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Abstract

Time series are an ubiquitous form of data prevalent in everyday life, and their analysis
has gathered immense interest in many domains. Pointwise matches between two time
series are of great importance in time series analysis, and dynamic time warping (DTW)
has been widely known to provide reasonable matches. There are situations where time
series alignment should be invariant to scaling and offset in amplitude or certain regions of a
time series should be strongly reflected in the pointwise matches. Two different variants of
DTW, affine DTW (ADTW) and regional DTW (RDTW), are proposed to handle scaling
and offset in amplitude and regional emphasis respectively. Furthermore, ADTW and
RDTW can be combined in two different ways to generate alignments that incorporate
advantages from both methods. In global-affine regional DTW (GARDTW), the affine
model is applied globally to the entire time series with regional emphasis, whereas in local-
affine regional DTW (LARDTW), the affine model is applied locally to each region which
are then emphasized. Alignments produced by the proposed methods are evaluated on
simulated datasets and their associated difference measures are tested on real datasets.
The proposed methods are found to significantly outperform DTW when an evaluated
dataset meets the models or preferences of the proposed methods.
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Chapter 1

Introduction

A time series is a sequence of values that are typically arranged in a chronological order
in time, and data of such form is abundant in everyday life. In news, daily stock prices,
monthly unemployment rate, daily temperature and humidity are reported over time. In
scientific studies, much experimental data is gathered with a wide variety of methods over
time as well. Naturally, analysis of time series has captured immense interest across many
domains. In finance, analysis of stock market prices over time can reveal insights into
financial market meltdowns [16]. In biology, gene expression data are analyzed to infer
models of dynamic biological systems [3]. In physics, analysis of the area of the solar
surface covered by sunspots over time can offer a better understanding of solar-type stars
[10]. In geology, analysis of seismic time series is extremely valuable in predicting future
earthquake activities [18]. In engineering, vibration measurements over time are analyzed
to diagnose faults in rotating machinery [9].

Discovery of a set of matches between points in two time series can be tremendously
useful for analysis. If point a in time series s is of high interest, researchers may also be
interested in finding the point that best matches point a in another time series t. Points of
interest can include hints of financial meltdown from stock market prices, regulatory genes
from gene expression data, prominent sunspot activities from the area of the solar surface
covered by sunspots, earthquake activities from seismic data, or vibrations indicative of
faults from machine maintenance data.

One naive way of matching points in two time series of equal length is to match points
vertically. However, two similar time series might be subject to non-linear temporal varia-
tions. Figure 1.1 illustrates a set of matches between two similar times series using vertical
matches and another more realistic set of matches that account for non-linear temporal
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variations. A match between two points is illustrated by connecting the two points with a
line. Visually, the matches obtained by considering temporal variations is better than the
naive vertical matches, because the local peaks of the two time series tend to be matched
together and the local valleys of the two time series tend to be matched together.

Figure 1.1: Vertical matches and DTW alignments on two time series with non-linear
temporal variations.

Dynamic time warping (DTW) is one of the many methods that match points in two
time series based on the assumption that non-linear temporal variations might exist. DTW
also produced the reasonable matches illustrated in Figure 1.1. This thesis focuses on
DTW, because it is a widely known method for matching points in two time series and it
has enjoyed much success in many domains [20][6][19][29]. In particular, a comprehensive
survey of 8 common times series difference measures applied to 38 different data sets
from a wide variety of domains showed supporting evidence that DTW provides the best
time series difference measure across many domains [7]. Among the 8 surveyed difference
measures, 5 of them possess the ability to overcome temporal variations in different ways.
DTW generates matches between points in two time series that account for temporal
variations, and the associated time series difference measure can be easily computed based
on those matches by summing the distance between a pair of matched points across all
matches. As such, it is reasonable to postulate that the matches produced by DTW tend
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to be good if the associated difference measure is good.

While DTW has been successfully applied across many domains, Keogh et al. observed
that it can produce pathological alignments [15]. Keogh et al. pointed out two disadvan-
tages: 1) a single point in one time series can be matched to a large number of points
in another time series and 2) DTW may fail to find obvious alignments in two time se-
ries when a feature in one time series is higher or lower than its corresponding feature
in another time series [15]. Ultimately, pathological alignments are identified based on
context, meaning that the identifier has a particular preference or model in mind. As a
result, there has been a large influx of alignment methods based on DTW to realize par-
ticular preferences or models for obtaining better alignments under certain contexts. Fu
et al. proposed scaled and warped matching (SWM) by modeling one time series to be
uniformly scaled in time when aligned with another time series [11]. They find the scaling
in time and alignment with DTW simultaneously to address problems similar to query by
humming, where significant global scaling in time can exist [11]. Query by humming is a
way to retrieve music from user-hummed melodies, and the melodies hummed by different
users can have drastically different tempos. Qiao et al. proposed affine-invariant dynamic
time warping (AIDTW) by modeling one image as a rotated, shifted and scaled version
of another image when aligned [25]. They applied AIDTW to recognize images of rotated
handwritten digits, and AIDTW was found to outperform DTW by a large margin [25].
Latecki et al. proposed minimal variance matching (MVM) to allow skipping points to
be matched [17]. In DTW, each point in one time series needs to be matched to at least
one point in another time series, and this is not desirable when a time series contains
points that are detrimental to finding the correct alignment [17]. For example, time series
representing the contour of a face include confusing points that reflect the texture of hair,
which can be detrimental when used for alignment [17]. Nielsen et al. proposed correlation
optimized warping (COW) by modeling the temporal warping to be piecewise linear and
optimizing for the associated correlation [21]. COW was designed for chromatographic pro-
files, where peaks are known to shift linearly in time with different heights [21]. Bahlmann
et al. proposed statistical dynamic time warping (SDTW) by incrementing DTW with a
probabilistic model [2]. SDTW was shown to work well for online handwriting recognition,
where the addition of a probabilistic model in time helps resolve temporal confusions [2].

In this thesis, we propose two alignment methods that increment DTW based on specific
models or preferences: affine dynamic time warping (ADTW) and regional dynamic time
warping (RDTW). ADTW models one time series as an amplitude-scaled and amplitude-
offset version of another time series when aligning them. It tries to find the best scale, offset
and alignment simultaneously. Numerous types of time series fall under this affine model.
For example, temperature and humidity data can be subject to different scales and offsets
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as well as temporal variations depending on the geographic location and environment. The
revenue time series for a less well-off and smaller company can also undergo scalings and
offsets as well as temporal variations when compared to that of a more successful and larger
company. The amount of support over time for an election candidate estimated by different
parties can be roughly considered to be affine and varying in time when a fixed sampling
population is used. An unintuitive alignment produced by DTW for two temperature time
series subject to temporal variations, amplitude scaling and amplitude offset is illustrated
in Figure 1.2, where DTW matches a large number of points in s to the peak in t. As we will
see later, the proposed ADTW alignment method offers a much more intuitive alignment.
Note that ADTW is different from AIDTW proposed by Qiao et al. [25] in that AIDTW
assumes scaling, offset and rotation with respect to images. ADTW only models scaling
and offset, thereby resulting in a simpler optimization problem. Furthermore, if AIDTW is
applied to time series that do not undergo rotations, this additional unnecessary modeling
may serve to confuse the output alignment.

Figure 1.2: DTW alignment of daily temperature time series across a year for Sherbrooke
and Resolute, Canada.

Scenarios may arise where there are certain regions in a time series reflective of compo-
nents of interest, so they should be emphasized to find a more desirable alignment for two
time series. Regional dynamic time warping (RDTW) is proposed to accommodate this
preference by substituting the pointwise distance in DTW with a regional distance. Many
time series contain components of interest that should be focused on, and some examples
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are listed below. Time series on stock trading volume might contain bursts of influx or
outflow that are reflective of insider trading. Electrocardiography (ECG) is a technique
for recording a heart’s electrical activities. An ECG time series can be divided into com-
ponents that are associated with the depolarization of ventricles, which provide insights
on the heart’s condition. Electromyography (EMG) is a process that records the electrical
activity produced by a muscle. In the analysis of an EMG time series, examination of mo-
tor unit potentials (MUPs) is helpful for determining muscle abnormalities, where a MUP
is comprised of multiple muscle fiber potentials (MFPs). An EMG time series contains
multiple MUPs that characterize the muscle, which in turn each contains multiple MFPs
that characterize the MUP. In Figure 1.3, each MUP consists of two MFPs, and a match
between two points is denoted by a line connecting them. Ideally, the left MFPs should
be matched together and the right MFPs should be matched together, as shown in Fig-
ure 1.3A. However, Figure 1.3B illustrates that DTW produces an undesirable alignment
where a good portion of the left MFP in the top MUP is matched to the right MFP in the
bottom MUP. As we will see later, the proposed RDTW alignment method offers a better
result by matching the MFPs correctly.

Figure 1.3: DTW alignment of two MUPs with varying degrees of MFP overlap.

ADTW and RDTW can be combined to include both affine modeling and emphasis
on components. Two different ways of combining ADTW and RDTW in a global or local
manner are proposed. Global-affine regional dynamic time warping (GARDTW) models
one time series as a scaled and offsetted version of another time series when aligning
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them with regional emphasis. For example, amount of rainfall over time is subject to
different scalings, offsets and temporal variations across different locations. In the analysis
of this rainfall data, placing an emphasis on sections with short but heavy amounts of
rainfall can be useful in predicting such behaviors. The preference for this example is
to emphasize on matching components reflective of short but heavy amounts of rainfall
within two time series that can undergo scaling, offset and temporal variation. Local-affine
regional dynamic time warping (LARDTW) emphasizes on regions when performing an
alignment, where the region in one time series is modeled as a scaled and offset version of
the respective matched region in another time series. For example, the electrode recording
an EMG time series might be subject to movement. As a result, some motor units (MUs)
become closer to the electrode surface, and the associated MUPs are increased in scale.
Other MUs are now further away from the electrode surface, and the associated MUPs are
decreased in scale. The preference for this example is to correctly match the MUPs which
can undergo different scalings in amplitude in two EMG time series.

The rest of this thesis is organized as follows. Chapter 2 provides a review for the tech-
nical details of DTW. Furthermore, the proposed methods of ADTW, RDTW, GARDTW
and LARDTW are formulated and discussed in detail. Chapter 3 covers evaluations of the
alignments and difference measures generated by the proposed methods. Finally, Chapter
4 concludes this thesis and points out possible future extensions of this work.
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Chapter 2

Methodology for Pairwise Alignment
of Time Series

2.1 Dynamic Time Warping Review

Dynamic time warping (DTW) is a method that matches points in two time series that
are subject to non-linear temporal variations. It was invented by Sakoe et al. for speech
recognition [27]. Let s = (s1, s2, ..., sn) ∈ Rn and t = (t1, t2, ..., tm) ∈ Rm be two time series
of interest. Also, let p represent a sequence of matched points (also called an alignment)
between s and t, where

p = {p(1) = (a1, b1), p(2) = (a2, b2), ..., p(|p|) = (a|p|, b|p|)}

and (ak, bk) ∈ Z2
>0 means that point sak is matched with point tbk . In addition, let d be a

difference measure between two points. For the remainder of this thesis, d is assumed to
be the squared difference unless mentioned otherwise. Then, for a pair of time series s and
t, DTW searches for an optimal alignment p∗ among all possible alignments p’s such that

D(s, t, p) =

|p|∑
k=1

d(sak , tbk)

is minimized subject to the following constraints:

• Boundary: p(1) = (1, 1) and p(|p|) = (n,m). The start points of s and t are matched,
and the end points of s and t are matched.
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• Monotonicity: If p(k) = (a, b) and p(k + 1) = (c, d), then c ≥ a and d ≥ b ∀k. The
sequence of matches can only move forward in time.

• Step Size: If p(k) = (a, b) and p(k+ 1) = (c, d), then c− a ≤ 1 and d− b ≤ 1 ∀k. For
each time series, the next matched point can only be at most 1 time unit away from
the current one.

Note that more than one distinct alignment can exist as solutions to this constrained
optimization problem. Also, the reader should keep in mind for the remainder of this
thesis that the term ’optimal’ only refers to finding values that optimize a function, and
the associated solution might not necessarily be the best. For simplicity, the boundary,
monotonicity and step size constraints will be jointly referred to as the DTW constraints,
and D(s, t, p) subject to the DTW constraints will be denoted as D(s, t, p)constrained.

Figure 2.1 illustrates violation of each DTW constraint under the scenario of aligning
time series s with time series t. Figure 2.1 also illustrates how an alignment can be
visualized as a path. Each grid contains a path that represents an alignment p between
s and t, where filling of location (i, j) in a grid means that point si and point tj are
matched and a line connects the current match to the next match. The plots below the
grids illustrate how the two time series are aligned, where a match between two points is
denoted by connecting the two points with a dotted line. Looking at the grids, any path
that starts at position (1, 1) and ends at position (6, 6) by moving east, north, or northeast
one step at a time represents a viable alignment that meets the boundary, monotonicity
and step size constraints. These constraints are not unreasonable and, as we will see later,
enable faster computation for the optimal alignment p∗. The terms ’alignment’ and ’path’
will be used interchangeably from now on.

One simple way of finding an optimal alignment p∗ to this constrained optimization
problem is to plug all possible alignments p’s that meet the DTW constraints into D(s, t, p)
and determine which p yields the minimal D(s, t, p). However, the number of possible
alignments between two time series quickly grows out of control as the lengths of the two
time series increase. Recall that a path that meets the DTW constraints starts at (1, 1)
and ends at (n,m) by going east, north or northeast one step at a time. The number
of all such paths is described by the Delannoy number Del(n − 1,m − 1), and Table 2.1
lists out the total number of viable alignments for different time series lengths n’s where
m = n. There are as many as ≈ 1013 viable alignments for two small time series of length
n = 20, and it can be shown that Del(n− 1, n− 1) has a lower bound of 3n−1. Hence, we
observe that the number of possible alignments grows exponentially with n, and this fact
shows that the simple approach of exhaustively plugging in different p’s to find an optimal
alignment p∗ is not feasible.
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Figure 2.1: Violation of different constraints for DTW and visualization of respective
alignments as paths.

Table 2.1: Number of all possible alignments satisfying the boundary, monotonicity and
step size constraints for different time series lengths n’s.

Time series length n
2 3 4 5 10 20

Number of possible paths 3 13 63 321 1462563 45849429914943

Dynamic programming (faster brute force by storing reusable results in memory) can be
effective in reducing the time complexity for finding the optimal path p∗ to this constrained
optimization problem, because the path p∗ has optimal substructures and there are over-
lapping subproblems. Let p∗(a,b) be the optimal path from (1, 1) to (a, b) that minimizes

D(s, t, p(a,b)) subject to the monotonicity and step size constraints. This path represents
the optimal alignment for (s1, s2, ..., sa) and (t1, t2, ..., tb) subject to the DTW constraints.
The optimal alignment p∗ = p∗(n,m) has optimal substructures because if the path passes

through (i, j) for any 1 < i < n and 1 < j < m, the following subalignment of p∗

{p∗(1) = (1, 1), p∗(2) = (a2, b2), ..., (i, j)}

is p∗(i,j), the optimal alignment between (s1, s2, ..., si) and (t1, t2, ..., tj). Furthermore, over-
lapping subproblems exist because for any 1 < i < n and 1 < j < m, multiple alignments
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Table 2.2: DTW table.
D(s, t, p∗(n,1)) D(s, t, p∗(n,2)) . . . D(s, t, p∗(n,m))

...
... . .

. ...
D(s, t, p∗(2,1)) D(s, t, p∗(2,2)) . . . D(s, t, p∗(2,m))

D(s, t, p∗(1,1)) D(s, t, p∗(1,2)) . . . D(s, t, p∗(1,m))

p(n,m)’s can pass through (i, j), and these alignments share the same problem of finding
p∗(i,j) when searching for p∗(n,m).

A dynamic programming solution can be formulated using these properties. First, a
table of D(s, t, p∗(i,j)) values is constructed for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. This table is
referred to as the DTW table and it is shown in Table 2.2. The optimal alignment p∗ can
be found after building this table. With the observation that a path from (1, 1) to (i, j)
needs to pass through either (i− 1, j − 1), (i− 1, j) and (i, j − 1), the DTW table can be
updated starting from the bottom row from left to right, and then the row above can be
filled from left to right as well. The next row above can be computed in the same manner
from left to right until the nth row is reached. The update formula is as follows:

D(s, t, p∗(a,b)) = d(sa, tb) + min(D(s, t, p∗(a−1,b−1)), D(s, t, p∗(a,b−1)), D(s, t, p∗(a−1,b)))︸ ︷︷ ︸
H(s,t,a,b)

(2.1)

Note that if a − 1 < 1, D(s, t, p∗(a−1,b−1)) and D(s, t, p∗(a−1,b)) are not considered, and if

b− 1 < 1, D(s, t, p∗(a−1,b−1)) and D(s, t, p∗(a,b−1)) are not considered in the update formula.

Now, the question lies in how to obtain the optimal alignment p∗ from the DTW table.
Recall that D(s, t, p∗(n,m)) = d(sn, tm) + H(s, t, n,m). If H(s, t, n,m) = D(s, t, p∗(n−1,m−1)),

p∗ must contain a northeast move from (n−1,m−1) to (n,m) and the remaining task is to
align (s1, s2, ..., sn−1) with (t1, t2, ..., tm−1). If H(s, t, n,m) = D(s, t, p∗(n,m−1)), p

∗ must con-

tain a eastbound move from (n,m−1) to (n,m) and a subalignment between (s1, s2, ..., sn)
and (t1, t2, ..., tm−1) remains to be found. Similarly, if H(s, t, n,m) = D(s, t, p∗(n−1,m)), p

∗

must contain a northbound move from (n − 1,m) to (n,m) and a subalignment between
(s1, s2, ..., sn−1) and (t1, t2, ..., tm) remains to be found. This procedure (also called back-
tracking) can be applied to the resulting subalignment again and again until the location
(1, 1) is reached, thereby yielding the optimal alignment p∗. Figure 2.2 illustrates this
backtracking process, where p∗ = {(1, 1), (2, 2), (3, 2), (4, 3), (5, 4), (6, 5), (6, 6)}.

For simplicity of complexity analysis, let us assume that the two time series to be aligned
have the same length such that n = m. Since the update formula in Equation 2.1 for filling
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Figure 2.2: Backtracking on DTW table to find the optimal alignment.

each element in the DTW table is O(1), filling the entire table requires a time complexity
of O(n2). The space complexity for constructing the DTW table is O(n2) as well. The
longest path that can be obtained from backtracking is one without any northeast moves,
since one northeast move is equivalent to one eastbound move plus one northbound move.
As such, the time and space complexity for backtracking is O(2n−1) = O(n), where 2n−1
is the length of an alignment p that does not have any northeast moves. Hence, the total
time and space complexity for finding the optimal alignment p∗ is O(n2) +O(n) = O(n2).

Certain alignments are unlikely to be the best alignment for aligning two time series.
For example, an alignment path p that moves northbound all the way followed by moving
eastbound all the way in the context of a DTW table is equivalent to matching point t1 with
points s1, s2, ..., sn and matching point sn with points t1, t2, ..., tm. This aforementioned
alignment is unlikely to be the best alignment for two typical time series s and t, even if this
alignment is optimal in the sense of minimizing D(s, t, p)constrained. Additional constraints
can be placed on the path p to 1) eliminate pathological alignments, and 2) reduce time
and space complexity. A well-known path constraint is the Sakoe-Chiba band [28], where
si can only be matched to points from the set {ti−wq , ti−wq+1, ..., ti, ..., ti+wq−1, ti+wq} and
wq ∈ Z≥0. This constraint effectively creates the band shown in Figure 2.3, where the
grid represents a DTW table and the grey parts are not considered for alignment. The
width of the band wb is given by wb = 1 + 2wq. Ratanamahatana et al. showed supporting
evidence that a small bandwidth wb achieves good results whereas a high bandwidth can
be detrimental [26]. It was recommended that the best bandwidth should be set based on
specific problems or datasets.

Note that less than wbn elements are required to be filled in the DTW table when the
Sakoe-Chiba band is imposed. Since the limiting factor in the time and space complexities
of the DTW algorithm lies in the construction of the DTW table, the time and space
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complexities are both reduced from O(n2) to O(wbn) when assuming n = m.

Figure 2.3: Sakoe-Chiba band in a DTW table.

In addition to alignments, DTW also provides a powerful difference measure between
two time series s and t in the form of D(s, t, p∗), which has enjoyed much success in many
domains [20][6][19][29]. D(s, t, p∗) can be thought of as the sum of squared difference
between two time series after temporal variations are accounted for, and it will be referred
to as the DTW difference measure for the remainder of this thesis.

2.2 Affine Dynamic Time Warping

Affine dynamic time warping (ADTW) increments DTW to allow arbitrary scaling and
offset in amplitude between two time series which are subject to temporal variations. Let
s and t be two time series of interest. In ADTW, s is assumed to be a time series that
is scaled and offsetted in amplitude with temporal variations. In more formal terms, the
goal is to find a path p∗, scaling factor c∗ ∈ R and offset factor e∗ ∈ R that minimize

DA(s, t, p, c, e) =

|p|∑
k=1

d(sak , ctbk + e) =

|p|∑
k=1

(sak − (ctbk + e))2

subject to the DTW boundary, monotonicity and step size constraints. For brevity,
DA(s, t, p, c, e) subject to the DTW constraints will be referred to asDA(s, t, p, c, e)constrained.
This formulation aims to optimize for a global minimum in DA(s, t, p, c, e)constrained with
respect to p, c and e simultaneously, which is different from finding the scaling and offset
first prior to applying DTW to obtain an alignment.

As a first step to solving this optimization problem, we will show that the optimal
scaling and offset (c′p, e

′
p) can be found for a given path p in the context of minimizing
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DA(s, t, p, c, e)constrained. We will begin by showing that DA(s, t, p, c, e) is convex with re-
spect to c and e when s, t, and p are given. In this context, p has been picked to satisfy the
DTW constraints. If a function is convex, a local optimum of the function is necessarily
a global minimum. Hence, given that DA(s, t, p, c, e) is convex with respect to c and e,
we can proceed to solve for (c′p, e

′
p) by finding a local optimum in DA(s, t, p, c, e) using

derivatives.

We start by proving that DA(s, t, p, c, e) is convex with respect to c and e when s, t,
and p are given. Let sp = [sa1 , sa2 , ..., sa|p| ]

T and tp = [ta1 , ta2 , ..., ta|p| ]
T , where T is the

transpose operator. Also, let β = [c, e]T and let ~1 = [1, 1, ...1]T be a vector of length |p|.
Furthermore, let y = sp and X = [tp,~1]. Then, DA(s, t, p, c, e) can be rewritten in the form
of linear least squares:

DA(s, t, p, c, e) = (y −Xβ)T (y −Xβ)

= yTy − 2βTXTy + βTXTXβ

This function is twice differentiable with respect to β and its Hessian (matrix of second-
order partial derivatives for a function) with respect to β is

∂2

∂β∂βT
DA(s, t, p, c, e) =

∂

∂βT
[
∂

∂β
DA(s, t, p, c, e)]

=
∂

∂βT
[−2XTy +XTXβ]

= XTX

which is a positive semi-definite matrix. If the Hessian of a function is positive semi-definite,
the function is convex. Hence, DA(s, t, p, c, e) is convex with respect to (c, e) when (s, t, p)
are given.

Since we now know that DA(s, t, p, c, e) has only one global minimum with respect to
(c, e), finding any local optimum is equivalent to finding the global minimum. Finding a
local optimum of DA(s, t, p, c, e) can be achieved by taking derivatives of DA(s, t, p, c, e)
with respect to c and e, setting the derivatives to 0, and solving for values of c and e.
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Taking the derivative of DA(s, t, p, c, e) with respect to c, we get

∂

∂c
DA(s, t, p, c, e) =

∂

∂c

|p|∑
k=1

(sak − ctbk − e)2

=

|p|∑
k=1

∂

∂c
(sak − ctbk − e)2

= −2

|p|∑
k=1

(sak − ctbk − e)tbk

Taking the derivative of DA(s, t, p, c, e) with respect to e, we obtain

∂

∂e
DA(s, t, p, c, e) =

∂

∂e

|p|∑
k=1

(sak − ctbk − e)2

=

|p|∑
k=1

∂

∂e
(sak − ctbk − e)2

= −2

|p|∑
k=1

(sak − ctbk − e)

Setting ∂
∂e
DA(s, t, p, c, e′p) = 0 and solving for e′p yields the minimizing e:

−2

|p|∑
k=1

(sak − c′ptbk − e′p) = 0

−|p|e′p +

|p|∑
k=1

(sak − c′ptbk) = 0

e′p =
1

|p|

|p|∑
k=1

(sak − c′ptbk) (2.2)

Likewise, setting ∂
∂c
DA(s, t, p, c′p, e) = 0, plugging in Equation 2.2 for e′p and solving for c′p

yields the minimizing c:

−2

|p|∑
k=1

(sak − c′ptbk − e′p)tbk = 0
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−2

|p|∑
k=1

(sak − c′ptbk −
1

|p|

|p|∑
l=1

(sal − c′ptbl))tbk = 0

|p|∑
k=1

(saktbk − c′pt2bk −
1

|p|

|p|∑
l=1

(sal − c′ptbl)tbk) = 0

|p|∑
k=1

(saktbk − c′pt2bk − tbk
1

|p|

|p|∑
l=1

sal + c′ptbk
1

|p|

|p|∑
l=1

tbl) = 0

|p|∑
k=1

saktbk −
|p|∑
k=1

c′pt
2
bk
−
|p|∑
k=1

tbk
1

|p|

|p|∑
l=1

sal +

|p|∑
k=1

c′ptbk
1

|p|

|p|∑
l=1

tbl = 0

c′p

|p|∑
k=1

t2bk − c
′
p

1

|p|

|p|∑
k=1

tbk

|p|∑
l=1

tbl =

|p|∑
k=1

saktbk −
1

|p|
(

|p|∑
l=1

sal)(

|p|∑
k=1

tbk)

c′p =

∑|p|
k=1 saktbk − 1

|p|(
∑|p|

k=1 sak)(
∑|p|

k=1 tbk)∑|p|
k=1 t

2
bk
− 1
|p|(

∑|p|
k=1 tbk)2

(2.3)

Now, we have obtained formulae (Equation 2.2 and 2.3) for computing (c′p, e
′
p) that min-

imize DA(s, t, p, c, e) when (s, t, p) are given and p satisfies the DTW constraints. The
original optimization problem of finding (p∗, c∗, e∗) that minimize DA(s, t, p, c, e) subject
to the DTW constraints can thus be rewritten as

(p∗, c∗ = c′p∗ , e
∗ = e′p∗) = argmin

p
DA(s, t, p, c′p, e

′
p)constrained

As mentioned in the DTW section, the number of possible paths p’s grows exponentially
as the length of two time series increases. Therefore, it is not feasible to perform this
optimization exhaustively. Dynamic programming is also no longer applicable because
each path p can have a different pair of scaling and offset factors (c′p, e

′
p), thereby rendering

results for existing subpaths not reusable. As a result, instead of finding an optimal solution
(p∗, c∗, e∗), we find a suboptimal solution (pl, cl, el) using Algorithm 1.

Looking Algorithm 1, it may not be immediately clear how to obtain plv, c
l
v or elv. p

l
v can

be computed with the standard DTW algorithm with input time series s and clv−1t+ elv−1.
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Algorithm 1 ADTW

1: pl, cl, el

2: cl0 ← 1
3: el0 ← 0
4: DA,prev ←∞
5: v ← 1
6: while 1 do
7: plv ← argmin

p
DA(s, t, p, clv−1, e

l
v−1)constrained

8: (clv, e
l
v)← argmin

c,e
DA(s, t, plv, c, e)constrained

9: if DA,prev −DA(s, t, pl, cl, el) < Dstop then
10: pl ← plv
11: cl ← clv
12: el ← elv
13: break
14: v ← v + 1

(clv, e
l
v) can be calculated in closed form with using Equation 2.2 and 2.3. Note that Dstop ∈

R is a small value chosen by the user for checking convergence of the algorithm. Algorithm
1 was strongly motivated by the classification expectation-maximization algorithm from
Celeux et al.’s work on k-means clustering [5]. How Algorithm 1 finds a suboptimal solution
(pl, cl, el) will be elaborated below. First, we will prove the following important property:

DA(s, t, plv+1, c
l
v+1, e

l
v+1)constrained ≤ DA(s, t, plv, c

l
v, e

l
v)constrained ∀v ∈ Z>0

Proof.

plv+1 = argmin
p

DA(s, t, p, clv, e
l
v)constrained

So, DA(s, t, plv+1, c
l
v, e

l
v)constrained ≤ DA(s, t, plv, c

l
v, e

l
v)constrained

(clv+1, e
l
v+1) = argmin

c,e
DA(s, t, plv+1, c, e)constrained

So, Da(p
l
v+1, c

l
v+1, e

l
v+1)constrained ≤ DA(s, t, plv+1, c

l
v, e

l
v)constrained

≤ DA(s, t, plv, c
l
v, e

l
v)constrained
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Since DA(s, t, plv+1, c
l
v+1, e

l
v+1)constrained ≤ DA(s, t, plv, c

l
v, e

l
v)constrained, we gain the insight

that this algorithm tries to iteratively decrease DA(s, t, p, c, e)constrained with respect to p,
c and e. Furthermore, it can be proved that the sequence {DA(s, t, plv, c

l
v, e

l
v)constrained}∞v=1

converges to one value.

Proof. We begin by noting that there is a finite number of possible paths p’s. We also know
that the scaling and offset factors (c′p, e

′
p) minimize DA(s, t, p, c, e)constrained when a path p

satisfying the DTW constraints is given. Hence, there is a finite number of (plv, c
l
v, e

l
v) tuples,

and this also means that there is a finite number of DA(s, t, plv, c
l
v, e

l
v)constrained values. In

other words, there is a finite number of distinct values in the sequence

{DA(s, t, plv, c
l
v, e

l
v)constrained}∞v=1

Imposing the additional condition that

DA(s, t, plv+1, c
l
v+1, e

l
v+1)constrained ≤ DA(s, t, plv, c

l
v, e

l
v)constrained

we know that {DA(s, t, plv, c
l
v, e

l
v)constrained}∞v=1 has to converge to one value.

It is important to note that the sequence {(plv, clv, elv)}∞v=1 may not necessarily converge,
because it is possible that (plv+1, c

l
v+1, e

l
v+1) 6= (plv, c

l
v, e

l
v) even though

DA(s, t, plv+1, cv+1, e
l
v+1)constrained = DA(s, t, plv, c

l
v, e

l
v)constrained

Therefore, in Algorithm 1, the stopping condition involves comparing the difference be-
tween DA(s, t, plv, c

l
v, e

l
v)constrained and DA(s, t, plv+1, c

l
v+1, e

l
v+1)constrained with a small value,

which is analogous to checking if DA(s, t, plv, c
l
v, e

l
v)constrained has converged.

Capabilities of ADTW are shown in Figure 2.4 and 2.5. They demonstrate that ADTW
can offer better alignments for time series that are subject to random scalings and offsets
when compared to DTW. In both figures, t is a varied time series based on s. For the
alignment plots, s is the bottom time series whereas t is the top time series, and a match
between two points denoted by connecting the two points with a line. We start by exam-
ining Figure 2.4, where t = 2s + 1. If two time series are known to have different scalings
and offsets without any temporal variation, the ideal alignment consists of only vertical
matches as shown in Figure 2.4A. Visually, DTW offers a worse alignment by matching
a large amount of points surrounding max(t) in t to max(s) in s. On the other hand,
ADTW matches all points vertically, which is identical to the ideal alignment. Further-
more, ADTW correctly estimates the scaling and offset for s in terms of t. In this simple
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Figure 2.4: DTW and ADTW alignments of same synthetic time series with different
scalings and offsets.

example, Algorithm 1 yields the optimal solution even though there is not any guarantee
that its solution would be optimal.

For the simplistic example shown in Figure 2.4, it turns out that normalizing s and
t prior to performing DTW will output the ideal alignment. If ADTW does not offer
any advantage to normalization prior to applying DTW, ADTW would not be preferred
because its algorithm outlined in Algorithm 1 is certainly more complex. Again, it is
emphasized that ADTW attempts to optimize DA(s, t, p, c, e)constrained in terms of (p, c, e)
simultaneously, and this goal is quite different from normalization prior to applying DTW.
Figure 2.5 demonstrates that ADTW offers better alignments than DTW and the scheme
of normalizing prior to applying DTW when two time series are subject to different scal-
ings, offsets and temporal variations. Each time series in Figure 2.5 is composed of two
Hamming windows. Time series t is a scaled and offset version of s injected with temporal

18



variations such that the left Hamming window is shrunk in width and the right Hamming
window is expanded in width. Figure 2.5A shows the ideal alignment where the two Ham-
ming windows in s and t are aligned together, and the alignment reflects the increase or
decrease in width. As shown in Figure 2.5B and C, the alignment provided by ADTW
is much closer to the ideal alignment when compared to DTW or normalization before
applying DTW. While the alignment provided by ADTW shows inconsistencies with the
ideal alignment in sections that are not associated with any Hamming window, one can
argue that these sections are not particularly interesting. Furthermore, the contribution to
DA(s, t, p, c, e)constrained is 0 across these sections without influence of Hamming windows as
long as a point in one section is matched to another point in another section. In fact, both
alignments in Figure 2.5A and D would output the same value of DA(s, t, p, cl, el)constrained
whether p is ideal or p = pl. Since the estimated values for cl and el are equivalent to
the imposed scaling and offset values for Figure 2.5, the ADTW solution is optimal in the
sense of minimizing DA(s, t, p, c, e)constrained. This is yet another example where Algorithm
1 offers an optimal solution despite lacking any guarantee for it.

Now, let us revisit the real-world example provided in the introductory chapter for
motivating the affine model. Temperature time series across 365 days in two different loca-
tions, shown in Figure 2.6, exhibit scaling, offset and temporal variations. The associated
alignments using different approaches are also shown in the same figure, where the bottom
time series is s and the top time series is t.

Looking at Figure 2.6A, DTW outputs a pathological alignment by matching a large
number of points in s with the peak in t. The alignments provided by ADTW and nor-
malization prior to applying DTW in Figure 2.6C and B are far more reasonable. In this
context, normalization is equivalent to subtracting the mean followed by dividing by the
standard deviation. However, with the normalization approach, a good number of points
surrounding the peak in t are matched to the peak in s. Matching only the two peaks
together seems to be a more reasonable approach, which is provided by ADTW. Further-
more, the left flat and low segments in s and t are matched together with ADTW, which
seems to be more reasonable than the alignment provided by the normalization approach,
where a portion of the left flat section in t is matched with the beginning slope in s.
Some readers might disagree with the above arguments on which alignment is better be-
cause an ideal alignment does not exist here. Nonetheless, most readers would probably
agree that ADTW can provide alignments with certain characteristics that are desirable
for some tasks. The primary difference between ADTW and the normalization approach
is attributed to the fact that normalization prior to applying DTW means that the scale
and offset do not account for the alignment at all.

Intuitively, the time complexity for ADTW is higher than that for DTW because every
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Figure 2.5: DTW and ADTW alignments of the same synthetic time series with different
scalings, offsets and temporal variations.

iteration in Algorithm 1 requires a DTW pass, which is O(wbn) in time for the banded
case. In addition, every iteration requires closed-form computations of (clv, e

l
v), which sum

along the path plv as shown in Equation 2.3 and 2.2. Again, let us assume n = m for
simplicity. There are at most 2n − 1 elements in a path p, so the time complexity for
computing (clv, e

l
v) is O(n). The remaining parts in each iteration in Algorithm 1 can be

completed in constant time, so each iteration takes

O(wbn) +O(n) = O(wbn)

Thus, the time complexity for the ADTW algorithm is O(gwbn), where g is the number
of iterations required for convergence. It is difficult to estimate g theoretically. However,
in the case of k-means clustering which utilizes the same optimization paradigm, the op-
timization criterion at each iteration can be shown to converge to a local optimum at a
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Figure 2.6: DTW and ADTW alignments of the daily temperature time series across a
year for Sherbrooke and Resolute, Canada.

linear rate when certain conditions are fulfilled [5]. Therefore, it is not unreasonable to
speculate that DA(s, t, plv, c

l
v, e

l
v)constrained can converge to a local minimum at a linear rate

under certain conditions for ADTW. For the ADTW examples shown in Figure 2.4C, 2.5D
and 2.6C, g is 20, 12 and 35 respectively. g is highly dependent on the stopping condition
threshold Dstop ∈ R>0, and g increases as Dstop decreases. In the above examples and for
the remainder of this thesis, Dstop = 10−5 unless mentioned otherwise. The space com-
plexity for ADTW is O(wbn), which is identical to that for DTW, because computation
of (clv, e

l
v) only requires O(1) space when plv is given, and the remaining operations require

O(1) space as well. The limiting space complexity still lies in the construction of the DTW
table.

So far, examples of ADTW yielding a single solution have been shown. However,
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with the optimization paradigm used in Algorithm 1, we know that the solution obtained
is not necessarily optimal. In fact, very different solutions can be obtained based on
different initializations of the scaling and offset (cl0, e

l
0). Figure 2.7 illustrates this effect.

In Figure 2.7, an ideal alignment between two time series is one where the two left and
identical Hamming windows are matched together. When (cl0, e

l
0) = (1, 0), the two identical

Hamming windows are aligned to each other, yielding DA(s, t, pl, cl, el)constrained ≈ 8. On
the other hand, when (cl0, e

l
0) = (0, 0), the Hamming window in s ends up being aligned to a

much smaller Hamming window in t with negative cl, yielding DA(s, t, pl, cl, el)constrained ≈
45. The alignment resulted from (cl0, e

l
0) = (0, 0) is clearly suboptimal when compared to

that resulted from (cl0, e
l
0) = (1, 0).

Figure 2.7: ADTW alignments of two synthetic time series with different initializations of
scaling and offset.

The example in Figure 2.7 speaks to the importance of a good initialization of (cl0, e
l
0) for

the ADTW algorithm. Ideally, the ADTW algorithm should be repeated many times with
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different initializations, and the solution that offers the minimal DA(s, t, pl, cl, el)constrained
should be selected. However, this approach is not computationally feasible because the
number of different initializations is infinite given that (cl, el) ∈ R2. While there might
exist smart ways to arrive at a small finite set of good initializations, these approaches are
not explored in this thesis. Practically, one good approach is to initialize the scaling and
offset to be reasonable values that are close to the expected true scaling and offset (c∗, e∗).
For this thesis, (cl0, e

l
0) = (1, 0) unless mentioned otherwise. Note that the initialization

can also involve setting pl0 instead of (cl0, e
l
0), and Algorithm 1 can be slightly modified

to accommodate this change by switching line 7 and line 8. This modification can be
advantageous when a good initial alignment is known, but good initial values for scaling and
offset (cl0, e

l
0) are not known. Furthermore, a good initialization also plays an important role

in the computation time. Generally, the closer (cl0, e
l
0) is to the resulting (cl, el), the smaller

number of iterations required for convergence. Hence, starting with a good initialization
for ADTW is highly recommended because it offers better solutions and faster computation
time.

Situations may arise where subsets of t are subject to scaling and offset, and each subset
can have different scaling and offset. Let Tsub,i denote the ith subset of points subject to
scaling and offset by (ci, ei), and there are nsub subsets. Tsub,i’s are assumed to be mutually
exclusive. Also, let ~c = {c1, c2, ..., cnsub

} and ~e = {e1, e2, ..., ensub
} denote the list of different

scalings and offsets for each subset of points. In this more general case, the optimization
criterion minimizes

DA,sub(s, t, p,~c, ~e) =

|p|∑
k=1

bk 6∈∪
nsub
i=1 Tsub,i

d(sak , tbk) +

nsub∑
i=1

|p|∑
k=1

bk∈Tsub,i

d(sak , citbk + ei)

subject to the DTW constraints, and this constrained function is also referred to as
DA,sub(s, t, p,~c, ~e)constrained. Similar to the original ADTW case, it can be shown that the
following equations minimize DA,sub(s, t, p,~c, ~e)constrained with respect to ci and ei when a
path p satisfying the DTW constraints is given:

c′p,i =

∑|p|
k=1

bk∈Tsub,i

saktbk − 1
|p|(

∑|p|
k=1

bk∈Tsub,i

sak)(
∑|p|

k=1
bk∈Tsub,i

tbk)∑|p|
k=1

bk∈Tsub,i

t2bk −
1
|p|(

∑|p|
k=1

bk∈Tsub,i

tbk)2
(2.4)

e′p,i =
1

|p|

|p|∑
k=1

bk∈Tsub,i

(sak − c′p,itbk) (2.5)
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The algorithm for this more general version of ADTW is shown in Algorithm 2, which
is equivalent to the original ADTW algorithm with a few modifications to accommodate

(~c,~e) instead of (c, e). For clarification, clv,i and elv,i denote the ith element in the vector ~clv

and ~elv at iteration number v. Line 8 and 9 in Algorithm 2 are equivalent to

(~clv, ~elv)← argmin
~c,~e

DA(s, t, plv,~c, ~e)constrained

where clv,i and elv,i can be computed using Equation 2.4 and 2.5.

Algorithm 2 General ADTW

1: pl, ~cl, ~el

2: ~cl0 ← ~1

3: ~el0 ← ~0
4: DA,sub,prev ←∞
5: v ← 1
6: while 1 do
7: plv ← argmin

p
DA,sub(s, t, p, ~clv−1, ~elv−1)constrained

8: for i = 1 to nsub do
9: (clv,i, e

l
v,i)← argmin

clv−1,i,e
l
v−1,i

DA(s, t, plv,
~clv−1, ~elv−1)constrained

10: if DA,sub,prev −DA,sub(s, t, p, ~clv, ~elv) < Dstop then
11: pl ← plv
12: ~cl ← ~clv
13: ~el ← ~elv
14: break
15: v ← v + 1

Figure 2.8 illustrates an example aligning a time series with its temporal-varied version
with subsets of points scaled and offset differently. For this more complicated example,
general ADTW clearly generates a closer alignment to the ideal one when compared to
ADTW, since general ADTW models subsets of points having different scalings and offsets.
However, a critical catch to applying general ADTW is that we need to know what subsets
can be scaled and offset differently.

Now, let us analyze the time and space complexities for general ADTW, and we start
off by assuming that the time series lengths are equal (n = m) for simplicity. While
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Figure 2.8: ADTW and general ADTW on synthetic time series where subsets of points
can be scaled and offset differently.

there seems to be additional operations on line 8 and 9 in Algorithm 2 when compared
to Algorithm 1, the time complexity for estimating the scalings and offsets is actually
O(2n − 1). This observation comes from the model assumption that Tsub,i’s are mutually
exclusive, so line 8 and 9 only iterate through all pairs of matches in plv, which is at most
2n− 1 in length. Line 7 requires applying the DTW algorithm, which is O(wbn) in time.
The remaining operations in each iteration run in constant time, so

O(g(2n− 1 + wbn)) = O(2gn− g + gwbn) = O(gwbn)

is the time complexity for general ADTW. As for the space complexity, constructing the
DTW table remains to be the limiting factor because other space complexities are either
O(1) or O(nsub). We know that nsub ≤ n, and in practice nsub << n because the number of
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subsets subject to individual scaling and offset should be much less than the total number
of points in a time series. Therefore, the space complexity for general ADTW is O(wbn).
Note that the time and space complexities for general ADTW are identical to those of
ADTW.

Revisiting the ADTW case, constraints can also be placed on (c, e) to avoid implausible
values for scaling and offset. For example, looking back at Figure 2.7 again, one suboptimal
solution has a negative c. In some situations, it is reasonable to hypothesize that cmin ≤
c ≤ cmax, where cmin and cmax are the minimum and maximum scalings that one expects
respectively. The same logic applies to the offset e. Going back to the ADTW formulation,
the optimization problem is slightly modified to minimize

(p∗, c∗) = argmin
p,cmin≤c≤cmax,emin≤e≤emax

DA(s, t, p, c, e)constrained

Revisiting the ADTW algorithm in Algorithm 1, only the estimation of (clv, e
l
v) on line 8

needs to be changed to accommodate the extra constraints:

(clv, e
l
v) = argmin

cmin≤c≤cmax,emin≤e≤emax

DA(s, t, plv, c, e)constrained

The above constrained minimization problem can be solved using quadratic programming,
and Algorithm 2 for general ASDTW can also be modified in a similar way to accommodate
a set of constraints ∪nsub,i

i=1 {cmin,i ≤ ci ≤ cmax,i, emin,i ≤ ei ≤ emax,i}.

Similar to DTW where D(s, t, p∗) can be interpreted as a difference measure between
two time series s and t, DA(s, t, p∗, c∗, e∗) can also be used as a difference measure for two
time series subject to scaling and offset. For ADTW, DA(s, t, p∗, c∗, e∗) is approximated
by DA(s, t, pl, cl, el), because finding (p∗, c∗, e∗) is too costly as mentioned previously. If
the same type of time series follows the affine model, it is not unreasonable to claim that
the ADTW difference measure tends to be better than the DTW difference measure. An
example is illustrated in Figure 2.9, where time series u contains a triangular window, and
s and t each contains a Hamming window. Time series s is connected to the time series
which is more similar to s based on the difference measure. If the discrimination lies in
shape and not in differences in scaling and offset, the difference measure between s and t
should be lower than the difference measure between s and u, which is exactly what the
ADTW measure offers. On the other hand, DTW finds s to be closer to u because it does
not discard the difference in amplitude. Hence, this simplistic example supports the notion
that the ADTW measure is better than the DTW measure when instances from the same
type of time series are known to be scaled and offset differently.
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Figure 2.9: ADTW versus DTW difference measure for a simplistic example.

2.3 Regional Dynamic Time Warping

Regional dynamic time warping (RDTW) modifies DTW to place more weight in a region
of points potentially representative of a component of interest in a time series. This is
accomplished by substituting the pointwise distance measure d with a distance dr that
measures the difference between points in a region. Let wr = 1 + 2wh ∈ Z>0 be the
region width to consider, and recall that time series s and t each have length n and m
respectively. Then, RDTW has an modified optimization problem of finding an alignment
p∗ that minimizes

DR(s, t, p, wh) =

|p|∑
k=1

dr(sak , tbk , wh)

subject to the DTW constraints, where

dr(sa, tb, wh) =
1

wa,b

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

d(sa+w, tb+w)

and

wa,b =

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

1

Note that the 1 ≤ a + w ≤ n and 1 ≤ b + w ≤ m conditions only come into effect
for points close to the start and end of the time series, and wa,b = wr for points that
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are away from the boundaries. For brevity, DR(s, t, p, wh) subject to DTW constraints is
denoted as DR(s, t, p, wh)constrained. Since the only difference between RDTW and DTW
lies in substituting the distance function d with dr, this modified optimization problem still
exhibits properties of optimal substructures and overlapping subproblems. Hence, dynamic
programming can again be utilized in the same manner as DTW, where the update formula
for RDTW is modified from the DTW update formula in Equation 2.1 as follows:

DR(s, t, p∗(a,b), wh) = dr(sa, tb, wh)+

min(DR(s, t, p∗(a−1,b−1), wh), DR(s, t, p∗(a,b−1), wh), DR(s, t, p∗(a−1,b), wh))

(2.6)

Again, note that if a− 1 < 1, DR(s, t, p∗(a−1,b−1), wh) and DR(s, t, p∗(a−1,b), wh) are not con-

sidered, and if b− 1 < 1, DR(s, t, p∗(a−1,b−1), wh) and DR(s, t, p∗(a,b−1), wh) are not considered
in the update formula to accommodate the boundary cases. This RDTW update formula
is used to construct a table identical to the DTW table shown in Table 2.2, except each
D(s, t, p∗(a,b)) is replaced with DR(s, t, p∗(a,b), wh). This table is also referred to as the RDTW
table. The same backtracking technique outlined in the DTW section can be used on the
RDTW table to obtain the optimal alignment p∗.

By changing the pointwise distance d to the regional distance dr, RDTW is able to
find pointwise alignments that match one region to another region. If this region reflects a
typical component within a time series and this component exists in two time series s and
t, RDTW encourages pointwise alignments such that these components can be considered
as being matched to each another.

The emphasis on a region instead of each individual points in RDTW can bring about
situational advantages. Figure 2.10 and 2.11 demonstrate that RDTW can provide better
pointwise matches for two time series than DTW when noise or overlap of components is
present. For both figures, a match between two points in different time series is denoted
by connecting the two points with a solid line. In Figure 2.10, two time series contain the
same Hamming window, and white Gaussian noise is added to both time series. The ideal
alignment without noise is illustrated in Figure 2.10A. As shown in Figure 2.10B and C,
RDTW provides an alignment that is visually closer to the ideal alignment than DTW.
Since RDTW accounts for the region surrounding a point for each pointwise match, it has
an averaging effect.

In Figure 2.11, each time series is composed of two Hamming windows, where the left
Hamming window is subject to random horizontal shifts that can result in an overlap
between the two windows. Ideally, the left Hamming windows should be aligned together
and the right Hamming windows should be aligned together, as shown in Figure 2.11A.
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Figure 2.10: DTW and RDTW alignments of two synthetic time series with noise.

Figure 2.11B and C each shows two time series with different degrees of overlap of the
Hamming windows. DTW produces an alignment that does not adhere to the morphology
by matching a good portion of points in the left Hamming window to points in the right
Hamming window. On the other hand, RDTW yields a more reasonable alignment because
the left windows are mostly matched together and the right windows are mostly matched
together.

Now, let us revisit the motivating real-world example provided in the introductory
chapter for emphasizing on components. Recall that a motor unit potential (MUP) is
comprised of multiple muscle fiber potentials (MFPs), and analysis of MUPs is useful in
finding muscle abnormalities. In Figure 2.12, each MUP contains two MFPs. The ideal
alignment is to match the left MFPs together and the right MFPs together, as shown in
Figure 2.12A. Looking at Figure 2.12B and C, RDTW offers better alignment because the
left MFPs are aligned together and the right MFPs are aligned together, whereas DTW
aligns a good portion of the left MFP in the top MUP with the right MFP in the bottom
MUP.

For simplicity of complexity analysis, let us assume again that n = m and recall that
the time complexity for banded DTW is O(wbn), where wb is the width of the band. Similar
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Figure 2.11: DTW and RDTW alignments of two synthetic time series with varying degrees
of component overlap.

to the DTW case, the Sakoe-Chiba band can be applied to RDTW as well. At first glance,
the time complexity for banded RDTW is O(wrwbn), because the RDTW update formula
is O(wr) for computing the regional distance dr and the RDTW table requires O(wbn)
elements to be filled with the update formula. However, it turns out that most elements in
the RDTW table can be updated with a time complexity of O(1) instead of O(wr) using
the following observations:

dr(sa−1, tb−1, wh) =
1

wa−1,b−1

wh∑
w=−wh

w:1≤a−1+w≤n
w:1≤b−1+w≤m

d(sa−1+w, tb−1+w)
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Figure 2.12: DTW and RDTW alignments of two MUPs with varying degrees of MFP
overlap.

and

dr(sa, tb, wh) =
1

wa,b

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

d(sa+w, tb+w)

=
1

wa,b

[−d(sa−wh−1, tb−wh−1) + wa−1,b−1dr(sa−1, tb−1, wh) + d(sa+wh
, tb+wh

)]

(2.7)

Note that d(sa, tb) = 0 if a < 1 ∪ a > n ∪ b < 1 ∪ b > m. In other words, d(sa, tb) is set to
0 when either sa or tb does not exist. If sa−1 and tb−1 exist, the above observation leads to
the following update formula (replacing the one in Equation 2.6):

DR(s, t, p∗(a,b), wh) =
1

wa,b

[−d(sa−wh−1, tb−wh−1) + wa−1,b−1dr(sa−1, tb−1) + d(sa+wh
, tb+wh

)]+

min(DR(s, t, p∗(a−1,b−1), wh), DR(s, t, p∗(a,b−1), wh), DR(s, t, p∗(a−1,b), wh))

which is O(1) in time when dr(sa−1, tb−1, wh) is given. The grey part shown in Figure
2.13 represents elements in the RDTW table that cannot be updated with the above O(1)
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formula, which only corresponds to the first row and first column of the RDTW table.
When the RDTW table is not banded, n2 − 2n + 1 out of n2 elements can be updated in
constant time.

Figure 2.13: Elements in the RDTW Table Which Can Be Updated in Constant Time.

In the banded scenario, the O(1) update formula in Equation 2.6 cannot apply to wb

elements (constrained by the first row and column after considering the band), and the
original O(wr) update formula is required for these elements. Hence,

O((wb)wr) +O((wbn− wb)1) = O(wb(wr + n))

is the time complexity for constructing a RDTW table. In addition, region width wr is
necessarily less than or equal to n, so the time complexity for constructing a RDTW table
can be further approximated as O(wbn). Similar to DTW, construction of the RDTW
table is the limiting factor for finding the optimal alignment, so the total time complexity
for RDTW is O(wbn).

Unbanded RDTW with this O(1) update formula is empirically compared to unbanded
RDTW with the original O(wr) update formula in Figure 2.14. Two random time series of
length n = 1000 are generated, and the two aforementioned versions of RDTW are applied
to the time series across different ratios of region half-width wc = wh

n
, where the region

width wr = 1+ 2wh. As expected, the RDTW runtime increases linearly with wr when the
O(wr) update formula is used, and it stays constant when the O(1) update formula is used.
The two versions have also been empirically confirmed to produce the same alignment.

Originally, the space required for RDTW remains exactly the same as that required for
DTW, because only the RDTW table and path need to be stored. However, with the above
modification for reducing the RDTW time complexity, additional memory is required to
store dr(sa−1, tb−1)’s. Note that dr(sa−1, tb−1, wh) is only being used by dr(sa, tb, wh) in the
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Figure 2.14: Empirical evaluation for time complexity of RDTW using O(wr) or O(1)
update formula with respect to wc = wh

n
.

O(1) update formula, so one strategy is to store an entire row of dr(sa−1, tb−1, wh)’s for the
same a and different b’s constrained by the Sakoe-Chiba band, and then the next row of
dr(sa, tb, wh)’s can be filled. Thus, the additional space complexity is O(wr) and the total
space complexity is

O(wbn) +O(wr) = O(wbn)

where O(wbn) is the limiting space complexity that stores the RDTW table. Surprisingly,
banded RDTW turns out to have the same time and space complexities of O(wbn) as
banded DTW.

So far, we have not discussed in detail effects of the region width wr = 1 + 2wh. This
parameter is crucial to RDTW achieving the desired result. For example, in Figure 2.10,
wr is roughly set to be the width of the main Hamming window, and in Figure 2.11, wr is
roughly set to be the width of the left Hamming window. Intuitively, since RDTW finds
pointwise matches that minimize the difference between regions of width wr around each
pair of matched points, setting wr to reflect the width of the component of interest means
that RDTW will emphasize on matching regions with the same width. It should be noted
that if wr = 1, RDTW is identical to DTW.

Figure 2.15 illustrates effects of different region widths on RDTW alignments on time
series with noise or overlapping components. The region width wr is proportional to
wc = wh

n
, so varying wc is equivalent to varying wr. In the first column, two identical time

series have random noise added to them, so the ideal alignment should consist of purely
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vertical matches. In this case, when wr = 1, the matches are far away from being vertical,
and the remaining widths seem to be more reasonable, where {wc : wc ≥ 0.3} yield the most
vertical matches. In the second column, each time series consists of two Hamming windows
that are subject to different degrees of overlap. In this case, when wc = 0, pathological
alignments are observed where a good portion of two Hamming windows are aligned to one
Hamming window. For wc = 0.1 and wc = 0.2, the alignments seem reasonable because the
local peaks representing each Hamming window are aligned correctly. For the remaining
alignments with higher wc’s, the peak of the left Hamming window in the top time series is
no longer matched to that in the bottom time series, so these alignments are considered to
be worse. Furthermore, the examples in Figure 2.15 support the aforementioned intuition
that wr should be set to the width of the component of interest, because the best wr’s are
found to be roughly equal to the width of the Hamming windows (wc = 0.3 for the left
column and wc = 0.1 or wc = 0.2 for the right column).

From previous examples, we are given the insight that both small and large region
widths can lead to bad alignments when using RDTW, so selecting an appropriate region
width is instrumental to RDTW’s performance. However, selecting a different width can
yield a different alignment. One approach is to find the best pair of alignment and region
width (p̂, ŵh) that minimizes the RDTW optimization function:

(p̂, ŵh) = argmin
p,wh:wh≥0

DR(s, t, p, wh)constrained

Let p∗wh
denote the best alignment for width wh, and we know that p∗wh

can be found using
the RDTW algorithm when wh is given. Then, this optimization problem can be rewritten
as

(p̂ = p∗ŵh
, ŵh) = argmin

wh:wh≥0
DR(s, t, p∗wh

, wh)constrained (2.8)

The above formulation requires plugging in all possible values of wh, which is not feasible
since there is an infinite number of values to try, but this can be accommodated by only
trying out a finite set of selected values. Equation 2.8 is strongly dependent on whether a
lower value of DR(s, t, p, wh) reflects a better alignment across different p’s and wh’s. So
far, we have shown that if wh remains constant, minimizing DR(s, t, p, wh) with respect to p
can provide better alignments when d is the squared difference function. Does minimizing
DR(s, t, p, wh) with respect to different p’s and wh’s produce better alignments? To answer
this question, we first reexamine the noise and overlap examples in Figure 2.15, and we
are interested in looking at values for DR(s, t, p∗wh

, wh) across the different widths wh’s.
If the formulation in Equation 2.8 works well, the visually best alignments should have
the same region width as the region width that produces the minimal DR value. So far,
d has been set to be the squared difference. Looking at Table 2.3, the optimal region
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Figure 2.15: Effects of different region widths wr ∝ wh

n
on RDTW alignments.

half-width width ratio wc in the context of minimizing DR is found to 0 for both the noise
and overlap examples, which corresponds to the worst alignments in Figure 2.15. It is not
unreasonable to hypothesize that this result is an artifact of using the squared difference,
so the absolute difference is also explored. Empirical evaluation has been done to validate
that substituting d with the squared difference or absolute difference both produce the
same figure. Looking at Table 2.3 for the absolute difference case, the minimizing wc’s are
again 0’s, which correspond to the worst alignments. We hence draw the conclusion that
minimizing DR with respect to p and wh does not necessarily output a better alignment
across different wh’s. One practical way of finding the best width is to tune it for the best
results, and this approach will be used for future evaluations. In this context, tuning a
parameter is equivalent to choosing the value that provides the best result by plugging in
different values for the parameter.

35



Table 2.3: Effects of different region widths wr and different pointwise distance measures
d on DR.

Region half-width ratio (wc = wh

n
)

Squared difference Absolute difference
Noise Overlap Noise Overlap

0.0 1.3 1.5 15.9 9.1
0.1 4.1 4.3 25.5 12.6
0.2 4.3 5.1 26.1 15.9
0.3 4.4 6.9 26.4 21.0
0.4 4.5 8.3 26.6 24.4
0.5 4.5 8.6 26.7 23.9

The previous conclusion that minimizing DR(s, t, p, wh)constrained with respect to both p
and wh does not produce better alignments might seem bewildering at first glance. After
all, minimizing DR(s, t, p, wh)constrained with respect to p works well when wh is fixed. In
addition, ADTW also produces good alignments for time series falling under the affine
model by trying to minimize DA(s, t, p, c, e, )constrained with respect to p, c and e. However,
the approach of obtaining the best parameters by optimizing a function is not guaranteed to
produce sensible results. In other words, DR(s, t, p, wh)constrained is not a good cost function
to minimize with respect to wh.

In the examples that have been shown thus far, temporal variations other than shifting
are not imposed on components. The regional distance dr computes a distance between
two regions of points by assuming vertical matches between the two regions. To deal
with general temporal variations between components, it is reasonable to withdraw the
assumption of vertical matches and apply DTW to match these regions. To realize this
approach, dr is replaced with dr′ to reflect the DTW difference measure:

dr(sa, tb, wh) =
1

wa,b

D(s′a,b,wh
, t′a,b,wh

, p∗s′a,b,wh
,t′a,b,wh

)

where s′a,b,wh
= (sa+w : −wh ≤ w ≤ wh, 1 ≤ a + w ≤ n, 1 ≤ b + w ≤ m), t′a,b,wh

= (tb+w :
−wh ≤ w ≤ wh, 1 ≤ b + w ≤ m, 1 ≤ a + w ≤ n), and p∗s′a,b,wh

,t′a,b,wh

is the optimal DTW

alignment for the subsequences s′a,b,wh
and t′a,b,wh

. This RDTW-based alignment approach
that allows temporal variations within components will be referred to as RDTW’. In Fig-
ure 2.16, RDTW’ is compared with RDTW based on the previous noise and component
overlap examples, and the best region width for each method is utilized. It is found that
the matches within each region can be highly pathological, thereby resulting in worse align-
ments for RDTW’. While additional path constraints can be added to reduce pathological
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matches within each region, RDTW remains better for the noise and overlap examples,
and RDTW’ would require additional complexity in tuning the additional constraints. For
the above reasons, RDTW’ will not be further explored, and the problem of accounting
for general temporal variations within each component is left as an open problem in this
thesis.

Figure 2.16: RDTW and RDTW’ alignments of time series subject to noise or component
overlap.

Similar to DTW and ADTW where the optimized function value is interpreted as a
difference measure between two time series s and t, DR(s, t, p∗, wh) can also be used as a
difference measure for two time series with emphasis on components. DR(s, t, p∗, wh) will
also be referred to as the RDTW difference measure. An example is illustrated in Figure
2.17, where time series u contains a triangular window and a Hamming window, and s and
t each consists of two Hamming windows. These time series are subject to varying degrees
of component overlap. Time series s is connected to the time series that is more similar
to s based on the difference measure. It seems more reasonable to group s and t together
and differentiate u from s, which is exactly what the RDTW measure offers. On the other
hand, DTW finds s to be closer to u because it lacks component emphasis. This example
supports the notion that the RDTW measure can be better than the DTW measure when
local components play a crucial role in discrimination.
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Figure 2.17: RDTW versus DTW difference measure for an example with component
overlap.

2.4 Affine Regional Dynamic Time Warping

ADTW and RDTW each has its unique model or preference, where ADTW models time
series to be scaled and offset in amplitude when aligned, and RDTW places an emphasis
on matching regions. In this section, we show two different ways of combining ADTW and
RDTW to realize alignments that incorporate the advantages of both ADTW and RDTW.

2.4.1 Global-Affine Regional Dynamic Time Warping

In global-affine regional dynamic time warping (GARDTW), one time series is modeled
as the scaled and offset version of another time series when aligning them with regional
emphasis. The affine property is modeled globally for the entire time series. Again, let s
and t be two time series of length n and m respectively, and let wr = 1 + 2wh denote the
region width. Mathematically, the goal is to find a path p∗, scaling factor c∗ ∈ R and offset
factor e∗ ∈ R that minimize

DG(s, t, p, c, e, wh) =

|p|∑
k=1

dg(sak , tbk , c, e, wh)

subject to the DTW constraints imposed on p, where

dg(sak , tbk , c, e, wh) =
1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

d(sak+w, ctbk+w + e)
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For brevity, DG(s, t, p, c, e, wh) constrained by the DTW conditions will be referred to
as DG(s, t, p, c, e, wh)constrained. Following similar steps to the derivation procedure for
c′p and e′p in the ADTW chapter, it can be shown that the following c and e minimize
DG(s, t, p, c, e, wh) when s, t, p and wh are given and d is the squared difference:

c′p =
ρ− 1

|p|τφ

γ − 1
|p|τ

2
(2.9)

e′p =
1

|p|
(φ− c′pτ) (2.10)

where

ρ =

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

sak+wtbk+w

γ =

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

t2bk+w

τ =

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

tbk+w

φ =

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

sak+w

The full derivation for Equation 2.9 and 2.10 is given in Appendix A.

Directly minimizing DG(s, t, p, c, e, wh)constrained with respect to (p, c, e) is not feasible
because there are too many paths p’s to try even though (c∗, e∗) can be computed when p∗

is given. Hence, similar to the ADTW case, we look for an suboptimal solution (pg, cg, eg)
using the same iterative strategy outlined in the ADTW chapter. The GARDTW algorithm
for finding (pg, cg, eg) is described in Algorithm 3.

Looking at Algorithm 3, it is not clear how to obtain pgv and (cgv, e
g
v) for each iteration.

Line 7 is equivalent to

pgv ← DR(s, cgv−1t+ egv−1, p, wh)constrained
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Algorithm 3 GARDTW
1: pg, cg, eg

2: cg0 ← 1
3: eg0 ← 0
4: DG,prev ←∞
5: v ← 1
6: while 1 do
7: pgv ← argmin

p
DG(s, t, p, cgv−1, e

g
v−1, wh)constrained

8: (cgv, e
g
v)← argmin

c,e
DG(s, t, pgv, c, e, wh)constrained

9: if DG,prev −DG(s, t, pg, cg, eg) < Dstop then
10: pg ← pgv
11: cg ← cgv
12: eg ← egv
13: break
14: v ← v + 1

so pgv can be obtained using RDTW. (cgv, e
g
v) can be calculated in closed form with using

Equation 2.9 and 2.10. Similar to ADTW, Dstop ∈ R is a small value chosen by the user
for checking convergence of the algorithm. The iterative optimization strategy utilized in
Algorithm 3 has been previously used for ADTW, and the theory behind this strategy has
been discussed in detail in the ADTW chapter. DG(s, t, pg, cg, eg, wh) will be referred to as
the GARDTW difference measure.

Figure 2.18 illustrates the effects of GARDTW compared to DTW, ADTW and RDTW.
Time series s and t each consists two Hamming windows, where the Hamming windows in
t are the scaled and offsetted versions of the Hamming windows in s, and the components
have varying degrees of overlap. Under this model, we prefer to match the respective
components together as shown in Figure 2.18A without component overlap. GARDTW
offers an alignment that is closest to matching the left components together and matching
the right components together. This result is attributed to GARDTW’s ability to handle
affine properties and component overlap simultaneously. Note that GARDTW assumes
that the affine property is applied globally to an entire time series. From this example,
we observe that GARDTW can offer advantages of both ASDTW and RDTW, where
ADTW better handles different scales and offsets in amplitude for the entire time series,
and RDTW better handles scenarios that require an emphasis on regions.

Now, let us examine the time and space complexities for GARDTW. For simplicity,
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Figure 2.18: DTW, ADTW, RDTW and GARDTW alignments of two time series under
the affine model having noise and overlapping components.

let us assume that n = m. In each iteration, pgv is updated with RDTW, and (cgv, e
g
v) is

updated with Equation 2.9 and 2.10. RDTW has been shown to be O(wbn) in time and
space. Looking at Equation 2.9 and 2.10, computing ρ, γ, τ and φ each requires iterating
through each element in a path p, and a region of width wr around each element is gone
over. Recall that a path p satisfying the DTW constraints can at most be of length 2n−1.
Hence, computation of ρ, γ, τ and φ takes

O((2n− 1)wr) = O(wrn)

in time. When ρ, γ, τ and φ are given, Equation 2.9 and 2.10 are O(1) in time, so Equation
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2.9 and 2.10 are O(wrn) in time when ρ, γ, τ and φ are not known. Since s, t and pgv have
been previously stored, Equation 2.9 and 2.10 are O(1) in space. Hence, each iteration of
the GARDTW algorithm described in Algorithm 3 is

O(wbn) +O(wrn) = O((wb + wr)n)

in time and
O(wbn) +O(1) = O(wbn)

in space. Let λ be the number of iterations required for convergence of the GARDTW
algorithm. Then, the GARDTW algorithm is O(λ(wb + wr)n) in time and O(wbn) in
space. This algorithm combining ADTW and RDTW in a global manner has a higher
time complexity than both ADTW and RDTW. Similar to the case for ADTW, a good
initialization for (cg0, e

g
0) and a reasonable value for Dstop can be highly effective in lowering

λ. For the remainder of this thesis, (cg0, e
g
0) = (1, 0) and Dstop = 10−5 unless mentioned

otherwise. As an example, λ = 8 for the GARDTW alignment in Figure 2.18E under the
aforementioned setting.

2.4.2 Local-Affine Regional Dynamic Time Warping

Local-affine regional dynamic time warping (LARDTW) is a modified version of RDTW
where the region surrounding each point is assumed to be a scaled and offset version of an-
other region surrounding the corresponding matched point. Similar to RDTW, LARDTW
emphasizes on regions, but it assumes that a pair of matched regions falls under the affine
model. Let wr = 1+2wh ∈ Z>0 be the region width to consider, and recall that time series
s and t each has length n and m respectively. Then, LARDTW finds an alignment p∗ that
minimizes

DL(s, t, p, wh) =

|p|∑
k=1

dl(sak , tbk , wh)

subject to the DTW constraints, where

dl(sa, tb, wh) =
1

wa,b

min
ca,b,ea,b

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

d(sa+w, ca,btb+w + ea,b) (2.11)

and

wa,b =

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

1
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If d is the squared difference, the minimizing (c∗a,b, e
∗
a,b) can be obtained using the following

equations for each pair of matched points (sa, tb):

c∗a,b =

∑wh
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

sa+wtb+w − 1
wa,b

(
∑wh

w=−wh
w:1≤a+w≤n
w:1≤b+w≤m

sa+w)(
∑wh

w=−wh
w:1≤a+w≤n
w:1≤b+w≤m

tb+w)

∑wh
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

t2b+w − 1
wa,b

(
∑wh

w=−wh
w:1≤a+w≤n
w:1≤b+w≤m

tb+w)2
(2.12)

e∗a,b =
1

wa,b

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

(sa+w − c∗a,btb+w) (2.13)

For brevity, DL(s, t, p, wh) subject to DTW constraints is denoted asDL(s, t, p, wh)constrained.
Since the only difference between LARDTW and DTW lies in substituting the distance
function d with dl, this modified optimization problem still exhibits properties of optimal
substructures and overlapping subproblems. Hence, dynamic programming can again be
utilized in the same manner as DTW, where the update formula for LARDTW is modified
from the DTW update formula in Equation 2.1 as follows:

DL(s, t, p∗(a,b), wh) = dl(sa, tb, wh)+

min(DL(s, t, p∗(a−1,b−1), wh), DL(s, t, p∗(a,b−1), wh), DL(s, t, p∗(a−1,b), wh))

(2.14)

This LARDTW update formula is used to construct a table identical to the DTW table
shown in Table 2.2, except each D(s, t, p∗(a,b)) element is replaced with DL(s, t, p∗(a,b), wh).
This table is also referred to as the LARDTW table. The same backtracking technique
outlined in the DTW section can be used on the LARDTW table to construct the optimal
alignment p∗. The obtained value of DL(s, t, p∗, wh) will be referred to as the LARDTW
difference measure.

Figure 2.19 illustrates the effects of LARDTW compared to DTW, ADTW, RDTW and
GARDTW. Time series s and t are each comprised of two Hamming windows, where each
Hamming window in t is scaled differently. In this case, we prefer to match the respective
components together as shown in Figure 2.19A, which corresponds to pure vertical matches.
LARDTW generates an alignment that is closest to vertical matches by imposing an affine
model on each matched region that can be reflective of the left or right Hamming window.
Recall that LARDTW imposes the affine property on the region surrounding each point.
On the hand, GARDTW imposes the affine property on the entire time series, so it is not
susceptible to different scalings or offsets in different sections of a time series.
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Figure 2.19: DTW, ADTW, RDTW, GARDTW and LARDTW alignments of time series
with two components where each component can be scaled differently.

The affine model imposed by DL(s, t, p, wh)constrained may not be robust. For example,
consider one region filled with 0’s and another region that contains prominent non-zero
activities. Looking at Equation 2.11, the minimizing (c∗a,b, e

∗
a,b) is (0, 0), and these param-

eters yield a value of 0 for dl. It seems highly unintuitive to be able to match prominent
activities to nothing with zero cost. In general, unreasonable values for (c∗a,b, e

∗
a,b) can lead

to pathological alignments. These pathological alignments can be avoided by constrain-
ing (c∗a,b, e

∗
a,b) to fall under a reasonable range of values such that cmin ≤ c∗a,b ≤ cmax and
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emin ≤ e∗a,b ≤ emax. Ideally, dl should be modified in the following manner:

dl(sa, tb, wh) =
1

wa,b

min
ca,b,ea,b

cmin≤ca,b≤cmax

emin≤ea,b≤emax

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

d(sa+w, ca,btb+w + ea,b) (2.15)

However, solving for the constrained parameters (c∗a,b, e
∗
a,b) in Equation 2.15 requires active

set methods, which generally have higher time complexities by iteratively improving the
solution [22]. In this thesis, a much simpler approach is taken. If c∗a,b from Equation 2.12
is less than cmin, cmin is assigned to c∗a,b. If c∗a,b from Equation 2.12 is larger than cmax, cmax

is assigned to c∗a,b.

Figure 2.20 illustrates the same pair of time series exemplified in Figure 2.19 with the
addition of noise, and they are aligned using LARDTW and the constrained version of
LARDTW. We observe pathological alignments in Figure 2.20A when LARDTW is un-
constrained. The addition of noise means that the two corresponding Hamming windows
cannot match perfectly in terms of dl, which introduces space for matching two distinctly
different regions using implausible values of (c∗a,b, e

∗
a,b). On the other hand, when (c∗a,b, e

∗
a,b)

is constrained to avoid implausible values, the associated alignment is much more reason-
able as shown in Figure 2.20B. In this thesis, cmin = 0.2 and cmax = 5 unless mentioned
otherwise.

Figure 2.20: LARDTW and its constrained version on noisy time series with two compo-
nents where each component can be scaled differently.

In the previous examples provided to illustrate LARDTW, components do not vary in
width. Figure 2.8 illustrates an example identical to the one from Figure 2.19 with varying
component widths. Again, we would like to match the Hamming windows together and
the right Hamming windows together, where each Hamming window can have a different
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width, scaling and offset. For this more complicated example, LARDTW generate a closer
alignment to the ideal one when compared to other methods, since LARDTW allows
different regions to have different scalings and offsets. Furthermore, while the region width
wr stays fixed for LARDTW, LARDTW can still offer good alignments for components
that can vary in width.

Figure 2.21: DTW, ADTW, RDTW, GARDTW and LARDTW alignments of time series
with two components where each component can be scaled differently with varying widths.

Now, let us examine the time and space complexities for LARDTW. For simplicity,
let us again assume that n = m and recall that banded DTW is O(wbn) in time and
space. For every region surrounding each point, dl and (c∗a,b, e

∗
a,b) need to be computed,

which are O(wr) in time and O(1) in space. Hence, it would seem that the time and space
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complexities for LARDTW are O(wrwbn) and O(wbn) respectively. However, similar to
RDTW, we can update dl(sa, tb, wh) in constant time using previously computed values
if a > 1 and b > 1. Looking at Equation 2.11, we start by showing that the minimizing
(c∗a,b, e

∗
a,b) can be updated from (c∗a−1,b−1, e

∗
a−1,b−1) in constant time. Let

ρa,b =

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

sa+wtb+w

γa,b =

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

t2b+w

τa,b =

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

tb+w

φa,b =

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

sa+w

ηa,b =

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

s2a+w

Also, set sa = 0 when a < 1 or a > n, and set tb = 0 when b < 1 or b > m. Then,
the values required for computing (c∗a,b, e

∗
a,b) can be updated in O(1) time from the values

required for computing (c∗a−1,b−1, e
∗
a−1,b−1) as follows:

ρa,b = ρa−1,b−1 + sa+wh
tb+wh

− sa−wh−1tb−wh−1

γa,b = γa−1,b−1 + t2b+wh
− t2b−wh−1

τa,b = τa−1,b−1 + tb+wh
− tb−wh−1

φa,b = φa−1,b−1 + sa+wh
− sa−wh−1

ηa,b = ηa−1,b−1 + s2a+wh
− s2a−wh−1
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wa,b =


wa−1,b−1 + 1 if a− wh − 1 < 1 or b− wh − 1 < 1

wa−1,b−1 − 1 if a+ wh > n or b+ wh > n

wa−1,b−1 otherwise

Next, dl(sa, tb, wh) can be expanded in the following manner:

dl(sa, tb, wh) =
1

wa,b

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

d(sa+w, c
∗
a,btb+w + e∗a,b)

=
1

wa,b

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

(sa+w − (c∗a,btb+w + e∗a,b))
2

=
1

wa,b

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

(s2a+w − 2sa+w(c∗a,btb+w + e∗a,b) + (c∗a,btb+w + e∗a,b)
2)

=
1

wa,b

[

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

s2a+w − 2c∗a,b

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

sa+wtb+w − 2e∗a,b

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

sa+w

+ (c∗a,b)
2

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

t2b+w + 2c∗a,be
∗
a,b

wh∑
w=−wh

w:1≤a+w≤n
w:1≤b+w≤m

tb+w + wa,b(e
∗
a,b)

2]

=
1

wa,b

[ηa,b − 2c∗a,bρa,b − 2e∗a,bφa,b + (c∗a,b)
2γa,b + 2c∗a,be

∗
a,bτa,b + wa,b(e

∗
a,b)

2]

where (wa,b, c
∗
a,b, e

∗
a,b, γa,b, ρa,b, τa,b, φa,b, ηa,b) can all be updated from their (a − 1, b − 1)

counterparts in O(1) time. Hence, dl(sa, tb, wh) can be updated in O(1) time when a 6= 1
and b 6= 1. When considering the Sakoe-Chiba band, there are wb distinct (a, b) pairs for
which a = 1 or b = 1, and updating each associated dl element in the LARDTW table
requires O(wr) time. The remaining wbn− wb elements can be updated in O(1) time. As
a result, construction of the LARDTW table requires a time complexity of

O((wb)(wr) + (wbn− wb)(1)) = O(wb(wr + n)) = O(wbn)

because wr ≤ n. Thus, LARDTW offers the same time and space complexities of O(wbn)
as DTW.
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Chapter 3

Evaluation of Pairwise Alignment
Methods

3.1 Alignment Evaluation

The proposed methods (ADTW, RDTW, GARDTW and LARDTW) have been demon-
strated to generate better alignments for specific examples in the previous sections. Toy
examples tend to be unconvincing, and the purpose of this section is to offer more compre-
hensive evaluations of the alignments generated by DTW and its proposed variants. DTW
and its variants that have been discussed thus far are methods for global alignment. They
output an alignment path p between two time series that show how all points in one time
series are mapped to points in another time series. Component-based alignment, on the
other hand, shows how subsets of points in one time series are mapped to subsets of points
in another time series, where each subset is conceptualized as a component. While DTW
and its variants offer global alignments, only subsets of these alignments pertaining to the
different components might prove to be interesting, and this perspective brings about a
different evaluation method. Both types of alignment will be further elaborated in the next
subsections.

3.1.1 Global Alignment

A direct approach to evaluating an alignment method involves comparing the true align-
ment with the alignment generated by the alignment method in question. Unfortunately,
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the author is unable to find well-established time series datasets that include true align-
ments between pairs of time series. Therefore, simulation is necessary to realize direct
evaluation.

Recall that DTW offers global alignments that account for non-linear temporal vari-
ations between two time series. We will start by modeling these non-linear temporal
variations. Given a time series s = (s1, ..., sn), we want to create a temporal variant
of s, denoted g = (g1, ..., gm). This can be achieved by defining a warping function
w : {1, ...,m} 7→ {1, ..., n} and setting gi = sw(i). Furthermore, w is constrained to be
monotonic so that g will not be a distorted version of s that is beyond recognition. The
warping function w can also be thought of as a sequence w = (w(1), ..., w(m)), and this
sequence is modeled as a random process in the following manner:

w(i+ 1) =


w(i) + 1 with probability Pmatch

w(i) + 2 with probability Pdelete

w(i) with probability Pinsert

where Pmatch + Pdelete + Pinsert = 1, w(1) = 1, and this sequence ends when w(i + 1) > n
with m = i. With this definition, m can be considered as a random variable. Note that
if w(i + 1) = w(i) + 2, we are effectively skipping the assignment of sw(i)+1 to g, so the
corresponding probability is named as Pdelete. Likewise, if w(i+1) = w(i), we are effectively
inserting the same point sw(i) into g, so the associated probability is denoted as Pinsert.

The true alignment ptrue = {(atrue1 , btrue1 ), ..., (atruem , btruem )} between t and g can be con-
structed with (atruej , btruej ) = (w(j), j). Note that the model thus far generates a distorted
time series g of length m that does not necessarily have the same length as t. For certain
types of time series such as recorded temperature across 365 days, it makes more sense
to simulate a distorted version h that has the same length as t. h can be obtained from
g by interpolating g to be a time series of length n. Similarly, the true alignment for t
and h can be obtained by interpolating the sequence w to be of length n and rounding
each resultant real value to an integer. For the remainder of this thesis, Pmatch = 0.6 and
Pdelete = Pinsert = 0.2 unless mentioned otherwise. Figure 3.1 illustrates a real-world time
series s and its simulated time-distorted version h based on the above model. Scrutinization
of the two time series reveals many local differences due to temporal variations.

Additional affine properties can be imposed on top of the simulated temporal variations.
Instead of creating a time-distorted version h of a time series s, the simulated time series
u is distorted based on ĉs + ê, (ĉ, ê) ∈ R2. The scaling ĉ is assumed to be uniformly
distributed from ĉmin to ĉmax, and they are set to 0.25 and 2 respectively in this thesis.
The offset ê is modeled to come from a normal distribution with zero mean and standard
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Figure 3.1: Illustration of a real-world time series and its simulated time-distorted version.

deviation σ. In this thesis, σ is set to be proportional to the standard deviation of the
examined time series data.

Now that we are able to obtain two time-varying time series under the affine model and
the corresponding true alignment, the next question lies in how to evaluate a generated
alignment given the true alignment. One simple approach is to count the number of correct
matches. However, the weakness behind this approach is that if a generated match between
two points is incorrect, this generated match can be very close to the true match or very
far away from the true match. Merely counting the number of correct matches cannot
discriminate between the matches that are very close to the true matches and the matches
that are very far away from the true matches. As an example, if all matches are shifted by
one pertaining to one time series with pexample = {(atrue1 , btrue1 + 1), ..., (atruem−1, b

true
m + 1)}, the

number of correct matches is 0 even though all matches are just off by one. This observation
justifies an alignment measure Mabsolute that accounts for the quality of a match with the
absolute difference. This alignment measure is taken from Keogh et al.’s work [15] with a
slight modification, and it is defined as follows:

Mabsolute(p
true, p) =

2

n(n+ 1)

n∑
i=1

∑
btruej :atruej =i

min
bl:al=i

|btruej − bl| (3.1)

where 2
n(n+1)

acts as a normalization factor. Note that better alignments corresponds to
ones with lower Mabsolute values.

Time series from three different real-world datasets are simulated to possess different
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temporal variations, scalings and offsets for alignment evaluation. These three time series
datasets are taken from a textbook on functional data analysis [12]. The datasets include
number of deaths across different ages in 1 year, position of lower lip when saying a certain
word, and temperature across 365 days. They will be referred to as the hazard dataset,
lip dataset and temperature dataset respectively. All aforementioned datasets are easily
subject to temporal variations, scalings and offsets. For evaluation, ten time series are taken
from each dataset. For each time series, 10 time-distorted and affine versions are created
with the aforementioned model. Each distorted version is aligned with the original time
series using a given method and the respective evaluation measureMabsolute is obtained. The
mean and standard deviation of each evaluation measure are recorded across all datasets.
The compared alignment methods are DTW, ADTW, RDTW, GARDTW and LARDTW,
and parameters need to be tuned for DTW and its variants. The Sakoe-Chiba bandwidth
wb = 1 + 2wq is utilized for DTW, ADTW, RDTW, GARDTW and LARDTW, and
wq

n
is tuned across {0, 0.05, ...0.45, 0.5} based on Mabsolute. Similarly, the region width

wr = 1 + 2wh is utilized for RDTW, GARDTW and LARDTW, and wh

n
is tuned across

{0.05, 0.1, ...0.45, 0.5} based on Mabsolute. For RDTW, GARDTW and LARDTW, both
parameters (wq

n
and wh

n
) are tuned across all combinations from 0.05 to 0.5.

Evaluation of DTW, ADTW, RDTW, GARDTW and LARDTW based on real time
series with simulated temporal variations and affine properties is shown in Table 3.1, where
the mean and standard deviation of Mabsolute are recorded for each method and dataset.
The best results for each dataset is highlighted in bold. Unsurprisingly, ADTW offers the
best results by imposing an affine model on the entire time series. GARDTW consistently
offers the second best results across the different datasets because it also applies the affine
property globally. GARDTW is reasoned to offer worse alignments than ADTW due to
its emphasis on regions instead of individual points, but temporal variations are simulated
based on each point. The exact same evaluation conducted for Table 3.1 is done in Table
3.2, with the only difference being the addition of noise. Additive white Gaussian noise
is injected into each time series prior to applying an alignment method. The standard
deviation of the noise is set to be 10 percent of the standard deviation of the time series.
Looking at Table 3.2, we observe that GARDTW consistently produces the best alignment
scores. While ADTW also models the entire time series to be scaled and offset, GARDTW
offers the advantage of regional emphasis based on RDTW. Instead of taking only the
point value itself into consideration for matching a point, the region surrounding the point
is accounted for, thereby reducing the adverse effects of noise. Based on simulation of
temporal variations, scalings and offsets on real time series, we conclude that ADTW
offers the best alignment for such models and GARDTW offers the best alignment when
noise is added to these models.
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Table 3.1: Mabsolute of different alignment methods on real datasets with simulated temporal
variations, scalings and offsets.

Alignment method
Dataset

Hazard Lip Temperature
DTW 0.004± 0.012 0.026± 0.030 0.021± 0.009
ADTW 0.000± 0.001 0.009± 0.011 0.003± 0.006
RDTW 0.004± 0.012 0.021± 0.024 0.021± 0.009
GARDTW 0.001± 0.003 0.011± 0.012 0.005± 0.001
LARDTW 0.001± 0.003 0.017± 0.018 0.007± 0.003

Table 3.2: Mabsolute of different alignment methods on real datasets with simulated temporal
variations, scalings, offsets and noise.

Alignment method
Dataset with noise

Hazard Lip Temperature
DTW 0.004± 0.013 0.029± 0.034 0.020± 0.010
ADTW 0.002± 0.006 0.018± 0.022 0.020± 0.015
RDTW 0.004± 0.013 0.022± 0.025 0.020± 0.010
GARDTW 0.002± 0.006 0.014± 0.016 0.010± 0.005
LARDTW 0.002± 0.006 0.018± 0.020 0.014± 0.006
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3.1.2 Component-Based Alignment

In global alignment, the alignment of every point in a time series is considered for eval-
uation. However, there might exist subsets in a time series where the alignment is not
important at all. For example, we do not care much about the alignment of a period
populated with only noise. On the other hand, we would like to focus on the alignment of
subsections that contain interesting activities. In component-based alignment, we assume
that a time series is the superposition of interesting components at different locations, and
only the alignment of points associated with these components is considered for evaluation.

Let us start by describing how a component-based time series is generated with varying
component locations, widths and amplitudes. Let s and t be two simulated component-
based time series of length n that we are aligning. Let nc be the number of components
within a time series. Then,

s =
nc∑
j=1

a
(s)
j φ(i

(s)
j , w

(s)
j , zj)

and

t =
nc∑
j=1

a
(t)
j φ(i

(t)
j , w

(t)
j , zj)

where φ(i, w, z) denotes a component of type z centered at location i ∈ Z with width
w ∈ Z, and aj ∈ R denotes the scaling factor for the associated component. In this
thesis, different component types are associated with different windows commonly used for
spectral analysis. In particular, z ∈ {1, 2, 3, 4}, where z = 1 denotes a Parzen window,
z = 2 denotes a rectangular window, z = 3 denotes a triangular window and z = 4
denotes a flat top weighted window. These windows are used for simulating different types
of components and they are illustrated in Figure 3.2. Note that parts of a component
function φ can be truncated if its region exceeds the boundaries of a time series, and
each component is forced to have a finite width. The component locations i

(s)
j and i

(t)
j are

each generated from a discrete uniform distribution spanning the entire time series with
an imposed constraint. Recall that one of the DTW constraints (monotonicity condition)
requires a sequence of matches to not proceed backward in time. As such, alignments
similar to the one in Figure 3.3 are impossible using DTW or its proposed variants in this
thesis. This motonicity condition is imposed on the simulated components such that the
chronological order of components in s will not be changed in t.

To induce variations in component width, w
(s)
j and w

(t)
j are each generated from a

discrete uniform distribution. In addition, a
(s)
j and a

(t)
j are each generated from a folded
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Figure 3.2: Simulated component types.

Figure 3.3: Alignment prevented by the DTW monotonicity condition.

normal distribution to simulate variations in component amplitude. Furthermore, the
component type zj is generated from a discrete uniform distribution to enable variation in
component types.

To generate a true alignment from simulation, we only consider points associated with
components. The true alignment ptrue = {(atrue1 , btrue1 ), ..., (atruen , btruen )} between s and t can
be broken down into two parts: non-overlapping and overlapping. For sections that do
not have any overlap of components, the alignment is relatively straightforward because
we know exactly how to match one component in s to the corresponding component in t
during simulation of component amplitude, location and width. However, when component
overlap exists, one point can be matched to points coming from different components.
One approach is to match the overlapped point to points belonging to the component
that made the greatest contribution in amplitude for that overlapped point. However,
this approach can omit intuitive matches where the interesting part of one component
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with lower amplitude is overlapped with an uninteresting part of another component with
higher amplitude. This observation motivates another approach where an overlapped point
is determined to come from a component whose center is closest to the overlapped point.
Looking at the different component types shown in Figure 3.2, all components are most
interesting at the center, thus motivating the aforementioned approach. Two simulated
component-based time series with two components and their alignment are shown in Figure
3.4. Again, a line connects two points from two time series if those points are matched.

Figure 3.4: Two simulated component-based time series and their true alignment.

The utilized component-based evaluation measure Mcomponent is a slight variation of the
absolute difference alignment measure used for global alignment from Equation 3.1:

Mcomponent(p
true, p) =

1

α

n∑
i=1

i:i belongs to a component

∑
btruej :atruej =i

min
bl:al=i

|btruej − bl| (3.2)

where

α = (
nc∑
j=1

w
(s)
j )(

nc∑
j=1

w
(t)
j )

acts as a normalization factor.

Evaluation of different alignment methods on component-based time series with differ-
ent simulation settings is presented in Table 3.3. The number of simulated components per
time series nc is set to 4. The previous discussed simulation of (w

(s)
j , w

(t)
j each generated

from a discrete uniform distribution and (a
(s)
j , a

(t)
j ) each generated from a folded normal
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Table 3.3: Mcomponent of different alignment methods on component-based time series with
different simulation settings with respect to width and amplitude.

Simulation setting
Alignment method

DTW ADTW RDTW GARDTW LARDTW
Fix width and amplitude 0.081 0.097 0.072 0.073 0.060
Vary width and fix amplitude 0.078 0.092 0.077 0.079 0.075
Fix width and vary amplitude 0.274 0.276 0.202 0.200 0.159
Fix width and vary amplitude * 0.070 0.074 0.058 0.053 0.059
Vary width and amplitude 0.235 0.242 0.188 0.187 0.139
Vary width and amplitude * 0.074 0.077 0.063 0.053 0.049

distribution is equivalent to varying both component width and amplitude. The above
case of varying both component width and amplitude will be the default setting on which
modifications will be made to obtain different settings. To fix both component width and
amplitude of two time series to be matched, w

(s)
j = w

(t)
j = w and a

(s)
j = a

(t)
j = a for all j,

where a and w are each generated from a uniform distribution. To vary component width
and fix component amplitude, a

(s)
j = a

(t)
j = a for all j where a is generated from a uniform

distribution. To fix component width and vary component amplitude, w
(s)
j = w

(t)
j = w

for all j, where w is generated from a uniform distribution. The starred version of fixing
width and amplitude refers to the case where w

(s)
j = w

(t)
j = w, a

(s)
j = a(s) and a

(t)
j = ca(s)

for all j, where w, a(s) and c are each generated from a uniform distribution. Likewise, for
the starred version of varying component width and amplitude, a

(s)
j = a(s) and a

(t)
j = ca(s)

for all j, where a(s) and c are each generated from a uniform distribution.

Looking at Table 3.3, we can observe that LARDTW offers the best result across most
simulation settings. On the other hand, DTW and ADTW consistently yields the worse
results, because they do not possess any concept of a component. At first glance, it might
seem surprising that LARDTW performs better than RDTW when the component width
and amplitude are fixed, because LARDTW supposedly accounts for amplitude variation.
However, one good approximated way of modeling a region where two components are
overlapped is to impose a scaling and offset on the component with more discernible shape.
When the component width is varied, LARDTW performs better because it can match
parts of a component better than RDTW and GARDTW. Again, RDTW and GARDTW
suffer from only emphasizing on a region with a fixed region width. While LARDTW also
has a fixed region width, it promotes flexibility of matching regions by imposing the affine
model on each region. When the amplitude is varied for each component independently, it
is unsurprising that LARDTW always offer the best result because it is the only method

57



that models different amplitudes for each component. The starred version of varying
component amplitude follows the global affine model where components in t are assumed
to be scaled in the same manner from s. When the component width is fixed for the
global affine model, it is not surprising that GARDTW offers the best result. When the
component width is varied under the global affine model, GARDTW becomes the second
best method after LARDTW. This observation is again attributed to LARDTW’s ability
to handle varying component widths. In conclusion, through component-based simulation,
RDTW, GARDTW and LARDTW are found to consistently outperform DTW and ADTW
because they emphasize on regions. Furthermore, LARDTW outperforms other methods
most of the time due to its high flexibility of matching regions under the affine model,
thereby focusing more on component shapes.

3.2 Difference Measure Evaluation

The focus of this thesis thus far is on alignment of two time series using the proposed
DTW variants. In the previous section, alignments from these methods are evaluated by
comparing them with true alignments that are generated through simulation. However, in
the ideal scenario, we would want true alignments of two real-world time series, because
the models that generate these simulated signals and the associated true alignments tend
to be not as comprehensive. The author only explores direct alignment evaluation through
simulation because he was unable to find a public dataset that contains true alignments
for a pair of real-world time series. One indirect way of evaluating alignments that by-
passes simulation of true alignments is to evaluate the difference measure accompanying
each alignment method discussed in this thesis. Intuitively, if the generated alignment p
is good, the associated difference measure tends to be good at differentiating a time series
from another that is very different. Ding et al.’s work provides supporting evidence for
the previous statement by showing that the DTW difference measure reliably outperforms
a naive difference measure that assumes strictly vertical matches between two time series
across a large number of datasets [7]. It is important to note that while better alignments
tend to be associated with better difference measures, there exists cases where worse align-
ments can yield better difference measures.

One popular way of evaluating a dissimilarity measure involves applying it on top of a
nearest-neighbor (NN) classifier to obtain the associated classification error rate. In this
thesis, the 1-NN classifier is selected to avoid additional parameterization. We will apply
the difference measures associated with the proposed DTW variants on a subset of the
UCR time series database [14], which offers a large number of datasets from a wide variety
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Table 3.4: Subset of UCR time series datasets used for difference measure evaluation.
Dataset Train cases Test cases Length Classes
Coffee 28 28 286 2
Beef 30 30 470 5
ECG 100 100 96 2

ECGFiveDays 23 861 136 2
TwoLeadECG 23 1139 82 2

Adiac 390 391 176 37
OSULeaf 200 242 427 6

MedicalImages 381 760 99 10
Lightning7 70 73 319 7

SyntheticControl 300 300 60 6

of domains. The ten datasets used for evaluation in this thesis are listed in Table 3.4.
Each UCR time series dataset is broken down into a training set and a testing set. Each
time series in the training set and testing set has a class associated with it. The goal is to
develop a model using the training set to predict the classes of the time series in the testing
set. The time series in the Coffee and Beef datasets are spectroscopic data on coffee and
beef products [4][1]. The ECG, ECGFiveDays and TwoLeadECG datasets each contain
abnormal and normal ECG data [14][23]. The Adiac, OSULeaf and MedicalImages datasets
contain one-dimensional time series that are converted from images [14]. For example, for
the Adiac dataset, a time series is constructed by recording the curvature along the main
contour of an image of a diatom [13]. The Lightning7 dataset consists of power densities
from different types of lightning strikes [8]. The SyntheticControl dataset include control
charts (graphs of how processes change over time) that reflect patterns such as normal,
increasing trend and decreasing trend [24].

DTW, ADTW, RDTW, GARDTW and LARDTW are parameterized by user-selected
values (the bandwidth wb = 1 + 2wq and region width wr = 1 + 2wh) that can lead to
drastically different results. Recall that n denotes the length of a time series. Similar to
the evaluation procedure outlined in the previous section, wq

n
and wh

n
are automatically

tuned for each dataset by choosing wq

n
from the set of {0, 0.05, ..., 0.5} and wh

n
from the

set of {0.05, 0.1, ..., 0.5} that yield the lowest error rate. Table 3.5 shows the error rates
on 10 UCR time series data sets with respect to the DTW, ADTW, RDTW, GARDTW
and LARDTW difference measures based on 1-NN classification. The lowest error rate is
bolded for each dataset.

Looking at Table 3.5, we start by observing that ADTW performs significantly better
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Table 3.5: Time series classification error rates of different difference measures on 10 UCR
datasets

Dataset DTW ADTW RDTW GARDTW LARDTW
Coffee 0.179 0.000 0.179 0.000 0.000
Beef 0.467 0.333 0.467 0.333 0.233

ECG200 0.110 0.120 0.090 0.090 0.060
ECGFiveDays 0.187 0.203 0.008 0.008 0.000
TwoLeadECG 0.096 0.098 0.035 0.037 0.003

Adiac 0.389 0.389 0.338 0.340 0.325
OSULeaf 0.397 0.409 0.306 0.293 0.169

MedicalImages 0.250 0.218 0.272 0.257 0.305
Lightning7 0.233 0.233 0.247 0.247 0.260

SyntheticControl 0.007 0.157 0.033 0.330 0.090

than DTW for the Coffee and Beef datasets. The Coffee and Beef dataset both contains
spectroscopic data on food, where differences in the food container and food samples con-
tribute to variability in the spectral baseline and overall spectral intensity [4][1]. The afore-
mentioned effect fits the affine model well, so ADTW outperforms DTW by a significant
margin. RDTW is observed to perform better than DTW on the ECG200, ECGFiveDays,
TwoLeadECG, Adiac and OSULeaf datasets. In particular, RDTW performs better than
DTW across all ECG-related datasets, because ECG data is component-based, where each
component can reflect the P, Q, R, S or T wave. The Adiac and OSULeaf datasets consist
of one-dimensional time series extracted from images along their main contours [13], and
it is reasonable for the resulting time series to contain discriminative components. Unsur-
prisingly, RDTW is shown to outperform DTW when the time series is known to contain
components that can benefit from regional emphasis. GARDTW is observed to usually
possess an error rate close to the better one among the ADTW and RDTW error rates.
While there are datasets where GARDTW outperforms DTW, ADTW and RDTW, the
gain is small when compared to the lowest error rate among the DTW, ADTW and RDTW
error rates. LARDTW is observed to outperform other methods for 7 out of 10 datasets.
LARDTW provides lower error rates for all ECG-related datasets, because ECG data con-
sists of components from multiple sources subject to amplitude variation. By applying the
affine model on each region and emphasizing on regions, LARDTW is able to outperform
the remaining methods for the datasets that fit this model. We can also observe that DTW
does not necessarily always provide a worse error rate. For the Lightning7 and Synthet-
icControl datasets, DTW offers the best result, and this observation is attributed to the
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lack of affine modeling and preference for component emphasis within these two datasets.
For example, the SyntheticControl dataset contains control charts that should be classified
into patterns such as increasing trend, decreasing trend, upward shift and downward shift.
Such patterns are applied globally to the time series, so there is no benefit from regional
emphasis. Furthermore, ADTW models the upward or downward shift of an entire time
series to be inconsequential to alignment when these properties are in fact an important
discrimination factor, so ADTW performs far worse than DTW on the SyntheticControl
dataset.

Figure 3.5 offers pairwise visual comparisons of experimental error rates from Table 3.5
of ADTW vs DTW, RDTW vs DTW, GARDTW vs DTW and LARDTW vs DTW. The
plotted points come from experimental results shown in Table 3.5. The line serves as a
reference where the error rates for both compared dissimilarity measures are equal. Points
below the line indicate that first difference measure has smaller error rates and points
above the line indicate that the later difference measure has higher error rates. From
Figure 3.5, we see that GARDTW and LARDTW outperforms DTW on 7 datasets. On
the other hand, ADTW outperforms DTW on 3 datasets and RDTW outperforms DTW
on 5 datasets. The above observations support the notion that GARDTW and LARDTW
are able to combine the advantages of ADTW and RDTW. Furthermore, the improvement
from LARDTW tends to be more pronounced when compared to GARDTW, and this
observation is attributed to LARDTW’s high flexibility by modeling each matched region
to be affine as opposed to the entire time series.
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Figure 3.5: Visualization of pairwise dissimilarity measure error rates of proposed methods
vs DTW.
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Chapter 4

Conclusion and Future Work

In this thesis, two variants of DTW, ADTW and RDTW, are proposed to improve align-
ments under certain imposed models or preferences. ADTW increments DTW to allow
arbitrary scaling and offset in amplitude between two time series which are subject to tem-
poral variations. ADTW was shown to be different from normalization prior to applying
DTW because ADTW tries to optimize for the scaling, offset and alignment simultane-
ously. A more general version of ADTW where subsets of time series are subject to the
same scaling and offset was also explored, but this approach is not readily applicable since
these subsets are usually not known. ADTW and its more general version are analyzed
to be both O(gwbn) in time and O(wbn) in space, where g is the number of iterations for
the ADTW algorithm to converge, wb is the imposed Sakoe-Chiba bandwidth and n is the
time series length.

RDTW modifies DTW to place more weight on a region of points potentially repre-
sentative of a component of interest in a time series. RDTW introduces an additional
parameter which is the region width wr, and an appropriate value for this parameter is
found to be crucial in generating good alignments. An approach of finding a good region
width and alignment simultaneously is proposed, but it did not generate good results.
Thus, it is recommended that wr should be tuned according to the task or criterion at
hand. RDTW is analyzed to be O(wbn) in both time and space, so its complexities are
identical to those of DTW.

ADTW and RDTW each has its unique model or preference, where ADTW models time
series to be scaled and offset in amplitude when aligned, and RDTW places an emphasis
on matching regions. We showed two different ways of combining ADTW and RDTW
to realize alignments that incorporate the advantages of both ADTW and RDTW. In
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GARDTW, one time series is modeled as the scaled and offset version of another time
series when aligning them with regional emphasis. In LARDTW, the region surrounding
each point is assumed to be a scaled and offset version of another region surrounding the
corresponding matched point. In other words, the affine model is applied globally to the
entire time series in LARDTW, whereas the affine model is applied locally to each region
in GARDTW. GARDTW is analyzed to be O(λ(wb +wr)n) in time and O(wbn) in space,
where λ is the number of iterations required for the GARDTW algorithm to converge.
LARDTW is analyzed to be O(wbn) in both time and space.

The proposed DTW variants were evaluated with respect to their generated alignments
and difference measures. Alignment-based evaluation is based on simulated time series
and their true pairwise alignments, because the author cannot find public well-established
datasets that contain real time series and associated true pairwise alignments. Time series
were simulated in two different ways to represent different underlying models. In global
alignment, artificial temporal variations, scalings and offsets are imposed on a real time
series to generate another time series and their true alignment. ADTW was found to out-
perform all other methods for this global alignment model. The aforementioned result is
expected because ADTW handles temporal variations, scalings and offsets between time
series simultaneously. On the other hand, when a non-trivial amount of noise is added to
each time series, GARDTW was found to outperform all other methods. This result is
again expected because GARDTW applies the affine model on the entire time series and
its emphasis on regions has an averaging effect in terms of alignment. In component-based
alignment, a time series is assumed to be a superposition of different components and its
alignment to another time series is created accordingly. Different simulation settings were
applied where the component width and amplitude can vary for a pair of matched time
series. For this component-based simulation, RDTW always outperformed DTW, although
LARDTW achieved the best results. It is not surprising that RDTW was found to be better
than DTW in component-based simulation, because RDTW’s regional emphasis focuses
on matching components and not individual points. LARDTW’s excellent performance
in component-based simulation is attributed to its high flexibility of matching regions by
imposing the affine model on each region, which effectively handles component overlap.
The different measures associated with each proposed method were evaluated on 10 real
datasets by applying the difference measures on a 1-NN classifier for time series classifica-
tion. Similar to the simulated cases, a proposed method was found to outperform DTW
if the evaluated dataset falls under the model or preference of the proposed method. In
particular, when components are involved in a time series, LARDTW consistently outper-
formed RDTW and GARDTW. This result is attributed to the nature of component-based
datasets, where components can vary in width and amplitude.
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To conclude, ADTW, RDTW, GARDTW and LARDTW are alignment methods whose
models include the affine assumption and a preference for regional emphasis. If they
are applied to problems whose underlying models are similar to the models behind the
methods, the proposed DTW variants are expected to provide significant performance
gains as demonstrated in this thesis with respect to certain simulated models and real
datasets.

For future work, a variant of RDTW where the region width can be variable is rec-
ommended to be explored. While LARDTW was shown to outperform DTW and other
proposed methods when the component width varies, it does not model changes in region
width directly, and a direct approach may better solve this problem. Furthermore, the
runtime of GARDTW is high, and there might be room for improving its time complexity
to make this method more practical.
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Appendix A

Derivation of GARDTW Scaling and
Offset Equations

We want to find a scaling factor c′p ∈ R and offset factor e′p ∈ R that minimize

DG(s, t, p, c, e, wh) =

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

d(sak+w, ctbk+w + e)

when s, t, p and wh are given, and d is the squared difference.

We start by proving that DG(s, t, p, c, e, whs) is convex with respect to c and e when s,
t, p and wh are fixed. Let us try to express DG(s, t, p, c, e, wh) with vectors by defining
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s(g)p =



1
wa1,b1

sa1
1

wa1,b1
sa1+1

...
1

wa1,b1
sa1+wh

1
wa2,b2

sa2
1

wa2,b2
sa2+1

...
1

wa2,b2
sa2+wh

...

...
1

wa|p|,b|p|
sa|p|



, t(g)p =



1
wa1,b1

tb1
1

wa1,b1
tb1+1

...
1

wa1,b1
tb1+wh

1
wa2,b2

tb2
1

wa2,b2
tb2+1

...
1

wa2,b2
tb2+wh

...

...
1

wa|p|,b|p|
tb|p|


Let β = [c, e]T and let ~1 = [1, 1, ...1]T be a vector with the same length as t(g). Also, let

y = s
(g)
p and X = [t

(g)
p ,~1]. Then, DG(s, t, p, c, e, wh) can be rewritten in the form of linear

least squares:
DG(s, t, p, c, e, wh) = (y −Xβ)T (y −Xβ)

This function is twice differentiable with respect to β and its Hessian with respect to β
is XTX, which is a positive semi-definite matrix. If the Hessian of a function is positive
semi-definite, the function is convex. Thus, DG(s, t, p, c, e, wh) is convex with respect to
(c, e) when (s, t, p, wh) are given.

Since we now know that DG(s, t, p, c, e, wh) has only one global minimum with respect
to (c, e), finding any local optimum is equivalent to finding the global minimum. Finding a
local optimum of DA(s, t, p, c, e) can be achieved by taking derivatives of DG(s, t, p, c, e, wh)
with respect to c and e, setting the derivatives to 0, and solving for values of c and e. Taking
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the derivative of DR(s, t, p, c, e, wh) with respect to c, we get

∂

∂c
DG(s, t, p, c, e, wh) =

∂

∂c

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

d(sak+w, ctbk+w + e)

=

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

∂

∂c
(sak+w − ctbk+w − e)2

= −2

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

(sak+w − ctbk+w − e)tbk+w

Taking the derivative of DR(s, t, p, c, e, wh) with respect to e, we obtain

∂

∂e
DG(s, t, p, c, e, wh) =

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

∂

∂e
(sak+w − ctbk+w − e)2

= −2

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

(sak+w − ctbk+w − e)

Setting ∂
∂e
DG(s, t, p, c, e′p, wh) = 0 and solving for e′p yields the minimizing e:

−2

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

(sak+w − ctbk+w − e′p) = 0

−e′p[
|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

1] + [

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

(sak+w − ctbk+w)] = 0

e′p =

∑|p|
k=1

1
wak,bk

∑wh
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

(sak+w − ctbk+w)

∑|p|
k=1

1
wak,bk

∑wh
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

1
(A.1)
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Likewise, setting ∂
∂c
DG(s, t, p, c′p, e, wh) = 0, plugging in Equation A.1 for e′p and solving

for c′p yields the minimizing c:

−2

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

(sak+w − c′ptbk+w − e′p)tbk+w = 0

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

(sak+w − c′ptbk+w −

∑|p|
l=1

1
wal,bl

∑wh
v=−wh

v:1≤al+v≤n
v:1≤bl+v≤m

(sal+v − c′ptbl+v)

∑|p|
l=1

1
wal,bl

∑wh
v=−wh

v:1≤al+v≤n
v:1≤bl+v≤m

1
)tbk+w = 0

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

sak+wtbk+w − c′p
|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

t2bk+w−

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

∑|p|
l=1

1
wal,bl

∑wh
v=−wh

v:1≤al+v≤n
v:1≤bl+v≤m

(sal+v − c′ptbl+v)

∑|p|
l=1

1
wal,bl

∑wh
v=−wh

v:1≤al+v≤n
v:1≤bl+v≤m

1
tbk+w = 0

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

sak+wtbk+w − c′p
|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

t2bk+w−

(

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

tbk+w)(

∑|p|
l=1

1
wal,bl

∑wh
v=−wh

v:1≤al+v≤n
v:1≤bl+v≤m

sal+v

∑|p|
l=1

1
wal,bl

∑wh
v=−wh

v:1≤al+v≤n
v:1≤bl+v≤m

1
)+

c′p(

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

tbk+w)(

∑|p|
l=1

1
wal,bl

∑wh
v=−wh

v:1≤al+v≤n
v:1≤bl+v≤m

tbl+v

∑|p|
l=1

1
wal,bl

∑wh
v=−wh

v:1≤al+v≤n
v:1≤bl+v≤m

1
) = 0
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Let

ρ =

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

sak+wtbk+w

γ =

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

t2bk+w

τ =

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

tbk+w

φ =

|p|∑
k=1

1

wak,bk

wh∑
w=−wh

w:1≤ak+w≤n
w:1≤bk+w≤m

sak+w

Then,

c′p =
ρ− 1

|p|τφ

γ − 1
|p|τ

2
(A.2)

and e′p can be re-expressed as

e′p =
1

|p|
(φ− c′pτ) (A.3)

which are identical to Equation 2.9 and 2.10.
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