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Abstract

The main goal of this thesis was to discover the relationships between MU characteristics

and MUP features. To reach this goal, several features explaining the anatomical struc-

ture of the muscle were introduced. Additionally, features representing specific properties

of the EMG signal detected from that muscle, were defined. Since information regarding

the underlying anatomy was not available from real data, a physiologically based muscle

model was used to extract the required features. This muscle model stands out from others,

by providing similar acquisition schemes as the ones utilized by physicians in real clinical

settings and by modelling the interactions among different volume conductor factors and

the collection of MUs in the muscle in a realistic way. Having the features ready, several

relationship discovery techniques were used, to reveal relationships between MU features

and MUP features. To interpret the results obtained from the correlation analysis and

pattern discovery techniques properly, several algorithms and new statistics were defined.

The results obtained from correlation analysis and pattern discovery technique were sim-

ilar to each other, and suggested that to maximize the inter-relationships between MUP

features and MU features, MUPs could be filtered based on their slope values, specifically

MUPs with slopes lower than 0.6 v/s could be excluded. Additionally PDT results showed

that high slope MUPs were not as informative about the underlying MU and could be

excluded to maximize the relationships between MUP features and MU characteristics.

Certain MUP features were determined to be highly related to certain MU characteristics.

MUP area and duration were shown to be the best representative feature for the MU size

and average fiber density, respectively. For the distribution of fiber diameter in the MU,

duration and number of turns were determined to reflect mean fiber diameter and stdv of

fiber diameter the best, correspondingly.
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Chapter 1

Introduction

Any body movement, as fast as eye blinking and as slow as intestine contractions, as volun-

tary as running and as involuntary as breathing, is provided by a series of contractions and

relaxations of particular muscles in the body. Healthy muscles convert chemical energy into

mechanical form to facilitate motion. However, structural perturbations to muscle anatomy

due to different disease processes change functionality and cause particular deficiencies in

this tissue. Before treatment, the muscular anatomical changes caused by different disor-

ders need to be discovered. Obviously, good understanding of muscle behavior related to

different neuro-muscular disorders facilitates prevention as well.

Physicians tend to study underlying muscle behavior by performing different clinical

examinations and tests. The one studied in this project is to analyze the electromyographic

(EMG) signals recorded from muscle. An EMG signal is a non-linear, non-stationary poten-

tial detected from muscles using electrodes during activation. This complex signal reflects

the physiological and morphological aspects of the muscle from which it was recorded.

The EMG signal acquired from a diseased muscle is different from that of a normal muscle,

since the anatomical structure of the muscle is perturbed due to the disease processes (see

Figure 1.1). Hence, discovering the deviations in EMG signals facilitates the understanding

of possible alterations in the structure of an underlying muscle.

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Disease processes affect the structure of a muscle and hence alter the shape of the

detected EMG signal.

In this thesis, possible changes in EMG signals are studied by discovering different

relationships between muscles and the EMG signals detected from them. This is done

by studying the associations between structural components of a muscle, known as motor

units, and electrophysiological signals detected from them, called motor unit potentials

(MUPs). Since the required information regarding the underlying anatomy is not directly

available in clinical settings, a physiologically based muscle model is used to generate equiv-

alent simulated data, instead of real data. One main advantage of this model over other

simulation models (Nandedkar, 1988a, 1988b, 1988c,Stalberg and Karlsson [2001b,a]), is

that the generated EMG signal is acquired based on a specific needle configuration in a

clinically valid way. Moreover, detailed parameters affecting the EMG signal are consid-

ered and simulated. Hence, the simulated EMG signals are ensured to resemble real EMG

signals significantly. These advantages separate the attempt presented in this thesis from

similar studies, and facilitate the problem to be investigated from a novel point of view.

From the generated EMG signals, appropriate measurements are calculated to charac-

terize the MUPs. As well, specific features are extracted from the muscle, to represent the

underlying physical structure. These features are then used to discover inter-relationships

between muscle anatomy and electrophysiology. In order to reveal possible associations
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between the two feature types, two different relationship discovery techniques are applied.

Organization of the Thesis

There are five chapters in this thesis including this introduction.

To give a better understanding of the research field, a touch of the background physi-

ology along with a brief review of existing ideas relevant to relationship discovery between

muscle physiology and electrophysiology is presented in Chapter 2.

In Chapter 3 a physiologically-based complex muscle model providing simulated clinical

EMG signal is described in detail. Also, two relationship discovery methods which are used

in the thesis to discover associations existing between EMG signals and the underlying

anatomy are explained.

Chapter 4 describes the experimental procedures preceding the data generation routines

along with the final results revealing the significant patterns inherent in the dataset.

Corresponding to the final results, a brief discussion is presented in Chapter 5.

Finally, Chapter 6 highlights important contributions of this study and suggests direc-

tions for future research in this area.



Chapter 2

Background and Literature Review

The anatomy of a healthy muscle will be damaged if affected by a disease process. As a

result of alteration in its physical properties, the muscle’s functionality perturbs as well.

One way of investigating the alterations due to disease is to analyze EMG signals detected

from the diseased tissue. To do this, a good understanding of the relationship between EMG

signals and the underlying muscle anatomy is needed. In this chapter some morphological

and physiological aspects of muscle are introduced. In addition, some electrophysiological

features of muscle and detected EMG signals, along with associated information presented

in the literature are mentioned and briefly discussed.

2.1 Muscle Physiology

We use our muscles to convert chemical energy into mechanical work. Mechanical work or

movement is the result of contraction of muscles. There are three kinds of muscles found

in our body.

Heart Muscle or cardiac muscle which makes up the wall of the heart. Throughout

life, it contracts some 70 times per minute pumping about 5 liters of blood each

minute.

4
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Smooth Muscle which is found in the walls of all hollow organs of the body (except the

heart) and its contraction reduces the size of these structures. Thus it regulates the

flow of different kinds of liquid material associated with hollow organs, such as blood

in arteries, food in the gastrointestinal tract and so on.

Skeletal Muscle which is connected at either or both ends to a bone and moves parts of

the skeleton. It is used to facilitate limb movements as well as to maintain different

body postures.

In this project physiological and morphological features of skeletal muscle along with

electrophysiological features of electromyographic (EMG) signals, were investigated. Con-

sequently inter-relationships between features of these two sets were revealed. From now

on, the term muscle(s) will refer to skeletal muscle(s).

The structural unit of contraction is the muscle cell or muscle fiber. Best described as a

very thin thread, the muscle fiber has a length ranging from a few millimeters to 30 cm and

a diameter of 10 µm to 100 µm. On contraction it will shorten to about 57% of its original

resting length (Basmajian and Luca [1985]). Each muscle fiber is supplied by a terminal

branch of one nerve fiber or axon whose cell body is located in the spinal cord. However,

each motor neuron (MN) innervates1 a group of several muscle fibers. The muscle fibers

innervated by one MN plus the nerve cell body, the long axon running down the motor

nerve and its terminal branches, together constitute a motor unit (MU). However, the

MU territory is defined typically on the muscle level by the cross-sectional area of the

cylindrical volume including all muscle fibers innervated by the associated MN. A MU is

the functional unit of skeletal muscle, since an impulse propagated from the MN causes

all the muscle fibers in one motor unit to contract almost simultaneously. The anatomical

characteristics of a healthy muscle follow specific distributions, e.g. muscle fiber diameters

in a MU are Gaussian distributed with a mean of 55 µm and standard deviation of 9 µm

typically.

1supply the nerve to
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There are several disease processes associated with muscles and nerves, known as neu-

romuscular disorders. Divided into two main categories of myopathy and neuropathy, they

perturb the structure and functionality of muscle by affecting muscle fibers (in myopathy)

and motor neurons (in neuropathy). Myopathy is mostly characterized by muscle fiber

atrophy2, loss and replacement by connective or fatty tissue, hypertrophy3 and splitting

into several thinner muscle fibers. In Figure 2.1 two sets of muscle fibers are shown in

biopsies taken from myopathic cases. Variation in fiber diameter is obviously seen in one

set, while fiber splitting is the dominant effect in the other one.

Figure 2.1: Two cross-sectional views of biopsies taken from a specific myopathic tissue (Limb-

Girdle Muscular Dystrophy). Note the variation in fiber diameter (a), and the big fiber which

has split into several tiny fibers (b).

On the other hand in neuropathies, MN loss is an early sign, where affected fibers, i.e.,

those associated to dying MNs, lose their nerve supply and get denervated. As a result,

unaffected MNs in the immediate vicinity of orphan4 muscle fibers produce collateral nerve

sprouts and re-innervate5 the denervated muscle fibers.

2decrease in size as a result of disease or disuse
3abnormal enlargement of a body part
4denervated muscle fibers
5supply the nerve for



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 7

There are different diagnostic methods for providing detection of abnormalities caused

by neuromuscular (NM) disorders. Physical examination, muscle biopsy and laboratory

examinations (protein synthesis, genetic testing) are the most common ones used (Bethlem

[1980]). Another way to recognize the structural changes caused by disease is to study the

electrical activities of the muscle quantitatively. This information is obtained from the

analysis of EMG signals detected from the muscle. An EMG signal is a complicated

composition of the electrical potentials detected from muscle fibers during activation.

2.2 Muscle Activation and Electrophysiology

Contraction of muscle fibers is preceded by initiation of an action potential on the muscle

fiber in the endplate region or at the neuromuscular junction6 (NMJ). The action potential

will propagate along the length of the fiber in both directions to each tendinous end. In

healthy muscles, an active MN concurrently stimulates all muscle fibers connected to it.

The currents associated with these potentials spread throughout the extracellular volume

surrounding muscle fibers and create time varying potential fields. Electrodes positioned

in the extra-cellular space detect the latter field potentials and the resulting measurements

can be expressed as waveforms.

Waveforms generated by single muscle fibers are called muscle fiber potentials (MFPs)

whereas those associated with a motor unit are called motor unit potentials (MUPs). To

maintain or increase the force generated by a muscle, MUs become activated frequently,

hence creating a train of MUPs associated with each MU. The number of recurring MUPs

along a train defines the MU firing frequency. The collection of the motor unit poten-

tial trains (MUPTs) detected during a contraction is termed an EMG signal. Basically

an EMG signal is the combination of motor unit potentials (MUPs), each of which is a

composite of muscle fiber potentials (MFPs) generated by the muscle fibers of the MU. It

6the connection between nerves and muscles
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is an exceedingly complicated signal which is affected by the anatomical and physiological

properties of the muscle, the control scheme of the peripheral nervous system, as well as

the characteristics of the instrumentation that is used to detect and observe it.

However, it is the morphological and physiological features of the active motor units

and their muscle fibers, which form the basis for clinical EMG signals. An EMG signal

contains valuable information about the underlying muscle from which it is detected. There

are three main approaches in conventional clinical electromyography for using EMG signals

to assess the structure and activation pattern of a muscle (Stashuk and Brown [2002]). The

first approach is to examine the spontaneous electrical activity of the muscle at rest, for

which suitable quantitative techniques have not yet been developed. The second approach

examines the shapes and sizes of the individual MUPs of voluntarily recruited MUs. This

provides important clues regarding the sizes and innervation patterns of the associated

MUs and how they may have changed in response to a neuromuscular disorder. In the

third approach the composite EMG signal detected during voluntary contraction (the so-

called interference pattern (IP)) is analyzed to assess the activity and size of individual

MUs. Fortunately, for the two latter cases, quantitative techniques are available.

In most clinical electromyography laboratories, the common practice is to ’eyeball’

EMG signals, in other words to analyze the signal in a subjective and qualitative manner.

The electromyographer compares the recorded signal against personal databases collected

from examining several healthy subjects of the same age and patients with a variety of

NM diseases. Obviously, the final diagnosis is biased significantly based on the electromyo-

grapher’s experience and the content of the databases. On the other hand, quantitative

electromyography (QEMG), offers a more objective and semi-automatic analysis by quan-

tifying measurements of EMG signals. In a QEMG study different distributions of selected

features of EMG signals acquired from any given subject and muscle are used to suggest

whether the underlying muscle is affected by a specific type of NM disorder or not. Based

on the nature of a QEMG study, it embraces a vast variety of techniques. The one used in
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this work, quantifies the EMG signal by extracting different feature values from individual

MUPs. The basic premise behind all of these techniques is that specific features of an EMG

signal represent specific physiological and morphological characteristics of the underlying

muscle. Pathophysiology can therefore be assessed based on features of detected MUPs.

As an indirect approach it requires a detailed knowledge of the relationships between the

MUP generators and the MUP measurements. Simply due to the lack of practical methods

to identify specific MUs in a muscle, it is difficult to study the inter-relationships between

MUP features and specific characteristics of the underlying motor units. Furthermore the

co-variation among different types of pathology has made it impossible to extract the in-

fluence and importance of each individual feature. To overcome these problems different

mathematical models and computer simulations have been developed to facilitate studying

the influence of individual morphological parameters of a MU on specific MUP features.

Obviously some features represent neuromuscular changes more clearly than others.

Buchthal and co-workers introduced MUP quantitative evaluation in the 1950’s and

measured amplitude, duration, number of phases and number of turns of detected MUPs.

They concluded that various myopathies and neurogenic disorders could be distinguished

from one another using these features (Buchthal and Pinelli [1952], Buchthal et al. [1954]).

Since then, these parameters have been studied and their relationships with anatomical

characteristics of the MU have been analyzed further. Although there are no specific uni-

versal definitions for MUP parameters, they have been characterized in the AAEE7 glos-

sary of terms in clinical electromyography. Amplitude is defined as the voltage difference

measured from the most positive peak to the most negative peak. Clinical EMG studies

(Takehara et al. [2004], Barkhaus et al. [1990], Dumitru et al. [1997]) have revealed that

amplitude is derived primarily from fibers within 300-500 µm of the electrode’s recording

surface. The greater the number of near fibers or the closer they are to the electrode, the

larger the MUP amplitude. As confirmed by simulation studies (Nandedkar et al. [1988a],

7American Association of Electromyography and Electrodiagnosis
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Nandedkar and Sanders [1989], Nandedkar et al. [1988c], Nandedkar [2002], Stalberg and

Karlsson [2001b,a]), MUP amplitude represents the size and number of the closest fibers

to the electrode. Thus it is sensitive to needle position; slight changes in needle position

will change the MUP amplitude significantly (Barkhaus et al. [1990]). MUP duration on

the other hand is less sensitive to the distance between the needle and active muscle fibers

of a MU, since it is determined by a much larger percentage of the muscle fibers of a motor

unit (Buchthal et al. [1954]). It is considered a robust diagnostic parameter and is defined

as the time interval between the potential’s departure from, and subsequent return to the

baseline. It depends on the MU muscle fibers that are up to 2.5 mm from the electrode

(Nandedkar et al. [1988c], Nandedkar [2002]). Considering a typical MU with a circular

territory diameter of 7 mm, the uptake area for duration would include roughly 50% of

the muscle fibers in the MU. Therefore duration is essentially related to the number of

fibers in the MU or the size of the MU and it is believed that changes in MUP duration

reflects changes in MU size (based on simulation models, Stalberg and Karlsson [2001a]).

This makes duration useful in differentiating myopathy from neuropathy. However, MUP

duration changes with increase in the dispersion of arrival times of MFPs at the electrode;

this affect can actually overcome the MU size factor (Nandedkar and Sanders [1989]).

Long-duration complex MUPs associated with MUs that have lost muscle fibers have been

found in chronic myopathies (Uncini et al. [1990]). Therefore it is suggested to exclude

complicated MUPs for MU size assessments using duration measurements (Dumitru et al.

[1999], Dumitru and King [1999], Uncini et al. [1990], Barkhaus et al. [1990]). Simulation

studies revealed that duration measured only from simple MUPs reflects the size of the

associated MU (Nandedkar and Sanders [1989]). Another parameter used in quantitative

MUP studies introduced by Buchthal, is phase, defined as the portion of a wave between

the departure from and the return to, the baseline. A turn is described as the point of

change in slope of the waveform and the magnitude of the voltage change following the
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turning point8. Together number of turns and phases, measure the complexity of the signal

(Buchthal et al. [1954]), often increased in pathological muscles, caused by diameter varia-

tion of the affected muscle fibers (Stalberg and Karlsson [2001a], Nandedkar et al. [1988b])

within 1 mm of the electrode core (Nandedkar [2002]). It was believed that fiber loss relates

to polyphasic MUPs (MUPs with more than 4 phases) in myopathies, but simulation stud-

ies described the variability in fiber diameter as the only cause (Nandedkar and Sanders

[1989]). Clinical studies (Pfeiffer and Kunze [1992]) revealed that phase counts provide no

additional information in discriminating between normal and myopathic MUPs. However,

they are complementary to turn counts in discriminating between normal and neurogenic

muscle. To further quantitate MUP complexity, the irregularity coefficient was introduced

(Zalewska and Hausmanowa-Petrusewicz [1995]) through which the normalized length of

the MUP curve was measured providing a convincing link with a visual estimate of the

signal irregularity. Since this coefficient characterizes the detailed features of a potential

(Zalewska and Hausmanowa-Petrusewicz [1999]), it evaluates MUPs with respect to dis-

ease progression regardless of the myogenic or neurogenic origin of the disorder (Zalewska

and Hausmanowa-Petrusewicz [2000]).

Another feature used for evaluating a MUP quantitatively, is the area under the rectified

potential curve. It depends on muscle fibers that are up to 2 mm from the electrode tip and

is reduced with fiber loss and increases when fibers are regenerated (Nandedkar and Sanders

[1989]). The are is determined by two main factors: the number and the diameters of

muscle fibers (amplitude) and the temporal dispersion of their MFPs (duration) (Stalberg

and Karlsson [2001b], Cengiz et al. [2002], Brooke and Engel [1969b]). Being related to

both amplitude and duration it would be affected by needle movement, although it is less

sensitive compared to amplitude (Takehara et al. [2004]). Normalization with amplitude

reduces the influence of needle position. Therefore the area/amplitude ratio or thickness

8It is not necessary that the voltage change passes through the baseline. A minimal excursion required

to constitute a change should be specified.
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was introduced (Nandedkar et al. [1988a]) to further quantify MUP shapes. It was shown

that this ratio is useful in discriminating between myopathic and normal muscles. However,

it wasn’t better than other MUP parameters in separating neurogenic from normal muscles.

Sonoo and Stalberg (Sonoo and Stalberg) used discriminant analysis to develop a simplified

function including both amplitude and thickness:

2× log10(ampmV ) + (area/amplitude)ms (2.1)

called the size index (SI). Clinical studies have indicated that SI is a strong discrimi-

native parameter between neurogenic and normal muscles (Zalewska and Hausmanowa-

Petrusewicz [2000], Sonoo [2002]) and a stable parameter (Sonoo and Stalberg, Takehara

et al. [2004]) that is not influenced by needle position. Moreover, it is the most reproducible

parameter since it is least dependant on technical and patient factors and it is the best

parameter to follow in sequential QEMG studies (Takehara et al. [2004]).

In addition to the features mentioned above, maximum slope, maximum acceleration

and fiber count are also considered as useful MUP features. Maximum slope is the peak

of the slope, the first derivative of MUP waveform, and is not used as a diagnostic feature,

but rather as a criterion or index of utility of detected MUPs (Barkhaus and Nandedkar

[1996]). In clinical electromyographic recordings only MUPs containing sharp spikes are

used for assessment, while sharpness is measured through MUP’s maximum slope. Besides,

it is believed that maximum slope associates with the electrode relative distance to MU, the

influential factor but yet unknown in clinical EMG acquisition. Correspondingly, maximum

slope is suggested as a useful parameter being used in this project, describing the status

of MU regarding the location of electrode tip. Another feature also considered as an index

throughout this work, is the maximum acceleration or the peak of second derivative of MUP

waveform, and is used in detection of single fiber contributions to motor unit potentials.

Simulation studies have shown that the activity of individual muscle fibers contributing

significant MFPs to MUPs of a MU can be studied through analyzing MUP accelerations

(Stashuk [1999b]). Fiber count is measured by counting the number of sufficient sharp
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acceleration peaks with amplitude above some threshold and is chosen in this project as a

proper MUP feature. It represents the number of fibers in close proximity of the electrode

(Stashuk [2001]).

Thus far, MUP features commonly used to interpret the morphology9 of the underlying

active MUs have been introduced. As well, the status of an underlying MU can be charac-

terized by a number of morphometric10 features. These features reflect the alterations in

anatomy due to NM disorders.

Since an increase in fiber diameter variation is one of the early signs of NM disease

(Wang et al. [1999], Schoser et al. [2004]), mean fiber diameter and fiber diameter vari-

ations were selected as MU parameters. For the first time, in 1969 Brooke and Engel

analyzed and measured muscle fiber diameters in 103 normal biopsies (Brooke and En-

gel [1969a]). They constructed histograms including mean diameter, standard deviation

and the number of fibers measured. Moreover, equivalent experiments for 182 biopsies

of neurogenic (Brooke and Engel [1969b]) and 97 myogenic (Brooke and Engel [1969c])

cases were performed and the proportions of abnormally large and small fibers were indi-

cated. Semi-quantitative morphometric techniques were used to determine the distribution

of fiber diameter of biopsies performed in healthy cases (Doriguzzi et al. [1984]) and pa-

tients affected by various NM disorders (Johnson et al. [1973], Cros et al. [1989], Tohgi

et al. [1994]). Increase in the coefficient of variation (cov) was shown to be more frequent

and pronounced in neurogenic processes than in myoapthic syndromes (Tosi and Jerusalem

[1976]), in which fiber enlargement or hypertrophy was reported to be dominant compared

to atrophy (Verma et al. [1992]). Fiber diameter is believed to be the most sensitive feature

to disease processes, characterizing muscle morphology.

Fiber density (FD) or number of fibers per mm2 of MU territory is another MU pa-

rameter used, alteration of which is mentioned as the earliest sign of denervation seen

9branch of biology that deals with the structure of animals and plants
10related to morphometry(method that involves measurement of the shape)



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 14

in neuropathies (Stalberg and Karlsson [2001a]) and some myopathies (Bertorini et al.

[1994]) (Wang, 1999). In addition, the number of fibers per MU is used as a representative

parameter for MU size (Nandedkar et al. [1988c]).

As mentioned earlier, during clinical studies, other factors beside MU anatomy and

physiology such as the type, position and rotation of the electrode, intracellular tissue

conductivity, etc. affect the detected MUPs. These so called volume conductor factors

(VCF) are neither related to MU morphology nor extractable from MUPs, but they do

alter MUP shape and size. Among all volume conductor factors the greatest impact on

MUPs belongs to the electrode through which the EMG signal is detected. The electrodes

used in electromyography are of a wide variety of types and construction. However, there

are two main types: surface (skin) electrodes and inserted (wire or needle) electrodes. Each

has its advantages and limitations. Having a relative large pickup area, surface electrodes

are commonly used to detect gross EMG signals consisting of the electrical activity of

numerous individual MUs, through which valuable information regarding the sizes of MUs

can be obtained. However, surface electrodes can’t be used to detect signals selectively from

small groups of fibers due to cross-talk effects of adjacent muscle fiber groups. Therefore

detailed anatomical features of the muscle can not be obtained using surface electrode

acquired signals, which makes it impractical as a choice of this work.

On the other hand, the small pick up area of a needle electrode enables detection of

individual MUPs conveniently, permitting a fine and selective study of each MUP. Thus it is

possible to study features of individual MUP and investigate their relationship with specific

MU characteristics. Another advantage of needle electrodes over surface electrodes is that

it may be easily repositioned within the muscle so that new territories can be studied or

signal quality may be improved (Basmajian and Luca [1985]). The most common needle

electrode is the concentric needle (CN), consisting of an elliptical tip11 and a relatively

11with a minor and major axes of typically 150 µm and 580 µm.
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long cannula12 or reference detection surface. It is widely used for clinical and research

applications. Beside the type of electrode, its position and rotation affect the shapes

and sizes of detected MUPs. Nandedkar et al. (Nandedkar et al. [1988c]) performed

correlation analysis between electrode position and some MUP features. They defined

electrode position as the electrode distance to the nearest fiber of the MU, with which

the correlation coefficient of MUP amplitude was found to be -0.77, suggesting that the

greater the distance to the MU fiber the smaller its contribution to MUP amplitude.

The described distance depends on knowing the MU territory which is not the case in

actual clinical recordings therefore simulation models have been used to study the effect

of distance on different MUP features. However, real clinical recordings are available

regarding the electrode distance to neuromuscular junction region; Falck et al. (Barkhaus

et al. [1990]) have studied MUPs detected from different recording sites in brachial biceps13

by positioning the needle in the middle third and distal third of the muscle belly. They

have shown that the more distant the needle is from the endplate, the more pronounced is

a MUP’s temporal dispersion and MUPs with longer duration are detected.

The goal of this work is to find possible relationships between anatomy and electromyo-

graphy by investigating the inter-relationships between specific MU characteristics and

MUP features. To achieve this, relationship discovery techniques are applied to MU and

MUP features characterizing anatomical and electrophysiological aspects of the muscle. In

this regard, others have performed correlation analysis between different MUP features for

real14 clinical data in normal and diseased cases (Zalewska and Hausmanowa-Petrusewicz

[1999, 2000], Cengiz et al. [2002], Pattichis and Elia [1999]). However, to reveal the asso-

ciations between different MUP features and MU characteristics, simulated models have

been used (Nandedkar et al. [1988a,c,b], Stalberg and Karlsson [2001b,a]), simply because

precise MU structure is unknown during clinical EMG signal acquisition. Similarly in this

1225 mm - 75 mm
13the muscle that flexes and supinates the forearm
14versus simulated data
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project simulated data was used to assess the relationships mapping specific anatomical

characteristics to specific electrophysiological features.

There are many different simulation models used to assist in MUP quantitative evalu-

ation. Some use pure mathematical representations which focus on the overall statistical

and spectral properties of the detected EMG signals, while others combine a form of the

MUP shape along with simulated MU firing times to emulate an EMG signal (Stashuk

[1993]). There are different methods used in various models to imitate the MUP shapes.

Arbitrary analytical estimation for the shape of the MUP is one method, whereas MUPs

extracted from real EMG signals are used as another method to substitute the MUP in

simulation models. In this work, a muscle model was used to explore the relationships

between changes in muscle structure and values of characteristic features extracted from

MUPs. Therefore the simulated EMG signals must resemble real EMG signals and reflect

the contribution of MU architecture to the values of specific MUP features. To achieve this,

individual MUP shapes are constructed based on specific electrode and MU configurations.

Basically a primary structure representing the underlying anatomy and morphology of a

muscle is built and then a specific electrode configuration is considered to detect the sim-

ulated potentials generated from activated muscle fibers representing the physiology and

morphology. As for other methods, the MUP waveforms are combined along with simu-

lated firing times to build up a composite EMG signal. Many researchers have utilized this

MUP generation methodology and used a muscle model as the basis for their EMG simula-

tion. Nandedkar et al. (Nandedkar et al. [1988c]) have used such a model for normal cases

in finding MUP feature relationships. For abnormal situations, either myogenic (Nanded-

kar and Sanders [1989]) or neurogenic (Nandedkar et al. [1988b]) they have perturbed the

normal model of MU architecture appropriately to be able to investigate the individual

and combined effects of these processes on the shapes of MUPs. A similar model has been

used by Dumitru et al. (Dumitru et al. [1999], Dumitru and King [1999]) to study MUP

duration and investigate the effects of muscular structure on this parameter in more detail.
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Stalberg and Karlsson (Stalberg and Karlsson [2001b,a]) in an effort to simulate concentric

needle electromyography have utilized a muscle model in their MUP generation scheme.

They concluded that the simulation model indicates the relative sensitivity of various EMG

parameters and gives the opportunity to study any MU characteristic quantitatively.

The model used in this work embraces the same methodology for MUP generation.

The rationale leading to the formation of the general model was originally introduced by

Stashuk (Stashuk [1993]). This method is based on the physiology and structure of muscle

and begins with modeling a cross-section of a muscle. Within this cross-sectional area, MU

centers are randomly located. Then muscle fibers are randomly assigned to MUs based on

their territory sizes. For the MUs with fibers in the detection area, firing rate behaviors

as a function of an assumed level of contraction are then simulated. Motor unit potentials

for a specific needle configuration are created and finally the detected MUPs are combined

with respect to the MU firing patterns to create the composite EMG signal. This model

has been evaluated qualitatively by comparing the results to either real signal properties

or those of other models in the literature (Stashuk [1993]). Different aspects of muscle

morphology and physiology are simulated in this model.

Recently, this model has been extended to include developed algorithms that gener-

ate EMG signals consistent with those acquired in a clinical setting (Hamilton-Wright

and Stashuk [2005], Hamilton-Wright et al. [2002]). The extended model includes certain

enhancements compared to other models in the literature.

In the current model a typical muscle including 150 - 250 MUs is simulated in each ex-

periment, compared to previous models where just one simple MU at a time was simulated.

The process of acquiring an EMG signal is constructed in a similar way to the one utilized

in present clinical settings where the physician searches for an active fiber by moving the

needle after insertion, before starting the recording. While in most models the needle is

positioned randomly relative to the active fibers. NM disorders cause various physiolog-

ical changes preceding anatomical alterations in neurons and muscles. However, in most
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models the changes are studied one by one for simplification reasons. In this model all

known anatomical perturbations are simulated concurrently, and their accumulated effects

on MUP features are studied. One may argue that simplified models, in which some re-

stricted parameters are simulated, are the first steps in understanding the functionality of

a complex system, and that a complicated model considering cumulative effects of different

parameters is difficult to understand and study. However, we should keep in mind that

different changes to MU anatomy due to a NM disease process occur together affecting

the detected signal simultaneously. Therefore it is necessary to study the additive effects

of different anatomical alterations on different MUP features together, which is possible

using the described model.

The significant advantages over other models presented in the literature, motivated us

to conduct similar studies using this uniquely different model. Considering the interactions

existing among groups of active MUs along with various morphological parameters concur-

rently, highlights this simulation model among others. Moreover, including an EMG signal

acquisition scheme similar to the one used by physicians in clinical settings, increases the

chances that the detected EMG signals will resemble real clinically detected EMG signals.

Therefore it is well justified to use this model as a reliable source for discovering asso-

ciations between real clinical MUPs and MUs obtained from real muscle. Besides, it is

interesting to seek the same relationships between MUPs and MU features extracted using

this complex model, as the ones mentioned by others using more restricted models.

In this model the developed algorithms determine a muscle model in advance and allow

independent positioning of an electrode and selection of contraction level. Therefore, the

structure and activation of a simulated muscle can be sampled at different needle positions

and levels of contraction as would be done during acquisition of real clinical EMG data.

This muscle model along with its EMG signal simulation algorithms have been shown to

produce EMG signals consistent with those acquired from real muscle (Hamilton-Wright

and Stashuk [2005]). Therefore it creates the unique opportunity to deal with semi-real
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data, compared to other simulation models, and yet have sufficient information regarding

the underlying anatomy, compared to actual real data.

Since the anatomical structure of the model resembles real muscle and the detected

EMG signal provides clinically relevant details, the data from such a model includes valu-

able information about the properties of real muscles and their relevance with EMG signals

that would be detected during a clinical study. Hence, relationships detected would expect

to exist between real muscles and detected EMG signals. Therefore the extracted MU char-

acteristics and MUP features are reliable enough to be used for studying inter-relationships

between underlying anatomy and acquired EMG signals. This muscle model along with

the developed algorithms for EMG signal generation, are described in detail in the next

chapter of the thesis.

Having extracted the appropriate features, relationship discovery techniques should

be used to find the associations between EMG signals and underlying muscle anatomy.

Correlation analysis was performed as the most common method used in discovering linear

associations in a dataset. Additionally a pattern discovery technique was used to find

association patterns inherent among various features and their values. There are specific

advantages for each of these association discovery methods which are discussed in the next

chapter.

An obvious prerequisite of the study of any pathological alteration in neuromuscular

tissues is to obtain the best possible estimate of normality in healthy cases. Considering

the normal values, the deviations are then recognized and measured as signs of pathology

and extent of progression. Therefore normality measurements are always stressed to avoid

false positivities in diagnostic evaluation of EMG signals with minimal changes. That’s

why the study in this work has focused on normal data acquired from healthy tissue.



Chapter 3

Data Generation and Analysis

Methods

An electromyographic (EMG) signal is the voltage detected from a muscle during activation

using suitable electrodes. It contains valuable information regarding the architecture and

functionality of the muscle from which it was detected. Thus it reflects changes in muscle

morphology and physiology due to disease processes.

To properly interpret the information inherent in an EMG signal associated with the

status of the muscle from which it was detected, relationships between anatomical char-

acteristics of muscle and features of a detected EMG signal were studied. To do this,

appropriate MU and MUP data were obtained using a complex electrophysiological muscle

model. Having the data, several relationship discovery techniques were then applied, in

order to find existing-yet-unknown associations among the attributes of the data. The

analysis techniques along with the anatomic model and the EMG signal generation scheme

used in the thesis, are presented and discussed in detail in this chapter.

20
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3.1 EMG Data Generation Scheme

During clinical electromyography study, physicians try to understand muscle behavior by

assessing detected EMG signals. However, many influential anatomical factors are unknown

to them at the time. Therefore, it is impossible to directly relate an acquired EMG signal

to the morphology and physiology of the underlying muscle in real clinical settings. In an

effort to repair this lack of knowledge, researchers have suggested various ways of simulating

EMG signals. In this project a detailed physiologically-based simulation model is used to

study the structure and activation of a muscle using components of acquired EMG signal.

Analysis of EMG data extracted from such a model provides valuable information regarding

real muscle structure and its correlation with detected EMG signals. Through this model

the opportunity to simulate various pathological situations is obtained.

In this model, an EMG signal is simulated based on a specific muscle structure and

needle configuration by rigorous determination of individual MUP shapes along with sim-

ulated MU firing patterns. Therefore, the simulated signals resemble real EMG signals at

all levels of analysis, from general shape characteristics, to subtle features regarding con-

tributions of individual muscle fibers. Moreover, the EMG data generated by this model

should reflect the structure and activity of a muscle in a way similar to the reflection

provided by real signals detected from real muscle. Important components of this muscle

model have been described and evaluated elsewhere (Hamilton-Wright and Stashuk [2005])

to determine the ways and extent to which the new simulation model can be used. In this

section, the specific structural and functional model of the muscle along with the needle

electrode configuration is described.

3.1.1 Muscle Structure Model

The method of EMG signal simulation utilized in this project, embraces constructing an

anatomical model for the muscle as the base. The physical layout of normal muscle is
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formed through several steps which are mentioned in detail elsewhere (Stashuk [1993],

Hamilton-Wright and Stashuk [2005]) and briefly in the following.

The morphology of the motor unit (MU) as the building block of the muscle is con-

structed first, by calculating the MU territory diameter regarding its twitch1 tension. Using

this diameter as the expected MU size along with MU muscle fiber density and area per

fiber (0.0025 mm2), the area of the muscle is estimated. The muscle radius is then cal-

culated and the position of MU centers are determined. Just like seed scattering across

a surface, MU centers are ’thrown’ uniformly from grid points across the muscle cross

sectional area. In order to avoid clustering, grid points are chosen randomly and with-

out replacement until all of them are used. Then all points are reselected for subsequent

’throws’ until all MU centers are positioned.

Once MU centers are located, fibers are assigned to MUs in two steps. First fibers are

placed based on a fixed grid assuming 400 fibers in each mm squared. Then in the second

step each fiber is assigned to a specific MU based on several developmental factors each

of which indicates the plausibility of the muscle fiber belonging to the MU. A weighted

combination of these factors is then considered to determine the likelihood of a specific

MU adopting a specific MF.

Once 20 fibers are adopted by a given MU, the MU center is relocated to the center

of mass of the 20 fibers as a whole set. This recalculation is done in order to decrease

the number of outliers. The MU center is updated for each muscle fiber adopted there-

after. After all fibers are assigned to different MUs, the actual MU territory diameters are

calculated based on the furthest 10% of fibers in each MU.

The fiber diameters of each MU are selected from a Gaussian distribution specific to

each MU such that the collection of fibers diameters from all MUs will have a distribution

similar to a target overall muscle Gaussian distribution with mean of 55 µm and standard

deviation of 9 µm. Considering the difference in size of type I and type II fibers and

1response of the muscle to a single stimulus
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the predominance of type I fibers in smaller MUs, mean fiber diameter for each MU is

expected to not be the same and directly related to MU territory size. Therefore, the

mean fiber diameter for each MU is assigned based on the number of muscle fibers in that

MU, from a range of fiber diameters, considered equal to 2 times the standard deviation

of fiber diameters in the muscle. A special scheme is used to do this assignment such that

the sum of MU fiber diameter distributions resembles the overall-muscle distribution of

fiber diameters. This scheme lets each MU have less scattered fiber diameters than the

whole muscle has and lets larger MUs have both larger fibers and larger variation of fiber

diameters.

Last step in physical construction is to determine the end-plate position or neuromus-

cular junction (NMJ) location for each fiber. As for the distribution of fiber diameters,

the distribution of NMJ locations for a MU is less deviated compared to the whole muscle

and is assumed to be Gaussian distributed with a mean of 0 µm and a standard deviation

based on the MU territory diameter.

So far the muscle architecture is built and the next stage is to simulate the functionality

of the muscle during activation. To acquire an EMG signal during activation, motor unit

potentials created by active muscle fibers in the MUs, are detected by a needle electrode.

A specific electrode configuration is constructed to substitute the real needle electrode in

this model and it is discussed prior to signal simulation.

3.1.2 EMG Needle Electrode and Clinical EMG Studies

Several types of needle electrodes are used for clinical EMG studies. Each of these electrode

configurations consist of a relatively large cannula or distant reference detection surface

and a relatively small tip or side-port detection surface, the size of which varies for different

needle structures. The most common one is the concentric needle electrode (CNE) and is

used in the model presented here.

In the simulation model the position of the electrode tip is typically specified, to explore
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various parts of a muscle. However, in a clinical EMG study, a physician is additionally

interested in positioning the needle tip next to active fibers to acquire a ‘sharp’ signal. To

achieve this, the physician searches a small volume of the muscle by rotating or shifting

the cannula and moving the tip. Therefore, in order to properly model clinical studies,

the searching activity of the physician is emulated by refining the electrode position to

ensure detection of a ‘sharp’ signal, described as a signal containing sufficiently short rise-

time (< 500 µs) and adequate amplitude (>50 µv). To do this, the needle tip position is

repositioned from the specified needle location to ‘nearby’ active fibers by moving the tip

within an 800 µm radius. A ‘nearby’ fiber is defined as a big close fiber and is quantified

by a large value of fiber radius/distance ratio, where ‘distance’ is the fiber’s distance from

the center of the current electrode detection surface location. The tip is positioned at the

centroid of 3 ‘nearby’ active fibers.

After inserting the needle, in real muscle tissue, the fibers beside the electrode are

repositioned by the electrode mass. To simulate this, when the tip is positioned, the fibers

intersecting the needle cannula are displaced from their original locations, depending on

their position relative to the needle by moving them to the nearest boundary of the needle

cannula. They are projected perpendicularly to the cannula edge or pushed below the tip,

whichever is closer (Hamilton-Wright and Stashuk [2005]).

3.1.3 EMG Signal Generation

Now that the physical structure and needle configuration is described, the voltage potentials

acquired from each active muscle fiber can be calculated for a given needle tip and cannula

position.

Muscle Fiber Potential Modelling

As mentioned earlier a motor unit potential, the unit forming the complete EMG signal,

is the superposition of spatially and temporally dispersed muscle fiber potentials detected
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during activation. Therefore, muscle fiber potential computation is a convenient starting

point for EMG signal modelling. To do this a line source model, based on convolution

of a current signal and a weight function (Stashuk [1993], Hamilton-Wright and Stashuk

[2005]) is used. The current signal represents the impulse initiated at the endplate with a

magnitude depending on the fiber diameter and internal conductivity. However, the weight

function models the propagation of this impulse along the muscle fiber length and considers

the location of the fiber relative to the detection surface (either tip or cannula of the nee-

dle) for a specific needle configuration. For the large exposed detection surface (major and

minor axis of 580 µm and 150 µm) of a concentric needle electrode, the weight function is

estimated by averaging over 6 narrow, equally spaced line electrodes (Hamilton-Wright and

Stashuk [2005]). However, for the cannula which possesses linear shape rather than planar,

the weight function is modelled as a single line electrode. Based on the above explanations,

it is reasonable for the convolution of the weight function and the current signal to be the

muscle fiber potential acquired at a defined detection location. This method of MFP mod-

elling has been used by many other researchers (Nandedkar et al. [1988a,b,c], Nandedkar

and Sanders [1989], Duchene and Hogrel [2000], Stalberg and Karlsson [2001b,a], Nanded-

kar [2002]). It assumes that muscle fibers are straight, cylindrical and placed in a medium

with cylindrical anisotrophy. Fiber length and propagation of the action potential along

the fiber both toward and away from the detection surface are considered in this model.

Fiber length assumption

The length of the fiber is considered to be finite in this model, causing the convolution of

the current signal (Figure 3.1-a) and weight function (Figure 3.1-b) to produce two artifacts

regarding the endplate region and the tendons at both ends of the fiber. To remove these

artifacts, they were forced to be zero in a fixed way in the former EMG signal generation

algorithm (Stashuk [1993]).

However, to provide a more realistic signal acquisition routine consistent with that of
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Figure 3.1: Computation of muscle fiber potential. Vertical scale: arbitrary units (dilated vertical

scales for f and g plots). (a) Current signal. (b) Weight function. (c) Pure convolution result.

(d) Neuromuscular junction effect. (e) Tendon effects. (f) Signals in both directions after end

effects compensation. (g) Final potential. (Duchene and Hogrel [2000])

clinical settings, a specific technique for eliminating the artifacts was added as part of the

model to the current model. In this technique, which is described by Duchene (Duchene and

Hogrel [2000]), compensations regarding the initiation and extinction effects are computed

and subtracted (Figure 3.1d-e) from the pure convolution result. The signal propagating

away from the detection surface is then flipped and added up to the signal travelling toward

the detection surface (Figure 3.1-f). Through these steps the final muscle fiber potential

detected by the specific electrode is created.
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Motor Unit Potential Modelling

A single motor unit potential (MUP) detected at a specific point results from the summa-

tion of the fiber potentials of all the fibers belonging to the same MU.

In this model contribution of an MFP to a specific MUP depends on the fiber’s relative

location to the electrode which determines the frequency content of the potential created

by the fiber. The potential of those fibers far from the electrode, composed of low frequency

content are summed up together in just one buffer while MFPs of fibers near the electrode

are stored separately. The latter termed as ‘near’ MFPs , contain high frequency content

and are sampled 30 times faster than the former ‘distant’ MFPs.

MUPs are assumed to be affected by three factors: 1) Fibers in the same MU may

have slightly different diameters, hence different conduction velocities, causing a temporal

dispersion between individual MFP contributions to a MUP. 2) Chemical factors within

each NMJ create variations in the delay between the arrival of the axonal impulses and

the initiation of MFPs which in turn varies (causes) the temporal dispersion of individual

MFPs (to be different) during each activation. 3) Obviously each MUP is affected by the

position of the needle tip detection surface relative to the position of its muscle fibers.

The fixed temporal dispersion, 1st factor, due to variations in fiber diameter and NMJ

locations, is modelled at the structural level, created from Gaussian distributions simulating

each variation. To model the 2nd factor, a unique set of firing delays associated with the

NMJ of each ‘near’ fiber in a MU is created using a Gaussian distribution for which the

mean is zero and the standard deviation varies dependant of the degree of NMJ variability.

Finally, to form the MUP, the buffer related to ‘distant’ MFPs is added to ‘near’ MFP

individual buffers and in this way the MUPs are modelled as composites of individual

MFPs.
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Motor Unit Recruitment and Firing Pattern Generation

An individual MU is not active until the level of muscle contraction is above some minimal

level which is termed its recruitment threshold. Once a motor unit is active it remains

active throughout a contraction as long as the force created remains above the recruitment

threshold. Obviously as the level of contraction increases, more MUs become active. It is

believed that larger motor units will be recruited, or become active, at relatively higher

levels of muscle force compared to smaller motor units (Stashuk [1993]). This is known as

the size principle and it is modelled by assigning MU recruitment thresholds based on MU

territory sizes (Hamilton-Wright and Stashuk [2005]).

To maintain or increase the force generated by a muscle, MUs must fire repeatedly.

Therefore during a sustained contraction each motor unit generates multiple MUPs, the

collection of which is called a motor unit potential train. As the level of contraction

increases, MUs firing rates, hence the number of MUPs per second in the trains increases.

To simulate the firing behavior of a MU, its firing rate is calculated by directly relating

it to the MU recruitment threshold and the defined level of contraction. Firing rates lie

typically in the 8 pps - 42 pps range.

Inter discharge intervals (IDI) between sequences of MUPs in a train, the so-called MU

firing patterns, are modelled as outputs from a Gaussian renewal point process. The mean

is the reciprocal of the firing rate calculated for the specific MU based on the previously

mentioned algorithm and the coefficient of variation is typically set to 0.15.

EMG Signal

All MUPs detected from active MUs along with their firing patterns are constructed to

build a train, then each motor unit potential train is added to form the composite EMG

signal. The resulting EMG signal represents the net voltage detected by the electrode

positioned somewhere in the muscle.
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3.1.4 Features used in this project

In order to relate electrophysiology to underlying anatomy, each should be characterized

by appropriate features. Here, electrophysiology is measured by the simulated EMG signal

and characterized by MUP features, whereas the underlying anatomy is represented by MU

characteristics and described by the muscle model from which the EMG signal is generated.

MUP features Volume conductor factors MU characteristics

Area, Distance to MU center, Number of fibers,

Duration, ‘Near’ fiber count, Averaged fiber density,

Thickness, Mean distance to ‘near’ fibers, Mean fiber diameter,

Size index, Distance to closest MU fiber, Stdv of fiber diameter.

Amplitude, ‘Near’ fiber count,

MUP fiber count, to mean distance ratio,

Maximum Needle Z position.

acceleration,

Maximum slope,

Number of turns,

Number of phases.

Table 3.1: Specific electrophysiological features, volume conductor factors and anatomical char-

acteristics assessed in this project. ‘Stdv’ stands for standard deviation.

The complete collection of features used in this project to describe different aspects of

the MUs, MUPs and volume conductor factors (VCFs) are listed in Table.3.1.

In order to obtain the required features describing MUs, MUPs and VCFs, some mod-

ifications were applied to the existing simulator software. At the same time some new

characteristics were introduced of which corresponding values were extracted from the

simulator and the underlying muscle model. Extra routines were added to the simulator
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software to define features describing distribution of fibers in each MU. In this regard, mean

fiber diameter and fiber diameter standard deviation for each MU were calculated. As well,

additional electrophysiological features were extracted; e.g. size index was calculated using

Equation.2.1, having MUP amplitude and thickness from the existing software.

As mentioned before, volume conductor factors affect the EMG signal significantly,

hence they have a great influence on the relationships between EMG features and muscle

characteristics. Therefore, it is worthwhile to assess associations between these factors and

MUP features at the same time as studying those between MUP and MU features. This

helps us to understand the effect of VC factors on the inter-relationships between MUP and

MU features. In this regard, additional algorithms have been designed to provide certain

measurements characterizing volume conductor factors properly. The full collection of the

VCFs used in this thesis, is mentioned in Table 3.1 in which the term ‘distance’ stands for

the ‘needle’s tip distance’ and ‘Needle Z position’ is the relative distance of the electrode

to the endplate along the length of the fiber.

As a rule of thumb, it is believed that MUPs detected from MUs having fibers close

to the electrode would be more informative compared to that of MUs with distant fibers.

This means that as the needle moves towards the MU fibers, detected MUPs become

more representative, hence relationships between MUP features and MU characteristics,

if any, strengthen. Therefore, to assure maximized relationships between MUP and MU

features, only significant MUPs should be assessed while non-representative MUPs should

be excluded. The state of significance of a MUP is determined by the closeness of the MU to

the electrode. In this regard, near fiber count to mean distance (NFD) ratio was introduced

as an appropriate index VCF characterizing the closeness of a MU to the electrode and

was measured by dividing near fiber count to mean distance to near fibers for each MU.

It basically describes the group of fibers creating significant MFPs (MFP acceleration

greater than 7.5 kv/s) and considers their average distance to the needle at the same time.

Therefore NFD ratio reflects the closeness of the significant MU fibers to the electrode.
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It should be further noted that in this thesis, three different kinds of fibers are defined

as three separate features and they shouldn’t be mistaken for one another. The MUP’s

fiber count is the number of peaks of the MUP’s acceleration waveform happening beyond

some threshold. MU’s number of fibers is simply number of fibers located in the MU

territory area.On the other hand, near fiber count is defined by counting fibers whose

MFP’s maximum acceleration is larger than 7.5 kv/s2 (Stashuk [1999b]).

All of these features were measured for each performed EMG study characterizing

different aspects of the muscle under study. They were then saved into files available for

future referencing.

3.2 Relationship Discovery Technique

The anatomy model is combined with a particular needle configuration and a clinical EMG

signal acquisition scheme to perform an EMG study and simulate an EMG signal. The

acquired EMG signal along with the underlying muscle model, were then used to provide

measurements of corresponding MUP features and MU characteristics. Based on the algo-

rithm used to construct the model and generate the data, MU characteristics along with

MUP features, related to a particular muscle state, are random variables (r.v.s). To find

the associations existing among these r.v.s, (i.e., the goal of this project) different relation-

ship discovery methods were applied. In this project correlation analysis and a pattern

discovery technique were applied to the dataset to discover the inherent relationships be-

tween the features in the dataset. Through the following sections these two methods are

introduced, their uses are justified, and their details are discussed.

3.2.1 Correlation Analysis

Correlation analysis is the most trivial and common method utilized when inherent patterns

in a dataset are to be revealed. As it has been used by others (Zalewska and Hausmanowa-
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Petrusewicz [1999, 2000], Cengiz et al. [2002], Pattichis and Elia [1999]), it was used in

this project, to reveal possible relationships between an EMG signal and the underlying

muscle.

Correlation is the degree to which two or more quantities are linearly associated. The

extent of correlation between the values on the two axes, in a two dimensional plot, is quan-

tified by the so-called correlation coefficient. The correlation coefficient is calculated easily

and quickly and interpretations based on it are clear and straight forward. It possesses

bipolar values providing helpful information regarding the direction of relatedness. If the

correlation coefficient is positive, the two random variables (r.v.s) are directly related, i.e.,

as one increases the other increases. Whereas a negative correlation coefficient implies an

inverse relationship (i.e., the value of one r.v. increases as that of the other r.v. decreases).

The correlation coefficient is an expected value that is used to describe the relationship

between two continuous r.v.s X(t) and Y (t). It is also called as the Pearson correlation

coefficient and is defined as r in the following format:

r =
E(X, Y )− E(X)E(Y )√

(E(X2)− E(X)2) (E(Y 2)− E(Y )2)
, (3.1)

where E(X) =
∫

xP (x)dx is the expected value of random variable X and E(X, Y ) =
∫

y

∫
x
xyP (x, y)dxdy is the joint expected value of random variables X and Y . It should

be noted that Equation 3.1, calculates the correlation coefficient between two continuous-

valued r.v.s. However, some of the features used in this project, such as fiber count and

number of turns, are discrete-valued. To calculate the correlation when either one or both

r.v.s are discrete-valued, the Spearman Rank correlation coefficient is calculated instead of

Pearson coefficient.

To calculate the Spearman coefficient, each feature should be sorted first. Then the rank

1 is assigned to the first individual, 2 to the second, and so on, with the rank k assigned to

the kth individual. Note that tied ranks would get the average of the ranks.Having the two

sets of ranked features, the Spearman Rank correlation coefficient, ŕ, is calculated from
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the following formula:

ŕ = 1− 6
∑

D2

n3 − n
, (3.2)

where D is the difference between the ranks of the two features and n is the number of

data points.

Throughout the thesis, correlation coefficient is termed as the coefficient of correlation

measured between two features regardless of the nature of the data, (i.e., whether it is

integer or real).

In this work the correlation coefficients between several MUP features and MU charac-

teristics were calculated to examine the existence of two-sided linear relationships between

them. Moreover, the calculated coefficients were evaluated by comparing with correlations

of real data mentioned in the literature, for a full description see chapter 4.

3.2.2 Pattern Discovery Technique

Introduced in 1995 (Wong and Wang [1995]), this pattern discovery technique (PDT) is

a conceptual clustering method based on an unsupervised learning strategy. It is applied

to find the existing relationships or inherent patterns, in a dataset. A pattern is defined

as a statistically significant association among two or more events in a problem domain,

where an event is a feature holding a value. The significance is determined by the differ-

ence between observed occurrence in the dataset and the expected occurrence according

to a default model. The co-occurrences of events are interpreted as non-random, hence

describing a significant pattern, reflecting the nature of the dataset. In this project, the

PDT was applied to datasets including several MU and MUP features, in order to find

relationships between anatomical characteristics of muscle and features extracted from ac-

quired simulated EMG signals. The PDT is applied to discrete-valued datasets, therefore

the continuous-valued and large integer MU and MUP features used in this project, were

first discretized.
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Compared to correlation analysis discussed earlier, the PDT possesses three main ad-

vantages: 1) It finds associations between not only features but also their values, hence

discovering discrete relationships existing in a dataset. By discrete it is meant that the

relationships between features don’t stand for the entire range of their values, rather the

two features are associated when presenting some specific values. Therefore the PDT can

reveal any relationship between features in dataset, including discrete or whole range .

This capability is beneficial for the datasets used in this project, since the nature of its

inherent patterns is quite unknown. Using PDT ensures that any pattern existing in these

datasets would be revealed. 2) It discovers polythetic or high-order patterns2 containing

more than two features. The ability of discovering high-order patterns is important for

the analysis of the complex datasets used in this thesis. Specifically this ability facilitates

discovering relationships between two features regarding a third feature, such as an index

feature (e.g. maximum slope). 3) This association detecting process is qualitative, since

it determines whether a compound event is a significant association or not. In fact at the

same time, it is quantitative because the significant level along with the probabilities are

calculated and recorded.

In the upcoming sections, the terminology used in the technique and the methodology

behind it is defined and described.

Notations and Terminology

Consider a dataset D containing M samples D = {S1, S2, ..., SM}. Every sample in this

dataset is described by N attributes, Sj = {X1, X2, ..., XN} each of which can be seen as

a random variable. Each attribute, Xi (1 ≤ i ≤ N), can hold a value from a set of discrete

alphabets, αi = {α1
i , α

2
i , ..., α

qi

i } where qi is the cardinality of the ith attribute alphabet.

Thus each of the M samples in the dataset D can be defined by Sj = {x1j, x2j, ..., xNj}
2High order patterns are those patterns regarding relationships among more than two factors. For

example the propositions Amplitude=high, Duration=low and Area=low is a third order pattern.



CHAPTER 3. DATA GENERATION AND ANALYSIS METHODS 35

which means that each attribute, Xi (1 ≤ i ≤ N), has assumed a value from its alphabet

and turned into xij (1 ≤ i ≤ Nand1 ≤ j ≤ M). Assuming these notations, the following

definitions have been defined:

Definition 1 : A primary event of a random variable Xi(1 ≤ i ≤ N), is an event in

which Xi has assumed a value from its alphabet. Suppose Xi has taken its pth value, then

the pth primary event associated with it would be [Xi = αp
i ] or in a simpler form xip. For

the dataset D, there are v primary events such that:

ν =
N∑

i=1

ni

where ni is the number of alphabets for each attribute. It is assumed that two primary

events, xi1 and xi2 related to the same attribute Xi are mutually exclusive unless they are

equal.

Definition 2: A set of primary events is called a compound event. Assuming s to be a

subset of integers,{1, 2, ..., N} then Xs is defined as a subset of sample S such that:

Xs = {Xi|i ∈ s}

Then xs
j , the jth realization of Xs is the jth compound event associated with Xs. In this

way xs
j can be defined as the set of primary events created by the jth realization of Xs:

xs
j =

{
Xi = αpj

i |i ∈ s, pj ∈ {1, ..., ni}
}

A primary event is a 1-compound event and a k-compound event contains k primary events

of k different variables. Every sample in the dataset Sj (1 ≤ j ≤ M) is an N-compound

event.

Definition 3: A sub-compound event xr
j is a subset of the compound event xs

j such that,

∃r, r ⊂ s.

Definition 4: The expected occurence of a compound event xs
j in D is its expected total

under the assumption that the variables in Xs are mutually independent. The expected

occurrence of xs
j is denoted by exs

j
.
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Definition 5 : Assume T as a statistical significance test. If the occurrence of a com-

pound event xs
j is significantly different from its expected occurrence according to T , it is

said that xs
j is a significant pattern of order |s|.

Definition 6: The primary events related to a significant pattern xs
j have statistically

significant association or simply they are associated.

Detection of Patterns

For a compound event xs
j , the probability under the assumption of independency between

all of the variables in Xs, is called the expected probability. Considering a compound

event, xs
j , if the probability P

(
xs

j

)
is significantly different from the expected probability,

then xs
j is a significant pattern. This indicates that the primary events involved are likely

to co-occur.

Let us denote the observed and expected occurrence of a compound event xs
j as oxs

j

and exs
j

. The expected occurrence is calculated from the observed one using the following

equation:

exs
j

= M
∏

xip∈xs
j

P (Xi = αp
i ) = M

∏
xip∈xs

j

oxs
j

M
, (3.3)

where M is number of the samples in the training set D.

Instead of testing whether or not the probabilities are significantly different, the occur-

rences are compared with each other in a residual format. The residual concept related

to an event is the difference between the occurrence of the event in the dataset D and its

expected occurrence based on default probabilistic model. This residual concept is defined

by:

dxs
j

= oxs
j
− exs

j
, (3.4)

where oxs
j

and exs
j

are the observed and expected occurrences of the compound event xs
j in

the dataset consequently.

Obviously, the absolute difference between the observed and the expected occurrence,
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|oxs
j
−exs

j
| , can’t be used as a suitable distance measure, because it depends on the marginal

probabilities. Practically the residual is standardized in the following format:

zxs
j

=
oxs

j
− exs

j√exs
j

, (3.5)

and further adjusted to better evaluate the relative size of the discrepancy between exs
j
and

oxs
j
:

rxs
j

=
oxs

j
− exs

j√cxs
j

(3.6)

where cxs
j

is the variance of dxs
j
. The estimation of cxs

j
is presented in Appendix [A]. For

details on the difference between these two residuals see Wong and Wang [1997], Wang

[1997].

The adjusted residual rxs
j

and standard residual zxs
j

are distributed approximately as

asymptotic normal distributions with zero mean and unit variance. Thus using either

of them, if 95% is the desired level of confidence for the difference between the observed

occurrence and the expected occurrence of an event, 1.96 should be used as the significance

level (SL) by conventional criteria.

It is important to note that for patterns with small number of expected occurrences,

noisy data points might pretend as significant events. Therefore to avoid this possible

source of noise, a minimal number is assigned for expected number of occurrences as an

essential condition. This means that, to investigate the significance of an event, its expected

occurrence should be above this minimal threshold. On the other hand, the higher the order

of the event is, the smaller is the expected number of that event. Given that, for small

datasets, higher order patterns are not likely to be discovered.

For a compound event, xs
j if the residual, rxs

j
exceeds 1.96 (95% SL) then the compound

event is a significant pattern, meaning that the corresponding primary events are associated

significantly and will likely occur together. In this case xs
j is referred to as a positive

significant pattern. Otherwise, if the true value of rxs
j

is less than -1.96, xs
j is referred to as

a negative significant event, which means that the corresponding primary events unlikely
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co-occur. It is important to consider the negative significant patterns as well as the positive

ones, since they contain information about the un-likeliness of the co-occurrence of the

primary events and this is as important as the likeliness of co-occurrence.

To discover significant patterns inherent in a dataset, expected and observed occur-

rences are calculated first. Using those occurrences, the residuals are calculated by Eqn.3.4

and Eqn.3.6 one after another. Based on the selected significance level, the significant pat-

terns for the dataset are then discovered. One can easily design an algorithm that exhaus-

tively generates all the possible combination of the primary events at different orders and

test their significance by calculating their adjusted residuals. In such an approach high-

order contingency tables of different orders appear and make it computationally expensive.

However, heuristics have been applied to the version of the PDT used in this thesis. Sev-

eral algorithms have been used in which uninformative candidates for the significance test

are eliminated at an early stage and prevented from further considerations. The details

regarding the algorithms are not mentioned in this thesis and the reader is encouraged to

read Wang [1997] for further information.

In this thesis, MU and MUP features were applied to the pattern discovery technique

in order to detect the existing associations among them.

XOR problem, an example of PDT usage

As an illustration, an XOR problem will be considered in this subsection. Assume an XOR

database including 1000 samples. Each primary event of this database occur 500 times,

i.e., the marginal probability for each attribute is 0.5. Hence the number of expected

occurrences of the 3-compound event [A = T, B = T, C = F ] is 0.5 × 0.5 × 0.5 × 1000 =

125. To test whether this compound event is significant, the standardized residual is then

calculated. Suppose that the observed occurrence of this 3rd-order event in the XOR

database is 300. The standardized residual is calculated from Eqn.3.5 to be 15.65. This

value is larger than 1.96, 95% SL, therefore this compound event is a 3rd-order significant
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pattern in the database. Meaning that [A = T, B = T, C = F ] is significantly different

from its expectation or that the three primary events of [A = T ], [B = T ] and [C = F ] are

associated, hence likely co-occur.

Patterns of Different Order

A real world database contains patterns of different order. The existence of higher order

patterns does not guarantee the existence of lower order patterns and vise versa. Generally

if xk
j is the kth order pattern in dataset D, any tth order (t < k) sub-compound event of

xk
j may not necessarily be a pattern in dataset D, i.e., occurring throughout dataset D.

Thus the associations between events can only be found by testing the candidates of that

order. For example in the XOR problem mentioned above, [A = T, B = T, C = F ]

is a 3rd order pattern but none of the sub-compound events [A = T, B = T ], [A =

T, C = F ] and [B = T, C = F ] may be necessarily significant patterns. Thus synthesizing

higher order patterns from the lower order ones is not possible. Also, even if all of (k −
1)th order sub-compound events of xk

j are significant patterns, the xk
j itself may not be a

significant pattern. Therefore, whether or not a compound pattern is significant, can not

be determined through testing its sub-compound patterns.

Discretizing continuous data

Most of the features used in this project are continuous-valued random variables, yet PDT

is applied to discrete-valued datasets. Thus to find the relationships between these features,

they were discretized before being applied to the PDT relationship discovery methods.

There are different procedures for discretizing continuous-valued datasets. The MU and

MUP features studied in this project, are random variables. Therefore the discretization

scheme used in this project ensures that the transformed data is also a random variable;

providing same probabilistic properties as prior to discretizing. This is done through

maximizing the entropy of a discretized feature (i.e., equalizing the probability of each bin
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happening). The simplest way to do this, is to bucket an equal number of data points in

each bin, hence the probability of all bins becomes equal, however if two values are the

same, it is not that easy to perform the strategy. To overcome this, an optimized algorithm

explained by Chau [2001] was used to properly discretize the continuous features.



Chapter 4

Experiments and Results

In order to study the relationships between MUP features and anatomical characteristics

of MUs, the analysis methods described in Chapter 3, were applied to data created using

the model described earlier. In this chapter, relationships between MUP and MU features

are revealed and discussed. Moreover specific experimental situations along with relevant

assumptions are outlined.

4.1 Preliminary Experimental Routines

To obtain the required data, i.e., proper MUP and MU features, the simulation model

described in 3.1 was used. A concentric needle configuration was constructed as part of

the model. The parameters of the simulator were set such that a normal muscle was

modeled.

Physicians tend to acquire multi-sets of EMG signals from each studied muscle using a

minimal number of insertions, to maximize patient comfort. To model this, two different

insertion sites were simulated for each muscle modeled. Knowing that as the needle moves

away from endplate region, MFPs become more disperse in time than those detected near

the neuromuscular junction, one site was selected near to the endplate region while the

41
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other was chosen a bit further away, to include all varieties of MUP shapes. For each

site, the needle location along the length of the fiber was determined relative to the NMJ

region and was selected randomly from a range. Three different recordings were performed

during each insertion. Actually the electrode was repositioned twice after each insertion.

In Fig.4.1 this is shown by arrows from a1 to b1 and from b1 to c1. The second set

of recordings regarding the other insertion site are marked as a2, b2 and c2 in Fig.4.1.

Therefore for each muscle, six EMG signals were simulated.

Figure 4.1: Needle was inserted twice in each muscle. For each insertion site, three EMG

recordings were obtained, adding up to 6 EMG signals for each muscle model.

To ensure the same MUs were not resampled during the three EMG signal acquisitions

at each insertion site, the minimal distance between adjacent needle locations was calcu-

lated. To do this, extra sets of experiments were performed, in which common numbers

of MUs involved in EMG signals acquired from different needle locations were calculated.

Figure 4.2 shows that 4 mm is the proper minimal distance between adjacent detection

sites to avoid data redundancy due to sampling the same MU during a series of EMG

studies.

For consistency across various sets of experiments, superficial recording sites close to
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Figure 4.2: Common percentage of the MUs spotted during EMG acquisition in adjacent needle

locations.

the muscle surface were avoided (Falck et al. [1995]). Therefore the triangle was always

centered at the center of the muscle cross section area. After selecting the positions of the

electrodes, the simulator was executed, creating 6 EMG signals for each muscle modelled.

For the research of this thesis, 15 muscle models were generated in total. These EMG

signals were then resolved into their constituent motor unit potential trains using a clin-

ically accepted decomposition technique, provided through the DQEMG software. This

decomposition routine includes several signal processing and pattern recognition steps.

The details regarding this technique are beyond the scope of this thesis and the reader

is advised to see Stashuk [1999a, 2001] for more information. The decomposed MUPs

were then used to extract specific electrophysiological features. Similarly the required

anatomical characteristics were obtained for the associated MUs from which the MUPs

were detected.

On average 13 MUPs were detected from each EMG signal and having 15 muscle models

with 6 EMG signals in each, results in over 1000 MUPs in total. The extracted MU and
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MUP features were applied to the analytical routines described in the previous chapter.

However, in each case, particular statistics were defined to ease final referencing. The

results for each section are included as well.

4.2 Correlation Analysis

Correlation analysis was performed as the most common and simplest relationship dis-

covery method. It was conducted between features in each group as the inter-grouped

association. The results are presented in the following tables.

MUP Features dur thick SI amp FC acc slp turn phase

area 0.44* −0.43− 0.88* 0.96* 0.52 0.70 0.84 0.72 0.59+

duration (dur) 0.16− 0.60* 0.33* 0.07 0.19 0.25 0.26 0.33*

thickness (thick) −0.18− -0.58* -0.63 -0.58 -0.63 -0.58 −0.45−

size index (SI) 0.78* 0.42 0.52 0.65 0.65 0.68+

amplitude (amp) 0.6 0.79 0.92 0.77 0.57+

fiber count (FC) 0.78 0.7 0.68 0.49

max acceleration 0.93 0.82 0.67

(acc)

max slope (slp) 0.81 0.77

number of turns 0.75

(turn)

Table 4.1: Correlation coefficients between MUP features used in this work.

In Table 4.1, the coefficients marked with an asterisk are the ones consistent with corre-

lation coefficients mentioned in the literature (Cengiz et al. [2002]), between MUP features

obtained from real EMG signals. However, non-consistent1 correlations are either marked

1An explanation is presented in section 4.2.3.
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MU Features Average density Mean fiber diam Stdv of fiber diameter

Number of fibers 0.19 0.73 0.16

Average density -0.14 -0.01

Mean fiber diameter 0.1

Table 4.2: Correlation coefficients between MU characteristics used in this work.

VC Factors DClose NFibC MDNFib StdvDNFib NFibDis Zposition

Distance to MU 0.81 -0.77 0.25 -0.12 -0.76 -0.07

center,

Distance to closest -0.66 0.71 -0.75 -0.68 -0.03

fiber (DClose),

Near fiber count -0.17 0.21 0.98 0.06

(NFibC),

Mean distance to near -0.42 -0.26 0.03

fibers (MDNFib),

Stdv of distances 0.49 -0.02

to near fibers

(StdvDNFib),

Near fiber count to 0.05

mean distance ratio

(NFibDis).

Table 4.3: Correlation coefficients between volume conductor factors used in this work.

with a hyphen or a plus sign determining whether this value is much smaller or larger

than the real one, correspondingly. The unmarked coefficients associate to correlation

coefficients not found in the literature.

There is not a high correlation between most of the MU features mentioned in Table
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4.2, except for mean fiber diameter and number of fibers in the MU. This is well explained,

since mean fiber diameter in each MU is determined based on the size of that MU in

the muscle model used. In fact the high correlation coefficient is consistent with specific

assumptions considered in the simulation model.

The correlation coefficients presented in Table 4.3 agree with specific definitions for

individual volume conductor factors. Note that the needle position along the length of the

fiber Z Postion, is not related to any other VCF. Unfortunately no correlation analysis

between volume conductor factors was not found in the literature.

4.2.1 Volume Conductor Factors as Indexes

As mentioned in Chapter 2 and 3, VCFs alter the associations existing between MUP

features and MU characteristics. Therefore to make sure the relationships between MUP

and MU features are maximized, detected MUPs should be filtered based on specific VCF

values. This aspect of volume conductor factors were further investigated by studying the

triple associations existing among three groups of MU features, MUP statistics and VC

factors.

A special procedure was determined to use correlation analysis in discovering associa-

tions between two features relative to a third selection or index feature. In this so-called

Sorted-Correlation scheme, the correlation coefficient between two features was calculated

relative to a third feature, i.e., index feature. As the very first step in this procedure data

points were sorted based on the values of index feature. The correlation coefficient between

the two features was calculated and stored. Data points associated with the smallest value

of the index feature were then eliminated from the dataset. The correlation coefficient be-

tween the remaining set of data points was then calculated and stored. Again data points

corresponding to the next smallest value of the index feature were eliminated and then

the correlation coefficient was calculated and stored. This procedure was repeated till no

data points were left. However, values of the correlation coefficient during the last couple
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steps were non-stable and noisy, hence those steps regarding the last 10% of the data were

not stored. The correlation coefficients stored during each step, were then plotted in one

figure presenting the trajectory of correlation between two features relative to a third index

feature.

Since MU size is well addressed by MUP area, further analysis was conducted to inves-

tigate the effect of volume conductor factors on the association between area and number

of fibers in the MU. Therefore several correlation trajectories were performed. Figures

4.3 and 4.4 present the alterations in correlation coefficients between area and number of

fibers in the MU relative to the values of several VCFs. Note the increase in the cor-

relation coefficient as MUPs detected from distant MUs (Figures 4.3(a) and 4.3(b)) and

those MUs with fewer near fibers (Figure 4.3(c)) get eliminated from the dataset. As well

those MUPs detected from MUs without any near fiber, were excluded from the analysis

performed for Figures 4.3(c) and 4.3(d). That’s why the number of data points for these

figures is different from the others.

On the other hand, as shown in Figure 4.4 neither needle Z position nor stdv of near

fiber distance affect the inter-relationships between number of fibers in the MU and area.

From Figure 4.3, it is obvious that the correlation trajectory between area and MU size

starts from a higher point and elevates the most, when near fiber count to mean distance

(NFD) ratio is used as the index feature. This index VCF was defined as the division of

near fiber count and mean distance to near fibers in section 3.1.4. It actually emphasizes

the presence of near fibers when they are close to the needle, and suppresses their presence

when they are far away. Since the correlation trajectory shown in Figure 4.3(d) behaved

in the most desired way, we studied the index VCF, NFD ratio a bit further.

4.2.2 Equivalent MUP Index

The Sorted-Correlation procedure was performed between MU size and some MUP features:

area, duration, thickness and amplitude. The VCF NFD ratio was used as the index
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(a) index = Needle distance to MU center
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(b) index = Needle distance to closest fiber
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(c) index = Near fiber count
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(d) index = Near fiber count to mean distance

ratio

Figure 4.3: Correlation trajectories between area and MU size versus different volume conductor

factors.

feature. Since NFD ratio reflects the closeness of important MU fibers to the electrode, it

was used as the index in selecting significant MUPs. Corresponding trajectories are shown
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(b)

Figure 4.4: Correlation trajectories between area and MU size versus different volume conductor

factors.

in Figure 4.5.

Based on Figure 4.5 the correlation coefficient between number of fibers in the MU

and MUP features do increase as this volume conductor factor increases. This means that

MUPs from MUs with high NFD ratio reflect the size of the MU better than other MUPs.

Since it is desired to maximize the relationships between anatomical characteristics

of the muscle and features of a detected EMG signal, NFD ratio threshold above which

correlation coefficients between MU and MUP features are maximum possible, should be

found. However, in real clinical settings information regarding volume conductor factors is

not available to the physician since the position of the needle relative to active muscle fibers

in MU is not known. Given that the only source of information in real clinical settings is

the detected EMG signal, an equivalent MUP feature was found so that the index feature

could be measured and studied from real muscles. This MUP feature was then used as

the index feature instead of VCFs in investigating the inter-relationships between MUP

features and MU characteristics.
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(a) Trajectory between duration and MU Size
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(b) Trajectory between thickness and MU Size
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(c) Trajectory between amplitude and MU Size

Figure 4.5: Correlation trajectories between several MUP features and MU size versus near fiber

count to mean distance ratio.

MUP index features maximum slope maximum acceleration Size index

r 0.74 0.64 0.62

Table 4.4: Correlation coefficients between MUP index features and VCF NFD ratio.
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Several correlation trajectories were performed between possible MUP indexes and

NFD ratio, to find the appropriate MUP feature that is highly correlated with this VCF.

As recorded in Table 4.4 the correlation coefficient between maximum slope and NFD

ratio was the highest among the three candidates. It should be noted that the correlation

trajectories were performed for MUs with different sizes, hence MU’s number of fibers

was used as the index feature in those trajectories. Figure 4.6 demonstrates that the

correlation trajectory between maximum slope and NFD ratio, is independent of MU size;

the correlation coefficient along the trajectory line stays constant for different MU sizes.

This means that maximum slope is the best index feature and could be used to select

significant MUPs that are most2 representative of the MUs from which they are recorded.
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Figure 4.6: Correlation trajectory between NFD ratio and MUP maximum slope relative to

number of fibers (NumFib) in the MU.

Likewise, others (Barkhaus and Nandedkar [1996], Stashuk [1999b]) have used maximum

slope along with maximum acceleration as a criteria or index parameters for selection of

sharp MUPs, i.e., those MUPs being used for assessment when presented in clinical EMG

recordings. They believed that existing relationships between MUP features and MU

2being informative about the size of the MU
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characteristics grow stronger as the MUP gets sharper and more significant. Stalberg et

al. (Stalberg et al. [1995]) have used 0.3 v/s for maximum slope as the inclusion threshold

for significant MUPs. This implies that MUPs with maximum slopes greater than 0.3 v/s

are more representative of their MUs, hence stronger relationships should exist between

features of those MUPs and anatomical characteristics of associated MUs. We tried to

study this number as part of this work.

4.2.3 MUP Inter-Grouped Trajectories

Before studying the cross-grouped relationships existing between two groups of MUP fea-

tures and MU characteristics, the inter-grouped relationships of non-consistent coefficients

were further studied. Sorted-Correlation procedure was conducted between MUP features

mentioned in Table 4.5. Corresponding trajectories are mentioned in the following figures.

Based on trajectories shown in Figures 4.7 and 4.8 the correlation coefficients between

MUP features will be close to what has been mentioned in the literature, if the data is

filtered properly. This means that if MUPs with specific slopes are excluded from the

dataset, e.g. lower than 0.8 v/s for Figure 4.7(b) or lower than 0.6 v/s for Figure 4.8(a),

correlation coefficients would be the same as the ones in the literature.

In the following sections we tried to investigate slope’s proper threshold above which

cross-grouped and inter-grouped relationships maximize.

4.2.4 Correlations Between MU and MUP Features

Based on the previous sections we were confident enough to use maximum slope throughout

the rest of the thesis, as the index feature in investigating the associations between MU

characteristics and MUP features. Correlation trajectories were performed between MU

features and MUP features mentioned in Table 4.6, where maximum slope was used as the

selection criteria for significant MUPs. From now on the term slope is used instead of

maximum slope for convenience.



CHAPTER 4. EXPERIMENTS AND RESULTS 53

Coupled MUP features rl rt

thickness and area 0.47 -0.43

thickness and duration 0.47 0.16

thickness and SI 0.60 -0.18

thickness and phase -0.15 -0.45

phase and area -0.04 0.59

phase and SI -0.07 0.68

phase and amplitude 0.05 0.57

Table 4.5: Comparison between correlation coefficients mentioned in Table 4.1 and corresponding

values in Cengiz et al. 2002. rl is the correlation coefficients mentioned in the literature and rt

is non-consistent correlation coefficients mentioned in this thesis.

MU feature MUP feature

number of fibers area,duration,thickness,size index,amplitude

average fiber density area,duration,thickness,size index,amplitude

mean fiber diameter area,duration,size index,amplitude,number of turns,

number of phases

Stdv fiber diameter duration,size index,number of turns,number of phases

Table 4.6: Features applied to Sorted-Correlation procedure.

Using simulation models, Nandedkar et al. (Nandedkar et al. [1988c]) reported a cor-

relation coefficient of 0.24 between number of fibers in the MU and MUP area. It is

interesting that exactly the same association (r = 0.24) exists for our data, Figure 4.9(a).

However, the trajectory plot demonstrates an increase in the association between MUP

area and MU size when the MUPs get more representative, i.e., maximum slope increases.

Note that after MUPs with slope values lower than 0.6 v/s are excluded, the correlation
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(c)
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(d)

Figure 4.7: Correlation trajectories between MUP features mentioned in Table 4.5 versus maxi-

mum slope.

coefficient stays constant independent of slope.

On the other hand, MUP duration has been mentioned by others (Stalberg and Karlsson

[2001a]) as representative of MU size. However, simulation studies have suggested that

duration measurements from only simple MUPs (i.e., MUPs with numbers of phases less
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(c)

Figure 4.8: Correlation trajectories between MUP features mentioned in Table 4.5 versus maxi-

mum slope.

than 5), contain information about the size of the MU (Nandedkar and Sanders [1989]). In

EMG signals acquired from normal muscles most of the MUPs are simple shaped, therefore

it is expected that MUP duration correlates with MU size or number of fibers in the MU.

Since a simulated model for a normal muscle was used in this work the kind of correlation
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(a) Trajectory between area and MU Size
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(b) Trajectory between duration and MU Size
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(c) Trajectory between amplitude and MU Size

Figure 4.9: Correlation trajectories between several MUP features and MU size versus maximum

slope.

shown in Figure 4.9(b), is totally reasonable and hence reassuring. Additionally the starting

point correlation coefficient (r = 0.31) as shown in Figure 4.9(b) is the exact correlation

coefficient mentioned between duration and number of fibers in the MU by Nandedkar

et al. [1988c]. Note that this value also increases if MUPs with higher maximum slope
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are considered. Part (c) of the same figure, displays the lower correlation between MUP

amplitude and MU size as expected (Nandedkar et al. [1988c]) which again improves with

proper MUP selection.

Similar correlation analysis were conducted for size index and thickness. The correlation

trajectories (not shown here) between these two features and MU size were found to be

similar to those presented for area and duration correspondingly.
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(a) duration
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(b) area

Figure 4.10: Correlation trajectory between average fiber density of MU and some MUP features

relative to maximum slope.

Correlation trajectories were performed between MU average fiber density and MUP

features mentioned in Table 4.6. All correlation trajectories had a knee point at slope =

0.6 − 0.7 v/s except for thickness whose correlation was below 0.2 and independent of

slope. Corresponding correlation trajectories for duration and area are shown in Figure

4.10.

As well correlation trajectories were conducted between MU’s mean fiber diameter and

some MUP features, Figure 4.11. Mean fiber diameter was determined to be reflected

by size index (Figure 4.11(a)) and area (Figure 4.11(b)) for MUPs with slopes greater
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than 0.6 v/s, (r = 0.3). Duration was also a good determinant of mean fiber diameter,

however the MUPs have to be filtered further, Figure 4.11(c). Specifically MUPs with

slopes greater than 0.85 v/s had durations correlated (r = 0.32) with distributions of

the fiber diameters in the MUs. Amplitude, on the other hand, was not related to mean

fiber diameter (r = 0.14) but yet the correlation coefficient increased a bit as MUPs with

slopes lower than 0.6 v/s were excluded. Interestingly neither number of turns (r = 0.02)

nor number of phases (r = −0.08) were correlated with mean fiber diameter and the

de-correlation was constant along the trajectory line.

MUP duration is not related (r = 0.06) to stdv of fiber diameter as shown in Figure

4.12(a). Since a normal muscle was simulated, mostly simple MUPs were detected. Thus

the effect of MU size on MUP duration was more pronounced than that of temporal

dispersion caused by variation in fiber diameters. However, for high slope MUPs, the

correlation between MUP duration and stdv of fiber diameter increases slightly. This may

be because the closeness of the fibers contributing to sharp MFPs to the MUPs, have

exaggerated the effect of fiber diameter variation on duration.

Number of turns and number of phases are MUP parameters representing variations

in fiber size, hence their inter-relationship with fiber diameter standard deviation were

investigated by applying the Sorted-Correlation procedure. The results are shown in Figure

4.12. Correlation coefficient between number of turns and stdv of fiber diameter increases as

the MUP’s maximum slope increases, Figure 4.12(b). In contrary with MUP turns, number

of phases is not correlated with stdv of fiber diameter, Figure 4.12(c). The correlation

coefficient along the trajectory reaches up to 0.25 when number of turns is used, while

for number of phases the maximum value for correlation coefficient was 0.11, even for

highly significant MUPs, (i.e., sharp MUPs). This explains why number of phases is

not used for discrimination between myopathic and normal muscles. Variation in fiber

diameter increases as an early sign in myopathies, therefore number of phases, which is not

sensitive to this factor, can not characterize the diseased tissue sufficiently to be used as a
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(c)

Figure 4.11:

discriminant. Note the knee point at slope = 0.7 v/s in Figure 4.12(b).

So far several correlation trajectories between MUP features, MU characteristics and

volume conductor factors have been presented. Most of the trajectories, included a slope

threshold or knee point above which correlation coefficients were roughly constant and

stabilized. For convenience the stabilized correlation coefficients between MUP features and
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(a) duration
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(b) number of turns
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(c) number of phases

Figure 4.12: Correlation trajectories between several MUP features and MU’s standard deviation

of fiber diameter versus maximum slope.

MU characteristics are summarized in Table 4.7. Slope thresholds at which the correlations

are reached is also provided.

Based on the slope thresholds mentioned in Table 4.7, the appropriate threshold for

slope is suggested to be 0.6 v/s. Therefore, to obtain maximum possible for relationships
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MU feature MUP feature rs slopethr

number area 0.48 0.6

of duration 0.45 0.7

fibers thickness 0.45 0.7

size index 0.48 0.6

amplitude 0.3 0.6

average area 0.25 0.65

fiber duration 0.25 0.6

density thickness 0.1 -

size index 0.2 0.63

amplitude 0.17 0.65

mean area 0.3 0.6

fiber duration 0.32 0.85

diameter size index 0.3 0.6

amplitude 0.14 0.6

number of turns 0.02 0.2-1.5

number of phases -0.08 0.2-1.4

Stdv duration 0.06 -

fiber size index 0 -

diameter number of turns 0.25 0.7

number of phases 0.07 -

Table 4.7: Final results of correlation analysis between MU characteristics and MUP features.

rs stands for stabilized correlation coefficient and slopethr is the slope at which rs is reached.

between MUP features and MU characteristics, only MUPs with slopes above 0.6 v/s

should be considered.
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Correlations Between MUP Fiber Count and Near Fiber Count

In addition to finding interrelationships between MUP features and MU characteristics,

some interesting relationships were revealed between MUP fiber count and near fiber count.

Since near fiber count is related to MU characteristic, the relationship is really an interre-

lationship between a MUP feature and MU characteristic. Moreover since the relationship

was interesting it is worthy enough to be reported and mentioned as part of the thesis.

Near fibers as defined earlier, are those fibers whose MFP’s maximum acceleration is

above 7.5 kv/s. This volume conductor factor represents well the fibers located in 500 µm

proximity of the needle electrode, since near fiber count were highly correlated (r = 0.94)

with local fiber count3 and the relationship (trajectory not shown here) was independent of

the slope. Having said that, Sorted-Correlation scheme was performed between VCF near

fiber count and MUP fiber count.
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Figure 4.13: Correlation analysis performed between MUP fiber count and VCF near fiber count.

Figure 4.13(a) demonstrates that the correlation coefficient between near fiber count

and MUP fiber count stays at r = 0.45 independent of the slope. To properly interpret

3counts of those fibers located in the 500 µm proximity of the needle



CHAPTER 4. EXPERIMENTS AND RESULTS 63

the correlation trajectory, corresponding scatter plot for near fiber count versus MUP fiber

count were plotted, Figure 4.13(b).

4.3 Pattern Discovery Results

From the studies proposed up to now, it is evident that not only are there inter-relationships

among MU characteristics, MUP features and volume conductor factors, but also there

exist cross-relationships among these features. Thus to find existing relationships in the

dataset a multi dimensional problem should be solved.

The pattern discovery technique (PDT) was applied to the features in order to detect

the possible high order significant associations among the features and their values. Yet

only third order patterns were studied in this thesis and investigating higher order patterns

was left for future studies.

Before using PDT, the continuous features were discretized into 5 bins, since PDT

is applied to discrete-valued datasets. 5 was chosen since each bin can then stand for a

linguistic equivalent translation as shown in Table 4.8. The discretization routine used for

discretzing the features ensured maximum Entropy for the quantized data.

Bin Number 1 2 3 4 5

Linguistic low below average above high

Equivalent average average

Table 4.8: Continuous features are discretized prior to apply PDT.

To avoid the possible noise introduced in case the expected number of events are small

and to make sure the significant residuals are accurate, a minimal number of 5 was assumed

for the expected occurrences.
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4.3.1 How to Interpret the Discovered Patterns

PDT was applied to discretized features. Since third order patterns were intended to

be studied, three features were selected one of which was maximum slope representing

significant MUPs. In order to visualize the discovered significant patterns in a useful

manner, residual values related to each discovered patterns were plotted in a colored form.

The positive residuals were marked as green while red was chosen as the proper label

for negative residuals. Darkness of the color showed the magnitude of the residual, i.e.,

the bigger the residual in magnitude, the darker the color was. Figure 4.14 presents the

significant patterns discovered between area and MU size (number of fibers in the MU)

when MUPs with certain slope values were excluded. This filtering strategy is the same as

the one used for the correlation analysis.

By comparing the four plots in Figure 4.14 with each other, the alteration in alignment

of the green cells on the diagonal can be noticed. At the same time, the red cells move

to the corners as low slope MUPs get cleared from the dataset. This behavior confirms

the increase in correlation coefficient between area and MU size as low slope MUPs get

excluded (Figure 4.9(a)).

Obviously the information content of significant patterns should be presented in a more

quantitative manner rather than that mentioned in the previous paragraph. To do this the

following statistics were introduced:

Algebraic sum of significant adjusted residuals (ALS) which is calculated by adding

adjusted residuals of significant patterns algebraically considering the signs of the

residuals, i.e., adding up the magnitude of positive residuals while subtracting the

magnitude of negative residuals.

Absolute sum of significant adjusted residuals (ABS) which is computed by adding

up the magnitude of adjusted residuals regardless of the signs of the residuals.

Diagonal correlative accumulated significant adjusted residuals (DCA) in which
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Figure 4.14: Significant patterns existing between area and number of fibers in the MU, for

filtered MUPs based their slope.

residual values of the cells located along the x = y line are added considering their

signs unchanged, whereas the signs of residual values of the cells in corners are re-

versed Figure 4.15(a).

Quadratic correlative accumulated significant adjusted residuals (QCA) in which

residual values of the cells located in the second and forth quadrants are added con-
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sidering their signs unchanged, whereas the signs of residual values of the cells in first

and third quadratics are inverted, Figure 4.15(b).

Figure 4.15: The sign of the residual values are considered relative to their location in QCA and

DCA computation.

Note that in order to calculate QCA, the number of discretization bins is required to be

odd. Given that 5 has equivalent linguistic form for interpretation reasons, 10 is selected

as the suitable number of discretization units.

A similar scheme as the Sorted-Correlation procedure was used, through steps of which,

the proposed statistics were calculated for the filtered data. As the very first step PDT was

applied to the whole dataset and the four statistics were calculated for the discovered pat-

terns. For the next step, low slope MUPs were eliminated and the PDT was applied for the

new dataset. The four statistics were computed again. This scheme is called Sorted-PDT

and it gets repeated till 10% of the MUPs remains. The statistics are then normalized by

the maximum possible number of patterns and plotted to create corresponding trajecto-

ries. Figure 4.16 demonstrates these four statistics for patterns discovered between area

and number of fibers in the MU when maximum slope is used as the index.

Based on Figure 4.16 it seems that ABS is the upper bound for the alignment factor,

i.e., ABS is reached if all green cells get aligned on the diagonal and all red cells get

concentrated in the corners, Figure 4.17. ALS, on the other hand, doesn’t consider the
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Figure 4.16: PDT trajectories of patterns discovered between area, number of fibers in the MU

and slope.

alignment or concentration of the cells at all. Therefore it is not a statistic. However, the

other two statistics, DCA and QCA reflect the concentration or alignment of the green

cells (significant patterns with positive residuals) on the diagonal and concentration of red

cells (significant patterns with negative residuals) off the diagonal in the corners very well.

Therefore DCA and QCA were selected as the proper statistics to quantize the information

content of significant patterns discovered between MUP features and MU characteristics.

4.3.2 Discovered Patterns Among MUP Features and MU Char-

acteristics

To discover inherent patterns among MUP features and MU characteristics, the Sorted-

PDT algorithm was applied to MUP features and MU features mentioned in Table 4.9.

MUP slope was also included as the third index parameter. When significant inherent

patterns were discovered, third order patterns were analyzed further and proper statistics
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Figure 4.17: Specific configuration of the cells for which ABS is reached. DCA in (a) stands for

diagonal correlative accumulated adjusted residuals, while QCA in (b) is quadratic correlative

accumulated adjusted residuals.

(DCA and QCA) were computed through the Sorted-PDT algorithm. Computed values for

DCA and QCA were plotted as trajectories which looked similar to correlation trajectories

presented earlier. The knee points for these statistics and the slope values at which the

statistics reached the point, for patterns between features listed in Table 4.9 are mentioned

in Table 4.10.

MU feature MUP feature

number of fibers area,duration,thickness,size index,amplitude

average fiber density area,duration,thickness,size index

mean fiber diameter area,duration,size index,amplitude,number of turns

number of phases

Stdv fiber diameter duration,size index,number of turns,number of phases

Table 4.9: Features applied to Sorted-Correlation procedure.

The Sorted-PDT algorithm was applied to number of fibers in the MU, slope and some

MUP features. Corresponding trajectories are illustrated in Figure 4.18. You can find the

knee point in all of the trajectories, which means selective MUPs are good representatives of

their MUs. QCA in Figure 4.18(a) suggests that by filtering the MUPs based on slope = 0.6
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Figure 4.18: DCA and QCA trajectories of significant patterns existing among slope, number of

fibers in the MU and some MUP features.
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Figure 4.19: PDT trajectories for discovered patterns between MUP features and MU average

fiber density.

v/s residual values for discovered patterns between area and number of fibers in the MU

would be more significant. On the other hand, DCA suggests a lower threshold for slope

(0.4 v/s) and the residual values stay constant for a longer duration after the knee point,

compared to QCA. In Figure 4.18(b) QCA doesn’t contain the peak present in the previous

plot and DCA drops earlier compared to the Figure 4.18(a). There is an insignificant

increase for DCA statistic right in the beginning of Figure 4.18(c) suggesting that, including

all MUPs, even dull MUPs with low slopes, duration is a good representative of MU size.

However, QCA suggests that to maximize the relationship between duration and MU size,

MUPs with slopes lower than 0.37 v/s should be excluded. On the other hand, amplitude

is not a good feature characterizing MU size, since DCA and QCA are the lowest compared

to other trajectories, Figure 4.18(d). Even so, there is a knee point at slope of 0.42 v/s,

meaning that the weak association between amplitude and number of fibers in the MU

increases as MUPs are filtered based on that slope. Trajectory between thickness and MU

size was similar to size index, except the statistics were lower.
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Figure 4.20: PDT trajectories for discovered patterns between duration and mean fiber diameter

in the MU.

Significant patterns were discovered between average fiber density and MUP features.

As shown in Figure 4.19, duration is a better determinant for average fiber density, since

residuals are more significant. The knee point is better presented by QCA statistics in

both plots, rather than DCA. The associations with average fiber density for size index

and thickness were also analyzed (trajectories not shown here). The trajectory for size

index was similar to what is shown for area. The trajectory for thickness, suggested that

if all MUPs are considered, thickness is a good representative of average fiber density.

Sorted-PDT algorithm was applied to mean fiber diameter and some MUP features.

DCA and QCA were the highest for patterns discovered between duration and mean fiber

diameter, shown in Figure 4.20. It is interesting to see that DCA and QCA are constant

independent of slope. Figure 4.20 suggests that when all MUPs are included, duration is

a good determinant for mean fiber diameter, i.e., no filtering is needed. Patterns between

MUP area and mean fiber diameter were discovered as well as the ones between size index

and mean fiber diameter. For area and size index, DCA statistics suggest that MUPs with
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Figure 4.21: PDT trajectories for discovered patterns between number of turns and stdv of fiber

diameter in the MU.

slopes lower than 0.5 v/s and 0.46 v/s should be excluded, whereas QCA suggest slope

thresholds to be equal to 0.7 v/s and 0.6 v/s.

The only MUP feature providing information about the stdv of fiber diameters in the

MU is number of turns of the detected MUP. Nevertheless the average adjusted residual

values is not high and it drops drastically after MUPs with slopes lower than 1.5 v/s have

been excluded, Figure 4.21.

The knee points for DCA and QCA statistics have been summarized and mentioned in

Table 4.10. The slope threshold at which the knee points happen are also included.
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MU feature MUP feature QCAthr slopeqca DCAthr slopedca

number area 3.0 0.6 2.5 0.4

of duration 2.82 0.25 2.82 0.25

fibers thickness 2.19 0.7 2.58 0.7

size index 2.9 0.3 2.7 0.46

amplitude - - 1.6 0.4

average area 0.87 0.48 0.87 0.48

fiber duration 1.44 0.47 1.55 0.6

density size index 0.80 0.49 - -

mean area 1.8 0.70 1.67 0.5

fiber size index 1.9 0.6 2.2 0.46

diameter amplitude 1.09 0.35 1.3 0.35

number of turns - - 0.4 0.6

number of phases 0.35 0.4 0.26 0.5

Stdv fiber duration 0.1 0.4 - -

diameter number of turns - - 0.29 0.6

Table 4.10: Final results of PDT obtained from discovered patterns between MU characteristics

and MUP features. slopeqca stands for the slope at knee point for QCA. slopedca is the slope

at at knee point for DCA. The ones hyphenated didn’t contain a knee point.
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Discussion

The main goal of this work was to reveal associations existing between MU characteristics

and MUP features. To reach this goal, a Sorted-Correlation algorithm was introduced

through which correlation analyses were performed between MUP features and MU char-

acteristics. Additionally a pattern discovery technique was utilized to discover the inherent

patterns in the dataset. Results were presented thoroughly in Chapter 4. Corresponding

discussions are provided in this chapter.

Resembling Real Data

The simulated data used in this thesis resembled real data acquired in a clinical settings.

The inter-grouped correlation analysis, Table 4.1, matched the ones reported in the litera-

ture for features obtained from real muscles. In real clinical environments, EMG is acquired

during low level contractions, and window triggering is used to extract single MUPs from

the whole signal. The physician then measures the shape of the MUPs through eye-balling

the signal.

In contrast, the features used in this project were extracted from a decomposed simu-

lated EMG signal. Based on the similarities between our data and real data, the following

two facts were confirmed: 1) DQEMG techniques work properly in extracting the infor-

74
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mation content of EMG signals. 2) The simulation model works suitably in creating data

resembling real data.

Correlation analysis

Knowing that volume conductor factors affect the relationships between MUP features and

MU characteristics, we tried to find an index VCF for which the inter-relationships between

features were maximized. For this purpose, near fiber count to mean distance ratio was

selected as the best index feature, for which the correlation trajectory between area and

MU size was maximized among all other VCFs (see Figures 4.3 and 4.4).

Since information regarding volume conductor factors are not available in real clinical

studies, an equivalent MUP index was found. To find the appropriate MUP feature, cor-

relation analysis between possible candidates and near fiber count to mean distance ratio

were conducted. Having the highest correlation coefficient, maximum slope, was selected

as the best index for representing significant MUPs. To ensure this correlation exists con-

sistently for all MUs of different sizes, the correlation trajectory between near fiber count

to mean distance ratio and maximum slope was performed relative to MU size (see Figure

4.6).

Assuming the slope as the best index feature, the correlation trajectories mentioned in

Table 4.6 were then conducted.

Nandedkar et al. (Nandedkar et al. [1988c]) have reported a correlation coefficient of

r = 0.24 between number of fibers in the MU and MUP area using a simulation model. In-

terestingly the correlation coefficient between MUP area and MU size including all MUPs

in our dataset was the same. Moreover using our data, we could reveal the increase in this

association when MUPs get more representative, i.e., maximum slope increases. It was

shown that when MUPs with slope values lower than 0.6 v/s were excluded, the correla-

tion coefficient between area and number of fibers in the MU was increased from r = 0.24

up to r = 0.48 and stayed constant thereafter, independent of slope. For relationships
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between duration and MU size, the starting point correlation coefficient (r = 0.31) was the

exact correlation coefficient mentioned between duration and number of fibers in the MU

by Nandedkar et al. [1988c]. This value increased up to r = 0.45 when MUPs with slope

values lower than 0.7 v/s were eliminated. Therefore, MUP duration was mentioned as a

good representative of MU size (Stalberg and Karlsson [2001a]). Furthermore, simulation

studies have suggested that duration measurements from only simple MUPs, contain in-

formation about the size of the MU (Nandedkar and Sanders [1989]). Most of the MUPs

extracted from EMG signals acquired from normal muscles are simple shaped. Therefore

it is expected to see high correlation coefficients between duration and MU size in healthy

muscles as the case for the data presented in this thesis, since the muscle model simulated

a normal muscle. Correlation analyses were conducted for size index and thickness and as

a result the correlation trajectories between these two features and MU size were found to

be similar to those presented for area and duration respectively.

The correlation trajectories performed between MU average fiber density and MUP

features, all had a knee point at slope = 0.6− 0.7 v/s except for thickness whose correlation

was below 0.2 and independent of slope.

Size index and area of MUPs with slopes greater than 0.6 v/s, (r = 0.3) were deter-

mined to reflect mean fiber diameter. Duration was also a good determinant of mean fiber

diameter, however to maximize relationships between duration and mean fiber diameter,

MUPs should be further filtered (0.85 v/s). On the other hand, the correlation coefficient

between amplitude and mean fiber diameter was pretty low (r = 0.14) but yet a knee point

was observed. Neither number of turns (r = 0.02) nor number of phases (r = −0.08)

were correlated with mean fiber diameter and the de-correlation was constant along the

trajectory line.

Duration was shown to be not affected by stdv of fiber diameters. Based on the normal-

ity of the simulated muscle, most of the detected MUPs were simple. Therefore duration

was affected by the size of the MU, rather than temporal dispersion caused by variation
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in fiber diameters. Having said that, there was a slight increase in the correlation between

MUP duration and stdv of fiber diameter when MUPs were filtered. This may be because

the closeness of the fibers contributing to sharp MFPs to the MUPs, have exaggerated the

effect of fiber diameter variation on duration.

On the other hand, number of turns was the only MUP feature characterizing the stdv

of fiber diameters, where the correlation coefficient increased up to r = 0.25 for high slope

MUPs. In contrast, number of phases was not related to stdv of fiber diameters and the

maximum value for correlation coefficient was r = 0.11, even for highly significant MUPs.

This explains why number of phases is not used for discrimination between myopathic

and normal muscles. Variation in fiber diameter increases as an early sign in myopathic

muscles, and since number of phases, is not sensitive to this factor, it can not discriminate

between the diseased tissue and normal tissue.

All correlation coefficients at knee points along with corresponding slope thresholds

for relationships existing between different MU features and MUP features are listed in

Table 4.7. Based on correlation analysis, and as presented in this table, the low-slope-

threshold was 0.6 v/s for most of the relationships. This threshold was increased to 0.7

v/s for relationships between duration and number of fibers in the MU, thickness and

number of fibers and also number of turns and stdv of fiber diameter. For relationships

between duration and mean fiber diameter the low-slope-threshold is the highest among

other relationships, at 0.85 v/s.

Since VCF near fibers are related (r = 0.94) to those MU fibers in 500 µm of the

needle electrode, the association between near fiber count and MUP fiber count was also

assessed as a relationship between a MU characteristic and a MUP feature. The moderate

correlation (r = 0.45) between these two features were further studied by corresponding

scatter plot. According to the scatter plot, near fiber counts were higher than MUP fiber

counts. This is explained by the fact that MFPs superpose in creating a MUP, hence

suppress one another’s sharp peak. Therefore the number of fibers contributing to MUP
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sharp section, is underestimated in calculation of MUP fiber count and that’s why the

correlation coefficient is moderate and not high.

Pattern Discovery Analysis

Beside correlation analysis, a pattern discovery technique was applied to the same dataset

trying to reveal inherent significant patterns. Two new statistics were introduced through

which the discovered significant patterns were interpreted. The simple DCA and QCA

statistics seemed to be useful enough to uncover the associations between MU charac-

teristics and MUP features. These statistics were able to extract and demonstrate the

information content of patterns discovered by PDT. Algorithms similar to the ones used

for Sorted-Correlation were used and corresponding trajectories for these statistics were

created.

To discover inherent patterns among MUP features and MU characteristics, the Sorted-

PDT algorithm was applied to MUP features and MU features mentioned in Table 4.9,

and corresponding trajectories were created. There was a knee point observed in all of

the trajectories, meaning that MUPs with certain slope values are good representatives of

their MUs.

QCA and DCA statistics suggested that residual values for discovered patterns between

area and number of fibers in the MU, would be more significant if MUPs with slope values

lower than 0.6 v/s and 0.4 v/s respectively were excluded. For the association between

duration and MU size, DCA suggested that no filtering was needed. However, using the

QCA statistic, MUPs with slope values lower than 0.37 v/s should be excluded, to maximize

the relationship between duration and MU size. Amplitude was shown to be not a good

feature characterizing MU size. Even so, the knee point at slope = 0.42 v/s was evident in

the corresponding PDT trajectory. Trajectory between thickness and MU size was similar

to size index, except the statistic values were lower.

Significant patterns were discovered between average fiber density and several MUP
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features. Residual values discovered between duration and average fiber density were the

most significant ones among other MUP features, thus duration was selected as the MUP

feature being most affected by the average fiber density. Correspondingly, DCA suggested

that MUPs with slope values lower than 0.6 v/s should be excluded in order to reach the

maximum possible association between duration and average fiber density. However, the

low-slope-threshold for the QCA statistic was a bit lower (0.47 v/s).

The Sorted-PDT algorithm was applied to mean fiber diameter and some MUP features.

Among MUP features, DCA and QCA were the highest for patterns discovered between

duration and mean fiber diameter and at the same time were constant independent of

slope. Significant patterns between MUP area and mean fiber diameter were discovered

as well as the ones between size index and mean fiber diameter. For area and size index,

DCA statistic values suggested that MUPs with slopes lower than 0.5 v/s and 0.46 v/s

should be excluded, whereas QCA suggested low-slope-thresholds to be equal to 0.7 v/s

and 0.6 v/s.

The only MUP feature providing information about the stdv of fiber diameters in the

MU is number of turns of the detected MUP. Nevertheless, DCA and QCA statistic values

were not high and they dropped drastically after MUPs with slopes lower than 1.5 v/s

were excluded.

The collection of knee points for DCA and QCA statistics have been summarized and

mentioned in Table 4.10. The slope threshold at which the knee points happen were also

listed.

Based on DCA statistics in Table 4.10, most of the relationships maximize for MUPs

with slope above 0.5 v/s. For duration and average fiber density the threshold increases

a bit to 0.6 v/s and to maximize thickness and number of fibers in the MU MUPs should

be further filtered, slopethr = 0.7 v/s. QCA suggests similar slope threshold of 0.5 v/s

for most relationships. While, to maximize the relationship between size index and mean

fiber diameter MUPs should be further filtered, i.e., slopethreshold = 0.6 v/s. As well for
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relationships between thickness and MU size, and area and mean fiber diameter the slope

threshold increased to be 0.7 v/s.

Comparing Tables 4.10 and 4.7, it was obvious that PDT results were similar to results

gained from correlation analysis. Nevertheless, the low-slope-thresholds were lower for

PDT analysis than for correlation analysis. In addition, PDT analysis suggested a high-

slope-threshold as well as the low-slope-threshold suggested by correlation analysis. Based

on trajectory plots for PDT analysis shown in Figures 4.18-4.21, there is a decrease in

DCA and QCA for all PDT trajectories for high slope MUPs (MUPs with slopes ¿ 2.0

v/s). This means that high slope MUPs are not as informative and it might be better to

exclude them from studies. Therefore PDT suggests that MUPs should be filtered based

on slopes at both ends. This is not suggested by correlation analysis, for whatever reason,

but definitely was obviously observed in PDT trajectories.
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Conclusions

To the best of the author’s knowledge, this work was the first attempt to investigate rela-

tionships between MU and MUP features extracted from a complex physiologically based

simulation model. The simulated data used in this thesis, was well resembling real data

as reported in the literature. As well, the simulation model facilitated similar acquisition

environments as the ones utilized by physicians in real clinical settings. Moreover, the de-

composition techniques used in this research worked properly and generated similar results

to what has been presented in the literature, using simple restricted models.

Having said all of the above, we are confident to report the following major outcomes

of this research:

• The appropriate low-slope-threshold was suggested to be 0.6 v/s. Therefore, to max-

imize the relationships between MUP features and MU characteristics, only MUPs

with slopes above 0.6 v/s should be considered.

• PDT results for the most part corroborated correlation analysis results. However,

a high-slope-threshold not observed in correlation results, was recommended. PDT

results have shown that high slope MUPs are not as informative about the underlying

MU and could be excluded to maximize the relationship between MUP features and
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MU characteristics.

• Some MUP features reflect specific MU characteristics best:

– MUP area is the best representative feature for the size of the MU.

– MUP duration is the best MUP feature to reflect average fiber density.

– MUP duration was also a good representative for mean fiber diameter, however

this was expected based on specific assumptions within the simulation model.

– number of turns of the MUP reflects the stdv of fiber diameter in the MU from

which it is recorded.

– MUP fiber count was shown to be a good representative of MU fibers in 500 µm

proximity of the needle electrode.

Some recommendations might be useful to build the road for possible future studies:

1) The problem studied in this thesis, is actually a multidimensional problem. Hence, it

might be useful if the associations between MU characteristics, MUP features and volume

conductor factors are investigated using multivariate analysis, such as multivariate regres-

sion. The pattern discovery technique could also be used, through which higher order

patterns are investigated, however a proper visualization or interpretation method needs

to be developed to make useful inferencing out of the high order discovered patterns. 2) It

is believed that the associations between the features are not the same for normal muscles

compared to diseased muscles. Therefore it is worthwhile to repeat the same research as

presented in this thesis for myopathic as well as neuropathic data. 3) Given the different

associations among MUP features and MU characteristics for normal and diseased muscles,

it would be interesting to use them for real EMG signals and try to understand and predict

the status of the underlying MU from associated MUP features.



Appendix A

Parameter Estimation

Given a set of data D, in order to discover the significant patterns, there are two variables

to be estimated for each possible event - the expected occurrence of the event and the

variance of the difference between the observed and expected occurrence of that event. To

estimate both parameters, a default model has to be chosen first according to the problem

domain and the available knowledge. Since a priori knowledge about the domain of the

dataset is unknown, the model in which random variables are independent is selected.

By this assumption the expected occurrence of a compound event would be defined as in

Equation 3.3 while the variance, cxs
j
, of the residual dxs

j
is given by:

cxs
j

= exs
j


1−

∑
xip∈xs

j

∏

xjq∈xs
j ,xjq 6=xip

P (xjq) + (|s| − 1)
∏

xip∈xs
j

oxs
j

M


 (A.1)

exs
j


1−

∑
xip∈xs

j

∏

xjq∈xs
j ,xjq 6=xip

P (xjq) + (|s| − 1)
exs

j

M


 (A.2)

For details about the source of this formula, please see Wang [1997].
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