
Finite Field Multiplier Architectures for

Cryptographic Applications

by

Mohamed El-Gebaly

A thesis

presented to the University of Waterloo

in ful�lment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical Engineering

Waterloo, Ontario, Canada, 2000

cMohamed El-Gebaly 2000

I hereby declare that I am the sole author of this thesis. This is a true copy of

the thesis, including any required �nal revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Security issues have started to play an important role in the wireless communi-

cation and computer networks due to the migration of commerce practices to the

electronic medium. The deployment of security procedures requires the imple-

mentation of cryptographic algorithms. Performance has always been one of the

most critical issues of a cryptographic function, which determines its e�ectiveness.

Among those cryptographic algorithms are the elliptic curve cryptosystems which

use the arithmetic of �nite �elds. Furthermore, �elds of characteristic two are pre-

ferred since they provide carry-free arithmetic and at the same time a simple way

to represent �eld elements on current processor architectures.

Multiplication is a very crucial operation in �nite �eld computations. In this

contribution, we compare most of the multiplier architectures found in the liter-

ature to clarify the issue of choosing a suitable architecture for a speci�c appli-

cation. The importance of the measuring the energy consumption in addition to

the conventional measures for energy-critical applications is also emphasized. A

new parallel-in serial-out multiplier based on all-one polynomials (AOP) using the

shifted polynomial basis of representation is presented. The proposed multiplier is

area e�cient for hardware realization. Low hardware complexity is advantageous

for implementation in constrained environments such as smart cards.

Architecture of an elliptic curve coprocessor has been developed using the pro-

posed multiplier. The instruction set architecture has been also designed. The

coprocessor has been simulated using VHDL to very the functionality. The co-

processor is capable of performing the scalar multiplication operation over elliptic

curves. Point doubling and addition procedures are hardwired inside the coproces-

sor to allow for faster operation.

iii

Acknowledgements

All praise is due to Allah for guiding me throughout my life and giving me the

ability to complete this work. I am at a loss of words to express my gratitude to

my mother and my brother for their continuous love and support.

I am very fortunate to have had Prof. Hasan as my research advisor. This thesis

would not have been possible without his support, encouragement, and patience of

listening to my ideas.

Here in Waterloo I am grateful to all Waterloo faculty who have taught me, and

my colleagues from whom I learned a lot. I want especially to mention Prof. Agnew

and my colleague Amr Wassal for the useful discussions that helped me throughout

this work.

iv

To the memory of my father,

Maher Elgebaly.

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Hardware Cryptographic Architectures 2

1.3 Thesis Outline . 3

2 Architectural-Level Comparisons 5

2.1 Introduction . 5

2.2 Mathematical Background . 6

2.2.1 Bases of Representations . 7

2.2.2 Choices of Irreducible Polynomials 10

2.2.3 Performance and Complexity Metrics 11

2.3 GF(2m) Multiplier Architectures . 13

2.3.1 Polynomial Basis Multipliers 13

2.3.2 Normal Basis Multipliers . 27

2.3.3 Dual Basis Multipliers . 35

2.3.4 Composite Field Multipliers 39

2.4 Conclusions . 43

vi

3 Low-Energy GF Multipliers 45

3.1 Motivation . 45

3.2 Sources of power dissipation in CMOS circuits 46

3.2.1 Static Power . 46

3.2.2 Dynamic Power . 48

3.3 Architectures Compared and Methodology 50

3.3.1 Multiplier Architectures selection 50

3.3.2 Methodology . 53

3.4 Comparison Results . 53

3.4.1 Delay Comparison . 53

3.4.2 Power Comparison . 54

3.4.3 Energy Comparison . 55

3.5 Conclusion . 56

4 Bit Serial Multiplication over a class of Finite Fields 57

4.1 Introduction . 57

4.2 AOP Related Bases of Representations 58

4.3 Multiplication and Squaring over the Shifted Polynomial Basis . . . 60

4.3.1 Multiplication . 61

4.3.2 Squaring . 62

4.4 Multiplier Architecture And Comparison 63

4.5 Conclusion . 66

5 Elliptic Curve Coprocessor 68

vii

5.1 Elliptic Curve Cryptosystem . 69

5.1.1 Elliptic curves governing equations over GF(2m) 69

5.2 Elliptic Curve Operations over GF(2m) 70

5.2.1 Group Operation Algorithms using Projective coordinates . 71

5.2.2 Scalar Multiplication . 73

5.2.3 Di�e Hellman Key Exchange 75

5.3 Elliptic Curve Coprocessor Architecture 77

5.3.1 Overview . 78

5.3.2 Coprocessor Architecture . 78

5.3.3 Instruction Set Architecture 84

5.4 Comparison . 86

5.5 Conclusion . 87

6 Conclusion and Future Work 89

6.1 Summary and Conclusion . 89

6.2 Recommendations for Future Work 90

7 Appendix 92

7.1 Example . 92

Bibliography 103

viii

List of Abbreviations

AOP All-one polynomial

DB Dual basis

DLP Discrete logarithm problem

EC Elliptic curve

ECC Elliptic curve cryptosystem

ECDLP Elliptic curve discrete logarithm problem

ESP Equally-spaced polynomial

FSM Finite state machine

GF Galois �eld

GF(2m) Extension �eld of order m

KOA Karatsuba-Ofman algorithm

LSB Least-signi�cant bit

MSB Most-signi�cant bit

NAF Non-adjacent format

NB Normal basis

PB Polynomial basis

SPB Shifted polynomial basis

ix

List of Tables

2.1 Non-systolic polynomial basis GF(2m) multiplier architectures . . . 19

2.2 Systolic polynomial basis GF(2m) multiplier architectures 26

2.3 Normal basis GF(2m) multiplier architectures 34

2.4 Dual basis GF(2m) multiplier architectures 38

3.1 Multiplier architectures selected for comparison 52

4.1 Comparison between the proposed multiplier and other serial multi-

pliers . 65

5.1 The Point Doubling (Double) and Point Addition (Add-pnt) algorithms 73

5.2 The Scalar Multiplication (Smultiply) algorithm 74

5.3 NAF-Scalar Multiplication (NAF-Smultiply) algorithm 75

5.4 Binary encoding of Datapath Registers 81

5.5 Instruction Set . 85

5.6 Operation count for Point Doubling and Addition 86

5.7 Performance of the proposed architecture 87

x

List of Figures

2.1 MSB-�rst multiplier architecture 24

2.2 Massey-Omura serial multiplier . 29

2.3 Berlekamp multiplier con�gured for polynomial basis multiplication 35

3.1 CMOS inverter and the di�erent components of power dissipation . 47

3.2 Delay comparison . 54

3.3 Power consumption comparison . 55

3.4 Energy comparison . 56

4.1 Squaring over the shifted polynomial basis 62

4.2 The proposed multiplier for multiplication over GF(24) 64

5.1 Di�e-Hellman Key Exchange Protocol 76

5.2 The elliptic curve coprocessor architecture 77

5.3 Datapath architecture . 79

5.4 I/O unit structure . 82

5.5 Read/Write Operation . 83

5.6 Instruction set architecture . 84

xi

7.1 Simulation Waveforms . 93

7.2 Simulation Waveforms (cont.) . 94

7.3 Simulation Waveforms (cont.) . 95

7.4 Simulation Waveforms (cont.) . 96

7.5 Simulation Waveforms (cont.) . 97

7.6 Simulation Waveforms (cont.) . 98

7.7 Simulation Waveforms (cont.) . 99

7.8 Simulation Waveforms (cont.) . 100

7.9 Simulation Waveforms (cont.) . 101

7.10 Simulation Waveforms (cont.) . 102

xii

Chapter 1

Introduction

1.1 Motivation

With the tremendous growth of commerce transactions over wire and wireless me-

dia, the critical role that security plays is greatly emphasized. Electronic commerce

practices are endangered by the possibility of unauthorized access, disclosure, al-

ternation, substitution, or destruction of the information being transmitted. The

necessity for security has fueled research in the area of cryptographic protocols and

cryptographic algorithms.

Cryptographic computations are very intensive since the operand size is usually

very large. This has led to the development of e�cient hardware and software

implementations to save system resources. In constrained environments such as

mobile and portable devices, energy consumption is one of those resources that has

to be optimized.

The use of elliptic curves (EC) in cryptography is promising for many reasons.

1

CHAPTER 1. INTRODUCTION 2

Elliptic curve cryptosystems (ECC) allow for shorter key lengths without compro-

mising the security of the system. In comparison to more conventional methods of

public key cryptographic protocols such as RSA and systems based on the discrete

logarithm problem (DLP), key lengths are about 1024-bit, while EC systems , which

are based on the elliptic curve discrete logarithm problem (ECDLP), use 160-bit

operands. From a hardware point of view, this translates to increased performance,

less area and lower bandwidth. From a security standpoint, ECC provide better

long term security due to the lack of sub-exponential attacks which can be applied

to DLP systems. ECC is currently being reviewed for standardization by the IEEE

P1363 standards committee [20].

The elliptic curve cryptosystems which use the arithmetic of �nite �elds have

been shown to have e�cient implementations specially in constrained environ-

ments [25]. Furthermore, �elds of characteristic two are preferred since they provide

carry-free arithmetic and at the same time a simple way to represent �eld elements

on current processor architectures. Addition in GF(2m) can be as simple as bit-wise

ex-or operations. However, �nite �eld multiplication is much more di�cult. Never-

theless, multiplication is an essential operation in �nite �eld arithmetic since other

operations such as inversion and exponentiation can be performed using repeated

multiplication operations.

1.2 Hardware Cryptographic Architectures

Cryptographic computations are very demanding in terms of processing power and

speed. This fact has led to the implementation of such systems on a hardware

CHAPTER 1. INTRODUCTION 3

chip rather than a software program. The chip is a piece of hardware dedicated

to perform the computations in the underlying �nite �eld. Many cryptographic

chips have been implemented to speedup the cryptographic computations [21, 38]

using parallel architectures to achieve the high speed required. In constrained

environments such as smart cards, two very important design factors are to be

considered: area and power consumption of the chip. Parallel architectures are not

suitable for such environment since they consume much more area and power than

what a device can support. As a result, bit or digit serial architectures are of more

practical importance. To evaluate the hardware architectures suitable for a certain

application, the following measures are to be considered:

� Hardware complexity (gate count).

� Time complexity (maximum delay).

� Regularity and Modularity.

In addition to the above measures, a very important metric in the evaluation pro-

cess, especially for energy-critical applications, is the energy consumption. Chapter

3 shows the importance of the energy measure in evaluating multiplier architectures.

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 provides a survey of most of the

GF(2m) multiplier architectures found in the literature. Based on the representa-

tions of the �eld elements, the architectures are grouped into four main categories,

CHAPTER 1. INTRODUCTION 4

namely, polynomial, normal, dual, and composite �eld multipliers. The comparison

measures are the gate count and the critical path delay. Chapter 3 adds another

performance measure to those discussed in Chapter 2. The conventional perfor-

mance measures are found to be insu�cient to select the most suitable architecture

for a particular application. Energy consumption is shown to be a very critical per-

formance measure for wireless and mobile applications. Extending the work done

in [51], the dual basis multiplier is added to the comparison. Another group of

multipliers based on AOPs are also added to the comparison.

A new serial multiplier architecture is proposed in Chapter 4. The proposed

multiplier is based on all-one polynomials as the �eld de�ning polynomial and the

�eld elements are represented in the shifted polynomial basis. The hardware com-

plexity of the proposed architecture is e�cient which is advantageous in constrained

environments.

An elliptic curve coprocessor that is capable of performing the elliptic curve

scalar multiplication operation is presented in Chapter 5. The main component

inside the coprocessor architecture, the �nite �eld multiplier, is the architecture

proposed in Chapter 4. The datapath, the I/O unit, the control unit, as well as the

instruction set architecture of the coprocessor are described.

Chapter 2

Architectural-Level Comparisons

2.1 Introduction

The importance of the multiplication operation amongst other �nite �eld opera-

tions is greatly emphasized since �nite �eld multiplication is a complex operation

to perform. Many �nite �eld multiplier architectures have been proposed in the

literature based on di�erent �eld bases or di�erent application requirements. In

most cases, gate count and critical path delays are used as complexity and perfor-

mance measures to compare and evaluate di�erent architectures. In this chapter,

most of the GF(2m) multiplier architectures found in the literature are clustered

into four main groups, polynomial, normal, dual, and composite �eld multipliers.

The multipliers within each group are compared in terms of the timing and area

metrics.

With the emergence of wireless devices and the application of �nite �elds to

securely and reliably transmitting data, the need for low-energy architectures and

5

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 6

implementations is much more emphasized. Conventional complexity and perfor-

mance measures are no longer su�cient by themselves and have to be integrated

with an energy metric. This metric is used to compare a group of multipliers in

Chapter 3.

This Chapter is organized as follows. In Section 2.2, the mathematical back-

ground needed is quickly reviewed, presenting the di�erent bases used in �nite �eld

arithmetic in general and multipliers in particular. Di�erent architectural features

that inuence the choice of an architecture for a speci�c application are discussed

in section 2.2.3. Performance and complexity metrics used to quantitatively dif-

ferentiate multiplier architectures are also discussed introducing the energy-delay

metric in that section. Section 2.3 provides a survey of most of the prominent mul-

tiplier architectures in the literature and compares them based on the conventional

metrics.

2.2 Mathematical Background

To understand what �nite �eld multipliers are about and how they work, a few

mathematical concepts need to be reviewed [28, 45]. An Abelian group G is a set of

elements together with a binary operation � satisfying the following mathematical

properties: closure, associativity, having an identity element, having inverses and

commutativity. A �eld is a set F together with two operations, addition and

multiplication such that F is an abelian group under addition with 0 as the identity

element, the non-zero elements of F form an abelian group under multiplication

with 1 as the identity element and the distributive law a(b + c) = ab + ac holds

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 7

for all a; b; and c in the �eld. A �eld with a �nite number of elements q is called

a �nite �eld of order q and is usually denoted by GF(q), i.e., Galois Field of order

q. The order, q, must be a prime or power of prime to ensure that the �eld is

a group under modulo-q multiplication. The binary �eld GF(2) and its extension

GF(2m) are of special interest because of their wide usage in computer hardware

and communications equipment.

A polynomial p(x) over GF(2) of degree m is said to be irreducible over GF(2) if

p(x) is not divisible by any polynomial over GF(2) of degree less than m but greater

than zero. Also, an irreducible polynomial p(x) of degree m is said to be primitive

if the smallest positive integer n for which p(x) divides xn + 1 is n = 2m � 1.

An irreducible polynomial p(x) of degree m is the generator of the extension �eld

GF(2m) if its nonzero elements are powers of � and � is a root of p(x).

If f�0; �1; : : : �m�1g is a basis of GF(2
m) over GF(2), each element � 2 GF(2m)

can be uniquely represented in the form � = a0�0 + a1�1 + : : :+ am�1�m�1, where

ai 2 GF(2) for 0 � i � m � 1. Di�erent multipliers use di�erent bases and the

choice of the underlying basis is heavily dependent on the application.

2.2.1 Bases of Representations

Polynomial Basis

This basis is also known as the canonical or standard basis. It is de�ned as the

set f1; �; �2; : : : �m�1g, where � is a root of the irreducible polynomial p(x) used to

construct the �eld GF(2m). In polynomial basis over GF(2m), addition is simply bit-

wise XORing. It is also worth noting that there is no carry to propagate in �nite �eld

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 8

computations which means a smaller critical path compared to ordinary arithmetic

operations. Polynomial basis multipliers are based on polynomial multiplication

and modular reduction.

Normal Basis

This basis is given by the set f�;�2; : : : �2
m�1

g where � 2 GF(2m). The concept of

Optimal Normal Basis was introduced in [37] to reduce the complexity of multiplier

architectures. Unfortunately, normal basis exists for approximately 23% of the �elds

GF(2m), 2 6 m < 1200. Optimal normal basis has two types. Unlike type-II, type-I

has very few irreducible polynomials.

Dual Basis

The concept of duality is de�ned as follows: Let f�jg and f�ig to be two bases of

representation for GF(2m), Tr() is a linear function: GF(2m) ! GF(2). The bases

f�jg and f�ig are said to be dual with respect to Tr(), where f�jg is a ploynomial

basis, if [3]

Tr(�j�i) =

8>><
>>:
1 if i = j;

0 if i 6= j:

(2.1)

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 9

an extended de�nition of duality was given in [9]. Let 2 GF(2m), 6= 0, then

Tr(�i�i) =

8>><
>>:
1 if i = j;

0 if i 6= j:

(2.2)

The trace function over GF(2m) is given by Tr(�)= �+�
2+ : : :+�

2m�1

. This basis

was �rst used by Berlekamp [3] in the implementation of Reed-Solomon codecs.

Another variation of the dual basis in the Weakly Dual basis introduced in [55].

Other Bases

Other bases that are less commonly used but are gaining more momentum include

Triangular basis and Redundant basis. The triangular basis is similar to the dual

basis in many aspects. This basis is the result of a pre-multiplication of any basis

representation by a triangular transformation matrix, T , over GF(2) where

T =

2
666666666664

pm 0 : : : 0 0

pm�1 pm : : : 0 0

...
...

. . .
...

...

p2 p3 : : : pm 0

p1 p2 : : : pm�1 pm

3
777777777775

and the matrix entries pi, 0 6 i 6 m are the coe�cients of the irreducible polyno-

mial used to generate the �eld. For any irreducible polynomial p(x), pm is always

1 and T is guaranteed to be nonsingular. The advantage of this basis is that a

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 10

transform of coordinates to or from a polynomial basis can be done using shift

registers with their connections determined by the irreducible polynomial used to

construct the �eld [17]. It was used recently to build a variable dimension Galois

Field coprocessor [13].

Another basis that has gained attention recently is the Composite Field, GF((2n)m)

by extending the extension �eld GF(2n) to degree m. Performing multiplication

operations over large �eld polynomials by splitting those polynomials has been

proposed in [41] based on the Karatsuba-Ofman algorithm (KOA) [26] for multi-

plication of large numbers. The architecture of the composite �eld multipliers is

basically composed of multipliers and adders of the smaller order �eld represented in

the polynomial [41] or the normal basis [43]. The complexity of a parallel multiplier

implemented using KOA has reduced the complexity below the O(m2) bound [41].

2.2.2 Choices of Irreducible Polynomials

The choice of this polynomial greatly a�ects the complexity and regularity of the

multiplier architecture, hence, special classes of irreducible polynomials are often

used. However, using such special classes might limit the applications of the archi-

tecture, e.g., it might not be acceptable in some cryptographic applications. The

availability or rarity of those polynomials for certain �eld dimensions also restricts

their applications.

The all-one polynomial, AOP, p(x) = 1 + x + x
2 + : : : + x

m is irreducible if

and only if m+ 1 is a prime, m+ 1 divides 2m � 1 and all the (m+ 1)th roots of

unity are in GF(2m) [35]. For m � 100, the AOP is irreducible for m = 2, 4, 10,

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 11

12, 18, 28, 36, 52, 58, 60, 66, 82 and 100. Polynomial basis multiplication based

on the irreducible trinomial xm + x
k + 1 with 1 � k � bm=2c, most commonly

with k = 1 or m=2, are also attractive since they require fewer bit operations for

modular reduction.

Another attractive case is the Equally Spaced Polynomial with a spacing s, s-

ESP, is given by 1+x
s+ x

2s+ : : :+x
ns. It has been shown that the ESP increases

the regularity of the architecture to some extent [16, 23].

2.2.3 Performance and Complexity Metrics

Several performance and complexity metrics are used to compare and evaluate �nite

�eld multiplier architectures. These metrics and architectural features are reviewed

below.

Gate Count

This is the main complexity metric which is usually given as the numbers of 2-input

AND and XOR gates, ip-ops and switches or 2-to-1 multiplexers. It is sometimes

tied to the silicon area used for implementation using the area and count of an

equivalent 2-input NAND gate to represent the hardware complexity [51].

Throughput

Throughput is basically determined by the time required to complete a multiplica-

tion operation which is usually expressed in clock cycles. The clock period on the

other hand is proportional to the critical path delay. The choice of an architecture

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 12

and an irreducible polynomial should try to minimize the critical path delay to de-

crease the clock period and increase the throughput. Also, pipelined architectures

have the advantage of dividing the critical path delay over several stages, thus,

increasing the clock frequency and the throughput. On the other hand, increasing

the clock frequency has its negative e�ect in terms of power dissipation.

Latency

The delay between the �rst input and the �rst output of the multiplier expressed

in clock cycles is de�ned here as the latency. This measure is of special importance

in the semi-systolic and systolic architectures where the output experiences a delay

of a number of clock cycles after the arrival of the input.

Power Dissipation and Energy

As described above, a quantitative approach is needed to select appropriate archi-

tectures for energy starved applications such as wireless and mobile applications.

One approach was to seek the primitive polynomial that minimizes the power dis-

sipation by reducing the switching activity [46]. However, this approach uses an

exhaustive search to �nd the optimal polynomial which is not feasible for very large

�eld dimensions. Another approach tries to minimize the power-delay product, and

hence the energy, for an architecture through the logic style used in the implemen-

tation [51]. There is always a power versus delay tradeo� which governs practical

VLSI architectures and minimizing their product achieves the best trade-o� be-

tween power consumption and speed and conserves energy resources.

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 13

Regularity and Modularity

Although subjective, this is also a very important metric. Many applications use

very large �eld dimensions which makes a regular multiplier that can be imple-

mented in bit-slices a very attractive option. Polynomial basis multipliers are the

best in terms of regularity while normal basis multipliers are the worst. Regularity

usually a�ects performance positively too.

2.3 GF(2m) Multiplier Architectures

This section compares most of the multiplier architectures found in the literature

in terms of the architectural features previously mentioned. A previous comparison

[19] has only covered three multiplier architectures, Berlekamp [3], Massey-Omura

[29], and Scott-Tavares-Peppard [44]. The VLSI chip area was compared for the

three multipliers for order m = 8. The dual basis multiplier by Berlekamp was the

most e�cient architecture.

2.3.1 Polynomial Basis Multipliers

Polynomial basis multipliers are the most common multipliers in the literature.

Several architectures, serial or parallel, systolic or non-systolic, have been developed

mainly because the polynomial basis is the simplest to represent. Throughout this

section, the irreducible polynomial is referred to as p(x) = 1+ p1x+ p2x
2+ :::+x

m

and for an AOP, p(x) = 1 + x + x
2 + ::: + x

m. The multiplier operands will

be referred to as A and B where A = a0 + a1� + a2�
2 + ::: + am�1�

m�1 and

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 14

B = b0 + b1� + b2�
2 + :::+ bm�1�

m�1.

Non-Systolic Architectures

Many non-systolic polynomial basis multipliers have been developed mainly because

their hardware complexity is smaller compared to the systolic architectures. Most of

these architectures depend heavily on the choice of the irreducible polynomial used

to generate the �eld. Selecting certain irreducible polynomials greatly simpli�es

the underlying architecture and increases its regularity and modularity. Choosing

an AOP increases the regularity while using a trinomial has been shown to produce

hardware e�cient architectures [5, 14, 30, 48]. Using these special polynomials, on

the other hand, puts restrictions on the order of the �nite �eld used since those

polynomials are irreducible only for certain orders.

Mastrovito [30] presented a parallel multiplier based on the reduction of the

product polynomial from a degree of 2m � 2 to m � 1. Consider that C = AB

mod p(x) is the product of A and B reduced modulo the irreducible polynomial

p(x). The product polynomial, d = (
P

m�1

i=0 ai�
i)(
P

m�1

j=0 bj�
j) which is of degree

at most 2m � 2 is �rst computed. The product polynomial d is then reduced to

an m � 1 degree polynomial using the multiplication matrix, Z, C = ZA. The

reduction process is performed through producing a reduction matrix, Q, to reduce

the elements of orders m or higher to orders � m � 1. This can be accomplished

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 15

by computing the coe�cients of the reduction matrix Q as follows

2
66666664

�
m

�
m+1

...

�
2m�2

3
77777775
= Q

2
66666664

�
m�1

�
m�2

...

1

3
77777775

(2.3)

The coe�cients of the matrix Q depend on the choice of the irreducible polynomial

used to generate the �eld. Selecting trinomials of the form x
m+x+1 or xm+xm=2+1

has been shown to reduce the number of terms in the Q matrix and therefore reduce

the overall complexity of the multiplier [30].

Recently, the hardware complexity of the Mastrovito multiplier for the trinomial

of the form x
m + x

n + 1 for 1 � n � m� 1 has been shown to be the same as that

of the original Mastrovito multiplier [48]. It was also shown that the multiplication

matrix Z can be constructed from three simpler matrices. For the special case of

k = m=2, the number of the required XOR gates is reduced. The time complexity

in that special case is also greatly reduced.

A generalized Mastrovito multiplier has been introduced in [47] for which the

generating polynomial is of the form p(x) = x
m + x

k +
P

k�1

i=K+1
pix

i +
P

K�1

i=0
x
i.

The multiplier has a complexity proportional to (m � 1 � H(p)), where H(p) is

the Hamming weight of the underlying irreducible polynomial. However, the orig-

inal Mastrovito multiplier has a complexity proportional to H(p). The multiplier

proposed in [47] has a low hardware complexity if the Hamming weight of the

generating polynomial is high while the original Mastrovito multiplier has a lower

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 16

complexity for low Hamming weights. For the AOP case, where H(p) = m� 1, the

generalized multiplier has a lower complexity that is exactly the same as the one

proposed in [5].

Another category of irreducible polynomials commonly used in polynomial basis

multipliers is the AOP. Using AOPs can considerably enhance the modularity of

the architecture. For example, Hasan and Bharagava [15] presented a serial AOP

multiplier which is based on a multiplication matrix. Assuming that C =
P

m�1

i=0 ci�
i

is the product of A and B where A;B; and C are all elements in GF(2m). The

product C can be computed using

2
66666664

ĉ0

ĉ1

...

ĉm�1

3
77777775
=

2
66666664

â0 â2 : : : âm�1

â1 â3 : : : âm

...
...

. . .
...

âm�1 âm+1 : : : â2m�2

3
77777775

2
66666664

b0

b1

...

bm�1

3
77777775

(2.4)

where

âk =

m�1X
i=0

ait
[i+k]
m�1 0 � k � 2m� 2

and

ĉi =

8>><
>>:
cm�1 i = 0

cm�1�i +
P

i

l=1 ĉi�lpm�l i = 1; 2; :::;m� 1

with t
[k]

i
representing the ith coordinate of the element �k. The matrix in (2.4)

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 17

was used to construct a serial multiplier in [15]. The matrix multiplication can be

realized using a Linear-Feedback Shift Register (LFSR) and m AND gates. Another

unit is required to perform the partial products accumulation. An AOP was used

in [16] as the irreducible polynomial to construct a parallel multiplier. It was shown

that the use of an AOP greatly simpli�es the construction of the multiplication

matrix and increases the modularity of the design.

Itoh and Tsujii [23] also proposed a parallel multiplier based on AOPs. The

operands and the product are expressed in a modi�ed version of the polynomial

basis representation. For example, for A 2 GF(2m), A is expressed as A = A0 +

A1� + : : :+Am�1�
m�1 + Am�

m, where Am = 0. Hence, the product C = AB can

be written as

2
666666666664

Cm

Cm�1

...

C1

C0

3
777777777775

=

2
666666666664

A0 A1 : : : Am

Am A0 : : : Am�1

...
...

. . .
...

A2 A3 : : : A1

A1 A2 : : : A0

3
777777777775

2
666666666664

Bm

Bm�1

...

B1

B0

3
777777777775

(2.5)

A serial multiplier was derived from (2.5) in [11]. In that structure the operands

A and B are represented in the polynomial basis form while the product C is

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 18

represented in the Itoh-Tsujii's form as follows

2
66666664

Cm

Cm�1

...

C0

3
77777775
=

2
666666666664

A1 A2 : : : 0

A0 A1 : : : Am�1

0 A0 : : : Am�2

...
...

. . .
...

A2 A3 : : : A0

3
777777777775

2
66666664

Bm�1

Bm�2

...

B0

3
77777775

(2.6)

Equation (2.6) is obtained by the application of Am = Bm = 0 to (2.5). Note that

Ai = ai; Bi = bi and Ci = ci for i = 0; 1; : : : ;m� 1. The product C is converted to

the polynomial basis form using the fact that ci = Ci + Cm and the computation

of Cm =
P

m�1

i=1 AiBm�i [23]. This multiplier requires m clock cycles to produce the

output sequence while the original architecture by Itoh and Tsujii requires m + 1

clock cycles.

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 19

T
ab
le
2.
1:
N
on
-s
y
st
ol
ic
p
ol
y
n
om
ia
l
b
as
is
G
F
(2
m

)
m
u
lt
ip
li
er
ar
ch
it
ec
tu
re
s

A
u
t
h
o
r
s

S
/
P

N
u
m
b
e
r
o
f
G
a
t
e
s

C
o
m
p
.

C
r
it
ic
a
l

Ir
r
e
d
u
c
ib
le

[R
e
f.
]

A
N
D

X
O
R

F
F

M
U
X

L
a
t
e
n
c
y

T
im
e

P
a
t
h

P
o
ly
n
o
m
ia
l

M
a
s
t
r
o
v
it
o
[3
0
]

S

2
m

2
m

2
m

+

1

m

m

m

+

1

T
A

+

T
X

2

A
n
y

H
a
s
a
n

a
n
d
B
h
a
r
g
a
v
a
[1
5
]

S

3
m

(
m

�

1
)

+

2
[H
(
p
)
�

2
]
+
1

4
m

+

1

1

2
m

2
m

+

1

T
A

+

l
o
g
2

(
m

�

1
)
+

T
X

2

A
n
y

It
o
h
a
n
d
T
s
u
ji
i
[2
3
]

P

m

2

+

2
m

+

1

m

2

+

2
m

2
m

0

1

T
C

P

�

T
A

+

(
d
l
o
g
2

(
m

)
+

l
o
g
2

(
m

+

2
)
e
)
T
X

2

A
O
P

M
a
s
t
r
o
v
it
o
[3
0
]

P

m

2

m

2

�

1

2
m

0

1

T
C

P

T
A

+

(
d
l
o
g
2

(
m

)
+

1
e
)
T
X

2

A
n
y

H
a
s
a
n

a
n
d
B
h
a
r
g
a
v
a
[1
4
]

P

m

2

m

2

+

m

�

2

2
m

0

1

T
C

P

T
A

+

(
m

+

d
l
o
g
2

(
m

�

1
)
e
)
T
X

2

A
O
P

K
o
�c
a
n
d
S
u
n
a
r
[5
]

P

m

2

m

2

�

1

2
m

0

1

T
C

P

T
A

+

(
2
+

d
l
o
g
2

(
m

�

1
)
e
)
T
X

2

A
O
P

�

T
C

P

=

C
r
it
ic
a
l
p
a
t
h
d
e
la
y
.

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 20

Ko�c and Sunar [5] utilized the Shifted Polynomial Basis representation and

Mastrovito's multiplication algorithm to construct an AOP multiplier. It has been

shown that the multiplication matrix Z in [30] can be divided into two simpler

matrices Z1+Z2.Those two matrices can be easily computed when an AOP is used

as the irreducible polynomial. The gate and time complexities of this multiplier

are better than that of Mastrovito's. The architecture has an extra advantage that

it can perform multiplication in the normal basis as well as the polynomial basis.

The normal basis multiplication is performed by adding a permutation circuit to the

inputs and the inverse of that permutation to its output. The permutation circuit

does not add any gate complexity to the multiplier since it can be done by rewiring.

The normal basis version of the architecture proposed in [5] will be discussed in more

details in Section 2.3.2. The non-systolic polynomial basis architectures covered in

this chapter are compared quantitatively in Table 2.1.

Systolic Architectures

Systolic architectures are advantageous in some applications because they are easy

to pipeline and to expand. The basic metric in measuring the hardware complexity

of systolic architectures is the complexity of the basic cell. The critical path delay is

also the critical delay of the basic unit. Due to the existence of pipelining registers

in the data path, systolic architectures su�er from longer latency and longer initial

delay.

Most of the systolic multipliers are based on array-type multiplication where

one of the operands is processed in parallel and the other is processed one bit at a

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 21

time. Depending upon the order of processing of the second operand, the array-type

algorithms are classi�ed as least-signi�cant bit �rst (LSB-�rst) and most-signi�cant

bit �rst (MSB-�rst) schemes. The LSB-�rst scheme processes the LSB of the second

operand �rst while the MSB-�rst scheme processes the MSB �rst [24].

Assuming that A;B, and C 2 GF(2m) are represented in the polynomial basis

and p(x) is the irreducible polynomial, the product C of A and B can be written

as

C = AB mod p(x)

= b0A+ b1(A� mod p(x)) + b2(A�
2 mod p(x) + : : :+ bm�1(A�

m�1 mod7 p(x))

=

m�1X
k=0

(A�k)bk =

m�1X
i=0

(

m�1X
k=0

a
(k)

i
�
i)bk

=

m�1X
i=0

(

m�1X
k=0

a
(k)

i
bk)�

imod p(x)

(2.7)

where A�k =
P

m�1

i=0 a
(k)

i
�
i (0 � k � m� 1).

The computation in (2.7) is called the LSB-�rst scheme and can be performed

recursively on k for 0 � k � m� 1 as follows [57]

A
(k) =[A(k�1)]�mod p(x);

C
(k) =A(k�1)

bk�1 + C
(k�1)

;

where C(k) =
P

k�1

i=0
Abi�

i and C
(0) = 0, A(k) = �

k and A
(0) = A.

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 22

For k = 0, we have A�0 = A while for 1 � k � m� 1, we have

A
(k) = A�

k = (A�k�1)� =

m�1X
i=0

a
(k�1)

i
�
i+1

= a
(k�1)

m�1 �
m +

m�1X
i=1

a
(k�1)

i�1 �
i (2.8)

Since p(�) = 0, �m = pm�1�
m�1 + pm�2�

m�2 + :::+ p1�+ p0. Substituting �
m into

(2.8) yields

A
(k) =

m�1X
i=1

(a
(k�1)

i�1 + a
(k�1)

m�1 pi)�
i + a

(k�1)

m�1 p0: (2.9)

From (2.9), we can write

a
(k)

i
=

8>><
>>:
a
(k�1)

i�1 + a
(k�1)

m�1 pi 1 � i � m� 1

a
(k�1)

m�1 p0 i = 0;

c
(k)

i
= a

(k�1)

i
bk�1 + c

(k�1)

i
; (2.10)

where a
(k)

i
and c

(k)

i
denote the ith coe�cients in A

(k) and C
(k) respectively and the

�nal product C is C(m).

The MSB-�rst scheme uses the MSB as the �rst bit in the multiplication oper-

ation to produce the product as follows

C = (:::(Abm�1� mod p(x) +Abm�2)� mod p(x) + : : :+Ab1)� mod p(X) +Ab0:

(2.11)

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 23

The basic kth step in the MSB-bit algorithm performs the following computation:

C
(k) = C

(k�1)
� mod p(x) +Abm�k; (2.12)

where C(k) =
P

k

i=1Abm�i�
k�i, and C

(0) = 0. Using the fact that �m =
P

m�1

i=0 pi�
i,

the coe�cients of C(k) can be written as

c
(k)

i
=

8>><
>>:
c
(k�1)

i�1 + c
(k�1)
m�1 pi + aibm�k 1 � i � m� 1

c
(k�1)
m�1 p0 + a0bm�k i = 0:

(2.13)

The recursive equation (2.13) can be implemented using the architecture shown in

Figure 2.1(a). The basic cell structure is shown in Figure 2.1(b).

The operations performed in both array-multiplication algorithms can be identi-

�ed asmultiply-by-�, generate-current-partial-products and accumulate-to-previuos-

result [24]. The multiply-by-� operation is common in both schemes. In the LSB-

�rst scheme, the three operations are performed in parallel while in the MSB-�rst

scheme they are performed sequentially. Parallelism in the LSB-�rst scheme leads

to e�cient implementations with less area complexity than the MSB-�rst scheme.

The LSB-�rst and the MSB-�rst schemes can be easily mapped into serial or par-

allel VLSI implementations. The choice of the implementation depends heavily

on the nature of the application and the availability of the input operands at the

beginning of computation.

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 24

i i i

OSR OSR

m-1U Um-2 Um-3

m-1 m-2

A
m-1

A A

B B B

m-2 m-3

m-1 m-2 m-3

OSR
m-3

OSR
0

0

0

B

A

i

U0

C CC

BBBB

OSR: Output Shift Register

c c c
m-1 1 0

a

p

b

a

p

b

m-1 0

m-1 0

m-1 0

P P P P
m-1 m-2 m-3

B

0

C
m-1

m-1 m-1 m-1

C
m-1

C
m-2

C
m-3

C
0

(a)

C

i i-1

m-1

i

C
m-1

i
B B

A
i

p
i

C C

(b)

Figure 2.1: MSB-�rst multiplier architecture

In [57], the LSB-�rst scheme was used to implement a serial and a parallel sys-

tolic array multipliers. These multipliers can perform the product-sum operation,

P = AB + C, in GF(2m). Jain et.al. [24] proposed a semi-systolic multiplier ar-

chitecture. Semi-systolic architectures have lower latency and smaller number of

latches compared to those of the systolic architectures.

The MSB-�rst scheme was utilized in the implementation of several systolic

polynomial basis multipliers. In [44], a bit-slice architecture for a serial-in serial-out

multiplier was implemented. The architecture has two global control signals which

introduce synchronization problems when the chip becomes large for large �eld

dimensions. The �rst serial systolic architecture reported in the literature was due

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 25

to Zhuo [58]. It has only one control signal and a very e�cient architecture. Other

implementations using systolic array architectures were proposed in [49] and [54].

The two implementations has about the same area and timing complexity. Only one

control signal is used in both designs which gives these architectures an advantage

over the design presented in [44]. In [7], a systolic product-sum architecture was

presented that is less complex than that proposed in [57]. However, they both have

the same critical path delay.

In [31], an area e�cient architecture was proposed utilizing the MSB-scheme

to implement a serial systolic multiplier and another variation of it in the form of

a serial/parallel systolic architecture. The design uses two bits of one operand as

inputs to the basic cell. Hence, the required number of basic cells in the multiplier

is reduced by half i.e. m=2 instead of m. The overall complexity of the multiplier

is better than other designs but the critical path delay is longer. Also, two control

signals are required to produce the output.

Table 2.2 shows a comparison between most of the systolic architectures pro-

posed in the literature. The entries of the table represent the whole architecture

rather than the basic cell.

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 26

T
ab
le
2.
2:
S
y
st
ol
ic
p
ol
y
n
om
ia
l
b
as
is
G
F
(2
m

)
m
u
lt
ip
li
er
ar
ch
it
ec
tu
re
s

A
u
th
o
rs

N
u
m
b
e
r
o
f
G
a
te
s

C
o
m
p
.

C
ri
ti
c
a
l

[R
e
f.
]

S
/
P

A
N
D

X
O
R

F
F

M
U
X

L
a
te
n
c
y

T
im
e

P
a
th

S
c
o
tt
a
n
d
T
a
v
a
re
s
[4
4
]

S

2
m

(m

�

1
)X
3

4
m

+
2

2
m

m

m

+
1

T
A

+
T
X

3

Y
e
h
a
n
d
R
e
e
d
[5
7
]

S

3
m

2
m

1
1
m

m

2
m

3
m

T
A

+
2
T
X

2

+
T
M

U

X

Z
h
o
u
[5
8
]

S

3
m

2
m

7
m

m

2
m

3
m

�

1

T
A

+
2
T
X

2

+
T
M

U

X

D
ia
b
[7
]

S

3
m

2
m

5
m

m

2
m

3
m

2
T
A

+
2
T
X

2

+
T
M

U

X

W
a
n
g
a
n
d
L
in
[4
9
]

S

3
m

m

o
f
X

3

1
0
m

2
m

2
m

3
m

T
A

+
T
X

3

+
T
M

U

X

M
e
k
h
a
ll
a
la
ti
e
t
.
a

l
.

[3
1
]

S

6
m 2

2
m 2

o
f
X

3

1
6
m 2

4
m 2

3
m 2

5
m 2

2
T
A

+
T
X

3

+
T
M

U

X

W
u
a
n
d
C
h
a
n
g
[5
4
]

S

3
m

�

2

2
m

�

1

1
0
m

�

9

2
m

�

1

2
m

�

1

3
m

�

2

2
T
A

+
2
T
X

2

+
T
M

U

X

Y
e
h
a
n
d
R
e
e
d
[5
7
]

P

2
m

2

2
m

2

7
m

2

0

2
m

3
m

T
A

+
T
X

2

W
a
n
g
a
n
d
L
in
[4
9
]

P

2
m

2

m

2

o
f
X

3

7
m

2

0

2
m

3
m

2
T
A

+
T
X

3

J
a
in
e
t

a

l
.

[2
4
]

P

2
m

2

2
m

2

6
m

2

0

m

m

+
1

T
A

+
T
X

2

W
u
a
n
d
C
h
a
n
g
[5
4
]

P

2
m

2
�

m

2
m

2
�

m

8
m

2
�

7
m

0

2
m

�

1

3
m

�

1

T
A

+
T
X

2

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 27

2.3.2 Normal Basis Multipliers

An element B 2 GF(2m) is represented using the normal basis as

B = b0�+ b1�
2 + b2�

4 + : : :+ bm�1�
2(m�1)

= [b0; b1; b2; : : : ; bm�1] � [�;�
2
; �

4
; : : : ; �

2(m�1)

]t

= b ��t
; (2.14)

or more simply by the vector of coordinates, b, for the normal basis representation.

A powerful feature of the normal basis representation is that squaring of an

element B is simply a cyclic shift of its coordinates which can be implemented

using a binary shift register. Since �2
m

= �, B2 can be represented as

B
2 = b0�

2 + b1�
4 + : : :+ bm�2�

2m�1

+ bm�1�
2m

= bm�1�+ b0�
2 + b1�

4 + : : :+ bm�2�
2m�1

= b(1) ��t
; (2.15)

where b(k) represents the k-fold right cyclic shift of b.

Massey and Omura [29] proposed a normal basis multiplier based on the fol-

lowing principle. If a = [a0; a1; a2; : : : ; am�1] and b = [b0; b1; b2; : : : ; bm�1] are the

vector representations of the coordinates of two elements A;B 2 GF(2m) in a nor-

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 28

mal basis form, then their product, C, can be written as

C = a�t(b�t)

= a�t
�bt

= aMbt; (2.16)

where the product matrix, M, is de�ned by

M = �t
� =

2
66666664

�
20+20

�
20+21

: : : �
20+2m�1

�
21+20

�
21+21

: : : �
21+2m�1

...
...

. . .
...

�
2m�1+20

�
2m�1+21

: : : �
2m�1+2m�1

3
77777775

=M0�+M1�
2 + : : :+Mm�1�

2m�1

; (2.17)

where the element at row i and column j ofMk is in GF(2) and represents the coe�-

cient �2
k

when �2
i+2j is represented using the normal basis and k = 0; 1; : : : ;m�1.

From the above equations, the coordinates of the product can be obtained using

cm�1�k = aMm�1�kb
t
; k = 0; 1; : : : ;m� 1;

= a(k)Mm�1b
(k)t

: (2.18)

Hence, the same logic function used to implement equation (2.18) can be used to

compute all the coordinates of C in serial from the cyclically shifted coordinates of

A and B. A parallel multiplier can also be achieved by using m identical replicas of

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 29

that same logic to simultaneously calculate the coordinates of C using shifted wiring

for the inputs A and B. The main disadvantage of Massey-Omura multipliers is

that the function implementing equation (2.18) depends heavily on the choice of

the polynomial. Therefore, the structure is irregular and cannot be expanded easily

to high order �elds. A general architecture for the Massey-Omura serial multiplier

is shown in Figure 2.2.

c
m-1

c ,
m-2

, ... ,c
0

b c

b bm-10

XOR

plane
AND plane

Serial to parallel

Serial to parallel

i

.

.

a a0 m-1

A

B

C

.

.

.

j

Shift Register

Shift Register

Figure 2.2: Massey-Omura serial multiplier

Wang et al. [50] proposed a VLSI pipelined implementation of both the serial

and parallel versions using an AND-XOR implementation of equation (2.18) with

pipelining registers between the di�erent levels of the XOR tree. However, this

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 30

implementation increases the design area and power considerably for large �elds.

They have also pipelined the input into the shift registers in such a way that there

is no time lost between operations except for an initial �xed time delay.

Hasan et al. [18] proposed a modi�ed Massey-Omura multiplier based on choos-

ing an irreducible AOP as the generating polynomial. This choice allows to write

Mm�1 as a sum of two matrices, P +Q, as follows

Mm�1 = P+Q (mod 2); (2.19)

where the elements of the matrix P are given by

pi;j =

8
>><
>>:
1 if i = m

2
+ j (mod m);

0 otherwise:

(2.20)

Using equation (2.19), it was shown that equation (2.18) can be written as

cm�1�k = aPbt + a(k)Qb(k)t (mod 2): (2.21)

The proposed parallel architecture introduced a signi�cant reduction in the hard-

ware complexity compared to the original parallel Massey-Omura multiplier because

the �rst term in the above equation is independent of k and needs to be computed

only once for all of the product coordinates. However, the critical path delay is still

the same as that in [50]. The only restriction on this architecture is in the use of

AOPs as the generating polynomials.

Agnew et al. [1] presented a serial normal basis multiplier that has a regular

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 31

architecture and therefore suitable for VLSI implementations. The multiplication

algorithm is based on that of Massey-Omura but the authors ended up with a reg-

ular architecture. Their algorithm starts by writing the coordinates of the product

C = AB in a bilinear form of the coordinates of A and B.

C = AB =

m�1X
k=0

ck�
2k =

X
0�i;j�m�1

aibj�
2i
�
2j

Hence,

ck =

m�1X
i=0

m�1X
j=0

t
[k]

i;j
aibj for k = 0; 1; : : : ;m� 1 (2.22)

where �2
i

�
2j =

P
m�1

k=0 t
[k]

i;j
�
2k
; i; j = 0; 1; : : : ;m� 1. Therefore t

[k]

i;j
is the element

at row i and column j in Mk of equation (2.17). Similar to equation (2.18), ck can

be written as

ck =

m�1X
j=0

bj+k

m�1X
i=0

t
[0]

i;j
ai+k (2.23)

where all the indices are reduced modulo m.

Equation (2.23) is another representation of Massey-Omura algorithm in (2.18).

In [1], the function F
[k]

j
(t) is de�ned by

F
[k]

j
(t) = bj+k+t

m�1X
i=0

t
[0]

i;j
ai+k+t: (2.24)

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 32

Consequently,

ck =

m�1X
j=0

F
[k]

j
(0): (2.25)

The coordinates of A and B are stored in two registers A and B which are shifted

cyclically. At cycle t,
P

t�1

j=0 F
(0)

j
(0); : : : ;

P
t�1

j=0 F
(m�1)

j
(0) are formed in a special

structure C that implements equation (2.24) from its previous contents and the

current contents of register A. After m clock cycles, the result is stored in C.

This multiplier architecture has a lower hardware complexity than that presented

by Massey-Omura. The hardware complexity can be reduced further by using the

optimal normal basis [37] as the basis of the multiplier.

As mentioned earlier, Ko�c and Sunar [5] proposed a normal basis multiplier

based on their polynomial basis one. The generating polynomial must be an AOP.

This allows them to write another set

 = f�;�2; �3; : : : ; �mg; (2.26)

and use it as a basis to represent the elements of GF(2m). This basis is a shifted

version of the polynomial basis. The normal basis representation of an element A

or B 2 GF(2m) can be converted to that representation using the following relation

B =

m�1X
i=0

bi�
2i =

mX
i=1

b
0

i
�
i
: (2.27)

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 33

This conversion can be simply implemented using the permutation given by

b
0

2imod(m+1) = bi for i = 0; 1; : : : ;m� 1: (2.28)

This permutation is conducted at the input bits simply by rewiring them with-

out any additional gates. The output of the polynomial basis multiplier is then

C = AB=�
2. Multiplying the output of the polynomial basis multiplier by �2 and

applying the inverse permutation results in the product in the normal basis rep-

resentation. This results in the same hardware complexity as in the polynomial

basis multiplier since the inverse permutation does not use any additional gates.

Therefore, the proposed multiplier has the same architectural complexity and crit-

ical path delay as the polynomial basis multiplier. It can be shown that Hasan's

multiplier [16] has exactly the same hardware complexity as the one proposed by

Ko�c [5] however Hasan's multiplier has a better critical delay.

Table 2.3 shows a comparison between the normal basis multipliers covered in

this chapter.

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 34

T
ab
le
2.
3:
N
or
m
al
b
as
is
G
F
(2
m

)
m
u
lt
ip
li
er
ar
ch
it
ec
tu
re
s1

A
u
th
o
rs

N
u
m
b
e
r
o
f
G
a
te
s

C
o
m
p
.

C
ri
ti
c
a
l

Ir
re
d
u
c
ib
le

[R
e
f.
]

S
/
P

A
N
D

X
O
R

F
F

M
U
X

L
a
te
n
c
y

T
im
e

P
a
th

P
o
ly
n
o
m
ia
l

W
a
n
g
e
t

a

l
.

[5
0
]

S

2
m

�

1

2
m

�

2

2
m

0

m

m

T
A

+
(1
+
d
lo
g
2
(m

�

1
)e
)T
X

2

A
n
y
2

A
g
n
e
w
e
t

a

l
.

[1
]

S

m

2
m

�

1

3
m

0

m

m

T
A

+
(1
+
d
lo
g
2
(m

�

1
)e
)T
X

2

A
n
y

W
a
n
g
e
t

a

l
.

[5
0
]

P

2
m

2
�

m

2
m

2
�

2
m

2
m

0

0

T
C

P

T
A

+
(1
+
d
lo
g
2
(m

�

1
)e
)T
X

2

A
n
y
2

H
a
sa
n
e
t

a

l
.

[1
8
]

P

m

2

m

2
�

1

2
m

0

0

T
C

P

T
A

+
(1
+
d
lo
g
2
(m

�

1
)e
)T
X

2

A
O
P

K
o
�c
a
n
d
S
u
n
a
r
[5
]

P

m

2

m

2
�

1

2
m

0

0

T
C

P

T
A

+
(2
+
d
lo
g
2
(m

�

1
)e
)T
X

2

A
O
P

1

A
ll
o
f
t
h
e
n
o
r
m
a
l
b
a
s
is
a
r
c
h
it
e
c
t
u
r
e
s
t
h
a
t
w
e
w
e
r
e
a
b
le
t
o
�
n
d
in
t
h
e
li
t
e
r
a
t
u
r
e
w
e
r
e
n
o
n
-s
y
s
t
o
li
c
.

2

T
h
e
�
g
u
r
e
s
p
r
e
n
e
s
t
e
d
h
e
r
e
c
o
r
r
e
s
p
o
n
d
t
o
u
s
in
g
t
h
e
o
p
t
im
a
l
n
o
r
m
a
l
b
a
s
is
[3
0
].

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 35

Dual

Basis

Converter
Basis

Converter
Basis

Polynomial

Basis

Polynomial
Basis

Polynomial
Basis Multiplier

Berlekamp

Figure 2.3: Berlekamp multiplier con�gured for polynomial basis multiplication

2.3.3 Dual Basis Multipliers

Dual basis multipliers, specially bit-serial ones, are known to have the lowest hard-

ware complexity of all available GF(2m) multipliers and to be particularly suited

for constant multiplication [9]. The dual basis representation was �rst utilized in

�nite �eld multiplication by Berlekamp [3]. A setup for Berlekamp serial multiplier

to perform polynomial basis multiplication is shown in Figure 2.3.

Consider the set f�0; �1; : : : ; �m�1g to be the dual basis of the polynomial basis

f1; �; : : : ; �m�1g, where � is a root of the polynomial p(x). Using the de�nition of

duality [9] in (2.2), the multiplication operation C = AB where A =
P

m�1

i=0 ai�
i is

represented in the polynomial basis while B =
P

m�1

j=0 bj�j and C =
P

m�1

k=0 ck�k are

in the dual basis, is performed through a matrix multiplication as follows:

2
66666664

c0

c1

...

cm�1

3
77777775
=

2
66666664

b0 b1 : : : bm�1

b1 b2 : : : bm

...
...

. . .
...

bm�1 bm : : : b2m�2

3
77777775

2
66666664

a0

a1

...

am�1

3
77777775
; (2.29)

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 36

where bk =Tr(B�
k) (k = 0; 1; : : : ; 2m�2), ck =Tr(C�

k) (k = 0; 1; : : : ;m�1), bk

and ck are the dual basis coordinates of B and C respectively. The bk (k = m;m+

1; : : : ; 2m� 2) can be generated using an LFSR initialized with the coordinates bk

(k = 0; 1; : : : ;m � 1) and the feedback connections corresponding to the nonzero

terms of p(x). For example, bm+k = Tr(B
P

m�1

j=0 pj�
j+k) =

P
m�1

j=0 pjTr(B�
j+k) =

P
m�1

j=0 pjbj+k, where bk (k = 0; 1; : : : ;m � 1) are the dual basis coordinates of B

can be computed using such an LFSR. The coordinates of the product ck (k =

0; 1; : : : ;m� 1) are

ck = Tr(A�k(

m�1X
j=0

bj�j))

=

m�1X
j=0

bjTr(A�
k
�j)

=

m�1X
j=0

bj[A�
k]j; (2.30)

where [A�k]j is the jth coordinate of A�k in the polynomial basis.

The hardware complexity of the parallel multiplier presented in [9] depends

upon the Hamming weight, H(p), of the generating irreducible polynomial. The

hardware complexity of this multiplier is at its minimum when p(x) is a trinomial.

Furthermore, the delay is minimal when p(x) is a trinomial of the form p(x) =

x
m+x+1. Also, when p(x) is a trinomial, only 2 additional XOR gates are required

to convert from the dual to the polynomial basis. This adds more exibility to the

multiplier by allowing both operands to be used in the dual basis form. Fenn

et.al. [10] proposed two systolic architectures to perform �eld multiplication in

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 37

serial and in parallel.

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 38

T
ab
le
2.
4:
D
u
al
b
as
is
G
F
(2
m

)
m
u
lt
ip
li
er
ar
ch
it
ec
tu
re
s

A
u
th
o
rs

(N
o
n
-)

N
u
m
b
e
r
o
f
G
a
te
s

C
o
m
p
.

C
ri
ti
c
a
l

[R
e
f.
]

S
/
P

S
y
st
o
li
c

A
N
D

X
O
R

F
F

M
U
X

L
a
te
n
c
y

T
im
e

P
a
th

B
e
rl
e
k
a
m
p
[3
]

S

N

2
m

2
m

�

2

0

0

0

0

T
A

+
(d
(l
o
g
2
m

)e
)T
X

2

F
e
n
n
e
t

a

l
.

[9
]

P

N

m

2

(m

�

1
)(
H

(p
)
�

2
+
m

)

2
m

0

T
C

P

T
C

P

T
A

+

(d
l
o
g
2
(H
(p
)
�

1
)e

+

d
l
o
g
2
m

e
)T
X

2

F
e
n
n
e
t

a

l
.

[1
0
]

S

S

2
m

2
m

1
0
m

3
m

2
m

3
m

T
A

+
T
X

2

W
o
z
n
ia
k
[5
3
]

S

S

4
m

3
m

8
m

2
m

2
m

3
m

T
A

+
T
X

2

F
e
n
n
e
t

a

l
.

[1
0
]

P

S

2
m

2

2
m

2

7
m

2

0

3
m

�

1

4
m

T
A

+
T
X

2

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 39

A serial systolic architecture was presented in [53] that is based on the multipli-

cation algorithm in (2.30). Using p(x) = x
m + x+ 1 as the generating polynomial

reduces the hardware complexity since there is no need to have an input for the

coe�cients of p(x). These multipliers have smaller delays and require only one

control signal while the one presented by Fenn et al. [10] has a longer delay and

requires two control signals. Most of GF(2m) dual basis multiplier architectures

found in the literature are shown in Table 2.4.

2.3.4 Composite Field Multipliers

Using composite �elds to implement parallel multipliers has been proposed in [41{

43]. Performing the multiplication operation using a composite �eld has been shown

to lower the area complexity of parallel multipliers below the O(m2) bound. A

GF((2n)m) multiplier can be built using identical modules which provide GF(2n)

arithmetic. Consider the �eld GF(2n) with n > 1. The elements of an extension

�eld GF((2n)m) may be represented in the polynomial basis as polynomials with a

maximum degree of m� 1 over GF(2n). Hence, the element A 2 GF((2n)m) can be

represented by the vector (a0; a1; : : : ; am�1) where ai 2 GF(2n) (0 � i � m � 1).

The �eld polynomial of the extension �eld is an irreducible polynomial P (x) of

degree m over GF(2n).

The product of two elements A and B 2 GF((2n)m) = AB mod P (x) can be

performed in two steps:

1. Ordinary polynomial multiplication and

2. Reduction modulo the �eld polynomial P (x).

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 40

The �rst step is performed using the Karatsuba-Ofman algorithm KOA [26].

The multiplication in the KOA saves polynomial multiplications over GF(2n) at

the cost of polynomial addition which is free. For example, the �rst iteration in the

KOA applied on A and B is to split each of them to a lower and an upper half as

follows [40]:

A = x
m

2 (x
m

2
�1
am�1 + : : :+ am

2
) + (x

m

2
�1
am

2
�1 + : : :+ a0) = x

m

2 Ah +Al

B = x
m

2
�1(x

m

2 bm�1 + : : :+ bm
2
) + (x

m

2
�1
bm
2
�1 + : : :+ b0) = x

m

2 Bh +Bl:

Three intermediate variables are now de�ned as:

d0 =AlBl;

d1 =(Al +Ah)(Bl +Bh);

d2 =AhBh:

The product polynomial C 0 = AB is given by:

C
0 = d0 + x

m

2 (d1 � d0 � d2) + x
m
d2:

The reduction modulo P (x) operation can be viewed as a linear mapping of the

coe�cients resulting from the multiplication operation using the polynomial basis

coe�cients. The polynomial multiplication of the two polynomials A and B, results

in the product polynomial C 0 over GF(2n) with deg(C 0) � 2m � 2. The modulo

operation will result in a polynomial C with deg(C) � m� 1 which represents the

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 41

�nal product.

The selection of the composite �eld order has a direct impact upon the hardware

complexity of the multiplier. In [41], the polynomial p(x) = x
2 + x + p0 where

p0 2 GF(2n) has been used to develop an GF((2n)2) multiplier. The product

C = AB mod P is given by:

C = (a0b0 + p0a1b1) + x((a0 + a1)(b0 + b1) + a0b0):

where ai and bi 2 GF(2n). The KOA was used in [42] to perform the multipli-

cation operation over GF((2n)4). The �rst two iterations of KOA generate nine

intermediate variables di, i = 0; 1; : : : ; 8 as follows:

d0 = a0b0

d1 = (a0 + a1)(b0 + b1)

d2 = a1b1

d3 = (a0 + a2)(b0 + b2)

d4 = (a0 + a1 + a2 + a3)(b0 + b1 + b2 + b3)

d5 = (a1 + a3)(b1 + b3)

d6 = a2b2

d7 = (a2 + a3)(b2 + b3)

d8 = a3b3:

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 42

The coe�cients of the product polynomial C 0 can now be written as:

�c0 = d0

�c1 = d0 + d1 + d2

�c2 = d0 + d2 + d3 + d6

�c3 = d0 + d1 + d2 + d3 + d4 + d5 + d6 + d7 + d8

�c4 = d2 + d5 + d6 + d8

�c5 = d6 + d7 + d8

�c6 = d8: (2.31)

The second step is to compute the �nal product polynomial, C(x) = c3x
3 +

c2x
2 + c1x + c0 by performing a modulo reduction operation over the polynomial

C
0. The modulo reduction operation can be performed using the linear mapping

between the coe�cients ci and �ci in (2.31) as follows:

ci = �ci +

2X
j=0

ri;j �cj+4 i = 0; 1; 2; 3 and ri;j 2 GF(2n): (2.32)

The reduction coe�cients ri;j which are functions of the �eld polynomial P (x) =

x
4 + p3x

3 + p2x
2 + p1x+ p0 and pi 2 GF(2) (i = 0; : : : ; 3) are given by:

ri;j =

8>><
>>:
pi i = 0; : : : ; 3; j = 0

ri�1;j�1 + r3;j�1ri;0 i = 0; : : : ; 3; j = 1; 2

where ri�1;j�1 = 0 if i = 0. The complexity of the composite �eld multiplier

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 43

depends on the choice of the polynomial P (x) over GF(2n). For example, using the

polynomial P (x) = x
4+x

3+x
2+x+1 in the GF((2n)4) multiplier proposed in [42]

leads to the least hardware complexity amongst other choices.

2.4 Conclusions

The choice of GF(2m) multiplier architecture depends heavily on the underlying

basis representation as well as the hardware complexity and the critical path de-

lay of the architecture. Polynomial basis representation has an advantage over the

other bases as it can be performed using ordinary polynomial arithmetic. In the

normal basis, squaring, which is crucial to other operations such as inversion, can

be done for free. The dual basis representation yields the simplest architectures.

Selecting serial or parallel architectures is solely dependent on the availability of

the operands at the time of computation. Also, systolic architectures allow for

pipelining while non-systolic structures are more hardware e�cient. Taking all

those factors into consideration, selecting the multiplier architecture is easier. For

example, if the preference is for low hardware complexity, the non-systolic archi-

tectures come to mind. Semi-systolic architectures are also attractive because of

their lower hardware complexity compared to fully-systolic architectures. On the

other hand, common control signals used in the semi-systolic structures make it

di�cult to expand the multiplier to higher order �elds. Using composite �elds to

construct multiplier architectures is also attractive. Multiplication over the com-

posite �eld GF((2n)m) can be performed using GF(2n) arithmetic modules which

lower the area complexity and increase the modularity of the architecture. How-

CHAPTER 2. ARCHITECTURAL-LEVEL COMPARISONS 44

ever, the selection of a particular multiplier within each category of multipliers is

not quite clear. Combining the hardware complexity measure as well as the critical

path delay into one metric is essential in energy-critical applications. The energy

metric is the subject of the next chapter.

Chapter 3

Low-Energy GF Multipliers

3.1 Motivation

The tremendous demand for wireless communications devices has enforced the need

to reassess designs from the power and energy dissipation perspective. This is due to

the fact that wireless devices are mainly battery operated and the e�ciency of such

device is, then, directly proportional to its battery life. Cryptographic devices have

been increasingly used since the rapid trend towards electronic �nancial transactions

through automated banking machines or through the Internet. Cryptographic chips

mounted on the surface of a smart card in a wireless phone or a portable device is a

very good example for energy-critical designs. Such constrained environment needs

a strong power and energy management strategy to cope with the highly demanding

cryptographic computations and the limited energy available to the chip.

In this chapter, some of the Galois �eld (GF) multiplier architectures are com-

pared in terms of the energy metric to assess their suitability for energy-critical

45

CHAPTER 3. LOW-ENERGY GF MULTIPLIERS 46

applications. GF multipliers are speci�cally chosen for comparison here since GF

multiplication is a very critical operation in GF arithmetic. Many other operations

such as inversion can be performed using multiple multiplication operations. This

work has extended the work done in [51] to include the dual basis multipliers in the

energy comparisons. Another group of multipliers, based on AOPs, are also to be

included in the comparison.

This chapter is an attempt to bridge the gap between the many theoretical publi-

cations describing di�erent approaches to VLSI suitable GF multipliers on one side,

and the very few reports that compare the architectures from an implementation

point of view on the other side.

3.2 Sources of power dissipation in CMOS cir-

cuits

In this section, the di�erent components of power dissipation in CMOS circuits

are de�ned. The power a CMOS circuit dissipates falls into two broad categories:

static and dynamic [6]. Fig. 3.1 illustrates a simple CMOS inverter and the di�erent

components of power dissipation.

3.2.1 Static Power

Static power is de�ned as the power dissipated by a gate when it is not switching,

i.e. when it is inactive or static. Static power is dissipated in a number of ways.

The largest percentage of static power results from source-to-drain subthreshold

CHAPTER 3. LOW-ENERGY GF MULTIPLIERS 47

I

I

I

lk

sc

sw

Leakage Current

Short Circuit Current

Switching Current

P

N

I
V V

V

GND

C

sc

in

dd

out

load

I
sw

Ilk

Figure 3.1: CMOS inverter and the di�erent components of power dissipation

leakage. This leakage is caused by reduced threshold voltages that prevent the gate

from completely turning o�. Static power is also dissipated when current leaks

between the di�usion layers and the substrate. For this reason, static power is

often called leakage power. The total leakage power of a design is the sum of the

leakage power of the design's constituent library cells as follows:

PLeakage Power =
X

8 cells(i)

PCellLeakagei (3.1)

where

PLeakage Power is the total leakage power dissipation of the design, and

PCellLeakagei is the leakage power dissipation for each cell i.

CHAPTER 3. LOW-ENERGY GF MULTIPLIERS 48

Leakage power is dominant when the circuit is idle but it becomes less than one

percent of the total power when the circuit becomes active.

3.2.2 Dynamic Power

Dynamic power is the power dissipated when the circuit is active. A circuit is

active anytime the voltage on a net changes due to some stimulus applied to the

circuit. Because voltage on a net can change without necessarily resulting in a logic

transition, dynamic power can be dissipated even when a net does not change its

logic state. The dynamic power is composed of two main components: Switching

power and Internal power.

Switching Power

The switching power of a driving cell is the power dissipated by the charging and

discharging of the load capacitance at the output of the cell. The total load capaci-

tance at the output of a deriving cell is the sum of the net and gate capacitances on

the driving output. Because such charging and discharging is the result of the logic

transitions at the output of the cell, switching power increases as logic transitions

increase. Therefore, the switching power of a cell is a function of both the total

load capacitance at the cell output and the rate of logic transitions. It is important

to point out that switching power comprises 70-90 percent of the dynamic power

dissipation in CMOS circuits.

CHAPTER 3. LOW-ENERGY GF MULTIPLIERS 49

The switching power (Psw) can be calculated using the following formula:

Psw =
V
2
dd

2

X
8nets(i)

(Cloadi
� TRi) (3.2)

where

Cloadi
Capacitive load on net i,

TRi Toggle rate of net i, transitions per second, and

Vdd Supply voltage.

Internal power

The internal power is any power dissipated within the boundary of a cell. The

de�nition of internal power includes power dissipated by a momentary short circuit

between the P and N transistors of a gate, called short circuit power. This hap-

pens for a short period of time during a logic transition when both the N and P

transistors are ON at the same time. During that time a short circuit current, Isc,

ows from Vdd to GND causing a short circuit power, Psc, to be dissipated.

For circuits with fast transition times, short circuit power can be small. How-

ever, for circuits with slow transition times, short circuit power can account for

30 percent of the total power dissipated by the gate. Short circuit power is also

a�ected by the dimensions of the transistors and the load capacitance at the gate's

output. Internal power is mostly due to short circuit power and therefore the terms

internal power and short circuit power are used interchangeably. The internal power

CHAPTER 3. LOW-ENERGY GF MULTIPLIERS 50

formula is:

Pint = Eout � TRout (3.3)

where

Pint Total internal power

Eout Internal energy for the cell's output as a function of the input

transitions and output load

= f [Cload �WAvg(trans)],

WAvg(trans) Weighted average transition time for the output

=
P
i=inputs TRi�TransiP

i=inputs TRi
,

Transi Transition time of input i.

3.3 Architectures Compared and Methodology

To show the importance of the energy performance measure in selecting energy-

critical designs, two sets of architectures were selected based on the conventional

measures. The gate-level architectures were built using CadenceTM design tools

suite. Then the architectures were simulated using HspiceTM to measure the power

consumption and the maximum delay.

3.3.1 Multiplier Architectures selection

The �rst set of multipliers includes three parallel non-systolic architectures featuring

the least hardware complexity within each basis. The polynomial basis architecture

CHAPTER 3. LOW-ENERGY GF MULTIPLIERS 51

chosen was that of Mastrovito's [30]. Hasan's architecture [18] was chosen as the

normal basis multiplier while the multiplier proposed in [9] by Fenn et.al. was

selected to represent the dual basis multiplier architectures. The second set includes

three parallel non-systolic polynomial basis architectures which use an AOP as the

�eld de�ning polynomial. The architectures selected were those proposed in [16],

[23] and [5]. The data of the two sets of multipliers are summarized in Table 3.1.

From the data shown, the architectures within each group are close to each other

in terms of the hardware complexity to guarantee a fair comparison between the

multipliers selected.

CHAPTER 3. LOW-ENERGY GF MULTIPLIERS 52

T
ab
le
3.
1:
M
u
lt
ip
li
er
ar
ch
it
ec
tu
re
s
se
le
ct
ed
fo
r
co
m
p
ar
is
o
n

T
e
st

B
a
si
s

A
u
th
o
rs

N
u
m
b
e
r
o
f
G
a
te
s

C
ri
ti
c
a
l

S
e
t

[R
e
f.
]

A
N
D

X
O
R

P
a
th

In
te
r-

B
a
si
s

N
B

H
a
sa
n
e
t
.
a

l
.

[1
8
]

m

2

m

2
�

1

T
A

+
(1
+
d
lo
g
2
(m

�

1
)e
)T
X

2

D
B

F
e
n
n
e
t
.
a

l
.

[9
]
�

m

2

m

2
�

1

T
A

+
T
X

2

(4
+
d
lo
g
2
m

e
)

P
B

M
a
st
ro
v
it
o
[3
0
]
�

m

2

m

2
�

1

T
A

+
(d
lo
g
2
(m
)
+
1
e
T
X

2

A
O
P
-

b
a
se
d

P
B

It
o
h
e
t
.
a

l
.

[2
3
]

m

2
+
2
m

+
1

m

2
+
2
m

T
A

+
(d
lo
g
2
(m
)
+
lo
g
2
(m

+
2
)e
)T
X

2

P
B

H
a
sa
n
e
t
.
a

l
.

[1
6
]

m

2

m

2
+
m

�

2

T
A

+
(m

+
d
lo
g
2
(m

�

1
)e
)T
X

2

P
B

K
o
�c
e
t
.
a

l
.

[5
]

m

2

m

2
�

1

T
A

+

(2
+

d
lo
g
2
(m

�

1
)e
)T
X

2

�

T
h
e
ir
r
id
u
c
ib
le
p
o
ly
n
o
m
ia
l
u
s
e
d
t
o
g
e
n
e
r
a
t
e
t
h
e
�
e
ld
is
:
x
4

+

x

+

1
.

CHAPTER 3. LOW-ENERGY GF MULTIPLIERS 53

3.3.2 Methodology

The two sets of multipliers were implemented over the �eld GF(24) using a :35�m

CMOS technology and simulated at the transistor-level using the Hspice simulator.

The clock frequency used was 50 MHz. The order 4 was selected since the AOP is

irreducible at that order and the simulation time is considerable. Going to higher

orders, the AOP will force the next step to be of order 10 which is prohibitively

time consuming to simulate. The polynomial used to construct the �eld for both

the polynomial and the dual basis multipliers for that group was a trinomial of

the form x
4 + x + 1, for m = 4. The normal basis architecture used an AOP.

The test vectors were selected to include all the possible combinations as inputs to

the multipliers. The comparison results of the �rst set will be referred to as the

\Inter-Bases results" while the \AOP-based results" will refer to the results of the

second set.

3.4 Comparison Results

3.4.1 Delay Comparison

This section shows the comparison results between the multipliers in terms of

the critical path delay. Fig. 3.2 (a) shows the delay comparisons for the Inter-bases

group of multipliers while Fig. 3.2 (b) shows that for the AOP group. It can be

seen that the critical path delay measured is directly related to the critical path

delay estimation given in Table 3.1.

CHAPTER 3. LOW-ENERGY GF MULTIPLIERS 54

1.5 2 2.5 3 3.5
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

V
dd

 (v)

D
el

ay
 (

ns
)

Poly(Mastrovito)
Dual(Fenn)
Normal(Hasan)

(a) Inter-bases results

1.5 2 2.5 3 3.5
1

2

3

4

5

6

7

V
dd

 (v)

D
el

ay
 (

ns
)

Hasan
Itoh
Koc

(b) AOP-based results

Figure 3.2: Delay comparison

3.4.2 Power Comparison

The simulation results for the power consumption of the two sets of multipliers

are shown in Fig. 3.3. Although the hardware complexity seems to be a good

estimate for the power consumption, it fails to predict the power measure for the

Inter-bases group. The hardware complexity of that set is almost the same for the

three multipliers but the power consumption of Mastrovito's multiplier is relatively

lower. This is because the switching activity is di�erent for each architecture.

Recall from (3.2) that the switching power is directly proportional to the switching

activity. Therefore, not only the hardware complexity is a measure of the power

consumption but also the interconnects inside the architecture a�ect the power

dissipation.

CHAPTER 3. LOW-ENERGY GF MULTIPLIERS 55

1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

V
dd

 (v)

P
ow

er
 (

m
W

)

Poly(Mastrovito)
Dual(Fenn)
Normal(Hasan)

(a) Inter-bases results

1.5 2 2.5 3 3.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

V
dd

 (v)

P
ow

er
 (

m
W

)

Hasan
Itoh
Koc

(b) AOP-based results

Figure 3.3: Power consumption comparison

3.4.3 Energy Comparison

Figure 3.4 illustrates the calculated energy results for the two groups of multipli-

ers. In the inter-bases comparison, the results showed that the dual basis multiplier

came at the third place for both the delay and power comparisons while the en-

ergy comparisons iterated that conclusion. However, if we were interested in the

�rst and the second best architectures, the delay and power results would not have

been su�cient. Ranking the multipliers is not quite obvious by just looking at the

data given in Table 3.1. The energy metric makes the choice of the most e�cient

architecture very clear.

In the AOP polynomial basis comparison, the power results could not distin-

guish the best architecture since Hasan's and Ko�c's have approximately the same

results. Moreover, both architectures are very close to each other in terms of power

CHAPTER 3. LOW-ENERGY GF MULTIPLIERS 56

1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

3

V
dd

 (v)

E
ne

rg
y

(p
J)

Poly(Mastrovito)
Dual(Fenn)
Normal(Hasan)

(a) Inter-bases results

1.5 2 2.5 3 3.5
0.5

1

1.5

2

2.5

3

3.5

V
dd

 (v)

E
ne

rg
y

(p
J)

Hasan
Itoh
Koc

(b) AOP-based results

Figure 3.4: Energy comparison

consumption. When the delay results were taken into consideration in the energy

comparison, selecting the most e�cient architecture was fairly simple.

3.5 Conclusion

Energy critical designs would have to consider the energy consumed as the primary

comparative measure rather than hardware complexity or critical path delay. Those

traditional measures are no longer su�cient for evaluating the suitable architecture

for wireless or portable devices. Selecting the most e�cient device for energy-

critical applications becomes unclear when the compared architectures have nearly

the same hardware complexity and critical path delay. The energy comparison

should be taken into consideration in order to select the best architecture for a

particular application.

Chapter 4

Bit Serial Multiplication over a

class of Finite Fields

4.1 Introduction

Many multiplier architectures have been previously introduced to e�ciently perform

�nite �eld multiplication. Examples of serial multipliers are [8, 11, 14, 15, 56] while

parallel ones can be found in [5, 16, 23, 30, 50]. A number of all-one polynomial

(AOP) multipliers have been proposed since using an AOP as the �eld de�ning

polynomial was shown to produce hardware e�cient architectures [5, 11, 16, 23].

The �rst AOP-based multiplier was reported by Itoh and Tsujii [23]. In [16],

Hasan et.al. extended the work of [23] and presented an e�cient multiplier using

AOPs. The extended polynomial basis representation, �rst introduced in [23], was

used in [11] to develop a serial AOP multiplier. Ko�c and Sunar proposed another

parallel polynomial basis AOP multiplier that can be also used for normal basis

57

CHAPTER 4. BIT SERIAL MULTIPLICATION 58

multiplication through the introduction of the shifted polynomial basis [5]. Other

basis representations have been recently proposed to develop hardware and software

e�cient multipliers such as the redundant basis [56], the polynomial ring [8] and

palindromic representation [4].

In this chapter we present a parallel-in serial-out multiplier using all-one poly-

nomials. The proposed multiplier uses a modi�ed version of the polynomial basis,

which is referred to as the shifted polynomial basis (SPB). This basis was �rst in-

troduced in [5] and it can be formed when the �eld de�ning polynomial is an AOP.

The SPB can be easily converted to the normal basis representation using a simple

permutation circuit. This chapter is organized as follows. An introductory back-

ground and a review of the shifted polynomial basis representation are to follow in

section 4.2. More background information can be found in [45] and [35]. The pro-

posed multiplication algorithm is introduced in section 4.3. Section 4.4 describes

the architecture of the proposed multiplier and presents a comparison between the

proposed architecture and other GF(2m) serial multipliers.

4.2 AOP Related Bases of Representations

Consider the AOP, g(x) = 1 + x + : : :+ x
m of degree m. The polynomial g(x) is

irreducible if and only if m + 1 is prime and 2 is primitive mod (m+ 1) [35]. For

m � 100, the AOP is irreducible when m = 2; 4; 10; 12; 18; 28; 36; 52; 58; 60; 66; 82

and 100 [23].

Consider the binary �eld GF(2) and its �nite extension GF(2m) which is of

particular interest in many applications. Let � 2 GF(2m) be a root of g(x) and

CHAPTER 4. BIT SERIAL MULTIPLICATION 59

i = �
i. Then the basis f1; �; : : : ; �m�1g is a polynomial basis (PB). On the other

hand, if we assume that i = �
2i, then f�;�2; : : : ; �2

m�1

g is a normal basis (NB).

Since � is a root of g(x), g(�) = 1 + � + �
2 + : : : + �

m = 0. Thus, �m =

1 + � + : : :+ �
m�1, and,

�
m+1 = 1 (4.1)

If an AOP is used to construct the �eld GF(2m) and from (4.1), the NB =

f�;�2; : : : ; �2
m�1

g can be rewritten in the form f�;�2; : : : ; �mg which is referred

to as the shifted polynomial basis (SPB) [5]. For example, if m = 4, then �
5 = 1

and �8 = �
3. Therefore, the NB = f�;�2; �4; �8g can be rewritten as f�;�2; �4; �3g

which is the SPB of GF(24) over GF(2).

Suppose that a �eld element A is given by A =
P

m�1

i=0
�ai�

2i =
P

m

i=1
ai�

i where

�ai, i = 0; 1; : : : ;m � 1, is the ith coordinate of A represented in the NB and ai,

i = 1; 2; : : : ;m, is the ith coordinate of A represented in the SPB. The conversion

from the NB to the SPB representation can be done using the permutation P [5]

which is given by

a(2i) = �ai ; i = 0; 1; : : : ;m� 1:

where (:) denotes a mod (m + 1) operation. The result can be converted back to

the NB form using the inverse permutation P
�1. Both the permutation and the

inverse permutation are implemented by rewiring without using any extra gates.

Converting SPB to PB can be done using m � 1 XOR gates. The permutation

CHAPTER 4. BIT SERIAL MULTIPLICATION 60

required for the conversion takes the form

��a0 = am;

��ai = ai + am ; i = 1; 2; : : : ;m� 1;

where ��ai , i = 0; 1; : : : ;m � 1 is the ith coordinate of A with respect to the PB.

The inverse permutation is given by:

ai = ��a0 + ��ai; i = 1; 2; : : : ;m� 1

am = ��a0:

Hence, converting the SPB to and from the NB can be performed for free while for

the PB requires m� 1 XOR gates.

4.3 Multiplication and Squaring over the Shifted

Polynomial Basis

The algorithms to be described in this section use an approach �rst introduced

in [15] and [16]. A serial AOP multiplier is to be developed here. In [15] a serial

multiplier for any irreducible polynomial was developed while a parallel AOP mul-

tiplier was introduced in [16]. The basis of representation used here is the SPB

while that used in [15] and [16] was the PB.

CHAPTER 4. BIT SERIAL MULTIPLICATION 61

4.3.1 Multiplication

Let C = AB 2 GF(2m) and assume that A;B and C are all represented with

respect to the SPB. Then,

C = AB =

mX
j=1

aj�
j

mX
i=1

bi�
i =

mX
i=1

mX
j=1

ajbi�
i+j

: (4.2)

Expressing �i+j with respect to the SPB, we have

�
i+j =

mX
k=1

t
[i+j]

k
�
k (4.3)

where t
[i+j]

k
is the kth coordinate of the element �i+j , with respect to the SPB.

Using (4.3), we obtain,

C =

mX
k=1

ck�
k =

mX
k=1

(

mX
i=1

bi

mX
j=1

ajt
[i+j]

k
�
k): (4.4)

Hence,

ck =

mX
i=1

bi

mX
j=1

ajt
[i+j]

k
k = 1; 2; : : : ;m: (4.5)

Since �m+1 = 1, for any integer l we have,

�
l = �

(l)

CHAPTER 4. BIT SERIAL MULTIPLICATION 62

where (l) = l mod(m+1). Using �+�
2+ : : :+�

m = 1, the term t
[i+j]

k
in (4.5) can

be written as

t
[i+j]

k
=

8>>>>>><
>>>>>>:

1 (i+ j) = 0 ; and k = 1; 2; : : : ;m

1 1 � (i+ j) � m; and k = (i+ j)

0 1 � (i+ j) � m; and k 6= (i+ j)

Then equation (4.5) can be written as

ck =

mX
i=1

bia(�i) +

mX
i=1
i6=k

bia(k�i) 1 � k � m (4.6)

4.3.2 Squaring

SPB

Cyclic Shift

NB2SPB

SPB2NBSPB

Figure 4.1: Squaring over the shifted polynomial basis

Squaring of a �eld element represented in the SPB form can be performed by

CHAPTER 4. BIT SERIAL MULTIPLICATION 63

converting the SPB to the NB form. Converting SPB to/from NB is a simple

permutation which can be implemented by rewiring as discussed earlier. Squaring

in the NB is just cyclic shift. The squared NB element is then converted back to

the SPB form. This operation can be performed in only 2 clock cycles. Fig. 4.1

shows the structure required to perform SPB squaring.

4.4 Multiplier Architecture And Comparison

Using the multiplication algorithm described in the previous section, a parallel-in

serial-out multiplier is presented below. From (4.6), it can be noted that each

coordinate, ck, 1 � k � m, has the terms corresponding to a(�i) and m elements

from the sequence f0; am; am�1; : : : ; a1g. The �rst coordinate, c1, has the �rst

m elements of the sequence and the second coordinate, c2, contains the �rst m

elements of the one-fold right cyclic shift of that sequence and so on. Therefore,

the above architecture can be implemented using an m+1 cyclic register initialized

by the elements of the sequence f0; am; am�1; : : : ; a1g and m XOR gates to add

the terms corresponding to a(�i). In order to produce the partial products and

to accumulate them, m AND gates and m � 1 XOR gates are required. The

architecture produces one bit of the product at a time starting with c1. Clocking

the register m times produces the output sequence fc1; c2; : : : ; cmg. The structure

of the proposed multiplier contains a total of m+m� 1 = 2m� 1 XOR gates and

m AND gates in addition to m+ 1 registers.

Example: For m = 4, the multiplication of any two elements A and B 2 GF(24)

CHAPTER 4. BIT SERIAL MULTIPLICATION 64

represented in the SPB follows directly from (4.6) as:

2
66666664

a4 a3 + a4 a2 + a3 a1 + a2

a4 + a1 a3 a2 + a4 a1 + a3

a4 + a2 a3 + a1 a2 a1 + a4

a4 + a3 a3 + a2 a2 + a1 a1

3
77777775

2
66666664

b1

b2

b3

b4

3
77777775
=

2
66666664

c1

c2

c3

c4

3
77777775

The matrix multiplication above can be performed using the multiplier archi-

tecture shown in Fig. 4.2. The register cells A1 through A4 are initialized by a1

through a4 respectively while A5 is �rst set to 0. The matrix multiplication, the

inner-product unit, is implemented by the AND and XOR gates at the upper part of

the architecture. The multiplier needs 4 clock cycles to serially produce the result,

fc1; c2; c3; c4g.

Inner-product
c , c , c , c

b b b b

aaa

A A A A A

3 421

1 2 3 4

a 1234

4 3 25 1

Figure 4.2: The proposed multiplier for multiplication over GF(24)

CHAPTER 4. BIT SERIAL MULTIPLICATION 65

T
ab
le
4.
1:
C
om
p
ar
is
on
b
et
w
ee
n
th
e
p
ro
p
os
ed
m
u
lt
ip
li
er
an
d
ot
h
er
se
ri
a
l
m
u
lt
ip
li
er
s

M
u
lt
ip
li
e
r

B
a
si
s
o
f

In
p
u
t/
O
u
tp
u
t

X
O
R

A
N
D

R
e
g
is
te
rs

C
lo
ck
c
y
c
le
s

C
ri
ti
c
a
l
p
a
th
d
e
la
y

[R
e
f.
]

R
e
p
re
se
n
ta
ti
o
n

F
o
rm
a
t

G
a
te
s

G
a
te
s

re
q
u
ir
e
d

H
a
sa
n
e
t
:a
l
[1
5
]

P
o
ly
n
o
m
ia
l

S
e
ri
a
l/
S
e
ri
a
l

3
m

�

2

m

2
m

2
m

T
A

+
T
X

(d
l
o
g
2
(m

�

1
)e
+
1
)

A
O
P
M
,
F
e
n
n
e
t
:a
l
[1
1
]

E
x
te
n
d
e
d

P
a
ra
ll
e
l/
S
e
ri
a
l

m

m

+
1

m

+
1

m

+
1

T
A

+
T
X

(d
l
o
g
2
m

e
)

M
A
O
P
M
,
F
e
n
n
e
t
:a
l
[1
1
]

P
o
ly
n
o
m
ia
l

P
a
ra
ll
e
l/
S
e
ri
a
l

2
m

�

2

2
m

�

1

m

+
1

m

T
A

+
T
X

(d
l
o
g
2
(m

�

1
)e
+
1
)

D
ro
le
t
[8
]

P
o
ly
n
o
m
ia
l
R
in
g

P
a
ra
ll
e
l/
S
e
ri
a
l

m

m

+
1

m

+
1

m

+
1

T
A

+
T
X

(d
l
o
g
2
m

e
)

W
u
e
t
:a
l:
[5
6
]

R
e
d
u
n
d
a
n
t

P
a
ra
ll
e
l/
S
e
ri
a
l

m

m

+
1

m

+
1

m

+
1

T
A

+
T
X

(d
l
o
g
2
m

e
)

P
ro
p
o
se
d
h
e
re

S
h
if
te
d

P
a
ra
ll
e
l/
S
e
ri
a
l

2
m

�

1

m

m

+
1

m

T
A

+
T
X

(d
l
o
g
2
(m

�

1
)e
+
1
)

CHAPTER 4. BIT SERIAL MULTIPLICATION 66

A comparison between the proposed multiplier and other related multipliers

proposed in the literature is shown in Table 4.1. The proposed multiplier has the

same number of AND gates but less number of registers as well as XOR gates than

that proposed in [15] when its �eld de�ning polynomial is an AOP. Apparently,

when the I/O format is serial-in/parallel-out, the proposed multiplier is the most

e�cient amongst the other architectures presented in Table 4.1. The all-one poly-

nomial multiplier (AOPM) presented in [11] uses less XOR gates but it requires

m + 1 clock cycles to complete the operation. When the multiplication operation

is to be performed in m clock cycles in the modi�ed all-one polynomial multiplier

(MAOPM) architecture [11], the hardware complexity raises signi�cantly. Com-

paring the proposed architecture to those presented in [8] and in [56], the proposed

multiplier has a higher throughput but its hardware complexity is slightly larger.

Higher throughput is attractive in many applications and this is going to favor the

proposed multiplier over the other ones.

4.5 Conclusion

A parallel-in serial-out �nite �eld multiplier based on using an irreducible AOP as

the �eld de�ning polynomial is proposed. The multiplier uses the SPB represen-

tation. The proposed SPB multiplier can perform NB multiplication after adding

conversion modules to the inputs and output. The conversion module can be im-

plemented without any additional gate complexity to the multiplier structure. The

proposed multiplier is also capable of performing polynomial basis multiplication

by adding m � 1 XOR gates to convert to the SPB. Also, the multiplier can per-

CHAPTER 4. BIT SERIAL MULTIPLICATION 67

form the multiplication operation more e�ciently than other parallel-in/serial-out

multipliers. The proposed multiplier has a very regular architecture and therefore

well suited for VLSI implementation.

Chapter 5

Elliptic Curve Coprocessor

Elliptic Curve Cryptosystems (ECC) have been gaining attention recently as one

the promising cryptographic techniques. ECCs o�er the same level of security as

other public key systems with much smaller key lengths. For example, an ECC with

160-bit key can provide the the same level of security as RSA with 1024-bit key

length [25]. This allows for e�cient hardware and software implementations over

the other alternatives. Standardization of the ECC is currently underway. Some

of the e�orts in that regard are the IEEE P1363 draft standard [20]. The ANSI

X9.62 and X9.63 standards have been already approved by the US government [39].

ECC can be implemented over any group of elements. Of particular interest, the

implementation over the group of integers less than a prime number p and over the

�nite �eld GF(2m). The GF(2m) implementation of the elliptic curve system has

been shown to be practical in constrained environments such as smart cards [25].

In this chapter the Elliptic Curve Cryptosystem is described. The curves over

the extension �eld of characteristic 2, GF(2m) are to be considered. The multiplier

68

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 69

algorithm described in Chapter 4 is used to perform multiplication. The projective

coordinates are used to avoid inversion over GF(2m) [34]. The design of an Elliptic

Curve coprocessor is also described. The coprocessor has been simulated using

VHDL to verify the functionality.

5.1 Elliptic Curve Cryptosystem

Elliptic curve cryptosystem was independently proposed by Victor Miller [36] and

Neil Koblitz [27] back in the mid-eighties. As a public key cryptosystem, it takes

years to get a reasonable level of con�dence. In the last few years the �rst commer-

cial implementations have started to appear in many real-world applications, such

as email security, web security, smart cards, etc. More detailed information about

elliptic curve cryptosystems can be found in [32].

5.1.1 Elliptic curves governing equations over GF(2m)

Elliptic curves over GF(2m) can be divided into two sets. The set of all solutions

for the equation

Y
2 + aY = X

3 + bX + c (5.1)

where a; b; c 2 GF(2m), a 6= 0, together with the point O at in�nity is a supersin-

gular curve over GF(2m). The second set includes all the solutions for the equation

Y
2 +XY = X

3 + aX
2 + b (5.2)

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 70

where a; b 2 GF(2m), b 6= 0, together with the point O at in�nity is a non-

supersingular curve over GF(2m). The pair (X;Y) represents a point on the curve

E if both X and Y satisfy (5.1) or (5.2). The coordinate system represented by

the pair (X;Y) is called the a�ne coordinate system. For cryptographic purposes,

the non-supersingular family of curves is more attractive. That family of curves

is more resistant against the baby-step giant-step attack, one of the most powerful

attacking algorithms known today [2].

5.2 Elliptic Curve Operations over GF(2m)

The elliptic curve group operations for the non-supersingular family of curves are

de�ned as the addition of two elliptic curve points P1 = (X1; Y1) and P2 = (X2; Y2)

resulting in a third point P3 = (X3; Y3). The addition and doubling formulas are

X3 = �
2 + � +X1 +X2 + a;

Y3 = �(X1 +X3) +X3 + Y1; (5.3)

where

� =

8>><
>>:

Y2+Y1
X2+X1

if P1 6= P2;

X1 +
Y1

X1
if P1 = P2:

The most common representations of the GF(2m) elements in the elliptic curve

computations are the polynomial and the normal basis representation, especially,

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 71

the optimal normal basis [2]. In this work, the shifted polynomial basis is used to

represent the �eld elements. More information about the shifted polynomial basis

can be found in chapter 4.

5.2.1 Group Operation Algorithms using Projective coor-

dinates

The point addition formula in (5.3) requires inversion in the underlying �nite �eld.

That inversion operation is very slow and is considered the main bottleneck in the

process. To avoid inversion the projective coordinates were proposed in [34].

The point (X;Y) 2 E in the a�ne coordinates is mapped to the point (X :

Y : Z) 2 E, Z = 1, in the projective coordinates. The inverse mapping between

the projective and the a�ne coordinates is done through dividing by Z which

results in (X=Z : Y=Z : 1). The identity point O would be (0 : 1 : 0). Using

the projective coordinates, the addition of the two points P = (X1 : Y1 : Z1) and

Q = (X2 : Y2 : Z2), if P 6= Q, would become

X3 = AD

Y3 = CD +A
2(BX1 +AY1)

Z3 = A
3
Z1Z2 (5.4)

where A = X2Z1+X1Z2, B = Y2Z1+Y1Z2, C = A+B and D = A
2(A+ aZ1Z2)+

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 72

Z1Z2BC. In case P = Q, then

X3 = AB

Y3 = X
4
1A+B(X2

1 + Y1Z1 +A)

Z3 = A
3 (5.5)

where A = X1Z1, B = bZ
4
1 +X

4
1 .

The elliptic curve group operations are included in the IEEE P1363 draft stan-

dard [20]. Detailed information of those algorithms are shown below.

Projective elliptic point doubling algorithm:

The Double algorithm performs a point P1 = (X1 : Y1 : Z1) doubling in terms of

the projective coordinates.

Input: A point P1 = (X1 : Y1 : Z1) on the elliptic curve de�ned by the parameters

a and b.

Output: The point P2 = (X2 : Y2 : Z2) = 2P1 on the curve.

Projective elliptic point addition algorithm

This algorithm, Add-pnt, adds two points P0 = (X0 : Y0 : Z0) and P1 = (X1 : Y1 :

Z1) in terms of the projective coordinates.

Input:. The two points P0 = (X0 : Y0 : Z0) and P1 = (X1 : Y1 : Z1) on the elliptic

curve de�ned by the parameters a and b.

Output: The point P2 = (X2 : Y2 : Z2) = P0 + P1 on the curve.

Add-pnt and Double are shown in Table 5.1.

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 73

Table 5.1: The Point Doubling (Double) and Point Addition (Add-pnt) algorithms
Double Add-pnt

1. T1 X1. 1. T1 X0. 23. T2 T2� T4.

2. T2 Y1. 2. T2 Y0. 24. T7 T 2
3 .

3. T3 Z1. 3. T3 Z0. 25. T8 T7� T8.

4. T4 c = b2
m�2

. 4. T4 X1. 26. T1 T1� T8.

5. T2 T2� T3. 5. T5 Y1. 27. T1 T1 + T2.

6. T3 T 2
3 . 6. T8 a. 28. T4 T1� T4.

7. T4 T3� T4. 7. T6 T 2
3 . 29. T2 T4 + T6.

8. T3 T1� T3. 8. T7 T4� T6. 30. X2 T1.

9. T2 T2 + T3. 9. T1 T1 + T7. 31. Y2 T2.

10. T4 T1 + T4. 10. T6 T3� T6. 32. Z2 T3.

11. T4 T 2
4 . 11. T7 T5� T6.

12. T4 T 2
4 . 12. T2 T2 + T7.

13. T1 T 2
1 . 13. T4 T2� T4.

14. T2 T1 + T2. 14. T3 T1� T3.

15. T2 T2� T4. 15. T5 T3� T5.

16. T1 T 2
1 . 16. T4 T4 + T5.

17. T1 T1� T3. 17. T5 T 2
3 .

18. T2 T1 + T2. 18. T6 T4� T5.

19. T1 T4. 19. T4 T2 + T3.

20. X2 T1. 20. T2 T2� T4.

21. Y2 T2. 21. T5 T 2
1 .

22. Z2 T3. 22. T1 T1� T5.

5.2.2 Scalar Multiplication

The operation in which a point P on the elliptic curve E is to be added to itself k

times is denoted by kP and is called scalar multiplication. The algorithm Smulti-

ply performs the scalar multiplication of an elliptic curve point P = (X : Y : Z)

by an integer k. This is the main process in key establishment protocols such as

the Di�e-Hellman key exchange.

Input: The point P = (X : Y : Z) on the elliptic curve de�ned by the param-

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 74

eters a and b and a random integer number k.

Output: The point Q = (X2 : Y2 : Z2) = kP on the curve.

Table 5.2: The Scalar Multiplication (Smultiply) algorithm
Smultiply

1. If k = 0 or Z = 0 the output (1, 1, 0) and stop.

2. X2 X.

3. Z2 Z.

4. Z1 1.

5. Y2 Y.

6. If Z2 = 1 then set X1 X2, Y1 Y2
7. Let klkl�1 : : :k1k0 be the binary representation of k.

8. For i from l � 1 downto 1 do

8.1 Set (X2; Y2; Z2) Double[(X2; Y2; Z2)].

8.2 If ki = 1 then Set (X2; Y2; Z2) Add[(X2; Y2; Z2); (X1; Y1; Z1)].

9. Output (X2; Y2; Z2).

Using the non-adjacent form (NAF) has been suggested to improve the perfor-

mance of the Smultiply algorithm [12].

A NAF of an integer k is de�ned as a signed binary expansion with the prop-

erty that no two consecutive coe�cients are nonzero. Any integer k has a unique

NAF(k) representation which has the fewest nonzero coe�cients on any signed

binary expansion of k. To derive NAF(k), k is repeatedly divided by 2 and the

remainder of 0 or � 1 is stored. If the remainder is to be � 1, the stored remainder

is chosen to make the quotient even.

The algorithm NAF-Smultiply uses NAF(k) instead of the pure binary rep-

resentation of k is shown in Table 5.3.

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 75

Table 5.3: NAF-Scalar Multiplication (NAF-Smultiply) algorithm

NAF-Smultiply

1. If k = 0 or Z = 0 the output (1, 1, 0) and stop.

2. X2 X .

3. Z2 Z.

4. Z1 1.

5. n k.

5. Y2 Y .

6. If Z2 = 1 then set X1 X2, Y1 Y2
7. Let klkl�1 : : :k1k0 be the binary representation of k.

8. For i from l� 1 downto 1 do

8.1 Set (X2; Y2; Z2) Double[(X2; Y2; Z2)].

8.2 If ki = 1 then

8.2.1 Set u 2 - (k mod 4)

8.2.2 Set k k - u

8.2.3 If u = 1 then set (X2; Y2; Z2) Add-pnt[(X2; Y2; Z2); (X1; Y1; Z1)]

8.2.4 If u = -1 then set (X2; Y2; Z2) Add-pnt[(X2; Y2; Z2); (X1; X1Z1 + Y1; Z1)]

9. Output (X2; Y2; Z2).

5.2.3 Di�e Hellman Key Exchange

The discrete logarithm problem described by Di�e and Hellman is based on the

problem of �nding logarithms with respect to a primitive element in the multiplica-

tive group of integers modulo a prime p. This idea can be extended to arbitrary

groups with the di�culty of the problem depending upon the choice of the group.

The EC-based Di�e-Hellman key exchange protocol is illustrated in Fig. 5.1. More

details about the D-H key exchange can be found in [33, 52]. The basic steps are

1. Setup: Alice and Bob agree on a common elliptic curve, E, and a point on

that curve, P , with the coordinates (XP : YP : ZP) 2 E. Alice generates a

random number a, which is her secret key, and Bob generates his secret key

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 76

Q = a.P
a

Compute:

Send Q
a

bGenerate:

Compute:
b

b.Q = b(a.P)Compute: aa.Q = a(b.P)

Q

Q

a

b

BobAlice

(private)Generate: a

Send Q
b

Q = b.P
b

Compute:

(private)

Figure 5.1: Di�e-Hellman Key Exchange Protocol

b.

2. Communication: Alice computes the new point QA = a:P and sends it to

Bob while Bob computes QB = b:P and sends it to Alice. Now, QA and QB

are the public keys. Although P is common in both QA and QB, the ECDLP

insures that it is computationally infeasible to factor out QA to compute a or

to factor QB to compute b.

3. Final Step: Alice computes a:QB = a(b:P) = (XA : YA : ZA) Bob computes

b:QA = b(a:P) = (XB : YB : ZB)

After the �nal stage, Alice and Bob can compute the shared session key K as

K = XA=ZA = XB=ZB. An adversary cannot recover the session key, K, as he does

not know the secret keys a and b. The di�culty of recovering the original message

lies on the di�culty of recovering the secret keys from the public key. This recovery

problem is called the Elliptic Curve Discrete Logarithm Problem (ECDLP). Once

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 77

the session key is established between Alice and Bob, both parties can communicate

securely using private key algorithm such as DES for faster encryption speeds.

5.3 Elliptic Curve Coprocessor Architecture

In this section an elliptic curve coprocessor is presented. The coprocessor uses the

projective coordinates to represent the curve points over GF(2m). The multiplier

and the squarer architectures selected in this implementation have been previously

presented in Chapter 4 which use the SPB representation. Therefore, the �eld

de�ning polynomial is restricted to be an AOP. Practically speaking, the �eld order

should be 162, 172, 180, 196 or 226 to provide a reasonable security level with

respect to today's standards [25].

Controller

Instrction

I/O Interface

I/O Unit

Datapath

dpData

data

Figure 5.2: The elliptic curve coprocessor architecture

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 78

5.3.1 Overview

The elliptic curve coprocessor is designed to perform the cryptographic computa-

tions and to relief the main processor in the system from that task. The architecture

can perform di�erent �nite �eld arithmetic operations. It is also capable of per-

forming the elliptic curve group operations, add, double and scalar multiplication.

The coprocessor architecture performs those operations through a hardwired con-

trol logic. The size of the �eld used is variable and can be reprogrammed if the

design is to be implemented over a recon�gurable hardware, e.g. FPGAs.

5.3.2 Coprocessor Architecture

The coprocessor architecture is divided into three major blocks. The datapath

unit has all the hardware required to perform the basic GF(2m) operations such as

multiplication, addition, and inversion, as well as EC operations and some registers

to hold intermediate results. The control unit controls the operation of the whole

coprocessor. The I/O unit bu�ers instructions and data coming from/written to

the main processor. It is mainly used to bu�er data to be read/written through the

I/O interface which is usually smaller in size. The architecture of the coprocessor

is shown in Figure 5.2.

Datapath

The datapath is the main computing core of the coprocessor. The datapath

architecture is shown in Figure 5.3. The datapath can be divided into two main

building blocks, the arithmetic block and the storage block. The arithmetic block

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 79

Inner-product

m

1

D
b
u

s

Register

File

Reg C

SPB2NB

1
Reg R

NB2SPB

Adder

0
Reg R

Reg RI

m

1

D
b
u

s

Register

File

Reg C

SPB2NB

1
Reg R

NB2SPB

Adder

0
Reg R

Reg RI

m

m

Figure 5.3: Datapath architecture

has four registers, R0, R1, RI, C, to perform the multiplication operation. R1, RI

and C are all m-bit registers while R0 is an m + 1-bit register. Both R0 and R1

are cyclic shift registers where R0 can shifted to the right while R1 can be shifted

to the left. R0 is acting as the A register in Fig. 4.2. A �eld adder is connected to

registers R0 and R1. The inner-product unit is connected to the RI register and

its result is stored in the C register in a bit serial fashion. Two conversion units

are used to convert the SPB operands to/from NB. Those conversion modules are

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 80

used to implement the squaring operation. Squaring is performed using the relation

between the shifted polynomial basis (SPB) and the normal basis (NB) mentioned

in Section 4.3. Squaring in the SPB can be done in only two clock cycles, one to

convert from the SPB to the NB and the other is to square in the NB and convert to

the SPB at the same time. Squaring in the NB is done through cyclically shifting the

register R1 to the left. The storage space holds the temporary variables required for

the elliptic curve points addition and doubling. There are eight temporary registers,

T1 through T8, required for the point addition and point doubling algorithms. The

registers T7 and T8 are special registers that can be used in the conversion of SPB

to/from PB. The register T7 is used to convert from SPB to PB while T8 is used

in the conversion from PB to SPB. Two registers are required to hold the original

point coordinates, X and Y , and another two registers are used to hold the curve

parameters a and b. The integer value, k used in the scalar multiplication operation

is stored in the K register.

Controller

The control unit is a �nite state machine, FSM, that includes all the control se-

quences for the di�erent instructions. The FSM has the enumerated state fIdle,

Fetch, Decode, Exec1, Exec2, Exec3g. The FSM remains in the Idle state while the

Receive signal is inactive. The state of the FSM goes to Fetch when the Receive

signal becomes active. The Fetch state remains until the instruction is available for

the controller to be read. Once the instruction is read, the FSM goes to the Decode

state. If the fetched instruction is a Load, the coprocessor goes to the Exec state

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 81

Table 5.4: Binary encoding of Datapath Registers
Register Binary code

R0 0000

R1 0001

RI 0010

K 0011

T1 0100

T2 0101

T3 0110

T4 0111

T5 1000

T6 1001

T7 1010

T8 1011

X1 1100

Y1 1101

A 1110

B 1111

and remains there till the data is ready to be processed. However, if the instruction

is not a Load, the FSM performs the required actions at the Decode state and goes

to the Exec stage. Depending upon the type of instruction being executed, the

FSM goes to Exec2 or Exec3 state and may remain in the Exec3 state for some

time till the execution ends. For example, when executing a Multiply instruction,

the FSM remains in the Exec3 state for m clock cycles before writing the result

and going back to Idle. For the Unload instruction, the FSM remains in the Exec

state until the DataOut bu�er of the I/O unit is emptied then it goes back to Idle.

The elliptic curve point operations are hardwired inside the controller so that

the AddPoint and DoublePoint instructions execute a sequence of other instruc-

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 82

tions according to Table 5.1. The scalar multiplication operation is also hardwired.

Although hardwiring instructions increases the hardware required but it simpli�es

the programming of the coprocessor and reduces the program size. Two counters

are used inside the control unit: the k counter is the k-bit number being processed

and counter is the current operation number in the sequence of operations inside a

subroutine. This number is indicated before each operation in Table 5.1.

I/O Unit

The elliptic curve coprocessor is designed to handle operands in GF(2m) of m-bit

size. Other cryptosystems such as RSA require �eld sizes of more than a 1000-

bit. This large size compared to ordinary arithmetic unit creates a challenge in the

design of the I/O unit.

DataInBuf DataOutBuf

DataOut Register

DataIn Register

dpData
(to Datapath)

I/O Unit

Interface-width

m

Instruction Reg

16

Figure 5.4: I/O unit structure

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 83

Bit-parallel I/O transfers for that large data size are prohibitively complex even

with modern VLSI technologies. In contrast, bit-serial I/O operations are much

more simple but exhibit a very long delay compared to their parallel counterparts.

Splitting the large operand into smaller equally-sized chunks of bits seems to be the

most e�cient approach to accomplish I/O operations. The size of the bit-chunk

can be set according to the interface width of the other device connected to the

coprocessor.

Fetch Fetch Decode Decode DecodeIdle

Receive

I_D_sel

State

Send_Instr

Send_Data

Exec

(a) Read Data operation

Fetch Fetch DecodeExec Exec Exec Fetch

Receive

I_D_sel

State

Send

Write_Data

(b) Write Data operation

Figure 5.5: Read/Write Operation

The I/O unit has two bu�ering registers to hold the data being transmitted.

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 84

The DataIn register holds the incoming data and the DataOut register bu�ers the

outgoing data. The InsructionReg bu�ers the Instructions. The I/O unit structure

is shown in Figure 5.4.

The I/O operation uses a handshaking protocol to start transmitting instruc-

tions/data. Two input signals, Receive and I D sel, and the Ready output signal

are used to perform the input handshaking protocol. The Receive signal informs the

coprocessor of incoming data/instruction while I D sel identi�es its nature. The

Ready signal becomes inactive whenever the instruction or data bu�er is partially

full. The Send signal is used to inform other devices connected to the coprocessor

that data needs to be written out. Send becomes inactive when the outgoing data

bu�er is empty. The read and write handshaking operations are shown in Figs. 5.5

(a) and (b) respectively.

5.3.3 Instruction Set Architecture

5 149 8121316

Opcode Des Src1 Src2

Figure 5.6: Instruction set architecture

The 16-bit instruction is divided into 4 parts, 4-bit each as shown in Fig. 5.6.

The instruction set can be divided into three main groups. One group has the

register load, copy, clear and unload operations. This group only provides the

opcode and the destination, Des, register. The two source operands, Src1 and Src2,

are not provided and are not used. The second group includes all the �nite �eld

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 85

Table 5.5: Instruction Set
Opcode Mnemonic Operands Description

0000 NOP None No Operation

0001 LoadReg Des Des (dpData port in I/O unit)

0010 UnloadReg Des (Data port of I/O unit) Des

0011 CopyReg Des, Src1 Des Src1

0100 ClrReg Des Des 0

0101 Add Des, Src1, Src2 Des Src1 + Src2

0110 Multiply Des, Src1, Src2 Des Src1 * Src2

0111 Square Des, Src1 Des (Src1)2

1000 NB2SPB Des, Src1 Des NB-to-SPB(Src1)

1001 SPB2NB Des, Src1 Des SPB-to-NB(Src1)

1010 PB2SPB Des, Src1 (Src1 = T8) Des PB-to-SPB(Src1)

1011 SPB2PB Des, Src1 (Src1 = T7) Des SPB-to-PB(Src1)

1100 Invert Des, Src1 Des inv(Src1)

1101 DoublePoint None EC point (T1; T2; T3) doubling

1110 AddPoint None EC point (T1; T2; T3) addition

1111 Smultiply None EC point scalar multiplication

arithmetic instructions. Each instruction in this group has to provide two source

operands and the destination operand in addition to the opcode. The arithmetic

operations supported by the coprocessor architecture are: multiply, add, square,

invert, convert SPB to/from NB and convert SPB to/from PB. The elliptic curve

point operations form the third group. This group only provides the opcode and

does not provide any information about the operands. The hardwired elliptic curve

operations are: Add point, Double point and Scalar multiply. Although those

hardware macros add a signi�cant hardware complexity to the chip, they facilitate

the programming task to a great extent. The coprocessor instructions are show in

Table 5.5.

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 86

5.4 Comparison

Table 5.6 shows the number of �eld operations performed in each EC operation.

Using the projective coordinates results in the large number of multiplications in-

dicated to avoid �eld inversions.

Table 5.6: Operation count for Point Doubling and Addition
Operation EC Doubling EC Addition

Field Addition 4 6

Field Multiplication 5 13

Field Squaring 5 4

The performance analysis of the proposed design is shown in Table 5.7. The

number of clock cycles required to perform the �eld operations is indicated. The

clock cycle count of the EC point addition and doubling is also indicated. For m =

196 and a clock frequency of 80 MHz, the time required for each operation is given.

Inversion is the slowest operation since the design is not optimized for inversion. The

scalar multiplication operation was implemented over the Galois Field Processor

(GFP) in [13] using a software program and using the a�ne coordinate system.

The point doubling is two times faster than that implemented over the GFP, while

EC addition is a bit slower. Point doubling is a crucial operation in the scalar

multiplication operation since it is performedm�1 times in the scalar multiplication

operation while point addition is performed (m�1)=2 times on the average, for the

binary representation of the scalar.

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 87

Table 5.7: Performance of the proposed architecture

Operation Clk Cycles required Time in �sec

EC coprocessor 1 GFP 2[13]

Field Addition 3 0.03 0.03

Field Multiplication m+ 2 2.43 2.41

Field Squaring 3 0.03 2.41

Field Inversion 3(m� 1) + n(m+ 2). 3 31.4 4.81

EC Doubling 5m+ 37 12.5 24.61

EC Addition 13m+ 56 31.9 27.05
1
m = 196, assuming a clk frequency of 80 MHz.

2
m = 191, assuming a clk frequency of 80 MHz.

3
n = No. of multiplications required for one inversion (e.g. for m = 196, n = 10 [22]).

5.5 Conclusion

A GF(2m) Elliptic Curve (EC) coprocessor is to speedup the Di�e-Hellman key ex-

change protocol. The coprocessor uses the parallel-in serial-out GF(2m) �nite �eld

multiplier proposed in Chapter 4. The architecture of the coprocessor as well as the

instruction set have been described. The design has been simulated using VHDL

to verify the functionality. The proposed design uses the projective coordinate sys-

tem. The coprocessor is to perform elliptic curve point addition, point doubling,

and scalar multiplication. Those elliptic curve functions are hardwired inside the

controller of the coprocessor to facilitate the programming task. The performance

of the design in [13] when the EC point doubling on the a�ne coordinate system

implemented using a software program has been found to be slower than the imple-

mentation of the same operation over the proposed architecture. Speeding up the

EC point doubling operation has a positive impact on the performance of the el-

liptic curve scalar multiplication which is the main operation in the Di�e-Hellman

CHAPTER 5. ELLIPTIC CURVE COPROCESSOR 88

key exchange algorithm.

Chapter 6

Conclusion and Future Work

6.1 Summary and Conclusion

The choice of GF(2m) multiplier architecture depends heavily on the underlying

basis representation as well as the hardware complexity and the critical path delay of

the architecture. Selecting serial or parallel architectures depends on the availability

of the operands at the time of computation. Also systolic architectures allow for

pipelining while non-systolic structures are more hardware e�cient. Those are the

conventional measures that can be used in the selection process. These traditional

measures are no longer su�cient for choosing a certain architecture for wireless or

portable devices. Selecting the most suitable device for energy-critical applications

becomes unclear when the architectures under consideration are having nearly the

same hardware complexity and critical path delay. The energy metric would have

to be taken into consideration in order to select the most e�cient architecture for

a particular application.

89

CHAPTER 6. CONCLUSION AND FUTURE WORK 90

A parallel-in serial-out �nite �eld multiplier based on an irreducible AOP as

the �eld de�ning polynomial has been proposed. The proposed multiplier can per-

form polynomial basis as well as normal basis multiplication after adding conversion

modules to the inputs and output. Also, the multiplier can perform the multipli-

cation operation more e�ciently than other parallel-in/serial-out multipliers. The

proposed multiplier has a very regular architecture and therefore well suited for

VLSI implementation.

An elliptic curve coprocessor that uses the proposed multiplier is designed using

the projective coordinates. The projective coordinates are advantageous in avoiding

inversion in the underlying �nite �eld. The coprocessor architecture as well as the

instruction set have been developed. VHDL has been used in verifying the design.

The coprocessor is able to perform elliptic curve point addition, point doubling,

and scalar multiplication. Those elliptic curve functions are hardwired inside the

controller of the coprocessor to facilitate the programming task. The use of the

projective coordinates system has enabled us to reduce the computation time for

point doubling. Speeding up the EC point doubling operation has a positive impact

on the elliptic curve scalar multiplication which is the main operation in the Di�e-

Hellman key exchange algorithm.

6.2 Recommendations for Future Work

This thesis has considered the hardware structure of an elliptic curve cryptosystem

over the �nite �eld GF(2m). It has also examined the di�erent multiplier archi-

tectures which can be used for that system. The implementation of such system

CHAPTER 6. CONCLUSION AND FUTURE WORK 91

requires a through analysis of its building blocks. The work that could be still done

in this regard is summarized below.

1. The energy measure could be extended to compare more �nite �eld computing

devices such as inverters and squarers.

2. The size of the multiplier architectures simulated in this work have been

restricted by the available CAD tools. Simulating higher orders, even degree

10, would have taken a very long time. Using other tools such as PowerMillTM ,

could have shorten the simulation time considerably.

3. E�cient AOP inversion would be very helpful is performing EC computations

in the a�ne coordinates rather than the projective coordinates. Using the

a�ne coordinates would save a considerable amount of storage on the chip.

Chapter 7

Appendix

7.1 Example

The following example was simulated on the coprocessor and veri�ed using a MAT-

LAB program. The �eld order is: m = 4.

Input

Point coordinates: X = 0010, Y = 0001.

Curve parameters are: a = 0010, b = 0010. Scalar factor: k = 11.

Output

X2 = 0101.

Y2 = 1110.

Z2 = 0100.

The following simulation results validates the architecture.

92

APPENDIX 93

Figure 7.1: Simulation Waveforms

APPENDIX 94

Figure 7.2: Simulation Waveforms (cont.)

APPENDIX 95

Figure 7.3: Simulation Waveforms (cont.)

APPENDIX 96

Figure 7.4: Simulation Waveforms (cont.)

APPENDIX 97

Figure 7.5: Simulation Waveforms (cont.)

APPENDIX 98

Figure 7.6: Simulation Waveforms (cont.)

APPENDIX 99

Figure 7.7: Simulation Waveforms (cont.)

APPENDIX 100

Figure 7.8: Simulation Waveforms (cont.)

APPENDIX 101

Figure 7.9: Simulation Waveforms (cont.)

APPENDIX 102

Figure 7.10: Simulation Waveforms (cont.)

Bibliography

[1] G. B. Agnew, R. C. Mullin, I.M. Onyszchuk, and S. A. Vanstone. An Im-

plementation for a Fast Public-Key Cryptosystem. Journal of Cryptology,

3(2):63{79, 1991.

[2] G. B. Agnew, R. C. Mullin, and S. A. Vanstone. An Implementation of El-

liptic Curve Cryptosystem Over F 155
2 . IEEE Journal on Selected Areas in

Communications, 11(5):804{813, June 1993.

[3] E.R. Berlekamp. Bit-Serial Reed-Solomon Encoders. IEEE Transactions on

Information Theory, 28(6):869{874, Nov. 1982.

[4] I. Blake, R. Roth, and G. Seroussi. E�cient Arithmetic in

GF(2m) through palindromic representation. Visual comput-

ing dept., Hewlett Packard Laboratories, 1998. Available at:

http://www.hpl.hp.com/techreports/98/HPL-98-134.html.

[5] C� .K. Ko�c and B. Sunar. Low-Complexity Bit-Parallel Canonical and Normal

Basis Multipliers for a Class of Finite Fields. IEEE Transactions on Comput-

ers, 47(3):353{356, March 1998.

103

BIBLIOGRAPHY 104

[6] A. P. Chandraksan and R. W. Brodersen. Low power digital CMOS design.

Kluwer Academic Publishers, 1995.

[7] M. Diab. Systolic architectures for Multiplication over Finite Field GF(2m).

In Applied Algebra, Algebraic algorithms and Error-Correcting codes. 8th In-

ternational Conference, AAECC-8, pages 329{340, 1991.

[8] G. Drolet. A new representation of elements of Finite Fields GF(2m) yield-

ing small complexity arithmetic circuits. IEEE Transactions on Computers,

47(9):938{946, Sept. 1998.

[9] S.T.J. Fenn, M. Benaissa, and D. Taylor. GF(2m) Multiplication and Division

Over the Dual Basis. IEEE Transactions on Computers, 45(3):319{327, Mar.

1996.

[10] S.T.J. Fenn, M. Benaissa, and D. Taylor. Dual basis Systolic Multipliers for

GF(2m). IEE Proceedings-E, 144(1):43{46, Jan. 1997.

[11] S.T.J. Fenn, M.G. Parker, M. Benaissa, and D. Taylor. Bit-serial multipli-

cation in GF(2m) using Irreducible all-one polynomials. IEE Proceedings-E,

144(6):391{393, Nov. 1997.

[12] D. M. Gordon. A survey of fast exponentiation methods. Journal of Algo-

rithms, 27:129{146, 1998.

[13] A. Hasan and A. Wassal. VLSI Algorithms, Architectures and Implementation

of a Versatile GF(2m) Processor. Submitted to the IEEE transactions on

computers, 1999.

BIBLIOGRAPHY 105

[14] M.A. Hasan and V.K. Bhargava. Bit-Serial Systolic Divider and Multiplier for

Finite Fields GF(qm). IEEE Transactions on Computers, 41(8):972{980, Aug.

1992.

[15] M.A. Hasan and V.K. Bhargava. Division and Bit-Serial Multiplication over

GF(qm). IEE Proceedings-E, 139(3):230{236, May 1992.

[16] M.A. Hasan and V.K. Bhargava. Modular Construction of low complexity

Parallel Multipliers for a Class of Finite Fields GF(2m). IEEE Transactions

on Computers, 41(8):962{971, Aug. 1992.

[17] M.A. Hasan and V.K. Bhargava. Architecture for a low complexity

rate-adaptive Reed-Solomon encoder. IEEE Transactions on Computers,

44(7):938{942, July 1995.

[18] M.A. Hasan, M.Z. Wang, and V.K. Bhargava. A Modi�ed Massey-Omura Par-

allel Multiplier for a Class of Finite Fields. IEEE Transactions on Computers,

42(10):1278{1280, Oct. 1993.

[19] I. Hsu, T. Troung, L. Deutsch, and I. Reed. A Comparison of VLSI Architec-

ture of Finite Field Multipliers using Dual, Normal, or Standard Bases. IEEE

Transactions on Computers, 37(6):735{739, June 1988.

[20] IEEE. IEEE P1363: Editorial Contribution to Standard for Public-Key Cryp-

tography, August 1999.

[21] S. Ishii, K. Oyama, and K. Yamanaka. A High-Speed Public Key Encryption

Processor. Systems and Computers in Japan, 29(1):20{32, Jan. 1998.

BIBLIOGRAPHY 106

[22] T. Itoh and S. Tsujii. Computing Multiplicative Inverses in GF(2m) using

Normal Bases. Information and Computation, 78(3):171{177, Sept. 1988.

[23] T. Itoh and S. Tsujii. Structure of Parallel Multipliers for a Class of Fields

GF(2m). Information and Computation, 83(1):21{40, Oct. 1989.

[24] S.K. Jain, L. Song, and K.K. Parhi. E�cient Semisystolic architectures for Fi-

nite Field Arithmetic. IEEE Transactions on Computers, 6(1):101{113, March

1998.

[25] D. B. Johnson and A. J. Menezes. Elliptic Curve DSA (ECDSA):

An Enhanced DSA. Certicom White Papers, 1998. Available at:

http://www.certicom.com/ecc/wpaper.htm.

[26] D. Knuth. The art of computer programming. Vol. 2: Semi-numerical Algo-

rithms. Reading, Massachusetts: Addison-Wesley, 2nd ed., 1981.

[27] N. Koblitz. Elliptic Curve Cryptosystems. In Mathematics of Computations,

volume 48, pages 203{209, 1987.

[28] R. Lidl and H. Niederreiter. Introduction to Finite Fields and their applica-

tions. Cambridge University Press, 1994.

[29] J.L. Massey and J.K. Omura. Computational method and apparatus for Finite

Field arithmetic. U.S. Patent 4587627. issued May 1986.

[30] E.D. Mastrovito. VLSI architectures for computations in Galois �eld. PhD the-

sis, Dept of Electrical Eng., Link�oping University, S-581 83 Link�oping, Sweden,

1991.

BIBLIOGRAPHY 107

[31] M.C Mekhallalati and A.S. Ashur. Novel structures for Serial Multiplication

over the Finite Field. Journal of VLSI Signal Processing Systems for Signal,

Image and Video Technology, 15(3):223{245, March 1993.

[32] A. Menezes. Elliptic Curve Public-Key Cryptosystems. Kluwer Academic Pub-

lishers, 1993.

[33] A. Menezes, P. Oorschot, and S. Vanstone. Handbook of Applied Cryptography.

CRC Press, 1997.

[34] A. J. Menezes and S. A. Vanstone. Elliptic Curve Cryptosystems and their

Implementations. Journal of Cryptology, 6:209{224, 1993.

[35] A.J. Menezes, editor. Applications of Finite Fields. Kluwer Academic Pub-

lishers, Boston, MA, 1993.

[36] V. Miller. Uses of Elliptic Curves in Cryptography. In Lecture Notes in Com-

puter Science, Advances in Cryptology: Proceedings of Crypto'85, volume 218,

pages 417{426. Springer-Verlag, Berlin, 1986.

[37] R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson. Opti-

mal Normal Bases in GF(pn). Discrete Applied Mathematics, pages 149{161,

1988/1989.

[38] D. Naccache and D. M'Raihi. Cryptographic Smart Cards. IEEE Micro,

78(3):14{24, June 1996.

BIBLIOGRAPHY 108

[39] National Institute of Standards and Technology (NIST). Dig-

ital Signature Standard (DSS), Feb 2000. Available at:

http://csrc.nist.gov/cryptval/dss/fr000215.html.

[40] C. Paar. E�cient VLSI Architectures for Bit-Parallel Computation in Galois

Fields. PhD thesis, Institute for Experimental Mathematics, University of

Essen, Germany, 1994.

[41] C. Paar. A new architecture for a parallel Finite Field Multipliers with low

complexity based on Composite Fields. IEEE Transactions on Computers,

45(7):856{861, July 1996.

[42] C. Paar, P. Fleischmann, and P. Roelse. E�cient Multiplier Architectures for

Galois Fields GF(2f4ng). IEEE Transactions on Computers, 47(2):162{170,

Feb 1998.

[43] A. Pincin. A new algorithm for Multiplication in Finite Fields. IEEE Trans-

actions on Computers, 38(7):1045{1049, July 1989.

[44] P.A. Scott, S.E. Tavares, and L.E. Peppard. A Fast VLSI Multiplier for

GF(2m). IEEE Journal on Selected Areas in Communications, 4(1):62{66,

Jan. 1986.

[45] S.Lin and D.J. Costello Jr. Error Control Coding: Fundamentals and Appli-

cations. Prentice-Hall, Inc., 1983.

BIBLIOGRAPHY 109

[46] L. Song and K.K. Parhi. Optimum primitive polynomials for low-area low-

power Finite Field Semi-Systolic Multipliers. In Proceedings of the IEEE Work-

shop on Signal Processing Systems, pages 375{384, New York, NY, 1997.

[47] L. Song and K.K. Parhi. Low-Complexity modi�ed Mastrovito Multipliers over

GF(2m). In Proceedings of the IEEE International Symposium on Circuits and

Systems, ISCS'99, pages I508{I512, San Diago, CA, May 1999.

[48] B. Sunar and C� .K. Ko�c. Mastrovito Multiplier for all Trinomials. IEEE Trans-

actions on Computers, 48(5):522{527, May 1999.

[49] C.-L. Wang and J.-L. Lin. Systolic Array Implementation of Multipliers for

Finite Fields GF(2m). IEEE Transactions of Circuits and Systems, 38(7):796{

800, July 1991.

[50] C.C. Wang, T.K. Troung, H.M. Shao, L.J. Deutsch, J.K. Omura, and I.S. Reed.

VLSI Architectures for Computing Multiplications and Inverses in GF(2m).

IEEE Transactions on Computers, 34(8):709{716, Aug. 1985.

[51] A.G. Wassal, M.A. Hasan, and M.I. Elmasry. Low-Power Design of Finite

Field Multipliers for Wireless Applications. In Proceedings of the IEEE 8th

Great Lakes Symposium on VLSI, pages 19{25, Lafayette, LA, Feb. 1998.

[52] E. D. Win and B. Preneel. Elliptic Curve Public-Key Cryptosystems: An In-

troduction. State of the Art in Applied Cryptography. Course on Computer Se-

curity and Industrial Cryptography. Revised Lectures. Springer-Verlag, Berlin,

Germany, pages 131{141, 1998.

BIBLIOGRAPHY 110

[53] J.J. Wozniak. Systolic dual basis serial multiplier. IEE Proceedings-E,

145(3):237{241, May 1998.

[54] C.-W. Wu and M.-K. Chang. Bit-Level Systolic Arrays for Finite-Field Mul-

tiplications. Journal of VLSI Signal Processing, 10(1):85{92, June 1995.

[55] H. Wu, A. Hasan, and I. Blake. New low-complexity bit-parallel Finite Field

multipliers using Weakly Dual Bases. IEEE Transactions on Computers,

47(11):1223{1234, Nov. 1998.

[56] H. Wu, M. Hasan, and I. Blake. Finite Field Multipliers using Redundant

Basis. To appear in Proceedings of CHES'99, Workshop on Cryptographic

Hardware and Embedded Systems, 1999.

[57] C.-S. Yeh, I.S. Reed, and T.K. Truong. Systolic Multipliers for Finite Fields

GF(2m). IEEE Transactions on Computers, 33(4):357{360, April 1984.

[58] B.B. Zhou. A New Bit-Serial Systolic Multiplier Over GF(2m). IEEE Trans-

actions on Computers, 37(6):749{751, June 1988.

