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Abstract 

Automated visual inspection is an emerging multi-disciplinary field with many challenges; it 

combines different aspects of computer vision, pattern recognition, automation, and control systems.  

There does not exist a large body of work dedicated to the design of generalized visual inspection 

systems; that is, those that might easily be made applicable to different product types.  This is an 

important oversight, in that many improvements in design and implementation times, as well as costs, 

might be realized with a system that could easily be made to function in different production 

environments.   

This thesis proposes a framework for generalizing and automating the design of the defect 

classification stage of an automated visual inspection system.  It involves using an expandable set of 

features which are optimized along with the classifier operating on them in order to adapt to the 

application at hand.  The particular implementation explored involves optimizing the feature set in 

disjoint sets logically grouped by feature type to keep search spaces reasonable.  Operator input is 

kept at a minimum throughout this customization process, since it is limited only to those cases in 

which the existing feature library cannot adequately delineate the classes at hand, at which time new 

features (or pools) may have to be introduced by an engineer with experience in the domain.   

Two novel methods are put forward which fit well within this framework: cluster-space and hybrid-

space classifiers.  They are compared in a series of tests against both standard benchmark classifiers, 

as well as mean and majority vote multi-classifiers, on feature sets comprised of just the logical 

feature subsets, as well as the entire feature sets formed by their union.  The proposed classifiers as 

well as the benchmarks are optimized with both a progressive combinatorial approach and with an 

genetic algorithm.  Experimentation was performed on true colour industrial lumber defect images, as 

well as binary hand-written digits.   
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Based on the experiments conducted in this work, it was found that the sequentially optimized 

multi hybrid-space methods are capable of matching the performances of the benchmark classifiers on 

the lumber data, with the exception of the mean-rule multi-classifiers, which dominated most 

experiments by approximately 3% in classification accuracy.  The genetic algorithm optimized 

hybrid-space multi-classifier achieved best performance however; an accuracy of 79.2%.   

The numeral dataset results were less promising; the proposed methods could not equal benchmark 

performance.  This is probably because the numeral feature-sets were much more conducive to good 

class separation, with standard benchmark accuracies approaching 95% not uncommon.  This 

indicates that the cluster-space transform inherent to the proposed methods appear to be most useful 

in highly dependant or confusing feature-spaces, a hypothesis supported by the outstanding 

performance of the single hybrid-space classifier in the difficult texture feature subspace: 42.6% 

accuracy, a 6% increase over the best benchmark performance.   

The generalized framework proposed appears promising, because classifier performance over 

feature sets formed by the union of independently optimized feature subsets regularly met and 

exceeded those classifiers operating on feature sets formed by the optimization of the feature set in its 

entirety.  This finding corroborates earlier work with similar results [3, 9], and is an aspect of pattern 

recognition that should be examined further.   
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Chapter 1 
Introduction 

1.1 General 

Automated defect inspection is a critical step in most manufacturing plants, and often represents a 

significant percentage of total production costs [2].  In most cases, non-destructive, non-tactile 

automated defect inspection is accomplished through the computerized inspection of digital images 

captured at some point of production.  The majority of the costs associated with such a system reside 

in the design and implementation of the sophisticated technology required for the task [1].  Usually, 

this setup is very product-centric, and cannot be easily ported to other applications.   

It is therefore very desirable to devise a system which can easily be made to function with different 

product types, with little or no input from an engineer or operator, in order to minimize design and 

deployment costs.  Because the defect recognition stage of automated visual inspection is the only 

one that could reasonably be thus generalized with our present level of technology, this thesis deals 

primarily with the formulation of a framework for this very purpose.   
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Two novel methods which fit within this framework are also proposed, and are compared to 

standard benchmark classifiers for performance analysis on a task in lumber defect recognition, as 

well as numeral recognition for an indication of their performance in another domain.   

1.2 Thesis Organization 

This thesis discusses many aspects of the automated visual inspection research area.  It is organized as 

follows:   

• Chapter 2 – Background.  This chapter discusses the various aspects of defect inspection, 

and compares and contrasts traditional human inspection with the emerging automated 

inspection systems that are becoming more prevalent across industries each year.  Some of 

the drawbacks of automated inspection are outlined, as well as the state of its publicly 

available research.  The research goals of this thesis are summarized at the end of the 

chapter.   

• Chapter 3 – Automated Visual Inspection.  Here a detailed look into the process of AVI is 

offered, organized by the usual order of processing:  image acquisition, segmentation, 

feature extraction, feature selection, and classification.  The chapter closes with a summary 

of two works which present a systems approach to AVI design.   

• Chapter 4 – Proposed Approach.  This chapter identifies which components of an AVI 

system might readily be generalized for cross-product use.  A framework is proposed for 

the automation of this generalization process.  Two novel methods are put forward which 

satisfy this framework, and their parameters are discussed.   

• Chapter 5 – Experimental Setup and Results.  In this chapter the combinatorial 

optimization of the proposed methods is outlined, and results are contrasted with similarly 
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optimized benchmark methods.  Experiments are repeated for features sets that have been 

pruned with a selection method.  Lastly, a simultaneous search for an optimal feature-space 

and classifier parameters is attempted with a genetic algorithm.   

• Chapter 6 – Conclusions and Future Work.  Here the results obtained in chapter 5 are 

discussed, and conclusions are drawn.  Some promising areas in which further work would 

benefit are outlined.    
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Chapter 2 
Background 

This chapter begins with an introduction to defect inspection, and the reasons for its importance to 

current manufacturing processes.  The major limitations of human-based inspection systems are 

outlined, and ways in which automated inspection counter said limitations are discussed.  Lastly, 

some of the difficulties associated with the research and implementation of automated defect 

inspection systems are highlighted, as well as the method by which this thesis attempts to address 

them.   

2.1 Defect Inspection 

Defect inspection is any process which attempts to identify errors in a product, or (in a larger sense) 

in the manufacturing system responsible for its creation, assembly, or handling.  It is usually a critical 

component in any production companies’ quality assurance system.   

Defect inspection takes many forms depending on the product type, and its method of production.  

The most common method is visual inspection, which is often enough to satisfy most requirements 
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for quality.  If surface observation is insufficient, and the product requires internal inspection, there 

exist ultrasonic, x-ray, and magnetic resonance methods by which defects not accessible to surface 

inspection might be observed [2].  Occasionally a product must be exposed to physical duress to 

ascertain its physical cohesion, but such forms of quality control are usually referred to separately as 

testing tasks[1].   

This thesis is primarily concerned with automatic visual inspection of products through digital 

imaging.  This method is widely employed in industry and is appropriate for a great variety of 

products, such as web material (paper, films, print, labels, etc), plastics, glass, steel, circuit boards, 

etc. [13].  It is possible however, that the method proposed here might be applied to other forms of 

imaging, as long as the inspection method generates two-dimensional intensity images, and even to 

other problem domains, since the specifics of the proposed methods reside within the larger research 

area of pattern recognition.   

2.2 Motivation 

It is detrimental and often unacceptable for a company to ship defective product to consumers; upon 

receiving a defective batch a customer will likely consider the option of finding a more reliable 

source for their needs in the future.  Because of constantly increasing demands (and indeed 

expectations) for quality in commercial product, most producers are so intent on delivering only the 

highest grade of product to consumers, that it is not uncommon to see a large percentage (often in the 

range of 10% or greater) of overall production costs reside in defect inspection [1].  In fact, since 

inspection is regarded as a non value-added activity, it can easily represent the largest single cost of 

the entire manufacturing process [2].  Thus there is a great economic incentive for any deliverable 

product to meet the expected quality level.   
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Visual defect inspection has long been the most dominant form of quality inspection in a great 

variety of industries.  This is largely because humans are visual beings; it has been estimated that over 

90% of our knowledge of the world is acquired visually.  The other main advantage of visual 

inspection is that it is non-destructive and non-invasive; often no tactile disturbance is required of the 

product, and it is thus left in a pristine state.  Some product types require more than visual assessment, 

and occasionally warrant invasive or destructive testing, but it is avoided if possible, because 

obviously, product is compromised as a result, and 100% inspection cannot be achieved – a sufficient 

sample size is used to obtain significant statistical assurance of that particular batch’s quality.   

2.2.1 Drawbacks of Human Inspection 

Visual Inspection as traditionally performed by human inspectors is usually undesirable for one of 

several reasons.  Performance issues are first and foremost; production rates can easily exceed even a 

team of humans’ capacity to fully inspect each product.  In fact, sometimes even inspection of a 

sample of statistically sufficient size is simply not feasible by people [2].   

Another key issue is consistency.  Human inspectors have often been shown to perform unreliably; 

different inspectors assign different grades to one class of product, and in some cases, the same 

inspector will assign differing quality grades to the same instance of a product when encountered 

twice within a negligible amount of time (sometimes in the same shift) [1].  This is because human 

inspection is, perhaps even more so than other forms of labour, susceptible to issues of subjectivity, 

emotion, fatigue, and stress [12].   

Safety can also be a key factor in deciding whether to automate inspection.  There are many 

environments in a production process that simply cannot be inspected by a human without 

unnecessary - if not grave - risk, such as metal casting, power line inspection, nuclear plants, etc.  
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Temperature, electrical voltage, ph balance, atmospheric pressure, and radioactivity are just some of 

the common sources of hostility in real environments in which visual checks must be performed, 

rendering human inspection impractical, if not impossible [1].   

Lastly, a not insignificant consideration is cost - human inspection in general can often prove quite 

expensive [2].  Inspectors must obviously be compensated for their labour, and are entitled to 

company benefits and incentives, as are all employees.  This is one of the main reasons for the high 

cost percentage of inspection with respect to the overall production process mentioned earlier.   

As an aside, the move to install an automated inspection system specifically to address this last 

concern can be looked upon as an issue of some moral concern.  This is not a new development, as 

many technologies have been viewed in an unfavourable light in the past.  Although it is easy to 

depict emerging manufacturing technologies as usurpers of the blue-collar workforce, there are other 

social considerations to take into account.  Namely, that quality inspection is often regarded as 

tedious and undesirable work [12], and as such, inspectors are often lacking in motivation and career 

fulfillment, two factors which likely also play a role in the aforementioned issues of emotion, fatigue, 

and ultimately reliability.  Also, one must take into account that the introduction of new technologies 

has consistently stimulated the creation of new areas in the educated workforce, and that historically 

one of the greatest causes of unemployment has been the lack of investment in emerging technology 

[13].  

Automated inspection suffers from none of the aforementioned drawbacks.  Performance can be 

gauged much more quantitatively than with human inspection, and has been found to be significantly 

more consistent over time [2].  Computers and sensory equipment certainly do not suffer from issues 

of subjectivity or fatigue, unless one factors in the small percentage of down time required for 

refitting or repairing components as necessary.  Electronic components function equally well at the 
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end of an eight hour production cycle as at its beginning, and there certainly doesn’t exist the need to 

replace them at the end of said shift.  Safety is seldom a concern when it comes to automated systems, 

as they are designed specifically for the hazardous operating environment in which they are intended 

to operate.  Lastly, costs are limited to initial system design, development and deployment, along with 

regular upkeep.  As well, it is worthwhile to note that automated systems’ costs are constantly 

dropping, mainly as a result of the continual decrease in cost of the complex electronic components 

required for their construction [2], but also because as the companies involved in manufacturing 

automated inspection systems continue to expand their expertise and existing resource bases, design 

and development costs decrease as a result.  This certainly cannot be said of the costs associated with 

human inspection, as inspector pay rates must necessarily increase proportionately with rises in 

workforce inflation.   

These are the primary reasons why automatic inspection has enjoyed such a boom in many 

industrial niches lately, and why more and more companies are investigating the possibility of 

automating their inspection processes [13].   

2.3 Difficulties 

Despite all the advantages of automated defect inspection noted above, there are some existing 

difficulties with the technology and its development that should be noted.   

2.3.1 Research Base 

Automated visual inspection (AVI) is obviously a very complex, and yet very relevant and 

application-specific technology.  Any significant and practical advances in the field are likely very 

profitable, and as a result, much of the leading edge research is performed in-house by companies 

planning on applying the technology on a commercial basis [1].  This has left publicly available 
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research sources in AVI in a state of mild disarray, as companies often compete in parallel on many 

different approaches to the problem, while maintaining somewhat of a veil of secrecy around their 

work, in the hope of being the first to develop a new and marketable idea.  As a result, there is much 

overlap in the subjects of work being performed, and a novice to the area may find themselves 

rereading many similar and basic concepts, while the state of the art is left guarded in company 

knowledge bases.   

Another problem of a similar nature is that of a researcher trying to understand the source and 

nature of a particular product’s defects.  It is often the case that not only will AVI companies remain 

secretive surrounding the technology employed by their defect inspection system, but the companies 

which use said technology will also be quite hesitant to release information concerning the type, 

frequency, severity, and costs associated with defects of their particular product.  This is 

understandable when one considers that it could be quite detrimental for a production company to let 

their customers and competitors know exactly how, why and when their manufacturing technology 

fails.  It poses a quandary to researchers however, in that it can often be difficult to understand the 

true natures of said defects, and as a result, to adequately formulate a system to treat them.   

Another failing of the AVI research area, is a lack of work performed on the applicability of 

systems to deal with multiple product types [1].  Generalizing an inspection system is an interesting 

and certainly profitable problem to investigate, in that it stands to reason that if a system could be 

devised which could adequately deal with multiple, and indeed, new product types, a major savings 

would result in the design, development, and deployment costs associated with said system.   

Lastly, a major issue with the research area of automated visual inspection is a lack of sufficient 

effort in the interesting sub-task of visual recognition.  Many papers treat the two terms as 
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interchangeable, but for the purposes of this thesis, it would be beneficial to form a clear distinction at 

this point.   

 

Figure 2.1:  Defect inspection as an aggregate of separate defect detection and defect recognition 

modules. 

There exist a great many papers dealing with the defect detection portion of inspection on a specific 

product type, but not nearly as many that try to address the issue of defect recognition, which is odd 

since most, if not all, interesting functionality available to process control are direct results of the 

ability of the defect recognition module to differentiate defect types.   

Consider for example a production process whose visual inspection capability is limited simply to 

defect detection; we are left with products being labeled as either of quality or possessing a defect.  

The only actions available to process control at this point then are to let the item continue on the 

production path (quality product), or to eliminate it or reroute its path (defective or inferior product).  

Another course of action would be to have a human inspector decide what sort of defect has been 

identified, and consequently, what to do with the product in question, but then we are left again with 

the need for human inspectors.   

By contrast, when it can be said with certainty not only that a defect exists (defect detection), but 

also to what class of defect it belongs (defect recognition), and possibly its severity, a whole new set 

of options in process control present themselves.  The production system can in this case still pass, 
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eliminate or reroute the product, but it can also do it in a more logical and cost-effective manner.  For 

example, a defect’s severity can dictate whether production must cease completely for a refit of 

components due to a severe production error, or whether the defect is simply a minor aberration and 

production can continue indefinitely.  Also, possibilities are raised in regards to automating process 

control, and the further reductions of costs and increases in efficiency that can be achieved as a result.   

The lack of research available in Defect Recognition can in some cases be attributed to researchers 

treating detection and recognition as one and the same problem in classification; it is sometimes the 

case that a defect detection module is composed of several components, each hunting individually 

(and ideally in parallel), for defects of a specific type [14].  Therefore, if a defect is detected by an 

individual component, its type is automatically known (that of the type that the component was 

searching for).  Also, lack of interest in defect recognition can be somewhat attributed to difficulties 

in implementation, which are discussed further in the next section.   

2.3.2 Implementation 

Because AVI is a very application specific domain, it is constrained by its applicability.  For example, 

real-time implementation is usually a very high priority for any inspection system.  If the system is 

unable to cope with the production rates of its target production process, then it is rendered virtually 

useless (except for theoretical study), regardless of its sophistication, novelty, or accuracy.  Real-time 

performance is also a particular concern because it is often the case that a production process will 

improve in quality and/or in throughput rate (as most constantly are [1]), thus requiring flexibility and 

the ability to increase performance in its respective AVI system, in either dealing with different types 

of defect and/or dealing with a greater input rate.   
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A further result of AVI’s application-specific nature, is the need to function properly within an 

industrial environment.  It is often the case that a production process’ environment is several orders of 

magnitude more hostile than that of a lab; lighting concerns, dust, dirt and other contaminants, as well 

as vibration are very real criteria to be considered when designing AVI for a particular plant [12].  A 

robust AVI system is always the goal, because as mentioned before, stability and reliability are two of 

the main demands made of any quality control system, whether automated or not.   

Another constraint on an AVI system is its cost.  In the past, this has been the main reason 

companies stayed with human inspectors:  the cost of the complex equipment and electronics 

involved for an automated inspection refit was simply too great, and companies with insufficient 

production rates, or net profit margins simply could not afford having an automated system designed 

and installed [1].  As mentioned before, these costs are declining at a tremendous rate, largely as a 

result of the current decline in electronic components’ prices.  Whether to install an AVI system is 

now more often a question of viability, in that AVI is still inferior to humans at inspecting certain 

product types, but this is often the result of three dimensional concerns, or the specifics of the 

manufacturing environment [13], which are beyond the scope of this thesis.  Nevertheless, before 

installation of an automated vision inspection system, a company must make certain to perform the 

appropriate cost-benefit analysis, in order to ascertain whether production throughput is sufficient to 

balance the initial investment required for the design and installation of the system, which can range 

in price from the relatively cheap to the exorbitantly expensive [12].   

Further constraining AVI systems development are their (seemingly) inherent specificity [1].  For 

example, an excellent system for inspecting lumber would perform quite poorly when applied to the 

problem of glass inspection.  There are simply too many variables for successful system crossover, 
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such as the nature of the products and defects involved, the physical characteristics of the production 

process itself, the type of lighting required, etc.   

Lastly, another detriment to AVI systems research and implementation is the prevalence of 

rudimentary systems which are currently used for defect inspection.  Production technicians and 

quality assurance experts are used to the existing systems, and cannot easily see beyond their 

limitations.  A perfect example is newspaper production.  Currently most newspaper presses use 

human inspection on samples of issues to determine process control actions.  A technician will 

arbitrarily choose a finished newspaper every few minutes and examine it for certain visual cues as to 

its quality.  A special hand-held instrument for the measurement of colour called a densitometer is 

used manually to check ink jet levels, to ascertain that the correct mix is used for optimum colour 

reproduction, and a simple magnifying glass is used to check marks for press alignment which is 

adjusted manually if necessary while production continues [22].  Depending on how severe the colour 

and alignment discrepancies are judged, it is decided whether or not to discard the affected copies.   

Likewise, each page of the sample issue is checked for scuff, which is an ink blot that occurs 

repetitively on the same page in each issue, as a result of a foreign object (often a small wad of paper) 

stuck on one of the press rollers [22].  By the time this problem is located, and the press stopped for 

cleaning, hundreds of copies are often rendered useless.  These are perfect candidates for automated 

inspection, but because the existing system has served the newspaper business for so long, there is no 

perceived need to go to superior systems, and thus no need to fund research for better systems.   

2.4 Thesis Goals 

It is the aim of this thesis to address some of the existing difficulties with AVI systems research 

described in the previous sections, specifically those of AVI system specificity, and the lack of 
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research in defect recognition, as opposed to defect detection.  In fact, the two problems are dealt with 

in tandem, with the research question specifically being addressed as:  can a system of defect 

recognition be devised which could be used effectively across different production platforms, and 

differing product types?  Naturally, real-time applicability should always be kept in mind when 

devising new methods for AVI, but for the purposes of this work we will put aside this issue, and 

focus more on the theoretical concerns as formulated by the research question.   
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Chapter 3 
Automated Visual Inspection 

This chapter is a survey of some of the AVI techniques present in the literature today.  It is organized 

roughly by the order of processing performed by nearly every AVI system, namely image acquisition, 

detection and segmentation, feature extraction and selection, and finally recognition.  Most work has 

focused on one or two of these facets of AVI, to the exclusion of the others.  The last section of the 

chapter examines two examples of works that propose complete framework approaches that include 

many if not all of the aforementioned subsystems, and their design considerations.   

3.1 Image Acquisition 

Image Acquisition is the foundation on which all AVI systems reside.  It is of the utmost importance 

to properly calibrate the lighting and camera conditions to suit the application at hand, since without 

the ideal image capturing conditions, the resulting data is usually useless.  It is often the case that 

proper care taken to adjust image acquisition conditions can lead to the avoidance of many costly 

image pre-processing operations that would otherwise be required [20].   
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Figure 3.1:  A typical line-scan camera setup for visual web inspection.   

At the minimum, it must be decided at what resolution to operate, and the proper type, distance and 

intensity of illumination.  Resolution is a key tradeoff, because the higher the resolution, the finer the 

details one can acquire, and the smaller the defects one can recognize.  However, with an increase in 

resolution comes a proportionate increase in data throughput, which the system must be able to cope 

with.  In general, it is desirable to operate at the lowest resolution capable of discerning the smallest 

defects one wishes to locate; any surplus in resolution is simply a burden to the rest of an AVI 

system.   

Illumination types and methods can range from simple incandescent lighting, to more esoteric 

solutions for specific needs, such as specular reflection, polarized light, circular arrays of LEDs, and 

synchronized stroboscopic lights [2].  The method proposed here might be employed with any of 

these, but for our purposes it might be easier to imagine a simple overhead lighting setup, which 

would be adequate for most applications.   
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If the material is one in which surface texture plays an important determining factor in quality 

assessment, then camera and illumination angles (θ and α in Figure 3.1, respectively) should also be 

considered, to cast an appropriate amount of shadow, thereby highlighting the surface texture as 

required [2].   

3.2 Detection & Segmentation 

Defect detection can be thought of as an entire classification process in and of itself.  Here the task at 

hand is to recognize and isolate defective regions of the product, and if necessary, to pass these on for 

further processing to analyze more specifically its type, and how it might be treated.   

This segment of AVI has garnered a lot of attention, as it is the one which can most significantly 

impact an AVI system’s effectiveness through initial design.  Most products have large differences in 

their optical characteristics, and it is a non-trivial matter to design and implement a successful 

segmentation routine; it must be tailored to the specific texture and histogram properties of the 

product at hand, as well as to the amount of variance expected of these properties from product to 

product and indeed region of product to region.  Because of these considerations, a successful 

generalized segmentation routine has not yet been put forward, nor is one expected in the near future.   

Sometimes it is the case that detection and segmentation can be handled by something as trivial as 

static image intensity thresholding [1].  This is possible when the image of the product is relatively 

well behaved, that is to say that there is not much local variation in pixel intensity.  This can be the 

case with smooth monotone products such as metals or plastics, in which defects such as holes or 

cracks show up quite readily on product images as much lighter or darker regions [1].   

Another product type which is readily segmented with thresholding techniques is one whose 

precise appearance is known beforehand, and can be verified quickly thorough template matching 
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(image subtraction) techniques.  Products such as circuit boards or labels are an example of this type, 

where the desired pixel intensity is known beforehand at each position of the image, and variances in 

these are clear indicators of a problem.  Template matching brings up additional technical problems 

that need to be resolved, such as image registration, in which the template and defect image must be 

precisely aligned before image subtraction can be employed, but this is a separate concern.   

       
a)       b)         c) 

Figure 3.2:  a) Close-up of pharmaceutical label with tear, b) its “golden template” stored in memory, 

c) enhanced result of image subtraction.  The visible text and graphic “ghosts” are the result of 

imperfect image registration.   

The static thresholding techniques mentioned are also readily expandable to include adaptive 

methods as well, which are somewhat more robust, and less prone to false alarm errors.  In adaptive 

thresholding, dynamic cutoff values are determined by the characteristics of the local region being 

examined.   
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Sometimes detection and recognition can be bundled together into one module, in that the means to 

identify the defect from the background is sufficient to determine its type.  Such an approach is put 

forward in [14], where a series of Finite Impulse Response (FIR) filters are used in parallel to isolate 

defects on textile materials.   

 

 

Figure 3.3:  Using custom FIR filters and some simple image processing to segment a specific defect 

type [14]. 

Because it was found that each defect type tends to have predictable texture characteristics (as 

modeled by autocorrelation functions), FIR filters could be successfully attuned to a particular defect.  

By convolution with the image, a series of intensity images (one for each defect type) is then created, 

in which the background textures are attenuated.  These images are then enhanced through a squaring 

non-linearity, and finally smoothed with a low pass filter to eliminate errors.   

   
        a)            b)            c) 
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Figure 3.4:  a) fabric sample with defect mispick, b) attenuated output of optimal FIR filter,     c) 

segmented output after nonlinear squaring and threshold processing. 

3.3 Feature Extraction 

Perhaps the most important design choice for any pattern recognition system is the set of features 

used to describe the objects to be classified.  The sophistication of the classifier to be used is rendered 

irrelevant if the feature set simply does not contain adequate information to separate the classes.  

Because of the importance of the features used for classifier performance, and because of the 

proposed method’s delineation of features into subsets by type, we will examine some of the more 

popular features used for defect classification by the type of measurements they quantify.   

3.3.1 Shape Description 

There are many ways of describing shape, such as statistical methods, structural methods, and those 

based on examining an image’s frequency-domain characteristics, such as analysis of its Fourier or 

Wavelet transform [20].  Statistical methods are quite popular in AVI, because they tend to be 

computationally efficient, and combinations thereof can be very effective at delineating defect classes 

[17].   

     
a) A defect’s contour  b) Convexity   c) Principal axis ratio 
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d) Compactness   e) Circular Variance  f) Elliptical Variance 

Figure 3.5:  Statistical shape features utilized for the recognition of paper defects in [17]. 

Convexity is the ratio of an object’s convex hull to its perimeter.  It is an indicator of any cavities in 

its contour.   
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An object’s primary axis ratio is a good measure of its elongatedness, and increases as an object 

strays from compact shapes into more longitudinal ones.   
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It can be calculated as a function of a contours 2-D covariance matrix C, which is defined as:   
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Compactness is the ratio of the perimeter of a circle of equal area to the defect’s perimeter.  It 

approaches unity as the defect tends toward circularity.   
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Circular variance is a similar measure to Compactness, but is less sensitive to small discrepancies, 

in that it is a measure of the pointwise variance from circularity, and is calculated for every point in 

the defect’s contour.   

 ( )22

1. ∑ −−=
i

ri
r

p
N

VarCirc µµ
µ

rr
 (3.5) 

Here N is the number of pixels in the defect’s contour, rµ  is the defect’s mean radius, ipr  is a 

point on the defect’s contour, and µr  is the defect’s centroid.   

Elliptical variance is similar to circular variance, in that it is a pointwise measure of a contour’s 

variance from that of an ellipse with equal 2-D covariance matrix.   
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Elliptical covariance is somewhat more computationally intensive in that it depends on the term 

shown below, where 1−C  is the inverse of the defect’s contour’s covariance matrix, but both 

measures are still O(n) operations, because they depend only on the perimeters of the contours being 

measured.   
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The five shape features mentioned above were found to be quite attractive in [17] because they 

were computationally inexpensive, and because they proved effective at describing paper defects 

when used in tandem.  An additional characteristic of the above features is that their outputs are all 

bounded in the range [0,1], which can be quite useful when dealing with classifiers that expect input 

data in ranges know a priori.   
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In [18], 8 new features were proposed that were even cheaper computationally, and proved as good 

supplements to the ones already mentioned towards constructing descriptive feature sets.   

    
a) Circular Differences  b) Elliptical Differences 

Figure 3.6:  Efficient features detailed in [18]. 

They are calculated very simply as operations on the sets of pixels encompassed by the defects and 

the reference circles and ellipses with equal areas which are superimposed at their centers of mass.   

Outer and inner differences are a measure of the defect’s area which fall outside and inside of the 

reference shapes, respectively.   
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Absolute differences are the sum of pixels lying in either of these regions, and can be computed 

very quickly as an XOR or image subtraction operation.   
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Relative differences are an indicator of whether the shape tends to reside outside or inside the 

reference shape’s boundaries.   
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These measurements are all normalized by the area of the shape so that they too, are bounded on 

[0,1], with the exception of the relative differences, which can take on values on [-1,1].  This is easily 

remedied with a simple linear transform, however.   

3.3.2 Texture Description 

Features based on co-occurrence matrices are quite popular in AVI, because they have been 

thoroughly researched, and have been shown effective in a wide variety of recognition tasks [13].  

Co-occurrence matrices are a compact representation of a region’s second-order statistics, which have 

been shown in some instances to align with human texture recognition [23].   

Co-occurrence matrices are populated by counting the number of times specific combinations of 

pixel intensities occur at preselected distances and angles.   
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     a)        b) 

Figure 3.7:  a) A 4x4 2-bit image and b) its corresponding co-occurrence matrix formed using a 

horizontal distance of 1 ([1,0] in vector form). 

Through the application of some mathematical operands on a region’s co-occurrence matrix, it is 

possible to create a set of descriptive features for that region.  Some common examples include 

energy (or angular second moment), which corresponds approximately to a region’s homogeneity.   
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A region’s contrast is its co-occurrence matrixes moment of inertia about its main diagonal.  It can 

be said to give an indication of the amount of local variation present in the region.   
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Entropy is often shown to be an indicator of a texture’s complexity.   
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A texture’s mean can be an indication of a texture’s regularity.      
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Co-occurrence based features are usually normalized by the total number of pixel co-occurrences at 

the specified distance in the region, in order to yield values which can be compared on the scale [0,1], 

and can be compared irrespective of varying region sizes and mean intensities.  Texture description 

through co-occurrence matrix based features is thoroughly detailed in [25].   

3.3.3 Histogram Description 

How dark a region is can often be an indicator of its type and cause.  An easy way to describe a 

region’s darkness is through the use of its histogram, which is simply the set of probabilities of the 

pixel intensities in the region being examined.   
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Here h(i) is shown to represent the probability of pixel intensity ni occurring in a region made up of 

n pixels falling into one of N intensities.   
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 a)     b) 

Figure 3.8:  a) A 4x4 2-bit image (n = 16, N = 4) and b) its corresponding histogram. 

   

There are many common histogram measures used as features in pattern recognition applications, 

such as moments, entropy, mean, mean square value, skewness and kurtosis [20].  A simpler 

approach was used in [7], where input to one of the base classifiers was simply the histogram bin 

values.   

3.3.4 Colour Description 

Colour conveys a great deal of information for humans.  Tasks such as produce and meat inspection 

have traditionally been very colour oriented, and new automatic systems designed for marble and gem 

inspection all use colour information.     

As with all of the feature types mentioned already, there are a great many approaches to its 

implementation, but often it is the simplest ones which capture the most attention, as they are usually 

quite intuitive, and the cheapest computationally.   
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In [9] colour percentiles were used to good effect in the segmentation and classification of lumber 

knots.  Percentiles can be thought of as inverse cumulative colour histograms, in that they are 

measures of the colour intensity at which a certain percentage of a region’s pixels lie below.   

      
a)          b)          c) 

Figure 3.9:  a) A lumber knot, b) it’s red-channel histogram (not normalized), and c) select resultant 

percentile features. 

For instance, in the example illustrated above, it can be seen that 0.2% of the knot’s pixels have a 

red intensity intensity of 128 or less, and only 1% of pixels have intensities of 219 or more.  This 

translates to the fact that almost 99% of the  colour values are composed of the red band [128,219], 

which might be a telling piece of information concerning this particular lumber knot.    

3.3.5 Product Specific Description 

There are some features of a product’s defects that may be specific to that particular product, and 

which cannot (and should not) be incorporated into systems not designed for said product.  An 

example of this might be the relationship between the defects found in a product.  An example of such 

a meta-defect can be as simple as counting the number of defects found on an item.  If for instance, 

there are more than a certain threshold number, the item is defective, whereas if there are less, it 
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passes.  Such a feature might be useful for determining grades of lumber for example, where a board 

with less than 3 dark knots and 1 split is still quality grade, but 2 splits or 4 knots render it inferior.   

A more subtle example would be the verification of fiber count and density in filter material.  In 

[28] a statistical model of the proper distribution of filter fibers was created, and as the material was 

examined, it was compared to determine its quality.   

Defect location can be another telling feature.  Often, a specific defect will reoccur much more 

frequently at a common location in relation to a product’s boundaries.  For example, in the 

examination of lumber defects, splits occur much more frequently at a board’s horizontal boundaries 

than in its center or near vertical boundaries.   

 

Figure 3.10:  A dead knot defect on lumber with positional measurements indicated.   

A simple way to encode positional features is through normalized vertical and horizontal positions 

(NHP and NVP).   
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Variations of these can be used to cater to specific product and defect types, for example elongated 

defects might be better described by taking two measurements with respect to their vertical and 

horizontal extremities instead of just one from their centroids so as to get a more precise idea of 

whether or not they originate at the product’s boundaries.   
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3.4 Feature Selection 

Feature Selection is the process by which an effective subset of features is chosen for the task at hand.  

It may seem reasonable that when it comes to defect description, more features would be better, since 

information can only be gained with additional measurements.  This is actually not the case; rather the 

reverse is often true.  It is such a well known phenomenon it is sometimes referred to somewhat 

hyperbolically as the “curse of dimensionality” [16].    

This is the process by which a classifier is so saturated with either redundant or contradictory 

measurements that it is confused, and its performance decreases.  Curiously, it often doesn’t require 

many features for this point to be reached.  It usually occurs more rapidly when a classifier is 

presented with highly dependent features; for this reason it is usually desirable to use a feature set 

which is as close to independent as possible, in order to form a more orthogonal feature space [26].   

In order to select an effective feature set, what is first required is a method of enumerating a 

candidate feature set’s descriptive abilities, so that they might be relatively evaluated.  In this way, 

one might gauge how adding or removing a specific feature affects the set’s effectiveness.  There are 

many methods of comparing feature sets, including mutual information, intra and inter cluster 

distances, as well as a classifier’s performance on the dataset [16].   

Because a complete search of an n-feature space requires evaluation of an O(2n) search space, it is 

easy to see that an exhaustive search is rendered unfeasible for even modestly sized feature sets.  The 

only other known optimal solution to the problem is the branch and bound algorithm, which requires 

a monotonic evaluation criteria, and is also often too expensive to perform [27].  This is why the 

problem of feature selection is often approached using suboptimal methods which don’t guarantee 

finding the best solution.   
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Two very simple examples of these are sequential forward and backward searches.  The two are 

effectively each other’s complements.  Forward selection begins with an empty feature set, and 

increases it iteratively by always including the feature judged to boost the set’s performance the most.  

Backward selection begins with the entire set, and keeps eliminating features which are most 

detrimental to performance [26].  These are rudimentary methods, and their chances of detecting a 

near optimal solution are quite low, because not nearly enough of the possible feature subsets are 

attempted, a situation attributed to the so called “nesting effect” of feature subsets.   

A class of algorithms that attempts to avoid this are the (l-r) feature selection methods, which can 

add or remove multiple features at any iteration, but it is difficult to arrive at ideal values of l and r for 

any given feature set.  Pudil’s floating selection methods overcome this by allowing the values to alter 

at given points in the search [31].  It has been reported that these floating methods tend to achieve 

excellent results, approaching those of the branch and bound algorithm, while dominating it and other 

methods in terms of runtime [27].   

Other feature selection methods of note are those based on stochastic genetic algorithms [6].  By 

encoding the feature sets as a population of binary bitstrings, genetic algorithms can randomly alter 

them through such evolutionary inspired operations as mutation, crossover, reproduction, and 

selection.  By evaluation the population members’ fitness’ at each generation (iteration), it is possible 

to eliminate those not contributing to the search’s goal of an effective feature set, and generating 

randomly those that do, thereby improving the population’s mean fitness [9].  Genetic algorithms are 

also useful because they can be used to modify the parameters of the classifier used to operate on said 

feature set simultaneously.  
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3.5 Recognition 

Deciding which class a feature pattern belongs to can be done in a number of ways.  Popular methods 

in the literature include density based methods, such as knn classification; these are very thoroughly 

researched methods, and are usually quite effective and resilient to outliers.  Probabilistic methods 

including the Bayesian family of classifiers are standard fare in any pattern recognition task, and can 

be shown to exhibit a minimum expected error [16].  The difficulty with the Bayesian classifiers is 

formulating an accurate representation of the probability distribution function, models are usually 

generated through Parzen windows or other estimation techniques[26].  Connectionist methods based 

on neural networks have also been widely explored in the literature [2][13].  Optimizing a neural 

network can be a difficult process in that many intangible parameters (number of hidden layers, 

number of nodes in each layer, activation functions, etc.) can affect its output, and cannot be guessed 

at in any consistently meaningful way ahead of time [6].  A long process of trial and error is usually 

required, and actually tuning the network through the back-propogation method is usually a time-

consuming process in itself as well.   

Any of the methods mentioned above can be combined into multi-classifier systems, which attempt 

to combine the strengths of their constituent classifiers, or minimize their weaknesses.  Multi-

classifier systems have been very well documented in the literature, typical decision schemes involve 

majority voting, the mean, max, and min combination schemes, and behaviour-knowledge space and 

Dempster-Shafer ensemble methods [29] [30].  

An interesting multi-classifier system was put forward by Iivarinen and Visa in [7], that much of 

this work is based on.  Here, three self-organizing maps (SOMs) [10] are used as base classifiers, and 

receive separate feature subsets, one each based on shape, texture and histogram features.   
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During training, a dataset is passed through the base classifiers for unsupervised clustering, and 

based on human visual inspection of the resultant groups, labels are assigned as suggested by the 

defects’ major characteristics in each cluster.  For example, if all of the defects in one shape cluster 

exhibited a rounded quality, that cluster might be labeled “Round”.  The same would apply for an 

elongated nature in shape, a rough quality in texture, a dark nature in histogram, etc.   

 

Figure 3.11:  The Feature delineated multi-SOM approach explored in [7]. 

The final stage of the algorithm marked as a label joiner in Figure 3.11 simply appends the labels 

assigned by the SOM base classifiers, so that a typical final classification might be that of a 

“somewhat elongated, smooth, very dark” defect.  This approach was pursued in [7] for many 

reasons, but mainly because it had proved difficult to establish a definite label for many individual 

samples of the defect training/testing sets by human operators, and this batch approach simplified the 

process.  Also, it was reasoned that if new defect types were to be introduced to the system in the 

future, it would be easy to modify by running the training routine again, possibly with additional 
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nodes in the SOMs to learn the new classes presented to them.  Finally, it can be seen as a solution to 

the problem of unreliable human ground truths; namely that they can be as unreliable as human 

inspection, and can be just as prone to error [12].   

The disadvantage of this approach is that it could easily prove unattractive to production facilities 

hoping to automate an existing human-based inspection system (as is often the case).  In this 

situation, it is not unreasonable to assume that a clear design requirement would be that the automated 

system must mimic the existing human classification procedure, and thus output the pre-established 

defect classes.  The process of creating new labels for defects based on SOM clustering might 

therefore be unacceptable, with the unlikely exception of the labels (or some combination thereof) 

happening to correspond roughly to the desired output classes.   

Also, it should be noted that it is not possible to quantitatively compare this system to others, since 

defect labels are assigned to suit the clustering tendencies of the base-classifiers employed, and are 

therefore not comparable with pre-assigned industry standards.  These weaknesses are addressed by 

the classifier system proposed in chapter 4.   

3.6 Framework Approaches 

Most AVI work in the literature presents an idea as applied to one of the above categories; a new set 

of features, a unique classifier approach, or perhaps a new segmentation technique that have been 

created.  These are generally tailored to a specific detection or recognition task, and do not port well 

to other problems in the AVI domain.  There hasn’t been much attention focused on an overall 

systems approach; this is probably due to the fact that most work of this kind is explored in-house by 

commercial companies [20].  
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Nevertheless, there do exist some interesting works that attempt to address the issue of designing 

an entire system, or organizing the components into manageable sub units for analysis and design 

stages.  In [32] Sablatnig puts forward a very comprehensive framework for speeding up the 

development of AVI systems through the concept of software reuse and setup.  By defining a general 

analysis graph for inspection that contains detail relations representing various detection algorithms, a 

separation of the process of detection of primitives from the model based analysis process is 

achieved.  The result is an adaptable system for the design of AVI systems, which is demonstrated by 

application on the inspection of hygrometers and clocks [32].   

In [28] Brzakovic et al. outline a simulated design environment for the design and testing of 

inspection systems for web materials.  The proposed system consist of five sub-systems, roughly 

corresponding to the components of AVI outlined above, which can be implemented by a variety of 

different methods and algorithms depending on the task at hand.   

1. Sensing Sub-system:  

• This component can simulate various modes of image acquisition and transforms, 

including resolution effects, space-variant sensing , and cortical projection in order 

to try and determine the most likely candidates for parameters related to optimizing 

imaging conditions.   

2. Detection sub-system:  

•  Here different image processing algorithms can be used to extract information for 

the inputs generated by the sensors.  These include labeling and grouping 

techniques such as various local and global adaptive thresholding algorithms.   
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3. Characterization sub-system:  

• Contains the features that will be used by the decision making sub-system.  It can 

include features similar to the ones already described, as well as many others.   

4. Validation sub-system:  

• This sub-system is only active during the design stage, and is not used when the 

resultant system is in operation.  Typically data analysis is performed here to 

determine the effectiveness of the features selected in the characterization sub-

system, as well as the parameters required for the decision making sub-system.   

5. Decision making sub-system:  

• Here recognition of the defects is ultimately performed.  The classifier employed 

will typically be configured by the validation sub-system, and if sufficient 

performance cannot be achieved, then the previous sub-systems are cued for 

additional modifications, such as the addition of features to the characterization 

sub-system.   

This approach to system design and evaluation was used to develop and validate an AVI system for 

the task of microtexture characterization in non-woven fibrous materials[28].  This design 

methodology is specifically of interest to us, as the generalized framework proposed in chapter 4 

corresponds roughly to the Characterization, Validation, and Decision making sub-systems.   
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Chapter 4 
Proposed Approach 

It would be desirable to have available a generalized system for automated visual inspection, one that 

could work well with different product types, with minimal reengineering required between 

applications.  Such a system would result in large savings in design and development times and costs.  

To this end, this chapter begins by examining the components of a typical automated visual 

inspection system.   A framework is then proposed by which the description and recognition 

components might be generalized for operation with differing product types.  Two novel methods (the 

so-called cluster-space and hybrid-space classifiers) are then introduced as instances of this 

framework.  The operation of these methods is illustrated graphically, to demonstrate the feature 

reduction and transformation inherent to their operation.  Lastly, system parameters are identified and 

appropriate search and optimization routines are established 
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4.1 AVI system analysis 

To formulate a framework for a generalized AVI system – that is, one which might be used across 

many different product platforms – it is necessary to determine where the generalizations might be 

made.  For this purpose, it is instructional to expand on Figure 2.1 in greater detail.   

 

Figure 4.1:  A typical AVI system and its constituent components. 

It has been shown that the imaging sub-system (camera positioning and focusing, lighting, vibration 

compensation, etc.) is largely application-specific [12].  In general it is not feasible to devise a system 

which self-calibrates to meet the conditions of different manufacturing environments, as there exist 

too many parameters for which to compensate.  A human engineer is always required to perform the 

fine tuning necessary to set-up an adequate platform for the acquisition of practical images at the 

correct resolution for the application at hand, and in fact the time and resources devoted to this task 

are usually well worth the effort, as many complex and time-consuming image processing operations 

can be avoided with some careful calibration of the lighting and image resolution settings [20].   
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Likewise, it is impossible at this time to devise a ubiquitous process-control system to interface 

with the infinite varieties of production systems.  Simply speaking, if automated process-control 

capabilities are desired of an AVI system, the input requirements of the production control system 

must be assessed by an engineer, and a custom interface must be designed virtually from the ground-

up if one does not already exist.   

Defect detection – the isolation, or segmentation subsystem – is another aspect of AVI which is at 

present beyond our capability to generalize; or make adaptable to different product types.  Computer 

routines are still a long way from being intelligent enough to be able to analyze images of several 

different non-homogenous images of varying products and being able to locate the defects, although 

there is some research being conducted in this area.  Tasks as menial as locating the crack on a piece 

of metal as opposed to on a stone or a piece of lumber, is quite beyond the ability of present day 

computers, without explicit guidance from engineers in the form of a-priori domain knowledge, 

which must somehow describe the properties of the material being inspected.   

Thus we are left with description and recognition, the two areas where the case for generalization 

can be made most convincingly.  This is intuitively the case when one pauses to consider the fact that 

all two-dimensional surface defects (once segmented) effectively have the same types of visual 

characteristics with which they can be described:  shape, colour/grayscale, texture, and such absolute 

information as can be deduced from the image from which it was segmented, such as size, position 

and orientation.   

4.2 Proposed Framework for Generalization 

Since all two-dimensional surface defects share the means by which they might be visually 

characterized, it is natural to assume that many of the features effective in separating defect classes on 
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one product might well be used effectively on others of an entirely different type.  Thus one way to 

implement a generalized and automated defect recognition subsystem is to keep an ever expanding set 

of image features at all times.  When a new application is encountered the existing features and an 

appropriate classifier are optimized using a search algorithm which monitors classification results 

(Figure 4.2).  Then and only then, if classification error rates are not reduced to the required levels, an 

engineer must analyze the problem domain, and add novel features to the existing library as required.   

 

Figure 4.2:  The generalized components of an AVI system which conform to the proposed 

framework.   

An AVI system designed with this generalized system negates the need for an engineer during the 

initial setup and tuning phases for some applications, thereby cutting setup time and costs.  In 

addition, as any system within this framework is exposed to more applications, its ever-expanding 

library of features will reduce the probability of requiring an engineer to add novel features, resulting 

in further cost savings with time.   
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4.3 Specific Method within Generalized Framework 

The proposed framework might be realized in any number of specific ways.  Regardless of the feature 

set, classifier, and search algorithms decided upon, however, one of its inherent disadvantages will 

persist, in that as previously unencountered applications force the addition of more and more features, 

the accumulated feature library may quickly grow unmanageable.   

Because any algorithm’s n-feature search-space increases exponentially at O(2n) [16], it can be 

easily seen that this system might quickly approach a limit at which searches yield either too great a 

runtime [9], or cannot produce a near optimal result because of the sheer magnitude of the task.   

An easy way to limit the search is to use a feature-segmented multi-classifier approach, so that each 

classifier need only be optimized for a subset of the features, and likewise, feature selection routines 

need only focus on a portion of the entire feature-space.  An interesting means to this end, and one 

which is followed in this work, is to have each classifier operate on all features of a certain logical 

grouping, so that all shape features are routed to one classifier, while all texture classifiers are only 

visible to another, etc.   

This type of feature delineation was shown successful by Iivarinen et al. in the classification of 

paper defects [7].  Maenpaa et al. suggest in [3] that there are indeed merits to optimizing feature sets 

describing different characteristics independently.  Separating feature sets by the characteristic they 

describe also has an intuitive similarity to human deduction, in that many times when encountered 

with a difficult classification task, one breaks the task into recognition subtasks.  An overly simplified 

example might be: its shape is round, it has a stem, and its colour is red, therefore this fruit is an 

apple.   
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4.3.1 The Need to Conform to Existing Industrial Classifications 

As mentioned in Chapter 3, classification of defects using the method described in [7] is limited by 

the fact that during classifier design the classes are redefined.  That is, descriptive defect classes are 

created and assigned by examining the results of an initial unsupervised clustering of the dataset.   

The disadvantage of this approach is that it would not be acceptable to any manufacturer whose 

design requirements include that the automated system mimic the existing human classification 

procedure, and thus outputs the pre-established defect classes.   

4.3.2 Modifications Made 

The classification method put forward in this paper in many ways is modeled on the one outlined in 

[7], but attempts to address this main limitation, namely, its inapplicability to quality inspection 

systems that require conformity to pre-assigned defect classes.  The proposed solution is to replace 

the hard, or traditional, classifiers (SOMs) with ones based on fuzzy logic, and the label joiner with a 

hard classifier such as a KNN, Bayesian, or indeed even a SOM to perform the required 

“defuzzification” to the output classes expected.  For an excellent primer on the motivation and 

mathematics behind Fuzzy logic, as well as numerous other aspects of soft computing, one would be 

well-advised to examine [6].   

The key difference between hard and fuzzy classifiers is that those of the fuzzy variety do not 

attempt to assign absolute belongingness to one class at the exclusion of all others, but rather partial 

membership can be assigned to one, some, or all classes, depending on the nature of the pattern to be 

classified.  The direct result is that each fuzzy base classifier will produce a real number (in the range 

[0,1], 0 indicating exclusion, and 1 complete membership) for each class, designating that object’s 

level of belongingness to that particular class.  An unsupervised fuzzy classifier method is utilized, 
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trained on an initial fuzzy c-means clustering of the data, because it can be seen as an analogue to the 

process of creating artificial sub-labels in [7].  Its advantage lies in the fact that instead of having a 

human supervisor inspect and label cluster groups according to their perceived information content 

during training (round, elongated, rough, dark, etc), the fuzzy clustering algorithm will find 

meaningful clusters based on the layout of the underlying feature space (if sufficiently delineated), 

and pass this data on to the final supervised defuzzifying classifier automatically, to let it decide into 

which of the preordained classes the object belongs.   

4.3.3 Fuzzy C-Means Clustering 

The Fuzzy c-means (FCM) algorithm [11] was utilized for the initial clustering of the data, because it 

is a basic and very well known form of fuzzy clustering, and there exists a large body of work 

documenting its specifics.  In essence, it is a fuzzy superset of the classical (hard) k-means clustering 

algorithm [4].  Both of these methods’ goals are the partitioning of a data space into a predefined 

number of groups, or clusters.  But whereas k-means clustering assigns positive binary (total) 

membership to exclusively one cluster, with negative binary (no) membership to all others, its fuzzy 

c-means counterpart can assign membership values to one, some, or even all clusters.  The process is 

described below.   

If X is a finite set of n elements xk, k = 1, 2…n, then the algorithm’s goal is to return a fuzzy 

partition which describes its elements’ levels of membership to each of c clusters.  Each element xk 

can be represented as a vector in the feature space pℜ  by its p characteristic measurements (features), 

and each of the c clusters can be described by their center, or prototype, vi in the same space.   

 p
nxxxX ℜ∈= },..,,{ 21  (4.1) 
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 p
cvvvv ℜ∈= },..,,{ 21  (4.2) 

The fuzzy partition desired is represented by means of a c x n matrix U, whose entries uij represent 

the degree of membership of element xj to the partition space’s ith cluster.   
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As mentioned earlier, a uij of 1 indicates that xj belongs totally within cluster i while a value of 0 

means just the opposite:  it is not a member of that cluster at all.  The particulars of the FCM 

algorithm call for an element’s membership to all clusters always summing to 1, in a way mirroring a 

requirement of hard k-means clustering, namely that if an element belongs to a cluster with 

belongingness of 1 (total membership), it is at the exclusion of membership to all other clusters.   

Therefore, after selecting the number of clusters desired c, the membership matrix is initialized 

with random values satisfying:   

 ∑
=

=∀=
c

i
ij nju

1
,...,1,1  (4.4) 

FCM clustering is based on intra-cluster distance, and thus at each iteration an expression of it is 

evaluated:   
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where dij is a measure of dissimilarity between element xj and cluster prototype vi in feature-space 

pℜ .   
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22

ikij vxd −=  (4.6) 

and •  is any inner product induced norm on pℜ .  Typically, the Euclidian distance is used for dij.  

Cluster centers are updated at each iteration by 
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whereupon the fuzzy partition matrix is altered by 
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where m є (1,∞) is a weighting exponent which determines the fuzziness of the partition.  Typically 

the higher the exponent, the more membership values are shared amongst the c clusters, and the lower 

the exponent, the more likely it is for membership to be weighted heavily towards fewer clusters.    

This algorithm continues until such iteration t wherein the dissimilarity function’s (equation 4.5) 

progress has met a predetermined minimum threshold of improvement, Tε , deemed sufficiently small 

for algorithm termination, or until a predefined maximum iteration Tmax has been reached.     

  Tε≤
1)-(t(t) J-J   or  T = Tmax (4.9) 

4.3.4 Unsupervised Fuzzy Classification 

An intuitive way of building a classification routine based on the FCM clustering method was first 

outlined by Ruspini in [5].  It was proposed that a set of elements X = {x1, x2,…, xn}, cluster 

prototypes v = {v1, v2,…, vc}, and their corresponding c×n fuzzy partition U are made available a 
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priori to the classifier as base knowledge, either as created intuitively to follow a logical division by a 

human operator, or from a previous FCM operation on the data.   

When the classifier routine is presented with an unknown element xα, it is an easy matter to follow 

the fuzzy c-means algorithm as described in 4.3.3, whilst only allowing the update of Uα = uiα ∀  i = 

1, 2, …, c while keeping X, v, and the rest of U constant.  In this way, each new element xα is 

classified by assigning it a membership to one, some or all clusters, through an iterative process of 

measuring its similarity to the cluster centers v, in a fashion similar to that of FCM clustering.   

The output of the classifier ideally falls in line with that of the pre-classified training set.   

4.4 Cluster-Space Interpretation 

Because the c outputs from each fuzzy base-classifier (one for every cluster), will typically be much 

smaller than p (the number of input features used to describe each individual datum in the original 

feature space), an advantage of this system as opposed to a traditional classifier which deals with the 

data directly is the resultant reduction in feature-space dimensionality for the final classifier (a 

reduction of (p-c) features for each feature group).  It is well documented that a reduced feature space 

will often yield a more effective classifier, not only because the classifier will undoubtedly run faster, 

but also because it can often yield more accurate results [16].  The increase in speed is due to the 

reduction in the complexity of the feature-space, and the corresponding decrease in operations 

required to ascertain and compare relations between data.  The increase in classification accuracy is 

because often, as more features are introduced to a system, a classifier forced to make decision 

boundaries can become muddled by the amount of correlation and redundancies in the features, and 

because of the resultant complications in cluster distributions – the so-called “curse of 
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dimensionality”[16].  This reduction in the amount of features is therefore an advantage of our system 

– the final classifier will typically be exposed to a greatly reduced feature set.   

A further reduction in feature space is realized immediately however, when one reconsiders the 

constraints imposed upon each defects’ cluster memberships by equation 4.4.  Since cluster 

memberships of any defect α (Uα = {u1α, u2α,…, ucα}) must always sum to 1, there is an inherent 

correlation of the data presented to the final classifier by each fuzzy base classifier.  As recently 

stated, this is a disadvantage, since for best performance it is desired to have a classifier operating on 

data whose measurements are as uncorrelated as possible [16], but it is one which is easily rectified.   

Data in p-dimensional space p
nxxxX ℜ∈= },..,,{ 21 that satisfies ∑

=

=
p

k
kj f

1
1, where jfk is xj’s kth 

feature, all occupy a hyperplane in feature-space that is situated at an equal angle from all the planes 

formed by the major axes of the space.  Because of this fact, to project the data onto one of the axis 

planes while preserving all of the information residing in the relative distances between data points, it 

is unnecessary to explicitly calculate the necessary projection transform; one must simply select one 

of the features, and eliminate it from all of the data-points.   

To illustrate this corollary, one need only examine an example from the actual system being 

proposed.  This will also be a useful exercise to understand the relationship between the input feature-

space of the fuzzy base-classifiers, and their outputs as fed to the final classifier (from herein referred 

to as cluster-space).  Consider a set of 60 points distributed evenly into three normal distributions in 

3-dimensional space ( 3ℜ ), with random means and covariance matrices.  For our purposes we might 

imagine that the data represents three classes, each containing 20 items, all measured in the same 

three ways (that is, described by three features: f1, f2, & f3).  This data is clustered using the fuzzy c-

means algorithm (Figure 4.4). 
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a) 

 
b) 

Figure 4.3:  a) Three normal distributions of twenty points each and b) The data as clustered by the 

FCM algorithm.  Relative shell sizes indicate the degree of a points strongest membership (larger 

shells indicate greater belongingness), and solid shells indicate cluster centers as output by FCM.   
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In 4.3 a) each point (‘·’, ‘+’, or ‘x’) is an individual datum whose form and colour represent the class 

to which it belongs.  In 4.3 b), this information is repeated, along with a hollow shell for each point, 

indicating the cluster to which that datum has been assigned by the FCM algorithm.  The solid shells 

indicate the cluster centers as returned by FCM, while the relative sizes of the hollow shells indicate 

the degree of its strongest cluster membership.  Upon inspection, it can be seen that the majority of 

the data points have been placed into clusters that agree very well with their classes.  In our 

representation, this can be thought of as well selected features, which are quite effective at delineating 

the classes.  Were this not the case, there would certainly be more “misclassifications” (a misnomer 

since the FCM algorithm doesn’t actually classify the data.)   
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a) Data in cluster-space.  

 
b) Profile view of cluster-space  

Figure 4.4:  a) The distribution of data-points in 3D cluster-space, and (b) the same distribution as 

seen looking down the profile of the plane u1+u2+u3 = 1.   
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In Figure 4.4a), the data is shown in cluster-space (as output by the FCM routine).  In cluster-space, 

the axis vertices near which the bulk of the data lie represent the cluster centers in feature space (since 

the ordered triples {1,0,0},{0,1,0},{0,0,1} in cluster-space correspond with full membership to 

clusters 1,2, and 3, respectively).  Not surprisingly, the misclassified data lie at a distance from all of 

the axes corners in cluster-space (as they do from all cluster-centers in feature-space), and thus the 

difficulty in correctly assigning them.  Upon altering the viewpoint of our cluster-space representation 

and replotting (Figure 4.4b), the effects of the membership requirements described by eq.4.4 on the 

FCM algorithm are made immediately clear.  All the data lie in the plane u1+u2+u3 = 1, which is the 

hyperplane in pℜ of dimensionality p-1 discussed earlier.   

By eliminating the 3rd cluster feature (u3), corresponding to the z-axes in Figure 4.4, the data all 

settle onto the plane formed by the 1st and 2nd cluster-space axes (the u1u2 plane).  Although the 

absolute distances are scaled by the projection, they are all scaled proportionately, which will not 

affect the final classifier’s training-set information content.  Also, it is useful to note that the ranges of 

u1 and u2  (specifically, }u,u |1u,u0{ 2121 ℜ∈≤≤ ) are preserved in this way, so that any classifier 

requiring knowledge a-priori of its inputs’ domains are unaffected.   



54  CHAPTER 4 

  

 

Figure 4.5:  Data in cluster-space as projected onto u1u2 axis.   

Viewing the results in Figure 4.5 and comparing them to the initial distribution in cluster-space 

shown in Figure 4.4 a) serves to reaffirm that the relative distributions and inter data-point distances 

are indeed preserved.   

4.5 Final Cluster-Space Multi-Classifier 

The fuzzy base-classifiers built using the parameters of the FCM algorithm therefore need only pass 

c-1 of their outputs to the final classifier, a further reduction in feature space.   
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Figure 4.6:  The proposed “Cluster-space” multi-classifier system. 

The end result of the modifications to [7] are depicted in Figure 4.6, from herein referred to as the 

cluster-space multi-classifier.  Note the flexibility of the system to integrate new feature pools as 

required by application.  It should also be mentioned that each feature and cluster space can be of 

varying lengths, and that typically each feature space’s respective cluster space will be much smaller 

(c<<p).  In essence, the final classifier will have as input a feature space much different from the one 

afforded the fuzzy base classifiers, the result of some highly non-linear transforms to the original 

spaces.  It will be presented with a cluster-space of sorts, one which holds information about each 

defect’s level of belongingness to certain sub clusters that each base classifier has established in the 

structure of the data of its own feature space.   

A typical shape base-classifier with two cluster outputs will thus likely output the degree of a 

defect’s roundness, vs. its tendency towards elongation, while the histogram sub-classifier might 

relate the defect’s darkness vs. its lightness.  The actual sub-classifications are determined based on 

the structure of the underlying feature-spaces presented during the classifiers’ training (FCM) stages, 
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and are not necessarily the system integrator’s concern.  If uncomfortable with such a black-box 

approach, and observation of the sub-classifiers’ operating “rationales” is desired, a look into each 

sub-cluster’s composition can easily be afforded as in [7], simply by grouping all of the defects in the 

training or testing sets by their most significant cluster membership, which should correspond roughly 

to the group to which they most belong.   

4.6 A Fuzzy Hybrid Approach 

It is conceivable that feeding only membership values to the final classifier might result in a 

significant information loss, namely that information stored by the relationships described in the 

conventional feature-space.  

 

Figure 4.7:  The hybrid technique proposed.  

To combat this possibility, a logical extension of the cluster-space multi-classifier is put forward, one 

in which some of the traditional features bypass the fuzzy sub-classifiers and are fed directly to the 
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final defuzzifier.  Here a new set of parameters is introduced: that describing which of the traditional 

features should be fed through to the end classifier along with the fuzzy group memberships as output 

by the fuzzy sub-classifiers.   

4.7 System Parameters and their Calibration 

The proposed systems are characterized by many parameters which require optimization, above and 

beyond those of the existing parameters required by the traditional (hard) final classifier used to 

defuzzify the base classifications.   

They are:  

1. Nfc f ..2,1∈∀ , the number of classes into which to classify defects in each feature sub-

space f.   

2. Nfm f ..2,1∈∀ , the exponent with which to raise each feature sub-group F’s fuzzy 

partition U.   

3. 1Tε and 2Tε the minimum improvements of the FCM’s dissimilarity function.   

4. Tmax1 and Tmax2 the maximum iteration allowed before forced FCM termination.   

Because it is desired that the system be easily adaptable to different product types (and therefore 

different feature-space distributions), no presumptions are made of the feature-space structure, and a 

brute-force combinatorial search is executed to find the best values of c, within the bounds c Є 0 | 

[2,CT], where CT  is the total number of pre-existing defect classes.  Two is the minimum number of 

clusters required by the FCM algorithm, while zero indicates exclusion of the feature subgroup 

entirely.  An inherent assumption is made here that the feature-subspaces will not be readily 

delineable into more clusters than the number suggested by the existing defect classifications, which 
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is not necessarily the case, but is adopted to keep optimization search times down.  Also assumed is 

that the number of feature sub-groups N is known, but this is a valid assumption, since it will always 

equal the total number of subgroups existing in the system up to that time (it may grow with the 

addition of new feature groups).   

There is no established way to select mf for any and all occasions [4], and therefore it will also be 

determined using a brute-force approach, limited by mF Є [2,9] to keep search times reasonable.  An 

mF of 2 is used as the minimum because it results in the relatively well-known Dunn’s functional 

[15], and because it avoids lower limits which require the computationally expensive evaluation of 

fractional exponents.  An upper boundary of 9 was enforced because it was deemed to represent a 

sufficiently fuzzy cluster-space.  Higher exponents tend to produce more heavily concurrent 

memberships amongst classes, effectively resulting in a reduced and less discriminatory cluster-space.   

Parameters Tε  and Tmax are included as pairs, because one is required for each of the clustering 

(training) and classification (testing) stages of the base classifiers.  This is because the respective 

dissimilarity functions are not comparable over phases, since during training all cluster centers and 

memberships are changing, while during testing, only the cluster memberships of individual test-

points are considered.  In order to simplify matters, both Tmax parameters are set to 1000, so that they 

are rendered negligible, and the number of iterations for which the FCM algorithm will run is solely 

decided by its respective Tε .   

Although 1Tε  and 2Tε  control the stopping point for very different evaluation functions, there 

should exist a meaningful relationship between them, since they both describe adequate stopping 

conditions under which the fuzzy partition is deemed adequate.   Isolating and exploiting this 

relationship to aid in their selection is difficult, however, because the scale of the dissimilarity 
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functions’ outputs vary greatly with mF (the exponent of the fuzzy partition), and the type of feature-

space.  Also, since the dissimilarity functions behave as inverse exponentials, proper cutoff points 

cannot be easily selected through graphical analysis.   

Ultimately, because varying 2Tε  as a function of 1Tε  proved to yield an average change of under 

2% in the accuracy of the resulting classifier (and in no predictable fashion), setting them to be equal 

in each sub-classifier seemed appropriate.  They were allowed to range in [10-3 10-15], with a search 

step size of 10-3.   
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Chapter 5 
Experimental Setup and Results 

This chapter presents and discusses the various experiments which have been performed to ascertain 

the proposed methods’ effectiveness.  Cluster-space and hybrid-space classifiers are first compared to 

standard Bayesian and KNN benchmark classifiers as well as majority and mean-rule multi-classifiers 

in the recognition of lumber defects.  They are evaluated over the entire feature set, logical feature 

sub-groups, and subsets of both as a result of a standard feature selection routine.   

These experiments are then repeated with a separate dataset of hand-written numerals, to quantify 

the method’s effectiveness in another pattern recognition domain.   

Finally a genetic algorithm is used to optimize the proposed systems as well as a benchmark in an 

attempt to evaluate both feature-set and classifier parameters simultaneously.  All trials are performed 

in a windows based MATLAB environment, using the PRTools 3.0 pattern recognition toolbox [19].  
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5.1 Application – industrial lumber defects 

The inspection of lumber is an important part of its manufacturing process.  It has been referred to 

several times in this work, and is used as an example application in [33].  The task explored here is 

the differentiation of defect types (defect recognition), once segmented, whereas [33] used SOMs in 

an attempt at both detection and recognition.   

5.1.1 The DataSet 

The dataset utilized consists of 281lumber defects which fall into one of six classes:   

Defect Class Instances 
Sound Knot 50 
Dead Knot 50 
Black Knot 31 
Pitch Pockets 50 
Straight Shake 50 
Core Strip (Heartwood) 50 

Table 5.1:  Segmented lumber defects. 

It was constructed as a subset of the lumber dataset employed in [33], which is available online 

[34].  All defects used were manually segmented from the board images establish human ground 

truths for the shape of the defects being classified.   

The features used were organized into 5 feature subgroups as shown in Table 5.2.   
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Subgroup Shape Texture Histogram Position Colour 

 Principle Axis 
Ratio 

Contrast Bins 0-7 Inclination Red Percentiles 
70, 80, 90, 95 

 Convexity Energy Mean Area  

 Circular & 
Elliptical Variance 

Entropy  Center 
Coords.X & Y 

Green Percentiles 
70, 80, 90, 95 

 Compactness Mean  Top & Bottom  

 Circular & 
Elliptical, Inner, 
Outer, Relative 
and Absolute 
Differences 

At distances of 
{(1,0), (2,0), 
(0,1), (0,2), 
(1,1), (2,2),    
(-1,1), (-2,2)} 

 Left & Right Blue Percentiles 
70, 80, 90, 95 

 Circularity     

Total 14 32 9 8 12 

Table 5.2:  Organization of defect dataset into 5 logical feature subsets. 

All features were normalized linearly to lie in the range [0,1], so that the Euclidean based FCM 

clustering would not be overly affected by some features at the expense of others.   

5.1.2 Feature Subsets 

The first experiment examines how the proposed system will compare against a regular benchmark 

classifier when performing on the logical feature subsets.  No feature selection was employed; the 

entire feature subsets were used as is, with no attempt at optimization.   
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a)       b)     c) 

Figure 5.1:  Experimental setup for comparing classifier types on feature subsets.  The classifier types 

used are a) standard classifier, b) cluster-space classifier, c) hybrid-space classifier.   

Here the Standard classifiers are KNN, Bayesian, and Parzen density based Bayesian classifiers.  The 

benchmark results are shown only for the optimal classifier, as determined by an appropriate 

combinatorial search for parameters, using 3 randomly selected train/test set combinations.  The 

results listed are then the mean accuracy rates of the best classifiers on 20 random feature train/test 

sets, including the 3 on which the optimal parameters were determined.   

KNN classifiers with K values ranging between 1 (a simple nearest-neighbour classifier) and 9 

were tried.  Bayesian classifiers were used whose two regularization parameters r, and s were varied 

in a combinatorial search between 0 and 1 with step sizes of 0.2.   

 { 5,...,1,0|
5

,|1,0 ==≤≤ iirsrs } (5.1) 

These parameters were used to form an estimation of the dataset’s covariance matrix by  

 C’ = (1-r-s)*Ct + r*diag(Ct)*Ic + s*mean(diag(Ct))*Ic   (5.2) 
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Where C’ is the resulting estimated covariance matrix, Ct is the training set’s covariance matrix, Ic 

is the identity matrix with equal dimensions to Ct, diag() returns the diagonal of a matrix, and mean() 

returns a mean.   

The Parzen based classifier employed no parameters; its smoothing parameter was automatically 

determined by analysis of the training set of each train/test set pair.   

The proposed cluster and hybrid space methods are optimized in a similar combinatorial fashion, 

but with more intermediate steps.  Firstly, as mentioned in Chapter 4, the base FCM classifier 

parameters must be established.  This is done by a combinatorial search in the space 1Tff mc ε××  

for each logical feature subset f.  Here fc  (the number of clusters into which to group the data in each 

feature subset) is allowed to vary between 2 and CT (the total number of classes present in the data), 

fm  (the exponent to which to raise the fuzzy partition) can take on values between 2 and 9 (a value 

deemed “fuzzy enough”), and 1Tε  is limited between 10-3 and 10-15 with a step interval of 10-3.   

The best combination of these three parameters is determined by performance over the same 3 

train/test set combinations used to optimize the benchmark classifiers, using an arbitrary defuzzifier 

(Bayesian, r = 0, s = 0).  The results are noted in tables 5.3 and 5.4.   

 Cluster Number   ( fc )     
Feature Group 2 3 4 5 6 
Shape 6 8 9 7 6 
Texture 8 3 7 9 6 
Histogram 3 9 8 7 6 
Position 3 5 4 2 2 
Colour 3 9 8 7 3 

Table 5.3:  Best fm  values for each combination of fc  and feature subgroup. 
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 Cluster Number   ( fc )     
Feature Group 2 3 4 5 6 
Shape 1.00E-03 1.00E-06 1.00E-06 1.00E-09 1.00E-03 
Texture 1.00E-15 1.00E-03 1.00E-03 1.00E-12 1.00E-03 
Histogram 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03 
Position 1.00E-06 1.00E-09 1.00E-09 1.00E-06 1.00E-03 
Colour 1.00E-03 1.00E-12 1.00E-06 1.00E-06 1.00E-06 

Table 5.4:  Best 1Tε values for each combination of fc  and feature subgroup. 

The defuzzifying classifier’s parameters are then determined by running a search identical to the 

one described for the optimization of the benchmark classifiers, using the output of the best FCM 

base-classifiers found previously.   

The hybrid-space classifiers are formed by running an exhaustive combinatorial feature-space 

search using the optimal cluster-space, with the addition of some of the most “promising” features, as 

determined by Pudil’s forward floating selection [31] of 5 features out of the feature space.  That is to 

say that the cluster space is enhanced by one of the 32 permutations possible of those 5 best features.  

Although it was desired to use an unbiased measure of feature suitability with the feature selection 

algorithm, it was found that the sums or minimums of Euclidean and Mahalanobis distances yielded 

poor features sets, and therefore a Bayesian classifier’s performance over a disjoint test sets (r = 0, s = 

0), was used as the feature suitability measure.   

This may be seen as giving an advantage to the Bayesian classifier when the final tests are 

performed, but was necessary to gain the accuracy increase desired of the hybrid-space classifiers.   

The results listed in Figures 5.1 and 5.2 show the mean accuracy results of running the best cluster 

and hybrid-space classifiers over the same 20 train/test sets as the benchmark classifiers.  
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Figure 5.2:  Classifier performances over defect feature subsets.   
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Optimal Segment Classifiers
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Figure 5.3:  Summary of best performances over defect feature sub-groups. 

There are three main observations to take from these results.  Firstly, it appears that the shape and 

position subgroups contain the most relevant information, as their classification rates approach 60%, 

which the others hang near 50% accuracy.  Second, most of the subgroups are dominated by the 

benchmark performances, which seems to suggest that the proposed methods (in their single-classifier 

forms) lose too much information content when transforming from the native feature-space into the 

new cluster-space. 

Thirdly, the texture subgroup, which exhibits the poorest classification performances, is the one in 

which a proposed method (the hybrid classifier) considerably outperforms the benchmark.  This is 

probably due to the large amount of redundancy contained in the texture subgroup, whose 32 features 

(the most of any subgroup) are simply the same co-occurrence measures taken at different pixel 

resolutions and orientations.  This would suggest that the proposed methods (at least when using only 

one FCM sub-classifier) are most useful in a poor feature space, which may not be optimized in 

another manner.   
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5.1.3 Entire Feature Set 

A performance comparison was performed by incorporating all of the feature subsets, effectively 

exposing the classifiers to all features simultaneously.   

Here the classifiers compared were the standard KNN, Bayes, and Parzen density based classifiers 

already described, as well as 2 varieties of multi-classifiers based on those components, using the 

majority vote, and the mean ensemble rules.  The multi cluster-space classifiers were optimized by 

running a combinatorial search on the 5 best cluster-space classifiers with unique cluster-numbers, 

that is, on the best cluster-space classifiers with the fc ’s of 2 through CT = 6.  The hybrid classifier 

was then assembled by enhancing the best multi cluster-space classifier with a permutation of the best 

available features (this time 10 of them).  Once again, Pudil’s floating forward selection was used to 

determine 10 of the best features, whose 1024 combinations were then used to augment the best multi 

cluster-space classifier.   
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a)       b) 

       
       c)             d) 

Figure 5.4:  Classifier types compared over entire feature set: a) standard classifiers, b) standard 

multi-classifiers formed with majority-vote and mean aggregating techniques, c) proposed multi 

cluster-space classifiers, and d) proposed multi hybrid-space classifiers.   

The steps of the search for optimal multi cluster and hybrid space classifiers are summarized 

below.   
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1. Utilize best values of fm , and 1Tε  for each allowed value of fc  

( Tf Cc ≤≤2 ) in each of the N feature subgroups, as found previously 

during the subgroup searches (recorded in tables 5.3 and 5.4).    

2. Perform combinatorial search in space defined by  

 { NfCcccc TfNC
≤≤≤≤××× 1,2|...21 }  (5.3) 

evaluating performance by classification accuracy over 3 random train/test 

sets using Bayesian classifier for defuzzification (r = 0,s = 0).  

3. Determine best defuzzifier by running parameter searches on KNN, Bayesian, 

and Parzen density based Bayesian classifiers over resulting cluster-

space.   

4. The best cluster-space classifier found in step 3 is tested over 20 random 

train/test sets; the mean result noted.   

Algorithm 5.1:  Incremental combinatorial approach to determining parameters for multi cluster-

space classifier. 

 

The iterative combinatorial search for the multi hybrid-space classifier builds on the result of the 

multi cluster-space search.     
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1. Determine 10 most promising features by performing Pudil’s forward 

floating selection using Bayesian performance over disjoint test set as 

criteria.   

2. Perform exhaustive search on hybrid-spaces formed by the supplementation 

of best cluster-space found previously in cluster-space search, with all 

permutations of 10 direct features found in step 1.  

3. Determine best defuzzifier by running parameter searches on KNN, Bayesian, 

and Parzen density based Bayesian classifiers over resulting hybrid-space.   

4. Best hybrid-space classifier found in step 3 is tested over 20 random 

train/test sets; the mean result noted.   

Algorithm 5.2:  Incremental combinatorial approach to determining parameters for multi hybrid-space 

classifier. 
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Figure 5.5:  Classifier performance over entire defect feature set.   

As expected, a marked performance increase was observed over those classifiers which operated on 

only the individual feature subsets.  The hybrid-space multi-classifiers met or exceeded the 

performance of the standard classifiers, and were only bested by the mean aggregated multi-
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classifiers.  Still of note too, is the rather plain performance of all the classifiers overall (maximum 

75% accuracy), which would indicate either a poorly selected feature space, or unreliable human 

ground truths (a hypothesis postulated in both [7] and [13]).   

Feature Type Cluster Number Direct Features 
Shape 3 Compactness       
Texture 2 Energy01                  
Histogram 5 Histogram Mean       
Postion 5 Inclination & Top      
Colour 2 Percentile Blue70     
Total Features 12 18 

Table 5.5:  Number of features fed to defuzzifier of multi cluster and hybrid-space classifiers. 

Table 5.5 illustrates one of the key advantages of the proposed systems; the 75 features used to 

describe the lumber defects are transformed into a much lesser number.  In the case of the multi 

hybrid-space classifier, this reduction did not lead to any information loss, as it performed just as 

well, if not better than its corresponding benchmark (disregarding the mean-rule multi-classifier).  

This could be a key issue in the case of a classifier whose computation time increases dramatically 

with an increase in feature size.   

5.1.4 Feature Selection Incorporated 

Because the optimization of the number of cluster groups to pass on to the defuzzifying final 

classifier in both the proposed methods might be seen as a form of feature selection, the tests were 

repeated using an optimized subset of the feature sets, in order to negate that advantage.   

Pudil’s floating forward selection was again employed, this time to obtain optimal feature sets, one 

using the entire feature set, and the other using the logical feature subsets as starting points.  Standard 

classifiers were used on datasets defined by the feature selection on the entire feature set, as well as 

on the feature set formed by joining the optimal feature subsets as selected by the selection algorithm 
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operating on the feature sub-groups independently.  The majority and mean aggregated benchmark 

classifiers, as well as the multi cluster-space and multi hybrid-space classifiers were only exposed to 

the latter feature sets, because they were more optimally suited, considering that each sub-classifier 

sees only its corresponding sub-group’s features.  Also, because the feature selection routine 

operating on the entire feature set could output a feature set with only one or two (or even none) 

features in a sub-group, it would be redundant to apply a cluster-space transform in this case.  

Appendix C lists the features selected for this test.   

The benchmark classifiers, as well as the proposed methods were optimized and tested as described 

previously, the results shown in Figure 5.6.  Here the “Standard Entire” classifier refers to those 

benchmarks exposed to the feature set formed by the floating search using all of the available 

features, while the “Standard Subgroups” classifier is the one which operated on the feature set 

resulting from the union of the individual feature sub-group selections.   
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Figure 5.6:  Performances of classifiers on feature sets selected by Pudil’s floating forward selection.   
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Again, it can be seen that the multi-hybrid method for the most part meets or exceeds the 

performances of the benchmark classifiers, with the exception of the mean aggregated multi-

classifiers, which again appeared to dominate performances.  One notable development seen here is 

that the standard classifier using the feature sets optimized by subgroup outperformed its counterpart 

(which used the feature set optimized in its entirety) in two of the three cases (KNN and Bayesian).  

This seems to suggest again, (as in [3, 9]), that there is definitely merit in optimizing features 

independently by their type.  This aspect of feature space optimization should probably be 

investigated further.  

Feature Type Cluster Number Direct Features 
Shape 3 Absolute Circular Difference & Outer Elliptical Difference 
Texture 3 Entropy-11           
Histogram 2 Bin3                           
Position 5 Inclination & Bottom 
Colour 4 Percentile Blue95              
Total Features 12 19 

Table 5.6:  Number of features fed to defuzzifier. 

Once again, using the multi and hybrid-space transforms significantly reduces the number of 

features that the defuzzifier must operate on.   

5.2 Application – character recognition 

The defect dataset used in this work appears ill-posed for high-performance pattern recognition 

purposes, with a maximum recognition in the neighbourhood of 75% apparently possible.  This is due 

either to the selection of features available (which may not have been up to the task), or more likely 

because of the unreliable human ground truths used as suggested in [7] and [13].  Upon subjective 

analysis, it can be seen that the visible differences between, for example, black knots and dead knots 
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is often very questionable, with the two classes often confused as a result.  A better defined set of 

defect classes may be appropriate.   

As a test of the proposed methods in a better defined pattern recognition environment, we turn to 

the task of optical character recognition.   

5.2.1 The Dataset 

The dataset employed for this purpose is a subset of the handwritten digits database offered by the 

CEDAR center [35].  It consists of 2100 pre-segmented samples of each of the decimal digits 0 

through 9 in binary bitmap format.  A sample selection can be found in Appendix B: Handwritten 

Digits.   

The features used include a standard assortment of basic measurements, including horizontal, 

vertical and grid histograms, taken in 16 bins each; 16 relative projection features; 6 projection 

moments, as well as a group of 6 additional unrelated measurements including perimeter, density, 

form factor, rectangularity, as well as the relative position of the character’s centroid.   

All told, the feature set consists of 76 features distributed in 6 logical feature subgroups.   

Feature Subgroup Total Features 
Horizontal Histogram 16 
Vertical Histogram 16 
Grid Histogram 16 
Relative Projection 16 
Projection Moments 6 
Various 6 

Table 5.7:  Numeral features distributed into 6 logical subgroups. 

Again, all features were normalized to lie in the range [0,1].   
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5.2.2 Feature Subsets 

The benchmarks and proposed methods were optimized in the manner already specified, with one 

notable exception in that there were 6 feature subgroups instead of 5.  Also, because the number of 

classes grew from 6 defect types to 10 digits, it was necessary to constrict the maximum FCM 

partition exponent mf to 6 from the 10 suggested by CT (the total number of classes) in order to limit 

search times, because a complete combinatorial search space for the later multi cluster-space and 

hybrid-space classifiers would be unwieldy at 1 million possible permutations.   

Another departure from the method used in the case of the defect set was in the training/testing 

procedures.  All optimization and parameter searches were performed on a 25% subset of the datasets 

because using the entire 2100 instances would require too much time for the combinatorial searches.   

All testing was performed on the entire dataset however, and the figures shown all display the mean 

accuracy of classifiers operating on identical randomly selected train/test set pairs.   

 Cluster Number       
Feature Group 2 3 4 5 6 
Horizontal Histogram 8 4 6 5 7 
Vertical Histogram 2 8 8 7 6 
Relative Projection 6 8 4 6 5 
Projection Moments 9 7 9 3 6 
Assorted Features 7 4 9 8 8 
Grid Histogram 7 5 5 7 9 

Table 5.8:  Best fm values for each combination of fc  and feature subgroup. 

 Cluster Number       
Feature Group 2.00E+00 3.00E+00 4.00E+00 5.00E+00 6.00E+00
Horizontal Histogram 1.00E-06 1.00E-03 1.00E-03 1.00E-03 1.00E-03
Vertical Histogram 1.00E-15 1.00E-03 1.00E-03 1.00E-03 1.00E-03
Relative Projection 1.00E-09 1.00E-09 1.00E-03 1.00E-09 1.00E-03
Projection Moments 1.00E-12 1.00E-03 1.00E-06 1.00E-03 1.00E-03
Assorted Features 1.00E-03 1.00E-03 1.00E-03 1.00E-03 1.00E-03
Grid Histogram 1.00E-03 1.00E-09 1.00E-03 1.00E-03 1.00E-06

Table 5.9:  Best 1Tε values for each combination of fc  and feature subgroup. 
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Figure 5.7:  Classifier performances over numeral feature subsets. 
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Figure 5.7 illustrates once again that it is in difficult feature-spaces (those with poor classifier 

performances), that the proposed methods thrive.  In this case, only in the projection moments and 

assorted feature-spaces does a single FCM hybrid method meet the standard classifier’s 

performances.   
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Figure 5.8:  Summary of best performances over numeral feature sub-groups. 

When comparing the best classifier performances over sub-groups in Figure 5.8, it becomes clear 

that the single cluster-space and hybrid-space classifiers simply lose too much information, especially 

in a better defined feature space, such as these numeral features afford (as opposed to the lumber 

defect data).   

5.2.3 Entire Numeral Set 

The quality of the numeral features used is really illustrated when the feature subgroups are joined.  

As illustrated in Figure 5.9, the Bayesian benchmarks approached 95% accuracy on the entire feature 
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set.  The mean-rule aggregated multi-classifiers again dominated performance statistics, except in the 

case of the KNN classifiers, in which the standard benchmark was the best performer.   

Numeral Performance

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

KNN Bayes Parzen
Classifier

A
cc

ur
ac

y
Standard Majority Mean MultiFuzzy Hybrid

 

Figure 5.9:  Classifier performance over entire numeral set. 

Both of the proposed methods underperformed the benchmarks, indicating that in cases of well-

defined feature spaces in which standard classifiers are adequate to the task, too much information 

loss can be expected in the conversion to cluster or hybrid-space.   

Feature Type Cluster Number Direct Features 
Horizontal Histogram 0 0 
Vertical Histogram 0 0 
Relative Projection 4 0 
Projection Moments 0 Projection Moments 2 
Assorted Features 0 0 
Grid Histogram 8 Grid Histogram 3 & 14 
Total Features 10 13 

Table 5.10:  Number of features fed to defuzzifier. 

The fact that most feature subgroups pass no information to the defuzzifier (Table 5.10) is puzzling.  

There is no clear explanation for the best near-optimal solution ignoring so much potential 

information; this is a point at which further study could be directed in the future.    
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5.2.4 Feature Selection Incorporated 

To test performances over optimized feature-spaces, the feature sets were altered in the way already 

described for the lumber dataset: through Pudil’s forward floating search to yield feature subsets, by 

exposing the selection algorithm to both the entire feature set, and to the individual feature subsets.  

The features selected are listed in Appendix D.   

The results of the various classifiers operating on these feature sets is shown in Figure 5.10.   
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Figure 5.10:  Performances of classifiers on numeral feature sets selected by Pudil’s floating forward 

selection.   

The proposed methods are again outperformed by the benchmarks, indicating that well-defined 

feature spaces do not appear to be suited to the cluster or hybrid-space transforms.  It is interesting to 

note that the classifiers operating on the supposedly superior feature subsets selected by Pudil’s 

algorithm in some cases actually underperformed those which operated on the entire feature-set, 

before selection.  This is probably the result of the non-optimistic nature of the forward floating 

selection, and also the non-monotonous nature of the ranking criteria used (Bayesian classification 

error on an independent testing set).   
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Feature Type 
Cluster 
Number Direct Features 

Horizontal Histogram 0  
Vertical Histogram 0  
Relative Projection 4  
Projection Moments 3 Projection Moments 2, 4, & 6 
Assorted Features 0  
Grid Histogram 6 Grid Histogram14 
Total Features 10 14 

Table 5.11:  Number of features fed to defuzzifier. 

Once again, the best multi cluster-space classifier found appears to be ignoring the information 

from many feature subgroups, confirming the peculiar results demonstrated in table 5.10.  A possible 

explanation is that the FCM base-classifier parameters found in the single cluster-space searches 

simply yield cluster-spaces which, although quite descriptive in the single cluster-space classifier 

case, are for the most part not well suited for combining with each other.  This is not confirmable at 

this time; more experimentation is required.   

Another important result to note is that, once again, a mean-rule multi-classifier aggregate was the 

top performer, and that the standard classifiers operating on feature subsets formed by joining the 

selected subsets matched or outperformed the standard classifiers which performed on the feature sets 

which were formed by the selection algorithm on the entire feature set.   

This indicates again, that optimizing the feature subsets independently has resulted in a better 

feature set than the one formed by selection on the feature set in its entirety.  This may indicate that it 

is easier to find an optimal or near-optimal solution by searching in smaller independent spaces, and 

then joining the results, rather than searching in an unmanageably large space.   
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5.3 Simultaneous Feature and Classifier Optimization 

The most flexible version of the generalized framework proposed in Chapter 4 suggests the 

simultaneous optimization of the feature set and the classifier operating on it.  Unfortunately, even 

with the added advantage of optimizing feature subgroups independently of each other, the search 

space is still unmanageably large for any type of exhaustive combinatorial search.  As well, because 

the search space is so highly nonlinear and far from well-behaved, no reliable gradient or hill-

climbing heuristic can be used to help guide the search.   

In such instances it has often been shown beneficial to introduce a form of stochastic search such as 

evolutionary algorithms [6].  To this end, it was attempted to encode all the necessary parameters in 

the form of a bitstring, and allow the evolutionary operators of mutation, crossover, reproduction and 

selection to guide the evolution of a “population” of solutions.  

Because the Bayesian classifiers typically have shown the best performance thus far, the genetic 

optimization has been limited to these.   

 

Figure 5.11:  Gene encoding for benchmark. 

Gene encoding of the benchmark Bayesian classifier was left relatively simple, and is illustrated in 

Figure 5.11.  One bit represents each feature, a 1 indicating that feature is to be used, a zero indicating 
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that it is not to be passed on to the classifier.  The r and s regularization parameters used to estimate 

covariance (as per equation 5.1) are encoded in 3 bits each, allowing for values between 0 and 1 with 

a step size of 1/7 (approximately 0.143).   

 { 7,...,1,0|
7

,|1,0 ==≤≤ iirsrs } (5.4) 

The encoding of the hybrid-space classifier was necessarily more complex.  Two bits are required 

for each feature, one to indicate whether to pass it on to its corresponding FCM base classifier, and 

one to indicate whether it will be one of the direct features bypassing the cluster-space 

transformation.   

 

Figure 5.12:  Gene encoding of proposed multi hybrid-space classifier.   
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One of the immediate consequences of this scheme is that a feature can be omitted from the cluster-

space transformation, but still passed directly to the defuzzifier, a state of affairs not permitted in the 

previous hybrid-space classifiers, which limited the direct features to those which had already been 

selected as those to be transformed as well.   

Three bits are required for encoding how many clusters to group each feature subspace into through 

the FCM classifiers.  8 unique combinations allow for the encoding of 0, 2, 3,…, 8 possible clusters 

for each sub-classifier.  Finally, as was the case with the benchmark encoding scheme, 3 bits are used 

for each of the r and s parameter of the final defuzzifier.   

The fitness of each individual gene in the population was evaluated as it was previously during the 

combinatorial search, by the accuracy of the resulting classifier over the same three random 

training/testing set pairs.   

5.3.1 Lumber Defects 

The genetic algorithm was allowed to run for the benchmark classifiers until such a time as there was 

no improvement for 50 generations.   
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Genetic Optimization on Lumber Dataset
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Figure 5.13:  Best fitness values of each generation, evaluated as the sum of recognition error rates on 

three randomly chosen (but consistent across generations) lumber train/test set combinations.   

 

The hybrid classifier population’s fitness function was not as well behaved; its best fitness seemed 

to vary a great deal from generation to generation, as can be seen in Figure 5.13.  This was most 

likely due to the underlying random effects of the cluster-space transform, in that an identical 

classifier may cause slightly differing cluster-spaces given identical feature-spaces, depending on 

such factors as the starting point of the fuzzy cluster centers.   

 Benchmark Hybrid-Space 
Accuracy (%) 78.3 79.2 
Standard Deviation (%) 3.6 3.2 

Table 5.12:  Genetic algorithm optimized lumber defect classifier results. 

Table 5.12 indicates that the hybrid classifier outperforms the standard benchmark, but only by a 

slim margin.  Also, it should be said that the classifiers found in this way (by optimizing feature sets 
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as well as classifier parameters simultaneously) outperformed any of the previous classifiers, 

definitely lending support to the intuitive notion that feature-spaces and classifier parameters should 

be found in tandem.   

Although a simultaneous search dramatically increases the search space, and probably rules out any 

chance of an optimal solution, a near-optimal solution appears to be within reach of a stochastic 

algorithm.   

5.3.2 Numeral Recognition 

Numeral benchmark optimization was also allowed to run until fitness showed no improvements over 

50 generations.   

Genetic Optimization on Numeral Dataset
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Figure 5.14:  Best fitness values of each generation, evaluated as the sum of recognition error rates on 

three randomly chosen (but consistent across generations) numeral train/test set combinations. 



88  CHAPTER 5 

  

The large spike in hybrid fitness shown at around generation 30 was due to a change in the way 

fitness was evaluated to decrease search times at that point.  Here the fitness function was modified so 

that the classifiers formed operated over a lesser subset of the numeral dataset, thus accounting for the 

large decrease in fitness that resulted as a loss of information in each of the population’s individuals 

(the hybrid classifiers).   

 Benchmark Hybrid-Space 
Accuracy (%) 93.2% 90.7%
Standard Deviation (%) 0.7% 1.0%

Table 5.13:  Genetic algorithm optimized numeral classifier results. 

The results listed in table 5.4 indicate that the benchmark classifier outperformed its multi hybrid-

space counterpart, but this is definitely the result of a non-optimal search result.  Because the cluster 

numbers of the base FCM classifiers are allowed to take on values of 0 (indicating that classifiers 

exclusion from the defuzzifiers hybrid-space), it is easy to see that all possible benchmark classifier 

configurations are simply subsets of the total possible hybrid-space classifiers (those with cluster-

numbers of 0, and therefore hybrid-spaces composed entirely of features which bypass the cluster-

space transform).   

It is certain therefore, that given enough run-time, and varying starting conditions, a hybrid-space 

classifier should be found with at least equal (if not superior) performance to that of the best 

benchmark.   
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Chapter 6 
Conclusions and Future Work 

This thesis proposed a new framework for the design of defect recognition systems for automated 

visual inspection.  The main goals were a system that could easily be adapted to different 

applications, with minimal design decisions by an engineer or operator.  In addition, two novel 

methods were proposed which fit well within this framework.  There are several conclusions that can 

be drawn from this work.   

6.1 Conclusions 

• The cluster-space and hybrid-space classifiers work best in difficult feature spaces, which 

haven’t been modified by any transforms or selection techniques.  Examples of this result are 

all of the single hybrid-space classifiers in the texture subgroup of the lumber dataset, whose 

performance is far above and beyond those of the standard classifiers.  Also, the single 

hybrid-space classifiers with Bayesian defuzzifiers slightly outperformed their standard 

Bayesian counterparts in the Histogram and Colour subgroups.   
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• In cases of better defined feature-spaces (such as that provided by the numeral dataset), which 

enable excellent classification rates by simple benchmark classifiers, the proposed methods 

do not fare as well.  This is likely the result of too much information loss during the 

conversion to cluster-space.   

• There appears to be validity in the notion that logical feature subsets can be optimized 

separately, as suggested in [3] and [33].  This is evidenced by the fact that the benchmark 

multi-classifiers tended to outperform the standard benchmarks which were exposed to the 

entire feature-set, whether optimized or not.  Especially significant is the fact that the regular 

benchmarks (single classifiers) which operated on the union of separately optimized feature 

subsets in many cases outperformed those operating on the feature set optimized in its 

entirety.   

• Finally, the concept of searching both the feature-space and classifier parameter-space 

simultaneously looks very promising.  Despite the fact that the resulting search-space is much 

greater than that of an independent search of feature and parameter spaces, it appears that a 

stochastic search such as that made possible through genetic algorithms is more likely to 

produce a near optimal solution in this larger space, than are multiple non-optimal searches in 

separate search spaces.    

6.2 Future Work 

• It would be useful to explore the possibility of a better incremental combinatorial search 

when optimizing the proposed classifiers.  Because each search step is performed using the 

results of an arbitrary Bayesian classifier (one with both r and s parameters set to 0), the final 

results in which different classifiers are used to defuzzify the cluster or hybrid spaces are 
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likely skewed towards this particular Bayesian classifier.  A better approach might be to use 

KNN and Parzen based classifiers for the intermediate steps of their own search; better 

performances for those classifiers might then occur.       

• It has been noted that as the exponent used to raise the fuzzy partition increases, the resulting 

cluster-space grows fuzzier; that is, its membership values tend to be shared more evenly 

among clusters.  This results in mean membership values which approach values of 1/n, 

where n is the number of clusters.  A direct result of this is that some parts of the cluster-

space (the extremes) remain unutilized.  It might be interesting to attempt a scaling of the 

cluster-space to limit it to known extrema (as was performed in the actual feature-spaces to 

limit values to the range [0,1]), so that some cluster features don’t dominate others in 

magnitude.   

• Some of the main difficulties of this project were the long search times associated with 

traversing the search spaces.  In particular, the optimization of the multi and hybrid 

classifiers, which required the construction and evaluation of 3 classifiers proved quite time 

consuming.  Optimizing the code for better execution times could easily be accomplished, 

and using a language closer to native resources than MATLAB might also be beneficial.  

Because most of the optimization searches were of the “embarrassingly parallel” variety 

(combinatorial and evolutionary search), a parallel implementation would be very easy to 

realize on specialized hardware, and would go a long way towards cutting search times.    

• An implicit assumption made in the search for the optimal multi cluster and hybrid-space 

classifiers was that the most effective single cluster-space classifiers for each cluster number 

when joined in tandem would produce the best multi-classifier.  Therefore, no search was 
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performed for optimal fm  and 1Tε  parameters; they were assumed as given by the previous 

single classifier searches.  This was done to significantly narrow the search space, but it could 

prove a false assumption, in that 1Tε  and particularly fm  can have a great impact on the 

distribution of the resulting cluster-space, and although such a cluster-space might be ideal 

for resulting classifiers operating on only a single subset, they might be far from ideal to work 

in unison with the other feature subgroup cluster-spaces.  Expanding the combinatorial search 

to include 1Tε  and fm  in the multi-classifier case is simply not feasible due to the resulting 

exponential increases in search-space, but it may be worth attempting in the case of the 

evolutionary search.   

• This work didn’t explore in any detail the characteristics of a particular feature set that might 

indicate whether or not it might benefit from a partial or full transformation into cluster-

space.  The only definitive information appeared to suggest that a complicated feature-space 

with much redundancy probably stands to gain more than a well ordered or highly orthogonal 

or independent one.  In the case of the latter, valuable information appears to be lost in the 

transition.  An interesting extension of this work therefore, would be in exploring this 

particular detail:  what characteristics make feature spaces right for transformation into 

cluster-space, which are better supplemented with cluster information into a hybrid-space, 

and which are better left fed purely to a classifier unaltered?   
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Appendix A 
Dataset 1:  Segmented Lumber Defects 

 

 

Figure A.1:  Sample board images from lumber dataset [34]. 
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Figure A.2:  Sample of defects segmented to establish shape data.   
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Appendix B 
Dataset 2:  Handwritten Digits 

 

 

 

 

 

 

 

 

 

 

Figure B.1:  Sample of segmented digits from CEDAR database [35].   
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Appendix C 
Feature Selection: Lumber Results 

This appendix contains detailed information concerning which features were selected in the various 

experiments dealing with the lumber dataset.  The entire column contains those features selected by 

forward floating selection when exposed to the entire feature set, while the Subgroup contains those 

features selected by floating feature selection dealing with just the features contained within that 

subgroup.  GA FCM and GA Direct lists those features passed on to the FCM base-classifiers for 

conversion to cluster-space and those which bypassed the conversion to be dealt with directly by the 

defuzzifier, respectively.  Totals are tallied to give an indication of the descriptiveness of each 

feature.   

 

Shape Feature Entire Subgroup GA FCM GA Direct Total 
Convexity                         x 1 
Primary Axis Ratio             x x   2 
Compactness                    x x  x 3 
Circular Variance                x x 2 
Elliptical Variance             x x  2 
Circularity                    x x x  3 
Absolute Circular 
Difference   x x   2 
Absolute Elliptical 
Difference   x  1 
Relative Circular Difference   x x  2 
Relative Elliptical 
Difference  x   1 
Outer Circular Difference       x x x 3 
Outer Elliptical Difference     x  x 2 
Inner Circular Difference        x x 2 
Inner Elliptical Difference    x x x  3 
Total 5 10 8 6  

Table C.1:  Shape features selected. 
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Texture Feature Entire Subgroup GA FCM GA Direct Total 
Entropy10                        x  1 
Energy10                         x x 2 
Contrast10                        x 1 
Mean10                           x x 2 
Entropy20                        x  1 
Energy20                           0 
Contrast20                         0 
Mean20                          x   1 
Entropy01                       x   1 
Energy01                       x    1 
Contrast01                      x x x 3 
Mean01                         x   x 2 
Entropy02                        x  1 
Energy02                       x    1 
Contrast02                         0 
Mean02                           x  1 
Entropy-11                      x  x 2 
Energy-11                        x  1 
Contrast-11                      x  1 
Mean-11                            0 
Entropy-22                       x x 2 
Energy-22                        x  1 
Contrast-22                      x  1 
Mean-22                          x x 2 
Entropy11                       x  x 2 
Energy11                           0 
Contrast11                         0 
Mean11                             0 
Entropy22                          0 
Energy22                           0 
Contrast22                        x 1 
Mean22                            x 1 
Total 3 5 13 11  

Table C.2:  Texture features selected. 
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Histogram Feature               Entire Subgroup GA FCM GA Direct Total 
Bin0                             x  1 
Bin1                           x  x x 3 
Bin2                            x  x 2 
Bin3                            x x x 3 
Bin4                             x  1 
Bin5                            x   1 
Bin6                              x 1 
Bin7                              x 1 
Histogram Mean                  x   1 
Total 1 4 4 5  

Table C.3:  Histogram feature selected. 

Position Feature Entire Subgroup GA FCM GA Direct Total 
Top                             x   1 
Bottom                         x x  x 3 
Left                            x  x 2 
Right                           x  x 2 
CenterX                         x  x 2 
CenterY                         x  x 2 
Area                            x x  2 
Inclination                     x x x 3 
Total 1 8 2 6  

Table C.4:  Position features selected. 

Colour Feature Entire Subgroup GA FCM GA Direct Total 
Percentile Red95                x  x 2 
Percentile Green95                x 1 
Percentile Blue95               x x x 3 
Percentile Red90               x    1 
Percentile Green90             x  x  2 
Percentile Blue90                x x 2 
Percentile Red80               x  x  2 
Percentile Green80               x  1 
Percentile Blue80              x  x  2 
Percentile Red70               x x x  3 
Percentile Green70               x  1 
Percentile Blue70      x x  x 3 
Total 6 4 8 5  

Table C.5:  Colour features selected. 
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Appendix D 
Feature Selection:  Numeral Results 

Feature selection data is listed here in a fashion identical to that used in Appendix C. 

Horizontal Histogram Entire Subgroup GA FCM GA Direct Total 
Horizontal Histogram1      0 
Horizontal Histogram2    x  1 
Horizontal Histogram3      0 
Horizontal Histogram4   x   1 
Horizontal Histogram5      0 
Horizontal Histogram6     x 1 
Horizontal Histogram7   x   1 
Horizontal Histogram8   x x  2 
Horizontal Histogram9   x   1 
Horizontal Histogram10  x   1 
Horizontal Histogram11  x   1 
Horizontal Histogram12  x  x 2 
Horizontal Histogram13  x x x 3 
Horizontal Histogram14  x x x 3 
Horizontal Histogram15  x   1 
Horizontal Histogram16  x  x 2 
Total 0 11 4 5  

Table D.1:  Horizontal histogram features selected. 

Vertical Histogram Entire Subgroup GA FCM GA Direct Total 
Vertical Histogram1     x  x 2 
Vertical Histogram2     x  x 2 
Vertical Histogram3     x x x 3 
Vertical Histogram4     x   1 
Vertical Histogram5     x   1 
Vertical Histogram6     x x  2 
Vertical Histogram7      x x 2 
Vertical Histogram8      x  1 
Vertical Histogram9      x x 2 
Vertical Histogram10    x   1 
Vertical Histogram11    x   1 
Vertical Histogram12    x x  2 
Vertical Histogram13   x x x  3 
Vertical Histogram14    x  x 2 
Vertical Histogram15    x x x 3 
Vertical Histogram16    x  x 2 
Total 1 13 8 8  

Table D.2:  Vertical histogram features selected. 
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Grid Histogram Entire Subgroup GA FCM GA Direct Total 
Grid Histogram1         x x x 3 
Grid Histogram2         x  x 2 
Grid Histogram3          x x 2 
Grid Histogram4          x x 2 
Grid Histogram5        x x x x 4 
Grid Histogram6         x  x 2 
Grid Histogram7        x x  x 3 
Grid Histogram8        x  x x 3 
Grid Histogram9        x x  x 3 
Grid Histogram10       x x  x 3 
Grid Histogram11        x x  2 
Grid Histogram12          x 1 
Grid Histogram13       x   x 2 
Grid Histogram14       x x  x 3 
Grid Histogram15       x x  x 3 
Grid Histogram16         x  1 
Total 8 10 7 14  

Table D.3:  Grid histogram features selected. 

Relative Projection Entire Subgroup GA FCM GA Direct Total 
Relative Projection1      x 1 
Relative Projection2    x  x 2 
Relative Projection3    x   1 
Relative Projection4    x  x 2 
Relative Projection5    x  x 2 
Relative Projection6     x x 2 
Relative Projection7    x x  2 
Relative Projection8     x  1 
Relative Projection9    x  x 2 
Relative Projection10   x  x 2 
Relative Projection11   x  x 2 
Relative Projection12   x x x 3 
Relative Projection13   x   1 
Relative Projection14    x  1 
Relative Projection15   x x x 3 
Relative Projection16    x  1 
Total 0 11 7 10  

Table D.4:  Relative projection features selected.
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Projection Moments Entire Subgroup GA FCM GA Direct Total 
Projection Moments1     x  x 2 
Projection Moments2    x x x x 4 
Projection Moments3     x x  2 
Projection Moments4    x x x  3 
Projection Moments5     x   1 
Projection Moments6    x x  x 3 
Total 3 6 3 3  

Table D.5:  Projection moments features selected. 

Assorted Features Entire Subgroup GA FCM GA Direct Total 
Density  x x  2 
Perimeter    x 1 
CentroidX  x  x 2 
CentroidY  x x  2 
Form Factor x x x x 4 
Rectangularity  x x x 3 
Total 1 5 4 4  

Table D.6:  Assorted features selected. 
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