the
north.

• waves crossing the eddy along y = yc ± 2LE (outermost white curves) experience
little deflection, essentially missing the eddy. A slight deflection to the south results
from entering the eddy at y = yc ± 1.5LE (inner white curves).

• waves that enter the eddy along y = yc ± 0.5LE (blue curves) and y = yc ± LE (red
curves) experience varying degrees of deflection, some to the south and some to the
north.

• the area to the east of the eddy shows an asymmetric collection of irregularly aligned
ray paths, including rays that intersect with other rays.

To assist in interpreting the curves, recall that the ray tracing equations (2.46) in
component form are

dx

dt
= cg0,x + U, (8.1)

dy

dt
= cg0,y + V, (8.2)

dk

dt
= −k∂U

∂x
− l ∂V

∂x
, (8.3)

dl

dt
= −k∂U

∂y
− l ∂V

∂y
. (8.4)
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Figure 8.1: Nine ray paths overlaid on heatmaps of, from top to bottom, (left) u,
ux and uy, and (right) v, vx and vy. The wave packets are mode-two, UE = 10
cm/s, LE = 45 km and δ = 0.13. The horizontal coordinates are centred at the
eddy centre (xc, yc) and normalised by LE. The white lines show y = yc ± 1.5LE
and y = yc± 2LE, and examine the rays corresponding to the five legend in more
detail in Figure 8.2.

86



The rays propagate in the direction of the group velocity, which has two components: the
intrinsic group velocity and the local background current velocity. The phase velocity is
parallel to the wave vector, and in the absence of a background velocity, the phase and
group velocity are also parallel. Here the background velocity peaks at 10 cm/s and the
intrinsic group velocity is 74 cm/s. Thus the propagation direction is heavily weighted
toward the intrinsic group velocity, and consequently the group and phase speeds are only
approximately parallel while rays are inside of the eddy. Increasing the eddy velocity will
reduce the alignment of the group and phase speeds.

Figure 8.2 shows the properties of wave packets entering the eddy along y = yc + aLE
for a = (0,±0.5,±1) as a function of distance along the ray path. The curves show that

• at y = yc, the wavenumber, relative frequency, and phase speed do not change as
the packet passes through the eddy, while the group speed is temporarily increased
slightly. The ray experiences a small deflection to the south as it enters the west edge
of the eddy where the v is maximum negative as predicted by (8.2). However once it
reaches the centre, it experiences negative uy and positive vx, which act to increase
l via (8.4) and decrease k via (8.3). The ray exits the eddy after turning about 33
degrees counterclockwise, and the energy is negligibly affected. The ray propagates
approximately normal to the eddy velocities such that ~k · ~U ≈ 0, which explains the
constant relative frequency.

• at y = yc+0.5LE, the packet enters the eddy against the eddy velocity near the peak
(recall the peak eddy velocity occurs at about 0.48LE from the centre). The relative

frequency increases because k · ~U < 0. The horizontal wave number κ increases during
transit due to an increase in the k wavenumber as it enters through negative ux, and
κ is reduced as it exits through positive ux. The group and phase speeds reduce
while in the eddy, and the propagation direction shifts slightly north upon exit. The
energy briefly spikes to a high level just as it exits the eddy, and then undergoes a
terminal decline.

• at y = yc +LE, having entered the eddy against weaker eddy velocity, the wavenum-
ber, relative frequency, group and phase speeds show similar although weaker changes
as those seen in the y = yc+0.5LE case. The final direction, however, shows a deflec-
tion of a few degrees south, and the energy drops in magnitude, opting not to show
a temporary spike.

• at y = yc − 0.5LE, the packet enters with the peak eddy velocity, and the relative
frequency decreases due to ~k · ~U > 0. The l wavenumber sees little change and the
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k wavenumber temporarily decreases as it passes through positive and then negative
ux, and κ reflects the temporary drop. The group and phase speed increase while
in the eddy. The packet exits with a small deflection to the south, and the energy
shows a simple decline.

• at y = yc − LE, entering south of the peak velocity shows a similar although muted
response in the wavenumber, relative frequency and group and phase speeds when
compared to y = yc − 0.5LE. The propagation direction deflects roughly 15 degrees
to the south. The energy signal slowly rises after leaving the eddy, briefly spikes to
a high level while about one eddy diameter distant from the eddy, and then begins
its decline.

The response of the wave parameters κ, ωr, |~cg| and |~cp| to crossing the eddy is approx-
imately anti-symmetric, that is, at yc + aLE the response is approximately the opposite of
that at y = yc− aLE. However, the propagation direction and energy curves do not follow
that pattern.

The examined paths suggest that there may exist classes of ray behaviour that depend
on the offset along which the packets enter the eddy. Indeed, computing ray paths for
many finely spaced entry offsets reveals four classes of rays paths. Figure 8.3 illustrates
the four classes of rays, showing

• (top left) the “North spreading” rays, where each ray deflects to the south and in
the farfield they undergo spreading. There are no ray crossings in the farfield.

• (top right) the “North crossover” rays, which cross at a point near the eddy boundary
before undergoing farfield spreading in a fanned out pattern.

• (bottom left) the “South spreading” rays, which are much like the “north spreading”
rays except they deflect to the north and undergo stronger spreading.

• (bottom right) the “South crossover” rays, which deflect only slightly to the south
and cross others at a farfield location distant from the eddy, before undergoing a
fanned out spreading.

Table 8.3 lists the entry offset extents of each band that were (approximately) deter-
mined by a trial and error approach.

Varying the eddy size LE produced the same ray paths when plotted in horizontal
coordinates normalised by LE. As the ray tracing equations are linear, this is expected.
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Figure 8.2: Ray variables for five selected rays plotted as a function of d, the
distance along the ray path, normalised by LE. The legend is consistent with
that in Figure 8.1.
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Figure 8.3: Four families of ray paths arising from ray tracing through an eddy
where δ = 0.13. The heatmap shows eddy velocity in m/s.
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Figure 8.4: Four families of ray paths arising from ray tracing through an eddy
where δ = 0.067. The heatmap shows eddy velocity in m/s.
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Figure 8.5: Four families of ray paths arising from ray tracing through an eddy
where δ = 0.27. The heatmap shows eddy velocity in m/s.
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Table 8.3: Ray path families determined approximately by trial and error.

Class Entry offsets

North spreading y = yc + (1.0, 2.2)LE
North crossover y = yc + (0.0, 1.0)LE
South spreading y = yc + (−0.9, 0.0)LE
South crossover y = yc + (−2, 2,−0.9)LE

The important parameter here is δ = UE/|~cg|, the varying of which yields different ray
paths. Figures 8.4 and 8.5 show the four classes of rays after a halving and doubling
of δ, respectively. At smaller δ (weaker eddy currents) the ray paths deflect less and
spreading reduces in the far field, while a larger δ (stronger eddy currents) yields both larger
deflections and spreading. The entry offset extents of Table 8.3 are (at least approximately)
preserved under this halving/doubling of δ.

The boundary of the farfield spreading fan of rays found in the two “crossover” classes
are also locations where caustics form (recall that caustics are regions where adjacent
ray paths intersect). The dramatic rise in energy in two of the curves from Figure 8.2
are evidence of caustics. Computing many ray paths at finely spaced eddy entry offsets
permits the identification of caustics by checking adjacent ray paths for intersection. The
locus of such intersections form caustics. Figure 8.6 shows the location of the caustic loci
for four values of δ as computed via an adjacent ray intersection search.

8.3 Wavefield Reconstruction Method

The ray paths computed in the previous section are ill suited for comparison with model
output fields. This section describes a method of synthesising a wave field from ray tracing
results.

The overview of the method is to create a grid of wave packet starting points positioned
to the west of the numerical model forcing boundary. We trace each packet’s position,
energy and central phase from t = 0 to the model output time. The ray tracing results
yield the flow variables at the final ray positions via the polarisation relations, and an
interpolation process collects the data at the model grid points.
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Figure 8.7: An example of ray tracing results, where the blue markers indicate
the initial positions and red markers indicate the final positions. The black lines
show the r/LE = 0.48 and 1 contours of the eddy through which the wave packets
propagate.
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8.3.1 Wave Array Initialisation

We initialise a grid of wave packets in an equal sized duplicate domain to the west of
the MITgcm domain as depicted with blue markers in the left half of Figure 8.7. Each
packet has an initial wave vector directed due east ~kh0 = (k, 0) such that it propagates into
the MITgcm domain across the west boundary, mimicking the MITgcm western boundary
forcing. The initial amplitude of each wave is u0 = Ut, the forcing amplitude, and the
polarisation relation (2.38b) converts that to w0, which reads

w0 = −u0
k

mn

. (8.5)

The pseudo-energy density equation (2.41) assigns an initial energy E to each packet and

φ0 = ~kh0 · ~x0 assigns the initial central phase. The phase increment with each time step is

∆φ = ~k · (∆x,∆y)− ω∆t = (~k · ~cg − ω)∆t, (8.6)

and thus we update the central phase with

φn+1 = φn + (~k · ~cg − ω)∆t. (8.7)

We step the equations from t = 0 until the output time of the MITgcm simulation. The
red markers in the right half of Figure 8.7 show an example of the final positions after time
stepping.

8.3.2 Flow Variable Recovery

We convert the energy E at each final position to amplitude w0 using (2.41),

w0 = E
1/2
[
ρ0H

8

m2
n

κ2
h

(
1 +

f 2

ω2
+ εnh

κ2
h

m2
n

)
+
ρ0H

8

N2
0

ω2

]−1/2

. (8.8)

The polarisation relations (2.38) recover the flow variables (u, v, etc) with use of the tracked
central phase as the argument to the cos and sin terms.

8.3.3 Interpolation Process

The last step is to interpolate the flow variable data onto a target grid, which we take as the
MITgcm grid here. We perform the interpolation process “strip by strip” and superpose the
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Figure 8.8: Depiction of the stripwise triangulation showing (a) an initial rect-
angular strip, (b) a deformed post-ray tracing strip showing spreading and (c) a
deformed post-ray tracing strip where a caustic has formed near the centre. The
markers indicate wave packet positions.
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interpolated strips. Adjacent rows of initial wave positions form a rectangular strip in the
duplicate domain, and after tracing them into the model domain, the final positions outline
a deformed strip. We triangulate the area inside the strip and maintain the triangulation
after deformation, as depicted in Figure 8.8. We then interpolate the flow data from the
corners of each triangle onto any target grid points that fall within each triangle. Repeating
the process for each strip and superposing the results yields a complete wavefield on the
target grid.

In the case of intersecting ray paths, as in the last panel of Figure 8.8, a caustic is
formed at the intersection point and energy (amplitude) estimates are poor in its vicinity.

The interpolation performs well when the deformation of each strip is slight. In the
case of strong strip deformation, the triangles within the deformed strip will have a poor
aspect ratio yielding poorly interpolated data. In extreme cases, the triangles overlap and
the stripwise interpolation breaks down. However, we can control the strip width and
consequently the amount of deformation by adjusting the spacing between adjacent rows
of rays.

Derived fields such as energy flux or kinetic energy density are computed from the
reconstructed flow fields on the target grid. We compute tidally averaged fields by averaging
the constructed field at equally spaced intervals spanning a tidal period.

8.4 Wavefield Reconstructions

We reconstruct wavefields for each of the cases in Table 8.2 and illustrate the results with
five of them, beginning with a large scale separation parameter (ε > 1) and progressing
toward a proper WKBJ scale separation (ε� 1). At large ε, we expect a lack of agreement
between the MITgcm output and the ray tracing reconstruction, and as we reduce ε we
expect improved agreement.

We begin with the smallest eddy where LE = 45 km. Figure 8.9 shows the density
perturbation for cases A1b (top) and A2a (bottom) where the left panels show the MITgcm
output and right panels show the ray tracing reconstruction. The values of ε are 1.69 and
0.85.

At the top, the left plot shows that the MITgcm predicts a wave field only slightly
modified by the eddy. However, the ray tracing reconstruction in the right plot shows a
large wedge shaped region containing an intensified density signal. A band of weak density
perturbation resides south of the large wedge region, and a small, thin wedge region appears
further south. These features are not discernible from the MITgcm plot.
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At the bottom, we find alternating bands of stronger and weaker density perturbation
in the MITgcm field. The ray tracing prediction captures some of the alternating bands,
but only within the large wedge shaped region. The weakened band and thin wedge are
similar to those in the previous case.

Figure 8.10 depicts the same cases as Figure 8.9, but shows tidally averaged energy
flux magnitude. The solid green value to the west of the eddy is the undisturbed incoming
energy flux. Both MITgcm panels show disturbances in the energy flux over most of
the domain in the form of alternating hot/cold beams, and the lower panel shows beams
much stronger in magnitude than the upper panel. The reconstructions do a poor job at
predicting the alternating beams, although there is some evidence of beams within the
large wedge shaped region.

The sharp boundaries of both the large wedge shaped region and thin wedge shaped
region are caustics. Both cases have δ = 0.13, and the locations of the caustics are
consistent with expectation from Figure 8.6.

Moving to a larger eddy with LE = 135 km, we show cases B1c and B2b in Figure 8.11.
The corresponding scale separation parameters are 0.56 and 0.28. At the top, the MITgcm
plot shows strong alternating beams, and evidence of these arise within the large wedge
shaped region of the reconstruction, although the positioning is not consistent. South
of the large wedge the agreement remains poor. At the bottom, the disturbances in the
MITgcm plot are beginning to resemble a wedge shaped region. The interference patterns
within the wedge are largely reproduced in the reconstruction, although positioning is not
exact. The weakened band that is not overlapped with the wedge is comparable, although
the southern thin wedge is poor. These cases have δ values of 0.20 and 0.27, leading to
larger wedge shaped regions consistent with the loci in Figure 8.6.

Figure 8.12 shows the tidally averaged energy flux magnitudes corresponding to Fig-
ure 8.11. The top left shows strong alternating beams, which are partly reproduced within
the wedge at the right. The weak band is reasonably well reproduced, although the south
wedge is poor. The bottom left shows alternating bands to the north east of the eddy, and
to the east shows several short beams. The reconstruction to the right reproduces most of
these features, with some allowances for positioning.

In both figures, the signal in the immediate vicinity of the wedge region edges (that is,
the caustics) differs from the MITgcm output.

Lastly, we look at the largest eddy where LE = 450 km and ε = 0.085. Figure 8.13 shows
the density perturbation comparison. The MITgcm shows a wedge shaped region matching
that in the ray tracing, with small scale features in the wedge interior well reproduced. The
weak band to the south is well reproduced as well. The weaknesses in the reconstructions
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are the areas where the caustics have formed. Figure 8.14 shows the corresponding tidally
averaged energy flux, showing again that the features within the wedge shaped region are
well reproduced.

The y independent signal in the background of the MITgcm plot is likely due to a slow
wave-wave interaction involving the forced wave. As this simulation is much longer than
the others (110 tidal periods, as compared to 10, 15 and 30), there is considerably more
time for the wave-wave interactions to occur and grow large enough to be visible on the
energy flux plot. Ray tracing does not include wave-wave interactions and thus does not
show this signal.

The summary of findings in this chapter on ray tracing are:

• Two wedge shaped regions are always formed and caustics bound them on two sides.
The parameter δ determines the location and shape of the caustics.

• The MITgcm results do not resemble the ray tracing reconstructions when ε > 1.
However, as we reduce ε through raising LE or forcing at mode-two, wedge shaped
regions appear in the MITgcm fields, although the boundaries are not sharp (caustics
do not form).

• Ray tracing reconstructions are good when ε ≤ 0.28 and poor for ε ≥ 0.56. It is
difficult to select a “cutoff” value of ε but these results indicate it is between these
two values.

• Assuming a “cutoff” value of ε = 0.3, interference pattern reconstructions work well
for mode-one waves when LE ≥ 250 km and for mode-two when LE ≥ 125 km. The
corresponding eddy diameters are 1000 and 500 km, much bigger than the mesoscale.
Thus the utility of ray tracing low-mode M2 internal tides through mesoscale eddies
is limited.

• Higher mode waves with shorter wavelength are more appropriate for tracing through
a mesoscale eddy.
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Figure 8.9: Top row shows mode-one density perturbation ρ′1 at t = 10T from (left)
MITgcm and (right) the ray tracing reconstruction for case A1b where LE = 45 km,
UE = 10 cm/s, and ε = 1.69. Bottom row shows mode-two density perturbation ρ′2 at
t = 20T from (left) MITgcm and (right) the ray tracing reconstruction for case A2a where
LE = 45 km, UE = 20 cm/s, and ε = 0.85. The white lines show the r/LE = 0.48, 1, and
2 contours. Units are kg m−3.
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Figure 8.10: As in Figure 8.9 except energy flux magnitude (top) at mode-one, averaged
over 9T ≤ t ≤ 10T and (bottom) at mode-two, averaged over 19T ≤ t ≤ 20T . Units are
kW/m.
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Figure 8.11: Top row shows mode-one density perturbation ρ′1 at t = 15T from (left)
MITgcm and (right) the ray tracing reconstruction for case B1c where LE = 135 km,
UE = 30 cm/s, and ε = 0.56. Bottom row shows mode-two density perturbation ρ′2 at
t = 30T from (left) MITgcm and (right) the ray tracing reconstruction for case B2b where
LE = 135 km, UE = 20 cm/s, and ε = 0.28. The white lines show the r/LE = 0.48, 1, and
2 contours. Units are kg m−3.
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Figure 8.12: As in Figure 8.11 except energy flux magnitude (top) at mode-one, averaged
over 14T ≤ t ≤ 15T and (bottom) at mode-two, averaged over 29T ≤ t ≤ 30T . Units are
kW/m.
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Figure 8.13: Mode-two density perturbation ρ′2 at t = 110T from (left) MITgcm
and (right) the ray tracing reconstruction for case D2b where LE = 450 km,
UE = 20 cm/s, and ε = 0.085. The white lines show the r/LE = 0.48, 1, and 2
contours. Units are kg m−3.
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Figure 8.14: As in Figure 8.13 except energy flux magnitude at mode-two, aver-
aged over 109T ≤ t ≤ 110T . Units are kW/m.
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Chapter 9

Conclusions

We conducted numerical experiments using the MITgcm that investigated the interaction
between an M2 internal tide and two types of isolated mesoscale eddies. A novel energy
analysis technique tracked energy flow between vertical modes. Lastly, we employed ray
tracing to find ray paths through barotropic mesoscale eddies, and developed a methodol-
ogy that uses many ray paths to synthesise complete wave fields.

The results from the barotropic eddy investigation showed that once a mode-one inter-
nal tide passes through the eddy, hot and cold spots of energy flux form in beam shaped
patterns. The magnitude of the energy flux in the hot spots can exceed double the incident
flux, and that in the cold spots can be reduced almost to zero, forming dead spots. An
increase in either the size or the speed of the eddy resulted in more pronounced hot and
cold spots. Insignificant energy was scattered between vertical modes.

The results from interactions between a mode-one internal tide and a mode-one baro-
clinic eddy were different. The interaction excites internal tides at mode-two and higher,
which propagate away from the eddy in the form of radially spreading beams. The pro-
duced beams are asymmetric, and the asymmetry persists upon reversal of the eddy’s
direction of rotation. Use of the novel energy budget scheme permitted the computation
of net scattering rates between modes by computing the energy sinks associated with the
quadratic nonlinearity in the governing equations. A verification experiment demonstrated
that the eddy lost a negligible amount of energy after interacting with the forced wave.
Lastly, an inspection of the frequency spectrum showed that energy was also scattered to
harmonics of the tidal frequency.

The computation of ray paths through a barotropic eddy showed that four classes of
ray paths form. Two of the classes exhibited spreading and the other two exhibited both
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spreading and the formation of wedge shaped caustics. The shape of the ray paths depends
on the non-dimensional parameter δ = UE/|~cg|. A wave field reconstruction procedure
that uses many rays permitted comparison with numerical model results, revealing that
reconstructions were good when the non-dimensional parameter ε = λ/LE . 0.3.

9.1 Discussion

For the baroclinic eddy cases, the excitation of a mode-two internal tide at the expense of
the mode-one internal tide is consistent with expectations from the resonant wave-wave-
vortex triad theory of Lelong and Riley (1991). The isolated eddy contains energy at the
required wavenumbers to complete triads between the forced mode-one internal tide and a
mode-two internal tide. The verification experiment supports a catalytic eddy explanation.

Barotropic tidal flow across topography is a generation mechanism for the internal tide.
In studying this process, we view the topography as exerting a drag on the barotropic tide as
it acts to inject energy into various baroclinic modes after removing it from the barotropic
mode. The baroclinic eddy in the present study acts in an analogous manner, extracting
energy from the first mode internal tide and exciting a second mode wave. Thus the eddy
acts as a drag on the incident mode-one internal tide. Once generated, the mode-two wave
begins to propagate away, and before exiting the eddy it interacts with it, producing the
mode-three wave. The mode-three wave behaves in a similar manner, as does mode-four,
leading to a hierarchy of drags.

The frequency spectrum measured within the strongest generated mode- two and three
beams reveals that a variety of vertical mode numbers and frequencies were active, and
that most of them were not present in the eddy-free control case. The hierarchy of inter-
actions manifested within the eddy are responsible for transferring energy from the forced
mode-one wave to the higher mode waves at the same frequency. Once produced, these
waves participate in a multitude of wave-wave interactions which scatter energy both in
wavenumber and frequency space. It is these wave-wave interactions that introduce energy
to the higher frequency harmonics.

At low-latitude the mode-one wave travels with a higher group speed (1.49 m/s) than at
mid-latitude (1.12 m/s), and thus crosses the eddy in a shorter time. The sinks measured
in the mid-latitude cases are larger than in the low-latitude cases, and this is qualitatively
consistent with the faster group speed, although the strength of the interaction may differ
in other ways.

There are several implications that mesoscale eddies studied here have for the incident
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internal tide. The distortion of the mode-one internal wave field by the barotropic eddies
makes a first order contribution to the difficulty in predicting the interference patterns.
The induced hot/cold spots should experience localised increased/decreased wave induced
mixing, although this process is not resolved here.

Baroclinic eddies remove energy from the incident mode-one internal tide and scatter
it to modes two and higher. Both the weakened mode-one and generated waves propagate
away from the eddy, thus forming a one-way downscale transfer of energy. The higher
modes waves travel slower than the forced mode-one and in more directions, increasing
their exposure to other oceanic phenomena (waves, currents, eddies, etc) with which to
interact. Higher mode waves have higher shear (for the same amplitude) and hence create
an environment in which the small scale waves break. Enhanced currents (the hot spots)
and higher mode waves will increase breaking of the short waves. The expected result is
an enhancement of dissipation in the open ocean surrounding the eddies at the expense of
reduced dissipation at remote coastlines. An improvement in open ocean mixing estimates
will lead to improved ocean model skill through improved parameterisations or insertion
of direct mixing maps. Weather and climate models will also benefit from better ocean
forecasts.

The baroclinic eddy diameters where the mode-one sinks are largest (DE spanning 120–
180 km) are compatible with the size spectrum of observed mesoscale eddies (diameters
spanning 50–200 km). Our parameter regime yields eddies with order one vortex Rossby
numbers comparable to those of energetic mesoscale eddies such as Gulf Stream rings. We
find these energetic eddies primarily near western boundary currents and in the southern
ocean (Olson, 1991), and they provide ample opportunity for these interactions to occur
in the ocean. Eddies with smaller vortex Rossby numbers are expected to induce weaker
energy transfers as estimated by extrapolating the curves in Figure 7.8 to larger LE or
smaller UE. Such eddies are commonplace in the ocean (Elipot et al., 2010); numerous
weaker interactions may make this an important process in the ocean.

Eddies drift with speeds as high as 20 cm/s but typically below 10 cm/s (Chelton et al.,
2011). Internal tide beams leaving strong generation sites are expected to intermittently
interact with eddies while they drift through the beam’s path. A 150 km diameter eddy
drifting at 10 cm/s would require roughly 17 days to travel its diameter, suggesting that
the intermittency time scale is on the order of 2–3 weeks.

Ray tracing is deemed invalid to describe the result of mode-one internal tide inter-
actions with mesoscale barotropic eddies. The lengthscale ratio ε for the experiments of
Chapter 6 spanned 1.52–6.75, well above the ε� 1 regime where ray tracing is valid.

The investigation in Chapter 8 showed that reducing ε produces ray tracing predic-
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tions that are increasingly comparable to fully nonlinear numerical results. Qualitatively
speaking, results at ε = 1.69 showed little skill, and evidence of skill became discernible at
ε = 0.85. The experiments where ε = 0.28 and ε = 0.085 showed considerable skill, except
for the area in the immediate vicinity of the caustics.

The fact that ray tracing requires small ε is not a new result, however the wave field
reconstruction technique is (to the author’s knowledge) new and may be useful in synthe-
sising wavefields in different scenarios where ray tracing is applicable.

9.2 Future Work

This work assumed a linear stratification for the background state. Extension of this
work for a general stratification would make these simulations more realistic. The energy
budget derivation will need the most attention: it relies on orthogonality of the vertical
mode functions φn(z) to neatly divide the global budget into per-mode budgets. The
vertical structure functions φn(z) for a general stratification (see Dunphy (2009)) have a
less favourable orthogonality condition, although it may be possible to derive per-mode-
per-frequency energy budgets.

We became aware of the evidence suggesting a universal eddy structure at a late stage
in preparing this thesis. Figure 9.1 compares the horizontal eddy structure used in this
work with that presented by Zhang et al. (2013), showing that peaks in velocity occur
at a larger radial distance—roughly 0.75LE, as compared to our 0.48LE. Re-running the
MITgcm experiments with the new eddy function should yield qualitatively similar results,
although we expect a shift in the lengthscales of peak conversion (peak sinks in Figure 7.8).

Ray and Mitchum (1996, 1997) used satellite altimeter measurements to compute es-
timates of the mode-one and two internal tide energy flux propagating away from the
Hawaiian Ridge. Zhao et al. (2011) also computed these energy fluxes using multi-satellite
altimeter data, and further found evidence of a mode-three signal in the along-track spec-
trum. Future work will involve searching altimeter data for evidence of mode-two and
three internal tides leaving mesoscale eddies.
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Figure 9.1: The top panel shows the horizontal structure function and the bottom
panel shows the associated normalised velocity. The red line shows the curves used
in this study and the black shows the function presented by Zhang et al. (2013).
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