
Stabilization of Polytopes for Fully
Actuated Euler-Lagrange Systems

by

Eugene Li

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2014

c© Eugene Li 2014



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Given an Euler-Lagrange system and a convex polytope in its output space, we design
a switched feedback controller that drives the output to the polytope. On the polytope,
the system output tracks assigned trajectories or follows assigned paths. The study of
this problem is motivated by industrial applications such as robotic painting, welding and
three dimensional printing. Many engineering systems, such as robotic manipulators, can
be modelled with Euler-Lagrange equations, and many engineered surfaces, designed using
software, are naturally modelled as convex polytopes. We use feedback linearization to
decompose the design problem into two subproblems; stabilizing the polytope surface, and
controlling its motion along the surface.

The first subproblem, known as the design of the transversal controller, leverages the
fact that a polytope can be represented as a finite union of facets. The controller deter-
mines the closest facet to the system output and stabilizes that facet by stabilizing its
corresponding hyperplane via feedback linearization. The transversal dynamics can be
stabilized using linear controllers. At the boundary of a facet, we propose a switching law
that ensures weak invariance of the polytope for the closed-loop system.

The second subproblem, known as the design of the tangential controller, enforces
desired dynamics while the system output is restricted to the polytope. We investigate
control specifications such as following a predefined path on the surface and tracking a
trajectory that moves along the surface. The separation of the transversal and tangential
control design phases is possible because feedback linearization decouples the transversal
and tangential dynamic subsystems.

This approach to control design is demonstrated experimentally on a four degree-of-
freedom robotic manipulator. The experimental implementation is made robust to mod-
elling uncertainty via Lyapunov re-design methods.

iii



Acknowledgements

I would like to thank my supervisor Christopher Nielsen for all his guidance and the
opportunity to work together these past few years. I am very grateful for the supportive
environment that he has provided, and all the knowledge that I have gained.

I am also grateful for the help I’ve received from those who I have worked with through-
out my time. I am especially thankful for Rajan Gill for all of his assistance through the
experimental process.

I would like to thank Esmeralda Siddarta for helping me edit my thesis, and in general
for putting up with me.

I am most thankful to my friends and family, who have been with me through this
process.

iv



Dedication

I would like to dedicate this thesis to everyone who helped me throughout my graduate
career. To those who helped teach me the knowledge I have today. To those that helped
me become a better teacher. Most importantly, to those who helped me when times were
tough. I certainly could not have become to person I am today without you.

v



Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Class of systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Class of polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Set stability and stabilization . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Polytopes and hybrid systems . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Polytope descriptions in system output space . . . . . . . . . . . . 6

1.3.4 Trajectory tracking along surfaces . . . . . . . . . . . . . . . . . . . 6

1.4 Organization and contribution . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Mathematical Preliminaries 8

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Linear functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Convex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

vi



2.4 Robust control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Backstepping without uncertainty . . . . . . . . . . . . . . . . . . . 20

2.4.2 Backstepping with uncertainty . . . . . . . . . . . . . . . . . . . . . 22

2.4.3 Lyapunov redesign . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Weak invariance and practical stability . . . . . . . . . . . . . . . . . . . . 24

3 Polytope stabilization 26

3.1 Stabilization of an affine subspace . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Polytope surface stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Affine subspace selection algorithm . . . . . . . . . . . . . . . . . . 32

3.2.2 Switching conditions along surface . . . . . . . . . . . . . . . . . . . 34

3.3 Weak invariance of surface set . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Modelling uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Friction model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Robust control techniques . . . . . . . . . . . . . . . . . . . . . . . 39

4 Control design on facets 42

4.1 Tangential dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Path following . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Damped motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Tracking control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Simulation and experimental results 54

5.1 Experimental configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Plane stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.2 Cube stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1 Plane stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.2 Cube stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vii



6 Conclusions and Future Work 79

A Dijkstra’s Algorithm 82

APPENDICES 82

B Distance calculation methods 84

B.1 Closest distance to polytope calculation via projection in R3 . . . . . . . . 84

B.2 Closest distance to a polytope via convex optimization . . . . . . . . . . . 91

References 93

viii



List of Tables

5.1 PD controller gains for wrist dynamics . . . . . . . . . . . . . . . . . . . . 55

5.2 PD controller gains for transverse dynamics . . . . . . . . . . . . . . . . . 57

5.3 PD controller gains for tangential dynamics . . . . . . . . . . . . . . . . . 57

5.4 PD controller gains for tangential dynamics . . . . . . . . . . . . . . . . . 69

5.5 PD controller gains for tangential dynamics . . . . . . . . . . . . . . . . . 71

ix



List of Figures

2.1 Natural projections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 A facet of a three dimensional polytope. . . . . . . . . . . . . . . . . . . . 18

2.3 Ridge for a Cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Graphical representation of the graph associated to a cube . . . . . . . . . 20

2.5 Backstepping Figure 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Polytope Stabilization Algorithm . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Arm Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Friction Effects on System output without Robust Control . . . . . . . . . 39

3.4 Friction Effects on System with Robust Control . . . . . . . . . . . . . . . 41

4.1 Path defined on a polytope. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Desired Path Defined on a Single Face . . . . . . . . . . . . . . . . . . . . 48

4.3 Course Approximation of Sphere . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Precise Approximation of Sphere . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Tracking Controller Implementation . . . . . . . . . . . . . . . . . . . . . . 53

5.1 4-Degree of Freedom Manipulator . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Simulated Circle Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 ξ dynamics of circle simulation . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Nested dynamics of circle simulation . . . . . . . . . . . . . . . . . . . . . 59

5.5 Control effort of circle simulation . . . . . . . . . . . . . . . . . . . . . . . 59

x



5.6 Desired path continued on different facets . . . . . . . . . . . . . . . . . . 61

5.7 Distance to currently selected plane for Cube simulation . . . . . . . . . . 62

5.8 ξ states for Cube simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.9 Control effort for Cube simulation . . . . . . . . . . . . . . . . . . . . . . . 64

5.10 ξ states for Cube simulation with aggressive gains . . . . . . . . . . . . . . 65

5.11 Control effort for Cube simulation with aggressive gains . . . . . . . . . . . 66

5.12 State Feedback Based Transverse Controller . . . . . . . . . . . . . . . . . 67

5.13 LQR Based Transverse Controller . . . . . . . . . . . . . . . . . . . . . . . 67

5.14 Simulation of Damped Motion on a Cube . . . . . . . . . . . . . . . . . . . 68

5.15 Experimental Point Stabilization on a Linear Affine Plane . . . . . . . . . 68

5.16 ξ dynamics for point stabilization on a plane . . . . . . . . . . . . . . . . . 69

5.17 η dynamics for point stabilization on a plane . . . . . . . . . . . . . . . . . 70

5.18 Experimental Circle Stabilization ξ dynamics . . . . . . . . . . . . . . . . . 70

5.19 Experimental Circle Stabilization without compensation . . . . . . . . . . 71

5.20 Experimental Circle Stabilization with Integral Action . . . . . . . . . . . 72

5.21 Experimental Circle Stabilization with Integral Action ξ dynamics . . . . . 73

5.22 Experimental Circle Stabilization with Integral Action ε dynamics . . . . . 73

5.23 Experimental Circle Stabilization with Integral Action Control Effort . . . 74

5.24 Cube Stabilization and Path Following . . . . . . . . . . . . . . . . . . . . 75

5.25 Path Following on Cube when Initialized on Surface . . . . . . . . . . . . . 76

5.26 ξ dynamics for Cube stabilization with path following . . . . . . . . . . . . 77

5.27 Control effort for Cube stabilization and path following . . . . . . . . . . . 78

5.28 Experimental Results of Damped Motion on a Cube . . . . . . . . . . . . . 78

B.1 Orientation of Vectors for Closest Distance Calculation . . . . . . . . . . . 86

xi



Chapter 1

Introduction

This chapter formally introduces the problem studied in this thesis and provides a literature
review of relevant research.

1.1 Motivation

This thesis is motivated by the use of robotic manipulators in the manufacturing indus-
try. For instance, robotic manipulators painting the fuselage of the Boeing 777 [19]. In
this application, a team of robotic manipulators, naturally modelled using Euler-Lagrange
equations, work together to have their end effectors approach the surface of the fuselage.
The fuselage can be modelled, using computer aided design (C.A.D.) software, as a poly-
tope. Once the surface has been stabilized, tasks along the surface, such as washing,
applying solvent, rinsing and spraying, take place. These tasks require the robot’s end
effector to stay close to the surface, while the motion along the surface is kept smooth to
accomplish a clean finish.

Another motivating example is surface stabilization required in three-dimensional print-
ing. The printer tool tip, which once again can be modelled using Euler-Lagrange equa-
tions, must be driven to the surface of a polytope modelled in C.A.D. software. Once
on the “surface” of the polytope, the tool tip must move smoothly to properly dispense
the printing material. If the tool tip moves too far away from the polytope surface, or has
unpredictable motion along the surface, the resulting printed model will be of poor quality.
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1.2 Problem formulation

Partially motivated by the above scenarios and as well as previous research [49], we intro-
duce the problem considered in this thesis.

1.2.1 Class of systems

Consider an Euler-Lagrange system of the form

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)τ, (1.1)

where q ∈ RN is the vector of generalized coordinates, N is the number of degrees-of-
freedom and q̇ ∈ RN is the vector of generalized velocities. We assume that there are m
control inputs, τ ∈ Rm. The N × N inertia matrix M(q) is a smooth function of q and
positive definite for all q ∈ RN . The matrix C(q, q̇) ∈ RN×N represents the centripetal and
Coriolis terms while the vector G(q) = ∇Pq is the gradient of the system’s potential energy
P : RN → R and represents gravitation effects. Finally, B : RN → RN×m is assumed to be
smooth and full rank for all q ∈ RN [47].

The output of the system is given by

y = h(q), h : RN → Rp, (1.2)

where p is the dimension of the output space and y represents the variables we wish to
control. In robotics applications, the function h(q) can be viewed as the forward kinematics
of the system. For example, the end effector position of a robotic manipulator.

System (1.1) can be re-written in state space form by selecting the state variable x :=
(xc, xv) := (q, q̇). With this choice system (1.1) can be expressed as a smooth control affine
system

ẋ = f(x) +
m∑
i=1

gi(x)ui =: f(x) + g(x)u. (1.3)

where

f(x) :=

[
xv
fv(x)

]
=

[
xv

M−1(q) (−C(q, q̇)−G(q))

]
,

g(x) :=

[
0

gv(xc)

]
=

[
0

M−1(q)

]
.

The control input u = (u1, . . . , um) is obtained from τ in (1.1) via

u := B(q)τ. (1.4)

2



1.2.2 Class of polytopes

We assume that we are given a polytope P in the output space Rp of system (1.1). We
assume that the polytope lies within a region of the output space where the Jacobian of
the output map h(q) has full rank. To make this assumption precise, we first define a
functional workspace.

Definition 1.2.1. A functional workspace of (1.1) with output (1.2) is an open and
connected set W ⊆ Rp with the property that, for any xc ∈ W , the Jacobian dhxc is full
rank.

An example of a functional workspace space is the dexterous workspace of a robotic
manipulator.

Assumption 1. The set P to be stabilized is a compact full-dimensional polytope contained
in a functional workspace W ⊆ Rp of (1.1) with output (1.2).

Definitions of the terms employed in Assumption 1 are found in Section 2.3.

1.2.3 Problem statement

Problem 1. Given a control system of the form (1.1), with output (1.2), and a polytope P
satisfying Assumption (1), find, if possible, a finite number of smooth feedback controllers
U = {u1, . . . , uM}, ui : RN × RN → Rm, i ∈ {1, . . . ,M} and a state-dependent switching
law

I : RN × RN → {1, . . . ,M} (1.5)

such that the closed-loop system

ẋ = f(x) + g(x)uI(x)

y = h(xc)

satisfies the following:

(a) The surface of the polytope P is practically asymptotically stable with respect to the
output trajectory y(t) = h(xc(t)).

1

1Practical asymptotic stability is defined in Definition 2.5.1.
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(b) The surface of the polytope P is output weakly invariant.2

(c) The output y(t) = h(xc(t)), restricted to the surface of the polytope P , either (i)
follows paths defined on the surface of P or (ii) otherwise has application specific
desired dynamics. •

Problem 1 is conceptually similar to the problem considered in [49]. The problem
considered in this thesis differs in two fundamental ways (i) the target set P is not a smooth
manifold and hence cannot be represented as the zero level set of a smooth function (ii)
we seek to track trajectories and follow paths on the surface of the polytope P . In [49] the
motion on the surface of the target set corresponded solely to damped motion.

1.3 Literature review

The following literature review discusses current research related to Problem 1. It has been
organized by the major fields relevant to solving Problem 1.

1.3.1 Set stability and stabilization

In the field of dynamics, Barbashin [5] and Zubov [55] initiated a thorough study of the
stability of sets. Zubov considers closed, not necessarily compact, invariant sets and gives
necessary and sufficient conditions for the stability of the sets. His conditions are in terms
of qualitative properties of the trajectories of the dynamical system and in terms of a
scalar functional, a Lyapunov-like function. Bhatia [8] arrives at similar results. In 1995
Lin, Sontag and Wang [36] study parameterized families of systems of the form

ẋ = f(x, µ) (1.6)

with state x ∈ Rn and parameter µ ∈ R`. The authors introduce a Lyapunov-theoretic
necessary and sufficient condition for (1.6) to be uniformly, globally asymptotically stable
with respect to a set A. The set of interest for robust stability of (1.6) is A×R` with the
additional state equation µ̇ = 0. The authors provide a converse Lyapunov theorem for
this class of systems to be robustly stable with respect to a set.

2Output weak invariance of a set is defined in Definition 2.5.3.
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Despite the voluminous work on set stability in the dynamics community, the problem of
set stabilization has, comparatively, less work. The authors in [11] solve a set stabilization
problem using, as in this thesis, not necessarily smooth controls for systems of the form

ẋ = Ax+ u

where u ∈ K where K is a convex closed cone of the state space Rn and the set to be
stabilized is an invariant, convex closed cone M ⊆ Rn.

In 1995, Banaszuk and Hauser publish a pair of papers [3, 4] similar in spirit to the
work of Nijmeijer and Campion [41]. There the authors consider single input control-affine
systems and attempt to stabilize an invariant periodic orbit, Γ, of the unforced system.
Closely related to the set stabilization problem is output stabilization. Isidori [29] and
Nijmeijer and van der Schaft [42] provide algorithms for control-affine systems which find
the largest controlled invariant submanifolds on which the system output is zero.

Albertini and Sontag [1] extended the work of Lin et al. [36] to time-varying systems
with control. In [40] the results of Banaszuk and Hauser were extended to arbitrary
embedded submanifolds of the state space and multi-input systems. In [39] a similar
problem is solved for single-input systems under the more restrictive assumption that only
an output, and not the entire state, is available for feedback. Passivity based approaches
in [16] have also been investigated.

Polytope sets have been studied in control problems since the 1970’s [9]. Polytopes
are often a natural choice in many applications, as their flexible nature allows for the
expression of many physical constraints, allowing for more accurate representations when
dealing with dynamic systems. However, the trade off of this flexibility is that the polytope
representation is often times complex. This complex representation, and general non-
smoothness, contrasts the smooth manifolds that set stabilization techniques are typically
applied to.

1.3.2 Polytopes and hybrid systems

Polytopes have been widely used in the control literature in the field of hybrid systems.
In many of these applications the system is being driven to, or through, a particular facet
of a polytope, often at a predetermined speed and direction. The application areas for
these problems include motion planning [6], [7], [21], and control under safety constraints
[24], [25]. These algorithms can restrict the state of a system to a polytope in its state
space [37].

5



In most of the above papers, the system, often linear affine, to be controlled is defined
to evolve on a polytope. As a result, the polytope is intrinsically invariant. In this thesis
the polytope exists as a subset of the state space. As a result, invariance is not guaranteed
and must be enforced via feedback.

These algorithms achieve their objectives by defining admissible regions of the state
space, often based on the desired trajectory or velocity of the system output. Once these
admissible regions have been defined, a standard form for the controllers is substituted into
the closed loop equation. The coefficients of the controller are then determined to force
the system to operate in the admissible region. Through backwards recursion algorithms,
a series of piecewise-affine controllers can be computed to control the motion of the hybrid
system.

The ideas from hybrid systems and reach control are complimentary to the work pre-
sented in this thesis. Once the polytope P has been rendered weakly invariant, we can
then use the aforementioned results to achieve objective (c) in Problem 1.

1.3.3 Polytope descriptions in system output space

Polytopes have been used in the field of robotics to model the surroundings of mobile
robots for path planning and navigation purposes [7], [13], [12]. In these applications,
large maps of the surroundings are modelled and often stored in memory for future use.
By modelling the surroundings in this way, complex tasks such as motion and trajectory
planning, demonstrated in [38], [7], and [33], can be accomplished. Furthermore, the
modelling of the surroundings, and computation of trajectories can be completed in real
time on top of other control tasks. The use of polytopes in these complex situations
demonstrates their applicability to other control tasks, such as surface stabilization.

1.3.4 Trajectory tracking along surfaces

Once on the surface, we are interested in having the system output track a trajectory or
follow paths defined on the surface. In [48], [46], [53] and [23], a sliding mode controller is
implemented to track a trajectory while stabilizing the surface of a fully actuated mechan-
ical system. In these implementations, the target surface is modelled, either with a set or
a gradient, and then the sliding mode controller used to drive the system towards the sur-
face through its forward dynamics. This approach allows for precise control of the system,
and makes use of the information available from the geometry of the mechanical system.
However in these applications, the surface stabilization problem is not decoupled from the

6



tangential control problem. This causes the overall controller design to be complex, and
limits the flexibility to accomplish tangential design objectives.

1.4 Organization and contribution

This thesis is organized as follows, Chapter 2 provides preliminary material and mathe-
matical background, Chapter 3 outlines the details of the surface stabilization problem,
Chapter 4 provides possible solutions to the tangential control problem, Chapter 5 provides
experimental and simulation results.

The theoretical contributions of this thesis are primarily the formulation of the polytope
stabilization problem and the algorithm presented to solve the problem.

The surface stabilization algorithm presented in this thesis can be broken down into
the following steps.

1. Determine the closest facet to the system output

2. Stabilize the hyperplane spanning the closest facet

3. If possible, move along the stabilized surface as desired

4. Switch and stabilize new facet if necessary

5. Repeat steps 3 and 4

The main experimental contribution of this thesis is the verification, on a four degree-
of-freedom robotic manipulator, of the aforementioned algorithm.

7



Chapter 2

Mathematical Preliminaries

The material presented in this chapter is drawn from several disciplines and fields of study
including [26], [34], [32], [51], [44], [54].

2.1 Notation

We represent a vector x ∈ Rn as a column vector or as an n-tuple x = (x1, . . . , xn). Given
vectors x, y ∈ Rn, 〈x, y〉 denotes the Euclidean inner product and ‖x‖ denotes the induced
Euclidean norm. We denote by In the n × n identity matrix and 0m×n is an m × n zero
matrix. Given two subspaces X1, X2 of a finite dimensional vector space X , the symbol
X1 ⊕ X2 is used to indicate the subspace X1 + X2 when X1 and X2 are independent, i.e.,
X1 ∩ X2 = {0}. Given a matrix A ∈ Rm×n with rank m, its Moore-Penrose pseudoinverse

is A+ = A>
(
AA>

)−1
. The matrix A+ is a right inverse, i.e., AA+ = Im.

Given a set S ⊆ Rn and a point x ∈ Rn, the point-to-set distance from x to S is

dist(x, S) := inf
s∈S
‖x− s‖.

The boundary of a set S is written ∂S. For p ∈ Rn and δ > 0, the set Bδ(p) :=
{x ∈ Rn : ‖x− p‖ < δ} is called an open ball of radius δ centred at p or a neighbourhood
of p.

Given a function f : A→ B and a subset Ω ⊆ A, the image of Ω under f is the set

f(Ω) = {y ∈ B : (∃ x ∈ Ω) y = f(x)} .

8



The set f(A) is the image of f . When A ⊆ Rn and B ⊆ Rm are open and connected sets
and f is differentiable, for each x ∈ A the n × m Jacobian of f is denoted by dfx. Let
f , g : Rn → Rn be smooth vector fields and φ : Rn → Rm a smooth map. We use the
standard notation for iterated Lie derivatives

L0
fφ := φ,

Lkfφ := Lf (L
k−1
f φ) = 〈dLk−1f φx, f(x)〉,

LgLfφ := Lg(Lfφ) = 〈dLfφx, g(x)〉.

2.2 Linear functions

A linear function between vector spaces can be represented as a matrix. In this thesis we
do not distinguish between a linear map and its matrix representation.

Definition 2.2.1. The rank of a linear function A : X → Y between finite-dimensional
vector spaces is dim (Im(A)).

Definition 2.2.2. The kernel of a linear function A : X → Y between finite-dimensional
vector spaces is

Ker(A) := {x ∈ Rn : Ax = 0} .

The following two linear functions are conceptually important in this thesis.

Definition 2.2.3. Let X be a real n-dimensional vector space and let V and W be sub-
spaces such that X = V ⊕W . The projection on V along W is a map Q̃ : X → X that
maps x = v + w (v ∈ V , w ∈ W) to v.

Definition 2.2.4. Let X be a real n-dimensional vector space and let V and W be sub-
spaces such that X = V⊕W . The natural projection on V alongW is a mapQ : X → V
that maps x = v + w (v ∈ V) to v.

The difference between the two projections above lies in their co-domains. In terms of

9



matrix representations, let X = span {x1, . . . , xn} where the first v ∈ N, v < n vectors in
the list span V and the last n− v vectors span W then

Q̃ =

[
Iv 0v×(n−v)

0(n−v)×v 0(n−v)×(n−v)

]
Q =

[
Iv 0v×(n−v)

]
.

The sets of interest in this thesis are the facets of polytopes. A facet of a polytope can
be viewed as an affine subspace.

Definition 2.2.5. A subset A of a vector space Y is an affine subspace of Y if there
exists a b ∈ Y and a subspace V of Y such that

A = {y ∈ Y : y = v + b, v ∈ V} .

The dimension of A is the dimension of V .

An affine subspace can be represented as the zero-level set of a linear affine function.
Consider

s : Y →Z
y 7→Ay + b (2.1)

with A onto, i.e., rank(A) = dim (Z). Then the set

A = {y ∈ Y : s(y) = Ay + b = 0} (2.2)

is an affine subspace with dimension dim (Ker (A)). To see this note that, since A is full
rank,

A = {y ∈ Y : Ay + b = 0}
=
{
y ∈ Y : y = −A>(AA>)−1b+ v, v ∈ Ker (A)

}
.

which is the definition of an affine subspace given previously.

We now modify the definition of the natural projection from Definition 2.2.4 for affine
subspaces.

10



Definition 2.2.6. Let
A = {y ∈ Y : y = v + b, v ∈ V}

be an affine subspace of Y . Let W be a subspace such that Y = V ⊕ W . The natural
projection on A along W is the natural projection on V along W .

When A is represented as the zero level set of a function (2.2), then the natural pro-
jection onto A is just the natural projection onto the kernel of A, i.e., V = Ker (A) in
Definition 2.2.6. The conceptual difference between a natural projection onto a subspace
and the natural projection onto an affine subspace is illustrated in Figure 2.1.

(a) Projection onto a subspace (b) Projection onto an affine subspace

Figure 2.1: Natural projections.

Example 2.2.1. Consider a linear affine function R3 → R where, using the natural bases
for R3 and R we have

A =
[

3 1 −2
]
, b = 2.

11



Then

Ker (A) = span


 1
−3

0

 ,
 0

2
1

.
and W := span {col (1, 0, 0)} is such that R3 = Ker (A) ⊕W . With these choices for the
bases of R3, Ker (A) and W we can compute the projection and natural projection on
Ker (A) along W . For any point y = y1e1 + y2e2 + y3e3 ∈ R3 we have that y1

y2
y3

 =

 1 1 0
0 −3 2
0 0 1

 α1

β1
β2

 .
The projection on Ker (A) along W maps y to (0, β1, β2) while the natural projection on
Ker (A) along W maps y to (β1, β2). Therefore

Q̃ =

 0 0 0
0 −1

3
2
3

0 0 1

 , Q =

[
0 −1

3
2
3

0 0 1

]
.

4

Example 2.2.1 shows that the choice of complementary subspaceW changes the matrix
representations of Q̃, Q. In this thesis we’ll typically assume that the vector space is
equipped with an inner product and take W to be the orthogonal complement of Ker (A).

Lemma 2.2.7. Let A : Y → Z be onto and let Q : Y → Ker (A) be the natural projection
on Ker (A) along a subspace W. Then the linear function[

A
Q

]
: Y → Y

is bijective.

Proof. The map is one-to-one since

Ker

[
A
Q

]
= Ker (A) ∩Ker (Q)

= Ker (A) ∩W
= 0

12



where the last equality follows from the definition of Q. Therefore we have that

dim (Y) = rank

([
A
Q

])
+ dim

(
Ker

[
A
Q

])
= rank

([
A
Q

])
.

This shows that the map is onto which completes the proof.

Finally we present basic results about the composition of linear maps. Let X ,Y and
Z be three finite dimensional vector spaces. Let A : Y → Z and B : X → Y be linear
transformations and define M := AB : X → Y .

Proposition 2.2.8. If M : X → Z is onto, then A : Y → Z is onto

Proof. Since

Im(M) = Im(AB) ⊆ Im(A)

and since by hypothesis

Im(M) = Z

we have that

Z ⊆ Im(A) ⊆ Z

which shows that A is onto.

Proposition 2.2.9. Let A : Y → Z and let Y1 be an independent complement of Ker(A)
such that

Y = Y1 ⊕Ker(A).

Then A restricted to Y1 is one-to-one.

Proof. Suppose, by way of contradiction, that there exists y1, y2 ∈ Y1, where y1 6= y2 and
Ay1 = Ay2. Then

A(y1 − y2) = Ay1 − Ay2 = 0.

This implies that the non-zero vector y1 − y2 is in Ker(A) which contradicts the fact that
y1 and y2 are elements of Y1.

13



Proposition 2.2.10. If M : X → Z is onto, then

Ker(A) + Im(B) = Y . (2.3)

Proof. Let Y1 be an independent complement of Ker(A) such that

Y = Y1 ⊕Ker(A). (2.4)

In order to prove this claim, it is sufficient to show that

Y1 ⊆ Im(B). (2.5)

Consider the pre-image of Y1 under B

B−1Y1 = {x ∈ X : Bx ∈ Y1} .

By [51, Section 0.4], there exists a, not necessarily unique, subspace X1 ⊆ X such that

dim(X1) = dim(Y1 ∩ Im(B)), B−1Y1 = X1 ⊕Ker(B).

Let X2 ⊆ X be an independent complement so that

X = X1 ⊕X2 ⊕Ker (B).

With this decomposition we have that1 B(X1 ∩ X2) = BX1 ∩BX2 = {0} and BX1 ⊆ Y1.

We can now show that (2.5) holds. Let y1 ∈ Y1 be arbitrary. Let z := Ay1. Since M is
onto, there exists an x ∈ X , such that z = ABx. The vector x can be uniquely written as
x = x1 + x2 + xk with x1 ∈ X1, x2 ∈ X2 and xk ∈ Ker(B). We have that

Bx = B(x1 + x2 + xk)

= Bx1 +Bx2.

Since B(X2) ∩ Y1 = {0} and z = ABx = Ay1, we have that Bx1 = y1, i.e., y1 ∈ Im (B).
Since y1 was arbitrary, we conclude that (2.5) holds.

1For general subspaces and linear transformations it is only true that B(X1∩X2) ⊆ BX1∩BX2. However
since (X1 + X2) ∩Ker (B) = X1 ∩Ker (B) + X2 ∩Ker (B) we have equality.
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Proposition 2.2.11. If A : Y → Z is onto and

Ker(A) + Im(B) = Y (2.6)

then M : X → Z is onto.

Proof. Let z ∈ Z be arbitrary and let y ∈ Y be such that z = Ay. Since A is onto, such
a y is guaranteed to exist. By (2.6), y can be written as y = y1 + yk with y1 ∈ Im(B)
and yk ∈ ker(A). Therefore, there exists some x ∈ X such that y1 = Bx and hence
Mx = ABx = Ay1 = z.

2.3 Convex analysis

We now define some concepts from convex analysis that are used frequently throughout
this thesis. The main references for this section are [26], [44], [54].

Definition 2.3.1. A set of m + 1 points v0, . . . , vm ∈ Rn are affinely independent if
{v1 − v0, . . . , vm − v0} are linearly independent.

Given a subset S ⊆ Rn, the affine hull of S, denoted aff (S), is the unique smallest affine
subspace containing S. Given a set of affinely independent points v0, . . . , vm ∈ Rn, the set
aff {v0, . . . , vm} = {x ∈ Rn : x = v + v0, v ∈ V} where V = span {v1 − v0, . . . , vm − v0}.
The dimension of aff {v0, . . . , vm} is the dimension of V , see Definition 2.2.5.

Definition 2.3.2. A subset set S ⊆ Rn is convex if

(∀x, y ∈ S) (∀λ ∈ [0, 1])λx+ (1− λ)y ∈ S.

In general, the dimension of a convex set S equals the dimension of its affine hull aff (S).

Theorem 2.3.3 ([44]). A subset S of Rn is convex if and only if it contains all the convex
combinations of its elements.

All affine subspaces are convex. Given a subset S ⊆ Rn, the convex hull of S, denoted
conv (S), is the unique smallest convex set containing S.
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Corollary 2.3.4 ([44]). The convex hull of a set points v0, . . . , vm ∈ Rn consists of all
vectors of the form

λ0v0 + · · ·λmvm,
m∑
i=0

λi = 1, λi ≥ 0.

Definition 2.3.5 ([26], [44]). A set which is the convex hull of a finitely many points is
called a polytope. If v0, . . . , vm ∈ Rn are affinely independent then conv {v0, . . . , vm} is
called an m-dimensional simplex and v0, . . . , vm are called the vertices of the simplex.
The simplex is called full dimensional if m = n.

By Definition 2.3.5, an m-dimensional simplex is a particular type of polytope. Fur-
thermore, in light of Corollary 2.3.4, an m-dimensional simplex is completely characterized
by its vertices. When m = 0, 1, 2, or 3, the simplex is called a point, (closed) line segment,
triangle or tetrahedron, respectively.

Half-spaces are important examples of convex sets. For any b ∈ R, a ∈ Rn, the sets

{x ∈ Rn : 〈a, x〉 ≤ b} , {x ∈ Rn : 〈a, x〉 ≥ b}

are called closed half-spaces. A set that can be expressed as the intersection of finitely
many closed half-spaces of Rn is called a polyhedral convex set. Polyhedral convex sets
are better behaved than general convex sets because of their lack of “curvature”. Polytopes,
and hence simplicies, are examples of polyhedral convex sets. Therefore, given a polytope
conv {v0, . . . , vm}, there exists an integer k, non-zero vectors a1, . . . , ak ∈ Rn and scalars
b1, . . . , bk ∈ R such that

P := conv {v0, . . . , vm} =
k⋂
i=1

{x ∈ Rn : 〈ai, x〉+ bi ≤ 0} . (2.7)

The representation (2.7) of a polytope as the finite intersection of closed half-spaces is
called an implicit representation. A simplex can thus be described entirely either by its
implicit representation, or through a convex hull of a finitely many points.
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Example 2.3.1. A cube in R3 is an example of a three dimensional polytope. The set

P := conv {v0, . . . , v7},

= conv


1

1
1

 ,
2

1
1

 ,
1

2
1

 ,
2

2
1

 ,
1

1
2

 ,
2

1
2

 ,
1

2
2

 ,
2

2
2

,
is a cube centered at (0.5, 0.5, 0.5). It has implicit representation

P :=
6⋂
i=1

{
x ∈ R3 : 〈ai, x〉+ 1 ≤ 0

}
,

where a>i is the ith row of 
0 0 −1
1 0 0
0 1 0
0 0 1
−1 0 0
0 −1 0

 .

It is instructive to note that {v0, . . . , v7} are not affinely independent and hence they are
not vertices and the cube is not a simplex.

4

Definition 2.3.6 ([26]). The intersection of an m-dimensional polytope (2.7) with one of
its supporting hyperplanes

Fi := {x ∈ Rn : 〈ai, x〉+ bi = 0} ∩ P, (2.8)

is called a facet of P .

A facet is itself a polytope of dimension m− 1.

Example 2.3.2. A facet of the cube from Example 2.3.1 is

F1 :=
{
x ∈ R3 : 〈a1, x〉+ 1 = 0

}
∩ P

where a1 = (0, 0,−1). The facet F1 is shown in Figure 2.2.
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Figure 2.2: A facet of a three dimensional polytope.

4

Definition 2.3.7 ([54]). The non-empty intersection of two different facets of an m-
dimensional polytope P is called the (i, j)th ridge of P

Ri,j := Fi ∩ Fj = {x ∈ Rn : 〈ai, x〉+ bi = 〈aj, x〉+ bj = 0, j 6= i} ∩ P. (2.9)

A ridge is itself an m− 2 dimensional polytope.

Example 2.3.3. The ridges of a cube are simply the line segments between two of its
vertices. For example, continuing Example 2.3.1, the (2, 3)-ridge is

R2,3 = F2 ∩ F3 =
{
x ∈ R3 :

〈[
0 1 0

]
, x
〉

+ 1 =
〈[

1 0 0
]
, x
〉

+ 1 = 0
}

The (2, 3)-ridge is illustrated in Figure 2.3.

4
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Figure 2.3: Ridge for a Cube

A convenient representation of a polytope P is an undirected, unweighted graph. Given
an m-dimensional polytope (2.7), let G denote its associated graph. The graph is con-
structed as follows. Take the facets of P as the vertices of G , i.e., V(G ) = {F1, . . . ,FN}.
The edges of the graph correspond to the ridges of P , i.e., E(G ) ⊆ V(G ) × V(G ) where
eij = (Fi,Fj) if Ri,j 6= ∅.

The graph G can be visualized graphically or it can be represented algebraically as an
adjacency matrix. The adjacency matrix of G , denoted A(G ), is constructed element wise
as

A(G )i,j =

{
1 if (Fi,Fj) ∈ E(G )

0 otherwise

Example 2.3.4. A pictorial representation for a graph of a cube is shown in Figure 2.4.
Its associated adjacency matrix is given by

A(G ) =


0 1 1 1 1 0
1 0 1 0 1 1
1 1 0 1 0 1
1 0 1 0 1 0
1 1 0 1 0 0
0 1 1 1 1 0

 .
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Figure 2.4: Graphical representation of the graph associated to a cube

4

2.4 Robust control

In this thesis we use two different robust control techniques; one is based on backstepping,
the other is based on Lyapunov redesign.

2.4.1 Backstepping without uncertainty

To understand robust backstepping, we start by describing the case without model uncer-
tainty. Consider a smooth, time-invariant, control-affine, nonlinear control system of the
form2

ẋ1 = f(x1) + g(x1)x2, (2.10)

ẋ2 = u, (2.11)

where x1 ∈ Rn, x2 ∈ R, u ∈ R. The smooth vector fields f, g : D ⊆ Rn → Rn are
defined on an open and connected set D containing the origin with f(0) = 0. These vector
fields known. The block diagram of this system is shown in Figure 2.5. The key idea in
integrator backstepping is to treat the state x2 as a virtual input to the “slow dynamics”,

2There are more general versions of backstepping. In this section we focus on the basic case.
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Figure 2.5: Backstepping Figure 1

i.e., the x1-subsystem, design a feedback controller for the virtual input x2, and bring in
the integrator afterwards to suggest the stabilizing control law for u.

Assume there exists a smooth feedback k : D → R, k(0) = 0, that asymptotically
stabilizes the origin of the slow dynamics. That is x1 = 0 is an asymptotically stable equi-
librium of the system ẋ1 = f(x1) + g(x1)k(x1). Let fCL(x1) := f(x1) + g(x1)k(x1). By the
converse Lyapunov theorems [32, Theorem 4.16], there exists a continuously differentiable
function V : D → R and three class-K functions α1, α2, α3 defined on an open subset
D0 ⊆ D such that

(∀x1 ∈ D0) α1(‖x1‖) ≤ V (x1) ≤ α2(‖x1‖)
(∀x1 ∈ D0) LfCLV ≤ −α3(‖x1‖).

Since x2 = k(x1) is a good choice for the virtual control to the slow dynamics, it is natural
to define an error coordinate e := x2 − k(x1). In (x1, e)-coordinates system (2.10), (2.11),
reads

ẋ1 = f(x1) + g(x1)(k(x1) + e) = fCL(x1) + g(x1)e

ė = u− k̇(x1) = u− ∂k

∂x1
(fCL(x1) + g(x1)e) .

We now construct a control Lyapunov function W (x1, e) for this system using V (x1) that
will yield the stabilizing controller for the entire system. Let

W (x1, e) := V (x1) +
1

2
e2 (2.12)

and note thatW is positive definite. Then, in a sufficiently small neighbourhood of (x1, e) =
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(0, 0),
dW

dt
=
∂V

∂x1
(fCL(x1) + g(x1)e) + e

(
u− ∂k

∂x1
(fCL(x1) + g(x1)e)

)
= LFCLV + e

(
∂V

∂x1
g(x1) + u− ∂k

∂x1
(fCL(x1) + g(x1)e)

)
≤ −α3(‖x1‖) + e

(
∂V

∂x1
g(x1) + u− ∂k

∂x1
(fCL(x1) + g(x1)e)

)
.

We now select the control u to cancel out the sign indefinite terms and yield a negative
definite derivative for W . To this end select

u =
∂k

∂x1
(fCL(x1) + g(x1)e)−

∂V

∂x1
g(x1)−Kee, Ke > 0. (2.13)

With this choice we have that

dW

dt
≤ −α3(‖x1‖)−Kee

2.

Hence, by Lyapunov’s direct method [32, Theorem 4.1], (x1, e) = (0, 0) is an asymptotically
stable equilibrium. Since (x1, e) = (0, 0) if and only if (x1, x2) = (0, 0), the controller (2.13)
asymptotically stabilizes the origin of (2.10), (2.11).

2.4.2 Backstepping with uncertainty

The control law (2.13) relies on perfect knowledge of the vector fields f(x1), g(x1) and the
virtual feedback k(x1) in order to cancel the sign indefinite terms. In [34] the authors dis-
cuss how to robustify the controller. First we assume that the model uncertainty in (2.10)
appears as

ẋ1 = f(x1) + g(x1)
(
x2 + Φ(x1, x2)

>δ(x1, x2, u)
)

(2.14)

where Φ : D × R → Rn is a known smooth function and δ(x1, x2, u) ∈ Rn is a vector
of unknown functions that are uniformly bounded, with known bounds, for all values of
x1, x2, u.

If the uncertainty satisfies the above assumptions, then the robust controller is

u = unom(x1, e)−Ku
∂V

∂x1
g(x1)‖Φ(x1, x2)‖2, Ku > 0 (2.15)
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where unom(x1, e) is the nominal controller (2.13). The gain Ku is a tuning parameter
used to dominate the effect of the disturbances. The controller (2.15), renders the sys-
tem (2.14), (2.11) input-to-state stable with respect to the uncertainty δ(x1, x2, u) [34,
Lemma 2.26], and, when Φ(x1, x2) = 0, i.e., there is no uncertainty, the controller reduces
to unom and asymptotically stabilizes the origin.

2.4.3 Lyapunov redesign

Consider a nonlinear control system system of the form

ẋ = f(x) + g(x) (u+ δ(x, u)) , (2.16)

where u ∈ R, and f, g : D ⊆ Rn → Rn are defined on an open and connected set D
containing the origin with f(0) = 0. The term δ : D × R → R in (2.16) represents
modelling uncertainty.

Assume that there exists a feedback control u = ψ(x) that renders the origin asymp-
totically stable for the nominal closed-loop system

ẋ = f(x) + g(x)ψ(x) =: fCL(x).

Once again, by the converse Lyapunov theorems [32, Theorem 4.16], there exists a contin-
uously differentiable function V : D → R and three class-K functions α1, α2, α3 defined
on an open subset D0 ⊆ D such that

(∀x1 ∈ D0) α1(‖x1‖) ≤ V (x1) ≤ α2(‖x1‖)
(∀x1 ∈ D0) LfCLV ≤ −α3(‖x1‖).

Now select the control law

u = ψ(x) + v, (2.17)

where v ∈ R is an auxiliary controller to be designed. Now consider (2.16) with con-
troller (2.17). The closed-loop system is

ẋ = fCL(x) + g(x) (v + δ(x, ψ(x) + v)) . (2.18)

Therefore

dV

dt
= LfCLV (x) +

∂V

∂x
g(x) (v + δ(x, ψ(x) + v))

≤ −α3(‖x‖) +
∂V

∂x
g(x) (v + δ(x, ψ(x) + v)) .
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In the Lyapunov redesign approach, under suitable Lipschitz-like assumptions on the un-
certainty term δ, we select v so that the sign indefinite terms above are dominated by
−α3(‖x‖). For this thesis, the design of v follows the methodology outlined in [17] and [32,
Chapter 14].

2.5 Weak invariance and practical stability

Two important concepts that appear in the problem of Chapter 1 are the weak invariance
of a set and practical stability. Consider a smooth, autonomous, unforced system

ẋ = f(x), f : Rn → Rn, f(0) = 0. (2.19)

Definition 2.5.1 ([35],[52]). The equilibrium x = 0 of (2.19) is practically stable if, for
all (λ, α) with 0 < λ < α we have that

(∀x0 ∈ Bλ(0))
(
∃T ∈ R+

)
(∀t ≥ T )x(t) ∈ Bα(0).

Unlike Lyapunov stability, Definition 2.5.1 states that if the initial condition starts
inside a ball of radius λ, the state x(t) eventually enters a ball of radius α and stays there.
Practical stability allows for a transient response that may take the solution of (2.19) far
from the equilibrium before eventually returning.

Definition 2.5.2 ([35],[52]). The equilibrium x = 0 of (2.19) is practically asymptoti-
cally stable if it is practically stable and

(∀ε, λ > 0) (∃T > 0) (∀x0 ∈ Bλ(0)) (∀t ≥ T )x(t) ∈ Bε(0).

Definition 2.5.2 says that, not only does the state eventually enter the ball of radius ε,
but that ε can be chosen as small as desired. Lastly, we define weak invariance of sets for
switched systems. A switched system is a finite family of vector fields expressed as

ẋ = f(x), f ∈ F = {f1(x), . . . , fN(x)} (2.20)
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where each vector field fi : Rn → Rn in the set F is smooth [2].

A solution for (2.20) is any continuous, not necessarily smooth, curve x(t), with the
property that there exists, a possibly divergent, sequence of times τ0 = 0 < τ1 < τ2 < . . .
called switching times, and a series of indices i0, i1, i2, . . . with ik ∈ {1, . . . , N}, such that
x(t) is an integral curve of the vector field fik for t ∈ (τk, τk+1).

Definition 2.5.3 ([2]). A set P ⊂ Rn is weakly invariant under the dynamics (2.20) if,
for all x0 ∈ P , there exists i ∈ {1, . . . , N}, a real number b > 0 such that the solution x(t)
to

ẋ = fi(x), x(0) = x0

belongs to P for all t in, either, [−b, 0] or [0, b].
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Chapter 3

Polytope stabilization

In this chapter we propose a switched feedback control law that, under suitable assump-
tions, practically asymptotically stabilizes a polytope set. We start by finding a controller
that stabilizes a single affine subspace. This controller is extended to the polytope case by
adding affine subspace selection and switching algorithms. The resulting controllers make
the polytope weakly invariant for the closed-loop system. Finally, issues with modelling
uncertainty and robustness of the solution are addressed.

3.1 Stabilization of an affine subspace

Consider the Euler-Lagrange system (1.1), equivalently (1.3), with output (1.2). Let

A = {y ∈ Rp : Ay + b = 0} ,

with A : Rp → Rq onto, be a given affine subspace. Let Q : Rp → Ker (A) be the natural
projection on Ker (A) along any complementary subspace W ⊂ Rp. Define the function

S :Rp → Rp

y 7→
[
Ay + b
Qy

]
.

(3.1)

The following preliminary result is conceptually similar to [28, Theorem 3.2].

Theorem 3.1.1. Consider the Euler-Lagrange system (1.1), equivalently (1.3), with m ≥ p
inputs and with output

ŷ = S ◦ h(xc) (3.2)
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where h : RN → Rp is given by (1.2) and S : Rp → Rp is given by (3.1). Let x? =
col(x?c , x

?
v) ∈ RN × RN be such that h(x?c) ∈ A ∩W where W is a functional configuration

space. The system yields a vector relative degree of {2, . . . , 2} at x? if and only if

Im
(
dhx?cgv(x

?
c)
)

+ Ker
(
dSh(x?c)

)
' Rp. (3.3)

Proof. Assume that (3.3) holds at x?. We begin by showing that the virtual output, ŷ,
yields a well defined relative degree at x? by showing the decoupling matrix is full rank at
x?. We have

dŷ

dt
=
[
∂S◦h(xc)
∂xc

01×N

]([ xv
fv(x)

]
+

[
0N×m
gv(xc)

]
u

)
=
∂S ◦ h(xc)

∂xc
xv =: Lf (S ◦ h)(x).

The control input u does not appear in this expression, Lg(S ◦ h)(x) ≡ 0, so we continue
differentiating. We obtain

d2ŷ

dt2
= L2

f (S ◦ h)(x) + LgLf (S ◦ h)u

where, using the chain rule,

LgLf (S ◦ h) =
∂S

∂y

∣∣∣∣
y=h(xc)

∂h

∂xc
gv(xc) (3.4)

=

[
A
Q

]
∂h

∂xc
gv(xc). (3.5)

By Lemma 2.2.7 and since h(x?) belongs to a functional workspace, the Jacobian of (3.2)
is non-singular. This, together with (3.3), means that the hypothesis of Proposition 2.2.11
hold and that the decoupling matrix is full-rank.

Conversely, assume that the virtual output yields a well-defined relative degree of
{2, . . . , 2} at x? ∈ Rn. By definition, this means that (3.5) is onto. Hence, by Propo-
sition 2.2.10 with A = dSh(x?c) and B = dhx?cgv(x

?
c), we conclude that (3.3) holds.

Theorem 3.1.1 can be used to find a coordinate and feedback transformation that con-
verts the Euler-Lagrange system (1.3) into a form that makes stabilizing A and controlling
the motion along A easier.
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Let x? be a point at which the conditions of Theorem 3.1.1 hold. Then, in a neigh-
bourhood Uc × Uv ⊆ RN × RN of x? there exists a smooth coordinate transformation
(diffeomorphism onto its image) of the form

T :Uc × Uv → T (Uc × Uv) ⊆ RN × RN

x 7→


ξ1
ξ2
η1
η2
ζ

 =


Ah(xc) + b
Adhxcxv
Qh(xc)
Qdhxcxv
φ(x)

 . (3.6)

Here ξ1, ξ2 ∈ Rp−q represent the dynamics transversal to the target affine subspace. The
η1, η2 ∈ Rq states represent the dynamics which result in motion tangential to the affine
subspace. The ζ ∈ R2N−2p states represent any redundant degrees-of-freedom. For ex-
ample, in a robotic manipulator, they could represent the orientation of the end-effector
which does not determine whether or not the output is on the set A. By [32, Theorem
13.1], the function φ : Rn → R2N−2p can be selected so that T is a diffeomorphism when
restricted to a sufficiently small neighbourhood of x?.

Let N(x) represent a basis for the kernel of the decoupling matrix[
LgLf (Ah(xc) + b)
LgLf (Qh(xc))

]
=

[
A ∂h
∂xc

Q ∂h
∂xc

]
and consider the feedback

u =

([[
A∂h
∂q

Q∂h
∂q

]+
N(x)

])−
L2

f (Ah(xc) + b)
L2
f (Qh(xc))

0

+

vtv‖
vζ

 . (3.7)

By Theorem 3.1.1, the feedback (3.7) is well-defined in a neighbourhood of x?, without
loss of generality, Uc × Uv. Under this feedback transformation, the system in (ξ, η, ζ)
-coordinates reads

ξ̇1 = ξ2

ξ̇2 = vt

η̇1 = η2 (3.8)

η̇2 = v‖

ζ̇ = fζ(ξ, η, ζ) + gt(ξ, η, ζ)vt + g‖(ξ, η, ζ)v‖ + gζ(ξ, η, ζ)vζ
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where vt ∈ Rp−q, v‖ ∈ Rp and vζ ∈ Rm−p. In transformed coordinates the target affine
subspace is given by

T (h−1(A ∩W )) = {(ξ, η, ζ) : ξ1 = 0} . (3.9)

Remark 3.1.2. The choice of φ(x) to complete the coordinate transformation T can often
be done using physical intuition. The redundant dynamics of the system are given by

ζ̇ = fζ(0, 0, ζ) + gζ(0, 0, ζ)vζ .

It may be possible, if m > p, to use the extra control inputs vζ to smartly control these
dynamics. In general, these dynamics have no special structure and the design of vt may
be challenging.

We call the input vt the transversal input because it affects the behaviour of the
transversal states ξ = (ξ1, ξ2). Since driving the transversal states to zero corresponds
to, assuming bounded trajectories, driving the output to A ∩ W , we seek a stabilizing
controller. It is readily checked that the transversal dynamics are controllable so we use a
linear feedback

vt = −K1ξ1 −K2ξ2, (3.10)

with the gains K1, K2 ∈ R(p−q)×(p−q) selected so that the eigenvalues of[
0(p−q)×(p−q) I(p−q)
−K1 −K2

]
(3.11)

are in the open left-half complex plane. The gains can be selected using, for example,
linear quadratic regulation (LQR) optimization. The above transversal controller renders
the origin of the transversal dynamics exponentially stable.

Proposition 3.1.3. Suppose that the conditions of Theorem 3.1.1 hold at x?. Let the
feedback control be given by (3.7) and (3.10) so that (3.11) is Hurwitz. Let Uc × Uv ⊆
RN × RN be the open set where (3.6) is a diffeomorphism. Let v‖ and vζ be such that,
for all (xc(0), xv(0)) ∈ Uc × Uv, and all t ≥ 0, the solution (xc(t), xv(t)) ∈ Uc × Uv and
is bounded. Then ξ = 0 is exponentially stable and y(t) = h(xc(t)) approaches A ∩W as
t→∞.

Proof. The hypothesis of the proposition guarantee that, for all (xc(0), xv(0)) ∈ Uc × Uv,
the Euler-Lagrange system is feedback equivalent to (3.8) for all t ≥ 0. Since (3.11) is
Hurwitz, the origin of the transversal dynamics is exponentially stable. Finally, since the
trajectories are bounded, we have that ξ1 → 0⇔ y → A∩W .
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We end this section by showing that the set A is output invariant.

Proposition 3.1.4. Suppose that the conditions of Theorem 3.1.1 hold at x?. Let the
feedback control be given by (3.7) and (3.10) so that (3.11) is Hurwitz. Then the set

A? :=
{
x ∈ h−1(W ) ∩ R2N : Ah(xc) + b = Adhxcxv = 0

}
(3.12)

is controlled invariant.

Proposition 3.1.4 says that if the output is initialized on A with the rate change of the
output tangent to A, then the output remains on A as long as the feedback transformation
remains well-defined.

Proof. Let x0 ∈ A?. By the definition of the coordinate transformation (3.6) we have that
ξ1(x0) = ξ2(x0) = 0. Since ξ = 0 is an equilibrium is for the closed-loop system, the result
follows immediately.

3.2 Polytope surface stabilization

The surface of a polytope can be viewed, as discussed in Section 2.3, as the union of its
facets. Let {F1, . . . ,FM} be the facets of P . Let

F :=
M⋃
i

Fi. (3.13)

We refer to F as the surface of the polytope P . To stabilize the surface, our approach
is to select a single facet Fi of the polytope, stabilize that facet using the controllers
from Section 3.1, and then switch the target facet when needed. The surface stabilization
algorithm is encapsulated in Figure 3.1.

The selection of a facet is accomplished with a switching function

I : RN × RN → {1, . . . ,M} .

Algorithm 3.2.1. Given the state x of (1.3), the last switch time tlast, the current time
t and the current facet ilast, select the index i corresponding to facet Fi of polytope P for
stabilization

1: if ( then t− tlast > td)
2: for j = 1 to M do
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Controller

Switch Required

No Switch Requried

Figure 3.1: Polytope Stabilization Algorithm

3: Calculate coarse distance to each facet using ξ1
4: (dmin = Shortest distance to facet)
5: end for
6: if dmin > ε then
7: Output is far away from polytope
8: Invoke Algorithm B.1.1 or Algorithm B.2.1
9: i = results of Algorithm B.1.1 or Algorithm B.2.1

10: else
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11: Output is close to surface of polytope
12: Invoke Algorithm 3.2.3
13: i = results of Algorithm 3.2.3
14: end if
15: else
16: Facet is unchanged i = ilast
17: end if

The parameter ε is a user defined variable, that allows for some measure of tuning based
on the geometry of the polytope. Furthermore, the parameter td, represents a user defined
dwell time. This choice of dwell time is further discussed in Section 3.2.2. The various
subroutines in Algorithm 3.2.1 will be discussed shortly.

We now turn our attention to the controllers used to stabilize the facet Fi of P . Ex-
tending the controller outlined in (3.7), we modify the virtual output to the following

Si :Rp → Rp

y 7→
[
Aiy + bi
Qiy

]
(3.14)

where i ∈ {1, . . . ,M}, Ai, bi and Qi each correspond to the ith facet. The auxiliary control

inputs vti , v
‖
i , v

ζ
i are also defined on the ith facet, and Ni(x) is the basis for the kernel of

LgLf (Aih(xc) + bi).

We define a finite set of controllers U = {u1, . . . , uM} of the form

ui =

([[
Ai

∂h
∂q

Qi
∂h
∂q

]+
N(x)i

])−
L2

f (Aih(xc) + bi)
L2
f (Qih(xc))

0

+

vtiv‖i
vζi

 (3.15)

i ∈ {1, . . . ,M} .

Each controller ui in the set U stabilizes, under the assumptions of Proposition 3.1.3, the
defining the affine subspace

Ai = {y ∈ Rp : Aiy + bi = 0} .

3.2.1 Affine subspace selection algorithm

A key component of Algorithm 3.2.1 is to compute the distance of the system output y
to the surface F of the polytope P . To avoid heavy computations, we initially derive a
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coarse estimate of the distance from y to the polytope by evaluating ξ1. This calculation
is inaccurate, as it does not take the ridges of the facets into account. However, it does
provide for a gross estimate of the distance to determine which subspace selection algorithm
to use. To obtain an accurate measure of the distance we must invoke more advanced
algorithms. We now discuss two different approaches for implementing this calculation.
The first method is conceptually simple, but is not suited to higher dimensions. The
second is well-suited to higher dimensions but requires faster hardware.

Closest distance by projection

An algorithm for determining the closest distance from a point to a polytope in Rp is
outlined in [22]. By recursively applying this algorithm to each individual facet of the
polytope, we are able to determine the distance to the surface of the polytope. From that
minimum distance, we are able to select the closest facet to stabilize.

Although the algorithm outlined in [22] is a capable of dealing with surfaces in Rp,
there exist many practical simplifications that can be made by restricting ourselves to
surfaces in R3. These simplifications allow for dramatic decreases in computation time,
and a reduction in overall complexity.

A simplified algorithm for plane selection comes from [30]. In [30], an algorithm based
on well known vector properties in R3 is applied to triangles. However, this algorithm
can be extended to more complex polytopes in R3. It should be noted that although we
generalize this result to a larger class of polytopes, we are still bound to R3 due to the use
of the cross product in the algorithm. This algorithm and an illustrative example can be
found in Appendix B.1.

The algorithm presented in Appendix B.1 for R3 is substantially less computationally
intensive in comparison to the algorithm presented in [22]. As outlined in [22], the order
of the presented algorithm for Rp is O(n4), which would then need to be repeated k times.
However, the algorithm for R3 is O(n log(n)), as it is dominated by the calculations required
to determine the orientation of the point relative to the polytope, and is also repeated k
times.

Closest distance by convex optimization

Since polytopes are convex sets, computing the distance from y to F can be naturally cast
as a convex optimization problem. There are many pre-built convex optimization solvers
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that have been refined to provide optimal computational efficiency, that can be easily imple-
mented. However, the projection methods above have been presented for instances where
there may be limitations preventing the implementation of a convex optimization method.
The implementation for determining the distance to a polytope via convex optimization
can be found in Appendix B.2.

3.2.2 Switching conditions along surface

The subspace selection algorithm outlined in Section 3.2.1 provides a clear choice of closest
facet when the distance between the system output and the polytope is large. However, the
switching conditions become less clear when the output is closer to the surface (dmin ≤ ε).
For example, if the system output lies on the intersection of two or more facets, the distance
to each facet is close to zero, and the distance condition alone cannot be used to select a
particular facet. In this section we detail the operation of Algorithm 3.2.1 when dmin ≤ ε,
i.e., the else state of Algorithm 3.2.1.

The idea behind this aspect of the algorithm is simple : when the distance from the
output to facet i and facet j is less than ε, select the facet based on all of the transversal
states, rather than the distance alone.

To implement our switching law, we need the notion of a vector being restricted to a
polytope. A vector is restricted to a polytope if its motion does not force the system to
leave the boundary of the polytope. Adopting the approach shown in [45], we introduce
the following lemma to check this condition.

Lemma 3.2.2. Given a vector field ∂h(x)
∂xv

xv at a point vi along ridge Rij of a polytope, a
vector is restricted to the polytope if

(∀j ∈ J )

〈
Aj,

∂h(x)

∂xc
xv

〉
≤ 0

where Aj comes from the zero level set representation of the jth facet, and J represents
the set of all facets intersecting ridge Rij.

With this lemma to check if a vector is restricted to a polytope, our switching law can
determine which of several subcases the system may be in.

Let our system be at a point vi on ridgeRij of polytope P . This point is the intersection
of several facets and the indicies of these facets are contained in the set J . If the system
output h(x) is restricted to the polytope (i.e. its motion would drive it into the polytope),
then we seek to choose the facet where the transversal states are the smallest. This choice
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ensures the smoothest motion along the surface, as the system is likely already weakly
invariant at this point. By choosing the facet with the smallest transversal states, the
weak invariance is more likely preserved, as the system is not being driven away from the
polytope. If instead the motion would drive the output away from the polytope, then we
choose the facet where the traversal states are largest. This choice comes from the fact
that the motion of the system is being directed towards another facet, indicating that a
switch is necessary. In this situation, h(x) will not be invariant to any particular facet for
an instance of time, but given sufficient conditions, can be within a distance away from
each facet.

Algorithm 3.2.3. Given state x of system (1.3), determine index i of facet Fi to stabilize,
if the point to set distance ‖y‖P between the system output h(x) and polytope P is less than
ε. Let J be the set of all indices of facets where the point to set distance between h(x) and
P is less than ε.

1: if |J | = 1 then
2: i = J
3: else
4: if

(
∂h(x)
∂xv

xvis restricted to the polytope
)
then

5: T = arg minj

∥∥∥∥[ Qj
∂h(x)
∂xv

xv
Ajh(x) + bj

]∥∥∥∥, j ∈ J
6: i = min T
7: else

8: i = arg maxj

∥∥∥∥[ Qj
∂h(x)
∂xv

xv
Ajh(x) + bj

]∥∥∥∥, j ∈ J
9: end if

10: end if

The above switching scheme may result in infinite switching along the edge. To avoid
this, a small dwell time is implemented between updates of the selected plane. A systematic
approach for selecting the dwell time is the subject of future research. For the purposes
of this thesis, it was selected in an ad-hoc manner by selecting an initial estimate and
iterating the dwell time to improve performance.

3.3 Weak invariance of surface set

We now show that our choice of control law (3.15), and the switching law I(x) defined by
Algorithm 3.2.1, render the surface (3.13) of P weakly invariant, see Definition 2.5.3.
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Using control laws (3.15), we have the following family of vector fields

F = {f1(x), . . . , fM(x)} , fi(x) := f(x) + g(x)ui. (3.16)

In light of Proposition 3.1.4, let

A?i :=
{
x ∈ h−1(W ) ∩ R2N : Aih(xc) + bi = Aidhxcxv = 0

}
, i ∈ {1, . . . ,M} (3.17)

and define

A := ∪Mi=1A?i . (3.18)

Lemma 3.3.1. The set (3.18) is weakly invariant with respect to (3.16)

Proof. Given x0 ∈ A. We decompose the proof into two cases. The first case is where x0
lies in the interior of a facet, the second where it lies on the intersection of two or more
facets.

We begin by considering the first case, where

x0 ∈ int(A?i )

Let x(t) denote the solution to ẋ = fi(x), with x(0) = x0. By Proposition (3.1.4)
we have that A?i is invariant for this system which immediately shows that it is weakly
invariant. Specifically, there exists a positive constant b such that

(∀t ∈ [−b, b]) x(t) ∈ A?i .

Next we look at the case where x0 lies on the intersection of two or more facets of the
polytope.

x0 ∈ A?i ∩ A?j , i, j ∈ {1, . . . ,M} , i < j.

We now consider two subcases based on the initial velocity of the system. The initial
velocity will either bring (3.16) into the ith facet or out of the ith facet. These cases are
distinguished using Lemma 3.2.2. If a vector is restricted to the facet, then the system is
entering the facet. If the system is not restricted to the facet, then it is exiting the facet.

We begin with the first subcase with the velocity bringing the system out of the ith
facet
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Ai
∂h(xc)

∂xc

∣∣∣∣
x=x0

xv(0) = 0

Aj
∂h(xc)

∂xc

∣∣∣∣
x=x0

xv(0) > 0.

Since the initial condition x0 corresponds to leaving the ith facet, the solution to ẋ =
fi(x), x(0) = x0 must belong to A?i for sufficiently small negative time. That is, there
exists a constant b such that x(t) ∈ A?i for t ∈ [−b, 0].

The next subcase involves the velocity bringing the system into the ith facet.

Ai
∂h(xc)

∂xc

∣∣∣∣
x=x0

xv(0) = 0

Aj
∂h(xc)

∂xc

∣∣∣∣
x=x0

xv(0) ≤ .

The above condition implies that the solution x(t) to ẋ = fi(x), x(0) = x0 evolves along
the ith facet for forward time. By Proposition 3.1.4 there exists a real constant b for which
x(t) ∈ A?i for t ∈ [0, b].

3.4 Modelling uncertainty

The presented algorithms provide a solution when exact model knowledge is available,
but issues arise in implementation due to modelling uncertainties. These uncertainties
introduce inaccuracies in the feedback linearization of the system, resulting in imperfect
cancellation of nonlinearities. One common source of uncertainty in the system is that of
unmodelled friction. To compensate for this, we introduce a friction model that includes
many of the typical sources of friction, and then present a robust control technique to deal
with the modelling uncertainty. The robust controllers are implemented in the transformed
coordinates of the system. As a motivating example, simulation results are shown on a
four degree of freedom robotic manipulator of the form seen in Figure 3.2.

3.4.1 Friction model

We present a friction model outlined in [14]. This model incorporates friction effects such
as hysteresis, spring-like characteristics of stiction, break away forces and the Stribeck
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effect [15]. This model has been shown to accurately model actuator friction in robotic
manipulators in [31]. Following the implementation method outlined in [31], we introduce
the friction as an additional force in the Euler-Lagrange equations. This appears as follows

M(q)q̈ + C(q, q̇) +G(q) = B(q) (τ − τf ) , (3.19)

where τf represents the friction force. This friction force is modelled as a function of the
joint velocity as follows

ż = q̇j −
σ0|q̇j|
s(q̇j)

z (3.20)

τFj = σ1ż + σ0 + σ2q̇j, (3.21)

where j corresponds to the particular joint of interest, and σ0, σ1 are stiffness and damping
coefficients, σ2 viscous coefficient and z the average deflection of some fictitious bristles
causing friction [31].

The scalar function s(q̇j) can be defined as

s(q̇j) = Fc + (Fs − Fc)e−α|q̇j |, (3.22)

where Fc is the Coulomb force, Fs the stiction force and α determines the variation of s(q̇j)
between Fs and Fc [31]. Together, these equations form a representative model of friction.

The effects of friction are simulated and compared to experimental results. The simula-
tion result reflects trends observed in similar experimental tests in Figure 3.3. Figure 3.3(a)
shows a simulation with the friction model present, and Figure 3.3(b) shows an experiment

38



with the same configuration. As the figures show, both in the simulation and the experi-
ment, the end effector of the manipulator initially stabilizes the plane, but begins to drift
away as time progresses, ultimately resulting in steady state error. Although the friction
model was not tuned to identically match the simulation, it does provide some modeling
of the friction effects.

(a) Simulation Results (b) Experimental Results

Figure 3.3: Friction Effects on System output without Robust Control

3.4.2 Robust control techniques

To compensate for uncertainties such as friction or inaccuracy in friction identification, we
introduce a robust control technique. See also Chapter 2.

Lyapunov redesign

Following the robust control algorithm presented in [20], we once again adapt our trans-
formed coordinates to compensate for the unmodelled presence of friction and other factors.
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In this implementation, we treat all the unknown disturbances as a single term ∆(ξ, η, u).
If we simply use the transverse controller we designed for the nominal system the parameter
uncertainties would appear as follows

ξ̇ = Aξ +B (α(ξ, η) + ∆α(ξ, η) + (β(ξ, η) + ∆β(ξ, η))u)

=: Aξ +B (α(ξ, η) + β(ξ, η)u) + δ(ξ, η, u).

As outlined in [20], we can thus use our control input to overcome the uncertainty term
δ(ξ, η, u), by modifying the control input to become

u = (K +K0)ξ +

{
K1

ξ
|ξ‖ : ‖ξ‖ ≥ µ > 0

K2‖ξ‖ξ : ‖ξ‖ < µ,
(3.23)

where (A+ BK) is Hurwitz, K0, K1, K2 ∈ Rn×n and µ ∈ R is a constant that depends on
bounding factors based on the uncertainty [20].

The robust version of this simulation can be seen in Figure 3.4. As this figure shows,
the robust controller is able to overcome the effect of the modelling uncertainties, and track
the defined path, with little modification to the existing control structure.
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Figure 3.4: Friction Effects on System with Robust Control
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Chapter 4

Control design on facets

This chapter introduces several methods to control the motion of a system along the
facets of the target polytope. The techniques investigated include path following, damped
dynamics along the surface and trajectory tracking. The solutions presented are derived
for an arbitrary ith facet on the polytope P .

4.1 Tangential dynamics

Lemma 3.3.1 shows that, under the control set U given by (3.15) and the switching law I
given by Algorithm 3.2.1, the surface of the polytope P is weakly invariant. The dynamics
of (1.1) restricted to facet i ∈ {1, . . . ,M} are given by, dropping the subscript i,

η̇1 = η2

η̇2 = v‖

ζ̇ = fζ(0, η, ζ) + g‖(0, η, ζ)v‖ + gζ(0, η, ζ)vζ .

(4.1)

As discussed in Section 3.1, the dynamics (4.1) model the dynamics of the Euler-Lagrange
system while its output is restricted to evolve on facet i of the polytope P . Our objective
in this chapter is to design M tangential controllers, one for each facet of P , such that the
output of the system moves along the surface of the polytope in a desirable manner. We
make the following simplifying assumption for the remainder of this Chapter.

Assumption 2. The Euler-Lagrange system (1.1) satisfies N = m = p.
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Assumption 2 implies that the system has no redundant degrees-of-freedom. It means
that the normal form (3.8) simplifies and that the tangential dynamics become linear and
controllable

η̇1 = η2

η̇2 = v‖.
(4.2)

Remark 4.1.1. Although we do not prove it here, it is straight forward to show that,
under Assumption 2 and by selecting tangential controllers that make the origin (η1, η2) =
(0, 0) exponentially stable1 on each facet, the surface F of the polytope P is practically
asymptotically stable for the closed-loop system.

4.2 Path following

In this section we consider the problem of designing tangential controllers so that the
output of the system follows a pre-defined path on the surface of the polytope P . We call
this a path following problem on polytopes (PFPP). In a PFPP, the objective is not to be
at a specific point on the path at a given time, but rather to traverse the path accurately
while remaining on the path.

We begin by describing the type of path considered. Assume that we are given a
continuous parameterized curve

σ : R→ F
which is periodic, i.e., there exists L > 0 such that, for all λ ∈ R, σ(λ + L) = σ(λ). Let
C := σ([0, L)) be the image of σ.

Assumption 3. If C ∩ Fi 6= ∅, i ∈ {1, . . . ,M}, then C ∩ ∂Fi equals two distinct points.

An illustration of a path that satisfies Assumption 3 is shown in Figure 4.1. The
assumption means that the path can only enter and exit a particular facet once. It also
disallows paths that are tangent to a ridge of the polytope P .

Partition the interval [0, L) ⊂ R into q half-open intervals

[0, L) = I1 ∪ I1 ∪ · · · ∪ Iq

where Ij = [aj, bj) ⊂ R, j ∈ {1, . . . , q}, is a non-empty interval such that σ(Ij) ⊂ Fij ,
ij ∈ {1, . . . ,M}. The number q ≤ M in the partition denotes the number of facets
of P through which the curve C passes through. Given the interval Ij = [aj, bj), let
int (Ij) = (aj, bj) denote its interior. We assume that, for all λ ∈ int (Ij), σ is smooth.

1This is always possible since (4.2) is controllable.
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Figure 4.1: Path defined on a polytope.

Problem 2. Given the set (3.13), M systems of the form (4.2) and a periodic curve
σ : R → F that satisfies Assumption 3, find M tangential controllers such that, on each
facet

(a) y(t) = h(xc(t))→ C ∩ Fi as →∞.

(b) The set C ∩ Fi is output invariant.

•
Remark 4.2.1. Problem 2 does not impose any constraints on path invariance when the
controller switches across the boundaries of facets. Indeed, since the set F is only weakly
invariant, and since C ⊂ F , it is not possible to impose path invariance across facets using
the transversal controllers from Chapter 3.

To solve Problem 2 we use the approach of [28]. First, since for each λ ∈ R, σ(λ) is
an element of Rp, we apply the natural projection to the curve to get its local coordinates
expression

(∀i ∈ {1, . . . , q}) (∀λ ∈ Ii) σ̂i(λ) := Qiσ(λ).
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The above definition of σ̂i(λ) simply says that, if the path is passing through facet i,
we apply the ith natural projection, the one corresponding to the ith facet. Recall that
η1 = Qiy = Qih(xc)). Next we introduce two functions based on σ̂i. First we assume that

(∀i ∈ {1, . . . , q}) σ̂(int (Ii)) =
{
η1 ∈ Ui ⊆ Rp−q : ρi(η1) = 0

}
(4.3)

for some smooth function ρi : Ui ⊆ Rp−q → Rp−q−1 defined on an open set Ui. In other
words, we assume that the projection of that portion of the curve σ on Fi can be represented
as the zero level set of a smooth function. Henceforth we drop the subscript i from the
function ρi(η1).

Next we define M possibly nonlinear2 projection functions

$i :Rp−q → int (Ii) ⊂ R
η1 7→ arg min

λ∈int (Ii)
‖η1 − σ̂i(λ)‖. (4.4)

We again drop the subscript on $. By [28, Theorem 3.2], the tangential dynamics (4.2)
with output (ρ(η1), $(η1) yield a relative degree of {2, . . . , 2} at each point on σ̂(λ) and is
therefore feedback linearizable. To feedback linearize we use the coordinate transformation

ε1
ε2
υ1
υ2

 =


ρ(η1)
∂ρ
∂η1
η2

$(η1)
∂$
∂η1
η2

 ,
and the feedback transformation

v‖ =

[
∂ρ
∂η1
∂$
∂η1

]−1 ∂
∂η1

(
∂ρ
∂η1
η2

)
η2

∂
∂η1

(
∂$
∂η1
η2

)
η2

+ w

 (4.5)

where w = (w1, . . . , wp−q). In (ε, υ)-coordinates the tangential dynamics are

ε̇1 = ε2

ε̇2 = col (w1, . . . , wp−q−1)

υ̇1 = υ2

υ̇2 = wp−q.

(4.6)

2Since the path itself may be nonlinear.
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Physically, the (ε1, ε2) ∈ Rp−q−1 × Rp−q−1 states represent motion that is tangent to facet
Fi but transversal to C ∩ Fi. The (υ1, υ2) ∈ R × R represent those dynamics that are
tangent to both Fi and C ∩ Fi.

To design our controllers, we apply the above coordinate transformation to the q sets
of tangential dynamics associated with a facet through which the path passes through. An
obvious question arises from this construction : what should we do for the M − q facets
through which the path does not pass through?

To properly function, this approach must have a solution for the cases where the selected
plane does not have a path passing through it. In these cases, the point to set distance
between the end effector output and the various path sections is found. This calculation
is relatively simple since the path sections are defined in Rp and can be quickly computed.
Once the closest path section is determined, a rudimentary path from the current location
to the desired path is calculated using Dijkstra’s algorithm, the polytope graph G , and the
verticies of the polytope.

Dijkstra’s algorithm determines which facets the system output must pass through
to reach the closest facet with a path defined. This target facet is reached by defining
way points in the intermediate facets between the current facet and the target, and then
stabilized using a point stabilization controller. These way points are placed on the ridges
between the intermediate facets, and are defined as the midpoint between the vertices
defining the ridge. By defining the way points on the ridges of the facets, the switching
algorithm is invoked every time a way point is stabilized, and the rudimentary path updated
if required. Once the target facet has been stabilized, the nested transverse feedback
linearization controller can be implemented. Dijkstra’s algorithm is explained in further
detail in Appendix. A.

Example 4.2.1. Given a 4 DOF robotic manipulator of the form (1.3), we aim to stabilize
a cube defined as

P := conv {v0, . . . , v8},

= conv


1

1
1
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2

1
1

 ,
1

2
1

 ,
2

2
1

 ,
1

1
2

 ,
2

1
2

 ,
1

2
2

 ,
2

2
2

,
and then move to the bottom facet and stabilize a circle defined on the bottom facet. The
circle is centred at the middle of the bottom facet, with radius of 0.4.

Once the circle has been stabilized by the end effector of the robot, it will continue to
follow trace the circle at a constant user defined speed of 0.4m/s.
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Given an initial position of

q =
[
5 15 15 3

]>
the surface of the cube is stabilized by determining the closest facet to the initial starting
position of the manipulator, and then selecting the corresponding transverse controller as
outlined in Chapter 3.

However, due to the starting position, the closest facet to the end effector is not the
bottom facet with a path defined. Thus, the controller must apply Dijkstra’s algoritm to
determine the intermediate facets and construct a rudimentray path to reach the bottom
facet.

Once the bottom facet has been reach, the nested transverse feedback linearization
problem can be solved. This is accomplished by using the coordinate transformation above,
to transform the tangential dynamics to the following

ε1 = (η1 − 0.15)2 + (η3 − 0.15)2 − 0.4

υ1 = 0.4 arctan

(
(η1 − 0.15)

(η3 − 0.15)

)
.

(4.7)

With these dynamics, we apply the nested feedback transformation outlined in (4.5),
and select w to stabilize the circular path, and move along it with a constant velocity

w =

[
K1ε
K2υ2

]
.

Simulation results are shown in Figure 4.2.

�

4

4.3 Damped motion

Following [49], there are certain haptics applications in which it is desired that the motion
along the surface of the polytope be damped. This can easily be incorporated by designing
the tangential controller v‖ for each polytope based on the tangential dynamics (4.2). To
this end we choose

v‖ = − diag(b1, . . . , bp−q)η2

47



Figure 4.2: Desired Path Defined on a Single Face

where bi > 0 represents the desired damping of tangential state i.

Example 4.3.1. Given a 4 DOF robotic manipulator, with system of the form (1.3), we
aim to stabilize the surface of a sphere and provided damped motion along its surface.

This sphere is centered at
[
2 0 −2.5

]>
. The sphere is given a polytope approximation

using the algorithm outlined in [43]. Approximating the sphere with 1200 facets, the
transverse controller is able to stabilize and switch along the polytope surface, using the
methods outlined in Chapter. 3. The transverse controller is a simple PD controller, with
double poles at −3.

The tangential controller is able to simulated damped motion, with a damping coeffi-
cient of b = 1N/cm by setting

v‖ = −
[
1 0
0 1

]
η2.
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The resulting simulation can be seen in Figure 4.3.

Figure 4.3: Course Approximation of Sphere

To demonstrate the flexibility of the algorithm, the approximation is increased to 12000
facets and re-simulated with no change to the controller. This result can be seen in Fig-
ure 4.4.

�

4

4.3.1 Tracking control

Tracking control is a popular problem often presented in the literature, thus it is natural
to attempt to solve the problems it presents. In this implementation, we assume that
there exists an external representation of the desired trajectory known as the exomodel;
explained in detail in [18]. This approach was implemented for a single plane, but was not
fully explored for a general polytope. We begin by presenting the solution to the tracking
problem on a single plane.
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Figure 4.4: Precise Approximation of Sphere

In a local neighbourhood on the plane, we know that our tangential dynamics become
the form outlined in (4.2). Using these dynamics, we define a state model with

ω :=

[
η1
η2

]
,

where the plant dynamics are defined by

ω̇1 = A1ω1 + A3ω2 +B1v
‖

and the exomodel defined by

ω̇2 = A2ω2.

We then define a signal e as the tracking error between the system and the exomodel
which we wish to regulate

e = D1ω1 +D2ω2.
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This model allows us the flexibility for including external disturbances through the
matrix A3. However, as our system does not have any external disturbances we shall
simply choose A3 = 0.

Given the structure of our system, we are able to easily define the matrices A1, A3 and
B1 as follows

A1 :=

[
0 I
0 0

]
A3 := 0

B1 :=

[
0
I

]
.

A2 can then be chosen to represent a desired external trajectory.

We can combine the state model as

ω =

[
ω1

ω2

]
ω̇ = Aω +Bv‖

e = Dω

A =

[
A1 A3

0 A2

]
B =

[
B1

0

]
D =

[
D1 D2

]
.

We assume that A2 only has unstable eigenvalues, as it represents an arbitrary trajectory.
Applying a controller of the form v‖ = Fω, the controlled system becomes

ω̇ = (A+BF )ω

e = Dω.

We then invoke the following theorem from [18] to solve for the coefficients for our
controller to be both stabilizable and asymptotically track the exomodel.

Theorem 4.3.1. Assume A2 has only unstable eigenvalues. Then the regulator problem
is solvable by some v‖ = Fω if and only if (A1, B1) is stabilizable and there exist a matrix
K,U such that

A1K −KA2 + A3 +B1U = 0, (4.8)

D1K +D2 = 0 (4.9)
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Example 4.3.2. Given a 4 DOF Robotic Manipulator of the form (1.3), we seek to stabilize

a hyperplane defined by A =
[
0 0 1

]>
, b = 100. The state model can then be chosen as

ω =


η1
η2
η3
η4


where η̇1 = η2, η̇3 = η4.

The exosystem is a straight line defined with A2 as

A2 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


and regulator error defined as

D1 = −I4×4, D2 = I4×4.

The matricies A1 and A3 would then be defined as

A1 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


A3 = 04×4,

and

B1 =


0 0
1 0
0 0
0 1

 .
Letting U = F1X + F2, we select F1 to place four poles at −10, and

F2 = U − F1X.
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Figure 4.5: Tracking Controller Implementation

Invoking Theorem. 4.3.1, we solve for K3.

K3 =

[
105 20 −4 0 −105 −20 4 0
−4 0 107 21 4 0 −107 −21

]
.

Simulating with these gains produces Figure 4.5.

�

4

With the solution for a single plane presented, we now extend this solution to our
polytope system. As with other tangential control methods, our switching algorithm will
select the desired facet based on the distance. Once this has been established, the exosystem
and associated system dynamics corresponding to the desired trajectory and facet will be
activated. If there is no exosystem defined on the particular facet, we will once again rely
on Dijkstra’s algorithm to drive the system output to the closest facet where a trajectory
has been defined.

Although this solution is simple and easy to understand, the definition of the exosystems
on the desired facets is not a trivial task. If there is a somewhat complex trajectory desired,
the definition of the exosystem becomes time consuming and difficult. Nevertheless, this
solution is still an attractive method, and should be further considered and refined.
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Chapter 5

Simulation and experimental results

In this Chapter several experiments are presented that demonstrate the effectiveness of
the proposed controllers. The platform selected for the experiments was a four degree-of-
freedom (DOF) robotic manipulator. Simulations were first conducted to test the viability
of the experiments before they were applied on the experimental platform. These exper-
iments included the stabilization of a liner affine hyperplane and following of a circular
path defined on the plane, stabilization of a cube and following a path defined along the
cube, as well as stabilization of a cube with damped motion along its surface.

5.1 Experimental configuration

The selected experimental platform was a four DOF robotic manipulator. This platform
allowed for many complex variables, such as drag forces, to be ignored, while still providing
an interesting system to demonstrate the viability of the proposed algorithms. This robot
can be seen in Figure 5.1.

The model used in the simulations is described in further detail in [20] and is based
on the Euler-Lagranage equations. The model introduced in [20] matches the desired form
outlined in (1.3), and the algorithms presented are thus applicable. In these simulations
and experiments, N = 4, p = 3 and m = 4.

Note that the 4-DOF manipulator is kinematically redundant. This leaves N − p =
4 − 3 = 1 degree-of-freedom with no obvious control specification with respect to the
polytope stabilization problem. Hence the ζ-dynamics in the normal form (3.8) exist. In
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Figure 5.1: 4-Degree of Freedom Manipulator

Kp 16
Kd 8

Table 5.1: PD controller gains for wrist dynamics

this chapter we choose the φ(x) function in the coordinate transformation (3.6) to control
the wrist dynamics

φ1(x) = x4

φ2(x) = x8.

This choice of φ(x) allows for the system to be fully feedback linearized and the redundant
dynamics stabilized with a PD controller. Thus, the poles of this simple system were placed
at −4, using the gains outlined in Table 5.1.

The robot was controlled via a Labview interface, which drove a series of linear actu-
ators. These linear actuators caused joint rotations, mimicking a rotary actuator. The
joint positions and velocities were determined using incremental encoders, and the linear
actuators controlled via PWM amplifiers with a 10 millisecond sampling time.
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5.2 Simulations

5.2.1 Plane stabilization

Circle stabilization

Based on the work of [27], we attempt to apply the coordinate transformation outlined
in (3.6) to the 4 DOF robotic manipulator. In this experiment, we aim to have the end
effector of the manipulator follow a circular path defined in local coordinates on the plane.
This is accomplished by applying the nested feedback linearization approach detailed in
Section 4.2.

The plane is defined with A and b vectors as follows

A :=
[
0 1 0

]>
, b = 0.1.

The target path can be defined as a circle, centered at
[
0.075 −0.15

]
with radius 0.05

defined in local coordinates along the plane. To achieve the nested feedback linearization,
another coordinate transformation is applied to transform the η dynamics to the following

ε1 = (η1 − 0.075)2 + (η3 + 0.15)2 − 0.05

ε2 = 2 (η1 − 0.075) η2 + 2 (η3 + 0.15) η4

υ1 = 0.05 arctan

(
(η1 − 0.075)

(η3 + 0.15)

)
υ2 =

0.05 (η2 (η3 + 0.15)− η4 (η1 − 0.075))(
(η3 + 0.15)2 + (η1 − 0.075)2

) − 0.01.

(5.1)

This choice of transformation allows the nested transverse dynamics to represent the
“distance” between the end effector and the target path, and the nested tangential dynam-
ics to represent the motion along the path.

The plane was stabilized using a simple PD controller for the transverse dynamics. The
controller was designed using the gains outlined in Table 5.2. With the appropriate nested
coordinate transformation, the nested transverse dynamics were stabilized using a simple
PD controller as well, while the nested tangential controller was simple designed to achieve
a desired constant speed of −0.01m/s . The nested transverse PD controller was designed
using the gains outlined in Table 5.3.
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Kp 9
Kd 6

Table 5.2: PD controller gains for transverse dynamics

ε υ
Kp 9 0
Kd 6 6

Table 5.3: PD controller gains for tangential dynamics

With the appropriate transformations applied, and controllers designed the system
was simulated. In the simulation, the manipulator began with its end effector off of the
plane and was forced to stabilize the surface. The result of this simulation can be seen in
Figure 5.2.

Figure 5.2: Simulated Circle Stabilization

The performance of the controller is emphasized when the ξ and η dynamics are anal-
ysed. As seen in Figure 5.3, the transverse controller is able to smoothly and rapidly drive
the system towards the plane, where it remains invariant to the surface for all future time.

Similarly, when the nested transverse and nested tangential dynamics are analyzed, as
seen in Figure 5.4, we see a similar trend in the nested transverse system.
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Figure 5.3: ξ dynamics of circle simulation

As the figure shows, the nested transverse dynamics are quickly and smoothly regulated,
while the nested tangential dynamics achieve the desired constant velocity. These results
are promising, especially when the control effort is analysed. As seen in Figure 5.5, the
controller is able to achieve the above performance without excessively large values of
control effort.

5.2.2 Cube stabilization

Path following

With the single plane simulation we are able to ensure that the transformation selected
for the feedback linearization controller design is indeed diffeomorphic on our target set.
Furthermore, we were able to test the transverse controllers, as well as the nested feedback
approach.

The next level of complexity was to attempt to stabilize a polytope and follow a path
defined on multiple facets. A cube was selected as the target polytope, as it demonstrated
the ability of the algorithm to handle sharp corners as well as provide a natural extension
from the single plane case.
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Figure 5.4: Nested dynamics of circle simulation

Figure 5.5: Control effort of circle simulation
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The cube was selected as

P := conv {v0, . . . , v8},

= conv


1

1
1
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2

1
2

 ,
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2

.
centred at

[
0.5 0.5 0.5

]>
, with M = 6, and the Ai, bi and Qi vectors and matrices

generated according to the procedures outlined in Chapter 2.

In this simulation, we are interested in following a path that encircles the meridian of
the cube. This path σ(λ) is defined as follows

σ(λ) :=



[
0.10 + λ 0.20 0.15

]>[
0.20 0.30− λ 0.15

]>[
0.40− λ 0.10 0.15

]>[
0.10 λ− 0.20 0.15

]>
.

Since the path is defined on only four planes, we will have four distinct nested feedback
linearization controllers, two controllers implementing the Djkstra’s algorithm approach
and six transverse controllers to stabilize each facet. These controllers will take the form
of those outlined in Chapter 3.

To avoid infinite switching, a small dwell time was selected. The choice of the dwell
time was driven by the size of the facets, and the speed at which the manipulator was to
be moving. The value for dwell time was selected by iteratively increasing the time until
the system became unstable. After this time, the dwell time was selected as half the value
that caused instability at tdwell = 0.15 s.

Next, as outlined in Algorithm 3.2.1, a tolerance ε was required. To attempt to mimic
the typical surface invariance conditions a tolerance of ε = 0.01 m was selected. This choice
was made to represent the end effector being functionally close to the surface.

A simple PD controller was selected for the transverse controller, with gains outlined
in Table 5.2. The nested transverse and tangential controllers were also designed as PD
controllers with gains outlined in Table 5.3. The projection algorithm detailed in Ap-
pendix B.1 was chosen for the plane selection due to its simplicity. The simulation was
conducted with the end effector initialized off of the polytope and can be seen in Figure 5.6.
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Figure 5.6: Desired path continued on different facets

As Figure 5.7 shows, the controller is able to appropriately select the corresponding
facet as it switches along the facets of the polytope. Furthermore, although there is an
initial overshoot when a switch occurs, the error is quickly eliminated and remains small
for the entire time on the facet. This result is reiterated in Figure 5.8, when the ξ dynamics
are compared. As the figure shows, there exists the same trend in the ξ dynamics, while
the ξ̇ dynamics remain relatively small.

When the control effort of the controller is analysed in Figure 5.9, we see that very
little control effort is required, and is well within the 15V safety margins for the actuators.

In an attempt to improve the performance of the transverse dynamics, the gain of the
system was increased to Kp = 65, Kd = 16. These more aggressive gains helped to reduce
the time required to stabilize the dynamics, as seen in Figure 5.10, but did not reduce the
magnitude of the overshoot.

This change in gain was also able to improve the performance of the system without a
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Figure 5.7: Distance to currently selected plane for Cube simulation

substantial increase in control effort. This is seen in Figure 5.9, where the control effort,
although larger, is still within the safety margins.

As outlined in Chapter 3, due to the transformation applied to the system, the trans-
verse dynamics are reduced to a simple linear system. Thus, we are able to apply any
number of linear control techniques in an attempt to stabilize the transverse dynamics.
Two choices are a simple PD controller, or an LQR based designed. In an attempt to
compare the two control techniques the system was simulated with both approaches. The
LQR controller was designed to penalize the state conditions heavily with cost functions
as follows

QLQR = 10I2×2, R = 1.

The results of the two simulations can be seen in Figure 5.12 and Figure 5.13. As the
figures show, both approaches produce stable systems that are able to follow the desired
paths. However, the LQR approach produces a system with far less overshoot than the
PD controller. Although one could argue that the PD controller could be tuned to reduce
the overshoot, the LQR approach allows a systematic approach for reducing the overshoot.
It should be noted that even with the LQR approach, some overshoot during switching is
inevitable. This is largely caused by the physical inertia of the system, and may possibly
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Figure 5.8: ξ states for Cube simulation

be eliminated with a speed profile slowing the system as it approaches the ridges.

Damped Motion

As outlined in Chapter 4, the control of the system along the polytope surface is structured
in such a way that different control techniques can be implemented. As such, the controller
outlined in Section 4.3 was constructed for the cube. The choice to implement this control
technique was motivated by the successful application of a similar experiment in [49].

A damping coefficient of b = 0.1N/m was selected for the tangential controller, and the
transverse controller from the previous section was implemented without change. Since
there is not particular path defined, the tangential controller for all facets was of the form

v
‖
i = −0.1η2, i ∈ {1, . . . , 8} .

The end effector was initialized off of the polytope surface, forcing the transverse con-
troller to actively stabilize the polytope. Furthermore, the manipulator end effector was
initialized at 0.5m/s. This initial velocity caused the end effector to continue its motion
once it had reach the surface of the polytope, causing the controller to switch to a new
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Figure 5.9: Control effort for Cube simulation

facet. Eventually, the damped motion along the polytope surface caused the end effector
to cease its motion. This simulation result is seen in Figure 5.14.

5.3 Experiments

5.3.1 Plane stabilization

Point stabilization

To systemically implement the controllers, a simple point stabilization experiment was
conducted. This experiment would allow for the transverse controller to be tested without
major complications introduced from the tangential controller.

For simplicity, the transverse controller was selected as a simple PD controller, with
gains as outlined in Table 5.2. The tangential controller was defined as follows

v‖ =
[
Kp‖ Kd‖

] [η1 − ηdesired1
η2 − ηdesired2 ,

]
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Figure 5.10: ξ states for Cube simulation with aggressive gains

with Kp‖ = 1 and Kd‖ = 2. As with the circle stabilization simulation, the plane was
defined with the following A and b vectors

A :=
[
0 1 0

]>
, b = 0.1.

The manipulator was initialized off of the plane, and forced to stabilize the surface
with the transverse controller, while the motion along the plane was controlled with the
tangential controller. The results of this experiment can be seen in Figure 5.15.

The performance of the controller is evident when the ξ and η dynamics are analysed.
As seen in Figure 5.16, the controller is able to drive the end effector towards the surface.
However, due to frictional effects, there exists a constant steady state error between the
end effector and the plane. The steady state error also manifests itself in the η dynamics,
as η3 can also be seen to have steady state error.

Nevertheless, the transverse and tangential controllers were able to drive the end effector
output towards the desired location along the plane within reason. Thus, the complexity
of the control along the surface was increased.
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Figure 5.11: Control effort for Cube simulation with aggressive gains

Circle stabilization

With the completion of the experiments focused on point stabilization on a plane, the next
logical step was to increase the complexity of the control along the surface. To this end,
the nested feedback linearization for the following of a path was implemented.

The first attempt to implement the stabilization of the circular path on the plane was
to apply the controller as it was outlined in the circle stabilization simulation. As with the
point stabilization experiments, there was noticeable steady state error in the transverse
dynamics, as seen in Figure 5.18. However, the tangential dynamics had larger errors,
and produced a generally non-smooth path. The results of this experiment can be seen
in Figure 5.19. Although the errors in the ξ dynamics were within the same order as
those observed in the point stabilization experiments, the poor performance of the nested
controllers warranted the investigation of robustification techniques.

The first attempt to robustify the transverse controller was the addition of an integrator
to try and eliminate the steady state errors. This was accomplished by creating a virtual
state to represent the steady state error, and attempting to regulate it. This approach
resulted in the gains outlined in Table 5.4.

Although the addition of the integrator to the transverse controller helped improve the
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Figure 5.12: State Feedback Based Transverse Controller

Figure 5.13: LQR Based Transverse Controller

ξ dynamics, it did not affect the tangential dynamics. Thus, to further attempt to deal
with modelling uncertainties, such as friction, another robust modification was made. This

67



Figure 5.14: Simulation of Damped Motion on a Cube

Figure 5.15: Experimental Point Stabilization on a Linear Affine Plane

robust modification followed the Lyapunov redesign algorithms outlined in Section 3.4.2.
Following the design methods detailed in [20], the nested transverse controller was modified
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Figure 5.16: ξ dynamics for point stabilization on a plane

ε υ
Kp 9 0
Ki 12 0
Kd 6 6

Table 5.4: PD controller gains for tangential dynamics

to become

wε = −

(([
K0 0

]
+
[
Kp Kd Ki

]) [ ε
‖ε‖

]
+

{
K1

ε
|ε‖ : ‖ε‖ ≥ µ > 0

K2‖ε‖ε : ‖ε‖ < µ,

)
wυ = −Kdυυ

where the gains Kp, Ki and Kd were defined in Table 5.4, and the Lyapunov redesign
gains defined in Table 5.5.

These modifications produced a large improvement in both the transverse and nested
transverse dynamics. As Figure 5.20 shows, the end effector approaches the plane as
time passes and eventually minimizes the steady state error. This is emphasized when
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Figure 5.17: η dynamics for point stabilization on a plane

Figure 5.18: Experimental Circle Stabilization ξ dynamics
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Figure 5.19: Experimental Circle Stabilization without compensation

µ 0.2
K0 20 20
K1 70 70
K2 70 70

Table 5.5: PD controller gains for tangential dynamics

Figure 5.21 is analysed, and the ξ dynamics approach and remain close to zero. A similar
effect is seen with the ε dynamics, as outlined in Figure 5.22. As the figure shows, the ε
dynamics approach zero and remain close for all future time.

The effect of the uncertainties to the system are large and emphasized when comparing
the simulation and experimental results. This is particularly true when the control effort
of the system is analysed in Figure 5.23. As the figure shows, the control effort for two
of the joints nearly reaches the motor limit of 24V, indicating that considerable effort is
being applied to attempt to overcome the uncertainties.
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Figure 5.20: Experimental Circle Stabilization with Integral Action

5.3.2 Cube stabilization

Path following

With the lessons learned from the plane stabilization experiments, the stabilization of the
cube was attempted. The transverse controller gains were selected to be the same as those
used in the following of a circular path on a plane experiments rather than those used in
simulation. Furthermore, the nested transverse and tangential dynamics also included the
robust modifications in an attempt to deal with the effects of friction on the system. Thus,
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Figure 5.21: Experimental Circle Stabilization with Integral Action ξ dynamics

Figure 5.22: Experimental Circle Stabilization with Integral Action ε dynamics
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Figure 5.23: Experimental Circle Stabilization with Integral Action Control Effort

the controllers implemented were as follows

vti =
[
Kp Kd Ki

]  ξi
ξ̇i
‖ξi‖


wεi = −

(([
K0 0

]
+
[
Kp Kd Ki

])
εi +

{
K1

εi
|εi‖ : ‖εi‖ ≥ µ > 0

K2‖εi‖εi : ‖εi‖ < µ,

)
wυi = −Kdυi

υi,

where the corresponding gains were tuned for each individual facet, but were within
the neighbourhood of those outlined in Table 5.4 and Table 5.5.

Another modification between the simulations and the experiments were the tolerances
ε and tdwell. Both of these values were increase by fifty percent to accommodate the effect
of the modelling uncertainties. Lastly, the speed at which the end effector was to traverse
the meridian of the cube was reduced to decrease the overshoot observed when switching
along facets.

To avoid any potential complexities, the experiment was separated into two parts. The
first experiment had the end effector of the system initialized off of the polytope as it had
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been done in the previous experiments. The controller would then have the end effector
stabilize the surface and followed the path along the surface and switch when required.
The result of this experiment can be seen in Figure 5.24.

Figure 5.24: Cube Stabilization and Path Following

The second experiment had the end effector initialized on the polytope surface, and
then traverse the path and switch on each facet. This experiment had the end effector
make a complete traversal around the meridian of the cube, as opposed to the first ex-
periment where only two facets were traversed. This result can be seen in Figure 5.25.
The experiment was divided into two parts rather than one to avoid potential issues with
the accumulation of error, that may cause instability in the integrators. Since the integra-
tors were a rather late addition, and the robustifications had not fully been explored, this
approach was done to ensure safety and prevent equipment damage.

Due to the robustifications and the decreased speed of the system, the controller is able
to achieve better performance than the case of following the circular path. This is further
emphasized when the ξ dynamics are analysed in Figure 5.26. Although there exists some
deviations when switches occur in the system, the ξ state is approximately zero for the
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Figure 5.25: Path Following on Cube when Initialized on Surface
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portion of the experiment traversing the meridian of the cube. This result is achieved with
reasonable control effort, as seen in Figure 5.27.

Figure 5.26: ξ dynamics for Cube stabilization with path following

Damped Motion

To conduct the tests for damped motion, the transverse and tangential controllers outlined
in Section 5.2.2 were implemented on the experimental platform.

As with the simulation, the end effector of the manipulator was initialized off of the
polytope. However, rather than have the manipulator initialized with an initial velocity,
an external force was applied to test the damping abilities of the controller. Due to the
construction of the manipulator, no external force in the horizontal direction could be
applied, thus all external forces were applied in the vertical direction.

For this experiment, the end effector stabilized the surface of the polytope with the
transverse controller. Once a facet of the polytope had been stabilized, the external forces
were manually implemented to move the end effector in the vertical direction. The external
forces were large enough to force the controller to switch facets. This switch occurred
without causing any loss of stability in the system. The results of this experiment can be
seen in Figure 5.28.
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Figure 5.27: Control effort for Cube stabilization and path following

Figure 5.28: Experimental Results of Damped Motion on a Cube
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Chapter 6

Conclusions and Future Work

Surface stabilization is a practical problem, with applications in robotics, haptics and teler-
obotics. Although there exists well defined algorithms and approaches for for stabilizing
well defined smooth surfaces, the stabilization of complex polytope surfaces proves to be
a challenging problem.

In this thesis, we consider a specific set of surfaces, namely convex polytopes. We
stabilize the polytope by first stabilizing the individual facets of the polytope, rather than
the entire surface. This allows the surface to be stabilized, and with a wise choice of
switching algorithm, allows for movement along the surface.

We stabilize the facets by using transverse feedback linearization and a linear con-
troller. Once the transverse dynamics have been stabilized, the tangential dynamics can
be independently controlled, so long as they do not violate the conditions imposed by the
switching algorithm. In this thesis we presented approaches to solve the path following
problem, provide damped motion along the polytope surface and tracking of a trajectory on
the surface. These algorithms were accompanied by simulations and experimental results
demonstrating their feasibility.

The results of the analysis show that the polytope surface stabilization method allows
for complex polytopes to be stabilized using only a simple representation of the facets
and the switching algorithm. This is useful, as CAD programs generate surfaces using
polytopes.

To provide the required information for path following applications, a considerable
amount of data is required in the path definition. This additional complexity is not always
possible if the desired surface is particularly complex, and does not allow for great flexibility.
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Lastly, the effect of modelling uncertainty is rather profound, as seen in the experimental
results. Without robust control methods, complex tangential tasks cannot be accomplished
without great inaccuracy. Although the main criteria, such as surface invariance and
practical asymptotic stability, are maintained, there still lies great room for improvement.

Future Work

The framework provided by the algorithm allows many different applications to be explored.
However, there are also many refinements that can be made to the algorithm to increase
the accuracy and efficiency of algorithm.

One method for increasing the efficiency of the algorithm is by using higher order
equations for the facets of the surface. In this thesis we have represented the system with
a series of hyperplanes. Hyperplanes allow for simplicity in understanding, as well as a
simple coordinate transformation to obtain the dynamics along the surface. However, if the
surface stabilization is extended to a higher order surface, for example a hyperboloid, then
more complex curvature may be more accurately stabilized. In this application, rather
than a simple natural projection, we would require a more complex mapping, as those
outlined in [10].

Another major area for further development is the addition of robust control techniques.
Although robust control techniques were briefly outlined in this thesis, and demonstrated
in the case of transversal dynamics, they were not rigorously integrated into the other
aspects of the controller. One of the major components of this algorithm is the reliance
on accurate information. However, as observed in the experimental results, accurate and
precise information is not always available. Thus the incorporation of robust control design
into the surface stabilization algorithm would most likely provide great improvements to
the experimental performance of the system.

The last aspect for further consideration is the investigation of other tangential control
techniques. With proper feedback linearization, the tangential dynamics becomes a simple
linear system. This opens up many different control techniques to be applied, as much of
the nonlinear complexities have been removed. One particularly difficult area in the path
following problem is the definition of the path information on the various facets of the
approximated surface. Thus, to circumvent this problem, re-framing the path following
problem as a form of reach control problem would allow for much of the complexity to be
removed. One possible approach to this would be to reduce the facet size, so that each
section of a desired path could be specified by entry and exit points of the facet alone.
A reach controller could then be implemented to force the system output along the path,
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without the complication of defining the path on the facets. Given the work in [37], we
see that the linearized tangential dynamics meet the necessary and sufficient conditions to
apply the reach controllers.

The numerous possibilities outlined in the future work shows the potential for the
algorithms presented in this thesis. Investigation of this future work is likely to provide
even more insight and more opportunities to be explored.
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Appendix A

Dijkstra’s Algorithm

Dijkstra’s algorithm can be broken down into the following steps [50].

Let the current node be denoted as the initial node. Let the distance from the current
node to the target node be stored in a variable distance. The algorithm will assign initial
some arbitrary distance value and try to improve it during each iteration.

1 Assign to every node a tentative distance value: set it to zero for our initial node
and to infinity for all other nodes.

2 Mark all nodes unvisited. Set the initial node as current. Create a set of the unvisited
nodes called the unvisited set consisting of all the nodes.

3 For the current node, consider all of its unvisited neighbours and calculate their
tentative distances. Compare the newly calculated tentative distance to the current
assigned value and assign the smaller one. For example, if the current node A is
marked with a distance of 6, and the edge connecting it with a neighbour B has
length 2, then the distance to B (through A) will be 6 + 2 = 8. If B was previously
marked with a distance greater than 8 then change it to 8. Otherwise, keep the
current value.

4 When we are done considering all of the neighbours of the current node, mark the
current node as visited and remove it from the unvisited set. A visited node will
never be checked again.

5 If the target node has been marked visited (when planning a route between two
specific nodes) or if the smallest tentative distance among the nodes in the unvisited
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set is infinity (when planning a complete traversal; occurs when there is no connection
between the initial node and remaining unvisited nodes), then stop. The algorithm
has finished.

6 Select the unvisited node that is marked with the smallest tentative distance, and
set it as the new ”current node” then go back to step 3.
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Appendix B

Distance calculation methods

B.1 Closest distance to polytope calculation via pro-

jection in R3

Problem 3. Given an m-dimensional polytope P ⊂ Rp and a point y ∈ Rp, determine the
distance to the surface of the polytope

‖y‖P = inf
p∈P
‖y − p‖.

This algorithm makes use of both polytope definitions outlined in Section 2.3. The
objective of the algorithm is to determine the closest point between y and P . Using this
information we calculate the distance to the surface using

‖y‖p = min{‖y‖F1 , . . . , ‖y‖FM}, (B.1)

where ‖y‖Fi is the point-to-set distance to the ith facet of the polytope P .

For clarity, we present the algorithm for determining the point-to-set distance to facet
i, which must be repeated M times in order to calculate (B.1).

Let v ∈ {v0, . . . , vm}∩Fi. The distance from y to the hyperplane {y ∈ Rp : 〈ai, y〉+ bi = 0}
is given by

d =
1

‖ai‖

〈
y − v, ai

‖ai‖

〉
.
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The point y′ ∈ {y ∈ Rp : 〈ai, y〉 = bi} closest to y is given by

y′ = y − d ai
‖ai‖

.

Next determine whether or not y′ lies within the facet Fi. Let, without loss of generality,

{v1, . . . , vq} = {v0, . . . , vm} ∩ Fi.

Define
ei−1,i := vi − vi−1,
ei+1,i := vi − vi+1,

for i ∈ {1, . . . , q}. We assume that the vertices v1, . . . , vq are arranged such that vi is
adjacent to vi−1 and vi+1 in the graph representation of the polytope.

Now construct vectors f1, . . . , fm and si, . . . , sm, to help determine the orientation of
y′ relative to the sides of the polytope.

si :=
ei−1,i
‖ei−1,i‖

+
ei+1,i

‖ei+1,i‖
fi := 〈(si)× (y′ − vi), ai〉 .

These vectors are used to evaluate the position of y′ relative to si, and determine the
position of y′ relative to a particular polytope vertex. For example, if fi > 0 then y′ is
counter-clockwise to si, and if fi < 0 then y′ is clockwise to si. This is useful, as si originates
from a vertex of the polytope, and therefore can be used to determine the orientation of
y′ relative to the polytope.

Next, we compare the vectors f1 to fm and attempt to find the region where fi−1 < 0
and fi > 0 or fi < 0 and fi+1 > 0 simultaneously. For simplicity, assume that the projected
point falls in the region of fi < 0 and fi+1 > 0, with other cases being handled similarly.
This case is illustrated in Figure. B.1

Next we determine if y′ lies within the polytope. The point y′ lies outside of the
polytope if the following inequality holds

〈((vi − y′)× (vi+1 − y′)) , ai〉 < 0.

If the point lies within the polytope, then the point to set distance is

‖y‖F = ‖y − y′‖. (B.2)
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Figure B.1: Orientation of Vectors for Closest Distance Calculation

If the point is outside of the polytope, the vector orthogonal to the edge of the polytope
must be found. This vector r can be calculated as

r = ((vi+1 − y′)× (vi − y′))× (vi+1 − vi).

The point y′′ ∈ {y ∈ Rp : ei + vi = 0} closest to y′ is given by

y′′ = y′ − 1

‖r‖

〈
(vi − y′),

r

‖r‖

〉
· r

‖r‖
.

We determine if y′′ lies within the interior of the two vertices of the edge by using the
parametrized equation of the edge. We determine the parameter t as follows

t =
y′′ − vi
vi+1 − vi

.

If ‖t‖ < 0, then y′′ lies closest to vi and the point to set distance can be calculated as

‖y‖Fi = ‖y − vi‖.

Similarly, if ‖t‖ > 1 then y′′ lies closest to vi+1 and the point to set distance can be
calculated as

‖y‖Fi = ‖y − vi+1‖.
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However, if 0 < ‖t‖ < 1 then the point to set distance can be calculated as

‖y‖Fi =
√
‖y′′ − y′‖2 + ‖y − y′‖2.

Algorithm B.1.1. Given a point y ∈ Rp, a facet F and its corresponding vertices v0, . . . , vm,
find the distance to the facet.

F = {y ∈ Rp : 〈ai, y〉+ bi = 0} ∩ P
1: d = 1

‖ai‖

〈
y − v, ai

‖ai‖

〉
2: y′ = y − d ai

‖ai‖
3: Let {v1, . . . , vq} = {v0, . . . , vm} ∩ Fi
4: for i = 1to q do
5:

ei−1,i := vi − vi−1,
ei+1,i := vi − vi+1,

6: end for
7: for i = 1to m do
8:

si :=
ei−1,i
‖ei−1,i‖

+
ei+1,i

‖ei+1,i‖
fi := 〈(Vi)× (y′ − vi), ai〉 .

9: end for
10: if f1 < 0 and f2 > 0 then
11: if 〈((v1 − y′)× (v2 − y′)) , ai〉 < 0 then
12: ‖y‖F = ‖y − y′‖
13: else
14: r = ((v2 − y′)× (v1 − y′))× (v2 − v1)
15: y′′ = y′ − 1

‖R‖

〈
(v1 − y′), r

‖r‖

〉
· r
‖r‖

16: t = y′′−v1
v2−v1

17: if t < 0 then
18: ‖y‖F = ‖y − v1‖
19: else if t > 1 then
20: ‖y‖F = ‖y − v2‖
21: else
22: ‖y‖F =

√
‖y′′ − y′‖2 + ‖y − y′‖2

23: end if
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24: end if
25: end if

26:
...

27: if
28: if thenthen〈((vi − y′)× (vi+1 − y′)) , ai〉 < 0
29: ‖y‖F = ‖y − y′‖
30: else
31: r = ((vi+1 − y′)× (vi − y′))× (vi+1 − vi)
32: y′′ = y′ − 1

‖r‖

〈
(vi − y′), r

‖r‖

〉
· r
‖r‖

33: t = y′′−vi
vi+1−vi

34: if t < 0 then
35: ‖y‖F = ‖y − vi‖
36: else if t > 1 then
37: ‖y‖F = ‖y − vi+1‖
38: else
39: ‖y‖F =

√
‖y′′ − y′‖2 + ‖y − y′‖2

40: end if
41: end if
42: end if

Once the minimum distance to each face is found, (B.1) can be determined and the
hyperplane that corresponds to the intersecting facet can be selected as the closest facet.

However, if the closest point exists on multiple facets, e.g an intersection point, then
an additional constraint must be applied to select the facet. In this case, the velocity ẏ is
found along each facet. The facet with the lowest corresponding velocity is then selected
as the desired hyperplane.

Example B.1.1. Given a point

y? =

 560
49
−424

 ,
and square polytope defined by

P = conv


100

100
100

 ,
200

100
100

 ,
100

200
100

 ,
200

200
100

 ,
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and spanned by the hyperplane

S(y)
{
y ∈ R3 :

〈[
0 0 1

]>
, y
〉

+ 1
}
,

we aim to determine the closest point between y? and P .

We begin by calculating the distance d as

d = −524.06.

Using this, we calculate the projected point as

y′ =

560.1
49
100

 .
Calculating vectors s1 to s4, we have

s1 =

−1
−1
0

 , s2 =

 1
−1
0

 , s3 =

−1
1
0

 , s4 =

1
1
0

 .
Using these vectors, we are able to construct vectors f1 to f4.

f1 =

〈−1
−1
0

×
460.1
−51.0

0

 ,
0

0
1

〉 = −511.1

f2 =

〈 1
−1
0

×
360.1
−51.0

0

 ,
0

0
1

〉 = −309.1

f3 =

〈−1
1
0

×
 460.1
−151.0

0

 ,
0

0
1

〉 = 309.1

f4 =

〈1
1
0

×
 360.1
−151.0

0

 ,
0

0
1

〉 = 511.1.

Thus, the projected point lies in the section where f2 < 0 and f4 > 0.
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We now determine if the projected point lies within the polytope, by evaluating the
following inequality 〈560.1

49.0
100.0

×
−360.1

150.0
0

 ,
0

0
1

〉 = 3.6 ∗ 104,

which indicates that the projected point lies outside of the polytope.

We now construct the vector r as follows

r =

−360.1
51.0
0.0

×
−360.1

150.0
0.0

×
 0

100
0.0

 = 106

3.6
0

0.0

 .
Using the vector r we project the point y′ onto the ridge of the polytope.

y′′ =

200.0
49.0
100.0

 .
We now calculate the parameter t to determine if the project point lies within the

interior of the vertices

t =

200.0
49.0
100.0

−
200.0

200.0
100.0


200.0

100.0
100.0

−
200.0

200.0
100.0

 = 1.51.

This indicates that the projected point lies outside of the polytope, and is closest to
the point 200.0

200.0
100.0

 .
Thus the distance between the point y and the polytope P is simply

‖y‖P =

∥∥∥∥∥∥
 560

49
−424

−
200.0

200.0
100.0

∥∥∥∥∥∥ .
�
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4

B.2 Closest distance to a polytope via convex opti-

mization

Given a point y ∈ Rp we wish to determine the minimum distance to a polytope P . First
determine if the point y lies within the interior of the polytope or its exterior. This can be
accomplished by substituting y into the half plane equations of the polytope

P = {y ∈ Rp : ∀i ∈ {1, . . . , k} , 〈ai, y〉 ≤ bi} ,

where there exists an integer k ≥ p + 1, non-zero vectors a1, . . . , ak ∈ Rp and scalars
b1, . . . , bk ∈ R.

If
∃i ∈ {1, . . . , k} , 〈ai, y〉 − bi < 0

then we can determine that the point y lies within the interior of the polytope, and the
point to set distance to the polytope is simply

min(| 〈ai, y〉 − bi|∀i ∈ {1, . . . , k}).

However, if the point y lies outside of the polytope, we can apply a convex optimization
approach to determine the point to set distance. We apply the following parameters to a
convex optimization solver to determine the closest point on the polytope.

min(‖y − λ
m∑
i=0

vi‖)

subject to
∑

(λ) = 1,

λ ≥ 0

Once the closest point has been found, the distance between the point y and the point
on the polytope is found, and the facet corresponding to the point is selected as the closest
hyperplane. As with the projection case, if the point exists on multiple facets, then the
velocity of the system at point y is found in reference to each of the facets and the facet
with the lowest corresponding velocity is selected as the desired hyperplane.

This result is summarized as follows
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Algorithm B.2.1. Given a point y ∈ Rp and a polytope P ∈ Rp, find the closest facet.

1: for i = 1to k + 1 do
2: if i = k + 1 then
3: break;
4: end if
5: if 〈ai, y〉 − bi < 0 then
6: Closest Facet = Fi
7: return;
8: end if
9: end for

10: if i = k + 1 then
11: min(‖y − λ {v0, . . . , vm} ‖)
12: subject to

∑
(λ) = 1, λ ≥ 0

13: MinDist = ‖y − (λ) ∗ v1, . . . , vm‖
14: J = find(MinDist = ‖A((λ) ∗ v1, . . . , vm) + b‖)
15: if size(J) > 1 then
16: ClosetFacet = min(Lf (h(x)),∀x ∈ J)
17: else
18: ClosetFacet = J
19: end if
20: end if
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