
Muddler: Using Oblivious RAM For A
Privacy Preserving Location-Based

Service

by

Danish Mehmood

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Science
in

Computer Science

Waterloo, Ontario, Canada, 2014

c© Danish Mehmood 2014

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

As smartphones become ever more prevalent, context aware applications are becoming
increasingly popular. Location-based services such as Foursquare have been among the
leaders of this trend. Some of the most popular location-based services offer users the
ability to check-in to locations, leave tips for others and provide ratings. These applications
require the user’s location information to deliver a localized user experience. The release
of this information raises some serious privacy concerns. We present Muddler, a privacy
preserving location-based service modeled on Foursquare. The service is designed to be
flexible and practical. It ensures user privacy, while withstanding threats that previously
proposed designs have failed to address.

Muddler uses an Oblivious RAM based data storage that is manipulated by a secure
coprocessor to ensure that adversaries cannot learn about user information even if they
operate the service or simply observe traffic between entities in the system. The service
also exposes a public API that provides venue owners with functionality that may help
them understand user behavioral patterns in an attempt to make it commercially feasible.
We describe our implementation in depth and explain how the API is implemented and
also discuss possible use cases. We then present a performance analysis of Path ORAM,
the Oblivious RAM scheme used. We explain how we simulated realistic user check-in
distributions followed by an experimental evaluation of the system. The results validate
the usefulness of our proposal.

iii

Acknowledgements

I would like to thank Urs Hengartner, my supervisor for his guidance, support and patience.
I would also like to thank my thesis readers, Douglas Stinson and Ian McKillop, for taking
out the time from their busy schedules and providing me with valuable feedback. Finally,
I would like to thank members of the Cryptography, Security, and Privacy research group
at the University of Waterloo for making this an enjoyable experience.

iv

Dedication

I dedicate this thesis to my parents, family, and friends.

v

Table of Contents

List of Tables viii

List of Figures ix

List of Algorithms x

1 Introduction 1

1.1 Overview . 1

1.2 Location Privacy . 3

1.3 Goals . 4

1.4 Our Contribution . 5

2 Related Work 7

2.1 Location Privacy for Location-Based Services 7

2.1.1 Anonymization . 8

2.1.2 Spatial and Temporal Cloaking . 8

2.1.3 Cryptographic Techniques . 9

2.1.4 Privacy Preserving Location Sharing Frameworks 10

2.1.5 Summary . 11

2.2 Oblivious RAM . 12

2.2.1 Hierarchical Solution . 12

2.2.2 Binary Tree Framework . 13

vi

3 Path ORAM 16

3.1 Overview . 16

3.2 Our Construction . 18

4 Design 21

4.1 Threat Model . 21

4.2 Architecture . 22

4.3 Public API . 24

5 Implementation 26

5.1 Entry . 26

5.2 Bucket ORAM . 27

5.3 Position Map . 27

5.4 Stash . 28

5.5 Muddler . 30

6 Experiments 32

6.1 Setup . 32

6.2 Performance Analysis . 32

6.2.1 Empirical Stash Size Analysis . 32

6.2.2 Latency . 34

6.3 Real World Data . 38

7 Future Work 46

8 Conclusions 48

APPENDICES 48

References 49

vii

List of Tables

2.1 A comparison of various ORAM schemes. 15

4.1 API provided by SC. 24

6.1 Tree occupancy for varying configurations 34

6.2 Average number of daily check-ins at international airports 40

6.3 Predicted number of average daily check-ins at airports in New York state. 41

viii

List of Figures

1.1 Google Maps location history [62] . 2

3.1 Path ORAM in action . 19

4.1 System overview . 23

5.1 A pictorial view of the stash . 29

6.1 Stash size distribution for worst-case ORAM accesses. 33

6.2 Plot of latency against bucket size where depth does not vary. 35

6.3 Plot of total encryption and decryption cost against bucket size where depth
does not vary. 35

6.4 Plot of time spent evicting entries from the stash while writing a path back
against bucket size where depth does not vary. 36

6.5 Plot of latency against depth where bucket sizes do not vary. 36

6.6 Plot of total encryption and decryption cost as a percentage of total cost for
varying depths when bucket sizes do not vary. 38

6.7 Plot of total time spent evicting entries from the stash while writing a path
back against depth when bucket sizes do not vary. 39

6.8 Plot of stash sizes when no expiration of check-ins takes place. 42

6.9 Plot of stash sizes when expired check-ins are dropped during reads and
writes only. 43

6.10 Plot of stash sizes when expired check-ins are dropped during reads and
writes and eviction takes place periodically. 45

ix

List of Algorithms

1 Path ORAM pseudo-code . 18
2 Muddler pseudo-code . 31

x

Chapter 1

Introduction

1.1 Overview

The increasing adoption of smartphones has precipitated a paradigm shift in the world of
personal computing. These mobile devices are overwhelmingly being used for tasks that
were previously the domain of personal computers. The scale of this shift can be judged by
the fact that more smartphones were sold globally as compared to ’dumb’ feature phones
in 2013 [60]. Over 1 billion smartphones were shipped in 2013 alone [54].

The current range of smartphones boast a number of sensors such as cameras, ac-
celerometers, gyroscopes, GPS receivers, fingerprint scanners and even barometers and
thermometers. The presence of these sensors coupled with increasingly powerful proces-
sors on board these devices have turned them into sophisticated computers that have
ushered in a new era of intelligent applications. The observation of data coming in from
the device’s sensors enables smartphones to identify the context of the device owner and
provide new feature rich applications and services.

The most common among these applications are location based services, making use of
the user’s location to provide filtered content based on the user’s locality. This information
may be determined with varying levels of precision from the GPS coordinates retrieved
from the GPS receiver on board the smartphone, the Wi-Fi access points that the device is
connected to or the phone’s cellular network connection. For example, a service may use a
client’s location to provide localized weather updates, classifieds or infotainment services.

Coupling user location with their contacts can also be used to enable geo-social net-
working. This can involve providing proximity alerts triggered when friends are within a

1

Figure 1.1: Google Maps location history [62]

certain neighborhood or sharing current location between contacts. Similar services may
also enable the ’discovery’ of like-minded people within a certain geographical area or pro-
vide location-based ratings. There are several scenarios where location-based services can
prove to be crucial. For example in a disaster scenario these services can provide crucial
on the ground information and help in managing the situation. Volunteers may work col-
laboratively to provide information. Another possible application can be a service where
users report something as ordinary as traffic alerts.

The most popular real world manifestations of this concept include Foursquare [18],
which is a search and discovery service providing users with a localized experience. Users
can search for nearby locations, rate locations and leave tips. Yelp [66] is quite similar
in nature. Foursquare currently boasts over 50 million users and also provides business
managers access to data and analytics for their locations. Previously users could check-in
at a geographical location on Foursquare and share it with their followers. This feature
has now been transferred to a new service, which does not even require users to check-in
to share their location. Instead it introduced neighborhood sharing, which lets friends on
the network know of the neighborhood the user is currently in. Since these services require
periodic access to a user’s location it raises a very serious concern, that of a user’s location
privacy.

2

1.2 Location Privacy

Most location-based services require the periodic release of a user’s location to a central
server. Depending upon the frequency of this release a server may be able to infer a lot more
than just where the user has been most recently. For example, collecting this information
at intervals over a long period of time provides the server with an entire history of a user’s
mobility recorded to increasing levels of geo-spatial precision. Figure 1.1 shows a user’s
location history as recorded by Google Maps [43]. This information when coupled with
identifying information that a user may have provided to the service only increases the
possibility of a breach of a user’s privacy revealing more about a user’s lifestyle than they
could have imagined when signing up. Even if a user has not provided such information,
other sources of information in the public domain such as census data, the yellow pages or
even the telephone directory can be used to identify the locations that a user frequents. An
analysis of these location traces, their times of origin and these other information sources
could possibly even help in the identification of a user’s home address [35] or even reveal
visits to sensitive locations such as an abortion clinic.

The sensitivity of this information can be judged by the fact that even publicly available
information such as tips are enough to enable adversaries to identify a user’s home city [53].
Simply put, if a user publicly shares their current location they are basically advertising
where they are not [6]. While sharing information definitely has its risks, not sharing
at all is simply not the best solution. This is because location based services do have
the potential to contribute to the well-being of society by enabling activities such as urban
activity inference [45] which may help town planning and administration and recommender
systems [46, 40]. In most cases, users would like to have some degree of control over this
information. Hence, location privacy [10] is defined as the right of the user to control access
to this information.

Existing research in location privacy has several proposals based on anonymizing [25,
58, 34] identifiable user information so that some semblance of privacy can be maintained.
Obfuscation and cloaking techniques [39, 67, 28] propose adding dummy trajectories or
releasing imprecise locations. However, most of these proposals fail to preserve a user’s
privacy if user behavior is observed over a long period of time, while the rest are applica-
tion specific like most cryptographic protocols [68, 44] and have limited use cases. Private
Information Retrieval [33, 47] provides promising results but these schemes are inherently
unsuitable for frequent location updates and are computationally intensive. Some existing
research has followed TaintDroid’s [15] taint propagation approach to track private infor-
mation as it flows within the smartphone and blocking access to the information altogether
or faking it [9, 29] but this necessarily results in degradation of service or unwanted side-

3

effects. In general, research in this area has focused on releasing information in a privacy
preserving manner. Such a solution does not fare well when the goal is to store information
so that it can also be retrieved later.

Several privacy preserving location sharing frameworks have also been proposed [32,
26, 17] but they either require faith in non-colluding entities or are susceptible to traffic
analysis attacks. Most recently Zerosquare [50] proposed separating user profile data and
user location data. Although this is an interesting idea, the framework also suffers from
susceptibilities faced by other such frameworks. Zerosquare’s threat model does not even
include tracking attacks, while most of the other solutions are not well suited to storing
information such that it can later be retrieved and updated. Oblivious RAM [21, 22]
schemes enable accessing items in memory while hiding access patterns. We argue that
Oblivious RAM schemes, when combined with a secure coprocessor [30], are ideally suited
for such a purpose.

1.3 Goals

The goal of this work is to present the design of a privacy preserving location-based service
modeled on Foursquare. In this section we present the goals of our design:

• Functionality: We want the service to allow users to check-in at locations and
leave tips if they so desire. The service should also support the provision of business
analytics to venue owners to make the design commercially viable.

• Scalable privacy: The design should be suitable for something as widely used as
Foursquare and a user’s location privacy should not be violated even if the server
storing location check-ins is observing incoming check-ins. In particular the service
provider should be unable to identify the location that a check-in is associated with.
The service should also be able to withstand tracking attacks. This means that
adversaries should be unable to figure out the geospatial proximity between two
location check-ins even if they were created at the same location.

• Flexible: Although we are presenting the design of a very specific service, our goal
is to make the system flexible enough to be easily extensible and applicable to a wide
array of services and not just location check-ins. Our goal is to design a system that
others might find relevant when they look at developing similar services.

4

• Computational economy: Since we are designing a location-based service specifi-
cally for smartphone users, our goal is to make sure that client side computation is
minimized as these devices have limited power availability. Our aim is to ensure that
our system does not impose computational requirements that drain out the battery
and inconvenience the user. We want a system that provides an easily adoptable
solution to casual users instead of offering a stark trade-off between privacy and
usability.

1.4 Our Contribution

Since Foursquare is one of the most popular applications in its category and provides an
essential service, that of rating locations and providing tips, we propose a location-based
service in a similar vein. We present Muddler, a privacy preserving location based service
modeled on Foursquare. The goal of this project is to propose a commercially viable service
similar to Foursquare and Yelp, while ensuring the privacy of a user’s location. This work
builds upon the location-indexed database described in Zerosquare and presents a privacy-
preserving location-based service modeled on Foursquare’s check-in functionality coupled
with its business services. The business services offered by Muddler include providing venue
owners with statistical information such as reports on the total number of check-ins, the
number of unique visitors and visitor frequency. Unlike Zerosquare however, our proposal
is not vulnerable to tracking attacks and does not rely on multiple non-colluding entities.

While designing Muddler, we aimed at making the design flexible enough to be tweaked
into provisioning for other location-based services in the future. Our design consists of an
ORAM based location-indexed database. This database stores all user check-ins and any
associated information such as tips. It is manipulated by a secure coprocessor, which can
be thought of as a black box. This essentially turns the ORAM into a Private Informa-
tion Retrieval scheme but with the benefit of being able to add updates to the database.
All communication between the secure coprocessor and the database takes place in an en-
crypted fashion. User devices communicate directly with the secure coprocessor. All such
communication is encrypted with the secure coprocessor’s public key. The secure copro-
cessor exposes an API, which is used to perform store and retrieve operations. We make
the following contributions:

• We present the design of Muddler, a privacy preserving location-based service that
is modeled on a real-world location-based service but which uses an ORAM based
server storage. The design incorporates services inspired by Foursquare’s business
services to make the design commercially viable.

5

• We implement the complete design and provide experimental results of the perfor-
mance of our proposed service.

• We generate a realistic check-in data set and then test the performance of our pro-
posed service under realistic workloads.

The rest of this thesis is organized as follows. Chapter 2 discusses the related work in
this area while chapter 3 presents Path ORAM. In chapter 4 we present the design and
architecture of our system, the implementation of which is described in chapter 5. We
provide a performance analysis and results of our work in chapter 6. Possible future work
is discussed in chapter 7, while we conclude in chapter 8.

6

Chapter 2

Related Work

This section presents the related work in this area. The related research to this work
can be classified into two broad categories. Section 2.1 focuses on prior work in the area
of location privacy and discusses how that is related to our work. Section 2.2 on the
other hand presents the evolution of ORAM schemes and discusses the trade-offs between
different schemes.

2.1 Location Privacy for Location-Based Services

Several approaches have been proposed to address location privacy issues in location-based
services ranging from anonymization to generalization or perturbation. While anonymiza-
tion techniques for location privacy fail to live up to the promise [58] when an attacker has
auxiliary information on the victims, the generalization or perturbation of location traces
requires the addition of too much noise [35] making most location based applications im-
practical. Specialized protocols or cryptographic techniques provide privacy preserving
alternatives but they are usually very application specific and can’t be generalized to ap-
plications with different use cases. The following subsections present a brief summary of
the more popular approaches. This is by no means an exhaustive review. The reader may
find the brief surveys by Krumm [36] and Terrovitis [61] pertinent.

7

2.1.1 Anonymization

A lot of the preliminary research in location privacy was carried out in this direction. The
idea of a long-term pseudonym, an alias that hides the user’s identity, does not guarantee
privacy as shown by Beresford et al. [10] who were correctly able to de-anonymize all users
participating in their study. As a consequence, the idea of mix zones was proposed, where
users frequently changed their pseudonyms with other users in the zone. The fact that this
approach was unable to provide user’s adequate location privacy in the office environment
where the experiments were conducted shows the limitations of this approach.

Gruteser and Grunwald [25] proposed using a central location server which receives very
high precision position information from clients. This central anonymizer communicates
with external services on behalf of the client after stripping identifiable information from
the received encrypted messages and perturbing the revealed location so that a required
level of anonymity is maintained. K-anonymity [55] with respect to a user’s location is
described as the condition of a user’s location being indistinct from k−1 other users. This
necessarily precipitates the generalization of a user’s location information to the extent that
it is the same as k − 1 other users possibly becoming utterly useless for several precision
sensitive applications. Interestingly enough, this approach is not suitable for location-
based services. Consider the case where the required k users are all located in a very small
space [58], the uncertainty about user locations will be very low. Another problem with
this approach is that the location anonymizer becomes a central point of failure.

A very interesting approach proposed by Kido et al. [34] requires the generation of
several false or dummy position data requests with every true request to make real re-
quests indistinguishable from false ones for the service provider. This necessarily increases
the communication overhead and possibly the computational overhead depending on the
application. The authors do describe some cost reduction techniques but they are very
application specific and will not generalize.

2.1.2 Spatial and Temporal Cloaking

The strength of location privacy in this context can be defined as the extent of the ambiguity
in the precision of the location. Leonhardt et al. [39] present a three layer access control
mechanism. The first layer specifies the authorization requirements of the service to be
able to perform a successful query. The second layer specifies the precision of the location
information to be released, while the third layer specifies the amount of detail to be released
about identity information. Each of these layers is defined as a set of policies. This enables

8

the substitution of precise location information with less detailed information as objects
are organized in a hierarchy. For example, a staircase might be at the bottom of this
hierarchy while building might be at a higher level. Thus, the information released will
most likely lack precision.

Tun et al. [67] present the idea of introducing dummy trajectories that intersect hu-
man trajectories confusing observers. This scheme is vulnerable to being exposed if the
adversary observes the long-term behavior of the users. Tracking a user can result in the
adversary linking information about other places to the user’s identity. Reducing the lo-
cation sampling frequency [27] decreases the success rate of this attack. Hoh et al. [28]
further go on to describe a time-to-confusion metric, which evaluates location privacy. This
metric defines the duration that an adversary can track a user without being confused. The
proposed algorithm guarantees a maximum time to confusion by only releasing location
data such that the level of confusion specified is maintained. This necessarily implies that
all location updates will not be released and may have an impact on the quality of the
service provided.

2.1.3 Cryptographic Techniques

While the techniques discussed above are general and can be deployed in a wide range of
applications, this subsection of this chapter describes protocols that are application specific
and generally fall in the domain of secure multi-party computation, where multiple partic-
ipants collaborate in computing the result of a function without revealing their inputs to
each other or any third party. For example, participants may work together to ensure that
a user’s location is only shared with a friend if the friend is in close proximity [68]. Similar
techniques may also be used to share a user’s location with friends. In such a scenario,
the inputs are typically encrypted and the cipher text is manipulated using cryptographic
techniques. For example, Homomorphic [49] or Commutative Encryption [52] may be used
to perform computations over the cipher text without revealing the plain text to achieve
the same result in encrypted form. An interesting idea here is the extraction of participat-
ing individuals extracting location tags [44]. Subsequently the participants can use private
set intersection using a homomorphic encryption scheme to determine if the intersection of
their sets of location tags exceeds a certain threshold. The Shy Mayor [11] proposes cryp-
tographic protocols that enable the verification of user check-in and co-location claims.
Although it would fall in this category, the protocols proposed apply to very specific use
cases.

Another approach that falls under this range of solutions is Private Information Re-
trieval (PIR) [12], which allows clients to query databases without leaking information

9

about the records accessed to the host server. PIR solutions in the context of location
privacy [33, 47] generally involve combining cloaking techniques with privacy preserving
querying. On a high level this involves creating regions around the user and performing
PIR queries within those regions. Private Information Retrieval schemes are not well suited
for frequent updates and are generally computationally intensive.

2.1.4 Privacy Preserving Location Sharing Frameworks

Some recent work has focused on proposing general frameworks for privacy preserving
location-based services. Trust No One [32] proposes a system where no one entity has
information on both user queries and user location. This information is distributed such
that the service provider only has information on a user’s queries and a third party, most
likely the mobile service provider has a user’s location information. This is an attempt at
ensuring that one entity should not be able to accumulate all of a user’s private information.
The mobile service provider assigns pseudonymized location values to the user’s current
location, while the service provider assigns pseudonymized identifiers to all the entities
that have subscribed to the service. A decentralized matching service is used to exchange
information between entities in the system, to ensure that no attacks by malicious users
with actual information on any user in an attempt to identify the other pieces of information
can take place. This system is susceptible to collusion attacks, from mobile users who
contribute the proxies in the matching service.

Koi [26] works along similar lines, using privacy-preserving location-based matching to
avoid exposing fine-grained location information to applications on the phone. It consists
of a mobile and a cloud component. The mobile component liaises with applications and
the cloud exposes an API that allows the registration of clients and triggers, which act
as queries providing notifications through call backs when a match is found. The cloud
component consists of a non-colluding matcher and a combiner. The matcher is aware of
a user’s identity and attributes including location without knowledge of the association
between them. The combiner on the other hand is aware of the association between users
and their attributes without knowledge of their actual values. Although there is a privacy-
preserving protocol that enables these two cloud components to perform matching without
learning the association between users and their attributes, this system is susceptible to
traffic- analysis attacks when updates are observed over time.

Recent work includes The Location Privacy Guardian [17], which presents a client-side
solution and Zerosquare [50]. The Location Privacy Guardian provides privacy guarantees
on a per-app basis. It consists of a location interceptor, which intercepts all incoming

10

location requests from apps and forwards them to a location anonymizer. A rule manager
determines the anonymization strategy for the anonymizer after interacting with the user.
The interceptor then provides the anonymized location to the requesting app. The Location
Privacy Guardian provides low privacy guarantees for users living in sparsely populated
areas as the protection mechanism uses a model relying on census data. Furthermore, it
requires modifying the mobile platform it is deployed on. Zerosquare on the other hand
proposes a unique solution. It proposes separating user profile data from user location data.
The goal is to ensure that no one entity should be able to obtain both. Zerosquare consists
of a user-indexed database that stores user information, a non-colluding location-indexed
database that stores information on locations and optional cloud components. Although
this does provide a flexible framework, that has some serious loopholes. It is vulnerable
to tracking attacks. The problem with this approach is that the location database can
observe the sequence of check-ins and observe the spatial and temporal proximity between
them. This information when recorded over a long time period may be used to guess
possible user trajectories. If these trajectories are guessed over a long period of time
common patterns will have an even higher probability of depicting the reality. If sensitive
identifiable locations are included in that trajectory such as a user’s home or work place
or unique locations that a user frequents during certain times of the day, identifying a user
may be possible resulting in a privacy breach.

2.1.5 Summary

For the specific use case that we are interested in, being able to update the database with
frequent additions is an important requirement. Furthermore, any solution that we propose
should be able to ensure user privacy under most circumstances. Previous work in this
area has proposed several solutions but they are just not suitable enough for something
that is as scalable and as widely used as Foursquare. They are either fundamentally flawed
allowing certain kinds of attacks or they are just not designed to support the massive
number of updates and retrievals such a system would require. While some of the more
secure approaches have very specific applications and can not be generalized to other use
cases, others are either too computationally expensive or are vulnerable to tracking or
traffic analysis attacks. As a consequence there rises a need for a scheme that is robust
and computationally feasible. We explore using an ORAM based data storage for the
purpose of our location-based service and analyze how it fares against these functional
requirements.

11

2.2 Oblivious RAM

The observation of the execution of a piece of software can enable an adversary to identify
the essential characteristics of that program. The adversary can obtain this information by
monitoring the memory locations accessed during execution, which may leak information
about various programming constructs such as loops. Encrypting the contents of the
computer’s memory does not solve this problem as the adversary can still observe the
memory locations accessed and the frequency of access. Recent work by Islam et al. [31]
shows that observing data access patterns of an encrypted email dataset using a heuristic
solution can successfully identify 80% of the queries.

The standard security definition for ORAM provides the following guarantees:

1. The adversary should not be able to identify what is being accessed.

2. The adversary should not be able to estimate the age of the data being accessed or
the time since it was last accessed.

3. The adversary should not be able to identify any similarities in the access pattern.

4. The adversary should not be able to detect if the access is a read or a write.

2.2.1 Hierarchical Solution

Goldreich and Ostrovsky [21, 22, 48] originally proposed Oblivious RAM (ORAM) to hide
the execution of software from being observed. ORAM schemes continuously shuffle and
re-encrypt data as it is being accessed. This ensures that the adversary has no idea as to
the data that is being accessed even if the memory location is observed and thus prevents
software reverse engineering. The same idea can be extended to the cloud computing sce-
nario where it enables a client to completely obfuscate the underlying data access patterns
from the untrusted remote server.

The seminal work by Goldreich and Ostrovsky [22] presented the Hierarchical Solution,
which arranges the ORAM in a hierarchy of levels with increasingly more capacity for
elements. Elements are assigned to buckets on each level using a hash function. When
an element is accessed the algorithm accesses a bucket on each level. The bucket to be
accessed is selected based on the hash function. If the element being looked for does not
exist on the current level, a dummy item is accessed. Once the item is found it is updated
and re-inserted at the top of the hierarchy. If a level is full then the elements it contains are

12

obliviously rehashed into the next level. The use of expensive oblivious sorting to reshuffle
the ORAM periodically effectively rendered this an impractical solution with an amortized
access overhead of O((logN)3) with an unacceptably high constant. Several subsequent
works aimed at optimizing and improving upon this Hierarchical Solution.

Deploying the client on a cryptographic secure coprocessor [30] effectively creates an
ORAM based Private Information Retrieval protocol [64]. Williams et al. [65] later extend
this work, which provides no correctness guarantees using an encrypted bloom filter and an
encrypted hashtable to store each level of the hierarchy. This allows the efficient identifi-
cation of the level where the searched element lies.This scheme reduces the required server
side storage from O(N logN) to O(N). Using cuckoo hashing [24, 51] and newer obliv-
ious sorting algorithms [23] imposes similar external storage requirements. Interestingly
enough, Kushilevitz et al. [37] show that the scheme described in [51] is not secure claiming
that cuckoo hashes may possibly lead to insecure schemes. On the other hand they also
show that [65] using Bloom filters results in a scheme with a non-negligible chance of being
broken.

2.2.2 Binary Tree Framework

Recent advancements include the Binary Tree framework proposed by Shi et al. [57]. The
data storage is organized as a binary tree. Each node in this tree is called a bucket and has
a fixed capacity of elements, each of which is encrypted using an authenticated encryption
scheme to disallow any tampering by adversaries. Every element that is added to the
tree is randomly assigned to one of the leaf buckets. This mapping of elements to leaf
buckets is stored in a data structure on the client, which can be referred to as a position
map. Elements being written to the ORAM are always added to the root bucket. If a
read request for an element is made, all the buckets that lie along the path from the root
bucket to the assigned leaf bucket are accessed. Each bucket iterates over all the elements it
contains decrypting them. If a match is found it is removed and replaced with an encrypted
dummy element, otherwise the elements are randomly re-encrypted. The removed element
is then returned. If the element is not found a dummy element is returned to ensure
obliviousness. Every time an element is removed, it is randomly assigned to a new leaf
bucket, the mapping is updated in the position map and the element is inserted into the
root. Since, each bucket has a fixed capacity there is the possibility of overflow. To prevent
this, a periodic eviction of elements from non-leaf buckets takes place in the background.
A specified number of buckets are randomly selected at every level of the tree for eviction.
An element is popped from each of these bucket ORAMs and writes are performed on both
the children of the bucket to ensure obliviousness. A real block will be written to the child

13

that lies along the path from the leaf bucket to the root, while the other child will receive
a dummy write. If the popped element is a dummy then dummy writes will take place on
both the children. This scheme significantly simplifies ORAM implementations and enjoys
much simpler proofs of security.

Obliviad [8] presents an ORAM based privacy preserving architecture for online behav-
ioral advertising based on this Binary Tree framework using a similar construction to the
one described above. The goal is to prevent the leakage of any user profile information.
For this purpose, Obliviad deploys a secure coprocessor to implement an ORAM based
Private Information Retrieval scheme. Ads are stored against keywords used to describe
user behavioral profiles. Every element in the bucket consists of a keyword and an ad. The
mapping of keywords to leaf buckets is stored on the secure coprocessor. This construction
allows the insertion of multiple elements with the same keyword and distinct advertising
payloads into the path.The subsequent write back operation adds all these elements back
to the root node. The maximum number of elements for a certain keyword is constrained
by the maximum bucket size. A background eviction process takes place to prevent the
possibility of overflow. In essence this work happens to be the closest to ours.

A subsequent proposal by Chung et al. [14] provides statistical security but also has an
O((logN)3) overhead. Path ORAM proposed by Stefanov et al. [59] has an O((logN)2)
worst-case cost and introduces a novel bottom up eviction scheme. It also introduces a
data storage called the stash, which can be thought of as the working memory on the
client. When an element is being read, the path that it is assigned to is read into the stash
in its entirety. While writing a path back to the tree any possible elements in the stash
that lie along that path are evicted into the tree. At non-leaf levels elements assigned
to other paths that intersect that intermediate node can be also evicted. This ensures
that the tree is heavier towards the bottom and discourages the need for a background
eviction subroutine that is invoked independently. This also results in a much simpler
implementation.

Chung et al. [13] simplify the implementation of the stash with a standard HashTable
and a Queue. Although, this greatly simplifies implementation it does introduce some
extra overheads resulting in a worst-case overhead that is worse than Path ORAM.

The efficiency of an ORAM scheme is judged on three main characteristics:

• The amount of client storage required.

• The amount of remote server storage required.

• The overhead of accessing data.

14

Algorithm Amortized Cost Client storage Server storage
Shi et al. [57] O((logN)3) O(1) O(NlogN)
Goldreich et al. [22] O((logN)3) O(1) O(NlogN)

Williams et al. [65] O(logN log logN) O(
√
N) O(N)

Pinkas et al. [51] O((logN)2) O(1) O(N)

Williams et al. [64] O((logN)2) O(
√
N) O(N logN)

Stefanov et al. [59] O((logN)2) O(logN) O(N)

Table 2.1: A comparison of various ORAM schemes.

Table 2.1 presents these characteristics of some of the algorithms that have been dis-
cussed. Compared to other schemes, Path ORAM requires a very simple implementation,
has statistics comparable with some of the best schemes with limited client storage and is
practically efficient. For this reason, we choose Path ORAM for the purpose of Muddler.

15

Chapter 3

Path ORAM

This chapter provides a brief explanation of Path ORAM in Section 3.1. It then discusses
how our construction builds upon Path ORAM to ensure that this algorithm can be used
for the purposes of a location-based service in Section 3.2.

3.1 Overview

Path ORAM [59] builds upon the binary tree framework proposed by Shi et al. [57]. The
objective is to prevent any information leakage to adversaries observing data access pat-
terns. Since encryption alone does not provide this guarantee, Path ORAM shuffles data
and randomly re-encrypts it as it is being accessed. For this purpose, the database is stored
on the untrusted server, which may be remote is organized as a binary tree. A binary tree
is used only for the sake of simplicity. Data is stored in atomic units called blocks. Each of
these blocks has a unique block identifier id and a data payload. Every node of the tree is
called a bucket and can contain a maximum number of m blocks. Each of these blocks is
assigned to a leaf bucket selected uniformly at random from all the leafs. The client stores
data structures called a position map and a stash. The position map stores the assignment
of blocks to leaf buckets. It contains a mapping of block ids against leaf bucket ids. The
size of this data structure increases or decreases depending upon the number of blocks
in the tree. The stash on the other hand can be thought of as the client’s local working
memory.

Initially, the tree is filled with dummy blocks. At any point in time a block can
lie either in the stash on the client or on the server along the path from the root to

16

the assigned leaf bucket. The client manipulates the ORAM through the ReadBucket()
and WriteBucket(elements) operations that are supported by every bucket. The Read-
Bucket operation decrypts all the blocks in the bucket and returns them, while the Write-
Bucket(elements) operation overwrites the blocks in the bucket with elements and ran-
domly encrypts them. If the bucket is not full then it is padded with dummy blocks. An
encryption scheme that provides ciphertext indistinguishability is used.

When a block is requested, the client looks up the block’s id in the position map to
identify the assigned leaf bucket. The entire path from the root to the assigned leaf bucket
is read into the stash. The requested block can then be returned. Dummy blocks are
ignored during this process and are not added into the stash. If a write is intended then
the block is updated in the stash. The block is assigned to a new leaf bucket selected
at random. This random re-assignment of blocks ensures that the adversary is unable to
distinguish between requests for the same block or distinct blocks. Every time a block is
re-assigned the assignment stored in the position map is updated. If the block does not
exist then a random path is read into the stash instead to preserve obliviousness. The path
is then written back to the server.

Path ORAM strives to push blocks as deep down in the tree as possible. The goal is
to try to empty the stash as much as possible. The write back starts from the leaf nodes.
Any blocks that are assigned to the leaf bucket of the path being written back are evicted
first. Since a block can lie anywhere along a path from the root to its assigned leaf bucket,
the path being written back can have other such paths ending in different leaf buckets
intersect its intermediate buckets. Blocks assigned to these other paths are also evicted
into the buckets at the appropriate levels. Any leftover blocks remain in the stash and
can be written back in subsequent accesses. Because of this the stash has a very high
probability of being empty after reads. Algorithm 1 presents the pseudo-code for Path
ORAM.

Figure 3.1 shows a sample execution pattern for one path ORAM access where the
block with block_id b3 is requested. Figure 3.1a shows the state of the server and client
storages before the block is requested. The stash only contains block b2, which has been
left over from previous reads. Initially b3 is assigned to leaf 9 as can be seen in the position
map. When a request is made for this block, the path from the root to leaf 9 is read into
the stash. The state of the system after this read can be seen in figure 3.1b, where the
path that is read is highlighted in green. The figure also shows that block 9 is re-mapped
to a randomly selected leaf. The path is then written back to the tree in a bottom-up
fashion starting from the leaf. If there are any blocks in the stash that are assigned to the
leaf bucket, they are evicted and the level just above is considered. This level can host
any blocks that are assigned to any of the leafs among its children. In this case, bucket 2

17

Algorithm 1 Path ORAM pseudo-code
1: procedure PathAccess(id, data, write)
2: oldPos← positionMapLookup(id)
3: randomPos← chooseRandomLeaf()
4: positionMap(id)← randomPos
5: if oldPos == null then
6: stash← readPath(root, randomPos)
7: oldPos← randomPos
8: else
9: stash← readPath(root, oldPos)

10:
11: if write then
12: update block in stash
13: else
14: return block from stash
15:
16: WritePath(root, oldPos)

is eligible to receive blocks assigned to either of leafs 8, 9, 10, or 11 from the stash. This
results in b2 being evicted into the bucket at that level. The root can actually receive
blocks assigned to any of the leafs, since it is a direct ancestor of all of them. The block
b3 is evicted into the root leaving an empty stash. The state after this operation can be
observed in figure 3.1c.

3.2 Our Construction

For a location-based service with a location indexed database storing user check-ins, the
block identifier can be replaced with a location identifier. The payload of the block can
contain the information associated with that check-in based on the functionality that the
application aims to provide. The algorithm described above only works for the case where
block ids are distinct and does not support duplicates. For most location-based services
the database should be able to support multiple entries into the database for the same
location. Modifying Path ORAM to support multiple check-in for the same location is
possible without adversely impacting costs of the read path and write path operations.

Since Path ORAM is designed to read all the blocks that lie along a path into the stash,

18

Figure 3.1: Path ORAM in action

(a) The initial state of the system.

(b) The state of the system when the path that block b3 lies on is read.

(c) The state of the system after the path is written back.
19

any check-ins that share the same location and hence the same identifier only have to be
assigned to the same leaf bucket so that all of them lie on the same path. This ensures that
all of these check-ins will be read into the stash every time a request is made. This does
not require any modifications to the underlying ReadBucket() and WriteBucket(elements)
operations. Furthermore, every location will have only one mapping in the position map
no matter how many duplicates exist in the tree or the stash. As a result this does not have
any adverse impact on the position map. As no changes are made to the way a path is read
into the stash or written back, the obliviousness of this algorithm is preserved. Hence, the
security analysis in [59] still applies. The ciphertext indistinguishability property of the
encryption scheme ensures that the adversary is unaware of the existence of any duplicates.

One major change that we make is the use of a secure coprocessor to function as
the client. The position map and the stash reside on the trusted memory in the secure
coprocessor. As discussed in the Related Work Section, this turns the ORAM scheme
into a PIR scheme. The secure coprocessor now manipulates the binary tree stored on the
untrusted server to perform read and write operations. All communication that takes place
with the secure coprocessor is encrypted with its public key to ensure secure communication
over insecure channels of communication. Obviously, any requests made to the secure
coprocessor have to be authenticated first.

20

Chapter 4

Design

We use an ORAM based design as that helps us fulfill our privacy goals described earlier.
Since every update in an ORAM is indistinguishable from another, in a location-based
service this means that an adversary is unable to distinguish between any requests coming in
to the location databse. This also means that an adversary is unable to identify the location
that a check-in is associated with. As a consequence even if an adversary observes the
frequency of incoming check-ins and the time differene between them, tracking attacks are
still futile. The rest of this chapter presents an overview of Muddler. Section 4.1 discusses
the threat model. Section 4.2 describes the architecture of Muddler while Section 4.3
explains the public API exposed by the secure coprocessor.

4.1 Threat Model

This section discusses the threat model for this work. We assume that the entities in the
system are honest-but-curious. Anyone may be interested in inferring additional informa-
tion. The goal of Muddler is to prevent such an adversary from learning anything about
users even if the adversary is able to obtain auxiliary information about users. No infor-
mation should be leaked about any user’s location. Our assumptions and aims are listed
below:

• The system should not be vulnerable to any tracking attacks. The adversary should
not be able to identify any of the locations that are part of any updates.

21

• The secure coprocessor is safe and secure. The secure coprocessor is completely trust-
worthy and can process user data without posing any threats, thus, also rendering
it invulnerable to timing attacks. Furthermore, no adversary will attempt physically
manhandling the device.

• The database is encrypted and only the secure coprocessor has access to the decryp-
tion key.

• Adversaries can observe the traffic between entities in the system.

The goal of our proposed solution is to let users check-in to any location, be it sensitive or
public, without any qualms. However, we cannot account for cases where the venue owner is
familiar with a user checking in. Our proposed solution does not consider any threats made
possible by vulnerabilities in the apps on the user’s smartphone or the device’s operating
system. We also do not provide any security guarantees against any harm caused by the
user’s negligence, such as physical loss of the device or theft. Any kinds of denial of service
attacks are also beyond the scope of this research. We assume that standard operating
procedures apply when it comes to such threats.

4.2 Architecture

This section presents an overview of the entities that Muddler is comprised of and how
they relate to each other. Since our system is a location-based service, we have a database
that is indexed by location. This database stores all information on user check-ins and
does not provide any other functionality. This specific indexing scheme has been selected
to provide optimal performance for the sort of queries that we provide through the API
exposed by the secure coprocessor. This API is presented in Table 4.1. The service is
composed of the following components:

• The secure coprocessor: The execution takes place on a secure coprocessor, which
has all the characteristics of a trusted black box. Communication with the secure
coprocessor takes place over a secure channel such as TLS. The secure coprocessor ex-
poses an API, which is used to interact with the system. Only the secure coprocessor
can access the location database and manipulate it while ensuring obliviousness.

• The location-indexed database: This is basically the ORAM storage. It is or-
ganized as a single data structure where every entry contains information about a

22

Figure 4.1: System overview

23

API provided by SC
pathAccess(id, data, write)
totalCheckins ← findTotalCheckins(id)
uniqueVisitors ← findUniqueVisitors(id)
histogram ← findVisitorFrequency(id)

Table 4.1: API provided by SC.

unique check-in. This information consists of the location identifier, the user id iden-
tifying the user who created the check-in, the timestamp at the time the check-in
was created and a tip if the user decided to leave one. The information stored in this
database is encrypted by the secure coprocessor using a symmetric key.

• The user device: This device runs the smartphone application, which allows users
to check-in at a location and possibly leave tips for other users. Venue owners may
use a computer or a smartphone to login and view reports. Any requests made will
eventually invoke one of the API functions exposed by the secure coprocessor. These
requests will be encrypted with the secure coprocessor’s public key.

4.3 Public API

This section presents a listing of the proposed public API functions exposed by the secure
coprocessor. It further explains how each of these API calls is implemented and discusses
possible use cases. It is important to keep in mind that this is not an exhaustive list
of the API functions that this architecture can support. In fact, the list is quite long.
This section simply presents some examples making the point of how simple it can be to
deliver these kind of services with such a design. All of these requests can only be made
by authenticated users. The secure coprocessor supports the following:

• pathAccess(id, data, write): The secure coprocessor performs an ORAM access
operation as described in previous chapters. The id is the identifier of the location in
this case. data represents the information to be stored and consists of the userid, the
current timestamp and a tip left by the user. write indicates if the information is be
added to the ORAM or if it is just a lookup. This request is made by user devices,
when they check-in to a location. Tips are limited to a size of 200 characters. If
a user does not leave a tip, then a dummy string of the same length is added to

24

the entry. If the user does leave a tip but that is smaller than 200 characters it is
padded to make up the difference. Since, these queries may exhibit a variable latency,
before the system is made publicly available an extensive performance check should
be performed. The secure processor should respond to every request after the worst
case possible time to ensure that traffic patterns do not exhibit any trends. This
stands for all exposed API functions.

• totalCheckins ← findTotalCheckins(id): This request is made by venue owners
and is part of the business services functionality offered to make the proposed solution
commercially viable. The id is the location identifier of the venue. The secure
coprocessor performs an ORAM access (not a write). The result consists of all
the entries in the database and the stash for the corresponding location. The total
number of these entries is returned to the venue owner. For example, for a restaurant
owner, this request would return the total number of check-ins for that location.

• uniqueVisitors ← findUniqueVisitors(id): This request is also made by venue
owners and is the second such request that is also part of the business services of-
fered. The id is again the location identifier of the venue. The secure coprocessor
performs an ORAM access. The results contains all the relevant entries. The secure
coprocessor then scans all of them counting the total number of unique user ids. This
number is then returned to the venue owner. For example, if the same restaurant
owner makes this request, it will return the total number of unique visitors to that
location.

• histogram ← findVisitorFrequency(id): This is yet another of the requests that
supports the business services offered by our location based service. When a business
user makes this request, the secure coprocessor performs an ORAM access and scans
the results. This time, instead of just counting the unique user ids, the frequency of
their occurrence is also tracked. The results are then returned to the venue owner.
If the restaurant owner makes this request, this will let him see the frequency of
returning visitors. It is important to note here that the system will not reveal unique
user identifiers.

25

Chapter 5

Implementation

We implemented the modified Path ORAM algorithm to demonstrate the feasibility of
our proposal. This chapter discusses the implementation of the proposed construction.
The implementation was done in Java, which was selected because of its simplicity and its
WORA (Write once, run anywhere) characteristic [7]. Our implementation does not use
a dedicated secure coprocessor, which is instead simulated in code. The code is written
so that the architecture can support moving the secure coprocessor’s functionality to a
real device easily. Section 5.1 describes the composition of an Entry in detail. Section 5.2
describes the implementation of buckets, while Section 5.3 discusses the data structure used
to implement it. Finally Section 5.4 discusses the design choices made while implementing
the stash and Section 5.5 describes the implementation of the complete algorithm.

5.1 Entry

Every check-in is stored as an instance of the Entry class. This class is designed to
represent a check-in instance. Every Entry consists of:

• location: This is an identifier of the location where this check-in took place. Initially
we considered using GPS co-ordinates and complete location addresses, later changing
this to an Integer representation to minimize any memory requirements imposed on
the secure coprocessor. This is comparable to the venueId parameter that Foursquare
includes in a check-in.

• User ID: This is a unique identifier assigned to every user of the service, stored as
an Integer.

26

• Tip: This is the tip that a user may leave for others when they check in at a location.
This is stored as a String and has a maximum length of 200 characters.

• Time Stamp: This is a time stamp that is stored with every check-in. This is used
when dropping expired check-ins.

5.2 Bucket ORAM

Every instance of a bucket on the server is an instance of the BucketOram class. This
contains an encrypted array of instances of the Entry class described above. Since every
Entry written in the bucket is read into the stash, we encrypt the entire array and not
individual entries. An empty bucket contains an array initialized with dummy entries.
This array is then encrypted. The encryption used is AES with a key length of 128 bits
in counter mode. As we encrypt the entire array of entries, we need to make sure that all
entries have the same size so that unique buckets are indistinguishable based on their size.
We make sure of that by padding entries with dummy bits so that they are of a constant
size. Every BucketOram instance supports the following operations:

• readEncrypted(): This operation decrypts the stored array of entries and returns
it.

• writeEncrypted(bucket): This operation replaces the stored array of entries with
bucket and then encrypts it.

5.3 Position Map

The position map is implemented using the Java TreeMap<Key, Value> [3] data structure.
This is a Key, Value data store, implementing the Java Map interface, based on a Red-
Black tree. This tree is sorted by keys and has a lookup cost of O(logN). The Key in this
case is a representation of the location stored against the identifier of the leaf bucket that
the location is assigned to. Since a location is represented as an Integer, this data structure
is ideal as this enables several business intelligence operations through ranged queries. For
example, if the service provider wants to look at the statistics of user check-ins for multiple
locations over a block, this data structure is ideally suited for that.

27

5.4 Stash

The stash as described in Path ORAM [59] is a data structure that should be able to support
range queries. A binary search tree is the standard data structure that may be used for
that purpose. We however, take a different approach. When we started implementing
our construction, we strictly followed Path ORAM. This meant that the construction was
unable to support multiple check-ins for the same location. The stash was designed as a
HashMap [2] of ArrayLists [1], HashMap < Integer, ArrayList < Entry > >. A HashMap
is a hashtable based implementation of Java’s Map interface, with an average case lookup
cost of O(1), while an ArrayList is a data structure that has an underlying array, which
grows dynamically as the number of elements increases. The Key in this case being the
identifier of the leaf bucket stored against a list of the check-ins at locations assigned to
that leaf. During the write back operation the program only had to use the identifier of
the leaf bucket to retrieve the ArrayList of all the check-ins at locations assigned to that
leaf in the stash. The list would then be emptied as these check-ins were used to fill the
buckets that lied along the path from the root to the leaf.

This implementation of the stash functioned well for preliminary tests, which were
designed to test the validity of our assumptions. However, there was a problem. This
approach was costly in realistic test scenarios, especially when we looked at multiple check-
ins for the same location. Using a list to store check-ins that belonged to different locations
all assigned to the same leaf necessitated the use of iteration over the entire list when
writing back the path, searching for entries or when re-assigning entries to new locations.
For locations that were very popular, this meant that the size of this list could become
very large, impacting the latency of search or write-back operations.

To reduce this and to optimize the complexity of the stash, we looked into two design
possibilities:

• HashMap<Integer, ArrayList< ArrayList < Entry> >: The key is still the identifier
of the leaf but the value is an ArrayList of ArrayLists. This basically means that
all check-ins at the same location are grouped into one ArrayList < Entry >. When
a lookup takes place, the returned ArrayList contains multiple ArrayLists, each of
them containing all the check-ins in the stash corresponding to one of the locations
assigned to that leaf. This would still require iterating through this list during search
operations to reach the list containing the check-ins of the location that is being
searched for, although re-assignment becomes much simpler as the entire ArrayList
representing one location can simply be removed and added to the new leaf node’s

28

Figure 5.1: A pictorial view of the stash

List of locations during re-assignment thereby reducing the cost of this operation
several times.

• HashMap<Integer, HashMap< Integer, ArrayList < Entry > > >: In this case the
key is the identifier of the leaf but the value is a HashMap of ArrayLists. This internal
HashMap maps location identifiers to the ArrayList < Entry > , which contains all
the check-ins for that one location in the stash. For a search operation, this would
only require two lookups of average cost O(1) to reach the list of check-ins being
searched for. The first lookup would return the internal HashMap containing all the
check-ins of all the locations assigned to a certain leaf node. The second lookup would
return the ArrayList containing all the check-ins for a certain location. During re-
assignment this ArrayList can be removed from the old internal HashMap and added
to the new leaf bucket’s internal HashMap.

Whichever design we choose, we need to make sure it allows for the way the write back
works in Path ORAM. It is quite clear that the second option is the most efficient option.
In fact, this solution is even better than using a binary search tree as the underlying data
structure for the stash. Figure 5.1 shows a pictorial view of the stash.

An interesting question is why we chose this design which essentially used two keys,

29

one for the first lookup and the other for the second lookup in the internal HashMap. We
could have used one HashMap that combined both keys. If we combined both keys, the
write back operation would not be possible. Currently all we need to do during write back
is lookup the leaf identifier in the stash to obtain the internal HashMap. During write back
we simply iterate over all the ArrayLists in this data structure, emptying them as we fill
up the buckets being written back to the tree. If the combined keys were used we would
need to store extra information somewhere since the keys would consist of both the leaf
identifier and the location identifier.

5.5 Muddler

Now that we have described all the building blocks of our construction, this section ex-
plains how the PathAccess procedure now differs from Path ORAM. Algorithm 2 presents
the pseudo-code of our construction. During initialization a value is assigned to an expi-
rationTimer. For example, if we are interested in only storing check-ins for a maximum of
one month then that is the value that will be assigned to this timer. When PathAccess
is now invoked, it looks up Entry1’s location in the positionMap to find out the leaf that
it is assigned to. It then generates a randomPos signifying one randomly chosen leaf. If
oldPos, or the leaf value is null, this means that the location does not exist in the sys-
tem. In this case, the path from the root to the randomly chosen leaf is read into the
stash. If this is a write access, then a stash look up is performed against randomPos.
This returns the randomLeafMap. This data structure contains all the check-ins in the
stash for the randomly selected leaf. As the location does not exist, a new ArrayList <
Entry > is created and Entry1 is added to this List. This List is then inserted into the
randomLeafMap, against Entry1’s location identifier. The positionMap is updated to
reflect the position of Entry1 and the path is written back.

If oldPos is not null, this means that the location already exists in the system. In this
case the path from the root to the oldPos is read into the stash. A stash lookup is performed
to retrieve oldLeafMap containing all the check-ins in the stash for all locations assigned
to the leaf oldPos. Another stash lookup is performed to retrieve randomLeafMap, which
contains all the check-ins in the stash for the randomly selected leaf. oldList corresponds
to the ArrayList < Entry > containing all check-ins for Entry1’s location in the stash.
This list is removed from oldLeafMap. If this is a write operation then, Entry1 is added
to this list. This list is then inserted into the randomLeafMap against Entry1’s location
identifier. The positionMap is updated to reflect the position of Entry1 and the path is
written back.

30

It is important to note that while a path is being read into the stash, the timestamp
of every Entry is compared with the expirationTimer to make sure the Entry has not yet
expired. Similarly, when a path is being written back to the server, the timestamp of every
Entry is compared with the expirationTimer. All expired check-ins are dropped and not
added to the stash. A periodic eviction takes place that scans the entire stash and removes
any expired check-ins that still remain in the stash. For the purpose of our experiments in
Section 6, we invoke this subroutine once a day. The frequency of this invocation should
vary depending upon the context in which Muddler is used.

Algorithm 2 Muddler pseudo-code
procedure PathAccess(Entry1, write)

2: oldPos← positionMapLookup(Entry1.location)
randomPos← chooseRandomLeaf()

4: if oldPos == null then
stash← readPath(root, randomPos)

6: if write then
randomLeafMap← stashLookup(randomPos)

8: create new ArrayList<Entry> and add Entry1
insert this list into randomLeafMap against Entry1.location

10: oldPos← randomPos
else

12: stash← readPath(root, oldPos)
oldLeafMap← stashLookUp(oldPos)

14: randomLeafMap← stashLookUp(randomPos)
oldList← oldLeafMap.remove(Entry1.location)

16: if write then
add Entry1 to oldList

18: Insert oldList into randomLeafMap against Entry1.location
positionMap(Entry1.location)← randomPos

20:
WritePath(root, oldPos)

31

Chapter 6

Experiments

This sections presents the experiments we conducted and describes our results. Section 6.1
describes the experimental setup that we used. Section 6.2 discusses the results of our
performance analysis, while Section 6.3 explains in detail how we created our realistic
check-in data set and the subsequent set of experiments and results. Our results show that
our proposed design is a feasible solution that improves on the state of the art in privacy
preserving frameworks for location-based services.

6.1 Setup

The experiments were conducted on the CrySP [4] RIPPLE Facility [16], which is a set
of very powerful machines dedicated to research in Privacy Enhancing Technologies. The
machine used for the purpose consists of 80 physical cores. With Hyper-Threading they
amount to 160. The machines also boasts 1 TB of Random Access Memory. The operating
system used was Ubuntu Linux.

6.2 Performance Analysis

6.2.1 Empirical Stash Size Analysis

The first set of experiments we conducted were intent on determining the probability of the
occurrence of varying stash sizes. Thus, an empirical analysis was performed. The data set

32

-14

-12

-10

-8

-6

-4

-2

0

0 10 20 30 40 50 60 70
P

r[
s
ta

s
h
 s

iz
e
 >

 e
^y

]

number of entries in stash

d=10

d=12

d=14

Figure 6.1: Stash size distribution for worst-case ORAM accesses.

used for this purpose represented the worst-case access traces [59], exhibiting no locality
and a lack of any entries with duplicate block identifiers. Entries are accessed sequentially,
wrapping around the last one. We conducted these experiments for trees of varying depths.
Tree capacity was fixed at 50% of the maximum number of entries the tree could possibly
support [42]. The experiments were structured as follows:

• Start with an empty ORAM and perform N accesses to place all N entries into the
tree.

• Perform 5 million worst-case ORAM accesses to warm up the ORAM.

• Perform 100,000 ORAM accesses and record the stash size every time a path is read
into the stash.

For each tree configuration used, Figure 6.1 plots the probability of the stash size being
greater than a certain value. This includes the number of entries read into the stash during
reads. As can be seen, the trends compare fairly well with the results in [42]. It is quite
clear that the probability of the larger stash sizes recorded is actually quite low.

33

Depth Bucket = 4 Bucket = 8 Bucket = 16 Bucket = 32 Bucket = 48
10 4,096 8,192 16,384 32,768 49,152
12 16,384 32,768 65,536 131,072 196,608
14 65,536 131,072 262,144 524,288 786,432

Table 6.1: Tree occupancy for varying configurations

6.2.2 Latency

The second set of experiments that we focused on includes recording the average latency
of an access and an empirical analysis of how this latency is distributed over the various
core operations in Muddler. The tree occupancy was again maintained at a level half that
of its maximum capacity. Varying tree configurations were used to figure out the impact
of increasing tree capacity through either increasing bucket size or tree depth or both since
this is a very obvious design concern. As we are using binary trees, an increase in the depth
of the tree by one level means that the capacity of the tree has doubled. Similarly, if we
double the bucket size the impact on the capacity of the tree will be similar without any
impact on the depth of the tree. Table 6.1 shows the number of entries that the various
tree configurations support. This set of experiments also used the worst-case access traces
and was structured as follows:

• Start with an empty ORAM and perform N accesses to place all N entries into the
tree.

• Perform at least 100,000 worst-case ORAM accesses to warm up the ORAM.

• Perform 100,000 ORAM accesses and record the operational statistics for each of
them.

Figure 6.2 is a plot of latency against bucket sizes. The figure shows how the latency of
an access increases as the bucket size increases, when the depth stays invariant. The plot
depicts the trend for various bucket sizes. It is quite clear that the impact of increasing
bucket size to increase the capacity of the tree exhibits a linear increase in the latency
of the access operation. This makes sense intuitively since the increase in the number
of operations including encryption, decryption and stash eviction should be somewhat
proportionate to the increase in capacity. Figure 6.3, which is a plot of the total encryption
and decryption cost for each of these bucket sizes, and Figure 6.4, which plots the total

34

0

50

100

150

200

250

4 14 24 34 44

la
te

n
c
y
 (

m
s
)

Bucket size

10

12

14

Figure 6.2: Plot of latency against bucket size where depth does not vary.

0

0.5

1

1.5

2

2.5

3

3.5

4 14 24 34 44

T
o
ta

l
E

n
c
+

D
e
c
 t

im
e
 (

m
s
)

Bucket size

10

12

14

Figure 6.3: Plot of total encryption and decryption cost against bucket size where depth
does not vary.

35

0

50

100

150

200

250

4 14 24 34 44

T
im

e
 s

p
e
n
t

e
v
ic

ti
n
g
 (

m
s
)

Bucket size

10

12

14

Figure 6.4: Plot of time spent evicting entries from the stash while writing a path back
against bucket size where depth does not vary.

10

12

14 0

50

100

150

200

250

10 11 12 13 14

la
te

n
c
y

(m
s
)

Depth

bucket size = 4

bucket size = 8

bucket size = 16

bucket size = 32

bucket size = 48

Figure 6.5: Plot of latency against depth where bucket sizes do not vary.

36

time spent in the write path operation scanning the stash and evicting entries into the tree
substantiate this assertion.

On the other hand, Figure 6.5, plots latency against varying depths. Bucket sizes remain
unchanged as depths increase. It can be clearly observed that the impact on latency is far
from linear. As a result we realize that even if initially increasing the depth of the tree
seems to present an option with less latency increase, at some point in time the increase will
far outstrip the cost imposed by increasing the bucket size. This does raise a few questions.
What contributes to this increase? When does it become more feasible to increase bucket
size against depth? To answer this question we look at the contribution towards latency
of the two most likely culprits. This is a reference to the total of the encryption and
decryption overhead and the overhead imposed by the stash eviction procedure that is
built into every single access. We record the total time spent in each of these operations
and use them for our analysis.

Figure 6.6 is a plot of the total cost of encryption and decryption averaged over 100,000
accesses as a percentage of total cost. It is quite clear that as the depth of the tree
increases, the contribution of encryption and decryption towards the total latency decreases
substantially. Interestingly enough, Figure 6.7 shows that almost all of this difference is
picked up by the core procedure writing back the path. If we look at both the two graphs, we
see that, even for a relatively small tree with depth 10 the total contribution of encryption
and decryption and write back easily amounts to more than 90% of total cost. As the
depth of the tree increases, the lion’s share of the cost is contributed by the time spent
evicting entries from the stash into the tree during the write path method. This should not
be surprising. The way Path ORAM is designed, as you get closer to the root, the number
of leaves that are the children of the current node increases. Not all of these nodes have
entries waiting to be evicted in the stash. This usually ends up forcing Path ORAM to
scan most of these children. The root can host entries from any of the leaf nodes. During
our empirical analysis we noticed that, for the tree sizes we were working with, most leaf
nodes were accessed for every single access. This is apparently the greatest bottleneck
visible in our results.

As for when is it more feasible to choose an increase of depth over an increase of bucket
size, the answer is not so simple. It depends on the constraints of the system and the
design requirements. For example, a tree of depth 17 and bucket size 4 can accommodate
a little over half a million entries at 50% occupancy and the latency is 202 milliseconds. A
tree of depth 14 with bucket size 32 on the other hand can accommodate a similar number
of entries at 50% occupancy with a latency of 130.7 milliseconds. Latency is not the only
difference between the two trees. Another difference is the fact that the maximum number
of entries that can lie along a path is not even comparable. The first tree can support only

37

0

10

20

30

40

50

60

70

10 11 12 13 14

E
n
c
+

D
e
c
 a

s
 a

 %
 o

f
to

ta
l
ti
m

e

Depth

bucket size = 4

bucket size = 8

bucket size = 16

bucket size = 32

bucket size = 48

Figure 6.6: Plot of total encryption and decryption cost as a percentage of total cost for
varying depths when bucket sizes do not vary.

a maximum number of 17 ∗ 4 = 68 entries along a path, while the second can support a
maximum of 14 ∗ 32 = 448 entries along a path. For the scenario we are interested in it
seems we should be more interested in paths with higher maximum capacity as compared
to a greater number of paths with less capacity.

6.3 Real World Data

Ideally we would have wanted to perform our experiments using real world check-in data
from a size-able service. Not surprisingly, such a data-set is not readily available. Con-
tacting Foursquare did not help with the service interested in avoiding collaboration with
researchers in privacy. Most of the research requiring similar data-sets for experimentation
has used a subset of real-world data. The most common approaches towards data gathering
can be summarized as follows:

• Scraping [41, 53]: In both cases data was collected over a time period of several
months. Using this approach to collect venue data has several drawbacks. First of
all, Foursquare rate limits queries to its servers. An application is allowed to make up

38

0

20

40

60

80

100

120

10 11 12 13 14

T
im

e
 s

p
e
n
t

e
v
ic

ti
n
g
 a

s
 %

 o
f

to
ta

l
ti
m

e

Depth

bucket size = 4

bucket size = 8

bucket size = 16

bucket size = 32

bucket size = 48

Figure 6.7: Plot of total time spent evicting entries from the stash while writing a path
back against depth when bucket sizes do not vary.

to 500 authenticated requests per hour. Furthermore, the API is also not designed
to support scraping queries that try to access information on all the venues in a
region. As a result, this approach requires using multiple machines collecting data
over a long time period, making requests over very small regions to make sure all
venues are covered. Even so, there is no guarantee that the entire set will be covered
or will cover accurate data since Foursquare always "fuzzes" home venue location
information for third party applications irrespective of who makes the request.

• Collecting public check-in data from Twitter: This approach has been used by several
works such as [20, 56, 19, 46] and has an inherent flaw. It can only collect information
that has been shared on Twitter. This is necessarily a subset of the total set of check-
ins. Furthermore, the data might be spread over a huge geographical area making
it difficult to model the check-in distribution of a small contiguous region such as a
town.

• Using cellular data [45]: Every time a cellular service subscriber makes an interaction
with the telecommunication service, the location of the user can be approximated
within the vicinity of a service tower. Since, it takes two to perform an interaction
over the telecommunication service, every interaction provides information on two

39

Airport Avg. daily check-ins Boardings 2013
JFK International Airport 1164 25,036,855
LaGuardia Airport 792.2 13,353,365
Lambert - St. Louis International Airport 216 6,213,972

Table 6.2: Average number of daily check-ins at international airports

users. This data has also been used by researchers but would definitely necessitate
collaborating with a telecommunication service due to privacy concerns.

This is just a summary of the more popular means of gaining access to large scale user
location data. One of the more quirky approaches have been the proposal of using mobility
traces from virtual worlds such as Second Life [38]. However, none of these approaches
suit our purpose.

One interesting observation by Li et al. [41] is that venues that can be categorized in
the Travel and Transportation category are among the most popular and record among
the highest number of check-ins per venue. Another important observation in the same
work is that the distribution of public check-ins at individual venues is Zipfian in nature.
Zipf’s law is a power law, which in its simplest form in this context states that the most
popular venue will have twice as many check-ins as the second most popular one. Simply
put, if n is the number of check-ins at the most popular location, the number of check-ins
at the second most popular location will be n/2, the number of check-ins at the third most
popular location will be n/3 and so on.

Unable to obtain access to a real world data set with complete check-in information
over geographical regions of any size, we use these observations to our advantage. We
formulated a list of all the major hubs of transportation in two cities namely, New York
City and St. Louis. Our list consists of all airports, bus terminals and train stations. We
wrote a crawler in Java using jsoup, a Java based HTML Parser. Starting the 26th of
April up to the 2nd of August 2014 we collected the total number of check-ins from the
Foursquare page of all these venues at hourly intervals. Based on our observations, we can
confidently state that airports tend to be among the most popular locations in cities. The
average daily number of check-ins at the three US airports in the cities of New York and
St. Louis can be seen in Table 6.2.

Now that we have the numbers for these three airports and we know that airports tend
to be the most popular venues for check-ins we can model distributions for the cities of New
York and St. Louis based on the simple Zipfian distribution. The question still remains
how do we use this information to model much larger check-in distributions?

40

City Boardings 2013 Predicted avg. daily check-ins
New York City 25,036,855 1,217
Buffalo 2,568,018 126
Rochester 1,209,532 60
Albany 1,196,753 60
Syracuse 991,663 50
White Plains 770,550 39
Islip 662,612 34
Newburgh 163,815 10
Plattsburgh 151,235 9
Elmira 129,749 8
Ithaca 103,722 7
Niagara Falls 98,958 7
Binghampton 95,210 6
Watertown 18,818 3

Table 6.3: Predicted number of average daily check-ins at airports in New York state.

Since, the number of check-ins at an airport is dependent on the number of visitors
to these venues we come up with a very naive approach to find a relation between the
number of check-ins at different airports. The Federal Aviation Administration maintains
passenger boarding information at airports within the US. A ranking of all commercial
service airports ranked by number of passenger boarding in the year 2013 is available
at [5]. A commercial service airport is defined as any public airport with more than 2499
passengers boarding in a year.

Now that we have the number of check-ins at some airports and their passenger board-
ing numbers, a very naive approach to simulate the numbers for other cities is to use these
few data points to come up with a regression, which can then be used to predict the number
of check-ins at other airports. The data points to be used for this regression are tabulated
in 6.2. Using the average number of daily check-ins to represent the y coordinates and
the number of boardings at that airport in 2013 to represent the x coordinates the linear
regression that we obtain is:

y = 4.854726463× 10−5x+ 2.262829062

41

Figure 6.8: Plot of stash sizes when no expiration of check-ins takes place.

The predicted average daily check-in counts for all commercial service airports in the
state of New York are tabulated in 6.3. The table also shows the number of boardings
that took place at these airports within the year 2013, which are used for this prediction.
LaGuardia is not included in this list, since only one airport from every city is consid-
ered. From the city of New York, the only airport we consider is the John F. Kennedy
International Airport.

Now that we have a somewhat realistic estimate of daily check-ins at these New York
airports, we can use the Zipfian distribution to simulate the check-ins for these cities over
a two week period. The total check-in count for the state of New York in this time frame
comes to be somewhere around 209,000. If we are to conduct an experiment for a period of
four weeks that would create almost double the number of check-ins. If we look at Table 6.1
again we can see that a tree of depth 14 with a bucket size of 32 suits our requirements
perfectly. So for our first experiment we create such a tree and also create the check-ins
for a four week period. We then shuffle these check-ins so that they seem to be coming in
randomly and not sequentially. We then perform ORAM accesses to place these check-ins
into the tree.

Figure 6.8 shows the results of this experiment. It is a plot of the stash size recorded
when a path is read into the stash on the y-axis against the number of ORAM accesses
that have been performed in total on the x-axis. During this set of experiments we did

42

Figure 6.9: Plot of stash sizes when expired check-ins are dropped during reads and writes
only.

not impose an expiration period over check-ins. As we can see the stash size for this tree
keeps on increasing into the hundreds of thousands. Out of curiosity we conducted the
same experiments with a tree with a similar configuration except it had a bucket size of 64.
As expected, the maximum stash sizes for this tree are noticeably less than the previous
observation. This tree does impose some obvious disk storage requirements, which would
double simply because it has double the capacity of the tree with bucket size 32.

The very large stash size requirement exhibited in our first set of experiments with
realistic data can be justified by the presence of very few very popular locations and a
lot of other locations which receive much fewer check-ins. Not all the check-ins for these
popular locations can be accommodated in the tree, since one location can only be assigned
to one path. If the number of check-ins for that location exceeds the capacity of that path,
those check-ins will then stay in the stash. For example, a tree with depth 14 and bucket
size 32 can only accommodate a maximum of 448 entries in on path from the root the leaf,
while some of the most popular location have way more check-ins than that as shown in
Table 6.3. These check-ins end up staying in the stash.

Now, we test the performance of our expiration scheme with a rolling expiration window.
A two week expiration window means that all check-ins older than two weeks at that
point in time have expired. While performing a read the timestamps of all the check-

43

ins are compared with the current time. If the check-in has expired it is not read into
the stash. Similarly, during a write back if an expired check-in is encountered it is not
written to the ORAM and is dropped. Figure 6.9 shows the results of this second set of
experiments. Interestingly, both Figures 6.8 and 6.9 reveal that the rate at which the stash
size increases for the tree with smaller capacity is much higher. This is not surprising given
the distribution of check-ins and the tree capacities.

It seems that once the ORAM enters into the time period where expiration starts,
the line reflecting the fluctuation of stash sizes abruptly becomes much less steeper. This
basically reflects a slowdown in the rate at which the stash size increases. Ideally, this
should have exhibited some sort of a stabilizing trend in the stash size, since older check-
ins should be expiring at a rate somewhat similar to the arrival rate of new check-ins but
that is clearly not happening. The reason for this is the fact that not all expired check-ins
are being dropped. During reads and writes, some expired check-ins are definitely dropped
but it seems that quite a large number of the check-ins for most likely the most popular
of locations are never moved between the stash and the tree, which is why they are never
dropped during reads and writes. This necessarily imposes some unjustified constraints on
the secure coprocessor since that is where the stash is contained. The larger the stash, the
higher the memory requirements for the secure coprocessor.

A very obvious solution to this problem is the addition of a background eviction sub-
routine. This subroutine once invoked traverses the entire stash accessing every element.
If an expired check-in is encountered that is removed. This subroutine necessarily imposes
its own latency requirements but as the rate of daily check-ins is only in the order of tens
of thousands and the stash size after the initial two week period hovers around the 80,000-
100,000 mark, it seems that invoking this subroutine once a day should be reasonable.
Besides, dropping check-ins while reading and writing has already proven to inhibit the
growth rate of the stash size. Figure 6.10 shows a plot of the stash sizes when expired
check-ins are dropped by once a day invocation of the eviction subroutine and dropping
expired check-ins during reads and writes. The results show that the stash size does in fact
stop increasing and stabilizes. The results also show that the number of elements in the
stash at all points in time stays well below half of all the real entries. The rest can be found
in the tree interspersed with dummies. As secure coprocessors have limited resources our
results demonstrate the stash size requirements for an instantiation of Muddler serving the
state of New York.

44

Figure 6.10: Plot of stash sizes when expired check-ins are dropped during reads and writes
and eviction takes place periodically.

45

Chapter 7

Future Work

This chapter discusses the possible future work. We foresee future work primarily along
the following themes:

• Real world check-in data: Our experiments were performed using predicted check-
in data. We understand that the distributions that we use in our current set of
experiments may not very accurately depict reality. It would be interesting to see
how the stash sizes fare when a real world check-in data set is used, provided it is
complete.

• API extension: The current API only exposes a few functions since our goal was
primarily to provide a proof of concept implementation. This API can be very easily
extended. For example, features such as a tip search for specific locations is one
of the possible new features that can be added, enabling visitors to search all the
tips that have been left for a certain location by previous visitors. Another such
extension can be the introduction of mayorships where users that visit a location the
most become the mayor of that place, yet another feature that the new Foursquare
swarm application offers.

• Secure coprocessor: Currently our implementation does not use a physical secure
coprocessor, although it should not be difficult to move modules of our code to a real
device. Possible future work can also include the use of a real secure coprocessor and
an analysis of how the limited power and memory of that device impacts performance.

• Applications: Our current design is a very specific service but the design is quite
flexible and can be easily extended to support a variety of use cases and services. For

46

example the architecture we propose can be very easily modified and deployed as a
privacy preserving location-based behavioral advertising platform. Other such appli-
cations possibly include location-based alerts or even a geo-social network. Future
work can involve a study into the design and performance trade-offs each of these
applications would entail.

• Design space exploration: Our current implementation only uses a single tree data
structure. Future work can also involve a design space exploration for various tree
configurations even looking into the use of multiple trees being accessed concurrently.
For example, our check-in data only represented the state of New York. If we want
a system that supports a much larger geographic region we will either have to use
an enormous tree, which would definitely have an adverse impact on latency or we
could use multiple trees catering to smaller regions.

47

Chapter 8

Conclusions

Location-based services such as Foursquare are becoming increasingly popular. These
services collect user location information, which raises serious privacy concerns. We extend
Path ORAM, an Oblivious RAM protocol to provide support for multiple blocks with
the same identifier. When used in conjunction with a secure coprocessor this creates a
Private Information Retrieval scheme designed to ensure the location privacy of the users
of Muddler, a privacy preserving location-based service. We also propose and discuss in
detail the public API that is exposed and show that it is extensible and serves to improve
the commercial viability of the design. We implement this design and present a performance
analysis to prove its feasibility. Furthermore, we generate a realistic check-in data set for
the state of New York and perform experiments. Our results show that the probability of
failure of this design is based on the stash size requirements and the memory constraints
imposed by the secure coprocessor. An interesting observation is that the greatest factor
contributing to stash requirements is the distribution of the data set. We also show how
various tree configurations pose different stash size requirements for the same data set.
Our results show that Muddler is truly practical.

48

References

[1] Class Arraylist<E>. http: // docs. oracle. com/ javase/ 7/ docs/ api/ java/
util/ ArrayList. html , 2014.

[2] Class HashMap<K,V>. http: // docs. oracle. com/ javase/ 7/ docs/ api/ java/
util/ HashMap. html , 2014.

[3] Class TreeMap<K,V>. http: // docs. oracle. com/ javase/ 7/ docs/ api/ java/
util/ TreeMap. html , 2014.

[4] CrySP. https: // crysp. uwaterloo. ca/ , 2014.

[5] Passenger Boarding (Enplanement) and All-Cargo Data for U.S. Airports.
http: // www. faa. gov/ airports/ planning_ capacity/ passenger_ allcargo_
stats/ passenger/ , 2014.

[6] Raising awareness about over-sharing. http: // pleaserobme. com/ , 2014.

[7] Write once, run anywhere? http: // www. computerweekly. com/ feature/
Write-once-run-anywhere , 2014.

[8] Michael Backes, Aniket Kate, Matteo Maffei, and Kim Pecina. Obliviad: Provably
secure and practical online behavioral advertising. In Security and Privacy (SP), 2012
IEEE Symposium on, pages 257–271. IEEE, 2012.

[9] Alastair R Beresford, Andrew Rice, Nicholas Skehin, and Ripduman Sohan. Mock-
droid: trading privacy for application functionality on smartphones. In Proceedings
of the 12th Workshop on Mobile Computing Systems and Applications, pages 49–54.
ACM, 2011.

[10] Alastair R Beresford and Frank Stajano. Location privacy in pervasive computing.
Pervasive Computing, IEEE, 2(1):46–55, 2003.

49

http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html
http://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/7/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html
http://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html
https://crysp.uwaterloo.ca/
http://www.faa.gov/airports/planning_capacity/passenger_allcargo_stats/passenger/
http://www.faa.gov/airports/planning_capacity/passenger_allcargo_stats/passenger/
http://pleaserobme.com/
http://www.computerweekly.com/feature/Write-once-run-anywhere
http://www.computerweekly.com/feature/Write-once-run-anywhere

[11] Bogdan Carbunar, Radu Sion, Rahul Potharaju, and Moussa Ehsan. The shy mayor:
Private badges in geosocial networks. In Applied Cryptography and Network Security,
pages 436–454. Springer, 2012.

[12] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private informa-
tion retrieval. Journal of the ACM (JACM), 45(6):965–981, 1998.

[13] Kai-Min Chung, Zhenming Liu, and Rafael Pass. Statistically-secure ORAM with
O(log2n) overhead. CoRR, abs/1307.3699, 2013.

[14] Kai-Min Chung and Rafael Pass. A simple ORAM. Technical report, DTIC Document,
2013.

[15] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol N Sheth. Taintdroid: an information flow tracking system for
real-time privacy monitoring on smartphones. Communications of the ACM, 57(3):99–
106, 2014.

[16] CrySP RIPPLE Facility. https: // ripple. uwaterloo. ca/ , 2014.

[17] Kassem Fawaz and Kang G Shin. Location privacy protection for smartphone users.
2014.

[18] Foursquare. https: // foursquare. com/ , 2014.

[19] Huiji Gao, Jiliang Tang, and Huan Liu. Exploring social-historical ties on location-
based social networks. In ICWSM, 2012.

[20] Huiji Gao, Jiliang Tang, and Huan Liu. gscorr: modeling geo-social correlations for
new check-ins on location-based social networks. In Proceedings of the 21st ACM in-
ternational conference on Information and knowledge management, pages 1582–1586.
ACM, 2012.

[21] Oded Goldreich. Towards a theory of software protection and simulation by oblivi-
ous RAMs. In Proceedings of the nineteenth annual ACM symposium on Theory of
computing, pages 182–194. ACM, 1987.

[22] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious
RAMs. Journal of the ACM (JACM), 43(3):431–473, 1996.

50

https://ripple.uwaterloo.ca/
https://foursquare.com/

[23] Michael T Goodrich and Michael Mitzenmacher. Privacy-preserving access of out-
sourced data via oblivious RAM simulation. In Automata, Languages and Program-
ming, pages 576–587. Springer, 2011.

[24] Michael T Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto Tamassia.
Oblivious RAM simulation with efficient worst-case access overhead. In Proceedings of
the 3rd ACM workshop on Cloud computing security workshop, pages 95–100. ACM,
2011.

[25] Marco Gruteser and Dirk Grunwald. Anonymous usage of location-based services
through spatial and temporal cloaking. In Proceedings of the 1st international confer-
ence on Mobile systems, applications and services, pages 31–42. ACM, 2003.

[26] Saikat Guha, Mudit Jain, and Venkata N Padmanabhan. Koi: A location-privacy
platform for smartphone apps. In NSDI, pages 183–196, 2012.

[27] Baik Hoh, Marco Gruteser, Hui Xiong, and Ansaf Alrabady. Enhancing security and
privacy in traffic-monitoring systems. Pervasive Computing, IEEE, 5(4):38–46, 2006.

[28] Baik Hoh, Marco Gruteser, Hui Xiong, and Ansaf Alrabady. Preserving privacy in gps
traces via uncertainty-aware path cloaking. In Proceedings of the 14th ACM conference
on Computer and communications security, pages 161–171. ACM, 2007.

[29] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wether-
all. These aren’t the droids you’re looking for: retrofitting android to protect data
from imperious applications. In Proceedings of the 18th ACM conference on Computer
and communications security, pages 639–652. ACM, 2011.

[30] IBM. IBM PCIe Cryptographic Coprocessor. http: // www-03. ibm. com/ security/
cryptocards/ pciecc/ overview. shtml , 2014.

[31] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern
disclosure on searchable encryption: Ramification, attack and mitigation. In NDSS,
2012.

[32] Sharad Jaiswal and Animesh Nandi. Trust no one: a decentralized matching service
for privacy in location based services. In Proceedings of the second ACM SIGCOMM
workshop on Networking, systems, and applications on mobile handhelds, pages 51–56.
ACM, 2010.

51

http://www-03.ibm.com/security/cryptocards/pciecc/overview.shtml
http://www-03.ibm.com/security/cryptocards/pciecc/overview.shtml

[33] Ali Khoshgozaran and Cyrus Shahabi. Private buddy search: Enabling private spatial
queries in social networks. In Computational Science and Engineering, 2009. CSE’09.
International Conference on, volume 4, pages 166–173. IEEE, 2009.

[34] Hidetoshi Kido, Yutaka Yanagisawa, and Tetsuji Satoh. An anonymous communica-
tion technique using dummies for location-based services. In Pervasive Services, 2005.
ICPS’05. Proceedings. International Conference on, pages 88–97. IEEE, 2005.

[35] John Krumm. Inference attacks on location tracks. In Pervasive Computing, pages
127–143. Springer, 2007.

[36] John Krumm. A survey of computational location privacy. Personal and Ubiquitous
Computing, 13(6):391–399, 2009.

[37] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in) security of hash-based
oblivious RAM and a new balancing scheme. In Proceedings of the twenty-third annual
ACM-SIAM symposium on Discrete Algorithms, pages 143–156. SIAM, 2012.

[38] Chi-Anh La and Pietro Michiardi. Characterizing user mobility in second life. In
Proceedings of the first workshop on Online social networks, pages 79–84. ACM, 2008.

[39] Ulf Leonhardt and Jeff Magee. Security considerations for a distributed location
service. Journal of Network and Systems Management, 6(1):51–70, 1998.

[40] Justin J Levandoski, Mohamed Sarwat, Ahmed Eldawy, and Mohamed F Mokbel.
LARS: A location-aware recommender system. In Data Engineering (ICDE), 2012
IEEE 28th International Conference on, pages 450–461. IEEE, 2012.

[41] Yanhua Li, Moritz Steiner, Limin Wang, Zhi-Li Zhang, and Jie Bao. Exploring venue
popularity in foursquare. In INFOCOM, 2013 Proceedings IEEE, pages 3357–3362.
IEEE, 2013.

[42] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,
John Kubiatowicz, and Dawn Song. Phantom: Practical oblivious computation in a
secure processor. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, pages 311–324. ACM, 2013.

[43] Google Maps. https: // www. google. ca/ maps/ preview , 2014.

[44] Arvind Narayanan, Narendran Thiagarajan, Mugdha Lakhani, Michael Hamburg, and
Dan Boneh. Location privacy via private proximity testing. In NDSS, 2011.

52

https://www.google.ca/maps/preview

[45] Anastasios Noulas, Cecilia Mascolo, and Enrique Frias-Martinez. Exploiting
foursquare and cellular data to infer user activity in urban environments. In Mobile
Data Management (MDM), 2013 IEEE 14th International Conference on, volume 1,
pages 167–176. IEEE, 2013.

[46] Anastasios Noulas, Salvatore Scellato, Neal Lathia, and Cecilia Mascolo. A random
walk around the city: New venue recommendation in location-based social networks.
In Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference on
and 2012 International Confernece on Social Computing (SocialCom), pages 144–153.
IEEE, 2012.

[47] Femi Olumofin, Piotr K Tysowski, Ian Goldberg, and Urs Hengartner. Achieving
efficient query privacy for location based services. In Privacy Enhancing Technologies,
pages 93–110. Springer, 2010.

[48] Rafail Ostrovsky. Efficient computation on oblivious RAMs. In Proceedings of the
twenty-second annual ACM symposium on Theory of computing, pages 514–523. ACM,
1990.

[49] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Advances in cryptology-EUROCRYPT’99, pages 223–238. Springer, 1999.

[50] Sarah Pidcock and Urs Hengartner. Zerosquare: A privacy-friendly location hub for
geosocial applications. Mobile Security Technologies, page 83, 2013.

[51] Benny Pinkas and Tzachy Reinman. Oblivious RAM revisited. In Advances in
Cryptology–CRYPTO 2010, pages 502–519. Springer, 2010.

[52] Stephen C Pohlig and Martin E Hellman. An improved algorithm for computing
logarithms over and its cryptographic significance (corresp.). Information Theory,
IEEE Transactions on, 24(1):106–110, 1978.

[53] Tatiana Pontes, Marisa Vasconcelos, Jussara Almeida, Ponnurangam Kumaraguru,
and Virgilio Almeida. We know where you live: privacy characterization of foursquare
behavior. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing,
pages 898–905. ACM, 2012.

[54] Press release. Worldwide Smartphone Shipments Top One Billion Units for the
First Time, according to idc. http: // www. idc. com/ getdoc. jsp? containerId=
prUS24645514 , 2014.

53

http://www.idc.com/getdoc.jsp?containerId=prUS24645514
http://www.idc.com/getdoc.jsp?containerId=prUS24645514

[55] Pierangela Samarati and Latanya Sweeney. Protecting privacy when disclosing in-
formation: k-anonymity and its enforcement through generalization and suppression.
Technical report, Technical report, SRI International, 1998.

[56] Salvatore Scellato, Anastasios Noulas, Renaud Lambiotte, and Cecilia Mascolo. Socio-
spatial properties of online location-based social networks. ICWSM, 11:329–336, 2011.

[57] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM with
O((logN)3) worst-case cost. In Advances in Cryptology–ASIACRYPT 2011, pages
197–214. Springer, 2011.

[58] Reza Shokri, Carmela Troncoso, Claudia Diaz, Julien Freudiger, and Jean-Pierre
Hubaux. Unraveling an old cloak: k-anonymity for location privacy. In Proceedings
of the 9th annual ACM workshop on Privacy in the electronic society, pages 115–118.
ACM, 2010.

[59] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xi-
angyao Yu, and Srinivas Devadas. Path ORAM: An extremely simple oblivious RAM
protocol. In Proceedings of the 2013 ACM SIGSAC conference on Computer & com-
munications security, pages 299–310. ACM, 2013.

[60] Peter Svensson. Smartphones now outsell ’dumb’ phones. http: // www. 3news. co.
nz/ Smartphones-now-outsell-dumb-phones/ tabid/ 412/ articleID/ 295878/
Default. aspx , 2013.

[61] Manolis Terrovitis. Privacy preservation in the dissemination of location data. ACM
SIGKDD Explorations Newsletter, 13(1):6–18, 2011.

[62] Dylan Tweney. Google’s location history web page shows all the places
you’ve been, as logged by google maps. digital image. yes, google maps is
tracking you. here’s how to stop it. http: // venturebeat. com/ 2014/ 08/ 17/
yes-google-maps-is-tracking-you-heres-how-to-stop-it/ , 2014.

[63] Carmen Ruiz Vicente, Dario Freni, Claudio Bettini, and Christian S Jensen. Location-
related privacy in geo-social networks. Internet Computing, IEEE, 15(3):20–27, 2011.

[64] Peter Williams and Radu Sion. Usable PIR. In NDSS, 2008.

[65] Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles out of mud:
practical access pattern privacy and correctness on untrusted storage. In Proceedings
of the 15th ACM conference on Computer and communications security, pages 139–
148. ACM, 2008.

54

http://www.3news.co.nz/Smartphones-now-outsell-dumb-phones/tabid/412/articleID/295878/Default.aspx
http://www.3news.co.nz/Smartphones-now-outsell-dumb-phones/tabid/412/articleID/295878/Default.aspx
http://www.3news.co.nz/Smartphones-now-outsell-dumb-phones/tabid/412/articleID/295878/Default.aspx
http://venturebeat.com/2014/08/17/yes-google-maps-is-tracking-you-heres-how-to-stop-it/
http://venturebeat.com/2014/08/17/yes-google-maps-is-tracking-you-heres-how-to-stop-it/

[66] Yelp. http: // www. yelp. com/ , 2014.

[67] Tun-Hao You, Wen-Chih Peng, and Wang-Chien Lee. Protecting moving trajectories
with dummies. In Mobile Data Management, 2007 International Conference on, pages
278–282. IEEE, 2007.

[68] Ge Zhong, Ian Goldberg, and Urs Hengartner. Louis, Lester and Pierre: Three proto-
cols for location privacy. In Privacy Enhancing Technologies, pages 62–76. Springer,
2007.

55

http://www.yelp.com/

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Overview
	Location Privacy
	Goals
	Our Contribution

	Related Work
	Location Privacy for Location-Based Services
	Anonymization
	Spatial and Temporal Cloaking
	Cryptographic Techniques
	Privacy Preserving Location Sharing Frameworks
	Summary

	Oblivious RAM
	Hierarchical Solution
	Binary Tree Framework

	Path ORAM
	Overview
	Our Construction

	Design
	Threat Model
	Architecture
	Public API

	Implementation
	Entry
	Bucket ORAM
	Position Map
	Stash
	Muddler

	Experiments
	Setup
	Performance Analysis
	Empirical Stash Size Analysis
	Latency

	Real World Data

	Future Work
	Conclusions
	APPENDICES
	References

