
Modeling and Implementing Variability

in Aerospace Systems Product Lines

by

Jesús Alejandro Padilla Gaeta

A thesis
presented to the University of Waterloo

in ful�llment of the
thesis requirement for the degree of

Master of Math
in

Computer Science

Waterloo, Ontario, Canada, 2014

c© Jesús Alejandro Padilla Gaeta 2014

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required �nal revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Avionics systems are becoming indispensable on both military and civil aircraft. As more
and more of their vital functions are controlled by electronic devices, their system qualities
such as safety, reliability, and fuel-e�ciency are becoming increasingly dependent on the
correct operation of the avionics on-board. As avionics applications increase in size and
complexity, so are their development and testing costs. Therefore, it is not surprising that
companies in this domain are looking for new development approaches that can help them
deal with these challenges. In this regard, software product lines have been particularly
successful. They can help reduce costs by designing systems that share a set of common
assets that enable reuse in a structured way; they are developed as a family.

One asset that is particularly useful to handle complexity and that makes sense to ap-
proach as a family is models. They provide the means to communicate and get consensus
with other stakeholders, scope the system to create, predict important properties or char-
acteristics, among others. In other words, a good model can become the cornerstone of a
successful system. However, if modeling one system is challenging, modeling a family of
them becomes even harder. Each member can be di�erent, so the model must be able to
specify accurately what parts are common to all of them, what can vary, and under which
conditions.

The purpose of this work is twofold. First, it evaluates the capabilities of SysML
to accurately describe variability in the domain of avionics systems. Second, it provides
guidelines for how to model and design systems that present it.

In the end, this work concluded that simple extensions allow SysML to be appropriate
for describing systems with variability. Also, it introduced a methodology and a series
of structural and behavioral patterns to describe families of systems while keeping their
di�erences under control. Implementation patterns were also included to show how models
can be connected with code. Finally, this whole approach was evaluated via a case study
based on �ve real aircraft engine instances.

iii

Acknowledgements

First, I want to thank my supervisor, Dr. Krzysztof Czarnecki, for giving me this
incredible opportunity. Thank you for sharing your knowledge, for your patience and
guidance, and especially for your trust. It has been a remarkable experience that I will
always remember.

Next, I would like to acknowledge Mike Darby and everybody at Pratt. Thank you for
your patience, your time, and your support. This internship was fantastic; I learned so
much from all of you.

Thank you to my dear friends at the GSD Lab, Alexandr Murashkin, Ed Zulkoski,
Jianmei Guo, Leonardo Passos, Michal Antkiewicz, Pavel Valov, Rafael Olaechea, Wenbin
Ji, and Zubair Akhtar. We do have the best lab at the university.

I would like to express my deepest gratitude to my parents and my sister. I really
appreciate all your love and support. Everything I've accomplished is because of you.
Thank you very much.

Finally, I would like to thank all the wonderful people that I have met in Canada, who
have made the time I spent in this program an experience impossible to forget.

iv

Dedication

This is dedicated to my loving parents and sister, who have been my guidance, my
solace, my source of strength, and my biggest fans.

v

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Methodology . 2

1.2 Thesis Organization . 2

2 SysML and Related Notations 4

2.1 Introduction . 4

2.2 Diagrams . 5

2.3 SysML and AADL . 7

2.4 SysML and MARTE . 7

2.5 SysML and SCADE . 8

2.6 Summary . 8

3 Propeller Example 9

3.1 Background . 9

3.2 Description . 10

3.3 Summary . 10

vi

4 Methodology for Modeling a Software Product Line in Avionics 14

4.1 Goals . 14

4.2 Contributions . 15

4.3 Description . 15

4.3.1 Family Architectural Model . 16

4.3.2 Instance Architectural Model . 21

4.3.3 Traceability . 22

4.4 Summary . 25

5 Behavioral Patterns 26

5.1 Variability in Activity Diagrams . 26

5.1.1 Scenario Description . 26

5.1.2 Suggested Pattern . 27

5.2 Variability in Sequence Diagrams . 30

5.2.1 Scenario Description . 30

5.2.2 Suggested Pattern . 30

5.3 Summary . 33

6 Structural Patterns 34

6.1 Variable Property . 34

6.1.1 Scenario Description . 34

6.1.2 Suggested Pattern . 35

6.2 Optional Component . 38

6.2.1 Scenario Description . 38

6.2.2 Suggested Pattern . 38

6.3 Alternative Implementation (XOR) . 45

6.3.1 Scenario Description . 45

6.3.2 Suggested Pattern . 46

vii

6.4 Collection . 49

6.4.1 Scenario Description . 49

6.4.2 Suggested Pattern . 50

6.5 Data Flow Organization . 51

6.5.1 Scenario Description . 51

6.5.2 Suggested Pattern . 53

6.6 Bus Alternatives . 57

6.6.1 Scenario Description . 57

6.6.2 Suggested Pattern . 58

6.7 Equipment Di�erences . 63

6.7.1 Scenario Description . 63

6.7.2 Suggested Pattern . 63

6.8 Summary . 67

7 SCADE Patterns 68

7.1 Alternative Nodes � Same Signature . 68

7.1.1 Scenario Description . 68

7.1.2 Suggested Pattern . 69

7.2 Alternative Nodes � Di�erent Signature 70

7.2.1 Scenario Description . 70

7.2.2 Suggested Pattern 1 . 72

7.2.3 Suggested Pattern 2 . 73

7.3 Optional Node . 76

7.3.1 Scenario Description . 76

7.3.2 Suggested Pattern . 78

7.4 Collection . 79

7.4.1 Scenario Description . 79

7.4.2 Suggested Pattern . 81

7.5 Summary . 81

viii

8 Evaluation 82

8.1 FCU . 82

8.2 Evaluation . 82

8.3 Results . 83

8.4 Summary . 89

9 Related Work 91

9.1 Variability Modeling . 91

9.2 Avionics Systems Modeling . 92

9.3 Summary . 93

10 Conclusion 94

10.1 Summary of Results . 94

10.2 Threats to Validity . 94

10.3 Future Work . 95

APPENDICES 96

A Introduction to SysML 97

A.1 Diagrams . 97

A.2 Blocks . 99

A.3 Structural Diagrams . 99

A.3.1 Block De�nition Diagram (BDD) 99

A.3.2 Internal Block Diagram (IBD) . 101

A.4 Behavioral Diagrams . 103

A.4.1 Activity Diagram . 103

A.4.2 Sequence Diagram . 104

A.5 Extending SysML via Pro�les . 104

B Variability SysML Pro�le 106

References 108

ix

List of Tables

4.1 SysML relationships to provide traceability. 24

8.1 Results Statistics . 84

x

List of Figures

2.1 Relationship between UML 2 and SysML. 5

2.2 SysML diagrams. 6

3.1 BDD of top level decomposition of engine. 12

3.2 IBD of engine internal structure. 13

4.1 Part of the Feature Model (FM) of an aircraft system. 17

4.2 Variable Property Pattern. 20

4.3 Traceability Examples. 23

4.4 Instance Architecture Model - Block Traceability. 24

5.1 Variability in Activity Diagram . 29

5.2 Variability in Sequence Diagram . 32

6.1 Variable Property Pattern. 37

6.2 Component Removal Pattern. Family Architecture level. 40

6.3 Component Removal Pattern. Instance level. 41

6.4 Mock Pattern. Family Architecture level. 43

6.5 Mock Pattern. Instance level. 44

6.6 Alternative Component Pattern. Family Architecture level. 47

6.7 Alternative Component Pattern. Instance level. 48

6.8 Collection Pattern . 52

xi

6.9 Controller SW BDD . 55

6.10 Data Flow Organization Pattern . 56

6.11 Bus Alternatives - Association Block . 60

6.12 Bus Alternatives - Endpoint . 61

6.13 Bus Alternative Pattern . 62

6.14 Equipment Di�erences Pattern - Family Architecture Level 65

6.15 Equipment Di�erences Pattern - Instance Level 66

7.1 Alternative Node - Same Signature . 71

7.2 Interface Compatibility Analysis . 74

7.3 Abstract Struct Nesting . 75

7.4 Alternative Node - Di�erent Signature . 77

7.5 SCADE Optional Node . 80

8.1 Interface changes impact without Data Flow Organization Pattern 87

8.2 Interface changes impact with Data Flow Organization Pattern 88

A.1 Diagram Frame . 98

A.2 Block Example . 98

A.3 Rede�nition . 100

A.4 Rede�nition with Bound Reference . 101

A.5 IBD Example . 102

A.6 Activity Diagram Example . 103

A.7 Activity Diagram Example . 104

B.1 SPL Pro�le . 107

xii

Chapter 1

Introduction

Safety-critical embedded systems [41] are becoming more and more pervasive in the modern
society. They are present in a vast amount of domains, which include the automotive,
avionics, and medical. One of the characteristics that many of these systems share is that
any misoperation can produce serious consequences, like enormous economic loss, or even
putting human lives at risk. Therefore, companies must ensure that their products are
safe and reliable. In the avionics domain in particular, they also have to be certi�ed by
national authorities; this process can be costly and time-consuming.

As avionics applications increase in size and complexity, so are their development and
testing costs. Therefore, it is not surprising that companies in this domain are looking for
new development approaches that can help them deal with these challenges. In this regard,
software product lines have been particularly attractive [35]. They can help reduce costs
by designing systems that share a set of common assets that enable reuse in a systematic
way; they are developed as a family.

One type of assets that is particularly useful to manage complexity is models. They
provide the means to communicate and get consensus with other stakeholders, scope the
system to create, predict important properties or characteristics, among others. In other
words, a good model can become the cornerstone of a successful system. However, if
modeling one system is challenging, modeling a family of them becomes even harder. Each
member can be di�erent, so models must be able to specify accurately what parts are
common to all of them, what can vary, and under which conditions.

In order to obtain the bene�ts of modeling, models must be expressed in a notation
that is well-understood by all stakeholders. Establishing such consensus can be quite chal-
lenging, and thus reliance on standards can be bene�cial. A standard that is particularly

1

relevant in the avionics domain is SysML [32]. This is because it is based on UML, which
is already well established; many existing tools already support it; and it can be extended
as necessary.

The purpose of this work is twofold. First, it concentrates on evaluating the capabilities
of SysML for describing accurately models with variability. Second, it attempts to create
patterns and a methodology to serve as a guideline for the modeling and development of
avionic product lines, that is, product lines of aviation electronic systems.

The contributions of this work are as follows. First, it assesses the ability of SysML
to describe systems with variability. Second, it de�nes modeling patterns to enable the
description of variability. Next, it describes implementation patterns necessary to connect
models with code, expressed as SCADE models, which are common in the avionics domain.
Finally, it provides the evaluation of this approach with a model of a real family of systems.

1.1 Methodology

The development and evaluation of this work were performed via two case studies. The �rst
consisted of the propeller example discussed in Chapter 3. Although it contains realistic
data, this study is not based on a real system, but on domain knowledge from literature
for the purpose of an illustrative example. Nonetheless, it allowed identifying the types of
variabilities that occur in avionic systems, how variability a�ects the modeling task, and
it provided enough data to formulate the methodology and the patterns described in the
following sections.

The second case study, on the other hand, was based on real data provided by our
industrial partner, Pratt & Whitney Canada [36]. Based on this information, a family
architecture model of a fuel control unit was created, and evaluated by accommodating
�ve real engine instances. This approach allowed the validation of the material presented
in this work. Chapter 8 presents the results.

1.2 Thesis Organization

Chapter 2 presents a basic introduction to SysML, the diagrams it provides and compares
it to other modeling standards. Although it does not describe the notation and semantics
of the language, some of that information is contained in Appendix A.

2

Section 3 provides background information about turbo engines and introduces the
running example that is used throughout this work.

Chapter 4 presents the methodology to model a software product line in the avionics
domain. Some of the steps described there require using patterns, which are presented in
sections 5, 6 and 7.

The evaluation results are shown in Chapter 8, while sections 9 and 10 present the
related work and the conclusions. Finally, Appendix B contains the suggested SysML
variability pro�le.

3

Chapter 2

SysML and Related Notations

2.1 Introduction

SysML is a general-purpose graphical modeling language for system engineering applica-
tions supported and maintained by the Object Management Group (OMG) [33, 32]. It
allows the speci�cation, analysis, design, veri�cation, and validation of a broad range of
complex systems, which include hardware, software, information, processes, personnel, and
facilities.

Instead of focusing on documents, SysML supports the so called Model-Based System
Engineering (MBSE) [25, 15] approach that concentrates on de�ning a consistent and
structured set of views, stored and managed in a repository; they make up the model of
the system. This organization allows designers to manage complexity since each diagram
provides an abstracted view of the system or part of it. Note that SysML is just a visual
modeling language, not a methodology. In fact, to remain widely applicable, it is completely
vendor and methodology agnostic.

SysML language was designed as an extension (pro�le) of UML 2. It reuses a subset
of the constructs existing in the UML metamodel, modi�es the parts that are too soft-
ware oriented, and provides extensions necessary to meet the system engineering needs.
However, it remains compatible with UML, so existing modeling tools can easily support
it.

Figure 2.1 shows the relationship between UML and SysML as a Venn diagram. The
region of the SysML set that does not intersect represents the extensions included in the
language. On the other hand, the section where both sets meet signi�es the parts that are

4

SysML
UML 2

SysML extensions to UML
(SysML Profile)

UML Reused by SysML
(UML4SysML)

UML Not Required by SysML
(UML – UML4SysML)

Figure 2.1: Relationship between UML 2 and SysML.

common to both languages, and that are contained in the so-called UML4SysML subset.
The rest contains the components of UML 2 not necessary for systems engineering that
are removed from SysML altogether.

2.2 Diagrams

This section provides a brief overview of the diagrams present in SysML, shown in �gure
2.2. Check Appendix A or SysML speci�cation [32] for more information about their
notation.

• Activity Diagram: This type of diagram allows describing behavior in terms of
�ows of inputs, outputs, and control. They specify a sequence of steps needed to
transform the provided inputs into expected outputs. In essence, they are very ex-
pressive �ow charts.

• Sequence Diagram: This type of diagram presents behavior as a sequence of mes-
sages exchanged between elements. Such interactions can happen internally, between
parts of the system, or externally, between the system and its environment.

5

Internal Block
Diagram

Parametrics
Diagram

Block Definition
Diagram

Package
Diagram

Requirements
Diagram

Structure
Diagram

Use Case
Diagram

Behavior
Diagram

Sequence
Diagram

Activity
Diagram

State Machine
Diagram

SysML Diagram

Same as UML 2

Modified from UML 2

New Diagram

Legend

Figure 2.2: SysML diagrams.

• State Machine Diagram: This type of diagrams de�ne the state-based behavior
of a block throughout its life cycle in terms of system states and their transitions.

• Use Case Diagram: This type of diagrams describe the high-level functionality and
uses of a system, which will be further described by the other behavioral diagrams.

• Block De�nition Diagram: Blocks in SysML are modular units of system descrip-
tion. Each one of them describes a system, a part, or another element of interest. The
Block De�nition Diagram (BDD) speci�es the structure of the system as a group of
blocks, and their relationships such as association, generalization, and dependencies.

• Internal Block Diagram: This type of diagrams, also referred to as IBD, describe
the internal structure of a block in terms of properties, connectors, and ports. They
are also useful to model �ows in the system.

• Package Diagram: This type of diagrams display the organization of the model in
terms of packages that contain other elements, and their dependencies.

• Parametrics Diagram: This type of diagram describes constraints between the
block properties. It provides the means to perform engineering analysis models such

6

as performance and reliability, among others.

• Requirement Diagram: This type of diagram presents text-based requirements
organized in a hierarchical structure suited for traceability.

2.3 SysML and AADL

The Architecture Analysis & Design Language (AADL) [19, 46] is a standard created by the
Society of Automotive Engineers (SAE) [38] that provides formal modeling concepts for the
speci�cation, analysis, and automated integration of computer systems. It supports model-
based development approach and is particularly useful for complex real-time embedded
systems.

Since SysML and AADL provide similar features and both can be used to model avionics
applications; each one has di�erent pros and cons. For example, AADL has been designed
from scratch to support performance-critical systems, so it contains constructs and concepts
necessary to model hardware and software, and includes most of the information needed in
avionics applications. SysML, on the other hand, is a general-purpose modeling language,
and as such it lacks some of these constructs out of the box. In particular, it does not
contain a comprehensive model of time, and thus is unable to portray timing related data
without extending it. However, SysML is based in UML, so it supports other pro�les, like
MARTE, which can be added to address these limitations. Furthermore, existing UML
tools can be easily extended to support SysML; this is probably the biggest bene�t over
AADL.

Since AADL contains useful concepts, there have been attempts to integrate it with
SysML. One of these experiments tried to adopt some of its ideas via pro�les [7]. Although
interesting, this is beyond the scope of this work.

2.4 SysML and MARTE

Just like SysML, MARTE [30, 39] is an extension of UML. It focuses on adding capabilities
to model real-time and embedded software of cyber-physical systems. It adds the ability to
de�ne and specify in a precise manner quantitative and qualitative measures required for
advanced analysis. Also, it provides the ability to describe resources speci�c to real-time
that span from hardware, like memory, processors, and networks, to software elements,
such as threads and mutexes. Finally, it also introduces a comprehensive model of time.

7

Since MARTE is also a UML pro�le, it can be incorporated to SysML to address some
of its limitations. However, this must be done with caution; they have some overlapping
constructs that can introduce ambiguity or some other problems, such as con�icts. Fortu-
nately, MARTE has been structured in a modular way, so particular pieces of the pro�le
can be chosen [14].

2.5 SysML and SCADE

SCADE Suite [42] is a model-based development environment, developed by Esterel Tech-
nologies [16], which allows developing software for safety-critical systems. One of the
biggest bene�ts that it provides to the avionics domain is that it contains a code generator
called KCG [1] that produces C code tailored for embedded applications. Furthermore,
KCG has been quali�ed according to di�erent safety standards, such as DO-178B [12] and
C [13]; this simpli�es the certi�cation process as it eliminates the need to perform reviews
of the generated code.

One important aspect to highlight is that SCADE Suite introduces a new language
that is adequate for developing safety-critical software. However, it is not designed to
describe system architectures; modeling languages, like SysML, are better suited for this
task. Esterel recognized this problem and introduced SCADE System [43]. This tool allows
the modeling of systems using a small subset of SysML. However, since these languages
are quite di�erent, the connection is still incomplete. More e�ort is necessary to provide
a consistent and comprehensive bridge between SysML and SCADE Suite. This work
provides some insight about this connection from the variability point of view.

2.6 Summary

This chapter introduced the modeling language SysML. It explained that SysML is an
extension to UML and described how they relate to each other. Also, it presented the
diagrams that make up SysML. Finally, it provided a comparison between SysML and
other modeling languages, such as AADL and MARTE, as well as other technologies like
SCADE.

8

Chapter 3

Propeller Example

3.1 Background

Turbine engines represent one of the most popular types of powerplants used in modern
airplanes. They produce thrust by increasing the velocity of air �owing through them.
Although their structure can vary, they typically contain an air inlet, compressor, combus-
tion chambers, a turbine section, and exhaust [18]. Depending on how they provide power,
they are classi�ed as follows:

• Turbojet engines compress air and ignite the air-fuel mixture to produce exhaust
gases that will create thrust. Unfortunately, they are not very e�cient, so they have
been slowly replaced by the other types of engines.

• Turbofan engines are very similar to turbojets, they add a fan section in front of
the compressors, which is driven by the turbine. Even though the blades of the fan
rotate at much slower speed than the rest of the engine, they can move large masses
of air producing an enormous amount of thrust.

• Turboprop engines couple the turbine to an aircraft propeller. The power produced
by the engine is used to drive the propeller, which will transform the rotatory motion
into thrust. This type of engines is adequate for low-altitude, subsonic �ights.

• Turboshaft engines are typically used by helicopters. Just like turboprops, they
provide power to a shaft that operates a rotor. However, most of the energy is used
to drive a turbine rather than produce thrust.

9

The examples in this work touch upon some features and concepts of the last three
types; turbojet engines are never mentioned.

Finally, it is important to note that although it is possible to have an entirely mechanical
system to control a turbo engine, the examples described in this work contain an electronic
engine controller (EEC) to manage and orchestrate the whole operation of the engine.

3.2 Description

The case study presented in this section models a constant-speed controller for a turboprop
engine. This type of system ensures that the propeller maintains an optimum speed, to
provide the necessary thrust and to be fuel e�cient, and can be accomplished by modifying
the pitch of the blades. These are the main features relevant in this example:

• Reversing: This is an optional mode that enables the engine to provide negative
thrust; it can allow the aircraft to decelerate.

• Open or Closed Loop: The control of the pitch of the propeller blades can be
performed in a closed loop if there is a sensor providing feedback about the current
position. Otherwise, the controller must leverage other data in the engine, like current
propeller speed, to manage this value.

• Synchrophasing: It allows the pilot to reduce the noise and vibration produced by
two engines by matching their propeller speed and phase. This feature only makes
sense in multi-engine installations.

• Anti-Ice: Ice formation can signi�cantly disturb the operation of a propeller; in
extreme cases it can even endanger the whole aircraft operation. Therefore, engines
contain anti-icing systems to prevent this accumulation from happening. There are
many types of them, like �uid-based, electric, or hot-air-based.

Figures 3.1 and 3.2 present the top-level decomposition of the engine in block de�nition
(BDD) and internal block (IBD) diagrams.

3.3 Summary

This chapter provided a basic introduction to turbo engines, and described its main types;
namely turbojet, turboprop, turbofan, and turboshaft engines. Also, it gave a basic de-

10

scription of the case study used throughout the rest of this work. In particular, it outlined
the features that make up the variability in the example.

11

[P
ac

ka
ge

] E
ng

in
e

E
ng

in
e

bd
d

[
]

«
b

lo
c
k
»

E
ng

in
e

«
b

lo
c
k
»

B
la

de
 A

ng
le

 A
ct

ua
to

r
«

b
lo

c
k
»

E
E

C
 S

of
tw

ar
e

«
b

lo
c
k
»

A
nt

i−
Ic

e
S

ys
te

m

«
b

lo
c
k
»

A
pp

lic
at

io
n

S
of

tw
ar

e

«
b

lo
c
k
»

B
la

de
 A

ng
le

 S
en

so
r

«
b

lo
c
k
»

E
E

C

«
b

lo
c
k
»

E
E

C
 H

ar
dw

ar
e

«
b

lo
c
k
»

P
ha

se
 A

ng
le

 S
en

so
r

«
b

lo
c
k
»

O
pe

ra
tin

g
S

ys
te

m

«
b

lo
c
k
»

P
ro

pe
lle

r
S

ys
te

m

«
b

lo
c
k
»

P
ro

p
S

pe
ed

 S
en

so
r

ee
c

bl
ad

e
A

ng
le

 A
ct

ua
to

r
an

ti−
Ic

e
S

ys
te

m

pr
op

el
le

r
S

ys
te

m
0.

.1

ee
c

S
of

tw
ar

e
ee

c
H

ar
dw

ar
e

ap
pl

ic
at

io
n

S
of

tw
ar

e
op

er
at

in
g

S
ys

te
m

pr
op

 S
pe

ed
 S

en
so

r
ph

as
e

A
ng

le
 S

en
so

r
bl

ad
e

A
ng

le
 S

en
so

r

F
ig
u
re

3.
1:

B
D
D

of
to
p
le
ve
l
d
ec
om

p
os
it
io
n
of

en
gi
n
e.

12

[B
lo

ck
] E

ng
in

e
E

ng
in

e
ib

d
[

]
ai

rf
ra

m
e_

av
io

ni
cs

_i
f :

 A
irf

ra
m

e_
A

vi
on

ic
s_

IF
x−

en
gi

ne
_i

f :
 X

−
E

ng
in

e_
IF

1
[0

..1
]

ee
c

S
of

tw
ar

e
: E

E
C

 S
of

tw
ar

e

in
_i

f :
 E

E
C

_S
W

_I
N

_I
F

ou
t_

if
: E

E
C

_S
W

_O
U

T
_I

F

ee
c_

ch
_a

 :
E

E
C

«
fu

ll
»

da
ta

_i
n

da
ta

_o
ut

en
gi

ne
_a

vi
on

ic
s_

if
: E

ng
in

e_
A

vi
on

ic
s_

IF
«

fu
ll
»

da
ta

_i
n

da
ta

_o
ut

x_
en

gi
ne

_i
f :

 X
−

E
ng

in
e_

IF
 [0

..1
]

«
fu

ll
»

da
ta

_i
n

da
ta

_o
ut

x_
ch

an
ne

l_
if

: X
−

C
ha

nn
el

_I
F

 [0
..1

]

«
fu

ll
»

da
ta

_o
ut

da
ta

_i
n

an
al

og
_i

f :
 A

na
lo

g_
IF

an
ti−

Ic
e

S
ys

te
m

 :
A

nt
i−

Ic
e

S
ys

te
m

ou
t_

if
: A

nt
i−

Ic
e_

IF

bl
ad

e
A

ng
le

 A
ct

ua
to

r
: B

la
de

 A
ng

le
 A

ct
ua

to
r

ou
t_

if
: B

la
de

_A
ng

le
_A

ct
_I

F

bl
ad

e
A

ng
le

 S
en

so
r

: B
la

de
 A

ng
le

 S
en

so
r

ou
t_

if
: B

la
de

_A
ng

le
_S

en
so

r_
IF

pr
op

 S
pe

ed
 S

en
so

r
: P

ro
p

S
pe

ed
 S

en
so

r

ou
t_

if
: P

ro
p_

S
pe

ed
_S

en
so

r_
IF

ph
as

e
A

ng
le

 S
en

so
r

: P
ha

se
 A

ng
le

 S
en

so
r

ou
t_

if
: P

ha
se

_A
ng

le
_S

en
so

r_
IF

pr
op

el
le

r
S

ys
te

m
 :

P
ro

pe
lle

r
S

ys
te

m
 [0

..1
]

pr
op

_s
ys

te
m

_i
f :

 P
ro

p_
S

ys
te

m
_I

F

ee
c_

ch
_b

 :
E

E
C

 [0
..1

]

«
fu

ll
»

da
ta

_i
n

da
ta

_o
ut

x_
ch

an
ne

l_
if

: X
−

C
ha

nn
el

_I
F

 [0
..1

]

A
na

lo
g

C
on

ne
ct

io
n

X
−

C
ha

nn
el

 B
us

A
vi

on
ic

s_
B

us
X

−
E

ng
in

e_
B

us

F
ig
u
re

3.
2:

IB
D

of
en
gi
n
e
in
te
rn
al

st
ru
ct
u
re
.

13

Chapter 4

Methodology for Modeling a Software

Product Line in Avionics

Avionics systems are becoming indispensable on both military and civil aircrafts. As more
and more of their vital functions are controlled by electronic devices, system qualities such
as safety, reliability, and fuel-e�ciency are becoming increasingly dependent on the correct
operation of the avionics on-board [40]. However, at the same time, these systems are
growing in size and complexity, which makes them even harder to develop. Hence, it is
clear that a rigorous development process is required to cope with these challenges. A good
architectural model can aid in this endeavor, especially if these systems are to be developed
in a software product line. This chapter describes the methodology that we propose for
creating such a model using SysML.

4.1 Goals

Before any software can be used in any airborne system, companies must ensure that
it is functioning correctly and that it is compliant with airworthiness requirements. For
this purpose, the software needs to be approved by national certi�cation authorities; this
process can be lengthy and time consuming. Therefore, companies often follow guidelines,
like DO-178B and C [12, 13], for the development of their products. These standards do
not focus only on the correct functioning of the �nal software but on a rigorous process
being followed during the whole lifecycle. Pervasive traceability can be used to ful�ll this
requirement, which is why it is one of the primary goals of our proposed methodology.

14

It is important to remark that although these standards provide guidance of the overall
process to follow, they do not specify any particular development methodology or technol-
ogy; each organization is responsible for adjusting the process to their business needs and
work procedures. Therefore, the methodology being proposed in this work should not be
rigid; it must be �exible to allow being adapted to each of these di�erent environments.

Another guiding factor is ease of use and maintainability. The architectural models are
useful only if the information they contain is accurate and up to date, which is possible
only if they are regularly maintained. If the e�ort required to keep them updated is too
high, there is a risk that the models will be abandoned, or even worse, used with outdated
information. For this reason, the methodology tries to streamline the work as much as
possible, and also highlights the areas where tool support and automation could reduce
time and e�ort.

Even though this work was envisioned for avionics it does not preclude it from being
applied to other domains, but it would probably need to be adapted as required. In
particular, some goals, like pervasive traceability, might need to be relaxed to make it
more usable and practical for a speci�c domain.

4.2 Contributions

The methodology described in this section is not entirely new. It builds upon existing
work in systems modeling [9, 29, 21], software product lines [8], and aerospace system
development practices [3], and adapts them to modeling variability in avionics systems.
Among its contributions, it introduces the concept of family and instance architectures
and establishes a way of connecting the models via inheritance to keep them synchronized.
Second, it proposes a way to enable requirements variability. Third, it explains how to
provide pervasive traceability using existing SysML constructs. Finally, it describes how
to keep the model consistent with the use of constraints.

4.3 Description

The core of the methodology relies on dividing the model into two parts, the family model
and the instance models. The �rst, as the name implies, describes the architecture of all the
products of the family; it highlights which parts are common and which parts can vary. In
other words, this model contains variability. Analogously, the second describes the design

15

of only one product of the family; it illustrates the structure of the instance obtained by
con�guring the original model and by creating new parts exclusive to the current instance.
It is very likely that this model will contain very little or no variability.

4.3.1 Family Architectural Model

This section describes the steps that are required to create the family architectural model.
It is important to highlight that although they are thought to be applied in sequence, the
reality is that they are part of an iterative process; some steps might be executed out of
order, and may be repeated as many times as required. What is important is to execute all
of them, since their output is necessary for creating a complete, traceable, and consistent
architecture.

1. Create Use Cases
The �rst step is to identify the high-level functionality of the family of products to
be modeled. Use cases are suitable for this task, since they describe the functionality
of the system in terms of how it is used to achieve the goals of its various users
[21]. They are adequate to explore the operation of particular instances of the family
and new or unknown features of the software product line. However, because of
their narrow scope, they are not good at capturing product-line-wide variability and
commonalities [8]; this is �ne because the objective of this stage is not to provide
detailed information. On the contrary, the key idea is to identify the system, the
actors, and the external systems, and describe how they interact with each other at a
very high-level of abstraction. In other words, the focus must be on specifying what
the intended scope of the system is.

2. De�ne Feature Model

Part of the process of scoping the system is to �nd which functionality is common
to all instances of the family, and which one is variable. One useful way to capture
this information is in terms of features, which can be thought as user-visible aspects,
quality, or characteristics of a system [26, 8]. For example, a company might o�er air-
craft engines with or without a propeller, and they can be reversing or non-reversing;
each of these options is a feature. This information can then be organized and docu-
mented in feature models (FM), as shown in �gure 4.1. As mentioned before, feature
models in this document are presented in Clafer [5] language.

3. De�ne System and Software-Level Requirements

At this point, the functionality of the system must be decomposed and formalized

16

Figure 4.1: Part of the Feature Model (FM) of an aircraft system.

17

in requirements. As described in the SysML speci�cation [32], each of these is a
text-based description that speci�es a capability or condition that must be satis�ed,
a function that the system must perform, or a performance condition to be achieved.
One of the bene�ts of using SysML diagrams (or tables) is that their structure enables
adding traceability and variability handling information, allowing requirements to be
in-sync with the rest of the model.

The organization of requirements must follow a hierarchical structure. The ones
located at the top provide information about the system as a whole. Each of them
is allocated conceptually to hardware or software depending on which of the two will
be in charge of satisfying them; this is consistent with the standard SAE ARP4754
[3]. At the software level, new requirements are created to describe each system-
level requirement at a �ner level of granularity; multiple levels of decomposition
are allowed as long as clear traceability is always present. When considered detailed
enough, requirements are allocated to software components. It is important to remark
that this methodology makes special emphasis on software. Requirements allocated
to hardware may be handled di�erently, but this lays outside the scope of this work.

The requirements speci�ed in the family architecture model may encompass a wide
variety of products. Since instances are expected to be di�erent from each other, it is
also expected that not all requirements will be the same for all variants. In fact, the
most likely situation is that a set of them will be present in all products, some will
be optional, while others will need to be customized by each instance. To provide
guidance about how to use each requirement, they must be classi�ed with one of the
following stereotypes:

• Mandatory Requirement: All instances must include them, but cannot mod-
ify them.

• Optional Requirement: Instances cannot modify them, but can decide whether
to include them or not.

• Variant Speci�c Requirement: Any instance must always include require-
ments with this stereotype, but it must customize them �rst.

• Optional Variant Speci�c Requirement: Instances can decide where to
include them or not. However, they must be customized before being used.

Finally, the inclusion of a requirement might be controlled by the presence of a feature
in the feature model. If that is the case, the requirement must be tagged with the

18

corresponding feature ID1.

4. Modeling Structure and Behavior

This step deals with modeling of the family architecture. This endeavor consists of
two parts, the structural and the behavioral. The �rst one handles static aspects, like
the components (blocks) that make up the system, how they connect with each other,
and which data �ows between them. The latter deals with the dynamic aspects of
the system: how information is processed to produce usable output, how messages
are sent between blocks to respond to some stimuli, among others. Both of them are
important, as they show di�erent facets of the system.

Although there are no strict rules to guide whether to model structure or behavior
�rst, experience suggests that it might be a good idea to start with the behavioral
part. This approach can help understand requirements better, can aid in solving
ambiguity, and will assist in the selection of a particular structural decomposition to
use later on. However, regardless of the order chosen, both parts must be connected
to each other via allocation.

Models created during this stage must depict precisely how the feature variations
can impact the structure and behavior of the system. This work provides a series
of patterns and practices to aid in this process; following chapters describe them in
further detail.

5. Constraints De�nition
As mentioned before, the structure and behavior of the system can vary depending on
the feature selection. However, regardless of the actual choices, instance models must
always be consistent. As the size of the system increases, this process can become
quite challenging. Therefore, there must be a mechanism in place to ensure model
correctness; one such mechanism is constraints.

A constraint is a statement that speci�es invariant conditions that must hold for the
system being modeled [31]. The idea is to specify the expected state of the model
when a feature is selected as a list of constraints. Each of them will be stored in a
constraint block, and linked to the controlling feature via its ID; they will execute
only when an instance enables that particular feature.

The example in �gure 4.2a displays how the architecture model de�nes a constraint
block with individual constraints that together will verify the consistency of the

1We assume here that a single feature applies to a requirement; this can be always archived by adding
additional features as necessary. An alternative approach is to associate requirements with presence con-
ditions, which are Boolean expressions over features.

19

<<block>>

Left Engine

<<block>>

X-Engine Bus

<<block>>

Right Engine

{{OCL} context Right Engine

inv : selft.X-Engine Bus ->size = 1}

X-Engine Constraint

constraints

{{OCL} context Left Engine

inv : self.X-Engine Bus ->size = 1}
[0..1] [0..1]

<<constraint>>
<<SPL Constraint Block>>

{featureID=SystemConfiguration.Communication.XEngine}

Architecture FM

SystemConfiguration
Communication

XEngine ?

(a) Example of constraints de�ned at the family architecture model.

<<block>>

Left Engine

<<block>>

X-Engine Bus

<<block>>

Right Engine

{{OCL} context Right Engine

inv : selft.X-Engine Bus ->size = 1}

X-Engine Constraint

constraints

{{OCL} context Left Engine

inv : self.X-Engine Bus ->size = 1}
1 1

<<constraint>>
<<SPL Constraint Block>>

{featureID=SystemConfiguration.Communication.XEngine}

Instance Model

SystemConfiguration
Communication

XEngine

(b) Example of constraints verifying the consistency of the model at the instance architecture
model.

Figure 4.2: Variable Property Pattern.

20

system. In this case, the cardinality of X-Engine Bus must be one if the feature is
present, or zero otherwise. This veri�cation will happen only on instances that have
the cross-engine communication enabled.

Note that to keep traceability simple, constraint blocks verify only if an individual
feature is present in an instance. More intricate scenarios that require several com-
parisons at once must be handled directly by the FM, and exposed to the constraints
as a single feature.

4.3.2 Instance Architectural Model

This section describes the steps that are required to create the instance architectural model.
As with the family model, the process is iterative and can be executed as many times as
required.

1. Create Instance Model

The focus of this stage is to scope the behavior and structure of the instance being
modeled. This process is typically accomplished by selecting some features from the
FM, and storing them in an instance model.

2. Retrieve and re�ne requirements

This stage focuses on determining the set of requirements that apply to the current
instance; the ones that describe new features will be created from scratch, while
there will be others carried over from the family architecture model. As described
in section 3, requirements of this last type require di�erent handling depending on
their classi�cation. One important remark is that this re�nement process must be
performed at both system and software levels.

3. Model Structure and Behavior

This stage consists in customizing the family architecture model so that it �ts the
instance requirements. This process entails both creating new parts exclusive to the
current instance and customizing the existing components. SysML enables this kind
of restructuring via subclassing and rede�nition; blocks can be modi�ed by creating
subclasses, and linking them with new components and properties via rede�nition.
Note that the top-level component, representing the system, will have one subclass
for each instance; that block will represent the context of the new instance. This
process is described in further detail in the following chapters.

21

4. Verify Model Consistency

The instance must follow the conditions and restrictions stored in the constraint
blocks at the family architecture model. Designers can leverage this information in
two ways. First, one can get the applicable constraints based on the feature selection,
and use them to verify consistency; any deviation from the expected state must be
reported as a violation to �x. Second, one can use constraints as a guideline of the
necessary changes to the model, which can then be applied via model transformation;
this process is much more complicated. However, regardless of the approach, tools
can be invaluable to streamline the amount of work necessary at this stage.

In �gure 4.2b, the constraint block X-Engine Constraint veri�es that the cardinality
of X-Engine Bus on both connectors is one. This check happens because the feature
XEngine is activated in that instance.

5. Model Export

Finally, at this point the instance model is ready to be used to remove the variability
from the family architecture model; the result of this process allows di�erent uses
depending on the needs. One possible way is to import the model into an imple-
mentation tool, which will use it to produce actual code. Another potential use is to
generate documentation; this is particularly useful in avionics, where the whole de-
velopment process must be reported to certi�cation authorities in several documents.
Tool support is crucial at this stage, as it can signi�cantly reduce manual work.

4.3.3 Traceability

As mentioned before, maintaining traceability is of utmost importance in avionics systems.
To accomplish this goal, the model must contain connections linking all its elements. The
�rst one occurs between the feature model and the requirements, which can be repre-
sented using the �SPL Requirement� stereotype (or one of its subclasses) and setting the
corresponding feature ID.

The second type of links happens between requirements, and also with other parts of
the model, like blocks. SysML contains a construct called dependency that is adequate to
convey this kind of information. In fact, there are many of them, each of which is useful
for di�erent situations; table 4.1 provides more details. Figures 4.3 and 4.4 show examples
of how traceability is used in practice.

22

Application Software Propeller

<<deriveReqt>>

«Optional Variant Specific Requirement»

Synchrophasing Activation

Id= AO_1234567"

Text=

 The system shall activate the
[Synchrophasing] mechanism whenever
the requested phase is valid.

{featureID=SystemConfiguration.Propeller.
Synchrophasing}

«Optional Variant Specific Requirement»

Synchrophasing Activation

Id= SR_372134"
Text=
 The application software shall activate
the [Synchrophasing] mechanism
whenever the [selectedPhase] value is
bigger than [minPhase] and smaller than
[maxPhase].

{featureID=SystemConfiguration.Propeller.
Synchrophasing}

(a) System - Software Traceability.

Instance Architecture Model

Family Architecture Model

«Optional Variant Specific Requirement»

Synchrophasing Activation

Id= AO_1234567"

Text=

 The application specific CSRD shall
set the conditions necessary to
activate the [Synchrophasing]
mechanism.

Application Software

Application Software

<<refine>>

{featureID=SystemConfiguration.Propeller.
Synchrophasing}

«SPL Requirement»

Synchrophasing Activation

Id= R_987654"

Text=

 The application shall activate the
[Synchrophasing] mechanism whenever
the requested phase is bigger than 0.

{featureID=SystemConfiguration.Propeller.
Synchrophasing}

(b) Family Architecture Model - Instance Architecture Model Traceability

Figure 4.3: Traceability Examples.

23

Traceability Relationship Keyword Description
System - Software �deriveReqt� Provides a link between the top-level

and lower-level requirements. It is par-
ticularly useful to depict the relation-
ship between system and software, but
can be used for intermediate traceabil-
ity too.

Family - Instance �re�ne� Necessary for variant speci�c require-
ments. Highlights that extra informa-
tion will be provided to eliminate, or at
least, reduce the variability presented
at the family model.

Requirement - Software Block �satisfy� Shows the software block(s) necessary
to ful�ll a requirement.

Requirement - Test Block �verify� Establishes a link with the tests that
verify that the requirement has been
satis�ed indeed.

Table 4.1: SysML relationships to provide traceability.

<<block>>

Engine_Avionics_IF

Proxy Ports

avionics_bus_port: Avionics_Msg
avionics_data_port: Avionics_Data_IF

<<block>>
Synchrophasing Mgr

Properties

synchrophasing Mgr [0..1]

Propeller

«Optional Variant Specific Requirement»

Synchrophasing Activation

Id= SR_372134"
Text=

 The application shall activate the
[Synchrophasing] mechanism whenever the
[selectedPhase] value is bigger than
[minPhase] and smaller than [maxPhase].

{featureID=SystemConfiguration.Propeller.
Synchrophasing}

<<satisfy>>

Figure 4.4: Instance Architecture Model - Block Traceability.

24

4.4 Summary

This chapter introduced the proposed methodology to describe and model variability in
avionics system product lines. First, it described the basic goals that guided the creation of
the methodology, such as pervasive traceability, ease of use, and maintainability. Second,
it explained how it relates to previous work and what the new contributions are. Third,
it provided a sequence of steps necessary to create each of the models; the family and
the instance architecture models. Finally, it provided suggestions about how to provide
traceability with existing SysML relationships and how to keep the models consistent via
constraints.

25

Chapter 5

Behavioral Patterns

As mentioned before, behavioral diagrams describe a system in terms of functionality; they
focus more on how the system must behave than on how it is structured. This information
can be important as it can aid in choosing the decomposition of the system. From a
variability point of view, understanding how behavior can change between instances can
allow organizing components in a way that will minimize variations and their impact on the
system. This chapter describes how alternative behavior can arise in activity and sequence
diagrams and proposes two patterns to deal with them.

5.1 Variability in Activity Diagrams

5.1.1 Scenario Description

One common way to describe the operation of a system is by explaining how the provided
inputs are processed and transformed into some expected output. The actual nature of
these elements can di�er; sometimes they will be concrete objects, like �ows of fuel or air,
while others will be more abstract, like data or signals. What is important is that they are
transformed through an ordered execution of steps. In SysML, the best way to express this
interaction is through activity diagrams; they are the primary representation for modeling
�ow-based behavior.

Although family architecture models can also bene�t from �ow-based behavior descrip-
tions, creating activity diagrams for them is not straightforward. For these diagrams to
be useful, they have to show what parts of the behavior are common to all products, and
which ones change between variants. This representation shall ful�ll the following goals:

26

• There must be a precise demarcation of where the di�erences in behavior start and
end.

• The diagram is required to show clearly which features control the variance in be-
havior.

• There should be enough information to determine which inputs and outputs will be
present depending on the feature selection.

5.1.2 Suggested Pattern

SysML activity diagrams have conditional nodes, which represent an exclusive choice
among some number of alternatives [45]. All conditional nodes contain one or more clauses,
each with a test and body section. The body of a clause will execute only if its correspond-
ing test yields true; at most one body clause can be executed within any conditional node.
This SysML construct can be leveraged to display variability by extending it via stereo-
types. The idea is to tag each of them with the ID of the feature whose presence can
modify the behavior of the activity, and classify the node as �optional�or �alternative�,
depending on the possible values that the feature can have. Nodes tagged as optional will
only have one clause while alternative ones can have two or more; the body parts hold the
functionality to execute when the feature is enabled.

A di�erence in behavior can also a�ect the parameters that the activity needs or will
produce. To make the interface as explicit as possible, mark inputs and outputs that are
not always present with multiplicity [0..1], or with the optional stereotype; these two have
the same semantics, and are already part of the SysML speci�cation, so either one can be
used.

Finally, there can be cases where a piece of behavior will always be di�erent for each
variant. When that happens, that functionality can be encapsulated into one action, and
then marked with the stereotype �customization point�. With that tagging, the model
speci�es that all variants must rede�ne the action with their custom logic.

In summary, these are the guidelines to show variability in activity diagrams:

1. Show alternative behavior in conditional nodes; tag them with the corresponding
feature ID.

2. Mark parameters not needed by all products with multiplicity [0..1] or the �op-
tional�stereotype.

27

3. Mark actions that variants must rede�ne with the stereotype �customization point�.

Example

The pitch of the blades of a propeller can be managed via a solenoid; adding or removing
pressure from it will alter the position of the blades. The controller can make use of this
mechanism to regulate the propeller speed, which in turn will help modify the thrust of
the whole engine. However, determining the right pressure to command to the solenoid
can vary depending on the equipment in the engine. If it contains a sensor to measure the
current blade angle, the value can be controlled in a closed-loop. Otherwise, it must be
regulated indirectly in an open-loop.

Figure 5.1 shows this scenario in an activity diagram. If the Closed_Loop feature is
enabled, the engine can just calculate the right pressure to use. On the other hand, if the
Open_Loop feature is selected, the controller must request a default pressure delta until
the propeller reaches the desired speed. Note that the variability is contained within a
conditional node, which is tagged with the ID of the parent feature. Furthermore, each
clause will execute only if the right child of that feature is enabled. If Open_Loop is
selected then its body will execute. Otherwise, the lower one will be used.

Discussion

There are multiple bene�ts of modeling variability with this pattern. First of all, it becomes
clear which behavior can change, where these di�erences start and end, and which features
control them. Additionally, changes to the interface are made explicit; this will help de�ne
the data �ows in the structural diagrams. Furthermore, the e�ort of making such a diagram
is not wasted. Modeling early in the development stages can help understand variability in
the system better, reduce ambiguity, and the model can be reused later for documentation
purposes.

A potential disadvantage of using this variability representation is that the allocation
of behavior to structural elements via swimlanes might not be possible anymore; their
combination could make it ambiguous to determine which part of the functionality belongs
to a particular block. Therefore, with this pattern, allocation would always need to be
speci�ed via other means, like callout or matrix notation.

28

C
al

cu
la

te
B

la
de

P
re

ss
ur

e
C

al
cu

la
te

B
la

de
P

re
ss

ur
e

[A
ct

iv
ity

]
ac

t
[

]

«
O

p
ti
o

n
a

l»

cu
rr

en
t_

p
ro

p
_s

p
ee

d
 :

 f
re

q
u

en
cy

«
v
a

lu
e

T
y
p

e
»

re
q

u
es

te
d

_b
et

a
:

p
la

n
e

an
g

le

«
v
a

lu
e

T
y
p

e
»

b
la

d
e_

p
re

ss
u

re
 :

 p
re

ss
u

re

«
O

p
ti
o

n
a

l»

cu
rr

en
t_

b
et

a
:

p
la

n
e

an
g

le

te
st

is
F

ea
tu

re
E

n
ab

le
d

cl
os

ed
_l

oo
p

bo
dy

G
et

 D
el

ta
re

qu
es

te
d_

be
ta

cu
rr

en
t_

be
ta

te
st

is
F

ea
tu

re
E

n
ab

le
d

op
en

_l
oo

p

bo
dy

C
o

n
ve

rt
 t

o
 S

p
ee

d

G
et

 S
p

ee
d

 D
el

ta
de

lta

D
ef

au
lt

 A
n

g
le

 D
el

ta

N
o

 A
n

g
le

 C
h

an
g

e

«
A

lt
e

rn
a

ti
v
e

»

ca
lc

u
la

te
_n

ew
_a

n
g

le
{F

ea
tu

re
ID

 =
 "

S
ys

te
m

C
on

fig
ur

at
io

n.
P

ro
pe

lle
r.

F
ee

db
ac

k"
}

C
o

n
ve

rt
 t

o

P
re

ss
u

re

de
lta

 !=
 0

de
lta

 =
=

 0

F
ig
u
re

5.
1:

V
ar
ia
b
il
it
y
in

A
ct
iv
it
y
D
ia
gr
am

29

5.2 Variability in Sequence Diagrams

5.2.1 Scenario Description

One way to understand the behavior of a system is by identifying how its di�erent com-
ponents react to internal and external stimulus. This data is quite important, since such
interactions can become quite complex in big systems. SysML provides sequence diagrams
for this purpose; they describe the �ow of control between actors and system (blocks) or
between parts of a system [32].

In a family architectural model, showing the variability that arises in these interactions
can be very helpful. This information can aid in the identi�cation of the components that
are necessary by each product in the family to ful�ll its operational requirements. To
achieve that this variability representation must meet the following goals:

• There must be a precise demarcation of where the di�erences in behavior start and
end.

• The diagram is required to show clearly which features control the variance in be-
havior.

• There should be enough information to determine which actors and components will
be part of the interaction in each variant.

5.2.2 Suggested Pattern

This pattern takes advantage of a construct in sequence diagrams called combined frag-
ments. There are many types of them, each specifying di�erent semantics to the structure
of the messages that it contains. As described in [21], a combined fragment consists of an
interaction operator and its operands. The interaction operator de�nes the type of message
structuring, and its operands are all subject to that rule. Furthermore, each operand has
a guard with a constraint that indicates the conditions under which it is valid.

There are two operators that are particularly useful for variability modeling: opt and
alt. The �rst one speci�es that the operand of the fragment will get executed only if the
guard evaluates to true. The latter works similarly; the only di�erence is that instead
of one, the fragment contains multiple operands, out of which only one will be executed
depending on the value of the guard. The idea is to place variable interaction within

30

combined fragments opt or alt, depending on the type of variability. Then each fragment
is marked with the �SPL fragment�stereotype and tagged with the ID of the controlling
feature; each operand will execute only if that ID is selected.

One important aspect to highlight is that the guard of the operator of the combined
fragment is bound to a single lifeline and can reference only attributes of that lifeline in
its constraint. However, the determination of which operand to execute is controlled by
the feature ID, speci�ed in the �SPL fragment�stereotype. For this pattern to work, the
modeling tool must be able to access this value.

If an actor or component lifeline exists only within an operand of a combined fragment,
it will not be included on the variants that do not select the feature that controls that
optional interaction.

In sum, variability in sequence diagrams can be implemented in the following way:

1. Use combined fragments to specify changing behavior; use alt interaction operator
to show alternative behavior and opt for optional functionality.

2. Tag these fragments with �SPL fragment�stereotype, to show that they are controlled
by the FM, and specify the ID of the controlling feature.

Example

Typically, the speed of the propeller in an engine is determined by the power level selected
by the pilot. However, aircrafts with multi-engine installations might have a feature called
synchrophasing to reduce noise and vibration, which might also a�ect the speed of the
propeller.

Figure 5.2 shows an example of a system with this choice. In it, part of the speed
determination process is enclosed within an opt combined fragment. This part of the
model will execute only if the synchrophasing feature is enabled.

Discussion

As in activity diagrams, modeling variability using this pattern allows displaying where
changes in behavior can happen, what is the span of the di�erences, and which features
control them. Also, it can help visualize how internal components interact with each other,
and with external systems and actors, depending on the features of the variant. All this
information is helpful for documentation purposes and will be quite valuable for de�ning
structural models.

31

P
ro

pS
pe

ed
C

tl
P

ro
pS

pe
ed

C
tl

[In
te

ra
ct

io
n]

sd

[

]

S
yn

ch
ro

p
h

as
in

g
 C

tl
R

em
o

te
 E

n
g

in
e

P
ro

p
el

le
r

M
g

r
C

o
n

tr
o

lle
r

P
ro

p
el

le
r

P
ilo

t

[]

«
S

P
L

 F
ra

g
m

e
n

t»

{f
ea

tu
re

ID
 =

 "
S

ys
te

m
C

on
fig

ur
at

io
n.

P
ro

pe
lle

r.
S

yn
ch

ro
ph

as
in

g"
}

o
p

t

ge
t r

e
ph

as
e

5:

ca
lc

ul
at

e
ne

w
 p

ha
se

7:

ca
lc

ul
at

e
bl

ad
e

an
gl

e
3:

ge
t p

ha
se

 c
ha

ng
e

4:

ca
lc

ul
at

e
pr

op
 s

pe
ed

2:

ch
an

ge
 b

la
de

 a
ng

le
10

:

re
qu

es
t p

ow
er

 c
ha

ng
e

1:

F
ig
u
re

5.
2:

V
ar
ia
b
il
it
y
in

S
eq
u
en
ce

D
ia
gr
am

32

5.3 Summary

This chapter described how variability presents in two behavioral diagrams: activity and
sequence diagrams. In the �rst, variations can occur in the interfaces and on the sequence of
steps necessary to transform the provided inputs into the expected outputs. This chapter
proposed making use of conditional nodes and the optional stereotype to deal with the
di�erences. In the second, interactions between lifelines can change between instances.
The chapter suggested using combined fragments to show the message variations.

33

Chapter 6

Structural Patterns

Structural diagrams in SysML describe the arrangement of the system. In particular, they
specify the components that make up the system, how they connect to each other, and the
�ows they contain; all this information is stored in block de�nition (BDD) and internal
block diagrams (IBD). This chapter describes how variability arises and formulates a series
of patterns to keep this variation under control; this is important as it can help reduce the
amount of work necessary to create and maintain diagrams with variability.

6.1 Variable Property

6.1.1 Scenario Description

Di�erences in the model are not restricted to structural or behavioral variability. There are
situations where the components that make up a system stay the same, but the values of
one or more value properties 1 change from instance to instance. This case can be referred
to as quantitative variability and can manifest itself in two ways: a change in value or
range (valid interval of values).

Systems can have hundreds or even thousands of value properties, so keeping control of
which ones change between variants can be challenging. Models can be helpful to convey
this information in a structured way. Any approach used to model quantitative variability
must have the following characteristics:

1In SysML, a value property is a quantitative characteristic of a block such as weight or speed [21].

34

• It must display what value properties are subject to change between variants.

• The model must show what approach is taken to deal with the changes.

• Model impact should be as small as possible; only the block with the variable property
shall change. The rest of the components shall be left untouched.

6.1.2 Suggested Pattern

Depending on the particular situation, quantitative variability can require di�erent han-
dling. For this reason, this pattern de�nes three ways to deal with it. The �rst one handles
the case where only the value of the value property changes between instances. When this
happens the family architecture model does not require any special treatment. Blocks only
need to include the value properties as normal along with their default values, if necessary.
Then, instance models that wish to change them only have to subclass the top level block,
and assign the new values via an IBD; SysML calls this data context-speci�c values since
it is only valid within the scope of the current instance.

The second way deals with cases where the valid range of possible values requires a
change. Although it would be very practical to use IBD diagrams for this purpose too,
SysML currently disallows specifying intervals as context-speci�c values. Therefore, this
kind of variability demands a di�erent type of approach; it is necessary to subclass the
block, rede�ne the corresponding value property, and specify the new interval.

The �nal way covered by this pattern is quite di�erent. It manages cases where the
actual values are necessary by the system, but they are not relevant or does not make sense
to specify them while modeling. Maybe the data varies too often, and the actual values do
not matter to the model as long as they are within adequate ranges. For this situation, it
is necessary to mark the properties with the �PDI �stereotype2. The intent is to highlight
that the data must be provided at some point during the system lifecycle but that it is
currently unknown.

Adding everything up, these are the steps necessary for this pattern:

Value Properties

1. Model family architecture without adding any extra information to the property
whose value might change.

2PDI stands for Parameter Data Item, as de�ned by DO178C [13]

35

2. For instance models, subclass top-level block. This step is necessary for all
patterns.

3. Use IBD to provide new values.

Intervals

1. Subclass block with value property to change.

2. Rede�ne corresponding value property.

3. Provide new interval.

PDI

1. Mark properties with values that need to be provided in the future with the
�PDI �stereotype.

2. Provide the concrete data at some point during the system lifecycle.

Example

Figure 6.1a shows a part of the Engine Controller BDD. It includes the Propeller Manager,
which is the component in charge of controlling the operation of the propeller in a turbo-
prop engine, and the blocks that include it. The value property minBladeAngle is the one
whose value is prone to change on each variant. Figure 6.1b shows how to modify them
by creating context-speci�c values in an IBD; the compartment marked as defaultValue
contains these new values. Conversely, �gure 6.1c contains a BDD that displays how to
modify the interval. In this case, the whole Propeller Manager needs to be subclassed, and
the value property is rede�ned to be able to access and modify the corresponding interval.

Also, Propeller Manager contains the defaultPropSpeed value property, marked with
the �PDI �stereotype. This tagging means that the exact value of the property is not
important at this point, but it will be necessary at some point in the future.

Discussion

De�ning context-speci�c values to handle quantitative variability is very easy and does
not have any model side e�ects. However, it is possible that most instances will require
very little or no context-speci�c values de�ned while modeling. Probably, it will be more

36

Variable_Property EngineController[Package] bdd []

values

«interval» minBladeAngle : Real = 10.0{max = 30.0, min = 0.0}
«PDI» defaultPropSpeed : Real

«block»

Propeller Mgr

«block»

Controller SW

«block»

Output Processing Mgr

output processing mgr 1

propeller Mgr 1

(a) Engine Controller BDD

ACME Controller SW ACME Controller SW[Block] ibd []

defaultValue
minBladeAngle = 30.0

propeller Mgr : Propeller Mgr [1]

output processing mgr : Output Processing Mgr [1]

(b) IBD of the ACME Controller SW block,
which shows how to assign context-speci�c val-
ues.

Interval_RedefinitionVariable_Property[Package] bdd []

values
«interval» minBladeAngle : Real = 10.0{redefines minBladeAngle,max = 25.0, min = 5.0}

«block»

ACME Propeller Mgr

values
«interval» minBladeAngle : Real = 10.0{max = 30.0, min = 0.0}
«PDI» defaultPropSpeed : Real

«block»

Propeller Mgr

(c) BDD that shows interval rede�nition.

Figure 6.1: Variable Property Pattern.

37

important to keep track of the valid intervals for each instance as that information could
be invaluable to verify the correct state of the system.

Also, it might not be evident, but marking value properties with the �PDI �stereotype
can be of great use; a tool could mine those tags and produce a report of all the values
required by an instance depending on its features. This approach could be particularly
attractive if the model produces only one executable, and the PDIs are used to con�gure
variants as suggested by DO178C [13].

6.2 Optional Component

6.2.1 Scenario Description

A very common type of structural variability happens when the status of a feature can
trigger the addition or complete removal of a component in the system. Any modeling
strategy used to solve this problem must meet the following goals:

• Regardless of the status of the feature, the model shall always be in a consistent
state.

• If desired, it should be possible to remove unused code; this could be very useful to
prevent accidental activation3.

• There should not be any unnecessary conditional statements scattered through the
code checking the status of the feature.

6.2.2 Suggested Pattern

There are two proposed ways to handle this scenario. Although both rely on the same
basic concepts (inheritance and cardinality management), they di�er on the impact they
have on the rest of the model. Each approach has pros and cons, which need to be weighed
depending on the concrete model.

3Accidental activation used to be a major concern during the development of avionics systems. There
was always the risk that a high-energy particle would leave the code in an inconsistent state, which could
lead to dangerous situations. However, current hardware has addressed this problem for the most part.

38

Suggested Pattern 1: Component removal

The most straightforward way to model an optional component at the family architecture
level is through a composite aggregation relationship between the component itself and the
block that owns it. The cardinality at the part end-point is set to [0..1]. Each instance of
the family will then subclass the aggregate block and rede�ne this cardinality; it needs to
be set to one if the block is present, or zero otherwise.

When a component is marked as optional by setting its cardinality to zero, all its input
and output is not required anymore and might need to be removed. This change has to be
re�ected on the aggregate block to avoid any unnecessary data from �owing through the
system. Commonly, this entails subclassing the interface block of the input/output ports
and modifying their cardinalities accordingly. This process is described in more detail in
section 6.5.

Adding it up, these are the steps necessary to use this pattern:

1. Subclass the block that contains the optional component and rede�ne the end-point
cardinality to zero or one as necessary.

2. Update the �ows of the aggregate block.

3. Keep both changes, rede�ning cardinality and updating �ows, synchronized via con-
straints.

Example

When two or more turbo-prop engines operate in an aircraft at the same time, they produce
noise and vibration, which can become unpleasant if they are running at slightly di�erent
speeds. To minimize this nuisance the controller system can match the phase and rotational
speed of the propellers; this is called synchrophasing. As this synchronization is required
only in multi-engine installations, the corresponding feature is marked as optional.

The example in �gure 6.2 contains part of the Propeller Mgr BDD. It shows the blocks
required to enable propeller synchrophasing. Since this feature is optional, the block Syn-
chrophasing Mgr, which manages this functionality, has cardinality [0..1]. Also, notice that
the corresponding �ows in the interface block are also optional; both of these cardinalities
must be in synch. Figure 6.3, on the other hand, shows the BDD of an instance that does
not enable synchrophasing.

39

Optional_Component Propeller Mgr BDD[Package] bdd []

proxy ports
in_if : Propeller Mgr IN IF
out_if : Propeller Mgr OUT IF

«block»

Propeller Mgr

proxy ports
in_if : Synchrophasing Mgr IN IF
out_if : Synchrophasing Mgr OUT IF

«block»

Synchrophasing Mgr

synchrophasing Mgr 0..1

(a) Propeller Manager BDD

Optional_Component Propeller_Mgr_IO[Package] bdd []

flow properties
out phase : Real

«interfaceBlock»

Synchrophasing Mgr OUT IF

proxy ports
synchrophasing Mgr OUT IF : Synchrophasing Mgr OUT IF [0..1]

«interfaceBlock»

Propeller Mgr OUT IF

flow properties
in selectedPhase : Real
in isMaster : Boolean
in re_phase : Real

«interfaceBlock»

Synchrophasing Mgr IN IF

proxy ports
synchrophasing Mgr IN IF : Synchrophasing Mgr IN IF [0..1]

«interfaceBlock»

Propeller Mgr IN IF

(b) Interfaces used by the Propeller Mgr and Synchrophasing Mgr blocks.

Figure 6.2: Component Removal Pattern. Family Architecture level.

40

ACME_Propeller_Mgr_BDDOptional_Component[Package] bdd []

parts
synchrophasing Mgr : Synchrophasing Mgr [0..1]

proxy ports
in_if : Propeller Mgr IN IF
out_if : Propeller Mgr OUT IF

«block»

Propeller Mgr

parts
synchrophasing Mgr : Synchrophasing Mgr [0]{redefines synchrophasing Mgr}

proxy ports
in_if : ACME Propeller Mgr IN IF{redefines in_if}
out_if : ACME Propeller Mgr OUT IF{redefines out_if}

«block»

ACME Propeller Mgr

(a) BDD of instance without synchrophasing.

ACME_Propeller_Mgr_IOOptional_Component[Package] bdd []

proxy ports
synchrophasing Mgr IN IF : Synchrophasing Mgr IN IF [0]

«interfaceBlock»

ACME Propeller Mgr IN IF

proxy ports
synchrophasing Mgr IN IF : Synchrophasing Mgr IN IF [0..1]

«interfaceBlock»

Propeller Mgr IN IF

proxy ports
synchrophasing Mgr OUT IF : Synchrophasing Mgr OUT IF [0]

«interfaceBlock»

ACME Propeller Mgr OUT IF

proxy ports
synchrophasing Mgr OUT IF : Synchrophasing Mgr OUT IF [0..1]

«interfaceBlock»

Propeller Mgr OUT IF

(b) Interfaces used by the instance without synchrophasing.

Figure 6.3: Component Removal Pattern. Instance level.

41

Discussion

Using this pattern allows the addition or removal of optional parts as necessary and adapts
the whole model to accommodate the change. The biggest bene�t is that the resulting
model is very clean; instances do not contain unnecessary components, and their interfaces
will include only the required input and output �ows.

However, the pattern entails keeping several parts of the model in sync, which might
require more manual work or tool support. Moreover, using this approach makes sense only
if the actual implementation will mirror it: removing the optional component altogether,
adapting interfaces (inputs/outputs), and modifying the rest of the code to address the
change.

Suggested Pattern 2: Mock component

An alternative way to model an optional component is by creating an abstract block that
will be subclassed and replaced in an instance by one of two possible substitutes. The
�rst one contains the real structure and behavior, and must be used whenever the optional
feature is enabled. In contrast, the second one is just a mock (stub). It is an empty
placeholder that ignores all inputs and only returns default values. It shall be used if the
optional feature is disabled.

These are the steps required to use this pattern:

1. The family architecture model includes a block that represents the optional compo-
nent. It must be an abstract block with two subclasses.

2. The instance model must subclass the aggregate block, and rede�ne the type of the
optional component with either the real or mock block.

3. No changes to interface blocks are necessary, since the inputs/outputs are the same
regardless of the chosen block.

Example

Figure 6.4 presents the same synchrophasing example as in section 6.2.2, but instead of
removing the block it makes use of the mock component pattern. In 6.4a, the BDD of
the family architecture model contains the abstract block Synchrophasing Mgr, which is
subclassed by Synchrophasing Concrete and Synchrophasing Mock ; the former represents

42

OptionalComponent Propeller_Mgr_BDD [Package] bdd []

proxy ports
«proxy» in_if : Propeller Mgr IN IF
«proxy» out_if : Propeller Mgr OUT IF

«block»

Propeller Mgr

«block»

Synchrophasing Mock

proxy ports
«proxy» in_if : Synchrophasing Mgr IN IF
«proxy» out_if : Synchrophasing Mgr OUT IF

«block»

Synchrophasing Mgr

«block»

Synchrophasing Concrete

Is Covering
Is Disjoint

synchrophasing Mgr 1

(a) Propeller Manager BDD

OptionalComponent Propeller_Mgr_IO [Package] bdd []

proxy ports
synchrophasing Mgr IN IF : Synchrophasing Mgr IN IF

«interfaceBlock»

Propeller Mgr IN IF

proxy ports
synchrophasing Mgr OUT IF : Synchrophasing Mgr OUT IF

«interfaceBlock»

Propeller Mgr OUT IF

flow properties
in selectedPhase : Real
in isMaster : Boolean
in re_phase : Real

«interfaceBlock»

Synchrophasing Mgr IN IF

flow properties
out phase : Real

«interfaceBlock»

Synchrophasing Mgr OUT IF

(b) Interfaces used by the Propeller Mgr and Synchrophasing Mgr blocks.

Figure 6.4: Mock Pattern. Family Architecture level.

43

ACME_Propeller_Mgr_BDD OptionalComponent [Package] bdd []

parts
synchrophasing Mgr : Synchrophasing Mgr [1]

proxy ports
in_if : Propeller Mgr IN IF
out_if : Propeller Mgr OUT IF

«block»

Propeller Mgr

parts
synchrophasing Mgr : Synchrophasing Mock [1]{redefines synchrophasing Mgr}

«block»

ACME Propeller Mgr

(a) BDD of instance with mock component.

Figure 6.5: Mock Pattern. Instance level.

44

the real implementation, while the latter is the mock. Figure 6.5 shows an instance selecting
the mock block since the feature is not enabled. Notice that no interface changes are
necessary.

Discussion

This pattern allows enabling or disabling an optional component with minimum impact to
the model. It is an excellent choice whenever it is not practical to update the implementa-
tion to accommodate the presence or absence of an optional block. For instance, it might
be expensive or unfeasible for a company to test multiple versions of a component because
of interface changes. In that case it is probably better to keep interfaces consistent, and
just provide default values whenever the element is not present. The mock block is perfect
for that design and to convey the default values.

The downside of the pattern is that the interfaces are not updated. Therefore, unnec-
essary data is kept �owing through the system.

6.3 Alternative Implementation (XOR)

6.3.1 Scenario Description

Variability in a system often arises as di�erent possible ways of structuring code to provide
alternative functionality based on feature selection. This kind of changes probably requires
swapping some components and adapting the rest of the system. Any strategy used to
model this scenario must satisfy the following objectives:

• The model shall allow selecting only one of the possible alternatives.

• The model must always be in a consistent state.

• If required, it shall be possible to remove any unused code; this could be useful to
reduce executable size and prevent any possible accidental activation.

• There should not be any unnecessary conditional statements scattered through the
code checking the status of the feature.

45

6.3.2 Suggested Pattern

This pattern requires the family architecture to show what the possible variations are by
leveraging inheritance. The idea is to include an abstract block to represent the variable
component. If the alternatives are known at this time, they are included in the model
as subclasses of the abstract block. Otherwise, the block is marked with the �customiza-
tion point �stereotype, which will force each variant to subclass it with a new unique
implementation.

Later, instances will create a child of the aggregate block, and replace the variable
component with either one of the given options or their unique implementation. Note that
even if the family model already o�ers explicit alternatives, the instances are free to create
their own. If designers want to prevent this from happening, they can tag the generalization
relationship with generalization sets specifying that all the possible alternatives have been
given already.

It is important to mention that alternative components can modify their interface if
necessary. To do so, they need to rede�ne the type of the corresponding proxy port by using
rede�nition. That way they can specify new inputs and outputs as required. Obviously,
this implies that other parts of the model must be in synch with these changes.

As a summary, the steps required to use this pattern are:

1. The family architecture model includes an abstract block to represent the variable
component. If the alternatives are known at this time, they are shown as subclasses
of this block. Otherwise, the abstract block is marked with the �customization
point�stereotype.

2. The instance model subclasses the aggregate block and rede�nes the type of the
variable component to one of the given alternatives or to the one created exclusively
for the current instance.

3. If the alternatives have di�erent interfaces, they must create new interface blocks
with the new signature and rede�ne the corresponding proxy ports.

Example

In a turbo-prop, one of the ways a controller can modify the thrust produced is by adjust-
ing the pitch of the propeller. Whenever the software receives a command to produce a
particular power level, the controller measures the current position of the propeller blades,

46

AlternativeComponent Propeller_Mgr_BDD [Package] bdd []

proxy ports
bp OUT IF : BP Closed Loop IN IF{redefines bp OUT IF}

«block»

BP Closed Loop

proxy ports
bp IN IF : BP Open Loop IN IF{redefines bp IN IF}

«block»

BP Open Loop

proxy ports
bp IN IF : BP IN IF
bp OUT IF : BP OUT IF

«block»

Blade Pressure Ctl

proxy ports
in_if : Propeller Mgr IN IF
out_if : Propeller Mgr OUT IF

«block»

Propeller Mgr

proxy ports
in_if : Ice Protection IN IF
out_if : Ice Protection OUT IF

«block»
«CustomizationPoint»

Ice Protection Mgr

Is Covering
Is Disjoint

blade Pressure Ctl ice Protection Mgr

(a) Propeller Manager BDD

AlternativeComponent Propeller_Mgr_IO [Package] bdd []

flow properties
in current beta : plane angle [1]{redefines current beta}
in current prop speed : frequency [0]{redefines current prop speed}

«interfaceBlock»

BP Closed Loop IN IF

flow properties
in current beta : plane angle [0]{redefines current beta}
in current prop speed : frequency [1]{redefines current prop speed}

«interfaceBlock»

BP Open Loop IN IF

flow properties
in requested beta : plane angle
in current beta : plane angle [0..1]
in current prop speed : frequency [0..1]

«interfaceBlock»

BP IN IF

«interfaceBlock»

Ice Protection OUT IF

proxy ports
synchrophasing Mgr IN IF : Synchrophasing Mgr IN IF
ice Protection IN IF : Ice Protection IN IF
bp IN IF : BP IN IF

«interfaceBlock»

Propeller Mgr IN IF

proxy ports
synchrophasing Mgr OUT IF : Synchrophasing Mgr OUT IF
ice Protection OUT IF : Ice Protection OUT IF
bp OUT IF : BP OUT IF

«interfaceBlock»

Propeller Mgr OUT IF

flow properties
out blade pressure : pressure

«interfaceBlock»

BP OUT IF

«interfaceBlock»

Ice Protection IN IF

(b) Interfaces used by the Propeller Mgr, Blade Pressure Ctl and Ice Protection

Mgr blocks.

Figure 6.6: Alternative Component Pattern. Family Architecture level.

47

ACME_Propeller_Mgr_BDD AlternativeComponent [Package] bdd []

parts
blade Pressure Ctl : BP Open Loop{redefines blade Pressure Ctl}
electric Anti-Ice Mgr : Electric Anti-Ice Mgr{redefines ice Protection Mgr}

...

«block»

ACME Propeller Mgr

parts
blade Pressure Ctl : Blade Pressure Ctl
ice Protection Mgr : Ice Protection Mgr

...

proxy ports
in_if : Propeller Mgr IN IF
out_if : Propeller Mgr OUT IF

Propeller Mgr
«block»

(a) BDD of instance with alternative components.

Figure 6.7: Alternative Component Pattern. Instance level.

48

calculates a new position, and requests the necessary adjustment. However, there are some
engines that do not have the equipment required to get this measurement; they have to
rely on other means, like the propeller speed, to control the system. Figure 6.6a contains
the BDD that shows this variability. In this diagram, Blade Pressure Ctl is an abstract
block that presents an alternative; it can be replaced by BP Closed Loop when an engine
has the means to measure the current blade angle, or BP Open Loop when it cannot. As
shown in �gure 6.6b, each of these variants requires di�erent interfaces, so their port types
must be rede�ned too.

Another important feature of propellers is the way they can use to prevent from getting
covered with ice as that accumulation could decrease their performance or, in the worst
case, make the system lose control of the propeller. However, there are many types of
mechanisms that can provide this feature. By using �Customization Point�stereotype,
block Ice Protection Mgr in �gure 6.6a forces each engine to have an ice protection system,
but does not specify the possibilities; each concrete variant must de�ne its own.

Discussion

Using this pattern allows variants to choose from di�erent alternatives. If they do not
change the abstract block interface, swapping components is completely transparent; no
other parts are touched. However, if the interface does change, more updates might be
necessary to keep the model consistent. In particular, blocks that produce or consume one
of the changed �ows might require to be adapted.

6.4 Collection

6.4.1 Scenario Description

Structural changes are not limited to individual components. There are cases where the
number of elements of a particular type can vary depending on the feature model. For
example, an aircraft can contain one or more engines. Models should be able to represent
this type of variability e�ciently; changes to the multiplicity of an element should not
produce a noticeable impact on its structure. An adequate modeling strategy should
accomplish the following objectives:

• It shall be possible to modify the actual number of elements of the same type without
a�ecting the system structure.

49

• Each variable element can have alternative implementations (with some restrictions).

• Minimize the number of conditional statements checking the status of the feature.

6.4.2 Suggested Pattern

This pattern is very simple; instead of working with a variable number of independent
elements, the model should organize them as a single collection. This approach allows the
system to remain oblivious, up to a certain level, of the actual number of them. For it to
work, all items must belong (or derive) from the same type, and have the same interface.
When they do not meet these two conditions they require di�erent handling; they do not
make sense as a group.

At the family architecture model, a component is shown to have a collection with a
variable number of items via a containment relationship, whose multiplicity must have a
lower bound of at least 1 and an upper bound of at least 2. This range restricts the possible
amount of elements that any instance can have.

Later on, variant models have to provide extra information about the collection. At
the very least, they have to subclass the aggregate block and specify the concrete number
of items that it holds by rede�ning the property and changing its cardinality. If necessary,
the model can also provide additional information about one or more of the elements via
subsetting.

One important restriction to keep in mind is that this pattern requires the collection
cardinality always to be greater than zero. Otherwise, there is the possibility of having an
instance without any element, which would mean that the group of items as a whole is not
always present; this case requires the optional component pattern.

Again, these are the steps required to use the collection pattern:

1. If there is a variable number of elements of the same type (or derived from) that
share the same signature, handle them as a collection.

2. Show at the family architecture model the collection via a containment relationship
with variable cardinality.

3. At the instance model subclass the component that contains the collection, and mod-
ify its cardinality via rede�nition. Use subsetting to provide additional information
if required.

50

Example

One of the parts in an airplane that can vary more in multiplicity is the wheels of the
landing gear. A simple one, like the tailwheel-type, has three wheels, two at the front and
one at the back. More complex con�gurations, like the one installed in the Antonov AN-
225 Mriya [47], can have up to 32 of them. Furthermore, there are many types of wheels;
some of them are suited for heavy duty, while others are a better �t for small loads. Figure
6.8a shows a BDD that models this example. The Airframe can have from 3 to 32 wheels,
and each of them can be of Remountable Wheel or Divided Wheel types. Figure 6.8b, on
the other hand, displays an instance whose airframe has three wheels, two at the front and
one at the back.

Note that the blocks in this example do not contain behavior. If they did, they would
need to have the same signature for this pattern to work.

Discussion

This pattern allows the model to manage a variable number of elements of the same type
as a collection with a negligible impact on the rest of the system. The only possible side
e�ect can happen if by subsetting an element the internal structure changes. When that
happens, the new con�guration needs to be modeled in the IBD of the instance.

Also, it is important to remember that for this approach to work it requires the collection
cardinality to be at least one. When it can also be zero, it must be combined with the
optional component pattern.

6.5 Data Flow Organization

6.5.1 Scenario Description

One of the biggest challenges faced by companies while developing a system is keeping data
and control �ows in check. A typical product will have hundreds if not thousands of them,
each of which is likely to have di�erent types, origins, destinations, and restrictions. Hence,
managing these interfaces for one product is very tough work. This problem becomes
exacerbated in a software product line, where each variant will have di�erent combinations
of �ows.

51

Aiframe_BDD [Package] Collectionbdd []

«block»

Wheel

«block»

Divided Wheel
«block»

Remountable Wheel

«block»

Airframe

wheel 3..32

(a) Airframe BDD

ACME_Airframe_BDD [Package] Collectionbdd []

parts
wheel : Wheel [3..32]

«block»

Airframe

parts
wheel : Wheel [3]{redefines wheel}
front_wheels : Divided Wheel [2]{subsets wheel}
back_wheel : Remountable Wheel [1]{subsets wheel}

«block»

ACME Airframe

(b) BDD of instance with collection.

Figure 6.8: Collection Pattern

52

Models can ease this problem by showing for each �ow its origin, destination, type, and
how they vary from product to product. However, for this representation to be helpful it
needs to meet the following goals:

• The representation used must be as clean and clear as possible; when a diagram gets
cluttered because of an unreasonable amount of connectors it loses its usefulness.
Therefore, data �ows need to be depicted in a concise way.

• It is important to reduce unnecessary manual work. In particular, changes in �ows
should not scatter throughout the model.

• It must be easy to identify the origin and the destination of the data. Furthermore,
they must be kept synchronized.

6.5.2 Suggested Pattern

The �rst part of this pattern requires creating a data dictionary. The idea is to provide
a central repository that describes the properties and data types used throughout the
model. Each entry in the dictionary should contain the name of the property, its type,
acceptable ranges, default values, description, origins and destinations. This information
can become invaluable during the system design; it can help avoid duplicate variables,
enforce consistent naming, and identify adequate values, among others. It is important
to highlight that the actual dictionary does not necessarily have to be created manually
and stored in one central location. If there is enough tool support, data can be placed at
di�erent locations in the model, and queried on demand to build the dictionary on the �y.

Next, the connectors in the model need to be put under control, which can be accom-
plished by using proxy ports typed with interface blocks. In them, this approach employs
�ow properties to describe atomic values and proxy ports for nested �ows. The fundamen-
tal idea is to have only one port for all inputs of a block and one for all outputs. The
input port contains �ow properties for all the values directly required by the block, and
one proxy port (nested interface blocks) for the input of each of its parts. Similarly, the
output should contain �ows properties for the values produced by the block and proxy
ports for each of the parts.

Based on feature selections, some �ows of data might not be required for all variants.
A model can depict this optionality by setting the corresponding element of the interface
block as [0..1]. If an atomic value is variable, its �ow property is marked as optional. On

53

the other hand, when a part of the block is not always required, the corresponding proxy
port is marked as optional too.

The last part of the pattern deals with interface compatibility analysis, which involves
making sure that the data required by a block and its part is indeed provided by the
components it is connected to. The modeling tool should be able to perform this analysis
automatically. To do so, it must decompose the interface blocks into atomic �ow properties
and match inputs by name, type, and direction. If there is a problem, the tool should
report a compatibility violation. Note that the SysML speci�cation does not provide
detailed information about how to perform this analysis, so this could be an extension to
the speci�cation.

In summary, handling variability with the data �ow organization pattern requires these
following steps:

1. Create a central data dictionary.

2. Organize data and control signals in aggregate �ows.

3. Use proxy ports and �ow properties cardinalities to show data �ow optionality.

4. The modeling tool should perform compatibility analysis by decomposing proxy ports
(nested interface blocks) into atomic �ow properties.

Example

Figures 6.9 and 6.10a show pieces of the Controller Software block in a BDD and IBD
respectively. Even in such a small example the �ow of data is very complex. The Input
Processing block receives data, transforms it and produces clean �ows for other components
to use. The internal blocks, State Mgr and Power Mgr, use this data to perform calculations
that can help control the system. Finally, the information that they produce is provided
to the Output Processing block to transmit externally.

Without proper organization, keeping data �ows under control would be very hard.
For instance, the Ice Protection Mgr block is a Customization Point, meaning that each
variant must de�ne its particular implementation, potentially changing its signature in
the process. In the worst case, any change to this interface would impact the containing
blocks Propeller Mgr, Power Mgr, and the components they connect to; this would be very
ine�cient.

54

Controller_SW_BDD Data Flow [Package] bdd []

proxy ports
in_if : BP IN IF
out_if : BP OUT IF

«block»

Blade Pressure Ctl

proxy ports
in_if : Propeller IN IF
out_if : Propeller OUT IF

«block»

Propeller Mgr

proxy ports
in_if : Gas Generator IN IF
out_if : Gas Generator OUT IF

«block»

Gas Generator Mgr

proxy ports
in_if : Power Mgm IN IF
out_if : Power Mgm OUT IF

«block»

Power Mgm

proxy ports
in_if : State Mgm IN IF
out_if : State Mgm OUT IF

«block»

State Mgm

proxy ports
in_if : Ice Protection IN IF
out_if : Ice Protection OUT IF

«block»
«CustomizationPoint»

Ice Protection Mgr

proxy ports
in_if : Output Processing IN IF
out_if : Output Processing OUT IF

«block»

Output Processing

proxy ports
in_if : Controller SW IN IF
out_if : Controller SW OUT IF

«block»

Controller SW

proxy ports
in_if : Input Processing IN IF
out_if : Input Processing OUT IF

«block»

Input Processing

proxy ports
in_if : Synchrophasing Mgr IN IF
out_if : Synchrophasing Mgr OUT IF

«block»

Synchrophasing Mgr

output Processing

blade Pressure Ctl

gas Generator Mgr

power Mgm

ice Protection Mgr

input Processing

propeller Mgr

synchrophasing Mgr

state Mgm

Figure 6.9: Controller SW BDD

55

Controller SW Controller SW[Block] ibd []

in_if : Controller SW IN IF
out_if : Controller SW OUT IF

output Processing : Output Processing

in_if : Output Processing IN IF
out_if : Output Processing OUT IF

power Mgm : Power Mgm

in_if : Power Mgm IN IF

out_if : Power Mgm OUT IF

input Processing : Input Processing

out_if : Input Processing OUT IF

in_if : Input Processing IN IF

state Mgm : State Mgm

out_if : State Mgm OUT IF

in_if : State Mgm IN IF

(a) Controller SW IBD

<<Interface Block>>
Input Processing OUT IF

<<Interface Block>>
State Mgm OUT IF

<<Interface Block>>
Power Mgm IN IF

proxy ports

gas_generator: Gas Generator IN IF
prop_mgr: Propeller IN IF

<<Interface Block>>
Gas Generator IN IF

<<Interface Block>>
Propeller IN IF

<<Interface Block>>
BP Ctl IN IF

<<Interface Block>>
Ice Protection IN IF

<<Interface Block>>
Synchrophasing IN IF

MATCH

Level 1

Level 2

(b) Interface Compatibility Analysis

Figure 6.10: Data Flow Organization Pattern

56

This problem can be solved by using the data �ow organization pattern. Data must
be organized in aggregate �ows as shown in Figure 6.10b. With this structuring, each
component does not need to worry about data origin or destination; it needs only to state
what information it needs to operate and which one it will produce as output. Later,
during interface compatibility analysis, the tool must retrieve the list of applicable �ows
properties. In this case, the list for Power Mgm IN IF would include all the ones it de�nes
directly and the ones contained at level 1 and level 2. Once the list is ready, the tool
only has to make sure that the inputs, Input Processing OUT IF and State Mgm OUT IF,
provide all of these �ow properties.

Discussion

Using this pattern provides the designers with better data organization. It allows iden-
tifying duplicate variables, enforcing system-wide policies, like naming conventions, and
keeping types, ranges, and values consistent. Moreover, organizing data in nested interface
blocks allows isolating most of the model from updates to data �ows. Whenever a �ow is
added, removed, or modi�ed, the change will a�ect only its producer and consumer. With-
out this approach, all intermediate connections would need to be updated to accommodate
the modi�cation.

Finally, this pattern can be particularly bene�cial if the model is used to generate
skeleton code. Nested interface blocks can be decomposed and used to wire components
automatically, which can signi�cantly reduce manual work and could potentially prevent
errors.

6.6 Bus Alternatives

6.6.1 Scenario Description

Except for the most trivial cases, systems do not work in isolation. They cooperate with
other entities, like external systems, users (actors), and even with their surrounding envi-
ronment. To make this interaction possible, the communication between them must take
place in a medium common to the sender and receiver, and requires following well under-
stood rules. Unfortunately, technical constraints, equipment choices and other factors, can
modify the way they interact. Worse still, communication is so ubiquitous that even the
smallest changes can impact multiple parts of the system. Modeling has the potential to

57

help reduce this problem by aiding in the creation of a design resilient to these changes.
Such a representation must meet the following goals:

• Design should support changes in communication technologies, protocols, and equip-
ment.

• Reduce the amount of manual work as much as possible. Ideally, changes should
span only one well-de�ned layer.

6.6.2 Suggested Pattern

This pattern relies on several advanced constructs of SysML present in BDD and IBD
diagrams. Namely, association blocks, proxy, full, and nested ports; refer to appendix A
for more information about each of them.

The key idea is to use full ports as a boundary between the internal system and the
external entities; they will deal with the intricacies of transforming protocol speci�c mes-
sages into usable data and vice-versa. This way the rest of the system will deal only with
clean data, and all changes pertaining communication will be constrained to full ports.

The �rst step consists of specifying the internal structure of each of the full ports.
Since blocks are their only acceptable type, two of them are created; one for each endpoint.
Then, each block gets two proxy ports: one used to provide usable data and another one for
protocol speci�c messages. Finally, the internal structure is described in an IBD as shown
in �gure 6.12. In this example, it is assumed that only two components are required to
accomplish this conversion, but more complex structures are acceptable; what is important
is that these elements remain within the port.

Next, it is important to de�ne how to link the two endpoints. Probably the best way to
do so is via association blocks. This construct speci�es that any two participants connected
with it must communicate as speci�ed in the corresponding IBD. In this case data in one
system gets transformed into a protocol speci�c message, transferred via the medium, and
transformed back by the other endpoint.

Finally, the last step is to use these elements in the model. For example, �gure 6.13
shows an engine communicating with the aircraft airframe via an avionics bus. Each
endpoint is a full port de�ned by one of the blocks previously mentioned, and the association
is typed as an Avionics Bus.

At the instance model, the block that holds the element whose communication is subject
to modi�cation is subclassed, and the port rede�ned as appropriate. These are the possible
variations:

58

Bus Change: The communication protocol or equipment might change. For instance, in
avionics the communication bus can be ARINC 429 [2] or MIL-STD-1553 [24]. This
is the most disruptive change as it requires updating elements 1, 2, 3, 4, 5, 6, and 7
as shown in �gures 6.11 and 6.12.

Data Di�erences: The data being transferred might change because of other types of
variability. Elements 5 and 7 would need to be modi�ed to address it.

Recipient Di�erences: External changes can a�ect the structure of the data sent, even
if the protocol is the same. For instance, ARINC 429 requires sending data organized
by labels; an engine might need to use di�erent labeling strategies depending on the
aircraft it is mounted on.

In summary, these are the steps required to implement this pattern:

1. Use proxy ports as system boundaries. Describe their internal structure as blocks.

2. Show how to connect ports with association blocks.

3. Use elements in IBD to qualify communication.

4. Modify as necessary via subclassing and rede�nition.

Example

Figure 6.13 shows how the engine can be connected to the airframe via an avionics bus. As
mentioned previously, there are more than one possible communication standards for this
interaction, like ARINC 429, MIL-STD-1553, among others. Therefore, it makes sense to
isolate this part from the rest of the model.

Each possible communication standard will be di�erent, but they still share some things
that can be leveraged while modeling. First, there will be an endpoint on the airframe
side and another on the engine, which will be linked by some connector. This informa-
tion is depicted via the association block Avionics Bus, representing the bus per se, and
Engine_Avionics_IF and Airframe_Avionics_IF which serve as the endpoints (called
participants in SysML). The second thing in common is that the communication between
the endpoints will be carried through standard-speci�c messages; the model portrays this
with the Avionics_Msg data type. Third, the system on one side must transform the data
to send from a protocol-independent structure to the Avionics_Msg type, transmit it, and

59

<<block>>

Engine_Avionics_IF

Proxy Ports

avionics_bus_port: Avionics_Msg

avionics_data_port: Avionics_Data_IF

<<block>>

Avionics Bus

References

<<participant>> airframe_port : Airframe_Avionics_IF

<<participant>> engine_port: Engine_Avionics_IF

<<block>>

Airframe_Avionics_IF

Proxy Ports

avionics_bus_port: ~Avionics_Msg

avionics_data_port: ~Avionics_Data_IF

1

32

5
4

bdd [Package] Bus Alternative [Bus_Alt_BDD]

(a) Association Block BDD

<<participant>>

engine_avionics_if: Engine_Avionics_IF

<<participant>>

airframe_avionics_if: Airframe_Avionics_IF

Avionics Bus
avionics_bus_port avionics_bus_port

<<proxy>>

avionics_data_port
<<proxy>>

avionics_data_port
<<proxy>>

ibd [Block] Avionics Bus [Avionics Bus]

<<proxy>>

(b) Association Block IBD

Figure 6.11: Bus Alternatives - Association Block

60

<<block>>

Engine_Avionics_IF

Proxy Ports

avionics_bus_port: Avionics_Msg

avionics_data_port: Avionics_Data_IF

<<block>>

Bus Data Unpacking

Properties

<<block>>

Bus Input Processor

Properties

bdd [Package] Bus Alternative [Bus_Alt_BDD]

76

(a) Endpoint BDD

bus input processor: Bus Input Processor bus data unpacking: Bus Data Unpacking

packed_data : Packed_Data_Port

packed_data : Packed_Data_Port

avionics_bus_port: Avionics_Msg

avionics_bus_port: Avionics_Msg

avionics_data_port: Avionics_Data_IF

avionics_data_port: Avionics_Data_IF

engine avionics if: Engine_Avionics_IF

<<participant>>

(b) Endpoint IBD

Figure 6.12: Bus Alternatives - Endpoint

61

engine: Engine

airframe: Airframe

Avionics Bus
airframe_avionics_if: Airframe_Avionics_IF

<<full>>

engine_avionics_if: Engine_Avionics_IF

<<full>>

avionics_data_port: Avionics_Data_IF
<<proxy>>

engine controller: Engine Controller

sw: Controller SW

ibd [Block] Plane [Plane_IBD]

Figure 6.13: Bus Alternative Pattern

the other side convert it back to usable data; �gure 6.12 depicts the transformation process
in one endpoint, and �gure 6.11 the communication. Finally, both endpoints will expose
avionics_data_port to the rest of the system; this proxy port will provide data in a format
ready to use.

Once this part of the model is in place, a particular bus, like ARINC 429, can be created
just by subclassing Avionics Bus. At this point, any instance can make use of the new
block and, if necessary, alter its structure by using rede�nition. The possible changes are
described in the previous section 6.6.2.

Discussion

Using this pattern allows the model to isolate the system from any communication related
variability, provides guidance about what parts to modify depending on the variation at
hand, and concentrates all changes in a well-de�ned layer. Since the interaction with
external entities can vary because of a myriad of reasons, structuring the system in this
way can allow it to become much more stable.

However, the disadvantage of this approach is that it requires a considerable amount
of work to set up the initial structure. Furthermore, it requires some advanced SysML
concepts, like association blocks, proxy, and full ports, some of which not all tools currently
support.

62

6.7 Equipment Di�erences

6.7.1 Scenario Description

A system contains variability caused not only because of di�erences in functionality, but
also because of the alternative equipment that can be used to accomplish it. For example,
part of the operation of the engine controller consists in determining the right amount of
fuel to use at any given time. A metering unit receives this value and moves mechanical
parts to provide the requested fuel �ow. However, the exact meaning of this value depends
on the hardware used; in a stepper motor it represents the rotation of a disk; in a metering
valve it denotes the position of a solenoid; other types of equipment can have alternative
meanings too. Moreover, the value might also be dependent on the manufacturer. To be
able to control the system properly, software must be aware of these di�erences and react
accordingly.

Since external data is so prone to change, the system should be structured and mod-
eled di�erently to mitigate this problem. Such representation should have the following
characteristics:

• Equipment variation should not scatter throughout the system. The scope of any
such change should be as small as possible.

• The model should provide guidance about what parts to modify depending on the
type of change.

6.7.2 Suggested Pattern

Equipment di�erences can hardly be prevented; they are dependent on decisions beyond
software control. However, systems can be protected to some degree by isolating them
from any external changes. The idea is to make the internal components work with a well-
de�ned set of inputs and outputs, and create two specialized layers that will perform the
chore of adapting them to the actual hardware. The �rst layer will handle inputs; it will
transform the values from device-speci�c units into a standard representation, will perform
�ltering, and some level of fault detection and accommodation. Similarly, the second one
will focus on outputs; it will convert internal data into a format that the hardware can
understand.

To make this work, �rst it is necessary to de�ne the standard interfaces. As described in
the data �ow organization pattern, a central data dictionary can be used for this purpose.

63

For each input and output it must contain the name, description, valid range and type.
This structure can be used to promote consistency throughout the system.

Next, it is necessary to de�ne the input and output layers. Each one can be described
as a SysML block, with proxy ports to connect them to the rest of the system. Both, the
interface block of the ports facing outwards and the internal structure of these layers, will
vary continually to respond to external equipment changes; this is acceptable, since the
variation will be constrained to these parts. On the other hand, the ports facing to the
insides of the system will be much more stable. Internal components can operate without
worrying about data representation di�erences as long as they never access external �ows
directly, and instead make use of the �ow properties de�ned in these ports.

In summary, these are the steps required to make use of this pattern:

1. De�ne data dictionary to enforce consistency throughout the system.

2. Create input layer. It will deal with value conversion, �ltering, and some fault de-
tection and accommodation.

3. Create output layer. It will transform internal data into a format that the equipment
can understand.

Example

One type of variability a turboprop engine can present is the amount of control a pilot
has over the propeller. In a very simplistic case, the cockpit has three levers, one of which
determines the propeller RPM(revolutions per minute). However, there are some engine
variants that can replace these levers with only one in an attempt to reduce the pilot's
workload. The controller of such an engine has to determine the propeller rotation rate
indirectly from the requested power.

The problem with this kind of variability is that the controller has to change the way
it governs the propeller because of external changes, even though the internal operation
should still be the same: adjust the blade angle to maintain a desired speed. Therefore,
it is convenient to create a layer that will deal with the di�erent lever con�gurations, and
always provide the requested RPM in the same way. This approach allows the internal
system structure to stay the same.

As displayed in the �gure 6.14, the Input Processing layer has a block that deals with
the conversion of the propeller speed. Note that since this block contains variability, the

64

Input Processing BDD [Package] Structuralbdd []

proxy ports

in_if : Req Propeller Speed IN IF
out_if : Req Propeller Speed OUT IF

«block»

Req Propeller Speed

proxy ports

in_if : Three Lever Control IN IF{redefines in_if}

«block»

Three-Lever Control

proxy ports

in_if : One Lever Control IN IF{redefines in_if}

«block»

One-Lever Control

proxy ports

in_if : Input Processing IN IF
out_if : Input Processing OUT IF

«block»

Input Processing

req Propeller Speed

(a) Input Layer BDD

Input Processing IO [Package] Structuralbdd []

flow properties

in prop_lever_angle : Real [1]{redefines prop_lever_angle}
in power_lever_angle : Real [0]{redefines power_lever_angle}

«interfaceBlock»

Three Lever Control IN IF

flow properties

in prop_lever_angle : Real [0]{redefines prop_lever_angle}
in power_lever_angle : Real [1]{redefines power_lever_angle}

«interfaceBlock»

One Lever Control IN IF

flow properties

out req_prop_speed : frequency

«interfaceBlock»

Req Propeller Speed OUT IF

proxy ports

req Propeller Speed OUT IF : Req Propeller Speed OUT IF

«interfaceBlock»

Input Processing OUT IF

proxy ports

req Propeller Speed IN IF : Req Propeller Speed IN IF

«interfaceBlock»

Input Processing IN IF

flow properties

in prop_lever_angle : Real [0..1]
in power_lever_angle : Real [0..1]

«interfaceBlock»

Req Propeller Speed IN IF

(b) Input Layer Interfaces

Figure 6.14: Equipment Di�erences Pattern - Family Architecture Level

65

ACME Input Processing [Package] Structuralbdd []

parts

req Propeller Speed : Three-Lever Control{redefines req Propeller Speed}

«block»

ACME Input Processing

parts

req Propeller Speed : Req Propeller Speed

proxy ports

in_if : Input Processing IN IF
out_if : Input Processing OUT IF

«block»

Input Processing

Figure 6.15: Equipment Di�erences Pattern - Instance Level

alternative component pattern is used, and two subclasses are created; one deals with the
three-lever con�guration and the other with the one-lever case. Internally, each of them
will transform the input into the expected value, will perform �ltering, and some levels
of fault-detection and accommodation. Finally, �gure 6.15 shows the input layer of the
ACME instance, which will use the Three-Lever Control ; the rest of the system is unaware
of which con�guration is employed, since the provided req_prop_speed value is always the
same.

Discussion

A model that makes use of this pattern can limit the impact that the exterior has over the
structure of the system; they can almost evolve independently. Whenever such a change
happens, its impact will be scoped to the input/output layers, leaving the rest of the
system una�ected. However, this approach might make some internal adjustments a little
bit harder to perform. Changes necessary for adding or removing internal components
might not only encompass the component itself anymore, but also the input/output layers.
Moreover, modifying the data crossing these layers requires careful handling, since any
update can a�ect more than one part. This last problem can be mitigated to some degree

66

by keeping a data dictionary; it would allow to know which components would be a�ected
by changing a data item.

6.8 Summary

This chapter described how variability can occur in structural diagrams, such as block
de�nition and internal block diagrams, and proposed patterns to deal with it. First, it
introduced the variable property. It makes use of value properties for quantitative vari-
ability, subclassing for intervals and PDIs for data that will be provided in the future.
Second, it provided two patterns for optional elements: the component removal and the
mock component patterns. Next, it provided two ways to deal with alternative behavior.
The XOR pattern is suggested for situations where one component can have only one of the
alternative implementations. The collection, on the other hand, is useful when instances
can have one or more components selected at the same time. Similarly, the chapter pro-
posed the data �ow organization pattern to handle interfaces di�erences throughout the
model. Also, it provided the bus alternatives approach to manage communication changes.
Finally, it presented the equipment di�erences pattern to deal with external changes.

67

Chapter 7

SCADE Patterns

This chapter takes the focus away from the models and instead centers around the method-
ologies and mechanisms necessary to make variability handling at the implementation side
compatible with the modeling patterns previously described. The key idea is to allow the
creation of code that can be later customized to each of the supported variants. The origi-
nal version must re�ect the family architecture model and the customizations, on the other
hand, should follow the changes described in the instance models.

SCADE Suite [42] is a model-based development environment that can help streamline
the certi�cation process. Since this tool can reduce costs signi�cantly, it is becoming one of
the implementation languages of choice in the avionics domain. Since the focus of this work
is also around avionics, the patterns presented in this chapter are given in this language.
However, each one of them also contains a description of what the problem is, and what
constructs are necessary to solve them; hopefully this approach will make the information
presented more generic.

7.1 Alternative Nodes � Same Signature

7.1.1 Scenario Description

Some of the modeling strategies, such as the mock component pattern, require swapping
parts of the system that retain the same interfaces, but that provide alternative function-
ality. In object-oriented programming languages, this situation can be easily solved via

68

inheritance and polymorphism. However, not all implementation languages have these ad-
vanced features. Therefore, to allow this type of variability the tool used should provide
the following features:

• Allow encapsulation of alternative behavior in separate components.

• It should be clear that the alternatives share the same interface.

• The code should be able to change between implementations without having to mod-
ify the calling component.

7.1.2 Suggested Pattern

Even though SCADE does provide some mechanisms for genericity and polymorphism,
they behave di�erently from how they usually do in object-oriented languages, so a di�erent
approach must be devised to solve this problem.

One possible solution involves making the replacement of components by hand. The
idea is to create one project that contains the part of the code that will not change, and
refer to the variable behavior as a call to operators in external libraries. In particular,
each alternative needs to be stored in a separate project; the appropriate one is selected
depending on the functionality to provide. For this approach to work, the operator location,
name and signature must be the same. Otherwise, SCADE is unable to locate the items
to swap.

It is important to note that although this replacement can be performed manually, the
process can certainly be automated. Current versions of SCADE store the implementation
information, like operators and packages, in XML-based �les. Therefore, it is possible to
use scripts to modify the XML element that contains the location of the libraries. If these
scripts are connected to the feature model, the whole con�guration process can become
fully automated.

In summary, these are the steps required to provide alternative implementations with
the same interface in SCADE:

1. Place alternative behavior in operators stored in separate SCADE libraries. Each of
them shall have the same path, name, and interface.

2. The common code shall make a call to the variable operator. Since the interface is
kept unchanged, this part of the implementation can remain oblivious of the actual
library to use.

69

3. Swap the component depending on the desired functionality to provide; this task can
be performed manually or through a script.

Example

Figure 7.1 contains the implementation of the model described in �gure 6.4a. As shown,
depending on the status of the synchrophasing feature the propeller operation can be
modi�ed by two alternative behaviors. The �rst one, encapsulated in library Synchrophas-
ingConcrete, synchronizes the propeller phase to reduce noise and vibration. The second
one, included in SynchrophasingMock, keeps the propeller unchanged.

PropellerMgr makes the call without caring about which library is in place; SCADE
will take care of the swap as long as the operators in both libraries keep the same location,
name and signature.

Discussion

This pattern allows the creation of a customizable component that can choose from alter-
native behavior as long as each of the options keeps the interface unchanged. For this ap-
proach to work, the di�erent implementations must be stored in independent libraries, and
rely on external mechanisms, like custom scripts, to make the necessary �le replacements.
At least in the avionics domain, this �exibility does not come for free; the con�guration
process might need to be veri�ed to ensure that the right selection is being performed, and
potentially, will need to be certi�ed.

7.2 Alternative Nodes � Di�erent Signature

7.2.1 Scenario Description

As mentioned in the previous pattern, it is relatively simple to provide alternative behavior
when they share the same interface; only swapping the components is necessary. However,
if the interface requires modi�cation then the process becomes harder. The biggest problem
is that any changes to the inputs or outputs need to be re�ected in the calling operator.
Even worse, it might be necessary to carry over the modi�cations even beyond the parent
operator; this can get out of control easily.

70

(a) Calling Operator

(b) Alternative Operator 1

(c) Alternative Operator 2

Figure 7.1: Alternative Node - Same Signature

71

Therefore, to manage variability there shall be a way of dealing with interface changes
e�ciently. Such an approach should have the following characteristics:

• It shall be possible to swap components even if they have di�erent interfaces.

• Changes to the functionality and to the interfaces must be kept in synch.

• There should not be any need to modify manually any of the parent components,
including the calling operator.

7.2.2 Suggested Pattern 1

The pattern described in this section has not been implemented, as it requires a con-
struct that is currently unavailable in SCADE. However, it might be helpful to consider
implementing it as it could make this type of variability remarkably e�cient.

The cornerstone of this approach is the swapping of components, described in section
7.1, and an abstract struct. The idea is still to make use of alternative libraries that will
be interchanged as necessary. All the constant inputs/outputs will behave as normal, but
the ones that can vary will �ow within the aforementioned abstract struct.

Each library will o�er di�erent functionality, and will have a unique implementation of
the abstract struct based on the data that it needs; it can be empty if no data is necessary.
Furthermore, the abstract struct shall allow nesting. This way interface variability can
happen at di�erent levels, but each component only needs to be aware of the changes at
its level.

After a particular library is chosen based on the functionality to o�er, the KCG gener-
ator can then produce code as normal. The only extra e�ort is to decompose the abstract
struct into atomic elements, and wire them based on name and type. This process is shown
in �gure 7.2b.

Putting everything together, these are the envisioned steps to make this approach work:

1. Place alternative behavior in separate libraries. Each library shall de�ne the variable
data it needs in an abstract struct.

2. During code generation, decompose abstract struct and perform auto-wiring based
on name and type.

3. Keep data producers and consumers in synch.

72

Example

Figure 7.2 shows how the proposed interface compatibility analysis would work between
Operator_1 and Operator_a. Figure 7.2a focuses on explaining how SCADE nodes would
be connected. On the left side, Operator_1 produces an output obtained by calling Op-
erator_2 and Operator_3, which make other calls themselves. Operator_a, on the other
hand, will receive that as input and will distribute it to its child nodes, Operator_b and
Operator_c, and to the grandchild node Operator_d. Figure 7.3, describes the way the
abstract structs are nested to allow this design.

Finally, �gure 7.2b presents how items are matched. Each nested struct is recursively
decomposed until only atomic properties are left. At that point, the output variables are
associated with the input ones by comparing their names and types. If no errors are found,
SCADE should wire them automatically.

7.2.3 Suggested Pattern 2

The approach described in this section is inspired by the adapter pattern [22, p. 139] used
in object-oriented programming languages. The idea is that instead of adjusting the calling
operator based on the interface of each alternative, an intermediate adapter will handle
the di�erences.

As explained in section 7.1, each possible implementation will be stored in di�erent
libraries. However, for this pattern each one will also include the adapter necessary to
transform the external interface into the one needed internally. Since the adapters are
the ones responsible for calling the internal operator, they need to share the same name,
inputs/outputs, and location so that SCADE can identify them. The operators, on the
other hand, are free to change.

Most of the times the role of the adapter will only be terminating unused inputs, but
more sophisticated approaches are possible. Note that this redirection might have a small,
but still noticeable performance impact. If deemed necessary, the operator itself can handle
the interface adaptation; a design choice has to be taken to either favor design cleanliness
or performance.

These are the steps required to use this pattern:

1. Place alternative implementation in di�erent libraries.

73

Operator_1

Operator_2 Operator_3

Operator_4 Operator_5

Operator_a

Operator_b Operator_c

Operator_d

(a) Operator Calls

Operator_1

Operator_2 Operator_3

Operator_4 Operator_5

Operator_a

Operator_b Operator_c

Operator_d

var_1, var_2 var_3

var_4

Outputs
(Operator_4) var_1
(Operator_4) var_2
(Operator_5) var_3
(Operator_2) var_4
(Operator_1) var_5

Inputs
(Operator_d) var_1
(Operator_c) var_2
(Operator_b) var_3
(Operator_c) var_4

(Operator_a) var_5

var_3 var_2,var_4

var_1

Match

(b) Input/Output Matching

Figure 7.2: Interface Compatibility Analysis

74

Operator_a Abstract Struct

Operator_b Abstract Struct

Operator_c Abstract Struct

Operator_d Abstract Struct

Operator_1 Abstract Struct

var_5

Operator_3 abstract struct

Operator_2 abstract struct

Operator_2 Abstract Struct

var_4

Operator_5 abstract struct

Operator_4 abstract struct

Operator_3 Abstract Struct

Operator_4 Abstract Struct

var_1

var_2

Operator_5 Abstract Struct

var_3

var_5

Operator_c abstract struct

var_3

Operator_d abstract struct

var_2

var_4

var_1

Operator_b abstract struct

Figure 7.3: Abstract Struct Nesting

75

2. Create an adapter for each library. Each one of them must have the same name,
interface, and location, and will be in charge of transforming the provided interface
into the one needed internally.

3. Change the desired functionality by swapping libraries; this task can be performed
manually or through a script.

Example

The example in �gure 7.4 shows how the propeller controller calls the BladePressureCtl
operator to get the pressure to use at any time. There are two possible implementations
depending on the type of feedback available in each engine variant. If the current blade an-
gle is available, BPClosedLoop library is used, and the propSpeed argument is ignored. On
the other hand, if this piece of data is not accessible then the calculation is performed with
the BPOpenLoop library, which makes use of propSpeed, but that disregards currentBeta.
The calling controller is ignorant about the fact that each operator requires a di�erent
interface; the adapters are the ones that deal with this issue.

Discussion

This approach allows the creation of customizable components with parts of behavior
that can change between a set of possible alternatives, even if their interfaces change.
Probably, the biggest advantage is that the calling operator does not require any change;
the functionality can be swapped simply by importing a di�erent library.

However, this �exibility comes at a price. First of all, adapters need to be created
for each alternative to support. Second, if one of the alternatives requires changing its
input/output, the adapter of the other ones must receive the update too, even if they do
not need that data at all. Finally, variants might end up with pieces of useless data �owing
through them, which could a�ect performance in extreme cases.

7.3 Optional Node

7.3.1 Scenario Description

One common type of variability happens when a part of the system gets added or removed
altogether based on the feature selection. At the model level, this case is handled with the

76

(a) Calling Operator

(b) Alternative Operator 1

(c) Alternative Operator 2

Figure 7.4: Alternative Node - Di�erent Signature

77

optional component pattern, described in section 6.2; such an approach has to be re�ected
on the implementation side too. This task can get complicated if enabling the component
can trigger changes in the calling operator.

An e�cient method to handle this scenario should have the following characteristics:

• It should allow adding or removing optional components as necessary.

• It should have little or no impact on the calling operator.

• Manual work shall be minimized as much as possible.

7.3.2 Suggested Pattern

This scenario is very similar to the one generated by swapping components with varying
interfaces. In fact, it could also bene�t from using the abstract struct as envisioned in
section 7.2.2. The operator that includes the optional component could organize all the
inputs/outputs of the optional component in this struct. If the option were enabled,
the struct would be decomposed into atomic �ows and wired automatically. If it were
disabled, then the struct would be empty, and no elements would require connections.
Unfortunately, SCADE does not currently provide this kind of construct, so a di�erent
approach is necessary.

The biggest challenge to minimize the manual work is making sure that the calling
operator will not require modi�cations because of the status of the optional component; it
should always call the operator the same way regardless if the component is on or o�. One
way to do this is following the same strategy as section 6.2.2: using a mock.

The idea consists in having two alternatives with the same interface, placed on di�erent
libraries, for each optional component. One of them will have the real functionality while
the other one will only return default values. If the optional feature is enabled, the library
with the concrete implementation must be imported. Otherwise, the mock library is the
one to use.

In summary, these are the measures to take to use this pattern:

1. Create two libraries, one with the real implementation, and another with a mock
node. Both of them must have the same interface.

2. Select which library to import based on the feature selection. If the option is enabled
select the real implementation. Otherwise, use the mock node.

78

Example

The example included in �gure 7.5 describes the component PhaseValidator, which ensures
that the measured phase angle is within a valid range. However, this functionality is
required only if the engine contains a sensor to make this measurement. Otherwise, the
data contained in this �ow is useless and must be ignored. When the sensor is present, the
library that contains the real implementation, displayed in �gure 7.5b, must be selected.
On the other hand, if it is not present, then the mock is su�cient; this is shown in �gure
7.5c.

Discussion

This pattern allows enabling and disabling an optional component as necessary without
disturbing the calling operator. Unfortunately, it does not adapt the interfaces of the
components, so unnecessary data might be kept �owing throughout the system.

Note that to make both, the model and the implementation consistent, if the mock
pattern is used during modeling, that same approach should be adopted in SCADE.

7.4 Collection

7.4.1 Scenario Description

A system can have features that a�ect more than one components at the same time.
If they all share the same type and require identical manipulation, then it makes sense
to group them and manage them as a collection. If that was the choice taken during
modeling, as explained in section 6.4, then it is a good idea to mirror that approach at the
implementation level.

A method to deal with components of the system as a group should have the following
characteristics:

• The implementation should stay the same regardless of the exact number of items in
the collection.

• It must be clear how each element of the collection is manipulated.

• It should reduce manual work as much as possible.

79

(a) Calling Operator

(b) Concrete Operator

(c) Mock Operator

Figure 7.5: SCADE Optional Node

80

7.4.2 Suggested Pattern

Handling this scenario in SCADE is very easy, as it provides support to deal with aggregate
elements via arrays. The only caveat is that it does not contain traditional control �ow
statements like loops. Instead, collections must be manipulated via higher-order functions
like maps and folds. However, once these functions are in place, the implementation because
completely stable; changing the number of items only requires updating the constant that
holds this value, and this process could be automated via a script or a similar approach.

Discussion

With this pattern, it is possible to handle a variable number of elements with minimal
impact to the implementation. However, before using it there are two things to keep in
mind. First, it requires using higher-order functions to manipulate the elements in the
collection. Second, SCADE does not allow empty collections; if a variant could end up
with an empty array, then this approach would need to be combined with the optional
node pattern, described in section 7.3.

7.5 Summary

This chapter introduced a series of patterns that can help the implementation in SCADE
Suite to be compatible with the modeling approach previously described. The �rst de-
scribes how to provide alternative component implementations when the signature remains
unchanged. The second, on the other hand, presents a couple of approaches to deal with
alternative components with di�erent signatures; one of them has not been implemented,
but highlights the need of an abstract struct. Next, the chapter presented an approach
for an optional node. Finally, it described the collection pattern which is useful when it is
possible to have one or more components of the same type.

81

Chapter 8

Evaluation

8.1 FCU

The Fuel Control Unit (FCU) is a part of a turbo engine that determines the rate and the
amount of fuel required to meet the power demanded by the pilot and the engine controller
[17, 28]. As part of its operation, the FCU will receive a fuel request from other parts of the
engine control. The unit will limit the value, determine the best schedule to use to provide
steady performance, and will command the hardware as necessary to satisfy that request.
Also, it will meter the fuel �ow and control the shut-o� valve to turn o� the engine.

Although the operation of the FCU should be the same for all engines, in practice it
varies a lot from model to model. There are multiple combinations of equipment that can be
used to implement the unit; di�erent types of sensors, valves, controls, among others. The
control, fault management, inputs, and outputs will change with each hardware di�erence,
so the software cannot be the uniform for all instances; it must adapt to manage the unit
appropriately. Therefore, an FCU is a good choice to evaluate the patterns presented in
this work since it is a relatively small component with a considerable amount of variability.

8.2 Evaluation

The evaluation of these patterns consisted in the creation of a family architecture model
that was later used to accommodate �ve real engine instances. Out of them, four are
turboshaft engines, used on helicopters of di�erent vendors and sizes, and one is a turbofan

82

engine commonly installed in medium-size business jets. Even though all of them share
similar operation principles, they still have a considerable amount of variability; they
employ various equipment, and provide di�erent features and interfaces (as necessary by
the particular airframe maker they support).

The model focuses on the fuel control unit, but also includes other parts necessary to
describe this component appropriately. It contains the top-level engine decomposition, the
fuel system hardware, communication buses, some sections of the engine electronic control
(EEC) and the FCU per se. To provide some idea of its scope, the �nal model provided
support for 19 features, contained 50 system requirements, 97 blocks, 107 interface blocks,
and 40 diagrams in total.

8.3 Results

The methodology described in this document allowed the model to accommodate �ve real
aircraft engine instances. However, it is important to note that to do so, some e�ort was
necessary to standardize interfaces, components, and properties. For instance, the fault ac-
commodation mechanism for each engine was quite di�erent from each other. Each engine
approach had to be reworked so that the vocabulary and requirements became consistent
with each other; the patterns were applicable only after this standardization. In other
words, the patterns cannot be applied without performing the rest of the methodology.

Unfortunately, there was no baseline to contrast the performance of this methodology
with other approaches. It appears that the e�ort of modeling the family architecture is
comparable to developing a single system. However, informally, it seems that modeling and
maintaining the instance models is indeed more e�cient than cloning or creating them from
scratch; instead of duplicating the model, only a handful of blocks required modi�cation.
On average, only 12 blocks needed changes. Seven interface blocks had to be adapted to
leave interfaces in a consistent state, and only two activity diagrams had to be added to
describe customization points. Table 8.1 shows a summary of the e�ort necessary for each
model.

The following section presents the results of using each pattern in practice.

Behavioral Patterns

1. Variability in Activity Diagrams

The initial attempt was to create structural diagrams directly from the requirements.

83

B
lo
ck
s

In
te
rf
ac
e
B
lo
ck
s

F
lo
w
P
ro
p
er
ti
es

R
ed
e�
n
ed

P
ro
p
er
ti
es

R
ed
e�
n
ed

F
lo
w
s

A
ct
iv
it
y
D
ia
gr
am

s
F
am

il
y

60
10
1

30
9

�
�

14
In
st
an
ce
s

12
8

0
36

13
2

T
ab
le
8.
1:

R
es
u
lt
s
S
ta
ti
st
ic
s

84

Although, they were mostly extracted from real engine speci�cation documents and
supposedly provided a complete understanding of the system, we found several ambi-
guities; even experts we worked with had trouble understanding them. The problem
was that some requirements could be interpreted di�erently, so it was hard to spec-
ify accurately what the functionality of each engine was, and how it varied between
instances.

We found that the patterns de�ned in section 5.1, and activity diagrams in general,
were extremely useful to solve this problem. They allowed us to get a clear picture
of the actual functionality, the inputs and outputs necessary to accomplish it, and
showed precisely where variation happens and what its scope is. With this infor-
mation creating structural diagrams became straightforward, as the decomposition
could be extracted almost directly from activities. It is important to highlight that
the FCU example mostly had �ow-based behavior; in other situations other behav-
ioral diagrams might be better suited to aid in the structural decomposition.

In this example, out of 40 diagrams, 14 were activity diagrams. In them, two ac-
tivities were tagged as customization points, and six conditional nodes were used to
encode variability. The resulting diagrams were readable, and variability scope was
easy to identify. However, there were no complex cases, like a single diagram with
many conditional nodes or nested variability (like a conditional node inside another
conditional node). Cases like these could make diagrams harder to read; refactoring
the models or additional tool support could be used to address this problem.

2. Variability in Sequence Diagrams

In the example, one sequence diagram was necessary. It was useful to show the in-
teraction between the system and the external entities, which in this case were the
pilot, the airplane avionics, and the remote channel. The diagram displayed the com-
munication between the di�erent actors and required using the combined fragment
construct to introduce variability, as described in section 5.2, only once. As with
activity diagrams, complex cases that require nesting of combined fragments could
become hard to understand; refactoring of the models, like creating sub-diagrams,
and tool support can potentially address this problem.

From this example, it might appear that activity diagrams are more important than
sequence diagrams. However, this is not the case. Part of the behavior of the FCU
that could have been described with them was already present in activity diagrams.
Nevertheless, other components that have a more heavily message oriented behavior
might require using more sequence diagrams.

85

Structural Patterns

1. Variable Property Pattern

The variable property pattern was very useful during the development of the model
to specify block properties that vary from instance to instance. Out of the three ways
to deal with quantitative variability mentioned in section 6.1, only the PDI approach
was used, but the Value Properties strategy was also valid; choosing between these
two appears to depend only on when the data will be provided. On the other hand,
the intervals approach was not necessary within this model. It is very likely that if
test cases were considered, this method would have been used too.

2. Optional Component
This example presented the optional component scenario twice. In both cases, the
mock component approach was used since the aggregate block could work correctly
even with default values. Although the component removal pattern was suitable
too, there was no need to disturb the rest of the model by deleting the optional
components altogether.

In the end, it appears that the decision of which of these two patterns to choose should
mirror the implementation approach that will be used. If the implementation can
work properly with default values, then the mock component seems more appropriate,
since it can leave the rest of the code untouched. Analogously, if it is possible to
refactor interfaces for each instance or if there are cases when default values are not
adequate, then the component removal pattern should be used.

3. Alternative Component Pattern
The FCU model made use of the alternative components pattern presented in section
6.3 seven times. Since the implementation of two of them had to be done on a per-
instance basis, they were marked as customization points. For the other �ve the
alternatives were known at the family architecture model, so they were provided
explicitly at that level. All of them had two options to choose from, but more could
have been available if needed.

Although the implementation of this pattern was straightforward, careful evaluation
with experts from our industry partner showed that this pattern can become prob-
lematic in some cases. The issue is that as a product line evolves, new alternatives
can be introduced. When that happens, it is possible that new �ows will be added
too. If this process is not performed with care there can be interface duplication or
inconsistencies, which can lead to model deterioration. This problem can be miti-
gated to some extent with good practices, like data dictionary and careful design.

86

<<block>>

Controller SW

proxy ports

current_beta: plane angle [0..1]

current_prop_speed: frequency [0..1]

<<block>>

Input Processing

proxy ports

current_beta: plane angle [0..1]

<<block>>

Output Processing

proxy ports

<<block>>

State Mgm

proxy ports

<<block>>

Power Mgm

proxy ports

current_beta: plane angle [0..1]

current_prop_speed: frequency [0..1]

<<block>>

Gas Generator Mgr

proxy ports

<<block>>

Propeller Mgr

proxy ports

current_beta: plane angle [0..1]

current_prop_speed: frequency [0..1]

<<block>>

Blade Pressure Ctl

proxy ports

current_beta: plane angle [0..1]

current_prop_speed: frequency [0..1]

<<block>>

Synchrophasing Mgr

proxy ports

<<block>>

Ice Protection Mgr

proxy ports

<<Customization Point>>

Figure 8.1: Interface changes impact without Data Flow Organization Pattern

However, a study about the evolution of models with variability can provide valuable
information about how to solve the problem.

4. Collection Pattern

Although the pattern was not applied on the FCU, engineers at the industry partner
identi�ed potential uses in other parts of an engine controller, in particular parts
that need to be repeated per stage of a turbine or a compressor. However, since
the number of stages is limited (typically less than 10), this variability can also be
implemented using the OR component pattern, with one OR component per stage.

5. Data Flow Organization Pattern

This pattern was crucial to keep the interfaces in the FCU case study under control,
and to make other patterns practical and e�cient. Organizing �ow properties in
interface blocks allowed several connectors to be represented in the models as only
one; this makes diagrams more readable as connectors are not overlapping each other.
The example had 60 parent interface blocks (not counting inherited blocks), with an
average of 5.15 �ow properties; without this pattern there would have been 309

87

<<interface block>>

BP IN IF

flow properties

in current beta : plane angle [0..1]

in current prop speed : frequency [0..1]

<<interface block>>

BP Open Loop IN IF

flow properties

in current beta : plane angle [0] {redefines current beta}

in current prop speed : frequency [1] {redefines current prop speed}

<<interface block>>

BP Closed Loop IN IF

flow properties

in current beta : plane angle [1] {redefines current beta}

in current prop speed : frequency [0] {redefines current prop speed}

(a) Interface Block

<<block>>

Controller SW

proxy ports

in_if: Controller SW IN IF

out_if: Controller SW OUT IF

<<block>>

Input Processing

proxy ports

in_if: Input Processing IN IF

out_if: Input Processing OUT IF

<<block>>

Output Processing

proxy ports

<<block>>

State Mgm

proxy ports

<<block>>

Power Mgm

proxy ports

in_if: Power Mgm IN IF

out_if: Power Mgm OUT IF

<<block>>

Gas Generator Mgr

proxy ports

<<block>>

Propeller Mgr

proxy ports

in_if: Propeller IN IF

out_if: Propeller OUT IF

<<block>>

Blade Pressure Ctl

proxy ports

in_if: BP IN IF

out_if: BP OUT IF

<<block>>

Synchrophasing Mgr

proxy ports

<<block>>

Ice Protection Mgr

proxy ports

<<Customization Point>>

Figure 8.2: Interface changes impact with Data Flow Organization Pattern

88

connectors. Moreover, adopting this pattern allowed reducing the changes necessary
to accommodate interface updates. Without it, all the intermediate interface blocks
would have been changed too. In this example, eight modi�cations would have been
needed per �ow property in the worst case. Other systems with deeper component
nesting might have even harsher side-e�ects.

Figures 8.1 and 8.2 show the impact necessary to accommodate interface changes
in the propeller case study. In the former, the model is not using the data �ow
organization pattern, so all intermediate nodes require modi�cations every time Blade
Pressure Ctl changes; this impact is shown in red. The latter does use the pattern,
so only two updates are required (the block in blue also requires modi�cation if the
Equipment Di�erences Pattern is used).

6. Bus Alternative Pattern
The bus alternative pattern was used four times as that is the number of buses present
in the system. Unfortunately, the approach could not be exercised entirely since not
all possible variations described in section 6.6.2 were present. In particular, the Bus
Change type was not applied since all instances made use of only one protocol per
bus. However, the other two, data and recipient di�erences were used several times;
they were able to isolate the system from communication related variability.

7. Equipment Di�erences Pattern
The FCU described in this example can have seven pieces of equipment that can vary
between instances; �ve are optional, and the other two can provide alternative choices.
In the original implementations, the e�ects of these variations scatter through many
parts of the system. Using the pattern described in section 6.7, the system was
successfully isolated from the input/output di�erences caused by equipment changes.
The internal controller structure relies on standard �ows, and only the blocks in
the external layers and their corresponding interface blocks required modi�cations.
However, this protection was limited to �ows; variations that demanded internal logic
changes could not be prevented, and required using other patterns.

8.4 Summary

This chapter demonstrates the ability of the proposed methodology to encode and handle
variability through the fuel control unit (FCU) case study. In this example, the family
architecture model was able to accommodate �ve real aircraft engine instances. Further-

89

more, the chapter provides results and experiences about each of the patterns described in
this work.

90

Chapter 9

Related Work

9.1 Variability Modeling

This section describes the previous work focused on modeling variability, especially in UML
and SysML.

The Common Variability Language (CVL) is a standard created and maintained by the
Object Management Group for the speci�cation and resolution of variability [23]. One of
its biggest advantages is that it allows specifying variability into existing models as long
as the language is compliant with the MOF-metamodel; this includes any UML-derived
language, such as SysML. There are some similarities between CVL concepts and the
methodology in our work. First, the variability and resolution models are equivalent to the
feature and instance models we de�ne in Clafer. Likewise, the base model is reminiscent
of the family architecture model, while the resolved models are similar to the instance
architecture models. However, there are also three big di�erences. First, our methodology
takes advantage of existing SysML constructs; since CVL is a more generic language it does
not leverage them. Second, CVL allows adding variability to existing models. However, it
might not be e�cient or possible to do so if they have not been designed to deal with it
from the start. Our methodology on the other hand forces to think about variability from
the beginning. Finally, CVL would create a variant model that is detached from the base
model; our methodology de�nes variant models as subclasses of the base model. To get
that e�ect one would have to create a set of instance level subclasses and then annotate
them in CVL fashion.

Trujillo et. al. [44] describes the approach followed to model a wind turbine system
in SysML. Although their case study is similar to the ones presented in this work, their

91

solution is quite di�erent to ours. Theirs focuses on de�ning a set of stereotypes for
many constructs in SysML; they have one for blocks called BlockVariationPoint, for parts
ObjectVariationPoint, among others. It is unclear if they use any other construct in SysML
to control variation. Furthermore, it is not stated if and how they trace the variation points
back to the feature model. Clauss [10] introduced a similar approach, but using UML.

Ziadi et. al. [49] shows an approach very similar to the behavioral patterns included in
our work. Furthermore, they also make use of constraints to ensure the consistency of the
derived instances. Despite these similarities, their work is restricted to UML, and they do
not link the stereotypes to the feature model.

Bayer et. al. [6] represents the most similar approach to the one presented in our work.
They also make use of specialization and rede�nition to tackle variability, and enhance
these mechanisms with stereotypes. Moreover, they analyze how variations can a�ect the
implementation code, and how they can put the models in practice. However, their work is
restricted to UML, considers only class diagrams, and does not provide any of the patterns
presented in our work.

Bachman et. al. [4] present a di�erent way of modeling variations in UML. They
introduce a more intricate metamodel and propose using it to create a specialized variability
view. Since this approach requires an external representation, it is more reminiscent of the
feature model than the methods presented in our work.

Finally, there also have been attempts to show variability in other types of models. For
instance, Zaid and De Troyer [48] showed a new way to model variability in data to be
stored in a database. Although this kind of approaches are worth considering, their target
applications are outside the scope of this work.

9.2 Avionics Systems Modeling

Since avionics applications are highly complex, it is not surprising that there have been
several attempts to model their architectures.

Quadri et. al. [37] present the results of a multi-year project aimed at unifying SysML
and MARTE for the description of real-time and embedded avionics systems. It is im-
portant to mention that their work is ambitious; it de�nes a methodology, ways to model
systems, and how to put them in practice. However, their approach does not deal with
variability in any way.

Behjati et. al [7] realized the usefulness of AADL and tried to extend SysML to include
concepts of this language. They accomplished this by extending SysML with a pro�le they

92

developed, called ExSAM. The feasibility of this approach was shown with a large-scale
case study. However, this approach does not cover variability.

9.3 Summary

This chapter describes how the methodology and patterns described in this thesis relate
to previous endeavors. In particular, it compares our approach with existing variability
modeling works. In this regard, our proposed methodology di�ers from others since it takes
advantage of SysML constructs and adapts them to the avionics domain needs. Also, this
chapter compares our methodology to previous attempts to model avionics systems.

93

Chapter 10

Conclusion

10.1 Summary of Results

This thesis presented an approach for modeling avionics applications with variability. First,
the study evaluated SysML and concluded that it is indeed �t for encoding variability in
models. However, it needs to be extended with a pro�le such as the one included in
Appendix B. Next, this work introduced a methodology and a series of structural and
behavioral patterns to model this kind of systems while keep variability under control.
Implementation patterns were also included to show how to put the model into practice.
Finally, this whole approach was evaluated via a case study based on �ve real engine
instances.

10.2 Threats to Validity

There are two circumstances that could a�ect the validity of this work. First, some of the
tool features previously described, like the interface compatibility analysis in section 6.5,
were not implemented. Although it is very likely that this functionality in the tools could
simplify modeling and development tasks, without proper evaluation it is not possible to
ensure how e�ective they are.

Second, the methodology was evaluated in the context of airplane engine control, which
is a particular case of avionic system: it is relatively closed system, concerned mostly with
continuous control, and extremely safety-critical (the entire system is classi�ed as DAL

94

A). There is a wide range of avionics systems on an aircraft, some are similarly critical
and involving continuous control, such as �ight guidance; others may be more data-driven,
such as �ight management systems, and of lower criticality levels, such as entertainment
system. The SysML patterns are likely applicable to most avionics systems; SCADE is less
appropriate for data intensive systems, however.

10.3 Future Work

There are three possible ways to extend this work. First, our current approach did not
take into account timing while dealing with variability. This is because SysML does not
provide a comprehensive way to model this information. However, MARTE can be used to
add this functionality. It would be quite useful to explore how to encode variability when
this pro�le is used, in particular with regards to timing.

Similarly, this work did not focus on parametric diagrams, which can be used to specify
system properties to perform advanced engineering analysis. If variability is encoded and
handled properly, system properties can be stored at the family architecture level, and the
parametric diagrams can then be automatically adapted to each instance. This information
could be useful to ensure that each variant behaves according to expectations, or can even
provide the ability to execute design exploration.

Finally, the scope of the case study can be increased to include the whole engine. That
way there can be even more certainty of the validity of the presented approach.

95

APPENDICES

96

Appendix A

Introduction to SysML

This appendix contains a small introduction of some of the SysML diagrams and features
used throughout this thesis. Please refer to the current SysML speci�cation [32] for a more
in-depth explanation.

A.1 Diagrams

`

In SysML, a model consists of a series of diagrams representing di�erent aspects of a
system. Each of them is enclosed by a diagram frame, which contains a header, a content
area, and a description, as shown in �gure A.1.

• Header: Located at the top left side of the frame, this section includes information
useful to identify the current diagram, such as the diagram kind, diagram name,
among others.

• Content Area: Also referred to as canvas, this section contains the graphical rep-
resentation of the elements in the diagram.

• Description: This is an optional element that provides additional information about
the diagram.

97

bdd [Package] Engine [Engine]

Diagram Description

Version:
Description:
Completion Status:
Reference:

Diagram Contents

Header

Description

Figure A.1: Diagram Frame

[Package] Engine Blockbdd []

parts
fuel System : Fuel System
propeller System : Propeller System [0..1]
gas Generator : Gas Generator
eec_ch_a : EEC
eec_ch_b : EEC [0..1]

proxy ports
airframe_avionics_if : Airframe_Avionics_IF
x-engine_if : X-Engine_IF1 [0..1]

«block»

Engine

Figure A.2: Block Example

98

A.2 Blocks

Blocks in SysML are modular units of system description. Each block de�nes a collection
of features, which can be structural or behavioral in nature, to specify a system, a part, or
another element of interest. In other words, a block can represent quite di�erent concepts
relevant in the system, like software and hardware components, human elements, among
others. One important note is that blocks allow reuse; they can be used in multiple
contexts.

As shown in �gure A.2, a block is depicted as a rectangle and is identi�ed as such with
the bracket symbol �block�, called guillemets, at the top of the element. It contains several
compartments; the one at the top is mandatory, and always contains its name; the rest are
optional, and describe block characteristics, like properties, operations, and constraints.

Properties are one of the structural features that can appear in a block. The model
displays them with their name, type and extra attributes, like multiplicity (shown within
brackets). There are many types of properties, as described below:

• Part Property: Represents the local usage of a block in the context of the enclosing
block.

• Reference Property: It is a part used, but not owned by the enclosing block; it is
not composition.

• Value Property: Provides a quanti�able attribute; is typed by a value type.

A.3 Structural Diagrams

A.3.1 Block De�nition Diagram (BDD)

The block de�nition diagram (BDD) is useful to depict blocks, in terms of their features,
and the relationships between them, such as associations, generalizations, and dependen-
cies. Furthermore, it can also be used to specify instances of blocks.

One important type of relationship is generalization. In it, one or more blocks derive
from a more general one referred to as the parent block. With this construct, it is possible
for the parent to de�ne a structure that is inherited by the children. However, the children
are free to add features, or even modify the existing ones via rede�nition; this allows
changing the property to something more adequate for that child.

99

[Package] Enginebdd BDD[]

values
minBladeAngle = 10.0 : Real{max = 30.0, min = 0.0}

«block»

Propeller Manager

«block»

Controller SW

«block»

Engine Controller

propeller Manager

controller SW

(a) Engine Controller BDD

[Package] Instance bdd BDD[]

values
minBladeAngle = 15.0 : Real{redefines minBladeAngle,max = 30.0, min = 10.0}

«block»

ACME Propeller Mgr

parts
acme Propeller Mgr : ACME Propeller Mgr{redefines propeller Manager}

«block»

ACME Controller SW

parts
acme Controller SW : ACME Controller SW{redefines controller SW}

«block»

ACME Engine Controller

values
minBladeAngle = 10.0 : Real{max = 30.0, min = 0.0}

«block»

Propeller Manager

parts
controller SW : Controller SW

«block»

Engine Controller

parts
propeller Manager : Propeller Manager

«block»

Controller SW

(b) Rede�nition without Bound Reference

Figure A.3: Rede�nition

100

Instance_2 [Package] bdd BDD[]

values
minBladeAngle = 15{redefines minBladeAngle,max = 30.0, min = 10.0, bindingPath = controller SW, propeller Manager, minBladeAngle}

«block»

ACME Engine Controller 2

parts
controller SW : Controller SW

values
minBladeAngle{bindingPath = controller SW, propeller Manager, minBladeAngle}

«block»

Engine Controller

Figure A.4: Rede�nition with Bound Reference

One important aspect to highlight is that a block can only rede�ne the features it
contains directly; the properties of its parts can only be modi�ed by successors of those
parts themselves. In �gure A.3, for example, Engine Controller cannot rede�ne the min-
BladeAngle property of Propeller Manager. To make this change, the intermediate blocks
must be subclassed until Propeller Manager block is reached. Since this process can be
very time-consuming, SysML 1.4 [34] will introduce a construct called bound-references.
With it, SysML will allow an enclosing block to access and rede�ne one of the features of
a part as shown in �gure A.4. Note that the bound reference can be de�ned in a BDD or
an IBD as necessary.

A.3.2 Internal Block Diagram (IBD)

The internal block diagram (IBD) displays the internal structure of a block by showing how
its parts connect with each other. In particular, an IBD contains a graphical representation
for parts, references, and values, and shows how they are linked via connectors and ports.

Ports are of great importance, since they can specify the �ow of inputs and outputs,
messages, and operations between the endpoints of the connector. An IBD displays them
as squares (or rectangles) in the boundary of the owning block. They are decorated with
an arrow representing the direction (in, out, in/out) of the �ows within a port; this only
happens if they all follow the same direction. Note that any item can �ow through a port
regardless if it is data, material, or energy, and a port can support more than one type.

101

Simple_IBD[Block] Engineibd []

«proxy»

airframe_avionics_if : Airframe_Avionics_IF

eec Software : EEC Software

«proxy»

in_if : EEC_SW_IN_IF

«proxy»
out_if : EEC_SW_OUT_IF

eec_ch_a : EEC

«full»

«proxy»

data_in : Data_IN

«proxy»
data_out : Data_OUT

engine_avionics_if : Engine_Avionics_IF

Avionics_Bus

Figure A.5: IBD Example

It is important to highlight that ports have su�ered drastic changes between SysML
releases. Version 1.2 made use of standard and �ow ports. Version 1.3, on the other hand,
deprecated those two types and replaced them with full and proxy ports; they are described
below since these are the ones used throughout this work.

• Proxy Ports: They expose features of either the owning block or its internal parts,
but the ports themselves are abstract; they do not represent real parts. They are
typed by an interface block and cannot contain internal structure.

• Full Ports: They represent a part in the owning block. They are typed by blocks
and can contain internal structure.

Note that SysML di�erentiate these two types via the guillemets on top of them. Also,
both of them allow nesting, which means that a port can contain another port. This case is
presented in �gure A.5, where data_in and data_out are nested in the engine_avionics_if
port.

Once ports are in place, a connector can be used to establish some link between them.
Although this construct does not present detailed information about the connection per
se, more details can be presented by typing it with an association block.

102

current_prop_speed:frequency blade_pressure:pressureGet Speed Delta

Default Angle Delta

No Angle Change

delta

delta != 0

delta == 0

Activity Parameter Nodes

Actions

Pins
Control Nodes

(Fork)

act [Activity] Calculate Pressure [Calculate Pressure]

Figure A.6: Activity Diagram Example

A.4 Behavioral Diagrams

A.4.1 Activity Diagram

SysML introduces activity diagrams to show �ow-based behavior and describe how the
provided inputs are turned into the expected outputs. Although similar to the widely-used
functional �ow diagrams, activities provide additional functionality, like allowing to link
behavior to structural elements and the ability to model continuous �ows.

From the notation point of view, an activity diagram describes a single activity. It
speci�es the interface via parameter nodes, which are represented as boxes in the border
of the diagram frame; each of them contains a name and a type. Similarly, the internal
structure is decomposed into a group of actions, each of which is presented as a rounded
box, with pins standing for inputs and outputs. Furthermore, nodes are used to express
the order of execution; they can specify the start and end of the activity, where control
forks, among others. Note that solid arrows represent the �ow of objects, while the dashed
ones specify the �ow of control.

Figure A.6 presents an example with the notation used in activity diagrams.

103

Pilot Controller Propeller

1. request power change

2. calculate prop speed

3. request blade angle chg.

4. angle changed

sd [Interaction] Prop Speed Ctl [Prop Speed Ctl]

Lifelines

Messages

Self Message

Return Message

Figure A.7: Activity Diagram Example

A.4.2 Sequence Diagram

SysML makes use of sequence diagrams to allow the speci�cation of message-based inter-
actions. Since the diagram was not modi�ed, it retains all the constructs and functionality
as in UML. In them, each item is represented via a lifeline, which can be an actor, a part
of the system, or another system altogether; it can be any entity participating in the in-
teraction. Furthermore, messages represent the invocation of a service, sending a signal,
or some other type of control �ow structure. What is important is that they are presented
in chronological order.

Figure A.7 presents an example showing the notation of this diagram.

A.5 Extending SysML via Pro�les

A pro�le is the standard way to extend UML, and in consequence SysML. In fact, SysML
itself and other languages like MARTE are also created as pro�les. The primary extension
construct is the stereotype, which allows augmentation in two ways. First, it allows cre-
ating new language constructs by overloading existing concepts, like metaclasses or other

104

stereotypes. The second way is to include additional information to existing types via
annotations; these do not collide with or a�ect existing SysML data in any way. Note
that since these are extensions, any tool that supports UML should work with or without
pro�les.

As an example, �gure B.1 in appendix B presents the pro�le used to enhance SysML
with all the product line features described throughout this work.

105

Appendix B

Variability SysML Pro�le

106

Profile Diagram SPL_Profile SPL_Profile[]

«stereotype»

Optional
[ConditionalNode]

«stereotype»

PDI
[TypedElement]

«Metaclass»

Action
{,
}

«stereotype»

Alternative
[ConditionalNode]

«Metaclass»

TypedElement

attributes
+FeatureID : String

«stereotype»

SPL_ConditionalNode
[ConditionalNode]

«stereotype»

ConstraintBlock
[Class]

«Metaclass»

ConditionalNode

attributes
+featureID : String

«stereotype»

SPL_Fragment
[CombinedFragment]

«Metaclass»

Class

attributes
+featureID : String

«stereotype»

SPL Constraint Block
[Class]

«Metaclass»

CombinedFragment

«stereotype»

VariationPoint
[Action, Class]

Behavioral Elements:
Elements that are used only by
behavioral diagrams.

Common Elements:
Elements shared by both,
behavioral and structural
diagrams.

Structural Elements

Figure B.1: SPL Pro�le

107

References

[1] SCADE Suite KCG C Code Generator, 2014.

[2] Mark ARINC. Digital Information Transfer System (DITS) Part 1, 1995.

[3] SAE ARP4754. Certi�cation Considerations for Highly-Integrated or Complex Air-
craft Systems. SAE, Warrendale, PA, 1996.

[4] Felix Bachmann, Michael Goedicke, Julio Leite, Robert Nord, Klaus Pohl, Balasubra-
maniam Ramesh, and Alexander Vilbig. A Meta-model for Representing Variability in
Product Family Development. In Software Product-Family Engineering, pages 66�80.
Springer, 2004.

[5] Kacper B¡k, Krzysztof Czarnecki, and Andrzej W¡sowski. Feature and Meta-Models
in Clafer: Mixed, Specialized, and Coupled. In 3rd International Conference on Soft-
ware Language Engineering, Eindhoven, The Netherlands, 10/2010 2010.

[6] Joachim Bayer, Sebastien Gerard, Øystein Haugen, Jason Mansell, Birger Møller-
Pedersen, Jon Oldevik, Patrick Tessier, Jean-Philippe Thibault, and Tanya Widen.
Consolidated Product Line Variability Modeling. In Software Product Lines, pages
195�241. Springer, 2006.

[7] Razieh Behjati, Tao Yue, Shiva Nejati, Lionel Briand, and Bran Selic. Extending
SysML with AADL Concepts for Comprehensive System Architecture Modeling. In
Modelling Foundations and Applications, pages 236�252. Springer, 2011.

[8] Gary Chastek, Patrick Donohoe, Kyo Chul Kang, and Ste�en Thiel. Product Line
Analysis: a Practical Introduction. Technical report, DTIC Document, 2001.

[9] J Chism. Overview and Status of the Object Oriented System Engineering Method-
ology (OOSEM). INCOSE Insight, 7(2):31�33, 2004.

108

[10] Matthias Clauÿ. Generic Modeling Using UML Extensions for Variability. In Work-
shop on Domain Speci�c Visual Languages at OOPSLA, volume 2001, 2001.

[11] Krzysztof Czarnecki and Michaª Antkiewicz. Mapping Features to Models: A Tem-
plate Approach Based on Superimposed Variants. In Robert Glück and Michael Lowry,
editors, ACM SIGSOFT/SIGPLAN International Conference on Generative Program-
ming and Component Engineering (GPCE'05), volume 3676 of Lecture Notes in Com-
puter Science, pages 422 � 437, Tallinn, Estonia, 2005. Springer-Verlag, Springer-
Verlag.

[12] RTCA Do. 178B: Software Considerations in Airborne Systems and Equipment Cer-
ti�cation. December, 1st, 1992.

[13] RTCA Do. 178C: Software Considerations in Airborne Systems and Equipment Cer-
ti�cation. January, 5th, 2012.

[14] Huascar Espinoza, Daniela Cancila, Bran Selic, and Sébastien Gérard. Challenges
in Combining SysML and MARTE for Model-Based Design of Embedded Systems.
In Model Driven Architecture-Foundations and Applications, pages 98�113. Springer,
2009.

[15] Je� A Estefan et al. Survey of Model-Based Systems Engineering (MBSE) Method-
ologies. Incose MBSE Focus Group, 25:1�70, 2007.

[16] Esterel Technologies. Esterel Technologies, 2014.

[17] FAA. Aviation Maintenance Technician Handbook�Powerplant: FAA-H-8083-32,
Volume II. US Department of Transportation.

[18] Federal Aviation Administration. Pilot's Handbook of Aeronautical Knowledge. Sky-
horse Publishing Inc., 2009.

[19] Peter H Feiler, David P Gluch, and John J Hudak. The Architecture Analysis & Design
Language (AADL): An Introduction. Technical report, DTIC Document, 2006.

[20] Guillaume Finance. SysML Modelling Language Explained(2010), 2010.

[21] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide to SysML: The
Systems Modeling Language. Elsevier, 2011.

[22] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Pearson Education, 1994.

109

[23] Ø Haugen. Common Variability Language (CVL). OMG Revised Submission, 2012.

[24] NS Haverty. MIL-STD 1553-A Standard for Data Communications. Communication
and Broadcasting, 10:29�33, 1985.

[25] INCOSE. Model Based Systems Engineering, 2014.

[26] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer
Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical
report, DTIC Document, 1990.

[27] Fabrice Kordon, Jérôme Hugues, Agusti Canals, and Alain Dohet. Embedded Systems:
Analysis and Modeling with SysML, UML and AADL. John Wiley & Sons, 2013.

[28] Andreas Linke-Diesinger. Systems of Commercial Turbofan Engines. Springer, 2008.

[29] Howard Lykins, Sanford Friedenthal, and Abraham Meilich. Adapting UML for an
Object Oriented Systems Engineering Method (OOSEM). In Proceedings of the Tenth
Annual INCOSE Symposium, International Council on Systems Engineering (July
2000), http://www. omg. org/docs/syseng/02-06-11. pdf, 2000.

[30] OMG. MARTE speci�cation version 1.1. Technical report, Object Management
Group, 2011.

[31] OMG. OMG Object Constraint Language (OCL), Version 2.3.1, 2012.

[32] OMG. OMG Systems Modeling Language (OMG SysML), Version 1.3. Technical
report, Object Management Group, 2012.

[33] OMG. Object Management Group, 2014.

[34] OMG. OMG Systems Modeling Language (OMG SysML), Version 1.4 Beta. Technical
report, Object Management Group, 2014.

[35] Klaus Pohl, Günter Böckle, and Frank Van Der Linden. Software Product Line Engi-
neering. Springer, 10:3�540, 2005.

[36] Pratt & Whitney Canada. Pratt & Whitney Canada, 2014.

[37] Imran Ra�q Quadri, Etienne Brosse, Ian Gray, Nicholas Matragkas, Leandro Soares
Indrusiak, Matteo Rossi, Alessandra Bagnato, and Andrey Sadovykh. MADES FP7
EU project: E�ective High Level SysML/MARTE Methodology for Real-Time and

110

Embedded Avionics Systems. In Recon�gurable Communication-centric Systems-on-
Chip (ReCoSoC), 2012 7th International Workshop on, pages 1�8. IEEE, 2012.

[38] SAE. SAE, 2014.

[39] Bran Selic and Sébastien Gérard. Modeling and Analysis of Real-Time and Embedded
Systems with UML and MARTE: Developing Cyber-Physical Systems. Elsevier, 2013.

[40] Cary R Spitzer and Cary Spitzer. Digital Avionics Handbook. CRC Press, 2000.

[41] Neil R Storey. Safety Critical Computer Systems. Addison-Wesley Longman Publish-
ing Co., Inc., 1996.

[42] Esterel Technologies. SCADE Suite. http://www.esterel-technologies.com/

products/scade-suite/. Accessed: 2014-09-10.

[43] Esterel Technologies. SCADE System. http://www.esterel-technologies.com/

products/scade-system/. Accessed: 2014-09-10.

[44] Salvador Trujillo, Jose Miguel Garate, Roberto Erick Lopez-Herrejon, Xabier Men-
dialdua, Albert Rosado, Alexander Egyed, Charles W Krueger, and Josune De Sosa.
Coping with Variability in Model-Based Systems Engineering: An Experience in Green
Energy. In Modelling Foundations and Applications, pages 293�304. Springer, 2010.

[45] OMG UML. 2.4. 1 Superstructure Speci�cation. Technical report, document
formal/2011-08-06. Technical report, OMG, 2011.

[46] Carnegie Mellon University. AADL, 2014.

[47] Michel van Tooren and Arvind G. Rao. Fixed-Wing Civil Transport Aircraft Design.
John Wiley and Sons, Ltd, 2010.

[48] Lamia Abo Zaid and Olga De Troyer. Towards Modeling Data Variability in Software
Product Lines. In Enterprise, Business-Process and Information Systems Modeling,
pages 453�467. Springer, 2011.

[49] Tew�k Ziadi, Loïc Hélouët, and Jean-Marc Jézéquel. Towards a UML Pro�le for
Software Product Lines. In Software Product-Family Engineering, pages 129�139.
Springer, 2004.

111

http://www.esterel-technologies.com/products/scade-suite/
http://www.esterel-technologies.com/products/scade-suite/
http://www.esterel-technologies.com/products/scade-system/
http://www.esterel-technologies.com/products/scade-system/

	List of Tables
	List of Figures
	Introduction
	Methodology
	Thesis Organization

	SysML and Related Notations
	Introduction
	Diagrams
	SysML and AADL
	SysML and MARTE
	SysML and SCADE
	Summary

	Propeller Example
	Background
	Description
	Summary

	Methodology for Modeling a Software Product Line in Avionics
	Goals
	Contributions
	Description
	Family Architectural Model
	Instance Architectural Model
	Traceability

	Summary

	Behavioral Patterns
	Variability in Activity Diagrams
	Scenario Description
	Suggested Pattern

	Variability in Sequence Diagrams
	Scenario Description
	Suggested Pattern

	Summary

	Structural Patterns
	Variable Property
	Scenario Description
	Suggested Pattern

	Optional Component
	Scenario Description
	Suggested Pattern

	Alternative Implementation (XOR)
	Scenario Description
	Suggested Pattern

	Collection
	Scenario Description
	Suggested Pattern

	Data Flow Organization
	Scenario Description
	Suggested Pattern

	Bus Alternatives
	Scenario Description
	Suggested Pattern

	Equipment Differences
	Scenario Description
	Suggested Pattern

	Summary

	SCADE Patterns
	Alternative Nodes — Same Signature
	Scenario Description
	Suggested Pattern

	Alternative Nodes — Different Signature
	Scenario Description
	Suggested Pattern 1
	Suggested Pattern 2

	Optional Node
	Scenario Description
	Suggested Pattern

	Collection
	Scenario Description
	Suggested Pattern

	Summary

	Evaluation
	FCU
	Evaluation
	Results
	Summary

	Related Work
	Variability Modeling
	Avionics Systems Modeling
	Summary

	Conclusion
	Summary of Results
	Threats to Validity
	Future Work

	APPENDICES
	Introduction to SysML
	Diagrams
	Blocks
	Structural Diagrams
	Block Definition Diagram (BDD)
	Internal Block Diagram (IBD)

	Behavioral Diagrams
	Activity Diagram
	Sequence Diagram

	Extending SysML via Profiles

	Variability SysML Profile
	References

