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Abstract

An unfolding of a polyhedron P is obtained by ‘cutting’ the surface of P in such a way
that it can be flattened into the plane into a single polygon. For most practical and theoretic
applications, it is desirable for an algorithm to produce an unfolding which is simple, that
is, non-overlapping. Currently, two methods for unfolding which guarantee non-overlap for
convex polyhedra are known, the source unfolding, and the star unfolding. Both methods
involve computing shortest paths from a single source point on the polyhedron’s surface.

In this thesis, we attempt to prove non-overlap of a variant called the geodesic star
unfolding. This unfolding, much like the star unfolding, is computed by cutting shortest
paths from each vertex to λ, a geodesic curve on the surface of a convex polyhedron P , and
also cutting λ itself. Non-overlap of this case was conjectured by Demaine and Lubiw [15].
We are unsuccessful in completely proving non-overlap, though we present a number of
partial results, and discuss some areas for future study. We first develop a new proof for
non-overlap of the star unfolding from a point. The original proof of non-overlap was given
by Aronov and O’Rourke [7]. This new proof uses a partitioning of the unfolding around
the ridge tree. Each edge of the ridge tree serves as a base edge to a pair of congruent
triangles; in this way, the whole unfolding is decomposed into these pairs which are called
kites. We prove non-overlap by showing that pairwise, no two kites in the unfolding overlap
each other, by a method which bounds the surface angle of the source images to either side
of any path through the ridge tree.

In addition to its simplicity compared to the previous proof, this new method easily
generalizes to prove non-overlap for some cases of the star unfolding from geodesic curves.
Specifically, we show non-overlap for two classes of geodesic curves, geodesic loops, and
fully-extended S-shaped geodesics, by showing that the surface angle of the source images
in those two cases are bounded. We also investigate a class of curves called fully-extended
C-shaped geodesics for which the proof cannot hold directly. We show some specific cases
where we are able to create a supplementary proof to show non-overlap, though non-overlap
for the class as a whole remains unproven.
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Chapter 1

Introduction and Background

An unfolding of a polyhedron P is obtained by cutting the surface of P in such a way that
it can be flattened into the plane, forming a single polygon. A folding of a polygon is the
reverse operation: to glue the edges of a polygon together in order to form a polyhedron.

Unfolding provides a way to decompose complex structures into a simpler form. From
a practical standpoint, unfolding has uses in product manufacturing, where one might
want to construct a 3-dimensional object from a sheet of metal or plastic, or in applying
texture mapping in graphical applications, where 2-dimensional image coordinates must
be assigned to points on a 3-dimensional model. Unfolding is also applied as a theoretical
tool for the study of shortest paths constrained to the surface of a polyhedron. Unlike
the general case of shortest paths in 3 dimensions with obstacles (which is NP-hard), the
problem of shortest paths on a polyhedral surface is efficiently solvable, and thus many
related problems can use unfolding as an intermediate step to reduce the problem to a
simpler 2-dimensional variant; for example, see Chen and Han [11], and Agarwal et al. [4].

For applications of unfolding, we typically seek to create unfoldings which are simple
(i.e. non-overlapping). While the concept is easy to understand and visualize, identifying
and proving a method for unfolding which guarantees no overlap remains a difficult area
of study. There are two major types of unfolding methods on polyhedra: edge unfolding,
and general unfolding. An edge unfolding cuts only along the edges of a polyhedron. The
earliest known examples of the edge unfolding of polyhedra are found in the works of
German renaissance printer and painter Albrecht Dürer [19]. Implicit in his works is one of
the most famous and long-standing questions in geometry: what classes of polyhedra admit
a non-overlapping edge unfolding? In general, there exist non-convex polyhedra where
every possible edge unfolding self-overlaps. For convex polyhedra, the question whether
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there always exists at least one edge unfolding which does not self-overlap remains open. A
general unfolding loosens the restrictions of the edge unfolding, allowing one to cut through
the interior of faces as well. It remains unknown whether this can always be accomplished
for non-convex polyhedra without overlap, however a solution can always be found for any
convex polyhedron. More details, historical background, and references will be given in
Section 1.1.

The methods for unfolding a convex polyhedron without overlap involve computing
shortest paths on the surface of the polyhedron. A fundamental property is that when a
shortest path crosses from one face to another, it becomes a straight line when you unfold
those two faces to the plane. More generally, any path that forms a straight line when
unfolded is called a geodesic curve. A geodesic curve is always a locally shortest path,
i.e. it cannot be made shorter by local perturbations. Note, however, that every geodesic
curve is not necessarily a shortest path. Throughout the thesis, we only consider simple
geodesic curves, i.e. geodesic curves that do not self-intersect, except possibly at its start
and endpoints. For more formal definitions related to geodesic curves, see Section 1.3.

Figure 1.1: Source unfolding, all shortest paths are laid out around the source point.

2



Figure 1.2: Star unfolding produced from the same source point as Figure 1.1. The shortest
paths to the vertices (blue) are cut, and the perimeter of the source unfolding (grey) is
glued to form the star unfolding.

There are two primary methods of unfolding which have been proven to avoid overlap
on convex polyhedra: the source unfolding (Figure 1.1) and the star unfolding (Figure 1.2).
The source unfolding simply selects a point x on the surface of a polyhedron P , i.e. the
source, and cuts along the cut locus, or ridge tree, which is the closure of all points with more
than one shortest path to x (the term cut locus is a general term used in all Riemannian
geometry, while the term ridge tree is specific to discrete polyhedral surfaces). The result
lays out all points on the surface from which there is a unique shortest path to x. It is easy
to show that the source unfolding does not overlap for convex polyhedra; simply observe
that all shortest paths originating from x will form a straight line with the same origin
point when unfolded into the plane (because they are geodesic curves), and thus, no two
such paths can cross.

The star unfolding, by contrast, still uses a single source point x ∈ P , but instead cuts
a shortest path from x to every vertex in P . The star unfolding can be thought of as ‘dual’
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to the source unfolding. In both cases, the surface is partitioned by the ridge tree and the
shortest path cuts from each vertex to x. In the case of the source unfolding, the pieces of
the partition are joined around x, while in the star unfolding, they are joined at the ridge
tree (see Figures 1.1 and 1.2).

The primary goal of this thesis is to prove the following extended version of the star
unfolding: given any simple geodesic curve λ ∈ P , is the unfolding produced by cutting
the curve λ and cutting shortest paths from λ to every vertex of P non-overlapping? We
will call this the Geodesic Star Unfolding. While we were unsuccessful at proving this
conjecture completely, we have found 3 partial results.

• We give a new proof of non-overlap for the point case of the Star Unfolding which is
both shorter, and proves a slightly stronger claim than the original proof by Aronov
and O’Rourke [7].

• We apply this proof to show non-overlap of a subset of geodesic cases, including the
quasigeodesic loop case (defined below).

• We show other cases where we can restrict the specific regions in which there may
exist overlap in a geodesic star unfolding.

1.1 Background

1.1.1 General Unfolding

Proof of non-overlap of the source unfolding on convex polyhedra is fairly straightfor-
ward [16, p. 355]. By comparison, the corresponding proof of the star unfolding is much
more difficult. Aronov and O’Rourke first proved non-overlap of the star unfolding in
1992 [7], using a technique of Alexandrov’s [5] to take a convex polyhedron P , and pro-
duce a new polyhedron P ′ where the number of vertices is reduced by one. They argue
inductively that the star unfoldings of P and P ′ are similar enough that non-overlap of
P ′ implies non-overlap of P . They reduce to the base cases of either a tetrahedron or a
(degenerate) doubly-covered triangle, for which the star unfolding can be shown directly
to not overlap.

Some papers since then have considered extensions of these basic methods (source and
star unfolding) by changing the source point from a single point x to a geodesic curve λ
on the surface of P , and instead cutting either the ridge tree with respect to the curve (for
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the source unfolding), or cutting the curve itself along with the set of shortest paths from
each vertex back to the curve (for the star unfolding).

In 2009, Itoh, O’Rourke, and Vı̂lcu in 2009 [21] proved non-overlap for the special case
of a star unfolding from a quasigeodesic loop, a special kind of closed curve. Normally this
would disconnect the surface, but they showed there exists some segment of the quasi-
geodesic that can be re-glued such that the two pieces do not overlap, either with each
other or themselves. In their discussion, they conjecture that quasigeodesic loops are not
the widest class of curves for which a star unfolding method can lead to non-overlap.

Demaine and Lubiw in 2011 [15] presented an extension of the source unfolding, called
the Sun unfolding, where source x can be either a geodesic curve on the surface of P , or a
closed convex curve composed of straight line segments and circular arcs (the former being
a special case of the latter). In their discussion, they conjecture that the ‘dual’ version of
the sun unfolding (in the same way that the star unfolding is dual to the source unfolding)
does not self-overlap. They describe what this unfolding would look like, and state that
a likely first step would be to determine if the star unfolding from any open geodesic is
non-overlapping.

1.1.2 Edge Unfolding

It has been shown (for example, by Biedl et al. [9]) that in general there exist non-convex
polyhedra where every possible edge unfolding results in overlap. This even holds for non-
convex polyhedra whose underlying graphs are isomorphic to those of convex polyhedra
(Bern et al. [8]), disproving an earlier conjecture by Shepard [26].

Conversely, the conjecture that every convex polyhedron has a non-overlapping edge
unfolding remains open; no proof or counter-example has yet been found [16, p. 310]. Most
of the current techniques used to find non-overlapping edge unfoldings are heuristics only,
or are limited to a small set of specialized classes with limited or no applicability to other
classes. Furthermore, little interplay between edge and general unfolding has been found;
methods used for one tend not to translate effectively to the other.

Attempts have been made to identify limited classes of polyhedra for which non-
overlapping edge unfolding can be proven. DiBiase [18] showed through a case-exhaustive
proof that all polyhedra with 6 or fewer vertices admit a non-overlapping edge unfolding.
Demaine and O’Rourke showed that ‘dome’ polyhedra, convex polyhedra with a single
base face that shares an edge with every other face, can be edge-unfolded without overlap
using the ‘volcano’ unfolding technique [16, p. 323].
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One class that gained particular interest is prismatoids, and the slightly more restrictive
prismoids. Demaine and O’Rourke [16, p. 319] showed non-overlapping edge unfoldings
exist for all prismoids. Aloupis et al. [6] proved the existence of a non-overlapping edge
unfolding for nested polyhedral bands. Polyhedral bands are formed by taking the inter-
section of the space between two parallel planes with some convex polyhedron P such that
the intersected space contains no vertices of P . These bands are not closed, in that there
is no ‘top’ or ‘bottom’ face, only a circular strip of edge-adjacent faces. Nested polyhedral
bands imply that the intersection of those two parallel planes with P are ‘nested’, that is
the orthogonal projection of one plane is contained within the other. O’Rourke [23] later
superseded this result to show non-overlap of the case of topless prismatoids, an even more
general class, using a technique called the petal unfolding. Prismatoids are the convex hull
of two parallel convex faces; topless implies that one of those two parallel faces is removed
from the resulting polyhedron.

A variant on the edge unfolding problem that has been studied is the zipper edge
unfolding. The goal of the zipper edge unfolding is to form a non-overlapping unfolding by
taking a Hamiltonian path of cuts through the 1-skeleton of a polyhedron. Demaine et al.
presented this idea in 2010 [13], showing that all Archimedean and Platonic solids have a
zipper edge unfolding. Later, Demaine et al. [14] showed classes of domes and prismoids
which have zipper edge unfoldings.

1.2 Motivation

A hope for further study into unfoldings is to develop a wider repertoire of techniques for
proving non-overlap of different unfolding algorithms. In particular, it would be useful to
have techniques which give useful bounds on the properties of an unfolding. For example,
one might want to find an unfolding that minimized the total or maximum length of all cuts
made to the surface, or minimized the 2-dimensional bounding box around the unfolded
polygon.

A potential implication of non-overlap of the geodesic star unfolding discussed in this
thesis would be a general zipper unfolding. Instead of finding a Hamiltonian path restricted
only to the 1-skeleton of the polyhedron, we could instead find a quasigeodesic path which
touches each vertex (the formal definition of quasigeodesic will be covered in Section 1.3.4).
If the star unfolding from any quasigeodesic curve unfolds without overlap, and such a curve
can be found, non-overlap of this method would follow directly.
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1.3 Preliminaries

In this section we establish important definitions and observations related to polyhedra,
shortest paths, and unfolding. This section can safely be ignored if one is already familiar
with other results related to unfolding polyhedra. For all of the following, we assume that
the polyhedra are closed, i.e. they have no boundary edges.

1.3.1 Surface Angle and Discrete Curvature

Definition 1.1. Given a polyhedron P, and a point x ∈ P, the surface angle of x, ∠(x)
is the sum of the incident angles of all faces of P containing x. ∠(x) = 2π for every
non-vertex point of P, and is strictly less than 2π at every vertex of P. A related definition
is the curvature of x, κ(x) = 2π − ∠(x).

Intuitively, curvature is the measure of how much surface angle is ‘missing’ to make the
surface of P flat at point x.

The sum of the discrete curvature over every vertex v ∈ P on a 3-dimensional polyhe-
dron is exactly 4π. The original proof of this fact goes back to Descartes’ Theorem on total
angular defect [17], but is also a special case of the Gauss-Bonnet Theorem for compact
2-dimensional Riemann manifolds [12, p.216].

1.3.2 Convexity of Polyhedra

Convexity of polyhedra is typically given as one of a set of equivalent conditions, for
example:

Definition 1.2. A polyhedron P is convex if and only if for each face f ∈ P, P lies
entirely to one side of the supporting plane of f .

The most important property of convex polyhedra that we use in this thesis is as follows.

Observation 1.1. Given a convex polyhedron P, the discrete curvature at every point
p ∈ P is greater than or equal to zero.

This observation is a corollary to a theorem of Alexandrov [5, p. 210].

Note that the condition of Observation 1.1 also holds for some non-convex polyhedra
as well. However, the manifold of every such non-convex polyhedron corresponds to the
manifold of exactly one convex polyhedron, so unfolding results for the larger class are not
more general than for the set of convex polyhedra.
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1.3.3 Necessary Conditions for Unfolding

An unfolding must leave the surface flat, and in one connected piece, which leads to the
following fact.

Lemma 1.1. In order to produce an unfolding of a convex polyhedron P, it is necessary
and sufficient for the cuts to form a tree on the surface that reaches every vertex vi of P.

Proof. The only ‘non-flat’ pieces of P are its vertices. Thus, we can flatten the surface
by forming cuts that reach each vertex and then spreading the surface angle around the
cut to one side or the other. A single cut to each vertex is sufficient, since the curvature
at every vertex is positive (i.e. the surface angle around each vertex strictly less than 2π),
per Observation 1.1. Multiple cuts would be necessary to flatten any point with negative
curvature. A tree of cuts is necessary to retain connectivity of the flattened result as a
single polygon (since any cycle would disconnect the surface).

1.3.4 Geodesics and Quasigeodesics

A geodesic curve with start and endpoints a and b respectively on the surface of polyhedron
P is a locally shortest path from a to b, that is, no local perturbation in λ will decrease
its overall length. Every shortest path between a pair of points a and b on the surface
of a convex polyhedron P is a locally shortest (and therefore, geodesic) curve. However
the converse does not hold in general: a geodesic path between two points may not be a
shortest path between them. We present a more formal definition of geodesic curves to
help with our analysis later on.

Definition 1.3. Given a polyhedron P, a geodesic curve λ ∈ P is a curve along the surface
of P, such that at every interior point p ∈ λ, the surface angle to either side of p is exactly
π.

Figures 1.3 and 1.4 illustrate an important feature of geodesic curves: when the faces
traversed by the curve are ‘unrolled’ into the plane, the image of the curve will form a
straight line.
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Figure 1.3: A geodesic curve on the surface of a polyhedron.

Figure 1.4: The geodesic curve of Figure 1.3, unrolled with its faces into the plane.
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This definition requires that the curvature at every point along the geodesic λ is exactly
0 (except possibly at its two endpoints); a curve which passes through a vertex cannot be
a geodesic. We give a slightly more relaxed definition to refer to curves that are ‘geodesic-
like’, except they are allowed pass through vertices, called quasigeoedesic curves.

Definition 1.4. Given a polyhedron P, a quasigeodesic curve λ ∈ P is a curve along the
surface of P, such that at every interior point p ∈ λ, the surface angle to either side of p
is ≤ π.

Figure 1.5: A quasigeodesic curve, with a zoomed in and flattened view of the surface
near a crossed vertex. The darkened area above the vertex represents the gap formed by
the curvature at vertex, and the two sides of the quasigeodeic after they pass through the
vertex.

A quasigeodesic curve is geodesic at every point along the curve with the exception
of where the curve passes through, or ‘crosses’ a vertex. Thus, like geodesic curves, a
quasigeodesic curve will ‘unroll’ to a straight line when laid out with its incident faces
into the plane, except where the curve meets a vertex (see Figure 1.5). Notice that a

10



quasigeodesic curve can only pass through vertices with positive curvature; a negative
curvature vertex would necessarily have more than π surface angle to either side, and thus
the curve would no longer be quasigeodesic. In this thesis, we will mostly restrict our
arguments to only consider when the source curves are geodesic. In Section 3.3, however,
we will discuss how our arguments generalize to quasigeodesic curves as well.

We will only consider geodesic curves that are simple, meaning there is no point of self-
intersection between any two interior (i.e. non-endpoint) points of the curve. However, we
will allow endpoints to lie incident either to each other or to the interior of the curve. The
following definition covers the case when the two endpoints of the curve are co-incident.

Definition 1.5. Given a polyhedron P, a (quasi-)geodesic loop is a closed curve λ ∈ P that
is (quasi-)geodesic at all points along λ, except at a single location called the loop point,
o, which has surface angle ≥ π to at least one side. The (quasi-)geodesic loop will divide
P into two sub-surfaces to either side of the curve. We will refer to these sub-surfaces
by the angle at the loop point within that sub-surface. The side with the convex angle is
the interior of the loop, and that with non-convex angle is the exterior. When λ has no
distinguishable loop point (that is when the curve is (quasi-)geodesic at all points along the
curve), then the curve is simply called a closed (quasi-)geodesic. Otherwise, if a geodesic
curve is simple and also has no points of intersection with the curve endpoints, then the
curve is an open (quais-)geodesic curve.

The angle of the loop point on either sub-surface is the sum discrete curvature inside
that sub-surface minus π. Notice that the curvature to either side must be at least π
and at most 3π. These observations (which are also found in [21]) will become useful in
Chapter 3. There are also (quais-)geodesic curves in which one or both of the endpoints
are co-incident with the interior of the curve; these will be discussed in greater detail in
Section 3.5.
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Chapter 2

A new proof of the Point Star
Unfolding

In this chapter we give a new proof of non-overlap for the star unfolding from a point. The
original proof was given by Aronov and O’Rourke [7] and is somewhat long and complex
compared to our result.

2.1 Preliminaries and Definitions

Note that most of the definitions and terminology used here are borrowed from [7].

Definition 2.1. Let P be a convex polyhedron, and let x be a point on P. The star
unfolding, Sx, is a 2-dimensional polygon formed by cutting P along a shortest path from
every vertex of P to x, and flattening the result into the plane. See Figure 2.1 for a
perspective view of the shortest path cuts on a polyhedron, and Figure 2.2 for the resulting
unfolding.

The following theorem is the main result of [7]. We give a new proof of this theorem
in this chapter.

Theorem 2.1. (Aronov and O’Rourke [7, Theorem 9.1]) The star unfolding Sx does not
overlap, i.e. it is a simple polygon.
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Figure 2.1: Shortest paths from all
vertices to a source point.

x1 v1 x2
v2 x3

v3

x4
v4

x5

v5

x6

v6
x7

v7
x8

v8

x9
v9

Figure 2.2: The star unfolding pro-
duced by the cuts from Figure 2.1.
The ridge tree is shown in grey.

2.1.1 The Structure of the Star Unfolding

If P has n vertices, then the polygon Sx will (in general) have 2n vertices (the unfolding
will have 2(n−1) vertices if x is located at a vertex of P). The vertices of Sx will alternate
around the boundary between points corresponding to the n vertices of P , called vertex
images and denoted vi, and n ‘copies’ of x, called source images and denoted xi (see
Figure 2.2). The edges of Sx correspond to the shortest path cuts made from each vertex
to x. Therefore, the two edges incident to any vertex image vi are always the same length.

The exterior angle at each vi is exactly κ(vi), the discrete curvature of that vertex on
the surface of P . This gap between consecutive source images is called the cuvature gap of
vi. The interior angle at each image xi is the angle between the shortest paths to the two
vertices adjacent to xi in the unfolding; we refer to this angle as the surface cut angle of
xi, denoted ∠(xi). Clearly, the sum of the surface cut angles over all images of x is exactly
the surface angle at x: when x is located at some vertex vj ∈ P , then

∑
i xi = 2π − κ(vj),

otherwise the sum will be exactly 2π.
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2.1.2 The Ridge Tree

An important tool we will use in our analysis of the star unfolding is the ridge tree (also
sometimes referred to as the cut locus), defined as follows.

Definition 2.2. Given a polyhedron P, and a source point x ∈ P, the ridge tree Tx is the
closure of the locus of all points on the surface of P that have more than one shortest path
from x on the surface of P. (An example ridge tree is shown by the grey tree inside the
polygon of Figure 2.2).

Aronov and O’Rourke proved that the ridge tree is a subset of the Voronoi diagram
of the images of x as a corollary to their proof of non-overlap [7, Theorem 10.2]. While
this fact is not required for our proof, it does provide useful intuition about its structure.
What we do require about the structure of the ridge tree is that it is indeed a tree (this
was addressed by Demaine and Lubiw [15]), and that it is composed strictly of straight
(or rather, geodesic) line segments. This second point must be true since it is formed from
the bisectors of point images in the plane.

We will use the ridge tree to construct a set of triangles from the unfolding polygon,
shown in Figure 2.3. Each vertex of the ridge tree has 3 or more shortest paths to x on the
surface of P . The triangles are formed by tracing the shortest paths from each ridge tree
vertex to all of its nearest source images xi. Notice that each edge of the ridge tree will
give rise to exactly one triangle to each side. Because all shortest paths from a ridge tree
vertex to the nearest source images xi have the same length, the two triangles to either
side of every ridge tree edge will have corresponding sides of equal length, and therefore
are congruent. These pairs of triangles, which we will call kites, are central to our analysis.

Definition 2.3. A kite of the star unfolding Sx with ridge tree Tx is the pair of congruent
triangles to either side of some edge e ∈ E(Tx). We will denote such a kite as kite(e). We
will call the edge of the ridge tree the base of this kite (which is also its axis of symmetry),
and the two images of x to each side its apices.

Example pairs of triangles which form kites are highlighted in Figure 2.3. Observe that
the kites form a partition of Sx. Also note that these kites may be either concave or convex.
Our proof will show that no pair of distinct kites in the unfolding overlap.

Before moving to our proof, we require one more observation about the surface angle
at the source images of x in relation to the ridge tree.
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Figure 2.3: An example star unfolding broken down into triangles using the ridge tree.
Some of the triangle pairs which form kites are highlighted.

α(e)

e

α(e)

Figure 2.4: The source angle of a single edge e of the ridge tree.

Definition 2.4. For any edge e of a ridge tree Tx, let the source angle of e, α(e), be the
interior angle at either apex of kite(e) (See Figure 2.4).
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The source angle of a ridge tree edge e is a piece of the surface cut angle of x that lies
inside the shortest paths from the endpoints e back to the image of x on one side or the
other.

We will use the same notation for a path through the ridge tree. That is for a path σ,
where σ = e0, . . . , et, the source angle of σ is α(σ) =

∑t
i=0 α(ei).

Observation 2.1. For any path through the ridge tree σ, α(σ) ≤ π

Proof. Notice that the sum of the angles at all of these triangles’ apices comprises the
entire surface angle at x. Since the surface angle at x is at most 2π, and the source angle
is paired to both sides of each edge, the total source angle over all the edges through any
path is at most 1

2
of that.

2.2 Proof of Non-Overlap

We will now present a new proof of Theorem 2.1. Our proof will show that any two kites,
kite(u) and kite(v), do not overlap, and thus neither does the unfolding as a whole. To
do so, we will establish a region of R2 which completely contains kite(u) while completely
excluding kite(v). This region will be called a W-wedge, due to the shape of its boundary.

The W-Wedge is a region defined in terms of some edge y of the ridge tree Tx, a ‘root’
vertex r which is an endpoint of edge y, and an angle γ ∈ [α(y) + π

2
, 3π

2
]. The boundary

of the W-wedge has two inner legs, call them l1 and l2, and two outer legs, L1 and L2.
The inner legs are line segments connecting r to either apex of kite(y). The outer legs are
rotated away from l1 and l2 respectively by an angle of γ on the side of kite(y), and extend
either to their point of intersection, or as infinite rays if they do not intersect. The inside
of the W-Wedge is the side of the boundary which contains kite(y), and the outside is the
side which contains kite(z). Figure 2.5 illustrates the 3 possible scenarios for the division
of R2 by the W-wedge, that is for one, the other, or both of the regions to be unbounded.
Given a W-wedge W , we denote an object o as strictly inside W by o ⊆ W , and strictly
outside of W by o ⊆ W .

Lemma 2.1. Let W be a W-wedge rooted at vertex r on edge y of a geodesic ridge tree, and
let z be some other ridge tree edge incident to r. Suppose W has angle γ ∈ [α(y), 2π−α(z)].
Then kite(y) ⊆ W and kite(z) ⊆ W .

Proof. The two inner legs of W lie exactly along the edges of kite(y) incident to r, and
thus obviously do not intersect the kite. If the outer legs are rotated away from the inner
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Figure 2.5: Illustration of W-wedges of vertex r on edge y, showing three possible cases.
From left to right: a bounded region containing kite(y), two unbounded regions, and a
bounded region not containing kite(y).

legs by π
2

+ α(y), then they are at least perpendicular to the edges of kite(y) incident to
the other endpoint of y (labelled q in Figure 2.5). Thus, the two rays either diverge (centre
image of Figure 2.5), intersect such that they enclose kite(y) (left image of Figure 2.5), or
intersect such that the region containing kite(y) is unbounded (right image of Figure 2.5).
Either way, this implies kite(y) lies to the inside of W . A symmetric argument for edge z
shows that kite(z) lies strictly outside W .

The idea of our proof is to establish an initial W-wedge at one end of the path, and
build subsequent W-wedges at each new vertex of the path. One side of each wedge is the
inside region (as defined above), which will strictly contain all previous W-wedges, and
therefore all kites visited so far. In each step, we will prove that the newly added kite
initially lies entirely on the outside region of the current wedge (and therefore does not
overlap any of the previous kites), then we expand the wedge to cover a strict superset of
the previous wedge that includes the newly added kite. Figure 2.6 gives a general overview
of the proof’s construction.

Lemma 2.2. Given two distinct edges u and v of the ridge tree Tx of some star unfolding
Sx, the two associated kites kite(u) and kite(v) do not overlap.

Proof. Let σ = p0, . . . , pt be the vertex-path through the ridge tree from u to v.
Let ei = pi−1pi be the edges of the path, such that e1 = u, et = v.
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i = t− 1
i = j

i = 1
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Figure 2.6: The proof proceeds from e1 to et by establishing wedges which each successively
contain all previous kites and wedges, while remaining disjoint from all future kites.

Let ki =kite(ei), that is, the ith kite along the path.
Let αi =

∑i
j=1 α(ej) (note that αi ≤ π for all i by Observation 2.1).

Define Wi, for i = 1, . . . , t, to be the W-wedge rooted at pi on edge ei, with inner legs
along the two incident edges of ki, and outer legs rotated out by γi = αi + π

2
. (The extra

angle of π
2

will be required during the inductive phase of our proof.)

Claim: Wi−1 ⊆ Wi, and ki ⊆ (Wi \Wi−1), for i = 2, . . . , t.

We will use Lemma 2.1 with r = pi−1, y = ei−1, and z = ei to show that ki ⊆ W i−1.
Note that the lemma applies since α(ei−1) ≤ αi−1 ≤ π − α(ei), and therefore α(ei−1) ≤
π
2

+α(ei−1) ≤ γi−1 ≤ 2π−α(ei). Then, we apply the two-step transformation indicated by
Figure 2.7 to convert Wi−1 to Wi. First, rotate the two inner legs of Wi−1 away from the
edges of ki−1 to ki, while maintaining a fixed outer leg rotation angle γi−1. Observe that
all the kite edges incident to pi−1 have the same length; thus there is no need to change the

18



length of the inner legs during this rotation. Notice that the intermediate wedge formed
by this rotation covers a superset of Wi−1, because the angle γi−1 is guaranteed to be in
the range [π

2
, 3π

2
] (this is why we needed an extra π

2
of angle to each side to ensure adequate

clearance during the rotation). Although Figure 2.7 shows consecutive kites sharing only
a common vertex of the ridge tree, in all non-degenerate cases there will be at most three
edges incident to the vertex, and so the kites will share an edge as well. Thus, typically
only one of the inner legs of the wedge will rotate at a time.

The second piece of the transformation is to shift the root point of the wedge to pi,
while keeping the outer legs fixed. The outer leg rotation angle increases by α(ei), and
thus reaches a value of γi. The net effect of this step is to keep the outer leg positions
fixed while moving the inner legs to the other side of kite(ei). This newly formed wedge is
exactly Wi, and thus, by our construction, ki ⊆ Wi.

With this claim in hand, we apply a simple inductive proof. First, observe that by
Lemma 2.1, k1 ⊆ W1. Furthermore, by our claim, W1 ⊆ W2 ⊆ · · · ⊆ Wt−1. Finally,
once again by Lemma 2.1, kt ⊆ W t−1. Thus k1 and kt lie on opposite sides of Wt−1, and
therefore do not overlap.

ki
ki−1

π
2

+ αi−1
π
2

+ αi

ki+1 pi−2pi−1pipi+1

Wi−1Wi

Figure 2.7: Diagram of the inductive step of the proof.

Repeating the argument of Lemma 2.2 for all pairs of kites establishes non-overlap and
completes the proof of Theorem 2.1.
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2.3 Discussion

2.3.1 Larger Sectors of Emptiness

In addition to non-overlap, a corollary to this new proof is a slightly stronger notion of
what regions outside of the star unfolding are ‘empty’ compared to Aronov and O’Rourke’s
earlier proof [7]. In their proof, they show that the the closed sector of a disk centred at
each vertex vi, bounded by the radii of its two closest source images (call them xi and xi+1)
is empty (see Figure 2.8).

x1

x2

v3

x4x3

v1

v2

v4

x5x6

v5v6

Figure 2.8: Sectors of emptiness established by [7].

Instead, we claim that a strictly larger region around each vertex, formed by rays leaving
the two adjacent source images at angles of π

2
, is empty, as a consequence to Lemma 2.2

(see Figure 2.9, note that the region of emptiness around v1 is in fact unbounded to the
left).
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Figure 2.9: New sectors of emptiness implied by Lemma 2.2.

Lemma 2.3. Given a star unfolding Sx, choose any vertex image vi. The W -wedge, rooted
at vi with inner legs to its two adjacent images xi and xi+1, and outer legs rotated out by
π
2

is empty; we will call it the empty region for vi.

Proof. We divide our proof into two cases: where vi is a leaf of the ridge tree, and where
vi is an internal vertex of the ridge tree.

• vi is a leaf: Suppose u is the edge of the ridge tree incident to vi. Consider every
possible path in the ridge tree that includes u as its first edge. The initial W-wedge
established at u, W1, contains the empty region on its inside. Every subsequence
kite on the path will be to the outside of W1 by the construction of Lemma 2.2, and
therefore the region must remain empty.

• vi is an internal vertex: Simply repeat the leaf case argument for each edge
incident to vi. Each initial W-wedge at vi will contain a superset of the empty region
to its inside. Take the intersection of the insides of all of those initial W-wedges.
That intersection must also be empty, and must at least contain the empty region.

21



Chapter 3

The Geodesic Star Unfolding

In this chapter, we consider an extension of the star unfolding, called the geodesic star
unfolding, where the source is a geodesic curve instead of a point. This extension was
discussed by Demaine and Lubiw [15]. They conjectured that a dual to the Sun Unfold-
ing (analogous to the duality of Source and Star unfoldings) would be non-overlapping,
and claim that proving the result for any open geodesic would be a likely first step. In
this Chapter we prove some special cases of that conjecture, using a modified version of
Lemma 2.2. In Section 3.1, we discuss the general form of the geodesic star unfolding and
its associated ridge tree structure. In Section 3.2, we present Lemma 3.4, our modifica-
tion to Lemma 2.2 to the geodesic setting, which is subject to some restrictions on the
polyhedron/cut pairs it can be applied to. Section 3.4 uses Lemma 3.4 to prove a missing
result of Itoh, O’Rourke and Vı̂lcu [21] for quasigeodesic loops. Section 3.5 considers fully-
extended geodesics, which are cuts that have been maximally extended in either direction,
and proves non-overlap for a subset of those cases.

3.1 Definitions

Definition 3.1. Let P be a convex polyhedron, and let λ = ab ∈ P be a simple (non-
self-intersecting) geodesic on the surface of P. The geodesic star unfolding Sλ is a 2-
dimensional polygon formed by cutting λ, as well as a shortest path along the surface of P
from every vertex vi of P to λ, and flattening the result into the plane. See Figures 3.1
and 3.2 for an example perspective view and the resulting unfolding.
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a

l r

b

Figure 3.1: Shortest path cuts to each vertex from a geodesic, with a, b,
l, and r labelled.

l a

b

r

Figure 3.2: The geodesic star unfolding produced by the cuts from Fig-
ure 3.1, with the source images labelled.
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3.1.1 Structure of the Geodesic Star Unfolding

The general structure of the geodesic star unfolding is more complex than the point case.
Conceptually we will divide λ into four parts: its two endpoints a and b (for above and
below), and its l and r (left and right) sides. This convention does not imply any specific
orientation of the curve or the unfolding; it is strictly for notational purposes (any given
example could be rotated or flipped to achieve any other possible labelling).

Shortest path cuts from the vertices can take on one of four cases (or rather, two pairs
of two symmetric cases):

• The shortest path terminates at endpoint a or b, called endpoint cuts.

• The shortest path terminates perpendicular to an interior point of λ on either the l
or r side, called interior cuts.

The fact that any shortest path which reports to an interior point along λ will intersect
at a right angle is fairly intuitive, but we will state this lemma (adapted from Ieiri and
Itoh [20]) for completeness.

Lemma 3.1. Let λ be a geodesic curve on a convex polyhedron P, x ∈ P \ λ, and x0 ∈ λ
be a point such that xx0 is a shortest path from x to λ. The angle formed between xx0 and
λ is at least π

2
to each side.

Proof. This is simply an application of Corollary 1 in [20].

A vertex is said to report to a, b, l or r respectively if the shortest path from the vertex
terminates at that part of the geodesic cut.

A source image is either an endpoint (a or b), called a point image, or a sub-segment of λ
corresponding to l or r, called a segment image, that lies between two consecutive shortest
path vertex cuts. When we flatten the polyhedron after cutting from each vertex we
obtain an alternating sequence of source images separated by vertex curvature gaps (each
containing a vertex image) that forms a closed polygon (much the same as the point case).
Note that all source images of the same type appear consecutively along the boundary
of the unfolding (i.e. all a’s, and then all l’s, and so on). Also notice, in Figure 3.2 for
example, that the source images at the transition points between the a and l, and the l
and b sections of the unfolding can act as both endpoint images, and the start/end of a
segment image. There are few restrictions on which types of cuts and/or source images will
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exist for any given unfolding: the only requirement is that there must be at least two of
the four types of cut present. Otherwise, there exist examples of all possible combinations.

Since the geodesic unfolding figures are a bit more complex, we will explicitly outline the
conventions used in the figures (the colouring is helpful, but not necessary to understand
the figures):

• Square dots represent images of endpoint a.

• Triangular dots represent images of endpoint b.

• Dotted lines represent interior sections of l.

• Dashed lines represent interior sections of r.

• Blue lines represent shortest path cuts from a.

• Pink lines represent shortest path cuts from b.

• Green lines represent shortest path cuts from l.

• Red lines represent shortest path cuts from r.

Before we move on, we present a useful fact regarding the contour of a geodesic star
unfolding that we will draw upon in our analysis later on.

Lemma 3.2. Consider a sequence of consecutive segment images along the boundary of
an unfolding, where all segments correspond to the same side of the geodesic (i.e. either
all l or all r). Join each consecutive pair of segment images as a chain in the following
manner:

• If the curvature of the vertex between consecutive images is ≤ π, simply join the
consecutive endpoints of the two images by a straight line.

• Otherwise, if the curvature between them is > π, join them by the two edges of the
unfolding between them (i.e. trace an edge to from each segment image to the vertex
image in between them).

This joined sequence forms a locally convex curve, i.e. a curve such that all bends to one
side are ≤ π (see Figure 3.3).
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Proof. This is simply due to the fact that all interior cuts are made at exactly right angles
to the geodesic. In the first case, joining the two segments directly will give rise to two
bends in the curve, each with interior angles in [π

2
, π]. In the second case the joining will

have 3 bends in the curve; the first and last bends will have angles = π
2
, and the angle in

between will be exactly 2π minus the curvature of the vertex, which will result in an angle
≤ π.

We will call the locally convex sequence formed by the construction of Lemma 3.2 the
convex chain of a sequence of segment images.

v1

v2

a
b

l

Figure 3.3: The convex chain for the l segment images is highlighted
on the outside with a light shade. Vertex v1 has low curvature (≤ π),
so only produces two bends. Vertex v2 has high curvature (> π), so it
produces 3 bends.
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Figure 3.4: Note that although the chain is locally convex, globally it
may not be.

This observation is not new; it was made by Itoh, O’Rourke and Vı̂lcu [21] (though in
a slightly different form). Note that it does not guarantee that the chain itself lives on its
own convex hull; rather, the sequence may ‘spiral’ in on itself (see Figure 3.4).

3.1.2 The Geodesic Ridge Tree

The ridge tree of a geodesic source λ is defined analogously to the point case: Tλ is the
locus of all points on P with more than one shortest path to λ, plus all the vertices of
P . The cut locus from a geodesic source on a polyhedron is indeed a (finite) tree, as was
established by Lemmas 4 and 5 of [15], thus it is correct to call this structure a ridge tree.
An example ridge tree is drawn on the interior of Figure 3.2.

A key difference from the point case is that the edges of the geodesic ridge tree are
no longer strictly straight-line segments. Recall that every edge of the ridge tree is the
locus of points which are equidistant from two source images. Thus, when the two sources
to either side of an edge are a point image and a segment image respectively, a parabolic
ridge tree edge will result. The ridge tree edges between pairs of point or pairs of segment
images will still be straight lines. Note that a segment image might include one of the
endpoints of λ. For the purpose of our discussion, the endpoint is considered as its own,
separate point image, rather than as part of the segment image.
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Since ridge tree edges are no longer straight-line segments, the geodesic star unfolding
can no longer be decomposed into kites as we did in the point case. We will instead define
a decomposition into ‘slices’:

r a

b

l

Figure 3.5: Decomposition of the unfolding from Figure 3.2 into slices. A block-slice is high-
lighted in dark-gray, kite-slice is highlighted in light-gray, and a hybrid-slice is highlighted
with a lined pattern.

Definition 3.2. Given an edge e of a geodesic ridge tree Tλ, its slice, denoted slice(e), is
the union of all shortest paths from e to all source images of λ it reports to. We divide
the slice to either side of e to obtain its wings. A wing may be either a point-wing or
segment-wing, depending on whether the corresponding source image is a point image or a
segment image. This results in slices that may take on one of three forms:

• slice(e) is a kite-slice if both wings are point-wings (light-gray region in Figure 3.5).

• slice(e) is a block-slice if both wings are segment-wings (dark-gray region in Fig-
ure 3.5).

• slice(e) is a hybrid-slice if one wing is a point-wing and the other is a segment-wing
(black region in Figure 3.5).
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Along with this new definition, we also extend our definition of the source angle of an
edge of the ridge tree.

e

αA(e) > 0

αB(e) = 0

A

B

Figure 3.6: The source angle of the wings to either side of ridge tree edge e may differ.

Definition 3.3. The source angle of a point-wing is the interior angle at its apex, while
the source angle of a segment-wing is simply 0 (see Figure 3.6 for an example).

We also extend our notation to cover paths through the ridge tree as well. Take path
σ = e0, . . . , et, and arbitrarily label its two sides A and B respectively. Then the A source
angle of σ is αA(σ) =

∑t
i=0 α

A(ei) (and likewise for B).
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r a

b

l

Figure 3.7: Example of an ab-adjacent ridge tree.

b

a

r

l

Figure 3.8: Example of an lr-adjacent ridge tree.
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We can break down the unfolding into four pieces, by taking all regions of the unfolding
containing shortest paths to a, b, l and r respectively (illustrated by Figures 3.7 and 3.8).

Observation 3.1. Each region of the unfolding, corresponding to the pieces containing
shortest paths to a, b, l or r respectively, must form a single, connected region (though they
might be connected by a single point at certain places). We call these the a region, b region,
l region, and r region respectively.

This is simply because all source images of a particular type appear consecutively
around the boundary of the unfolding, and the regions of shortest paths corresponding to
individual source points themselves are single, connected regions. The boundary between
the regions in their rotational order is a shortest path to the ridge tree from either a or
b that is perpendicular to λ. To one side of each shortest path is an endpoint-reporting
region (i.e. reporting to a or b), and to the other is an interior-reporting region (reporting
to l or r). Thus the a and b regions each share a boundary with each of the l and r regions.

It is also possible for the a and b regions to share some edges of the ridge tree, or
likewise the l and r regions to share edges of the ridge tree, though not both at the same
time. Figure 3.7 is an example of the former case, and Figure 3.8 is an example of the
latter. The other possibility is an extremely degenerate case where a, b, r and l share only
a single vertex of the ridge tree, though we can treat this as one of the other two cases with
an extremely small shared edge. This leads to the following definitions to characterize a
given ridge tree:

Definition 3.4. A ridge tree is called ab-adjacent if the a and b regions share an edge
of the ridge tree, lr-adjacent if the l and r regions share an edge of the ridge tree, or
ablr-adjacent if all four regions share a common vertex of the ridge tree.

3.2 Applying the Point Case Proof to the Geodesic

Setting

In this section we modify the proof of non-overlap of the star unfolding from a point source
to some cases of the unfolding from a geodesic curve.

Note that in light of Definition 3.3, we must contend with a key fact: the source angle of
the wings to either side of a ridge tree edge are no longer (necessarily) equal (see Figure 3.6).
This in turn implies the source angle to one side of a path through the ridge tree Tλ is not
necessarily at most π. Note that the sum of the source angles of all wings is still at most
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2π, since the source angles of all point wings reporting to a and b respectively sum up to
π each.

The proof proceeds in much the same way as Lemma 2.2, only we must keep track of
the source angle to either side of the path through the ridge tree independently. We must
give an extended definition of a W-wedge at vertex r of edge y from Section 2.2 to track
the wedge angles between its inner and outer legs to either side of the edge separately.
Thus, assuming we’ve already labelled the A and B sides of edge y, γA (resp. γB) is the
angle of rotation of the inner leg from the outer leg on the A (resp. B) side of edge y.

γA = π
2

γB = π
2

+ αB(y)

y

z

A

B

r

q

Figure 3.9: Example base case with a hybrid slice. Note the W -wedge is only rotated more
than π

2
on the point-wing side of the edge.

Now, we give a lemma analogous to Lemma 2.1 concerning adjacent slices to either side
of a W -wedge. The proof is nearly identical to that of Lemma 2.1, except that we must
take into account the possibility of asymmetry in the slices.

Lemma 3.3. Let W be a W-wedge rooted at vertex r on edge y of a geodesic ridge tree,
and let z be some other ridge tree edge incident to r. Suppose W has angles γA ∈ [π

2
+

αA(y), 3π
2
− αA(z)], and likewise γB ∈ [π

2
+ αB(y), 3π

2
− αB(z)]. Then slice(y) ⊆ W and

slice(z) ⊆ W .

Proof. Consider Figure 3.9. The two inner legs of W lie exactly along the edges of slice(y)
incident to r, and the outer legs are rotated away from the inner legs by at least π

2
+αA(y)

(resp. π
2

+αB(y)). Thus, the outer legs are at least perpendicular to the edges of the wings
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of slice(y) that are incident to the other endpoint of y (point q in Figure 3.9), regardless
of whether they are segment wings (with source angle zero), or point wings (with non-zero
source angle). Thus, the two rays either diverge, intersect and enclose slice(y) (left image
of Figure 2.5), or intersect such that the slice(y) lies in an unbounded region. Therefore,
slice(y) is to the inside of W . The argument is symmetric to show slice(z) is to the outside
of W .

We also give a lemma which extends the idea of Lemma 2.2, taking into account the
limitations of the source angle on either side of the path.

Lemma 3.4. Given two distinct edges u and v of the ridge tree Tλ of some geodesic star
unfolding Sλ, the two associated slices slice(u) and slice(v) do not overlap, as long as over
the path σ between u and v, the source angle of the path to each side is at most π.

Proof. Let σ = p0, . . . , pt be the vertex-path through the ridge tree σ from u to v.
Let ei be the edge of the ridge tree from pi−1 to pi, such that e1 = u, et = v.
Let si = slice(ei), be the ith slice along the path.
Label the two sides of path σ A and B respectively, and define the A and B wings of each
slice to be the wing lying to the appropriate side.
Let αAi =

∑i
j=1 α

A(ej)

Let αBi =
∑i

j=1 α
B(ej)

Define Wi, for i = 1, . . . , t, to be the W-wedge rooted at pi on edge ei, with inner legs along
the two incident edges of si, and outer legs rotated out by γAi = αAi + π

2
, and γBi = αBi + π

2

respectively.

Once again, we claim Wi−1 ⊆ Wi, and si ⊆ (Wi \ Wi−1), for i = 2, . . . , t. Apply
Lemma 3.3 to show si ⊆ W i−1. Then, apply the transformation shown in Figure 3.10.
Notice that the value of γA did not change in the example in the figure, since it traversed a
segment-wing which has source angle zero (indeed, the second phase of the transformation
on that side is simply a translation). Either way, the newly established wedge still covers
a strict superset of Wi−1 in its interior region, including si. By induction, this will hold as
long as both αAi ≤ π and αBi ≤ π.
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si si−1

π
2

+ αAi−1
π
2

+ αAi

si+1 pi−2pi−1pipi+1

Wi−1Wi

π
2

+ αBi−1π
2

+ αBi

Figure 3.10: Sample induction step for a geodesic unfolding. Note that αAi−1 = αAi since
the image to that side is a segment.

Definition 3.5. Given ridge tree Tλ of some geodesic star unfolding Sλ, Tλ is balanced if
for both sides of every path through the ridge tree the sum of the source angles is at most
π.

A geodesic star unfolding whose ridge tree is balanced is guaranteed by Lemma 3.4
to unfold without overlap. Unfortunately, it is not true that all geodesic ridge trees are
balanced. Moving forward, we want to identify cases of the geodesic star unfolding which
are balanced, or, in the case they are not, if other mitigating factors can be used to prove
non-overlap.

3.3 Extension to Quasigeodesic Curves

In this section, we discuss extending the results of Section 3.2 to quasigeodesic curves.
Although for simplicity we have restricted our discussion to the star unfolding from geodesic
curves, all of our results apply to the star unfolding from a quasigeodesic curve as well.
Recall that a quasigeodesic curve on the surface of a polyhedron P is a curve such that at
each point along the curve the surface angle to each side is ≤ π. Consider a quasigeodesic
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curve λ on the surface of P . We define the quasigeodesic star unfolding analogously to
Definition 3.1; simply replace ‘geodesic’ with ‘quasigeodesic’.

Suppose p is an interior point of the quasigeodesic curve λ where the surface angle to
one side, say the r side, is α, where α < π. Necessarily, p is a vertex of the polyhedron,
otherwise the surface angle on the other side of the curve would be greater than π. We do
not introduce an extra cut for this vertex in the unfolding, since it already lies on λ.

Using Lemma 3.1, we claim that no shortest path cut from any vertex v will report
to point p on side r, since one of the two surface angles formed would be < π

2
. Thus the

quasigeodesic star unfolding from λ will have a vertex image with an angle α corresponding
to the r side of p. We will call this vertex image in the unfolding pr.

Observe that pr is a leaf of the ridge tree and that the incident ridge tree edge e is a
straight segment forming angles α

2
with the segment images to either side of pr. Thus e

has two segment wings, and the only thing that distinguishes these wings from those that
arise in the geodesic star unfolding is that each segment wing has a side of 0 length at both
sides incident to pr.

It remains to show that Lemmas 3.3 and 3.4 also apply to quasigeodesics.

Lemma 3.5. Lemmas 3.3 and 3.4 hold, even when λ is a quasigeodesic curve.

Proof. Lemma 3.3 holds since the argument does not rely on the size of the curvature gap
on either slice(y) nor slice(z); even with side lengths of 0, the partitioning by the W-wedge
will still hold for the range of γ specified. Lemma 3.4 also does not pose a problem, simply
because the quasigeodesic edges are always incident to a leaf of the ridge tree, and thus
may only appear as the first or last elements in a sequence of ridge tree edges. Thus, the
induction will never need to apply to the 0 length sides of the quasigeodesic slices, and the
rest follows.
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v

Figure 3.11: Perspective view of a quasigeodesic curve, passing through vertex v.

vl

vr

Figure 3.12: Quasigeodesic star unfolding of the curve from Figure 3.11. The two images
of v and their associated slices are indicated.
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3.4 Quasigeodesic Loops

In this section, we discuss non-overlap of the star unfolding from geodesic (and quasi-
geodesic) loops. Recall from Chapter 1 that when the two endpoints a and b of a geodesic
or quasigeodesic curve λ coincide at point o, we call this a (quasi-)geodesic loop with loop
point o. A (quasi-)geodesic loop cuts the surface of the polyhedron into two pieces. One
piece must have a surface angle at o that is ≤ π, and we call this the inside of the loop
and in this section we will identify it with the r side of the curve. The other piece is called
the outside and will be identified with the l side of the curve.

Itoh, O’Rourke, and Vı̂lcu [21] proved that for any quasigeodesic loop: (1) the inside
unfolds without overlap; (2) the outside unfolds without overlap; and (3) the two unfolded
pieces can be reattached (without overlap) along a common segment of the cut curve.
Their proof of (2) relies on a Lemma [21, Lemma 7] about the star unfolding from a point,
which they say will be proved in a companion paper.

Unfortunately, they discovered1 that the Lemma is false. The Lemma claims that for
for any star unfolding from a point x and for any polyhedron vertex v, the exterior angle
at v in the unfolding yields an empty wedge. More precisely, if the exterior angle at v is
(counterclockwise) xi, v, xi+1 then the claim is that the counterclockwise wedge formed by
the rays vxi and vxi+1 does not contain any part of the unfolding. An example where this
fails is shown in Figure 3.13.

x

v1

v3
v2

Figure 3.13: A counterexample occurs when we take a source point near or on the edge of
a doubly-covered triangle.

1Private communication from J. O’Rourke
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v3

v2

v1

x2

x3

x1

Figure 3.14: The unfolding of Figure 3.13. The exterior angle wedge formed by x2, v2, x3
is not disjoint from the rest of the unfolding.

In this section we will consider the star unfolding from a geodesic curve where the two
endpoints a and b are arbitrarily close together. In the limit when a = b the unfolding
consists of two pieces joined at the point a = b with the angular bisectors at the point a = b
aligned in the unfolding. We call this the conjoined star unfolding from a geodesic loop.
Our main result is that the conjoined star unfolding from a geodesic loop does not overlap.
As shown by Lemma 3.5, our arguments for non-overlap of the geodesic star unfolding
extend to the case of quasigeodesic source curves as well, so in that sense our result is
no less general than [21]. Our result also implies that the outside piece unfolds without
overlap, which repairs the missing step of Itoh, O’Rourke and Vı̂lcu’s result.
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o

Figure 3.15: Geodesic loop
on the surface of a polyhe-
dron (partially transparent
to view the full loop).

o

Figure 3.16: Unfolding of
Figure 3.15.

An example of a geodesic loop and corresponding unfolding are given in Figures 3.15
and 3.16. Note that endpoint reporting vertices can only lie on the outside of the loop.
No vertex inside of the loop can report to the loop point o itself, since the surface angle to
the interior of the loop is < π.

Theorem 3.1. The conjoined star unfolding from a (quasi-)geodesic loop does not overlap.

Our proof of Theorem 3.1 will show that the ridge tree for a quasigeodesic loop is
balanced, meaning we can apply Lemma 3.4 to prove non-overlap.
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o

Σα ≤ π

Figure 3.17: The total
source angle not covered by
u on a geodesic loop star
unfolding is at most π.

o

A B

Figure 3.18: Path σ
through the ridge tree that
crosses u (shaded brown,
A and B wings of the path
shaded separately).

Lemma 3.6. Every path through the ridge tree of the conjoined star unfolding from a
(quasi-)geodesic loop has at most π source angle to either side.

Proof. Without loss of generality, we will assume the convention established at the top
of this section, namely that the r side of the (quasi-)geodesic is the one facing the inside
(lower curvature) part of the loop, and l is on the outside (higher curvature).

The idea is to look at the segment of the ridge tree that lies between a and b as they
approach each other. In the limit, there will be a single edge of the ridge tree, call it u,
with at least π

2
source angle to either side passing through o. Note that o in this context

is the eventual point of intersection if we extended the endpoints a and b in the direction
of the (quasi-)geodesic curve.
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a b

o

p

u

Figure 3.19: Zoomed-in view of the surface as a and b approach o. Assuming no vertices
are inside the region aobp, there is at least π

2
source angle to either side of ridge tree edge

u.

The ridge tree for a geodesic loop is necessarily ab-adjacent. Consider the segment of
the ridge tree between a and b on the inside of the loop that touches loop point o, call it u.
Observe what happens in the limit as a and b approach o. Consider the kite-shaped region
of the surface delimited by a, b, o, and p, where p is the intersection between the rays
perpendicular to the geodesic at a and b respectively (see Figure 3.19). Call this region ρ.
Assuming we are zoomed in enough, there are no vertices or other ridge tree edges inside
the region ρ, and therefore some sub-segment of u will reach from p to o (that is, exactly
bisect a and b). Thus, we must conclude that α(u) ≥ π

2
. Furthermore, this is the only

edge of the ridge tree on the inside of the loop that has point-wings reporting to a or b.
Consider any path σ through the ridge tree of the geodesic loop unfolding; it is restricted
to one of the three following cases:

• The path σ does not include u, and remains entirely on the inside of the loop. In
such a case, since we know u is the only edge with a non-zero source angle, it is
guaranteed that αA(σ) = αB(σ) = 0.

• The path σ does not include u, and remains entirely on the outside of the loop. Since
we proved that α(u) ≥ π

2
, the total source angle of the wings to both sides of edge u

≥ π. Thus, the remaining source angle of all wings along every other possible path
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(i.e. not including u) must be ≤ π (see Figure 3.17), thus the path as a whole cannot
have more than π source angle to either side.

• The path σ includes u. We want to show that the source angle to each side of σ is at
most π. Any edge of σ that lies inside the geodesic loop only has segment wings to
either side and these contribute 0 to the source angle of the path. Thus it suffices to
look at the portion of σ starting at e and following edges that lie outside the geodesic
loop. Call this subpath σ′. Ridge tree edge u has a point wing to either side, one
reporting to a and one reporting to b. Label the two sides of σ′ A and B. Suppose
that the source angle of σ′ on side A is greater than or equal to the source angle
on side B. If side A only has point wings that report to a, then its source angle is
at most π. So suppose that side A has a point wing that reports to b. As we walk
around the path σ′, the wings report in order to a, then l, then b (this simply a
consequence of Observation 3.1, see Figure 3.20 for an example). So all the wings on
the B side must report only to b, and the sum of their source angles is at most π.
Since every wing on the B side is a point-wing reporting to b, every point wing on
the A side must be paired with a point wing on the B side, thus each such pair has
equal source angles. Thus the source angle of σ′ on side A is bounded by the source
angle of σ′ on side B, which is bounded by π.

42



A

B

o

Figure 3.20: An illustration of the 3rd case, where the A side of the path has wings
reporting to a, l, and b on the outside of the loop.

Proof of non-overlap then follows as a corollary to Lemma 3.6.

3.5 Fully Extended Geodesics

We proved in Lemma 3.4 that the geodesic star unfolding does not overlap when every path
in the ridge tree has source angle at most π to each side (i.e. the ridge tree is balanced).
In order to prove the complete conjecture that the star unfolding does not overlap, we
must investigate cases where there are paths in the ridge tree which have source angle
greater than π to one side. In this section, we explore one such case where we can easily
identify if this property holds, when the geodesic cut λ has been fully-extended. This case
is simpler in that no vertices report to the endpoints a and b of the geodesic curve. We
will identify cases of fully-extended geodesic curves where the ridge tree is not balanced,
and some sub-cases within those where we can still prove non-overlap.
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Imagine taking a point p ∈ P , and choosing two opposite directions (that is, rotated
π away from each other), and then extending the endpoints of a geodesic curve λ from p
as much as possible in both directions. Typically, it is not possible to continue extending
this geodesic indefinitely — eventually there will be a point of self-intersection. The only
exception to this rule is the case of an isosceles tetrahedron, where it is possible to extend
a geodesic in either direction infinitely [21]. Note that the curve generated by this con-
struction might not be unique. Rather, depending on which endpoint was ‘extended’ first,
one path may block the other (see Figure 3.21).

a

b

s s

a

b

Figure 3.21: Schematic view of two fully-extended geodesics arising from the same origin
point s.

In general, fully-extended geodesics will contain two geodesic loops, one for either end-
point. We characterize fully-extended geodesics in terms of where the two endpoints inter-
sect with the rest of the geodesic to form these loops. Call the point of intersection of a
(resp. b) with λ the loop point, denoted λ(a) (resp. λ(b)). In order to maintain the property
that the unfolding remains a single connected polygon, we will consider a (resp. b) to lie
infinitesimally close to λ(a) (resp. λ(b)) without actually disconnecting the surface.

We begin by examining the local structure of the unfolding in a neighbourhood of one
endpoint of the geodesic curve λ. Without loss of generality, we express the following claim
in terms of endpoint a reaching side r of λ.

Claim 3.1. In the star unfolding from a fully-extended geodesic, the neighbourhood around
point a (resp. b) has the following properties (as shown in Figure 3.22)

• No vertex cut reports to the endpoint a.

• Near λ(a) the curve λ unfolds to a straight line.
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• Near a the two sides of λ will come together in the unfolding.

Furthermore, if β(a) is the surface angle at point a = λ(a) on the r side of λ (i.e. on the
inside of the geodesic loop), then the curvature of the piece of the surface inside the loop is
β(a) + π.

Proof. The only thing we need to justify is that no vertex cut reports to endpoint a itself,
the other two facts follow from it. Since a and λ(a) effectively coincide, the surface angle
to either side of that point is ≤ π. By Lemma 3.1, the angle α made between a shortest
path to λ and λ itself must be ≥ π

2
, and so cannot report to that exact point (see the lower

magnification in Figure 3.22). The final point regarding the curvature inside the geodesic
loop was established in [21].

a

a

b

λ(b)

b

p

d′

d

l
r

Figure 3.22:
Region around a: Pick any point p near endpoint a. No shortest path from p can report
to the endpoint, since a shorter perpendicular path can always be found instead.
Region around b: A ridge tree edge passes between the infinitely small gap between b
and λ(b).
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Note that we consider a (resp. b) to be infinitely close to, but not touching, λ(a)
(resp. λ(b)). Thus, there is a ridge tree edge which passes between a and λ(a) (likewise
for b, see the upper magnification in Figure 3.22). This edge has a point wing with source
angle π on one side. These are the only two point-wings in a fully-extended geodesic ridge
tree. The type of wing which lies on the other side of those ridge tree edges determines
which class of fully-extended geodesics this instance falls into.

All geodesics, when fully extended, fall into one of the following 3 categories:

• Closed Geodesic: This is the somewhat degenerate case where the two endpoints will
meet each other exactly ‘head-on’ (i.e. λ(a) = b, and vice versa), to form a perfect
closed geodesic (with no distinguishable loop point).

• S-Shaped Geodesic: This is the case when a and b reach opposite sides of the geodesic
curve, that is, one to l and one to r (see Figure 3.23 for a schematic, and Figures 3.24
and 3.25 for a full example).

• C-Shaped Geodesic: This case arises when a and b reach the same side of the geodesic
(see Figure 3.23 for a schematic, and Figures 3.26 and 3.27).

For the remainder of this chapter, for the sake of brevity we will refer to fully-extended
C- and S-shaped geodesics simply as C-shaped and S-shaped geodesics respectively.

a sb a

b

s

s

b

a

Figure 3.23: Schematic view of a C-shaped geodesic (left), and an S-shaped geodesic
(centre). Also shown is an S-shaped geodesic where the two loops do not share any piece
of the geodesic curve (right).
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a

b

Figure 3.24: S-Shaped geodesic on a polyhedron (partially transparent to view the full
curve). The arrows are directed to the endpoints, a and b, of the geodesic curve.
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a

b

Figure 3.25: Unfolding of Figure 3.24. Note that a and b appear on opposite sides of every
path possible path through the ridge tree.
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a b

Figure 3.26: C-Shaped geodesic on a polyhedron (partially transparent to view the full
curve).

a b

head

a-ear

b-ear

Figure 3.27: Unfolding of Figure 3.26. a and b are on the same side of any path passing
from the interior of one ear to the other.
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We will show that for a closed geodesic or an S-shaped geodesic, the ridge tree is
always balanced, so the star unfolding is non-overlapping by Lemma 3.4. However, for
the C-shaped geodesics, the ridge tree can be unbalanced—we explore this case further in
Section 3.5.1.

First, we will look at closed geodesics.

Lemma 3.7. The star unfolding from any fully-extended closed geodesic curve is non-
overlapping.

Proof. Since a closed geodesic is just a geodesic loop, this is just a special case of Lemma 3.6,

Now, we give a simple proof for the non-overlap of fully-extended S-shaped geodesic
curves. The key observation is that since the loop points appear on opposite sides of the
geodesic curve, they will also appear on opposite sides of any path through the ridge tree,
and thus the ridge tree is balanced.

Lemma 3.8. The star unfolding from any S-shaped geodesic curve is non-overlapping.

Proof. Consider a path through the ridge tree σ, and take one side of that path, say the A
side. We want to show that αA(σ) ≤ π. There are only two point-wings in the unfolding,
one for source a and one for source b, and each of these point wings has a source angle of
exactly π. The only way to have αA(σ) > π is for both point wings to appear on the same
side of σ. Suppose that this is the case. Since this is an S-shaped geodesic, a and b reach
opposite sides of λ. We claim that this contradicts the property that the source images
appear in cyclic order a, l, b, r around the boundary of the unfolding, since that same cyclic
ordering (or a subsequence of it) would also have to occur around any path through the
ridge tree (see Figure 3.28).

a bl

r

l

Figure 3.28: This depiction is not possible since the l region of the boundary would have
to be disconnected to allow it.
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3.5.1 Fully Extended C-shaped Geodesics

In this section, we examine the star unfoldings of fully extended C-shaped geodesic curves.
As depicted in Figure 3.27, there may be a path in the ridge tree of the unfolding of a
C-shaped geodesic that has more than π source angle to one side (in fact, all 2π surface
angle could lie to one side of that path). However, we will show that the unfolding of a
C-shaped geodesic has a very specific structure. Then, in the following two sections, we
will use that structure to show the unfolding does not overlap in two special cases: (1)
when each loop of the geodesic has only one vertex inside it (Section 3.5.2); and (2) when
each loop of the geodesic has curvature ≤ 3π/2 (Section 3.5.3).

First, some notation. We will call the two loops of the geodesic the a-loop and b-loop
respectively. We define ga (resp. gb) to be the length of the geodesic loop from λ(a) to
a (resp. λ(b) to b). Also, without loss of generality, we will assume that the r side of
the curve is to the inside of both loops. We will show that the unfolding of a C-shaped
geodesic is composed of 3 parts, which we will call the head and two ears. More precisely,
the a-ear is the unfolding of the inside of the a-loop, the b-ear is the unfolding of the inside
of the b-loop, and the head is the remainder of the unfolding. Figure 3.29 gives a general
schematic of this form, see Figure 3.27 for a concrete example.

A useful fact about each of these pieces is that they are roughly convex; specifically,
if we fill in the curvature gaps of all vertices with curvature ≤ π in the unfolding in the
manner of Lemma 3.2, then each piece forms a convex polygon.
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Head

a-Ear
b-Ear

a b

sa sb

Figure 3.29: Schematic of the shape of the geodesic star unfolding of a C-shaped geodesic,
with base rays indicated.

Lemma 3.9. The ears and head of a fully-extended C-shaped Geodesic unfolding are con-
vex, assuming the curvature gaps with curvature ≤ π lying between consecutive segment
images are filled in.

Proof. The segment images around each ear are all of a single type (either r or l), and
therefore the boundary of each ear is contained within a convex chain by Lemma 3.2.
Because the sum curvature to the interior of the loops is less than 2π (see the proof of
Claim 3.1), the chain must meet itself at a convex angle at the loop point a = λ(a)
(resp. b = λ(b)), thus the entire contour around the ear must be convex. For the head,
notice that it is composed of one chain from r and one chain from l (these are the upper
and lower chains respectively in Figure 3.27). These two chains will meet each other at
the two loop points. The angle at which they meet on either side must be less than π,
and therefore, form a convex angle (refer to the proof of Claim 3.1 and Figure 3.22 for an
illustration).

Define the base ray for endpoint a, denoted sa of a C-shaped geodesic star unfolding to
be the ray with an origin point at a = λ(a) (resp. b), and directed along the segment of λ
near a for which the two sides of λ come together in the unfolding (see Claim 3.1). Define
sb analogously for endpoint b (see Figure 3.29 for a schematic of the base rays).

Clearly, the head and a-ear lie strictly on opposite sides of sa, and likewise the b-ear is
on the opposite side of sb. Thus, it is trivial to show that the head does not overlap with
either ear. However, it is not so clear that the two ears do not overlap with each other.
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Lemma 3.10. If the two base rays sa and sb do not intersect, then the unfolding does not
overlap.

Proof. We already showed that the head does not overlap with the ears, so all that remains
is to show the ears do not overlap with each other. The region in which the a-ear (resp. b-
ear) may exist lies strictly to one side of sa (resp. sb). Consider the situation depicted in
Figure 3.30. Since the base rays do not overlap, and we know that the contours of both ears
belong to the same convex chain, then there is no way that they can possibly overlap.

If the rays do intersect, as show in Figure 3.31, there is a ‘zone’ above the unfolding,
above the point of intersection between the two rays (call it x), in which the two ears
could potentially overlap if they extended far enough. Figures 3.32 and 3.33 show how to
construct a concrete example with intersecting base rays.

Head

a-Ear
b-Ear

a b

sa sb

Figure 3.30: If the base rays do not
overlap, then the unfolding cannot
overlap.

Head

a-Ear
b-
Ear

a b

sa
sb

x

Figure 3.31: If the base rays do over-
lap, there exists a ‘zone’ of potential
overlap above the unfolding (shaded
red).
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Figure 3.32: C-Shaped geodesic where the interiors of both loops have very high curvature.

a

b

x

sa

sb

Figure 3.33: The base rays of this unfolding intersect.

We were unable, however, to construct an example where actual overlap between the
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two ears occurs. As we can observe in our examples, the ears have a tendency to be ‘small’
relative to the middle section. We attempt to formalize this observation to create proofs
of non-overlap in the following sections.

3.5.2 C-Shaped Geodesics With One Vertex In Each Loop

In this section we prove non-overlap for the simple case where only a single vertex is
contained inside each loop.

Our technique, both in this section and the next, is to show that each ear is confined to
a certain right-angle wedge. We will define notation for the a-ear (the b-ear is analogous).
We will show that the a-ear is contained in a wedge formed by its base ray sa together
with a ray ta at a right angle to sa, intersecting sa at point pa (see Figure 3.34).

a

bpb

tb

pa

ta

x

sa

sb

Figure 3.34: Even when the base rays intersect, we can sometimes still show the ears do
not overlap by bounding them to a finite region.

The heart of the argument will be that if we can give a good upper bound on |apa|+|bpb|
then we will be able to guarantee that the two ears do not overlap. As a first step in this
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strategy, we will prove a lower bound on |ax| + |bx| (recall, x is the point of intersection
between sa and sb).

Lemma 3.11. |ax|+ |bx| ≥ ga + gb.

Proof. Clearly, |λ| ≥ ga + gb. Let C be the convex chain of the l segments on the head
between a and b, and denote its length |C|. Consider the triangle 4(axb), clearly C lives
inside this triangle. Futhermore, since the chain is convex, then by the triangle inequality,
|ax|+|bx| ≥ C. Finally, the length of the chain is clearly less than the sum of all the segment
sources along it, which in turn is simply |λ|. Therefore, |ax|+|bx| ≥ |C| ≥ |λ| ≥ ga+gb.

Lemma 3.12. If |apa|+ |bpb| ≤ ga + gb then the unfolding does not overlap.

Proof. Suppose the two ears overlap at some point z. Take the projection of z onto sa;
call it za. Do the same onto sb; call it zb (see Figure 3.35). Clearly, if the two ears overlap
at point z, then |aza| ≤ |apa| and |bzb| ≤ |bpb|. But, for every possible case, we will show
that in fact |aza|+ |bzb| > |ax|+ |bx|, which will lead to a contradiction.

Consider the following cases:

(1) |aza| > |ax| and |bzb| > |bx|. Then trivially |aza|+ |bzb| > |ax|+ |bx|.

(2) |aza| > |ax| and |bzb| ≤ |bx|. Take the point of intersection of sb with zza, call it
y (illustrated in Figure 3.35). Clearly |zax| > |yx| > |zbx|. But then that implies
|zax|−|ax| > |bx|−|zbx|. Re-arranging the inequality, we get |zax|+|zbx| > |ax|+|bx|

(3) |aza| ≤ |ax| and |bzb| > |bx|. Symmetric to the previous case.

(4) |aza| ≤ |ax| and |bzb| ≤ |bx|. This is not possible since z lies in the convex wedge
formed by the portions of sa and sb beyond x (and that is the only region where the
two ears may intersect).

So, |aza| + |bzb| > |ax| + |bx|. But, by our assumption, |apa| + |bpb| ≤ ga + gb, and by
Lemma 3.11, this is in turn ≤ |ax|+ |bx|, a contradiction.
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a

sa

ga
2

d

ta

pa

v

Figure 3.36: With a single vertex inside the a-loop, the wedge boundary ray ta lies along
the unfolded kite, and the distance from a to pa is exactly ga

2
from the loop point.

sb
sa

ba

x
za

zb

y

a-ear
z

tbta

pa

pb

b-ear

head

Figure 3.35: Proof of Lemma 3.12. Projecting the point of intersection z onto the two base
rays. It is always true that |aza| ≤ |apa| and |bzb| ≤ |bpb|.

We now address the case where each loop has only one vertex.

Lemma 3.13. If each loop of the C-shaped geodesic has just one vertex then the unfolding
does not overlap.
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Proof. We will argue first for the a-ear. When there is a single vertex reporting to inside
the loop, call it v, there is also exactly one ridge tree edge inside the loop, passing from
a to v. Because there are only segment images, in the unfolding, the ridge tree edge is a
straight line, and the unfolded region for the ear is a kite (see Figure 3.36). The ear has
two segment images to either side, and since they are symmetric, they are of length ga

2

each. Since the vertex is at a right angle from the segment images, pa can be at exactly
the endpoint of this segment image. Repeat this argument for the b side, to obtain that
|apa| = ga

2
and |bpb| = gb

2
. Applying Lemma 3.12 completes the proof.

3.5.3 C-shaped Geodesics with Low Curvature Loops

In this section we prove that the unfolding is non-overlapping if each loop of the C-shaped
geodesic has curvature ≤ 3π/2. We will use the techniques developed in the previous
section to confine each ear to a bounded right-angle wedge. In particular, we will make
use of Lemma 3.12 by bounding the distance |apa|+ |bpb|.

Our bound will be in terms of d, the maximum distance from the geodesic loop to any
vertex (and furthermore, any point) on the inside of the loop. Without loss of generality,
we will discuss each loop in isolation, calling its loop point o and denoting its length go.
The following lemma makes use of an observation by O’Rourke and Vı̂lcu [24] regarding
conical development of certain curves on convex polyhedra. Their proof shows that any
convex curve ‘lives on a cone’, and continues to live on that same cone after iterations of
Alexandrov’s gluing theorem are applied to the vertices to one side of that curve. We show
that the distance of the curve to the apex of this cone is the maximum distance to any
other vertex inside the loop.

Lemma 3.14. Let P be a convex polyhedron, and λ a geodesic loop with loop point o and
length go on the surface of P , such that the curvature inside the loop is κ ≤ 2π. Then the
maximum distance from any vertex on the loop’s interior to λ, call it d, is tan(κ

2
− π

2
) · go

2
.

Proof. Use Alexandrov’s gluing theorem as described in [24] to merge every vertex to the
interior side of the geodesic loop λ. Recall since the curvature inside the loop is ≤ 2π, it is
possible to merge all vertices inside the loop into one. By Lemma 1 of [24], there exists a
uniquely determined cone on which λ and its interior side lives, and this cone remains the
same after each merge. Consider unfolding this cone by cutting along its ridge tree, which
in this case will be a geodesic path from its apex to the the loop point of λ. (Note that
this is effectively the source unfolding from a geodesic curve of this 1-vertex subsurface,
since we have cut it along the ridge tree.)
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The resulting unfolded shape will form an isosceles triangle whose base is length go and
whose congruent sides are the length of the cut we made from the apex to o. Now, consider
taking a similar unfolding of the surface interior to λ at any intermediate state of the vertex
merging process (see Figure 3.37 for an example). Since each merge strictly adds surface
to the polyhedron, it must be the case that the each unfolding lives strictly inside the final
isosceles triangle. The farthest possible point from λ anywhere on the surface is exactly
the apex of the isosceles triangle. If the curvature inside the loop is κ, then the surface
angle at the apex is 2π − κ. Finally, we use trigonometry to measure the perpendicular
distance from λ to the apex, giving our result that d ≤ go

2
·tan(κ

2
− π

2
) (see Figure 3.38).
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v1

v2

v3

v4

go

o o

(a)

v2
v4

v1,3

go

o o

(b)

v2

v1,3,4

go

o o

(c)

v1,2,3,4

go

o o

(d)

Figure 3.37: Example of merging 4 vertices on the interior of a geodesic loop by surface
extension. (a) Depicts the initial configuration. (b) Merging v1 and v3 to form a new vertex
v1,3 with their combined curvature. The triangles that were ‘sutured in’ are highlighted
(notice one triangle ‘rolls over’ to the other side). (c) and (d) Additional merges, to reach
a completed cone/isosceles triangle.

60



π − κ
2

go
2

go
2
· tan(κ

2
− π

2
)

κ
2
− π

2

Figure 3.38: Calculating the maximum distance d from a lone vertex to the inside of the
geodesic loop, based on the curvature inside the loop, κ, and the length of the loop, go.

Although it is most clear to express this distance d in terms of the ‘farthest possible
vertex’, the real use for this fact is expressed by the following corollary:

Corollary 3.1. The maximum distance from the geodesic to any point on the interior of
a geodesic loop is ≤ d, the maximum distance to any vertex inside the geodesic loop.

Proof. Simply observe that at no point during the construction in Lemma 3.14 could the
unfolded surface expand beyond the boundary of the isosceles triangle formed by the 1
vertex unfolding. Therefore, if we measure the perpendicular distance from the base of the
unfolded image (which is the geodesic cut) to any point on the surface, the distance is at
most d.

Note that in particular, this implies that the maximum distance to any point on the
ridge tree from the geodesic cut is ≤ d as well.
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a

sa

≤ ga
2

≤ d

sa

pa

ta

Figure 3.39: The total to distance pa can increase by up to d with just one additional
vertex.

We will compute an upper bound for |apa| (resp. |bpb|), and apply Lemma 3.11 to prove
non-overlap. It is easy to see in the one-vertex case that the projection distance of each loop
is at most 1

2
of their respective loop lengths (see Figure 3.36), however, adding a second

vertex can extend that distance significantly. In particular, that distance can increase by
at most the maximum possible distance to any vertex inside the loop, as computed by
Lemma 3.14 (see Figure 3.39). However, this is the strict limit to how far the projection
can extend, as we formalize in the following lemma.
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a

ga
sa

b

sb

Figure 3.40: We will consider this single loop of a C-shaped geodesic unfolding in isolation.

Lemma 3.15. Given a geodesic loop, with loop length ga and a maximum possible vertex
distance (as computed by Lemma 3.14) of d, then the projective distance |paa| along the
base ray sa is at most ga

2
+ d.

Proof. Consider the situation depicted in Figure 3.41. We want to compute an upper bound
for |paa|, in terms of ga and d. First, observe that as we follow the contour of the unfolding
in either direction, it stops moving any further along ray sa when the sum of the curvature
of the vertices reaches at least π

2
; this occurs at the vertex labelled v′ in Figure 3.42. Trace

the unique path through the ridge tree from a to the ridge tree parent of v′. Each edge of
this path is flanked by two congruent segment-wings, one to either side. As a result, the
sum of the lengths of all segments to either side of any path is at most ga

2
. Thus the sum

length of their projections onto sa is ≤ ga
2

as well. The remaining distance is accounted
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a

sa

pa

ta

Figure 3.41: The loop of Figure 3.40 in isolation. Note that we wish to bound |paa|.
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for by the curvature gaps between those projected images, as well as the final segment
(see Figure 3.43). Consider cutting shortest paths from the segment images to each vertex
along the path from a to v′, and isolating those pieces. By Lemma 3.14, the distance of
each such cut is ≤ d. If we imagine those regions concatenated together (Figure 3.44),
then the whole set can fit inside a circle of radius d. Assuming we truncate this to only
consider the first quarter circle (which is the only pieces which matter when considering
the projection onto sa), then the total length of the projection is ≤ d. Combining both
shows that |apa| ≤ ga

2
+ d.

a sa

m1 m2 m3

m4

Σsi ≤ ga
2

v′

pa

ta

Figure 3.42: Each segment along the path is ‘paired’ with one on the opposite side; therefore
their total length to one side is ≤ l

2
.
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a sa

≤ d

∠α1

∠α2

Σαi ≥ π
2

pa

ta

Figure 3.43: The remaining pieces form circular sectors, where the sum of the curvature
gap angles are ≥ π

2
.

≤ d

Figure 3.44: If we concatenate those slices together, and truncate anything rotated beyond
π
2

of the base ray, they live inside a quarter-cicle with radius at most d.

When the curvature inside each loop is ‘relatively low’, Lemma 3.14 implies the maxi-
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mum vertex distance is small as well. We formalize that idea in the following lemma.

Lemma 3.16. If each loop of the C-shaped geodesic has curvature ≤ 3π
2

then the unfolding
does not overlap.

Proof. Suppose the curvature κa to the inside of the a-loop loop is ≤ 3π
2

. Then κ
2
− π

2
≤ π

4
,

and therefore the maximum vertex distance da ≤ tan(κa
2
− π

2
) · ga

2
≤ ga

2
. Therefore, |apa| ≤

ga
2

+ da ≤ ga. Apply the same argument on the b-loop to show that |bpb| ≤ gb. Thus,
|apa|+ |bpb| ≤ ga + gb, and by Lemma 3.12, the unfolding does not overlap.
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Chapter 4

Conclusions

We have made steps towards a proof of non-overlap for the geodesic star unfolding; however
a solution to the complete problem remains elusive.

4.1 Recapitulation

In Chapter 2, we introduced a new method for proving non-overlap of the star unfolding
(Lemma 2.2). Our method usesd a decomposition the unfolding into kites formed by the
two congruent triangles to either side of each ridge tree edge. We argued that for every path
through the ridge tree, the kites along that path do not overlap, by establishing W-wedges
which contain all previous kites along the path. Proceeding by induction on the length of
the path, we showed that each subsequent kite further along the path is disjoint from the
previous wedges, and therefore, cannot overlap with any other kite in the unfolding.

In Chapter 3, we showed that Lemma 3.4 can be applied with some limited success
to the geodesic star unfolding, except that the partitioning of the unfolding is slightly
more complex since the source images are both points and line segments. As long as
the surface angle to either side of every path through the ridge tree is less than π, we
proved the geodesic star unfolding does not overlap. In Sections 3.4 and 3.5, we showed
two classes of geodesic curves for which this property, and therefore non-overlap of their
unfoldings, is guaranteed, namely geodesic loops, and fully-extended S-shaped geodesics.
In Section 3.5.1, we discussed a class of geodesic curves where this property does not hold
at all, fully-extended C-shaped geodesics. Although no overlapping unfolding was found,
we could not devise a way to prove non-overlap for this class of unfoldings. We gave a
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concrete bound to the sizes of specific pieces of the unfolding contained inside geodesic
loops of the geodesic cut, by bounding the maximum distance to any vertex. Using this
bound, we were able to solve non-overlap for two specific sub-cases of this class of curves.

4.2 Open Questions and Future Directions

The most obvious question still outstanding from this work is whether the star unfolding
from any open (or closed) geodesic is non-overlapping. We covered a few specific classes
of curves for which non-overlap is guaranteed, but it seems unlikely further progress will
be made without further insight. The following points were posed or investigated briefly
during our research. Hopefully they might inspire improved results and new directions for
research into this problem.

4.2.1 Extending the Geodesic from a Point

One direction for future study could be to look at taking an initial star unfolding from
a point on the surface (that is, a geodesic with length zero), and investigating how the
unfolding changes as we extend a geodesic from that point. The idea is that one endpoint
would be fixed, remaining at a single location on the surface, while the other would be mov-
ing, that is extend in the direction of the geodesic. One could continue this transformation
until the moving endpoint intersects with another part of the segment (i.e. becomes fully-
extended in that direction). Figures 4.1 and 4.2 illustrate an example of this procedure.
Figure 4.1 is the initial state of the point star unfolding, where the arrow ∆λ indicates
the direction that the geodesic will cut into the surface from the source point. Figure 4.2
represents the change to the surface after extending the geodesic slightly. Pieces of the
surface will rotate away as the moving endpoint becomes closer its two nearest vertices,
forming segment images to either side.
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∆λ

Figure 4.1: A ‘zero length’-geodesic (i.e. point) star unfolding, with the direction of the
geodesic cut indicated.

∆λ

Figure 4.2: Extending the cut of Figure 4.1 slightly. No change to the rotational order of
vertices around the unfolding has occurred.
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One can show that, at least initially, the unfolding transforms continuously and without
overlap as the curve extends. Unfortunately, this continuity ends when the rotational order
of the vertex images around the unfolding changes. Modifications to the rotational order
occur when the moving endpoint becomes closer to a vertex than any previous part of the
geodesic curve (see Figures 4.3 and 4.4 for an example).

∆λ

Figure 4.3: One endpoint of the geodesic segment is about to be closer to a vertex than its
current reporting source segment image, meaning a rotation event is about to occur. The
entire highlighted section will rotate in the direction indicated.
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∆λ

Figure 4.4: The state of the unfolding after the rotation event of Figure 4.3. The rotational
order of the vertices around the unfolding has now changed.

How the unfolding changes at these rotation event is still well-defined; an entire section
of the unfolding will rotate about the image of that vertex in the plane. Unfortunately,
we were unable to show that non-overlap was preserved in the unfolding after a sequence
of these events. In particular, the result could be a fully-extended C-shaped geodesic (for
which we still have no proof of non-overlap). Perhaps if we could show that the ultimate
result of any geodesic extension is non-overlapping, it might be simpler to argue that no
intermediate state overlaps as well?

4.2.2 Generalization of Aronov and O’Rourke’s technique

There may be some hope of applying a more general variant of Aronov and O’Rourke’s
proof of non-overlap of the star unfolding in [7] to the geodesic setting (this idea is hinted
at in the proof of Lemma 3.14). The same vertex-merging technique of Alexandrov can
be applied to a geodesic unfolding, with the additional restriction that the shortest path
between the two vertices to be merged must not cross the geodesic cut, in addition to not
crossing the ridge tree. The primary barrier to this approach would be establishing base
cases for the induction. We have observed examples where the simplest possible polyhedron
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that could be reduced to would be at best a tetrahedron (fully-extended C-shaped geodesics
have this property), and other instances might require even more vertices. Furthermore, a
stronger variant of Lemma 3.15 that bounds the planar size of non-geodesic loop sections
of the unfolding would also be necessary.

Figures 4.6 and 4.6 illustrate this idea, and its potential interplay with the idea pre-
sented in Section 4.2.1. We conjecture that as long as the rotational order of the vertices
remains the same, so do the relative sectors of emptiness.

v3

v2

v1

Figure 4.5: A point star unfolding with its sectors of emptiness highlighted.

∆λ

∆λ

v2

v3

v1

Figure 4.6: An unfolding similar to Figure 4.6 except the source point has been extended
to a short geodesic. Note how the original sector of emptiness around v1 remains empty
(except for local intrusion by the shortest path cuts from v1 itself) as the geodesic grows.
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4.2.3 A More Generalized Star Unfolding

One interesting feature of Lemma 3.4 is that the nature of the proof does not seem to
rely on the source being a point or a geodesic. Rather, it only requires some kind of ridge
tree on the surface, and some notion of source angle on each edge. Therefore, it might be
possible to use this technique to argue non-overlap of star unfoldings from an even wider
class of ‘source’ objects, such as polylines (or closed polygons made up of piecewise geodesic
segments). This would be a step closer towards the original question of non-overlap of a
dual unfolding to the Sun Unfolding posed by [15].
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Appendix A

Generating the Figures

Figures of all unfoldings and perspective views of polyhedra presented in this thesis were
generated with a custom program written using CGAL [2], OpenGL [3], and Cairo [1]. The
program implements an algorithm to compute shortest paths from any point to geodesic
curve on a convex polyhedron. Using the information given by the shortest paths algorithm,
the star unfolding from a geodesic can be computed. Since the ridge tree is simply the
Voronoi diagram of the star unfolding layout, it can be simply be computed on top of the
planar layout of the unfolding. The figures were drawn using the Cairo graphics library to
achieve vector drawings. This program was also used to test several geodesic star unfoldings
for potential overlap, but no counterexamples were found.

A.1 Computing shortest paths to a Geodesic

The shortest paths algorithm used was a variation of Chen and Han [11], modified to
compute the geodesic offset. An example of such a modification can be found in [27] (though
we did not implement any of the additional optimizations outlined in this paper). Chen
and Han’s algorithm builds what is called a cone tree from one (or more) source points,
which are collections of geodesic (and therefore locally shortest) paths which all share a
common edge sequence. Naive construction of this tree would result in an exponential
size structure. Chen and Han give a simple method to prune nodes which cannot possibly
define shortest paths, and make a structure that can be constructed in O(n2) time, and
(theoretically) O(n) space. To compute geodesic shortest paths, a new type of cone tree
node is introduced, called a Segment Source. Segment source nodes function much the
same as normal nodes; they live on a given face, and have a pair of left and right side
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rays which delimit the cone inside which they can ‘see’ parts of the surface. The only
difference is that the two rays no longer share the same source point, instead they are
parallel rays originating from either end of a line segment. Shortest paths in each planar
layout are then computed as the perpendicular distance to this segment, but otherwise
the execution of the algorithm is unchanged. Each face that the geodesic curve crosses
generates 2 segment source nodes, one for each side of the geodesic. The two endpoints of
the geodesic curve simply act as two independent point source nodes, and shortest paths to
them are computed using the standard Chen and Han algorithm. The theoretical running
time of this extended algorithm is now a function of the number of faces crossed by the
geodesic, call it k, with an upper bound of O((n+ k)n).

A.2 Computing the Unfolding

The only combinatorial information required to compute the unfolding from a geodesic
segment is

• The set of shortest paths from each vertex to the geodesic curve (interior points along
l/r, or endpoints a/b), and and their respective lengths.

• The rotational order of those shortest paths around the geodesic.

With this information, one can iteratively build the unfolding polygon by iterating through
the rotational order of the shortest paths around the geodesic curve, and laying out each
source and vertex image in order. We can then easily check if the resulting polygon is
simple. Building the ridge tree is simply a matter of constructing the Voronoi diagram
over all of the point and segment images once they are laid out in the plane. This is, how-
ever, assuming that the unfolding itself is non-overlapping. If there were self-overlap in the
unfolding, one would have to divide the unfolding into non-overlapping sub-components,
compute the Voronoi diagram over each component, and then merge along their bound-
aries. Computation of point-and-line-segment Voronoi diagrams was accomplished using
the associated package in CGAL [22].
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