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Abstract 

Cable-based robots consist of a rigid mobile platform connected via flexible links (cables, wires, 

tendons) to a surrounding static platform. The use of cables simplifies the mechanical structure and 

reduces the inertia, allowing the mobile platform to reach high motion acceleration in large 

workspaces. These attributes give, in principle, an advantage over conventional robots used for 

industrial applications, such as the pick and place of objects inside factories or similar exterior large 

workspaces. However, unique cable properties involve new theoretical and technical challenges: all 

cables must be in tension to avoid collapse of the mobile platform. In addition, positive tensions 

applied to cables may affect the overall stiffness, that is, cable stretch might result in unacceptable 

oscillations of the mobile platform.  

Fully constrained cable-based robots can be distinguished from other types of cable-based robots 

because the motion and force generation of the mobile platform is accomplished by controlling both 

the cable lengths and the positive cable tensions. Fully constrained cable-based robots depend on 

actuator redundancy, that is, the addition of one or more actuated cables than end-effector degrees of 

freedom. Redundancy has proved to be beneficial to expand the workspace, remove some types of 

singularities, increase the overall stiffness, and support high payloads in several proposed cable-based 

robot designs. Nevertheless, this strategy demands the development of efficient controller designs for 

real-time applications. 

This research deals with the design and control of a fully constrained cable-based parallel 

manipulator for large-scale high-speed warehousing applications. To accomplish the design of the 

robot, a well-ordered procedure to analyze the cable tensions, stiffness and workspace will be 

presented to obtain an optimum structure. Then, the control problem will be investigated to deal with 

the redundancy solution and all-positive cable tension condition. The proposed control method will be 

evaluated through simulation and experimentation in a prototype manufactured for testing. 
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Chapter 1 
Introduction 

Global economic competition has motivated manufacturing industries to seek robots that perform 

faster movements, thereby reducing production time and cost and gaining a competitive advantage. 

According to Jeffrey A. Burnstein1, President of the Robotic Industries Association (RIA), there is a 

strong trend towards non-automotive robot applications; indeed, arc welding showed a 52% gain in 

units, followed by material handling with 51%. Similarly, there is a growing interest in robotic 

applications in warehousing and distribution industries. Several industrial tasks require fast and 

precise repetitive movements, for instance, packaging, warehousing, machine loading and unloading, 

assembly, part transference, and material handling. Those tasks are called pick-and-place operations 

(PPO) and deal with grasping an object at one specific point, moving it to another predetermined 

place and then releasing it. Robot designs for this type of task are usually focused on both the initial 

and final points, but little attention is paid to the trajectory, as long as the robot does not suffer 

collisions [1]. Robots used in these tasks must move at high acceleration without affecting the 

operational accuracy and repeatability requirements of production systems. Another goal when 

designing a pick-and-place robot is smooth operation performance, that is, parts must be lifted, 

transferred, and deposited gently to eliminate damage and extend robot actuator life. If the motion is 

unstable during transitions, parts can slip from the robot’s grasp. Several pick-and-place robot designs 

belong to the serial type, the most common being the Cartesian and SCARA robots. Current industrial 

demonstrations2 have reported maximum velocities of between 3.5 m/s and 7.33 m/s, with values of 

±0.04mm and ±0.15mm of repeatability, respectively, and 2g of maximum acceleration. However, 

cantilever structure and high inertia generate unwanted vibration, affecting operational properties.  

Parallel manipulators are structures with several links connected to a mobile end effector. They 

form a closed chain between the static platform and the mobile platform and share the load among 

their actuators; thus, their stiffness is higher than that of the serial robots. However, studying them 

requires special methods and techniques. Parallel manipulators can use rigid links, flexible links or 

both. Substituting cables for rigid links in parallel robots reduces the mass of moving components, 

increasing the ratio of acceleration/force and the workspace of the robotic system. Moreover, adding 

one or more cables to the system (redundancy) is an inexpensive way to increase the system’s 
                                                        
1http://www.robotics.org/content-detail.cfm/Industrial-Robotics-News/Robot-Sales-in-North-
America-Jump-40-in-First-Half-of-2010/content_id/2283, accessed: August 2013 
2 http://www.atsautomation.com/automation/automationtech/st_superbot.asp, accessed: January 2012 
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mobility and rigidity. Nevertheless, cables can work only under tension, which might result in a robot 

workspace reduction, undesirable oscillations of the mobile platform, unstable configurations, and 

loss of controllability of the mobile platform. In order to avoid such difficulties, some solutions, 

developed in parallel robots and grasping mechanisms have been appropriately implemented to cable-

based robots. 

Several investigations have dealt with this unilateral force constraint and cable elastic properties with 

different solutions; for example, the application of a pretension to the cables to ensure manipulator 

rigidity, identification of tensionable regions, and optimal tension force distribution among cables. 

These approaches, however, have presented several difficulties for real applications; for example, in 

the recent work of Merlet [2], experimental results for four different cable-based robots have shown 

no agreement with the theoretical kinematic and singularity studies. Moreover, sources of accuracy 

errors such as cable length/tension measurement and internal/external dynamic uncertainties are not 

well studied for the control system design, resulting in discrepancies between simulations and 

experiments, Oh and Agrawal [3], and Miermeister et al. [4]. 

1.1 Objectives and contributions 

This research investigates the design and control of a cable-based parallel manipulator for high-

speed warehousing tasks, focusing on the study of redundancy, tensionability and stability. The 

research uses a redundant spatial eight-cable robot as a basis in large-scale applications. In summary, 

this research has four main objectives: 

1) Investigate the kinematic and dynamic properties of a warehousing cable-based robot analyzing the 

issues/solutions related to singularities, redundancy solution, cable tension balance, stiffness and 

workspace formulations. 

2) Optimization and design of a warehousing cable-based robot.  

3) Develop a controller to achieve desirable accuracy and repeatability. 

4) Prototype and test the warehousing cable-based robot. 

1.2 Thesis organization 

The complement of this Thesis is divided in five chapters, from Chapter 2 to Chapter 6. Chapter 2 

presents a review of the cable-based robots which covers the relevant contributions concerning to the 

kinematic, dynamic and control approaches involved in the design of this type of mechanisms.  
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In Chapter 3 is established the theory for the design of cable-based robots with optimal 

workspace-stiffness. Based on this methodology the conceptual design of a cable-based robot with 

large workspace and high stiffness is presented. After that, the analytical workspace delineation 

curves of both the underconstrained and fully constrained cases are developed and analyzed. Finally, 

results of the proposed method are compared and discussed to the classical iterative methods.    

 

Chapter 4 presents the controller development to achieve desirable accuracy and repeatability. A 

control topology is proposed and compared for robustness by means of simulations. 

 

In Chapter 5, the experimental setup is presented. The controller developed in the last chapter is 

tested are discussed. 

 

Finally, a summary of the Thesis results and contributions are presented in Chapter 6. 
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Chapter 2 
Literature Review and Background 

This chapter presents the relevant state of research for the study of cable-based robots. Although 

the inception of cable-based robots in the literature is recent, the production of hundreds of scientific 

publications justifies the use of a knowledge categorization. Moreover, cable-based robots 

investigations are frequently related to rigid-link parallel manipulators and grasping mechanisms, 

which extend even more the state of art of this type of robot [5] and [6]. This review presents the most 

important topics related to this research topic.  

2.1 Design of cable-based robots 

Cable-based robots are closed-chain mechanisms constituted of a mobile platform or end-effector 

connected through several cables to a static platform. These types of robots have received different 

names in the literature, cable-based robots, cable-driven manipulators, parallel wire robots, tendon-

based parallel robots, wire-actuated parallel robots, or cable robots for short. Figure 2.1a shows a 

general scheme of a cable-based robot. Cable-based robots are characterized by their low-inertia and 

large-workspace attributes, both of which make them suitable for reconfigurable, huge-space, high 

load/power ratio, and high-speed applications.  

The evolution of parallel rigid-link manipulators into parallel elastic-link robots has its basis in 

the mechanics of biological entities [7]; for example, eyes, head, hands, fingers, arms, feet and legs. 

For skeletal movement, tendons and muscles work together to transmit forces. On the other hand, 

only muscles are used to control the human orbit eye movement in almost pure rotation. All these 

cases require the contraction/relaxation coordination of multiple muscle-tendon units. Muscles show 

little inertia, and although two muscles can work in an antagonistic way, the stopping of one of these 

muscles does not generate ballistic motion.  

On the other hand artificial antecedents of cable-based robots are usually based on two 

mechanical systems: parallel robots and grasping mechanisms. Definitions of cable-based robots are 

related to classical parallel manipulators, in which at least one closed-loop kinematic chain exists to 

allow the pose of a moving platform or end-effector. These classical robots first appeared in the 

1960s, when Gough and Whitehall [8] developed a universal tire testing machine. Later, in the 1970s, 

Stewart [9] introduced his famous six degrees of freedom mechanism. One of the most successful 
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parallel manipulators used in high-speed pick and place operations is the Delta robot, designed by 

Clavel [10]. Industrial demonstrations3, typically using a lightweight vacuum gripper, have shown a 

capacity of 160 pick cycles per minute, a maximum speed of 10 m/s at acceleration up to 10g, and 

±0.1 mm of repeatability. Many more designs of parallel robot configurations have been developed 

and used in different tasks; Merlet and Gosselin [11] provide a detailed classification. Although 

cable-based robots are similar in structure and architecture to rigid-link parallel manipulators, their 

design development and mechanical analysis are quite different because of the elastic properties of 

cables. A parallel robot scheme is shown in Figure 2.1b.    

	
   	
   	
  

(a) (b) (c) 

Figure 2.1: General schemes for analogous mechanisms: (a) Cable-based robot, (b) Parallel manipulator and (c) 

Grasping mechanism.  

	
  

Grasping means the ability of an entity to constraint an object in a static configuration (the object 

is fixed with respect to the hand). The number of fingers defines the minimum number of point 

contacts on the object. In 1979, Okada [12] developed a three-finger hand actuated by cables, which 

connect each finger joint with a specific electrical actuator.  

The force-closure grasp problem has been analyzed by Nguyen, first for a planar grasp [13], and 

after for a tridimensional grasp [14]. He realized that force-closure criteria can be developed in terms 

of the convexity theory to find the unlimited forces applied to actuators to balance the object to be 

grasped. Kawamura [15] and Pfeiffer [16] realized the importance of force control to achieve 

cooperative motions among fingers.  

                                                        
3 http://www.adept.com/products/robots/parallel/quattro-s650h/technical-data 
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Grasping mechanisms must provide squeezing forces to fingers in order that they may hold an 

object, establishing an inverse force connection for cable-based robots. Then, several developments 

related to the transmission and distribution of force applied to grasping mechanisms can be inversely 

applied to cable-based robots and vice versa. Han et al. [17] added two more criteria to grasp analysis: 

the force-feasible and the force-optimal criteria. The first problem finds the bounded forces to balance 

the external forces applied to the object, and the second finds the optimal feasible forces. A model of 

a grasping mechanism is shown in Figure 2.1c.   

2.1.1 Application examples 

In cable-based robots, rigid links are replaced with cables. This reduces the robot weight because 

cables are almost massless and also eliminates the use of revolute joints. These advantages are 

attractive for diverse applications, some of which have been studied since the end of the nineteen 

century. Cable-based robot literature involving physical verification (a prototype or real robot) are 

included in Table 2.1, which lists the application and citations. Works on cable-based robots with only 

pure simulation are not included in this list. 

Table 2.1: Summary of real applications of cable-based robots	
  

Citation	
   General	
  description	
  of	
  the	
  task	
  
[18],	
  [19]	
   Tracking	
  sensor	
  
[20],	
  [21],	
  [22],	
  [23],	
  [24],	
  [25],	
  [26],	
  [27],	
  [28]	
   Aerial	
  sensor	
  
[29],	
  [30],	
  [31],	
  [32],	
  	
  [33],	
  [34]	
   Human	
  environments	
  interaction	
  
[35],	
  	
  [36]	
   Highly	
  repetitive	
  movement	
  training	
  
[37],	
  [38],	
  [39],	
  [40],	
  [41],	
  [42],	
  [43]	
   Haptic	
  systems	
  	
  
[44],	
  [45],	
  [46],	
  [47]	
  	
   Continuous	
  path-­‐operations	
  	
  
[48],	
  [15],	
  [49],	
  [50],	
  [51],	
  [52],	
  [53],	
  [54],	
  [55],	
  
[56],	
  [57]	
  ,[58]	
   Pick-­‐and-­‐place	
  operations	
  

[2],	
  [59]	
   Reconfigurable	
  and	
  modular	
  systems	
  
 

2.2 Kinematic studies 

Typically, a mobile box, part of a cable-based robot, is posed by controlling the length of cables 

through the actuation of fixed motors. Another strategy is to maintain constant cable lengths and 

control the motion of the anchor points at the fixed box. In both cases, the inverse kinematics deals 

with the problem of finding the actuated joint variables for a given mobile box pose. The inverse 
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kinematics is required for a joint space control, while the forward kinematics is used for simulation 

and sensor-based control. For fully constrained cable-based robots, the same inverse kinematic 

formulation used in rigid-link parallel manipulators is applicable; that is, cables can be modeled as 

massless, inextensible and straight rigid components [60], [61] and [62]. 

2.2.1 Classifications 

Different strategies to classify cable-based robots can be found in the literature. The first method 

of classification was proposed by Kawamura and Ito [40]. They relate the number of degrees of 

freedom of a cable-based robot to the number of cables, establishing that n degrees of freedom of a 

mobile box of a cable-based robot will need m=n+1 cables. Based on this relationship, Ming and 

Higuchi [63] give a general classification; thus, for a Completely Restrained Positioning Mechanism 

(CRPM) with n degrees of freedom, m≥   n+1 cables are needed. If the gravity is included to 

constraint the mobile box, an Incompletely Restrained Positioning Mechanism (IRPM) is created. 

Later, Verhoeven et al. [60] include the term Redundantly Restrained Positioning Mechanism 

(RRPM) when the number of cables is greater than the number of degrees of freedom. However, the 

classification proposed by Yamamoto [64] and Bosscher [65] seems the most common: fully 

constrained and underconstrained cable-based robots.  

In fully constrained cable-based robots the lengths of cables are used to determine the position 

and orientation of the mobile platform. Examples of these types of robots are the Charlotte [66] and 

FALCON-7 [67] robots. On the other hand, underconstrained robots need gravity in order to 

determine their position. The NIST robocrane [48] and the SkyCam [23] are examples of these 

robotic devices. The position of such robots must be determined under external perturbations in order 

to reach industrial operational properties, such as accuracy and repeatability.    

The designs of cable-based robot manipulators reported in the literature are less frequent than 

those for parallel robots with rigid links. Among the first designs of cable-based robots are the NIST 

Robocrane [48], Landsberger robot [68], and FALCON-7 robot [67], shown in Figure 2.2.  

These three cable-based robot configurations were used for a new generation of cable-based robot 

designs. The NIST Robocrane, also called by Yanai et al. [69] a Crane type manipulator, has a 

suspended mobile platform connected by six cables to a fixed platform. Based on the NIST 

Robocrane, the patented device SkyCam was developed by Brown [23].  

 



 

8 

 

	
   	
   	
  

(a) (b) (c) 

Figure 2.2: Cable-based type manipulators, (a) NIST robocrane [48], (b) FALCON-7 robot [67], and (c) 

Landsberger robot [68]. 

	
  

The SkyCam is a robotic device with a camera suspended from a four-cable-driven system with 

manual control. It is used in indoor locations such as stadiums and arenas. The FALCON-7 robot uses 

seven cables to completely restraint its mobile end-effector. This robot was used as a basis for the 

following cable-based robots: Charlotte robot [66], which has eight cables to fully constrain the 

movement of its mobile platform; WARP robot [49], WiRo robot [70], Marionette robot [62] and the 

C4 robot [71]. The Landsberger robot uses a rigid link, also called a spine, with three cables to 

improve its stiffness. The Landsberger robot motivated the creation of different designs called hybrid 

robots because they use rigid and flexible links; for example, the C3W4 [52], Betabot and Deltabot 

robots [72].  

Tadokoro [42] classifies the cable-based robots according to the number of cables connected at 

the same position of an actuator unit. Tadokoro recognized the influence of these types of connecting 

combinations in the performance of the WARP robot, used for virtual reality applications. For 

example, a 5-2-1 combination means that a group of five actuators are located at the same place; 

another group is composed of two actuators, and the last group has only one actuator. Then, this 

cable-based design with eight active cables can present seventeen combinations with a minimum of 

three groups of actuation units.   

2.2.2 Singularity conditions 

Although the concept of singularity for serial and parallel robots (with rigid and flexible links) 

has different descriptions, the problem in principle is the same. Singularity studies refer to a particular 
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configuration of a mechanism in which its end-effector loses control and some joint velocities 

approach infinite. In consequence, singular configurations must be avoided or eliminated in order to 

maintain control of the robot. Thus, singularity analysis is indeed a measurement for evaluating a 

good or poor design.  

Several papers have developed strategies to identify different types of singularities. Gosselin and 

Angeles [73] identify and classify different types of singularities for closed mechanisms and parallel 

manipulators. Later, Zlatanov et al. [74] presented a more general classification based on a velocity 

equation including the end-effector and joint velocities. Other researchers have been developing 

methods to analyze singularity-free workspaces and procedures to exclude and eliminate singularity 

configurations in parallel mechanisms.  

Gosselin and Wang [75] found the singularity locations in planar parallel mechanisms, and one 

year later, the same authors [76] did the same for spherical parallel mechanisms. Dash et al. [77] 

established a path-planning strategy to avoid singularities, which are represented as obstacles. Kumar 

and Dash [78] reduced the singularities by changing the location of the actuators in a five-bar closed 

mechanism. Arakelian et al. [79] identified and minimized singularity zones by using the pressure 

angle as an indicator of force transmission. Kotlarski et al. [80] and Li et al. [81] eliminated 

singularities by adding appropriate redundant actuation to planar parallel and Stewart mechanisms. 

Recent efforts to develop optimal design techniques to increase singularity-free workspaces of 

parallel robots are presented by [82], [83] and [84]. For cable-based robots, because of the unilateral 

driving capabilities of flexible cables, conventional rigid-link parallel robot methods cannot be 

directly applied to find all singularities. Yang et al. [85] prove that the use of the Jacobian, normally a 

non-square matrix, is valid only when all cables are in tension.  

In general, a cable-based robot losses tensionability (positive tension cannot be exerted on all 

cables at the same time) when the mobile platform falls into the neighborhood of a singular 

configuration. Consequently, the control of the mobile box is impossible; that is, the mobile box 

makes only ineffectual shaking motions, even though the length of the cables has not changed, Hiller 

et al. [86]. Then, two types of singularities for cable-based robots can be identified: the rank-deficient 

Jacobian matrix (kinematic singularity) and the not fulfillment of tensionable solutions (force 

singularity) for all cables simultaneously along a desired path [87]. Several works are related to the 

avoidance and elimination of these two types of singularities. Su et al. [88] recommend changes in the 

cable-based robot design when there are near-singularity configurations that affect a system’s 
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controllability: rearrangement of the attached point on the mobile box and modification of the 

location of the anchor points in the static box. Lahouar et al. [45] adapt the path planning methods of 

serial manipulator by modeling singularities as obstacles in an under-constrained spatial four-cable-

driven robot. Qiu et al. [89] eliminate the force singularity of a large-scale cable robot by adding one 

more cable to the lower part of a large-scale crane design for radio telescope applications.  

Alikhani et al. [90] study force singularities for the development of an optimal large-scale cable-

based robot design. They separate the singular problem by identifying the contribution of the upper 

and the lower cables. They suggest that the lower cables are responsible for the pretension, and the 

upper cables affect the motion of the mobile box. Hassan and Khajepour investigate the singular 

configurations of hybrid cable-based robots [91]. 

2.2.3 Model formulation 

In this section, a mathematical model of a fully constrained cable-based robot is presented. A 

schematic representation of such a robotic system is presented in Figure 2.3.  

 

In this scheme, one end of each cable is attached to a mobile platform and the other side is connected 

to a drive unit. Typically, a drive unit consists of one or more pulleys which guide the cable to a drum 

which recollects/releases the cable in relation to the rotation of the shaft of a motor. Force and 

position sensors may be added to measure the tension and length of each cable. The goal is to move 

	
  

Figure 2.3: Components of a cable-based robotic system. 
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the mobile platform to a desired pose by simultaneously changing the cable lengths and at the same 

time maintaining a positive cable tension. The theoretical model of this system is formulated 

assuming that each cable is always under positive tension for a given pose of the mobile platform. 

An equivalent model, based on the above mentioned cable-based robotic system, is shown in 

Figure 2.4.  

	
  

Figure 2.4: Equivalent cable-based robotic system. 

This representation is characterized by assuming cables are massless (cables are thin and light), 

firmly stretched (cable slackness is ignored), and inelastic (any cable’s elongation is compensated). 

In this context, each cable is modeled as a subsystem composed of two moving elements, two 

spherical joints and one prismatic joint. Therefore, any cable subsystem has six degrees of freedom 

with five restraints to be added to the system to make cable lengths the active joints to control [63]. 

The system model is composed of 2m rigid links, one mobile platform, 2m spherical joints and 

1m prismatic joints. Based on Grübler-Kutzbach’s formula for spatial motions, the total number of 

DOF of the system is 𝑛 = 6 2𝑚 + 1 −𝑚 2 6 − 3 + 6 − 1 = 𝑚 + 6 DOF. However, regardless 

of the number of cables, a spatial mobile platform must have six DOF. This can be obtained by 

assuming that each cable twist is not affecting the pose of mobile platform; that is, m degrees of 

freedom can be reduced from the latter result; thus, 𝑛 = 𝑚 + 6 −𝑚 = 6. The same result can be 

obtained if each spherical joint between the winch and static box is substituted by a universal joint 

[92], [93]. This approach facilitates the creation of a virtual model in software packages as ADAMS 

and MAPLESim. Alternatively, for planar movements (three DOF) of the mobile platform, each 
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spherical joint must be replaced by a revolute joint whose axis of rotation must be perpendicular to 

the plane of motion of the mechanism.   

Based on the previous model and assuming a mobile platform with six degrees of freedom, a 

general kinematic formulation is developed. Figure 2.5 shows the closure position vectors for cable i 

in a general spatial m-cable robot.  

	
  

Figure 2.5:  Kinematic position parameters. 

A coordinate system x’y’z’ is fixed at the mass center of the mobile platform o’ and another, 

XYZ, is fixed at a reference point O. Vector 𝒑 = [𝑃! 𝑃! 𝑃!]! establishes the position of the mobile 

platform between these two coordinate systems. Vector  𝒍! is the ith cable vector connecting the 

anchors points Ai and Bi at the static and mobile platform, respectively. Thus, constant vectors 𝒂! and 

𝒓!! are placed with respect to the base and the mobile coordinate systems. Using the transformation 

𝒓! = 𝑹!"#𝒓!! , where 𝑹!"# is the rotation transformation matrix with the sequence ZYX of the Euler 

angles 𝜽! = 𝛼   𝛽 𝛾 ! for the desired orientation of the mobile platform, it becomes: 

𝑹!"# =
𝑐(𝛼)𝑐(𝛾) − 𝑠 𝛼 𝑠 𝛾 𝑠 𝛽 −𝑠(𝛼)𝑐(𝛽) 𝑐 𝛼 𝑠 𝛾 + 𝑠 𝛼 𝑠 𝛽 𝑐 𝛾
𝑠 𝛼 𝑐 𝛾 + 𝑐(𝛼)𝑠 𝛾 𝑠 𝛽 𝑐(𝛼)𝑐(𝛽) 𝑠(𝛼)𝑠(𝛾) − 𝑐(𝛼)𝑠 𝛽 𝑐 𝛾

−𝑐(𝛽)𝑠(𝛾) 𝑠(𝛽) 𝑐(𝛾)𝑐(𝛽)
 

where 𝑹!"# = 𝑹(𝑍,𝛼)𝑹(𝑋′,𝛽)𝑹(𝑌′′, 𝛾) is obtained with the three basic rotation transformation 

matrices around 𝑍 axis, 𝑋′ axis, 𝑌′′ axis, and 𝑐 ϕ = cos  (ϕ) and 𝑠 ϕ = sin  (ϕ). Then, the mobile 

platform pose with respect to the reference frame can be denoted as    𝑿! =
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[𝑃! 𝑃! 𝑃! 𝛼 𝛽 𝛾]!. The closure vector equation for the position of the mobile platform is 

obtained as:  

	
   𝒍! = 𝒑 + 𝒓! − 𝒂!   ,      ∀  𝑖 = 1,2…𝑚.	
   (2.1)	
  

The ith cable’s length is obtained by applying the 2-norm Euclidian norm to Eq. (2.1) as 

	
   𝑙! = 𝒑 + 𝒓! − 𝒂! ,        ∀  𝑖 = 1,2…𝑚.	
   (2.2)	
  

Differentiating Eq. (2.1) results in 

	
   𝑙!𝒍! + 𝝎!×𝒍! = 𝒗! + 𝝎!×𝒓!   ,∀  𝑖 = 1,2,…𝑚.	
   (2.3)	
  

Equation (2.3) relates the cable velocities with the mobile box velocities; then, for any ith cable: 

𝑙!   is the rate of change in the length; 𝝎! is the angular velocity vector, 𝒍! is the cable unitary vector in 

the reference frame. For the mobile box, 𝒗! = 𝒑 and 𝝎! are the linear and angular velocities with 

respect to reference frame. Expressing any cable unitary vector in its Cartesian components results in: 

𝒍! =
𝒍!
𝑙!
=
𝒍!!
𝑙!
+
𝒍!!
𝑙!
+
𝒍!!
𝑙!
=

𝑙!!
𝑙!

𝒍!! +
𝑙!!
𝑙!

𝒍!! +
𝑙!!
𝑙!

𝒍!! = 𝑙!! 𝑙!! 𝑙!!
!

 

Equation (2.3) can be written as 𝑙! = 𝒍! ∙ 𝒗! + 𝝎!×𝒓! − 𝝎!×𝒍! = 𝒍! ∙ 𝒗! + (𝒓!×𝒍!) ∙𝝎!, or in 

matrix form 

	
  
𝑙!
𝑙!
⋮
𝑙!

=

𝑙!! 𝑙!! 𝑙!! 𝒓!×  𝒍! !   𝒓!×  𝒍! !   𝒓!×  𝒍! !
𝑙!! 𝑙!! 𝑙!! 𝒓!×  𝒍! !   𝒓!×  𝒍! !   𝒓!×  𝒍! !
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑙!! 𝑙!! 𝑙!! 𝒓!×  𝒍! !   𝒓!×  𝒍! !   𝒓!×  𝒍! !

𝑣!!
𝑣!!
𝑣!!
𝜔!!
𝜔!!
𝜔!!

	
   (2.4)	
  

Equation (2.4) has the well known form of 

	
   𝑑𝒍
𝑑𝑡
= 𝑱

𝑑𝑿!
𝑑𝑡

	
   (2.5)	
  

where 𝑱 represents the Jacobian matrix. In general, the rank-deficient Jacobian matrix results in 

geometrical singularities of a robot, frequently related to configurations near the boundaries of the 
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robot workspace and loss of full motion. Thus, for fully constrained cable-based robots (m>n) and 

supposing all cables are always in tension by the application of positive cable tensions, a non-singular 

configuration satisfies the condition: 

	
   𝑟𝑎𝑛𝑘  𝑱 = 𝑛, if    𝑱 ∈ ℝ!×!    where  𝑛 < 𝑚.	
   (2.6)	
  

2.3 Force formulations 

Force analysis of cable-based robots is related to the study of a particular pose of the mobile 

platform, where all-positive cable tension conditions must be maintained to balance a given wrench 

by solving the dynamics or static equations with or without additional constraints, for example, 

bounded cable tensions. In consequence, this analysis is imperative for design and control 

development. A cable-based robot can be seen as a set of rigid and flexible elements, which under 

certain circumstances (straight cables and rigid joints) can be modeled as a multibody rigid system. 

Under this situation, the dynamic model is easily formulated by using Newton-Euler motion 

equations that incorporate the static model, ensuring always positive driving forces. Lagrange’s 

formulation with Lagrange’s multipliers give a better knowledge of the cables tensions [94], and 

together result in ordinary differential algebraic equations. However, by its physical-meaning, clarity, 

and ease of applicability, the Newton-Euler formulation seems to be the most popular approach to 

deriving the dynamic equations of cable-based robots [46], [95] and [93]. Further works have dealt 

with the problem of finding accurate and easy-to-solve dynamic models in order to clarify and predict 

different scenarios quickly and cheaply. Bedoustani et al. [96] include the elastic and damping effects 

of cables in an overall dynamic model of an aerostat large-scale cable-based robot. Miermeister and 

Pott [51] present a dynamic model with friction of the cable-based robot IPAnema. Du et al. [97] 

analyze the cable sag effect in the dynamic model of a large-scale undetermined cable-based robot.  

A variety of conditions and methods have been proposed for evaluating whether a given 

configuration meets all-positive cable tension requirements. Force-closure (vector-closure or wrench-

closure) analysis gives conditions in which a given configuration can support any arbitrary wrench 

applied to the mobile platform if unbounded positive cable tensions are allowed [15] and [98]. 

Supposing a non-singular pose, Ming and Higuchi [63] solved the force equation by using the 

pseudoinverse formulation and determine the force-closure condition if the nullspace of the structure 

matrix (a transpose of the Jacobian matrix) is always positive. Proof of the force-closure is given in 
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[99] and [100] by analyzing the nullspace of the structure matrix. This proof is based on the existence 

of a positive vector in the nullspace of the structure matrix, which results in a positive tension 

solution in the homogenous term (internal force) of the pseudoinverse solution. This internal force 

can be used to balance any negative tension (as a result to balance any wrench) without changing the 

wrench. A particular case of the latter solution was established by [101] for cable-based robots with 

one redundant cable, where the force-closure can be satisfied if the components of the nullspace 

vector of the structure matrix are all positive or negative. Diao and Ma [102] present another method 

to verify the force-closure condition by checking that all hyperplanes of the structure matrix are 

separating hyperplanes of the structure matrix. This method to check force-closure is based on convex 

sets analysis; thus, a force-closure exists if the convex hull of the set of the columns of the structure 

matrix lies in the general neighbourhood of the origin [103] and [104]. Hassan and Khajepour [58] 

developed a method based on convex analysis and the Dykstra algorithm to check force-closure 

conditions.      

The inclusion of bounded cable tensions affects the assumption of an unbounded wrench applied 

to a mobile platform (force-closure condition). Thus, the feasible-wrench condition is established 

when a given constant static wrench is applied to a mobile platform subjected to a given interval of 

tensions. The feasible-wrench condition gives a more realistic result than the force-closure condition; 

in consequence, this analysis must be included in any design and control analysis. The methods used 

to analyze the force-closure condition can be extended to study the feasible-wrench condition by 

adding the wrench and the tension limits. Pham et al. [105] developed a recursive algorithm to find an 

equivalent one-dimension system of the higher dimension of the nullspace of the structure matrix. 

Pott et al. [106] used the minimum norm solution (pseudoinverse) to the difference between the 

median of the given limits tensions and the actual tension. According to Gosselin and Grenier [107], 

the performance of these tension solutions is better. Moreover, they evaluated several feasible-wrench 

formulations based on different norms.  

2.3.1 Stiffness 

Stiffness/compliance can be related respectively to the rigidity/flexibility of a mechanical system 

(with elastic components). For practical applications, low rigidity is related to poor positioning 

accuracy, trajectory errors and loss of controllability; therefore, stiffness modeling, low-stiffness 

workspace identification and the enhancement of stiffness is required before such effects (mobile box 
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oscillations) can be compensated with a control system [108]. Examples of these studies in several 

mechanical systems can be found in [109] for parallel robots, [110] serial robots, and [111] grasping 

mechanisms. In general, stiffness measures the resistance of a robotic system to a displacement as a 

result of applying an external force to its end-effector along a degree of freedom. In the case of cable-

based robots, all cables are frequently modeled as massless springs having only axial deformations 

with the same and constant stiffness [112]. Other models include the elasticity property of the cable 

material and the variation of the cross-sectional area, Merlet [113]. On the other hand, the mobile box 

is modeled with infinite stiffness (a rigid body); however, it might present finite rotational and 

translational stiffness. Thus, several approaches to calculate the overall stiffness have been studied. 

Behzadipour and Khajepour [114] use an equivalent four-spring model for each cable to analyze the 

effects of antagonistic forces in the overall stiffness of cable-based robots.  

Yu et al. [115] use the stiffness definition in order to find the Cartesian and joint stiffness; further 

simulations verify that redundancy changes the stiffness mapping of the robotic system. Using the 

differential transformation principle, Liu et al. [116] find the stiffness matrix expression for an eight-

cable robot used as an airplane wind tunnel tester. This expression includes both effects: cable 

tensions and the robot configuration. The authors enhance the stiffness in three directions by using an 

optimal cable tension distribution method. Yang et al. [117] divide the stiffness study of a spherical 

joint cable-based robot into two parts: the structural parameters (only driving and transmission 

systems are considered flexible) and the cable tensions, realizing that the overall stiffness is related to 

the mobile box pose, cable stiffness and cable tensions. Stiffness studies provide a basis for stability 

analysis and the development of robust control strategies. 

2.3.2 Stability 

Because of the constraint affinities (unidirectional forces) between grasping mechanisms and 

cable-based robots; studies of frictionless grasping stability can be extended to cable-based robot 

studies. Howard and Kumar [118] classify the grasp equilibrium and develop conditions to determine 

frictionless stable grasping. Svinin et al. [119] consider grasping stability as a force distribution 

problem, which can be stabilized by a simple control law. Hanafusa and Adli [120] and Svinin et al. 

[121] extended the grasping stability conditions for parallel manipulators. They establish that a 

parallel manipulator is stable around an equilibrium point if its stiffness matrix is positive definite. 
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Using two planar parallel manipulators as examples, Svinin shows that singular configurations can be 

stable or not, depending on the force distribution and the form of the singular configuration. 

A general stability definition for cable-based robots is given by Bosscher and Ebert-Uphoff [65] 

as the ability of a cable-based robot to resist external disturbances applied to the mobile box at a 

given equilibrium pose during infinitesimal motions of the mobile box. Behzadipour and Khajepour 

[114] establish the concept of stabilizability as a particular property for cable-based robots if 

antagonistic cable forces are used to increase the overall stiffness of the system. Then, a cable-based 

robot becomes stabilizable if the total stiffness matrix (obtained from the contribution of the elastic 

and antagonistic stiffness of each cable) is positive definite.  

2.3.3 Model conception 

The force analysis deals with the problem of finding the forces (cable positive tensions) for a 

specific equilibrium point of the system. This analysis begins with the static equilibrium followed by 

a dynamic study by the addition of the translational motion (Newton’s equation) and the rotational 

motion about the mass center (Euler’s equation), as is shown in Figure 2.6. 

	
  

Figure 2.6: Static parameters. 

In this analysis, the external forces and moments are assumed constant and acting along the center 

of mass of the mobile platform. Thus, the mobile box static equations are: 

	
   𝝉!

!

!!!

+ 𝑭!+𝑚!𝑮 = 𝟎	
   (2.7a)	
  



 

18 

 

	
   (  𝒓!×  𝝉!)
!

!!!

+𝑴! = 𝟎	
   (2.7b)	
  

where 𝑭! and 𝑴! are the external forces and moments applied to the mobile platform; 𝑚! is the 

mobile platform mass; and 𝑮 is the gravitational acceleration vector. Tensions applied to the cables 

can be written as  𝝉! = −𝜏!𝒍! ; then equations (2.7a) and (2.7b) can be written as 

	
   𝑭!+𝑚!𝑮 = 𝜏!(  𝒍!! + 𝒍!! + 𝒍!!)
!

!!!

	
   (2.8a)	
  

	
   𝑴! = 𝜏! 𝒓!×  𝒍! ! +   𝒓!×  𝒍! ! +   𝒓!×  𝒍! !

!

!!!

	
   (2.8b)	
  

Assuming the gravitational acceleration is acting along the vertical Z axis    𝑮 = [0 0 −𝐺!]!. 

Thus, the matrix form is shown by 

	
  
𝐹!!
𝐹!!

𝐹!! −𝑚!𝐺!
𝑀!!
𝑀!!
𝑀!!

=

𝑙!! 𝑙!! ⋯ 𝑙!!

𝑙!! 𝑙!! ⋯ 𝑙!!

𝑙!! 𝑙!! ⋯ 𝑙!!

𝒓!×  𝒍! ! 𝒓!×  𝒍! ! ⋯ 𝒓!×  𝒍! !
  𝒓!×  𝒍! !   𝒓!×  𝒍! ! ⋯   𝒓!×  𝒍! !

  𝒓!×  𝒍! !   𝒓!×  𝒍! ! ⋯   𝒓!×  𝒍! !

𝜏!
𝜏!
⋮
𝜏!

	
   (2.9)	
  

In a compact representation, (2.9) can be written as 

 𝑾 = 𝑨𝝉 (2.10) 

where 𝑾 ∈ ℝ! is the wrench vector to balance under static equilibrium. It is easy to observe a 

relationship between equations (2.4) and (2.9) as 𝑨 = 𝑱!. Matrix 𝑨 is called the structure matrix and 

depends on the parameters of the robot and the pose of the mobile platform. Cable tensions to balance 

wrench can be found by inverting 𝑨 ensuring all cable tensions are always positive. However, for 

fully constrained cable-based robots, the number of cables m is larger than the degrees of freedom n 

of the mobile platform; in consequence, 𝑨 ∈ ℝ!×! and it may have infinite cable tensions solutions 

(underdetermined linear system). A free-singular pose of the mobile platform means that condition 
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(2.6) is satisfied, which results in that 𝑨 has full row-rank. Assuming the last condition, the solution 

of Eq. (2.10) can be obtained as 

 𝝉 = 𝝉! + 𝝉! (2.11) 

where 𝝉! ∈ ℝ! is a solution and 𝝉! ∈ ℝ! is the homogenous solution. Thus, 𝑨𝝉! = 𝟎 and 

𝑨𝝉 = 𝑨𝝉! + 𝑨𝝉! = 𝑾; which indicates that any vector from the null space of 𝑨 added to 𝝉! is 

indeed a solution of Eq. (2.10). If minimum cable tension solutions are desired in order to reduce the 

size of the drivers, the pseudoinverse matrix is the most common formulation to use. Then, (2.11) is 

given by 

	
   𝝉 = 𝑨!𝑾 + (𝑰 − 𝑨!𝑨)𝝑	
   (2.12)	
  

where 𝑨! ∈ ℝ!×! is called the Moore-Penrose inverse or pseudoinverse of 𝑨 ∈ ℝ!×! where 

𝑨𝑨!𝑨 = 𝑨, and 𝑨! = 𝑨!(𝑨𝑨!)!!, and 𝑰 ∈ ℝ!×! is the identity matrix. The first term of Eq. (2.12) 

represents a vector with the minimum 2-norm solution without considering the cable tension 

constraints, and therefore the cable tensions might be negative. The second term is an arbitrary vector 

from the nullspace of 𝑨 depending on 𝝑 ∈ ℝ!. Equation (2.12) can be rewritten as  

 𝝉 = 𝑨!𝑾 + 𝑵𝒉 (2.13) 

where 𝑵𝒉 is an arbitrary vector of cable tensions to balance the redundant cables among all the cables 

without affecting the pose of the mobile platform (internal forces). This vector is used to make all 

cable tension positive. 𝑵 ∈ ℝ!×(!!!) is the nullspace or kernel of 𝑨, and 𝒉 ∈ ℝ(!!!) must be 

determined such that all cable tensions be positive (minimum requirement). Thus, the problem is 

reduced to select a criterion to find a unique value(s) of 𝒉 subjected to 𝜏! ≥ 0  ∀  𝑖 = 1,2…𝑚. The 

latter is called force-closure condition with the assumption that unlimited actuator forces can be 

applied to the cables in order to support any arbitrary wrench. The force-closure condition is satisfied 

when the homogenous term of the structure matrix is always strictly positive [63], that is  

	
   ∀  𝑵 ∈ 𝑛𝑢𝑙𝑙 𝑨 ,∃  𝑵𝒉 ∈ ℝ!!  ,where  𝑨 ∈ ℝ!×!  and  𝑛 < 𝑚	
   (2.14)	
  

However, in real applications, cable tensions are bounded by lower and upper cable tension limits 

because lower tension limits maintain cables taut ensuring a minimum overall stiffness of the robot, 

and upper tension limits avoid excessive deformation of the cables and the use of big actuators. Here, 
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the minimum 2-norm solution is used to select 𝒉 which minimizes the tensions among all cables 

while all cable tensions remain bounded; in other words  

	
   minimize   F = 𝜏!!!
!!!

!/!
.	
  

(2.15)	
  Subjected	
  to	
   𝑾 = 𝑨𝝉	
  

and	
   0 < 𝜏!,!"# ≤ 𝜏! ≤ 𝜏!,!"#      ∀    𝑖 = 1,2,…𝑚.	
  

On the other hand, feasible wrenches are those constant static forces/moments applied to the 

mobile platform that can be balanced by all positive cable tensions, which might be subjected to a set 

of cable tension limits. Conditions to determine the feasibility of balancing a wrench [58], [122], are 

as follows: 

	
   ∃   𝝉 𝝉 = 𝑨!𝑾 + 𝑵𝒉,𝑵𝒉 ∈ ℝ!𝒎  ,where  𝑛 < 𝑚   ∩  

{𝝉|0 < 𝜏!,!"# ≤ 𝜏! ≤ 𝜏!,!"#     ∀  𝑖 = 1,2,… ,𝑚}  
(2.16)	
  

In other words, this condition establishes that there is at least a solution to Eq. (2.13) which 

intersects the convex set delimited by the cable tension limits. This convex set is essentially a 

hyperbox in ℝ!!. Then, two infeasible wrench situations can occur; the inability of a certain pose of 

the mobile platform to satisfy the force-closure condition and the impossibility of finding a set of 

cable tensions to fulfill the set of cable limits for a given wrench applied to the mobile platform. 

These conditions can be used to generate different workspaces. 

2.4 Workspace analysis approaches 

Several methods to quantify, qualify, expand, and design cable-based robot workspaces have 

been developed during the last ten years. Ebert-Uphoff and Voglewede [5] and Bosscher and Ebert-

Uphoff [123] give different definitions of workspaces for cable-based robots assuming that the cables 

are massless and straight. According to these authors, two groups of workspace can be identified: 

static and dynamic. A static workspace is a particular case of the dynamic workspace, where 

accelerations of the mobile box can be assumed to be small, and thus, quasi-static motion analysis is 

valid; examples of studies of static workspaces can be found in [99] and [53]. Works related to 

dynamic workspaces can be found in [124] and [125], where the dynamic effects of the cables and 

motors are neglected and only the inertial effects of the mobile box for a given set of accelerations are 
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included. Workspace analysis methods can be identified by the inclusion of the following criteria: 

kinematic and force singularities, external wrenching applied to the mobile box, stiffness, 

interference, and gravitational force. Thus, several shapes and sizes of workspaces can be identified 

and depicted. The process of selecting an appropriate criterion may be reduced by identifying the 

existing correlation between the workspace with the type of cable-based robot and the task to be 

accomplished. Moreover, depending on the type of criterion selected, it is possible to propose changes 

in the configuration of a cable-based robot in order to expand its workspace. Bruckmann et al. [112] 

suggest starting the workspace analysis with the force singularity condition (wrench-closure 

workspace); that is, the identification of all possible mobile-box poses where cable tensions are 

bounded by predefined minimum and maximum tension values. Then, any of the above mentioned 

criteria can be added. 

Based on the last paragraph, an appropriate definition for the workspace of a cable-based robot 

[126] and [60], can be established as a set of all poses of the mobile box subjected to a given external 

wrench (force/torque), which must be balanced with positive bounded cable tensions and might 

include one of the following limitations: geometric free-singularity configurations, enough structural 

rigidity and free-collision cable configurations. This analysis can be done with a discretization 

approach, follow by a continuous approach for verification purposes. Discrete approaches are based 

on a grid resolution of the area or volume, and therefore, each pose of the mobile box must be 

analyzed. In contrast, continuous approaches use analytical techniques to generate the whole 

workspace of a cable-based robot; for instance, Stump and Kumar [122] use convex analysis to 

develop closed form expressions to define the workspace boundaries of a planar and a spatial robots; 

however, these results are based on unbounded positive cable tensions. After a workspace analysis is 

done, the next step is to develop strategies to optimize this workspace by expanding or improving 

some of the above mentioned criteria. Gosselin and Bouchard [26] extend the orientation workspace 

of an underconstrained cable-based robot to capture the shapes of solid objects with a camera 

mounted in the mobile box. The latter is achieved by the addition of a gravity-activated mechanism 

mounted in this mobile box. Including a desired stiffness in the workspace is another additional 

criterion analyzed by several authors. Verhoeven et al. [60] find the workspace subjected to a 

minimum stiffness value condition of a planar cable-based robot. Behzadipour and Khajepour [114] 

map a stable workspace by including the antagonistic forces in the overall stiffness model. Liu et al. 

[116] and Yu et al. [115] analyze the enhancement of stiffness maintaining an optimal cable tension 
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distribution. Hassan and Khajepour [127] analyze different anchor points of a large-scale fully 

constrained cable-based robot by mapping the fundamental natural frequency in the wrench-closure 

workspace. 

2.4.1 Iterative model description 

Stiffness modelling allows knowing whether the mobile box is stabilizable, thus avoiding erratic 

motions and lack of system control. The overall stiffness formulation of a cable-based robot is based 

on the elastic properties and tensions of cables, considering the mobile platform and the actuators as 

rigid elements. Thus, the stiffness matrix relates the infinitesimal changes of external forces and 

moments applied to the mobile platform and the linear and rotational small displacements of the 

mobile platform. Applying derivatives to Eq. (2.10) with respect to a pose of the mobile platform    𝑿!, 

the stiffness matrix is obtained as 

𝑲 =
𝑑𝑾
𝑑𝑿!

=
𝑑
𝑑𝑿!

𝑨𝝉 =
𝑑
𝑑𝑿!

𝑱!𝝉   . 

Then 

𝑲 =
𝑑𝑱!

𝑑𝑿!
𝝉 + 𝑱!

𝑑𝝉
𝑑𝑿!

  . 

The term !𝝉
!𝑿!

 can be written as 

𝑑𝝉
𝑑𝒍

𝑑𝒍
𝑑𝑿!

= diag 𝑘!,… , 𝑘!   𝑱 

Thus, 

𝑲 =
𝑑𝑱!

𝑑𝑿!
𝝉 + 𝑱! diag 𝑘!,… , 𝑘!   𝑱 

Using the four-spring model proposed by Behzadipour and Khajepour [114], the stiffness of a 

cable-based robot can be expressed as 

	
   𝑲 = 𝑲! + 𝑲! 	
   (2.17)	
  

where 𝑲! is the stiffness matrix as a consequence of the tensions applied to the cables, and 𝑲! is 

the stiffness matrix resulting from cable stiffness. The stiffness matrices can be expressed as 
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𝑲! =
𝜏!
𝑙!

!

!!!

𝟏 − 𝒍!𝒍!
!

(𝟏 − 𝒍!𝒍!
!
)[𝒓!×]!

[𝒓!×](𝟏 − 𝒍!𝒍!
!
) [𝒓!×] 𝟏 − 𝒍!𝒍!

!
𝒓!× ! − [𝒍!×][𝒓!×]!

 

𝑲! = 𝑘!

!

!!!

𝒍!𝒍!
!

𝒍!𝒍!
!
[𝒓!×]!

[𝒓!×]𝒍!𝒍!
!

[𝒓!×]𝒍!𝒍!
!
[𝒓!×]!

 

where 𝑘! is the ith cable stiffness;  [𝒓!×] means the cross product operator, and 𝟏 is the identity 

matrix. A sufficient condition for the stabilizability of a static cable-based robot is that the stiffness 

matrix must be positive definite.  

The robot stiffness matrix is used to map the deflections of the mobile platform with respect to a 

set of the applied forces/moments. Alternatively, robot natural frequencies can be used as another 

measure for robot’s design. Assuming no friction in drums, the natural frequencies of the robot are 

obtained from:  

	
  

(𝑓!!)𝑿! =
eig!(  𝑴!

!!𝑲𝑿!)

2𝜋
           𝐻𝑧 	
  

(2.18)	
  

where 𝑲𝑿! is the robot stiffness matrix at a particular pose 𝑿! of the mobile platform, 

eig!(  𝑴!
!!𝑲𝑿!) is the qth eigenvalue and (𝑓!!)𝑿! is the qth natural frequency at a particular pose of 

the mobile platform, and 𝑴! is the inertial matrix of the mobile platform.  

Consequently, a design optimization problem can be formulated with respect to a performance 

index; for example, the fundamental frequency (minimum natural frequency), must be maximized in 

the overall robot workspace in order to enhance the robot stiffness subjected to the positive cable 

tension constraints; that is: 

	
   max
𝑫

min
𝑿!  !  !

𝑓!!(𝑫,𝑿!)   	
  

Subjected  to          0 < τ!"# ≤ τ! ≤ τ!"#      ∀    𝑖 = 1,2,… ,𝑚  cables	
  

(2.19)	
  

where 𝑫 is the design parameters vector which  has a relevant influence on the robot stiffness; τ!"# is 

the minimum cable tension; τ!"# is the maximum tensions, and τ! is the tension in the ith cable.  



 

24 

 

The workspace of a cable-based robot can be obtained by scanning every possible pose of the 

mobile platform and applying the equations developed in the previous chapter. Then, any criteria can 

be successively added, such as gravity, external forces/moments, and stiffness. The following 

algorithm is implemented in a MATLAB program (Appendix A) to calculate the cable tensions and 

workspace of a cable-based robot.  

1.	
  Input	
  of	
  robot	
  parameters	
  and	
  selection	
  of	
  a	
  criterion	
  (force-­‐closure	
  or	
  feasible-­‐wrench).	
  

2.	
  For	
  each	
  pose	
  of	
  the	
  mobile	
  platform:	
  	
  

2a.	
   Check	
   free-­‐singularity	
   condition	
   using	
   Eq.	
   (2.6).	
   If	
   it	
   is	
   satisfied,	
   go	
   to	
   next	
   step,	
  

otherwise	
  go	
  to	
  step	
  2e.	
  	
  

2b.	
  

	
  

Case	
   1:	
   (Force-­‐closure	
   condition)	
   Given	
   any	
   arbitrary	
   wrench,	
   find	
   all	
   cable	
  

positive	
   tensions	
   with	
   unbounded	
   maximum	
   tension.	
   Check	
   force-­‐

closure	
   condition	
   with	
   Eq.	
   (2.14).	
   If	
   there	
   exists	
   such	
   condition,	
   find	
  

cable	
   tensions	
  with	
  Eq.	
   (2.15)	
   and	
  go	
   to	
   step	
  2c;	
  otherwise	
  go	
   to	
   step	
  

2e.	
  	
  

Case	
  2:	
  (Positive	
  feasible-­‐wrench	
  condition)	
  Given	
  a	
  constant	
  static	
  wrench,	
  find	
  

all	
   cable	
   positive	
   tensions	
   with	
   bounded	
   maximum	
   tension.	
   Check	
  

feasibility	
   condition	
  with	
  Eq.	
   (2.14).	
   If	
   there	
  exists	
   such	
   condition,	
   find	
  

cable	
   tensions	
  with	
  Eq.	
   (2.16)	
   and	
  go	
   to	
   step	
  2c;	
  otherwise	
  go	
   to	
   step	
  

2e.	
  

Case	
  3:	
  (Feasible-­‐wrench	
  condition)	
  Given	
  a	
  constant	
  static	
  wrench,	
  find	
  all	
  cable	
  

positive	
   tensions	
   subjected	
   to	
   a	
   set	
   of	
   bounded	
   cable	
   tensions	
  

(minimum	
   and	
   maximum	
   tensions)	
   with	
   Eq.	
   (2.16).	
   Check	
   feasibility	
  

condition.	
  If	
  there	
  exists	
  such	
  condition,	
  go	
  to	
  step	
  2c;	
  otherwise	
  go	
  to	
  

step	
  2e.	
  

2c.	
   Calculate	
   the	
   overall	
   stiffness	
   matrix	
   with	
   Eq.	
   (2.17).	
   Check	
   the	
   stiffness	
   matrix	
   is	
   a	
  

definite	
  positive	
  matrix.	
  If	
  there	
  exists	
  such	
  condition	
  go	
  to	
  the	
  next	
  step,	
  otherwise	
  go	
  

to	
  step	
  2e.	
  	
  

2d.	
  Mark	
  this	
  pose	
  as	
  part	
  of	
  the	
  positional	
  workspace	
  of	
  the	
  cable-­‐based	
  robot.	
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2e.	
  End	
  of	
  the	
  loop:	
  if	
  there	
  exists	
  more	
  poses	
  to	
  check,	
  go	
  to	
  step	
  2a;	
  otherwise	
  go	
  to	
  step	
  

3.	
  

3.	
  End.	
  

This algorithm analyzes each pose of the mobile platform inside the static workspace. Given the 

parameters of the cable-based robot, the Jacobian matrix is obtained by using Eq. (2.4); then, the null-

space of the structure matrix is used to calculate the tensions of all cables. 

2.5 Control topologies 

In Bruckmann et al. [93] and without loss of generality, the objective of a cable-based robot’s 

control  is to adjust the length (position control) and tension (force control) of each actuated cable for 

a desired pose or trajectory of a mobile platform subjected to external disturbances (forces/moments). 

Several disturbance types can be modeled such as static, impulsive, random and cyclical, and where 

they are located (actuators, cables, mobile box and anchor points). However, static and punctual 

disturbances located in the mobile box and the actuators are the more common models under study, 

assuming the cables are massless [128]. Static disturbances are constant wrenches, for instance, an 

invariable object weight. On the other hand, impulsive disturbances happen when wrench values 

suddenly change, for example, during a collision between the mobile box and the object to be 

grasped. In the case of redundant cable-based robots, these control studies are based on parallel 

manipulators. Indeed, it has proved that almost all control methodologies for parallel mechanisms can 

be applied to cable-based robots by adding the positive cable tension conditions to the overall control 

scheme [48], [129] and [130]. 

The use of redundant cables could eliminate or decrease some types of singularities and enhance 

the overall stiffness. However, this extension has its own difficulty finding an optimal distribution of 

all cable tensions between a minimum and a maximum value for each configuration. Thus, several 

approaches have been developed in order to solve the main cable-based robots’ control problems: the 

unilateral tension and the redundantly actuation of cables. Feedback linearization and time optimal 

control are examples of these approaches [131]. Feedback linearization, also known as inverse 

dynamics control or computed torque technique, is used to calculate the actuator forces based on the 

dynamic forces obtained from the dynamic model of the cable-based robot. This technique is 

commonly coupled with Proportional-Derivative (PD) controllers, and more recently with robust and 

adaptive controllers [132] and [133]. Kawamura et al. [15] apply a PD feedback controller in the joint 



 

26 

 

space coordinate (cable length coordinates) with gravitational compensation to the FALCON-7 robot. 

Su et al. [88] establish that once it is proved that there are no singularities in a cable-based robot, the 

use of a robust control for tracking is appropriate. Thus, a Proportional-Integrative-Derivative (PID) 

control scheme is implemented to control each cable independently based on a comparison between 

the measured lengths (using a laser positioning system of the mobile box) against the desired lengths 

(calculated using the kinematic model). This control scheme is not based on a dynamic model and 

needs an expensive sensory system. Ghasemi et al. [134], Hiller, and Hirsch [92] apply the input-

output linearization feedback technique to simulate different motions of the mobile box. They apply 

an optimal feedback linearization technique on variant objective functions. Gholami et al. [135] 

propose an efficient inverse dynamics controller in the joint space for a redundant cable-driven robot. 

This algorithm does not need to measure the end-effector position and to solve the robot forward 

kinematics, which make it suitable for real time applications. However, this controller is evaluated 

only by simulations. Yu et al. [115] develop an active task stiffness control scheme of an 

unconstrained cable-based robot, improving the trajectory tracking of its mobile box and disturbance 

rejection performance. A minimum-time task realization must be achieved for cable-based robots 

doing pick-and-place operations. This type of problem implies positive cable tension conditions in the 

formulation of the overall motion trajectory planning strategy of a cable-based robot. The strategy 

must deal with the computational time for real-time applications. Therefore, efficient methods 

(controller closed-loop algorithms) for real-time redundant cable-driven robot applications are still 

under study. Indeed, a balance between the minimum-time and the real-time task realization is an 

objective in many investigations.  

2.5.1 Dynamic model generation 

The system dynamics model is derived by assuming that cables are massless and straight. Also, 

the nonlinear effect of friction is ignored to reduce the dynamic equations’ complexity. In that sense, 

the Newton-Euler’s equations of the mobile platform are obtained by 

	
  
𝝉!

!

!!!

+ 𝑭!+𝑚!𝑮 = 𝑚!𝒗!	
   (2.20)	
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(  𝒓!×  𝝉!)

!

!!!

+𝑴! = 𝑰! ∙   𝝎! + 𝝎!× 𝑰! ∙   𝝎! 	
   (2.21)	
  

where 𝑭! and 𝑴! are unknown but bounded forces and moments (perturbations) applied to the 

mobile platform, 𝑰! is the inertial tensor of the mobile platform about its mass center in the reference 

coordinates; 𝒗!, 𝝎! are the linear and the angular acceleration of the mobile platform, respectively. 

In a compact form, equations (2.20) and (2.21) can be rewritten by 

	
   𝑴!𝑿! + 𝑪! −𝑾! = 𝑨𝝉	
   (2.22)	
  

where 𝑴!(!×!) =
(𝑚!    𝟏)!!×!! 𝟎!!×!!
𝟎!!×!! (  𝑰!)!!×!!

 is the inertial matrix, 𝑛! and 𝑛! are the number of 

translational and rotational DOF of the mobile platform, respectively, such that 𝑛 = 𝑛! + 𝑛!; 

(𝑿!)!×! = (𝒗!)!!×! (𝝎!)!!×! ! is the acceleration vector of a mobile platform pose; 𝑪!(!×!) =

𝑚!𝑮 !!×!
𝝎!× 𝑰!  𝝎!

!!×!

!
 includes the Coriolis, centrifugal and gravitational forces, 

where 𝝎!×  means the cross product operator;  𝑾!(!×!) = 𝑭! !!×! (𝑴!)!!×! ! is the wrench 

vector to balance under dynamic equilibrium; and 𝑨𝝉 !×! has the same meaning as Eq. (2.10). 
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Chapter 3 
Design and Optimization of a Cable-based Warehousing Robot 

The design problem of a cable-based robot for large-workspace and high-stiffness applications 

such as warehousing is addressed in this chapter. This chapter presents the problem of defining the 

layout design of a fully constrained cable-based robot for warehousing applications so that its 

workspace fulfills the tensionable condition and maximum robot stiffness for a given set of minimum 

and maximum tension limits. The chapter begins with the optimal design study of the robot based on 

the theoretical formulations presented in Chapter 2. Section 3.2 introduces the conceptual designs of a 

planar and a spatial cable robot with pure translational moving capabilities, followed by an 

investigation on their workspaces expansion. 

3.1 Design formulation 

Warehousing tasks require that a robot end-effector grasp parts located on the ground, move them 

upwards and automatically place them in shelves. Moreover, this operation demands a stable 

translational motion of the mobile platform, such that the mobile platform always moves aligned with 

the ground. In that sense, any rotational motion of the mobile platform must be nullified to achieve a 

pure translational robot design. In addition, warehousing tasks require high speed and stable motions 

of a mobile platform along straight distances. In consequence, requirements such as high stiffness, 

small inertia and large workspace must be included in the design plan. 

An initial design configuration can be selected with respect to the size of the feasible workspace. 

The approximated size of a feasible workspace can be obtained by the number of poses that are 

marked in the above algorithm. A feasible workspace size might be affected by the size of the static 

and mobile platform, and where their respectively anchor points are located. Then, a minimum 

number of design parameters with relevant influence on the size of the feasible workspace must be 

selected from a set of parameters with a predetermined configuration. The remaining parameters must 

be specified by the designer based on the practical application of the robot. In other words,  

	
   max
𝑫!

   Γ 𝑫!,𝑪 ,     𝑫! ⊂ 𝑪	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Subjected	
  to	
  	
  	
  	
  	
  	
  	
  0 < 𝜏!"# ≤ 𝜏! ≤ 𝜏!"#      ∀    𝑖 = 1, 2,… ,𝑚	
  
(3.1)	
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where    𝑫! is the design parameters vector which  has a relevant influence on the workspace size    Γ  

from the parameter vector    𝑪; 𝜏!"# is the minimum cable tension; 𝜏!"# is the maximum admissible 

tensions, and 𝜏! is the tension in the ith cable. The low force actuation objective is achieved by 

including the condition established in Eq. (2.16) into formulation (3.1).  

A larger feasible workspace might be a good criterion to select a configuration; however, this is 

not enough for practical applications. For example, high stiffness poses of the mobile platform are 

preferred to reduce oscillations.  

Consequently, a design optimization problem can be formulated with respect to the lowest natural 

frequency or fundamental frequency for a given design payload mass. That is, the minimum value of 

the fundamental frequency in the overall robot feasible workspace must be maximized in order to 

enhance the overall robot stiffness. This is expressed as: 

	
   max
𝑫!

min
𝑿!  !  𝚪

𝑓!! 𝑫! ,𝑿!,𝑪    ,     𝑫! ⊂ 𝑪	
   (3.2)	
  

where 𝑫! is the vector of design parameters which  have a relevant influence on the robot stiffness. 

3.1.1 Topology selection 

A warehousing robot must be simple with a large workspace, and capable of heavy-payloads and 

high-speed operation. In consequence, hybrid designs (with rigid and flexible links), and architectures 

with moving actuators/pulleys are not considered in this study. Similarly, designs with purely point-

mass end effectors are also excluded because they are limited to do linear-force tasks; that is, they 

cannot resist external moments. 

A pure planar translational mobile platform can be obtained by adding at least one parallelogram 

mechanism (minimum condition) to the system, as is shown in Figure 3.1a. The evaluation of these 

designs permits to establish some crucial differences.  

The first design is the simplest one because of its minimum component requirements; however, 

its asymmetry might affect the appropriate cable tensions balance, which could generate undesired 

vibrations in the mobile platform. This problem is reduced in the symmetrical design with the 

addition of an extra pair of cables working as a parallelogram mechanism.  
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These designs use the same number of motors and might have similar workspaces. On the other 

hand, the last candidate design (Figure 3.1c) uses four independent cables and one parallelogram 

mechanism. This configuration allows an expansion of the workspace and a better distribution of a 

payload among all the cables. Nevertheless, these advantages are possible with the addition of one 

extra motor to the system. In this work the symmetric design is selected for analysis. 

	
   	
   	
  

(a) (b) (c) 

Figure 3.1: Pure planar translational topologies with: (a) minimum parallel mechanisms condition, (b) parallel 

mechanism redundancy, and (c) independent cable redundancy. 

	
  
Assuming the distances    𝑃!𝑃! and    𝑃!𝑃! are equivalent, a parallelogram mechanism is developed 

between cables two and three. This parallelogram mechanism always guarantees the parallelism 

between the sides    𝑃!𝑃! and    𝑃!𝑃!, resulting in a fixed orientation motion of the mobile platform 

provided the cables are in tension. In consequence, this design has 𝑛 = 3 − 1 = 2 translational DOFs. 

Thus, four motors are used to control the position of the mobile platform by pulling three independent 

cables, and one pair of dependent cables. This dependent pair of cables must be equally 

collected/released such that the equivalent cable lengths condition is always maintained.  

The candidate shown in Figure 3.1b utilizes an extra parallelogram mechanism, which might result 

in a symmetrical design actuated by four motors.  

Symmetrical designs allow a better balance among the wrench and the cable tensions. In general, 

warehousing tasks do not have preferences for some kinematic and force directions, allowing the use 

of symmetrical designs. In addition, symmetry is useful for reducing the number of design 

parameters. Therefore, the candidate shown in Figure 3.1b is selected as the topology to be optimized. 



 

31 

 

3.1.2 Optimization 

The optimization procedure is divided in two stages. Firstly, an equivalent planar optimized design 

is obtained by analyzing the sensitivity of its geometrical parameters with respect to its feasible 

workspace and stiffness. In the final stage the optimized planar configuration is extended to its spatial 

version, where a set of geometrical parameters is selected to evaluate the changes of the overall 

stiffness.  For simplicity, only the weight of the mobile platform is considered as external force. 

Based on the configuration shown in Figure 3.1b, two planar configurations are optimized to obtain 

their maximum feasible workspace size. For a further spatial analysis, this study defines the planar 

size of the mobile platform and the location of the bottom anchor points connected to the mobile 

platform. In both planar configurations, the upper cables are working as parallel mechanisms and the 

bottom ones are used to constrain the motion of the mobile platform.  

The anchor points on the mobile platform of the bottom cables are symmetrical. They are located 

along the bottom length of the mobile platform for a non-crossing cable configuration, Figure 3.2a. 

Conversely, Figure 3.2b shows a crossing cable configuration, where the anchor points of the bottom 

cables are connected to the upper length of the mobile platform.  

	
   	
  

(a) (b) 

Figure 3.2: Design parameters for: (a) no-crossing and (b) crossing cables configurations. 

To allow for a fair comparison between both configurations, the static platforms are defined by the 

same parameters    𝑒 and    𝑓 by assuming that a rectangular shape for the static platform. The size of 
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each mobile platform is defined by the parameters    𝑎!, 𝑏!, 𝑐!,𝑑!, and    𝑎!, 𝑏!, 𝑐!,𝑑!, respectively. 

These parameters represent the bottom length, upper length, and high dimensions.  

Parameters    𝑑! and    𝑑! define the anchor points along the bottom and upper side of the mobile 

platform for the non-crossing and crossing cable configuration, respectively. Thus, there are a total of 

six parameters that must be determined in each configuration to completely establish the design 

configuration of the planar cable-based robot; that is, 

	
   𝑪! = 𝑎! , 𝑏! , 𝑐! ,𝑑! , 𝑒, 𝑓 !       ∀  𝑖 = 1, 2	
   (3.3)	
  

The following geometrical parameters of the mobile platform and their anchor points connected to 

the bottom cables must be determined: 

	
   𝑫 = 𝑎, 𝑏, 𝑐,𝑑 ! 	
   (3.4)	
  

where the subscripts are dropped as long as the parameters are referenced to both configurations. 

A minimum set of horizontal and vertical lengths of the mobile platform is established in function 

of the maximum size of the components to be translated (𝑏!"# and  𝑐!"#). To reduce the number of 

design parameters, let parameter    𝑏 be fixed at a predefined minimum value and let parameters    𝑑! 

and    𝑑! have the same value as parameters 𝑎! and    𝑏!, respectively. Table 3.1 summarizes the values 

of these parameters and others used in this study.  

Table 3.1: Initial parameters for planar configurations 

Symbol Description Value 

𝑏!"# Mobile platform upper length (m) 1.0 

𝑐!"# Mobile platform height (m) 0.1 

𝑒 Static platform length (m) 15.0 

𝑓 Static platform height (m) 5.0 

𝜏!"# Cables minimum tension (N) 200.0 

𝜏!"# Cables maximum tension (N) 2000.0 

𝑘 Cable stiffness (N/m x cable length) 30000.0 

𝑚! Mobile platform mass (Kg) 50.0 
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Parameters    𝑑! and    𝑑! are analyzed to determine their effects on the workspace and stiffness in 

each configuration. These variations are condensed in Figure 3.3. 

	
  

Figure 3.3: Variations of the workspace and natural frequency as a function of 

parameters    𝒅𝟏 and    𝒅𝟐.	
  

Adopting the largest size of the workspace as the highest optimization priority, optimal 

parameters    𝑎 = 𝑎∗ and    𝑐 = 𝑐∗ can be obtained from Eq. (3.1) and used to establish the remaining 

parameters. It is worthy to note that parameter    𝑐 has an active but inverse effect on the size of the 

workspace and the overall stiffness of both configurations.  

In general, the crossing planar configuration presents a larger workspace’s size and a better overall 

stiffness than the non-crossing configuration. Moreover, when parameter    𝑑! is increased, both the 

size of the feasible workspace and the fundamental frequency are enhanced. On the other hand, 

parameter    𝑑! which belongs to the non-crossing configuration must reduce its value to achieve a 

maximum size feasible workspace, while its fundamental frequency is decreasing. In consequence, 

the crossing configuration is selected for a further spatial study. Based on the optimal parameters 

obtained from the planar case, Figure 3.4 shows a spatial version with twelve cables. In this 

configuration there are four sets of cables that are each activated by an actuator, respectively. Each set 

of cables consists of cables 1, 5, 7, and 11; 2, 6, 8, and 12; 3 and 9; and 4 and 10. The upper set of 
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cables maintain the same orientation of the mobile platform, while the bottom set of cables are used 

to fully constraint the motion of the mobile platform along the  𝑋𝑍 plane.  

	
  
Figure 3.4: Design parameters of the tridimensional robot configuration with planar motion.	
  

The design optimization objective is twofold: firstly, eliminate the interference among the bottom 

and upper set of cables, and secondly, to increase the overall stiffness by keeping the maximum 

workspace established in the previous planar configuration analysis. There are ten parameters to be 

analyzed:    𝑔, ℎ, 𝑖, 𝑗, 𝑞, 𝑟, 𝑠, 𝑡, 𝑢, and    𝑣 which represent the extension of the planar robot along its    𝑌 

axis. In order to reduce the number of parameters to be analyzed, it is assumed that parameters    𝑔, ℎ, 𝑖 

and    𝑗 are defined by a maximum value defined by the task requirement; that is, the maximum wide of 

the components to be translated. Thus, the number of design parameters to be determined reduces to 

six; that is, 

	
   𝑪 = 𝑞, 𝑟, 𝑠, 𝑡, 𝑢, 𝑣 ! 	
   (3.5)	
  

Parameters    𝑞, 𝑟, 𝑠 represent the anchor distances along the width of the mobile platform, while 

parameters    𝑡, 𝑢, 𝑣 define the anchor points along the width of the static platform. 

Interference among upper and bottom cables might be eliminated by accepting inverse triangular 

connections. These type of cable arrangements have been explored in [127] to increase the cable-
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based robot overall stiffness. Thus, two sets of parameters:    𝑞, 𝑣 and    𝑠, 𝑡 are studied to evaluate their 

minimum lowest natural frequency changes. In other words, 

	
   min
!!  !  !

𝑓!! = 𝐹 𝑞, 𝑣,𝑿!     s. t.    𝑔 = ℎ = 𝑖 = 𝑗 = 𝑔!"#	
  

0 ≤ 𝑞 ≤ 𝑔, 0 < 𝑣 < 𝑗	
  

and	
  

(3.6a)	
  

	
   min
𝑿!  !  !

𝑓!! = 𝐹 𝑠, 𝑡,𝑿!     s. t.      𝑔 = ℎ = 𝑖 = 𝑗 = 𝑔!"#	
  

0 ≤ 𝑠 ≤ ℎ, 0 < 𝑡 < 𝑖	
  
(3.6b)	
  

By assuming a minimum width of the mobile platform of    𝑔!"# = 1.0 m, plots for formulations 

(3.6a) and (3.6b) are presented in Figure 3.5a and Figure 3.5b, respectively. 

	
   	
  

(a)	
   (b)	
  

Figure 3.5: Minimum lowest natural frequencies as a function of parameters: (a) q and v, and (b) s and t.	
  

A maximum value of the fundamental frequency is obtained when    𝑣 reaches its upper limit and    𝑞 

its minimum value, respectively. On the other hand, two similar maxima are achieved when 

inversely    𝑠 and    𝑡 reach their upper and lower limits. Then, the optimal parameters of    𝑞 and    𝑣 are 

selected to achieve a maximum stiffness, and parameters    𝑠 and    𝑡 are selected such that the 

interference is eliminated. 
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Similarly, to define the last anchor points, a sensitivity study can be developed for parameters    𝑟 

and    𝑢. This formulation is expressed as: 

	
   min
𝑿!  !  !

𝑓!! = 𝐹 𝑟, 𝑢,𝑿!     s. t.    𝑔 = ℎ = 𝑖 = 𝑗 = 𝑔!"#	
  

𝑞 = 0, 𝑣 = 𝑗, 𝑠 = ℎ, 𝑡 = 0	
  

0 ≤ 𝑟 ≤ ℎ, 0 < 𝑢 < 𝑗	
  

(3.7)	
  

Figure 3.6 shows the stiffness sensitivity compared to variations of parameters    𝑟 and    𝑢. 

	
  

Figure 3.6: The fundamental natural frequency as a function of parameters    𝑟 and    𝑢. 

The increase in the fundamental frequency is achieved when parameter      𝑟 approximates to its 

upper limit and    𝑢 is near to its minimum value. Finally, Table 3.2 shows the optimized parameters of 

the twelve-cable robot. 

Table 3.2: Optimal parameters for spatial configuration 

Symbol Description Value 

𝑎 Mobile platform bottom length (m) 1.86 

𝑏 Mobile platform upper length (m) 1.0 

𝑐 Mobile platform height (m) 0.47 

𝑑 Mobile platform upper anchor length (m) 1.71 
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𝑒 Static platform length (m) 15.0 

𝑓 Static platform height (m) 5.0 

𝑔 Mobile platform bottom width (m) 1.0 

ℎ Mobile platform upper width (m) 1.0 

𝑖 Static platform bottom width (m) 1.0 

𝑗 Static platform upper width (m) 1.0 

𝑞 Mobile platform bottom anchor length (m) 0.0 

𝑟 Mobile platform upper-inside anchor length (m) 1.0 

𝑠 Mobile platform upper-outside anchor length (m) 1.0 

𝑡 Static platform bottom anchor length (m) 0.0 

𝑢 Static platform upper-up anchor length (m) 0.0 

𝑣 Static platform upper-down anchor length (m) 1.0 

𝜏!"# Cables minimum tension (N) 200.0 

𝜏!"# Cables maximum tension (N) 2000.0 

𝑘 Cable stiffness (N/m x cable length) 30000.0 

𝑚! Mobile platform mass (Kg) 50.0 

 

This configuration achieves a maximum feasible workspace    Γ = 51.82 m2 with no interference 

and a minimum value of its fundamental natural frequency of      𝑓!! = 0.49 Hz. An analysis of the 

fundamental frequencies along the feasible workspace is depicted in Figure 3.7. Also, it is shown a 

maximum inscribed rectangular workspace with an area of    45.82 m2. 

	
  

Figure 3.7: Fundamental natural frequencies of the optimal robot configuration.	
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The maximum values of the fundamental frequencies are located at the boundaries of the feasible 

workspace, where the maximum cable tensions and minimum cable lengths are located.  

3.2 Configuration description 

The general structure of the proposed cable-based robotic system is shown in Figure 3.8. A 

suspended box is constrained to move inside of a static box by the action of twelve cables. The twelve 

cables are symmetrically grouped into eight top cables and four bottom cables.  

	
  

Figure 3.8: Main components of the proposed optimal robot configuration. 

The top cables support the weight of the mobile platform and restrict planar fixed-orientation 

poses of the mobile platform. Their counterparts, the bottom cables, are used to provide the required 

positive tension among cables. In other words, the top cables are sufficient to translate the mobile 

platform as an under-constrained robot relying only on the gravity force to maintain positive tension. 

Thus, the bottom cables effectively provide an adaptive gravity force to balance any external wrench 

(including forces and torques) and give rigidity to the whole system. Cables pass through pulley 

guides. They are wrapped around drums, which are activated by four motors. Motors are 
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symmetrically located in each corner of the static structure. One of the top motors controls the length 

of four cables simultaneously, while one of the bottom motors controls the tension of two cables 

concurrently.  

A detail of one of the four top cables is shown in Figure 3.9. Each cable length is defined by the 

distance between its anchor points 𝐴 to  𝐵, such that   𝑙! = 𝐴!𝐵!,      ∀  𝑖 = 1,2… 12. Note that each cable 

of the top and bottom cable pair has a coincident static anchor point, respectively, that is,  𝐴! = 𝐴!!!,

∀  𝑖 = 1,2… ,4. Conversely, the middle cable pair arrives to a common anchor point in the mobile 

platform, that is    𝐵! = 𝐵!!!, ∀  𝑖 = 4, 5.  

	
  

Figure 3.9: Detail of one of the top set of cables. 

Symmetrical locations of no-coincident anchor points make the length of each cable in each cable 

pair equal to one another, that is,   𝑙! =   𝑙!!!,      ∀  𝑖 = 1,2… 6. These conditions eliminate two rotations 

and one translation of the mobile platform, with one rotation remaining to be removed.  

The top set of cables reveals a dependent motion based on a projected parallelogram mechanism. 

The projected distances along the motion plane between anchor points 𝐴!𝐵! and 𝐴!𝐵! is equivalent 

and defined as    𝑙!!. Similarly, the projected distances for 𝐴!𝐵! and 𝐴!!𝐵!!  are the same and defined 

as    𝑙!!, as is shown in Figure 3.10, and computed as follows 
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𝑙!" =

𝑙!
! −

ℎ
2

!

          ∀  𝑖 = 1, . . ,4

𝑙!
! −

𝑔
2

!
              ∀  𝑖 = 5, 6

	
   (3.8)	
  

Thus, a projected parallelogram mechanism is obtained if the following conditions hold, 𝑙!! = 𝑙!! 

and    𝑙!! ∥ 𝑙!!. Therefore, these dependent cables must be uniformly collected or released so that the 

projected cable lengths condition is always maintained. 

	
  

Figure 3.10: Projection of one of the top set of cables. 

The above conditions eliminate any rotation, as well as one perpendicular translation of the mobile 

platform by assuming all cables are taut. Consequently, this design has two translational DOF. 

3.2.1 Kinematics 

The inverse position deals with the problem of finding the cable lengths by a given position of the 

center of the mobile platform    𝒑, with respect to the reference system. According to Figure 3.11, a 

coordinate system    𝑥!𝑦!𝑧! is fixed at the mass center of the mobile platform,    𝑜!, and another,      𝑋𝑌𝑍,  

is fixed at a reference point      𝑶. 
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(a) 

	
  

(b) 

Figure 3.11: Geometric parameters related to: (a) the static box and (b) the mobile platform. 

Vector    𝒑 establishes the position of the mobile platform between these two coordinate systems. 

Vector  𝒍! is the ith cable vector connecting the anchors points    𝐴! and    𝐵! at the static and mobile 

platforms, respectively. Thus, constant vectors    𝒂! and    𝒓!! are placed with respect to the base and the 

mobile coordinate systems. 
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Using the transformation    𝒓! = 𝑹!"#𝒓!! , where 𝑹!"# is the rotation transformation matrix with the 

sequence      𝑍𝑌𝑋 of the Euler angles      𝜽! = 𝛼   𝛽 𝛾 !, for the desired orientation of the mobile 

platform, where      𝑹!"# = 𝑹(𝑍,𝛼)𝑹(𝑋′,𝛽)𝑹(𝑌′′, 𝛾) is obtained with the three basic rotation 

transformation matrices around the 𝑍 axis, 𝑋′ axis, and 𝑌′′ axis. For planar translational motions, the 

rotation transformation becomes an identity matrix. The closure vector equation for the position is: 

	
   𝒍! = 𝒑 + 𝒓! − 𝒂!   ,      ∀        𝑖 = 1,2,… 12	
   (3.9)	
  

The ith cable’s length is obtained by applying the Euclidian norm to Eq. (3.9) as: 

	
   𝑙! = 𝒑 + 𝒓! − 𝒂! ,      ∀        𝑖 = 1,2,… 12	
   (3.10)	
  

Each pair of cables consists of an isosceles triangular shape, of which conditions can be expressed 

as: 

	
   𝑙! = 𝒍! = 𝒍!!!         ∀        𝑖 = 1,2,… 6	
   (3.11)	
  

Also, the upper cables are forming two projected parallelogram mechanisms which are related as: 

	
   𝑙!" = 𝒍!" = 𝒍(!!!)!         ∀        𝑖 = 1,2	
   (3.12)	
  

	
   𝑙!" = 𝒍!" = 𝒍(!!!)!         ∀        𝑖 = 1,2	
   (3.13)	
  

For purely translational motions on the plane      𝑋𝑍, the coordinates of the mobile platform are 

expressed as 𝑿! = [𝑃! 0 𝑃! 0 0 0]! .  Conditions (3.11) to (3.13) allow the analysis of the 

first six cables instead of the twelve cables. Then, substituting constraints (3.11) to (3.13) into (3.10), 

the inverse kinematic equations are: 

	
  
𝑙! = 𝑃! −

𝑏
2
+
𝑒
2

!

+ −
ℎ
2

!

+ 𝑃! + 𝑐 − 𝑦!" −
𝑓
2

! !/!

	
   (3.14a)	
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𝑙! = 𝑃! +

𝑏
2
−
𝑒
2

!

+ −
ℎ
2

!

+ 𝑃! + 𝑐 − 𝑦!" −
𝑓
2

! !/!

	
   (3.14b)	
  

	
  
𝑙! = 𝑃! +

𝑑
2
−
𝑒
2

!

+ −
ℎ
2

!

+ 𝑃! + 𝑐 − 𝑦!" +
𝑓
2

! !/!

	
   (3.14c)	
  

	
  
𝑙! = 𝑃! −

𝑑
2
+
𝑒
2

!

+ −
ℎ
2

!

+ 𝑃! + 𝑐 − 𝑦!" +
𝑓
2

! !/!

	
   (3.14d)	
  

	
  
𝑙! = 𝑃! −

𝑏
2
+
𝑒
2

!

+
𝑔
2

!
+ 𝑃! + 𝑐 − 𝑦!" −

𝑓
2

! !/!

	
   (3.14e)	
  

	
  
𝑙! = 𝑃! +

𝑏
2
−
𝑒
2

!

+
𝑔
2

!
+ 𝑃! + 𝑐 − 𝑦!" −

𝑓
2

! !/!

	
   (3.14f)	
  

where    𝑦!" represents the vertical distance to locate the center of mass of the mobile platform 

measured from its base. For example, if the mobile platform is considered as a trapezoidal prism, this 

value can be obtained as    𝑦!" =
!!!! !
! !!!

. 

Differentiating Eq. (3.10) results in    𝑙!𝒍! + 𝝎!×𝒍! = 𝒗! + 𝝎!×𝒓!   , ∀𝑖 = 1,2,… ,12, which relates 

the cable velocities with the mobile box velocities; as such, for any ith cable,    𝑙!   is the rate of change 

in the length;    𝝎! is the angular velocity vector,    𝒍! is the cable unitary vector in the reference frame. 

For the mobile box,    𝒗! and    𝝎! are the linear and angular velocities, respectively. In matrix form the 

inverse velocity can be expressed as: 

	
   𝑑𝒍
𝑑𝑡
= 𝑱

𝑑𝑿!
𝑑𝑡

	
   (3.15)	
  

where 𝑱 represents the Jacobian matrix. Differentiating constraints (3.11) to (3.13) results in 
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   𝑙! = 𝑙(!!!)        ∀          𝑖 = 1,2… 6	
   (3.16)	
  

	
   𝑙! = 𝑙(!!!)        ∀        𝑖 = 1,2	
   (3.17)	
  

Conditions (3.16) and (3.17) permit the use of the first four cables to obtain a representative 

differentiating inverse kinematic equation for purely translational movements, such as: 

	
  

𝑙!

𝑙!

𝑙!

𝑙!

=

𝑃! −
𝑏
2 +

𝑒
2

𝑙!

𝑃! + 𝑐 − 𝑦!" −
𝑓
2

𝑙!
𝑃! +

𝑏
2 −

𝑒
2

𝑙!

𝑃! + 𝑐 − 𝑦!" −
𝑓
2

𝑙!
𝑃! +

𝑑
2 −

𝑒
2

𝑙!

𝑃! + 𝑐 − 𝑦!" +
𝑓
2

𝑙!
𝑃! −

𝑑
2 +

𝑒
2

𝑙!

𝑃! + 𝑐 − 𝑦!" +
𝑓
2

𝑙!

𝑣!"

𝑣!"
	
   (3.18)	
  

 In general, the rank-deficient Jacobian matrix, expressed in Eq. (2.6), results in geometrical 

singularities of a robot. Frequently, these singularities are related to configurations near the 

boundaries of the robot’s workspace and the loss of full motion. Conditions of free-singularity poses 

are established as: 

	
   𝑙! > 0      ∀        𝑖 = 1,2, . . ,4	
   (3.19a)	
  

	
   −3𝑓 𝑎 + 𝑑 − 2𝑐(2𝑎 + 𝑑)
6(𝑎 + 𝑑)

< 𝑃! <
3𝑓 𝑎 + 𝑑 − 2𝑐(2𝑎 + 𝑑)

6(𝑎 + 𝑑)
	
   (3.19b)	
  

The inverse acceleration of the mobile platform can be obtained by differentiating Eq. (3.15) 

which results in 

	
   𝑑!𝒍
𝑑𝑡!

= 𝑱  
𝑑!𝑿!
𝑑𝑡!

  + 𝑱   
𝑑𝑿!
𝑑𝑡

	
   (3.20)	
  

where: 
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𝑱 = 𝑱! 𝑱!  

𝑱! =
𝑙! 𝒗! + 𝝎!×𝒓! − 𝑙!𝒍!

𝑙!!
 

𝑱! =
𝑙! 𝝎!×𝒓! ×𝒍! + 𝒓!×𝒗! − 𝑙! 𝒓!×𝒍!

𝑙!!
 

For purely translational motions of the mobile platform, the acceleration equations are: 

	
  

𝑙!

𝑙!

𝑙!

𝑙!

=

𝑃! −
𝑏
2 +

𝑒
2

𝑙!

𝑃! + 𝑐 − 𝑦!" −
𝑓
2

𝑙!
𝑃! +

𝑏
2 −

𝑒
2

𝑙!

𝑃! + 𝑐 − 𝑦!" −
𝑓
2

𝑙!
𝑃! +

𝑑
2 −

𝑒
2

𝑙!

𝑃! + 𝑐 − 𝑦!" +
𝑓
2

𝑙!
𝑃! −

𝑑
2 +

𝑒
2

𝑙!

𝑃! + 𝑐 − 𝑦!" +
𝑓
2

𝑙!

𝑎!"

𝑎!"
+	
  

𝑙!𝑣!" − 𝑙!! 𝑃! −
𝑏
2 +

𝑒
2   

𝑙!!
𝑙!𝑣!" − 𝑙!! 𝑃! + 𝑐 − 𝑦!" −

𝑓
2

𝑙!!

𝑙!𝑣!" − 𝑙!! 𝑃! +
𝑏
2 −

𝑒
2

𝑙!!
𝑙!𝑣!" − 𝑙!! 𝑃! + 𝑐 − 𝑦!" −

𝑓
2

𝑙!!

𝑙!𝑣!" − 𝑙!! 𝑃! +
𝑑
2 −

𝑒
2

𝑙!!!
𝑙!𝑣!" − 𝑙!! 𝑃! + 𝑐 − 𝑦!" +

𝑓
2

𝑙!!

𝑙!𝑣!" − 𝑙!! 𝑃! −
𝑑
2 +

𝑒
2

𝑙!!
𝑙!𝑣!" − 𝑙!! 𝑃! + 𝑐 − 𝑦!" +

𝑓
2

𝑙!!

𝑣!"

𝑣!"
	
  

(3.21)	
  

The forward position problem is related to obtaining the center of the mobile platform    𝒑, when 

any of the two cable lengths,    𝑙! or    𝑙!, and    𝑙! or    𝑙! are known. In this analysis, it is assumed that the 

anchor points are fixed and also known. As such, based on the first two expressions of Eq. (3.14), the 

position of the mobile platform can be found by: 
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𝑃! =

𝑙!! − 𝑙!!

2(𝑒 − 𝑏)
	
   (3.22a)	
  

	
  
𝑃! =

𝑓 − 2(𝑐 − 𝑦!") ± 2 𝑙!! + 𝑙!! + 𝑏𝑒 − (4𝑃!! + 𝑏! + ℎ! + 𝑒!)
2

	
  
(3.22b)	
  

There are two solutions for the vertical position of the mobile platform. If the motion is 

constrained to be inside of the static structure, the sign of the radical in Eq. (3.22b) should be 

negative. 

3.2.2 Static Force Analysis 

The forces (cable positive tensions) for a specific equilibrium point of the system are developed by 

assuming the external forces and moments are constant and acting along the center of mass of the 

mobile platform. In particular, the general structure matrix of the WCR can be formulated as    𝑨 =

[  𝒂! … 𝒂!"], where each column is represented by    𝒂! = [𝒍! (  𝒓!×  𝒍!)]!. The cable tensions are 

defined as      𝝉 = [𝜏! … 𝜏!"]! and the planar wrench as    𝑾 = 𝐹! (𝐹! −𝑚!𝐺!) 𝑀! !. A 

reduced static system of equations can be established by assuming the cable tension relations shown 

in Figure 3.12. 

	
  

Figure 3.12: Cable tensions in the robot configuration.	
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A resultant tension on each pair cable of the robot can be determined as: 

	
   𝜏!" = 𝜏! + 𝜏!!!    ∀  𝑖 = 1,2,… ,6	
   (3.23)	
  

Let each cable tension in every cable pair have equal tension; that is    𝜏! = 𝜏!!!    ∀  𝑖 = 1,2,… ,6. 

Then, 𝜏! = 𝜏!!! =
!!"
!
    ∀  𝑖 = 1,2,… ,6. In addition, top cables used for the projected parallel 

mechanism, are related by: 

	
   𝜏!" = 𝜏!" + 𝜏!(!!!)    ∀  𝑖 = 1, 2	
   (3.24)	
  

Under conditions (3.23) and (3.24), and assuming motions of the mobile platform along 

plane      𝑋𝑍  (𝑃! = 0), a reduced formulation for the structure matrix and the cable tensions are 

obtained as: 

	
  

𝑨! =

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
4𝑙!

𝑞!
4𝑙!

𝑞!
4𝑙!

𝑞!"
4𝑙!

𝑞!!
4𝑙!

𝑞!"
4𝑙!

, 𝝉! =

𝜏!!
𝜏!!
𝜏!!
𝜏!!
𝜏!!
𝜏!!

	
   (3.25)	
  

where 

𝑞! = −2𝑃! + (𝑏 − 𝑒), 𝑞! = −2𝑃! − (𝑏 − 𝑒) 

𝑞! = −2𝑃! − (𝑑 − 𝑒), 𝑞! = −2𝑃! + (𝑑 − 𝑒) 

𝑞! = −2𝑃! − 2 𝑐 − 𝑦!" + 𝑓, 𝑞! = −2𝑃! − 2 𝑐 − 𝑦!! − 𝑓 

𝑞! = 2 𝑐 − 𝑦!" 𝑞! + 𝑏𝑞!, 𝑞! = 2 𝑐 − 𝑦!" 𝑞! − 𝑏𝑞! 

𝑞! = 2 𝑐 − 𝑦!" 𝑞! − 𝑑𝑞!, 𝑞!" = 2 𝑐 − 𝑦!" 𝑞! + 𝑑𝑞! 

𝑞!! = 𝑎  𝑞! − 2𝑦!"  𝑞!, 𝑞!" = −𝑎  𝑞! − 2𝑦!"  𝑞! 

Assuming non-singular poses, Eq. (3.25) can be used to delimit the positions of the mobile 

platform such that all cables are in tension. 
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3.3 Workspace delineation 

Feasible planar regions are defined by establishing which cable pair is slack. Indeed, according to 

[136] and [50], the analysis of workspace boundaries with one or more cables that have lost tension 

admits the analytical solution of a reduced system of static equations. The all-positive workspace 

boundaries of the underconstrained and fully constrained robot configurations are studied in the 

following sections.   

3.3.1 Underconstrained case 

Based on the configuration shown in Figure 3.11, let us assume that bottom cables 3, 4, 9 and 10 

are slack; in consequence, the mobile platform is suspended by the remaining eight cables 1, 2, 5, 6, 

7, 8, 11, and 12. Assuming conditions (3.23) and (3.24) and nonsingular motions of the mobile 

platform along plane  𝑋𝑍, a reduced structure matrix based on Eq. (3.25) can be expressed as follows  

	
  

𝑨! =

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
4𝑙!

𝑞!
4𝑙!

𝑞!!
4𝑙!

𝑞!"
4𝑙!

	
   (3.26)	
  

The equivalent cable tensions of each top cable pair are grouped in    𝝉! = 𝜏!! 𝜏!! 𝜏!! 𝜏!! !, 

as is shown in Figure 3.13.  

	
  

Figure 3.13: Underconstrained planar configuration.	
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Considering only the effect of the mobile platform mass, the wrench is represented as 𝑾 =

0 −𝑚!𝐺! 0 ! (the complete equations are given in the appendix). Thus, the all-positive 

workspace, 𝚪! can be obtained by analyzing slackness conditions with constant orientation of the 

mobile platform (𝜃! = 0), and by solving the all-positive cable tension redundancy. Indeed, the loss 

of one cable makes 𝑨! square, which might admit an exact positive tension solution for the remaining 

three cable pairs. When cable pair 1 has no tension, then 𝜏!! = 0 and the system transforms into an 

equivalent three-tension system. The unique solution, 𝚪!!, is defined by the feasible area of curves 

𝛅! > 0, 𝛅! > 0, and 𝛅! > 0. Symmetrically, the area defined by curves 𝛆! < 0, 𝛆! < 0 and 𝛆! < 0 

represents the feasible workspace, 𝚪!!, when cable 2 is slack (𝜏!! = 0). Curve equations are shown 

below. 

	
   𝜹! =
!
!
(𝑒 − 𝑏) 2𝑐𝑞! + 𝑎 − 𝑏 𝑞! 𝑞!.	
  

𝜹! = − !
!
𝑎 𝑞! + 𝑞! 𝑞!.	
  

𝜹! =
!
!
2𝑐𝑞! + (𝑎 − 𝑏)𝑞! 𝑞!.  

𝜹! =
!
!
𝑏𝑞! + 𝑎𝑞! 𝑞! −

!
!
𝑐𝑞!𝑞!.	
  

𝜺! = − !
!
(𝑒 − 𝑏) 𝑎 − 𝑏 𝑞! − 2𝑐𝑞! 𝑞!.	
  

𝜺! = 𝜹!.	
  

𝜺! =
!
!
𝑎𝑞! + 𝑏𝑞! 𝑞! +

!
!
𝑐𝑞!𝑞!.	
  

𝜺! =
!
!

𝑎 − 𝑏 𝑞! − 2𝑐𝑞! 𝑞!.	
  

(3.27)	
  

Conditions 𝛅! > 0 and 𝛆! < 0 ensure that the structure matrices are not singular, by assuming that 

all cables have a length that is different than zero. Additional nonsingular conditions are observed 

when: 

	
   𝑏 ≠ 𝑒	
  

𝑃! ≠
𝑓
2
− 𝑐 + 𝑦!" 	
  

(3.28)	
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𝑃! ≠ ±
𝑎 − 𝑏
2𝑐

𝑃! +
2𝑎𝑐 − 𝑎𝑓 − 2𝑎𝑦!" + 𝑏𝑓 + 2𝑦!" − 2𝑐𝑒

4𝑐
	
  

These curves are the function of the geometrical parameters and the position of the mobile 

platform.  Any pose of the mobile platform on curves 𝛅! or 𝛆! makes the system lose tension on 

either cable 5 or 6, transforming the system into a two-cable robot. As long as the mobile platform 

stays on the aforementioned curves, the orientation will be maintained. However, beyond this limit; 

that is, inside the regions delimited by curves    𝛅!, 𝛅!, 𝛆! and 𝛆!, the two-cable system cannot hold the 

fixed orientation.  

The loss of one cable makes 𝑨! square, which admits an exact positive tension solution for the 

remaining three cable pairs, as long as the position of the mobile platform belongs to 𝚪!! or 𝚪!!. Thus, 

cable tensions can be obtained for any value of    𝑃! <
!
!
− 𝑐 + 𝑦!" , as: 

	
  

𝜏!" =

𝛿!
𝑙!   𝑚!  𝐺!  
  𝛿!

      ∀  𝑖 = 2,5,6.      0 < 𝑃! < 𝛿!

𝜀!
  𝑙!   𝑚!𝐺!  
  𝜀!

      ∀  𝑖 = 1,5,6.      𝜀! < 𝑃! ≤ 0  

	
   (3.29)	
  

These results provide information about the amount of tension applied at each top projected 

parallel cable set by  

	
   𝜏!"# = 𝜏!" + 𝜏!(!!!)    ∀  𝑖 = 1, 2	
   (3.30)	
  

with the tension orientation as follows: 

	
   𝝉!"# = 𝜏!"# 𝑙!" 0 𝑙!" !         ∀      𝑖 =     1,2	
   (3.31)	
  

The delineation of the workspace 𝚪! requires the redundancy solution of the four cable tensions. 

Here, the redundancy solution of the suspended planar cable robot is achieved by the inclusion of two 

virtual cables. This approach allows an analytical solution to the problem presented in (2.15) and 

(2.16).  The location of virtual cables in the mobile platform permits a better understanding of the 
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problem. The virtual cables represent the action of the top parallel cables on the mobile platform. 

Figure 3.14 shows the virtual cables acting on the suspended cable robot.  

	
  

Figure 3.14: Virtual cables acting in the suspended planar 

cable robot.	
  

The orientation and magnitude of these virtual cables are known from equations (3.30) and (3.31). 

The virtual anchor points can be written in function of the anchor horizontal distance    𝑟!!"!!, by using 

geometrical parameters of the mobile platform and moment balance equations as follows: 

	
   𝑟′!"!! = 𝜌 𝑟!! − 𝑟′!"!! − 𝑦!"	
   (3.32)	
  

	
   𝑟′!"!! = 𝜌 𝑟′!"!! − 𝑟!! − 𝑦!"	
   (3.33)	
  

	
  
𝑟!!"!! =

𝑟!!"!!(𝜌 + 𝜃!) − 𝜌 𝑟!! + 𝑟!!
(𝜌 − 𝜃!)

      ∀    𝜌 ≠ 𝜃!	
   (3.34)	
  

where  

𝜌 =
2𝑐

(𝑎 − 𝑏)
,            ∀    𝑎 > 𝑏, 𝑐 > 0 

𝜃! =
𝑙!"
𝑙!"
, ∀    𝑙!" ≠ 0, 𝑖 = 1, 2. 
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In other words, the virtual anchor points are changing accordingly to find a positive cable tension 

solution. Thus, cable tensions can be expressed in function of these virtual anchor points as: 

	
   𝜏!!
𝜏!!

=
𝜏!"!

𝑟!!𝑟!! − 𝑟!!𝑟!!

𝑟!! −𝑟!!
−𝑟!! 𝑟!!

𝑟′!"!!
𝑟′!"!!

	
   (3.35a)	
  

	
   𝜏!!
𝜏!!

=
𝜏!"!

𝑟!!𝑟!! − 𝑟!!𝑟!!

𝑟!! −𝑟!!
−𝑟!! 𝑟!!

𝑟′!"!!
𝑟′!"!!

	
   (3.35b)	
  

The distances 𝑟!" represent the known anchor points on the mobile platform, as are defined in Eq. 

(3.9). The solution of equations (3.19a) and (3.19b) are function of the geometrical parameter 𝑟!!"!! 

which values for positive tensions can be found between the following limits 

	
   𝑟!! < 𝑟′!"!! < 𝑟!!	
   (3.36)	
  

The minimum two-norm cable tension problem expressed in Eq. (2.15) can be rewritten as: 

	
   minimize F! = 𝜏!"!! + 𝜏!"!! − 2(𝜏!!𝜏!! + 𝜏!!𝜏!!)	
   (3.37)	
  

By substituting equations (3.35a) and (3.35b) into Eq. (3.37), a quadratic equation is obtained 

which admits a minimum value by equaling its derivative to zero, 

	
   𝜕 𝜏!!𝜏!! + 𝜏!!𝜏!!
𝜕(𝑟!!"!!)

= 0	
   (3.38)	
  

Solution of Eq. (3.38) gives the optimal value of the virtual location 𝑟!!"!! for the minimum cable 

tensions in sense of the two-norm definition as 

	
   𝑟∗ !
!"!! = −

𝑁
2𝐷

	
   (3.39)	
  

where 
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𝐷 =
𝜏!"!

(𝑟!!𝑟!! − 𝑟!!𝑟!!)

! 𝜃! + 𝜌
(𝜃! − 𝜌)

!

𝜌𝑟!! − 𝑟!! 𝑟!! − 𝜌𝑟!!

−
𝜏!"!

𝑟!!𝑟!! − 𝑟!!𝑟!!

!
   𝜌  𝑟!! + 𝑟!! 𝜌  𝑟!! + 𝑟!!  

𝑁 =
𝜏!"!

(𝑟!!𝑟!! − 𝑟!!𝑟!!)

! 1
(𝜃! − 𝜌)

!
𝜃! + 𝜌 2𝑟!!𝑟!!! 𝜃!𝜌! + 2𝑟!!𝑟!!𝑟!!𝜌! − 2𝑟!!𝑟!!𝑟!!𝜌!

− 𝑟!!𝑟!!𝜃!𝑦!" − 2𝑟!!𝑟!!𝜌!𝑦!" + 𝑟!!𝑟!!𝜌𝑦!" + 2𝑟!!𝑟!!𝜃!𝜌𝑦!" + 2𝑟!!𝑟!!𝑟!!𝜌

− 2𝑟!!𝑟!!𝑟!!𝜌! − 𝑟!!𝑟!!𝜃!𝑦!" + 𝑟!!𝑟!!𝜌𝑦!" + 2𝑟!!𝑟!!𝑟!!𝜌 − 𝑟!!𝑟!!! 𝜃!𝜌

− 𝑟!!𝑟!!𝑟!!𝜌! − 𝑟!!𝑟!!! 𝜌! − 𝑟!!𝑟!!𝑟!!𝜃!𝜌

+
𝜏!"!

𝑟!!𝑟!! − 𝑟!!𝑟!!

!
𝜌  𝑟!! − 𝑦!" 2𝜌  𝑟!!𝑟!! + 𝑟!!𝑟!! + 𝑟!!𝑟!!  

The all-positive tensions workspace 𝚪! can be delineated by analyzing equations (3.19a) and 

(3.19b) for different conditions on cable tensions. For example, for force-closure conditions:  

	
   𝝉!" > 0,      ∀    𝑖 = 1,2,5,6	
   (3.40)	
  

Also for feasible conditions: 

	
   𝟎 < 𝝉!"# ≤ 𝝉!" ≤ 𝝉!"#,      ∀    𝑖 = 1,2,5,6	
   (3.41)	
  

The stiffness matrix of the suspended configuration shown in Figure 3.13 is analyzed. As is 

expressed in Eq. (2.17), the values inside the stiffness matrix are affected by the cable tensions and 

the cable stiffness. Let us consider the stiffness matrix which results of the tensions applied to cables, 

that is: 

	
  
𝑲!" =

𝑑𝑨!
𝑑𝑿!

𝝉!	
   (3.42)	
  

Equation (3.42) expressed that the stiffness can be enhanced by selecting large values in the cable 

tension vector  𝝉! = 𝜏!! 𝜏!! 𝜏!! 𝜏!! !. Moreover, based on the equations (3.35a) and (3.35b), 

each top cable tension value is directly proportional to the amount of tension applied at each top 
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projected parallel cable set, 𝜏!"! and 𝜏!"!. The amount of tension applied at each top cable set, 

expressed in Eq. (3.30), can be expressed as  

	
  

𝜏!"! =   𝑚!𝐺!   𝑙!
  𝜀!
  𝜀!

+ 𝑙!

𝛿!
  𝛿!

      if      0 < 𝑃! < 𝛿!

𝜀!
  𝜀!

      if      𝜀! < 𝑃! ≤ 0  

	
   (3.43a)	
  

	
  

𝜏!"! =   𝑚!𝐺!   𝑙!
  𝛿!
    𝛿!

+ 𝑙!

𝛿!
  𝛿!

      if      0 < 𝑃! < 𝛿!

𝜀!
  𝜀!

      if      𝜀! < 𝑃! ≤ 0  

	
   (3.43b)	
  

Then, for the suspended configuration, the stiffness matrix can be increased by adding a 

gravitational vertical force to the mobile platform. Indeed, stiffness has a direct relationship to the 

values of the minimum and maximum allowable cable tensions. It is observed by [131] and [116] that 

the increment of 𝜏!"# improves the stiffness of the robot; however, it might reduce the workspace 

size as well. Consequently, high stiffness configurations must be evaluated with respect to the 

variations in the workspace size.  

In that sense, the method to distribute the tension among cables plays an important role; in fact, 

different norms used in the minimization of the cable tension vector affects the cable tension 

redundancy resolution, as is probed by Gosselin and Grenier [107]. 

3.3.2 Fully-constrained case 

The fully constrained planar robot, shown in Figure 3.2b, is analyzed in this section. The all-

positive workspace is obtained by establishing a reduced structure matrix of Eq. (3.9) and analyzing 

the slackness in each one of the bottom pair cables with constant orientation of the mobile platform. 

Specifically, top cables 1, 2 together with the bottom pair cables 3 and 4 define the reduced structure 

matrix. Then, assuming a lack of tension on cables 3 and 4, and considering only gravitational effects, 

the unique solution of the three-cable system defines the feasible workspace 𝚪! delineated by 

curves    𝛂! < 0, 𝛂! < 0 and    𝜷! > 0. The equations of these curves are: 
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   𝛂! = − !
!
2𝑐 − 𝑓 + 2𝑃! − 2𝑦!" (2𝑏𝑐𝑒 + 2𝑏𝑑𝑓 − 𝑏𝑒𝑓 + 2𝑏𝑒𝑃! − 2𝑏𝑒𝑦!" + 4𝑏𝑓𝑃! −

2𝑐𝑑𝑒 − 𝑑𝑒𝑓 − 2𝑑𝑒𝑃! + 2𝑑𝑒𝑦!").	
  

𝛂! =
!
!
𝑏𝑐𝑒 − !

!
𝑏𝑐𝑃! +

!
!
𝑏𝑑𝑓 − !

!
𝑏𝑒𝑓 + !

!
𝑏𝑒𝑃! −

!
!
𝑏𝑒𝑦!" +

!
!
𝑏𝑓𝑃! −

!
!
𝑏𝑃!𝑃! +

!
!
𝑏𝑃!𝑦!" −

!
!
𝑐𝑑𝑒 + !

!
𝑐𝑑𝑃! −

!
!
𝑑𝑒𝑓 − !

!
𝑑𝑒𝑃! +

!
!
𝑑𝑒𝑦!" +

!
!
𝑑𝑓𝑃! +

!
!
𝑑𝑃!𝑃! −

!
!
𝑑𝑃!𝑦!".	
  

𝛂! =
!
!
𝑏𝑐𝑒 − !

!
𝑏𝑐𝑃! +

!
!
𝑏𝑑𝑓 − !

!
𝑏𝑒𝑓 + !

!
𝑏𝑒𝑃! −

!
!
𝑏𝑒𝑦!" +

!
!
𝑏𝑓𝑃! −

!
!
𝑏𝑃!𝑃! +

!
!
𝑏𝑃!𝑦!" −

!
!
𝑐𝑑𝑒 − !

!
𝑐𝑑𝑃! −

!
!
𝑑𝑒𝑓 − !

!
𝑑𝑒𝑃! +

!
!
𝑑𝑒𝑦!" −

!
!
𝑑𝑓𝑃! −

!
!
𝑑𝑃!𝑃! +

!
!
𝑑𝑃!𝑦!".	
  

𝛂! =
!
!
𝑏𝑃! 2𝑐 − 𝑓 + 2𝑃! − 2𝑦!" .	
  

𝛃! =
!
!
2𝑐 − 𝑓 + 2𝑃! − 2𝑦!" (2𝑏𝑐𝑒 + 2𝑏𝑑𝑓 − 𝑏𝑒𝑓 + 2𝑏𝑒𝑃! − 2𝑏𝑒𝑦!" − 4𝑏𝑓𝑃! −

2𝑐𝑑𝑒 − 𝑑𝑒𝑓 − 2𝑑𝑒𝑃! + 2𝑑𝑒𝑦!").	
  

𝜷! = − !
!
𝑏𝑐𝑒 − !

!
𝑏𝑐𝑃! −

!
!
𝑏𝑑𝑓 + !

!
𝑏𝑒𝑓 − !

!
𝑏𝑒𝑃! +

!
!
𝑏𝑒𝑦!" +

!
!
𝑏𝑓𝑃! −

!
!
𝑏𝑃!𝑃! +

!
!
𝑏𝑃!𝑦!" +

!
!
𝑐𝑑𝑒 − !

!
𝑐𝑑𝑃! +

!
!
𝑑𝑒𝑓 + !

!
𝑑𝑒𝑃! −

!
!
𝑑𝑒𝑦!" −

!
!
𝑑𝑓𝑃! −

!
!
𝑑𝑃!𝑃! +

!
!
𝑑𝑃!𝑦!".	
  

𝜷! = − !
!
𝑏𝑐𝑒 − !

!
𝑏𝑐𝑃! −

!
!
𝑏𝑑𝑓 + !

!
𝑏𝑒𝑓 − !

!
𝑏𝑒𝑃! +

!
!
𝑏𝑒𝑦!" +

!
!
𝑏𝑓𝑃! −

!
!
𝑏𝑃!𝑃! +

!
!
𝑏𝑃!𝑦!" +

!
!
𝑐𝑑𝑒 + !

!
𝑐𝑑𝑃! +

!
!
𝑑𝑒𝑓 + !

!
𝑑𝑒𝑃! −

!
!
𝑑𝑒𝑦!" +

!
!
𝑑𝑓𝑃! +

!
!
𝑑𝑃!𝑃! −

!
!
𝑑𝑃!𝑦!".	
  

𝛃! = 𝜶!.	
  

(3.44)	
  

The pose of the mobile platform on curves    𝛂! or    𝜷! has the consequence of tension loss in cables 

1 or 2, resulting in a two-cable system. The fixed orientation of the mobile platform is maintained as 

long as the platform is moving on the mentioned curves. The minimum two-norm cable tension 

problem expressed in Eq. (2.15) can be rewritten as: 

	
   minimize F! = 𝜏!"!! + 𝜏!"!! + 𝜏!! + 𝜏!! − 2(𝜏!𝜏! + 𝜏!𝜏!)	
   (3.45)	
  

Finding the minimum of  F(𝝉) implies to maximize the negative term  2(𝜏!𝜏! + 𝜏!𝜏!) and keep 

all the cable tension positive; that is, 
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   max 𝜏!𝜏! + 𝜏!𝜏!   	
  

Subjected	
  to	
  	
  	
  	
  	
  	
  	
  𝜏! > 0      ∀    𝑖 = 1, 2,… ,𝑚	
  
(3.46)	
  

An iterative method can be used to solve Eq. (3.46).  

3.4 Numerical results 

The following examples are based on the geometric parameters given in Table 3.3 under different 

conditions of force applied on the mobile platform for the underdetermined and fully-constrained 

robot cases. 

Table 3.3: Parameters of the suspended planar robot 

Symbol Value in meters 

𝑎 0.370 

𝑏 0.200 

𝑐 0.094 

𝑑 0.340 

𝑒 3.000 

𝑓 1.000 

𝑔 0.200 

ℎ 0.160 

 

Geometric parameters are shown in Figure 3.11. 

3.4.1 Suspended cable-based robot 

The influence of the gravitational force is analyzed for both planar cases, by assuming a mobile 

platform mass   𝑚! = 1 Kg. The curves described in Equation (3.11) are delineated in Figure 3.15. 
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Figure 3.15: Delineation of workspace  𝚪𝒔𝟏 by 𝛅𝟎 > 𝟎, 𝛅𝟔 > 𝟎 and 𝛅𝟐 > 𝟎, and workspace 

𝚪𝒔𝟐 by 𝛆𝟎 < 𝟎, 𝛆𝟏 ≤ 𝟎, and 𝛆𝟓 < 𝟎. 

When cable 1 has no tension, the robot transforms into a three-cable system. Then, the right side 

workspace, 𝚪!!, is defined by the area delimited by conditions 𝛅! > 0, 𝛅! > 0, and 𝛅! > 0. 

Symmetrically, the left workspace,  𝚪!!, is contained inside the curves 𝛆! < 0, 𝛆! < 0 and 𝛆! < 0 

when cable 2 is slack.  

Additional curves    𝛅! > 0 and 𝛆! < 0 define the positive tension in cables 5 and 6, respectively. 

Conditions 𝛅! > 0 and 𝛆! < 0 ensure that the structure matrices are not singular, by assuming that all 

cables have a minimum length different from zero. 

The cable tension redundancy solution expressed by equations (3.35) and (3.40) are delineated by 

assuming that a minimum cable tension condition greater than zero is acceptable; that is, 𝜏!"# > 0. 

Moreover, there is no limit to the amount of tensions that are introduced; that is,    𝜏!"#  is unbounded.  

In Figure 3.16, regions defined by curves 𝝉!! > 0 and 𝝉!! > 0 define the all-positive tension 

workspace    𝚪!. Regions between 𝝉!! > 0 and    𝝉!! > 0, and 𝝉!! > 0 and    𝝉!! > 0, define regions 

where the tension of at least one cable loses tension. 

A point on either the curves 𝝉!! or 𝝉!! makes cable one or two slack. Then, beyond these limits, 

the all-positive tension condition is not hold, and the four-pair-cable system is transforming in the 

three-cable planar system.  In consequence, any point outside the curves 𝝉!! > 0 and    𝝉!! > 0, 

implies the use of equations (3.11) to obtain the cable tensions.  
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Figure 3.16: The all-positive cable tension area 𝚪𝒔 delineated by curves 𝝉𝒔𝟏 > 𝟎 and 𝝉𝒔𝟐 >

𝟎.	
  

In Figure 3.17, the regions defined between right curves 𝛕!! > 0 and 𝛅! > 0, and left curves 

𝛕!! > 0 and 𝛆! > 0 represent positions of the mobile platform when cable one or two is slack, 

respectively. 

	
  

Figure 3.17:  Curves 𝝉𝒔𝟏 > 𝟎 and 𝝉𝒔𝟐 > 𝟎, and 𝛅𝟔 > 𝟎  and 𝛆𝟓 > 𝟎.	
  

A validation of the above results is shown in Figure 3.18. An iterative algorithm is used to compare 

the analytical results. The all-positive area has a reduction of 34% with respect to the available 

workspace assuming an unbounded maximum cable tension.  
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(a) 

	
  

(b) 

Figure 3.18: Workspaces of the suspended cable robot: (a) Area when    𝝉𝐦𝐢𝐧 ≥ 𝟎 

and delineated by curves    𝛆𝟓 < 𝟎 and    𝛅𝟔 > 𝟎, (b) The all-positive cable tension 

area when    𝝉𝐦𝐢𝐧 > 𝟎 and delineated by curves    𝛕𝒔𝟏 > 𝟎 and    𝛕𝒔𝟐 > 𝟎.	
  

An increase of the minimum cable tension; e.g.    𝜏!"# ≥ 5 N, results in a reduction in the size of 

the workspace by a reduction of the bottom right and left poses of the mobile platform, expressed by 

curves    𝛕!! ≥ 𝜏!"# and    𝛕!! ≥ 𝜏!"#, Figure 3.19a. On the other hand, a bounded value in the maximum 

cable tension; e.g.    𝜏!"# ≤ 20 N, makes the workspace a reduction on the top poses of the mobile 

platform, depicted by curves    𝛕!! ≤ 𝜏!"# and    𝛕!! ≤ 𝜏!"#, as is shown in Figure 3.19b. Also a 20% of 

change in the mass of the mobile platform is shown in both figures.     
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(a) 𝜏!"# ≥ 5 N and 𝜏!"# unbounded. 

	
  

(b)  𝜏!"# ≤ 20 N and 𝜏!"# > 0 N. 

Figure 3.19: Workspaces of the suspended cable robot when the mass of the mobile platform 

changes ±20%. 

  Selection of the minimum cable tension    𝜏!"# has an influence in the size of the workspace 

compare to the maximum cable tension    𝜏!"#. Moreover, a change in the mass of the mobile platform 

makes an impact on the workspace when is influenced by    𝜏!"# as well. The value selection of    𝜏!"#  

is related with the actuation capacity and limited by the top position of the workspace.  

Next, the influence of the natural frequency into the workspace size is studied in the suspended 

robot case. Each numerical simulation is based on the parameters provided in Table 3.2, with a 

maximum allowable cable tension,    𝜏!"# = 200 N, and a cable stiffness 𝑘! = 300,000 N/m per 1 m 

cable length. The study incorporates the variations of the mass of the mobile platform from 0.1 to 20 

Kg, and the minimum admissible cable tension from 0.1 to 40 N, to measure the changes of the 
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lowest minimum natural frequency, as well as the variations of the workspace size. This is shown in 

Figure 3.20 and Figure 3.21, respectively.  

	
  

Figure 3.20: Variation of the lowest minimum natural frequency of the 

unconstrained robot.	
  

Small changes in payloads lighter than 2.5 Kg have a significant impact on the minimum natural 

frequency regardless the values of the admissible minimum cable tensions. On the contrary, payloads 

beyond 2.5 Kg allow a smooth but constant reduction of the minimum natural frequency. 

	
  

Figure 3.21: Variation of the workspace size of the unconstrained robot. 
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As it is observed in Figure 3.20, there is a range of payloads where it is possible to magnify the 

minimum natural frequency by means of the allowable minimum cable tension. For example, at 7 Kg, 

with a minimum cable tension of 40 N, the natural frequency is almost the same as the case for 2.5 

Kg. Based on the results shown in Figure 3.21, a peak of the workspace size at a mass of 2.5 Kg with 

an admissible minimum cable tension of 0.1 N is observed.  

In effect, a small value of the admissible cable tension admits the largest workspaces when the 

mass is changing. The mass of 2.5 Kg represents a turning point, causing a shift in the variations pace 

on both criteria. On one hand, a slightly reduction of this mass suddenly brings contradictory results 

on both plots regardless the value of the admissible minimum cable tension. On the other hand, a 

gradual decreasing of both criteria is achieved when the mass variations occurs for masses heavier 

than 2.5 Kg.  

3.4.2 Fully-constrained cable-based robot 

Extending the analysis for the fully-constrained robot, a mass of 1 Kg is also assumed for the 

mobile platform. The curves described in Equation (3.11) are delineated in Figure 3.22.  

	
  

Figure 3.22: Delineation of workspace  𝚪𝒄𝟏 by 𝛂𝟎 < 𝟎, 𝛂𝟑 < 𝟎 and 𝛂𝟏 < 𝟎, and 

workspace 𝚪𝒄𝟐 by 𝛃𝟎 > 𝟎, 𝛃𝟒 > 𝟎, and 𝛃𝟐 > 𝟎.	
  

An iterative method analysis verified the above curves as is shown in Figure 3.23. The all-positive 

workspace cable tension for an unbounded maximum cable tension is depicted by using the proposed 

method to solve the redundancy resolution. 
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Figure 3.23: The all-positive cable tension area when    𝝉𝐦𝐢𝐧 > 𝟎, and delineated by 

curves    𝛂𝟎 < 𝟎,  𝛃𝟎 > 𝟎,  𝛂𝟏 < 𝟎 and    𝜷𝟐 > 𝟎.	
  

A minimum cable tension keeps cables taut ensuring a minimum overall stiffness of the robot; 

however, this constraint affects the workspace size, as is shown in Figure 3.24. In specific, a    𝝉𝐦𝐢𝐧 ≥

𝟐𝟓 N with an upper unbounded cable tension is selected for the workspace shown below. 

	
  

Figure 3.24: Workspaces of the fully-constrained robot for  𝝉𝐦𝐢𝐧 ≥ 𝟐𝟓 N and 𝝉𝐦𝐚𝐱 unbounded. 

The iterative method based on the minimization of the 2-norm cable tensions results with a 

workspace reduction of 81.8% of the available workspace. 
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Chapter 4 
Controller development 

The control problem is addressed in this chapter. The proposed robot configuration is tested by a 

control topology so that the positive tensionable condition and optimal cable tensions robot are 

fulfilled for a given trajectory. The general control scheme and the dynamic model are introduced, 

followed by a numerical study of the control scheme performance. 

4.1 Control system structure 

For a pick and place operation, the predominant concern is to make the mobile platform reach a 

desired target position    𝑿!. The control problem is, for the initial position of the mobile platform    𝑿, 

to reach the desired position    𝑿!. In real applications, the knowledge of the position of the mobile 

platform can be obtained indirectly by the measurement of the angular position of the robot actuators. 

In specific, inverse transformations described in equations (3.22) allow to estimate the position of the 

mobile platform   𝑿! based on the upper cable lengths     𝒍! = 𝑙! 𝑙! ! assuming purely translational 

motions (𝑛! = 2, 𝑛! = 0) of the mobile platform if conditions (3.16) and (3.17) hold.  

Thus, a final transformation of the cable length motion in terms of the actuator motion  𝜽,𝜽 is 

required. This transformation involves an analysis of the mechanical transmission between the 

actuation and reel systems. Specifically, as is shown in Figure 3.8, each upper spool system consists of 

an electric actuator which shaft is connected to a gear box, which in turn is connected to a timing 

pulley system to rotate two spool shafts simultaneously (see Figure 3.9). 

The cable length between the guide pulleys and the drum  𝑙! is assumed constant as a result of a 

combined linear and rotational motion of the spool shaft where drums are mounted and fixed, as is 

shown in Figure 4.1. The combined motion is achieved by manufacturing both lead screw and ball 

spline grooves in the same shaft. The ball spline nut is constrained to pure rotation motion while the 

lead screw nut is fixed, such that when the ball spline nut turns, the shaft is forced to rotate and 

translate a distant established by the pitch of the lead screw mechanism. The guide pulley system (see 

Figure 4.1), in which a cable is passing through, is composed of four pulleys equally separated around 

the perimeter of the cable. The proposed guide mechanism reduces cable undesired motions and 

insures a permanent contact while the cable is collected or released by a drum. Thus, the cable 
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orientation of the cable between the guide pulleys and the drum can be assumed constant. Note that 

the above assumption is valid as long as cables have positive tensions.  

 
Figure 4.1: Cable displacement between the pulley guides and the drum. 

The indirect measurement of the active cable motion is done by optical encoders which measure 

the relative change of cable lengths. Actual cable lengths are determined by establishing a previous 

home position of the mobile platform where the initial cable lengths  𝒍! = 𝑙!! ⋯ 𝑙!" ! are 

known before any experiment can proceed. Then, the cable length vector   𝒍 𝑡 = 𝑙! ⋯ 𝑙! ! can 

be related to the angular position of the motor shaft   𝜽 𝑡 = 𝜃! ⋯ 𝜃! ! with respect to a 

predetermined home position as follows:  

 𝒍 𝑡 = 𝒍! + 𝑹!𝜽 𝑡  (4.1)	
  

Note that a negative value of the motor angle means the cable is collected by the drum while its 

initial cable length is reduced. Conversely, a positive angle produces a rotation in the drum such that 

the cable is released, increasing its initial cable length. Furthermore, torques as a consequence of the 

cable tensions can be obtained as follows: 

 𝝉! = 𝑹!𝑻! (4.2)	
  

where the transmission ratio    𝑹! = diag 𝑟!!,… , 𝑟!!  introduces the gear transmission ratio, the 

timing pulley transmission ratio, and the radius of the drum for each spool system. The redundancy 

resolution of the vector of cable tensions  𝝉! are calculated by the iterative method described in 

Chapter 3.  
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A control formulation for the WCR is shown in Figure 4.2. The control topology follows two 

objectives, the trajectory tracking motion of the mobile platform and the application of additional 

forces that give the required constraint (rigidity) to the robot. In this topology, the motion tracking is 

the main objective and the torque control is a secondary objective. In consequence, the motion 

tracking is accomplished by means of the position controller block, while the bottom motors apply the 

forces which constraint the mobile platform based on an optimal torque algorithm block. In other 

words, the control of the upper motors guarantees the position tracking of the mobile platform, while 

the bottom actuators administer the torque to ensure a fully-constraint system with a desired stiffness. 

	
  

Figure 4.2: Control scheme for the warehousing cable-based robot.	
  

A path planning block generates the trajectory in the work space of the mobile platform based on 

a desired end position of the mobile platform    𝑿!". Constraints due to the actuation system are 

included in the path generator, which can be expressed in terms of the maximum velocity and 

acceleration of the mobile platform    𝑿!"# ,     𝑿!"#, assuming there are not obstacles along the desired 

path. The output of the path planning is expressed as a sequence of values     𝑿!(𝑡!) for a 
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predetermined time interval    𝑡!. The geometrical path for the WCR is developed for warehousing 

operations such that the mobile platform follows a given set of control points. In this manner, a cubic 

polynomial is selected such that the first and second derivatives fulfill continuous velocity and 

acceleration functions. 

The sequence of task coordinates    𝑿!(𝑡!) are transformed into joint coordinates    𝜽!"(𝑡!) by 

means of an inverse kinematic block. The desired angular values of the upper motors    𝜽!"(𝑡!) are 

compared to the measured angular values of the upper motors    𝜽!(𝑡). The angular error is then used 

by a PID controller block which in turn generates a control torque output. The control torque is 

compensated with both a torque that comes from the forward dynamics block and the torque due the 

bottom cables, which result in the commanded torque    𝑻! to drive the upper motors.     

Bottom actuators are driven by the torque vector    𝑻! as a result of the optimal torque values from 

the redundancy cable tension resolution. Dynamic effects of the mobile platform are included in the 

optimal torque control block such that the resulting cable tensions must balance the mobile platform 

under dynamic equilibrium. 

4.1.1 Dynamics of the mobile platform 

The dynamic model of the cable-based robotic system is formulated assuming that the 

gravitational acceleration is acting along Z axis, cables are massless and straight. Also, the nonlinear 

effects of friction are ignored to reduce the dynamic equation’s complexity. The dynamic model is 

expressed in Eq. (2.22), and reproduced below for convenience: 

	
   𝑴!  𝑿! + 𝑪! = 𝑨!𝝉! +𝑾!	
   (4.3)	
  

Equation (4.3) expresses that the dynamic effects, as a consequence of the inertial matrix  𝑴!, a 

vector  𝑪! which includes the gravitational forces assuming pure translational motion of the mobile 

platform, and an unknown but bounded perturbation wrench  𝑾!. The dynamic equilibrium is 

achieved by the vector force of the cable tensions  𝑨!𝝉!. Note that the dynamic equation is valid as 

long as the cables are always in tension during a prescribed trajectory of the mobile platform    𝑿!,𝑿!. 

The dynamic model is established in terms of the motion of the mobile platform. However, the 

control topology shown in Figure 4.2 is based on the knowledge of the angular motion of the robot 

actuators. In consequence, the above dynamic model is reformulated in terms of the actuation 
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variables by the appropriate transformation equations. Thus, the inverse velocity and acceleration 

transformation expressed in Eq. (3.15) and Eq. (3.20), respectively, can be rewritten in a forward 

manner as follows: 

	
   𝑑𝑿!
𝑑𝑡

= 𝑱!!!
𝑑𝒍!
𝑑𝑡

	
   (4.4)	
  

	
   𝑑!𝑿!
𝑑𝑡!

= 𝑱!!!   
𝑑!𝒍!
𝑑𝑡!

− 𝑱!!!  𝑱!   
𝑑𝑿!
𝑑𝑡

	
   (4.5)	
  

where 

𝑱! =

𝑃! −
𝑏
2 +

𝑒
2

𝑙!

𝑃! + 𝑐 − 𝑦!" −
𝑓
2

𝑙!
𝑃! +

𝑏
2 −

𝑒
2

𝑙!

𝑃! + 𝑐 − 𝑦!" −
𝑓
2

𝑙!

 

𝑱! =

𝑙!𝑣!" − 𝑙!! 𝑃! −
𝑏
2 +

𝑒
2   

𝑙!!
𝑙!𝑣!" − 𝑙!! 𝑃! + 𝑐 − 𝑦!" −

𝑓
2

𝑙!!

𝑙!𝑣!" − 𝑙!! 𝑃! +
𝑏
2 −

𝑒
2

𝑙!!
𝑙!𝑣!" − 𝑙!! 𝑃! + 𝑐 − 𝑦!" −

𝑓
2

𝑙!!

 

𝑱!!! =
𝑙!𝑙!

𝑃! −
𝑏
2 +

𝑒
2 𝑃! + 𝑐 − 𝑦!" −

𝑓
2 − 𝑃! + 𝑐 − 𝑦!" −

𝑓
2 𝑃! +

𝑏
2 −

𝑒
2

×

𝑃! + 𝑐 − 𝑦!" −
𝑓
2

𝑙!
−

𝑃! + 𝑐 − 𝑦!" −
𝑓
2

𝑙!

−
𝑃! +

𝑏
2 −

𝑒
2

𝑙!

𝑃! −
𝑏
2 +

𝑒
2

𝑙!

 

𝑙!" =
2𝑙!𝑙!

4𝑙!
! − ℎ!

          ∀  𝑖 = 1,2 
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Thus, by substituting equations (4.4) and (4.5) into Eq. (4.3), the dynamic model can be 

expressed in terms of the upper cable motion as 

	
   𝑴! 𝑱!!!𝒍! − 𝑱!!!  𝑱!  𝑱!!!𝒍! + 𝑪! −𝑾! = 𝑨!"𝝉!"	
   (4.6)	
  

Equation (4.6) states the implicit dynamics of the mobile platform as a function of the upper cable 

length motion. Finally, Eq. (4.1) and Eq. (4.2) are substituted into Eq. (4.6) to obtain the dynamic 

model in terms of the angular motion of the upper actuators. 

4.2 Simulation results 

In this section, the control strategies presented in this chapter are applied to the WCR 

configuration and evaluated through simulations. A complete description of the proposed robot is 

presented in detail in Section 3.2, in which the geometric parameters shown in Table 3.3 are adopted 

in each of the following numerical results. The dynamic parameters of the mobile platform and the 

actuation system are given in Table 4.1. 

Table 4.1: Dynamic parameters for the WCR 

Symbol Description Value 

𝑚! Mobile platform mass (Kg) 2.5 

𝐼! Moment of inertia about axis X (Kg-m2) 0.057 

𝐼! Moment of inertia about axis Y (Kg-m2) 0.029 

𝐼! Moment of inertia about axis Z (Kg-m2) 0.030 

𝐺! Gravitational acceleration (m/s2) 9.81 

𝑟!" Transmission ratio in motors i = 1 to 3  0.0024 

𝑟!! Transmission ratio in motor 4 0.0016 

𝐼! Drum inertia (Kg-m2)  0.0028 

𝐼! Rotor inertia (Kg-m2) 2.6×10!! 

𝐼! Pulley inertia (Kg-m2) 8.0×10!! 

𝐶! Viscous friction coefficient (N-m/rad) 0.01 

𝐶! Dry friction coefficient (N-m) 0.042 

 

A virtual model of the WCR configuration is developed in the Matlab Simulink environment in 

order to study the performance of the control laws exposed in Section 4.2. 
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Since the complete architecture of the robot allows the analysis of an underconstrained 

configuration, two studies are presented in this Section. First, the suspended configuration (see Figure 

3.13) is studied such that the analytic boundaries of the feasible workspace are evaluated. Second, the 

complete control scheme shown in Figure 4.2 is implemented to the fully-constrained configuration. In 

this control approach an optimal torque is applied to the bottom actuators. The control scheme is 

tested through simulations in terms of motion tracking and a required stiffness of the mobile platform. 

4.2.1 Underconstrained case 

As is shown in Figure 3.13, a mobile platform is suspended by eight upper cables and controlled 

by two independent actuators. Further simulations use a predetermined home position where the 

initial motion conditions are set to zero. The home position of the mobile platform can be established 

as a function of the upper cables  𝒍! and  𝒍!, as is established in Eq. (3.22). Thus, the home position in 

terms of the upper cables is established at  𝒍! = 1.51 1.54 !   m. 

4.2.1.1 Controllable workspace 

The constraint condition established in Eq. (3.40) defines the region in which the mobile platform 

of the suspended robot configuration is allowed to move without losing tension in one or more of the 

upper cables. In consequence, an identification of the all-positive workspace boundaries allows a 

preliminary evaluation of the robot dynamic model when the mobile platform is approaching to one 

of these boundaries, as is shown in Figure 4.3. 

	
  

Figure 4.3: Feasible workspace and planned trajectory of the mobile platform.	
  

Curves delimiting the all-positive region are obtained from the formulation established in Section 

3.3.1 assuming an absence of perturbations. The target point is defined at   −0.7 0.0 !   m. A 
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decentralized PID controller is implemented to regulate the angular position of each upper motor. The 

PID gains are established as  𝐾! = 2.5  𝟏,  𝐾! = 25  𝟏, and 𝐾! = 0.2  𝟏, where 𝟏 ∈ ℝ!×! is the identity 

matrix. The position and velocity of the mobile platform are shown in Figure 4.4, in which a 

discontinuity is observed at the velocity plot when the target position is achieved. 

	
  

Figure 4.4: Position and velocity of the mobile platform. 

Towards the path transition; that is, when the target point is achieved and the returning path is in 

action, the position of the mobile platform experiences an abruptly change. In effect, when the mobile 

platform approaches to its left boundary, pair cables 2 and 5 lose tension and only pair cables 1 and 6 

are active.  

Consider the action of an unknown but bounded perturbation 𝑾! = 𝐹!" 𝐹!" 0 ! on the mobile 

platform, such that  𝐹!" ≤ ±5  N, and  𝐹!" ≤ ±5  N. Then, analyses of the boundaries of the all-positive 

workspaces for the worst-case scenarios are depicted in Figure 4.5.   

	
  

Figure 4.5: All-positive workspace with bounded perturbations.	
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The all-positive workspace under disturbances (left-dash-red and right-dot-green curves) 

experiences a reduction with respect to the non-perturbation workspace (continuous-blue curves).  

In consequence, any further motion of the mobile platform must be inside the mentioned 

workspace under disturbances. Although a lower perturbation bound of   𝐹!" is established at  −5  N, a 

larger value can benefit the size of the workspace. Conversely, an increment of this disturbance force 

in the positive sense will shrink the all-positive positions of the mobile platform. 

Figure 4.6 depicts the boundaries of the workspaces when the lower bound force of  𝐹!" is doubled 

and the horizontal force is kept constant at  𝐹!" = −5  N. 

	
  

Figure 4.6: All-positive workspaces with a lower bounded of  𝑭𝒆𝒙 = −𝟓𝐍 and  𝑭𝒆𝒛 ≤ ±𝟏𝟎  𝐍.	
  

A larger negative vertical disturbance force (dash curves) has a positive influence in the increment 

of the wide positions but a reduction of the upper positions of the mobile platform. Finally, an upper 

force limit can be established as  𝐹!" < 𝑚!𝐺!  which keep positive cable tensions.  

4.2.2 Fully constrained case 

In this section, bottom cables are connected to the mobile platform in order to have a fully 

constrained configuration, as is shown in Figure 3.11. The control strategy shown in Figure 4.2 is 

implemented to the virtual model developed in Matlab Simulink with the parameters shown in Table 

4.1. In consequence, the PID position controller implemented to the upper actuators in the previous 

section, and the torque calculated in Section 4.2 are studied here. The stiffness matrix has a direct 

relationship to the amount of tension the upper cables support by the influence of the bottom cables, 

as is shown in Eq. (3.43). The desired path of the mobile platform is shown in Figure 4.7, in which the 
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mobile platform is translated from the origin to a target point at   −0.5 0.1 !   m, and returns again to 

the origin.  

	
  

Figure 4.7: Desired path of the mobile platform for a time of 10s. 

The maximum velocity and acceleration values are established as 0.17 m/s and 0.113 m/s2, 

respectively. The iterative method to solve the cable tension redundancy is implemented for the 

trajectory, which cable tensions are shown in Figure 4.8.  

	
  

Figure 4.8: Cable tension redundancy resolution for    𝝉𝒎𝒊𝒏 = 𝟑𝟑  𝐍 and    𝝉𝒎𝒂𝒙 = 𝟐𝟐𝟎  𝐍.	
  

The cable tensions are bounded to the following cable tensions limits: 𝝉!"# = 33  N and  𝝉!"# =

220  N. The 2-norm resolution method causes the cable tensions are close to the minimum tension, 

resulting to the smallest overall cable tensions. The method requires an analysis of the positions in 
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which the mobile platform can move with the established tension conditions. Thus, the iterative 

method described in Section 2.4.1 is used to depict the feasible workspaces in which the proposed 

trajectory (see Figure 4.7) is defined. 

Figure 4.9 shows the feasible workspace when a wrench perturbation 𝑾! = 50 −50 0 !N   is 

applied to the mobile platform. 

	
  

Figure 4.9: Feasible workspaces for    𝜏!"# = 33  N and    𝜏!"# = 220  N with/without a wrench 

perturbation  𝑾! = 50 −50 0 !N. 

 

This wrench represents the worst-case scenario when the mobile platform is moving from its home 

position towards its target point at   −0.5 0.1 !   m. The workspace contains the desired motion of the 

mobile platform shown in Figure 4.7. These results allow the experimental study of the proposed 

control topology shown in Figure 4.2. 

 

For a high-speed simulation, consider the same above trajectory in which the mobile platform is 

moving from its home position to   −0.5 0.1 !   m, and then returning to its origin with a maximum 

velocity of 2.85 m/s as is shown in Figure 4.10. A maximum acceleration of the mobile platform is 

established at 31.685 m/s2, with a time of the trajectory of 0.6 s. 
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Figure 4.10: Desired path of the mobile platform for a time of 0.6s. 

Values of the cable tensions during the trajectory are obtained with the proposed iterative 

method and shown in Figure 4.11. Cable tension limits are established at 𝝉!"# = 330  N and  𝝉!"# =

1200  N which allow to deal with the acceleration requirements. 
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Figure 4.11: Cable tension redundancy resolution for    𝝉𝒎𝒊𝒏 = 𝟑𝟑𝟎  𝐍 and    𝝉𝒎𝒂𝒙 = 𝟏𝟐𝟎𝟎  𝐍.	
  

Bottom pair cables 3, 9 and 4, 10 present the maximum cable tension values. These results give 

information about the maximum torque capacity of the actuation system. Finally, the position errors 

of the mobile platform are shown in Figure 4.12. 

	
  

Figure 4.12: Position errors of the mobile platform.	
  

The maximum position error is observed along the Z direction with a peak of 0.008 m and a 

constant error at the end of the trajectory of 0.003 m. In other hand, the maximum error along the X 

axis is achieved when the mobile platform reaches its target point. 
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Chapter 5 
Experimental studies 

In this chapter, experimental results are obtained so that the proposed configuration design is 

evaluated. First, the structure of the proposed robotic system is presented for experimental studies. 

Secondly, the control formulation presented in the previous chapter is implemented and tested for a 

given trajectory of the mobile platform. Experimental limitations make the necessity to rely on 

estimates for some data such as the position of the mobile platform and the force applied to the 

mobile platform. The potential sources of limitations to the experimental studies are mentioned 

below.  

1) A lack of direct sensors to measure the actual position and orientation of the mobile platform, 

such as laser or camera instruments. In this study, the planar position of the mobile platform is 

estimated by multiplying the observed change of the upper cable lengths by a direct transformation 

factor. While encoders can measure the angle of rotation of the drums which indirectly measure the 

change of the cable lengths, it is not possible to record the actual pose of the mobile platform due to 

change in the cable routing geometry and also momentarily slackness in the cables. Thus, indirect 

measurement of the mobile platform limits the accuracy of the experimental results. 

2) The constrained forces applied to the mobile platform are estimated based on the torque values 

supplied by the bottom motors. In other words, the lack of force sensors, such as load cells and strain 

gauges, do not allow an accurate measurement of the forces applied to the mobile platform by the 

bottom cables.  

3) The architecture of the controller used to drive the motors limits the implementation of custom 

applications for non-standard robotic systems. The controller is based on a distributed control 

architecture implemented over Ethernet, which requires of the proper software routines for controlling 

in Cartesian coordinates (kinematics modules with license) from a built-in library of robot 

geometries. Kinematic modules, included in the built-in library, are equipped with features that 

promote the real-time path generation of the controller. In other hand, a robot with unusual kinematic 

requires the development of an application in the controller software environment that may slow 

down the robot communication and alter the real-time capabilities of the controller such as execution 

of subroutines and collection of data values.  
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The above experimental limitations are related to the measuring instrument and their calibration 

limits. Thus, these limitations exist and produce unlikely notable errors in some aspects of the 

obtained results, such that the accuracy must rely on the estimation of some data. 

5.1 Experimental setup design 

The overall workspace of the proposed prototype is 3 m by 1.5 m by 0.5 m. Three servomotors 

Tamagawa model TS4813 (motors 1 to 3) and one servomotor Kollmorgen model Emerson DXM-

340C (motor 4) are installed in the prototype as is shown in Figure 5.1a. The end-effector, shown in 

Figure 5.1b, is connected to each cable by a system of a ball-socket joint and a cable tensioner which 

allow the angular motion of the anchor points and the appropriate tension adjustments previous a 

motion test. 

	
  

(a) 

	
  

(b) 

Figure 5.1: Robot prototype: (a) general structure and (b) the mobile platform. 
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The Guidance Controller G2420C is used to drive the motors in both position and torque 

operation modes. Programming codes are written in the Guidance Programming Language (GPL) 

provided by Precise Automation. The industrial controller comes with a PID formulation to control up 

to twelve multi-axes robots. 

A directly communication to the controller through a computer’s Ethernet port is selected. The 

computer uses a processor Intel(R) Core(TM) i7-2670QM CPU at 2.20 GHz. The PC has an installed 

memory RAM of 6 GB operating on Windows 7.  

Using this prototype, experiments are performed so that the mobile platform follows a desired 

trajectory within the feasible workspace. The measured position errors of the mobile platform are 

indirectly obtained by means of the top motor encoders; specifically, absolute optical encoders of 

17bit (131,072 divisions). 

5.2 Experimental results 

Two set of experiments are developed to evaluate the position and torque motion controllers. 

Position motion experiments are implemented in the underconstrained configuration robotic system; 

that is, when bottom cables are not connected to the mobile platform. One of the boundaries of the 

feasible workspace is achieved by horizontally moving the end-effector from its predetermined home 

position to an extreme point and compared to the theoretical results obtained in Chapter 3. Then, a 

more complex trajectory is tested to evaluate the tracking error of the position motion control.  

The second set of experiments is used to evaluate the fully constrained robot configuration. The 

end-effector is moved from its home position to follow a desired trajectory. The following 

experimental results are based on the geometric parameters of the prototype shown in Table 3.2. The 

mass of the mobile platform is measured at 2.5 Kg. 

During experimentation, a friction compensation term is added to the theoretical torque values in 

order to ensure a good tracking of the mobile platform while cables forces are generated. The friction 

compensation term comes primarily from the dry friction in the spool systems of the WCR prototype.    

5.2.1 Underconstrained case 

A proportional derivative integrative (PID) control scheme is used to control the angular motion 

of the top actuators. The trajectory shown in Chapter 4, Figure 4.3, is analyzed experimentally. The 

mobile platform is translated horizontally from the origin to a target point located to its left 0.7 m. and 
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then comes back to its home position. The indirect measurements of the position and velocity of the 

mobile platform along X axis are shown in Figure 5.2. 

	
  

Figure 5.2: The mobile platform position and velocity along X axis. 

When the mobile platform is approaching to the target point, the center of mass of the mobile 

platform is approaching to the boundaries of the controllable workspace. Experimental results in the 

boundaries of the controllable workspace are similar to the simulated results shown in Chapter 4, 

Figure 4.4.  

The desired position and velocity of the mobile platform is off course when the mobile platform 

is approximating to the target point. The indirect measurements of position and velocity of the mobile 

platform expose the consequence of losing position control when the moving platform is translating 

towards a point outside the feasible workspace; that is, when one or more cables are losing tension. 

Next, the experimental results for the trajectory shown in Figure 5.3, are analyzed. PID control 

gains are established as    𝑲! = diag 3.5,3.5 ,    𝑲! = diag 20.0,20.0 , and    𝑲! = diag 0.3,0.3 . 

The trajectory of the mobile platform is contained inside of the all-positive workspace depicted in 

Figure 4.5, in which a bounded perturbation of ±5  N is acting along the vertical and horizontal axes in 

the mobile platform. Thus the target point at 0.7 m is determined for the worst case scenario depicted 

for the dot-green line in Figure 4.5 when a perturbation is established as 𝑾! = −5 −5 0 ! N. 
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Figure 5.3: Desired path of the mobile platform for the suspended case. 

The top motor angular positions are shown in Figure 5.4. The maximum angular errors for motor 1 

are 0.012 deg. and 0.015 deg. at 12.49 s. and 22.11 s., respectively. Maximum angular errors for 

motor 2 are found at 9.82 s and 19.45 s. with values of 0.035 deg. and 0.052 deg., respectively. The 

maximum angular position errors in both top motors are related to peak angular values. In other 

words, angular errors are associated to maximum and minimum cable lengths. 
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Figure 5.4:  Angular position tracking control of top motors. 

The top motors angular velocities are shown in Figure 5.5. Abrupt changes of mobile platform in 

the angular velocity profile result in maximum error values in both top motors. The maximum peak 

error values are 1.94 deg/s and 1.76 deg/s for motors 1 and 2, respectively.  

	
  

	
  

Figure 5.5:  Angular velocity tracking control of top motors. 
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An indirect measurement of the mobile platform is shown in Figure 5.6. The position tracking 

performance of the mobile platform is obtained based on the actual angular values of the top motors 

and the direct kinematic formulation.  

	
  

	
  

Figure 5.6: Indirect measurement of the position of the mobile platform. 

It is observed a good tracking of the position of the mobile platform; that is, the position error is 

close to zero with peak error values of  4.2×10!! and 1×10!! along axes X and Z, respectively.  

Experimental results have shown a good performance of the PID scheme to control the position 

of the suspended robot configuration. 

5.2.2 Fully constrained case 

The fully constrained robot configuration shown in Figure 5.1 is experimentally evaluated in this 

subsection. As is shown in Figure 4.2, the proposed control strategy for the fully constrained robot 

consists of a control formulation to achieve the desired position of the top actuators while the bottom 

actuators are controlled to produce a calculated torque. In specific, the PID position control scheme 
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analyzed in the suspended configuration is combined with a commanded torque calculated with an 

optimal algorithm. 

The input torque to the bottom actuators require the offline cable tension redundancy resolution. 

The method developed in Chapter 3, to solve the cable tension redundancy, is implemented offline 

and implemented to the control formulation. The iterative method is based on the minimization of the 

two-norm of the cable tensions. 

The desired trajectory of the mobile platform shown in Figure 4.7 is considered in the following 

experiments. The total time of the path motion is approximately 10.6 seconds, which the mobile 

platform is translated from the origin to the target point     −0.5 0.1 !   m, and then returning to the 

home position. Gains matrices for the PID position control are the same as established in section 

5.2.1. Measured torque values applied to bottom motors during the mobile platform path are shown in 

Figure 5.7. 

	
  

Figure 5.7: Bottom torque motors. 

A low-pass filter is applied to the torque signals in order to reduce the noise in the measured 

signals. The limits of the bottom motors torque values are -0.1 and -1.2 Nm.  

The bottom motors present negative torque values along the mobile platform path. During the 

first part of the trajectory, motor 4 generates a uniform torque of -0.9 Nm, while motor 3 produces a 

torque of -0.2 Nm.  When the mobile platform is returning to its home position, motor 3 torque 

increases its torque value to a maximum value of -1.2 Nm, while motor 4 reduces its torque value to -

0.4 Nm.  
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An indirect measurement of the mobile platform position based on the angular values of the top 

motors is shown in Figure 5.8.  

	
  

Figure 5.8: Indirect measurement of the position of the mobile platform. 

  In general a good position tracking is observed along the desired trajectory. However, friction 

in the pulley system represents one of the most important sources of errors. As a result of this 

nonlinear behaviour, gain parameters for different trajectories must be tuned experimentally.  

5.3 Review of results 

The control strategy shown in Figure 4.2 is tested in the WCR prototype which geometrical and 

dynamics parameters are described in Table 3.3 and Table 4.1, respectively. The control topology 

follows two objectives, in which position tracking is the main objective and the torque control is a 

secondary objective. 

A PID control law is selected for the position control and implemented to the upper motors, while 

a commanded torque is generated to control the bottom motors. A cable tension redundancy 

resolution, based on an iterative method, is included in the torque generation. The iterative method 

solves the tension distribution by the minimization of the 2-norm cable tension vector. This method 

provides with a unique cable tension vector solution that is constrained to a given minimum and 

maximum cable tensions. In practice, selection of the cable tension limits is based on the actuation 

limitations and cable properties. These tension limits have an influence in the size and shape of the 

feasible workspace.   
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The goal of the study is to evaluate the performance of proposed control formulation by means of 

the indirect measurement of the end effector motion errors when a desired pick and place trajectory is 

implemented to the WCR prototype. The desired trajectory is shown in Figure 4.7, and is contained 

into the feasible workspace assuming a perturbation vector of    𝑾! = 50 −50 0 !N, and cable 

tension limits of    𝜏!"# = 33  N and    𝜏!"# = 220  N.  

In general, experimental results show that the proposed control topology offers a good solution 

for a redundant cable robot, in which the motion and force requirements are passively regulated. In 

addition, the proposed iterative redundancy method shows to be an alternative for testing these types 

of robots.  
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Chapter 6 
Conclusions 

In this Thesis the design and control of a novel fully constrained cable-based robot with large 

workspaces and high stiffness poses were presented. The versatile architecture of the proposed 

robotic system allowed the analysis of an underconstrained cable robot configuration. Furthermore, 

design and control theoretical formulations were presented and analyzed by means of numerical 

simulations. Finally, a prototype, the so-called WCR, was built and used to evaluate the operation and 

performance of the robot. Experimental results revealed that the proposed robotic system was viable 

for warehousing applications.  

The design problem was divided in two main stages. First, the feasible workspace was optimized 

for a maximum size and rectangular-type shape of each of the redundant planar architectures. A set of 

four parameters was selected to fully define the geometry of the mobile platform and the location of 

its anchor points. In the second design stage, an optimized spatial architecture was obtained for a 

maximum stiffness by selecting a new set of six parameters that defined the transversal anchor points 

on both the mobile and static platforms. The simulation results indicated that the maximum size of the 

workspace could be established by using a planar model, which simplified the number of design 

parameters. Geometrical parameters of the mobile platform, such as the length and height, could be 

used to define the size of the planar feasible workspace. On the other hand, the variation of the anchor 

points, bounded by the optimal geometrical parameters of the mobile platform, allowed to enhance 

the overall stiffness with a minimum reduction of the size of the workspace.  

Once the general architecture of the fully constrained is established, the mechanical modelling 

and the workspace description of the WCR were addressed. The arrangement of the twelve cables of 

the proposed robot admitted planar translational motions of the mobile platform for warehousing 

applications. The feasible workspaces of the suspended and fully constrained cases were described 

and depicted based on a 2-norm solution. The iterative method was obtained by minimizing the 2-

norm of the cable tension. The stiffness attribute was evaluated by means of the minimum 

fundamental natural frequency. The analysis results showed that the fully constrained system was 

capable of accomplishing the warehousing requirements of large workspace, high stiffness and low 

force input. 
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The WCR control objective was established as follows: generate the motor torque values such 

that the cable lengths (position control) and the cable tension (force control) were appropriately 

adjusted for a desired trajectory of the mobile platform which was subjected to unknown but bounded 

static disturbances. A control topology was proposed in which a PID position control is applied to the 

upper motors, while an optimal algorithm calculates the torque values to be applied to the bottom 

motors. The optimal torque block included the cable tension redundancy resolution for a prescribed 

trajectory. Further simulation results indicated that the proposed control architecture was feasible to 

be implemented to the WCR. 

A prototype of the WCR was manufactured and used to evaluate the performance of the overall 

robotic system. Experiments were divided into two stages. First, the underconstrained robot 

configuration was tested by using the PID position control scheme such that the boundaries of the 

feasible workspace were experimentally detected and compared to the theoretical results. Second, the 

WCR control topology was implemented to the fully constrained robot. The presented controller 

topology was experimentally evaluated for a predefined linear trajectory. Performance comparison of 

the proposed control laws was done by the indirect measurements of the position of the mobile 

platform. Experimental results supported theoretical formulations and indicated that the proposed 

control topology was a feasible solution for pick and place applications.  

 

In summary the Thesis contributions are listed below: 

1) The design of a novel low mobility cable-based for warehousing applications. The challenge 

lies in the addition of constraints that eliminate the no desired motions ensuring accuracy and stability 

of the remaining motions, [137].  

2) The analytical solution for the description of the force-closure and feasible workspace of the 

suspended robot case, and the analytical equations of the force-closure workspace of the fully 

constrained case [138].  In both cases the minimum two-norm cable tension is used to find a unique 

solution to the cable tensions. 

3) A prototype was developed in order to conduct a series experiments to validate the theoretical 

results. A proper PID control scheme was used to achieve positive cable tensions with a desired 

stiffness.  
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6.1 Future Work 

Subsequence topics to continue this work may be focus on improvement the performance of the 

control robotic system. It is suggested a study related to the implementation and testing of direct 

sensors that measure the actual position and orientation of the mobile platform. Thus, a more reliable 

measurement of the mobile platform poses would allow monitoring the effects of momentary 

slackness in cables and bounded disturbances. Hardware issues related to the architecture of the 

controller need to be addressed such that the control system can be customized and upgraded as 

needed. 

Next steps should be conducted towards the development of control strategies that reduce the 

mobile platform vibrations. In specific, a study in passive and active methods to minimize the 

undesired motions out of the plane of the mobile platform.   
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Appendix A 
MatLab code 

The detailed MatLab code based on the iterative algorithm described in Section 2.4.1 is as follows: 

 

%**************************************************** 

%           m_spatial_confi09e.m 

% This program calculates motor torque values for 

% a given path of the mobile platform of a  

% cable-robot station for warehousing tasks. 

% Sergio Javier Torres Mendez(2014) 

%---------------------------------------------------- 

function m_spatial_confi09e01 

clc;%Clean screen  

clear all;%Clean memory 

%---------------------------------------- 

% Data 

[a b c d e f g h i j ina inb inc zc ing inh1 inh2 ini inj1 inj2 scale]=geo(); 

%calling functions 

[mi mp mt m ycp cablep cablet 
anchorm]=para(a,b,c,d,e,f,g,h,i,j,ina,inb,inc,zc,ing,inh1,inh2,ini,inj1,inj2); 

[Pv Rm VELv ACCv WEv Kv Mm taulimit distmin PATHv as am anchors mass taumin 
taumax]=data(mi,mp,mt,a,b,c,d,e,f,g,h,i,j,ina,inb,inc,ing,inh1,inh2,ini,inj1,inj2,ycp,
cablep,cablet,anchorm); 

%Data for controller with information  

[ppx vpx apx ppz vpz apz size_points dt]=path_DemoTraj; 

data_controller(ppx,vpx,apx,ppz,vpz,apz,size_points,dt); 

%---------------SUBFUCTIONS----------------------------------- 

%function that read data  

function [a b c d e f g h i j ina inb inc zc ing inh1 inh2 ini inj1 inj2 scale]=geo() 

  %Give dimensions of the static platform 

  scale=1/5;d=3.0;e=3.0;f=1.0;i=0.2;j=0.2; 

  %Give Dimensions of the mobile platform 

  a=0.38;b=0.205;c=0.110;zc=0.045;g=0.125;h=g; 

  %Give Dimensions to anchor points on mobile platform 

  ina=a;inb=0.345; 

  %optimal parameters 

  ing=0.0;inh1=h;inh2=h;ini=0.0;inj1=0.0;inj2=j; 

  %Compute center of mass of the mobile platform 
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  amax=max(a,ina);bmax=max(b,inb);ycp=((2*bmax+amax)/(amax+bmax))*(c/3);inc=c-ycp;%[m] 

end 

%----------------------------------------------------------------- 

function [mi mp mt m ycp cablep cablet 
anchorm]=para(a,b,c,d,e,f,g,h,i,j,ina,inb,inc,zc,ing,inh1,inh2,ini,inj1,inj2) 

  %Calculate total number of cables   

  mi=6;mp=0;mt=6;m=mi+mp+mt; 

  amax=max(a,ina);bmax=max(b,inb);ycp=((2*bmax+amax)/(amax+bmax))*(c/3); 

  cablet1=1;cablet2=2;cablet3=3;cablet4=4;cablet5=5;cablet6=6; 

     %WCR CONFIGURATION 

        anchorm1=[-b/2;-inh1/2;c-ycp];anchorm2=[b/2;-inh1/2;c-ycp]; 

        anchorm3=[inb/2;-inh2/2;zc-ycp];anchorm4=[-inb/2;-inh2/2;zc-ycp];  

        anchorm5=[-ina/2;-ing/2;-ycp];anchorm6=[ina/2;-ing/2;-ycp];  

        anchorm7=[-b/2;inh1/2;c-ycp];anchorm8=[b/2;inh1/2;c-ycp]; 

        anchorm9=[inb/2;inh2/2;zc-ycp];anchorm10=[-inb/2;inh2/2;zc-ycp]; 

        anchorm11=[-ina/2;ing/2;-ycp];anchorm12=[ina/2;ing/2;-ycp]; 

  %Anchor points on both platforms 

  anchorm=zeros(3,m);cablep=zeros(mp,1);cablet=zeros(mt,1);   

  for ii=1:mp 

      cablep(ii,1)=eval(strcat('cablep',int2str(ii))); 

  end 

  for ii=1:mt 

      cablet(ii,1)=eval(strcat('cablet',int2str(ii))); 

  end 

  for ii=1:m 

      anchorm(:,ii)=eval(['anchorm',int2str(ii)]);   

  end 

end%end function para 

%----------------------------------------------------------------- 

%Function that reads data 

function [Pv Rm VELv ACCv WEv Kv Mm taulimit distmin PATHv as am anchors mass taumin 
taumax]=data(mi,mp,mt,a,b,c,d,e,f,g,h,i,j,ina,inb,inc,ing,inh1,inh2,ini,inj1,inj2,ycp,
cablep,cablet,anchorm) 

  %HOME 

  Dxh=-0.016368515205724;Dyh=0.0;Dzh=-0.163066720328403;%[m] 

  Hv=[Dxh;Dyh;Dzh];%m 

  Areasp=(f/2)*(d+e);%reachable area 

  %Compute Initial points on static platform 

  as1=[-e/2;-j/2;f/2]-Hv;as2=[e/2;-j/2;f/2]-Hv;as3=[d/2;-i/2;-f/2]-Hv; 

  as4=[-d/2;-i/2;-f/2]-Hv;as5=[-e/2;j/2;f/2]-Hv;as6=[e/2;j/2;f/2]-Hv; 
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  as7=[d/2;i/2;-f/2]-Hv;as8=[-d/2;i/2;-f/2]-Hv;   

  %Compute Anchor points on static platform   

  anchors1=[-e/2;-inj1/2;f/2]-Hv;anchors2=[e/2;-inj1/2;f/2]-Hv; 

  anchors3=[d/2;-ini/2;-f/2]-Hv;anchors4=[-d/2;-ini/2;-f/2]-Hv; 

  anchors5=[-e/2+b/2-ina/2;-inj2/2;f/2-c]-Hv; 

  anchors6=[e/2-b/2+ina/2;-inj2/2;f/2-c]-Hv; 

  %Give mass of the mobile platform 

  mass=2.5;%50.0*scale;   

  Massm=[mass 0 0;0 mass 0;0 0 mass]; 

  %Compute center of mass 

  amax=max(a,ina);bmax=max(b,inb);ycp=((2*bmax+amax)/(amax+bmax))*(c/3); 

  %Inertia matrix  

  Ixx=1/12*mass*(g*g+c*c); 

  Iyy=(mass/(18*(amax+bmax)))*(3*bmax*(bmax*bmax+c*c+12*(c/2-ycp)*(c/2-ycp))+... 

      (amax-bmax)*(((amax-bmax)/2)*... 

      ((amax-bmax)/2)+c*c+18*(((2*bmax+amax)/6)*((2*bmax+amax)/6)+(ycp-c/3)*(ycp-
c/3)))); 

  Izz=(mass/(36*(amax+bmax)))*(6*bmax*(bmax*bmax+g*g)+... 

      (amax-bmax)*(2*((amax-bmax)/2)*((amax-
bmax)/2)+3*g*g+(2*bmax+amax)*(2*bmax+amax))); 

  Ixy=0;Ixz=0;Iyz=0; 

  %Compute Centroidal Inertia mass tensor 

  Tmp=[Ixx -Ixy -Ixz;-Ixy Iyy -Iyz;-Ixz -Iyz Izz];   

  %Compute corners of the mobile platform 

  am1=[-bmax/2;-h/2;c-ycp];am2=[bmax/2;-h/2;c-ycp]; 

  am3=[amax/2;-g/2;-ycp];am4=[-amax/2;-g/2;-ycp];    

  am5=[-bmax/2;h/2;c-ycp];am6=[bmax/2;h/2;c-ycp]; 

  am7=[amax/2;g/2;-ycp];am8=[-amax/2;g/2;-ycp];   

  %Compute additional anchor points for parallel cables on static platform 

  anchors7=[];anchors8=[];anchors9=[];anchors10=[];anchors11=[];anchors12=[]; 

  for ii=1:mp 

      asig=eval(strcat('anchors',num2str(cablep(ii))))-... 

          (anchorm(:,cablep(ii))-anchorm(:,mi+ii)); 

      eval(['anchors',int2str(mi+ii),'=',mat2str(asig),';']) 

  end 

  %Compute additional anchor points for triang cables on static platform 

  mmatrix=[1,0,0;0,-1,0;0,0,1]; 

  for ii=1:mt 

      asig=mmatrix*eval(strcat('anchors',num2str(cablet(ii)))); 

      eval(['anchors',int2str(mi+mp+ii),'=',mat2str(asig),';']) 
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  end   

%Input data of the mobile box. 

px=0.0;py=0.0;pz=0.0;theta1=0.0;theta2=0.0;theta3=0.0; 

%Rotational transformation matrix of the mobile box 

Rm=[cos(theta1) -sin(theta1) 0;sin(theta1) cos(theta1) 0;0 0 1]*... 

   [1 0 0;0 cos(theta2) -sin(theta2);0 sin(theta2) cos(theta2)]*... 

   [cos(theta3) 0 sin(theta3);0 1 0;-sin(theta3) 0 cos(theta3)]; 

%mobile platform linear and angular velocities 

vpx=0.0;vpy=0.0;vpz=0.0;Vv=[vpx;vpy;vpz];wpx=0.0;wpy=0.0;wpz=0.0;Wwv=[wpx;wpy;wpz]; 

%mobile platform linear and angular accelerations 

apx=0.0;apy=0.0;apz=0.0;Av=[apx;apy;apz];alfapx=0.0;alfapy=0.0;alfapz=0.0;ALFAwv=[alfa
px;alfapy;alfapz]; 

%mobile platform external forces 

Gz=-1.0;%gravity along z 

fex=0.0;fey=0.0;fez=0.0;mex=0.0;mey=0.0;mez=0.0; 

FEv=[fex;fey;fez+mass*Gz*9.81];MEv=[mex;mey;mez]; 

k=300000.0;taumin=33.0;taumax=220.0;distmin=0.5*scale; 

%INFORMATION TO SEND 

as=zeros(3,8);am=zeros(3,8);anchors=zeros(3,m); 

%Initial values of the mobile platform 

Pv=[px;py;pz];VELv=[Vv;Wwv];ACCv=[Av;ALFAwv];WEv=[FEv;MEv]; 

Mm=[Massm zeros(3);zeros(3) Tmp];%Inertia matrix 

taulimit=[taumin taumax]; 

pxd=0.2;pyd=0.0;pzd=0.0;tf=4.0;PATHv=[pxd;pyd;pzd;tf]; 

%Independent points on both platforms 

for ii=1:8 

    as(:,ii)=eval(['as',int2str(ii)]);am(:,ii)=eval(['am',int2str(ii)]); 

end 

for ii=1:m 

    anchors(:,ii)=eval(['anchors',int2str(ii)]); 

end 

end%end function data 

%------------------------------------------------------------- 

%Function that calculates the inverse kinematics 

function [Uv LENv Lv]=ikinematics(Pv,m,anchors,anchorm) 

  Lv=zeros(3,m);LENv=zeros(m,1);Uv=zeros(3,m); 

  for ii=1:m 

      Lv(:,ii)=Pv+anchorm(:,ii)-anchors(:,ii); 

      LENv(ii,:)=sqrt(Lv(:,ii)'*Lv(:,ii)); 

      Uv(:,ii)=Lv(:,ii)/LENv(ii,:); 
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  end 

end %End of function ikinematics 

%--------------------------------------------------------- 

%Function that compute the cable length rates velocities 

function [Jm Vlv]=velocity(m,anchorm,Uv,VELv) 

crossUv=zeros(m,3); 

for ii=1:m 

    crossUv(ii,:)=(cross(anchorm(1:3,ii),Uv(1:3,ii)))';%3D 

end 

Jm=[Uv(1,:)' Uv(2,:)' Uv(3,:)' crossUv];%3D 

Vlv=Jm*VELv; 

end %End of function velocity 

%----------------------------------------------------- 

%Function that compute the cable length rates acceleration 

function [dJm Alv]=acceleration(m,anchorm,Uv,VELv,ACCv,Jm,Vlv,LENv,Lv) 

crossUv=zeros(m,3); 

for ii=1:m 

    crossUv(ii,:)=(cross(anchorm(1:3,ii),Uv(1:3,ii)))';%3D 

end 

for ii=1:m 

    crosswr(ii,:)=(cross(VELv(4:6),anchorm(1:3,ii)))';%3D 

    crosswrl(ii,:)=(cross(crosswr(ii,:)',Lv(:,1)))';%3D 

    crossav(ii,:)=(cross(anchorm(1:3,ii),VELv(4:6)))';%3D 

    crossrl(ii,:)=(cross(anchorm(1:3,ii),Lv(:,1)))';%3D 

    dJm1(ii,:)=(LENv(ii)*(VELv(4:6)'+crosswr(ii,:))-
Vlv(ii)*Lv(:,ii)')/(LENv(ii)*LENv(ii)); 

    dJm2(ii,:)=(LENv(ii)*(crosswrl(ii,:)+crossav(ii,:))-
Vlv(ii)*crossrl(ii,:))/(LENv(ii)*LENv(ii)); 

end 

dJm=[dJm1 dJm2];%Derivative of Jacobian 

Alv=Jm*ACCv+dJm*VELv; 

end %End of function acceleration 

%----------------------------------------------------- 

%function that calculates interfere 

 function [dist]=interference(Pv,anchors,anchorm,cablep) 

    %Checking parallelism 

    %independent cables (1 and 2) 

    L1xf=[anchors(1,1) Pv(1)+anchorm(1,1)];L1zf=[anchors(3,1) Pv(3)+anchorm(3,1)]; 

    L2xf=[anchors(1,2) Pv(1)+anchorm(1,2)];L2zf=[anchors(3,2) Pv(3)+anchorm(3,2)]; 

    %Parallel to virtual cable of triangular cables (5 and 6) 



 

115 

 

    L5xf=[anchors(1,5) Pv(1)+anchorm(1,5)];L5zf=[anchors(3,5) Pv(3)+anchorm(3,5)]; 

    L6xf=[anchors(1,6) Pv(1)+anchorm(1,6)];L6zf=[anchors(3,6) Pv(3)+anchorm(3,6)];     

    %Compute slopes 

    m1=((L1zf(1)-L1zf(2))/(L1xf(1)-L1xf(2)));% pendiente of independent cable   

    m2=((L2zf(1)-L2zf(2))/(L2xf(1)-L2xf(2)));% pendiente of independent cable   

    m5=((L5zf(1)-L5zf(2))/(L5xf(1)-L5xf(2)));% pendiente of parallel cable  

    m6=((L6zf(1)-L6zf(2))/(L6xf(1)-L6xf(2)));% pendiente of parallel cable  

    if ((abs(m1-m5)<0.001)&&(abs(m2-m6)<0.001)) 

        mp1=-1/m1; mp2=-1/m2; 

        Point1x=(mp1*L1xf(2)-m5*L5xf(2)+L5zf(2)-L1zf(2))/(mp1-m5); 

        Point1y=mp1*(Point1x-L1xf(2))+L1zf(2); 

        distpar1=sqrt((L1xf(2)-Point1x)*(L1xf(2)-Point1x)+(L1zf(2)-Point1y)*(L1zf(2)-
Point1y)); 

        Point2x=(mp2*L2xf(2)-m6*L6xf(2)+L6zf(2)-L2zf(2))/(mp2-m6); 

        Point2y=mp2*(Point2x-L2xf(2))+L2zf(2); 

        distpar2=sqrt((L2xf(2)-Point2x)*(L2xf(2)-Point2x)+(L2zf(2)-Point2y)*(L2zf(2)-
Point2y));       

        dist=[distpar1 distpar2]; 

    else 

        dist=[0.0 0.0]; 

    end     

 end %End of function interference 

%-------------------------------------------------------------------------- 

%function that calculates cable tensions 

function [TAUva,x2]=forcea(anchorm,Uv,WEv,taumin,taumax) 

clear Am;clear TAUva;clear x2;clear x1;clear x1a;clear x2a;clear y1a; 

clear y2a;clear x3;clear t;clear I;clear NN;clear x1c;clear x2c; 

crossUv=zeros(3,m); 

for ii=1:m 

    crossUv(:,ii)=(cross(anchorm(1:3,ii),Uv(1:3,ii)))';%3D 

end 

Am=[Uv(1,:);Uv(2,:);Uv(3,:);crossUv];%3D 

%DYSTRA algorithm 

    I=eye(m); 

    NN=I-((pinv(Am))*Am); 

    ii=0;x1a=0.0*ones(m,1);x2a=0.0*ones(m,1); 

    y1a=0.0*ones(m,1);y2a=0.0*ones(m,1); 

    error=0.0001;error1=100000.0;taumin=32.9;taumax=220.0; 

    %********************** 

    while error1>error 
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        ii=ii+1;error1a=error1;x3=x1a; 

        %first projection 

        t=x3-y2a;x2=((pinv(Am))*WEv)+NN*(t);y2=x2-t;t=x2-y1a; 

        for kk=1:m  

            if (t(kk)<=taumin) 

                t(kk)=taumin; 

            else 

                if (t(kk)>=taumax) 

                    t(kk)=taumax; 

                end 

            end 

        end 

        x1=t;y1=x1-t;error1=norm(x1-x1a,2)+norm(x2-x2a,2)+norm(y2-y2a,2); 

        if (error1<=error1a) 

            x1a=x1;x2a=x2;y1a=y1;y2a=y2; 

        else 

            break 

        end 

    end %end of while 

if ((abs(x1-x2))<=(error*ones(m,1))) 

    %disp('feasible solution') 

    TAUva=x1; 

else 

    %disp('****no feasible solution****') 

    TAUva=x2; 

end 

end%End of function forcea 

%-------------------------------------------------------------------------- 

%function that calculates the stiffness 

 function [Km]=stiffness(m,anchorm,Uv,LENv,Kv,TAUv) 

    clear Km;clear Kk;clear Kt;clear Ksi;clear Kfi;     

    clear aux1;clear aux2;clear rcrossi;clear ucrossi;clear I; 

    I=eye(3,3);%Identity matrix 

    Km=zeros(6,6); 

    for ii=1:m 

        rcrossi=[0 -anchorm(3,ii) anchorm(2,ii);anchorm(3,ii) 0 -anchorm(1,ii);-
anchorm(2,ii) anchorm(1,ii) 0]; 

        ucrossi=[0 -Uv(3,ii) Uv(2,ii);Uv(3,ii) 0 -Uv(1,ii);-Uv(2,ii) Uv(1,ii) 0]; 

        aux1=Uv(1:3,ii)*Uv(1:3,ii)'; 

        Kk=(Kv(ii)/LENv(ii))*[aux1 aux1*rcrossi';... 



 

117 

 

                  rcrossi*aux1 rcrossi*aux1*rcrossi']; 

        Kt=(TAUv(ii)/LENv(ii))*[I-aux1 (I-aux1)*rcrossi';... 

                              rcrossi*(I-aux1) rcrossi*(I-aux1)*rcrossi'-
(LENv(ii))*ucrossi*rcrossi']; 

        Km=Km+(Kk+Kt);         

    end 

 end%End of function stiffness 

%-------------------------------------------------------------------------- 

% %%%%%%%%%%%%%%%%%%%%%%%% LINEAR PATH %%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [ppx vpx apx ppz vpz apz size_points dt]=path_DemoTraj 

    dt=0.001; 

    %%All paths must return to the zero point 

% 

%       ^     | 

%       |     | 

%       |     v 

%       +     + 

%              

%1) Home-UP-Home as fast as possible 

    %Trajectory 

    Pt=[[0;0] [0.0;0.25] [0;0]];%[m] 

    VelOR=1/4.9; 

    Vel=[0.9 0.9 0.9]*VelOR; 

    dmind = [1.0 1.0 1.0]; 

    NTr=size(Pt,2)-1; 

    %Traj Definition 

    for i=1:NTr; 

        Traj(i).TP=[0.1 0.3 0.4];%slopes of pos vel and acce curves 

        Traj(i).dt=dt; 

        Traj(i).dQc=Pt(:,i+1)-Pt(:,i); 

        Traj(i).dS=norm(Traj(i).dQc); 

        Traj(i).dQc=Traj(i).dQc/Traj(i).dS; 

        Traj(i).dV=Vel(i); 

        Traj(i).dmind=dmind(i); 

        Traj(i).iCrit=zeros(1,8); 

        Traj(i).iTc=0; 

    end 

    %%PreCalculation of the trajectory 

    for i=1:NTr 

        [dSnd,dVnd]=NDTP_Prop(Traj(i)); 
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        Traj(i).dTc= Traj(i).dS / Traj(i).dV * dVnd/dSnd; 

        Traj(i).dTc = ceil(Traj(i).dTc/Traj(i).dt)*Traj(i).dt; 

        Traj(i).dAmax = Traj(i).dS / dSnd / Traj(i).dTc^2; 

        [xp Tr vp ap]=TPDimen(Traj(i),Traj(i).dt); 

        Traj(i)=Tr; 

        Traj(i).iTc=Tr.iCrit(8); 

        Xp{i}=xp; Vp{i}=vp; Ap{i}=ap; 

    end 

    %%%%%%%%%%%%%Merging%%%%%%%%%%%%%%% 

    X=Pt(:,1); 

    V=[0;0]; 

    A=[0;0]; 

    iInd=1; 

    for i=1:NTr 

        NSpan=Traj(i).iTc-size(X,2)+iInd-1; 

        XpTemp=Traj(i).dQc*Xp{i}; 

        X=[X X(:,end)*ones(1,NSpan)]; 

        X(:,iInd:end)=X(:,iInd:end)+XpTemp; 

        VpTemp=Traj(i).dQc*Vp{i}; 

        V=[V V(:,end)*ones(1,NSpan)]; 

        V(:,iInd:end)=V(:,iInd:end)+VpTemp;     

        ApTemp=Traj(i).dQc*Ap{i}; 

        A=[A A(:,end)*ones(1,NSpan)]; 

        A(:,iInd:end)=A(:,iInd:end)+ApTemp;   

        iInd=iInd+floor(Traj(i).dmind*Traj(i).iTc); 

    end 

    Time=size(X,2)*dt; 

    %Plot trajectory of mobile platform (points each second) 

    figure; 

    drawxysb(anchors); hold on %draws static box 

    plot(X(1,:),X(2,:)); grid on; hold on %draws line path 

    plot(X(1,1:1000:end),X(2,1:1000:end),'.');axis equal; %draws points path 

    title('Trajectory of end effector (points each second)') 

    axis tight 

    hold off 

    division=100.0;%Every dt*division seconds 

    disp('Mobile platform pos, vel, acc along horizontal axis (X)') 

    ppx=X(1,1:division:end); 

    vpx=V(1,1:division:end); 
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    apx=A(1,1:division:end); 

    disp('Mobile platform pos, vel, acc along vertical axis (Z)') 

    ppz=X(2,1:division:end); 

    vpz=V(2,1:division:end); 

    apz=A(2,1:division:end); 

    %[dimension_points,size_points]=size(ppx); 

    size_points = size(ppx,2); 

    %new division 

    dt=dt*division; 

end %end of function path_DemoTraj 

%------------------------------------------------------------------------ 

function data_controller(ppx,vpx,apx,ppz,vpz,apz,size_points,dt) 

    %Start calculating path for each step 

    for nn=1:1:size_points 

        %Assign linear position vector of the mobile platform  

        Pv=[ppx(1,nn);0;ppz(1,nn)]; 

        %Assign velocity vector of the mobile platform          

        Vv=[vpx(1,nn);0;vpz(1,nn)];%linear velocity  

        wpx=0.0;wpy=0.0;wpz=0.0; 

        Wwv=[wpx;wpy;wpz];VELv=[Vv;Wwv];   

        %Assign acceleration vector of the mobile platform 

        apy=0.0; 

        Av=[apx(1,nn);apy;apz(1,nn)];%linear acceleration  

        alfapx=0.0;alfapy=0.0;alfapz=0.0; 

        ALFAwv=[alfapx;alfapy;alfapz];ACCv=[Av;ALFAwv]; 

        %Calculate cable lengths 

        [Uv LENv Lv]=ikinematics(Pv,m,anchors,anchorm); 

        for ii=1:12 

            LENpv(nn,ii)=LENv(ii); 

        end 

        %Calculate cable velocities 

        [Jm Vlv]=velocity(m,anchorm,Uv,VELv); 

        for ii=1:12 

            Vlpv(nn,ii)=Vlv(ii); 

        end         

        %Calculate cable accelerations 

        [dJm Alv]=acceleration(m,anchorm,Uv,VELv,ACCv,Jm,Vlv,LENv,Lv); 

         for ii=1:12 

            Alpv(nn,ii)=Alv(ii); 
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            PISpv(nn,ii)=LENpv(1,ii)-LENv(ii);%cable displacement  

        end          

        %Checking first singularity when cable length is zero or negative 

        if (min(LENv(:)))>0 

            XXPv(nn)=Pv(1);ZZPv(nn)=Pv(3); 

            %Calculate the cable tensions 

            Gz=-1.0;%gravity along z 

            fex=mass*apx(1,nn);fey=mass*apy;fez=mass*apz(1,nn); 

            mex=0.0;mey=0.0;mez=0.0; 

            %Includes externals forces on center mass in a vector WENCH\ 

            FEv=[fex;fey;fez+mass*Gz*9.81];%External linear forces  

            MEv=[mex;mey;mez];%External Moments vector  

            WEv=[FEv;MEv]; 

            %Dystra min 2-norm or min 2-norm-average tau 

            [TAUva,x2]=forcea(anchorm,Uv,WEv,taumin,taumax); 

            for ii=1:12 

                TENpv(nn,ii)=TAUva(ii); 

            end 

            %Calculate the dynamic stiffness matrix K 

            [Km]=stiffness(m,anchorm,Uv,LENv,Kv,TAUva); 

            %Calculating eigenvalues 

            EIGv=eig(Km); 

        else 

            TENpv(nn,1)=0;TENpv(nn,2)=0;TENpv(nn,3)=0; 

            TENpv(nn,4)=0;TENpv(nn,5)=0;TENpv(nn,6)=0;             

        end 

    end 

  timep=size_points*dt; 

  %Data to controller 

  drum_diameter=0.095;pulley_ratio1=48/30;ratio_gear1=1/31; 

  %For motor1 

  theta_motor1=(180.0/pi)*(2.0/drum_diameter)*PISpv(:,1)/pulley_ratio1;%degrees 

  omega_motor1=(180.0/pi)*(2.0/drum_diameter)*Vlpv(:,1)/pulley_ratio1;%degrees/s 

  alfa_motor1=(180.0/pi)*(2.0/drum_diameter)*Alpv(:,1)/pulley_ratio1;%degrees/s^2 

  %For motor2 

  theta_motor2=(180.0/pi)*(2.0/drum_diameter)*PISpv(:,2)/pulley_ratio1;%degrees 

  omega_motor2=(180.0/pi)*(2.0/drum_diameter)*Vlpv(:,2)/pulley_ratio1;%degrees/s   

  alfa_motor2=(180.0/pi)*(2.0/drum_diameter)*Alpv(:,2)/pulley_ratio1;%degrees/s^2 

  %For motor3 
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  tension_motor3=TENpv(:,3);%Newton 

  %For motor4 

  tension_motor4=TENpv(:,4);%Newton  

  nn=0; 

  for tt=0:dt:timep-dt 

      nn=nn+1; 

      data(nn,:)=[... 

          tt,... 

          theta_motor1(nn,1),omega_motor1(nn,1),alfa_motor1(nn,1),... 

          theta_motor2(nn,1),omega_motor2(nn,1),alfa_motor2(nn,1),... 

          tension_motor3(nn,1),... 

          tension_motor4(nn,1)]; 

  end 

  disp('columns of data=(tt,theta1,omega1,alfa1,theta2,omega2,alfa2,tau3,tau4)') 

  data 

  %for the MAT-file 

  pos1_matrix=[0:dt:timep-dt;PISpv(:,1)'];vel1_matrix=[0:dt:timep-dt;Vlpv(:,1)']; 

  acc1_matrix=[0:dt:timep-dt;Alpv(:,1)'];tau1_matrix=[0:dt:timep-dt;TENpv(:,1)']; 

  pos2_matrix=[0:dt:timep-dt;PISpv(:,2)'];vel2_matrix=[0:dt:timep-dt;Vlpv(:,2)'];  

  acc2_matrix=[0:dt:timep-dt;Alpv(:,2)'];tau2_matrix=[0:dt:timep-dt;TENpv(:,2)']; 

  pos3_matrix=[0:dt:timep-dt;PISpv(:,3)'];vel3_matrix=[0:dt:timep-dt;Vlpv(:,3)'];   

  acc3_matrix=[0:dt:timep-dt;Alpv(:,3)'];tau3_matrix=[0:dt:timep-dt;TENpv(:,3)']; 

  pos4_matrix=[0:dt:timep-dt;PISpv(:,4)'];vel4_matrix=[0:dt:timep-dt;Vlpv(:,4)'];  

  acc4_matrix=[0:dt:timep-dt;Alpv(:,4)'];tau4_matrix=[0:dt:timep-dt;TENpv(:,4)']; 

  pos5_matrix=[0:dt:timep-dt;PISpv(:,5)'];vel5_matrix=[0:dt:timep-dt;Vlpv(:,5)'];  

  acc5_matrix=[0:dt:timep-dt;Alpv(:,5)'];tau5_matrix=[0:dt:timep-dt;TENpv(:,5)']; 

  pos6_matrix=[0:dt:timep-dt;PISpv(:,6)'];vel6_matrix=[0:dt:timep-dt;Vlpv(:,6)'];   

  acc6_matrix=[0:dt:timep-dt;Alpv(:,6)'];tau6_matrix=[0:dt:timep-dt;TENpv(:,6)']; 

  %for the MAT-file 

  pos1_motor_matrix=[0:dt:timep-
dt;(180.0/pi)*(2.0/drum_diameter)*PISpv(:,1)'/pulley_ratio1]; 

  vel1_motor_matrix=[0:dt:timep-
dt;(180.0/pi)*(2.0/drum_diameter)*Vlpv(:,1)'/pulley_ratio1]; 

  acc1_motor_matrix=[0:dt:timep-
dt;(180.0/pi)*(2.0/drum_diameter)*Alpv(:,1)'/pulley_ratio1]; 

  torque1_motor_matrix=[0:dt:timep-
dt;(2*TENpv(:,1)'+2*TENpv(:,5)')*(drum_diameter/2)*pulley_ratio1*ratio_gear1]; 

  pos2_motor_matrix=[0:dt:timep-
dt;(180.0/pi)*(2.0/drum_diameter)*PISpv(:,2)'/pulley_ratio1]; 

  vel2_motor_matrix=[0:dt:timep-
dt;(180.0/pi)*(2.0/drum_diameter)*Vlpv(:,2)'/pulley_ratio1]; 

  acc2_motor_matrix=[0:dt:timep-
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dt;(180.0/pi)*(2.0/drum_diameter)*Alpv(:,2)'/pulley_ratio1]; 

  torque2_motor_matrix=[0:dt:timep-
dt;(2*TENpv(:,2)'+2*TENpv(:,6)')*(drum_diameter/2)*pulley_ratio1*ratio_gear1]; 

  tau3_motor_matrix=[0:dt:timep-dt;TENpv(:,3)']; 

  tau4_motor_matrix=[0:dt:timep-dt;TENpv(:,4)']; 

  Xpos_matrix=[0:dt:timep-dt;ppx(1,:)];Zpos_matrix=[0:dt:timep-dt;ppz(1,:)]; 

end%end of function path_controller 

%-------------------------------------------------------------------------- 

end %fin de la función principal "m_spatial_confi09d" 

	
  

 

 

 

  



 

123 

 

Appendix B 
Suspended robot workspace 

The all-positive workspace boundaries of the underconstrained robot configuration are addressed in 

this Appendix. The analytic equations of the suspended cable-based robot for warehousing applications 

are developed so that its workspace fulfills the tensionable condition for a given set of minimum and 

maximum tension limits. The suspended robot cable is based on the configuration shown in Figure 3.13, 

where the mobile platform is suspended by the upper four cables. The structure matrix, the cable tension 

vector, and the wrench of the suspended cable robot is defined by 

	
  

𝑨! =

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
2𝑙!

𝑞!
4𝑙!

𝑞!
4𝑙!

𝑞!!
4𝑙!

𝑞!"
4𝑙!

,             𝝉! =

𝜏!!
𝜏!!
𝜏!!
𝜏!!

,          𝑾! =

𝐹!
𝐹! +𝑚!𝐺!

𝑀!

	
   (A.1)	
  

where 

𝑞! = 2𝑃! + (𝑒 − 𝑏) 

𝑞! = 2𝑃! − (𝑒 − 𝑏) 

𝑞! = 2𝑃! + 2 𝑐 − 𝑦!" − 𝑓 

𝑞! = 2 𝑐 − 𝑦!" (2𝑃! + 𝑒) + 𝑏(2𝑃! − 𝑓) 

𝑞! = 2 𝑐 − 𝑦!" 2𝑃! − 𝑒 − 𝑏(2𝑃! − 𝑓) 

𝑞!! = 𝑎  𝑞! − 2𝑦!"  𝑞! 

𝑞!" = −𝑎  𝑞! − 2𝑦!"  𝑞! 

𝑦!" =
2𝑑 + 𝑎 𝑐
3 𝑑 + 𝑎

 

 

The all-positive workspace, 𝚪! can be obtained by analyzing slackness conditions with constant 

orientation of the mobile platform (𝜃! = 0), and by solving the all-positive cable tension redundancy. 

Indeed, the loss of one cable makes 𝑨! square, which might admit an exact positive tension solution for 

the remaining three cable pairs. When cable 1 has no tension, then 𝜏!! = 0 and the system transforms into 

an equivalent three-tension system. The unique solution,  𝚪!!, is defined by the feasible area of curves 

𝛅! > 0, 𝛅! > 0, and 𝛅! > 0. Symmetrically, the area defined by curves    𝛆! < 0, 𝛆! < 0 and 𝛆! < 0 
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represents the feasible workspace,    𝚪!!, when cable 2 is slack (𝜏!! = 0). Equations of the curves are 

shown below. 

	
   𝜹! = − !
!
−2𝑦!" + 2𝑐 + 2𝑃! − 𝑓 (𝑏 − 𝑒)(𝑏𝑓 + 2𝑏𝑦!" − 2𝑏𝑃! − 𝑎𝑓 + 2𝑎𝑃! + 2𝑎𝑐 −

2𝑎𝑦!" + 4𝑐𝑃! − 2𝑐𝑒).	
  

𝜹! = − !
!
(2𝐹!𝑎𝑐 − 2𝐹!𝑒𝑦!" + 2𝑀!𝑏 − 𝐹!𝑎𝑓 − 2𝑀!𝑒 − 2𝐹!𝑎𝑦!" − 2𝐹!𝑎𝑃! +

2𝑎𝑚!𝐺!𝑃! + 2𝐹!𝑎𝑃! + 2𝐹!𝑏𝑦!")(2𝑐 − 𝑓 + 2𝑃! − 2𝑦!").	
  

𝜹! =
1
8
𝑏𝑚!𝐺! − 𝑒𝑚!𝐺! + 2𝑚!𝐺!𝑃! + 2𝐹!𝑐 − 𝐹!𝑓 + 2𝐹!𝑃! − 2𝐹!𝑦!" − 𝐹!𝑏 + 𝐹!𝑒

− 2𝐹!𝑃!) 2𝑎𝑐 − 𝑎𝑓 + 2𝑎𝑃! − 2𝑎𝑦!" + 𝑏𝑓 − 2𝑏𝑃! + 2𝑏𝑦!" − 2𝑐𝑒

+ 4𝑐𝑃! 	
  

𝜹! = 𝑐 𝐹! −𝑚!𝐺! 𝑃!! +
𝐹!
2

𝑎 + 𝑏 𝑃!!

+
1
2
𝐹!𝑐𝑓 +

1
4
𝐹!𝑏𝑓 −

1
2
𝐹!𝑎𝑐 −

1
2
𝑚!𝐺!𝑏𝑦!" +

1
2
𝑚!𝐺!𝑎𝑐 −

1
2
𝐹!𝑏𝑐

+
1
4
𝐹!𝑎𝑓 +

1
2
𝐹!𝑏𝑦!" +

1
2
𝐹!𝑎𝑦!" − 𝐹!𝑐! −

1
2
𝑚!𝐺!𝑎𝑦!" + 𝐹!𝑐𝑦!"

+
1
2
𝑚!𝐺!𝑏𝑐 −

1
4
𝑚!𝐺!𝑎𝑓 −

1
4
𝑚!𝐺!𝑏𝑓 𝑃!

+ −
1
4
𝑚!𝐺!𝑏! −

1
4
𝐹!𝑎𝑏 −𝑀!𝑒 +

1
4
𝐹!𝑎𝑒 +

1
4
𝐹!𝑏! + 𝐹!𝑎𝑐 −

1
4
𝐹!𝑏𝑒

−
1
2
𝐹!𝑎𝑓 +

1
4
𝑚!𝐺!𝑎𝑏 − 𝐹!𝑎𝑦!" +𝑀!𝑏 +

1
2
𝐹!𝑏𝑐 −

1
4
𝑚!𝐺!𝑎𝑒

−
1
2
𝐹!𝑏𝑓 − 𝐹!𝑒𝑦!" +

1
2
𝐹!𝑐𝑒 +

1
4
𝑚!𝐺!𝑏𝑒 𝑃!	
  

+
1
2
𝑚!𝐺!𝑎 −

1
2
𝐹!𝑎 +

1
2
𝑏𝑚!𝐺! − 𝐹!𝑐 −

1
2
𝐹!𝑏 𝑃!𝑃! +

1
8
𝑚!𝐺!𝑏!𝑓 +

1
4
𝑚!𝐺!𝑏!𝑦!"

+
1
4
𝑚!𝐺!𝑐𝑒! −

1
4
𝐹!𝑎𝑏𝑐 +

1
8
𝐹!𝑎𝑏𝑓 +

1
4
𝐹!𝑎𝑏𝑦!" +

1
4
𝐹!𝑎𝑐𝑒 −

1
8
𝐹!𝑎𝑒𝑓

−
1
4
𝐹!𝑎𝑒𝑦!" +

1
4
𝐹!𝑏𝑐𝑒 +

1
8
𝐹!𝑏𝑒𝑓 +

1
4
𝐹!𝑏𝑒𝑦!" −

1
2
𝐹!𝑎𝑐𝑓 − 𝐹!𝑎𝑐𝑦!"

+
1
2
𝐹!𝑎𝑓𝑦!" −

1
4
𝐹!𝑏𝑐𝑓 +

1
2
𝐹!𝑏𝑐𝑓𝑦!" −

1
4
𝐹!𝑐𝑒𝑓 −

3
2
𝐹!𝑐𝑒𝑦!"

+
1
2
𝐹!𝑒𝑓𝑦!"	
  

(A.2)	
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𝜺! =
!
!
−2𝑦!" + 2𝑐 + 2𝑃! − 𝑓 (𝑏 − 𝑒)(𝑏𝑓 + 2𝑏𝑦!" − 2𝑏𝑃! − 𝑎𝑓 + 2𝑎𝑃! + 2𝑎𝑐 −

2𝑎𝑦!" − 4𝑐𝑃! − 2𝑐𝑒).	
  

𝜺! = 𝜹!.	
  

𝜺! = 𝑐𝑚!𝐺! − 𝐹!𝑐 𝑃!!

+ −
1
2
𝐹!𝑏 +

1
2
𝑎𝑚!𝐺! −

1
2
𝐹!𝑎 +

1
2
𝑏𝑚!𝐺! + 𝐹!𝑐 𝑃! +

1
4
𝐹!𝑎𝑓

+
1
4
𝐹!𝑏𝑓 +

1
2
𝑚!𝐺!𝑏𝑐 − 𝐹!𝑐𝑦!" +

1
2
𝐹!𝑏𝑦!" +

1
2
𝐹!𝑎𝑦!" + 𝐹!𝑐!

+
1
2
𝑎𝑚!𝐺!𝑐 −

1
2
𝐹!𝑏𝑐 −

1
2
𝐹!𝑎𝑐 −

1
2
𝐹!𝑐𝑓 −

1
4
𝑎𝑚!𝐺!𝑓 −

1
2
𝑎𝑚!𝐺!𝑦!"

−
1
4
𝑏𝑚!𝐺!𝑓 −

1
2
𝑏𝑚!𝐺!𝑦!" 𝑃! +

1
2
𝐹!𝑏 +

1
2
𝑎𝐹! 𝑃!!

+ −
1
4
𝐹!𝑏! + 𝑎𝑐𝐹! −

1
2
𝑓𝑏𝐹! − 𝑎𝑦!"𝐹! −

1
4
𝑚!𝐺!𝑏𝑒 − 𝑒𝑀!

+
1
4
𝑚!𝐺!𝑏! +

1
4
𝐹!𝑎𝑏 −

1
2
𝑓𝑎𝐹! −

1
4
𝑚!𝐺!𝑎𝑏 − 𝑦!"𝑒𝐹! −

1
4
𝐹!𝑎𝑒

+
1
2
𝑐𝑏𝐹! +

1
4
𝑎𝑚!𝐺!𝑒 + 𝑏𝑀! +

1
4
𝐹!𝑏𝑒 +

1
2
𝑒𝑐𝐹! 𝑃! −

1
8
𝑚!𝐺!𝑏!𝑓

−
1
8
𝐹!𝑏𝑒𝑓 +

1
8
𝐹!𝑎𝑒𝑓 −

1
8
𝐹!𝑎𝑏𝑓 −

1
4
𝐹!𝑏𝑒𝑦!" −

1
4
𝐹!𝑏𝑐𝑒 +

1
4
𝐹!𝑎𝑒𝑦!"

−
1
4
𝐹!𝑎𝑐𝑒 −

1
4
𝐹!𝑎𝑏𝑦!" +

1
4
𝐹!𝑎𝑏𝑐 −

1
4
𝐹!𝑏𝑐𝑓 −

1
4
𝐹!𝑐𝑒𝑓 −

1
4
𝑚!𝐺!𝑐𝑒!

−
1
4
𝑚!𝐺!𝑏!𝑦!" − 𝑎𝐹!𝑐𝑦!" +

1
8
𝐹!𝑏!𝑓 +

1
8
𝐹!𝑏𝑓! +

1
8
𝐹!𝑎𝑓! +

1
4
𝐹!𝑐𝑒!	
  

+
1
4
𝐹!𝑏!𝑦!" +

1
2
𝐹!𝑐!𝑒 −

1
2
𝐹!𝑏𝑦!"! +

1
2
𝐹!𝑎𝑦!"! +

1
2
𝐹!𝑎𝑐! +

1
2
𝑀!𝑒𝑓 −

1
2
𝑀!𝑏𝑓

+
1
2
𝐹!𝑒𝑓𝑦!" +

1
2
𝐹!𝑏𝑐𝑦!" +

1
2
𝐹!𝑎𝑓𝑦!" −

1
2
𝐹!𝑎𝑐𝑓 + 𝐹!𝑒𝑦!"! + 𝑒𝑀!𝑦!"

−𝑀!𝑐𝑒 − 𝑏𝑀!𝑦!" + 𝑏𝑀!𝑐 −
3
2
𝐹!𝑐𝑒𝑦!" −

1
8
𝑚!𝐺!𝑎𝑒𝑓 +

1
8
𝑚!𝐺!𝑎𝑏𝑓

+
1
4
𝑚!𝐺!𝑏𝑐𝑒 +

1
4
𝑚!𝐺!𝑏𝑒𝑦!" −

1
4
𝑚!𝐺!𝑎𝑒𝑦!" +

1
4
𝑚!𝐺!𝑎𝑐𝑒

−
1
4
𝑚!𝐺!𝑎𝑏𝑐 +

1
4
𝑚!𝐺!𝑎𝑏𝑦!" +

1
8
𝑚!𝐺!𝑏𝑒𝑓	
  

𝜺! =
!
!
(−𝑏𝑚!𝐺! + 𝑒𝑚!𝐺! + 2𝑚!𝐺!𝑃! + 2𝐹!𝑐 − 𝐹!𝑓 + 2𝐹!𝑃! − 2𝐹!𝑦!" + 𝐹!𝑏 − 𝐹!𝑒 −
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2𝐹!𝑃!)(2𝑎𝑐 − 𝑎𝑓 + 2𝑎𝑃! − 2𝑎𝑦!" + 𝑏𝑓 − 2𝑏𝑃! + 2𝑏𝑦!" − 2𝑐𝑒 − 4𝑐𝑃!).	
  

Conditions 𝛅! > 0 and 𝛆! < 0 ensure that the structure matrices are not singular. In addition, 

conditions (3.27) guarantee a nonsingular position of the mobile platform. Cable tensions can be obtained 

by 

	
  

𝜏!" =

𝑙!𝛿!
  𝛿!

      ∀  𝑖 = 2,5,6.      0 < 𝑃! < 𝛿!

  𝑙!𝜀!
  𝜀!

      ∀  𝑖 = 1,5,6.      𝜀! < 𝑃! ≤ 0  

	
   (A.3)	
  

These results provide information about the amount of tension applied at each top projected parallel 

cable set by  

	
   𝜏!"# = 𝜏!" + 𝜏!(!!!)    ∀  𝑖 = 1, 2	
   (A.4)	
  

with the tension orientation as follows: 

	
   𝝉!"# = 𝜏!"#   𝑙!" 0 𝑙!"   !         ∀      𝑖 =     1,2	
   (A.5)	
  

The location of virtual cables in the mobile platform permits a better understanding of the problem. 

The virtual cables represent the action of the top parallel cables on the mobile platform. Figure A.1 shows 

the virtual cables acting on the suspended cable robot. 

	
  

Figure A.1: Virtual cables acting in the suspended planar cable robot. 

The virtual anchor points can be written in function of the anchor horizontal distance    𝑟!!"!!, by using 

geometrical parameters of the mobile platform and moment balance equations as follows: 



 

127 

 

	
   𝑟′!"!! = 𝜌 𝑟!! − 𝑟′!"!! − 𝑦!"	
   (A.6)	
  

	
   𝑟′!"!! = 𝜌 𝑟′!"!! − 𝑟!! − 𝑦!"	
   (A.7)	
  

	
   𝑟!!"!!

=
𝑟!!𝜌(𝐹!𝜃! − 𝛼) + 𝐹!𝜃! − 𝛼 𝑟!!𝜌 − 𝑟!!"!! 𝜌 + 𝜃! + (𝜃! − 𝜃!)(𝛥!"𝛼 − 𝐹!𝑦!")

(𝜌 − 𝜃!)(𝐹!𝜃! − 𝛼)
	
  

∀    𝜌 ≠ 𝜃!	
  

(A.8)	
  

where  

𝜌 =
2𝑐

(𝑎 − 𝑏)
,            ∀    𝑎 > 𝑏, 𝑐 > 0 

𝜃! =
𝑙!"
𝑙!"
, ∀    𝑙!" ≠ 0, 𝑖 = 1, 2. 

Δ!" =
𝑀!

𝛼   𝐹!! + 𝛼!
      ∀    𝛼 ≠ 0   

𝛼 = 𝐹! −   𝑚!𝐺!      ∀    𝑚! ≠ 0     

In other words, the virtual anchor points are changing accordingly to find a positive cable tension 

solution. Thus, cable tensions can be expressed in function of these virtual anchor points as: 

	
   𝜏!!
𝜏!!

=
𝜏!"!

𝑟!!𝑟!! − 𝑟!!𝑟!!

𝑟!! −𝑟!!
−𝑟!! 𝑟!!

𝑟′!"!!
𝑟′!"!!

	
   (A.9a)	
  

	
   𝜏!!
𝜏!!

=
𝜏!"!

𝑟!!𝑟!! − 𝑟!!𝑟!!

𝑟!! −𝑟!!
−𝑟!! 𝑟!!

𝑟′!"!!
𝑟′!"!!

	
   (A.9b)	
  

The distances 𝑟!" are the known anchor points on the mobile platform. The solution of equations 

(A.9a) and (A.9b) are function of the geometrical parameter 𝑟!!"!! which value for positive tensions can 

be found between the geometric limits    𝑟!! < 𝑟′!"!! < 𝑟!!. 

The minimum two-norm cable tension problem expressed in Eq. (2.15) can be rewritten as: 
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   minimize F! = 𝜏!"!! + 𝜏!"!! − 2(𝜏!!𝜏!! + 𝜏!!𝜏!!)	
   (A.10)	
  

By substituting equations (A.9a) and (A.9b) into Eq. (A.10), a quadratic equation is obtained which 

admits a minimum value by equaling its derivative to zero, 

	
   𝜕 𝜏!!𝜏!! + 𝜏!!𝜏!!
𝜕(𝑟!!"!!)

= 0	
   (A.11)	
  

The optimal value of 𝑟!!"!! for the minimum cable tensions requires the solution of Eq. (A.11), such 

as 

	
   𝑟∗ !
!"!! = −

𝑁!
2𝐷!

	
   (A.12)	
  

where 

𝑁! = !!"!
(!!!!!!!!!!!!!)

! !
(!!!!) !!!!!!

!
𝜃! + 𝜌 𝐹!𝜃! − 𝛼 (2𝑟!!𝑟!!! 𝜃!𝜃!𝜌! + 2𝑟!!𝑟!!𝑟!!𝜃!𝜌! −

𝑟!!𝑟!!𝑟!!𝜃!𝜃!𝜌 − 𝑟!!𝑟!!𝑟!!𝜃!𝜌! + 2𝑟!!𝑟!!𝜃!𝜃!𝜌𝑦!" − 2𝑟!!𝑟!!𝜃!𝜌!𝑦!" − 2𝑟!!𝑟!!𝑟!!𝜃!𝜌! −

𝑟!!𝑟!!! 𝜃!𝜃!𝜌 − 𝑟!!𝑟!!! 𝜃!𝜌! − 2𝑟!!𝑟!!𝑟!!𝜃!𝜌! − 𝑟!!𝑟!!𝜃!𝜃!𝑦!" + 2𝑟!!𝑟!!𝜃!𝜌𝑦!" − 𝑟!!𝑟!!𝜃!𝜌𝑦!" +

2𝑟!!𝑟!!𝑟!!𝜃!𝜌 − 𝑟!!𝑟!!𝜃!𝜃!𝑦!" + 2𝑟!!𝑟!!𝜃!𝜌𝑦!" − 𝑟!!𝑟!!𝜃!𝜌𝑦!" + 2𝑟!!𝑟!!𝑟!!𝜃!𝜌 − 2𝑟!!𝑟!!𝜃!𝑦!" +

2𝑟!!𝑟!!𝜃!𝑦!")𝐹! + (2𝑟!!𝑟!!𝑟!!𝜌! − 2𝑟!!𝑟!!! 𝜃!𝜌! − 2𝑟!!𝑟!!𝑟!!𝜌! + 𝑟!!𝑟!!𝜃!𝑦!" + 2𝑟!!𝑟!!𝜌!𝑦!" −

𝑟!!𝑟!!𝜌𝑦!" − 2𝑟!!𝑟!!𝜃!𝜌𝑦!" − 2𝑟!!𝑟!!𝑟!!𝜌 + 2𝑟!!𝑟!!𝑟!!𝜌! + 2𝛥!"𝑟!!𝑟!!𝜃! − 2𝛥!!𝑟!!𝑟!!𝜃! +

𝑟!!𝑟!!𝜃!𝑦!" − 𝑟!!𝑟!!𝜌𝑦!" − 2𝑟!!𝑟!!𝑟!!𝜌 + 𝑟!!𝑟!!! 𝜃!𝜌 + 2𝛥!"𝑟!!𝑟!!𝜃!𝜌! − 2𝛥!"𝑟!!𝑟!!𝜃!𝜌 +

𝑟!!𝑟!!𝑟!!𝜌! + 𝑟!!𝑟!!! 𝜌! + 𝑟!!𝑟!!𝑟!!𝜃!𝜌 − 2𝛥!"𝑟!!𝑟!!𝜃!𝜌 + 2𝛥!"𝑟!!𝑟!!𝜃!𝜌 − 2𝛥!"𝑟!!𝑟!!𝜃!𝜌! +

2𝛥!"𝑟!!𝑟!!𝜃!𝜌)𝛼 +
!!"!

!!!!!!!!!!!!!

!
𝜌  𝑟!! − 𝑦!" 2𝜌  𝑟!!𝑟!! + 𝑟!!𝑟!! + 𝑟!!𝑟!! . 

 

𝐷! = !!"!
(!!!!!!!!!!!!!)

! !!!! !!!!!!
(!!!!) !!!!!!

!
𝜌𝑟!! − 𝑟!! 𝑟!! − 𝜌𝑟!! − !!"!

!!!!!!!!!!!!!

!
   𝜌  𝑟!! +

𝑟!! 𝜌  𝑟!! + 𝑟!! . 
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