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Abstract

Robust optimization is an emerging modeling approach to make decisions under uncer-
tainty. It provides an alternative framework to stochastic optimization where operational
parameters are random and do not assume any probability distribution. In this thesis, we
study three important problems in routing and scheduling under uncertainty, namely, the
crew pairing problem, the shortest path problem with resource constraints, and the vehicle
routing problem with time windows. We present robust optimization models and propose
novel solution approaches, and perform extensive numerical testing to validate the models
and solutions.

The crew pairing problem finds a set of legal pairings with minimum cost to cover a
set of flights. An optimal solution for the deterministic case, however, is often found to
be far from optimal or even infeasible when implemented due to the several uncertainties
inherent to the airline industry. We present a robust crew pairing formulation where time
between flights may vary within an interval. The robust model determines a solution that
minimizes crew cost and provides protection against disruptions with a specified level.
A column generation approach is presented to solve the robust crew pairing problem.
The robust model and the solution approach are tested on a set of instances based on
an European airline. The solutions are more robust than the deterministic ones under
simulated disruptions.

The shortest path problem with resource constraints (SPPRC) is an important problem
that appears as a subproblem in many routing and scheduling problems. The second study
in the thesis focuses on the robust SPPRC where both cost and resource consumptions are
random. The robust SPPRC determines a minimum cost path that is feasible when a num-
ber of variations occur for each resource. We present a mixed-integer programming (MIP)
model that is equivalent to the robust SPPRC model, and develop graph reduction tech-
niques and two solution methods. The first solution method is a sequential algorithm that
solves a series of deterministic SPPRC. The second is a modified label-setting algorithm
that uses a new dominance rule. Numerical testing shows that the modified label-setting
algorithm outperforms the sequential algorithm and the MIP model.

The third problem studied is the vehicle routing problem with time windows under
uncertain customer demands. The robust model determines a set of routes with mini-
mum cost such that each customer is served exactly once within the time window and
each route is feasible when a number of customers change their demands. We propose
a branch-and-price-and-cut algorithm and a novel separation strategy to determine valid
inequalities that make use of data uncertainty. The model and solution methodology are
tested on instances generated based on the Solomon instances. The robust solutions pro-
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vide significant protection against random changes in customer demands compared to the
deterministic solutions.
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Chapter 1

Introduction

1.1. Airline planning and vehicle routing

The airline industry is a highly competitive business that is characterized by large fixed

costs and low profit margins [eco]. Decision makers need to make the best use of resources,

such as aircraft, personnel and airport slots, to survive the high competition. The cost for

personnel represents the second largest cost for airlines [Cohn and Lapp, 2010]. Therefore,

airlines are continuously seeking to increase the utilization of personnel while maintaining

high standards for safety and welfare. Operations research has a long history of successfully

helping airlines to determine legal working schedules for personnel at minimum cost under

a deterministic setting. However, working schedules are rarely implemented as planned due

to a variety of disruptions, such as bad weather, mechanical breakdown, flight delay and

cancellations, and labor and passenger issues, which results in a cost increase that ranges

from 2% to 3% of annual revenue [Sab]. Therefore, the challenge of handling uncertainty
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is revealing new frontiers for researchers in this area.

Another optimization problem that is closely related to the airline industry is vehicle

routing. The problem can be generically described as serving a set of customers by a fleet

of vehicles, and has applications in many service industries, such as maintenance, courier,

consumer products, and transportation. There exist many variants that consider different

restrictions and assumptions inspired from the real world, such as vehicle capacity, service

time windows, backhauls, and multiple tasks with pickup and delivery. However, due to

the variability of model input, such as increased travel time due to congestion, customer

demand changes, and increased service times, the uncertainties translate into increased

operational cost and decreased customer satisfaction. Therefore, both practitioners and

researchers face the challenge of developing routing and scheduling approaches that protect

against uncertainty in operations.

Uncertainty presents a hurdle to the application of optimization tools to real world

problems. The variation in operational parameters can severely degrade solution quality,

making the proposed solutions being far from optimal or even infeasible when implemented.

Many studies show that the decisions made under a deterministic setting are sensitive to

the changes that may occur during execution [Birge and Louveaux, 2011; Herroelen and

Leus, 2005; Sahinidis, 2004].

Optimization offers two frameworks to model uncertainty: stochastic optimization and

robust optimization. In this thesis, we use robust optimization to model three problems

in routing and scheduling, namely the crew pairing problem, shortest path problem with

resource constraints, and vehicle routing problem with time windows. We first introduce

stochastic and robust optimization frameworks, then detail the contributions and organi-
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zation of the thesis.

1.2. Stochastic optimization

Stochastic optimization assumes that the uncertain parameters follow a probability dis-

tribution that is known or that can be estimated. Stochastic optimization looks for a

solution that is feasible under all possible parameter realizations and performs best on

average. Two basic types of models in stochastic optimization are recourse models and

chance-constrained models. The decision making process in recourse models is divided

into two or more stages where the decision at each stage is determined based on the in-

formation available up to the current stage. These decisions jointly optimize an objective

that evaluates the quality of the solution. For example, a two-stage linear programming

recourse model takes the following form:

min c>x+ E [Q(x, ξ)]

s.t. Ax = b,

x ≥ ,

(1.1)

where Q(x, ξ) is optimized by the second-stage problem:

min
y

q>y,

s.t. Tx+Wy ≤ h,
(1.2)
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where x ∈ Rm is the first-stage decision vector determined before the uncertain parameter

vector ξ = (q,T ,W ,h) realizes, and y ∈ Rn is the second-stage decision vector made after

ξ becomes available. c>x + E [Q(x, ξ)] optimizes the expected objective value by taking

the advantage of the probabilistic property of ξ. The model first determines a here-and-

now decision at the first stage before the uncertain parameters are realized. In the second

stage, when parameters become known, it provides a recourse decision accordingly.

The chance-constrained model generates a here-and-now decision that satisfies all con-

straints with a pre-specified probability. The interested readers are referred to Birge and

Louveaux [2011], Shapiro et al. [2009] and Shapiro and Philpot. A chance constraint is

represented by

P{A(w)x ≤ b(w)} ≥ α, (1.3)

where x is the decision variable vector, A(w) ∈ Rn×m and b(w) ∈ Rn are stochastic

parameters whose values depend on the realization w, and α is the confidence level that

specifies the probability of A(w)x ≤ b(w).

1.3. Robust optimization

Robust optimization originates from a different modeling paradigm. Instead of assuming

a certain knowledge of the probabilistic attributes of parameters, it only requires the set

of all possible parameter realizations, which is referred to as the support set of the param-

eters. Robust optimization selects an optimal decision that is feasible under all possible
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realizations. The generic form of a robust optimization problem is:

min f0(x)

s.t. fi(x,ai) ≤ 0, ∀ai ∈ Ui, i = 1, ..., n,

(1.4)

where x ∈ Rm is the decision variable vector, ai ∈ Rm is a realization of the uncertain

parameters within support Ui ⊆ Rm for constraint i, and f0 and fi are functions that

describe the objective function and constraint i, i = 1, ..., n. Problem (1.4) is called the

robust counterpart of the deterministic problem.

The four basic types of support studied in the literature are ellipsoidal, polyhedral, car-

dinality constrained and norm uncertainties. A generic form of robust linear optimization

model is:

min c>x

s.t. Ax ≤ b, ∀a ∈ U1, ...,an ∈ Un,
(1.5)

where A ∈ Rn×m is a uncertain matrix, where the ith row is ai, i = 1, ..., n. Next, we

describe the four types of uncertainty support and identify the form of their equivalent

formulations.

Polyhedral uncertainty

Polyhedral uncertainty is described by

U =
n∏
i=1

(Ui = {ai|Diai ≤ di}) , (1.6)
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where n convex hulls jointly encode the support. Problem (1.5) with polyhedral uncertainty

can be reformulated as a linear program [Bertsimas et al., 2011].

Ellipsoidal uncertainty

The ellipsoidal uncertainty generalizes the polyhedral uncertainty and is able to well ap-

proximate many complicated convex sets. Let an ellipsoidal structure U in RK be defined

as

U = {Π(u)|‖Qeu‖ ≤ 1}, (1.7)

where u→ Π (u) is an affine embedding of certain RL into Rk and Qe is an M ×L matrix

[Ben-Tal and Nemirovski, 1999]. An ellipsoidal uncertainty is described by the intersection

of a finite number of ellipsoidal structures:

U =
k⋂
e=0

U(Πe,Qe) (1.8)

with the additional requirement that U is bounded and there is at least one matrix A ∈ U

which belongs to the “relative interior” of every U(Πe, Qe), e = 1, ...k. The resulting

Problem (1.5) with ellipsoidal uncertainty can be equivalently reformulated as a conic

quadratic program [Ben-Tal and Nemirovski, 1999].
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Norm uncertainty

Bertsimas et al. [2004] generalize the ellipsoidal uncertainty to any arbitrary norm p. Par-

ticularly, the uncertainty is defined as

U = {A|‖M(vec(A)− vec(Ā))‖p ≤ ∆} (1.9)

where vec(A) is a vector constructed by concatenating the rows of A, matrix M is invert-

ible, and Ā is any constant matrix. Bertsimas et al. [2004] show that when p = 1 or ∞,

Problem (1.5) with norm uncertainty can be reformulated as a linear program.

Cardinality constrained uncertainty

Bertsimas and Sim [2003] propose a support structure that is described by a family of

hyperrectangles with a fixed number of dimensions. To be specific, let aij be the jth

parameter of constraint i. Parameter aij varies in interval
[
aij, aij + hij

]
where aij is the

nominal value of aij and hij is the maximum deviation from the nominal value. The

cardinality constrained uncertainty is defined as

U =
n∏
i=1

Ui =
⋃

S∈{Si|Si⊆{1,...,m},|Si|≤Γi}

ui
∣∣∣∣∣∣∣
aij ∈

[
aij, aij + hij

]
, ∀j ∈ S,

aij = aij,∀j 6∈ S


 . (1.10)

Problem (1.5) with cardinality constrained uncertainty has an equivalent linear program

[Bertsimas and Sim, 2003].

Compared to the other uncertainty structures, the cardinality constrained uncertainty
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provides a simple way to characterize the uncertainty support when there is not enough

information for an accurate description on the structure. The decision maker controls the

level of robustness by choosing appropriate cardinalities. The resulting model can provide

a solution with an acceptable trade-off between optimality and robustness. In this thesis,

we develop models based on cardinality constrained uncertainty.

1.4. Summary and Contributions of the thesis

The thesis studies three important problems in routing and scheduling, i.e. the crew

pairing problem, the shortest path problem with resource constraints, and the vehicle

routing problem with time windows. The focus is on modeling uncertainty, and building

effective solution methodologies based on robust optimization with cardinality constrained

uncertainty.

The thesis is organized as follows. Chapter 2 studies the robust crew pairing problem

under cardinality constrained uncertainty. In contrast to the deterministic crew pairing

problem, uncertainty in flight delays is modelled by allowing the time between two flight

departures to vary in an interval. The model permits the decision maker to control the

level of robustness by specifying a maximum number of disruptions allowed in a pairing.

We propose a solution methodology based on column generation where the subproblem is

a robust shortest path problem with a resource constraint. Unlike the robust combina-

torial optimization problem in Bertsimas and Sim [2003] where only objective coefficients

are uncertain, both objective and resource constraint coefficients of the subproblem are

uncertain. We prove that the sequential approach proposed by Bertsimas and Sim [2003]
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that generates and solves a series of deterministic problems may be extended to solve the

robust shortest path problem with a resource constraint. The robust crew pairing model

and methodology are tested on a set of instances generated from a real problem and the so-

lutions are compared against the deterministic solutions under simulated disruptions. The

results show that the proposed solution approach successfully solves the instances within

reasonable time and that the solutions are more robust than the deterministic solutions.

In Chapter 3, the robust shortest path problem with multiple resource constraints

is studied. The resulting robust model is more challenging to solve and the sequential

approach becomes computationally expensive for large size instances. To address the chal-

lenge, we develop a set of graph reduction techniques and propose a new dominance rule

that exploits robust information. The solution method is tested on a set of instances and

its effectiveness is supported by the results.

Chapter 4 studies the vehicle routing problem with time windows under customer de-

mand uncertainty. The demand uncertainty is described by the cardinality constrained

support, which is more challenging than the polyhedral support studied in Gounaris et al.

[2013]. We propose a branch-and-price-and-cut algorithm where a novel separation strat-

egy for valid cutting planes is used. The robust model and solution approach are tested on

a set of instances derived from the Solomon instances. The robust solutions show superior

protection against uncertainty, compared to the deterministic solutions under simulated

scenarios.
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1.5. Structure of the thesis

This thesis is organized as follows. In Chapter 2, we propose the formulation and solu-

tion methodology for the robust crew pairing problem based on cardinality constrained

uncertainty. Chapter 3 generalizes the robust shortest path problem with single resource

constraint to the case with multiple resource constraints, and presents a set of graph reduc-

tion procedures and a new dominance rule. Chapter 4 proposes a robust vehicle routing

problem with time windows where customer demands are uncertain. A branch-and-price-

and-cut algorithm and a novel cutting-plane separation procedure are developed to solve

the problem. Chapter 5 concludes the thesis and discusses future research directions.
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Chapter 2

The robust crew pairing problem

This chapter is based on Lu and Gzara [2014b], published online, Journal of Global Opti-

mization.

2.1. Motivation and objective

Planning airline operations is a complex task that involves flight schedule design, aircraft

assignment, aircraft routing, and crew scheduling. The complexity stems from the large

number of decisions, strict safety rules set by aviation regulating bodies, and a highly

uncertain operating environment. In real-time operations, an aircraft may malfunction, a

crew member may call-in sick, a passenger may show up late, or the weather conditions

may be too dangerous to fly. For example the volcano ash ejected from the eruption of

Eyjafjallajökull paralyzed the aviation system of Europe in 2010, affecting thousands of

flights. The freezing rain in January 2014 in Toronto, Canada, led to hundreds of delays
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and cancellations. Any of these factors and others will cause a flight delay or cancellation,

and successive flights on the schedule are likely to be affected. Between August 2012 and

January 2013, about 19% of flights were delayed according to 16 air carriers reporting

to the Bureau of Transportation Statistics. Among these, 6.5% are due to late aircraft

arrivals. Delays in domestic passenger flights in the U.S.A. cost the U.S. economy $31.2

billion in 2007, including $8.3 billion in direct costs to airlines, $16.7 billion in indirect

costs to passengers, $200 million in lost demand, and $4.0 billion in forgone GDP [Ball

et al., 2010]. In 2011, 103 million minutes of delay caused by the U.S. national aviation

control system were reported by Airlines for America (A4A) for U.S. passenger airlines

over 77 U.S. airports. This delay figure is estimated to incur a cost of $7.732 billion to the

airlines with $1.636 billion as crew pay [A4A].

Operations Research has made significant contributions to the airline industry through

modeling and solving aircraft and crew scheduling problems. Models developed in the

last 50 years led to better planning and huge savings for the industry [Clarke and Ryan,

2001]. While most literature assumes a deterministic context with known and fixed flight

and connection times with no account of delay, numerous studies show that schedules

made under such assumptions are sensitive to disruptions that may occur during execution

[Birge and Louveaux, 2011; Herroelen and Leus, 2005; Sahinidis, 2004]. In particular, crew

schedules are affected because of the strict regulations related to crew safety, fatigue, labor

agreements, etc. Disrupted crew schedules are more costly for airlines than planned since

crews are paid for the maximum of the scheduled and the actual workloads. Furthermore,

a crew may no longer fly after reaching the maximum allowable workload, and a stand-by

crew must be called in to cover the rest of the schedule. The additional cost of these
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irregular operations may lead to about 5% increase in the operational crew cost compared

to the cost in the planning stage [Shebalov and Klabjan, 2006]. In addition, crew cost is

the second largest expense for airlines after fuel cost [Yen and Birge, 2000]. Improving

crew scheduling by building schedules that are less susceptible to delays and disruptions

may potentially result in significant savings.

As will be defined and discussed in the next section, a core problem solved when building

crew schedules is the crew pairing problem. In this chapter we focus on the crew pairing

problem under an uncertain disruption setting. We aim at building robust schedules that

will remain feasible and will minimize the cost of disruption under certain delay patterns.

The work makes three significant contributions. To the best of our knowledge, we present

the first robust crew pairing formulation with cardinality constrained uncertainty. In this

framework, uncertain parameters vary randomly within an interval. The robust model

minimizes the nominal crew cost and the additional cost due to delay and ensures that

selected pairings remain feasible after a disruption occurs. The robustness of the solutions

is controlled by a user-defined parameter referred to as protection level that limits the

number of delays. Since data uncertainty is modeled by intervals, the distribution of delay

is not required. Instead, the planner sets the range for delay. The robust formulation has

nonlinear terms in the objective function and in the resource constraint and cannot be

solved directly. We develop a solution methodology based on decomposition to isolate the

nonlinear terms in the subproblem. We propose for the first time the robust shortest path

problem with a resource constraint as a subproblem. We then prove that the nonlinear

subproblem may be solved as a series of deterministic auxiliary optimization problems.

The solution methodology for the subproblem extends the results of Bertsimas and Sim
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[2003] on the shortest path problem to the more difficult resource constrained case with

robustness in the objective function and in the constraint. Finally, we perform extensive

testing and simulation using random and real instances to conclude that the proposed

model and solution methodology solve in competitive time and lead to more robust crew

pairings.

The chapter is organized as follows. Section 2.2 introduces airline planning in general.

Then we narrow the scope of the discussion down to crew scheduling. Section 2.3 provides

a review of the literature on the crew pairing problem under uncertainty. Section 2.4 intro-

duces a robust formulation of the crew pairing problem with random delays. The solution

process based on Lagrangian relaxation and Dantzig-wolfe decomposition is detailed in

Section 2.5. The robust shortest path problem with a resource constraint is discussed in

Section 2.6. Section 2.7 reports on the computational testing on real data from a European

airline and on simulation results devised to compare the robust and deterministic solutions.

The conclusion is presented in Section 2.8.

2.2. Introduction to airline planning and crew pairing

This section first provides a general introduction to the planning activities involved in

airline operations. Then the crew pairing problem is defined and the modeling and solution

techniques are discussed.
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2.2.1 Airline planning

Airline planning is composed of several stages of decision making as shown in Figure 2.1.

The decision making problems at each stage are complex and present a challenge to solve

due to the large-scale and the several restrictions and requirements that need to be taken

into account. Therefore, these stages are dealt with sequentially despite being dependent.

The first stage deals with schedule design. The goal is to construct a cyclic daily or

weekly schedule of flights to be flown repeatedly for a given planning period, usually

one month. Inputs to flight schedules include forecasts of potential resources (e.g. fleet

capacity, assigned time slots at airports, etc.), forecasts of market demand, competitors’

service situation, and the desired market initiatives. The output is a generic service plan

with no specific aircraft or crew assignment. The second stage solves the fleet assignment

problem which determines what type of aircraft is used for each flight. The inputs in this

stage are flight schedules, number of aircrafts by fleet type, turn around time (i.e. the

amount of time an aircraft spends on ground between flights) by fleet type at each airport,

operating cost and potential revenue of flights by fleet type. The output is an assignment

of fleet types to scheduled flights such that profit is maximized, every flight is covered by

exactly one fleet type, and total aircraft resources are not exceeded. The next stage is the

maintenance routing or aircraft routing problem, in which each aircraft is assigned to a

sequence of flights so that maintenance checks can be adequately and regularly carried out

at specific airports depending on the fleet type. Such maintenance is necessary for a safe

and high utilization of aircrafts. The inputs and outputs for each stage are summarized in

Table 2.1. After the three stages are completed, crew scheduling is then addressed.
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Figure 2.1: Airline planning.
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Table 2.1: The inputs and outputs for each airline planning stage.

Planning stage Inputs Outputs

Schedule generation
Forecasts of potential resources, market
demand, competitors’ service situation,
and desired market initiatives

A generic flight
schedule

Fleet assignment

Flight schedule, number of aircrafts by
fleet type, turn-around time by fleet type
at each airport, operating cost and poten-
tial revenue of flights by fleet type

An assignment
of fleet types to
scheduled flights

Maintenance routing
Flight schedule with fleet type, the status
of each aircraft, turn-around time by fleet
type at each airport, regulation rules

An assignment of
tasks for each aircraft

Crew scheduling

Flight schedule with fleet type, number of
crew members required by fleet type, total
number of crew members, status of each
crew member, regulation rules, crew cost
structure

An assignment of
tasks for each crew
member

2.2.2 Crew pairing

Crew schedules are built by first forming crew pairings as legal sequences of duties. A duty

is a sequence of flight legs that spans a work day; and a pairing is a sequence of flight

legs that spans multiple days with legal rules enforced and is assigned to one crew. The

crew pairing problem constructs a set of pairings such that each scheduled flight is covered

exactly once at minimum cost. The crew pairing problem is important as it possesses

properties that are common to all crew scheduling problems. Moreover, it is one of the

most complex scheduling problems due to its complicated cost structure and the numerous

restrictions imposed.
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Pairing cost and work rules

There are a number of rules restricting the set of feasible duties and pairings. These rules

usually come from three sources. First, governing agencies issue regulations for safety

purposes, such as the maximum flying time in a pairing. Second, labor unions often

impose requirements concerning work conditions, such as safety and service requirements

on accommodation and ground transportation. Third, airlines have additional constraints

such as fair balancing of workload among different crew bases. All of these constraints lead

to a huge computational challenge. For example, the restrictions imposed on duty include

minimum and maximum sit time between sequential flights, maximum elapsed time and

flying time in a duty. Rules imposed on pairing include maximum number of duties in a

pairing, minimum and maximum amount of rest between duties, and the maximum time

away from crew base [Barnhart et al., 2003].

The crew cost for a duty is usually the maximum of three quantities, i.e. the flying

time, a fraction of the total elapsed time, and the minimum guaranteed number of hours.

With this payment structure, crews are protected against very short duties or duties with

extensive idle time between flights. The cost of a pairing comprises of two parts. The

first part is the maximum of three quantities, that are the sum of the costs of all duties

involved in the pairing, a fraction of the total elapsed time of the pairing, and a minimum

guaranteed time per pairing. The second part of a pairing cost consists of extra costs such

as meals and accommodation.
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Formulation and solution methodology

The classical formulation for the crew pairing problem is a set-partitioning type where the

set of flights in F are to be covered by pairings in P . Each pairing p ∈ P has a cost cp, and

aip = 1 if flight i ∈ F is covered by pairing p ∈ P and 0 otherwise. The decision variable

xp equals 1 if pairing p ∈ P is selected, and 0 otherwise. The objective for the crew pairing

problem is to minimize the total cost of selected pairings such that each flight is covered

by a pairing, resulting in the following set partitioning formulation:

[P]: min
∑
p∈P

cpxp (2.1)

s.t.
∑
p∈P

aipxp = 1 i ∈ F (2.2)

xp ∈ {0, 1} p ∈ P (2.3)

In practice, it is prohibitive to enumerate the set of feasible pairings P . Instead, the

set-partitioning formulation is solved implicitly by branch-and-price. At each node of the

branch-and-bound tree, the LP relaxation of problem [P] defined over a subset of the

pairings is solved iteratively until no promising pairings are generated [Barnhart et al.,

2003; Desaulniers et al., 1997, 1998; Desrosiers et al., 1995]. The subproblem is a shortest

path problem with resource constraints (SPPRC), which can be solved by a label-setting

algorithm. The labels of a node are cost-resource vectors. The cost-resource vector records

those nonlinear costs and resources that can be built into the network, e.g. the total flying

time, the number of duties in a pairing, etc. In the case of multi-resource or nonlinear cost,

the solution methodology of SPPRC needs to keep all nondominated paths to intermediate
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nodes. A detailed discussion of SPPRC is found in Desrosiers et al. [1995],Desaulniers et al.

[1997] and Desaulniers et al. [1998].

To find the optimal integer solution, the column generation algorithm is embedded

in a branch-and-bound scheme, i.e. commonly known as the branch-and-price algorithm.

Details of applying branch-and-price to a general IP can be found in Barnhart et al.

[1998]. In the airline crew pairing problem, the traditional branching rule, i.e. forcing a

pairing to be selected or not, is difficult to implement due to the fact that the subproblem

will need to forbid more and more paths from being generated as the algorithm proceeds

deeper along the branch-and-bound tree. This means the subproblem may have to find the

(k + 1)th constrained shortest path if k paths are forbidden, which is time consuming. A

better branching rule is based on the strategy suggested by Ryan and Foster [1981]. The

branching strategy says that if Y ∈ {0, 1}n×m is a 0-1 matrix, and a basic solution θ ∈ Rm

to Y θ = 1 is fractional, i.e. at least one of the components of θ is fractional, then there

exist two rows r and s of the master problem such that 0 <
∑

k:yrk=1,ysk=1

θk < 1 where yik

denotes the ith row entry of column k. Based on this, the branching rule of the airline

crew pairing problem forces a pair of flights to be either covered by the same pairing or

by two different pairings. Moreover, since it is much easier to force two flights to appear

consecutively or not, the branching rule is adjusted accordingly so that flights r and s

are either consecutive in a pairing or not. This is sometimes referred to as the follow-on

strategy. Desaulniers et al. [1997] implemented the branch-and-price technique in a model

that solves the crew pairing problem for Air France.
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Network structure for pairing generator

Pairings are generated based on the idea of multi-commodity network flows where crews

are commodities moving between airports. There are two types of networks used in the

literature to model the crew pairing problem. The flight network is composed of flight legs,

source nodes, sink nodes and connection arcs. The network is time and space based, i.e.

each node in the network defines a time at a particular airport, except the source and sink

nodes. A flight leg is represented by an arc connecting a node at the departure airport

at departure time and a node at the arrival airport at arrival time. A pair of nodes are

connected by a connection arc if such connection is feasible both in time and space, i.e.

the two nodes should correspond to the same airport, and the time between them is long

enough for required rest. The cost of an arc is defined as the time interval between its two

nodes, except for the arcs having source node or sink node at one end. The source nodes

and sink nodes do not have time attribute, so they can connect to any departure node and

arrival node with a cost of zero as long as the space feasibility is satisfied. Figure 2.2 gives

an example of a flight network corresponding to the one-day schedule shown in Table 2.2.

Table 2.2: An example of one-day schedule.

Flight nb. Departure airport Arriving airport Departure time Arrival time

1 A B 9am 10am
2 B A 11am 11:30am
3 A B 12:30pm 1pm
4 B C 1:30pm 2pm
5 C A 3pm 4pm

An alternative network structure uses duties as its building blocks. In this network,

there are three types of nodes, which are source nodes, sink nodes and duty nodes. The
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Figure 2.2: An example of flight network.

duties are constructed by enumerating all feasible combinations of scheduled flight legs for

one workday. Such an enumeration is possible since flights are space and time based, and

there are minimum and maximum sit time constraints. Two duty nodes are connected as

long as the successive one originates at the airport where its predecessor terminates, and the

rest period from the end of the first duty to the start of the second duty satisfies regulatory

rules. The source and sink nodes have the same features as those in flight network, i.e.

the arcs concerning them are only constrained by space feasibility with a time cost of zero.

Figure 2.3 shows a duty network using a subset of duties corresponding to a three-day

schedule with flights in each day replicating the schedule in Table 2.2. Table 2.3 shows all

feasible duties, in which an input 1 represents duty i covers flight j, and 0 otherwise. Note

that those nodes without any arcs coming in or going out can be eliminated to reduce the

network size. Also, due to the time attribute of the nodes in these two types of network,

the networks are directed and acyclic.

The choice of network structure depends on the geographic range of operation and
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Table 2.3: All possible duties based on schedule in Table 2.2.

Duty/Flight 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
2 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0
3 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0
4 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0
5 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

the complexity of work rules. Specifically, duty network is typically used for interna-

tional problems where the operational network tends to be sparse, while flight network

is commonly used for domestic operations because the hub-and-spoke network leads to a

tremendous number of feasible duties. Duty network intrinsically satisfies more rules than

flight network because the construction of duties takes into account some rules defining

duty feasibility, such as the maximum allowable flying time in a duty. There are, however,

many rules not captured by either duty or flight network. Therefore, only a subset of the

paths generated from the networks represents legal pairings.

2.3. Literature review

While most literature focuses on deterministic aircraft and crew scheduling problems and

assumes that scheduled flights depart and arrive on time, there is a growing body of

literature that models stability and recoverability of the schedules. Stability refers to

the ability of a solution to remain feasible/optimal when delays occur. This requires

incorporating protection measures during the planning process using a priori optimization

methodologies. On the other hand, recoverability refers to the ability to recover from

infeasibility during execution of the schedules. Re-optimization methodologies provide
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Figure 2.3: An example of duty network for a three-day schedule using duties 3, 5, 7, 10,
and 14 in Table 2.2.

recovery mechanisms during execution or implementation stage [Barnhart et al., 2003;

Eggenberg, 2009; Kohl et al., 2007]. The term “robust” is often used in the literature to

refer to schedules that are less susceptible to changes and disruptions. To avoid confusion

with robust optimization, we use the term “stable” to refer to such schedules and reserve

the term “robust” to refer to schedules obtained from robust optimization modeling.

A determining factor in this context is the amount of information available to charac-

terize uncertainty, leading to three types of models: deterministic, stochastic, and robust.

2.3.1 Deterministic optimization

Deterministic models assume that problem parameters are deterministic but incorporate

measures that are argued to lead to stable solutions. Such measures include increasing crew
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move-ups, limiting aircraft change, and increasing connection times to allow for recovery

when delays occur. Shebalov and Klabjan [2006] propose a model that improves a given

schedule by maximizing the number of move-ups where a move-up is a potential swap of

the remaining duties of two crews who have the same base and finish their pairings on the

same day. An expected benefit is that delays may be avoided if crews can swap schedules.

Another strategy to increase opportunities for aircraft and crew swaps is proposed by Smith

and Johnson [2006]. They limit the number of fleet types that serve an airport when

solving the fleet assignment problem. Gao et al. [2009] extend this strategy to account

for crew connections within the fleet assignment problem and limit both the number of

fleet types and crew bases that serve an airport. Weide et al. [2010] penalize the number

of times crews swap aircraft and iteratively solve a crew pairing problem and an aircraft

routing problem with modified objectives. The objective of the crew pairing problem is

to minimize the sum of crew cost and penalties on aircraft changes; and the objective of

the aircraft routing problem is to maximize the total weights of short connections used by

both crew pairing solution and aircraft routing solution. Ehrgott and Ryan [2002] penalize

short connection times where crews have to change aircraft and solve a biobjective crew

scheduling problem. The first objective is to minimize crew pairing cost and the second

objective is to minimize total penalty over all crews. Tekiner et al. [2009] model a crew

pairing problem where some of the flights are not scheduled beforehand but may be added

during execution. They propose techniques to insert these flights within crew schedules

while minimizing disruptions by allowing a limited number of deadheads or through long

connection times.
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2.3.2 Stochastic optimization

Stochastic models assume that random parameters follow a known probability distribution

and use either expected values or probabilistic measures. Sohoni et al. [2011] propose

two stochastic mixed-integer models where block-time (elapsed time between the time an

aircraft pushes back from the departure gate and arrives at the destination gate) follows a

truncated normal distribution. The models reallocate slack time at selected connections.

In one model, the objective maximizes profit while satisfying service levels on flights and

passengers. In the other model, the weighted service levels are maximized with a guaranteed

profit level. They develop algorithms that iteratively generate cuts to approximate the

nonlinearity in these two models. Schaefer et al. [2000] use a deterministic crew pairing

model where the pairing costs are expected values determined by simulation. The model

assumes that the pairing cost is independent of other pairings and the simulation uses push-

back recovery strategy to restore from disruption, i.e. the disrupted flights are delayed until

all of the resources are available. Yen and Birge [2000] use a similar approach to Ehrgott

and Ryan [2002], but study the stochastic case where arrival and departure times are

random and are modeled by a set of scenarios. Tam et al. [2011] compare the two-stage

stochastic model of Yen and Birge [2000] and the biobjective model of Ehrgott and Ryan

[2002] using data from Air New Zealand. They conclude that both models improve crew

schedule stability and observe that the biobjective model is suitable under moderate delay

cost, while the stochastic model is suitable under large delay cost. Dunbar et al. [2012]

minimize propagated delay for aircraft and crew by iteratively solving aircraft routing and

crew pairing problems. When solving the subproblems, they incorporate aircraft delay to

calculate propagated crew delay and vice versa. Lan et al. [2006] present two methods with
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different objectives. The first method tries to reduce delay propagation where delays follow

a log-normal distribution. A second passenger-based approach minimizes the number of

disrupted passengers by re-timing departure time of flights within a small time window.

2.3.3 Robust optimization

Robust models do not make any assumptions on the distribution of problem parameters,

but assume that parameters vary within a known interval, and model worst-case behavior.

Worst-case based optimization was introduced in the 70s [Soyster, 1973]. More recent

studies include those by Ben-Tal and Nemirovski [1998], Ben-Tal and Nemirovski [1999]

and Ben-Tal and Nemirovski [2000]. One drawback of this modeling approach is that

robustness comes with a significant increase in cost. Bertsimas and Sim [2004] propose

to control the robustness of the solution by bounding the worst case by a parameter.

Bertsimas and Sim [2003] focus on discrete optimization and show that certain types of

robust discrete problems can be solved as a series of deterministic problems. To be specific,

constraint and objective coefficients vary within an interval. To control the conservatism of

the robust solutions, the number of coefficients that may deviate from their nominal value

in each constraint is limited by an upper bound called protection level. The model finds

a solution that optimizes the objective function in the worst case with a given protection

level and guarantees to be feasible when the number of random coefficients in each robust

constraint is limited by the corresponding protection level.

To the best of our knowledge, no previous work studies the crew pairing problem under

data uncertainty from the point of view of robust optimization. We use the modeling
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framework of Bertsimas and Sim [2003] and propose for the first time the robust crew

pairing problem where both the objective function and resource constraints include a robust

term. In this framework, data uncertainty is modeled by intervals and does not require the

distribution of delays as input for the model. Instead, the user determines the reasonable

ranges for the delays. The cost of pairing flights varies randomly in an interval for which the

lower limit is referred to as the nominal cost and the length of the interval is referred to as

the maximum deviation. The level of robustness of the solution is controlled by specifying

a protection level which sets a maximum number of deviations from the nominal cost on

any crew pairing. The proposed model includes nonlinear robust terms that account for

the cost of deviation in the objective function and resource constraints.

2.4. Robust crew pairing formulation

The crew pairing problem is defined on a set of crews, K, and a flight network G = (N,A);

where N is the set of nodes and A is set of arcs. A flight network is typically used to

schedule domestic operations due to the large number of feasible duties [Barnhart et al.,

2003; Minoux, 1984; Desrosiers et al., 1991; Klabjan et al., 2001a; Shebalov and Klabjan,

2006], while a duty network is typically used to model international problems [Barnhart

et al., 1995; Desaulniers et al., 1997; Klabjan et al., 2001b]. A hybrid of the two networks

is used in Makri and Klabjan [2004]. There are three types of nodes in N : crew origin

nodes denoted by set O, crew destination nodes denoted by set D, and flight nodes denoted

by N\{O,D}. Flight nodes are time and location dependent and are associated with the

departure time and departing airport. The base of crew k ∈ K is denoted by the origin and
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destination nodes ok and dk, respectively. The set A consists of three types of arcs. Arc

(ok, i) exists if crew k can start its schedule with flight i, and arc (i, dk) exists if crew k can

end its schedule with flight i. Arc (i, j) exists if flight i can be followed by flight j and the

minimum connection time is satisfied. Arc (i, j) accounts for flight leg and flight connection

and is referred to as connection (i, j) in the rest of the chapter. Let Gk = (Nk, Ak) be the

subgraph of G associated with crew k, constructed by removing the nodes and arcs that

can not be visited by crew k from G.

According to Lavoie et al. [1988], a function of total time away from base reasonably

represents pairing cost. We use total time away from base as a measure of pairing cost and

refer to time and cost interchangeably. Also, we consider random arc costs that vary in an

interval [cij, cij + hij]. The nominal cost cij is what would be the cost of arc (i, j) in the

deterministic case. It is the advertised time in flight schedules, and it is the time between

the departure of flight i and the departure of flight j, including flying time of flight i and

the connection time between flights i and j. The parameter hij is the maximum deviation

from the nominal cost of arc (i, j), and includes the delay of flight i and the additional time

spent connecting between flights i and j. Deviation then represents the total delay between

the departure of flights i and j. Without loss of generality, we assume the nominal cost

and maximum deviation of arcs (ok, j) and (i, dk) are zero. Let Tk ⊆ Ak be the set of arcs

(i, j) ∈ Ak with hij > 0, and let Γk be the maximum number of arcs that may experience

deviation for any pairing of crew k, referred to as the protection level. The protection level

is a user defined parameter to control the level of robustness of the solution. In practice

system operators may experiment with several protection levels and analyze the trade-offs

between system costs and robustness of the solution. The maximum duration, D(Γk), of
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a pairing is a function of Γk and is limited by the maximum allowable time crew k may

spend away from base, denoted by bk. This is a strict rule that is modeled as a resource

constraint.

The robust crew pairing formulation finds solutions that remain feasible with respect

to the resource constraints when up to Γk arcs experience the maximum deviation on any

pairing for crew k ∈ K. The objective is to find a schedule that minimizes the total crew

pairing cost when up to Γk arcs experience the maximum deviation on any pairing for crew

k ∈ K. The robust crew pairing formulation is

[P1]: min
∑
k∈K

∑
(i,j)∈Ak

cijy
k
ij +

∑
k∈K

βk(y
k) (2.4)

s.t.
∑
k∈K

∑
i:(i,j)∈Ak

ykij = 1 j ∈ N\{O,D} (2.5)

∑
j:(ok,j)∈Ak

ykok,j = 1 k ∈ K (2.6)

∑
i:(i,j)∈Ak

ykij −
∑

i:(j,i)∈Ak
ykji = 0 j ∈ Nk\{ok, dk}, k ∈ K (2.7)

∑
i:(i,dk)∈Ak

yki,dk = 1 k ∈ K (2.8)

D(Γk) ≤ bk k ∈ K (2.9)

ykij ∈ {0, 1} (i, j) ∈ Ak, k ∈ K (2.10)

where ykij is a binary decision variable which equals 1 if arc (i, j) ∈ Ak is selected in a
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pairing for crew k and 0 otherwise, yk is a vector of decision variables ykij,

D(Γk) =
∑

(i,j)∈Ak
cijy

k
ij + βk(y

k), (2.11)

and

[BETA]: βk(y
k) = max

{Sk|Sk⊆Tk,|Sk|≤Γk}

 ∑
(i,j)∈Sk

hijy
k
ij

 . (2.12)

The inner maximization problem [BETA] finds a subset Sk of the arcs such that |Sk| ≤

Γk, and the sum of the maximum deviations on the arcs in Sk is maximized. The objective

function (2.4) minimizes the robust crew pairing cost as the sum of the nominal cost and

the maximum deviation cost with a given number of allowable deviations Γk for each crew

k ∈ K. Constraints (2.5) make sure that each flight is covered by exactly one crew.

Constraints (2.6) to (2.8) are flow balance constraints. Constraints (2.9) are the robust

resource constraints that treat the maximum time-away-from-base as a resource limit. A

feasible pairing with respect to this constraint is one where the duration of a pairing for

crew k under the maximum deviation of at most Γk arcs is less than or equal to the resource

limit bk. The model assumes a push-back recovery strategy where a flight is delayed until

all of the resources are available.

Model [P1] differs from the deterministic formulation of crew pairing in that it includes

nonlinear terms in the objective function and constraints. In addition to size, the non-

linearities represent the main difficulty in [P1]. The deterministic crew pairing problem

is of large-scale and so is the robust case. Moreover as robustness is introduced into the
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problem, the problem becomes nonlinear due to the inner maximization problem βk(y
k).

Consequently, it is not possible to solve [P1] directly. One alternative is to transform [P1]

into a MIP by dualizing the inner maximization as shown by Bertsimas and Sim [2003].

However, this results in (|K|+ 1)(|A|+ 1) additional continuous variables and (|K|+ 1)|A|

additional constraints. Moreover, it is shown by Bertsimas and Sim [2003] that the robust

counterpart of an NP-hard combinatorial problem is also NP-hard. Clearly, the determin-

istic crew pairing problem is NP-hard, and so is [P1]. As for the deterministic crew pairing

problem, decomposition is the most successful exact approach. Applying Lagrangian re-

laxation to [P1] does not solve the nonlinearity issue but moves all nonlinearities to the

subproblem. It turns out that dealing with the nonlinear terms within the subproblem

is less challenging. Next we discuss how to decompose [P1] using Lagrangian relaxation

and relate that to Dantzig-Wolfe decomposition to obtain feasible solutions. Then we dis-

cuss how to linearize βk(y
k) and show that the subproblem can be solved as a series of

deterministic nominal problems.

2.5. Solution methodology

Applying Lagrangian relaxation on the linking constraints (2.5) using variables αj, j ∈

N\{O,D} results in the relaxed problem:
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[LR]: min
∑
k∈K

∑
(i,j)∈Ak

cijy
k
ij +

∑
k∈K

βk(y
k)+

∑
j∈N\{O,D}

αj

1−
∑
k∈K

∑
i:(i,j)∈Ak

ykij

 (2.13)

s.t. constraints (2.6) to (2.10),

which further decomposes into |K| subproblems, one for each crew k ∈ K.

[SPk]: RCk(α) = min
∑

(i,j)∈Ak
cijy

k
ij + βk(y

k)−
∑

j∈N\{O,D}

∑
i:(i,j)∈Ak

αjy
k
ij (2.14)

s.t.
∑

j:(ok,j)∈Ak
ykok,j = 1 (2.15)

∑
i:(i,j)∈Ak

ykij −
∑

i:(j,i)∈Ak
ykji = 0 j ∈ Nk\{ok, dk} (2.16)

∑
i:(i,dk)∈Ak

yki,dk = 1 (2.17)

∑
(i,j)∈Ak

cijy
k
ij + βk(y

k) ≤ bk (2.18)

ykij ∈ {0, 1} (i, j) ∈ Ak. (2.19)

Without the term βk(y
k), the subproblem would be a shortest path problem with

resource constraints. We refer to [SPk] as a robust shortest path problem with resource

constraints defined on an acyclic network Gk. If a feasible crew schedule exists in the
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network Gk, the feasible region of subproblem [SPk] is nonempty and bounded for all α.

Let Hk, indexed by h, be the set of feasible paths for subproblem [SPk], and let us represent

path h by a binary vector ykh where ykhij = 1 if arc (i, j) is on path h. The Lagrangian

master problem is given by:

[MP]: max
∑

j∈N\{O,D}

αj +
∑
k∈K

θk (2.20)

s.t. θk ≤
∑

(i,j)∈Ak
cijy

kh
ij + βk(y

kh)−

∑
j∈N\{O,D}

∑
i:(i,j)∈Ak

αjy
kh
ij h ∈ Hk, k ∈ K (2.21)

θk free k ∈ K (2.22)

αj free j ∈ N\{O,D}. (2.23)

We use a cutting plane method to solve [MP], where the solution of the subproblem [SPk]

gives a cutting plane in the form of constraint (2.21) while the solution of [MP] proposes new

variables αj to the subproblem [SPk] in each iteration. The algorithm terminates when the

lower bound
∑

j∈N\{O,D} αj +
∑

k∈K RCk(α) is equal to the upper bound
∑

j∈N\{O,D} αj +∑
k∈K θk.

To generate feasible solutions to [P1], we use dual information generated when the

Lagrangian master problem is solved. Define decision variable λhk ∈ [0, 1] which is the

fraction of crew k that is assigned a pairing corresponding to solution ykh, and let parameter

ahik = 1 if flight i is covered in solution ykh, and whk =
∑

(i,j)∈Ak cijy
kh
ij + βk(y

kh). The dual
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of [MP] is the Dantzig-Wolf master problem:

[DW]: min
∑
k∈K

∑
h∈Hk

whkλ
h
k (2.24)

s.t.
∑
k∈K

∑
h∈Hk

ahikλ
h
k = 1 i ∈ N\{O,D} (2.25)

∑
h∈Hk

λhk = 1 k ∈ K (2.26)

0 ≤ λhk ≤ 1 k ∈ K,h ∈ Hk. (2.27)

At each iteration of the cutting plane algorithm, solving the relaxed Lagrangian master

problem is the same as solving a restricted Dantzig-Wolfe master problem defined on the

same subset of paths, i.e., a restriction of [DW] defined on a subset of pairings. When

λhk ∈ {0, 1}, the binary [DW] master problem is the set-partitioning formulation equivalent

to [P1]. When the cutting plane algorithm terminates, the Lagrangian master problem

is solved and the Lagrangian bound is obtained. At this point, a set of pairings, i.e.,

subproblem solutions, are generated. We use these pairings to form a restricted [DW],

enforce binary requirements on λhk, and solve the resulting model to obtain a feasible

solution and a valid upper bound on [P1]. The experimental results presented in Section

6 show that the feasible solutions are optimal in most cases, and are very close to optimal

in the remaining cases.

35



2.6. Robust shortest path with single resource con-

straints

When solving the deterministic crew pairing problem using column generation, the sub-

problem is a deterministic SPPRC which is known to be NP-hard [Ball, 1995]. The sub-

problem in our case is a robust SPPRC, and it reduces to the deterministic problem when

Γ = 0. Hence, it is also NP-hard. A robust formulation of the shortest path problem is

presented in Bertsimas and Sim [2003] where the objective function coefficients are uncer-

tain. This is different from the problem we treat in that it has resource constraints and

has robust terms both in the objective function and constraints. Next, we prove that the

solution methodology proposed by Bertsimas and Sim [2003] may be extended and that

[SPk] may be solved as a series of nominal problems.

Let c and c̄ be the vectors of arc costs cij and modified arc costs cij − αj for all arcs

(i, j) ∈ Ak. For ease of exposition, we drop index k, define n = |Ak|, introduce index

t = 1, ..., n on the arcs (i, j) ∈ Ak, and rewrite [SPk] in a compact form:

[P2]: Z = min c̄>y + max
{S|S⊆T,|S|≤Γ}

∑
t∈S

htyt (2.28)

s.t. y ∈ Y (2.29)

c>y + max
{S|S⊆T,|S|≤Γ}

∑
t∈S

htyt ≤ b (2.30)

where Y is the feasible set defined by flow balance constraints (2.15), (2.16), (2.17) and

the binary constraint (2.19). Without loss of generality, we assume that index t is ordered
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such that h1 ≥ h2 ≥ ... ≥ hn, and hn+1 = 0. Taking advantage of the special structure

of [P2], we show in Theorems 2.1 and 2.2 that it may be solved by solving at most n + 1

deterministic resource-constrained shortest path problems.

Theorem 2.1. Solving problem [P2] is equivalent to solving problem [P3]:

[P3]: Z = min c̄>y + min
{
U1(y), . . . , Ud−1(y), . . . , Un+1(y)

}
(2.31)

s.t. y ∈ Y (2.32)

c>y + min
{
U1(y), . . . , Ud−1(y), . . . , Un+1(y)

}
≤ b (2.33)

where

Ud(y) =



Γh1, d = 1,

Γhd−1 +
d∑
t=1

(ht − hd)yt, d = 2, . . . , n,

n∑
t=1

htyt, d = n+ 1.

(2.34)

Proof of Theorem 2.1. For a given y ∈ Y , the inner maximization is a bounded knapsack

problem:

[KN]: U(y) = max
∑
t∈T

htytut (2.35)

s.t.
∑
t∈T

ut ≤ Γ (2.36)

ut ∈ {0, 1} t = 1, ..., n. (2.37)
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Since Γ is integer, the binary requirement on ut may be relaxed, and ut becomes a contin-

uous variable in [0, 1]. [KN] becomes:

[KN]: U(y) = max
n∑
t=1

htytut (2.38)

s.t.
n∑
t=1

ut ≤ Γ (2.39)

0 ≤ ut ≤ 1 t = 1, ..., n. (2.40)

Define v ≥ 0 as the dual variable for constraint (2.39), pt ≥ 0, t = 1, ..., n as the dual

variable for constraints (2.40). The dual problem of [KN] is:

[DKN]: U(y) = min Γv +
n∑
t=1

pt (2.41)

s.t. pt + v ≥ htyt t = 1, ..., n (2.42)

pt, v ≥ 0 t = 1, ..., n. (2.43)

Observing that constraints (2.42) are equivalent to pt ≥ htyt − v, and pt ≥ 0, t = 1, ..., n,

we can write pt as:

pt = max{htyt − v, 0}, t = 1, ..., n. (2.44)

Since yt is binary, equality (2.44) can be written as:

pt = max{ht − v, 0}yt, t = 1, ..., n. (2.45)
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Replacing pt with equality (2.45), [DKN] is reformulated as:

[DKN]: U(y) = min Γv +
n∑
t=1

(max{ht − v, 0})yt (2.46)

s.t. v ≥ 0. (2.47)

Recall that ht is ordered such that h1 ≥ h2 ≥ · · · ≥ hn ≥ hn+1 = 0. Partitioning the

feasible range of v into n+1 intervals, max{ht−v, 0}yt can be linearized over each interval

and [DKN] can be solved by exploring all these intervals. To be specific, for v ∈ [h1,∞),

max{ht − v, 0}yt = 0, t = 1, . . . , n+ 1,

and for v ∈ [hd, hd−1], d = 2, . . . , n+ 1,

max{ht − v, 0}yt = (ht − v)yt, t = 1, . . . , d− 1,

while

max{ht − v, 0}yt = 0, t = d, . . . , n+ 1.

Based on this, the following equation holds:

n∑
t=1

(max{ht − v, 0})yt =


0, if v ∈ [h1,∞),

d−1∑
t=1

(ht − v)yt, if v ∈ [hd, hd−1], d = n+ 1, . . . , 2.

(2.48)
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Using equation (2.48), [DKN] decomposes into n + 1 subproblems, where in each sub-

problem v is defined on a specified interval. Let us use index d = 1, . . . , n + 1 to denote

these subproblems. For d = 1,

[SubDKN1]: U1(y) = min Γv (2.49)

s.t. v ∈ [h1,∞). (2.50)

In this case
n∑
t=1

(max{ht−v, 0})yt = 0 and it is removed from the objective function. Then,

the optimal solution of [SubDKN1] is obtained at v = h1. For d = 2, . . . , n+1, subproblem

d is given by

[SubDKNd]: Ud(y) = min Γv +
d−1∑
t=1

(ht − v)yt (2.51)

s.t. v ∈ [hd, hd−1]. (2.52)

Rearranging the objective function (2.51), [SubDKNd] becomes:

[SubDKNd]: Ud(y) = min (Γ −
d−1∑
t=1

yt)v +
d−1∑
t=1

htyt (2.53)

s.t. v ∈ [hd, hd−1]. (2.54)

Since
∑d−1

t=1 htyt is a constant, the linear objective function (2.53) optimizes v over inter-

val [hd, hd−1]. The optimal solution is obtained at v = hd or v = hd−1. Consequently,

40



subproblem d becomes

[SubDKNd]: Ud(y) = min

{
Γhd−1 +

d−1∑
t=1

(ht − hd−1)yt, Γhd +
d−1∑
t=1

(ht − hd)yt

}

= min

{
Γhd−1 +

d−1∑
t=1

(ht − hd−1)yt, Γhd +
d∑
t=1

(ht − hd)yt

}
. (2.55)

Since subproblems [SubDKNd], d = 1, ..., n+ 1, partition the feasible region of [DKN], the

optimal solution of [DKN] is the minimum solution over all [SubDKNd], that is:

[DKN]: U(y) = min

{
Γh1, . . . , Γhd−1 +

d−1∑
t=1

(ht − hd−1)yt, Γhd +
d∑
t=1

(ht − hd)yt, . . . ,

Γhn +
n∑
t=1

(ht − hn)yt,
n∑
t=1

htyt

}
. (2.56)

For ease of exposition, let us redefine Ud(y) as follows:

Ud(y) =



Γh1, d = 1,

Γhd +
d∑
t=1

(ht − hd)yt, d = 2, . . . , n,

n∑
t=1

htyt, d = n+ 1.

(2.57)

Then,

[DKN]: U(y) = min
{
U1(y), . . . , Ud(y), . . . , Un+1(y)

}
. (2.58)
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Replacing the inner maximization in [P2] with U(y) defined as in (2.58), [P2] becomes:

[P3]: Z = min c̄>y + min
{
U1(y), . . . , Ud(y), . . . , Un+1(y)

}
(2.59)

s.t. y ∈ Y (2.60)

c>y + min
{
U1(y), . . . , Ud(y), . . . , Un+1(y)

}
≤ b. (2.61)

Theorem 2.1 applies the techniques of Bertsimas and Sim [2003] to transform the inner

maximization into an inner minimization. The following theorem states that the nonlinear

problem [P3] can be solved as a series of linear problems.

Theorem 2.2. Solving [P3] is equivalent to solving problem [P4]:

[P4]: Z = min
d=1,...,n+1

{
Zd
}

(2.62)

where Zd is the objective function value of the nominal problem:

[Nd]: Zd = min c̄>y + Ud(y) (2.63)

s.t. y ∈ Y (2.64)

c>y + Ud(y) ≤ b (2.65)

for d = 1, ..., n+ 1.

Proof of Theorem 2.2. To show the equivalence, we first prove that the feasible regions of

[P3] and [P4] are identical, i.e. any feasible solution of [P3] is feasible to at least one nominal
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problem [Nd], and any infeasible solution of [P3] is infeasible to all nominal problems [Nd]

for d = 1, . . . , n+ 1.

• Suppose ŷ is feasible to [P3], then ŷ ∈ Y and there exists Ud(ŷ) such that c>ŷ +

Ud(ŷ) ≤ b. It follows that ŷ is feasible to at least one nominal problem [Nd], d =

1, . . . , n+ 1.

• Now, suppose ŷ is infeasible to [P3], then

ŷ /∈ Y or c>ŷ + min{U1(ŷ), . . . , Ud(ŷ), . . . , Un+1(ŷ)} > b.

If ŷ /∈ Y then ŷ is infeasible to [Nd], d = 1, . . . , n+ 1.

Else c>ŷ + min{U1(ŷ), . . . , Ud(ŷ), . . . , Un+1(ŷ)} > b, then

c>ŷ + Ud(ŷ) ≥ c>ŷ + min{U1(ŷ), . . . , Ud(ŷ), . . . , Un+1(ŷ)} > b, d = 1, . . . , n+ 1.

It follows that ŷ is infeasible to [Nd], d = 1, . . . , n+ 1.

Therefore, the feasible regions of [P3] and [P4] are identical. Then, we prove that the

objective value of any feasible solution of [P3] is the same as its objective value in [P4].

Suppose ŷ is a feasible solution of [P3], then

Z(ŷ) = c̄>ŷ + min
{
U1(ŷ), . . . , Ud(ŷ), . . . , Un+1(ŷ)

}
= min

{
U1(ŷ) + c̄>ŷ, . . . , Ud(ŷ) + c̄>ŷ, . . . , Un+1(ŷ) + c̄>ŷ

}
= min

{
Z1(ŷ), . . . , Zd(ŷ), . . . , Zn+1(ŷ)

}
,
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which is exactly the objective value of [P4]. The equivalence between [P3] and [P4] is

proved.

Theorems 2.1 and 2.2 state that the robust SPPRC is solved as n+1 nominal problems.

To be precise, at most n+1 nominal problems need to be solved. For the nominal problems

d and d+1, their objective function and resource constraints are the same when hd = hd+1,

i.e. Zd = Zd+1 and c>ŷ + Ud(ŷ) = c>ŷ + Ud+1(ŷ) ≤ b, d = 1, ..., n. This means that only

those nominal problems with distinct values of hd need to be solved. Moreover, solving

[Nd+1] after [Nd] requires updating the cost of arcs t = 1, . . . , d to obtain the network for

[Nd+1]. If the optimal path for [Nd] does not use any arc t = 1, . . . , d, this path remains

optimal to [Nd+1].

Define Bd = {t|ydt = 1, t = 1, ..., |A|} as the set of arcs used by the optimal path yd of

problem [Nd]. Problem [P4] is solved using the following algorithm:

Algorithm (SubAlgo):

Initialize: Z∗ =∞, y∗ = ∅, d = 1.

Step 1: Solve nominal problem [N1] with optimal solution y1.

If Z1 < Z∗, update Z∗ = Z1, y∗ = y1, d = d+ 1.

Step 2: While d < n+ 1

2.a If hd 6= hd−1 and Bd−1 ∩ {1, ..., d− 1} 6= ∅, go to Step 2.b, else go to Step 2.c.

2.b Solve nominal problem [Nd]. If Zd < Z∗, update Z∗ = Zd and y∗ = yd.

2.c Update d = d+ 1.

End While
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The algorithm sequentially creates and solves a set of nominal problems where the arc

costs are modified according to the current hd. Step 2.a forbids solving a nominal problem

that is either exactly the same as the previous one or that will not improve the solution. The

nominal problems [Nd] are shortest path problems solved using a label-setting algorithm.

The solution of the subproblem is the best among all nominal problems’ solutions and is

updated during the process. Compared to the deterministic case, Algorithm SubAlgo

solves at most n additional shortest path problems.

2.7. Computational tests

The computational tests are conducted on a workstation with Xeon processor and 8GB

RAM. The complete methodology and the label-setting algorithm are implemented in

C++. The relaxed Lagrangian master problem and the binary Dantzig-Wolfe master

problem are solved using CPLEX 12.2. The testing is carried out in two parts. In the

first part, we build 89 instances based on a flight schedule of a European airline to test

the effectiveness of the solution methodology in terms of solution quality and CPU time.

We also investigate the impact of problem parameters such as the protection level Γ , the

number of crews available, and the maximum deviation hij. In the second part, we use

simulation to evaluate the robust schedules and compare to deterministic ones.

2.7.1 Testing based on data from a European airline

The European airline under study operates 46 flight legs per day that span 7 airports.

The planning period is four days, which is typical in the airline industry. The airline
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uses the same base for its crew, and enforces a minimum connection time of 30 minutes,

and a maximum layover time of 24 hours. The nominal arc cost cij between nodes i and

j is defined as the elapsed time in minutes between scheduled departure of flight i and

scheduled departure of flight j. The maximum deviation hij denotes the delay between

flights i and j, and is uniformly generated from {30, 45, 60, 75, 90, 105, 120} in minutes.

The maximum time-away-from-base is 5760 minutes or 4 days, which means every crew

must return to base within 4 days.

To investigate the effects of the number of crews |K| and the protection level Γ , we

generate 89 instances with varying values for |K| and Γ . The number of crews has an

impact on the number of flights in a pairing. Fewer crews lead to longer pairings since

all flights have to be covered by a pairing. However, there should be enough crews for

the instances to remain feasible with respect to the planning period of 4 days. On the

other hand, crews may not be assigned to pairings when the number is large. Taking

this into account, the number of crews |K| is set to {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}.

The protection level sets a limit on the number of flights that could experience delay in a

pairing. So, reasonable values for the protection level should not exceed the length of the

pairing. Analyzing the data we have, we found that the longest pairing generated covers

22 flights. Then, the protection level is set to {1, 2, 3, 4, 5, 10, 15}, except for |K| = 20

where it is increased by an increment of 1 between 1 and 19. Tables 2.5 and 2.6 report on

the Lagrangian bound, the IP solution cost, the optimality gap, the percentage increase in

the IP solution for each value of Γ compared to Γ = 1, the number of columns generated,

and the CPU time in seconds used in each part of the algorithm. The optimality gap is

calculated using the Lagrangian bound and the IP feasible solution obtained by solving the
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binary DW master problem defined on the subset of pairings generated in the process of

calculating the bound. The notation is listed in Table 2.4 and summary results are given

in Table 2.7.

Table 2.4: List of notation.

LRB: The Lagrangian bound.
IP: The IP solution cost.
Gap: The optimality gap in percentage.
Inc: The percentage increase in IP objective value.
NbCol: The number of robust feasible pairings generated.
MST: CPU time used in solving the master problem.
SubT: CPU time used in solving the subproblem.
Tot: CPU time used to calculate Lagrangian bound.
IPT: CPU time used to calculate IP solution.

Tables 2.5 and 2.6 are organized so that the instance is solved repeatedly by fixing the

number of crews available |K| and varying the protection level Γ . The value of Γ is an

indication of the level of uncertainty expected during operation as it sets the number of

arcs in a pairing that may experience delay, and can be estimated using historical data. In

our experiments we vary Γ and study its impact on the cost. As Γ increases, the number of

arcs that may experience delay increases which is expected to lead to more costly pairings.

This is confirmed in columns IP in Tables 2.5 and 2.6, which show that cost increases

by about 13% when Γ increases from 1 to 15 for all values of |K|. On the other hand,

Figure 2.4 plots the IP solution cost as a function of |K| for Γ = 1, 10, 15 and shows

that for the same protection level, the IP solution cost decreases as more crews become

available. In other words when more crews are available, the number of flights delayed has

a lower impact on the overall operation. As more crews become available, the number of

crew pairings increases and the number of flights in a pairing decreases. This results in a
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decrease in the total nominal cost as well as a decrease in the robust cost because shorter

pairings limit the number of flights that may be delayed in a pairing. This also explains

why all crews available are used in the IP solution.

There is no strong evidence on whether the quality of the Lagrangian bound improves or

deteriorates as Γ increases. While the optimality gap fluctuates with no particular trend,

it is 0 in 50% of the cases and is on average 0.03%. The variation in the gap is probably

due to the IP solution and not to the Lagrangian bound. On the other hand, CPU time

usage increases with Γ . The increase in time is mainly used in the solution of the master

problem. Figure 2.5 plots CPU time and number of columns as a function of Γ for the

first 19 instances with |K| = 20. It shows that the number of columns generated increases

as Γ increases. CPU time fluctuates when Γ is small and shows a decreasing trend as Γ

increases. When Γ is large, more partial paths become infeasible, which makes the label

setting algorithm take less time. Figure 2.6 plots the average CPU time and the average

number of columns in function of |K|. The plot indicates that instances become easier as

|K| increases.

2.7.2 Evaluation of robust modeling by simulation

We run a total of 24000 simulation runs to evaluate crew pairings built by the robust

formulation, and compare to those built by deterministic modeling. We use 20 instances

defined on the same network and deterministic flight information as in Section 2.7.1 for

|K| = 20 and Γ = 0, ..., 19, and we generate the maximum delay hij in three ways to reflect

high, low, and time of day dependent delay. The maximum delay hij is set in multiples
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Figure 2.4: Trade-off between IP solution cost and number of crews for Γ = 5, 10, 15.
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Figure 2.6: Average CPU time and average number of columns in function of |K|.

of 15 minutes and takes values from H1 = {15, 30, 45, ..., 105, 120} in the low delay case

and from H2 = {15, 30, 45, ..., 225, 240} in the high delay case. For time of day dependent

delay, the study of more than 6 million flights in the database of BTS in 2013 [Silver]

reveals that the average flight delay exceeds 15 minutes at approximately 12:30pm, peaks

at 6pm, and drops below 15 minutes around 9:30pm. We set the time between 12:30pm

and 9:30pm as a high delay period and generate hij from from H2 if the arrival time of

flight i and the departure time of flight j is between 12:30pm and 9:30pm. Otherwise, hij

takes value from H1. At this point we have 60 instances that we solve using the proposed

algorithm to obtain 60 optimal schedules. While hij determines the range of deviation

on arc (i, j), µij is the actual deviation used in the simulated scenario. It is generated

based on either the Uniform distribution or the Triangular distribution with three levels of
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skewness. To determine whether connection (i, j) is disrupted, we generate a number from

{0, 1} with equal probabilities, where 1 means the connection is disrupted and 0 means

it is not. For disrupted connection (i, j), the actual delay µij is randomly generated on

the interval (0, hij] following either a Uniform or a Triangular distribution. The Uniform

distribution is referred to as Dist1. For the Triangular distribution on interval (0, hij],

the skewness is determined by the mode of the distribution set to 0.625hij, 0.75hij, and

0.875hij, respectively. A higher mode leads to a distribution skewed more to the left. We

refer to the three triangular distributions with modes 0.625hij, 0.75hij, and 0.875hij as

Dist2, Dist3, and Dist4, respectively. The 60 schedules are simulated 100 times each

with each of the 4 distributions leading to 24000 runs.

We calculate two statistics to evaluate the quality of the solutions. Total cost is the

sum of the pairing cost over 20 crews. Cumulative delay is the sum of the cumulative

delay over all connections in the solution. For example, if connection arc (i, j) is selected

by pairing p, the cumulative delay on the arc is µij plus the cumulative delays on all

preceding connections in the pairing. Figure 2.7 plots the average total cost across 100

scenarios where each line corresponds to one of the four distributions under low hij. Figures

2.8 and 2.9 show similar plots under high hij and time of day dependent hij, respectively.

Figures 2.10, 2.11 and 2.12 plot the average cumulative delay under low hij, high hij and

time of day dependent hij, respectively. Figures 2.13 and 2.14 plot the percent savings in

average total cost and percent change in average cumulative delay with respect to Γ = 0,

respectively. When Γ = 0, [P1] reduces to the deterministic crew pairing problem, and we

refer to its solution as the nominal solution. Table 2.8 reports on the average, minimum,

and maximum percent savings (Avg Sav, Min Sav, Max Sav) on total cost of the robust
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solution over the nominal solution, and the average decrease, minimum, and maximum

percent change (Avg Dec, Min Chg, Max Chg) of cumulative delay of robust solution over

nominal solution.

Except for one instance with protection level Γ = 1 under Dist 3, the robust solution

always achieves lower average total cost than the nominal solution. Recall that cost stands

for the duration of crew pairings. Therefore, robust pairings are always shorter on average

when delay occurs. This holds for the four distributions of actual delay and under low,

high, and time of day dependent delay. Average simulated cost shows a stable value when

Γ is high enough, 14 and up in this case. This could be related to the number of flights in

a crew paiting. When crew pairings are around 14 flights long, setting Γ higher than 14

will not increase the randomness of the data. In other words, the number of connections

in a crew pairing that may experience delay is capped by Γ as well as by the number of

flights in the schedule. Robust solutions provide up to 2% savings in total costs for high

hij, 1% for low hij, and 1.3% for time of day dependent hij.

Average cumulative delay increases for small values of Γ and decreases as Γ increases.

The decrease in delay becomes significant for high values of Γ . This says that schedules

built assuming more randomness experience smaller propagated delay than a schedule

built assuming no or low randomness. The decrease in average cumulative delay may be

significant and is up to 43% for high hij, up to 27% for time of day dependent hij, and up

to 29% for low hij. In practice since Γ is a parameter in the robust model, one could solve

the robust model for several values of Γ and further evaluate the optimal schedules using

historical data.

Comparing the twelve lines in Figures 2.13 and 2.14, there is no significant difference in
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Figure 2.7: Low hij: Average total cost.

the shapes which indicates that the distribution and the skewness of delay does not have an

impact on the robustness of the solution. When delay is significant (i.e., under high delay),

the savings in total cost are achieved even with low levels of randomness determined by

Γ . While for the case of low delay hij and time of day dependent delay hij, the savings

become more significant when randomness is high (i.e., high Γ ).

2.8. Conclusion

In this chapter, we presented a new robust formulation for the crew pairing problem.

Unlike previous work, we assumed that flight and connection times are random and vary

within an interval with no additional probabilistic assumptions. Robustness is achieved by

protecting against infeasibility with a specified protection level and by finding minimum
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Figure 2.8: High hij: Average total cost.
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Figure 2.9: Time of day dependent hij: Average total cost.
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Figure 2.10: Low hij: Average cumulative delay.
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Figure 2.11: High hij: Average cumulative delay.
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Figure 2.12: Time of day dependent hij: Average cumulative delay.

cost solutions in the worst case given that protection level. The resulting robust model

is an integer, multi-commodity flow problem with nonlinear robust terms in the objective

function and in the resource constraints. After applying Lagrangian relaxation, we defined

the robust shortest path problem with resource constraints as subproblem and proved that

it may be solved as a series of linear resource constrained shortest path problems. We used

dual information to find feasible integer solutions after calculating the Lagrangian bound.

Tests on industry instances showed that the solution methodology finds optimal or near-

optimal solutions in reasonable time with modest computational requirements. Based on

extensive simulations of robust and deterministic schedules, we found that robust schedules

lead to lower total cost when delays occur and to significant savings in cumulative delays

experienced by passengers.
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Figure 2.13: Percent savings of total cost under 4 distributions.
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Table 2.5: Test results of instances 1 to 40 based on real data.

|K| Γ LRB IP Gap Inc NbCol MST SubT Tot IPT

20 1 47165.0 47185.0 0.04 0.00 2887 4.6 0.6 6.1 18.03
2 48382.5 48385.0 0.01 2.54 4744 11.2 0.8 13.5 20.19
3 49293.3 49340.0 0.09 4.57 6020 11.7 0.9 14.5 80.08
4 49995.0 50000.0 0.01 5.97 6901 12.3 0.9 15.2 82.85
5 50605.0 50605.0 0.00 7.25 7723 16.2 1.1 19.6 5.71
6 51153.3 51180.0 0.05 8.47 9052 19.0 1.2 22.5 55.76
7 51655.0 51655.0 0.00 9.47 8403 19.5 1.3 22.9 7.10
8 52103.6 52105.0 0.00 10.43 8985 17.2 1.3 20.9 26.54
9 52478.3 52480.0 0.00 11.22 9167 20.4 1.4 24.4 50.54
10 52797.5 52855.0 0.11 12.02 11252 24.6 1.7 29.3 106.56
11 53077.5 53120.0 0.08 12.58 9925 19.3 1.5 23.5 79.32
12 53293.3 53300.0 0.01 12.96 9599 18.1 1.5 22.6 45.46
13 53440.0 53440.0 0.00 13.26 9977 26.6 1.8 30.8 7.24
14 53555.0 53555.0 0.00 13.50 9357 22.4 1.6 26.3 7.89
15 53640.0 53640.0 0.00 13.68 9513 19.9 1.6 23.9 35.51
16 53685.0 53685.0 0.00 13.78 11196 28.1 2.0 32.7 8.32
17 53715.0 53715.0 0.00 13.84 6582 12.7 1.2 15.8 6.22
18 53745.0 53745.0 0.00 13.90 7848 16.6 1.5 20.3 6.49
19 53745.0 53745.0 0.00 13.90 13030 29.7 2.2 35.3 13.34

21 1 46630.0 46670.0 0.09 0.00 2900 5.7 0.5 7.1 40.07
2 47910.0 47910.0 0.00 2.66 4881 13.2 0.9 15.8 3.41
3 48828.8 48855.0 0.05 4.68 6753 17.3 1.0 20.4 114.73
4 49515.0 49515.0 0.00 6.10 6991 17.4 1.0 20.6 5.87
5 50100.0 50100.0 0.00 7.35 9151 21.7 1.3 26.3 7.75
10 52230.0 52260.0 0.06 11.98 8417 14.5 1.4 18.2 64.04
15 53000.0 53005.0 0.01 13.57 9570 21.2 1.6 25.7 39.40

22 1 46110.0 46110.0 0.00 0.00 3165 7.9 0.6 9.7 12.42
2 47455.0 47470.0 0.03 2.95 3797 10.5 0.7 12.6 21.52
3 48370.0 48370.0 0.00 4.90 6764 20.3 1.0 23.7 5.89
4 49060.0 49060.0 0.00 6.40 5728 11.8 1.0 14.7 15.06
5 49645.0 49645.0 0.00 7.67 7393 18.2 1.0 23.7 21.67
10 51675.0 51695.0 0.04 12.11 8833 20.3 1.3 24.0 82.76
15 52390.0 52395.0 0.01 13.63 10303 28.1 1.8 32.5 40.18

23 1 45670.0 45670.0 0.00 0.00 2733 7.2 0.6 8.7 2.11
2 47050.0 47050.0 0.00 3.02 3840 9.8 0.7 11.8 2.82
3 47982.6 48010.0 0.06 5.12 4838 10.7 0.8 13.1 43.62
4 48650.0 48670.0 0.04 6.57 5619 11.3 0.8 13.7 51.99
5 49230.0 49230.0 0.00 7.80 6854 14.9 1.0 18.0 59.43
10 51140.0 51180.0 0.08 12.06 7628 16.1 1.2 19.6 63.07
15 51787.5 51795.0 0.01 13.41 9524 22.0 1.6 26.2 42.07
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Table 2.6: Test results of instances 41 to 90 based on real data.

|K| Γ LRB IP Gap Inc NbCol MST SubT Tot IPT

24 1 45255.0 45260.0 0.01 0.00 2688 6.0 0.6 7.7 14.83
2 46665.0 46665.0 0.00 3.10 3730 11.7 0.7 13.7 8.87
3 47607.1 47620.0 0.03 5.21 4369 10.8 0.7 13.0 32.47
4 48260.0 48285.0 0.05 6.68 6012 12.7 0.9 15.6 40.92
5 48820.0 48855.0 0.07 7.94 6553 12.9 1.0 15.9 62.80
10 50622.5 50635.0 0.02 11.88 6087 11.9 1.0 14.7 50.82
15 51195.0 51195.0 0.00 13.11 8520 20.2 1.5 24.1 6.55

25 1 44847.5 44870.0 0.05 0.00 2673 6.9 0.6 8.4 19.01
2 46330.0 46330.0 0.00 3.25 3546 9.9 0.6 11.7 2.82
3 47235.0 47235.0 0.00 5.27 3826 9.3 0.6 11.2 3.45
4 47888.3 47980.0 0.19 6.93 5699 13.4 0.8 15.9 259.27
5 48436.7 48490.0 0.11 8.07 5562 12.5 0.9 15.1 62.62
10 50125.0 50125.0 0.00 11.71 5920 14.9 1.0 17.7 6.44
15 50620.0 50620.0 0.00 12.81 6442 14.8 1.3 18.1 0.58

26 1 44488.8 44520.0 0.07 0.00 2229 5.6 0.5 6.9 19.96
2 46015.0 46015.0 0.00 3.36 3664 13.0 0.7 15.0 2.88
3 46915.0 46915.0 0.00 5.38 4043 12.5 0.7 14.5 3.60
4 47571.3 47705.0 0.28 7.15 5082 11.9 0.8 14.3 102.50
5 48126.7 48185.0 0.12 8.23 5226 12.7 0.8 15.3 62.36
10 49850.0 49850.0 0.00 11.97 5252 12.4 0.9 15.0 27.60
15 50345.0 50345.0 0.00 13.08 6295 16.6 1.3 19.9 5.95

27 1 44137.5 44190.0 0.12 0.00 2425 7.0 0.5 8.3 32.39
2 45715.0 45715.0 0.00 3.45 2862 7.1 0.5 8.7 2.29
3 46645.0 46645.0 0.00 5.56 3910 12.2 0.7 14.3 9.93
4 47287.0 47290.0 0.01 7.02 4856 13.4 0.8 15.8 24.07
5 47858.3 47890.0 0.07 8.37 4550 9.2 0.7 11.5 30.87
10 49587.5 49590.0 0.01 12.22 6120 18.8 1.1 21.9 25.41
15 50095.0 50095.0 0.00 13.36 4963 12.2 1.1 14.9 3.84

28 1 43805.0 43805.0 0.00 0.00 2540 8.2 0.5 9.7 5.24
2 45445.0 45445.0 0.00 3.74 2626 6.4 0.5 7.9 2.16
3 46412.5 46420.0 0.02 5.97 3936 13.2 0.7 15.3 19.48
4 47040.0 47125.0 0.18 7.58 3790 9.7 0.7 11.9 30.48
5 47625.8 47685.0 0.12 8.86 4355 9.9 0.7 12.1 43.05
10 49351.7 49365.0 0.03 12.69 5132 12.7 1.0 15.4 30.96
15 49880.0 49880.0 0.00 13.87 3965 8.2 0.9 10.5 3.40

29 1 43675.0 43705.0 0.07 0.00 2473 7.3 0.5 8.8 10.14
2 45280.0 45280.0 0.00 3.60 2722 7.4 0.5 8.9 1.86
3 46195.0 46195.0 0.00 5.70 3258 10.2 0.5 11.9 3.00
4 46870.0 46870.0 0.00 7.24 4321 13.5 0.7 15.8 4.06
5 47460.0 47460.0 0.00 8.59 4141 10.6 0.7 12.8 11.60
10 49140.0 49140.0 0.00 12.44 4152 9.7 0.8 11.9 3.86
15 49685.0 49685.0 0.00 13.68 4492 10.7 1.0 13.3 4.08

30 1 43585.0 43585.0 0.00 0.00 2175 6.4 0.4 7.7 1.72
2 45185.0 45185.0 0.00 3.67 2986 9.3 0.5 10.9 2.34
3 46070.0 46070.0 0.00 5.70 3542 11.1 0.6 13.0 3.11
4 46748.3 46770.0 0.05 7.31 3394 8.7 0.6 10.6 6.29
5 47310.0 47320.0 0.02 8.57 3937 9.3 0.6 11.4 17.71
10 48950.0 48950.0 0.00 12.31 4512 13.3 0.7 15.7 3.57
15 49520.0 49525.0 0.01 13.63 4795 14.6 1.0 17.7 21.13
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Table 2.7: Average statistics over all instances.

|K| LRB IP Gap Inc NbCol MST SubT Tot IPT

20 51975.0 51986.1 0.02 10.2 8534.8 18.4 1.4 22.1 34.9
21 49744.8 49759.3 0.03 6.6 6951.9 15.8 1.1 19.1 39.3
22 49243.6 49249.3 0.01 0.0 6569.0 16.7 1.1 20.1 28.5
23 48787.2 48800.7 0.03 0.0 5862.3 13.2 1.0 15.9 37.9
24 48346.4 48359.3 0.03 6.8 5422.7 12.3 0.9 14.9 31.0
25 47926.1 47950.0 0.05 6.9 4809.7 11.7 0.8 14.0 50.6
26 47616.0 47647.9 0.07 7.0 4541.6 12.1 0.8 14.4 32.1
27 47332.2 47345.0 0.03 7.1 4240.9 11.4 0.8 13.6 18.4
28 47080.0 47103.6 0.05 7.5 3763.4 9.8 0.7 11.8 19.3
29 46900.7 46905.0 0.01 7.3 3651.3 9.9 0.7 11.9 5.5
30 46766.9 46772.1 0.01 7.3 3620.1 10.4 0.6 12.4 8.0

Average 48338.1 48352.6 0.03 6.1 5269.8 12.9 0.9 15.5 27.8

60



T
ab

le
2.

8:
C

om
p
ar

is
on

of
n
om

in
al

an
d

ro
b
u
st

so
lu

ti
on

s.

L
ow

h
ij

H
ig
h
h
ij

T
im

e
o
f
d
ay

d
ep

en
d
en
t
h
ij

A
v
g
S
a
v

M
in

S
a
v
,
Γ

M
a
x

S
a
v
,
Γ

A
v
g
S
a
v

M
in

S
a
v
,
Γ

M
a
x

S
a
v
,Γ

A
v
g
S
a
v

M
in

S
a
v
,
Γ

M
a
x

S
a
v
,Γ

D
is
1

0.
51

0.
0
1,

1
0
.9
0,

1
8

1.
03

0.
49

,
2

1.
79

,
11

0
.6
8

0
.3
2
,
4

1
.0
1
,
11

T
ot
al

D
is
2

0.
51

0.
0
1,

1
0
.9
2,

1
8

1.
38

0.
58

,
2

1.
93

,
11

0
.7
1

0
.3
2
,
4

1
.0
6
,
11

co
st

D
is
3

0.
52

-0
.0
1,

1
0.
9
2,

18
1.
51

0.
63

,
2

2.
04

,
11

0
.8
5

0
.4
2
,
4

1
.1
9
,
11

D
is
4

0.
63

0.
0
2,

1
1
.0
6,

1
8

1.
83

0.
82

,
2

2.
41

,
11

0
.9
5

0
.5
0
,
2

1
.3
1
,
17

L
ow

h
ij

H
ig
h
h
ij

A
v
g
D
e
c

M
in

C
h
g
,
Γ

M
a
x

C
h
g
,
Γ

A
v
g
D
e
c

M
in

C
h
g
,
Γ

M
a
x

C
h
g
,
Γ

A
v
g
D
e
c

M
in

C
h
g
,
Γ

M
a
x

C
h
g
,
Γ

D
is
1

-0
.5
6

-2
1.
3
4,

8
2
8.
32

,
17

2
5.
22

-1
0
.4
7,

2
4
3.
08

,
14

10
.2
8

-7
.0
1
,
3

2
6.
22

,
18

C
u
m
u
la
ti
ve

D
is
2

-0
.4
8

-2
1.
1
9,

8
2
8.
71

,
17

2
5.
51

-1
0
.2
4,

2
4
3.
45

,
14

9
.6
5

-8
.5
0,

3
2
6
.4
0,

1
7

d
el
ay

D
is
3

-1
.5
5

-2
1.
5
2,

8
2
8.
02

,
17

2
6.
07

-9
.5
6
,
2

4
3.
74

,
14

9
.4
5

-8
.8
9,

3
2
6
.6
4,

1
7

D
is
4

-0
.2
4

-2
1.
0
5,

8
2
9.
21

,
17

2
6.
56

-8
.5
4
,
2

4
4.
29

,
14

10
.0
0

-8
.0
2
,
3

2
6.
88

,
17

61



Chapter 3

Robust shortest path problem with

resource constraints

This chapter is based on the paper [Lu and Gzara, 2014a] submitted to Mathematical

Programming.

3.1. Motivation and objective

The shortest path problem has been widely studied in operations research because of its

theoretical and practical relevance. While the basic shortest path problem (SPP) is easy

to solve and lies at the heart of network flows, extensions with additional restrictions on

paths present challenges to solve. Shortest paths appear frequently in practice whenever

there is interest to send flow from an origin to a destination in applications as diverse as

vehicle routing and scheduling, airline operations planning, transportation, and telecommu-
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nications network planning. Shortest paths arise frequently as subproblems when solving

optimization problems on networks by decomposition techniques like Lagrangian relax-

ation, column generation, and Benders decomposition. Several extensions of the shortest

path problem have been studied. We refer interested readers to the survey by Desaulniers

et al. [2005] for classification, modeling issues and solution methodologies for SPP with

additional constraints. In particular, in the deterministic shortest path problem with re-

source constraints (SPPRC) each arc consumes a given amount of a given resource with

limited availability. The deterministic SPPRC finds a minimum cost path feasible with

respect to resource consumption constraints.

In this chapter, we study the robust SPPRC by introducing uncertain cost and re-

source consumption on arcs. More specifically, the uncertain parameters are defined by an

interval of uncertainty where the realization of a parameter may take any value within the

corresponding interval. The lower limit of the interval of uncertainty is referred to as the

nominal value of the parameter and the deterministic SPPRC arises when all random pa-

rameters are at their nominal values. We present a robust model to find the minimum cost

robust path that remains feasible when a subset of random parameters deviate from their

nominal values. We first review the literature relevant to the deterministic SPPRC, we

then review the relevant literature on robust optimization and summarize the contributions

in this chapter.

The rest of the chapter is organized as follows. Section 3.5 defines the robust SPPRC

and presents the robust formulation. The graph reduction techniques for the robust SPPRC

are presented in Section 3.5.1. Section 3.6 shows an equivalent MIP reformulation, then

an exact sequential algorithm is proven applicable to the problem. Section 3.7 presents the
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new dominance rules and the modified label-setting algorithm. Section 3.8 reports on the

computational testing and Section 3.9 concludes the chapter.

3.2. Literature review on the deterministic SPPRC

The solution methodologies for the deterministic SPPRC include Lagrangian relaxation,

labeling algorithm, and heuristics. Lagrangian relaxation is used by Handler and Zang

[1980] who relax the resource constraint, resulting in a shortest path problem with La-

grangian length as subproblem. If the dual gap after solving the Lagrangian dual problem

is nonzero, a kth-shortest path problem is solved using the algorithm of Yen [1971]. The

parameter k is initialized at 2 and is increased gradually until the gap closes. Santos et al.

[2007] improve the algorithm of Handler and Zang [1980] with a refined search direction

based on the tightness of the resource limit. Beasley and Christofides [1989] use similar

relaxation and close the dual gap through branch-and-bound. The branching scheme starts

at the origin and builds a partial path. Each branch corresponds to a SPPRC from the end

node of current partial path to the destination. The next branch to explore is determined

based on the Lagrangian subproblem solution. Beasley and Christofides [1989] also pro-

pose graph reduction techniques based on the minimum consumption of each resource and

the minimum Lagrangian length between a pair of nodes. Borndörfer et al. [2001] study

a similar problem with an additional goal consumption for each resource and penalize any

deviation from the goal.

Dynamic programming formulations leading to labeling algorithms form another exact

methodology for the deterministic SPPRC. Desrochers [1988] proposes a label correct-
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ing algorithm that extends Pareto-optimal partial paths along the graph from origin to

destination. Dumitrescu and Boland [2003] improve and compare a set of algorithms

including Lagrangian relaxation, label-setting, and heuristics with a cost scaling tech-

nique. They improve the preprocessing by iteratively using the techniques in Beasley and

Christofides [1989] until no more reduction was possible. For the label-setting algorithm,

they strengthen the feasibility check by considering for each resource the sum of the in-

curred resource consumption of a partial path and the minimum resource requirement from

the end of a partial path to the destination. Dumitrescu and Boland [2003] propose an

exact weight-scaling algorithm that repeatedly performs the label-setting algorithm on a

graph with resource consumptions on arcs and scaled resource upper bounds. During the

process, the minimum cost path provides a lower bound on the original problem even if

it is infeasible. As the scaled values ultimately converge to their original values, the algo-

rithm is guaranteed to find an optimal solution. Lozano and Medaglia [2013] modify the

label-setting algorithm by proposing three rules to manage and limit the size of the partial

paths that are stored at each node.

Zhu and Wilhelm [2012] propose a three-stage algorithm to solve SPPRC on an acyclic

graph. They reduce the graph using a technique similar to that of Dumitrescu and Boland

[2003] in the first stage. Then they expand it to a graph corresponding to an unconstrained

shortest path problem, and solve as SPP. Since the extended graph from one such trans-

formation is reusable for different arc cost, the approach is suitable for column generation

where cost on arc changes in the process.

Heuristic algorithms for the deterministic SPPRC are based on cost scaling. Hassin

[1992] propose a polynomial approximation scheme for SPPRC with nonnegative integer
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costs on arcs and a single resource constraint. The algorithm starts from an upper bound

UB and a lower bound LB and determines whether a resource feasible path with cost no

more than
√
UB ∗ LB exists. This is done approximately by scaling arc costs and solving

the scaled problem with a label-setting algorithm. With approximation factor ε, UB or LB

is updated as
√
UB ∗ LB(1+ε) or

√
UB ∗ LB depending on whether such path exists. The

algorithm is suggested to terminate when UB/LB ≤ 2. Lorenz and Raz [2001] propose a

similar scaling approach and an initialization of UB that guarantees UB/LB ≤ |A|.

A comparison of the computational results from the literature shows a dominance of

the labeling algorithm over the other approaches. Beasley and Christofides [1989] are

able to solve an instance with 500 nodes and 4868 arcs in 26.3 seconds while Lozano and

Medaglia [2013] solve it in 0.013 seconds. Lozano and Medaglia [2013] compared their

algorithm with Santos et al. [2007] on a set of instances. Their algorithm is able to solve

the largest instance with 40000 nodes and 800000 arcs in 14.4 seconds, a speed up of 33.49

times against Santos et al. [2007]. Dumitrescu and Boland [2003] compared their modified

label-setting algorithm against the heuristics by Hassin [1992] and Lorenz and Raz [2001].

Among the solved instances by the modified label-setting algorithm and the heuristics,

the heuristics were only better in a few large instances. However, the modified label-

setting algorithm solves more instances. Moreover, for the unsolved instances, Dumitrescu

and Boland [2003] further refine the label pruning step by considering a Lagrangian lower

bound on SPPRC from the resident node of a label to destination node. This improvement

enabled the modified labeling algorithm to solve all instances.
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3.3. Literature review on robust SPPRC and related

problems

The literature on robust SPPRC is scant but a few studies on robust vehicle routing prob-

lems exit. More specifically, Sungur et al. [2008] are the first to study a robust capacitated

vehicle routing problem (CVRP) with uncertain demands. They focus on three types of

demand uncertainty, including the convex hull, box, and ellipsoid. However, their models

assume worst case scenario. They formulate the corresponding models based on Miller-

Tucker-Zemlin formulation with an instance added to the right hand side of the subtour

elimination constraints, and identify conditions under which these problems can be solved

by exact algorithms for the deterministic CVRP. Although they mention the possibility

of introducing the cardinality constrained uncertainty to the vehicle routing problem with

time windows for both travel time and arc cost under the framework of [Bertsimas and

Sim, 2003], the solution methodology suggested is an extension of the sequential approach

for robust combinatorial problems proposed by Bertsimas and Sim [2003]. A robust vehicle

routing problem with time windows is recently studied by Agra et al. [2013]. They provide

two formulations based on resource inequalities and path inequalities, and prove that it is

sufficient to consider a subset of the extreme points of the uncertainty polytope, which is

composed of all possible scenarios. When the uncertainty polytope falls into the framework

of Bertsimas and Sim [2003], i.e. uncertainty is represented by cardinality constrained sup-

port, they further reduce the subset of the extreme points of the uncertainty polytope. The

resource inequality formulation is solved implicitly by a column-and-row generation proce-

dure and the path inequality formulation is solved by a cutting plane algorithm. A robust
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CVRP with demand uncertainty is studied by Gounaris et al. [2013]. The demand realiza-

tions consist of a polyhedron, referred to as the support of the demands, and the model

generates a set of routes that minimize the total traveling cost and remain feasible for any

demand realization in the support. They provide robust counterparts of four deterministic

CVRP formulations, including two-index vehicle flow formulation, Miller-Tucker-Zemlin

formulation, commodity flow formulation, and vehicle assignment formulation. Eggenberg

et al. [2007] study a robust shortest path problem outside the framework of robust opti-

mization. They propose a model that sums the worst-case cost and the cost of traversing

back to recover an infeasible path, and finds a solution that minimizes the cost difference

between the worst case scenario and the best case scenario.

3.4. Contributions

We present the robust SPPRC with multiple resource constraints. The resource consump-

tion and arc costs are uncertain and are given by an interval with no predefined probability

distribution. The robustness is controlled by a protection level that limits the number of

uncertain parameters in the objective function and in the robust constraints. We propose

a set of preprocessing techniques based on Beasley and Christofides [1989] and Dumitrescu

and Boland [2003], tailored for the robust version of the problem. More specifically, for

graph reduction based on resource consumption and Lagrangian relaxation, we strengthen

the inequalities to remove unnecessary arcs and nodes by considering the lower bound on

the total variation against the deterministic case. Also, any feasible solution to the orig-

inal problem during the process provides an upper bound and is used to strengthen the
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inequalities based on Lagrangian relaxation.

As mentioned by Sungur et al. [2008], the solution methodology that solves a robust

combinatorial optimization problem by solving a sequence of nominal deterministic prob-

lems in Bertsimas and Sim [2003] is not restricted to the problem with uncertainty in

objective coefficients. In fact, it can be extended to the case where both objective and

constraint coefficients are uncertain. In this chapter, we show that when multiple resource

constraints are subject to uncertainty, a sequential algorithm that solves a series of deter-

ministic SPPRC may be applied to solve the robust SPPRC.

Finally, we derive new dominance rules and propose a modified label-setting algorithm

for the robust SPPRC. When comparing two partial paths, one partial path dominated by

the other one in a deterministic setting might lead to a better complete path in a robust

context. This is because for each resource, the total resource consumption in a robust

context not only depends on the deterministic data but also on a subset of the resource

variations on the complete path, where the specified protection level determines the size

of the subset. As a result, the variation information of a partial path is not enough to

make a decision about dominance. We propose an extended dominance rule to compare

two partial paths under the robust framework by developing for each resource and each

partial path an upper bound on the sum of resource variations in a subset with determined

size.

We test the sequential algorithm, the modified label-setting algorithm and direct solu-

tion of the MIP reformulation using CPLEX 12.4 on instances based on those in Beasley

and Christofides [1989]. The results show the superiority of the modified label-setting al-

gorithm over the sequential algorithm and direct solution of the MIP reformulation. Also,
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the results show that the scalability of the sequential algorithm is poor when the number

of resources or the number of distinct variations increase.

3.5. The robust SPPRC

In this section, we first present a new formulation for the robust SPPRC. Then we generalize

the preprocessing techniques of the deterministic SPPRC to reduce the graph for the robust

SPPRC.

Let us define a network G = (N,A), where N is the set of nodes indexed by i = 1, ..., |N |

and A is the set of arcs represented by (i, j) ∈ A. Let o ∈ N denote the origin, and

d ∈ N denote the destination. Traveling in the network consumes a number of resources.

Each resource has a limit on available capacity, representing the maximum amount of the

resource that can be used on a feasible path. The cost of an arc is represented by a special

resource with infinite capacity. Let R denote the set of resources indexed by r = 1, ..., |R|,

where resource r = 1 is used for the cost. For each arc (i, j) ∈ A, tijr is the minimum

consumption of resource r on arc (i, j), also referred to as nominal consumption. hijr is the

maximum deviation from the nominal consumption. A realization of the consumption of

resource r on (i, j), denoted by t̂ijr is assumed to vary randomly in the interval [tijr, tijr +

hijr]. When arc (i, j) shows no uncertainty in the consumption of resource r, hijr is set to 0.

The limit on resource r is denoted by Br. The decision variable yij takes value 1 if arc (i, j)

is selected in the shortest path, and 0 otherwise. To protect the solution from uncertainty,

a specified parameter Γr, called protection level, is defined for each resources r. It allows

at most Γr arcs to deviate from the nominal values of resource r for any path at any

70



given time. Given a path p involving arcs Sp ⊆ A, the worst deviation from the nominal

consumption of resource r is determined by max
{Sr|Sr⊆Sp,|Sr|≤Γr}

∑
(i,j)∈Sr

hijr. The consumption

by path p of resource r given Γr is calculated as
∑

(i,j)∈Sp
tijr + max

{Sr|Sr⊆Sp,|Sr|≤Γr}

∑
(i,j)∈Sr

hijr and

is referred to as the robust consumption of resource r. As Γr increases, more variations are

considered in the robust consumption of resource r. The robust consumption of resource

r = 1 is defined as the robust cost. A path is considered robust if its robust consumption

of resource r is no more than Br at any node in the path for each resource r ∈ R \ {1}.

The robust SPPRC is modeled as follows:

[P]

min
∑

(i,j)∈A

tij1yij + max
{S1|S1⊆A,|S1|≤Γ1}

∑
(i,j)∈S1

hij1yij (3.1)

s.t.
∑

j:(o,j)∈A

yo,j = 1 (3.2)

∑
i:(i,j)∈A

yij −
∑

i:(j,i)∈A

yji = 0 ∀j ∈ N\{o, d} (3.3)

∑
i:(i,d)∈A

yi,d = 1 (3.4)

∑
(i,j)∈A

tijryij + max
{Sr|Sr⊆A,|Sr|≤Γr}

∑
(i,j)∈Sr

hijryij ≤ Br r = 2, ..., |R| (3.5)

yij ∈ {0, 1} ∀(i, j) ∈ A. (3.6)

The objective function (3.1) minimizes the total robust cost given protection level Γ1.

Constraints (3.2)-(3.4) are flow balance constraints. Constraint (3.5) requires that the

robust consumption of resource r on a feasible path must be less than or equal to resource
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limitBr. A feasible path for the robust SPPRC protects against uncertainty with a specified

level for each resource. A shortest path for the robust SPPRC is a feasible path that has

the minimum robust cost under protection level Γ1.

The deterministic SPPRC is known to be NP-hard [Desaulniers et al., 2005], its robust

counterpart is also NP-hard [Bertsimas and Sim, 2003]. Due to the difficulty of the robust

SPPRC, reducing the graph facilitates tackling the problem. Beasley and Christofides

[1989] present two types of graph reduction techniques for the deterministic SPPRC. One

of the techniques determines whether a node/arc should be removed based on the minimum

resource consumption required to traverse that node/arc. The other technique relaxes the

resource constraints in a Lagrangian fashion. Then for each node/arc, it finds a lower

bound on the cost of paths traversing that node/arc. The lower bound is compared against

an upper bound to determine whether the node/arc may be removed. The two types

of techniques are modified to reduce the graph of the robust SPPRC and presented in

Section 3.5.1.

3.5.1 Reduction of graph G

When ignoring uncertainty, the cost and resource consumption happen at the nominal level

and the nominal problem is a deterministic SPPRC given by:
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[PR1]

min
∑

(i,j)∈A

tij1yij (3.7)

s.t. (3.2) - (3.4), (3.6)∑
(i,j)∈A

tijryij ≤ Br r = 2, ..., |R|. (3.8)

Since constraint (3.5) is more restricting than constraint (3.8), and the robust term in

(3.1) is nonegative, the optimal objective value of [PR1] provides a lower bound to [P].

We now derive bounds on the robust resource consumption and use them to improve

the deterministic SPPRC lower bound. Define the shortest length l as the minimum

number of arcs needed to go from o to d in network G without enforcing resource limits.

Let Γ̂r = min{l, Γr}. For any path p, the robust consumption of resource r is at least∑
(i,j)∈Sp

tijr + Hr, where Hr = min{Sr|Sr⊆A,|Sr|=Γ̂r}
∑

(i,j)∈Sr
hijr is a constant for resource r.

Subtracting Hr from the corresponding resource limit Br leads to the following modified

deterministic SPPRC:

[PR2]

min
∑

(i,j)∈A

tij1yij +H1 (3.9)

s.t. (3.2) - (3.4), (3.6)∑
(i,j)∈A

tijryij ≤ Br −Hr r = 2, ..., |R|. (3.10)
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Since

Hr ≤ max
{Sr|Sr⊆A,|Sr|≤Γr}

∑
(i,j)∈Sr

hijryij, r = 2, ..., |R|

any feasible path to [P] is also feasible to [PR2] and its objective value in [P] is no less than

its objective value in [PR2]. Using these results, we derive two sets of reduction rules for

graph G. The first set of rules is based on resource capacity constraints, and the second is

based on Lagrangian bounds.

Resource based reduction

Removing the resource constraint (3.10) from [PR2], and the constant term H1 from the

objective function, we obtain a deterministic shortest path problem. Define Dr
ij as the

minimum cost from node i to node j with consumption of resource r as the arc cost. Then

node i satisfying the following inequality may be removed from graph G:

Dr
oi +Dr

id > Br −Hr r = 2, ..., |R|. (3.11)

In inequality (3.11), if the minimum consumption of resource r from o to d through node i

exceeds Br−Hr, any path visiting node i is infeasible to [P]. Moreover, arc (i, j) satisfying

the following inequality may be removed from graph G:

Dr
oi + tijr +Dr

id > Br −Hr r = 2, ..., |R|. (3.12)

Inequality (3.12) states that if the minimum consumption of resource r from o to d through

arc (i, j) is greater than Br − Hr, any path traversing arc (i, j) is infeasible to [P]. The
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minimum cost from origin to all nodes in graph G can be calculated using a label-setting

algorithm. Similarly, the minimum cost from all nodes to destination can be calculated

on the reversed graph of G. Algorithm 3.1 summarizes the steps of the resource based

reduction.

Algorithm 3.1 Resource based reduction

for r = 2, ..., |R| do
Set tij1 = tijr,∀(i, j) ∈ A.
Solve the resulting shortest path problem using Dijkstra’s algorithm.
for all i ∈ N\{o, d} do

if Dr
oi +Dr

id > Br −Hr, then
Remove node i, and its out-going and in-coming edges.

end if
Update N and A.

end for
for all (i, j) ∈ A, do

if Dr
oi + tijr +Dr

jd > Br −Hr, then
Remove edge (i, j).

end if
if node i has no out-going edges, then

Remove node i, and its in-coming edges.
end if
if node j has no in-coming edges, then

Remove node j, and its out-going edges.
end if
Update N and A.

end for
end for

Lagrangian cost based reduction

Introducing Lagrangian multipliers µr ≥ 0 to resource constraints (3.10), the relaxed prob-

lem of [PR2] is:
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[PR3]

ZR = min
∑

(i,j)∈A

tij1yij +H1 +

|R|∑
r=2

µr

 ∑
(i,j)∈A

tijryij −Br +Hr

 (3.13)

s.t. (3.2) - (3.4), (3.6).

If the solution of [PR3] is feasible to [P], it gives an upper bound

ZUB =
∑

(i,j)∈A
tij1yij + max

{S1|S1⊆A,|S1|≤Γ1}

∑
(i,j)∈S1

hij1yij.

Define tij1 = tij1 +
|R|∑
r=2

µrtijr as the Lagrangian cost for arc (i, j) ∈ A. The minimum

Lagrangian cost from node i to node j is denoted as Lij(µ) for a given set of multipliers

µr. Any node i satisfying the following inequality may be removed from graph G:

Loi(µ) + Lid(µ) +H1 −
|R|∑
r=2

µr(Br −Hr) > ZUB. (3.14)

The left hand side of inequality (3.14) calculates the minimum objective value measured

by function (3.13) among all paths from o to d through node i. If it is greater than the

objective value of the current best solution to [P], any path traversing node i is not optimal

to [P]. An arc (i, j) ∈ A may be removed from G if the following inequality is satisfied:

Loi(µ) + tij1 + Ljd(µ) +H1 −
|R|∑
r=2

µr(Br −Hr) > ZUB. (3.15)

In inequality (3.15), if the minimum objective value measured by function (3.13) among

all paths from o to d through arc (i, j) is greater than the upper bound on [P], the optimal
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solution to [P] does not involve arc (i, j). To determine a good set of multipliers µr, we

use Kelley’s cutting plane algorithm to solve the Lagrangian dual problem of [PR3]. The

reduction based on Lagrangian cost is summarized in Algorithm 3.2.

Algorithm 3.2 Lagrangian based reduction

for all i ∈ N\{o, d} do

if Loi(µ) + Lid(µ) +H1 −
|R|∑
r=2

µr(Br −Hr) > ZUB, then

Remove vertex i, and its out-going and in-coming edges.
end if
Update N and A.

end for
for all (i, j) ∈ A do

if Loi(µ) + tij1 + Ljd(µ) +H1 −
|R|∑
r=2

µr(Br −Hr) > ZUB, then

remove edge (i, j).
end if
if node i has no out-going edges, then

Remove node i and its in-coming edges.
end if
if node j has no in-coming edges, then

Remove node j and its out-going edges.
end if
Update N and A.

end for

The overall graph reduction procedure is detailed in Algorithm 3.3. It starts with

the resource based reduction (Algorithm 3.1). Paths found during the resource based

reduction are used to construct cuts to initialize the Lagragian master problem. Then,

Kelley’s cutting plane algorithm is used to solve the Lagrangian master problem of [PR3].

Optimal Lagrangian multipliers µr are used to calculate the Lagrangian cost for each arc,

and the Lagrangian based reduction (Algorithm 3.2) is applied. During the procedure, any
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path feasible to [P] is used to update ZUB. If l increases or set A reduces in a reduced

graph G, Hr may increase to make constraint (3.10) tighter. The resulting [PR2] may have

an increased optimal objective value that in turn may further reduce graph G. Hence, the

resource based reduction and the Lagrangian cost based reduction are applied iteratively

until the graph can not be reduced any more.

Algorithm 3.3 Graph reduction

while G is reduced do
Implement Algorithm 3.1:

any path found in the process is kept for the initiation of Kelley’s cutting plane
algorithm.

any path feasible to problem [P] is used to update ZUB;
Implement Kelley’s cutting plane algorithm to solve the Lagrangian dual problem of

[PR3].
Use the µr at the end of Kelley’s cutting plane algorithm to calculate the Lagrangian

cost for each arc.
Implement Algorithm 3.2.

end while

Next, we reformulate [P] as an equivalent MIP, and we show that the resulting MIP can

be solved using a sequential algorithm. The modified label-setting algorithm is presented

in Section 3.7.

3.6. An equivalent MIP reformulation of the robust

SPPRC

We now present a linear MIP reformulation that is equivalent to [P] and that may be

solved by any MIP solver. Then we show the reformulation may be solved as a sequence
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of deterministic SPPRC on modified networks. Let Y be the feasible set defined by flow

balance constraints (3.2)-(3.4) and (3.6), and y ∈ Y be the vector of yij. For ease of

exposition, we define yar , t
a
r and har as replicas of yij, tijr and hijr when arc (i, j) has the ath

highest variation with respect to resource r. Without loss of generality, for each resource

r, we sort the arcs using index a = 1, ..., |A| such that h1
r ≥ h2

r ≥ ... ≥ h
|A|−1
r ≥ h

|A|
r , and

h
|A|+1
r = 0. yr and tr are vectors of yar and tar , respectively. Define uar as a binary variable

that takes value 1 if hary
a
r is selected to maximize the robust term and 0 otherwise. Then

[P] is rewritten as follows:

[P1]

Z = min t1y1 + max
0≤ua1≤1∑|A|
a=1 u

a
1≤Γ1

|A|∑
a=1

ha1y
a
1u

a
1

s.t. y ∈ Y

tryr + max
0≤uar≤1∑|A|
a=1 u

a
r≤Γr

|A|∑
a=1

hary
a
ru

a
r ≤ Br r = 2, ..., |R|.

The robust term is reformulated as max
0≤uar≤1∑|A|
a=1 u

a
r≤Γr

|A|∑
a=1

hary
a
ru

a
r in [P1]. Let vr be the dual variable

of constraint
|A|∑
a=1

uar ≤ Γr, and qar be the dual variable of constraint 0 ≤ uar ≤ 1. Applying

Theorem 2 of Bertsimas and Sim [2003] to [P1], we obtain an equivalent MIP formulation:
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[P-MIP]

Z = min t1y1 + Γ1v1 +

|A|∑
a=1

qa1 (3.16)

s.t. y ∈ Y

tryr + Γrvr +

|A|∑
a=1

qar ≤ Br r = 2, ..., |R| (3.17)

vr + qar ≥ hary
a
r a = 1, ..., |A|, r = 1, ..., |R| (3.18)

qar , vr ≥ 0 a = 1, ..., |A|, r = 1, ..., |R|. (3.19)

The robust terms in [P1] are transformed into minimization problems by duality. The

objective functions of the resulting dual problems are captured in the objective function

of [P-MIP] and constraints (3.17), respectively. The constraints of the resulting dual min-

imization problems are added as constraints (3.18) and (3.19) to [P-MIP]. The latter may

be solved directly using any deterministic MIP solver.

Moreover, we extend Theorem 3 of Bertsimas and Sim [2003] and show that [P] may

be solved as a series of |A|+ 1 problems:

Z = min
e=1,...,|A|+1

Ze (3.20)

where e = 1, . . . , |A|+ 1, Ze is the minimum objective value of problem [Ie] defined as
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[Ie]

Ze = min t1y1 + U e(y) (3.21)

s.t. y ∈ Y ∩Ω (3.22)

where

U e(y) =



Γ1h
1
1 if e = 1,

Γ1h
e
1 +

e∑
a=1

(ha1 − he1)ya1 if e = 2, . . . , |A|,
|A|∑
a=1

ha1y
a
1 if e = |A|+ 1.

and the polyhedron Ω is defined by the robust constraints (3.5). Note that for each problem

[Ie], the objective function of [Ie] has no robust term and is similar to the objective function

of deterministic SPPRC. However, the robust constraints still have robust terms.

Theorem 2.2 in Section 2.6 provides a sequential approach for the robust shortest path

problem with one robust resource constraint. The robust terms in the objective function

and in the resource constraint studied in Chapter 2 are the same. The following theorem

and corollary generalize Theorem 2.2 to the case of multiple robust resource constraints.

Moreover, the robust terms can be different due to either hijr1 6= hijr2 for (i, j) ∈ A, r1, r2 ∈

R or Γr1 6= Γr2 for r1, r2 ∈ R, or both.

The following Theorem 3.1 linearizes the robust term in one of the robust constraints.

This robust constraint is replaced by one of a set of nominal constraints, resulting in

a sequence of robust subproblems. The optimal solution to the robust SPPRC can be

obtained by solving these subproblems.
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Theorem 3.1. Problem [Ie] can be solved by solving |A| + 1 problems with the rth, r ∈

{2, ..., |R|}, robust constraint replaced by a nominal constraint. Specifically, solving [Ie] is

equivalent to solving

[Ie-Seq]

Ze = min
w=1,...,|A|+1

Ze
w, (3.23)

where for w = 1, . . . , |A|+ 1,

[Iew]

Ze
w = min t1y1 + U e(y) (3.24)

s.t. y ∈ Y ∩Ω (3.25)

tryr +Qw(y) ≤ Br, (3.26)

where

Qw(y) =



Γrh
1
r if w = 1,

Γrh
w
r +

w∑
a=1

(har − hwr )yar if w = 2, . . . , |A|
|A|∑
a=1

hary
a
r if w = |A|+ 1.

har is ordered such that h1
r ≥ h2

r ≥ · · · ≥ h
|A|
r ≥ h

|A|+1
r = 0, and Ω is the polyhedron defined

by the robust constraints except the rth robust constraint.

Proof of Theorem 3.1. The proof is presented in Appendix 6.3.
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In [Iew], the rth robust constraint is replaced by nominal constraint (3.26). When Y is

updated as Y ∩ {y|tryr + Qw(y) ≤ Br}, [Iew] shares the same structure as [Ie] except that

it has one less robust constraint. This leads to the following corollary.

Corollary 3.1. If the robust SPPRC has nr distinct variations across all arcs for resource

r ∈ R, solving at most
∏
r∈R

nr deterministic SPPRC solves the robust SPPRC.

Proof of Corollary 3.1. According to Theorem 3.1, [Iew] can also be transformed to a se-

quence of robust problems with one less robust constraint. When the transformation is

applied repeatedly for every robust subproblem, all the robust constraints may be replaced

by nominal constraints. When a robust subproblem has nr distinct deviations across all

arcs in the rth robust constraint, the number of its subproblems is nr. Then the robust

SPPRC may be transformed into
∏
r∈R

nr deterministic SPPRC.

Note that an optimal solution ȳ1 to [Ie] is also optimal to [Ie+1] if he+1
1 6= he1 and

T e ∩ {1, ..., e} = ∅, where T e = {a|ȳa1 = 1, a = 1, ..., |A|}. This is because when the

solution process moves from problem [Ie] to [Ie+1], only the costs of arcs a = 1, . . . , e are

updated. So, if the optimal path found in problem [Ie] does not use any arc a ∈ {1, . . . , e},

it is also optimal to [Ie+1].

This sequential approach to solve [P] is presented in Algorithm 3.4. It creates a sequence

of deterministic SPPRC and solves the resulting nominal problems using a label-setting

algorithm. For a problem with |R| resources and nr distinct variations in each resource r ∈

R, the total number of nominal problems to solve in the worst case is
∏|R|

r=1 nr. Algorithm

3.4 grows fast when |R| or nr increases. Section 3.7 presents an algorithm that is insensitive
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to |R| and nr. It modifies the label-setting algorithm that uses a new dominance rule

designed for the robust context.

Algorithm 3.4 The sequential algorithm

for he1 = h1
1, ..., h

|A|+1
1 and he1 6= he+1

1 , e = 1, ..., |A|, do
if current best solution has an arc with a cost greater than he1, then

Find arc (i, j) ∈ A with arc cost deviation greater than he1.
Set tij1 = tij1 + hij1 − he1.

for {te,2, ..., te,|R|} ∈
∏R

r=2

{
te,r ∈ {t1,r, ..., t|A|+1,r}|te,r 6= te′,r, e

′ = 1, ..., |A|+ 1, e′ 6= e
}

,
do

for r = 2, ...|R| do
for (i, j) ∈ A do

if F thenind all arc (i, j) ∈ A with tijr > te,r,.
Set tijr = tijr + tijr − te,r.

end if
end for

end for
Implement Algorithm 1.1 and find the optimal path y.
if the cost of y is less than current best solution, then

Update current best solution.
end if

end for
end if

end for

3.7. The modified label-setting algorithm for the ro-

bust SPPRC

We first show that the dominance rule in the label-setting algorithm becomes invalid when

arc consumption is allowed to vary in an interval. Define Λpi = {λpir : r = 1, ..., |R|} as

the resource consumption vector of robust SPPRC, where λpir is the robust consumption
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of resource r for path p from origin o to node i. Let Cp
i = {cpir : r = 1, ..., |R|} be

the resource consumption vector of deterministic SPPRC, where cpir is the nominal con-

sumption of resource r for path p from origin o to node i. Figure 3.1 shows a network

of deterministic SPPRC with 2 resources. The origin and the destination in Figure 3.1

are nodes 1 and 4, respectively. On each arc, the first and the second numbers between

parentheses represent the consumption of resources 1 and 2 on that arc. The limit on

resource 2 is 20. There are two paths 1 and 2 from origin to destination consisting of arcs

{(1, 3), (3, 4)} and {(1, 2), (2, 3), (3, 4)} with labels C1
4 = [7, 9] and C2

4 = [8, 9], respectively.

Path {(1, 2), (2, 3), (3, 4)} is the optimal path. Moreover, as C1
3 dominates C2

3 , discarding

C2
3 at node 3 does not affect optimality. Figure 3.2 adds variations to the graph in Figure

3.1. A pair of numbers in curly brackets shows the variations of resources 1 and 2 on

each arc. Setting the protection level Γ to 2 for both resources, then Λ1
3 = [12, 11] and

Λ2
3 = [17, 14]. Based on the dominance rule for deterministic SPPRC, Λ2

3 is dominated

by Λ1
3, only one path to node 4 remains with label Λ1

4 = [22, 19]. However, the optimal

path should be path 2 with Λ2
4 = [21, 18]. This shows that the dominance rule for SPPRC

is invalid. The reason is that when reaching node 3, path 2 has already encountered the

first two biggest variations for each resource, whereas path 1 has only encountered one of

its two variations for each resource. Therefore, to derive a valid dominance rule, we need

not only consider the information given by Λpi but also the information from node i to the

destination d.

Let Gi = (Ni, Ai) denote a subgraph of G where Ni is the set of nodes reachable from
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1

2

3 4

(3,2)(3,2)

(3,5)(3,5)

(1,3)(1,3)

(4,4)(4,4)

Figure 3.1: A network for nominal resource constrained shortest path problem.

1

2

3 4

(3,2)(3,2)

(3,5)(3,5)

(1,3)(1,3)

(4,4)(4,4)

{6,5}{6,5} {7,4}{7,4}

{9,6}{9,6} {6,4}{6,4}

Figure 3.2: A network for robust resource constrained shortest path problem.

i, and Ai are the set of outgoing arcs of Ni. Given protection level Γr,

∆ir = arg max
Sir

∑
(j,k)∈Sir

hjkr := {Sir|Sir ⊆ Ai, |Sir| ≤ Γr}

is a set of arcs whose variations of resource r are the highest Γr variations across Gi when

Γr ≤ Ai, or are the highest |Ai| variations across Gi when Γr > |Ai|. ∆ir can be determined

using a modified breadth first search as shown in Algorithm 3.5.

For a path p from origin o to node i composed of arcs Sp, let us define Spr as a subset

of Sp for each resource r ∈ R, and

Φpir = arg max
Spr

∑
(j,k)∈Spr

hjkr := {Spr |Spr ⊆ Sp, |Spr | ≤ Γr}

as the set of arcs such that the sum of their variations of resource r is maximized under

protection level Γr. Then an upper bound on the total deviation of consumption of resource
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Algorithm 3.5 Modified BFS for Gi with hjkr as arc cost

Initialization:
Set hjkr as the arc cost for each (j, k) ∈ Gi.
Create a vector V of size Γr.
Set all elements in V to 0.
Create a queue M .
Enqueue i onto M .
while M is not empty, do

j ←M.dequeue(),
mark j.
for all (j, k) ∈ Gi do

for all g ∈ V do
if hjkr > g, then

insert hjkr before g,
pop out the end element of V ,
break.

end if
end for
if k is not marked, then

enqueue k onto M .
end if

end for
end while
Return ∆ir = {(j, k)|hjkr > 0, hjkr ∈ V }.
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r under protection level Γr for a path to destination d extended from p is

ξpir = max
{Υ⊆Φpir∪∆ir,|Υ |≤Γr}

∑
(j,k)∈Υ

hjkr,

where Φpir ∪∆ir consists of a subset of arcs from path p and a subset of arcs from Ai. Ξ
p
i =

(ξpi1, ..., ξ
p
i|R|) represents a vector that consists of the upper bound on the total variation of

each resource consumption for a path to destination d extended from p.

Theorem 3.2. Given paths 1 and 2 both from origin o to node i, and path 3 from node i

to destination d, if C1
i + Ξ1

i < Λ2
i , then path 4 composed of paths 1 and 3 dominates path

5 composed of paths 2 and 3. Label C2
i may be eliminated at node i.

Proof of Theorem 3.2. For path 1 and ∀r ∈ R,

ξ1
ir = max

{Υ⊆Φpir∪∆ir,|Υ |≤Γr}

∑
(j,k)∈Υ

hjkr

= max
{Υ |Υ⊆S1∪Ai,|Υ |≤Γr}

∑
(j,k)∈Υ

hjkr (3.27)

≥ max
{S4
r |S4

r⊆S1∪S3,|S4
r |≤Γr}

∑
(j,k)∈S4

r

hjkr (3.28)

= max
{S4
r |S4

r⊆S4,|S4
r |≤Γr}

∑
(j,k)∈S4

r

hjkr. (3.29)

Equality (3.27) holds due to the definition of Φpir and ∆ir. Inequality (3.28) holds because
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S3 ⊆ Ai. ξ
1
ir ≥ max

{S4
r |S4

r⊆S4,|S4
r |≤Γr}

∑
(j,k)∈S4

r

hjkr leads to

c1
ir + max

{S4
r |S4

r⊆S4,|S4
r |≤Γr}

∑
(j,k)∈S4

r

hjkr ≤ c1
ir + ξ1

ir. (3.30)

Recall that λpir = cpir + max
{Spr |Spr⊆Sp,|Spr |≤Γr}

∑
(i,j)∈Spr

hjkr, then

λ2
ir ≤ c2

ir + max
{S5
r |S5

r⊆S2∪S3=S5,|S5
r |≤Γr}

∑
(j,k)∈S5

r

hjkr r = 1, ..., |R|. (3.31)

If c1
ir + ξ1

ir < λ2
ir for resource r ∈ R, C1

i +Ξ1
i < Λ2

i leads to the following set of inequalities:

c1
ir + ξ1

ir ≤ λ2
ir ≤ c2

ir + max
{S5
r |S5

r⊆S5,|S5
r |≤Γr}

∑
(j,k)∈S5

r

hjkr ∀r ∈ R\{r} (3.32)

c1
ir + ξ1

ir < λ2
ir ≤ c2

ir + max
{S5
r |S

5
r⊆S5,|S5

r |≤Γr}

∑
(j,k)∈S5

r

hjkr. (3.33)

Hence,

c1
ir + max

{S4
r |S4

r⊆S4,|S4
r |≤Γr}

∑
(j,k)∈S4

r

hjkr ≤ c2
ir + max

{S5
r |S5

r⊆S5,|S5
r |≤Γr}

∑
(i,j)∈S5

r

hjkr ∀r ∈ R\{r} (3.34)

c1
ir + max
{S4

r |S
4
r⊆S4,|S4

r |≤Γr}

∑
(j,k)∈S4

r

hjkr < c2
ir + max

{S5
r |S

5
r⊆S5,|S5

r |≤Γr}

∑
(i,j)∈S5

r

hjkr. (3.35)

Moreover, as the nominal consumption of resource r ∈ R on path 3 is c4
dr − c1

ir, which

equals c5
dr− c2

ir, adding c4
dr− c1

ir and c5
dr− c2

ir to the left and right hand sides of inequalities
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(3.34) and (3.35) results in

c4
dr + max

{S4
r |S4

r⊆S4,|S4
r |≤Γr}

∑
(j,k)∈S4

r

hjkr = λ4
dr ≤ c5

dr + max
{S5
r |S5

r⊆S5,|S5
r |≤Γr}

∑
(j,k)∈S5

r

hjkr = λ5
dr ∀r ∈ R\{r}

(3.36)

c4
dr + max
{S4

r |S
4
r⊆S4,|S4

r |≤Γr}

∑
(j,k)∈S4

r

hjkr = λ4
dr < c5

dr + max
{S5
r |S

5
r⊆S5,|S5

r |≤Γr}

∑
(j,k)∈S5

r

hjkr = λ5
dr. (3.37)

Hence Λ4
dr < Λ5

dr. As path 3 can be any path from i to d, C1
i dominates C2

i .

The dominance rule in Theorem 3.2 is integrated within a modified label-setting algo-

rithm for the robust SPPRC. The algorithm is detailed in Algorithm 3.6.

3.8. Numerical tests

In this section, we report on extensive numerical testing to compare the three approaches to

solve the robust SPPRC. The first approach solves the MIP reformulation [P-MIP] directly

as a linear mixed integer program. The second approach solves a sequence of nominal

problems and the third approach uses the modified label-setting algorithm. Before any of

the approaches is used, we first reduce the problem using the graph reduction algorithm

of Section 3.5.1. Then each of the three approaches is used to solve the reduced instances.

All algorithms are coded in C++, and MIP and LP models are solved using CPLEX 12.4.

Testing is carried out on a workstation with Xeon processor 3.00GHz and 8GB RAM.

We construct 60 random instances, denoted by LG, based on 24 instances from Beasley

and Christofides [1989], denoted by BC as shown in Table 3.1. For example, LG instances
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Algorithm 3.6 Label setting algorithm for robust resource constrained shortest path
problem

Initialization:
p∗ = 0, p = 0, Cp0 = (0, ..., 0) where Cp0 ∈ R|R|; mark Cp0 as not dominated
create a vector V pir of size Γr initialized with all elements as 0 for all r ∈ R.
L0 = {Cp0}, Li = {(∞, B2, ..., B|R|)}, ∀i ∈ N\{o}; Unprocessed = {Cp0}
while Unprocessed 6= ∅ do

Extract a label Cp̃i from Unprocessed

if Cp̃i is not dominated then
for all j : (i, j) ∈ A do

p = p+ 1; Cpj = fij(C
p̃
i ); mark Cpj as not dominated.

for all r ∈ R do
create V pjr as a copy of V p̃ir.

for all g in V pjr do
if hijr > g then

insert hijr before g, pop out the end element in V pjr, break.
end if

end for
end for
vars: = sum of all elements in V pj1.

if cpj1 + vars > UB then

mark Cpj as dominated.
else

for all r = 2, ..., R do
vars: = sum of all elements in V pjr.

if cpjr + vars > Br then

mark Cpj as infeasible,
break.

end if
end for

end if
if Cpj is feasible and not dominated then

for all Cp̄j ∈ Lj do

Perform dominance check for Cpj and Cp̄j .

if Cp̄j + Ξ p̄j < Λpj then

mark Cpj as dominated and break.

else if Cpj + Ξpj < Λp̄j then

mark Cp̄j as dominated,

delete V p̄jr for all r ∈ R.

if Cp̄j is processed then

Lj = Lj\{Cp̄j }.
end if

end if
end for
if Cpj is not dominated then

Lj = Lj ∪ {Cpj }.
if j = d and λpd1 < UB then

update UB and p∗ = p.
end if

else
delete Cpj ,

delete V pjr for all r ∈ R.
end if

end if
end for
mark Cp̃i as processed.

else
delete Cp̃i .

end if
end while
Return p∗
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7, 13, 19 and 25 are based on BC instance 5. BC instances 1− 4, 9− 12, 17− 20 have one

resource, while instances 5− 8, 13− 6, 21− 24 have 10 resources, in addition to cost. BC

instances 1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21 and 22 are generated using the scheme of Handler

and Zang [1980]. This scheme is designed such that the optimal path has a low ranking

when the unconstrained paths are ordered from lowest cost to highest cost. Specifically,

the nodes in these instances are randomly generated on a square. The cost on arc (i, j) is

an integer based on the Euclidean distance between nodes i and j. Resource consumption

on an arc is determined by multiplying the reciprocal of arc cost by a uniformly generated

random variable. As a result, resource consumption is inversely related to arc cost. In BC

instances 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23 and 24, both cost and resource consumption are

uniformly generated integers in [0, 5]. Arc (i, j) is determined by randomly generating i

from [1, |N |] and j from [i+ 1,min(|N |, i+ |N |/4)].

Table 3.1: Relationship between BC instances and LG instances.

|R| − 1 1 1 10 2 3 4 10
BC LG BC LG

1 1 5 7 13 19 25
2 2 6 8 14 20 26
3 31 7 37 43 49 55
4 32 8 38 44 50 56
9 3 13 9 15 21 27
10 4 14 10 16 22 28
11 33 15 39 45 51 57
12 34 16 40 46 52 58
17 5 21 11 17 23 29
18 6 22 12 18 24 30
19 35 23 41 47 53 59
20 36 24 42 48 54 60

In our tests, LG instances with 2, 3 and 4 resources are obtained from BC instances
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with 10 resources where the first 2, 3 and 4 resources are considered. In all 60 instances,

the deviation hijr in cost and resource consumption is an integer generated in the interval

[0, tijr] following a uniform distribution. The protection level is varied between 2 and 5

resulting in a total of 240 instances. We report on the effect of graph reduction on the

size of the instances and on the quality of the initial lower and upper bounds. Then, we

compare the three solution approaches of the robust SPPRC.

3.8.1 Effects of graph reduction

Table 3.2 summarizes the results of the graph reduction algorithm. Average results are

reported and grouped according to resource consumption. Specifically, instances with

resource consumption inversely related to cost are denoted as Inverse, and instances with

uniformly generated resource consumption are denoted as Uniform. Avg A% denotes

the average percentage of arcs remaining after graph reduction. Avg UBG% refers to

the average gap calculated as 100 ∗ (UB−LB)
LB

where UB and LB are the upper and lower

bounds calculated by the graph reduction algorithm. Avg OPG% refers to the average

gap calculated as 100∗Opt−LB
LB

where Opt refers to the optimal objective value obtained after

solving the instance by the modified label-setting algorithm. The algorithm runs in less

than 0.0005 seconds in all instances, so individual times are not reported. When resource

consumption is inversely related to cost, the number of arcs of the reduced graph is 10.85%

of the original graph. Reduction is less significant for uniform resource consumption with

about 72% of the arcs remaining in the reduced graph.

The quality of the lower and upper bounds show similar trends. The LB is about
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91.87% of the optimal objective value and 107.02% of the UB for Inverse instances. On

the other hand, the LB is about 181.88% of the optimal objective value and 327.60% of

the UB for Uniform instances.

These statistics suggest that Uniform instances have more dense networks and may be

more difficult to solve. Because the performance of Lagrangian based reduction depends

on the quality of the Lagrangian multipliers and the UB, we expect that having tight

LB and UB tends to result in a smaller network after reduction. This is shown by the

positive correlation between Avg A% and Avg UBG%. A single implementation of

resource based reduction under protection level Γ removes at least as many vertices and

arcs as it does under Γ − 1. This is because Hr increases when Γ increases. As a result,

the right hand sides of inequalities (3.11) and (3.12) become more restricting. However,

when Γ increases, Lagrangian cost based reduction may be stronger or weaker depending

on the upper bound, Hr and µr. In Table 3.3, Avg Res% and Avg Lag% report the

average percentage of arcs removed by resource based reduction and Lagrangian cost based

reduction, respectively. The additional number of arcs removed from Γ = 2 to Γ = 3 is

higher under the Lagrangian based reduction. The percentages are stable for higher values

of Γ . This is because Γ̂r = min{l, Γr}.

3.8.2 Comparison of solution approaches for the robust SPPRC

Tables 3.4 to 3.8 report on the size of the original graph given by the number of nodes |N |

and number of arcs |A|, the number of resources |R| − 1, the lower and upper bounds and

the relative gap after graph reduction, the clock time used by the sequential algorithm, by
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Table 3.2: Summary results on graph reduction procedure.

Inverse Avg UBG% Avg OPG% Avg A%
Γ = 2 80.93 80.75 5.26
Γ = 3 114.26 91.98 12.63
Γ = 4 116.26 97.18 12.75
Γ = 5 116.63 97.55 12.76

Average 107.02 91.87 10.85
Uniform
Γ = 2 230.75 137.77 62.56
Γ = 3 344.03 201.52 74.38
Γ = 4 367.80 192.79 75.38
Γ = 5 367.80 195.45 75.46

Average 327.60 181.88 71.94

Table 3.3: Percentage of arcs removed by resource based reduction and
Lagrangian cost based reduction.

Inverse Uniform
Avg Res% Avg Lag% Avg Res% Avg Lag%

Γ = 2 52.66 42.09 10.52 26.92
Γ = 3 53.07 34.31 9.99 15.63
Γ = 4 53.08 34.17 9.96 14.67
Γ = 5 53.08 34.16 9.96 14.58

95



CPLEX on the original graph (OG) and on the reduced graph (RG), and the modified

label-setting algorithm, and the optimal objective value (Opt). Tables 3.5 to 3.8 report on

detailed statistics on all 60 instances with protection levels 2 to 5, respectively, and Table

3.4 gives average results.

Both the modified label-setting algorithm and CPLEX successfully solved all feasible

instances, and determined that the rest are infeasible. The sequential algorithm fails to

solve instances 49-60 for Γ = 2, 3. For instances 1-48, it uses 64.39 seconds and 343.42

seconds which is 487 and 1431 times slower than the modified label-setting algorithm.

Since the sequential algorithm is dominated for Γ = 2, 3 and instances become more

difficult for Γ = 4, 5, we omitted the sequential algorithm from the rest of the testing.

However, the sequential algorithm solves a set of independent problems which could benefit

from parallel implementation. The modified label-setting algorithm achieves significantly

smaller computational times than CPLEX. Times vary between 0.001 and 0.047 with an

average 0.02. The modified label-setting algorithm is on average 160 times faster than

CPLEX. Looking at the average times for increasing Γ , there is no evidence that instances

become harder with higher Γ both for modified label-setting algorithm and CPLEX. On

the other hand, graph reduction reduces time of CPLEX by about 50%.

While instance 54 is infeasible in the original data, the other infeasible instances are

infeasible because of the robust term. For all infeasible instances in Tables 3.5 to 3.8, we

increase the resource capacities and rerun the testing. Table 3.9 reports on these instances

and confirms the findings.

The results in Table 3.4 suggest again that Uniform instances are more difficult to

solve than Inverse instances. The modified label-setting algorithm solves Inverse in-
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stances in an average of 0.0004 seconds which is about 76 times faster than the average time

used to solve Uniform instances. The average times used by CPLEX on reduced graph

are 0.136 seconds and 7.414 seconds for Inverse and Uniform instances, respectively.

Again, the size of the network after graph reduction is an important factor affecting the

difficulty of the instances.

3.9. Conclusion

In this chapter, we address the robust SPPRC where the cost and resource consumption

parameters on an arc are defined by intervals and a protection level is specified for each

random parameter. We first develop new graph reduction techniques based on resources

and on Lagrangian relaxation. Then, we present an MIP reformulation of robust SPPRC

and prove that it may be solved as a sequence of deterministic SPPRC. In addition, a

modified label-setting algorithm is proposed. The algorithm relies on a new dominance

rule. First, a valid upper bound on the total variation in the worst case is developed.

This upper bound is added to the nominal resource consumption of the partial path to

determine if it can dominate other paths. We use the MIP reformulation, the sequential

algorithm, and the modified label-setting algorithm to solve 240 instances with up to 10

resources, 500 nodes and 4868 arcs and with varying protection levels. The results show

that the graph reduction procedure helps reduce the overall solution time by half. The

modified label-setting algorithm is far superior to the other two solution approaches. The

scalability of the sequential algorithm is poor and thus not a preferable choice when there

are many resources and when width of the intervals of uncertainty vary greatly.
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Table 3.4: Summary of computational time.

|R| − 1 Algorithm 3.6
Cplex

Algorithm 3.4
OG RG

Γ = 2

Inverse

1 0.000 0.412 0.028 0.475
2 0.000 1.776 0.419 3.216
3 0.000 2.508 0.052 52.585
4 0.000 6.580 0.036 456.052
10 0.000 15.520 0.017

Average 0.000 5.359 0.110 128.082

Uniform

1 0.015 0.512 0.697 0.014
2 0.002 1.147 0.243 0.022
3 0.014 2.298 1.321 0.406
4 0.034 3.349 1.987 2.339
10 0.094 34.812 30.908

Average 0.032 8.424 7.031 0.695
Average 0.016 6.891 3.571 64.389

Γ = 3

Inverse

1 0.000 0.430 0.062 0.957
2 0.001 1.112 0.234 6.231
3 0.001 1.977 0.089 122.837
4 0.001 6.810 0.137 2614.169
10 0.001 8.982 0.054

Average 0.001 3.862 0.115 686.048

Uniform

1 0.026 0.612 0.636 0.015
2 0.009 2.001 0.635 0.021
3 0.029 3.615 4.188 0.863
4 0.053 8.207 6.457 2.238
10 0.024 24.237 25.163

Average 0.028 7.734 7.416 0.784
Average 0.014 5.798 3.765 343.416

Γ = 4

Inverse

1 0.001 0.379 0.066
2 0.000 1.874 0.358
3 0.001 2.952 0.102
4 0.001 6.198 0.178
10 0.001 11.718 0.065

Average 0.001 4.624 0.154

Uniform

1 0.028 0.561 0.638
2 0.010 0.976 0.493
3 0.053 4.644 5.872
4 0.064 10.636 10.224
10 0.017 23.402 21.581

Average 0.034 8.044 7.762
Average 0.017 6.334 3.958

Γ = 5

Inverse

1 0.000 0.451 0.066
2 0.001 2.110 0.356
3 0.000 2.911 0.110
4 0.001 6.598 0.225
10 0.000 13.274 0.065

Average 0.000 5.069 0.164

Uniform

1 0.028 0.771 0.668
2 0.016 0.865 0.651
3 0.053 5.974 4.934
4 0.062 10.057 9.490
10 0.019 22.004 21.497

Average 0.036 7.934 7.448
Average 0.018 6.501 3.806
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Table 3.5: Detailed results with with protection level Γ = 2.

Original graph Reduced graph Time
OptAlgorithm 3.6 CPLEX Algorithm 3.4

instance |N | |A| |R| − 1 |N | |A| Res% Lag% LB UB Gap% OG RG

Inverse

1 100 955 1 13 19 6.91 91.10 133 181 36.09 0 0.167 0.005 0.009 181
2 100 955 1 7 7 7.33 91.94 149 165 10.74 0 0.078 0.005 0.007 165
3 200 2040 1 7 7 99.66 0.00 420 - - 0 0.096 0.001 0.005 -
4 200 2040 1 7 7 99.66 0.00 420 - - 0 0.091 0.001 0.004 -
5 500 4858 1 184 396 0.60 91.25 488.571 1061 117.16 0.001 0.803 0.136 1.839 937
6 500 4858 1 55 81 0.89 97.45 654 977 49.39 0 1.234 0.017 0.988 977
7 100 990 2 6 6 1.31 98.08 91 104 14.29 0 0.123 0.005 0.009 104
8 100 990 2 62 184 4.24 77.17 89 182 104.49 0 0.297 0.094 6.538 159
9 200 2080 2 10 13 25.43 73.94 271 385 42.07 0 0.414 0.006 0.016 385
10 200 2080 2 195 1269 38.99 0.00 267.971 - - 0.002 2.286 2.384 9.19 566
11 500 4847 2 55 79 87.79 10.58 863 1878 117.61 0 1.325 0.014 1.514 1513
12 500 4847 2 46 63 95.52 3.18 867 2194 153.06 0 6.209 0.009 2.03 2194
13 100 990 3 6 6 1.52 97.88 91 104 14.29 0 0.143 0.006 0.014 104
14 100 990 3 62 182 4.34 77.27 89 182 104.49 0 0.329 0.11 225.431 159
15 200 2080 3 86 198 73.46 17.02 268 844 214.93 0.001 3.246 0.154 31.488 666
16 200 2080 3 41 67 82.21 14.57 510 758 48.63 0 1.549 0.014 17.043 758
17 500 4847 3 54 77 87.93 10.48 863 1878 117.61 0 3.516 0.017 14.308 1513
18 500 4847 3 46 63 95.75 2.95 867 2194 153.06 0 6.263 0.011 27.226 2194
19 100 990 4 9 11 2.32 96.57 103 127 23.30 0 0.31 0.007 3.298 127
20 100 990 4 21 39 4.55 91.52 96.6444 159 64.52 0 0.373 0.014 407.645 159
21 200 2080 4 68 138 72.31 21.06 450 844 87.56 0 4.905 0.08 456.505 740
22 200 2080 4 41 68 89.86 6.88 509 928 82.32 0 5.017 0.02 256.119 815
23 500 4847 4 47 63 90.06 8.64 863 1878 117.61 0 11.706 0.013 268.447 1878
24 500 4847 4 102 161 96.68 0.00 858 - - 0.001 17.171 0.082 1344.3 3599
25 100 990 10 9 11 7.68 91.21 103 127 23.30 0 0.41 0.011 0 127
26 100 990 10 9 11 14.04 84.85 108 159 47.22 0 0.968 0.012 0 159
27 200 2080 10 16 19 99.09 0.00 393.98 - - 0 2.196 0.004 0 -
28 200 2080 10 0 0 100.00 0.00 -10000 - - 0 1.009 0 0 -
29 500 4847 10 40 53 91.79 7.12 863 1878 117.61 0 42.26 0.026 0 1878
30 500 4847 10 71 109 97.75 0.00 858 - - 0.001 46.277 0.047 0 -

Uniform

31 100 959 1 97 845 2.92 8.97 1.5 12 700.00 0.013 0.386 0.153 0.01 5
32 100 959 1 88 541 3.65 39.94 2 10 400.00 0.016 0.239 0.17 0.008 7
33 200 1971 1 98 216 2.94 86.10 6 8 33.33 0.001 0.186 0.028 0.008 8
34 200 1971 1 194 1915 2.84 0.00 6 39 550.00 0.021 0.241 0.294 0.011 8
35 500 4978 1 467 4461 5.99 4.40 6 16 166.67 0.025 1.027 2.866 0.027 11
36 500 4978 1 443 2799 6.41 37.36 6 14 133.33 0.013 0.994 0.67 0.022 9
37 100 999 2 89 834 10.41 6.11 3.375 12 255.56 0.005 0.324 0.313 0.031 9
38 100 999 2 89 601 10.41 29.43 3.625 10 175.86 0.002 0.333 0.336 0.019 10
39 200 1960 2 94 183 11.63 79.03 5.25 9 71.43 0 0.673 0.058 0.015 9
40 200 1960 2 184 1767 9.85 0.00 5.75 - - 0.002 0.69 0.728 0.037 12
41 500 4868 2 59 96 8.38 89.65 4 6 50.00 0 1.836 0.012 0.016 6
42 500 4868 2 49 83 11.65 86.65 4 6 50.00 0 3.023 0.01 0.016 6
43 100 999 3 90 889 11.01 0.00 3.8202 35 816.18 0.027 1.211 1.521 0.074 10
44 100 999 3 90 878 12.11 0.00 4.52778 - - 0.015 1.251 1.292 0.974 16
45 200 1960 3 184 1774 9.49 0.00 5.25 - - 0.037 1.831 2.742 1.116 14
46 200 1960 3 181 1734 11.53 0.00 5.75 - - 0.007 2.127 2.333 0.197 16
47 500 4868 3 103 178 11.40 84.94 4 7 75.00 0 3.604 0.03 0.037 7
48 500 4868 3 36 49 12.86 86.13 4 7 75.00 0 3.764 0.008 0.036 7
49 100 999 4 90 889 11.01 0.00 3.86654 - - 0.037 1.633 1.773 2.531 14
50 100 999 4 90 878 12.11 0.00 4.57734 - - 0.005 1.201 1.242 1.841 16
51 200 1960 4 182 1754 10.51 0.00 5.79245 - - 0.154 5.523 4.954 5.408 18
52 200 1960 4 181 1718 12.35 0.00 6.70245 - - 0.007 3.638 3.912 2.205 22
53 500 4868 4 97 160 12.78 83.94 4 7 75.00 0 5.088 0.03 0.977 7
54 500 4868 4 36 49 13.99 85.00 4.25 7 64.71 0.001 3.011 0.01 1.069 7
55 100 999 10 90 839 16.02 0.00 4.15904 - - 0.009 2.13 3.67 0 -
56 100 999 10 89 730 26.93 0.00 5.38219 - - 0.002 1.86 1.048 0 -
57 200 1960 10 180 1705 13.01 0.00 6.85392 - - 0.006 7.419 8.635 0 -
58 200 1960 10 177 1618 17.45 0.00 8.99812 - - 0 5.588 5.397 0 -
59 500 4868 10 469 4559 6.35 0.00 3.49231 - - 0.522 110.31 122.89 0 -
60 500 4868 10 469 4495 7.66 0.00 4.26087 - - 0.026 81.565 43.806 0 -
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Table 3.6: Detailed results with with protection level Γ = 3.

Original graph Reduced graph Time
OptAlgorithm 3.6 CPLEX Algorithm 3.4

instance |N | |A| |R| − 1 |N | |A| Res% Lag% LB UB Gap% OG RG

Inverse

1 100 955 1 14 20 7.12 90.79 136 186 36.76 0 0.145 0.01 0.009 186
2 100 955 1 100 892 6.60 0.00 131 434 231.30 0 0.207 0.178 0.99 203
3 200 2040 1 7 7 99.66 0.00 420 - - 0 0.093 0.001 0.005 -
4 200 2040 1 7 7 99.66 0.00 420 - - 0 0.089 0.001 0.006 -
5 500 4858 1 244 614 0.68 86.68 489.571 1140 132.86 0.001 0.667 0.165 3.654 958
6 500 4858 1 69 111 0.86 96.85 656 1024 56.10 0 1.377 0.015 1.076 1024
7 100 990 2 95 486 1.01 49.90 89 219 146.07 0.001 0.173 0.099 15.592 128
8 100 990 2 62 184 4.24 77.17 89 182 104.49 0 0.196 0.103 5.723 160
9 200 2080 2 10 13 25.58 73.80 272 390 43.38 0 0.293 0.005 0.017 390
10 200 2080 2 195 1269 38.99 0.00 267.971 - - 0.002 2.532 1.164 11.482 628
11 500 4847 2 55 79 87.83 10.54 876 1923 119.52 0 1.237 0.017 1.612 1552
12 500 4847 2 68 103 95.40 2.48 872 2447 180.62 0 2.243 0.013 2.962 2447
13 100 990 3 95 480 1.21 50.30 89 219 146.07 0.001 0.235 0.117 413.982 128
14 100 990 3 62 182 4.34 77.27 89 182 104.49 0 0.252 0.131 191.239 160
15 200 2080 3 102 267 75.91 11.25 269 925 243.87 0.001 2.062 0.192 36.072 722
16 200 2080 3 57 107 85.72 9.13 512 951 85.74 0.001 3.061 0.063 31.004 951
17 500 4847 3 54 77 87.97 10.44 881 1923 118.27 0 2.792 0.017 16.992 1552
18 500 4847 3 67 100 95.67 2.27 872 2447 180.62 0 3.461 0.016 47.734 2447
19 100 990 4 9 11 2.32 96.57 103 128 24.27 0 0.341 0.007 3.065 128
20 100 990 4 40 86 5.86 85.45 94.6444 182 92.30 0 0.315 0.025 1938.42 182
21 200 2080 4 83 185 75.48 15.63 451 925 105.10 0.001 4.787 0.176 738.652 925
22 200 2080 4 46 76 90.24 6.11 512 951 85.74 0 3.616 0.019 305.115 951
23 500 4847 4 246 529 89.09 0.00 858 - - 0.003 20.873 0.55 11254.1 2462
24 500 4847 4 102 161 96.68 0.00 858 - - 0.001 10.927 0.045 1445.66 -
25 100 990 10 9 11 7.68 91.21 103 128 24.27 0 0.403 0.013 0 128
26 100 990 10 11 16 16.97 81.41 108 182 68.52 0 0.952 0.014 0 182
27 200 2080 10 16 19 99.09 0.00 393.98 - - 0 2.284 0.003 0 -
28 200 2080 10 0 0 100.00 0.00 -10000 - - 0 1.026 0 0 -
29 500 4847 10 107 180 92.37 3.92 869 2462 183.31 0.002 27.786 0.258 0 2462
30 500 4847 10 71 109 97.75 0.00 858 - - 0.001 21.443 0.037 0 -

Uniform

31 100 959 1 98 877 2.82 5.74 1.5 13 766.67 0.036 0.271 0.251 0.009 7
32 100 959 1 92 647 3.44 29.09 2 11 450.00 0.021 0.308 0.245 0.008 8
33 200 1971 1 194 1915 2.84 0.00 6 42 600.00 0.04 0.631 0.927 0.011 10
34 200 1971 1 194 1915 2.84 0.00 6 42 600.00 0.022 0.196 0.2 0.01 8
35 500 4978 1 469 4539 5.97 2.85 6 17 183.33 0.026 1.387 1.635 0.033 12
36 500 4978 1 454 3370 6.35 25.95 6 15 150.00 0.013 0.878 0.559 0.02 9
37 100 999 2 90 870 10.41 2.50 3.375 13 285.19 0.013 0.509 1.403 0.024 10
38 100 999 2 90 895 10.41 0.00 3.625 - - 0.037 1.282 1.226 0.026 13
39 200 1960 2 94 183 11.63 79.03 5.25 9 71.43 0 0.586 0.025 0.014 9
40 200 1960 2 184 1767 9.85 0.00 5.75 - - 0.002 0.891 1.027 0.021 12
41 500 4868 2 142 279 9.16 85.11 3.28571 7 113.04 0 4.751 0.119 0.022 7
42 500 4868 2 49 83 11.65 86.65 4 6 50.00 0.001 3.987 0.01 0.016 6
43 100 999 3 90 889 11.01 0.00 3.8202 39 920.89 0.027 0.685 0.68 0.978 14
44 100 999 3 90 878 12.11 0.00 4.52778 - - 0.027 1.72 1.729 0.977 21
45 200 1960 3 184 1774 9.49 0.00 5.25 - - 0.03 1.868 2.822 1.07 15
46 200 1960 3 181 1734 11.53 0.00 5.75 - - 0.018 2.637 2.551 0.973 18
47 500 4868 3 252 658 9.74 76.75 3.3125 8 141.51 0.001 4.365 0.363 0.045 8
48 500 4868 3 469 4553 6.47 0.00 3.65625 - - 0.068 10.412 16.984 1.133 17
49 100 999 4 90 889 11.01 0.00 3.86654 - - 0.02 2.362 1.98 1.37 15
50 100 999 4 90 878 12.11 0.00 4.57734 - - 0.003 1.398 1.463 1.974 -
51 200 1960 4 182 1754 10.51 0.00 5.79245 - - 0.103 7.986 6.079 2.567 21
52 200 1960 4 181 1718 12.35 0.00 6.70245 - - 0.007 5.116 3.878 1.996 -
53 500 4868 4 238 611 12.18 75.27 3.32819 8 140.37 0.001 6.91 0.482 1.011 8
54 500 4868 4 469 4553 6.47 0.00 3.71429 - - 0.183 25.469 24.858 4.51 22
55 100 999 10 90 839 16.02 0.00 4.15904 - - 0.004 4.323 3.386 0 -
56 100 999 10 89 730 26.93 0.00 5.38219 - - 0.001 1.24 1.187 0 -
57 200 1960 10 180 1705 13.01 0.00 6.85392 - - 0.003 9.695 8.178 0 -
58 200 1960 10 177 1618 17.45 0.00 8.99812 - - 0 2.955 3.027 0 -
59 500 4868 10 469 4559 6.35 0.00 3.49231 - - 0.126 93.773 101.197 0 -
60 500 4868 10 469 4495 7.66 0.00 4.26087 - - 0.01 33.438 34.001 0 -
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Table 3.7: Detailed results with with protection level Γ = 4.

Original graph Reduced graph Time
OptAlgorithm 3.6 CPLEX Algorithm 3.4

instance |N | |A| |R| − 1 |N | |A| Res% Lag% LB UB Gap% OG RG

Inverse

1 100 955 1 14 20 7.12 90.79 136 186 36.76 0 0.147 0.005 186
2 100 955 1 100 892 6.60 0.00 131 450 243.51 0.001 0.276 0.147 203
3 200 2040 1 7 7 99.66 0.00 420 - - 0 0.102 0.001 -
4 200 2040 1 7 7 99.66 0.00 420 - - 0 0.095 0.001 -
5 500 4858 1 260 685 0.74 85.16 490.571 1160 136.46 0.001 0.667 0.222 959
6 500 4858 1 90 149 0.99 95.94 657 1063 61.80 0.001 0.985 0.02 1063
7 100 990 2 95 486 1.01 49.90 89 219 146.07 0 0.338 0.137 128
8 100 990 2 62 184 4.24 77.17 89 182 104.49 0 0.177 0.112 160
9 200 2080 2 10 13 25.58 73.80 272 390 43.38 0 0.303 0.005 390
10 200 2080 2 195 1269 38.99 0.00 267.971 - - 0.002 2.898 1.866 636
11 500 4847 2 55 79 87.87 10.50 876 1935 120.89 0 2.419 0.013 1935
12 500 4847 2 68 103 95.40 2.48 872 2454 181.42 0 5.111 0.015 2454
13 100 990 3 95 480 1.21 50.30 89 219 146.07 0.001 0.535 0.187 128
14 100 990 3 62 182 4.34 77.27 89 182 104.49 0 0.235 0.138 160
15 200 2080 3 104 283 76.11 10.29 269 937 248.33 0.001 3.972 0.198 727
16 200 2080 3 57 107 85.72 9.13 515 954 85.24 0.001 5.576 0.056 954
17 500 4847 3 54 77 88.01 10.40 881 1935 119.64 0.001 2.93 0.017 1935
18 500 4847 3 67 100 95.67 2.27 872 2454 181.42 0.001 4.463 0.017 2454
19 100 990 4 9 11 2.32 96.57 103 128 24.27 0 0.284 0.008 128
20 100 990 4 40 86 5.86 85.45 94.6444 182 92.30 0 0.399 0.029 182
21 200 2080 4 84 190 75.67 15.19 453 937 106.84 0.001 5.402 0.258 937
22 200 2080 4 46 76 90.24 6.11 515 954 85.24 0 4.99 0.02 954
23 500 4847 4 246 529 89.09 0.00 858 - - 0.003 15.847 0.709 2565
24 500 4847 4 102 161 96.68 0.00 858 - - 0 10.266 0.041 -
25 100 990 10 9 11 7.68 91.21 103 128 24.27 0 0.39 0.011 128
26 100 990 10 11 16 16.97 81.41 108 182 68.52 0 0.813 0.014 182
27 200 2080 10 16 19 99.09 0.00 393.98 - - 0 1.107 0.003 -
28 200 2080 10 0 0 100.00 0.00 - - - 0 1.053 0 -
29 500 4847 10 117 201 92.24 3.61 866 2565 196.19 0.002 33.846 0.324 2565
30 500 4847 10 71 109 97.75 0.00 858 - - 0.001 33.098 0.035 -

Uniform

31 100 959 1 98 899 2.92 3.34 1.5 14 833.33 0.034 0.339 0.318 7
32 100 959 1 92 713 3.34 22.31 2 12 500.00 0.026 0.268 0.301 9
33 200 1971 1 194 1915 2.84 0.00 6 44 633.33 0.037 0.478 0.722 10
34 200 1971 1 194 1915 2.84 0.00 6 44 633.33 0.028 0.204 0.215 8
35 500 4978 1 469 4539 5.97 2.85 6 17 183.33 0.027 1.172 1.515 12
36 500 4978 1 460 3846 6.37 16.37 6 16 166.67 0.013 0.902 0.757 9
37 100 999 2 90 870 10.41 2.50 3.375 13 285.19 0.014 0.583 1.284 11
38 100 999 2 90 895 10.41 0.00 3.625 - - 0.033 0.579 0.712 13
39 200 1960 2 94 183 11.63 79.03 5.25 9 71.43 0.001 0.454 0.026 9
40 200 1960 2 184 1767 9.85 0.00 5.75 - - 0.007 0.541 0.52 12
41 500 4868 2 280 827 8.05 74.96 3.28571 8 143.48 0.002 2.403 0.407 8
42 500 4868 2 49 83 11.65 86.65 4 6 50.00 0 1.298 0.009 6
43 100 999 3 90 889 11.01 0.00 3.8202 42 999.42 0.024 0.73 0.739 14
44 100 999 3 90 878 12.11 0.00 4.52778 - - 0.029 1.413 1.338 -
45 200 1960 3 184 1774 9.49 0.00 5.25 - - 0.027 2.228 3.594 15
46 200 1960 3 181 1734 11.53 0.00 5.75 - - 0.017 2.666 2.648 19
47 500 4868 3 252 658 9.74 76.75 3.3125 8 141.51 0.001 2.71 0.314 8
48 500 4868 3 469 4553 6.47 0.00 3.65625 - - 0.222 18.119 26.599 20
49 100 999 4 90 889 11.01 0.00 3.86654 - - 0.017 2.531 2.767 15
50 100 999 4 90 878 12.11 0.00 4.57734 - - 0.003 1.668 1.67 -
51 200 1960 4 182 1754 10.51 0.00 5.79245 - - 0.103 8.156 7.047 25
52 200 1960 4 181 1718 12.35 0.00 6.70245 - - 0.006 5.707 5.617 -
53 500 4868 4 238 611 12.18 75.27 3.32819 8 140.37 0.001 3.688 0.461 8
54 500 4868 4 469 4553 6.47 0.00 3.71429 - - 0.253 42.066 43.78 -
55 100 999 10 90 839 16.02 0.00 4.15904 - - 0.005 4.221 4.014 -
56 100 999 10 89 730 26.93 0.00 5.38219 - - 0.001 0.407 0.34 -
57 200 1960 10 180 1705 13.01 0.00 6.85392 - - 0.004 9.97 8.086 -
58 200 1960 10 177 1618 17.45 0.00 8.99812 - - 0 1.385 1.215 -
59 500 4868 10 469 4559 6.35 0.00 3.49231 - - 0.085 85.584 83.247 -
60 500 4868 10 469 4495 7.66 0.00 4.26087 - - 0.009 38.845 32.585 -
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Table 3.8: Detailed results with with protection level Γ = 5.

Original graph Reduced graph Time
OptAlgorithm 3.6 CPLEX Algorithm 3.4

instance |N | |A| |R| − 1 |N | |A| Res% Lag% LB UB Gap% OG RG

Inverse

1 100 955 1 14 20 7.12 90.79 136 186 36.76 0 0.086 0.006 186
2 100 955 1 100 892 6.60 0.00 131 455 247.33 0 0.085 0.135 203
3 200 2040 1 7 7 99.66 0.00 420 - - 0 0.096 0.001 -
4 200 2040 1 7 7 99.66 0.00 420 - - 0 0.087 0.001 -
5 500 4858 1 260 685 0.74 85.16 490.571 1160 136.46 0.001 0.821 0.233 959
6 500 4858 1 90 149 0.99 95.94 657 1063 61.80 0 1.529 0.02 1063
7 100 990 2 95 486 1.01 49.90 89 219 146.07 0 0.322 0.134 128
8 100 990 2 62 184 4.24 77.17 89 182 104.49 0 0.301 0.133 160
9 200 2080 2 10 13 25.58 73.80 272 390 43.38 0 0.318 0.005 390
10 200 2080 2 195 1269 38.99 0.00 267.971 - - 0.002 1.495 1.827 636
11 500 4847 2 55 79 87.87 10.50 876 1935 120.89 0 4.049 0.016 1935
12 500 4847 2 68 103 95.40 2.48 872 2454 181.42 0.001 6.177 0.018 2454
13 100 990 3 95 480 1.21 50.30 89 219 146.07 0.001 0.393 0.134 128
14 100 990 3 62 182 4.34 77.27 89 182 104.49 0 0.325 0.147 160
15 200 2080 3 104 283 76.11 10.29 269 937 248.33 0.001 1.849 0.295 727
16 200 2080 3 57 107 85.72 9.13 515 954 85.24 0 3.902 0.044 954
17 500 4847 3 54 77 88.01 10.40 881 1935 119.64 0 4.101 0.019 1935
18 500 4847 3 67 100 95.67 2.27 872 2454 181.42 0 6.894 0.02 2454
19 100 990 4 9 11 2.32 96.57 103 128 24.27 0 0.183 0.008 128
20 100 990 4 40 86 5.86 85.45 94.6444 182 92.30 0 0.565 0.028 182
21 200 2080 4 84 190 75.67 15.19 453 937 106.84 0.001 6.666 0.326 937
22 200 2080 4 46 76 90.24 6.11 515 954 85.24 0 4.482 0.019 954
23 500 4847 4 246 529 89.09 0.00 858 - - 0.003 17.958 0.933 2603
24 500 4847 4 102 161 96.68 0.00 858 - - 0.001 9.731 0.038 -
25 100 990 10 9 11 7.68 91.21 103 128 24.27 0 0.364 0.01 128
26 100 990 10 11 16 16.97 81.41 108 182 68.52 0 1.279 0.014 182
27 200 2080 10 16 19 99.09 0.00 393.98 - - 0 1.158 0.003 -
28 200 2080 10 0 0 100.00 0.00 -10000 - - 0 1.042 0 -
29 500 4847 10 122 208 92.24 3.47 866 2603 200.58 0.002 48.279 0.326 2603
30 500 4847 10 71 109 97.75 0.00 858 - - 0 27.519 0.034 -

Uniform

31 100 959 1 98 899 2.92 3.34 1.5 14 833.33 0.032 0.377 0.365 7
32 100 959 1 92 713 3.34 22.31 2 12 500.00 0.029 0.188 0.284 9
33 200 1971 1 194 1915 2.84 0.00 6 45 650.00 0.037 0.505 0.478 10
34 200 1971 1 194 1915 2.84 0.00 6 46 666.67 0.029 0.435 0.313 8
35 500 4978 1 469 4539 5.97 2.85 6 17 183.33 0.026 1.922 1.308 12
36 500 4978 1 460 3846 6.37 16.37 6 16 166.67 0.017 1.199 1.259 10
37 100 999 2 90 895 10.41 0.00 3.375 43 1174.07 0.022 0.551 1.386 11
38 100 999 2 90 895 10.41 0.00 3.625 - - 0.066 0.737 1.569 13
39 200 1960 2 94 183 11.63 79.03 5.25 9 71.43 0 0.543 0.027 9
40 200 1960 2 184 1767 9.85 0.00 5.75 - - 0.007 0.524 0.475 12
41 500 4868 2 280 827 8.05 74.96 3.28571 8 143.48 0.001 1.917 0.435 8
42 500 4868 2 49 83 11.65 86.65 4 6 50.00 0 0.916 0.012 6
43 100 999 3 90 889 11.01 0.00 3.8202 43 1025.60 0.027 1.945 1.693 14
44 100 999 3 90 878 12.11 0.00 4.52778 - - 0.03 1.76 2.251 -
45 200 1960 3 184 1774 9.49 0.00 5.25 - - 0.03 2.157 2.312 16
46 200 1960 3 181 1734 11.53 0.00 5.75 - - 0.019 3.287 2.937 20
47 500 4868 3 252 658 9.74 76.75 3.3125 8 141.51 0.001 3.396 0.354 8
48 500 4868 3 469 4553 6.47 0.00 3.65625 - - 0.209 23.296 20.055 20
49 100 999 4 90 889 11.01 0.00 3.86654 - - 0.017 2.107 2.27 15
50 100 999 4 90 878 12.11 0.00 4.57734 - - 0.003 1.961 1.648 -
51 200 1960 4 182 1754 10.51 0.00 5.79245 - - 0.103 5.015 8.715 25
52 200 1960 4 181 1718 12.35 0.00 6.70245 - - 0.006 5.411 5.561 -
53 500 4868 4 238 611 12.18 75.27 3.32819 8 140.37 0.001 3.743 0.401 8
54 500 4868 4 469 4553 6.47 0.00 3.71429 - - 0.241 42.106 38.343 -
55 100 999 10 90 839 16.02 0.00 4.15904 - - 0.005 1.628 1.679 -
56 100 999 10 89 730 26.93 0.00 5.38219 - - 0.001 0.464 0.339 -
57 200 1960 10 180 1705 13.01 0.00 6.85392 - - 0.004 11.344 9.417 -
58 200 1960 10 177 1618 17.45 0.00 8.99812 - - 0.001 1.267 1.344 -
59 500 4868 10 469 4559 6.35 0.00 3.49231 - - 0.094 84.854 85.81 -
60 500 4868 10 469 4495 7.66 0.00 4.26087 - - 0.01 32.464 30.39 -
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Table 3.9: Results on infeasible instances in Tables 3.5 to 3.8 with increased resource limits.

Original graph Reduced graph Time
OptAlgorithm 3.6 CPLEX

instance |N | |A| |R| − 1 |N | |A| LB UB Gap% OG RG

Γ = 2

Inverse

3 200 2040 1 4 3 292 316 8.22 0 0.099 0.004 316
4 200 2040 1 4 3 282 329 16.67 0 0.099 0.005 329
27 200 2080 10 11 14 234 303 29.49 0 0.797 0.013 303
28 200 2080 10 68 166 202 536 165.35 0.001 14.663 0.289 536
30 500 4847 10 476 2590 611 1895 210.15 0.009 18.45 10.013 1266

Uniform

55 100 999 10 70 188 3 6 100.00 0.001 0.341 0.042 6
56 100 999 10 45 95 3 5 66.67 0 0.237 0.027 5
57 200 1960 10 183 1711 5 15 200.00 0.003 1.134 0.976 6
58 200 1960 10 184 1795 5 - - 0.002 1.631 1.368 8
59 500 4868 10 69 93 3 4 33.33 0 2.013 0.036 4
60 500 4868 10 58 79 3 4 33.33 0.001 2.325 0.027 4

Γ = 3

Inverse

3 200 2040 1 4 3 336 336 0.00 0 0.118 0.004 336
4 200 2040 1 4 3 343 343 0.00 0 0.098 0.001 343
24 500 4847 4 499 4040 611 2447 300.49 0.008 8.355 6.056 1322
27 200 2080 10 26 43 202 390 93.07 0 6.905 0.022 390
28 200 2080 10 68 166 203 537 164.53 0.001 10.866 0.165 537
30 500 4847 10 499 4036 611 2447 300.49 0.014 82.068 15.519 1322

Uniform

50 100 999 4 45 95 3 5 66.67 0 0.118 0.012 5
52 200 1960 4 184 1795 5 35 600.00 0.001 0.494 0.586 8
55 100 999 10 70 188 3 6 100.00 0 0.231 0.041 6
56 100 999 10 45 95 3 5 66.67 0.001 0.246 0.027 5
57 200 1960 10 184 1751 5 16 220.00 0.003 0.992 1.015 6
58 200 1960 10 184 1795 5 - - 0.002 1.598 1.598 8
59 500 4868 10 69 93 3 4 33.33 0 1.294 0.035 4
60 500 4868 10 138 243 3 5 66.67 0.003 2.055 0.157 4

Γ = 4

Inverse

3 200 2040 1 4 3 336 336 0.00 0 0.171 0.001 336
4 200 2040 1 4 3 343 343 0.00 0 0.103 0.002 343
24 500 4847 4 499 4042 611 2454 301.64 0.008 10.901 8.207 1371
27 200 2080 10 26 43 202 390 93.07 0 8.454 0.022 390
28 200 2080 10 68 166 203 537 164.53 0.001 16.482 0.19 537
30 500 4847 10 499 4038 611 2454 301.64 0.014 21.344 16.645 1411

Uniform

44 100 999 3 45 95 3 5 66.67 0 0.098 0.011 5
50 100 999 4 45 95 3 5 66.67 0 0.126 0.014 5
52 200 1960 4 184 1795 5 - - 0.001 1.013 0.713 8
54 500 4868 4 147 260 3 5 66.67 0.001 0.601 0.095 4
55 100 999 10 70 188 3 6 100.00 0.001 0.291 0.041 6
56 100 999 10 90 895 3 27 800.00 0.009 3.083 1.422 7
57 200 1960 10 184 1795 5 26 420.00 0.004 0.877 0.818 6
58 200 1960 10 184 1795 5 - - 0.04 8.243 11.98 12
59 500 4868 10 69 93 3 4 33.33 0.001 1.653 0.036 4
60 500 4868 10 469 4572 3 28 833.33 0.022 7.416 3.957 4

Γ = 5

Inverse

3 200 2040 1 4 3 336 336 0.00 0 0.12 0.001 336
4 200 2040 1 4 3 343 343 0.00 0 0.1 0.001 343
24 500 4847 4 499 4042 611 2454 301.64 0.008 6.477 10.712 1411
27 200 2080 10 26 43 202 390 93.07 0 8.56 0.024 390
28 200 2080 10 68 166 203 537 164.53 0.001 16.379 0.17 537
30 500 4847 10 499 4038 611 2454 301.64 0.014 20.297 16.473 1411

Uniform

44 100 999 3 45 95 3 5 66.67 0 0.113 0.01 5
50 100 999 4 45 95 3 5 66.67 0.001 0.125 0.012 5
52 200 1960 4 184 1795 5 - - 0.002 1.276 1.223 8
54 500 4868 4 147 260 3 5 66.67 0.001 0.78 0.106 4
55 100 999 10 70 188 3 6 100.00 0 0.251 0.044 6
56 100 999 10 90 895 3 27 800.00 0.009 2.768 1.363 7
57 200 1960 10 184 1795 5 26 420.00 0.004 0.931 0.876 6
58 200 1960 10 184 1795 5 - - 0.04 8.218 10.999 12
59 500 4868 10 69 93 3 4 33.33 0.001 1.429 0.037 4
60 500 4868 10 469 4572 3 28 833.33 0.022 7.435 3.859 4
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Chapter 4

Robust vehicle routing problem with

time windows

4.1. Introduction

The vehicle routing problem (VRP) is one of the most important problems faced by decision

makers in transportation, distribution, and logistics. Since the early 1950s, the problem

has led to several variants with different restrictions, such as vehicle capacity, service time

windows, multiple tasks at customers, and service priorities. Among all these variants,

the capacitated vehicle routing problem (CVRP) and the vehicle routing problem with

time windows (VRPTW) are well studied in the literature. The CVRP concerns serving

a set of customers with a number of vehicles starting and ending at a depot such that

the demand of each customer is served by exactly one vehicle, the capacity of each vehicle

is respected, and the total cost of routing the vehicles is minimized. Recent surveys on
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CVRP can be found in Baldacci et al. [2010], Cordeau et al. [2007], Golden et al. [2008]

and Laporte [2009] and Toth and Vigo [2002]. The VRPTW generalizes the CVRP by

requiring the service at a customer to be within specified time windows. Thorough reviews

on VRPTW are presented in Feillet [2010], Desaulniers et al. [2008], Kallehauge et al. [2005]

and Cordeau et al. [2001a]. In real operations, variability of travel times and demand has

a great impact on the reliability and cost of the operational plan [Mey]. Stochastic and

robust optimizations are the two main frameworks to take uncertainty into account. A

large volume of literature on the stochastic VRP is reviewed by Berhan et al. [2014],

whereas VRP models using robust optimization are scant. In this chapter, we propose a

robust VRPTW model that takes into account demand uncertainty and provides a solution

whose robustness is controlled by the decision maker.

The remainder of the chapter is organized as follows. In Section 4.2, we review the lit-

erature on the VRPTW and its variants under uncertainty. Section 4.3 defines the robust

VRPTW with demand uncertainty where the uncertainty support is based on cardinality

constrained sets. Section 4.4 develops a branch-and-price-and-cut algorithm for the prob-

lem. We test our model and solution methods in Section 4.5 and conclude the chapter in

Section 4.6.
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4.2. Literature review

4.2.1 The deterministic VRPTW

A variety of solution methodologies have been proposed for the VRPTW. Most exact so-

lution methods fall into the framework of branch-and-price. The branch-and-price scheme

implements column generation (CG) to derive a lower bound at each node of the branch-

and-bound tree. In the context of the VRPTW, each feasible route corresponds to a

column covering a subset of customers in a set partitioning formulation. Since there is

an exponential number of feasible routes, only a subset of all possible columns is explic-

itly included in the formulation. The linear programming (LP) relaxation defined over

this subset of columns is called the restricted Dantzig-Wolfe (DW) master problem. New

columns with negative reduced costs are generated by solving an elementary shortest path

problem with resource constraints (ESPPRC) in the subproblem. The objective function

of the subproblem is modified by the dual variables from the restricted DW master prob-

lem. When ESPPRC fails to find any columns with negative reduced cost, the best lower

bound is found. Due to the NP-hard nature of ESPPRC, the elementary requirement can

be relaxed to allow cycles. This accelerates the solution of the subproblem at the price of

a weaker lower bound. Therefore, different methods have been proposed to improve the

lower bound. One direction is to improve the quality of the generated routes. Popular

techniques include forbidding short cycles [Desrochers et al., 1992; Irnich and Villeneuve,

2006], and imposing the elementary path requirement on a subset of nodes [Desaulniers

et al., 2008; Baldacci et al., 2012; Righini and Salani, 2006; Boland et al., 2006]. Another

direction is to add valid inequalities to strengthen the restricted DW master problem, re-
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sulting in a branch-and-price-and-cut approach [Kohl et al., 1999; Cook and Rich, 1999;

Jepsen et al., 2008; Desaulniers et al., 2008]. Besides strengthening the lower bound, many

strategies are devised to speed up the solution process. Heuristics can be used to obtain

tight upper bounds and to warm start the CG process, or as an alternative approach to

solve large-scale instances. Bräysy and Gendreau [2005a,b] survey various studies on route

construction, local search and metaheuristics for the VRPTW. Furthermore, stabilization

techniques that control the changes in dual space can lead to faster convergence and fewer

negative cycles in the subproblem [Kallehauge et al., 2006].

4.2.2 The stochastic and robust VRPTW

The two main methods to incorporate uncertainty are stochastic and robust optimization.

Stochastic optimization and the stochastic VRPTW

Stochastic optimization assumes that the uncertain parameters follow a probability dis-

tribution that is known or that can be estimated. Stochastic optimization looks for a

solution that is feasible under all possible parameter realizations and performs best on

average. Two basic types of models in stochastic optimization are recourse models and

chance-constrained models. The decision making process in recourse models is divided

into two or more stages where the decision at each stage is determined based on the in-

formation available up to the current stage. These decisions jointly optimize an objective

that evaluates the quality of the solution. For example, a two-stage recourse model first

determines a here-and-now decision at the first stage before the uncertain parameters are
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realized. In the second stage, when parameters become known, it provides a recourse de-

cision accordingly. The chance-constrained model generates a here-and-now decision that

satisfies all constraints with a pre-specified probability. The interested readers are referred

to Birge and Louveaux [2011], Shapiro et al. [2009] and Shapiro and Philpot.

The parameters that are assumed to be random in the stochastic VRPTW include

stochastic demand [Mak and Guo, 2004], customer presence [Mak and Guo, 2004], travel

time [Mak and Guo, 2004; Ando and Taniguchi, 2006; Russell and Urban, 2008; Li et al.,

2010; Taş et al., 2013, 2014; Errico et al., 2013], and service time [Li et al., 2010; Errico

et al., 2013]. The solution methodologies include branh-and-price-and-cut [Errico et al.,

2013; Taş et al., 2014], genetic algorithms [Mak and Guo, 2004; Ando and Taniguchi, 2006],

and tabu search [Russell and Urban, 2008; Li et al., 2010; Taş et al., 2013]. A comprehensive

literature review is provided by Errico et al. [2013] and Taş et al. [2013].

Robust optimization and the robust VRPTW

Another framework for modeling uncertainty is robust optimization. It differs from stochas-

tic optimizations in that a probabilistic description of the uncertainty is unnecessary. In-

stead, the uncertainty is described by a set of possible realizations, called the support of the

uncertainty. The optimization model finds a minimum cost solution that stays feasible un-

der all realizations. Ben-Tal et al. [2009] and Bertsimas et al. [2011] provide comprehensive

reviews on robust optimization.

To the best of our knowledge, there is only one study of VRPTW under the framework

of robust optimization. Agra et al. [2013] study a VRPTW with uncertain travel times.

They develop two robust counterparts of the VRPTW formulations based on resource
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inequalities and path inequalities, respectively. They show that it suffices to consider

only the scenarios corresponding to a subset of the extreme points of the support. Under

cardinality constrained support, the number of necessary scenarios depends on the topology

of the underlying network and the protection level. To solve the robust model based on the

resource inequality formulation, the initial mixed integer programming (MIP) formulation

explicitly formulates an arbitrary subset of the necessary scenarios. The solution of the

MIP is optimal to the robust problem if it is feasible for the remaining scenarios. Otherwise,

some infeasible scenarios are included in the model, expanding the sets of variables and

constraints. For the robust model based on the path inequality formulation, the authors

propose a dynamic recursive function to verify the feasibility of a solution. The optimal

solution is obtained by gradually appending tournament inequalities. They apply the two

robust models and their solution methodologies to a maritime transportation problem

and report on the computational results of instances with a maximum of 50 nodes in the

network.

Beside the work by Agra et al. [2013], there are only three studies of VRP under the

framework of robust optimization. Sungur et al. [2008] is the first to propose three robust

CVRP models with uncertain customer demands under ellipsoidal, hypercube and convex

hull supports, respectively. They show that it suffices to consider an extreme point in

each support that corresponds to the worst case scenario. As a result, the robust CVRP

models reduce to the deterministic equivalents and can be solved by the solution methods

for deterministic CVRP. The models are tested on instances with 49 customers. They

briefly mention a possible extension to the VRPTW where the uncertainties of travel

time and customer demand are defined using a cardinality constrained support. Sungur
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et al. [2010] apply the worst case based model to a courier delivery problem with random

customer service times and soft time windows. The most recent work by Gounaris et al.

[2013] focuses on CVRP with uncertain customer demands. They propose a generalized

hypercube support that is encoded by the intersection of a hyper-rectangle with a halfspace

that imposes an upper bound on total customer demand, and show that an equivalent

deterministic CVRP can be derived. The robust counterparts of the two-index vehicle

flow, the Miller-Tucker-Zemlin, the one-commodity flow, the two-commodity flow and the

vehicle assignment formulations are provided and reformulated as MIP problems under the

generalized hypercube support. Moreover, when the demand support is a set of disjoint

generalized hypercube supports or a convex hull resulting from an affine transformation of

a hypercube, the authors derive analytic solutions to evaluate the total demand of a subset

of customers in the worst case. These analytic solutions are used to find rounded capacity

inequalities. Using these models, they are able to optimally solve instances with no more

than 50 customers and obtain an optimality gap less than 5% for instances with 53 to 80

customers.

4.2.3 Contributions

In this chapter, we present a robust VRPTW model where customer demands are random

and the support of the uncertainty is based on cardinality constrained sets. To be specific,

given a feasible route, the support is a cardinality constrained set where a specified protec-

tion level limits the maximum number of variations on the demands of the customers served

on a route. The union of these supports defines the support of the entire model. Thus,

given an arbitrary subset of customers, the total demand in the worst case is a function of
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the partitioning of all customers and can not be derived analytically. This characteristic

makes the problem more challenging than those studied in Gounaris et al. [2013] where

such maximum is independent of the partition. In summary, our contributions in this

chapter are the following:

• We develop a robust counterpart for the VRPTW where the support of customer de-

mand is based on cardinality constrained sets. A branch-and-price-and-cut algorithm

is developed to solve the problem.

• We propose an exact approach to tackle the subproblem which is a robust counter-

part of ESPPRC. This approach is based on the sequential algorithm proposed by

Bertsimas and Sim [2003] and generalized by Lu and Gzara [2014a].

• To improve the lower bound at each node, we propose a strategy to separate valid

inequalities based on the characteristics of the support for a given set of customers.

• We carry out computational experiments on a set of instances derived from the

Solomon benchmark instances.

4.3. Problem definition

The robust VRPTW is described as follows. Let G = (V,A) be a complete directed graph,

where V = {v0, ..., vn} is the set of nodes and A is the set of arcs represented by (vi, vj) ∈ A.

The depot is denoted by v0, and the customer set {v1, .., vn} is denoted by VC . A fleet of

vehicles, denoted by set K, is available to serve the customers. Each vehicle k ∈ K has a
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capacity Q. Each customer vi ∈ VC has a time window [ai, bi] and a positive service time

si. The demand of customer vi, denoted by di, randomly varies in the interval [di, di + hi],

where di is the nominal demand of the customer under a deterministic setting and hi is

the maximum deviation from the nominal demand value. Let D be the support of demand

uncertainty and d ∈ D the vector composed of {d1, ..., dn}. A cost cij and a travel time

tij are defined for every arc (vi, vj) ∈ A. Vehicles must begin and end their routes at v0

within the time horizon [a0, b0]. Serving a customer must begin within its time window,

but arriving earlier is allowed with no penalty. To protect against demand uncertainty, we

aim to maintain the route feasibility in the following strategy: given a subset of customers

V k
C ⊆ VC assigned to vehicle k ∈ K, the capacity Q is enough to serve V k

C as long as no

more than Γ customers in V k
C have the actual demands deviate from the nominal values.

The robust VRPTW looks for a minimum cost set of at most |K| routes visiting each

customer exactly once with respect to the previous constraints. The problem is formulated

as follows:
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[R-VRPTW]

min

|K|∑
k=1

∑
(vi,vj)∈A

cijx
k
ij (4.1)

s.t.

|K|∑
k=1

∑
i:(vi,vj)∈A

xki,j = 1 j = 1, ..., n (4.2)

∑
i:(vi,vj)∈A

xkij −
∑

i:(vj ,vi)∈A

xkji = 0 j = 0, ..., n, k = 1, ..., |K| (4.3)

∑
i:(v0,vi)∈A

xk0i ≤ 1 k = 1, ..., |K| (4.4)

∑
(vi,vj)∈A,vi 6=v0

dix
k
ij ≤ Q k = 1, ..., |K| ∀d ∈ D (4.5)

uki + si + tij − ukj +Mxkij ≤M ∀(vi, vj) ∈ A, vi 6= v0, k = 1, ..., |K| (4.6)

uki + si + ti0 − b0 +Mxki0 ≤M (vi, v0) ∈ A, k = 1, ..., |K| (4.7)

ai ≤ uki ≤ bi i = 0, ..., n, k = 1, ..., |K| (4.8)

xkij ∈ {0, 1}, ∀(vi, vj) ∈ A, k = 1, ..., |K| (4.9)

where xkij equals 1 if arc (vi, vj) is used by vehicle k and 0 otherwise. uki is the starting time

of service of vehicle k at customer vi, if vi is assigned to vehicle k. sk0 is the departure time

of vehicle k. The objective function (4.1) minimizes the total cost of all vehicle routes.

Constraints (4.2) ensure that each customer is visited exactly once. Constraints (4.3) and

(4.4) are flow balance constraints. Constraints (4.5) enforce that the total demand for each

vehicle in any realization does not exceed the capacity. Constraints (4.6) and (4.7) require

that service starts within the time window at each customer. For a set of customers V̄C ,

define d(V̄C) as the realization where di = di for vi ∈ VC\V̄C and di = di + hi for vi ∈ V̄C .
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Let B = {V̄C |V̄C ⊆ VC , |V̄C | = Γ} be the set of all combinations of Γ customers from

VC . According to Agra et al. [2013], under cardinality constrained support, defining D as⋃
V̄C∈B{d(V̄C)} guarantees the feasibility of a solution against all possible realizations. We

propose an equivalent formulation under cardinality constrained uncertainty as follows:

[R1-VRPTW]

min

|K|∑
k=1

∑
(vi,vj)∈A

cijx
k
ij (4.10)

s.t. (4.2), (4.3), (4.4), (4.6), (4.7), (4.8), (4.9) (4.11)∑
(vi,vj)∈A

dix
k
ij + β(xk, Γ ) ≤ Q k = 1, ..., |K| (4.12)

where xk ∈ {0, 1}|A| in (4.12) is the vector composed of the decision variable set {xkij|(vi, vj) ∈

A}. The cardinality constrained set support is formulated into the constraint by adding

a function β(xk, Γ ) = max
{V̄C |V̄C⊆VC ,|V̄C |≤Γ}

∑
vi∈V̄C

hi
∑

j:(vi,vj)∈A
xkij, where V̄C is a subset of cus-

tomers with a cardinality of at most Γ such that the customers in V̄C are visited by vehicle

k and the cumulative sum of their demand deviations is maximized. Given the definition

of β(xk, Γ ), the capacity of vehicle k is guaranteed to cover any demand realization as long

as no more than Γ of the customers assigned to vehicle k change their demands to the

maximum.
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4.4. Solution methodology

4.4.1 Set partitioning formulation and branch-and-price

As the inner maximization β(xk, Γ ) in constraint (4.12) is imposed on each vehicle, [R1-

VRPTW] can be formulated as a set covering problem. Let Ω be the set of feasible routes

that satisfy constraints (4.3), (4.4), (4.12), (4.6), (4.7), (4.8) and (4.9). Let λijp = 1 if

route p ∈ Ω uses arc (vi, vj) and 0 otherwise. Let αip =
∑

{vj∈VC |(vi,vj)∈A}
λijp that equals 1 if

route p visits customer vi and 0 otherwise. Let cp =
∑

(vi,vj)∈A
λijpcij be the cost of route p.

The robust VRPTW can be formulated as the following set covering model:

[P]

min
∑
p∈Ω

cpθp (4.13)

s.t.
∑
p∈Ω

αipθp ≥ 1 i = 1, ..., n (4.14)

∑
p∈Ω

θp ≤ |K| (4.15)

θp ∈ N, ∀p ∈ Ω (4.16)

where θp is a decision variable that equals 1 if route p is selected in the solution and 0

otherwise.

The LP relaxation of [P] is called the Dantzig-Wolfe (DW) master problem. When the

DW master problem is defined over a subset Ω̄ ⊆ Ω, we refer to the resulting problem as

the restricted DW master problem, denoted by M(Ω̄). [P] and the DW master problem
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M(Ω) require explicit enumeration of all feasible routes, which is almost impossible for

a meaningful size problem. Therefore, M(Ω) is solved using column generation (CG)

and the resulting lower bound is embedded within the branch-and-bound, resulting in a

branch-and-price algorithm.

CG is a procedure that solves M(Ω) by implicitly considering all feasible routes. The

principle can be described as follows. After solving M(Ω̄), if there does not exist any

feasible route in Ω\Ω̄ with negative reduced cost, then the linear relaxation of [P] is

implicitly solved. Otherwise, we solve a subproblem to find one or more routes with

negative reduced costs. Let µi be the dual variable associated with constraint (4.14) and

µ0 be the dual variable of constraint (4.15). The subproblem is a robust ESPPRC as

follows:
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[R-ESPPRC]

min
∑

(vi,vj)∈A

cijx
k
ij −

∑
i:vi∈V

µi (4.17)

s.t.
∑

i:(vi,vj)∈A

xkij −
∑

i:(vi,vj)∈A

xkji = 0 j = 0, ..., n (4.18)

∑
j:(vi,vj)∈A

xkij ≤ 1 i = 0, ..., n (4.19)

∑
(vi,vj)∈A,vi 6=v0

dix
k
ij + β(xk, Γ ) ≤ Q (4.20)

uki + si + tij − ukj +Mxkij ≤M ∀(vi, vj) ∈ A, vi 6= v0 (4.21)

uki + si + ti0 − b0 +Mxki0 ≤M (vi, v0) ∈ A (4.22)

ai ≤ uki ≤ bi i = 0, ..., n (4.23)

ykij ∈ {0, 1}, ∀(vi, vj) ∈ A (4.24)

To avoid cycles, constraint (4.19) is needed in [R-ESPPRC] while it is unnecessary in

[R1-VRPTW] due to constraint (4.2). The solution of [R-ESPPRC] corresponds to an

elementary path with minimum reduced cost. When the elementary requirement is relaxed,

αip becomes the number of times path p visits customer vi. The resulting columns in the

restricted DW master problem lead to a weaker lower bound. [R-ESPPRC] differs from

the deterministic ESPPRC in that constraint (4.20) includes an inner maximization. We

provide an algorithm that solves the robust ESPPRC as a series of deterministic ESPPRC’s

in Section 4.4.2.
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4.4.2 Solution method for robust ESPPRC

The solution method for [R-ESPPRC] is not straightforward given the formulation with

the inner maximization. Before presenting the solution approach, we first show that [R-

ESPPRC] has an equivalent MIP reformulation. The reformulation uses similar techniques

as those used in Chapters 2 and 3.

For ease of exposition, we omit the vehicle index k in [R-ESPPRC] and let X be the

feasible set defined by flow balance constraints (4.18)-(4.19) and (4.21)-(4.24). Let c̄ be

the vector of c̄ij = cij − µi and x be the vector of xij. Define xi =
∑

j:(vi,vj)∈A,vi 6=v0

xij for

i = 1, ..., n. Without loss of generality, we sort the customers using index e = 1, ..., n such

that h1 ≥ h2 ≥ ... ≥ hn ≥ hn+1, and hn+1 = 0. Let xe, de and he be replicas of xi, di and

hi when nominal customer demand di has the eth highest variation. χ and d are vectors of

xe and de, respectively. Define we as a binary variable that takes value 1 if hexe is selected

to maximize β(x, Γ ) and 0 otherwise. Then [R-ESPPRC] is rewritten as follows:

[R2-ESPPRC]

Z = min c̄>x

s.t. x ∈ X

d>χ+ max
0≤we≤1∑n
e=1 w

e≤Γ

n∑
e=1

hexewe ≤ Q

In the robust term max
0≤we≤1,

∑n
e=1 w

e≤Γ

n∑
e=1

hexewe, let q0 be the dual variable of constraint

n∑
e=1

we ≤ Γr, and qe be the dual variable of constraint 0 ≤ we ≤ 1. An equivalent MIP

formulation is as follows:
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[R3-ESPPRC]

Z = min c̄>x (4.25)

s.t. x ∈ X

d>χ+ Γq0 +
n∑
e=1

qe ≤ Q (4.26)

q0 + qe ≥ hexe e = 1, ..., n (4.27)

qe, q0 ≥ 0 e = 1, ..., n. (4.28)

The robust terms in [R2-ESPPRC] are transformed into a minimization problem by duality.

The objective function of the resulting dual problem is captured by (4.25) and constraints

(4.26). The constraints of the resulting dual minimization problems are added as con-

straints (4.27) and (4.28). The latter may be solved directly using any deterministic MIP

solver. However, Theorem 3.1 provides an alternative approach that solves [R-ESPPRC]

by solving a series of n+ 1 problems:

Z = min
f=1,...,n+1

Zf (4.29)

where Zf is the minimum objective value of problem [If ] defined as
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[If ]

Zf = min c̄x (4.30)

s.t. x ∈ X (4.31)

d>χ+ U f (x) ≤ Q, (4.32)

and

U f (x) =



Γh1 if f = 1,

Γhf +
f∑
e=1

(he − hf )xe if f = 2, . . . , n,

n∑
e=1

hexe if f = n+ 1.

The sequential approach to solve [R-ESPPRC] is presented in Algorithm 4.1.

Algorithm 4.1 The sequential algorithm for problem [R-ESPPRC].

for hf = h1, ..., hn+1 and hf 6= hf+1, f = 1, ..., n do
Set di = di + hi − hf for all vi ∈ V such that hi > hf .
Solve the resulting ESPPRC and find the optimal path x.
if the cost of x is less than current best solution then

Update current best solution.
end if

end for

Algorithm 4.1 creates a sequence of deterministic ESPPRC and solves the resulting

deterministic problems using a label-setting algorithm. Since solving ESPPRC is not the

focus of this chapter, we briefly review the concepts and techniques involved in the label-

setting algorithm. A label is a data container that records the information of a feasible

partial path from source node o in the graph. The information includes the accumulated
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consumption of resource, visited nodes, and cost of the partial path. A partial path p1

dominates p2 if p1 and p2 end at the same node, the cost of p1 is no more than the

cost of p2, and any feasible extension from p2 is also a feasible extension from p1. Given

such dominance relation, ignoring all the paths extended from p2 does not exclude the

minimum cost path from source to sink. The algorithm starts extending the initial label

from the source node and stops when all the labels have been either extended or verified as

dominated. Since the number of labels created can scale exponentially for large instances,

several techniques are used to accelerate the algorithm. One technique is to simultaneously

carry out a forward extension from the source node and a backward extension from the sink

node, and combining partial paths at a splitting point [Righini and Salani, 2006]. Feillet

et al. [2004] suggest rigorously marking the unreachable node in a label, which helps trigger

more dominance between labels. The interested readers are referred to Righini and Salani

[2006], Dumitrescu and Boland [2003], Feillet et al. [2004] and Chabrier [2006] for a detailed

discussions on the label-setting algorithm.

4.4.3 Valid inequalities for the robust VRPTW

Cutting planes have contributed greatly to the success of solving difficult CVPR and

VRPTW instances. A commonly used inequality for CVRP is the rounded capacity in-

equality, while the successful inequalities for the VRPTW are k-path inequalities [Kohl

et al., 1999] and subset row inequalities [Jepsen et al., 2008]. In this section, we propose a

new separation strategy to generate valid inequalities that enhance the rounded capacity

inequality for the deterministic CVRP, and extend the separation of k-path inequalities

with k = 2 to the robust VRPTW.
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Rounded capacity inequalities

One of the inequalities proven effective in CVRP is the rounded capacity inequality (RCI).

The idea of the RCI can be described as follows. Given a subset of nodes S ⊆ VC , let

δ(S)− ⊂ A be the subset of arcs (vi, vj) entering into S, i.e. vi 6∈ S and vj ∈ S. Let

x(S) =
∑

(vi,vj)∈δ(S)−
xij be the total flow entering S and r(S) =

⌈∑
vi∈S di/Q

⌉
be a lower

bound on the minimum number of vehicles needed to serve the customers in S satisfying

the capacity constraints. The RCI is defined as:

x(S) ≥ r(S) (4.33)

The RCI is rarely used in the VRPTW since the time window constraints lead to the

feasible routes with relatively low utilization of vehicle capacity, which, as a result, reduces

the situation where a solution of M(Ω̄) violates the RCI. However, in the robust VRPTW,

the highest Γ demand variations along a feasible route tend to increase the utilization

of vehicle capacity. Therefore, the rounded capacity inequality can be promising in this

case. To consider the variations, we propose a new separation strategy developed for the

robust VRPTW based on the RCI. The resulting inequalities are named as enhanced RCI.

The idea is as follows. Given a fractional solution x̄ and a target number of L vehicles

to use, we want to construct a candidate S such that S can be partitioned into L subsets

Sl, l = 1, .., L, where
∑
vj∈Sl

dj + max
{S̃|S̃⊆Sl,|S̃|≤Γ}

∑
vj∈S̃

hj > Q for each Sl, and x̄(S) is minimized.

This is achieved by solving the following MIP:
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[Candidate Separation]

x̄(S) = min
∑

(vi,vj)∈A

yij (4.34)

s.t.
∑
vj∈VC

djϑjl +
∑
vj∈VC

hjτjl > Q l = 1, ..., L (4.35)

τjl ≤ ϑjl j = 1, ..., n, l = 1, ..., L (4.36)

n∑
vj∈VC

τjl ≤ Γ l = 1, ..., L (4.37)

L∑
l=1

ϑjl ≤ 1 j = 1, ..., n (4.38)

x̄ij

L∑
l=1

(ϑjl − ϑil) ≤ yij ∀(vi, vj) ∈ A, vi 6= v0 (4.39)

x̄0j

L∑
l=1

ϑjl ≤ y0j ∀(v0, vj) ∈ A (4.40)

ϑjl ∈ {0, 1}, τjl ∈ {0, 1} j = 1, ..., n, l = 1, ..., L (4.41)

where ϑjl equals 1 if customer vj is assigned to vehicle l and 0 otherwise. τjl equals 1 if

the demand variation hj is included in the robust total demand of the customers served by

vehicle l. yij is a continuous variable indicating the flow on arc (vi, vj). Constraints (4.35)

ensure that the constructed S can be partitioned into L subsets such that the total robust

demand of customers in each subset is more than vehicle capacity. Constraints (4.36) ensure

the demand deviation of customer vj is only considered by vehicle l if ϑjl = 1. Constraints

(4.37) limit the number of deviations considered to be no more than Γ . Constraints (4.38)

enforce each customer is included in S at most once. Constraints (4.39) and (4.40) ensure
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that ȳij is accounted in the total flow entering S if vi 6∈ S and vj ∈ S. The objective is to

minimize the total flow into S.

The feasible solution of [Candidate Separation] identifies a set S and a partition of S

such that the total robust demand of the customers in each subset can not be covered

by a single vehicle. However, it is possible that a different partition on S can satisfy

each vehicle capacity. Therefore, to guarantee such a feasible partition does not exist, the

following problem is solved:

[Guarantee]

NV (S) = min
L∑
l=1

zl (4.42)

s.t.
∑
vj∈S

djσjl + max
{S̃|S̃⊆S,|S̃|≤Γ}

∑
vj∈S̃

hjσjl ≤ Qzl l = 1, ..., L (4.43)

L∑
l=1

σjl = 1 ∀vj ∈ S (4.44)

σjl ≤ zl l = 1, .., L, ∀vj ∈ S (4.45)

σjl ∈ {0, 1} ∀vj ∈ S, l = 1, ..., L. (4.46)

[Guarantee] is a robust binpacking problem based on cardinality constrained support, where

the item size varies in an interval and the number of items allowed to vary is limited by Γ .

By applying the MIP reformulation proposed by Bertsimas and Sim [2003], the equivalent

MIP is:
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[Guarantee MIP]

NV (S) = min
L∑
l=1

zl (4.47)

s.t.
∑
vj∈S

djσjl + Γηl +
∑
vj∈S

%jl ≤ Qzl l = 1, ..., L (4.48)

L∑
l=1

σjl = 1 ∀vj ∈ S (4.49)

σjl ≤ zl l = 1, .., L, ∀vj ∈ S (4.50)

ηl + %jl ≥ djσjl l = 1, .., L, ∀vj ∈ S (4.51)

σjl ∈ {0, 1} ∀vj ∈ S, l = 1, ..., L (4.52)

If [Candidate Separation] finds an S such that x̄(S) < L + 1 and [Guarantee MIP] is

infeasible, then a violated inequality x(S) ≥ L + 1 is obtained. We can add this cut to

strengthen the restricted DW master problem.

In fact, we can iteratively generate more sets S by appending the constraints
∑
vj∈S

ϑjl ≤

|S|, l = 1, ..., L in [Candidate Separation] to cut off the sets S generated so far until

x̄(S) ≥ L+ 1 for any S ⊆ VC . The resulting separation strategy is illustrated in Algorithm

4.2.

Since any RCI found using the various heuristics designed for CVRP in the literature is

valid for the robust VRPTW, these RCI’s can be strengthened by solving [Guarantee] for

some fixed L > r(S) to obtain the enhanced RCI. The process is summarized in Algorithm

4.3.
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Algorithm 4.2 Cutting plane strategy

Inputs: x̄ij, (vi, vj) ∈ A, L
Initiation: Continue = true;
while Continue do

Solve [Candidate Separation].
if [Candidate Separation] has a solution then

retrieve S corresponding to the feasible solution.
if x̄(S) < L+ 1 then

Solve [Guarantee].
if [Guarantee] is infeasible then

Add x(S) ≥ L+ 1 into RMP.
end if
Add

∑
vj∈S

ϑjl ≤ |S|, l = 1, ..., L into [Candidate Separation].

else
Continue = false.

end if
end if

end while

k-path inequalities

The k-path inequality is similar to RCIs except that the separation of k-path inequalities

considers the solution feasibility against time windows besides capacity constraints. To

distinguish this, let k(S) be the minimum number of vehicles needed to serve the customers

in S satisfying the time window and capacity constraints. The k-path inequality is defined

as follows:

x(S) ≥ k(S) (4.53)

Separation of these cuts is achieved by generating S and solving the VRPTW problem

defined on S with the objective of minimizing the number of vehicles needed. To limit
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Algorithm 4.3 Cutting plane strategy

Inputs: S.
Initiation: Continue = true, L = r(S) + 1.
while Continue do

Solve [Guarantee] with L.
if [Guarantee] is infeasible then

Add x(S) ≥ L into RMP.
L = L+ 1.

else
Continue = false.

end if
end while

the complexity of the separation, most researchers generate inequalities for k ≤ 2. When

k = 2, verifying k(S) ≥ 2 reduces to answering two questions. The first one is to check if

⌈∑
vi∈S

di/Q

⌉
≥ 2. (4.54)

The second is to check the feasibility of a traveling salesman problem with time windows

(TSPTW) defined on S. If x(S) < 2 and (4.54) holds or the TSPTW is infeasible, then

x(S) ≥ 2 is a valid cut to the problem. Kohl et al. [1999] provide a heuristic that first

determines a set S with x(S) < 2 and then verifies if k(S) ≥ 2.

Desaulniers et al. [2008] generalize the k-path inequalities to

k−1∑
l=1

1

l

∑
(vi,vj)∈δ(S)−l

xij +
1

k

∑
(vi,vj)∈

⋃
δ(S)−l

xij ≥ 1. (4.55)

The generalization is based on partitioning δ(S)− into several disjoint sets δ(S)−l , l =

1, .., |S|, where (vi, vj) ∈ δ(S)−l if a minimum of l vehicles are needed to serve S when
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arc (vi, vj) is used. Let C be the set of k-path inequalities in the restricted DW master

problem, Sε be the set of customers involved for inequality ε ∈ C , and γε ≥ 0 be the dual

variable of inequality ε. This type of cuts does not affect the complexity of the subproblem.

When solving the subproblem, the reduced cost associated with arc (vi, vj) is modified as

c̄ij = cij − µi −
∑

ε∈C :vi 6∈Sε,vj∈Sε

γτ (4.56)

We modify the separation of 2-path inequalities to fit in the robust case by changing

the left hand side of (4.54) as follows:

∑
vi∈S

di + max
{S̃|S̃⊆S,|S̃|≤Γ}

∑
vj∈S̃

hj ≥ Q. (4.57)

For a given solution x̄ and S, if x̄(S) < 2 and inequality (4.57) holds, then a violated

inequality x(S) ≥ 2 is obtained. This is because inequality (4.57) indicates that the total

demand in S including the highest Γ variations needs at least 2 vehicles to satisfy, which

contradicts with x̄(S) < 2.

Subset row inequalities

Jepsen et al. [2008] develop inequalities based on the clique and odd hole inequalities for

the set-packing problem, called subset row inequalities. To be precise, for a subset of

customers S ⊆ VC , any feasible solution must satisfy

∑
p∈Ω

⌊
1

k

∑
vi∈S

αip

⌋
θp ≤

⌊
|S|
k

⌋
, 2 ≤ k ≤ S (4.58)
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A tractable separation focuses on a subset of customers with |S| = 3, resulting in the

inequality

∑
p∈ΩS

θp ≤ 1, (4.59)

where ΩS consists of the paths visiting at least two customers in S. Let S be the subset

row inequalities involving three customers in the restricted DW master problem, πr ≤ 0

be the dual variable for r ∈ S , and Sr be the three customers relating to inequality

r ∈ S . If route p covers more than one customer in Sr, −πr is added to the reduced

cost, i.e. c̄p = cp −
∑

vi∈V p
µi −

∑
r∈S :|V p

⋂
Sr|≥2

πr, where V p is the set of customers visited by

path p. In the label-setting algorithm, this can be captured by introducing a resource for

each subset row inequality, and recording the number of customers in Sr visited along the

path. However, the efficiency of the label-setting algorithm deteriorates as the number of

resources increases. To tackle this, Jepsen et al. [2008] suggest modifying the dominance

rule when comparing two partial paths at node vi. To be specific, given that any feasible

extension of p2 is also feasible to p1, a sufficient condition for p1 to dominate p2 is

c̄1 −
∑
r∈S :

|V 1
⋂
Sr|=1

|V 2
⋂
Sr|=0

πr ≤ c̄2. (4.60)

The left hand side of (4.60) adds all the potential −πr’s that may be picked up by p1 but

not by p2 when extending to one more node. This ensures that for any node that p2 can

reach, p1 can reach with a reduced cost the same at least.

As the subset row inequalities are based on the characteristic of the set partitioning
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formulation, and the robust VRPTW can be modeled as a set partitioning problem, the

subset row inequalities are valid in the robust case. Also, since the robust ESPPRC can

be equivalently solved by solving a series of deterministic ESPPRC, the dominance rule

proposed by Jepsen et al. [2008] can be used when solving these deterministic ESPPRC.

4.5. Computational experiments

This section reports on the computational results on a set of modified benchmark instances.

First, we describe the instances and the settings used in the branch-and-price-and-cut

algorithm. Then we analyze the solution results in terms of the effect of each type of valid

inequality and the ease of solution for each type of instances. Finally, we compare the

robust solutions with the deterministic solutions in terms of cost, number of vehicles used,

average percent of infeasible scenarios (referred as infeasibility rate) and average percent of

capacity utilization (referred as utilization rate) under simulated demand variations. We

report the complete results for all instances. All algorithms are coded in C++, and MIP

and LP models are solved using CPLEX 12.5. Testing is carried out on a workstation with

Xeon processor with 3.00GHz and 8GB RAM. If the solution process does not terminate

within 3 hours of clock time, we stop the programm.

4.5.1 Test instances

The instances used are based on Solomon benchmark instances for VRPTW with 25 and 50

customers. The benchmark instances are divided into three problem classes with different
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geographical distributions of the customers. C instances locate customers in clusters. R

instances randomly generate customer locations. RC instances involve the properties of

both randomness and cluster. Moreover, for each geographical type, there are two sets of

instances with different vehicle capacity. Type 1 instances have a vehicle capacity of 200

for each vehicle, while type 2 instances have a capacity of 1000. In type 2 instances, vehicle

capacity is relatively high compared to assigned demand. In this case, solutions are not

very sensitive to variations in demand. In other words, ample capacity naturally protects

against uncertainty. As a result, we use type 1 instances only. For each customer i in

a benchmark instance, we uniformly generate hi in [0, d0.5die] for high level of variation,

and in [0, d0.3die] for low level of variation. According to the solutions of the deterministic

instances, the average number of customers per vehicle ranges between 6 and 10. Therefore,

we set the protection level to 3. This allows 30% to 50% of customers on average to change

their demands.

4.5.2 Implementation issues for the Branch-and-price-and-cut al-

gorithm

Before starting the branch-and-price-and-cut algorithm, we first determine a lower bound

on the minimum number of vehicles needed, instead of using the lower bound r(VC). To be

specific, the minimum number of vehicles needed to cover all customer demands without

considering time window constraints equals the optimal objective value of [Guarantee MIP]

with L = |K| and S = VC . We derive a lower bound NV (VC) on NV (VC) by relaxing con-

straints (4.49) and using CG to solve the resulting DW master problem. Define ρi,∀vi ∈ VC
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as the dual variables for constraints (4.49), the resulting subproblem is a robust knapsack

problem as follows:

[Robust Knapsack]

min −
∑
vi∈VC

ρi + 1 (4.61)

s.t.
∑
vj∈VC

djσjl + Γηl +
∑
vj∈VC

%jl ≤ Q (4.62)

σjl ≤ zl ∀vj ∈ VC (4.63)

ηl + %jl ≥ djσjl ∀vj ∈ VC (4.64)

σjl ∈ {0, 1} ∀vj ∈ VC (4.65)

The corresponding DW master problem replaces cp by 1 in the LP relaxation of [P]. When

the CG terminates, we use dNV (VC)e as the lower bound for constraint (4.15) in [P]. We

solve a TSPTW defined on the set of customers covered by each feasible packing. In this

process, a feasible traveling salesman route is a feasible route for the robust VRPTW. The

corresponding column is added to the restricted DW master problem.

Since Algorithm 4.1 requires solving a series of ESPPRC problems, we relax the ele-

mentary path requirement to accelerate the solution time of the subproblem. However, we

enforce the 2-cycle free requirement using the dominance rule proposed by Desrochers et al.

[1992]. The bi-directional search is also implemented. To be specific, we define the split

point as b0/2 and extend partial paths both forward from the source node and backward

from the sink node. Any partial path that consumes more than b0/2 units of time will not

be extended. The forward and backward searches are carried out in parallel on two cores
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using Boost 1.55.0 library. In each iteration of CG, a maximum of 400 columns are added

until no more routes with negative reduced cost can be found.

Once the master problem is solved, we generate the three types of valid inequalities

sequentially and solve the master problem using CG again. The process repeats until no

more valid inequalities are generated. To be specific, at the root node, we separate all

three types of inequalities, i.e. 2-path, enhanced RCI and subset row inequalities. Based

on our preliminary experiments, the 2-path inequalities are the easiest to separate and

improve the lower bound most significantly, and the enhanced RCIs improve the lower

bound more than the subset row inequalities. Therefore, the separation process is done

as follows. First, 2-path inequalities are separated using the heuristic proposed by Kohl

et al. [1999]. In the heuristic, the feasibility check with respect to capacity is based on

inequality (4.57). Then the master problem is strengthened with the separated 2-path

inequalities and reoptimized using CG. This repeats until no more 2-path inequalities can

be found. Second, the enhanced RCIs are separated using Algorithm 4.2. Since solving

[Candidate Separation] with L ≥ 4 is time consuming, we only focus on L = 2 and 3.

Again, the separation of the enhanced RCI and the reoptimization of the strengthened

master problem repeat iteratively until no more enhanced RCIs can be obtained. The last

type of inequalities generated are subset row inequalities. As suggested in the literature, we

only generate those corresponding to |S| = 3 and enumerate all the sets S. Moreover, unlike

the 2-path inequalities and the enhanced RCIs, a large number of subset row inequalities

create great burden for the label-setting algorithm. Thus, we generate no more than 50

inequalities in each iteration. The separation of subset row inequalities and reoptimization

of the strengthened master problem repeat until no more subset row inequalities can be
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found or a maximum of 150 subset row inequalities is obtained. The separation of the

three types of inequalities repeats until none of them can be obtained. For other nodes in

the branching tree, we only separate enhanced RCIs for L = 2.

The branching scheme involves two types of branching rules. The first branching is on

the number of vehicles used, denoted by T . If T is fractional, we add
∑

p αp ≤ bT c on

one branch and
∑

p αp ≥ dT e on the other. If T is integer, we branch on arc (vi, vj) such

that
∑|K|

k=1 x̄
k
ij is the closest to 1 for solution x̄. On one branch, we enforce the solution

to serve vj right after vi by the same vehicle, i.e.
∑|K|

k=1 x
k
ij = 1. This requires removing

all the columns that do not satisfy the constraint, and removing all the arcs from vi to

nodes other than vj and all the arcs to vj from nodes other than vi as well as arc (vj, vi).

The other branch requires that vi is followed by any node but vj, i.e.
∑|K|

k=1 x
k
ij = 0. The

corresponding modifications are to remove arc (vi, vj) and all the columns with vj being

the immediate successor of vi. The branching scheme employs a depth-first search that

explores the branch with
∑

p αp ≥ dT e first or the branch with
∑|K|

k=1 x
k
ij = 1 first. Note

that the k-path inequalities generated at one branch may not be valid on the other branches

when the branching rule forces an arc to be used in a solution on one branch but not on

the other. This is not an issue for enhanced RCI.

4.5.3 Numerical results

In this section, we analyze the lower bound on the minimum number of vehicles needed,

the effect of each type of valid inequalities on the lower bound and the ease of solution for

each type of instances. We compare the robust and deterministic solutions in terms of cost

134



and the number of vehicles used. First, we define the notation used in Tables 4.4 to 4.7 as

follows:

• L is the lower bound dNV (VC)e on the minimum number of vehicles needed found.

• Lr is the the lower bound on the minimum number of vehicles needed given by

r(VC) =
⌈∑

vi∈VC di/Q
⌉
.

• LB0 is the lower bound at the root node without adding any cut.

• Ip is the set of 2-path inequalities added at the root node before any inequalities of

other types are added.

• LB1 is the lower bound at the root node after adding the inequalities in Ip.

• I2
e is the set of enhanced RCI inequalities with L = 2 added at the root node before

any subset row inequalities are added.

• I3
e is the set of enhanced RCI inequalities with L = 3 added at the root node before

any subset row inequalities are added.

• LB2 is the lower bound at the root node after adding the inequalities in Ie = I2
e

⋃
I3
e .

• Isr is the set of subset row inequalities added at the root node in the first round of

separation of all three types of inequalities.

• LB3 is the lower bound at the root node after adding the inequalities in Isr.

• LBe is the best lower bound at the root node when no more valid cuts can be found.
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• Time is the total clock time in seconds used when the branch-and-price-and-cut

algorithm terminates.

• Node is the number of nodes explored when the algorithm terminates.

• TVD is the number of vehicles used in the deterministic solution.

• TVR is the number of vehicles used in the robust solution.

• UBR is the best upper bound found when the algorithm terminates. The value is

marked with asterisk if the corresponding solution is optimal.

• UBD is the optimal value of the deterministic solution.

• Inc is the percentage increase of the objective value of the robust solution compared

to the corresponding deterministic solution.

• Gap0 gives the optimality gaps in percentage calculated as (UBR/LB0 − 1) ∗ 100.

• Gap1 gives the optimality gaps in percentage calculated as (UBR/LB1 − 1) ∗ 100.

• Gap2 gives the optimality gaps in percentage calculated as (UBR/LB2 − 1) ∗ 100.

• Gap3 gives the optimality gaps in percentage calculated as (UBR/LB3 − 1) ∗ 100.

• Gape gives the optimality gaps in percentage calculated as (UBR/LBe − 1) ∗ 100 if

the best incumbent is not proved to be optimal.

The values of dNV (VC)e and r(S) in Tables 4.4 to 4.7 show that all the C instances and

most R instances have the same value of dNV (VC)e and r(S), whereas most RC instances
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use an extra vehicle in the robust solution. To facilitate the explanation, Table 4.1 summa-

rizes the average dNV (VC)e, r(S), the total nominal demand
∑

vi∈VC di, and
∑

vi∈VC di/Q

for each type of instances under low and high variations. Note that the instances of the

same type have the same nominal demand data. Since
∑

vi∈VC di/Q is closest to r(VC) for

RC instances, it is easier to obtain NV (VC) > r(S) by considering some demand varia-

tions. This indicates that it is only worth the efforts to solve the relaxed robust binpacking

problem when
∑

vi∈VC di/Q is close to r(VC).

Table 4.1: Relation between total nominal demand and the lower bound on the minimum
number of vehicles needed.

High variation
|VC | = 25 |VC | = 50

avg L Lr
∑

vi∈VC di
∑

vi∈VC di/Q L Lr
∑

vi∈VC di
∑

vi∈VC di/Q

C 3 3 460 2.30 5 5 860 4.30
R 2 2 332 1.66 4.17 4 721 3.61

RC 4 3 540 2.70 6 5 970 4.85
Low variation

|VC | = 25 |VC | = 50
avg L Lr

∑
vi∈VC di

∑
vi∈VC di/Q L Lr

∑
vi∈VC di

∑
vi∈VC di/Q

C 3 3 460 2.30 5 5 860 4.30
R 2 2 332 1.66 4 4 721 3.61

RC 3.13 3 540 2.70 6 5 970 4.85

To compare the effect of each type of valid inequalities on the lower bound, we summa-

rize the average gap closed by adding the inequalities in the sets Ip, Ie and Isr in Table 4.2.

If a set is empty for all the instances of a type, the corresponding cell is blank in Table 4.2.

For both C and RC instances, the 2-path inequalities are most effective for improving the

lower bound, closing more than 10% of the gap under all cases. For the R instances with

|VC | = 25, the 2-path inequalities close an average of 0.55% gap while the SR inequalities

137



close an average of 0.42%. When |VC | = 50, the subset row inequalities are more effective ,

with an average of 0.46%, compared to 0.34% for 2-path inequalities. The enhanced RCIs

show more impact on the C instances, where the improvements are larger than those by

the subset row inequalities in all cases except for |VC | = 25. For the RC instances, the

enhanced RCIs are less effective than SR inequalities except for |VC | = 25. There are no

enhanced RCIs found for any of the R instances. However, given the fact that the size of

Isr is far larger than Ip and Ie as shown in Tables 4.4 to 4.7, and the subset row inequalities

complicate the label-setting algorithm, the 2-path and enhanced RCIs are more helpful.

Table 4.2: The average gap closed by the inequalities in sets Ip, Ie and Isr.

Variation
High Low

|VC |= 25 50 25 50

C
2− path 11.66 10.72 11.40 10.64

EhancedRCI 2.27 0.79 0.41
Subsetrow 0.53 0.39 0.51 0.33

R
2− path 0.55 0.33 0.55 0.35

EhancedRCI
Subsetrow 0.42 0.47 0.42 0.45

RC
2− path 12.46 17.89 12.34 17.63

EhancedRCI 0.05 0.19 0.44 0.21
Subsetrow 0.15 0.30 0.35 0.27

To compare the robust solutions and deterministic solutions, we summarize the average

Inc and Gape in Table 4.3. First, we look at the instances with |VC | = 25. The average cost

increases for the R instances are 0 for both low and high variations, indicating that all the R

instances are solved to optimality and the optimal objective values of the robust solutions

are the same as the deterministic solutions. This is because in these instances, time window

constraints dominate. Therefore, more vehicles are used in the optimal solutions of R
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in the deterministic case, leading to low utilization of vehicle capacity. The C and RC

instances are also solved to optimality in both high variation and low variation cases as

indicated by the 0 gaps in both cases. However, the optimal values are much higher than

the deterministic solutions. The C instances have an average increase of 16.23% for low

variation case and 21.41% for high variation case, whereas the values for RC instances are

16.87% and 26.45%, respectively.

Comparing the results for the instances with |VC | = 50 in Tables 4.5 and 4.7, similar

patterns are observed. The R instances show a small average cost increase of 0.22% in the

low variation case, and a 2.32% increase in the high variation case. Since the R instances

that solved to optimality have the same objective values for the robust and deterministic

solutions, the increase may be caused by the gaps in the instances not solved to optimality.

For the C and RC instances, the average cost increases are far larger than the R instances.

The C instances result in 18.08% and 22.99% in the low and high variation cases, whereas

the increases are 13.79% and 16.79% for the RC instances. More instances are not solved

to optimality for the C and RC instances. However, the gaps are not necessarily much

higher than the R instances. Specifically, the average gaps for C and RC instances are

2.80% and 3.08% in the high variation case, compared to 2.72% for the R instances, while

the values for the low variation cases are 0.81% and 1.84%, which are smaller than the

3.96% for the R instances. This indicates that suboptimality is not the main reason for the

huge increases on cost for C and RC instances. The possible reason is that when clustered

customers can not be covered in a single vehicle, the model may need to explore combining

customers from different clusters which leads to higher cost.
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Table 4.3: Summary of the average Inc and Gape.

Variation
High Low

|VC | = 25 50 25 50

Gape

C 0 2.80 0 0.81
R 0 2.72 0 3.96

RC 0 3.08 0 1.84

Inc
C 21.41 22.99 16.23 18.08
R 0 0.24 0 0.22

RC 26.45 16.37 16.87 13.79

4.5.4 Simulation

In this section, we compare the robust and deterministic solutions under simulated scenar-

ios. First, we vary the percentage of customers experiencing demand change, denoted by

p̃, and set it to 20%, 40%, 60% or 80% of |VC |. For a given p̃, and for each instance of

the data sets, we create 1000 scenarios. In a scenario, a random set of customers Sp̃ with

|Sp̃| = p̃ ∗ |VC | are selected from the |VC | customers. For each customer vi in Sp̃, the real

demand is uniformly generated in [di, di + hi].

Tables 4.9 to 4.12 report the statistics on the robust and deterministic solutions. The

information reported is the number of vehicles used TVR and TVD in the robust and de-

terministic solutions, the average vehicle utilization in percentage, and infeasibility rates.

Average vehicle utilization is calculated in percentage as the ratio of total simulated de-

mand and the number of vehicles used. Infeasibility rate in percentage is the ratio of the

number of infeasible scenarios and the total number of scenarios (i.e. 1000). A summary

of Tables 4.9 to 4.12 is provided in Table 4.8. The average utilizations of the robust and

deterministic solutions are the same when TVD = TVR. When TVR > TVD, e.g. the RC
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instances and the C instances with |VC | = 50, average vehicle utilization in the robust

solutions is lower than the deterministic solutions under all demand variations.

However, even for the same number of vehicles, TVD = TVR, the infeasibility rate of

robust solutions is much lower than the deterministic solutions. Over all 464,000 scenarios,

the average infeasibility rate for the robust solutions is 0.57% while that for the determin-

istic solutions is 41.62%. For each type of instances, as p̃ increases, the average infeasibility

rate for deterministic solutions increases significantly. For C instances with 50 customers

and p̃ = 80%, all simulated scenarios turn out to be infeasible. While at most 7.52% of

scenarios turn out to be infeasible for the robust solutions under the same setting. This

demonstrates that robust solutions indeed protect against uncertainties. On average over

all 464,000 simulated scenarios, only 2389 are infeasible for the robust case, compared to

170,969 for the deterministic case.

Robustness, however, comes at the expense of an average increase of 11.22% in routing

cost over all 116 tested instances. It is worth noting that our model allows controlling the

level of robustness of the solutions by adjusting the protection level Γ .

4.6. Conclusion

In this chapter, we presented a robust VRPTW under demand uncertainty. The uncer-

tainty support is based on a set of cardinality constrained sets. We first presented a set

of equivalent formulations for the problem. We, then, proposed a branch-and-price-and-

cut algorithm to solve the problem, in which the subproblem is a robust ESPPRC that

was solved by solving a series of ESPPRC. Several types of inequalities were discussed
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and extended to the robust VRPTW based on cardinality constrained uncertainty. We

applied the branch-and-price-and-cut algorithm to 112 instances with up to 50 customers.

Numerical testing showed that the branch-and-price-and-cut algorithm was successful in

solving most instances within reasonable time. Simulation of the robust and determin-

istic solutions revealed that the former are significantly more robust and protect against

uncertainties at the expense of an increase in routing cost.
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Chapter 5

Conclusions

5.1. Summary of the thesis

To deal with the challenges resulting from executing decisions made under the determin-

istic assumption when operational parameters are likely random, the thesis studies three

important problems in routing and scheduling under uncertainty. Particularly, we propose

the robust crew pairing, the robust resource constrained shortest path, and the robust

vehicle routing problem with time windows, based on cardinality constrained uncertainty.

Chapter 2 presents a robust crew pairing problem that considers disruptions between

flights. A protection level is specified for each pairing that allows a decision maker to

control the level of robustness of the solutions. A major challenge is to solve a robust

shortest path problem in the subproblem with uncertainty both in the objective function

and in the resource constraint. A sequential algorithm transforms and solves the problem

by solving a series of deterministic counterparts. The subproblem algorithm is used within
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column generation to obtain optimal or close to optimal integer solutions. The robust

solutions are tested against the deterministic solutions under simulated disruptions. The

results show that the robust solutions lead to more stable crew schedules on average and

to significantly less delays.

Chapter 3 extends the robust shortest path problem with single resource constraint

to the case with uncertainty in multiple resource constraints. The sequential algorithm,

while still valid, fails to solve even small size instances as the number of nominal problems

increases exponentially. To address this challenge, we develop a series of graph reduction

techniques and propose a new dominance rule for the robust case. Computational tests

are carried out on a set of instances generated from benchmark instances. The proposed

label-setting algorithm outperforms the sequential approach in terms of solution time and

size of problems solved.

Chapter 4 focuses on the robust VRPTW with demand uncertainty. Customer demand

is considered to randomly vary in an interval, and a vehicle is able to guarantee service

for en-route customers as long as the number of demand changes is limited to a specified

level. The model differs from other robust vehicle routing problems in the literature in the

uncertainty support assumption and in the solution methodology. The proposed model uses

cardinality constrained uncertainty. The robust model is solved using a branch-and-price-

and-cut algorithm that uses a novel separation method to determine valid inequalities. The

computational results show that the proposed solution method is able to solve instances

with up to 50 customers to optimality in a reasonable time. Under simulated demand

variations, the robust solutions are significantly less vulnerable to demand uncertainty

than the deterministic solutions, and remain feasible most of the time.
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5.2. Future research directions

The models proposed in this thesis make assumptions and limitations that can be extended

in the future research.

For the robust crew pairing problem, a possible extension is to control the position of

the protection in a pairing. This is based on the fact that in real operations, disruptions

show both complex correlation and propagation. As a result, protection at the early stage

of a pairing is more effective than that at a later stage. To model this, weighed disruptions

can be incorporated so that a disruption near the beginning of a pairing is given a larger

weight.

For the robust shortest path problem with resource constraints, the performance of the

modified label-setting algorithm is affected by factors such as the density of the graph, the

number of variations with high values, and the number of resources. It is possible that an

exact robust solution may not be attainable for difficult instances. Therefore, heuristics

provide an alternative to obtain good solution. Although many successful heuristics have

been proposed in the deterministic case, there are no heuristics developed for robust models.

Moreover, the extension from the deterministic case to the robust case is not straight

forward and a good heuristic requires research efforts to take advantage of the special

structure of the uncertainty support.

Future research on the robust VRPTW should focus on improving the separation strat-

egy. The separation strategy proposed in Chapter 4 finds a subset of inequalities that

violate the capacity constraints for a specified number of vehicles. Specifically, the subset

of customers determined by the separation strategy can be partitioned into a number of
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subsets where the total demand in each subset violates the capacity. A stronger inequality

is defined by a subset of customers where any partition has at least one subset that violates

the capacity. Moreover, as the model assumes that the service time and the traveling time

are certain, a natural question is whether it is possible to consider uncertainty in these

times. Since such extension is not trivial, we need to first note the difference between

capacity constraints and the time window constraints. The main difference is that the

capacity constraints have an identical upper bound and a lower bound of 0 at each cus-

tomer while the time window constraints have different upper and lower bounds at each

customer. A non-zero lower bound at each customer complicates the problem because the

accumulated variation can be absorbed along the path when the vehicle reaches a customer

before its service time window. Therefore, considering the first Γ highest variations does

not necessarily lead to the worst scenario under the specified protection level. As the time

window constraint in the two index flow formulation of VRPTW use auxiliary continuous

variables to represent the arrival time at each customer, it is not straight forward to ex-

tend this constraint to a robust case with cardinality constrained support. The variations

considered along the path have to be explicitly formulated in the constraint. Apart from

the need of a new formulation, the solution method, especially the label-setting algorithm

for the resulting subproblem, requires novel ideas to address the challenges.
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Appendix A

Label setting algorithm for resource

constrained shortest path

A label residing at node i is denoted by vector Ci = (ci1, ..., ci|R|) where cir is the consump-

tion of resource r = 1, ..., |R| for a path from origin to node i. If the path from origin to

node i is indexed by p, then the corresponding label is denoted by Cp
i . For two labels at

node i, C1
i dominates C2

i , represented by C1
i < C2

i , if there exists resource r ∈ R such that

c1
ir < c2

ir and c1
ir ≤ c2

ir for r, r ∈ R. Li is the set of labels created at node i and Pi is the set

of non-dominated labels at node i. fij(C
p
i ) represents the resource extension function that

calculates the resource consumption at node j when Cp
i is extended through arc (i, j) .

The algorithm in this appendix is applicable if there exists r ∈ R such that tijr ≥ 0.

Unprocessed keeps the labels that are created but not processed yet. W (i) is the set

of nodes that connects node i with an arc. A pseudo-code of label-setting algorithm is
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presented by Algorithm 1.1.
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Algorithm 1.1 Label setting algorithm

Initialization:
p = 0
Cpo = (0, ..., 0), where Cpo ∈ R|R|
mark Cpo as not dominated
Lo = {Cpo}
Li = {(∞, B2, ..., B|R|)},∀i ∈ N\{o};
Unprocessed = {Cpo}
while Unprocessed 6= ∅ do

Extract a label C p̃i from Unprocessed

if C p̃i is not dominated then
for all j ∈W (i) do

p = p+ 1
Cpj = fij(C

p̃
i )

if Cj is feasible then
for all Cpj ∈ Lj do

Perform dominance check for Cpj and C p̄j
if Cpj is dominated then

mark Cpj as dominated
break

else if C p̄j is dominated then

mark C p̄j as dominated

if C p̄j is processed then

Lj = Lj\{C p̄j }
end if

end if
end for
if Cpj is not dominated then

Lj = Lj ∪ {Cpj }
else

delete Cpj
end if

end if
end for
mark C p̃i as processed.

else
delete C p̃i .

end if
end while
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Appendix B

MIP reformulation

Since the inner maximizations in the objective function and in resource constraints are in

the same format, we first deal with the inner maximization in (3.1). Given y ∈ Y , the

inner maximization in (3.1) is a bounded knapsack problem as follows:

[KN-OBJ]

U(y) = max

|A|∑
a=1

ha1y
a
1u

a
1 (B.1)

s.t.

|A|∑
a=1

ua1 ≤ Γ1 (B.2)

ua1 ∈ {0, 1} a = 1, ..., |A| (B.3)

Since Γ1 is an integer, the binary requirement for ua1 can be relaxed, and ua1 becomes a

continuous variable in [0, 1]. [KN-OBJ] becomes:
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[KN-OBJ]

U(y) = max

|A|∑
a=1

ha1y
a
1u

a
1 (B.4)

s.t.

|A|∑
a=1

ua1 ≤ Γ1 (B.5)

0 ≤ ua1 ≤ 1 a = 1, ..., |A| (B.6)

Define v1 as the dual variable for constraint (B.5), qa1 ,∀a ∈ A as the dual variable for

constraints (B.6). The dual problem of [KN-OBJ] is:

[DKN-OBJ]

U(y) = min Γ1v1 +

|A|∑
a=1

qa1 (B.7)

s.t. v1 + qa1 ≥ ha1y
a
1 a = 1, ..., |A| (B.8)

qa1 , v1 ≥ 0 a = 1, ..., |A| (B.9)

The same primal-dual transformation can be carried out on the inner maximization in

constraints (3.5) and result in the following knapsack problems:

[DKN-CONS]

Q(y) = min Γrvr +

|A|∑
a=1

qar (B.10)

s.t. vr + qar ≥ hary
a
r a = 1, ..., |A| (B.11)

qar , vr ≥ 0 a = 1, ..., |A| (B.12)

184



Replacing the inner maximizations in [robust SPPRC] with U(y) and Q(y), and adding

constraints (B.8), (B.9), (B.11), (B.12) result in [MIP-robust SPPRC].
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Appendix C

The sequential algorithm

Observing that constraints (B.8) are equivalent to qa1 ≥ ha1y
a
1 − v1 and qa1 ≥ 0 for a =

1, ..., |A|, we can write qa1 as:

qa1 = max{ha1ya1 − v1, 0}, a = 1, ..., |A| (C.1)

Since ya1 is binary, equality (C.1) can be written as:

qa1 = max{ha1 − v1, 0}ya1, a = 1, ..., |A| (C.2)

By replacing qa1 with equality (C.2), [DKN-OBJ] is reformulated as:
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[DKN-OBJ]

U(y) = min Γ1v1 +

|A|∑
a=1

(max{ha1 − v1, 0})ya1 (C.3)

s.t. v1 ≥ 0 (C.4)

Recall that ha1 is ordered such that h1
1 ≥ h2

1 ≥ · · · ≥ h
|A|
1 ≥ h

|A|+1
1 = 0. If v1 ∈ [h1

1,∞),

max{ha1 − v1, 0}ya1 = 0,∀a = |A| + 1, . . . , 1. If v1 ∈ [ha1, h
a−1
1 ], a = 2, . . . , |A| + 1, then

max{ha1 − v1, 0}ya1 = (ha1 − v1)ya1,∀a = 1, . . . , a − 1, while max{ha1 − v1, 0}ya1 = 0,∀a =

a, . . . , |A|+ 1. Based on this, the following equation holds:

|A|∑
a=1

(max{ha1 − v1, 0})ya1 =


a−1∑
a=1

(ha1 − v1)ya1 if v1 ∈ [ha1, h
a−1
1 ],∀a = |A|+ 1, . . . , 2,

0 if v1 ∈ [h1
1,∞).

(C.5)

Based on equation (C.5), [DKN-OBJ] can be decomposed into |A|+ 1 subproblems, where

each subproblem has v1 being within a certain interval. Let us use index e = 1, . . . , |A|+ 1

to denote these subproblems. For e = 1,

[SubDKN-OBJ1]

U1(y) = min Γ1v1 (C.6)

s.t. v1 ∈ [h1
1,∞) (C.7)

where
|A|∑
a=1

(max{ha1− v1, 0})ya1 equals 0 in this case and is removed from the objective. The

optimal solution of [SubDKN-OBJ1] is obtained at v1 = h1
1. For e = 2, . . . , |A|+ 1,
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[SubDKN-OBJe]

U e(y) = min Γ1v1 +
e−1∑
a=1

(ha1 − v1)ya1 (C.8)

s.t. v1 ∈ [he1, h
e−1
1 ] (C.9)

Rearranging the objective (C.8), [SubDKN-OBJe] becomes:

[SubDKN-OBJe]

U e(y) = min (Γ1 −
e−1∑
a=1

ya1)v1 +
e−1∑
a=1

ha1y
a
1 (C.10)

s.t. v1 ∈ [he1, h
e−1
1 ] (C.11)

Ignoring the constant term
∑e−1

a=1 h
a
1y

a
1, the linear objective (C.10) optimizes v1 over interval

[he1, h
e−1
1 ]. The optimal solution is obtained at v1 = he1 or v1 = he−1

1 . So,

[SubDKN-OBJe]

U e(y) = min

{
Γ1h

e−1
1 +

e−1∑
a=1

(ha1 − he−1
1 )ya1, Γ1h

e
1 +

e−1∑
a=1

(ha1 − he1)ya1

}

= min

{
Γ1h

e−1
1 +

e−1∑
a=1

(ha1 − he−1
1 )ya1, Γ1h

e
1 +

e∑
a=1

(ha1 − he1)ya1

}

The optimal solution of [DKN-OBJ] is the minimum solution over all [SubDKN-OBJe],

that is:
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[DNK-OBJ]

U(y) = min

{
Γ1h

1
1, . . . , Γ1h

e−1
1 +

e−1∑
a=1

(ha1 − he−1
1 )ya1, Γ1h

e
1 +

e∑
a=1

(ha1 − he1)ya1, . . . ,

Γ1h
|A|
1 +

|A|∑
a=1

(ha1 − h
|A|
1 )ya1,

|A|∑
a=1

ha1y
a
1

 (C.12)

For ease of exposition, let us redefine U e(y) as follows:

U e(y) =



Γ1h
1
1 if e = 1,

Γ1h
e
1 +

e∑
a=1

(ha1 − he1)yar if e = 2, . . . , |A|,
e∑

a=1

ha1y
a
1 if e = |A|+ 1.

(C.13)

Then,

[DNK-OBJ]

U(y) = min
{
U1(y), . . . , U e−1(y), . . . , U |A|+1(y)

}
(C.14)

Replacing the inner maximization in (3.1) with U(y) defined as in (C.13), [P1] becomes:
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[P-OBJ]

Z = min t1y1 + min
{
U1(y), . . . , U e−1(y), . . . , U |A|+1(y)

}
(C.15)

s.t. y ∈ Y (C.16)

tryr + max
0≤uar≤1∑|A|
a=1 u

a
r≤Γr

|A|∑
a=1

hary
a
ru

a
r ≤ Br r = 2, ..., |R| (C.17)

We show that we can solve [P-OBJ] by solving at most |A|+ 1 subproblems. First, let us

define the following problem:

[Ie]

Ze = min t1y1 + U e(y) (C.18)

s.t. y ∈ Y (C.19)

tryr + max
0≤uar≤1∑|A|
a=1 u

a
r≤Γr

|A|∑
a=1

hary
a
ru

a
r ≤ Br r = 2, ..., |R| (C.20)

Solving [robust SPPRC-OBJ] is equivalent to solving:

[P-OBJ]

Z = min
e=1,...,|A|+1

{Ze} (C.21)

Theoretically, any objective function can be formulated as a constraint. The previous way

of dealing with the inner maximization in the objective function can be applied to the

robust resource constraints since their inner maximizations are in the same format. It
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creates a series of subproblems that have the same feature as [Ie] but with one less robust

resource constraint. This constraint is transformed to a nominal resource constraint in

these subproblems. Iteratively applying this transformation on the subproblems results in

a sequence of SPPRC.

Proof of Theorem 3.1. To show the equivalence, we first prove that the feasible regions of

[Ie] and [Ie-Seq] are identical, i.e. any feasible solution of [Ie] is feasible to at least one

problem [Iew], and any infeasible solution of [Ie] is infeasible to all nominal problems [Iew]

for w = 1, . . . , |A|+ 1.

• Suppose y′ is feasible to [Ie], then y′ ∈ Y ∪ Ω and there exists Qw(y′r) such that

try
′
r +Qw(y′r) ≤ Br. This means y′ is feasible to problem [Iw].

• Now, suppose y′ is infeasible to [Ie], then

y′ /∈ Y ∪Ω or try
′
r + min{Q1(y′r), . . . , U

w(y′r), . . . , U
n+1(y′r) > Br.

If y′ /∈ Y ∪Ω then y′ is infeasible to all [Iew]. If try
′
r+min{Q1(y′r), . . . , U

w(y′r), . . . , U
n+1(y′r) >

Br, then

try
′
r+Q

w(y′r) ≥ try
′
r+min{Q1(y′r), . . . , U

w(y′r), . . . , U
n+1(y′r)} > Br, ∀w = 1, . . . , |A|+1.

This means y′ is infeasible to all [Iew].

Therefore, the feasible regions of [Ie] and [Ie-Seq] are identical. Obviously, the objective

function of [Ie] is same to the objective function of each [Iew], so the objective value of of
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any feasible solution of [Ie] is the same as the objective value of [Ie-Seq]. The equivalence

between [Ie] and [Ie-Seq] is proved.
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