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Abstract

This thesis examines space-time optimizations of in-memory search engines. Search
engines can answer queries quickly, but this is accomplished using significant resources in
the form of multiple machines running concurrently. Improving the performance of search
engines means reducing the resource costs, such as hardware, energy, and cooling. These
saved resources can then be used to improve the effectiveness of the search engine or provide
additional added value to the system.

We improve the space-time performance for search engines in the context of in-memory
conjunctive intersection of ordered document identifier lists. We show that reordering
of document identifiers can produce dense regions in these lists, where bitvectors can be
used to improve the efficiency of conjunctive list intersection. Since the process of list
intersection is a fundamental building block and a major performance bottleneck for search
engines, this work will be important for all search engine researchers and developers. Our
results are presented in three stages.

First, we show how to combine multiple existing techniques for list intersection to
improve space-time performance. We combine bitvectors for large lists with skips over
compressed values for the other lists. When the skips are large and overlaid on the com-
pressed lists, space-time performance is superior to existing techniques, such as using skips
or bitvectors separately.

Second, we show that grouping documents by size and ordering by URL within groups
combines the skewed clustering that results from document size ordering with the tight
clustering that results from URL ordering. We propose a new semi-bitvector data structure
that encodes the front of a list, including groups with large documents, as a bitvector and
the rest of the list as skips over compressed values. This combination produces significant
space-time performance gains on top of the gains from the first stage.

Third, we show how partitioning by document size into separate indexes can also pro-
duce high density regions that can be exploited by bitvectors, resulting in benefits similar
to grouping by document size within one index. This partitioning technique requires no
modification of the intersection algorithms, and it is therefore broadly applicable. We fur-
ther show that any of our partitioning approaches can be combined with semi-bitvectors
and grouping within each partition to effectively exploit skewed clustering and tight clus-
tering in our dataset. A hierarchy of partitioning approaches may be required to exploit
clustering in very large document collections.
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Motivation

I am motivated by the need to understand how things work. The best way to really
ensure you understand how a computer works is to optimize an application running on it.
As such, this thesis is a direct demonstration of my understanding of computer systems
through the optimization of an in-memory search system.
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Chapter 1

Introduction

A search engine is a system that answers information needs in the form of queries over free
form data. For quick query answering over large datasets, the data is preprocessed (offline
with respect to the queries) to produce an index. This index is spread across sufficient
hardware resources for the system to execute at the desired query rate (throughput) and
the desired query runtime (latency). In order to produce good throughput and latency (ef-
ficiency) while still producing relevant answers (effectiveness), most search engines restrict
the queries to be a string of keywords or phrases, the processing to act on words (tokens),
and the answers to be a small, ordered list of data objects that are subsequently displayed
to the user.

Modern search engines often store their indexes in the random access memory of their
machines for much better runtime performance than if the indexes were stored on disk. In
order to scale to large systems in memory, many machines may be required. Distributing
the queries among these machines and merging the query results is fast and simple, because
the amount of data transferred is small and the data is separable (i.e., a search engine is
an “embarrassingly parallel” [Moler 86] system). As a result, a search engine will be fast
if it is given enough machines. Nevertheless, improvements to efficiency, such as those
examined in this thesis, can reduce the often significant resource costs of a search engine.

To answer a query, the search index provides for each query term a list of documents
containing that term, and the engine then intersects and ranks those lists. List intersec-
tion and ranking are the major performance bottlenecks for search engines that use large
amounts of resources, such as Web search, so any improvement in efficiency in these areas
translates into significant cost savings. The work presented in this thesis improves the
efficiency of list intersection, then describes how these improvements can be applied to
ranking based systems. For a list intersection system these efficiency improvements have
no effect on the contents of the result lists, thus giving a definite performance improvement
rather than an efficiency-effectiveness tradeoff. Applying these efficiency improvements to
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a ranking based system, however, may affect the ranking function and thus change the
effectiveness of the search system.

In this thesis, we examine the space-time performance of algorithms that perform in-
memory intersection of ordered integer lists. These algorithms are used in search engines,
where the integers are document identifiers, and in databases, where the integers are row
identifiers. In both cases, the integers map to identifiers that are assigned by the system.
We assume that the lists are stored in integer order, which allows for fast merging and
for compression using deltas. List indexes (or auxiliary indexes) can be added to improve
random access by skipping parts of the compressed lists, with list index values either over-
laying or being extracted from the compressed form. If the domain of integers is compact,
then bitvectors can be used to store some or all of the lists, resulting in compression for
large lists. These approaches can be combined in various ways to produce a tradeoff of
space vs. time. For example, we can try to make the search faster by adding more skips
to the list indexes, or we can use more space to store more lists as bitvectors. We can also
reorder the assignment of identifiers to improve the performance of these systems.

Culpepper and Moffat [Culpepper 10] showed that combining vbyte (variable byte)
compression [Williams 99] for small lists with bitvectors for large lists (vbyte+bitvectors)
is better, in both space and time, than adding list indexes that allow skipping within
the vbyte compressed lists (vbyte+skips). This raises some fundamental questions that we
answer in this thesis:

1. Are bitvectors better than skips for all compression algorithms?

2. Since skips work better with document reordering, do bitvectors remain better than
skips under document reordering?

3. Are there situations in which it is best to use bitvectors and skips together?

4. Should bitvectors be used for subsections of individual lists?

In order to quickly process a query in a large search engine, the processing must be
done in parallel across many machines. In practice, this means splitting the dataset into
partitions (or shards), which contain non-overlapping subsets of the documents. This
process is referred to as document distribution, and usually the documents are randomly
placed into the partitions for good load balancing.

Each partition runs the query in parallel, after which the top-k results from each are
merged to produce the final query results. The partitions do not need to communicate with
each other to process the query, and the amount of communication needed to broadcast the
query and merge the results is small, so the speedup from document distribution is nearly
linear in the number of partitions. Other techniques, such as term distribution, are not
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usable in many search systems because of their difficulties with scalability, load imbalance,
and network saturation [Büttcher 10, §14.1.2].

Our experiments use data and queries from the search engine domain, where the lists of
integers are usually encoded using bitvectors or compressed delta encodings such as vari-
able byte (vbyte), PForDelta (PFD) [Zukowski 06], Simple-9 (S9 ) [Anh 05a] or Simple-16
(S16 ) [Zhang 08]. List indexes are often added to the compressed values for better runtime
performance. We also examine some intersection algorithms that are slow or require the
lists be encoded using large amounts of memory, which gives context to the performance
characteristics of the other algorithms.

The integers in our lists are document identifiers assigned by the search engine. Typ-
ically, these values are assigned based on the order in which the documents are indexed.
Reordering the document identifiers can produce both space and runtime benefits, so many
approaches to reordering have been examined, such as sorting by document size, cluster-
ing by content, applying TSP, sorting by URL, and hybrid orderings. A detailed review
of such reordering techniques is presented in Section 2.7. We focus on the original or-
der (orig), random ordering (rand), terms-in-document ordering (td), and URL ordering.
Other orderings have performance within the range represented by these four orderings,
since URL ordering has been shown to give comparable performance to the best of the
other approaches [Silvestri 07].

We examine space and time performance using the TREC GOV2 dataset and queries,
since it is the standard benchmark when considering efficiency-based analysis in the search
engine domain.

Our first contributions improve the performance the existing approaches to list inter-
section:

• We show that bitvectors are better than skips for more advanced and compact com-
pression algorithms (under the original document order), but the space improvements
when using bitvectors are less significant than they are when vbyte compression is
used (Chapter 4).

• We show how document reordering affects the index space and query runtime for list
intersection, rather than just the time for list encoding and decoding (Chapter 4).

• We show that bitvectors are not always better than skips under the URL ordering,
in particular when using the more compact compression algorithms. Bitvectors still
produce space-time performance benefits under URL ordering as compared to the
original document order, but skips can produce larger runtime gains and then run
faster for some space budgets (Chapter 4).

3
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• We find that combining bitvectors with large overlaid skips results in significant
runtime improvements, for all compression algorithms and all orderings, as compared
to bitvectors or skips alone (Chapter 4).

Previous studies have not shown that bitvectors are effective when combined with com-
pression algorithms other than vbyte, used with document reordering, or combined with
skips. (The implementation details of the skips algorithm can substantially affect the per-
formance of combining bitvectors and skips, thus explaining why previous results “got no
additional gain” from the combination [Moffat 07a].) Because our results are consistent
across several compression algorithms, we believe that they will also hold for others not
examined here.

Our remaining contributions involve new techniques that improve upon existing ap-
proaches to list intersection:

• We introduce a new hybrid ordering approach that groups by terms-in-document
size in descending order, and then sorts by URL ordering within each group, re-
sulting in improvements with respect to document clustering and delta compression
(Chapter 5).

• To improve the usage of bitvectors, we introduce a type of partial bitvector called a
semi-bitvector, and then combine it with our grouped ordering. This data structure
allows the front portion of a list to be a bitvector while the rest uses normal com-
pression and skips, with cutoff points aligned to the group boundaries of our hybrid
ordering (Chapter 5).

• To improve the usage of bitvectors and data clustering similar to grouping above,
we partition by document size. This is broadly usable, since any form of query
execution (including ranking) can be used within the partitions. Load balancing in
this approach requires manipulation of partition cutoff points (Chapter 6).

• We show how bitvectors can be used in a ranking based search engine (Chapter 7).

Neither grouping nor partitioning by document size has previously been examined in the
context of search engines or other research domains. We find that grouping or partitioning
by document size, combined with appropriate data structures, can produce significant
improvements in space and runtime for list intersection on top of the benefits we have
shown by tuning the performance of existing techniques. (When compared to algorithms
using skips or bitvectors alone, which is the norm for many search engines, the improvement
is very large.) In addition, we believe that similar types of improvement are possible for
more general search systems involving ranking and in other research domains such as
database systems.
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We present related work in Chapter 2, experimental setup in Chapter 3, and com-
pression+skips+bitvectors with reordering in Chapter 4. We then consider grouping and
semi-bitvectors in Chapter 5 and partitioning by document size in Chapter 6, and we draw
conclusions in Chapter 7.
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Chapter 2

Related Work

In this chapter, we present related work on indexing, searching, ranking, distribution,
and efficiency for search systems. While there are many details involved in implement-
ing an efficient search system, we focus on the methods of list intersection, the various
list encodings, and the effects of document reordering on the performance of the search
algorithms. For a more detailed background on these topics, we recommend the survey
of search engine techniques written by Zobel and Moffat [Zobel 06], as well as various
textbooks [Baeza-Yates 11, Büttcher 10, Croft 10, Witten 99].

2.1 Indexing

Search engines execute on datasets that are too large to be evaluated by scanning through
the data at query time. Instead, the datasets are preprocessed to create indexes that allow
fast query processing. Standard text indexing deals with a dataset as a set of data objects
(henceforth referred to as documents) consisting of a sequence of words (tokens). The first
stage of the indexing process thus involves retrieving the documents, converting them into
text, and then splitting the text into sequences of tokens. Even directly processing the
dataset as tokens would be too slow, so the tokenized form is converted into an new form
that improves the query performance. To create this new form the documents are given

Data Crawl Convert Tokenize Invert

local data text ID-tokens token-IDs

Encode

Index

Figure 2.1: Search engine indexing pipeline.
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AND
OR

Weak-AND
Phrase

Proximity

Early Termination
Pruning

Index

Query Lookup Intersect Rank top-k Expand

terms encodings list short list metadata

Result

Figure 2.2: Search engine query processing.

identifiers (IDs) and the mapping from ID to token sequence is then inverted to produce
for each token a list of IDs called a postings list, where the IDs in each list refer to the
specific documents (and sometimes their positions, or offsets, in the documents) containing
the corresponding token. In addition, a dictionary (or lexicon) is produced to map from
a token to the corresponding postings list. The data structure comprising the dictionary
and the postings lists is referred to as an inverted index. The index is then encoded for
more efficient storage and processing. This entire process of indexing the data can be done
in parallel so that it completes in a reasonable amount of time. This indexing pipeline is
summarized in Figure 2.1. The format of the resulting index is:

Index: [ token → <ID, frequency, offsets>+ ]∗

2.2 Query Processing

Queries are issued to the search engine as simple text strings that must be tokenized to
produce an ordered list of query terms (or tokens) with associated operations indicating
how to combine the terms together. The terms are looked up in the dictionary portion of
the inverted index, which contains the encoded postings lists with the document identifiers

8



Chapter 2: Related Work

of the documents containing those terms (and offsets into the documents). These encoded
lists are then intersected using the operators specified in the query, or the default operators
for the search engine, to produce a list of query results (i.e., the lists and operators act
as a filter over the documents in the dataset to produce a candidate result list). A small
number of relevant query results (top-k) are chosen from the candidate list using a ranking
algorithm. These few document identifiers are the query results that are expanded using a
separate data structure to produce the document metadata, such as the URLs and snippets
of the documents, required to produce the final query results that are displayed to the end
user. This query processing pipeline is summarized in Figure 2.2.

The intersection and ranking steps of the query processing pipeline are the most time-
consuming parts of a large search system. As a result, search systems implement many
optimizations of the intersection and ranking steps to produce runtime performance bene-
fits. For example, interleaving these two steps can remove the duplicate memory accesses
required in a two pass approach.

If the intersection step can quickly reduce the candidate list, then the ranking of the
candidates step may be fast. If the intersection step cannot quickly reduce the candidate
set, then other optimizations are needed to pare down the candidate list, such as assuming
a stronger intersection operation or including ranking restrictions to reduce the candidate
list. These optimizations may be safe-to-rank-k, where the top-k results are guaranteed to
be the same, or approximations, where the top-k results are considered to be good enough.

Combining information about the maximum scores achievable from the terms in a
query with the current top-k ranking threshold can allow portions of the postings lists to
be pruned from the processing.

The max-score pruning approach [Turtle 95] calculates the maximum possible score
from each query term, orders the query terms by size and determines how many of the
largest query terms can be combined to produce a score guaranteed to be below the top-k
threshold. Documents containing only these largest query terms can then be pruned from
the query processing, because they cannot appear in the top-k results. In addition, a
document can be pruned if the remaining query terms to be included in its score cannot
increase that score above the top-k threshold. Separating the top scoring documents in
each term [Strohman 05] can allow for additional optimizations to the max-score approach,
since combining the top scoring documents can quickly produce a good top-k threshold
and removing the top scoring outliers can reduce the maximum possible score from the
rest of the list.

The Weak-AND (WAND) pruning approach [Broder 03] does more dynamic processing
to produce document pruning. The query terms become iterators that are sorted by their
current document identifier, then the maximum scores from these query terms can be
summed in order until reaching the top-k threshold, which identifies the pivot term. The
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document identifiers from query terms before the pivot term’s current document identifier
cannot produce a score above the top-k threshold, so the earlier query terms are advanced
to the pivot’s current document identifier. This ordering and advancing process is repeated
until enough terms have the same current document identifier which is scored and added
to the top-k if the score is high enough. The ordering and advancing process then repeats
starting at the next document identifier. Advancing the query terms in this way allows
effective pruning of documents, but requires the added overhead of sorting query terms
and calculating pivots.

The block-max WAND pruning approach [Ding 11] stores the maximum possible score
for blocks of consecutive values in postings lists. This approach allows more granular
calculations of maximum score, but taking into account the block sizes makes the block-
max WAND algorithm more complicated. In addition, the size and location of the blocks
used when calculating the maximum scores within each postings list must be tuned to
choose an appropriate point within the space-time tradeoff.

If the postings lists are ordered to align with the ranking scores, it may be possible to
avoid processing the ends of the lists if they are unlikely to produce high enough scores,
thus allowing early termination of the query. This early termination approach can be
implemented at a high level by splitting the documents into tiers based on their potential
ranking scores. The tiers can then be split onto separate machines allowing separate scaling
per tier, or implemented dynamically within each machine. The processing within each tier
can use any combination of pruning, early termination, or ordered list merging, though the
performance of these techniques may be affected by the characteristics of the data found
in each tier.

The max-score, WAND, block-max WAND and early termination approaches can all be
implemented as safe-to-rank-k optimizations. For extremely high volume systems, more
aggressive optimizations that are approximations of the top-k ranking may be valuable.
Although the approaches we have already presented can be improved if they produce only
approximations of the top-k ranking, other approaches may be more appropriate.

Defaulting queries to use the AND operator (default-AND) allows the intersection step
to quickly reduce the candidate set, but the top-k results only approximate full ranking
since they will not contain documents with fewer query terms. If the default-AND query
does not return enough results, this smaller result list can be returned to the user or the
query can be re-executed using another approach. Default-AND can also be used with
tiers, where queries are only executed on lower tiers when there are not enough results
returned by the higher ones.

For search engines that contain large amounts of data, such as Web search engines, the
default-AND approach may produce effective results and be highly efficient. The average
number of terms per query is often low for a Web search engine, while the number of
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documents is large, so many documents in the engine are likely to contain all the query
terms and these documents will be highly ranked, thus dominating the top-k results. Such
large search engines can, therefore, answer many queries by intersecting the query term
postings lists (using an AND operator) to produce candidates that are then ranked to
produce the top-k. Indeed, this approach was used in the first version of Google’s Web
search engine [Brin 98], where they “scan through the doclists until there is a document
that matches all the search terms” and then compute the rank. It has been acknowledged
that the default-AND approach is commonly used in Web search systems, and may even
improve the ranking effectiveness of small queries [Croft 10, p. 172]. Clearly, the efficiency
of both the intersection and ranking steps are important for such systems. In fact, the effi-
ciency of conjunctive AND intersection that we are examining in this thesis is of particular
importance for these large search systems.

2.3 Functions used for Ranking

Search results are ranked by a function that uses information from the query lists and the
overall index to produce a score for a document and a given query. Ranking functions
can then be compared, using various metrics based on the order of the scored documents
and external opinions on whether the results are relevant. The metrics used to compare
ranking algorithms treat the results (the full list or the top-k) of each query as a set, such
as with precision, recall, F-measure, and mean average precision (MAP) [Büttcher 10,
§2.3], or as an ordered list, such as with mean reciprocal rank (MRR) using the first cor-
rect answer [Kantor 96] and discounted cumulative gain (DCG) using all the correct an-
swers [Järvelin 02]. Ranking metrics can also take into account models of the user, as with
expected reciprocal rank (ERR) [Chapelle 09], rank-biased precision (RBP) [Moffat 08],
and time-biased gain (TBG) [Smucker 12].

Traditionally, ranking functions were static and designed by the search engine develop-
ers to produce good results in a reasonable amount of time (e.g., Okapi BM25 [Robertson 95]).
Alternatively, a learning-to-rank approach can be applied on a large number of features
extracted from the documents. This approach uses machine learning techniques, such as
gradient descent [Burges 05] or support vector machines (SVMs) [Cao 06], to decide which
features are best and how they should be combined. The search engine developers can
then tune the system to approximate this combination within a reasonable query runtime.

Multiple ranking functions can be combined in a cascading approach [Wang 11], where
fast ranking functions are used to produce a small number of candidate results that are
passed to slower, but more effective, ranking functions that re-rank or prune out candidates.
This cascading approach can effectively combine the two ranking approaches described
above. For example, a fast developer-designed ranking function could produce a candidate
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set of results, which are then re-ranked using a feature based ranking function created
using machine learning techniques.

2.4 Distributed Search Systems

A search system may be distributed across multiple machines in order to support fault
tolerance, scale to a large dataset, or meet query latency and throughput specifications.
Query throughput requirements can be met by simply replicating the search engine, and
extra replication can also be used to support fault tolerance. Scaling to a large dataset and
reducing query latency can be achieved to some extent using high performance hardware,
such as large servers or disk systems, but it is much more cost effective to distribute the
inverted index across multiple commodity machines, disks, and processors. We refer to
these units of inverted index distribution as partitions (or shards).

The inverted index can be split across multiple partitions using document distribution,
in which each partition contains a subset of the documents forming a separate sub-index.
Queries are broadcast to the partitions, each running in parallel, and the query results
from all partitions are merged to produce the final top-k set of query results. Distributing
the queries to the partitions and sending back the results requires some network commu-
nication, but the message sizes are small. However, any overhead incurred per query term
can be expensive, since the overhead applies at each partition. On the other hand, running
the partitions in parallel produces low query latency, while the independence of partitions
and ease of result merging allows for near linear scaling. As a result, document distribu-
tion is used in commercial search engines. In order to produce good load balancing, the
documents are usually distributed randomly.

Some versions of document distribution will first cluster the dataset’s documents by
topic [Kulkarni 10] or top-k result counts [Puppin 06] and then place these clusters into
separate partitions. The queries can then be executed on a subset of the partitions and
still produce relevant query results. This process is called selective search (or collection
selection), and it results in improved throughput and reduced resource use. Unfortunately,
cluster based partitioning with selective search has the potential to degrade ranking effec-
tiveness, which limits its use. These non-random document distribution approaches can
also be used without selective search [Feldman 11, Lavee 11], but load balancing is difficult.

As an alternative approach, the inverted index can be split across partitions using term
distribution, meaning that each term’s postings list is placed in a single partition. To
process a query, all the postings lists of the query are sent to a single broker machine
that intersects the lists and produces the top-k query results. Transferring the postings
lists across the network adds latency and can saturate the network, but per query term
overheads occur only once. Processing the entire query at a single broker can produce
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large query latencies, and not having enough brokers can limit performance. In order to
produce good load balancing, the postings lists are usually distributed randomly.

In order to reduce network traffic and lighten the load of the broker when processing
queries in a term distributed index, the pipelined approach [Moffat 07b] passes partially
evaluated query results among partitions. The queries are partially evaluated at each
partition containing a postings list of the query, with the partitions ordered by the lowest
term frequency of their query terms. Each partition folds its lists into the partial results
that are subsequently passed to the next partition, thus preventing full document-at-a-
time query processing (see Section 2.5). Partial evaluation involves all the query lists
at each partition before processing moves on to the next partition, meaning the lists are
not always combined in term frequency order. This pipelined approach does not produce
good load balancing, but the load imbalance can be somewhat improved by controlling the
distribution of lists into partitions or by placing some lists in multiple partitions [Moffat 06].

Hybrid distribution approaches can combine the benefits, or alleviate the drawbacks,
of the standard approaches. One hybrid approach splits postings lists into chunks that are
distributed across partitions to help balance the load [Xi 02]. Another hybrid approach
uses document distribution to split the index into sub-collections, which are then split into
partitions using term distribution, thus reducing the per query term overhead of document
distribution and limiting the network communication of term distribution [Kane 09].

For extremely large datasets, the data may be split into tiers [Risvik 03] based on some
global order such as PageRank or on past query results. As mentioned earlier, lower tiers
are queried only if higher tiers do not return sufficiently good results. Each tier is typically
independent and uses document distribution, but the characteristics of the data in each
tier could vary significantly from the characteristics of the full dataset. Examining how
changes in the per-tier data characteristics affect the choice of query execution technique
is beyond the scope of this thesis.

Term distribution and pipelined evaluation may be valuable for systems with large
overheads per query term, such as disk based systems with large random access latencies,
but document distribution performs better in most systems. For our in-memory search
system, the per query term overheads are small, so we use document distribution in our
experiments.

2.5 Intersection Approaches

This thesis focusses primarily on the intersect step depicted in Figure 2.2, and more specif-
ically conjunctive AND intersection. As explained earlier, using conjunctive intersection
gives approximate ranking of results since it does not guarantee the best top-k results, but
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Figure 2.3: Set versus set conjunctive intersection of multiple lists.

this approximation may still be effective and highly efficient for large search systems, such
as Web search engines.

We have limited our query execution to conjunctive list intersection without ranking. In
databases, this is an equality join on the lists, which can be executed using various methods.
If the lists are in sorted order, they can be joined using a merge algorithm, otherwise,
additional temporary memory must be used to join the lists [Shapiro 86]. For search
engines, the values stored in the temporary join structure are referred to as accumulators,
since they are used to accumulate the ranking scores for candidate results.

Intersecting multiple lists can be implemented by intersecting the two smallest lists,
then intersecting the result with the next smallest list iteratively, thus producing a set
versus set (svs) or term-at-a-time (TAAT ) [Turtle 95] approach. This svs approach for
conjunctive list intersection is shown in Figure 2.3. For ordered lists, each step of the svs
approach uses the merge or MG algorithm as defined in Algorithm 1, which takes each
element in the smaller list M and finds it in the larger list N by executing a forward search,
then reports any elements that are found. Various implementations of the forward search
subroutine are possible, but the choice of implementation is restricted by the encoding
approach used for N. The M list could be encoded differently than the N list, and indeed,
after the first svs step it is the uncompressed result list of the previous step. The sequential
processing and memory accesses of the svs approach allows the compiler and CPU to im-
prove the execution, making this approach extremely fast, even though temporary memory
is required for intermediate result accumulators. Although these intermediate results are
needed in our experiments, they are simply document identifiers since we are not ranking
the results. In addition, we avoid the need for join structures by using sorted lists.

To reduce the temporary memory used in the TAAT approach, while still maintaining
some of the compiler and CPU optimization ability, processing can be split into batches.
In such a batch-at-a-time approach, the document identifiers are split into batches with the
intersection for all terms being processed for one batch before the next batch is processed.

14



Chapter 2: Related Work

Algorithm 1 MG – Intersect Merge

1: function MG(M,N) . |M | ≤ |N |
2: i← N.iterator(), n← 0, r ← {}
3: for all m ∈M do
4: n← i.forwardSearch(m) . iterator dependent
5: if m = n then
6: r ← r ∪ {m}
7: return r . list

The number of accumulators is, therefore, bounded by the batch size. The batches being
processed can contain a fixed number of document identifiers or a range of the document
identifier domain. To improve efficiency, the list encoding and list indexes can be aligned
with these fixed range batches.

Intersecting multiple lists can also be implemented by intersecting all the lists at the
same time. If the lists are not in sorted order, using this approach may require a large
amount of temporary space for the join structures and the accumulators. If the lists
are sorted, then we call this a document-at-a-time (DAAT ) [Turtle 95] approach, and it
requires very little temporary space: just one pointer per list to keep track of its processing
location. The order that the lists are intersected could be static, such as ascending term
frequency order (as done with svs), or it could adapt to the processing. Such adaptive
methods are not as fast for real data [Barbay 09] and are not explored here. All of these
non-svs approaches jump among the lists that are stored at different memory locations,
so it is more difficult for the compiler and CPU to improve the execution performance.
In addition, the loop iterating over the lists for each result item and the complications
when using different list encodings (i.e., the need for dynamic calls, extra checks of list
types, or multiple implementations) will slow down non-svs implementations. Despite
these limitations, many of the optimizations that we demonstrate in this thesis using svs
list intersection can also be applied to implementations using non-svs approaches.

For systems that return the top ranked results, a small amount of additional memory
is needed for a top-k heap to keep track of the best results. Instead of adding results that
match all the terms into a simple array of results, they are added to the heap. At the end
of query processing, the content of the heap is output in rank order to form the final top-k
query results.
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2.6 List Encodings

We present detailed related work for list intersection and illustrate various algorithms’
performance using space-time graphs, for which the experimental setup uses the GOV2
corpus and query workload as described in Chapter 3. Where possible we have used the
authors’ original code; otherwise we coded the algorithms to follow as closely as possible
their descriptions in the literature. When presenting these algorithms, we specify the name
of the intersection algorithm followed by the encoding algorithm and the document iden-
tifier ordering as intersection(encoding)(ordering). For example, SK(Vbyte1skipX)(orig)
represents the SK algorithm with an encoding of vbyte values accessed one element at a
time and skips over a range of X values using the original document ordering.

2.6.1 Uncompressed Lists

Storing the lists of document identifiers in an uncompressed format simply means using a
sequential array of integers. For fast intersection, the integers in these lists are stored in
order, allowing merging of lists without additional temporary memory storage, and also
allowing the use of many methods to search for a particular value in a list (i.e., the imple-
mentation of the forward search subroutine in Algorithm 1). As a result, there are many fast
algorithms available for intersecting uncompressed integer lists (e.g., storing the integers
using 32 bits/posting, U32, in the native machine word format plus the list length value),
but the memory used to store the uncompressed lists is very large and probes into the list
can produce wasted or inefficient memory access. All of these uncompressed intersection
algorithms rely on random access into the lists, so they are inappropriate for compressed
lists. We present only the three best algorithms for our GOV2 dataset [Barbay 09]:

Galloping svs (MG-gallop): Galloping forward search [Bentley 76] probes into the list
to find a point past the desired value, where the probe distance doubles each time, then
the desired location is found using binary search within the last two probe points. The
galloping svs algorithm, therefore, fits our definition of merge in Algorithm 1 (page 15)
with galloping used to implement the forward search subroutine.

Galloping swapping svs (MGSW-gallop): In the previous galloping svs algorithm,
values from the smaller list are found in the larger list. Galloping swapping svs [Demaine 01],
however, finds values from the list with the smaller number of remaining integers in the
other list, thus potentially swapping the roles of the lists. The galloping swapping svs
algorithm does not fit the pseudo-code of our merge algorithm, but does execute using a
set-versus-set approach.

Sorted Baeza-Yates using adaptive binary forward search (SBY-ab): The Baeza-
Yates algorithm [Baeza-Yates 04] is a divide and conquer approach that finds the median
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value of the smaller list in the larger list, splits the lists, and recurses. Adding matching
values at the end of the recursion [Barbay 09] produces a sorted result list. The adaptive
binary forward search variant uses binary search within the recursed list boundaries when
searching in the larger list, rather than using the original list boundaries. The sorted
Baeza-Yates algorithm does not fit the pseudo-code of our merge algorithm, but does
execute using a set-versus-set approach.

2.6.2 Compressed Lists

There are a large variety of compression algorithms available for sorted integer lists. The
lists are first converted into differences minus one (i.e., deltas or d-gaps) to get smaller
values, but this removes the ability to randomly access elements in the list (thus limiting
the possible implementations of the forward search subroutine in Algorithm 1). Next, a
variable length encoding is used to reduce the number of bits needed to store the values,
often grouping multiple values together to allow word or byte alignment of the groups and
fast bulk decoding. We examine a variety of compression algorithms below:

Golomb: The Golomb algorithm [Golomb 66] uses a tuneable parameter k to split a value
x into a quotient q = bx/kc and a remainder r = x − q · k. The value is encoded as q in
unary followed by a binary representation of r. The pivot point p = 2blog2 kc+1− k dictates
how the remainder is encoded, by using either blog2 kc bits (from r when r < p) or dlog2 ke
bits (from r + p when r ≥ p). Since the Golomb algorithm can encode zero, the values
are often reduced by one when encoding, which we have already presented as using deltas
minus one.

As an example of Golomb encoding, given k = 100 meaning p = 28, the value 898
(assuming it is already a delta minus one) results in a quotient q = 8 and remainder
r = 98. The remainder is larger than p, so it is encoded using the binary representation of
r + p = 126 using 7 bits. Combining the unary encoding of the quotient with the binary
encoding of the remainder gives the Golomb encoding as 00000000 11111110, with the
binary remainder marked in italics.

Rice : The Rice algorithm [Rice 71] is a restricted version of the Golomb algorithm, where
the tuneable parameter is of the form k = 2m. Requiring that k be a power of two means
the calculations for encoding and decoding are easy, since the quotient and remainder are
simply ranges of bits from the original input value (i.e., the lower m bits of the input are r
and the higher bits are q). As with the Golomb algorithm, the Rice algorithm can encode
zero, allowing the use of deltas minus one.

As an example of Rice encoding, given m = 7 and thus k = 128, the value 898 (assuming
it is already a delta minus one) results in a quotient q = 7 and remainder r = 2. Combining
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the unary encoding of the quotient with the binary encoding of the remainder gives the
Rice encoding as 0000000 10000010, with the binary remainder marked in italics.

Elias gamma : The gamma algorithm [Elias 75] stores a value x by encoding it in binary
up to its last significant one bit (comprising b bits), then prepends b − 1 (i.e., blog2 xc)
zeros before the binary value. This encoding can also be produced using the unary value
of b followed by the lower b− 1 bits of the binary encoding of the number. This encoding
can store only positive integers, so we must use deltas rather than deltas minus one.

As an example of gamma encoding, the value 898 contains 10 significant bits, so we
prepend 9 zeros giving the gamma encoding as 000 00000011 10000010, with the binary
representation marked in italics.

Elias delta : The Elias delta algorithm [Elias 75] stores a value x by measuring the size
b of its binary encoding, then encoding b using gamma encoding and appending the b− 1
lower bits of the binary encoding. Again, this encoding can store only positive integers, so
we must use deltas rather than deltas minus one.

As an example of Elias delta encoding, the value 898 (binary encoding 11 10000010)
contains 10 significant bits, so we encode 10 using gamma encoding (i.e., 0001010) followed
by the lower 9 bits of the binary encoding, giving the Elias delta encoding as 00010101
10000010, with the lower bits of the binary representation marked in italics.

Variable byte (vbyte): The vbyte algorithm [Williams 99] stores deltas using a variable
length sequence of bytes. This encoding is byte aligned with each byte storing seven bits
of a delta and using the remaining bit to indicate whether storing the delta also requires
the next byte (i.e., the first bit indicates the layout of the data bits). As a result, a positive
integer x can be stored using blog128 xc + 1 bytes, so that numbers from 0 to 127 use one
byte, 128 to 16383 use two bytes, and so on. Even though byte aligned operations are
fast, there are many if statements in the code, which can slow down execution on modern
CPUs. The vbyte algorithm has been shown to be faster than many non-byte aligned
approaches [Trotman 03], but this speed is achieved at the expense of compression.

As an example of vbyte encoding, the value 898 as a 32-bit number is 00000000 00000000
00000011 10000010, but this value can be stored with two bytes using the vbyte encoding
as 10000111 00000010, where the layout bits are marked in bold.

Simple-9 (S9 ): The S9 algorithm [Anh 05a] is word aligned (32 bits), using four bits of
each word to indicate how the remaining 28 bits are allocated to fit a few deltas, allowing
a switch statement on the four layout bits to be used for fast decoding. The same number
of bits are used for each delta in a word, giving nine possible combinations for 28 bits,
though some have unused bits, as shown in Table 2.1. The S9 algorithm uses a variable
block size (i.e., the number of deltas that fit in the word), but we combine these words
into larger blocks having a fixed number of deltas [Zhang 08] for a clearer comparison
with PFD (see below). The Simple-9 approach of using 4 bits per word for layout can
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be extended to 64 bit words for additional performance improvements, as done with the
Simple-8b algorithm [Anh 10].

As an example of S9 encoding, we consider the input containing the value 898 followed
by a series of 1s. The value 898 requires at least ten bits, so rule 8 can be used to store
the first two values as 01110000 11100000 10 000000 00000001, with layout bits marked
in bold and the value 898 marked in italics.

Simple-16 (S16 ): The S16 algorithm [Zhang 08] is an extension of S9 where different
numbers of bits can be used for different values stored in one word. This version has sixteen
possible combinations and none have unused bits, as shown in Table 2.2. As before, multiple
words are encoded into larger blocks.

As an example of S16 encoding, we consider the input containing value 898 followed
by a series of 1s. The value 898 requires at least ten bits, so rule 14 can be used to store
the first three values as 11011110 000010 00 00000010 00000001, with layout bits marked
in bold and the value 898 marked in italics.

Frame of Reference (FOR): The FOR algorithm [Goldstein 98] stores a block of values
sequentially in an array using the same number of bits for each value (i.e., a bit array). If
the values have minimum l and maximum h, then the values are stored relative to l using
blog2(h − l)c + 1 bits for each value. By using blocks containing multiples of 32 values,
the resulting encoding is ensured to be 32 bit word aligned. The FOR algorithm is fast for
decoding, but even a few large values can restrict the resulting compression.

As an example of FOR encoding, we consider the value 898 followed by three 1s. In
this batch of four values, the minimum is l = 1 and maximum is h = 898, meaning the
block can be stored with each value using ten bits. The batch of four values (898,1,1,1)
are encoded relative to l (897,0,0,0) using FOR as 11100000 01 000000 00000000 00000000
00000000, with the bits representing the value 898 marked in italics.

PForDelta (PFD): The patched frame of reference over deltas (PForDelta or PFD)
algorithm [Zukowski 06] is word aligned (32 bits) and combines multiples of 32 deltas into
a block (padding lists with zeros to fill out the last block). Lists with fewer than 100
elements use normal vbyte encoding (to avoid the overhead of padding a list with zeros to
fill the last block), thus producing a hybrid algorithm. When using PFD, the “frame of
reference” stores an array of the deltas using b bits each as described above in the FOR
algorithm, with the value b stored in the header. To reduce the number of bits in the frame
of reference, up to 10% of the deltas are stored separately as exceptions in the “patch”.
The exceptions are identified using a linked list by encoding the start of the list in the
header and the linking in the frame of reference entries. If the exceptions are farther than
2b values apart, then additional exceptions are added to allow for the linking. If adding
of exceptions results in more than 10% of the values being stored as exceptions, then a
larger value of b is used. The values of the exceptions are stored in an array or using
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rule layout data unused
(4 bits) (≤ 28 bits) (bits)

1 0000 28×1b 0
2 0001 14×2b 0
3 0010 9×3b 1
4 0011 7×4b 0
5 0100 5×5b 3
6 0101 4×7b 0
7 0110 3×9b 1
8 0111 2×14b 0
9 1000 1×28b 0

Table 2.1: Details of S9 encoding (28×1b means 28 values of 1 bit each).

rule layout data S9 rule
(4 bits) (28 bits)

1 0000 28×1b 1
2 0001 7×2b, 14×1b

3 0010 7×1b, 7×2b, 7×1b

4 0011 14×1b, 7×2b

5 0100 14×2b 2
6 0101 1×4b, 3×8b

7 0110 1×3b, 4×4b, 3×3b

8 0111 7×4b 4
9 1000 4×5b, 2×4b

10 1001 2×4b, 4×5b

11 1010 3×6b, 2×5b

12 1011 2×5b, 3×6b

13 1100 4×7b 6
14 1101 1×10b, 2×9b

15 1110 2×14b 8
16 1111 1×28b 9

Table 2.2: Details of S16 encoding (28×1b means 28 values of 1 bit each) with equivalent
S9 rules indicated.
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another compression routine. The batch size is restricted to a multiple of 32, causing the
frame of reference to be word aligned. The header and patch are stored so as to ensure a
word aligned encoding. The PFD algorithm gives a compact encoding with fast decoding
because few if statements are used. The process of encoding using the PFD algorithm
may, however, require trying several values of b before the number of exceptions drops
below 10%.

As an example of PFD encoding, we consider the input containing the value 898 followed
by thirty-one 1s. This block of 32 values can be stored in a frame of reference that is one
bit wide (b = 1) with few exceptions, but representing the linked list of exceptions would
require too many additional exceptions. As a result, b must be increased until b = 4 when
fewer than 10% of the values are stored as exceptions. With this setting, the frame of
reference portion is (15,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 15,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0) with
each value encoded using four bits and exceptions marked in bold. The header contains
b = 4, the minimum value l = 1, and the head of the linked list of exceptions (i.e., the first
entry). The exceptions section contains two values (898,1).

NewPFD : The NewPFD algorithm [Yan 09] is a variant of the PFD algorithm that stores
the lower b bits of the exceptions in the frame of reference portion of the encoding. To
identify and restore the exceptions, a list containing the indices of the exceptions and
another list containing the higher bits of the exceptions are stored in the patch portion of
the encoding, with each list stored using S16 compression. The header contains the values
b and l, but no longer contains the head of the linked list of exceptions. The NewPFD
variant can more compactly store small values than the original PFD algorithm.

As an example of NewPFD encoding, we consider the input containing the value 898
(significant bits 11 10000010) followed by a series thirty-one 1s. This block of 32 values
can be stored in a frame of reference (encoded relative to the minimum value l = 1) that
is one bit wide (b = 1) with fewer than 10% exceptions, encoded as 1 0000000 00000000
00000000 00000000. The patch contains the exception index list, which is only index zero
here and is encoded using S16 as 11110000 00000000 00000000 00000000. The patch also
contains the exception higher bits list encoded using S16 as 11110000 00000000 00000001
11000000. The layout bits are marked in bold and the bits representing the value 898 are
marked in italics.

OptPFD : The OptPFD algorithm [Yan 09] uses NewPFD to store values, but extends
the approach by tuning the exception rate (previously fixed at 10% for each block of
values) over the entire list rather than for each block, resulting in a range of space-time
configurations and better efficiency.

VSEncoding (VSE): The VSE algorithm [Silvestri 10] is a FOR/PFD variant that has
no exception mechanism; instead it dynamically varies the block sizes and stores deltas
in each block using the same number of bits (i.e., using just a frame of reference). Such
dynamic block sizes obstruct the use of skips, so we do not examine this approach further.
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Some compression algorithms act directly on the original postings lists as monotonically
increasing sequences of integers, then build the delta encoding more deeply into their im-
plementation. To prevent decoding the entire list, these approaches can act on subsections
of the postings lists (i.e., by splitting the lists into blocks). We examine two approaches to
encoding such sequences:

Binary Interpolative Coding (IPC ): The IPC algorithm [Moffat 00] is a divide and
conquer approach that stores a monotonically increasing sequence by encoding the value
at the midpoint of the list of length n, then recurses on the values above and below this
midpoint (with base cases of zero and one element lists). The midpoint value is encoded
using enough bits to specify it within the value range (l, h) inclusive, with the elements
above and below the midpoint removed, giving the restricted value range (l+dn/2e−1, h−
n + dn/2e). For a dataset D, the initial value range can be (l0, h0) = (0, |D| − 1), but the
list length n must be encoded to determine the restricted value range when decoding. As
with the Golomb algorithm, when the size s of the restricted value range is not a power of
two, some of the values can be encoded with blog2 sc bits and others with dlog2 se bits, but
for the IPC algorithm, the values using fewer bits are placed in the middle of the range
using a centred minimal binary code [Howard 93]. This binary code encodes c = 2dlog2 se−s
elements in the centre of the range using one fewer bit.

As an example of IPC encoding, we consider a list containing the two elements (800, 898)
with l = 0 and h = 999. The midpoint element 800 is encoded in the range (0, 998) giving
s = 999 and c = 25 entries in the centre. Our element 800 is not in the centre, so it requires
dlog2 se = 10 bits. The recursion below the midpoint contains no elements so nothing is
output, but the recursion above the midpoint encodes 898 in the range (801, 999) giving
s = 199 and c = 57 entries in the centre. Our element 898 is in the centre, so it requires
blog2 sc = 7 bits. Our two element list can, therefore, be stored in 17 bits using IPC
encoding.

Elias-Fano (EF): The EF algorithm [Elias 74] stores a monotonically increasing sequence
by splitting each value into upper bits stored as deltas in unary encoding, and lower bits
stored in binary format. This separation and encoding is identical to the Rice algorithm,
except that deltas are used in the upper portion and the two portions are not stored
together. The encoding of the upper bits for all the values are concatenated, followed by
the lower bits of all the values concatenated together in a bit array. The upper bit structure
can be processed by counting the number of 1 bits. If the start of the lower bit structure
is known, the lower bits of any value can be accessed directly as an array. For a list of size
n with values below a high point h, this encoding uses b = max (0, blog2(h/n)c) lower bits.
For a dataset D, the high point h = |D| is an obvious choice. This storage approach allows
fast list intersection and compact storage [Vigna 13], as discussed briefly in Section 2.6.5.

As an example of EF encoding, we consider a list containing the two elements (800, 898)
with |D| = 1000 giving b = 6 lower bits. Our two values when split become an upper
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portion (12, 14) and a lower portion (32, 2), with the upper portion encoded as deltas
(12, 2). As a result, our two element list can be encoded using EF as 0000 00000000 1001
1000 00000010, with the bits produced from the value 898 marked in italics.

Recent work has improved decoding and delta restore speeds for many list compression
algorithms using vectorization [Lemire 13]. Additional gains are possible by changing delta
encoding to act on groups of values, thus improving runtime at the expense of using more
space. While such approaches can be combined with our work, we do not explore this here.

In the remainder of this thesis, we examine the most common vbyte algorithm and some
of the top performers, in particular the S9, S16, PFD and OptPFD algorithms.

2.6.3 List Indexes

List indexes, also known as skip structures or auxiliary indexes, can be used to jump over
values in the postings lists and thus avoid decoding, or even accessing, portions of the
lists. The desired jump points can be encoded inline with the lists, but this causes more
memory locations to be access when few values are being searched for in the list. Instead,
it is preferable to store the jump points in a separate, contiguous memory location, often
without compression, allowing fast scanning through the jump points. These list indexes
can be used with compressed lists by storing the deltas of the jump points, but the block
based structure causes complications if the jump point is not byte or word aligned, as well
as block aligned. The actual list values that are found in the skip structures can either be
maintained within the original compressed list (overlaid) preserving fast iteration through
the list, or the values could be extracted (i.e., removed) from the original compressed lists,
giving a space reduction but slower iteration through the list.

A simple list index algorithm (“skipper” [Sanders 07]) groups by a fixed number of
elements (a bucket) storing every Xth element in a separate array structure, where X is
a constant, so we refer to it as skips(X) and the corresponding intersection algorithm as
SK, see Algorithm 2. When intersecting lists, the skip structure is scanned linearly to find
the appropriate jump point into the compressed structure (lines 7-8), where the decoding
can commence (line 9). Since jump points indicate a bucket or range within the encoded
structure (line 10), the forward search subroutine can be restricted to this range (line 11),
thus allowing for alternate implementations. Some of the costs involved in decoding and
searching within each bucket can be shared between all the elements we are searching for
within the bucket. As a result, the skips algorithm simply iterates though the smaller list,
finds which bucket in the larger list might contain the current element, and then searches
for the element within the bucket starting at the last decoded point in the bucket.

Using variable length skips is possible, perhaps tuning the number of skipped values
relative to the list size n, such as using a multiple of

√
n [Moffat 96] or log n [Culpepper 10].
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Algorithm 2 SK – Intersect Skips

1: function SK (M,N) . |M | ≤ |N |
2: i← N.iterator(), n← 0, r ← {}
3: b← N.bucketIterator()
4: e← b.endID . end of bucket
5: for all m ∈M do
6: if m ≥ e then . new bucket
7: while m ≥ b.endID do
8: b.next()

9: i.jumpToBucket(b)
10: e← b.endID
11: n← i.forwardSearch(m, b.end) . within bucket
12: if m = n then
13: r ← r ∪ {m}
14: return r . list

Algorithm 3 SG – Intersect Segment

1: function SG(M,N) . |M | ≤ |N |
2: i← N.iterator(), n← 0, r ← {}
3: b← N.bucketIterator()
4: e← 1� N.segmentBits . end of bucket
5: for all m ∈M do
6: if m ≥ e then . new bucket
7: h← m� N.segmentBits
8: b.setBucket(h)
9: i.jumpToBucket(b)
10: e← (h + 1)� N.segmentBits

11: n← i.forwardSearch(m, b.end) . within bucket
12: if m = n then
13: r ← r ∪ {m}
14: return r . list
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We found that skips based on
√
n do not have a good space-time tradeoff, because space

is spent disproportionately on small lists where skipping is less valuable and too few skip
points are provided on large lists. We leave the exploration of tuning skips for future work.

Another type of list index algorithm (“lookup” [Sanders 07]) groups by a fixed size
document identifier range by using the top level bits of the value to index into an array
storing the desired location in the encoded list, similar to a segment/offset scheme. Each
list can pick the number of bits in order to produce reasonable jump sizes. Here we use D
as the set of indexed documents and N as the postings list, meaning the list’s density is
y = |N |/|D|. If we assume randomized data and use the parameter B to tune the system,
then using dlog2B/ye bottom level bits will leave between B/2 and B entries per segment
in expectation. As a result, we call this approach segment(B) and the corresponding
intersection algorithm SG, see Algorithm 3. The execution of the segment algorithm is
almost identically to the skips algorithm, except that it defines buckets differently and
then can quickly find the bucket containing the current element without scanning through
the list index (lines 7-8).

To avoid non-aligned jump points in our implementations, segment uses only vbyte, and
skips over block based encodings set the skip size X equal to the block size [Jonassen 11].
We also store the list index separate from the original list for better memory access per-
formance. Further elaborations of our implementations are provided in Chapter 3.

With compressed lists alone, intersection is slow. On the other hand, uncompressed
lists are much larger than compressed ones, but random access allows them to be fast.
List indexes, when combined with the compressed lists, add little space, and their targeted
access into the lists allows them to be even faster than the uncompressed algorithms.
This suggests that the benefits of knowing where to probe into the list (i.e., using skips
rather than a probing search routine) outweighs the cost of decoding the data at that
probe location. Due to large space usage, we do not investigate combining skips and
uncompressed lists, even though this combination knows where to probe into the lists and
has no decoding cost.

In order to illustrate the performance of various intersection algorithms, we present
space-time graphs where space is the encoded size per posting over all lists in the dataset
(bits/posting) and time is the average single threaded query execution time for our work-
load (ms/query). We use the standard TREC GOV2 dataset and 5,000 queries randomly
selected from the related corpus query workload, as described in Chapter 3. The perfor-
mance of various intersection algorithms using our main-memory index and the original
document ordering is shown in Figure 2.4, where solids represent block based compressed
encodings, crosses and stars represent uncompressed encodings, and hollow icons represent
vbyte and compressed encodings with list indexes. For all these algorithm, we present only
the fastest configuration that we tested.
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Figure 2.4: Space vs. time for various intersection algorithms executing 5,000 queries on our
in-memory index containing the TREC GOV2 dataset in the original document ordering.

2.6.4 Bitvectors

When using a compact domain of integers, as we are, the lists can instead be stored as
bitvectors, where the bit number is the integer value and the bit is set if the integer is
in the list. For runtime performance benefits, this mapping from the identifier to the bit
location can be changed if the same permutation is applied to all bitvectors.

The intersection of two lists stored as bitvectors can be easily found using a bitwise
AND (see bvand in Algorithm 4) over the entire length of the bitvectors to produce a new
bitvector with the bits for the intersecting set of document identifiers. The bitwise AND
operation acts on machine words (in our case, 32 bit words) using a single CPU instruction,
meaning the bitwise AND operations are extremely fast, but these operations must read
and write full bitvectors. As a result, intersecting using bvand may not be the most efficient
when the lists are sparse.

We have defined the intersection algorithm to return a list of integers, not a bitvector,
so the intersection result list stored as a bitvector must be converted to a list of integers
(see bvconvert in Algorithm 5). There are many potential implementations of an algorithm
to convert a bitvector into a list of integers. The bvconvert algorithm checks if any bits are
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Algorithm 4 bvand – Bitvector AND

1: function bvand(M,N,s) . |M | ≤ |N |
2: assert(M.isBitvector), assert(N.isBitvector)
3: r ← new bitvector(s)
4: for i = 0→ ds/32e − 1 do
5: r[i]←M [i] &N [i] . 32 bit AND

6: return r . bitvector

set in a machine word (in our case, 32 bits), then executes a linear scan of the bits in the
word when needed and outputs the document identifiers represented by the bits that are
set. Since our result lists are typically sparse (in our case, 24,699 results per query vs. 25.2
million documents, which is equivalent to 1 in 980 bits set), it is valuable to check each word
for bits being set, but the subsequent linear scan is expensive. Instead of a linear scan, our
implementation uses a logarithmic check which uses a mask to check whether each half of
the bits contain any that are set, then recurses as needed. Another approach to convert a
word of a bitvector into a list of integers is to identify a bit that is set, convert the bit to its
corresponding integer, remove the bit, and then recurse. Identifying the bits in document
identifier order allows the output to be streamed. Various CPU operations (ffs, ctz, clz,
log2) and bitwise calculations (w &−w = least significant bit) can be used to identify the
appropriate bit that is set in a machine word. For our dataset and query workload, an
implementation based on linear scan was slow, but using our logarithmic check code or
recursive bit identification code (from Culpepper and Moffat [Culpepper 10]) were both
fast and have similar performance.

Algorithm 5 bvconvert – Bitvector Convert

1: function bvconvert(B,s)
2: assert(B.isBitvector)
3: r ← {}
4: for i = 0→ ds/32e − 1 do
5: b← B[i]
6: if b 6= 0 then
7: for k = 0→ 31 do
8: if b&1 k then . bit exists
9: r ← r ∪ {32 · i + k}
10: return r . list

When all the lists are stored as bitvectors, conjunctive list intersection can be easily
implemented by combining the bitvectors using bvand and converting to a list of results in
the final step using bvconvert, as shown in Algorithm 6. Note, except for the last step, the
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result of each step is a bitvector rather than an uncompressed list. In our implementation,
the final step combines bvand with bvconvert in a single pass of the bitvectors. For our
dataset, encoding all the lists as bitvectors results in a large space usage (in our case, 25.2
million bits per list · 49 million lists / 9 billion postings = 137,200 bits per posting), but
gives a very good runtime performance (3.67 ms/query using the original ordering).

Algorithm 6 BV – Intersect Bitvector

1: function BV (M,N,isLastStep) . |M | ≤ |N |
2: assert(M.isBitvector), assert(N.isBitvector)
3: s← N.bitvSize
4: if isLastStep then
5: return bvconvert(bvand(M,N, s), s) . list (see page 27)

6: return bvand(M,N, s) . bitvector (see page 27)

To alleviate the space costs of using bitvectors, the lists with list density less than a
parameter value F can be stored using normal vbyte compression, resulting in a hybrid
bitvector algorithm [Culpepper 10]. Using D as the set of indexed documents and N as a
postings list, the list density is |N |/|D|. Note: the list density is also the raw document
frequency (or the list size) |N | normalized by the dataset size |D|.

The best hybrid bitvector algorithm from the original paper, referred to as “method
two” or H2, is presented in Algorithm 8. This algorithm intersects the vbyte lists using
merge, then intersects the remainder with the bitvectors by checking if the elements are
contained in the first bitvector (see bvcontains in Algorithm 7), repeating this for each
bitvector in the query, with the final remaining values being the query result.

Algorithm 7 bvcontains – Bitvector Contains

1: function bvcontains(M,N) . |M | ≤ |N |
2: assert(!M.isBitvector), assert(N.isBitvector)
3: r ← {}
4: for all m ∈M do
5: if N [m/32] &1 (m mod 32) then . bit exists
6: r ← r ∪ {m}
7: return r . list

The hybrid bitvector H2 approach is summarized in Algorithm 9 using a syntactic
grammar that symbolically represents how a query is processed against a sequence of term
lists. Each grammar rule takes two lists, produces an intersection result, and replaces the
input lists by the result. The grammar’s rules are used to reduce the input set of lists to
an uncompressed result list. The grammar rules process the query lists in ascending order
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Algorithm 8 H2 – Intersect Hybrid Bitvector

1: function H2 (M,N,isLastStep) . |M | ≤ |N |
2: if !N.isBitvector then
3: return MG(M,N) . list (see page 15)

4: if !M.isBitvector then
5: return bvcontains(M,N) . list (see page 28)

6: return BV (M,N, isLastStep) . list or bitvector (see page 28)

of their list size, giving a unique reduction. The rule to use at each step is determined by
the two input lists, except when the query contains only bitvectors where the bvand rule is
used until the final step which uses bvand+bvconvert to produce an uncompressed integer
list.

Algorithm 9 Syntactic Grammar for H2 – Intersect Hybrid Bitvector

(setup) uncompressed list: U
small compressed list: S
large list as bitvector : L

query: {L, S}∗
processing order: S∗L∗ (smallest to largest)

(rules) intersect: SS ⇒ U ; US ⇒ U
bvcontains : SL⇒ U ; UL⇒ U

bvand : LL⇒ L
bvand+bvconvert : LL⇒ U

The hybrid bitvector H2 approach fits into our set-versus-set query processing frame-
work, since the rules are applied to the smallest lists first. The rules can be applied in
other ways and still reduce the input set of lists to an uncompressed result list. If the bvand
rule has higher priority than the bvcontains rule, then the subsequent grammar defines the
“method one” or H1 approach from the original hybrid bitvector paper. For clarity, exam-
ples of query executions for H1 and H2 are presented in Table 2.3, where the subscripts
of the list variables indicate their relative size (for example, L1 is smaller than L2). We do
not present the space-time performance of the H1 algorithm since it is dominated by the
performance of the H2 algorithm.

While both hybrid bitvector algorithms are faster than non-bitvector algorithms, they
are not quite as compact as some of the other compression schemes, even with the compres-
sion benefits from more compactly storing the large dense lists as bitvectors. Combining
bitvectors with other compression algorithms can produce better results, as we show in Sec-
tion 4.3. The performance of the original implementation of the hybrid bitvector algorithm,
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algorithm query type query/reduction operation

H1 & H2 small lists only S2S3S1

⇒ S1S2S3 sort
⇒ US3 intersect
⇒ U intersect

H1 & H2 large lists only L3L1L2

⇒ L1L2L3 sort
⇒ LL3 bvand
⇒ U bvand+bvconvert

H1 small and large lists S3L5L6S1L4S2

⇒ S1S2S3L4L5L6 sort
⇒ US3L4L5L6 intersect
⇒ UL4L5L6 intersect
⇒ ULL6 bvand
⇒ UL bvand
⇒ U bvcontains

H2 small and large lists S3L5L6S1L4S2

⇒ S1S2S3L4L5L6 sort
⇒ US3L4L5L6 intersect
⇒ UL4L5L6 intersect
⇒ UL5L6 bvcontains
⇒ UL6 bvcontains
⇒ U bvcontains

Table 2.3: Examples of query executions for the hybrid bitvector algorithms.

H2-CM (Culpepper and Moffat), is shown in Figure 2.5, with the fastest configurations of
skips and segments using various compression schemes included for comparison. A more
detailed comparison is presented in Chapter 4.

2.6.5 Other Approaches

The Elias-Fano (EF ) encoding can be used to store postings lists (i.e., quasi-succinct
indices [Vigna 13]) with the lower bits of the values in an array and the higher bits as
deltas using unary encoding. This structure produces a good space-time tradeoff when the
number of higher level bits is limited. The list intersection implementation can exploit
the unary encoding of the higher level bits by counting the number of ones in machine
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Figure 2.5: Space vs. time for bitvectors compared to the fastest configurations of skips
and segments using original ordering. Additional algorithms are presented in Figure 2.4.

words to find values quickly. The higher bits structure can also be combined with skips
for fast access. The EF encoding allows fast processing in the higher bits structure at
the expense of additional memory accesses into the lower bits structure, however, the
decoding of values in the lower bits structure is extremely fast and does not require blocks
of values to be decoded. The resultant space-time performance is comparable to various
skips implementations for conjunctive list intersection, though indexing speed may be
slower.

The treap data structure [Aragon 89] combines the functionality of a binary tree and
a binary heap. This treap data structure can implement list intersection [Konow 13] by
storing each list as a treap where the list values are used as the tree order and the term
frequencies are used as the heap order. During list intersection, subtrees can be pruned
from the processing if the term frequency is too low to produce highly ranked results. In
order to make this approach viable, low term frequency values are stored in separate lists
using delta compressed lists with skips. This treap and term frequency separated index
structure can produce some space-time performance improvements compared to existing
ranking based search systems.
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Wavelet trees [Grossi 03] can also be used to implement list intersection [Navarro 10].
The postings lists are ordered by term frequency and each value is assigned a global lo-
cation, so that each list can be represented by a range of global locations. A series of bit
sequences represent a tree that starts with the term frequency ordered lists of the global
locations and translates them into the actual document identifiers, with each level of the
tree splitting the document identifier domain ranges in half and encoding the path using
the bit sequences (left as 0 and right as 1). Multiple lists can be intersected by following
the translation of their document ranges in this tree of bit sequences, only following the
branch if it occurs in all of the list translations. After some careful optimization of the
translation code, the wavelet tree data structure results in similar space usage, but faster
query runtimes than some existing methods for conjunctive queries [Konow 12].

These other approaches to list intersection could be combined with our work, but we
do not explore this here.

The performance of many of the list intersection algorithms described in this chapter
have been compared previously [Barbay 09, Culpepper 10, Sanders 07, Zhang 08].

2.7 Reordering

2.7.1 Reasons for Reordering

Search engines intersect lists of integers that represent document identifiers. Although
these identifiers could be any unique number, in order to make the identifier deltas smaller
and more compressible, they are assigned by the system to form a compact domain of
values. This assignment of identifiers can be changed to produce space and/or runtime
benefits in a process referred to as document reordering. In order to include new documents
in the index or merge subindexes, the information used to order the documents must be
maintained in the index. This ordering information is only used for indexing and not for
querying, so the information can be stored on disk rather than in memory. Although some
ordering approaches may use significant amounts of information or be slow to calculate,
the orderings we consider can be quickly determined using a simple sort routine accessing
limited amounts of data.

Search engines typically store their lists as compressed deltas. Reordering can improve
space usage by placing documents with similar terms close together in the ordering, thus
reducing the size of the deltas, which can then be stored more compactly. This reduces
the space being used by the index, as well as the amount of data being accessed per query.
Interestingly, reordering can improve compression in areas other than the storage of doc-
ument identifiers, for example, reordering to improve the compression of term frequencies
embedded in the lists [Yan 09].
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Reordering can improve runtime performance by producing data clustering within the
lists [Yan 09]. This gives large empty ranges in the document domain during query process-
ing which causes list indexes, such as skips, to work better. These runtime improvements
are seen not just with list intersection, but with systems that use term frequency, ranking,
and even dynamic pruning, where knowledge of the ranking algorithm is used to avoid
processing some parts of the lists [Tonellotto 11]. Tuning the compression algorithms to a
particular ordering can also give better space-time tradeoffs [Yan 09].

In this thesis, reordering of document identifiers is used to improve both space and
runtime, but reordering can also be used to improve runtime even if it degrades space
usage. For example, reordering by a global page order [Long 03] using a ranking based
measure, such as PageRank, allows early termination of the query. This can be much faster
than using a non-ranking based order, since the end portions of the lists are essentially
pruned from the calculation.

Each postings list could also be ordered independently based on the amount of ranking
impact a document has for the associated term [Anh 05b]. Such impact ordering allows
early termination of the query, but intersecting the lists cannot be done using a simple
merge, since the lists do not share the same order. In addition, without document or-
dering, the impact ordered lists cannot gain runtime benefits from using list indexes such
as skips. As a result, using impact ordered lists requires some additional memory space
and runtime to execute the join on the document identifiers and accumulate the ranking
scores. Document identifiers can also be reordered in a system using impact ordered lists,
but there is limited compression benefit since the impact ordered lists cannot use delta
encoding. A combined approach is possible, such as grouping by impact value within the
lists or using tiers (separate documents in each tier) that can be pruned as needed. Both
grouping and tiers can support document ordered lists within each group or tier, thus
allowing for performance benefits from using delta encoding, list indexes, and merge to
intersect the groups/tiers.

2.7.2 Types of Reordering

Below we present various document orders that can be applied to a search engines’ postings
lists:

Random: If the documents are ordered randomly (rand), there are no trends for the
encoding schemes or the intersection algorithms to exploit. As a result, random ordering
will produce a large index and slow query runtimes, but it is a good basis of comparison
for the other orderings.

Original: The dataset comes in an original order (orig), which may be the order in which
the data was crawled. This ordering could be anything, so it might not a good basis of
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comparison. We have found that using the original order of the GOV2 dataset gives some
improvement over random ordering.

Rank: Reordering to approximate ranking allows the engine to terminate early when
sufficiently good results are found. A global document order [Long 03], such as Page-
Rank or result occurrence count in a training set [Garcia 04], can be used. This approach
requires explicit knowledge of the ranking algorithm to decide when to terminate the query
processing. Some implementations guarantee the same results as full query processing,
while others provide a tradeoff between query runtime and ranking effectiveness.

Matrix: Reordering by manipulating the document vs. term matrix can produce im-
provements in space by grouping together documents with high frequency terms [Shi 12],
producing a block diagonal matrix [Baykan 08], or creating run-length encodable portions
of the matrix [Arroyuelo 13]. Manipulating the matrix for large datasets can be expensive,
and merging subindexes can be difficult, so these techniques have not been widely used.

Document Size: The simple method of ordering documents by decreasing number of
unique terms in the document (terms-in-document or td) has been shown to produce
index compression [Büttcher 10, §6.3.7] and some runtime improvements [Tonellotto 11],
while requiring no additional information about the documents and very little processing
at indexing time. Ordering by terms-in-document is approximately the same as ordering
by the number of tokens in the document or by the document size. The improvements
obtained from terms-in-document ordering are not as large as those that occur with other
orderings, so it has been mostly ignored.

Content Similarity: Ordering by content similarity uses some similarity metric to pro-
duce an order. Ordering using normal content clustering techniques [Blandford 02] or
through solving a travelling salesman problem (TSP) formulation [Shieh 03] can pro-
duce space improvements. However, even with various improvements [Blanco 06, Ding 10,
Silvestri 04a, Silvestri 04b], these approaches are too slow to be used in practice. In addi-
tion, these techniques must start from scratch when two subindexes are merged, although
not for subindex compaction.

Metadata: Ordering lexicographically by URL provides similar improvements in space
usage as obtained from ordering by content similarity [Silvestri 07], and it improves runtime
substantially when using skips [Yan 09]. The URL ordering is exploiting the human-
based organization of website authors, which will often group the documents by topic or
application, to produce content similarity in the ordering. The effectiveness of metadata
ordering can vary greatly based on the dataset and density distribution of the data within
the chosen domain. This approach is simple to compute at indexing time and can support
fast merging of subindexes. In addition, ordering using metadata other than the URL can
make this technique applicable beyond Web indexes.

Hybrid: Ordering by terms-in-document is not as effective as ordering by URL, but these
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two can be combined to get slightly better results. For example, one hybrid approach
groups the documents by URL server name, then subdivides each into five document size
ranges, and finally orders by URL within each subdivided group [Ding 10]. This approach
is similar to what we present in Section 5.2, but the reasoning and final result are quite
different.

2.7.3 Improvements from Reordering

A summary of the papers on document ordering within search systems is shown in Table 2.4,
where the last two columns indicate if the paper examines the space or time benefits from
ordering the documents.

reference type data collection and size space time

[Blandford 02] clustering TREC4-5(1GB); WT2g(2GB) Y N
[Long 03] global page ordering Web crawl 2002(1.2TB) N Y
[Shieh 03] TSP PC(small); FBIS(470MB); LATimes(475MB) Y N
[Garcia 04] query results WT10g(10GB) N Y
[Silvestri 04a, Silvestri 04b] clustering GPC(2GB) Y N
[Blanco 06] SVD·TSP·clustering FBIS(470MB); LATimes(475MB) Y N
[Silvestri 07] URL; URL·clustering WBR99(22GB) Y N
[Baykan 08] block-diagonal matrix GPC-plus(3GB) Y N
[Yan 09] URL·local tweeks GOV2(426GB) Y Y
[Büttcher 10, §6.3.7] doc terms; URL GOV2(426GB) Y N
[Ding 10] TSP·LSH; URL·doc size Wiki08(50GB); Ireland(160GB); GOV2(426GB) Y Y
[Silvestri 10] URL WT10g(10GB); WBR99(22GB); GOV2(426GB) Y Y
[Tonellotto 11] doc size; URL ClueWeb09-CatB(1.5TB) Y Y
[Shi 12] term frequency FBIS(470MB); LATimes(475MB); Y N

WT2g(2GB); Wiki12(17GB)
[Arroyuelo 13] run-length GOV2(426GB) Y Y

Table 2.4: Details of reordering papers.

Ordering documents using various forms of content similarity has been shown to sub-
stantially improve compression [Blanco 06, Blandford 02, Ding 10, Shieh 03, Silvestri 04a,
Silvestri 04b], but all the techniques are slow to calculate. The simple approach of ordering
lexicographically by URL, however, is fast to calculate, just as good as any of the other
approaches [Silvestri 07], and especially effective for the GOV2 dataset. Ordering by URL
achieves this performance gain by placing documents with similar terms close together to
produce tight clustering, which is exactly what happens with the content similarity ordering
techniques.

In addition to space savings, URL ordering has been shown to improve the runtime per-
formance of skips by approximately 50% for queries when using the GOV2 dataset [Yan 09].
As a result, for our queries and dataset we expect that URL ordering will be equivalent to
the best ordering currently available.
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We have found no published results on the runtime performance of bitvector based
algorithms when reordering document identifiers. It is useful, however, to note that a
list stored as a bitvector will use the same amount of space irrespective of the document
ordering that is used, since each bitvector has one bit per document for a compact domain
of document identifiers.

In general, a full ranking based search engine is likely to order by global rank or impact
order, so that the query can prune portions of the intersection, while URL order is the
most common approach for list intersection systems. Some recent work has tried to combine
these ideas with a block-max algorithm [Ding 11] that uses URL ordering together with
the pruning of blocks based on their maximum possible score. With this approach, extra
space is required to store the block-max values, while the block layout must be tuned to
produce a good space-time tradeoff.
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Setup and Validation

In addition to information about the dataset, workload, hardware configuration, and exper-
imental design, we present details of coding style, memory layout, and overall verification
to make our results trustworthy and reproducible.

3.1 Experimental Setup

Our goal is to measure the index space usage and query runtime performance of an in-
memory list intersection system. Our space and time values ignore the cost of the dictio-
nary, and our algorithms do not encode positional information nor ranking information.
For a disk based system, the amount of data in each query is the amount of data transferred
from disk, but an in-memory system accesses only some portions of that data. As a result,
we do not record the amount of data in each query. We also do not record the amounts of
memory accessed in each query, because the transfer costs of moving data from memory
to CPU cache in our system are already captured in the query runtime.

The index space is calculated by summing the encoded size of every postings list in
the complete dataset. This value is usually divided by the number of (document level)
postings in the dataset, so that index space has units of bits/posting.

In order to measure query runtime, our experiments simulate a full in-memory (but
out-of-cache) index: we load the postings lists for query batches, encode them, flush the
CPU cache by scanning a large array, then measure the time to execute the conjunctive
intersection of terms and produce the results. For the experiments in this thesis, each batch
contains 10 queries. Within a batch, separate postings lists are created for each query to
avoid coincidental caching effects; thus, performance is independent of query order and
shared terms. Intersection runtimes per step are recorded, and overall runtimes are the
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sums over all steps for all queries. Note, some implementations combine multiple steps to
improve code clarity.

We measure query runtime using single threaded execution and assume that the relative
performance of the algorithms is proportional to their performance in a multi-threaded
environment, where multiple queries or various portions of each query are run concurrently.
This assumption is present in most of the related work involving the performance of list
intersection, so we do not verify it and leave additional investigation for future work.

Our space-time graphs present an algorithm’s performance as a line connecting the
performance using various parameter settings. We present the space axis as bits per posting
and the time access as milliseconds per query. We directly compare the runtimes of two
algorithms tbase and tnew using speedup (tbase/tnew), where larger is better. Similarly, we
compare the space required by two algorithms sbase and snew using compression benefit or
comp-ben (sbase/snew), where again larger is better.

Our code was run on an AMD Phenom II X6 1090T 3.6Ghz Processor with 6GB of
memory, 6MB L3, 512kB L2, and 64kB L1 caches running Ubuntu Linux 2.6.32-43-server
with a single thread executing the queries. The gcc 4.4.3 compiler was used with the
-O3 optimization settings to produce high performance code. The queries were visually
verified to be returning plausible results and automatically verified to be consistent for all
algorithms. The CPU cache was flushed before query execution, and Valgrind1 was used
to verify proper memory usage.

3.2 Dataset and Workload

We take the TREC GOV2 corpus, index it using the Wumpus2 search engine with no stem-
ming and no stopwords, then extract the document level postings. This corpus contains
426GB of uncompressed text in 25.2 million documents, resulting in 9 billion document
level postings and 49 million terms when processed by Wumpus. These values are much
larger than in related work, such as the 6.8 billion tokens and 37 million terms reported
by Ding et al. [Ding 10], because Wumpus indexes the general markup of regions and the
HTTP header information, as well as the document content. Even with this difference in
index size, the compression rates are consistent with existing work, as shown in Table 3.1
for OptPFD using the original ordering and the (sorted) URL ordering.

Our workload is a random sample of 5,000 queries chosen by Barbay et al. [Barbay 09]
from the 100,000 corpus queries, which we have found to produce stable results. The query
text is interpreted simply by using Wumpus to tokenize the text without any operator

1http://valgrind.org/
2http://www.wumpus-search.org/
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URL order Original order

postings size size size size
(billions) (GB) (bits/posting) (GB) (bits/posting)

[Yan 09] 6.797 2.853 3.36 5.903 6.95
Our experiments 9.043 3.748 3.32 7.295 6.45

Table 3.1: Verification of the compressibility of our index compared to existing results
using OptPFD128 sizes.

interpretation (i.e., phrases, proximity, or Boolean modifiers) giving an average of 4.1
terms per query. Query statistics are summarized in Table 3.2, including averages of the
smallest list size for each query, the sum of all list sizes, and the result list size over all
queries with the indicated number of terms and applied to the entire corpus. For our
runtime per query calculations, we remove the single term queries.

terms queries % smallest all result

1 92 1.8 131,023 131,023 131,023
2 741 14.8 122,036 1,520,110 39,903
3 1,270 25.4 194,761 6,203,147 31,730
4 1,227 24.5 199,732 13,213,388 17,879
5 803 16.1 204,093 20,361,435 13,087
6 428 8.6 192,445 29,367,581 15,004
7 206 4.1 205,029 36,346,235 8,240
8 98 2.0 206,277 46,198,187 5,726

≥ 9 135 2.7 198,117 63,406,170 3,308

Total 5,000 100.0 186,070 14,944,683 24,699

Table 3.2: Query information.

Our set of 5,000 queries is a good representation of the 100,000 corpus queries, as
shown by the terms per query breakdown in Figure 3.1. These corpus queries are used as a
standard benchmark in search engine research, but other workloads can be quite different,
as shown by the Excite 1999 queries (original and unique). Throughout this thesis, we also
present some of our final results using a terms per query breakdown, so that those results
might be more broadly applicable.
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Figure 3.1: Terms per query breakdown for various benchmark query workloads.

3.3 Style of Code

Our code was designed to have good performance while still being maintainable. We used
the C++ language and classes for readability, but the core algorithms use only non-virtual
inline functions, allowing a large range of compiler optimizations. We also simplified our
implementations by using zero to represent an uninitialized iterator. Whenever possible,
temporary variables are allocated on the stack rather than the heap for faster creation,
better cache line usage, and reduced probability of cache line eviction. (Note, eviction is
common, since the data is usually larger than the cache size.) Compression algorithms
such as PFD were designed to remove branches (if statements) in the code, since they
can prevent many hardware optimizations such as pipelining, out of order execution, and
loop unrolling. In our intersection code, we also minimized the use of branches to improve
query runtimes.

Where possible we have used the authors’ original code. In particular, the code for the
OptPFD, PFD, S9, and S16 block based compression code was provided by the researchers
at WestLab, Polytechnic Institute of NYU. In addition, the uncompressed intersection code
was provided by Alejandro López-Ortiz, and the original hybrid bitvector code was provided
by J. Shane Culpepper. We implemented our own versions of vbyte compression, list index
intersection (skips and segment), hybrid bitvector, and semi-bitvector algorithms. These
components were run directly, or combined as needed to produce the resulting intersection
algorithms examined in this thesis.

40



Chapter 3: Setup and Validation

Definitions: + refers to concatenation
v(x) = vbyte encoding of x
a(x) = pad to x byte alignment

Require: n← number of integers in list
Dc ← compressed data
Db ← bitvector data
I ← skips or segment list index
Bs ← segment bits

• BLOCK = v(n) + a(4) + Dc

• BLOCK SKIPS = v(n) + v(|Dc|/4) + a(4) + Dc + I
• VBYTE = v(n) + v(|Dc|) + Dc

• VBYTE SKIPS = v(n) + v(|Dc|) + v(|I|) + Dc + a(4) + I
• VBYTE SEGMENT = v(n) + v(|Dc|) + v(|I|) + v(Bs) + Dc + a(8) + I
• BITVECTOR = v(n) + a(4) + Db

Table 3.3: Layout for storing encoded lists and related structures.

While implementing these algorithms, several key considerations made the results much
more stable and often faster than would be otherwise observed. As explained below in more
detail, these include data memory layout, single pass processing, and cache coherency of
query setup information.

Since data layout affects performance, we have encoded directly into a byte array for
each list, and we include decoding time in our results. This ensures that we account
for all memory in our size calculations and that the layout is consistent, thus producing
more realistic and repeatable results. To avoid copying, our list indexes (arrays of integer
pairs {location, delta}) point directly into the original byte array, and we improve read
performance by padding these arrays to four or eight byte alignment. For improved cache
coherency at query setup time, all the array sizes occur before any of the arrays themselves,
as shown in Table 3.3. For example, the vbyte encoding of each list of integers stores the
number of integers as a vbyte, the length of the compressed data as a vbyte, and then
the compressed data as a delta vbyte encoded stream. The PFD, OptPFD, S9, and S16
algorithms use block based encoding, with lists of length 100 or less using vbyte encoding.

For in-memory systems, the memory access time (i.e., loading from memory into CPU
cache) can be a large portion of the runtime cost of a query. As a result, multiple passes
through the data can be especially expensive when the data is larger than the various CPU
cache sizes. To alleviate this cost, we combine multiple operations for a single intersection
step so that it acts on the data in a single pass. For example, when intersecting bitvector
only queries, the final step combines the bitvectors using bitwise AND and converts the
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results to a list of integers all in a single pass, which does not need temporary storage of
the bitwise AND result bitvector.

Combining these design considerations with some low level optimizations, we have pro-
duced a new hybrid bitvector implementation H2-K (Kane) that follows the pseudo code
of the H2-CM (Culpepper and Moffat) implementation but is faster for all configurations.
The runtime performance difference between our new H2-K (Vbyte1 bitvF ) implementation
compared to the original H2-CM implementation is shown in Figure 3.2. The runtime
performance is calculated as an average runtime per query, but the runtimes for individual
queries may have large variance. We find that the standard deviation of the query run-
times is much larger than the average runtime improvement from our new hybrid bitvector
implementation, as shown in Table 3.4. However, applying a paired t-test to these query
runtimes, we find that the p-value is extremely low, meaning that these average runtime
performance improvements from using our new hybrid bitvector implementation are statis-
tically significant. As a result, we use our new implementation as the basis of subsequent
bitvector algorithms in this thesis. In addition, since the statistical significance is so strong,
we assume that other similarly consistent performance improvements found in this thesis
are also statistically significant.

H2-CM(Vbyte1 bitvF )(orig) H2-K(Vbyte1 bitvF )(orig)

F average stdev average stdev p-value

1/8 6.01 5.53 5.30 4.88 0.000
1/16 4.04 3.82 3.58 3.33 0.000
1/32 2.72 3.12 2.35 2.46 0.000
1/64 2.35 3.46 1.87 2.43 0.000
1/128 2.62 4.00 1.93 2.69 0.000
1/256 3.14 4.44 2.18 2.91 0.000

Table 3.4: Analysis of statistical significance of runtime improvements using average run-
time (ms/query), standard deviation of runtime (ms/query), and paired t-tests of individ-
ual query runtimes (p-value).

3.4 Validation

When dealing with in-memory systems, small details of the execution approach can have
significant impacts on the observed runtimes. The main cause of this variation is the CPU
cache hierarchy, which causes highly varying access times for data dependent on when it was
last accessed and what other data has been accessed in between. For simulated systems,
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Figure 3.2: Space vs. time for hybrid bitvector implementations using original ordering.
The three smallest configurations of H2-CM were compared to skips in Figure 2.5.

the encoding of the data is often done just before the query execution, meaning the encoded
data could be in the CPU cache. For any system, if queries are executed multiple times,
the data could be in the CPU cache after the first execution. To prevent these interactions,
we only execute each query once per test run, and flush the cache between the encode and
execute steps. (The encoded size of the 10 queries in a batch will likely be larger than the
cache size, causing its own cache flushing.)

We validate our method of query execution by showing stability between multiple query
runs. The runtimes of five separate query executions over five different random orders of
the documents is presented in Table 3.5 for the PFD+skips algorithm using a skip size (and
block size) of X = 128, and also the vbyte+bitvectors algorithm using the recommended
setting of F = 1

32
. The resultant standard deviation for the five runs is very small, meaning

that our execution runtimes are stable. This demonstrates that our query load produces
stable runtime between executions, even though each query is only run once and we are
using a subset of the corpus queries. It also demonstrates that our document randomization
is indeed random and produces stable performance numbers.

We validate the independence of individual queries by showing that repeating the same
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SK(PFD128 skipX=128)(rand) H2(Vbyte1 bitvF=1/32)(rand)

space time space time

random 1 7.8841 7.2994 10.1828 2.4723
random 2 7.8840 7.3034 10.1826 2.4695
random 3 7.8841 7.3037 10.1829 2.4721
random 4 7.8838 7.3003 10.1827 2.4685
random 5 7.8840 7.3012 10.1828 2.4704

average 7.8840 7.3016 10.1828 2.4706
stdev 0.0001 0.0019 0.0001 0.0016

Table 3.5: Validation of random ordering and repeatability of query runs using space
(bits/posting) and time (ms/query).

query twice produces the same runtime performance per query as running the query once.
We do this by taking our query workload and doubling every query so that the duplicates
are run one after the other. Since our system creates independent encoded lists for each
query, these duplicates should have their own lists in memory and thus be independent.
Indeed, the difference in query runtime of the double query workload compared to the
average over five runs for the single query workload is very small, as shown in Table 3.6.

SK(PFD128 skipsX=128)(rand) H2(Vbyte1 bitvF=1/32)(rand)

single queries 7.3016 2.4706
double queries 7.3012 2.4683

difference (abs.) 0.0004 0.0023

Table 3.6: Validation of query independence using query runtime (ms/query).

Our experiments using OptPFD compression produce an index size that is consistent
with the published results, both when using the original document ordering and the URL
ordering, as was shown in Table 3.1. Similarly, the index sizes produced by the other
compression algorithms are consistent with published results relative to the compressibility
of the data, as shown in Table 3.7. Compressibility is measured using entropy, as described
in Section 5.2. The index sizes from using the hybrid bitvector encoding show a similar
ability to improve the compression of dense lists relative to the vbyte compression algorithm,
as shown in Table 3.8. However, the amount of compression for our index is larger, because
we have more dense lists from including metadata tags and HTML headers.

The uncompressed intersection algorithms and the original hybrid bitvector implemen-
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Vbyte128 S9128 S16128 PFD128 Entropy

PolyBot 2002 (2.0 billion postings) 10.05 9.05 8.84 8.24 7.44
GOV2 (9.0 billion postings) 9.50 7.37 6.99 7.00 6.71

Table 3.7: Space (bits/posting) using blocks of size 128 and the original ordering. The first
dataset, PolyBot 2002 [Zhang 08], contains Web pages crawled in 2002 by the PolyBot
Web crawler [Shkapenyuk 02].

Vbyte1 bitvF

Vbyte1 F = 1
8

F = 1
16

F = 1
24

F = 1
32

GOV2 (6.1 billion postings) 9.74 9.16 9.61 10.58 11.67
GOV2 (9.0 billion postings) 9.51 7.65 8.08 8.90 9.86

Table 3.8: Space (bits/posting) for hybrid bitvector algorithm using vbyte and the original
ordering. The smaller GOV2 index was produced by Moffat and Culpepper [Moffat 07a]
using Zettair3.

tation (H2-CM ) use the original authors’ code, after being ported to our test harness. The
runtime performance using the PFD algorithm is faster than S16, while the S9 algorithm is
comparable to S16, agreeing with published results [Zhang 08]. A more detailed analysis of
intersection performance when using PFD compression is presented in Section 4.1. When
using vbyte compression, we found the settings which produced the fastest configurations
of the skips (X = 32) and segment algorithms (B = 8) were the same as the published re-
sults [Sanders 07], validating our implementations for these algorithms. When considering
our skips implementation, the fastest vbyte+skips configuration is faster than Culpepper
and Moffat’s list intersection implementation (“svs+bc+aux”) [Culpepper 10], after nor-
malizing the performance relative to the original hybrid bitvector H2-CM (Vbyte1 bitvF=1/8)
setup. A detailed analysis of the runtime performance of these list index algorithms is
presented in Section 4.4.

As a result of examining our experimental process and comparing our results to previous
work, we believe our experiments are producing valid and consistent space-time results.
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Combining Compression, Skips,
Bitvectors, and Reordering

Various approaches have been used to improve the space and runtime of list intersection
algorithms, as summarized in the related work described in Chapter 2. These techniques
include compressing the lists, adding list indexes (skips) for fast searching in lists, using
bitvectors for large dense lists, and reordering to increase term clustering, which improves
both space and runtime performance. Because of its size, the design space of combining
these techniques has not been carefully explored. In particular, the use of bitvectors for
large dense lists has only been combined with vbyte compression and not skips or reordering,
while the interaction of skips with the choice of compression algorithm and document
ordering is not clear. We explore the combination of compression, skips, bitvectors, and
reordering using experiments to give detailed space-time performance results. These results
indicate the beneficial combinations of these list intersection approaches, which are then
examined in detail to determine the reasons for their superior performance.

4.1 Compressed Intersection

There are three steps involved in intersecting compressed lists: decode the compressed
form (decode), undo the deltas (restore), and combine the lists (combine). Many of the
published speeds encompass only the decode step, but clearly the implementation of the
restore and combine steps could significantly affect overall performance. Some recent work
does, however, report decode+restore runtimes [Lemire 13].

The standard vbyte algorithm is usually implemented in an incremental fashion, mean-
ing the values are decoded one at a time; thus, the decode, restore, and combine steps are
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runtime

MG(PFD256) decode 7.70
MG(PFD256) decode+restore 16.77

MG(PFD256) decode+restore+combine 30.73
MG-gallop(U321) 14.67

Table 4.1: Breakdown of average runtime (ms/query) for merge intersection using PFD
compression and original ordering.

all interleaved. This interleaving and the byte aligned nature of the vbyte encoding results
in moderate performance on modern processors. The lack of random access, however, is a
major bottleneck, since it usually requires that the lists be processed in their entirety.

Most other compression algorithms act on blocks of integers, many with adaptive block
sizes. Some of these algorithms, such as S9, can be efficiently decoded in an incremental
fashion, but most either require decoding of the entire block or are faster when decoded
as an entire block. As stated earlier, we combine the small word-sized blocks produced by
S9 and S16 into larger blocks of a fixed size in order to compare them directly with PFD.
Similarly, we use a block based version of vbyte for comparison. We explore block sizes of 32,
64, 128, and 256 for these block based algorithms; however, the OptPFD implementation
provided to us is hard coded for a block size of 128 and produces only the most compact,
but slowest, encoding in its tuneable range.

Using blocks will often require separation of the decode step from the restore and
combine steps, preventing some interleaving. Nevertheless, we interleave the restore step
with a linear scan for the combine step, while decoding each block as needed. This has
the advantage that intermediate forms are never flushed from the CPU cache, which could
happen if the decode and restore steps act on the lists before the combine step is executed.

Table 4.1 shows a breakdown of the runtime performance for the merge algorithm
using PFD compression when documents are numbered in the original order. Adding the
runtime of the MG(PFD256) decode+restore entry to the fastest uncompressed intersection
algorithm MG-gallop(U32 1) gives a runtime similar to our implementation, thus further
validating our results. It is possible that other implementations of the restore and combine
steps could be faster, but we leave this exploration for future work.

Using our implementation of merge, the resultant runtimes for intersecting compressed
lists is much slower than the uncompressed intersection algorithms for the original order, as
shown earlier in Figure 2.4. The incremental vbyte algorithm is faster than PFD because
interleaving of the decode, restore, and combine steps allows for hardware optimizations
such as instruction reordering. However, the block based implementation of the vbyte
algorithm prevents some of this interleaving, and it is therefore much slower (44.7 ms/query
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for vbyte using blocks of 256 values vs. 24.9 ms/query for incremental vbyte), as shown
earlier in Figure 2.4.

4.1.1 Reordering with Compression

When considering the reordering of document identifiers, one needs a baseline for com-
parison. The original dataset order could have been produced in any number of ways,
so a random ordering is a more stable baseline. Unfortunately, a random order has not
been commonly used in previous experiments; instead the original order is the standard
ordering used in previous work. When we examined a random order for GOV2, we found
that our space and runtime performance results were only slightly degraded compared to
the original order. As a result, the original order turns out to be an acceptable baseline
for GOV2, and so we have chosen to use it in the rest of this chapter.

Reordering document identifiers using lexicographic URL order has been shown to
significantly improve the space usage for various compression algorithms. The space saving
are from the clustering of documents with similar terms, thus producing smaller deltas,
which encode more compactly. This smaller space usage could result in runtime savings,
assuming that memory transfer rate is the bottleneck.

We find that runtime does not always improve for our compressed algorithms when
intersecting using URL order; some algorithms are slightly faster and some slightly slower
(±12%). The runtimes of the decode, restore and combine steps of the PFD algorithm with
URL order are each similar to the corresponding times with the original order. Clearly,
the space benefits do not translate directly into runtime benefits. This lack of consistent
runtime improvement suggests that memory transfer is not the bottleneck here. Perhaps
the improvements to the decoding step are insignificant, since it is only a small portion
of the runtime for these algorithms, as shown earlier in Table 4.1. The reordering could
also be producing less predictable execution paths, which would prevent some hardware
optimizations, or more exceptions in the PFD encoding, which are slower to decode. We
leave a more detailed examination of these decoding algorithms for future work.

The URL ordering significantly improves the tight clustering within the lists, which
reduces the delta sizes substantially. Approximately 69.8% of the deltas have the value
one in URL ordering vs. approximately 46.2% for terms-in-document ordering, 23.5% for
original ordering, and 20.4% for random ordering. This suggests that there is limited
room for additional improvement from new ordering methods. Our measurement of the
percentage of deltas having the value one for URL ordering of the GOV2 index is higher
than reported previously (59% [Ding 10]), because we include more repetitive content such
as the HTML headers and document region tags. Compressibility is examined in more
detail in Section 5.2.
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orig url comp-ben

Vbyte1 9.51 8.74 1.09
PFD256 6.99 5.26 1.33

OptPFD128 6.45 3.32 1.95
S9256 7.33 4.12 1.78

S16256 6.95 3.95 1.76

Table 4.2: Space (bits/postings) and compression benefit using original and URL ordering.

The space usage also improves significantly for our compression schemes when the
data is ordered by URL, as has been shown previously [Silvestri 07, Yan 09]. The rate of
improvement, however, is not the same for all the encodings, as shown in Table 4.2.

As expected, the space used by vbyte has little improvement under the URL order,
since the minimum encoding size is 8 bits/posting. Unlike the original paper on URL
ordering [Silvestri 07], where the dataset appears to include many large deltas, we find
that S9 achieves very good compression for GOV2. The space used by the S9 and S16
encodings improves substantially under the URL ordering, and, in fact, S16 and S9 are
now much smaller than PFD. Surprisingly, the space used by the S9 algorithm is closer to
S16 when using the URL ordering, even though S16 is tuned for small deltas (i.e., more
layout options for deltas that can be stored in a small number of bits) which are more
common under URL ordering.

The OptPFD algorithm combines S16 with parts of PFD to be faster and smaller than
both; it may even be faster than S16 and PFD when using the most compact setting,
as we are. The space improvement is larger for OptPFD when using URL ordering than
it is for the other compression algorithms, as shown in Table 4.2; clearly this encoding
is a good combination of PFD and S16 for space usage. The runtime performance of
OptPFD, however, is slower for the original order as shown earlier in Figure 2.4, and it is
also slower under URL ordering. This could indicate a problem with the implementation or
the algorithm could indeed be slower, but regardless of the reason for the slow performance,
we do not explore OptPFD in the remainder of this thesis. (We expect that OptPFD will
behave similarly to S16 when adding list indexes and bitvectors.)

The VSE algorithm is an offshoot of the ideas found in the PFD and S9 /S16 algorithms
that results in a good space-time tradeoff. Although this algorithm may be better than
PFD and S16 for compression and decoding speed, the block sizes may interfere with
the choice of skip points. Given proper skip points, we expect that VSE will produce
similar results when skips and bitvectors are added. We leave further investigation of VSE
compression for future work.

In all cases, we found that the runtime performance of the S9 algorithm is similar to
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S16, but S9 uses slightly more space. As a result, we omit S9 from further comparisons,
and in the remainder of this chapter, we explore the performance of vbyte, PFD, and
S16 when skips and bitvectors are added. We do not expect variants such as OptPFD or
VSE, or optimizations such as vectorization, to change the overall conclusions found in
this thesis.

4.2 List Indexes

List indexes improve the random access performance for compressed lists by providing entry
(skip) points into the lists, so that decoding can start from those points. Clearly, the ability
to skip over values in a list is a big advantage when combining two lists with very different
sizes. Such size differences are common in our workload, thus explaining why even having
skip points every 256 entries results in substantial performance gains over intersecting
using only the compressed form. For example, with the original document order, the vbyte
algorithm goes from 24.9 ms/query (Figure 2.4) to 6.5 ms/query (Figure 4.1) when skips
to every 256th posting are stored in the list index. That improvement is a 3.8x speedup
simply from adding skips every 256 postings, and it represents 94% of the possible benefits
from adding skips to the vbyte compressed lists for any of the skip sizes we tested.

Adding skips to the compression algorithms being examined results in large runtime
gains for all skip sizes we examined, as shown in Figure 4.1. The skips code, however,
degrades in performance if the skip size (X parameter) gets too small. This degradation is
to be expected, since processing the skip points will add some runtime overhead that can
offset the gains provided by jumping over elements in the compressed form. In addition
to the skip sizes presented, our performance curve for skips could include the performance
when using just the underlying compressed form, since this represents the performance as
X →∞, but we omit this when it is not needed.

When implementing skips, there are two additional variants that could be employed:
(1) For small X values, the skip structure itself becomes fairly dense and thus scanning
the skip structure in a non-linear manner could speed up performance; (2) Removing the
skip values from the original list could be used to improve compression at the expense of
runtime, especially when iterating over the list. Neither of these variants were found to be
beneficial in our experiments.

When the document IDs are in their original order, we found that the performance of
the segment code is faster than the skips code, agreeing with previous results [Sanders 07].
However, for cases when there are few skip points (X ≥ 64), using skips or segments
produce similar runtime performance. These large skip sizes turn out to include the con-
figurations of interest in this thesis. When using URL ordering, the clustering of postings
gives a skew in the size of segments and thus a slowdown in runtime performance of the
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Figure 4.1: Space vs. time for skips using original ordering. The fastest configurations of
skips were presented in Figures 2.4 & 2.5.

segment intersection algorithm. In addition, the segment code cannot be applied to the
block based compression algorithms without modifications, since segment end points do
not align with block end points. As a result, the segment algorithm gives no additional
benefit to our analysis, and we omit it in the rest of this thesis.

It has previously been shown that using a list index reduces the number of decoded
blocks and the query runtime by approximately half (i.e., a speedup of 2.0x) when docu-
ments are ordered by URL [Yan 09]. Our results also show significant runtime performance
gains for skips using the URL order, as seen by comparing Figures 4.1 and 4.2, resulting
in a similar speedup of approximately 1.9x, as shown in Table 4.3. The additional im-
provements to skips by using URL ordering, however, are not correlated with the space
benefits. Instead, the URL ordering increases clustering of document identifiers in lists,
which increases the likelihood of multiple results being encoded in the same block and thus
amortizing the decoding costs. Viewed from the other direction, this clustering produces
larger sequences of integers that do not contain a result and can, therefore, be skipped over.
So, skips become more beneficial under the URL ordering, and as a result, the fastest skip
size becomes larger. For example, the best configuration for vbyte+skips under the original
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orig url speedup

SK(Vbyte1 skipX=64) 5.49 2.96 1.86
SK(PFD64 skipX=64) 5.68 3.04 1.87

SK(OptPFD128 skipX=128) 7.35 3.87 1.90
SK(S964 skipX=64) 6.95 3.50 1.98

SK(S1664 skipX=64) 7.05 3.54 1.99

Table 4.3: Runtime (ms/query) of skips with X = 64 (or 128) using original and URL
ordering.

order is X = 32, but under the URL order it is X = 64.

As shown by these space and runtime benefits, there is clearly a large advantage to
using URL ordering. The runtime benefits, however, are not proportional to the space
benefits and are not solely the result of reading less data from the lists via a more compact
structure. Instead, the runtime benefits are predominantly from term clustering causing
skips to be more efficient and the intersection, therefore, decodes less of the larger list.
This means that if a compression approach restricts skipping, it might not be valuable
even if it uses less space. As such, space improvement and decoding time should not be
the only metrics to be considered when comparing document reordering techniques.

4.3 Skips vs. Bitvectors

The hybrid bitvector algorithm proposed by Culpepper and Moffat [Culpepper 10] uses
vbyte compression for small lists and bitvectors for large lists, with the list density cutoff
determined by a tuneable value F . The original implementation, H2-CM, is much faster
and smaller than vbyte with skips, as shown earlier and in Figure 2.5. We produced an
even faster hybrid bitvector implementation and use it throughout the rest of this thesis.

The hybrid bitvector algorithm combines two small lists using the normal intersection
algorithm, a small list with a large list using a containment call on the bitvector for each
element in the small list (bvcontains), and two large lists using bitwise-AND with the
last execution converting the results to a list of integers (bvand+bvconvert). Note, the
result of the combination is temporarily stored in memory during query processing and
may be a bitvector or an uncompressed list depending on the input. Like all the other
intersection algorithms discussed so far, these steps are applied using the set-versus-set
approach, where lists are intersected in increasing list size (frequency) order. The hybrid
bitvector approach was summarized in Algorithm 9 (page 29) using a syntactic grammar
to symbolically represent how a query is processed.
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Figure 4.2: Space vs. time for skips using URL ordering. The same configurations using
original ordering were presented in Figure 4.1.

Culpepper and Moffat showed significant space benefits from combining vbyte compres-
sion with bitvectors, because large lists can be more compactly stored as bitvectors. We
augment those results by using either vbyte, PFD, or S16, with the last two executing on
blocks of size 256. As expected, combining PFD or S16 compression with bitvectors results
in less space required than when combining vbyte with bitvectors, as shown in Table 4.4.

The hybrid bitvector approach uses a list density cutoff F to determine which lists
are stored as bitvectors (large lists having higher density than F ) and which are stored
using delta compression. Since some lists can be more efficiently stored as bitvectors than
they could be using delta compression, there is a minimum sized configuration at some
F setting. In our results, the minimum sized configurations for our three compression
algorithms occur at substantially different F values, and the resultant space savings vary.
With vbyte compression, the minimum encoding size for one value is 8 bits, so any list
with density > 1

8
is smaller when it is stored as a bitvector. We tried density cutoffs

F ∈ {1
2
, 1
4
, 1
8
, 1
16
, 1
24
, 1
32
, 1
48
} and found F = 1

8
produced the most compact configuration for

vbyte+bitvectors. The PFD and S16 algorithms have much smaller minimum encoding
sizes, so the minimum sized configuration should be at a larger F value. Indeed, for the
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normal bitvector F comp-ben

Vbyte1 9.51 7.65 1/8 1.24
PFD256 6.99 6.69 1/4 1.04
S16256 6.95 6.84 1/4 1.02

Table 4.4: Space (bits/postings) and compression benefit from using bitvectors with original
ordering.

same set of choices for density cutoff, PFD and S16 with bitvectors require minimum space
when F = 1

4
. However, the resultant space saving for the PFD algorithm when combined

with bitvectors is small, and for S16 it is very small, as shown in Table 4.4. Clearly, the
S16 algorithm does a very good job of compressing large lists.

For all three compression algorithms, there are substantial runtime gains from adding
bitvectors when using the original order. Culpepper and Moffat showed that combining
vbyte compression with bitvectors (vbyte+bitvectors) is faster than using vbyte compression
with skips (vbyte+skips) when using the original document order, and our experiments
confirm those results. The PFD and S16 algorithms have never before been combined
with bitvectors. Our experiments show that for both of these compression algorithms, the
same result holds: converting some lists to bitvectors is better than adding skips when
using the original order.

In a similar manner, the space and runtime performance of bitvectors with document
reordering has not previously been explored.

Bitvectors do not change their space usage when documents are reordered, but the
compressed lists can use less space under URL ordering. Even with the lack of space
benefit for lists stored as bitvectors, some lists are still smaller using bitvectors than they
would be using a compressed form under URL ordering. This change in compression size
can affect the minimum encoding size, which now occurs at F = 1

2
for S16 compression

combined with bitvectors, while PFD stays at F = 1
4

and vbyte stays at F = 1
8
. The

compression algorithms produce the expected relative sizes when combined with bitvectors
using the URL order, so for similar F values S16 compression combined with bitvectors is
smaller than PFD with bitvectors, which is smaller than vbyte with bitvectors.

We found that bitvectors are significantly faster under URL ordering, as shown for the
F = 1

32
configuration in Table 4.5. This benefit is from documents being clustered in the

URL order, producing fewer cache line loads within the bitvectors. However, this speedup
of approximately 1.25x is not as large as the speedup for skips of approximately 1.9x, so
the relative performance must be re-examined to see which is best under URL ordering.
We found that the space-time performance of S16+bitvectors is worse than S16+skips for
some configurations, and similarly that PFD+bitvectors is worse than PFD+skips for some
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Figure 4.3: Space vs. time for skips and bitvectors using URL ordering. The same config-
urations of skips were presented in Figure 4.2.
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orig url speedup

H2(Vbyte1 bitvF=1/32) 2.35 1.81 1.30
H2(PFD256 bitvF=1/32) 2.40 2.03 1.18
H2(S16256 bitvF=1/32) 2.85 2.21 1.29

Table 4.5: Runtime (ms/query) of bitvectors using original and URL ordering.

configurations, as shown in Figure 4.3. So, previous results for the performance of hybrid
bitvector schemes [Culpepper 10] do not hold in general, since we have shown that skips can
outperform bitvectors over a set of queries when using advanced compression algorithms
and URL ordering, even though bitvector structures are faster for dense lists.

The general trends of these algorithms are interesting: switching more lists to bitvectors
will use more memory, but the runtime continues to improve and eventually is faster than
the fastest configuration using skips, as shown in Figure 4.3. Adding skips, however,
improves more quickly when using small amounts of space. In the figure, we emphasize
the improvements from adding skips by connecting the largest skip setting (X = 256) with
the point having no skips (i.e., the minimum size point). Clearly, there is potential for
improvement from allowing both approaches to coexist. As a result, we examine methods
to combine bitvectors with skips in the next section.

4.4 Skips with Bitvectors

Combining skips with bitvectors for large lists in a single intersection algorithm is a simple
extension of our existing implementations, as shown in Algorithm 10. When we combine
vbyte compression, bitvectors, and skips using various skip sizes, we see a significant per-
formance gain for many configurations (i.e., choices of values for parameters X and F ),
as shown in Figure 4.4. Considering various skip sizes, we see that configurations with
large skips are slightly slower, but the space savings with large skips are significant for

Algorithm 10 H2SK – Intersect Hybrid Bitvector and Skips

1: function H2SK (M,N,isLastStep) . |M | ≤ |N |
2: if !N.isBitvector then
3: return SK (M,N) . list (see page 24)

4: if !M.isBitvector then
5: return bvcontains(M,N) . list (see page 28)

6: return BV (M,N, isLastStep) . list or bitvector (see page 28)
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Figure 4.4: Space vs. time for vbyte with various sized skips and bitvectors using original
ordering. The hybrid bitvector H2 algorithm was presented as the H2-K implementation
in Figure 3.2.

the smaller configurations (i.e., those with higher values for F ). Overall, the large skip
size (X = 256) works best for small configurations, while being competitive for larger con-
figurations, meaning that this skip size produces a good space-time tradeoff. This result
confirms our previous analysis, which showed that most of the gains from skips can be
found with large skips, at which point adding bitvectors is more valuable than adding ad-
ditional skip points. As a result, we use skips of size 256 for all the compression algorithms
when combining skips with bitvectors.

We have picked a static skip size (256), but this could be varied depending on the
system configuration. The skip size could also be chosen separately for each list based on
the space budget of the system, perhaps by measuring the incremental space-time benefit
of using bitvectors or adding skips to lists within various density ranges, then using a bin
packing approach to fill up the space budget. While varying the skip sizes could produce
a small benefit, we leave further investigation for future work.

Our implementation shows clear benefits when combining bitvectors with auxiliary in-
dexes, but Moffat and Culpepper saw no additional gains from the combination [Moffat 07a].
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Figure 4.5: Runtime vs. terms per query for various vbyte based algorithms.

Their implementation of auxiliary indexes is based on skips of size k log n, which varies
with the list size. While their auxiliary indexes are separate from the original lists, they
also remove the skip values from the original list (extracted skips) producing a more com-
pact structure, but slower iteration over the list values. Our list index implementation has
a constant skip size and maintains all the values in the underlying list, resulting in a larger
structure, but faster iteration. Since our bitvectors+skips implementation is using large
skips of size 256, the increase in space from maintaining all the values in the original com-
pressed list (overlaid skips) is very small. Iterating over the lists, however, is done in the
first step of intersection in the intersect (SS ⇒ U) and the bvcontains (SL⇒ U) portions
of the hybrid bitvector algorithm as defined in Algorithm 9 (page 29), which is significantly
faster in our implementation. Indeed, their skips implementation (“svs+bc+aux”) is the
same speed or slower than their compressed intersection implementation (“svs+bc”) for
two-term queries [Culpepper 10]. Their experimental query set consists of mostly two-term
queries (58%), and these were slower using their skips implementation, which explains why
they found no benefit when combining bitvectors with their skips. Our skips implementa-
tion, however, is significantly faster than compressed intersection for any number of terms
per query, and we find that combining skips with bitvectors is faster than bitvectors alone
for any number of terms per query, as shown in Figure 4.5 using URL ordering.

When we combine bitvectors with skips of size 256 over our compressed encodings, we
see large performance gains with both the original and URL orders, as shown in Figures 4.6
to 4.8. As expected, there are larger gains from combining bitvectors with skips compared

59



Integrating Skips and Bitvectors for List Intersection

4 6 8 10 12 14

0

2

4

6

8

10

space (bits/posting)

tim
e 

(m
s/

qu
er

y)

16
3264

128

X=256

●

●

●

●

●

F=1/8

1/16

1/24
1/32

1/48

F=1/8

1/16

1/24
1/32

1/48

●

SK (Vbyte1 skipX) (orig)
H2 (Vbyte1 bitvF) (orig)
H2SK (Vbyte1 skipX=256 bitvF) (orig)

4 6 8 10 12 14

0

2

4

6

8

10

space (bits/posting)

tim
e 

(m
s/

qu
er

y)

16

3264128
X=256

F=1/8

1/16

1/24
1/32

1/48F=1/8
1/16

1/24 1/32 1/48

SK (Vbyte1 skipX) (url)
H2 (Vbyte1 bitvF) (url)
H2SK (Vbyte1 skipX=256 bitvF) (url)

Figure 4.6: Performance of vbyte compression, bitvectors, and skips using original and URL
ordering. Portions of these graphs were presented in Figures 4.1, 4.2 & 4.4.
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Figure 4.7: Performance of PFD compression, bitvectors, and skips using original and URL
ordering. Portions of these graphs were presented in Figures 4.1, 4.2 & 4.3 (top).
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Figure 4.8: Performance of S16 compression, bitvectors, and skips using original and URL
ordering. Portions of these graphs were presented in Figures 4.1, 4.2 & 4.3 (bottom).
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with bitvectors alone when using URL ordering, because the skips produce even more
benefit with this ordering. However, our results are even more robust: we find that in
all cases, combining bitvectors with skips has a better space-time performance than using
skips alone, thus confirming that bitvectors are indeed faster than skips for the large lists
in which we use them. Although Figure 4.4 shows that adding skips of size 256 to hybrid
bitvectors results in a larger minimum size (see configurations with F = 1

8
), even larger

skips could be used to reduce the space required if needed, so our results hold in general.

Clearly, combining bitvectors, large overlaid skips and URL ordering is a winning combi-
nation. It produces the considerable runtime improvement of skips, the additional runtime
improvement and large list compression of bitvectors, and the space and runtime improve-
ment from clustering in the URL ordering.

In addition to space-time graphs, we compare specific configurations as an example to
emphasize the benefits of combining bitvectors+skips with URL order. In Table 4.6, we
compare the F = 1

8
configuration of bitvector+skips using the URL order to the fastest

configuration of skips and the recommended F = 1
32

setting for bitvectors using the original
document order. We find that this combination results in an approximately 2.8x speedup
and 1.5x to 2.0x compression benefit compared to the fastest configuration of skips using the
original document order, and an approximately 1.17x speedup and 1.4x to 2.1x compression
benefit when compared to the recommended configuration of bitvectors using the original
document order.

SK( skipX)(orig) H2( bitvF=1/32)(orig)

comp-ben speedup comp-ben speedup

Vbyte1 1.63 2.76 1.39 1.20
PFDX, 256 1.48 2.75 1.72 1.16
S16X, 256 2.00 2.87 2.10 1.17

Table 4.6: Improvement for H2SK( skipX=256 bitvF=1/8)(url) vs. the fastest skips and
recommended bitvectors configurations using original ordering.

4.5 Conclusions

We have shown that bitvectors should be combined with large overlaid skips and that the
documents should be in URL order to produce the best results in all situations. Thus,
the designer of a system to intersect integer lists must first decide on a compression al-
gorithm based on the compression rate and decoding speed. Before compressing the lists,
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however, documents should be re-numbered into URL order [Silvestri 07]. Next, list in-
dexes in the form of large overlaid skips need to be added to regain the lost random access
speed from compression. Finally, extending the recommendation of Culpepper and Mof-
fat [Culpepper 10] to other compression schemes, large lists should be stored as bitvectors.

The bitvectors+skips combination dominates the use of either skips or bitvectors sepa-
rately for all the compression algorithms we examined, and under both document orders
we have considered. We believe this property will hold for all compression algorithms and
all document orders.

The conclusion is clear, conjunctive list intersection systems should always use a hy-
brid bitvector approach with large overlaid skips and order the documents appropriately.
Effective use of these approaches in full search systems, however, requires additional in-
vestigation. Furthermore, since the best algorithms for list intersection in terms of space
and runtime use bitvectors for large lists, future work in this area should remove large lists
from consideration when comparing compression algorithms.
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Partial Bitvectors

We use the term partial bitvectors to refer to any list encoding approach that can store
some portions of a list in a bitvector format with other portions of the list stored in
another format. We develop our particular partial bitvector approach in two steps. First,
we introduce a new partial bitvector encoding called semi-bitvectors and use this encoding
to store grouped lists in terms-in-document ordering. After that, we show that ordering
by URL within groups improves the performance of semi-bitvectors and outperforms the
representations presented in the previous chapter.

5.1 Grouped Terms-in-Document Ordering

The URL and clustering based orderings place documents with similar terms close together,
producing tight clustering within the postings lists. The terms-in-document ordering, how-
ever, does not place documents with similar terms together in the ordering. Instead,
through ordering by decreasing number of terms-in-document, postings are packed into
lower document identifiers, meaning that the density of the postings lists tends to decrease
throughout the lists. This front-packing results in many small deltas, which can be eas-
ily compressed. The front-packing also means that values in the postings lists are denser
for lower document identifiers than for higher ones, giving skewed clustering with more
effective use of skips at the end of the lists. This skewing of postings to lower document
identifiers can be clearly seen in the distribution of terms-in-document values, as shown in
Figure 5.1. The dotted lines split the index into three groups containing equal numbers of
postings, reflecting that the largest 10.9% of documents contain 33.3% of the postings.

We can exploit the skewed nature of terms-in-document ordering by using partial bitvec-
tors. In particular, we use bitvectors for the denser front portion of a postings list, and then
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Figure 5.1: Terms-in-document distribution for GOV2 with three groups marked.

normal delta compression and skips for the rest of the list. We call this front partial bitvec-
tor structure a semi-bitvector, and the highest document identifier in the bitvector portion
of a postings list is called the cut point. The front bitvector portion of the semi-bitvector
structure can be accessed quickly by document identifier, while the cost of encoding the
single cut point is negligible. As a result, we believe that the semi-bitvector format is an
efficient form of partial bitvector. An example layout of a postings list encoded using either
skips, bitvectors, or semi-bitvectors is shown in Figure 5.2. In order to reduce the number of
possible combinations of structures when intersecting lists, the semi-bitvector intersection
algorithm must first order the lists ascending by their cut points, then execute in a pair-
wise set-versus-set manner. Each pairwise list intersection has three (possibly empty) parts
that are executed in order: bitvector -to-bitvector, sequence-to-bitvector, and sequence-to-
sequence. In general, the end result contains a partial bitvector that must be converted to
values, followed by a sequence of values. The intersection of two semi-bitvectors is defined
in Algorithm 11 using basic intersection subroutines acting on bitvectors and sequences of
integers.

Our implementation of semi-bitvector intersection applies various optimizations: The
bvand and bvconvert algorithms (lines 6 and 8) are executed in a single pass on the last
intersection and the bitvector b is not created if the query contains only two lists. The
restrictions on M.seq applied by the select calls (lines 9 and 10) are executed as a single
pass on M . Also, the two conditionals from the select call (value < t) and the loop
through M.seq (line 9) are combined when possible (i.e., first find the end point t in an
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Figure 5.2: Layout of semi-bitvectors compared to bitvectors and skips.

Algorithm 11 SBV – Intersect Semi-Bitvector

1: function SBV (M,N,isLastStep) . |M | ≤ |N |
2: assert(M.isSemiBitvector), assert(N.isSemiBitvector)
3: r ← {}
4: s←M.bitvSize
5: t← N.bitvSize . assert(s ≤ t)
6: b← bvand(M.bitv , N.bitv , s) . bitv-to-bitv (see page 27)
7: if isLastStep then
8: r ← r ∪ bvconvert(b, s) . (see page 28)

9: r ← r ∪ bvcontains(M.seq .select(value < t), N.bitv , t) . seq-to-bitv (see page 28)
10: r ← r ∪merge(M.seq .select(value ≥ t), N.seq) . seq-to-seq (see page 15)
11: if isLastStep then
12: return r . list
13: return new semi -bitvector(b, r, s) . semi-bitvector
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Figure 5.3: Schematic of a three-group semi-bitvector index, as defined in Figure 5.1 (three
groups) and Figure 5.2 (semi-bitvector layout) with cut points aligned to group boundaries.

uncompressed sequence or the nearest skip point before t in a compressed sequence, then
use that location as a single conditional check). The memory for the result set r can be
reused between pairwise steps (i.e., as input from the last step and output of the current
step), except on the final step if there is a bitvector -to-bitvector portion to include in the
result (line 8). Note, while it is easier to write code that intersects the bitvector -to-bitvector
portions for all the lists, converts that result to integers, then intersects the remainder of the
lists, this approach produces non-sequential access into the lists and thus slower runtimes.

Our semi-bitvectors allow more postings to be stored in bitvector structures than bitvec-
tors+skips for the same amount of memory used. Since the performance of bitvectors is
much faster than other approaches, better use of bitvectors can produce a significant im-
provement in runtime performance, allowing the overall system to be more efficient.

We pick semi-bitvector cut points so that the bitvector portion of each list will have
at least density F , similar to how the hybrid bitvector algorithm uses F as the density
threshold for choosing bitvectors, as defined in Section 2.6.4. We make the cut point
calculation efficient by splitting the document domain into groups and only allowing semi-
bitvectors to have cut points at group boundaries. A schematic of a semi-bitvector index
using three groups (and thus four potential cut points) with lists ordered by their cut points
is shown in Figure 5.3. The cut point for a list is the highest group boundary where the
group itself is above the density threshold F , and the bitvector portion (from the start of
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Figure 5.4: Space vs. time for semi-bitvectors using td-g1024-td ordering compared to
bitvectors+skips using either URL or terms-in-document ordering.

the list to the end of the group) is also above F . A dense region in a higher group may thus
force a lower group to be stored as a bitvector even if the lower group is below the density
threshold F , meaning the groups are not independent of each other. This definition allows
a large number of groups to be used without degrading the index with too few or too many
bitvector regions. When semi-bitvectors are used with a single group, this approach results
in the same choices of bitvector as the original hybrid bitvector H2 algorithm.

The formation of groups within terms-in-document ordering does not change the order
of the postings within the index, since the postings within each group remain in terms-
in-document order. We use many groups to effectively exploit the skew and choose the
group boundaries so that each group contains the same number of postings. (Other ap-
proaches could be used to determine the group boundaries, but they are not explored
further here.) With this approach, we see a significant performance improvement from
using semi-bitvectors. In order to demonstrate this performance improvement, we run
semi-bitvectors for terms-in-document ordering using 1024 groups (td-g1024-td, i.e., order
by terms-in-document, split into 1024 groups, keep terms-in-document ordering within each
group) as shown in Figure 5.4. Our configuration using semi-bitvectors with td-g1024-td
ordering dominates bitvectors+skips with terms-in-document ordering and performs even
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better than our previously best URL based approach, bitvectors+skips, for large configu-
rations, though smaller configurations are still slower and no configuration is as small as
what can be achieved with URL ordering. Grouping URL ordering using 1024 groups gives
a semi-bitvector configuration with url-g1024-url ordering, but this configuration degrades
performance relative to bitvectors+skips using URL ordering.

5.2 Grouped URL Ordering

The terms-in-document ordering gives skewed clustering towards the front of the lists,
while URL ordering and other approaches give tight clustering throughout the lists. We
would like to combine these two types of ordering into a hybrid ordering to produce the
benefits of both skewed clustering and tight clustering.

Terms-in-document ordering was previously combined with URL ordering by Ding et
al. [Ding 10] in the form of url.server-td-url, which splits into chunks by url.server, then
groups into five parts by terms-in-document, then orders by URL. This hybrid ordering
gives slight benefits in terms of space, but the effect on runtime performance was not
tested. While the method of determining group separations (i.e., the boundaries for each
terms-in-document group) was not specified, the url.server portion of the hybrid ordering
will split the index into many small pieces. As a result, the skew from the subsequent
terms-in-document ordering is spread out across the entire document range. This means
that the skew cannot be easily exploited through grouping as we did in Section 5.1.

For our hybrid combination of terms-in-document and URL ordering, we first group
the documents by their terms-in-document value, then reorder within each group using
URL ordering. We will refer to this approach as td-g#-url, where # is the number of
groups. (Since the GOV2 dataset covers only one section of the Web, we can relate our new
grouping approach to the previous hybrid approach as being in the form of url.server.suffix-
td-url.) Increasing the number of groups of documents will reduce the tight clustering
from URL ordering but increase the skewed clustering of the data. This means that as
the number of groups increases, the performance will trend towards the grouped terms-in-
document performance and thus degrade “coherence.” As a result, we cannot use a large
number of groups, as we did previously with terms-in-document ordering, but must instead
find a good choice for our workload and dataset. We now explore the space-time benefits
of semi-bitvectors using the td-g#-url approach with various numbers of groups.

The td-g3-url ordering results in some skewing of document sizes (and thus postings)
towards the front of the lists, as shown in Figure 5.5 (bottom). It also reduces the delta
sizes as compared to URL ordering, with approximately 71.9% of the deltas having the
value one for td-g3-url ordering compared to 69.8% for URL ordering. This means that
space usage can be improved for our dataset when using our grouped td-g#-url approach.
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Figure 5.5: Average document sizes over ID ranges for various document orderings.
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Figure 5.6: Entropy vs. number of terms-in-document groups using td-g#-url ordering.

To explore how the compressibility of our dataset changes over various numbers of
groups, we use two measures, where d is a bag of delta values occurring in postings lists
and D is the set of unique delta values. First, we measure the zero order Shannon en-
tropy H (which assumes deltas are independent and generated with the same probability
distribution), where pi is the probability of a delta having the value i in the data:

H(d) = −
∑
i∈D

pi log2 pi

Lower values of entropy indicate that more compression is possible. Since entropy deals
with probabilities, the actual delta values are not important. Second, we measure the
average log2 of the delta values, which we call the log-delta and denote L:

L(d) = 1
|d|

∑
d

log2 d =
∑
i∈D

pi log2 i

Lower values for the log-delta measure indicate that more compression is possible.

The entropy and log-delta values for the list of deltas found in our basic document or-
derings are shown in Table 5.1. The td-g#-url approach can improve entropy compared to
URL ordering, as shown in Figure 5.6, where four groups gives the best entropy. Surpris-
ingly, even with one hundred groups, the entropy does not significantly degrade, despite the
fact that the entropy of the (pure) terms-in-document ordering is 5.07 and we expect that
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splitting the index into many groups will degrade performance towards terms-in-document
ordering. For the log-delta measure, the plot has a similar shape and four groups again
gives the lowest measurement.

rand orig td url

entropy 7.24 6.71 5.07 3.19
log-delta 4.10 3.70 2.51 1.44

Table 5.1: Entropy and log-delta of the delta values for various document orderings.

The actual space-time performance for various numbers of groups and various F val-
ues is shown in Table 5.2. Using four groups produces the smallest configuration with a
bitvector density cutoff of F = 1

8
, but for other F values, using eight groups is better than

using four groups in both space and time. As a result, we use td-g8-url as our preferred
configuration, though this configuration may not be the best when using different datasets
or query workloads. The performance of td-g8-url is similar to the performance of configu-
rations using between 4 and 16 groups, which suggests that the performance improvements
from using semi-bitvectors are not particularly sensitive to our tuning of the number of
groups.

F = 1
8

F = 1
16

F = 1
32

space time space time space time

td-g2-url 5.32 1.77 6.28 1.33 8.11 1.08
td-g4-url 5.16 1.65 6.15 1.22 7.92 0.98
td-g8-url 5.23 1.56 6.14 1.17 7.79 0.96

td-g12-url 5.28 1.54 6.23 1.16 7.94 0.96
td-g16-url 5.34 1.55 6.28 1.15 7.98 0.96

Table 5.2: Detailed space (bits/posting) and runtime (ms/query) performance using various
configurations of the SBV(PFD256 semibvX=256, F ) algorithm.

When we compare our semi-bitvector approach using td-g8-url ordering to the bitvec-
tors+skips algorithm using URL ordering, we see a significant improvement in performance.
For the same amount of memory, the semi-bitvectors produce a speedup of at least 1.4x
compared to the best URL ordering approach, and a small reduction in space usage is
also possible, as shown in Figure 5.7. There is a performance improvement from using
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Figure 5.7: Space vs. time for semi-bitvectors using td-g8-url ordering compared to bitvec-
tors+skips using URL ordering.

semi-bitvectors for all query lengths when using the F = 1
32

configuration and the rela-
tive improvement increases with more terms per query, as shown in Figure 5.8. For the
same space budget, the number of postings that can be placed in bitvectors with the semi-
bitvector grouping approach is much higher than the original hybrid bitvector approach,
as shown in Figure 5.9. Since bitvectors are much faster than skips over delta compressed
structures, the more effective usage of bitvectors explains much of our performance im-
provement.

In order to verify that semi-bitvectors are needed to produce the performance improve-
ments found in the td-g8-url semi-bitvector approach, we examine the td-g8-url ordering
using the bitvectors+skips algorithm where bitvectors are used only for entire lists. The
td-g8-url ordering with the bitvectors+skips algorithm produces a small space improve-
ment, but no evidence of runtime improvement over URL ordering. Using fewer groups
shows some runtime improvement compared to URL ordering, but they were small com-
pared to the benefits of using semi-bitvectors.

The semi-bitvector implementation itself is more complicated than the bitvectors+skips
implementation. As a result, running the semi-bitvector implementation without grouping
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Figure 5.10: Space vs. time for semi-bitvectors using td-g8-url ordering compared to skips
or bitvectors alone using URL ordering.

by terms-in-document (i.e., using a single group giving td-g1-url which is the same as url
ordering) results in a small degradation in runtime performance. Clearly, both grouping
and semi-bitvectors are needed to produce the performance improvements in the td-g8-url
semi-bitvector approach.

In addition, the space-time benefits of semi-bitvectors for terms-in-document order-
ing (td-g1024-td vs. td) are similar to the benefits of semi-bitvectors for URL ordering
(td-g8-url vs. url). This suggests that our td-g#-url approach is effective in combining the
benefits of tight clustering found in URL ordering with the benefits of skewed clustering
found in terms-in-document ordering.

The benefits of using semi-bitvectors are in addition to the benefits of combining skips
with bitvectors. As a result, a more appropriate comparison is between our semi-bitvector
implementation and using skips or bitvectors separately: we found a speedup of at least
2.4x compared to using skips and at least 1.6x compared to using bitvectors, as shown in
Figure 5.10. This comparison also shows that a significant space improvement is possible
over using skips by themselves. These benefits are in addition to the performance gains
from using URL ordering rather than some other ordering. Such inefficient orderings may

76



Chapter 5: Partial Bitvectors

be common in existing installations. Incredibly, our semi-bitvector approach has a speedup
of at least 6.0x compared to skips using the original ordering, while using the same amount
of space, although significant improvements to space are also possible.

Similar types of runtime improvements would occur with any compression algorithm,
since the benefits come from using bitvectors in dense regions where they are much faster
than any compression algorithm.

5.3 Conclusions

We have shown how groups of documents defined by the skewed terms-in-document or-
dering, when combined with URL ordering and partial bitvectors, can be used to make
list intersection more efficient. This is accomplished by forming varying densities within
grouped portions of the postings lists, reordering within the groups by URL ordering, and
then storing them as semi-bitvectors, which encode dense front portions of the lists as
bitvectors. As a result, we can store more postings in bitvectors for a given space budget,
and bitvectors are much faster than other approaches. This combination gives most of
the benefits of tight clustering in URL ordering, while also gaining the benefits of skewed
clustering for effective use of semi-bitvectors.

This multi-ordered configuration (td-g#-url) gives significant space-time improvements,
when combined with semi-bitvectors. When compared to a fast and compact configuration
that combines bitvectors, large overlaid skips and URL ordering, we get a speedup of at
least 1.4x. When compared to using only skips or bitvectors with URL ordering, we get
a speedup of at least 2.4x compared to skips and at least 1.6x compared to bitvectors.
Although the overall improvement will depend on the size and type of the data, as well as
the number of groups used, we expect significant benefits for most large datasets.
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Partitioning by Document Size

In this chapter, we propose that document distribution be done by partitioning the col-
lection based on document size, rather than at random. Our document size distribution
causes skew in the location of postings within the document identifier domain, which gives
benefits that reduce the overall index size and improve query throughput. This skew is
identical to that generated from grouping by document size, but the independence of par-
titions allows it to be more easily and more fully exploited. The drawbacks over simple
grouping within a single index include the potential need to do load balancing for the
partitions and the introduction of space-time overheads from duplicate dictionary entries
and per-partition query setup times. These overheads also occur with other partitioning
approaches, but a larger number of partitions than what is usual practice may be needed
to exploit the benefits of skewing.

Partitioning at random (i.e., placing each document into a randomly selected partition)
automatically produces good load balancing in general, but other types of partitioning
need to be actively load balanced and may still produce unbalanced dynamic loads. Our
experiments do not attempt to produce good load balancing, but we do examine the per-
partition bottlenecks of the system to understand how the partitioning approaches affect
query latency and throughput. We expect that the load balancing of our partitioning
by document size and partitioning by URL approaches can be improved by adjusting the
range of document sizes that are assigned to each partition, but we leave exploration of
such optimizations for future work.

We demonstrate space (i.e., total index size) and time (i.e., latency and throughput)
improvements for in-memory list intersection when the partitions use PFD compression
combined with skips and with bitvectors+skips. We present various causes for the space-
time benefits of document size partitioning by analyzing the performance details from
individual partitions. These benefits occur without any changes to the algorithm code.
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Finally, we explore the various methods to combine partitioning and grouping for our
GOV2 index using semi-bitvectors, which may result in benefits over the use of partitioning
with bitvectors+skips.

6.1 Terms-in-Document Distribution

We can use the terms-in-document measure to distribute documents into partitions, allow-
ing for the documents to be ordered in a potentially better way within the partitions, but
still gaining some of the benefits found with terms-in-document ordering. Such a distribu-
tion by document size can be used with any underlying ordering, compression, intersection,
or ranking approach within the partitions, so it is broadly applicable. In addition, many
benefits of document size distribution could also be gained by splitting a single partition
into multiple document sized partitions running on a single machine.

An additional benefit occurs when our document size distribution is used with bitvectors.
This benefit is not available with simple terms-in-document ordering, so it was not discussed
in previous work. Document distribution allows each partition to decide independently
which lists to store as bitvectors, determined by the list density within the partition. With
a random distribution, this decision is fairly consistent because the list densities are likely
to be consistent between partitions. For URL based distribution, a small amount of skew
in density is produced that can be exploited. In our document size distribution, however,
the list densities are highly skewed between partitions, meaning that bitvectors can be used
much more efficiently than in other settings.

Partitions with large documents have dense lists and use many bitvectors, while par-
titions with small documents have less dense lists and use fewer bitvectors. The choice
of whether to use a bitvector for each term is independent for every partition. This is
illustrated in Figure 6.1, where F is the density threshold for using bitvectors and the
partitioned postings list ‘A’ demonstrates that the choice to use bitvectors is independent
in each partition. As a result, the use of partitions allows more actual postings to be stored
as bitvectors, which improves query runtime since bitvectors are much faster than skips.

Partitioning by terms-in-document with the bitvectors+skips algorithm is very similar
to grouping by terms-in-document with semi-bitvectors from Chapter 5, but groups are not
independent. Using semi-bitvectors, each term has only one cutoff point with bitvectors
used below it and skips with delta compression used above it, but the partitions that use
bitvectors for their fragments of a given postings list need not all be for the largest docu-
ments. As a result, partitioning can more effectively use bitvectors as compared to grouping
when using the same number of partitions and groups. For example, when considering the
‘A’ list shown in Figure 6.1, the semi-bitvector encoding would either use a bitvector for
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Figure 6.1: Schematic of a terms-in-document three partition bitvector index. This is
similar to using the three groups and semi-bitvectors shown in Figure 5.3.

the entire list or for just the large documents, while the partitioned version uses bitvectors
for both the large and small documents, but not the medium sized documents.

6.2 Implications for Indexing

We implemented document size distribution (and URL distribution) to place an equal num-
ber of postings in each partition. While this does not always produce good load balancing,
it is sufficient to demonstrate the benefits available from document size distribution. Plac-
ing an equal number of postings in each partition requires knowing the number of postings
in each document before deciding which partition should own the document. If the search
system does not have a shared storage mechanism, such as a central disk system, then
determining the number of postings in each document before distribution may require re-
distribution of index data among the partitions. With random distribution, the documents
are sent to the partitions and indexed locally, meaning the convert through encode steps in
Figure 2.1 happen within each partition. For document size distribution and URL distribu-
tion, the documents are first distributed randomly, then the convert and tokenize steps are
executed on each partition’s local documents. The document size (and URL information
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Figure 6.2: Terms-in-document distribution for GOV2 with four partitions marked.

for URL distribution) is then sorted globally to determine the repartition location for each
document. The tokenized form of the documents is then sent to the appropriate partitions,
where the invert and encode steps are executed to produce the desired distributed index.
The new sort and repartition steps in this process are easy to implement, but they will
result in a small slow down in indexing speed.

One way to avoid some of the extra processing involved in producing an index dis-
tributed by documents size or URL is to approximate the distribution by statically de-
termining which partition owns each document. The document size distribution could be
approximated by using static ranges of document sizes, with cutoff points determined using
information from a representative set of data (perhaps a subset of the data or a previous
version of the data). For example, creating four partitions using our GOV2 dataset, as
shown in Figure 6.2, determines cutoff points at 844, 438 and 263 postings per document,
which can be used as approximate cutoff points for some related dataset or another version
of the GOV2 dataset. Using document size cutoffs would avoid the sort step, but not
the repartition step of the indexing pipeline. To approximate our URL distribution, static
ranges of URL values or static mappings of URL values can be used to assign documents to
partitions. For example, a prefix of the URL values could be hashed to determine the par-
tition that owns the document. This URL prefix hashing is a fast operation that does not
require any document tokenization information, so it avoids both the sort and repartition
steps of the indexing pipeline.

Adding new documents to an existing index that is distributed by document size or
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URL may require dropping the requirement for an equal number of postings in each docu-
ment, moving documents between partitions, approximating the distribution approach, or
reindexing.

6.3 Skew Using Four Partitions

In our experiments, we choose to use four partitions, since using four groups gave rise to
the smallest entropy and log-delta values in Chapter 5. To show the benefits of document
size distribution, we examine five configurations: The first two configurations examine the
benefits to a system that does not exploit document ordering, by using random ordering
within each partition. The first configuration uses four random partitions and orders
documents using a random order (rand-p4-rand) and the second configuration partitions by
terms-in-document and orders by a random order within each partition (td-p4-rand). These
two configurations demonstrate that our improvements are not confounded by another
ordering within the partitions and that the benefits are possible for any ordering within
the partitions. The last three configurations use URL ordering within each partition, and
the index is partitioned using a random order (rand-p4-url), the URL order (url-p4-url),
or the terms-in-document order (td-p4-url). These three configurations demonstrate our
improvements over a top performing approach to list intersection.

Given the random, URL and term-in-document partitioning approaches, we expect
random partitions to have similar document counts, URL partitions to have a small skew,
and terms-in-document partitions to have a large skew in document counts. Indeed, our
experiments using four partitions have the expected differences in amount of skew between
the random, URL, and terms-in-document partitioning approaches, as shown in Table 6.1.
Note: we order the names for the random partitions according to their document counts
and maintain this ordering in subsequent tables, while for URL partitioning, we maintains
the lexicographic ordering of the partitions, and for terms-in-document partitioning, we
maintains the document size ordering of the partitions.

rand-p4 url-p4 td-p4

Partition 1 24.6 24.4 6.6
Partition 2 24.8 28.0 15.8
Partition 3 25.2 24.3 26.6
Partition 4 25.5 23.3 50.9

Table 6.1: Portion of documents (%) in each partition.

Partitioning by the highly skewed terms-in-document measure gives partitions and in-
dividual list densities that are highly skewed towards the large document partitions. These
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denser large document partitions produce smaller deltas and better compression. In addi-
tion, they are more efficient for list intersection through better locality of memory access
and shared decoding work for multiple candidate documents, resulting in improved run-
time performance for both skips and bitvectors. In the small document partitions, the less
dense lists allow skips to work more effectively.

The skew in terms-in-document sizes for the GOV2 dataset does result in a skew of the
individual postings lists used. This skew in postings lists using td-p4 is shown in Table 6.2
by the per-partition differences in the average density of the smallest lists in our workload
of queries. In addition, we find that the url-p4 partitions have some skew and the rand-p4
partitions have very little skew.

rand-p4 url-p4 td-p4

portion density portion density portion density

Partition 1 25.3 0.76 17.3 0.45 26.9 2.65
Partition 2 25.1 0.75 22.7 0.52 32.7 1.36
Partition 3 24.8 0.73 29.8 0.78 27.1 0.67
Partition 4 24.7 0.72 30.3 0.83 13.3 0.17

Table 6.2: Portion (%) of smallest list and average density (%) of smallest list per query
in each partition (full index density = 0.74%).

For conjunctive list intersection systems, combining skewed postings lists gives result
lists that are even more skewed. This increased skew in result lists occurs because the
likelihood of a document occurring in the intersection of multiple lists increases as the
number of lists containing the document increases, which is exactly the number of terms
in the document. Increased result list skew does not improve the compressibility of the
data, but it does compound the benefits of locality of access and the effectiveness of skips.

Similar to ordering by document size, the dataset can be ordered by the document
usage rate as measured by the number of times a document occurs in the postings lists or
result lists for the set of random training queries [Garcia 04]. We found that ordering by
document usage in the query term lists or query result lists produces similar performance
to terms-in-document ordering, so we do not examine ordering by usage in more detail.

We find that the conjunctive result lists for the td-p4 partitions are highly skewed:
the first partition contains 45.4% of the results, even though it contains a quarter of the
postings and only 6.6% of the documents, while the last partition contains 6.7% of the
results, a quarter of the postings and 50.9% of the documents. The other sizes for td-p4
can be found in Tables 6.1 and 6.3. Those tables also show that the result sizes for the
url-p4 partitions have a small amount of skew and the rand-p4 partitions contain no such
skew.
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rand-p4 url-p4 td-p4

portion density portion density portion density

Partition 1 25.5 0.102 23.1 0.093 45.4 0.669
Partition 2 25.3 0.100 20.1 0.070 28.1 0.175
Partition 3 24.8 0.096 26.9 0.108 19.8 0.073
Partition 4 24.4 0.094 29.9 0.126 6.7 0.013

Table 6.3: Portion (%) of results and average density (%) of results per query in each
partition (full index density = 0.098%).

We find that the result lists are indeed more highly skewed than the smallest list sizes for
the td-p4 partitions, as shown by comparing the relative density values in Table 6.2 to those
in Table 6.3. With td-p4 partitioning, the portion of the smallest lists returned in the result
lists drops from 25.3% in the first partition (density ratio is approximately 0.669/2.65) down
to 7.5% in the fourth partition (density ratio is approximately 0.013/0.17).

We have demonstrated that document size distribution produces skew in the postings
lists of our GOV2 dataset, and even more skew in the conjunctive query result lists for our
workload of queries. In the next section we demonstrate how using td-p4 partitioning in
our conjunctive list intersection system exploits these types of skew to give five significant
benefits, namely: reduced smallest list size, compressible data, locality of access, effective
skips, and effective bitvectors.

6.4 Benefits of Document Size Distribution

In this section, we compare the performance of random document distribution (rand-p4),
URL distribution (url-p4) and document size distribution (td-p4) for a conjunctive list
intersection system in order to validate the benefits of document size distribution. We
measure index space by the sum of the per-partition space. We use three metrics (as
detailed in the following paragraphs) to compare the runtimes of our partitioned systems.
Our results are, therefore, presented on three separate space-time graphs corresponding to
the summed space and the three runtime metrics.

To compare the performance of four partitions with our previous results running the
entire index in a single partition, we sum the runtimes from each partition and assume the
unaccounted for per-partition overheads, such as dictionary lookup times, are negligible.
This sum of partition times metric is the the amount of work required to process a query
(the total resource usage) on all the partitions and can thus be used to represent a con-
figuration where all the partitions are run on the same machine. The total resource usage
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can also be used to give an upper bound on the system throughput by assuming the ideal
case where perfect load balancing is achieved.

When the partitions are run on separate machines, the slowest partition becomes the
bottleneck. As a result, our max partition time metric is the average query runtime on the
partition that incurs the maximum total query runtime. Comparing this max partition
time to the ideal load balancing case (i.e., dividing the sum of partition times by the
number of partitions) gives an indication of the achieved load balancing. Improving this
load balancing by adapting the partitioning is, however, left for future work.

The slowest partition might not be the slowest for every query, so the partitoned query
runtime is calculated as the runtime of the slowest partition for that query. We expect that
most of the queries in a search system must meet a maximum query runtime requirement,
often expressed as a service level agreement (SLA). To represent such an SLA, we take
all the partitioned query runtimes and present the 99th percentile time as a metric. We
expect that other percentiles and other SLA requirements will behave similarly when the
proposed partitioning approaches are used.

B1: Reduced smallest list size: Our conjunctive list intersection algorithm first orders
the query lists by size and then intersects them iteratively in pairs from smallest to largest.
This ordering of query lists is done independently in each partition, so variances in list
density between partitions can cause the order to be different between partitions. As a
result, density variances can reduce the overall size of the smallest lists used in the query.
(The “size of the smallest list” in a partitioned system is the sum of the sizes of the small-
est lists used in each partition.) Reducing the smallest list size will reduce the number of
searches involved in intersecting subsequent lists, thus making the intersection run faster.
The random distribution into four partitions produces almost no change in the smallest list
size compared to using a single partition for the entire index, as shown in Table 6.4. Both
terms-in-document distribution and URL distribution using four partitions result in signif-
icant reductions in overall smallest list size. When compared to the random distribution
using four partitions, terms-in-document distribution produces an 11.3% reduction and
URL distribution produces a 13.3% reduction in overall smallest list size (all differences
are statistically significant as measured by paired t-tests producing very low p-values).

p1 rand-p4 url-p4 td-p4

full index 186,070 186,040 161,221 164,978

Table 6.4: Average size of smallest list per query over entire index.

B2: Compressible data: Document size distribution produces density skew between
partitions, giving smaller and more uniform deltas and better compression. We measure
the compressibility of the deltas in each partition by calculating the entropy and log-delta
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measures (see Section 5.2), where lower values indicate the deltas are more compressible.
As shown in Table 6.5, the terms-in-document partitioning (td-p4) has a lower average
entropy, lower average log-delta measure, and is more compressible than random parti-
tioning (rand-p4) when using random ordering within partitions, although it is naturally
not as compact as when ordering by terms-in-document within a single partition. In-
deed, the actual storage costs using PFD compression with block sizes of 256 improves for
terms-in-document partitioning (td-p4) with random ordering.

(order) rand td

p1 rand-p4 td-p4 p1

entropy 7.24 7.21 6.39 5.07
log-delta 4.10 4.09 3.44 2.51
PFD256 7.37 7.47 6.69 5.86

Table 6.5: Space, entropy, and log-delta values (bits/postings) using partitioning and ran-
dom ordering.

The terms-in-document partitioning (td-p4) also has lower average entropy, lower aver-
age log-delta measure, and is more compressible than random partitioning (rand-p4) when
using URL ordering within the partitioning, as shown in Table 6.6. The average entropy
and average log-delta measures for URL partitioning (url-p4) are between the correspond-
ing values for terms-in-document and random partitioning. The actual storage costs using
PFD compression with block of size 256 gives similar results.

(order) url td

p1 rand-p4 url-p4 td-p4 p1

entropy 3.19 3.52 3.14 2.92 5.07
log-delta 1.44 1.65 1.43 1.31 2.51
PFD256 5.26 5.67 5.26 5.02 5.86

Table 6.6: Space, entropy, and log-delta values (bits/postings) using partitioning and url
ordering.

These space measurements are from a system that stores only the deltas as postings, but
for systems that also store term frequencies in the postings we expect that the frequencies
will be more compressible using terms-in-document partitioning compared to random or
URL partitioning. The frequency values for terms occurring in a document should increase
as the document gets larger, which will correlate with our terms-in-document measure.
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This reduces the variance of frequency values within each partition, which makes them
more compressible.

B3: Locality of Access: The partitions with large documents should get better locality
of memory access and more blocks containing multiple values, thus sharing decoding costs.
Clearly, the partition with large documents (partition 1 for td-p4) has a much higher
density of results, since the number of results is high and the number of documents is low.
The increased density of results gives more efficient processing of queries, since the average
runtime per result returned is much lower than for other partitions, as shown in Table 6.7
when using either random ordering or URL ordering within the partitions. This efficiency
suggests that the density of results has indeed given us better locality of access. Note, the
small average runtime per result for the first partition using URL partitioning (url-p4) is
caused by very tight clustering within this partition, which also makes this partition much
more compressible as shown by an entropy of 2.14 compared to an average of 3.14 for all
of the url-p4 partitions.

(order) rand url

rand-p4 td-p4 rand-p4 url-p4 td-p4

Partition 1 251 152 135 82 101
Partition 2 250 224 133 128 106
Partition 3 251 258 131 122 111
Partition 4 254 366 132 132 160

Table 6.7: Runtime (ns) per result for SK(PFD64 skipX=64) using partitioning.

B4: Effective skips: The partitions with small documents should get an increased benefit
from skips. Indeed, the partition of small documents (partition 4 in td-p4) has the fewest
results relative to the total list sizes for our query workload. As a result, skips are extremely
useful in this partition. To directly demonstrate the usefulness of skips, we calculate the

(order) rand url

rand-p4 td-p4 rand-p4 url-p4 td-p4

Partition 1 0.43 0.91 0.23 0.13 0.61
Partition 2 0.43 0.46 0.23 0.17 0.22
Partition 3 0.42 0.27 0.22 0.20 0.12
Partition 4 0.41 0.13 0.22 0.28 0.06

Table 6.8: Runtime (ns) per element in all but the smallest query list for
SK(PFD64 skipX=64) using partitioning.
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Figure 6.3: Space vs. summation of runtimes using skips and partitioning.

amount of runtime per element in the non-smallest lists (i.e., the lists where elements can
be skipped over). As shown in Table 6.8, the partition containing only small documents
uses the least runtime per skippable element and is thus more dependent on the speed of
skipping.

When the first four benefits are combined for the PFD+skips algorithm, there is a
significant improvement in space from using term-in-document partitioning. In addition,
the runtime performance improves for search systems that place all the partitions on the
same machine, as shown by the reduction in the overall amount of work required to process
the queries (i.e., the summation of the partition runtimes) in Figure 6.3. This space-time
improvement occurs with both random ordering and URL ordering, so we expect it to
occur when using any other ordering. With URL partitioning, the performance is between
the results of random and terms-in-document partitioning. Since URL partitioning with
URL ordering is equivalent to running the index in a single partition using URL ordering,
the random partitioning shows a degradation in performance. This degradation is related
to the reduction of the tight clustering found in the URL ordering, and it will get worse
as the number of partitions increases, but even four partitions is enough to see evidence of
the degradation for skips.
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Figure 6.4: Space vs. maximum runtime using skips and partitioning.
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Most of the benefits from using four terms-in-document partitions for skips are also
found when using a single partition with four terms-in-document groups. The small per-
formance difference between these two is accounted for by the independent selection of the
smallest list size as discussed in B1.

When the partitions are run on separate machines where load balancing affects perfor-
mance, the runtime performance of using terms-in-document (or URL) partitioning with
skips degrades. Both the runtime performance of the slowest partition to execute all queries
(i.e., the maximum partition runtime) and the runtime of slow queries (i.e., 99th percentile
query runtime) degrade, as shown in Figure 6.4. It is possible that moving the cutoff points
for determining which documents are assigned to each partition may be able to improve
the load balancing enough to exploit the reduction in total processing work required to
process queries when using terms-in-document (or URL) partitioning, but we leave this
exploration for future work.

B5: Effective bitvectors: The independent decision of whether to use bitvectors within
each partition results in a significant space-time improvement on a single machine for
td-p4 partitioning compared to rand-p4 or url-p4 partitioning, even when using random
ordering, as shown in Figure 6.5. In fact, the performance of PFD compression, bitvec-
tors+skips, td-p4 partitioning, and random ordering is close to the performance using
url-p4 partitioning and URL ordering for the larger configurations with many bitvectors.
This means that for large configurations, the skewed clustering in terms-in-document or-
dering exploited by partitioning and bitvectors is more important than the tight clustering
in URL ordering. The effectiveness of using bitvectors compared to tight clustering may
help explain why there was limited performance degradation when using a large number
of terms-in-document groups in Chapter 5.

The space-time performance on a single machine degrades for random partitioning
compared to URL partitioning when using PFD compression, bitvectors+skips, and URL
ordering, as shown in Figure 6.5. As with skips, this degradation results from the re-
duction in tight clustering, and it will get worse as more partitions are added. The
terms-in-document partitioning, however, produces a significant improvement over URL
partitioning when using bitvectors+skips. This improvement is similar to the gain when
using groups and semi-bitvectors compared to bitvectors+skips as described in Chapter 5.
Much of this performance improvement comes from storing more postings in bitvectors for
the same space budget, as shown for td-p4 partitioning and bitvectors+skips in Figure 6.6.
Having more bitvectors in partitions with large documents also compounds the benefits
from locality of access and increased density of results, since more of the query processing
is done using bitvectors. The number of postings stored in bitvectors using four terms-
in-document partitions (td-p4) is only slightly higher than using four terms-in-document
groups with semi-bitvectors (td-g4), though these values may diverge as the number of
partitions/groups increase. Performance could be improved by using the query workload
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Figure 6.5: Space vs. summation of runtimes using skips, bitvectors, and partitioning.
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Figure 6.6: Space vs. postings in bitvectors using skips, bitvectors, and partitioning.
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Figure 6.7: Space vs. maximum runtime using skips, bitvectors, and partitioning.
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to decide where to use bitvectors in the index, but we leave this exploration for future
work.

The space-time improvement on a single machine from using terms-in-document par-
titioning occurs without any changes to the actual list intersection code, thus proving our
thesis that skewed clustering can be exploited to improve space-time performance. It also
means that the space-time improvements from groups and semi-bitvectors are not caused
just by coding differences, biases, or lucky breaks. In addition, the performance of bitvec-
tors+skips using td-p4-url is similar to the performance of semi-bitvectors using td-g4-url,
meaning our semi-bitvector approach and the specific implementation are effectively ex-
ploiting the term-in-document skew without incurring significant space-time overheads.

When our four partitions are run on separate machines, the maximum partition run-
time performance of PFD compression with bitvectors+skips using td-p4 partitioning is
still significantly faster than rand-p4 or url-p4 partitioning, as shown in Figure 6.7 (top).
Comparing the average partition runtime to the maximum partition runtime measures the
amount of load balancing. We find that rand-p4 has the best load balancing, while td-p4
has better load balancing than url-p4 in most configurations (F ≥ 1

8
). For all the parti-

tioning approaches, using more bitvectors gives better load balancing. The partition cutoff
points used in td-p4 partitioning were defined to place an equal number of postings in each
partition. Changing these cutoff points may be able to produce better load balancing, but
we leave this exploration for future work.

All the partitioning approaches have similar runtime performance for the slow queries
in our workload, as shown in Figure 6.7 (bottom). In all cases, using bitvectors greatly
improves the runtime performance of the slow queries, as shown by comparing the perfor-
mance of bitvectors+skips to the performance of skips in Figure 6.4 (bottom).

6.5 Partitioning vs. Grouping

We have shown that terms-in-document partitioning can improve space-time performance
and that grouping by terms-in-document ordering and using semi-bitvectors can also im-
prove performance. We now examine how to combine these approaches for the best overall
results. For each of our partitioning approaches, we run eight terms-in-document groups
with PFD compression, semi-bitvectors, and URL ordering within groups.

Using eight terms-in-document groups and semi-bitvectors, the single machine space-
time performance of rand-p4, url-p4, and td-p4 partitioning are much closer together than
their performance using bitvectors+skips, as shown in Figure 6.8. The best configuration
from the previous section was td-p4-url using the bitvectors+skips algorithm, but when we
add groups and semi-bitvectors to td-p4 partitioning the space-time performance degrades
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Figure 6.8: Space vs. summation of runtimes using semi-bitvectors and partitioning.
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Figure 6.9: Space vs. postings in bitvectors using semi-bitvectors and partitioning.
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Figure 6.10: Space vs. maximum runtime using semi-bitvectors and partitioning.
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slightly. For rand-p4 partitioning the space-time performance improves with groups and
semi-bitvectors, but it is not as good as our td-p4-url configuration. For url-p4 partitioning
the space-time performance also improves resulting in slightly better performance than our
td-p4-url configuration and the other combinations of partitions and groups.

Using groups and semi-bitvectors can effectively exploit the skewed clustering in our
index, so the difference in single machine performance between our three partitioning ap-
proaches is related to the amount of tight clustering from the URL ordering that is retained
in the partitions. This explains why URL partitioning has the best single machine perfor-
mance. In addition, the single machine performance of terms-in-document partitioning and
random partitioning will degrade as more partitions are used, because the tight clustering
is reduced inside each partition. The single machine performance of URL partitioning,
however, does not degrade as more partitions are added.

All of these partitioning approaches improve the number of postings that are placed
in bitvectors when using semi-bitvectors with grouping, as shown in Figure 6.9. Since the
terms-in-document partitions on a single machine slowed down when using semi-bitvectors
with grouping, the benefits from using more bitvectors was outweighed by the reduction
in tight clustering and the implementation overheads of using semi-bitvectors. Producing
significant gains in bitvector usage on top of URL partitioning with groups and semi-
bitvectors seems unlikely, since nearly 45% of the postings are in bitvectors for the smallest
configuration and nearly 80% are in bitvectors for the F = 1

48
configuration. This is

similar to the 1024 group terms-in-document configuration (td-g1024-td), where the small
configuration has a similar portion of postings in bitvectors and the large configuration has
81.5% of postings in bitvectors. Clearly, adding more groups or partitions will not improve
bitvector usage significantly. However, additional gains in the usage rate of bitvectors for
specific query workloads may be possible; we leave this exploration for future work.

When we compare the average partition runtime to the maximum partition runtime, we
find that using semi-bitvectors and grouping improves the load balancing of configurations
using few bitvectors (F ≥ 1

4
) compared to using bitvectors+skips. The space-time perfor-

mance using semi-bitvectors and grouping for all the partitioning approaches on multiple
machines as measured by the maximum partition runtime is similar for all the partitioning
approaches, as shown in Figure 6.10 (top). The performance of these approaches is also
similar to using bitvectors+skips with our td-p4-url configuration.

The performance of slow queries is somewhat improved by using partitioning and group-
ing together, since using bitvectors+skips is slower than using semi-bitvectors and grouping
with any of our partitioning approaches, as shown in Figure 6.10 (bottom). This improve-
ment in the performance of slow queries from using partitioning and grouping together is
smaller than the improvement from adding bitvectors to a system using only skips.
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6.6 Conclusions

We have shown how skewed partitioning from document size distribution can be used to
improve list intersection systems, allowing more compression and faster query runtimes.
The compression improvements are from lowering the size and variance of deltas in post-
ings lists. The runtime improvements when using skips are from reduced smallest list
sizes, better locality of access, and sparse result regions. The runtime improvements when
using bitvectors are from reduced smallest list sizes, better locality of access, and more
effective adaption of bitvectors to varying list densities within partitions. When using
bitvectors, our document size distribution, as compared to random or URL partitioning,
produces runtime improvements for a single machine configuration by reducing the total
work done per query, and for a multiple machine configuration by improving the runtime
of the slowest machine while producing similar performance for the slowest queries. We
demonstrated these benefits using an in-memory conjunctive list intersection system with
random ordering and URL ordering within partitions.

Document size distribution is broadly applicable, being usable with any document or-
dering. Additional improvements to load balancing could be achieved by changing the
partition cutoff points, using more smaller partitions on each machine, or increasing repli-
cation of slow partitions. Scaling to a large number of nodes [Feldman 11] may require a
hierarchy of distribution approaches, such as distributing first by domain (e.g., .gov), and
then by document size within each domain.

Overall, the benefits suggest that document size distribution warrants closer examina-
tion by the research community.

In addition, we have shown that combining semi-bitvectors and groups with any of our
partitioning approaches results in similar performance to using document size distribution
with bitvectors+skips. The performance of all of these configurations comes from allowing
both the skewed clustering of term-in-document ordering and the tight clustering of URL
ordering to be readily exploited. As above, scaling configurations using semi-bitvectors
and groups with partitioning may require a hierarchy of distribution approaches.
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Conclusions

We have explored various strategies for representing postings lists and examined their effect
on the performance of a conjunctive list intersection system. The strategies encompass
data layouts, such as document ordering, grouping, and partitioning, as well as encodings,
including the use of compact representations, skips, and bitvectors. Rather than picking a
single best approach, we have presented these techniques as a set of tuneable alternatives
that can be applied to a search system in order to improve its performance.

We have shown that bitvectors are much faster and more space efficient than other
structures for storing dense postings lists. The sparser lists should be stored using delta
compressed structures with large overlaid skips, and the documents should be in URL
order to produce the best results in all situations. This bitvectors+skips combination
dominates the use of either skips or bitvectors separately, and we believe this will hold for
all compression algorithms and all document orders.

In order to improve performance further, we have examined the effects of document
ordering and the selection of where to use bitvectors to more effectively exploit the speed
of bitvectors. Performance improvements can be accomplished by grouping (or partitioning)
by the document size, as measured by the number of unique terms in a document, to skew
the postings lists and then using bitvectors for dense portions of the lists as defined by the
groups (or partitions). An appropriate ordering technique, such as URL ordering which
gives tight clustering of postings, can then be used within each group (or partition). To
handle partial bitvectors within a single list, we propose semi-bitvectors, a new structure
that uses bitvectors at the front of the list and skips over compressed deltas for the rest of
the list, with the transition point picked to improve bitvector usage.

We have shown that given a space budget more postings can be placed in bitvectors by
using either groups with semi-bitvectors or partitions with bitvectors+skips. The increased
use of bitvectors combined with other resultant benefits gives a significant space-time per-
formance improvement over existing list representation and intersection techniques. For
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example, using our GOV2 dataset and related workload, eight groups with semi-bitvectors
resulted in a total query runtime speedup of at least 1.4x over bitvectors+skips and a
speedup of at least 2.4x over skips alone with URL ordering. Surprisingly, using document
size distribution with bitvectors+skips rather than random or URL distribution resulted
in benefits to total query runtime and slowest partition runtime, with similar performance
for the slow queries.

In addition, we have shown that any of our partitioning approaches can be combined
with semi-bitvectors and grouping to effectively exploit both the tight and skewed clustering
in the GOV2 dataset. A hierarchy of partitioning approaches may be required to maintain
this effectiveness when scaling to support a very large collection.

Some of the proposed techniques produce performance improvements even without
using bitvectors, so this work is broadly applicable, however, using bitvectors or semi-
bitvectors is clearly superior. In order to encourage the use of bitvectors and semi-bitvectors,
we present methods for their application to full ranking based search systems in Section 7.2.
These proposals warrant further investigation.

7.1 Future Work

Several aspects deserve further investigation before adopting our partitioning and group-
ing approaches. The two main questions involve applying these approaches to ranking
based systems (see next section) and achieving good load balancing over the partitions.
It is possible that good load balancing requires the use of random document distribu-
tion [Büttcher 10, §14.1.1], but we believe that various techniques could alleviate many
of the problems caused by load imbalance. For example, static load differences can be
improved by repartitioning or online document routing [Lavee 11], leaving the dynamic
load caused by the imbalanced work involved in particular queries. This dynamic load
imbalance could be reduced by overlapping partitions and on a per-query basis adaptively
moving ownership of documents between partitions that overlap. Note, however, that high
frequency load changes may not affect our in-memory system when the query runtimes are
much faster than the application requires, because this allows query latency to be traded for
system throughput. Exploring the amounts and frequency of dynamic load changes could
identify where various distribution techniques can be used. For example, URL partitioning
likely has large load changes, but random distribution of URL prefixes into partitions or
terms-in-document partitioning might not. Other techniques, such as running multiple
small partitions on each machine could also reduce the dynamic load.

Beyond ranking and load balancing, several other considerations deserve further study.
In many places throughout the thesis, avenues for further exploration were identified. A
few of these are elaborated in the remainder of this section.
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Performance results are limited by the hardware, dataset, and workload explored, in
our case a single machine running a single dataset (GOV2 ) and using a single workload
(5,000 of the 100,000 TREC queries). Although we explored performance for queries with
various term counts, more experiments are needed to determine how our optimizations
would perform for various system configurations. Our workload consists of only conjunctive
queries of single word tokens, but our partitioning and grouping techniques could be applied
to other workloads including full Boolean, phrase, proximity, t-threshold, or Weak-AND
queries. We believe that bitvectors could also help with these workloads, but we are not
aware of any study that applies bitvectors to non-conjunctive queries in search engines.
Extending our experiments to include the commonly used NOT operator may be especially
valuable. Our grouping and partitioning approaches may also improve the performance
of systems using data structures other than skips and bitvectors, such as the Elias-Fano
encoding or wavelet trees, or in other portions of a search system, such as list caching in
disk based systems. In addition, our performance testing was done through simulation of
portions of a search system running single threaded queries with only the relevant index
portions in memory. Our performance results should, therefore, be validated on a full
concurrent live system with the entire index in memory.

One of the limits to effectively deploying our approach is that the optimum number of
partitions and groups must currently be determined by trial and error. In addition to the
number of groups, the cutoff points for each group may affect system performance, and
the cutoff points for partitions may be selected so as to improve load balancing. Clearly, it
would be valuable to have metrics to measure the potential of skewed clustering and tight
clustering within a dataset and then to map these metrics into suggestions for a system
configuration of partitions and groups.

Our hybrid td-g#-url ordering has been described as grouping by terms-in-document,
followed by ordering within each group by URL, but it is equivalent to sieving documents
from the URL ordering based on their terms-in-document values. A more detailed com-
bination of URL’s tight clustering and terms-in-document’s skewed clustering could be
used to produce a better combined ordering. For example, a document could be moved
to another group if it no longer shares enough terms with its neighbours, thus sacrificing
skewed clustering for tight clustering to get a better balance for these approaches.

Alternative hybrid orderings could combine groups using terms-in-document ordering
with some other second ordering. This approach could exploit general ordering techniques
that are better than URL ordering or tailored orderings that are tuned to the workload
and dataset. As such, our grouping by terms-in-document approach acts to boost the per-
formance of other document ordering techniques. In addition, the combination of grouping
by terms-in-document with a second ordering could reduce the amount of time needed to
calculate the second ordering, because the secondary ordering acts only on the documents
within each group, rather than on the documents in the entire index. This could be a
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big advantage for ordering techniques that do not scale well, such as approaches based on
content similarity.

We have used the same tight URL ordering to partition documents and to order within
groups, but these could be different in order to combine the benefits of different clustering
techniques or to allow the use of more expensive ordering calculations at the lower level.
For example, the partitioning level could use fast term matching [Lavee 11], while the lower
ordering level could be based on content similarity.

We have improved the usage of bitvectors so that more postings can be stored in bitvec-
tors without increasing total space. This causes the runtime performance to improve
because such a configuration results in more of the postings used in the query being stored
in bitvectors, even though our choice of when to use bitvectors was agnostic to the query
workload. Runtime performance could, therefore, be improved further by using the query
workload to decide on where to use bitvectors in the index. A more detailed approach
could take into account the query usage rate and the difference in space-time performance
from various storage methods, perhaps using a bin packing approach to fill up the space
budget with the most effective storage methods.

If a search system is unable to use document ordering techniques, perhaps because the
system has a very high update rate, the documents could still be grouped (or partitioned)
by their terms-in-document size to produce some benefit. Indeed, any partial ordering that
can exploit some amount of tight clustering or skewed clustering may have large benefits for
such systems. Even a system tuned for range searching performance, such as a system using
time based ordering, could exploit range filtering at a high level, such as at the partition
or multi-partition level, and still exploit terms-in-document grouping (or partitioning) at
a lower level.

7.2 Ranking Based Systems

The most significant unknown to be addressed is how well our approaches can be adapted
to work within practical information retrieval systems, which all depend on ranking query
results. Ranking based systems include ranking information, such as term frequencies,
interleaved with the postings lists, which increases their size and decoding costs. This
changes the relative costs of skipping and decoding, so our optimization choices for list
intersection systems, such as using a skip size of 256, may be different for ranking based
systems. Also, the runtime costs of intersecting lists and ranking results are both signifi-
cant, so the relative improvements in runtime observed in our list intersection system may
be significantly different in a ranking based system.

Ranking based systems will gain many of the benefits we have demonstrated for com-
bining skewed clustering and tight clustering in list intersection systems. Comparable
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configurations using terms-in-document grouping and/or partitioning will gain benefits in-
cluding reduced smallest list size, compressible data, and locality of access. For ranking
based systems that use skips, adding terms-in-document grouping and/or partitioning will
make them more effective.

In addition, terms-in-document partitioning may be especially valuable for ranking
based systems, because the differences among partitions will allow results from a subset of
the partitions to more effectively improve subsequent execution. For example, results from
a subset of the partitions could be used to distribute top-k ranking information which can
improve pruning/early termination or to choose query execution types such as AND or
Weak-AND [Broder 03]. Note, the skew in the list intersection result values toward large
documents may also occur in ranking based results, but more investigation is need to verify
this property for ranking based systems.

Although bitvectors cannot be easily interleaved with the term frequency and posting
offset information used in ranking, they can still be valuable in ranking based search systems
because they are much faster for the list intersection portion of the query processing.

For comparison, we provide performance numbers in Table 7.1 from various papers
using in-memory query execution on the GOV2 dataset alongside our own performance
results. The runtime performance differences presented in these entries are much bigger
than any hardware or query differences could produce. Indeed, our performance results are
at a disadvantage, because we have indexed much more data, including the HTTP header
information (our index has 9.0 billion document level postings vs. 6.8 billion reported
elsewhere [Ding 10]).

algorithm/system time space data structures type reorder reference

Lucene (vbyte) (AND) 26.0 42.1 text ID+offsets AND+cnt N [Vigna 13]
Quasi-succinct indices (QS*) (AND) 11.9 36.9 text ID+offsets AND+cnt N [Vigna 13]

Exhaustive AND 6.56 4.5 text ID+freq. BM25 Y [Ding 11]
Hierarchical Block-Max (HIER 10G) 4.29 14.5 text ID+freq. BM25 Y [Dimopoulos 13]

SK(PFD64 skipX=64 )(url) 3.04 7.0 text+meta ID AND Y -
SBV(PFD256 semibvX=256, F=1/32 )(td-g8-url) 0.96 8.8 text+meta ID AND Y -

Table 7.1: Published time (ms/query) and space (GB) performance numbers from various
papers using the GOV2 dataset.

The system configurations presented in Table 7.1 use different query execution ap-
proaches, but we believe the comparison is still valuable. The first two entries in the
table reference systems that index the document identifiers and offsets without reordering
the document identifiers, so the performance is slow and the index is large, even though
the systems do not incorporate ranking calculations. The third and fourth entries refer
to systems that index document identifiers and frequencies, and reorder the document
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identifiers, so the performance is fast and the index is relatively small, even though the
systems include BM25 ranking calculations. The fifth and sixth entries are our results for
the fastest configuration of skips using PFD and a semi-bitvector configuration, where no
ranking information is stored and no ranking calculations are executed. The fifth entry
is equivalent to the third entry with ranking removed, resulting in much faster execution.
The sixth entry using semi-bitvectors indicates a large runtime performance improvement
over the fifth entry using only skips, while using little additional index space.

Clearly, our approach using bitvectors can answer a conjunctive query much faster than
the existing ranking based systems, while using much less space than a full index. While
some of this runtime performance difference is from the lack of ranking calculations, a
significant portion of the improvement is from algorithm improvements.

We have demonstrated that executing conjunctive queries with semi-bitvectors can be
done using small amounts of space to produce extremely fast runtimes compared to ranking
based search systems. These characteristics suggest that ranking based systems can benefit
from judiciously incorporating semi-bitvector data structures. We introduce five possible
approaches below:

Pre-filter: Use semi-bitvectors to produce the conjunctive results, then process the rank-
ing structures restricted to these results, as suggested in previous work [Culpepper 10].
This may require reordering of conjunctive results if the ranking structures use a different
document ordering. The ranking structures could use non-query based information, such
as PageRank, or normal ranking structures, thus duplicating some postings information.
Having the conjunctive results can make the ranking process more efficient by exploiting
skips in the first list, or limiting the number of accumulators. Using conjunctive results
to pre-filter proximity or phrase queries is the natural implementation approach. Using
this type of pre-filtering, however, prevents the use of non-AND based processing such as
Weak-AND [Broder 03].

Sub-document pre-filter: Use semi-bitvectors in a pre-filtering step as a heuristic to
limit the results to high quality or highly ranked documents by exploiting the correlation of
query term proximity to query relevance [Büttcher 06]. This is accomplished by splitting
the documents into (potentially overlapping) sub-document windows, then building the
semi-bitvector structures over these windows. This reduces the number of results that must
be ranked, while the results being ranked will be highly relevant because the query terms
appear close together. The conjunctive results will need to be mapped from window IDs
to document IDs before executing the ranking step. The windows could be implemented
as half-overlapping windows to guarantee proximity of query terms within half the window
size. This approach needs more examination to determine if significant filtering can be
achieved without adversely affecting ranking effectiveness. If this approach can produce
significant filtering, the ranking step could be implemented by directly storing the tokens
of each window for quick ranking/proximity/phrase processing.
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High density filters: High density terms have low value for ranking, with the extreme
case being stopwords. However, they can still act as a filter and be processed more ef-
ficiently using semi-bitvectors. In fact, high density regions of a postings lists may act
similarly, but a constant ranking value may be needed to smoothly integrate filtering re-
gions with ranking regions in a single postings list. Based on our results, even using
semi-bitvectors with density cutoff F ≥ 1

8
can result in significant performance benefits.

In systems that have multiple stages of ranking, the exact order of the candidate results
produced by the first stage may not be important, so using semi-bitvectors with a high
density cutoff might not degrade the ranking effectiveness of the final stage.

Query specific filter: The terms that could be implemented as filters may be query
specific. To improve the processing efficiency of these filtering terms, duplicate structures
can be introduced: a semi-bitvector structure for filtering and a separate structure suitable
for ranking. In fact, additional information about the user from past system usage and
collaborative filtering, such as topics of interest, can be included in the ranking algorithm.
Adding these user specific terms may reduce the effect of certain query terms in the ranking,
allowing more query terms to be executed as filters using semi-bitvectors.

Guided processing: Semi-bitvector structures can be used to produce conjunctive re-
sults that will provide statistics on the query, and these statistics can guide subsequent
processing of the query. For example, the statistics can indicate whether ranking should be
done using conjunctive processing or some form of non-conjunctive processing, such as a
Weak-AND implementation. These statistics can also indicate how to adapt this process-
ing to the specific query terms, perhaps by identifying the specific query term that causes
the conjunctive processing to be overly restrictive. Processing the conjunctive results for
a subset of the documents may be enough to produce effective statistics. Such adaptive
query processing techniques deserve close examination.

Given these methods for applying our techniques to ranking based systems, we believe
that our work will be broadly applicable in practice.
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veda. Document identifier reassignment and run-length-compressed in-
verted indexes for improved search performance. In Proceedings of the
36th ACM International Conference on Research and Development in
Information Retrieval (SIGIR), pages 173–182, 2013. 34, 35

[Baeza-Yates 04] Ricardo Baeza-Yates. A fast set intersection algorithm for sorted se-
quences. In Combinatorial Pattern Matching, pages 400–408. Springer,
2004. 16

[Baeza-Yates 11] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern information
retrieval: the concepts and technology behind search, second edition.
Addison-Wesley, 2011. 7
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