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Abstract 

 

In this thesis we critically examine the assessment and comparison of continuous measurement 

systems. Measurement systems, defined to be the devices, people, and protocol used to make a 

measurement, are an important tool in a variety of contexts. In manufacturing contexts a 

measurement system may be used to monitor a manufacturing process; in healthcare contexts a 

measurement system may be used to evaluate the status of a patient. In all contexts it is desirable 

for the measurement system to be accurate and precise, so as to provide high-quality and reliable 

measurements.  

A measurement system assessment (MSA) study is performed to assess the adequacy, and in 

particular the variability (precision), of the measurement system. The Automotive Industry 

Action Group (AIAG) recommends a standard design for such a study in which 10 subjects are 

measured multiple times by each individual who operates the measurement system. In this thesis 

we propose alternate study designs which, with little extra effort, provide more precise 

evaluations of the measurement system’s performance. 

Specifically, we propose the use of unbalanced augmented plans which, by strategically using 

more subjects and fewer replicate measurements, are substantially more efficient and more 

informative than the AIAG recommendation. We consider cases when the measurement system 

is operated by just one individual (or is automated), and when the measurement system is 

operated by multiple individuals, and in all cases, augmented plans are superior to the typical 

designs recommended by the AIAG. 

In situations where the measurement system is used routinely, and records of these single 

measurements on many subjects are kept, we propose incorporating this additional ‘baseline’ 

information into the planning and analysis of an MSA study. Once again we consider the 

scenarios in which the measurement system is operated by a single individual, or multiple 

individuals. In all cases incorporating baseline information in the planning and analysis of an 

MSA study substantially increases the amount of information about subject-to-subject variation. 

This in turn allows for a much more precise assessment of the measurement system than is 

possible with the designs recommended by the AIAG. 
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Often new measurement systems that are less expensive, require less man-power, and are 

perhaps less time-consuming, are developed. In these cases, potential customers may wish to 

compare the new measurement system with their existing one, to ensure that the measurements 

by the new system agree suitably with the old. This comparison is typically done with a 

measurement system comparison (MSC) study, in which a number of randomly selected subjects 

are measured one or more times by each system. A variety of statistical techniques exist for 

analyzing MSC study data and quantifying the agreement between the two systems, but none are 

without challenges.  

We propose the probability of agreement, a new method for analyzing MSC data, which more 

effectively and transparently quantifies the agreement between two measurement systems. The 

chief advantage of the probability of agreement is that it is intuitive and simple to interpret, and 

its interpretation is the same no matter how complicated the setting. We illustrate its 

applicability, and its superiority to existing techniques, in a variety of settings and we also make 

recommendations for a study design that facilitates precise estimation of this probability. 
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Chapter 1 

 

Introduction: Measurement System Assessment 

 

The demand for high quality permeates all facets of society; for example consumers demand 

high quality goods, medical patients demand high quality healthcare, students demand high 

quality education and tax payers demand high quality services. This demand necessitates the 

ability to assess and monitor the quality of these outputs, and this in turn requires a method of 

measuring the output to ensure high quality is achieved. 

Measurement systems (MS)- defined here to be the devices, people, and protocol used to make 

a measurement- are used to make such measurements, which are often used for decision making. 

For example, in a manufacturing process that produces golf balls, a device may be used to 

measure the diameter of each ball to ensure that it meets specification. If it does the product may 

be deemed suitable for shipment, but if not, the product may have to be scrapped or reworked. 

As another example, in healthcare diastolic and systolic blood pressure measurements are used 

to classify an individual’s level of hypertension, and depending on the magnitude of these 

measurements medical intervention may be necessary. In instances like these, the measurement 

system is an invaluable component of the decision-making process, and so it is important that it 

provides high-quality measurements. 

Unfortunately measurements are often subject to error. Generally speaking, we will say that a 

measurement system provides high-quality measurements if these measurements are both 

accurate and precise. To develop the concepts of accuracy and precision, let us define the 

measurand to be the characteristic of the object that is being measured, and define a measurement 

to be the assignment of a numerical value to the measurand. In the manufacturing context the 

object being measured may be a manufactured part for which a critical dimension must be 

determined. In the medical context the object may be a human subject for whom blood pressure 
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must be assessed. Without loss of generality, within this thesis we refer to the objects whose 

characteristics we measure as subjects.  

In general, we can define accuracy to be the “closeness” of measurements to the true value of 

the measurand, and precision to be the “closeness” of repeated measurements to one another 

[Automotive Industry Action Group, 2010]. In particular, an accurate measurement system will 

measure the true value of the measurand correctly on average, while a precise measurement 

system will produce repeated measurements which are very similar, but that may or may not be 

close to the true value.  

Figure 1.1: Dart Board Analogy Explaining Accuracy and Precision 

 (a) MS is accurate and precise (b) MS is accurate and imprecise  

(c) MS is inaccurate and precise (d) MS is inaccurate and imprecise 

 

To fully understand these concepts, a useful analogy can be drawn by considering a game of 

darts. Imagine that the “bull’s eye” is the true value of the measurand. A player who is accurate 

will hit the bull’s eye on average, and a player who is precise will not necessarily hit the bull’s 

eye but their darts will land fairly closely to one another. Figure 1.1 depicts the four cases that 

arise based on the level of a measurement system’s precision and accuracy. The optimal scenario 

is illustrated in (a) when the measurement system is precise and accurate and the least favourable 

       
  

      
  

      
  

          Precise                             Imprecise 

Accurate 

Inaccurate 

(a) (b) 

(c) (d) 
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scenario is shown in (d) when the measurement system is neither precise nor accurate. The 

situations corresponding to (b) and (c) are also undesirable. 

Because a measurement system may not give accurate and precise measurements, a measurement 

system assessment (MSA) study may be undertaken to determine whether the measurement 

system is adequate. In fact, a periodic assessment of measurement systems is mandated within 

many quality systems such as ISO 9001:2008 [Myhrberg, 2009] and TS 16949:2009 

[Automotive Industry Action Group, 2009], and checking the adequacy of the measurement 

system is an important step in many process improvement strategies [Steiner and MacKay, 2005; 

Breyfogle, 1999].  

In such a study, the measurement system’s accuracy and precision may be assessed. In statistical 

jargon we refer to a measurement system’s accuracy as bias and its precision as variability. In 

particular, as bias increases accuracy decreases and as variability increases precision decreases. 

Thus we call a measurement system which is unbiased accurate, and one that is biased inaccurate. 

Similarly, we say that a measurement system is precise if it has little variability and we say that 

it is imprecise if it has excessive variability.  

The Automotive Industry Action Group (AIAG) [2010] defines a measurement system to be 

linear if its bias and variability are constant over the distribution of the measurand’s true values. 

That is, the bias and variability do not change as the true value of the measurand changes. They 

similarly define a measurement system to be stable if its bias and variability are constant over 

time [Automotive Industry Action Group, 2010]. Most often we assume that the measurement 

system being assessed is linear and stable, but it is worthwhile to check these assumptions. As 

well, a measurement system may be stable during the time of study, but this could change over 

time, and so it is important to periodically assess the measurement system. 

Here we deal with the assessment of a non-destructive measurement system, which means the 

act of measuring does not alter the true value of the measurand, and multiple measurements of 

the measurand are possible. We also only consider continuous measurement systems (those that 

determine a single continuous measurand).  

In assessing such a measurement system it is standard practice to randomly sample 𝑛 subjects 

and take 𝑟 replicate measurements on each subject. If there are 𝑚 observers included in the study, 
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each one of these observers will take 𝑟 replicate measurements of each subject, for an overall 

total of 𝑁 = 𝑛𝑚𝑟 measurements. We call this a standard plan (SP). Common choices of 𝑛, 𝑚, 

and 𝑟 are 𝑛 = 10, 𝑚 = 2,3 and 𝑟 = 2,3 so 40 ≤ 𝑁 ≤ 90 [Tsai, 1988; Burdick et al., 2005; 

Automotive Industry Action Group, 2010]. If the measurement system is automated or has one 

observer, common choices are 𝑛 = 10 and 𝑟 = 6 [Automotive Industry Action Group, 2010]. 

We will return to the issue of planning a MSA study in Section 1.3. 

Most often the primary concern of these studies is to investigate the variability of the 

measurement system. There is less emphasis placed on the bias because it is typically thought 

that “bias can be eliminated by proper calibration of the system” [Burdick et al., 2005, p. 3]. 

Addressing variability on the other hand, is not so straightforward. In the simplest case- when 

the measurement system is automated or has just one observer- we adopt the following random 

effects model: 

 𝑌𝑖𝑘 = 𝑆𝑖 + 𝑀𝑖𝑘 [1.1] 

 

where 𝑖 = 1,2, … , 𝑛 indexes the subjects and 𝑘 = 1,2, … , 𝑟 indexes the number of replicate 

measurements per subject. Thus 𝑌𝑖𝑘 is a random variable which represents the observed response 

for the 𝑘th measurement on subject 𝑖. Here 𝑆𝑖 is a random variable representing the unknown true 

value of the measurand for subject 𝑖, and 𝑀𝑖𝑘 is a random variable representing the measurement 

error associated with replicate measurements on subject 𝑖. We assume that for all 𝑖, 𝑆𝑖~𝑁(𝜇, 𝜎𝑠
2) 

where 𝜇 is the mean value of the measurand and 𝜎𝑠
2 is the variance component which quantifies 

the variability in true values about 𝜇. We additionally assume that for all 𝑖 and 𝑘, 

𝑀𝑖𝑘~𝑁(𝜇𝑚, 𝜎𝑚
2 ) where the parameters 𝜇𝑚 and 𝜎𝑚

2  represent the measurement bias and the 

measurement variation, respectively. However, because it is thought that bias can be eliminated 

through calibration, it is common to assume 𝜇𝑚 = 0 [Burdick et al., 

 2005]. Lastly we assume that the 𝑆𝑖 and 𝑀𝑖𝑘 are mutually independent. As such, we find that 

the expectation and variance of the observed response is 𝐸(𝑌𝑖𝑘) = 𝜇 and 𝑉𝑎𝑟(𝑌𝑖𝑘) = 𝜎𝑠
2 + 𝜎𝑚

2 . 

In healthcare and manufacturing measurement systems, there are many sources of variability that 

contribute to the size of 𝜎𝑚
2 . In particular, it is common to assume that the people taking the 

measurements (i.e. the observers or operators) can be an important source of variation. 
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Accordingly, we often include multiple observers in an MSA study and separate their effects 

from 𝑀𝑖𝑘 in model [1.1] so that we can assess their relative contribution to the overall 

measurement system variation. To do this we must adopt a different model which allows for the 

separate estimation of the observer effect. We give this model later in this section. 

By separating the effect of observers we can partition the overall measurement variability into 

two pieces which we call the repeatability and the reproducibility of the measurement system. 

Reproducibility is the variability due to different observers using the measurement device and 

repeatability is the variability due to all other sources of variation inherent in the measurement 

system, and it reflects the precision of the system itself [Montgomery, 2005].  

When considering the effect of the observers there is a critical statistical assumption that must 

be made: the observer effects can either be assumed to be fixed or random. When there are a 

large number of observers who regularly operate the measurement system, and only a sample of 

them is available for inclusion in the study, it is reasonable to assume the observer effects are 

random. However, when there are only a few observers operating the measurement system, all 

of whom participate in the study, it makes more sense to think of the observer effects as being 

fixed. In manufacturing contexts, where there is usually a small number of observers, it is more 

likely that a fixed effect approach would be warranted [Van den Heuvel and Trip, 2002; Burdick 

et al., 2005] and in a medical context when there are potentially many observers available, a 

random effects approach is appropriate [Steiner et al., 2011]. The work developed in this thesis 

primarily assumes fixed observer effects, with the random effect case briefly discussed in Section 

1.3. 

As noted, we must modify model [1.1] to account for observer variability. We do so by 

introducing a fixed effect for observer, resulting in the following two-factor mixed-effects 

model: 

 𝑌𝑖𝑗𝑘 = 𝑆𝑖 + 𝑜𝑗 + 𝑆𝑂𝑖𝑗 + 𝑀𝑖𝑗𝑘      [1.2] 

 

where 𝑖 = 1,2, … , 𝑛 indexes the subject, 𝑗 = 1,2, … ,𝑚 indexes the observer and 𝑘 = 1,2, … , 𝑟 

indexes replicate measurements. Thus 𝑌𝑖𝑗𝑘 represents the observed response for the 𝑘th replicate 

measurement by observer 𝑗 on subject 𝑖. As in [1.1] 𝑆𝑖 is a random variable representing the 
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unknown true value of the measurand for subject 𝑖, which has mean 𝜇. 𝑀𝑖𝑗𝑘 is a random variable 

representing the measurement error when the same observer takes replicate measurements of the 

same subject. Here 𝑜𝑗 represents the fixed effect of observer 𝑗 which is subject to the constraint  

∑ 𝑜𝑗

𝑚

𝑗=1
= 0 

We also include the random variable 𝑆𝑂𝑖𝑗 to allow the observer effect to change from subject to 

subject. Because the true values are described by a random effect, we adopt the traditional 

approach of also describing the possible subject-by-observer interaction with a random effect. 

The interaction is quantified parsimoniously by the single parameter 𝜎𝑠𝑜
2 . Under this model we 

make the distributional assumptions that 𝑆𝑖~𝑁(𝜇, 𝜎𝑠
2), 𝑆𝑂𝑖𝑗~𝑁(0, 𝜎𝑠𝑜

2 ) and 𝑀𝑖𝑗𝑘~𝑁(0, 𝜎𝑚
2 ) and 

that all of these random variables are mutually independent. As such, we find that the expectation 

and variance of the observed response is 𝐸(𝑌𝑖𝑗𝑘) = 𝜇 + 𝑜𝑗 and 𝑉𝑎𝑟(𝑌𝑖𝑗𝑘) = 𝜎𝑠
2 + 𝜎𝑠𝑜

2 + 𝜎𝑚
2 . 

We use 𝜇𝑗 = 𝜇 + 𝑜𝑗 to denote the expected measurement by observer 𝑗, and with that define 

 𝜎𝑜
2 =

1

𝑚
∑ (𝜇𝑗 − 𝜇)

2𝑚

𝑗=1
 [1.3] 

 

where 𝜇 = ∑ 𝜇𝑗 𝑚⁄𝑚
𝑗=1  is the overall mean value of the measurand, as in Burdick et al. [2005, p. 

83]. Thus 𝜎𝑜
2 quantifies the measurement variation due to the relative biases among observers. 

We then define and interpret the total variation in the observed measurements to be 𝜎𝑡
2 = 𝜎𝑠

2 +

𝜎𝑜
2 + 𝜎𝑠𝑜

2 + 𝜎𝑚
2 . Note that because 𝜎𝑜

2 is not a variance in the usual sense under the fixed effect 

approach for observers (it is not the variance of a Normal distribution), neither is 𝜎𝑡
2. 

Montgomery [2005] notes that the primary goal of a MSA study is to estimate these individual 

variance components and hence quantify the measurement system variability in order to 

determine whether it is suitable for regular use.  

1.1  MSA Metrics 

A variety of quantities may be used for assessing the adequacy of a measurement system, many 

of which are defined in terms of the variance components associated with [1.2]. We will briefly 

discuss a number of them, but emphasis within this thesis will be placed on one in particular.  
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To begin, it is instructive to use these variance components to precisely define the repeatability 

and reproducibility of a measurement system. We define 𝜎𝑚
2  to be the repeatability as it 

characterizes the variability among replicate measurements made by any particular observer on 

any particular subject, and we define the quantity 𝜎𝑜
2 + 𝜎𝑠𝑜

2  to be the reproducibility as it 

represents the variability among measurements made by many observers on the same subject 

[Vardeman and Valkenberg, 1999]. Based on these definitions, it is clear that 𝜎𝑜
2 + 𝜎𝑠𝑜

2 + 𝜎𝑚
2  

represents the variability due to the measurement system as a whole. Accordingly, let us define:  

 𝜎𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2 = 𝜎𝑚

2  

 𝜎𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦
2 = 𝜎𝑜

2 + 𝜎𝑠𝑜
2  

 𝜎𝑀𝑆
2 = 𝜎𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

2 + 𝜎𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦
2  

Using this notation we will proceed with our discussion of MSA metrics.  

One quantity that is often used to describe the adequacy of a measurement system in 

manufacturing contexts is the precision-to-tolerance ratio (𝑃𝑇𝑅) [Automotive Industry Action 

Group, 2002; Burdick et al., 2005], which compares the width of the measurement error 

distribution to the width of the specification limits: 

 𝑃𝑇𝑅 =
𝑘𝜎𝑀𝑆

𝑈𝑆𝐿 − 𝐿𝑆𝐿
 [1.4] 

 

where the upper specification limit (𝑈𝑆𝐿) and lower specification limit (𝐿𝑆𝐿) respectively 

represent the largest and smallest allowable value for the quality characteristic being measured. 

The constant 𝑘 typically takes on the values 𝑘 = 5.15 or 6. The value 𝑘 = 6 corresponds to the 

number of standard deviations between the natural tolerance limits that contain the middle 

99.73% of a normal distribution, and 𝑘 = 5.15 corresponds to limits that contain the middle 

99.00% of a normal distribution [Burdick et al., 2005]. 

The size of 𝑃𝑇𝑅 reflects the capability, or adequacy, of the measurement system. The guidelines 

suggested by the Automotive Industry Action Group [2002, p. 77] are as follows: 

 𝑃𝑇𝑅 ≤ 0.1: The measurement system is capable 

 0.1 ≤ 𝑃𝑇𝑅 ≤ 0.3: The measurement system may be capable 
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 𝑃𝑇𝑅 ≥ 0.3: The measurement system is not capable 

However, Wheeler and Lyday [1989] and Montgomery [2005] caution against using this metric 

as it does not involve the process variability 𝜎𝑠
2. Note that in a manufacturing context, 𝜎𝑠

2 

quantifies part-to-part, or process, variability. When the process variability is small, the 

measurement system variability, 𝜎𝑀𝑆
2 , must also be small (to adequately distinguish parts). 

However, suppose 𝜎𝑠
2 is very small, and so the process produces parts well within specification, 

but the measurement system is highly variable (i.e. 𝜎𝑀𝑆
2  is large).  Clearly we would like the 

metric to reflect the inadequacy of the measurement system, but 𝜎𝑀𝑆
2 , although large, might still 

be small enough to ensure 𝑃𝑇𝑅 ≤ 0.1. As well, if the process variability is large, larger 

measurement variation can be tolerated [Mader et al., 1999]. This may cause 𝑃𝑇𝑅 ≥ 0.3, even 

though the measurement system is adequate. 

Thus, because the precision-to-tolerance ratio does not quantify the measurement variation 

relative to the process variation, it does not always give a useful evaluation of a measurement 

system’s capability. 

More informative metrics typically compare the measurement variation to the between-subject 

variation 𝜎𝑠
2, or the total variation 𝜎𝑡

2. One such metric is the discrimination ratio which 

compares the relative sizes of the between-subject variation and the measurement system 

variation [Steiner and MacKay, 2005]: 

𝐷 =
𝜎𝑠

𝜎𝑀𝑆
 

A scaling of this quantity is also used, and is referred to as the signal-to-noise ratio (𝑆𝑁𝑅). See 

Burdick et al., [2005] and Montgomery [2005]. 

Another metric that is used frequently to assess the quality of a measurement system is the 

intraclass correlation coefficient [Shrout and Fleiss, 1979]: 

 𝜌 =
𝜎𝑠

2

𝜎𝑡
2 =

𝜎𝑠
2

𝜎𝑠
2 + 𝜎𝑜

2 + 𝜎𝑠𝑜
2 + 𝜎𝑚

2
 [1.5] 

 

This ratio examines the proportion of the overall variability (𝜎𝑡
2) that is attributable to variation 



9 
 

in the true values (𝜎𝑠
2). Statistically, it is defined as the correlation between two measurements 

on the same subject by different observers. Note that 0 ≤ 𝜌 ≤ 1, and large values of 𝜌 indicate 

that the measurement system contributes little to the overall variation, suggesting that it is 

acceptable.  

A related ratio for assessing a measurement system compares the variation due to the 

measurement system (repeatability and/or reproducibility) to the overall variation of the 

measurements (i.e. due to differences in the true dimensions and the measurement system). The 

Automotive Industry Action Group [2010] defines the gauge repeatability and reproducibility 

(GR&R) ratio as: 

 𝛾 =
𝜎𝑀𝑆

𝜎𝑡
= √

𝜎𝑜
2 + 𝜎𝑠𝑜

2 + 𝜎𝑚
2

𝜎𝑠
2 + 𝜎𝑜

2 + 𝜎𝑠𝑜
2 + 𝜎𝑚

2
 [1.6] 

 

When the measurement system is highly variable, 𝜎𝑀𝑆 will be large relative to 𝜎𝑡 and so 𝛾 will 

be large. As such, smaller values of 𝛾 are desirable. The Automotive Industry Action Group 

[2010, p. 78] recommend the following acceptability criteria: 

 𝛾 < 0.1: The measurement system is acceptable 

 0.1 ≤ 𝛾 ≤ 0.3: The measurement system needs improvement 

 𝛾 > 0.3: The measurement system is unacceptable 

If the estimate of 𝛾 is large, we can examine the estimate of 𝜎𝑜
2, 𝜎𝑠𝑜

2 , and 𝜎𝑚
2  separately to identify 

the source of the large measurement system variation. 

Note that the discrimination ratio 𝐷, the intraclass correlation coefficient 𝜌, and the gauge 

repeatability and reproducibility ratio 𝛾 are one-to-one functions of each other. In particular 𝐷 =

√
1−𝛾2

𝛾2
 and 𝜌 = 1 − 𝛾2. As such, each of these metrics conveys the same information about the 

measurement system, and use of any of them is sufficient.  

In Table 1.1 we translate the Automotive Industry Action Group’s acceptability criteria for 𝛾, 

for 𝜌. We also present the acceptability criteria suggested by Steiner and MacKay [2005] for 𝐷, 

which is less conservative than the AIAG recommendation in the sense that a measurement 
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system judged as acceptable by this criteria may not be judged as acceptable by the AIAG 

criteria. 

    Acceptable Needs Improvement  Unacceptable 

GR&R ratio 𝛾 ≤ 0.1 0.1 < 𝛾 < 0.3 𝛾 ≥ 0.3 

Intraclass Correlation Coefficient 𝜌 ≥ 0.99 0.91 < 𝜌 < 0.99 𝜌 ≤ 0.91 

Discrimination Ratio 𝐷 ≥ 3 2 < 𝐷 < 3 𝐷 ≤ 2 

Table 1.1: Measurement System Acceptability Criteria 

In manufacturing contexts it is common to use the GR&R ratio 𝛾 as the measure of measurement 

system adequacy, while in medical contexts it is typical to use the intraclass correlation 

coefficient 𝜌. However, because each of these metrics conveys the same information about the 

measurement system, and use of any one of them is sufficient, in this thesis we choose to focus 

attention on the repeatability and reproducibility ratio, 𝛾, as the metric of interest. We do so for 

two reasons: the first is that convention in the industrial context dictates the use of 𝛾 to assess a 

measurement system when observer effects are assumed fixed. And the second reason, which is 

potentially the source of the first, is that the interpretation of 𝛾, being the proportion of overall 

variation due to the measurement system, is appropriate given that the adequacy of a 

measurement system is judged based on how variable it is. 

1.2 Estimation Techniques 

In order to use the GR&R ratio in practice, we must obtain its estimate, denoted 𝛾. Doing so 

requires the estimation of the individual variance components. When multiple observers are 

considered, this means we must obtain 𝜎̂𝑠
2, 𝜎̂𝑜

2, 𝜎̂𝑠𝑜
2 , and 𝜎̂𝑚

2 . Note that we use Greek letters, for 

example 𝜃, to denote parameters, and we use a Greek letter overscored by a circumflex (𝜃) to 

denote its estimate (a real number). When applicable we will use a Greek letter overscored by a 

tilde (𝜃̃) to denote the corresponding estimator (a random variable). 

A variety of estimation methods are used in practice. An early approach was a graphical 

technique that used control charts and an analysis of ranges to estimate 𝜎𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2  and 

𝜎𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦
2  [Wheeler and Lyday, 1989; Automotive Industry Action Group, 2010]. 

However, as Burdick et al. [2005] indicate, the range is an inefficient measure of measurement 

system variability and so this approach is not as commonly used as it once was. 
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A popular alternative is the analysis of variance (ANOVA). The philosophy of the ANOVA 

approach is to partition the total variability into its component sources. Recall that when the 

measurement system has multiple observers, and we separate the effect of the observers, then 

we adopt the two-factor mixed effect model [1.2]. In this case, the total variability is partitioned 

according to variability due to subjects, observer effects, subject-by-observer interaction effects, 

and the measurement system. Specifically, the total sum of squares is decomposed as follows: 

𝑆𝑆𝑡 = 𝑆𝑆𝑠 + 𝑆𝑆𝑜 + 𝑆𝑆𝑠𝑜 + 𝑆𝑆𝑚 

Table 1.2 displays the ANOVA table associated with this decomposition, where 𝑌̅∙∙∙ =

∑ ∑ ∑ 𝑌𝑖𝑗𝑘 𝑛𝑚𝑟⁄𝑟
𝑘=1

𝑚
𝑗=1

𝑛
𝑖=1 , 𝑌̅𝑖𝑗∙ = ∑ 𝑌𝑖𝑗𝑘 𝑟⁄𝑟

𝑘=1 , 𝑌̅𝑖∙∙ = ∑ ∑ 𝑌𝑖𝑗𝑘 𝑚𝑟⁄𝑟
𝑘=1

𝑚
𝑗=1 , and 𝑌̅∙𝑗∙ =

∑ ∑ 𝑌𝑖𝑗𝑘 𝑛𝑟⁄𝑟
𝑘=1

𝑛
𝑖=1 . Here we assume that the collected data were obtained from a study whose 

design followed the balanced standard plan (SP) described above. That is, each of 𝑚 observers 

measures each of 𝑛 subjects 𝑟 times.  

The estimates 𝜎̂𝑠
2, 𝜎̂𝑜

2, 𝜎̂𝑠𝑜
2 , and 𝜎̂𝑚

2  are obtained by simultaneously solving the expected mean 

squares which are shown in Table 1.3 (reproduced from Burdick et al. [2005]). Solving these 

equations and substituting the observed mean squares for the expected gives: 

 𝜎̂𝑠
2 =

𝑀𝑆𝑠 − 𝑀𝑆𝑠𝑜

𝑚𝑟
 [1.7] 

 𝜎̂𝑜
2 =

(𝑚 − 1)(𝑀𝑆𝑜 − 𝑀𝑆𝑠𝑜)

𝑛𝑚𝑟
 [1.8] 

 𝜎̂𝑠𝑜
2 =

𝑀𝑆𝑠𝑜 − 𝑀𝑆𝑚

𝑟
 [1.9] 

 𝜎̂𝑚
2 = 𝑀𝑆𝑚 [1.10] 

 

Note that the mean squares used to calculate these estimates are constructed using the observed 

data and each of the corresponding estimators is unbiased for the true parameter. The estimates 

[1.7 – 1.10] are then substituted into [1.6] to obtain: 

 𝛾 = √
𝜎̂𝑜

2 + 𝜎̂𝑠𝑜
2 + 𝜎̂𝑚

2

𝜎̂𝑠
2 + 𝜎̂𝑜

2 + 𝜎̂𝑠𝑜
2 + 𝜎̂𝑚

2
 [1.11] 
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Source Sum of Squares df Mean Square F-Statistic 

𝑆 𝑆𝑆𝑠 𝑛 − 1 𝑀𝑆𝑠 =
𝑆𝑆𝑠

𝑛 − 1
 

𝑀𝑆𝑠

𝑀𝑆𝑠𝑜
 

𝑂 𝑆𝑆𝑜 𝑚 − 1 𝑀𝑆𝑜 =
𝑆𝑆𝑜

𝑚 − 1
 

𝑀𝑆𝑜

𝑀𝑆𝑠𝑜
 

𝑆𝑂 𝑆𝑆𝑠𝑜 (𝑛 − 1)(𝑚 − 1) 𝑀𝑆𝑠𝑜 =
𝑆𝑆𝑠𝑜

(𝑛 − 1)(𝑚 − 1)
 

𝑀𝑆𝑠𝑜

𝑀𝑆𝑚
 

𝑀 𝑆𝑆𝑚 𝑛𝑚(𝑟 − 1) 𝑀𝑆𝑚 =
𝑆𝑆𝑚

𝑛𝑚(𝑟 − 1)
  

Total 𝑆𝑆𝑡 𝑛𝑚𝑟 − 1   

Table 1.2: ANOVA table for a two-factor mixed effect model 

where 

𝑆𝑆𝑠 = 𝑚𝑟 ∑ (𝑌̅𝑖∙∙ − 𝑌̅∙∙∙)
2𝑛

𝑖=1   

𝑆𝑆𝑜 = 𝑛𝑟 ∑ (𝑌̅∙𝑗∙ − 𝑌̅∙∙∙)
2𝑚

𝑗=1   

𝑆𝑆𝑠𝑜 = 𝑟 ∑ ∑ (𝑌̅𝑖𝑗∙ − 𝑌̅𝑖∙∙ − 𝑌̅∙𝑗∙ + 𝑌̅∙∙∙)
2𝑚

𝑗=1
𝑛
𝑖=1   

𝑆𝑆𝑚 = ∑ ∑ ∑ (𝑌𝑖𝑗𝑘 − 𝑌̅𝑖𝑗∙)
2𝑟

𝑘=1
𝑚
𝑗=1

𝑛
𝑖=1   

𝑆𝑆𝑡 = ∑ ∑ ∑ (𝑌𝑖𝑗𝑘 − 𝑌̅∙∙∙)
2𝑟

𝑘=1
𝑚
𝑗=1

𝑛
𝑖=1   

  

Expected Mean Squares 

𝐸(𝑀𝑆𝑠) = 𝜎𝑚
2 + 𝑟𝜎𝑠𝑜

2 + 𝑚𝑟𝜎𝑠
2 

𝐸(𝑀𝑆𝑜) = 𝜎𝑚
2 +  𝑟𝜎𝑠𝑜

2 + 𝑛𝑚𝑟𝜎𝑜
2 (𝑚 − 1)⁄  

𝐸(𝑀𝑆𝑠𝑜) = 𝜎𝑚
2 +  𝑟𝜎𝑠𝑜

2  

𝐸(𝑀𝑆𝑚) = 𝜎𝑚
2  

Table 1.3: Expected mean squares for two-factor mixed effect model 

 

One major pitfall of the ANOVA approach to estimation is that it is possible that the variance 

component estimates 𝜎̂𝑠
2, 𝜎̂𝑜

2, 𝜎̂𝑠𝑜
2  could be negative [Montgomery and Runger, 1993a; Burdick 

et al., 2005]. Clearly this is a problem since variances are by definition non-negative. In the 

context of measurement system assessment, this issue arises most often when the subject-by-

observer interaction effect is small. In particular, if 𝑀𝑆𝑠𝑜 < 𝑀𝑆𝑚  then  
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𝜎̂𝑠𝑜
2 =

𝑀𝑆𝑠𝑜 − 𝑀𝑆𝑚

𝑟
< 0 

One way to deal with this is to set this variance component equal to zero. However, in doing this, 

the estimates of the other parameters will be biased [Montgomery and Runger, 1993a].  

If 𝑀𝑆𝑠𝑜 < 𝑀𝑆𝑚 then it is likely that the subject-by-observer interaction is not significant. As 

such, Montgomery and Runger [1993a] suggest that we test this hypothesis using the F-statistic 

given on line 3 in Table 1.2. If the interaction is insignificant, then we can ignore its effects and 

perform an analysis of variance on the reduced model which does not include the 𝑆𝑂𝑖𝑗 term.  

Another drawback to the ANOVA method of estimation is that it cannot be applied to all study 

designs. Although Burdick et al. [2005] develop the ANOVA-based estimates for mixed and 

random effect models within many atypical designs, there are still some unbalanced designs to 

which the procedure cannot be applied. We will address this point further in Chapter 2. 

To avoid the problem of negative variance component estimates, the use of maximum likelihood 

(ML) estimation has been proposed as an alternative [Montgomery and Runger, 1993b]. As well, 

it is flexible enough to accommodate non-standard study designs. However, there are two main 

drawbacks associated with the ML approach to variance component estimation. The first is the 

well-known problem that maximum likelihood estimates are biased when sample sizes are small 

[Swallow and Monahan, 1984], and the second is that it is computationally more intensive than 

the ANOVA approach (closed form expressions for ML estimates rarely exist). However, with 

the powerful computational resources and statistical software available to practitioners, this 

procedure is not nearly as cumbersome as it once was. 

Because of its flexibility with regard to study design and the nice asymptotic properties of ML 

estimates, we adopt maximum likelihood estimation as the preferred estimation technique 

throughout this thesis. We note that the issue of biased estimates with small sample sizes is of 

little concern because the sample sizes in MSA studies are typically large enough to avoid any 

substantial bias. When necessary we check this assumption using simulation. 

We close this subsection with a discussion of estimation uncertainty. One common criticism 

associated with using an estimate such as [1.11] to judge the acceptability of a measurement 

system is that 𝛾 is a point estimate, and on its own does not provide any information regarding 
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the uncertainty of its estimation [Burdick et al., 2005]. As such, there has been much effort 

directed at calculating confidence intervals for the parameters of an MSA study. In particular, 

Burdick et al. [2005] provide techniques for calculating approximate confidence intervals for 𝛾 

(and many other metrics) within the context of one-factor random effects models and two-factor 

mixed effect models for both balanced and unbalanced designs. The approximate intervals 

presented in this reference are calculated using modified large sample (MLS) and generalized 

pivotal quantity (GPQ) techniques which are based on the distributions of the sums of squares 

shown in Table 1.2. As such, these intervals are applicable when using the ANOVA method to 

estimate variance components. Shrout and Fleiss [1979] similarly present confidence intervals 

for the intraclass correlation coefficient defined within one-factor random effects models and 

two-factor mixed effect models. 

We note that approximate confidence intervals for 𝛾 can also be calculated when employing a 

maximum likelihood approach. Using the inverse of the expected Fisher information matrix we 

can obtain the asymptotic variances of the maximum likelihood estimators 𝜎̃𝑠
2, 𝜎̃𝑠𝑜

2 , 𝜎̃𝑚
2  and 𝜇𝑗 

for 𝑗 = 1,2, … ,𝑚. To determine the asymptotic variance of functions of these estimators, say 𝜎̃𝑜
2 

or 𝛾̃, we can apply the delta method and pre- and post-multiply the information matrix by a 

change-of-variable matrix of suitable partial derivatives. Because maximum likelihood 

estimators have asymptotic normal distributions and are asymptotically unbiased, these 

asymptotic variances can be used to construct approximate confidence intervals for the 

parameters of interest using the critical values of the standard normal distribution [Casella and 

Berger, 2002]. The performance of any such interval (regardless of the estimation method) will 

depend on the sample size and design of the study. 

1.3 Designing MSA Studies 

The design of MSA studies is an extremely important, albeit under-emphasized, topic in 

measurement system assessment literature. In fact Mazu [2006, p. 305] remarks that “if there is 

an area in gauge R&R studies that needs more extensive information and guidelines for the 

practitioner, it is the planning of gauge studies”. Recall that the most common design, which we 

refer to as the standard plan (SP), has 𝑚 = 2,3 observers measure each of 𝑛 = 10 subjects 𝑟 =

2,3 times each.  



15 
 

Regardless of the specific allocation of measurements, every practitioner planning an MSA study 

should consider the three fundamental experimental design principles replication, 

randomization, and blocking- doing so improves the validity and efficiency of the study 

[Montgomery and Runger, 1993a]. In the context of MSA studies, replication refers to an 

observer making multiple measurements on a subject, where each measurement is an 

independent execution of the measurement system. Doing this allows for estimation of 𝜎𝑚
2 , the 

repeatability of the measurement system, and the more replicated measurements there are, the 

more precise this estimate will be. It is important to distinguish between replicate measurements 

and repeated measurements. Repeated measurements refer to consecutive measurements that an 

observer takes on a subject without changing the set-up of the instrumentation. In this way 

repeated measurements may not be independent. A study which uses repeated measurements and 

not replicate measurements will likely under estimate 𝜎𝑚
2  [Burdick et al., 2005]. 

The second principle of experimental design is randomization. In the context of MSA studies, 

there can be two levels of randomization; the first level of randomization refers to the manner in 

which subjects are selected for inclusion in the study and the second level of randomization refers 

to the order in which observers measure the selected subjects. It is important to note that in 

practice, subjects included in the study are often not randomly selected, however the validity of 

many statistical methods relies on the assumption of randomization, and so it is important that it 

be incorporated in the design of MSA studies where possible.  

The final principle experimental design principle to consider is blocking. Blocking is a method 

for eliminating the effect of nuisance factors (extraneous sources of variation whose effect we 

are not concerned with). This is done by taking measurements at fixed levels of these nuisance 

factors so that they cannot introduce any additional variability into the measurements. However, 

we would prefer to investigate and quantify these possible sources of variation rather than 

remove them from the analysis, and so blocking is not particularly useful in an MSA setting.  

The next major consideration in planning a MSA study is the number of subjects 𝑛, observers 𝑚 

and replicate measurements 𝑟. When the measurement system is automated or has a single 

observer, there has been considerable activity in choosing 𝑛 and 𝑟, and hence altering the 

allocation of resources compared to the common 𝑛 = 10, 𝑟 = 6 SP recommended by the 

Automotive Industry Action Group [2010]. For example, Shainin and others [Shainin, 1992; 
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Traver, 1995] recommend an IsoplotTM study, where 𝑛 = 30 subjects are selected and each is 

measured twice, i.e. 𝑟 = 2. The Shainin plan provides better balance between the number of 

degrees of freedom available for estimating the measurement and subject variation, and as we 

shall see in Chapter 2, is the optimal SP for estimating 𝛾 in this case. Hamada and Borror [2012] 

consider repeatability and reproducibility estimation within unreplicated designs, i.e. when 𝑟 =

1, and Vardeman and Valkenberg [1999] point out that if the only goal is to estimate the variation 

due to the measurement system, 𝜎𝑚
2 , then it is best to take 𝑛 = 1 and take replicate measurements 

of this single subject.  

There has also been considerable activity for choosing sample sizes in medical contexts when 𝜌, 

the intraclass correlation coefficient, is used as measure of adequacy. Specifically there are two 

main methods to choose the optimal number of subjects 𝑛 and replicate measurements 𝑟. The 

first is based on the power of a hypothesis test regarding 𝜌 such as 

 𝐻0: 𝜌 = 𝜌0 versus 𝐻𝐴: 𝜌 > 𝜌0    [1.12] 

 

where 𝜌0 corresponds to a minimum value of 𝜌 that investigators deem acceptable [Donner and 

Eliasziw, 1987]. Donner and Eliasziw [1987] and Walter et al. [1998] use such a power analysis. 

The former authors present power contours for varying values of 𝑛 and 𝑟 when 𝛼 = 0.5, 1 − 𝛽 = 

0.8 and 𝜌0 = 0.2, 0.4, 0.6, 0.8 with which a practitioner can choose optimal values of 𝑛 and 𝑟. 

The latter authors provide a functional approximation to these exact results which allows for 

more flexibility in terms of investigating other plans with different values of 1 − 𝛽. Note that 𝛼 

and 𝛽 here respectively represent the probability of Type I and Type II error.  

In both papers, the general recommendation when the true value of 𝜌 is relatively large (as it 

should be in such studies) is to maximize the number of subjects 𝑛 and minimize the number of 

replicate measurements 𝑟 for fixed 𝑁 = 𝑛𝑟. In particular, 𝑟 = 2 or 3 is sufficient. This agrees 

with the Shainin plan described above.  

Within this framework Eliasziw and Donner [1987] also suggest that the number of subjects and 

replicates in the study can be determined by the costs associated with sampling subjects and 

performing replicate measurements; if it is expensive to sample subjects, then it might be 

beneficial to choose a design that achieves the same power but uses fewer subjects and more 
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replicate measurements. Accordingly, they present a method which minimizes a linear cost 

function subject to the statistical power constraint (1 − 𝛽) using Legrange multipliers. The 

conclusions they draw are rather intuitive: if sampling subjects is expensive, reduce 𝑛 and 

increase 𝑟, and if replicate measurements are expensive, increase 𝑛 and reduce 𝑟. In Eliasziw 

and Donner [1987] tables of possible (𝑛,𝑟) pairings and an example are given to help choose 𝑛 

and 𝑟 in practice. 

The second method of choosing 𝑛 and 𝑟 in medical contexts is done by finding the values of  𝑛 

and 𝑟 that maximize the precision with which 𝜌 is estimated. This method is suggested as an 

alternative to the power analysis technique because the power analysis requires an arbitrary 

choice of 𝜌0 in [1.12] and a choice of the significant difference one wants to be able to identify. 

Giraudeau and Mary [2001] note that these assumptions may be difficult ones to make, and once 

they are made, they may be questionable. Giraudeau and Mary [2001] and Bonnett [2002] choose 

values of 𝑛 and 𝑟 that minimize the width of confidence intervals for 𝜌. In both cases they arrive 

at similar recommendations as those given above: for large 𝜌, the size typical of 𝜌, it is best to 

increase the number of subjects and reduce the number of replicates. For fixed 𝑁 = 𝑛𝑟 they 

similarly suggest taking 𝑟 = 2 or 3, and choosing 𝑛 accordingly. 

Taken together, these results suggest that when the MSA study design follows the standard plan, 

and estimating 𝛾 (or 𝜌) is of interest, unless it is cost-prohibitive, it is best to maximize the 

number of subjects and minimize the number of replicate measurements. However, these results 

ignore the potential effect of observers. The optimal allocation of measurements when multiple 

observers are involved in the study remains unclear. 

As well, these results assume the MSA study design adheres to the standard plan. There has been 

a recent development of alternative study designs that may be superior to the standard plan in 

their ability to efficiently estimate parameters of interest.  

To motivate these alternative designs, recall that the Automotive Industry Action Group [2010] 

typically recommends 𝑛 = 10 subjects be included in the study. But with so few subjects, the 

resulting estimate of 𝜎𝑠
2 (the between-subject variability) may be poor; 𝑛 = 10 subjects does not 

allow for precise estimation of 𝜎𝑠
2. 
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Steiner and MacKay [2005] suggest incorporating baseline (historical) data in a measurement 

system analysis. Doing so increases the number of degrees of freedom for estimating 𝜎𝑠
2, yielding 

more precise estimates. Browne et al. [2009a] and Danila et al. [2008, 2010] in the binary 

situation demonstrate the considerable value of this extra information. 

Another example comes from a series of papers by Browne et al. [2009a, 2009b, 2010] that 

consider the use of leveraging to increase the efficiency of standard plans. The proposed 

leveraged plan (LP) is completed in two stages. In Stage 1, a baseline is collected: 𝑏 subjects are 

randomly selected from the usual process over a long enough time frame to obtain a good 

estimate of 𝜎𝑡
2, and each of these subjects is measured once. In Stage 2, 𝑛 subjects are collected 

from the baseline sample and re-measured 𝑟 = 2,3 times each. The term ‘leverage’ arises 

because of the way in which these 𝑛 subjects are selected; the 𝑛 selected subjects are considered 

extreme in relation to the baseline mean. In particular, they suggest selecting 𝑛/2 subjects with 

the smallest and 𝑛/2 subjects with the largest (non-outlier) baseline measurements.  

If the study includes 𝑚 > 1 observers, then each observer measures 𝑏/𝑚 different subjects in 

Stage 1, and in Stage 2, 𝑛/𝑚 extreme subjects are selected from each observer’s Stage 1 sample 

for replicated measurements. The authors suggest that if a total of 𝑁 measurements can be made 

in the study, we should allocate roughly 𝑁/2 measurements to Stage 1 and 𝑁/2 measurements 

to Stage 2. If 𝑁 = 60 and 𝑚 = 3, Browne et al. [2010] suggest 𝑏 = 11, 𝑛 = 3, 𝑟 = 3 and if 𝑁 =

90 and 𝑚 = 3 then they suggest 𝑏 = 18, 𝑛 = 6, 𝑟 = 2. 

Browne et al. demonstrate the benefit in using a leveraged plan as opposed to a standard plan 

within the framework of models [1.1] [2009a, 2009b, 2009c] and [1.2] [2010]. In particular, an 

LP with the same total number of measurement as an SP will provide more precise estimates of 

the gauge R&R ratio 𝛾 [1.6] and the intraclass correlation coefficient 𝜌 [1.5], and with fewer 

overall measurements an LP can achieve the same power that an SP can when testing hypotheses 

regarding 𝜌 such as [1.12] or hypotheses involving 𝛾: 

 𝐻0: 𝛾 ≥ 𝛾0 versus 𝐻𝐴: 𝛾 < 𝛾0 [1.13] 

 

where common choices for 𝛾0 are the acceptability/unacceptability criteria 0.1 and 0.3 suggested 

by the Automotive Industry Action group [2010]. 
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Steiner et al. [2011] investigate measurement system assessment when the observer effects are 

assumed to be random. In this case they incorporate the random effect 𝑂𝑗~𝑁(0, 𝜎𝑜
2) (instead of 

the fixed effect 𝜇𝑗) into their two-way model. Here, because the observer effect is random, many 

more observers are needed to obtain a precise estimate of 𝜎𝑜
2 and hence 𝛾. In fact Burdick et al. 

[2005, p. 58] suggest that in this case 𝑚 ≥ 6 observers be included in the study. Steiner et al. 

[2011] propose that, rather than performing one usual standard plan, it is beneficial to perform 

replicates of a smaller standard plan. In particular they propose using the plan in which two 

subjects are measured once by each of two observers (for a total of four measurements), and then 

they suggest replicating this plan with different subjects and observers. Doing so balances the 

degrees of freedom necessary for estimating 𝜎𝑠
2 and 𝜎𝑜

2, resulting in better estimates. This in turn 

facilitates more precise estimation of 𝛾. 

1.4 Looking Ahead 

To this point we have discussed the goals and importance of a measurement system assessment 

study, the metrics used to judge acceptability of a measurement system and methods used to 

estimate these metrics. We have also highlighted the importance of the study design and have 

discussed recent developments in this area. In Chapter 2 and 3 we present new contributions to 

this field resulting from work on this thesis. In particular we investigate and develop alternative 

MSA study designs that continue to improve upon the standard plan in their ability to precisely 

estimate 𝛾.  

In Chapter 2 we investigate the performance of two types of (unbalanced) assessment plans, 

collectively referred to as Augmented Plans [Stevens et al., 2010]. In each type we use a standard 

plan, in which 𝑚 observers measures 𝑛 subjects, 𝑟 times each, and we augment this with 

additional measurements by each observer. In type A augmentation, each observer measures a 

different set of subjects once each. In type B augmentation, each observer measures the same set 

of subjects once each. The goal of these designs is to supplement the information gained from 

the standard plan, so as to more precisely estimate 𝛾, the gauge repeatability and reproducibility 

ratio. When a measurement system is used by multiple observers we show that use of an 

appropriate augmented plan can produce substantial gains in precision for estimating 𝛾 compared 

to the best standard plan with the same total number of measurements. 
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In Chapter 3 we focus on measurement systems that are used routinely and that have a record of 

the single measurements made during regular use. We consider incorporating these baseline 

measurements in both the planning and analysis of an MSA study [Stevens et al., 2013]. 

Specifically we quantify the substantial benefits of incorporating baseline data with regard to 

precisely estimating 𝛾, and we search for good standard plans with a fixed total number of 

measurements that take into account available baseline data. The benefit of incorporating 

baseline data into the analysis is significant and most of the gains in precision can be obtained 

with small baseline sample sizes. In general, depending on the baseline sample size, the number 

of observers and whether we wish to estimate a subject-by-observer interaction, the standard 

plan with either the minimum or maximum number of subjects is recommended. 

In the second part of this thesis (Chapters 4, 5 and 6) we consider the comparison of two 

measurement systems. Often new measurement systems are developed that are cheaper and 

perhaps easier to use. In these cases a potential buyer may want to compare the performance of 

this new measurement system with their existing one, and decide whether the new one can be 

used in place of the old one. This comparison is typically done with a measurement system 

comparison (MSC) study. In Chapter 4 we discuss, in more detail, the MSC study and we review 

several existing techniques for analyzing MSC data. In Chapter 5 we propose the probability of 

agreement, a new method for analyzing MSC data, which more effectively and transparently 

quantifies             the agreement between two measurement systems [Stevens et al., 2014 (under 

revision)]. We also make recommendations for a study design that facilitates precise estimation 

of this probability. In Chapter 6 we relax various model assumptions made in the previous 

chapter and consider the application of the probability of agreement when comparing two 

measurement systems in these more general settings. Specifically, we consider the situation in 

which the true values of the measurand do not follow a normal distribution, and when the 

measurement variation of one or both systems depends on this unknown true value. 
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Chapter 2 

 

Augmented Measurement System Assessment 

  

In Chapter 1 we introduced the idea of a measurement system assessment (MSA) study, the 

purpose of which is primarily to assess the variability of the measurement system. We also 

described the typical balanced design of such a study, which we refer to as the standard plan 

(SP), in which a random sample of 𝑛 subjects is measured 𝑟 times by each of 𝑚 observers, for a 

total of 𝑁 = 𝑛𝑚𝑟 measurements. For a fixed number of observers, we denote this plan 𝑆𝑃(𝑛, 𝑟). 

In this chapter we propose the use of unbalanced assessment plans that we refer to as augmented 

plans (AP), as an alternative to the standard plan [Stevens et al., 2010]. 

To begin we will re-state the two-way mixed effects model that is typically used to describe 

MSA study data: 

 𝑌𝑖𝑗𝑘 = 𝑆𝑖 + 𝑜𝑗 + 𝑆𝑂𝑖𝑗 + 𝑀𝑖𝑗𝑘      [2.1] 

 

Recall that 𝑖 = 1,2, … , 𝑛 indexes subjects, 𝑗 = 1,2, … ,𝑚 indexes observers and 𝑘 = 1,2, … , 𝑟 

indexes replicate measurements. As such, 𝑌𝑖𝑗𝑘 represents the observed response for the 𝑘th 

replicate measurement by observer 𝑗 on subject 𝑖. As well, 𝑆𝑖~𝑁(𝜇, 𝜎𝑠
2) is a random variable 

representing the unknown true value of the measurand and 𝑀𝑖𝑗𝑘~𝑁(0, 𝜎𝑚
2 ) is a random variable 

representing the measurement error when the same observer takes replicate measurements of the 

same subject. Recall also that we choose to describe the effect of observer 𝑗 with the fixed effect 

𝑜𝑗, as opposed to a random effect because there is interest in understanding each observer’s 

potential bias. We also include the random variable 𝑆𝑂𝑖𝑗~𝑁(0, 𝜎𝑠𝑜
2 ) to allow the observer effect 

to change from subject to subject. Under this model we further assume that 𝑆𝑖, 𝑆𝑂𝑖𝑗 and 𝑀𝑖𝑗𝑘 are 

mutually independent. 
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With this model we also define 𝜎𝑜
2, which quantifies the measurement variation due to the 

relative biases among observers: 

𝜎𝑜
2 =

1

𝑚
∑ (𝜇𝑗 − 𝜇)

2𝑚

𝑗=1
 

 

where 𝜇𝑗 = 𝜇 + 𝑜𝑗 is the expected measurement by observer 𝑗 and 𝜇 is the overall mean value 

of the measurand. We then define and interpret the total variation in the observed measurements 

to be 𝜎𝑡
2 = 𝜎𝑠

2 + 𝜎𝑜
2 + 𝜎𝑠𝑜

2 + 𝜎𝑚
2 .  

In Chapter 1 we also discussed a variety of metrics that are used in practice to quantify the 

adequacy of the measurement system. In this chapter we will focus on the gauge repeatability 

and reproducibility (GR&R) ratio 𝛾, which compares the variability due to the measurement 

system to the total variability attributable to both the subjects and the measurement system. For 

convenience we re-state its definition here: 

 𝛾 = √
𝜎𝑜

2 + 𝜎𝑠𝑜
2 + 𝜎𝑚

2

𝜎𝑠
2 + 𝜎𝑜

2 + 𝜎𝑠𝑜
2 + 𝜎𝑚

2
 [2.2] 

 

In this chapter we consider three different cases depending on the number of observers included 

in the study, and whether a subject-by-observer interaction is suspected. Model [2.1] and the 

definition for 𝛾 given in [2.2] correspond to the multiple observer case, when estimation of a 

subject-by-observer interaction is of interest. In the other two cases, the model and the definition 

of 𝛾 both simplify.  

When we assume the system is automated with no observer effects, or has a single observer 

(𝑚 = 1), we have 𝜎𝑜
2 = 0 and we cannot estimate 𝜎𝑠𝑜

2  separately from 𝜎𝑚
2 , so we let 𝜎𝑠𝑜

2 = 0. In 

this case model  simplifies to the random effects model [1.1], and 𝛾 reduces to [2.3]: 

 𝛾 = √
𝜎𝑚

2

𝜎𝑠
2 + 𝜎𝑚

2
      [2.3] 

 

When we assume the measurement system is operated by multiple observers, but assume their 
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effects are the same for every subject (i.e. no subject-by-observer interaction), we set 𝜎𝑠𝑜
2 = 0. 

Knowing whether a subject-by-observer interaction exists may be evidenced from previous MSA 

studies or prior knowledge of the observer effects. In this case, when we set 𝜎𝑠𝑜
2 = 0, the 𝑆𝑂𝑖𝑗 

term is dropped from model [2.1] and 𝛾 reduces to [2.4]:  

 𝛾 = √
𝜎𝑜

2 + 𝜎𝑚
2

𝜎𝑠
2 + 𝜎𝑜

2 + 𝜎𝑚
2

      [2.4] 

 

To estimate 𝛾, we need a plan that provides an estimate of the between-subject variation 𝜎𝑠
2. 

Alternate metrics, such as the precision-to-tolerance ratio (𝑃𝑇𝑅) [1.4], depend only on the 

measurement system variation, and do not require an estimate of 𝜎𝑠
2. The optimal design of an 

assessment study to estimate 𝑃𝑇𝑅 and other such metrics will be different from what we propose. 

In other situations, the goal may be to estimate the individual variance components. This change 

of goal will also lead to different assessment plans. In this chapter, we focus on finding good 

plans for estimating 𝛾 while preserving some information about the separate variance 

components. 

Specifically, we compare standard plans with two new plans, which we call augmented plans, in 

which not all subjects are measured the same number of times [Stevens et al., 2010]. In all cases, 

we assume the number of observers 𝑚 is fixed. The augmented plans have two components: one 

component is a standard plan using 𝑛 subjects with 𝑟 replicate measurements by each observer, 

and there are two possibilities for the other component: 

Type A: Randomly sample 𝑛𝐴 subjects (different from those selected in the SP component) 

where 𝑛𝐴 is a multiple of the number of observers, 𝑚. Each observer then measures 

𝑛𝐴/𝑚 different subjects once. We call this an A plan, and for a fixed number of 

observers we denote it by 𝐴(𝑛, 𝑟, 𝑛𝐴).  

Type B: Randomly sample 𝑛𝐵 subjects (different from those selected in the SP component). Each 

observer then measures each of these subjects once. We call this a B plan, and for a 

fixed number of observers we denote it by 𝐵(𝑛, 𝑟, 𝑛𝐵). 
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Plan 𝐴(𝑛, 𝑟, 𝑛𝐴) has a total of 𝑁 = 𝑛𝑚𝑟 + 𝑛𝐴 measurements using 𝑛 + 𝑛𝐴 subjects, and Plan 

𝐵(𝑛, 𝑟, 𝑛𝐵) has a total of 𝑁 = 𝑛𝑚𝑟 + 𝑚𝑛𝐵 = 𝑚(𝑛𝑟 + 𝑛𝐵) measurements using 𝑛 + 𝑛𝐵 

subjects. Within each component, every subject is measured the same number of times.  

If we set 𝑛𝐴 or 𝑛𝐵 to zero, the corresponding augmented plan is an SP. And note that the second 

component of plan B corresponds to a SP with 𝑟 = 1. We also point out that the two components 

of an augmented plan can be conducted simultaneously or in any order.  

The goal of this work is to identify augmented and standard plans that precisely estimate 𝛾 when 

𝑁, the total number of measurements available, is fixed. As noted, estimation of 𝛾 requires 

estimation of 𝜎𝑠
2, the between-subject variability. And so precise estimation of 𝛾 requires precise 

estimation of 𝜎𝑠
2. In order to precisely estimate the subject-to-subject variation, an assessment 

study must include many subjects. In Chapter 1 we stated that the Automotive Industry Action 

Group [2010] typically recommends that 𝑛 = 10 subjects be included in the study, which is not 

necessarily enough to provide a good estimate of 𝜎𝑠
2. The idea of augmentation is to increase the 

number of subjects in the study, allowing for a more precise estimate of 𝜎𝑠
2 and hence 𝛾. 

We measure the efficiency of any augmented plan at a particular set of parameter values and 

fixed 𝑁 by comparing the asymptotic standard deviations (not variance) of the maximum 

likelihood estimates of 𝛾 from the augmented plan relative to the best SP. Specifically, we define 

the efficiency of an augmented plan relative to the best standard plan by dividing the asymptotic 

standard deviation of 𝛾̃ associated with the standard plan by that associated with the augmented 

plan. Here the “best” standard plan is the one with the smallest asymptotic standard deviation at 

the given parameter values. Thus we search for augmented plans that have efficiency greater 

than 1 over a range of values for the unknown parameters.  

If we set 𝑟 = 1 in an SP or in the SP component of either plan A or B, then no subject is measured 

more than once by any observer. Looking at the model [2.1], we see that in this case, 𝜎𝑠𝑜 and 𝜎𝑚 

are not separately identifiable or estimable but 𝜎𝑠𝑜
2 + 𝜎𝑚

2 , and hence 𝛾, can be estimated. Also, 

any plan B is now an SP with each of the 𝑚 observers measuring 𝑛 + 𝑛𝐵 subjects once each. If 

we suspect that there is subject-by-observer interaction that we want to identify separately, then 

we include only plans with 𝑟 > 1 in the comparisons. 
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The outline of this chapter is as follows. In Section 2.1, we derive the likelihood function and 

the Fisher information of the standard and augmented plans. Then in Section 2.2, we use the 

marginal asymptotic standard deviation of 𝛾 to rank various possible plans. We consider 

separately the special cases when there is no subject-by-observer interaction (i.e. 𝜎𝑠𝑜
2 = 0) and 

when there are no observer effects (𝑚 = 1). In each case, we recommend specific plans and, 

when appropriate, calculate the efficiency of the recommended plans relative to the best standard 

plan. Because our choice is based on an asymptotic criterion, we also check the performance of 

the recommended plans using simulation. We conclude the chapter in Section 2.3 with a brief 

discussion and summary. 

2.1 Likelihood, Fisher Information, and Asymptotic Standard Deviations 

We rank standard and augmented plans using the asymptotic precision as given by the inverse 

of the Fisher information matrix. We focus on estimation of 𝛾 with the variance components 

considered secondary. To derive the information matrix, we need the likelihood. In this section 

we sketch the derivation and avoid the tedious details by using Maple [Maplesoft, 2014] and 

Matlab [The MathWorks Inc., 2013] to carry out the symbolic and numerical calculations. 

In model [2.1], we assume that measurements made on different subjects are independent; thus 

we can write the log-likelihood and Fisher information for each subject and then add over all 

subjects. Consider the distribution of all measurements on a randomly selected subject 𝑖 that is 

measured by 𝑚 observers 𝑟 times each, as in the SP (or the SP component of plan A or B). We 

order the random variables by observer so that 𝑌⃗ 𝑖 = (𝑌⃗ 𝑖1
𝑇 , 𝑌⃗ 𝑖2

𝑇 , … , 𝑌⃗ 𝑖𝑚
𝑇 )

𝑇
where 𝑌⃗ 𝑖𝑗 =

(𝑌𝑖𝑗1, 𝑌𝑖𝑗2, … , 𝑌𝑖𝑗𝑟)
𝑇
 corresponds to the 𝑟 measurements by observer 𝑗 on subject 𝑖. We let 𝐽𝑎 be 

a column vector of 𝑎 1’s, 𝐽𝑎×𝑏 be an 𝑎 × 𝑏 matrix of 1’s and 𝐼𝑎 be the 𝑎 × 𝑎 identity matrix. 

From model [2.1] we have for subject 𝑖, 𝑌⃗ 𝑖~𝑀𝑉𝑁(𝜇 ,∑) with 

𝜇 = (𝜇 1, 𝜇 2, … , 𝜇 𝑚)𝑇 

where 

𝜇 𝑗 = 𝜇𝑗(1,1, … ,1)𝑇 = 𝜇𝑗𝐽𝑟 

and 
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∑ = 𝜎𝑠
2𝐽𝑚𝑟×𝑚𝑟 + 𝜎𝑠𝑜

2 [

𝐽𝑟×𝑟 0
0 𝐽𝑟×𝑟

⋯ 0
    0     ⋱

⋮    0
0    ⋯

   ⋱     0
   0 𝐽𝑟×𝑟

] + 𝜎𝑚
2 𝐼𝑚𝑟 

The matrix ∑ has a special form that allows us to write its inverse and determinant explicitly as 

∑−1 = 𝑎1𝐼𝑚𝑟 + 𝑎2𝐼𝑚 ⊗ 𝐽𝑟×𝑟 + 𝑎3𝐽𝑚𝑟×𝑚𝑟 

and 

|∑| = (𝜎𝑚
2 + 𝑟𝜎𝑠𝑜

2 + 𝑚𝑟𝜎𝑠
2)(𝜎𝑚

2 + 𝑟𝜎𝑠𝑜
2 )𝑚−1(𝜎𝑚

2 )𝑚(𝑟−1) 

where the Kronecker product ⊗ creates the appropriate block diagonal matrix, and 

𝑎1 =
1

𝜎𝑚
2

 

𝑎2 =
−𝜎𝑠𝑜

2

𝜎𝑚
2 (𝜎𝑚

2 + 𝑟𝜎𝑠𝑜
2 )

 

𝑎3 =
−𝜎𝑠

2

(𝜎𝑚
2 + 𝑟𝜎𝑠𝑜

2 )(𝜎𝑚
2 + 𝑟𝜎𝑠𝑜

2 + 𝑚𝑟𝜎𝑠
2)

 

See Appendix A for more details on calculating the inverse and determinant of the variance 

covariance matrix ∑. 

Denoting the observed data by 𝑦𝑖𝑗𝑘 𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2, … ,𝑚 and 𝑘 = 1,2, … , 𝑟, and using a 

lower-case 𝑦 to denote the observed data vectors, the log-likelihood contribution from subject 𝑖 

with 𝑟 replicate measurements by 𝑚 observers is 

−𝑚𝑟𝑙𝑛(2𝜋) −
1

2
ln|∑| −

1

2
(𝑦 𝑖 − 𝜇 )𝑇∑−1(𝑦 𝑖 − 𝜇 ) 

Expanding and adding over all subjects gives the full log-likelihood contribution from a standard 

plan or the SP component of an augmented plan: 
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𝑙𝑆𝑃(𝜇 , 𝜎𝑠
2, 𝜎𝑠𝑜

2 , 𝜎𝑚
2 ) = 

−𝑛𝑚𝑟𝑙𝑛(2𝜋) −
𝑛

2
ln[(𝜎𝑚

2 + 𝑟𝜎𝑠𝑜
2 + 𝑚𝑟𝜎𝑠

2)(𝜎𝑚
2 + 𝑟𝜎𝑠𝑜

2 )𝑚−1(𝜎𝑚
2 )𝑚(𝑟−1)] 

−
1

2
{ 𝑎1 ∑ ∑ ∑ (𝑦𝑖𝑗𝑘 − 𝜇𝑗)

2𝑟

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

+ 𝑎2 ∑ ∑ [∑ (𝑦𝑖𝑗𝑘 − 𝜇𝑗)
2𝑟

𝑘=1
]

𝑚

𝑗=1

𝑛

𝑖=1

+ 𝑎3 ∑ [∑ ∑ (𝑦𝑖𝑗𝑘 − 𝜇𝑗)
𝑟

𝑘=1

𝑚

𝑗=1
]

2𝑛

𝑖=1
} 

[2.5] 

 

We can find the log-likelihood contribution for the data from the augmented component of plan 

B by setting 𝑟 = 1 in equation [2.5]. If we denote the observed data in this component by 𝑧𝑖𝑗, 

𝑖 = 1,2, … , 𝑛𝐵, 𝑗 = 1,2, … ,𝑚 we have: 

 

𝑙𝐵(𝜇⃑, 𝜎𝑠
2, 𝜎𝑠𝑜

2 , 𝜎𝑚
2 ) = 

−𝑛𝐵𝑚𝑙𝑛(2𝜋) −
𝑛𝐵

2
ln[(𝜎𝑚

2 + 𝜎𝑠𝑜
2 + 𝑚𝜎𝑠

2)(𝜎𝑚
2 + 𝜎𝑠𝑜

2 )𝑚−1]

−
1

2
{ (𝑎1 + 𝑎2)∑ ∑ (𝑧𝑖𝑗 − 𝜇𝑗)

2𝑚

𝑗=1

𝑛𝐵

𝑖=1

+ 𝑎3 ∑ [∑ (𝑧𝑖𝑗 − 𝜇𝑗)
𝑚

𝑗=1
]

2𝑛𝐵

𝑖=1
} 

 

[2.6] 

For an A plan, each observer measures different subjects once, and measurements on all subjects 

are independent. From model [2.1], we have, for any measurement made by observer 𝑗, 

𝑍𝑗𝑙~𝑁(𝜇𝑗 , 𝜎𝑠
2 + 𝜎𝑠𝑜

2 + 𝜎𝑚
2 ) and so, denoting the observed measurements by  

𝑧𝑗𝑙, 𝑗 = 1,2, … ,𝑚, 𝑙 = 1,2, … , 𝑛𝐴/𝑚, 

the log-likelihood contribution from the augmented component of plan A is: 
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𝑙𝐴(𝜇⃑, 𝜎𝑠
2, 𝜎𝑠𝑜

2 , 𝜎𝑚
2 ) = 

−𝑛𝐴𝑙𝑛(2𝜋) −
𝑛𝐴

2
ln(𝜎𝑠

2 + 𝜎𝑠𝑜
2 + 𝜎𝑚

2 )

−
1

2(𝜎𝑠
2 + 𝜎𝑠𝑜

2 + 𝜎𝑚
2 )

∑ ∑ (𝑧𝑖𝑗 − 𝜇𝑗)
2
 

𝑛𝐴
𝑚

𝑙=1

𝑚

𝑗=1
 

[2.7] 

 

Because we assume that the subjects used in the two components of the augmented plans are 

different (and hence independent), the overall log-likelihood for an augmented plan is the sum 

of the SP log-likelihood and the log-likelihood corresponding to the augmented component. Thus 

the overall log-likelihood 𝑙(𝜇1, … , 𝜇𝑚, 𝜎𝑠
2, 𝜎𝑠𝑜

2 , 𝜎𝑚
2 ) is the sum of the contributions from 

equations [2.5] and [2.7] for plan A and equations [2.5] and [2.6] for plan B. 

To calculate the asymptotic standard deviations for any assumed values for the unknown 

parameters, we find the Fisher information matrix symbolically using Maple [Maplesoft, 2014] 

to calculate the appropriate second partial derivatives of the overall log-likelihood function. We 

then take expected values of the sums of squares involving the data in equations [2.5], [2.6] and 

[2.7], as given below. 

 
𝐸 [∑ ∑ ∑ (𝑦𝑖𝑗𝑘 − 𝜇𝑗)

2𝑟

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1
] = 𝑛𝑚𝑟(𝜎𝑠

2 + 𝜎𝑠𝑜
2 + 𝜎𝑚

2 ) 

 

[2.8] 

 
𝐸 [∑ ∑ {∑ (𝑦𝑖𝑗𝑘 − 𝜇𝑗)

2𝑟

𝑘=1
}

𝑚

𝑗=1

𝑛

𝑖=1
] = 𝑛𝑚𝑟(𝑟𝜎𝑠

2 + 𝑟𝜎𝑠𝑜
2 + 𝜎𝑚

2 ) 

 

[2.9] 

     𝐸 [∑ {∑ ∑ (𝑦𝑖𝑗𝑘 − 𝜇𝑗)
𝑟

𝑘=1

𝑚

𝑗=1
}

2𝑛

𝑖=1
] = 𝑛𝑚𝑟(𝑚𝑟𝜎𝑠

2 + 𝑟𝜎𝑠𝑜
2 + 𝜎𝑚

2 ) [2.10] 

 

and for plan A,  

           𝐸 [∑ ∑ (𝑧𝑖𝑗 − 𝜇𝑗)
2
 

𝑚

𝑗=1

𝑛𝐴
𝑚

𝑖=1
] = 𝑛𝐴(𝜎𝑠

2 + 𝜎𝑠𝑜
2 + 𝜎𝑚

2 )    [2.11] 

 

and for plan B, 
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               𝐸 [∑ ∑ (𝑧𝑖𝑗 − 𝜇𝑗)

2𝑚

𝑗=1

𝑛𝐵

𝑖=1
] = 𝑛𝐵𝑚(𝜎𝑠

2 + 𝜎𝑠𝑜
2 + 𝜎𝑚

2 ) 

 

    [2.12] 

                 𝐸 [∑ {∑ (𝑧𝑖𝑗 − 𝜇𝑗)
𝑚

𝑗=1
}

2𝑛𝐵

𝑖=1
] = 𝑛𝐵𝑚(𝑚𝜎𝑠

2 + 𝑟𝜎𝑠𝑜
2 + 𝜎𝑚

2 )     [2.13] 

 

We invert the Fisher Information matrix numerically using Matlab [The MathWorks Inc., 2013]. 

This gives the asymptotic variances of 𝜇𝑗, 𝑗 = 1,2, … ,𝑚, and 𝜎̃𝑠
2, 𝜎̃𝑠𝑜

2  and 𝜎̃𝑚
2 . But because we 

are interested only in 𝛾, 𝜎𝑠
2, 𝜎𝑠𝑜

2  and 𝜎𝑚
2  we apply the Delta Method [Lehmann and Casella, 1998] 

and pre- and post-multiply the inverse of the information matrix by a change-of-variables matrix 

of suitable partial derivatives: 

𝐷 =  
𝜕(𝛾, 𝜎𝑠

2, 𝜎𝑠𝑜
2 , 𝜎𝑚

2 )

𝜕(𝜇1, … , 𝜇𝑚, 𝜎𝑠
2, 𝜎𝑠𝑜

2 , 𝜎𝑚
2 )

 

Again, we use Maple [Maplesoft, 2014] to calculate these partial derivatives and Matlab [The 

MathWorks Inc., 2013] to find their numerical values. The square root of the (1, 1) element of 

the resulting matrix gives the asymptotic standard deviation of 𝛾̃, which we use to rank plans. 

When we consider the special case where we assume there is no subject-by-observer interaction 

we set 𝜎𝑠𝑜
2 = 0 in the above calculations up to the stage of finding the partial derivatives of the 

log-likelihood function. We then proceed as before, except we purge the appropriate row and 

column corresponding to 𝜎𝑠𝑜
2  from the information matrix and the change-of-variables matrix 𝐷. 

We also use this calculation for the case 𝑟 = 1 in the SP component for both type A and B plans, 

where 𝜎𝑚
2  is now the sum of the repeatability and subject-by-observer components of the 

variation. When we consider the case with a single observer (or no observer effects), we set 𝑚 =

1 and 𝜎𝑠𝑜
2 = 0 and 𝜎𝑜

2 = 0 and alter the information matrix and the matrix D accordingly. Recall 

that in these two cases the definition of 𝛾 simplifies to [2.4] and [2.3], respectively.  

2.1.1 An Important Property of the Fisher Information Matrix 

Without displaying the information matrix explicitly, we note one of its properties that has 

important consequences. Because we can calculate the overall information by summing the 

components for each subject, a scale change in the number of subjects in a standard plan or in 
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an augmented plan (A or B) produces the same scale change in the information that then acts 

inversely on the asymptotic variance. As such the efficiency of an SP with 𝑛 subjects compared 

with an AP with 𝑛 + 𝑛𝐴 subjects is the same as the efficiency of an SP with 𝜆𝑛 subjects compared 

with an AP of 𝜆(𝑛 + 𝑛𝐴) subjects.  

To see this invariance property let 𝐹𝐼𝑆𝑃 denote the Fisher Information matrix for a standard plan 

with 𝑛 subjects, and let 𝐹𝐼𝐴 denote the Fisher Information matrix for an augmented plan A with 

𝑛 + 𝑛𝐴 subjects. For simplicity this demonstration compares an SP to a type A augmented plan, 

but we could replace A’s by B’s in what follows and the result applies equivalently to the 

comparison of an SP and a type B augmented plan. 

Because we assume subjects are independent, 𝐹𝐼𝑆𝑃 = ∑ 𝐹𝐼𝑆𝑃𝑖

𝑛
𝑖=1  where 𝐹𝐼𝑆𝑃𝑖

 is the Fisher 

Information matrix for subject 𝑖 = 1,… , 𝑛. From equation [2.5] and the expected sums of squares 

[2.8-2.10] we can see that 𝐹𝐼𝑆𝑃𝑖
 is the same for all 𝑖, and so we have 𝐹𝐼𝑆𝑃 = 𝑛𝐹𝐼𝑆𝑃𝑖

. 

Similarly, the Fisher Information matrix for a type A augmented plan is 𝐹𝐼𝐴 = ∑ 𝐹𝐼𝐴1𝑖

𝑛
𝑖=1 +

∑ 𝐹𝐼𝐴2𝑖

𝑛𝐴
𝑖=1 , where 𝐹𝐼𝐴1𝑖

 is the Fisher Information matrix for one of the 𝑛 subjects in the SP 

component, and 𝐹𝐼𝐴2𝑖
 is the Fisher Information matrix for one of the 𝑛𝐴 subjects in the 

augmented component. As before, the Fisher Information matrix is the same for all subjects in 

the SP component, and from equation [2.7] and the expected sums of squares in [2.11] we see 

that the Fisher Information matrix will be the same for all subjects in the augmented component 

as well. Thus we have 𝐹𝐼𝐴 = 𝑛𝐹𝐼𝐴1𝑖
+ 𝑛𝐴𝐹𝐼𝐴2𝑖

. 

The asymptotic variance of 𝛾̃ associated with an SP is found by pre- and post-multiplying the 

inverse 𝐹𝐼𝑆𝑃
−1, by the vector of partial derivatives: 

𝐷 =
𝜕𝛾

𝜕(𝜇1, … , 𝜇𝑚, 𝜎𝑠
2, 𝜎𝑠𝑜

2 , 𝜎𝑚
2 )

 

yielding 

𝐷𝐹𝐼𝑆𝑃
−1𝐷𝑇 = 𝐷[𝑛𝐹𝐼𝑆𝑃𝑖

]
−1

𝐷𝑇 

Similarly, the asymptotic variance of 𝛾̃ associated with an augmented plan A is: 
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𝐷𝐹𝐼𝐴
−1𝐷𝑇 = 𝐷[𝑛𝐹𝐼𝐴1𝑖

+ 𝑛𝐴𝐹𝐼𝐴2𝑖
]
−1

𝐷𝑇 

As such, the efficiency, which we have defined as the asymptotic standard deviation of 𝛾̃ 

associated with the SP divided by the asymptotic standard deviation from the AP, is given by: 

√
𝐷[𝑛𝐹𝐼𝑆𝑃𝑖

]
−1

𝐷𝑇

𝐷[𝑛𝐹𝐼𝐴1𝑖
+ 𝑛𝐴𝐹𝐼𝐴2𝑖

]
−1

𝐷𝑇
 

We can see explicitly that increasing the number of subjects in both plans by a factor of 𝜆, i.e. 

from 𝑛 to 𝜆𝑛 for the SP, and from 𝑛 + 𝑛𝐴 to 𝜆(𝑛 + 𝑛𝐴) for the AP, does not change the efficiency. 

To see this, consider substituting 𝜆𝑛 for 𝑛 in the numerator, and 𝜆𝑛 for 𝑛 and 𝜆𝑛𝐴 for 𝑛𝐴 in the 

denominator of the expression above. In doing this, there is a common factor of the scalar 𝜆 in 

both the numerator and denominator which cancels out, resulting in the same efficiency as when 

the SP has 𝑛 subjects and the AP has 𝑛 + 𝑛𝐴 subjects. 

So, for example, if we have 𝑚 = 3 observers, the relative efficiency of 𝐴(5,2,30) to 𝑆𝑃(10,2) 

(two plans each with 60 measurements) is the same as the relative efficiency of 𝐴(7,2,42) 

compared with 𝑆𝑃(14,2) (two plans each with 84 measurements). Here, the number of subjects 

has increased by a factor of 𝜆 = 1.4 from one set of plans to the next, but the relative efficiency 

within a set does not change. We illustrate the benefits of this result in Section 2.2. 

2.2 Comparison of Plans 

In this section we compare augmented and standard plans on the basis of their ability to estimate 

𝛾 precisely in three situations characterized by the number of observers and the incorporation of 

subject-by-observer interaction. First we compare plans in the context of an automated 

measurement system, or equivalently, a measurement system with only one observer. In this case 

there is no way to examine an observer effect and no possibility of a subject-by-observer 

interaction. Next we compare plans for measurement systems with multiple observers, but no 

subject-by-observer interaction. And lastly we compare plans for a measurement system with 

multiple observers and we include the possibility of a subject-by-observer interaction effect.  

To compare plans, we suppose that the total number of measurements 𝑁 and the number of 

observers 𝑚 are fixed. Here we consider values of 𝑁 between 60 and 100 with 1 ≤ 𝑚 ≤ 4. With 
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each combination, we examine each possible SP (integer values for 𝑛, 𝑟 such that 𝑁 = 𝑛𝑚𝑟), 

plan A (integer values for 𝑛, 𝑟, 𝑛𝐴 such that 𝑁 = 𝑛𝑚𝑟 + 𝑛𝐴), and plan B (integer values for 𝑛, 

𝑟, 𝑛𝐵 such that 𝑁 = 𝑚(𝑛𝑟 + 𝑛𝐵)). Note that for a given AP and SP with 𝑁 measurements, the 

number of subjects 𝑛, and the number of replicate measurements 𝑟, will not be the same.  

We then substitute a range of possible values for the unknown parameters and rank all possible 

plans according to the asymptotic standard deviation of 𝛾̃. Because 𝛾 is defined as the square 

root of a ratio of variances, with no loss of generality we can set 𝜎𝑡
2 = 𝜎𝑠

2 + 𝜎𝑜
2 + 𝜎𝑠𝑜

2 + 𝜎𝑚
2 =

1. Note throughout the comparisons of augmented plans, we use the asymptotic standard 

deviation of the estimator 𝛾̃ (not its variance) from the best standard plan at the particular 

parameter values as the basis to calculate relative efficiency. 

2.2.1 Plans with One or No Observer 

Many measurement systems are automated with no observer effects. This also corresponds to a 

system with a single observer. In our formulation of the problem, we then have 𝑚 = 1, 𝜎𝑜 = 0, 

𝜎𝑠𝑜 = 0, and so 𝛾, the parameter of interest, simplifies to [2.3]. Also with 𝑚 = 1, augmented 

plans A and B are equivalent. Both augmented plan types start with a standard plan with 𝑛 subject 

each measured 𝑟 times. Then, in the augmented component, we measure an additional 𝑛𝐴 (or 𝑛𝐴) 

subjects once.  

Suppose 𝑁 = 60 and the true value of 𝛾 equals 0.3. In Table 2.1, we list the best four plans in 

increasing order of the asymptotic standard deviation of 𝛾. For purposes of comparison, we also 

include the standard plan with 𝑛 = 10 subjects, each measured 𝑟 = 6 times, which is the 

recommendation by the Automotive Industry Action Group [2010] in this situation.  

Plan SE(𝛾) SE(𝜎̂𝑚) Relative Efficiency 

𝑆𝑃(30,2) 0.0523 0.0387 1.00 

𝐴(29,2,2) 0.0525 0.0394 1.00 

𝐴(28,2,4) 0.0527 0.0401 0.99 

𝐴(16,3,12) 0.0529 0.0375 0.99 

𝑆𝑃(10,6) 0.0680 0.0300 0.77 

Table 2.1: Five plans for estimating 𝛾 when 𝑚 = 1, 𝑁 = 60 and 𝛾 = 0.3 
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The best plan is 𝑆𝑃(30,2), the Shainin proposal for an IsoplotTM study [Shainin, 1992]. Not 

surprisingly, we see similar results (not presented here) for other values of 𝑁 and 𝛾. In general, 

when there are no observer effects, it is best to use a standard plan that balances the degrees of 

freedom for estimating 𝜎𝑠 and 𝜎𝑚 by minimizing the number of replicate measurements, i.e., 

choosing 𝑟 = 2. There is a substantial improvement (23%) in precision when estimating 𝛾 by 

the Shainin plan versus the default AIAG standard plan with 10 subjects. Because of the scaling 

property discussed in Section 2.1.1, for example, we also have a 23% improvement using 

𝑆𝑃(45,2) over 𝑆𝑃(15,6) when we increase the number of subjects by a factor of 𝜆 = 1.5 and 

𝑁 = 90. 

Thus we recommend that when a measurement system is automated, or has just one observer, 

and a total of 𝑁 measurements can be taken in the study, 𝑛 = 𝑁/2 subjects be randomly sampled 

and measured 𝑟 = 2 times each. It is important to remark that this is very different from the 

AIAG recommendation.  

Augmentation provides no benefit here. As such we can use standard ANOVA methods to 

analyze the data from the recommended standard plan, instead of maximum likelihood 

estimation. In Section 1.2 we described how to estimate 𝛾 with the ANOVA method when the 

measurement system had multiple observers and a subject-by-observer interaction was present. 

The ANOVA method in the single-observer scenario, which is a special case of this, is described 

below. 

In this case, the total variability is partitioned into variability due to subjects and variability due 

to the measurement system, and the total sum of squares is decomposed as follows: 

𝑆𝑆𝑡 = 𝑆𝑆𝑠 + 𝑆𝑆𝑚 

Table 2.2 displays the ANOVA table associated with this decomposition, where 𝑌̅∙∙ =

∑ ∑ 𝑌𝑖𝑘 𝑛𝑟⁄𝑟
𝑘=1

𝑛
𝑖=1 , and 𝑌̅𝑖∙ = ∑ 𝑌𝑖𝑘 𝑟⁄𝑟

𝑘=1 . The expected mean squares in this case are given by 

𝐸(𝑀𝑆𝑠) = 𝜎𝑚
2 + 𝑟𝜎𝑠

2 and 𝐸(𝑀𝑆𝑚) = 𝜎𝑚
2 . The estimates 𝜎̂𝑠

2 and 𝜎̂𝑚
2  are obtained by 

simultaneously solving these equations and substituting the observed means squares in place of 

the expected, which gives 

𝜎̂𝑠
2 =

𝑀𝑆𝑠 − 𝑀𝑆𝑚

𝑟
          𝜎̂𝑚

2 = 𝑀𝑆𝑚 
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Note that the mean squares used to calculate these estimates are constructed using the observed 

data. These estimates are then substituted into [2.3] to obtain 𝛾. 

Source Sum of Squares df Mean Square F-Statistic 

𝑆 𝑆𝑆𝑠 = 𝑟 ∑ (𝑌̅𝑖∙ − 𝑌̅∙∙)
2𝑛

𝑖=1   𝑛 − 1 𝑀𝑆𝑠 =
𝑆𝑆𝑠

𝑛 − 1
 

𝑀𝑆𝑠
𝑀𝑆𝑚

⁄  

𝑀 𝑆𝑆𝑚 = ∑ ∑ (𝑌𝑖𝑘 − 𝑌̅𝑖∙)
2𝑟

𝑘=1
𝑛
𝑖=1   𝑛(𝑟 − 1) 𝑀𝑆𝑚 =

𝑆𝑆𝑚

𝑛(𝑟 − 1)
  

Total 𝑆𝑆𝑡 = ∑ ∑ (𝑌𝑖𝑘 − 𝑌̅∙∙)
2𝑟

𝑘=1
𝑛
𝑖=1   𝑛𝑟 − 1   

Table 2.2: ANOVA table for a one-factor random effect model 

 

2.2.2 Plans with More than One Observer and No Subject-by-Observer Interaction 

Now suppose we have more than one observer and we assume that there is no subject-by-

observer interaction. We consider three cases where the number of observers is 𝑚 = 2, 3, or 4, 

each with two values of 𝑁 close to 60 and 96. We use 𝑁 = 64 for 𝑚 = 4 so that there is a large 

number of possible augmented plans. We specify three values of 𝛾 = 0.5, 0.3, and 0.1, 

corresponding to a poor, acceptable, and good measurement system. Because 𝛾 is given by [2.4] 

in this case, we set 𝜎𝑠
2 + 𝜎𝑜

2 + 𝜎𝑚
2 = 1 (without loss of generality because 𝛾 is not changed by a 

scale change) so that 𝜎𝑜
2 + 𝜎𝑚

2 = 𝛾2. We then specify  

 𝛿 =
𝜎𝑚

2

𝜎𝑜
2 + 𝜎𝑚

2
 [2.14] 

 

where 𝛿 = 0.1, 0.5, 0.9, to look at situations when the repeatability (𝜎𝑚
2 ) makes up a small, 

medium, or large proportion of the overall measurement system variation as captured by 𝛾. 

Algebraically we have 𝜎𝑚
2 = 𝛿𝛾2. 

For each value of 𝑚, 𝑁, and the nine pairs of values for 𝛾 and 𝛿, we rank all possible SP, A, and 

B plans using the asymptotic standard deviation associated with the ML estimator of 𝛾 as 

described in Section 2.1. For example, with 𝑚 = 2 and 𝑁 = 60, there are 103 plans of type A 

and B and 8 standard plans. Table 2.3 presents a comparison of the best plans of each type when 

𝑚 = 2, 𝑁 = 60, 𝛾 = 0.3, and 𝛿 = 0.1 (𝜎𝑚 is relatively small compared with 𝜎𝑜). We also include 
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the widely used standard plan 𝑆𝑃(10,3), recommended by the Automotive Industry Action 

Group [2010]. 

Plan SE(𝛾) SE(𝜎̂𝑚) SE(𝜎̂𝑜) Relative Efficiency 

𝐴(5,2,40) 0.0347 0.0173 0.0210 1.07 

𝐵(2,2,26) 0.0383 0.0119 0.0122 0.97 

𝑆𝑃(30,1) 0.0371 0.0122 0.0122 1.00 

𝑆𝑃(10,3) 0.0621 0.0095 0.0122 0.60 

Table 2.3: Four plans with 𝑚 = 2, 𝑁 = 60, 𝛾 = 0.3 and 𝛿 = 0.1 

Here there is a small gain over the best SP (about 7% reduction in standard error) in estimating 

𝛾 with an augmented plan A with 5 subjects measured twice by both observers and then two sets 

of 20 subjects measured once by each by each observer, i.e., the 𝐴(5,2,40) plan. As well, all of 

the best plans are substantially better than the SP with 𝑛 = 10. We also note that the plan 

𝐴(5,2,40) has the same 7% gain over the best SP when 𝛿 = 0.1 for other values of 𝛾. However, 

for 𝛿 = 0.5 or 0.9, the plan 𝐴(5,2,40) is 12% to 25% less efficient than the best SP. In this case, 

we recommend the 𝑆𝑃(30,1) plan.  

We see a similar pattern for 𝑚 = 3. For example, when 𝑁 = 60, in all cases except when 𝛾 = 

0.5 and 𝛿 = 0.9, there is a plan A that is superior to the best SP. Unfortunately, the best plan A 

varies as the parameters are changed. When 𝛿 = 0.1, the plan 𝐴(3,2,42) has a relative efficiency 

of about 1.26. However for larger values of 𝛿, this plan is 2% to 12% less efficient than the best 

SP. Accordingly, with 𝑚 = 3, we recommend the 𝑆𝑃(20,1) plan.  

Plan SE(𝛾) SE(𝜎̂𝑚) SE(𝜎̂𝑜) Relative Efficiency 

𝐴(4,2,32) 0.0456 0.0283 0.0366 1.18 

𝐵(2,2,12) 0.0567 0.0212 0.0265 0.95 

𝑆𝑃(16,1) 0.0537 0.0217 0.0265 1.00 

𝑆𝑃(8,2) 0.0720 0.0200 0.0265 0.75 

Table 2.4: Comparison of plans with 𝑚 = 4, 𝑁 = 64, 𝛾 = 0.3 and 𝛿 = 0.5 

In Table 2.4, we present a second example with 𝑚 = 4, 𝑁 = 64, 𝛾 = 0.3, 𝛿 = 0.5. Here there is 

an 18% gain in estimating 𝛾 by using the best plan A rather than the best SP. With 4 observers, 

as shown by the right-most column of Table 2.5, the plan 𝐴(4,2,32) does well over the entire 
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parameter space compared with the best standard plan 𝑆𝑃(16,1). There is significant 

improvement relative to the best SP in all cases except when 𝛾 = 0.5 (the measurement system 

is highly variable) and 𝛿 = 0.9 (most of the measurement variability is due to repeatability, 

i.e.,𝜎𝑚 ≫ 𝜎𝑜). In this case, there is no loss in efficiency. Also (not shown here), there is no 

material difference between 𝐴(4,2,32) and the best plan A for any value of 𝛾 and 𝛿 in our array.  

Because these comparisons are based on an asymptotic criterion, we also checked the relative 

efficiency of 𝐴(4,2,32) versus 𝑆𝑃(16,1) using simulation. We generated 10,000 samples for 

each plan using all pairs of values for 𝛾 = 0.5, 0.3, 0.1 and 𝛿 = 0.1, 0.5, 0.9. We then calculated 

the maximum likelihood estimates of the parameters and their associated asymptotic standard 

deviations for each sample. We provide a summary of these estimates for both plans in Table 

2.5. In this table we define the ‘Bias’ to be the absolute difference between the true value of 𝛾 

and the average of the 10 000 estimates. We similarly define the ‘Standard Deviation’ to be 

standard deviation of the 10 000 estimates of 𝛾. The ratio of these values for the two plans defines 

the simulated efficiency which is to be compared with the theoretical efficiency (that is based on 

asymptotic calculations). 

  𝐴(4,2,32) 𝑆𝑃(16,1)   

𝛾 𝛿 Bias 
Standard 

Deviation 
Bias 

Standard 

Deviation 

Simulated 

Efficiency 

Theoretical 

Efficiency 

0.5 0.1 0.011 0.052 0.025 0.072 1.38 1.37 

0.5 0.5 0.007 0.070 0.022 0.080 1.14 1.12 

0.5 0.9 0.009 0.086 0.022 0.086 1.00 0.99 

0.3 0.1 0.009 0.038 0.021 0.057 1.50 1.39 

0.3 0.5 0.007 0.048 0.020 0.060 1.25 1.17 

0.3 0.9 0.005 0.055 0.012 0.065 1.18 1.09 

0.1 0.1 0.003 0.014 0.008 0.022 1.57 1.39 

0.1 0.5 0.002 0.017 0.008 0.023 1.35 1.20 

0.1 0.9 0.001 0.018 0.007 0.024 1.33 1.14 

Table 2.5: Simulated and Theoretical Comparison of 𝐴(4,2,32) and 𝑆𝑃(16,1) for 𝑚 = 4, 𝑁 = 64 

The plan 𝐴(4,2,32) provides a less biased estimate of 𝛾 with smaller standard deviation over all 

of the parameter values except when 𝛾 = 0.5, 𝛿 = 0.9, as predicted by the theoretical information 
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calculations. In all cases, the simulated efficiency is higher than predicted by the asymptotic 

calculations. 

We investigated and compared the best plans of each type for 𝑚 = 2, 3, 4 and 𝑁 ≈ 60, 90 with 

𝛾 and 𝛿 as described above. To save space, we do not present all of the results here. We do 

however draw the following general conclusions when there is no subject-by-observer 

interaction based on this empirical investigation: 

 The best standard plans have 𝑟 = 1 and 𝑛 = 𝑁/𝑚. That is, we maximize the number of 

subjects in the study. We can justify this conclusion by noting that maximizing the 

number of subjects maximizes the degrees of freedom for estimating the between-subject 

variation and, because we are using the subject-by-observer sum of squares to estimate 

𝜎𝑚
2 , increasing the number of subjects also increases the degrees of freedom for 

estimating 𝜎𝑚
2 . And because each subject is measured by each observer, subjects act as 

blocks, so we also get good estimates of the observer means 𝜇1, … , 𝜇𝑚 and hence 𝜎𝑜
2 by 

increasing the number of subjects. Note that this conclusion is contrary to the AIAG 

[2010] recommended plans (see sample forms pp. 224-225) that suggest setting 𝑛 = 10, 

and 𝑟 = 2 or 3. 

 In all cases, the best standard plan is superior to the best plan B.  

 The best augmented plans have 𝑟 = 2 and use a small number of subjects in the SP 

component. 

 For two or three observers, augmentation provides little gain unless 𝜎𝑚 is relatively small 

compared with 𝜎𝑜. If 𝛿 = 0.1 and 𝑚 = 2, 3, the best plan A is about 6% (𝑚 = 2) and 

20% (𝑚 = 3) more efficient in estimating 𝛾 than the best SP. These results are 

independent of 𝑁 in the range 60 < 𝑁 < 100.  

 With four observers and 𝑁 = 64, the plan 𝐴(4,2,32) is (almost) uniformly better than the 

best SP and the gains in efficiency are relatively large when 𝛿 ≤ 0.5. For any value of 𝑁, 

we can scale this plan, according to Section 2.1.1, and see the same gains in efficiency. 

For example, if 𝑁 = 96, the plan 𝐴(6,2,48) has the same good properties.  

 The simulated results show that the asymptotic calculations are conservative. The actual 

efficiency of the recommended augmented plans is better than predicted by these 

calculations 
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2.2.3 Plans with More than One Observer and Possible Subject-by-Observer Interaction 

Now we consider a measurement system with two or more observers in which we allow for the 

possibility of subject-by-observer interaction. We proceed as in the case with no interaction with 

𝑚 = 2, 3, 4 and 𝑁 ≈ 60, 90. There are two added complications. First, we have an extra 

parameter, 𝜎𝑠𝑜, and 𝛾 is now given by equation [2.2]. We set 𝜎𝑠
2 + 𝜎𝑜

2 + 𝜎𝑠𝑜
2 + 𝜎𝑚

2 = 1 without 

loss of generality so that 𝛾2 = 𝜎𝑜
2 + 𝜎𝑠𝑜

2 + 𝜎𝑚
2 . The first two terms are due to observer-to-

observer differences, so, for a given value of 𝛾, we look at three cases of  

 𝛿 =
𝜎𝑚

2

𝜎𝑜
2 + 𝜎𝑠𝑜

2 + 𝜎𝑚
2

     [2.15] 

 

with 𝛿 = 0.1, 0.5, 0.9, so the repeatability contribution to the measurement system variation 

(repeatability and reproducibility) is relatively small to large. Algebraically we have 𝜎𝑚
2 = 𝛿𝛾2. 

In this situation we also define 

 𝛽 =
𝜎𝑜

2

𝜎𝑜
2 + 𝜎𝑠𝑜

2
     [2.16] 

 

to be the proportion of the overall observer contribution to the measurement system variation 

that is attributable to 𝜎𝑜
2. Then, for given values of 𝛾 and 𝛿, we consider three cases with 𝛽 = 

0.1 0.5, 0.9, so the contribution of 𝜎𝑜
2 is a relatively small to large proportion of (𝜎𝑜

2 + 𝜎𝑠𝑜
2 ). 

Algebraically, we have 𝜎𝑜
2 = 𝛽(1 − 𝛿)𝛾2 and 𝜎𝑠𝑜

2 = (1 − 𝛽)(1 − 𝛿)𝛾2.  

The second complication is that we must decide if we are going to entertain plans with 𝑟 = 1. In 

this case, we cannot separately estimate 𝜎𝑠𝑜
2  and 𝜎𝑚

2 , but we can estimate 𝜎𝑠𝑜
2 + 𝜎𝑚

2  and hence 𝛾. 

Including 𝑟 = 1 plans is equivalent to assuming that there is no interaction (or more accurately, 

that any interaction is subsumed by the repeatability 𝜎𝑚
2 ), so that we should compare 𝑟 = 1 plans 

with those alternatives considered in the previous subsection. Here we do not allow 𝑟 = 1 plans, 

so that we can get separate estimates of 𝜎𝑠𝑜
2  and 𝜎𝑚

2 . Obtaining a separate estimate of 𝜎𝑠𝑜
2  allows 

the practitioner to clearly judge the magnitude of a subject-by-observer interaction and allows 

them to respond appropriately. This information is also useful in the planning of future MSA 

studies, where it may be beneficial to know beforehand whether such an interaction exists. As 
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we will see, design recommendations differ depending on the existence and size of a subject-by-

observer interaction. 

For given values of 𝑁 and 𝑚, we look at the best plans of each type as we consider the 27 

combinations of 𝛾, 𝛿, and 𝛽. To illustrate, Table 2.6 gives the best plans of each type when 𝑚 = 

2, 𝑁 = 60, 𝛾 = 0.3, 𝛿 = 0.5 (the repeatability 𝜎𝑚
2  is the same as the reproducibility 𝜎𝑜

2 + 𝜎𝑠𝑜
2 ), 

and 𝛽 = 0.5 (observer and subject-by-observer effects are equal). For the sake of comparison, 

we also include the AIAG [2010] recommended 𝑆𝑃(10,3).  

 

Plan SE(𝛾) SE(𝜎̂𝑚) SE(𝜎̂𝑠𝑜) SE(𝜎̂𝑜) Relative Efficiency 

𝐵(2,2,26) 0.0494 0.0713 0.1097 0.0341 1.23 

𝐴(11,2,16) 0.0552 0.0320 0.0678 0.0445 1.10 

𝑆𝑃(15,2) 0.0607 0.0274 0.0581 0.0387 1.00 

𝑆𝑃(10,3) 0.0713 0.0237 0.0570 0.0433 0.85 

Table 2.6: Comparison of plans with 𝑚 = 2, 𝑁 = 60, 𝛾 = 0.3, 𝛿 = 0.5, and 𝛽 = 0.5 

 

Compared with the best standard plan, the asymptotic standard error for estimating 𝛾 is about 

23% smaller for the best plan B and about 10% smaller for the best plan A. In the best plan B, 

we use only two subjects with two replicate measurements by each observer in the SP 

component. In the augmented component, we have a large number of subjects (𝑛𝐵 = 26) 

measured once by each observer. For this plan, the estimates of 𝜎𝑠𝑜
2  and 𝜎𝑚

2  are highly correlated 

because most of the information is about their sum. The plan 𝑆𝑃(10,3) is much less efficient 

than both the best plan B and best plan A. We found that a plan B with 2 subjects measured twice 

by each of the two observers in the SP component was uniformly the best plan. This result is not 

surprising because this plan is very close to the corresponding standard plan with 𝑟 = 1 that is 

more efficient for estimating 𝛾 but cannot separately estimate 𝜎𝑠𝑜
2  and 𝜎𝑚

2 .  

We also include the results of a simulation with 10,000 samples to demonstrate how well the 

asymptotic calculations rank the plans. Table 2.7 displays the results of comparing 𝐵(2,2,26) 

with the best standard plan 𝑆𝑃(15,2) when 𝑁 = 60 and 𝑚 = 2. We display the results only for 

β = 0.5 because both the simulated and theoretical calculations do not depend significantly on β. 
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We see that the augmented plan provides a less biased estimate of 𝛾 with smaller standard 

deviation, across all nine combinations of 𝛾 and 𝛿. Like the no-interaction case (see Section 

2.2.2) the actual efficiency is always larger than predicted by the asymptotic calculations. 

 

  𝐵(2,2,26) 𝑆𝑃(15,2)   

𝛾 𝛿 Bias 
Standard 

Deviation 
Bias 

Standard 

Deviation 

Simulated 

Efficiency 

Theoretical 

Efficiency 

0.5 0.1 0.011 0.069 0.022 0.095 1.37 1.33 

0.5 0.5 0.012 0.077 0.024 0.093 1.21 1.20 

0.5 0.9 0.013 0.082 0.030 0.093 1.13 1.11 

0.3 0.1 0.009 0.049 0.020 0.068 1.39 1.33 

0.3 0.5 0.011 0.051 0.022 0.070 1.37 1.23 

0.3 0.9 0.009 0.056 0.027 0.068 1.21 1.16 

0.1 0.1 0.005 0.018 0.007 0.025 1.39 1.34 

0.1 0.5 0.004 0.019 0.006 0.025 1.32 1.24 

0.1 0.9 0.003 0.019 0.008 0.026 1.37 1.17 

Table 2.7: Simulated and Theoretical Comparison of 𝐵(2,2,26) and 𝑆𝑃(15,2) for 𝑚 = 2, 𝑁 = 60, 𝛽 = 0.5 

 

For 𝑚 = 3 and 4, we see a very different behavior. In this case, there are a number of type A 

plans that are (almost) uniformly better than the best standard plans and always better (over our 

grid of parameter values) than any type B plan. In Table 2.8, we show the relative efficiencies 

of a few type A plans compared with the best SP. There are significant improvements possible 

over the best standard plan. We checked these results (not shown here) using a simulation with 

10,000 runs. For example, when 𝑚 = 3, 𝑁 = 60, we compared 𝐴(6,2,24) to 𝑆𝑃(10,2) over the 

complete grid of values for 𝛾, 𝛿, and 𝛽. In all cases, there is less bias with the augmented plan 

and the estimated efficiencies are substantially higher than those predicted by the asymptotic 

calculations.  
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   𝑚 = 3, 𝑁 = 60 𝑚 = 4, 𝑁 = 64 

𝛾 𝛿 𝛽 𝐴(5,2,30) 𝐴(6,2,24) 𝐴(7,2,18) 𝐴(4,2,32) 𝐴(5,2,24) 𝐴(6,2,16) 

0.5 0.1 0.1 0.99 1.04 1.07 1.10 1.15 1.16 

0.5 0.1 0.5 1.17 1.19 1.19 1.31 1.32 1.29 

0.5 0.1 0.9 1.51 1.47 1.40 1.70 1.63 1.49 

0.5 0.5 0.1 1.05 1.09 1.11 1.17 1.21 1.20 

0.5 0.5 0.5 1.15 1.18 1.18 1.29 1.30 1.27 

0.5 0.5 0.9 1.28 1.28 1.26 1.44 1.42 1.35 

0.5 0.9 0.1 1.09 1.12 1.13 1.21 1.24 1.22 

0.5 0.9 0.5 1.10 1.14 1.14 1.23 1.26 1.23 

0.5 0.9 0.9 1.12 1.15 1.15 1.25 1.27 1.24 

0.3 0.1 0.1 1.08 1.12 1.15 1.21 1.26 1.26 

0.3 0.1 0.5 1.22 1.25 1.24 1.37 1.39 1.35 

0.3 0.1 0.9 1.53 1.50 1.43 1.73 1.66 1.52 

0.3 0.5 0.1 1.16 1.20 1.20 1.31 1.35 1.32 

0.3 0.5 0.5 1.24 1.27 1.26 1.41 1.42 1.36 

0.3 0.5 0.9 1.36 1.36 1.33 1.53 1.51 1.43 

0.3 0.9 0.1 1.22 1.25 1.24 1.38 1.40 1.35 

0.3 0.9 0.5 1.24 1.26 1.25 1.40 1.41 1.36 

0.3 0.9 0.9 1.25 1.27 1.26 1.41 1.42 1.37 

0.1 0.1 0.1 1.12 1.17 1.19 1.27 1.32 1.31 

0.1 0.1 0.5 1.23 1.27 1.27 1.39 1.42 1.38 

0.1 0.1 0.9 1.54 1.51 1.44 1.73 1.68 1.54 

0.1 0.5 0.1 1.21 1.25 1.25 1.38 1.41 1.38 

0.1 0.5 0.5 1.28 1.31 1.30 1.45 1.47 1.41 

0.1 0.5 0.9 1.39 1.39 1.36 1.57 1.55 1.47 

0.1 0.9 0.1 1.29 1.31 1.30 1.47 1.49 1.42 

0.1 0.9 0.5 1.30 1.32 1.31 1.48 1.49 1.42 

0.1 0.9 0.9 1.31 1.33 1.32 1.50 1.50 1.43 

Table 2.8: Efficiencies of some good type A plans when 𝑚 = 3, 𝑁 = 60 and 𝑚 = 4, 𝑁 = 64 relative to 𝑆𝑃(10,2) 

and 𝑆𝑃(8,2), the best standard plans when 𝑚 = 3, 𝑁 = 60 and 𝑚 = 4, 𝑁 = 64, respectively 
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We summarize our findings when we allow for the possibility of subject-by-observer interaction 

as follows:  

 The best plans have 𝑟 = 2 in the SP component. That is, there are minimal replicate 

measurements by the same observer on the same subject. 

 The best plans use few subjects in the SP component and a large number of subjects in 

the augmented components. 

 With 𝑚 = 2 observers, a good plan for estimating 𝛾 is 𝐵(2,2,28) when 𝑁 = 64 or a 

scaled version for other values of 𝑁. For example, if 𝑁 = 96, the scaled version is 

𝐵(3,2,42). Note that the best plan in this case is close to 𝑆𝑃(30,1), so the estimates of 

𝜎𝑠𝑜
2  and 𝜎𝑚

2  are highly correlated. 

 With 𝑚 = 3 or 4 observers, there are good type A plans, e.g., 𝐴(6,2,24) for 𝑚 = 3, 𝑁 =

60 and 𝐴(5,2,24) for 𝑚 = 4, 𝑁 = 64, with relatively few subjects in the SP component. 

We can realize substantial benefits in estimating 𝛾 using one of these plans, or scaled 

versions for other values of 𝑁. 

 Simulation results suggest that the asymptotic results are conservative. Actual 

efficiencies of the good augmented plans are higher than predicted. 

We provide software at http://www.bisrg.uwaterloo.ca/ that can be used to select and compare 

good plans using the asymptotic calculations. In any given situation, a practitioner can 

investigate a wide variety of potential plans and select one that meets his or her needs. At the 

same website, we also provide software that will calculate the maximum likelihood estimate and 

the standard error for 𝛾 (and other parameters) for either type of augmented plan, given the data. 

2.3 Discussion and Conclusions 

The idea of augmented plans raises several design and analysis issues.  

In many situations, augmented assessment plans provide a means to estimate 𝛾 more efficiently 

than the best standard plan with the same number of observers and total measurements. One 

drawback of the type A augmented plans is that we cannot use the ANOVA method of variance 

component estimation because the design is unbalanced in the sense that some subjects are only 

measured by one of the observers. With type B augmented plans however, we can apply the 

results of Chapter 7 in Burdick et al. [2005] to get approximate confidence intervals. However, 

http://www.bisrg.uwaterloo.ca/
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in such an unbalanced design, the properties of the ANOVA-based estimates of 𝛾 can be 

examined only by simulation and so are not useful in the planning stage of the study. The easily 

calculated Fisher information is a convenient basis for comparison of plans and, with maximum 

likelihood estimation, provides a method of analysis. To derive approximate confidence intervals 

for 𝛾, we suggest using the asymptotic standard errors which are found by substituting the 

maximum likelihood estimates into the asymptotic standard deviations developed in Section 2.1. 

A practitioner may use the available software recommended in Section 2.2.3 to calculate this 

asymptotic standard error for a given set of data. We have not explored the properties of such 

approximate confidence intervals; this stands as a possible extension to be pursued.  

Recall in Section 1.3 we discussed a series of papers in which Browne et al. [2009a, 2009b, 

2010], in a manufacturing context, consider the use of leveraging to increase the efficiency of 

standard plans. In these plans, the order of the two components is important. In the first stage of 

a leveraged plan, each observer measures a separate set of subjects once. Then a standard plan 

is carried out using extreme subjects selected from those measured in stage 1. Browne et al. do 

not consider the possibility of a subject-by-observer interaction. Note that the leveraged plans 

use fewer subjects, so it is not clear how their performance compares with the augmented plans 

described here. This is another issue for future investigation.  

Augmented plans, on the other hand, are not sequential. We can carry out the components in any 

order. Another possibility is to carry out the SP component first and then select an augmented 

component based on a preliminary analysis of the SP data. Such a design may have superior 

performance over the augmented plans recommended here.  

The results of the simulations were somewhat surprising. Good plans (as ranked by asymptotic 

standard deviation of the estimator 𝛾̃) were typically close to unbiased and the actual standard 

deviations in the simulations were larger for both the augmented and corresponding standard 

plans but the efficiencies of the augmented plans were larger than those predicted by the 

asymptotic calculations.  

The idea of augmentation is to use more subjects, consistent with the recommendation of Burdick 

and Larsen [1997]. Typical standard plans with only 10 subjects do not provide sufficient 

information to adequately estimate 𝜎𝑠 and hence 𝛾. The plans we recommend all increase the 

number of subjects relative to the standard plans recommended by the Automotive Industry 
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Action Group [2010], and reduce the number of replicate measurements on the same subject by 

each observer. That is, we recommend only plans with 𝑟 = 1 or 2. Also note that the 

recommended augmented plans are almost uniformly more efficient than the best SP over a wide 

range of the parameter values. We summarize our recommended plans as follows:  

1. For a system with a single observer or with no observer effects, use the standard plan 

with 𝑁/2 subjects each measured 𝑟 =2 times. 

2. If you are willing to assume no subject-by-observer interaction or if you are willing to 

confound estimation of the subject-by-observer interaction and the measurement system 

repeatability, 

a. For 𝑚 = 2 or 3 observers, use the standard plan with 𝑟 =  1 to maximize the 

number of subjects in the study.  

b. For 𝑚 = 4 observers, use a type A plan with 𝑟 = 2 and a small number of subjects 

in the SP component. For example, use 𝐴(4,2,32) if 𝑁 = 64, and a scaled version 

of this plan for other values of 𝑁.  

3. If you wish to include the possibility of subject-by-observer interaction (and wish to 

separately estimate 𝜎𝑠𝑜
2  and 𝜎𝑚

2 ),  

a. For 𝑚 = 2 observers, use a type B plan with a small number of subjects in the SP 

component, e.g., 𝐵(2,2, (𝑁 −  8)/2).  

b. For more observers, use a type A plan with 𝑟 = 2. For 𝑚 = 3, use a scaled version 

of 𝐴(6,2,24), and for 𝑚 = 4, use a scaled version of 𝐴(5,2,24) with scaling 

depending on the ratio 𝑁/60 and 𝑁/64, respectively.  

4. If you have some knowledge of the possible parameter values 𝛾, 𝛿, 𝛽, the software 

provided at http://www.bisrg.uwaterloo.ca/ can be used to investigate a number of plans 

over the restricted range of parameter values, and that can be used to analyze data from 

an augmented MSA study. 

It is clear that increasing the number of subjects in an MSA study increases the precision for 

estimating 𝛾. For a fixed number of measurements 𝑁, augmented plans look for alternate 

allocations of those measurements, in terms of the number of subjects and number of replicates, 

that yield more precise estimates of 𝛾. Simply put, the more subjects included in the study, the 

http://www.bisrg.uwaterloo.ca/
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better. However, the constraint that at most 𝑁 measurements can be made in the study, prevents 

us from investigating the effect of having information from a very large number of subjects. 

However, in many contexts the measurement system being assessed is used routinely, and 

records of the single measurements from day-to-day use are kept. This information is, in a sense, 

free; it does not cost any extra money, time, or man-power to obtain, and so it should be 

incorporated into the assessment of the measurement system. By incorporating this information 

into the analysis of an assessment study, we effectively increase the number of subjects being 

studied, and more precise estimates of 𝜎𝑠
2 and 𝛾 result [Stevens et al., 2013]. If we have a lot of 

this historical, “baseline” data, the number of subjects and measurements in the MSA study itself 

can be reduced. We investigate the effect of incorporating such baseline information into the 

planning and analysis of MSA studies, in Chapter 3. 
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Chapter 3 

 

Incorporating Baseline Data into the Assessment of 

a Measurement System 

 

In Chapter 1, we introduced the idea of a measurement system assessment (MSA) study to assess 

the variability of the measurement system. We refer to the typical design of an assessment study 

as a standard plan (SP) in which 𝑛 randomly selected subjects are measured 𝑟 times by each of 

𝑚 observers, for a total of 𝑁 = 𝑛𝑚𝑟 measurements. For a fixed number of observers 𝑚, we 

denote a standard plan with 𝑛 subjects and 𝑟 replicate measurements by 𝑆𝑃(𝑛, 𝑟). Recall that the 

Automotive Industry Action Group [2010] suggest 𝑛 = 10; 𝑚 =2,3; 𝑟 = 2,3 so 40 ≤ 𝑁 ≤ 90, 

and when a measurement system is automated, or has one observer, 𝑛 = 10; 𝑟 = 6 so 𝑁 = 60. 

In Chapter 2 we considered altering the design of the study to more precisely estimate the gauge 

repeatability and reproducibility (GR&R) ratio 𝛾 given by [2.2]. We introduced augmented 

designs [Stevens et al., 2010] which modify the allocation of measurements in the study. For a 

fixed total number of measurements 𝑁, the augmented plans included more subjects with fewer 

replicate measurements, and in many scenarios provided more precise estimates of 𝛾 than the 

best SP with the same total number of measurements.  

In this chapter, we consider assessing a measurement system that is used routinely and that has 

a record of single measurements on many subjects from regular use. We call these measurements 

the baseline data, which we can and should incorporate into both the planning and analysis of 

an MSA study [Stevens et al., 2013]. 

In Section 1.3 we briefly mentioned that the use of baseline information has been recommended 

in the literature, but it does not seem to be well studied. Danila et al. [2008, 2010] quantified the 

substantial advantage of using available information in the assessment of a binary measurement 
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system. For continuous measurements, Steiner and MacKay [2005] suggested incorporating 

available baseline information into the MSA analysis when there are no observer effects. 

However, in the analysis they assumed that the total variation (due to both the measurement 

system and between-subject variation) is known rather than estimated, and did not quantify the 

effect of their proposal. In a manufacturing context, Browne et al. [2009] quantified the gains in 

power for testing a hypothesis about the intraclass correlation 𝜌 in the special case when the 

process mean and standard deviation are known. Minitab [Minitab Inc., 2013] allows users to 

specify a “historical standard deviation” in an R&R analysis. The Automotive Industry Action 

Group [2010, p. 121] also has a short section on “Using Historical Variation Information” in 

measurement system assessment. However, both the Minitab and AIAG suggestions ignore 

observer information available in the baseline data and, as in Steiner and MacKay [2005], assume 

the total variation is known rather than estimated. Finally, all of these previous references other 

than Steiner and MacKay [2005] did not suggest altering the design of an MSA study when 

baseline data are available.  

The two primary goals of this chapter are to quantify the effect of (properly) including baseline 

data in the MSA study analysis for a continuous measurement characteristic, and to consider the 

best standard plans when baseline data are available [Stevens et al., 2013]. Specifically, we 

investigate the effects of supplementing the information from the SP data with the single 

measurements from the baseline data. 

This design should sound familiar; it is similar to the type A augmented designs discussed in 

Chapter 2. In fact, supplementing SP data with baseline data in an MSA study is statistically 

equivalent to type A augmentation. However, from a practical standpoint the two designs are 

very different. For the augmented plans the extra data were collected as part of the MSA study 

by including more subjects. However, including more subjects in the study can be costly. 

Sometimes the process of taking the measurement can be very time-consuming, and sometimes 

the cost of measuring subjects can be very expensive [Aguirre-Torres and Lopez-Alvarez, 2013]. 

In these instances measuring fewer subjects would be beneficial, and the augmented plans may 

not be practical. Here we assume that the baseline data are readily available from previous use 

of the measurement system, and no additional cost is incurred to obtain them. Thus, studies with 

fewer subjects may be performed because the baseline data increases the amount of information 
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about subjects, effectively increasing the number of subjects in the study, without any additional 

cost.  

The remainder of the chapter is organized as follows. In Section 3.1, we discuss the model and 

derive the likelihood function for the 𝑆𝑃(𝑛, 𝑟) plan when it is augmented by baseline data and 

apply the likelihood analysis to an example. Then in Section 3.2 we explore the design of an 

MSA study when baseline information is available; we use the asymptotic standard deviation of 

the estimator 𝛾̃ to compare various 𝑆𝑃(𝑛, 𝑟) plans for different baseline sample sizes and to 

suggest the optimal plans. We also report the results of a simulation study that demonstrate that 

the likelihood-based asymptotic results can be safely used to rank plans. As in Chapter 2 we 

consider the one (no) observer case as well as situations involving multiple observers with and 

without subject-by-observer interaction. We see a large improvement in precision for estimating 

𝛾 even when the baseline sample size is small. Also, in most situations the recommended plans 

are markedly superior to those used in practice. Section 3.3 ends the chapter with a discussion 

and a summary of the results. 

3.1 Modeling and Likelihood Analysis of an MSA Study with Baseline Data 

3.1.1 The Model 

Here we adopt the same two-way mixed effects model [2.1] as in Chapter 2 to specify the 

attributes of the measurement system and describe the data collected according to a standard 

plan. For convenience we re-state this model: 

 𝑌𝑖𝑗𝑘 = 𝑆𝑖 + 𝑜𝑗 + 𝑆𝑂𝑖𝑗 + 𝑀𝑖𝑗𝑘       [3.1] 

 

Here 𝑌𝑖𝑗𝑘 is a random variable that represents the 𝑘th measurement on subject 𝑖 by observer 𝑗, 

where 𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2, … ,𝑚, 𝑘 = 1,2, … , 𝑟. As before 𝑆𝑖~𝑁(𝜇, 𝜎𝑠
2) represents the 

unknown true value of the measurand for subject 𝑖; 𝑜𝑗 represents the fixed effect of observer 𝑗; 

𝑆𝑂𝑖𝑗~𝑁(0, 𝜎𝑠𝑜
2 ) allows for the observer effect to change from subject to subject (i.e. allows for 

an interaction between observers and subjects); and 𝑀𝑖𝑗𝑘~𝑁(0, 𝜎𝑚
2 ) represents the measurement 

error when the same observer takes replicate measurements of the same subject (i.e. the 

repeatability). We further assume that 𝑆𝑖, 𝑆𝑂𝑖𝑗, and 𝑀𝑖𝑗𝑘 are all mutually independent.  
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We also define 𝜎𝑜
2 = ∑ (𝜇𝑗 − 𝜇)

2𝑚
𝑗=1 𝑚⁄ , with 𝜇𝑗 = 𝜇 + 𝑜𝑗 representing the expected 

measurement by observer 𝑗 and 𝜇 representing the overall mean value of the measurand. Thus 

𝜎𝑜
2 quantifies the measurement variation due to the relative biases among observers (i.e. the 

reproducibility). We then define 𝜎𝑡
2 = 𝜎𝑠

2 + 𝜎𝑜
2 + 𝜎𝑠𝑜

2 + 𝜎𝑚
2  to be the total variation in the 

observed measurements.  

With the parameters associated with model [3.1] we define the GR&R ratio 𝛾, which quantifies 

the measurement system variability relative to the total variability: 

 𝛾 = √
𝜎𝑜

2 + 𝜎𝑠𝑜
2 + 𝜎𝑚

2

𝜎𝑠
2 + 𝜎𝑜

2 + 𝜎𝑠𝑜
2 + 𝜎𝑚

2
 [3.2] 

 

As in Chapter 2, we assume this is the metric of primary interest; we use the asymptotic standard 

deviation of the estimator 𝛾̃ to rank plans. The plans that we recommend are optimal in terms of 

their ability to estimate 𝛾 precisely, but they may not be optimal if estimation of a different metric 

is important. 

We consider, as before, three cases for the design and analysis of an MSA study based on the 

number of observers included in the study, and the possible existence of a subject-by-observer 

interaction. These three cases correspond to three different formulations of model [3.1] and 

hence three different versions of 𝛾. 

First, we consider the case when the measurement system is operated by just one observer (𝑚 =

1), or is automated, and hence has no observer effects. Here 𝜎𝑜
2 = 0 and we cannot estimate 𝜎𝑠𝑜

2  

separately from 𝜎𝑚
2  so we set 𝜎𝑠𝑜

2 = 0. In this case model [3.1] reduces to the random effects 

model [1.1] and 𝛾 = √
𝜎𝑚

2

𝜎𝑠
2+𝜎𝑚

2 . For 𝑚 ≥ 2 we also consider the case when there is no subject-by-

observer interaction by setting 𝜎𝑠𝑜
2 = 0 and allowing 𝜎𝑜

2 > 0. In this case we drop the 𝑆𝑂𝑖𝑗 term 

from model [3.1] and 𝛾 = √
𝜎𝑜

2+𝜎𝑚
2

𝜎𝑠
2+𝜎𝑜

2+𝜎𝑚
2 . When we consider the multiple-observer case and allow 

for a subject-by-observer interaction, we adopt the full model [3.1] and the corresponding 

definition of 𝛾 [3.2]. 
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We again define two parameters of secondary interest, 𝛿 and 𝛽, to partition the variation due to 

the measurement system, as  

 

 
𝛿 =

𝜎𝑚
2

𝜎𝑜
2 + 𝜎𝑠𝑜

2 + 𝜎𝑚
2

 [3.3] 

and  

 

 
𝛽 =

𝜎𝑜
2

𝜎𝑜
2 + 𝜎𝑠𝑜

2
 [3.4] 

 

Since 𝛾, 𝛿, and 𝛽 are defined as ratios, we assume, without loss of generality, that the total 

variation 𝜎𝑡
2 equals one, so 𝛾2 = 𝜎𝑜

2 + 𝜎𝑠𝑜
2 + 𝜎𝑚

2 . To assess plans, we look at three cases where 

𝜎𝑚
2 = 𝛿𝛾2 for 𝛿 = 0.1, 0.5, 0.9 so the repeatability contribution to 𝛾 is relatively small to large, 

respectively. Then, for given values of 𝛾 and 𝛿, we consider the three cases 𝛽 = 0.1, 0.5, 0.9 

where the contribution of 𝜎𝑜
2 is a relatively small to large proportion of 𝜎𝑜

2 + 𝜎𝑠𝑜
2 , the observer 

contribution to the measurement system variation (reproducibility). Algebraically, we have 𝜎𝑜
2 =

𝛽(1 − 𝛿)𝛾2 and 𝜎𝑠𝑜
2 = (1 − 𝛽)(1 − 𝛿)𝛾2. Note that 𝛿 = 1 corresponds to 𝜎𝑜

2 = 0; i.e., the when 

there are no observer effects in the model. And note that 𝛽 = 1 corresponds to 𝜎𝑠𝑜
2 = 0; i.e., the 

case where there is no subject-by-observer interaction.  

Model [3.1] describes the data collected according to the standard plan 𝑆𝑃(𝑛, 𝑟) with 𝑚 

observers. We assume that the baseline data has a balanced form where there are single 

measurements on 𝑏 different subjects, with each of the 𝑚 observers making 𝑏/𝑚 measurements. 

We further assume that we can associate each baseline measurement with a specific observer. 

We represent the data as 𝑧𝑗𝑙, 𝑗 = 1,2, … ,𝑚, 𝑙 = 1,2, … , 𝑏𝑗 = 𝑏/𝑚, and according to the model 

[3.1], we have the corresponding independent random variables 𝑍𝑗𝑙~𝑁(𝜇𝑗, 𝜎𝑠
2 + 𝜎𝑠𝑜

2 + 𝜎𝑚
2 ). 

Note that in addition to information about 𝜎𝑠
2, the baseline data also gives information about the 

observer means 𝜇𝑗 and the within-observer variation.  

When there are data from an 𝑆𝑃(𝑛, 𝑟) plan with no baseline data, we can estimate 𝛾 using 

ANOVA methods [Burdick et al., 2005]. However, when we add baseline data, we apply the 

likelihood methods as outlined in Section 3.1.2, to produce the estimates as it is not clear how to 

adapt the ANOVA analysis.  
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3.1.2 The Likelihood  

As stated, we rank plans using the asymptotic standard deviation of 𝛾̃ which is found using the 

inverse of the Fisher information matrix. To derive the information matrix, we need the 

likelihood function, which we develop here. 

In Section 2.1 we derived the log-likelihood function for a standard plan with 𝑛 subjects, 𝑚 

observers, and 𝑟 replicate measurements. This log-likelihood contribution is  

 

𝑙𝑆𝑃(𝜇1, … 𝜇𝑚, 𝜎𝑠
2, 𝜎𝑠𝑜

2 , 𝜎𝑚
2 ) = 

−𝑛𝑚𝑟𝑙𝑛(2𝜋) −
𝑛

2
ln[(𝜎𝑚

2 + 𝑟𝜎𝑠𝑜
2 + 𝑚𝑟𝜎𝑠

2)(𝜎𝑚
2 + 𝑟𝜎𝑠𝑜

2 )𝑚−1(𝜎𝑚
2 )𝑚(𝑟−1)] 

−
1

2
{ 𝑎1 ∑ ∑ ∑ (𝑦𝑖𝑗𝑘 − 𝜇𝑗)

2𝑟

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

+ 𝑎2 ∑ ∑ [∑ (𝑦𝑖𝑗𝑘 − 𝜇𝑗)
2𝑟

𝑘=1
]

𝑚

𝑗=1

𝑛

𝑖=1

+ 𝑎3 ∑ [∑ ∑ (𝑦𝑖𝑗𝑘 − 𝜇𝑗)
𝑟

𝑘=1

𝑚

𝑗=1
]

2𝑛

𝑖=1
} 

[3.5] 

where 

𝑎1 =
1

𝜎𝑚
2

 

𝑎2 =
−𝜎𝑠𝑜

2

𝜎𝑚
2 (𝜎𝑚

2 + 𝑟𝜎𝑠𝑜
2 )

 

𝑎3 =
−𝜎𝑠

2

(𝜎𝑚
2 + 𝑟𝜎𝑠𝑜

2 )(𝜎𝑚
2 + 𝑟𝜎𝑠𝑜

2 + 𝑚𝑟𝜎𝑠
2)

 

 

For the baseline data, each observer measures different subjects once and measurements on all 

subjects are independent. For a baseline with a sample of size 𝑏, this is equivalent to the 

augmented component of a type A augmented plan, with 𝑛𝐴 subjects. Thus, the log-likelihood 

contribution from the baseline data is equivalent to the log-likelihood contribution given by 

equation [2.7] in Section 2.1. With a small change in notation, the log-likelihood function for the 

baseline data is 
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𝑙𝑏(𝜇1, … 𝜇𝑚, 𝜎𝑠
2, 𝜎𝑠𝑜

2 , 𝜎𝑚
2 ) = 

−𝑏𝑙𝑛(2𝜋) −
𝑏

2
ln(𝜎𝑠

2 + 𝜎𝑠𝑜
2 + 𝜎𝑚

2 )

−
1

2(𝜎𝑠
2 + 𝜎𝑠𝑜

2 + 𝜎𝑚
2 )

∑ ∑ (𝑧𝑖𝑗 − 𝜇𝑗)
2
 

𝑏
𝑚

𝑙=1

𝑚

𝑗=1
 

[3.6] 

 

where 𝑏 is the total baseline sample size, and each observer measures 𝑏/𝑚 subjects once. Recall 

that we assume that each baseline measurement can be associated with a particular observer. In 

Section 3.3 we briefly discuss the scenario when we cannot trace the baseline measurements 

back to specific observers. 

Assuming that the subjects in the baseline and the 𝑆𝑃(𝑛, 𝑟) study are different and hence 

independent, the overall log-likelihood is the sum of the two log-likelihood components given 

by equations [3.5] and [3.6], namely, 

 

 
𝑙𝑆𝑃(𝜇1, … 𝜇𝑚, 𝜎𝑠

2, 𝜎𝑠𝑜
2 , 𝜎𝑚

2 ) + 𝑙𝑏(𝜇1, … 𝜇𝑚, 𝜎𝑠
2, 𝜎𝑠𝑜

2 , 𝜎𝑚
2 ) [3.7] 

 

To estimate 𝛾, 𝛿, and 𝛽  we must estimate 𝜎𝑠
2, 𝜎𝑠𝑜

2 , 𝜎𝑚
2 , and 𝜎𝑜

2, and hence 𝜇𝑗, 𝑗 = 1,2, … ,𝑚. To 

do so we numerically maximize the log-likelihood function given by equation [3.7] using Matlab 

[The MathWorks Inc., 2013]. We find the Fisher information matrix by first taking the 

appropriate second partial derivatives and then by substituting the expected sums of squares [2.8-

2.11] for the observed versions. Inverting this matrix gives the asymptotic variances for 𝜎̃𝑠
2, 𝜎̃𝑠𝑜

2 , 

𝜎̃𝑚
2 , and 𝜇𝑗, 𝑗 = 1,2, … , 𝑚. To obtain the asymptotic variance for 𝛾̃, and other functions of these 

parameters, we apply the delta method and pre- and post-multiply the inverse of the information 

matrix by a change-of-variables matrix of suitable partial derivatives, as in Section 2.1. As 

before, we use Maple [Maplesoft, 2014] to symbolically calculate all partial derivatives to avoid 

errors. 

The likelihood described above corresponds to the multiple observer scenario in which we allow 

for the possibility of a subject-by-observer interaction. When we consider the special cases 

without subject-by-observer interaction, and without observer effects, we set 𝜎𝑠𝑜
2 = 0 and 𝜎𝑜

2 =
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0 as is appropriate, and we alter the information matrix and the change-of-variable matrix as 

described in Section 2.1. 

3.1.3 Example 

In this subsection we provide an example from the manufacturing industry to illustrate the 

likelihood analysis, and highlight the benefit of incorporating baseline information, when 

analyzing standard plan data from an MSA study. 

In the production of aluminum pistons, an automated gauge is used for 100% inspection of the 

skirt diameter at a particular height as well as many other key characteristics of the piston. There 

is a routine assessment of the system every 6 months using an 𝑆𝑃(10,6) plan. Because the gauge 

is automated, there are no observer effects. The data from the most recent MSA study are shown 

in Table 3.1. The gauge reports the deviation from nominal in micrometers. From process 

monitoring, there were also single measurements from 96 pistons available from the previous 24 

hours of production. The mean and standard deviation for these baseline measurements are 0.56 

and 2.88, respectively. With no observer effects, these are sufficient statistics for the baseline 

data, which follow a 𝑁(𝜇, 𝜎𝑠
2 + 𝜎𝑚

2 ) distribution. 

 

 Replicate Measurements 

Part 1 2 3 4 5 6 

1 -2.8 -3.6 -1.8 -2.5 -5.5 -3.3 

2 1.8 2.7 2.0 2.9 0.8 -0.2 

3 -3.7 -3.6 -3.9 -3.2 -3.4 -3.9 

4 0.1 1.6 1.1 0.2 0.9 -0.2 

5 2.3 3.6 1.0 2.0 5.2 3.4 

6 -2.7 -3.0 -3.2 -1.5 -1.9 -4.7 

7 0.9 2.8 1.2 0.2 0.7 0.9 

8 0.9 0.8 2.1 -0.2 0.8 2.1 

9 1.3 1.6 1.5 0.3 -0.5 0.8 

10 -0.3 -0.6 0.1 0.3 -0.3 0.2 

Table 3.1: Piston diameter data from an 𝑆𝑃(10,6) MSA study 
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Using maximum likelihood estimation of equation [3.7] and the observed information, we have 

𝛾 = 0.354 with standard error 0.0424 and an approximate 95% confidence interval for 𝛾 of 

(0.271, 0.437) when we include the baseline data. If we ignore the baseline data, the ANOVA 

estimate is 𝛾 = 0.408 with standard error 0.086, which gives the 95% confidence interval of 

(0.230, 0.576). Clearly we get a large improvement in the precision of the estimate of 𝛾 by 

incorporating the available baseline data into the analysis. Software and instructions for its use 

to calculate the maximum likelihood estimate and the associated standard error of 𝛾, in light of 

baseline data, are provided at the website http://www.bisrg.uwaterloo.ca/. 

We note that to avoid bias we need to be careful that the baseline data reflect the current state of 

the measurement system, and typical subject-to-subject variation. The analysis described in 

Section 3.1.2 assumes that the statistical properties of the measurement system are the same for 

the time interval that covers both the collection of the baseline data and the MSA study. To 

ensure that this is true, we suggest checking for stability in the baseline data as recommended by 

the Automotive Industry Action Group [2010]. 

3.2 Planning an MSA Study when Baseline Data are Available 

In this section, we look at the effect of baseline information for a variety of standard plans and 

we recommend good choices for a 𝑆𝑃(𝑛, 𝑟) plan given a fixed number of observers 𝑚, a fixed 

number of measurements 𝑁 = 𝑛𝑚𝑟, and observer-specific baseline information. We consider 

three cases based on the number of observers 𝑚 and whether or not the interaction is included in 

model [3.1]:  

 Case 1: no (or one) observer (𝑚 = 1) – here there is no subject-by-observer interaction; 

 Case 2: multiple observers (𝑚 > 1) – assuming no subject-by-observer interaction exists; 

 Case 3: multiple observers (𝑚 > 1) – assuming subject-by-observer interaction exists. 

In Chapter 1 we described a measurement system as being linear if its bias and variability do not 

depend on the true value of the measurand for the subject being measured. To check this 

property, we must have at least two subjects in the assessment study. However, for a better 

understanding of the possible relationship between bias and variability and the true value of the 

measurand, we recommend having three or more subjects in the study. As a result, in the 

following comparisons, we consider only plans with 𝑛 ≥ 3. We also restrict the comparisons to 

http://www.bisrg.uwaterloo.ca/
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plans that produce estimates for all of the parameters in the model [3.1]. For example, in Case 3, 

without replicate measurements (i.e., 𝑟 = 1) we can estimate 𝜎𝑠𝑜
2 + 𝜎𝑚

2 , and hence 𝛾 and 𝛿, but 

we cannot separately estimate 𝜎𝑠𝑜
2 , meaning that we cannot estimate 𝛽. As such, we restrict 

attention to plans with 𝑟 ≥ 2 in this case to allow estimation of all parameters. 

In what follows, we compare plans using the asymptotic standard error for the estimate of 𝛾, 

which we denote 𝑆𝐸(𝛾), calculated from the Fisher information matrix as described in Section 

3.1.2. To check that the asymptotic results will allow us to appropriately rank the possible 

𝑆𝑃(𝑛, 𝑟) plans for different baseline sizes we first conducted a simulation study. In the 

simulation we compared the simulated and asymptotic standard errors for a variety of plans and 

parameter values. We considered:  

 Total number of measurements: 𝑁 = 60, 90 and 120; 

 Number of observers: 𝑚 = 1, 2, 3, and 4; 

 Number of subjects: 𝑛 = 3 to a maximum depending on 𝑁 and 𝑚; 

 Per-observer baseline sample sizes of 𝑏𝑗 = 0, 10, 30, and 100 (recall that 𝑏 = 𝑚𝑏𝑗); 

 Parameter values 𝛾 = 0.1, 0.3, 𝛿 = 0.1, 0.5, 0.9, and 𝛽 = 0.1, 0.5, 0.9. 

For each plan and set of parameter values, we generated 10 000 samples from model [3.1] and 

for each sample determined the maximum likelihood estimate of 𝛾. The results show that the 

asymptotic standard error for 𝛾 closely matches the simulated results for all plans when the 

baseline sample size is larger than 30. For simulations based on small baseline sample sizes, the 

asymptotic results underestimate the simulated results with increasing large differences for plans 

with fewer subjects, 𝑛. Where there was a large difference between the asymptotic and simulated 

results, the estimate also has substantial bias. For additional information regarding the results of 

this simulation study, see Section B.1 of Appendix B. 

These differences are important if we wish to select the overall number of measurements 𝑁 to 

meet a goal in terms of the standard error of the estimate for 𝛾 when the baseline sample size is 

small. However, for fixed values of 𝑁, 𝑚, 𝑏, and the parameter values, the asymptotic and 

simulated standard errors provided the same ranking of plans as 𝑛 and 𝑟 varied. As a result, we 

proceed to rank plans based on the asymptotic results. Note that we never recommend a plan 

whose asymptotic properties do not closely match simulation results. In addition, based on 
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simulation results there is an even larger benefit from using available baseline data than 

suggested in Figures 3.1 to 3.3. 

To address the issue of bias when there was no or little baseline data we tried using REstricted 

Maximum Likelihood (REML) estimation [Corbeil and Searle, 1976]. Using the transformation 

suggested by Corbeil and Searle [1976], we can split the log-likelihood given in [3.7] into two 

pieces, one that depends only on the variance components (𝜎𝑠
2, 𝜎𝑠𝑜

2 , and 𝜎𝑚
2 ) and the other that 

depends on all of the variance components and the observer means (𝜇𝑗, 𝑗 = 1,2, … ,𝑚). We found 

the REML estimates for the variance components by maximizing the first piece of the log-

likelihood. For balanced plans without baseline data the REML estimates match those obtained 

by the usual ANOVA estimation. We subsequently obtained estimates for the observer means 

by maximizing the overall log-likelihood with the variance components fixed at the REML 

estimates. To explore the usefulness of the REML approach, we conducted a factorial simulation 

study similar to that described earlier in this section that compared the REML and usual 

maximum likelihood estimates for a number of different plans, baseline sizes, and values for 𝛿 

and 𝛽. The results suggest that the REML estimator of 𝛾 is indeed substantially less biased than 

the usual maximum likelihood estimator (though still not unbiased) when there are no baseline 

data, especially when the number of subjects in the SP is small. However, when we add even a 

small amount of baseline data, say 30 observations, the difference in bias between the two 

estimation approaches disappears and in some combinations of the parameter values the usual 

maximum likelihood estimators are less variable than the REML estimators. For this reason, and 

the additional complexity of the REML approach, we continue to use standard maximum 

likelihood estimation. For additional information regarding the results of this simulation study, 

see Section B.2 of Appendix B. 

3.2.1 Plans with One or No Observer 

When there are no observer effects or only one observer (𝑚 = 1) we have 𝜎𝑜 = 0, and 𝜎𝑠𝑜 = 0. 

As a result, there are only three unknown parameters 𝜇, 𝜎𝑠, and 𝜎𝑚, in model [3.1]. Recall that 

with no observer effects the parameter of interest simplifies to 𝛾 = √
𝜎𝑚

2

𝜎𝑠
2+𝜎𝑚

2 , and we do not 

consider 𝛿 or 𝛽, which in this case both equal one. To illustrate the contribution of the baseline 

data, we use a total of 𝑁 = 60 measurements in the 𝑆𝑃(𝑛, 𝑟) study and consider three different 
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plans. The plan 𝑆𝑃(10,6) matches the AIAG [2010] recommendation, 𝑆𝑃(30,2) is the plan with 

the maximum number of subjects as suggested by Shainin [1992], and 𝑆𝑃(3,20) is the plan with 

the minimum number of subjects, as used by Steiner and MacKay [2005] when baseline data are 

also available.  

Figure 3.1 shows the asymptotic standard error of the estimate of 𝛾 by baseline size for the three 

plans when 𝛾 = 0.2. The pattern of the results is similar for other values of 𝛾 and 𝑁 though the 

specific values of 𝑆𝐸(𝛾) change.  

 
Figure 3.1: 𝑆𝐸(𝛾) as a function of the baseline size with 𝑁 = 60, 𝑚 = 1, 𝛾 = 0.2 

Black line: 𝑆𝑃(10,6) – Grey line: 𝑆𝑃(3,20) – Dotted line: 𝑆𝑃(30,2) 

 

We draw two conclusions. First, the value of including the baseline data is substantial especially 

for standard plans with few subjects. This is not surprising because without the baseline data the 

standard plans with few subjects provide little information about 𝜎𝑠.  

Second, the best plan depends on whether or not baseline data are available. If there are no 

baseline data, 𝑆𝑃(30,2) is the best for estimating 𝛾 and it results in a substantial reduction in the 

standard error for 𝛾 compared with 𝑆𝑃(10,6), the default AIAG plan. With the 𝑆𝑃(30,2) plan 

and 𝑏 = 0 (i.e. no baseline data), we match the degrees of freedom available to estimate the two 

unknown variance components 𝜎𝑠
2 and 𝜎𝑚

2 . This finding corroborates what was found in Section 
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2.2.1; when there is no additional information from a baseline or augmentation, the Shainin 

proposal for an IsoplotTM study [Shainin, 1992] is the optimal plan for estimating 𝛾. However, 

even with a small number of baseline observations, say 𝑏 ≥ 30, the other two plans are better 

than the plan with the maximum number of subjects, and they are much better with larger 

baseline sample sizes.  

Note that when 𝑏 is large and there are only two variance components, the baseline sample gives 

a precise estimate of the total variation 𝜎𝑡
2 = 𝜎𝑠

2 + 𝜎𝑚
2 , and hence the best plan for estimating 𝛾 

is to make replicate measurements on a single subject. However, we do not recommend this plan 

since with it we cannot check the linearity assumptions as discussed earlier.  

As a general guideline, with a single observer, if 𝑏 > 𝑁/2, we recommend the three-subject plan 

(𝑛 = 3, 𝑟 ≈ 𝑁/3). Otherwise, we suggest the plan with the maximum number of subjects (𝑛 ≈

𝑁/2, 𝑟 = 2). For a more detailed analysis, software is available for use at the website 

http://www.bisrg.uwaterloo.ca/ to find optimal plans with the following inputs:  

 the number of observers 𝑚 (here 𝑚 = 1);  

 the baseline size 𝑏; 

 a range of possible values for 𝛾; 

 the maximum number of measurements 𝑁 used in the SP so that 𝑛𝑚𝑟 ≤ 𝑁. 

For specified values of 𝑁, 𝑚 and 𝑏, and a range for 𝛾, the output includes the number of subjects, 

𝑛, and the number of replicate measurements per subject, 𝑟, that minimize the asymptotic 

standard error of the maximum likelihood estimate 𝛾. As well, we show the ratio of the standard 

errors for the optimal plan compared with the three-subject plan and the plan with the maximum 

number of subjects. Note that the standard error associated with the optimal plan is in the 

numerator of these ratios. 

For example, if we specify 𝑚 = 1, 𝑏 = 60, and 𝑁 = 60 with 0.05 ≤ 𝛾 ≤ 0.40, in increments 

of 0.05, we get the output as shown in Table 3.2. In this case, the best plan is somewhat sensitive 

to the unknown value of 𝛾 but the standard error of the recommended three-subject plan is 

virtually identical to that of the optimal plan over the entire range of values for 𝛾. 

 

http://www.bisrg.uwaterloo.ca/
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 Relative Efficiency of: 

Optimal Plan Three-Subject 

Plan 

Max-Subject 

Plan 𝑛 𝑟 𝛾 𝑆𝐸(𝛾) 

3 20 0.05 0.0065 1.0000 0.8674 

3 20 0.10 0.0129 1.0000 0.8682 

3 20 0.15 0.0194 1.0000 0.8695 

3 20 0.20 0.0258 1.0000 0.8715 

3 20 0.25 0.0322 1.0000 0.8740 

3 12 0.30 0.0386 0.9996 0.8769 

5 10 0.35 0.0448 0.9983 0.8798 

6 10 0.40 0.0510 0.9961 0.8827 

Table 3.2: Optimal choice of 𝑛 and 𝑟 with 𝑚 = 1, 𝑏 = 60, 𝑁 = 60 

 

3.2.2 Plans with More than One Observer and No Subject-by-Observer Interaction 

Now we consider the case of two or more observers with no subject-by-observer interaction; i.e., 

we set 𝜎𝑠𝑜 = 0 in model [3.1]. Recall that with multiple observers we use 𝛿 to describe the 

proportion of the overall measurement system variability attributable to repeatability. In this case 

[3.3] simplifies to 

𝛿 =
𝜎𝑚

2

𝜎𝑜
2 + 𝜎𝑚

2
 

Note that as 𝛿 gets closer to one, the repeatability contribution increases. Without subject-by-

observer interaction, we do not consider the parameter 𝛽, which in this case equals one. And as 

before we assume that 𝛾 is the primary parameter of interest, as we base comparisons of plans 

on the asymptotic standard error of 𝛾. Here, 𝛾 = √
𝜎𝑚

2 +𝜎𝑜
2

𝜎𝑠
2+𝜎𝑜

2+𝜎𝑚
2 . 

With  𝑚 observers we assume that each measures 𝑏/𝑚 subjects in the baseline so the total 

baseline sample size is 𝑏. In Figure 3.2, we compare the performance of plans with 𝑛 = 3, 10, 

or 30 subjects for varying 𝑏 when 𝛾 = 0.2, 𝑚 = 2, 𝑁 = 120, and 𝛿 = 0.1, 0.5, 0.9. Two of the 

selected plans have the minimum, (𝑆𝑃(3,20)), and maximum, (𝑆𝑃(30,2)), number of subjects 

for the given values of 𝑚 and 𝑁. The third plan, 𝑆𝑃(10,6), is close to that recommended by the 

Automotive Industry Action Group [2010]. 
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Figure 3.2: 𝑆𝐸(𝛾) as a function of the baseline size with 𝑁 = 120, 𝑚 = 2, 𝛾 = 0.2 

Black line: 𝑆𝑃(10,6) – Grey line: 𝑆𝑃(3,20) – Dotted line: 𝑆𝑃(30,2) 

 

We see again the large benefit of the baseline information for the precision of the estimate of 𝛾 

in all of the plans and that much of the benefit is obtained with 𝑏 as small as 80. As in the single-

observer case, plans with few subjects benefit the most. For small values of 𝑏, the best plan uses 

the maximum number of subjects and as 𝑏 becomes large, the best plan uses just three subjects. 

The switching point depends on 𝛿, the relative contribution of the repeatability to the overall 

measurement system variation. If 𝛿 is close to one, the three-subject plan becomes optimal for 

smaller values of 𝑏. We see the same general pattern when we look at similar plots for varying 

values of 𝑁, 𝑚 = 2, 3, 4, and 𝛾 . For plans with 𝑚 observers we suggest the three-subject plan 

for 𝑏 > 40 + 20𝑚 and the plan with a maximum number of subjects otherwise.  

We can use the software described earlier for a more detailed analysis. Suppose we have 𝑁 =

60, 𝑚 = 3, 𝑏 = 60, 𝛾 = 0.1, 0.2, 0.3, 0.4 and 𝛿 = 0.1, 0.5, 0.9. According to the proposed 

planning guidelines, we should use the plan with the maximum number of subjects, 𝑆𝑃(20,1). 

From Table 3.3, we see that the optimal design depends on 𝛾 and 𝛿. However, the recommended 

20-subject plan has very high efficiency and we would consider using another plan only if we 
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were confident that 𝛿 was close to one. If we set 𝛿 = 1, there are no differences among the 

observers and we return to the case with no observer effects discussed in Section 3.2.1. 

     Relative Efficiency of: 

Optimal Plan Three-Subject 

Plan 

Max-Subject 

Plan 

𝑛 𝑟 𝛾 𝛿 𝑆𝐸(𝛾)   

20 1 0.1 0.1 0.0088 0.9009 1.0000 

20 1 0.1 0.5 0.0116 0.9495 1.0000 

4 5 0.1 0.9 0.0128 0.9711 0.9628 

20 1 0.2 0.1 0.0171 0.9007 1.0000 

20 1 0.2 0.5 0.0226 0.9489 1.0000 

5 4 0.2 0.9 0.0255 0.9709 0.9651 

20 1 0.3 0.1 0.0244 0.9002 1.0000 

20 1 0.3 0.5 0.0328 0.9479 1.0000 

5 4 0.3 0.9 0.0378 0.9699 0.9688 

20 1 0.4 0.1 0.0302 0.8995 1.0000 

20 1 0.4 0.5 0.0415 0.99457 1.0000 

10 2 0.4 0.9 0.0494 0.9659 0.9729 

Table 3.3: Optimal choice of 𝑛 and 𝑟 with 𝑚 = 3, 𝑏 = 60, 𝑁 = 60 

 

3.2.3 Plans with More than One Observer and Possible Subject-by-Observer Interaction 

Lastly we consider the case where we include the subject-by-observer interaction term given in 

model [3.1]. We now consider all three parameters 𝛾, 𝛿, and 𝛽, as defined in [3.2-3.4], that 

describe the performance of the measurement system. As 𝛽 gets closer to one, the relative 

contribution of the interaction to the reproducibility decreases. We note in passing that it would 

be surprising to have small values of 𝛽 where the reproducibility is dominated by the interaction, 

as a large interaction effect would often coexist with a large observer effect. 

Again we base our comparisons on the estimation of the primary parameter 𝛾 and include only 

plans that provide estimates of all the parameters. That is, we now require 𝑟 ≥ 2, as discussed 

earlier. In Figure 3.3, we look at the case of two observers (𝑚 = 2) with 𝛾 = 0.2 and compare 
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the three plans 𝑆𝑃(10,3), 𝑆𝑃(15,2), and 𝑆𝑃(3,10), each with a total of 60 measurements over 

the usual range of values for 𝛿 and 𝛽. We see substantial improvement in the precision of 𝛾 by 

including the baseline data regardless of the plan. However, in comparing the three plans, over 

almost the whole range of values for 𝛿, 𝛽, and all values of 𝑏, the plan with the maximum number 

of subjects, 𝑆𝑃(15,2), is optimal and substantially better than the other plans if 𝛿 and 𝛽 are 

small. We see the same behavior for other values of 𝑁, 2 ≤ 𝑚 ≤ 4 and 𝛾. When 𝛿, 𝛽, and 𝑏 are 

large, the three-subject plan becomes optimal but there is little loss in efficiency in using the plan 

with a maximum number of subjects. 

For example, when 𝑁 = 120, 𝑚 = 4, 𝛿 = 0.99, 𝛽 = 0.9, and 𝑏 = 400, the relative efficiency of 

𝑆𝑃(15,2) compared to 𝑆𝑃(3,10) is at least 0.95 as 𝛾 varies between 0.1 and 0.3. We can use the 

software described previously to investigate other specific combinations of parameter values, 

but we make the following general recommendation: when there are multiple observers and we 

wish to estimate a possible subject-by-observer interaction effect we recommend the SP with the 

maximum number of subjects in all situations. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3: 𝑆𝐸(𝛾) as a function of the baseline size with 𝑁 = 60, 𝑚 = 2, 𝛾 = 0.2 

Black line: 𝑆𝑃(10,3) – Grey line: 𝑆𝑃(3,10) – Dotted line: 𝑆𝑃(15,2) 



64 
 

3.3 Discussion and Conclusions 

In this chapter, we address the planning and analysis of measurement system assessment studies 

when baseline data are available. This is a common situation for measurement systems that are 

used routinely where the baseline data are available at no additional cost. We quantify the 

benefits of incorporating baseline data (subjects measured once) into the measurement system 

assessment study analysis and show that substantial improvements in precision are possible and 

attained even with small baseline sample sizes. We also recommend changes to the usual MSA 

study plan in terms of the number of subjects and replicate measurements taken. With a fixed 

baseline size, and a fixed total number of measurements 𝑁 = 𝑛𝑚𝑟, we recommend standard 

plans that use either the minimum or maximum number of subjects, unlike the AIAG [2010] 

recommendation that suggests 𝑛 = 10 subjects. To summarize, incorporating the baseline data 

into the analysis and selecting the standard plan with either the recommended maximum or 

minimum number of subjects dramatically increases the precision of the estimate of 𝛾, the 

GR&R ratio. 

We see most of the benefit from incorporating the baseline data in the analysis with total baseline 

sample sizes as small as 60. As mentioned, in order to avoid bias we need to be careful that the 

baseline data reflect the current state of the measurement system, and typical subject-to-subject 

variation. In the analysis, we assume that the measurement system is stable for the time interval 

that covers both the collection of the baseline data and the MSA study. This suggests a question 

of “how much baseline data should we use?” In particular, how far back in time should we go? 

If the measurement system changes at some point during the collection of the baseline data, then 

the estimates of 𝜇1, 𝜇2, … . , 𝜇𝑚 and 𝜎𝑡
2 from the baseline will be biased. To address this potential 

problem, we suggest checking for stability in the baseline data as recommended by the 

Automotive Industry Action Group [2010].  

With a single observer and a large baseline sample (say, larger than 50 observations), we saw in 

Figure 3.1 that the three-subject plan is the best. With multiple observers, if 𝛿 (the proportion of 

measurement variability due to repeatability) approaches one and 𝑏 (the baseline sample size) is 

large, then the three-subject plan is also optimal, but the gain in precision for estimating 𝛾 is 

smaller (Figure 3.2). This occurs because we are still estimating the other parameters using the 

full model [3.1]. If we first collapse the model by setting 𝛿 = 1, then we get the full benefit of 
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the three-subject plan. Of course, there is no need to use multiple observers in the MSA study in 

this case.  

If the measurement system has a single observer or no observer effects and we use 𝑆𝑃(3, 𝑟), the 

likelihood analysis is somewhat unnecessary because the three subjects provide relatively little 

extra information about 𝜎𝑠 and we can estimate 𝜎𝑚 using ANOVA with little loss of precision. 

This idea was proposed by Steiner and MacKay [2005], who, in the situation where there is a 

single (or no) observer, recommend an MSA study with three subjects with small, medium, and 

large values (as defined by the baseline data), rather than subjects selected at random. In this 

case, the estimation approach suggested here is not applicable. Instead, we use the MSA data 

only to estimate 𝜎𝑚. A more efficient (but complicated) maximum likelihood estimation 

procedure for this case that takes into account the selection process is given by Browne et al. 

[2009] and extended in Browne et al. [2010] to situations involving multiple observers. This 

series of papers shows the major benefit of selecting subjects with extreme values for the MSA 

study in terms of the precision of the estimate of 𝛾.  

In this chapter we have assumed that when multiple observers are concerned, the baseline 

measurements can be traced back to specific observers. However, this may not always be 

realistic; there may be no record of the observers in the baseline data. In Stevens et al. [2013] we 

consider the effect of this missing information. Through simulation we show that for 𝛾 ≤ 0.3 

and 𝛿 = 0.1, 0.5, 0.9 and 𝛽 = 0.1, 0.5, 0.9, the loss of precision for estimating 𝛾 from not 

knowing the baseline observers is surprisingly small. And in all cases, there is little loss as the 

baseline size changes. We propose that, given the small differences in precision when we have 

baseline data without knowing the associated observers, we continue to use the planning 

guidance provided for the case of known observers. This suggests that much of the impact of 

baseline data is in improved estimates of variance components, and less so on estimates of 

observer specific biases. For more details on the simulation and results, see Stevens et al. [2013]. 

We have concentrated on the estimation of the primary parameter 𝛾. If interest centers on 

measurement system characteristics such as the precision-to-tolerance ratio (𝑃𝑇𝑅) [1.4], that do 

not involve the between-subject variation 𝜎𝑠, there is little value in the baseline data.  
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With this work we have again modeled observers as fixed effects. In other situations, it may be 

more reasonable to assume that observers are random effects. As noted previously, MSA studies 

with random observers, but without baseline data, were considered by Steiner et al. [2011]. To 

model the observers as random effects and incorporate baseline data we could consider a similar 

analysis to that proposed in this Chapter. If we further assume that the observers used in the 

baseline and MSA study are different (and randomly selected) we can write down the likelihood 

and determine the Fisher information matrix. With the same observers used in the MSA and the 

baseline studies, the likelihood expression is complicated and finding the Fisher information 

matrix is more difficult.  

Another possible extension that we do not explore further here is the possibility of replacing the 

standard plans with plans that are not balanced in terms of number of measurements made by 

each observer. An unbalanced plan may be better, for instance, when observers are not balanced 

in the baseline data. 
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Chapter 4 

 

Introduction: Measurement System Comparison 

 

The first part of this thesis (Chapters 1, 2 and 3) was concerned with assessing the adequacy of 

a single measurement system. It is clear that a measurement system which is both accurate and 

precise, is ideal. However, accuracy and precision may come at a cost; an accurate and precise 

measurement system, defined again to be the devices, people, and protocol used to make a 

measurement, may be costly in terms of time, money or man-power, or may be invasive. In this 

case, new measurement systems that are less expensive, less time-consuming, less labour-

intensive or less invasive may be developed. In order to decide whether a new measurement 

system can be used in place of an existing one, a Measurement System Comparison (MSC) study 

should be undertaken. 

A common purpose of an MSC study is to determine whether the measurements by the new 

system sufficiently agree with those from the existing system, and hence determine whether the 

two systems can be used interchangeably. Another important goal, although not the focus of this 

work, is to decide whether the new measurement system is better (in terms of accuracy and 

precision) than the existing. However, given our focus, we assume “comparing measurement 

systems” is synonymous with “assessing interchangeability”.  

In a typical MSC study we measure some characteristic, the measurand, of a number of randomly 

chosen subjects, one or more times by each measurement system [Barnett and Youden, 1965; 

1970; Westgard and Hunt, 1973]. Notice that this corresponds to what we have referred to as the 

single-observer standard plan (SP) in the previous chapters. We will herein similarly refer to this 

design as the standard plan.  
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As in the previous chapters we assume both measurement systems are non-destructive, meaning 

the act of measuring does not alter the true value of the measurand, and so multiple measurements 

on each subject are possible. As well, we only consider the interchangeability of two 

measurement systems for a single continuous measurand.  

To describe the data collected during such a study, we can use the following mixed effects model: 

 
𝑌𝑖1𝑘 = 𝑆𝑖 + 𝑀𝑖1𝑘 

𝑌𝑖2𝑘 = 𝛼 + 𝛽𝑆𝑖 + 𝑀𝑖2𝑘 
    [4.1] 

 

Thus 𝑌𝑖𝑗𝑘 is a random variable which represents the value observed on system 𝑗’s 𝑘th 

measurement of subject 𝑖, where 𝑖 = 1,2, … , 𝑛 indexes the subjects, 𝑗 = 1 indexes the reference 

measurement system, 𝑗 = 2 indexes the new measurement system and 𝑘 = 1,2, … , 𝑟 indexes the 

replicate measurements. In [4.1], 𝑆𝑖 is a random variable that represents the unknown true value 

of the measurand for subject 𝑖, with the distributional assumption 𝑆𝑖~𝑁(𝜇, 𝜎𝑠
2). Here 𝜇 is a 

parameter which represents the overall mean true value of the measurand, and  𝜎𝑠
2 is the variance 

component which quantifies the variability in true values about the mean 𝜇. 𝑀𝑖𝑗𝑘 is a random 

variable which represents the measurement error when system 𝑗 makes multiple measurements 

on subject 𝑖. We further assume that the 𝑀𝑖𝑗𝑘  are independent of each other, independent of 𝑆𝑖, 

and that they are distributed 𝑁(0, 𝜎𝑗
2) where 𝜎𝑗 quantifies the measurement variation, or 

repeatability, of system 𝑗. Note that for a given measurement system, we denoted this by 𝜎𝑚 in 

the previous chapters. 

Model [4.1] assumes that 𝜎𝑗 is constant across true values and hence the variability of each 

measurement system is linear [The Automotive Industry Action Group, 2010]. In the context of 

measurement system comparison, we will refer to such a measurement system as homoscedastic. 

In other situations 𝜎𝑗 may depend in some way on the true value, in which case we call 

measurement system 𝑗 heteroscedastic, and a different model must be used. This is discussed in 

Chapter 6. 

We mention in passing that model [4.1] does not include observer effects. If the measurement 

systems used in the MSC study have multiple observers, their effects are not separately 

considered. Instead they are subsumed in the error term and we treat this situation as if there 
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were only a single observer operating each measurement system. As such, the repeatability 𝜎𝑗 

parsimoniously summarizes the overall measurement system variation (i.e. no reproducibility). 

Recall that in the context of measurement system assessment, the main focus was to assess the 

variability of a measurement system, while bias was de-emphasized because in manufacturing 

settings, it is typically thought that bias can be eliminated through calibration [Burdick et al., 

2005]. In the context of measurement system comparison, however, accounting for bias is as 

important as accounting for variability. Because the true values of the measurand are unknown, 

we cannot estimate the absolute bias of the measurement systems, but we can estimate the bias 

of the two systems relative to one another. Model [4.1] accounts for this. 

The parameters −∞ < 𝛼 < ∞ and 𝛽 > 0 quantify the bias of the second (new) measurement 

system relative to the reference system. Here we assume that the reference measurement system 

is unbiased, and inferences regarding bias are made relative to it. We refer to 𝛼 as the fixed bias 

since it increases or decreases the average measurement of the second system by a fixed amount. 

We call 𝛽 the proportional bias because it biases the second system’s measurements by an 

amount that is proportional to the true value [Ludbrook, 2010].  

Based on [4.1], we say that the two measurement systems are identical if 𝛼 = 0, 𝛽 = 1 and 𝜎1 =

𝜎2. However, the two systems do not need to be identical to be used interchangeably. Informally 

we say that two systems can be used interchangeably if, most of the time, their measurements on 

the same subject are similar. In other words, two measurement systems agree and could be used 

interchangeably, if 𝑌𝑖1𝑘 ≈ 𝑌𝑖2𝑘, most of the time. Typically this happens when 𝛼 ≈ 0, 𝛽 ≈ 1, 

and when both 𝜎1 and 𝜎2 are small, relative to 𝜎𝑠. We will further develop the notion of 

interchangeability below. 

A variety of techniques exist for analyzing MSC data and hence judging interchangeability, and 

we use the remainder of this chapter to review a number of them. Specifically, we discuss 

comparison of means (Section 4.1), comparison of repeatabilities (Section 4.2), correlation 

(Section 4.3), regression (Section 4.4), and the limits of agreement approach (Section 4.5). 

Throughout, we highlight challenges associated with these techniques in an effort to demonstrate 

the need for a new method which overcomes these challenges, and that accurately assesses 

interchangeability in a wider set of situations.  
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Before beginning this discussion, we note that many of the techniques we address do not 

explicitly assume model [4.1], and some do not assume a model at all, but we use [4.1] to 

succinctly describe the techniques and illustrate their drawbacks. In [4.1], we have assumed that 

each system measures each subject 𝑟 ≥ 2 times. Sometimes replicate measurements are not 

made in an MSC study, in which case 𝑟 = 1, and we drop the subscript 𝑘, reducing model [4.1] 

to 

 
𝑌𝑖1 = 𝑆𝑖 + 𝑀𝑖1 

𝑌𝑖2 = 𝛼 + 𝛽𝑆𝑖 + 𝑀𝑖2 
     [4.2] 

 

When appropriate, we discuss how each technique compares measurement systems in the context 

of [4.2] with 𝑟 = 1 replicate measurements, and we make comments about how each deals with 

𝑟 ≥ 2. 

4.1 Comparing Means 

Perhaps the simplest and most straight-forward method of assessing the agreement between two 

measurement systems is to compare the means of their measurements. Here it is assumed that 

the study design is the standard one in which each of 𝑛 subjects are measured once (𝑟 = 1) by 

each system [Barnett and Youden, 1965; 1970]. Using the notation of [4.2] we define the 

difference between two measurements on a given subject 𝑖 as  

 

 𝐷𝑖 = 𝑌𝑖2 − 𝑌𝑖1      [4.3] 

 

As a consequence of the normal distribution of the 𝑌𝑖𝑗’s and the independence of 𝑆𝑖 and 𝑀𝑖𝑗, the 

distribution of the differences is 𝐷𝑖~𝑁(𝜇𝑑, 𝜎𝑑
2) where 

𝜇𝑑 = 𝛼 + ( 𝛽 −  1)𝜇 

and  

𝜎𝑑
2 = (𝛽 −  1)2𝜎𝑠

2 + (𝜎1
2 + 𝜎2

2) 

These population parameters are respectively estimated by: 
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 𝜇̂𝑑 = 𝑑̅ =
1

𝑛
∑ 𝑑𝑖

𝑛

𝑖=1
      [4.4] 

 

and  

 𝜎̂𝑑
2 = 𝑠𝑑

2 =
1

𝑛 − 1
∑ (𝑑𝑖 − 𝑑̅)

2𝑛

𝑖=1
      [4.5] 

 

where 𝑑𝑖 = 𝑦𝑖2 − 𝑦𝑖1 is the observed value of 𝐷𝑖 and 𝑦𝑖𝑗 is the observed value of 𝑌𝑖𝑗. The 

normality assumption 𝐷𝑖~𝑁(𝜇𝑑, 𝜎𝑑
2) can be assessed by constructing a histogram of the 

differences 𝑑𝑖 [Bland and Altman, 1983; 1986] or by a QQ-plot since sample sizes are often 

small [Barnett and Youden, 1965; 1970].  

The means of each system’s measurements are compared by comparing the mean difference, 𝜇𝑑, 

to 0 by way of a simple t-test [Barnett and Youden, 1965; 1970; Westgard and Hunt, 1973]. 

Specifically, we test the hypothesis 

 

 𝐻0: 𝜇𝑑 = 0 versus 𝐻𝐴: 𝜇𝑑 ≠ 0      [4.6] 

   

Such a test looks for evidence of a non-zero average difference between the measurements made 

by each system. If no significant difference is found (i.e., not enough evidence to reject 𝐻0), then 

the two measurement systems are thought to give agreeable results, and so they could be used 

interchangeably. 

This t-test however, does not compare the precision of each system. In fact, the amount of 

variability in each system can render the test misleading. Bland and Altman [1983] point out that 

if 𝜎1 and 𝜎2 are large, then the two systems are unlikely to agree, but the test statistic will be 

small, leading to the acceptance of 𝐻0 in [4.6]. They facetiously state that in using this criterion 

to judge agreement, “the greater the measurement error, and hence the less chance of a significant 

difference, the better” [Altman and Bland, 1983, p. 308]. While statistically speaking this is true, 

this issue could be overcome by framing [4.6] as an equivalence test where the null hypothesis 

assumes inequivalence until evidence suggests anything to the contrary [Wellek, 2010]. The real 
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issue, however, is that testing the equality of means (by [4.6] or an equivalence test) ignores a 

direct comparison of repeatabilities. As such, a comparison of relative precisions between the 

two measurement systems is also necessary. 

4.2 Comparing Repeatabilities 

In industrial contexts, it is common to compare measurement systems by comparing metrics 

computed in MSA studies [Burdick et al., 2002; Majeske, 2012]. For instance, if an MSC study 

is conducted in which each system measures 𝑛 subjects 𝑟 ≥ 2 times each, we can use the 

resulting data to estimate the metrics discussed in Chapter 1 for each system: we may wish to 

compare discrimination ratios (𝐷), GR&R ratios (𝛾), intraclass correlation coefficients (𝜌), or 

precision-to-tolerance ratios (𝑃𝑇𝑅). 

We could do so by calculating the desired metric for both measurement systems, and then 

examine their ratio. Using the subscript 𝑗 to distinguish measurement systems (𝑗 = 1 corresonds 

to the existing system, and 𝑗 = 2 corresponds to the new system), we define the following ratios: 

 
𝐷1

𝐷2
=

𝜎𝑠 𝜎1⁄

𝜎𝑠 𝜎2⁄
     [4.7] 

   

 
𝛾1

𝛾2
=

𝜎1 √𝜎𝑠
2 + 𝜎1

2⁄

𝜎2 √𝜎𝑠
2 + 𝜎2

2⁄
     [4.8] 

   

 
𝜌1

𝜌2
=

𝜎𝑠
2 (𝜎𝑠

2 + 𝜎1
2)⁄  

𝜎𝑠
2 (𝜎𝑠

2 + 𝜎2
2)⁄

     [4.9] 

   

 
𝑃𝑇𝑅1

𝑃𝑇𝑅2
=

𝑘𝜎1 (𝑈𝑆𝐿 − 𝐿𝑆𝐿)⁄

𝑘𝜎2 (𝑈𝑆𝐿 − 𝐿𝑆𝐿)⁄
=

𝜎1

𝜎2
   [4.10] 

 

where 𝑈𝑆𝐿, 𝐿𝑆𝐿, and 𝑘 are as in [1.4].  

When interest lies in comparing two measurement systems using these ratios, hypothesis tests 

may be constructed in which the specified ratio is compared to 1. If it is found that the ratio 

differs significantly from 1, then the measurement variability for the two systems is significantly 



73 
 

different. If, however, a significant difference is not found, then the measurement variation in 

the two systems is similar, indicating that they could be used interchangeably. Majeske [2012] 

develops a variety of two-sample tests to address hypotheses of this nature for [4.7-4.10].  

However, due to the typical design of an MSC study, these multiple tests are redundant. If each 

system measures the same subjects, or if the subjects measured by each system come from the 

same population, then 𝜎𝑠 in the definitions of 𝐷𝑗 , 𝛾𝑗 and 𝜌𝑗 will be the same for 𝑗 = 1,2. When 

this is the case, the ratios [4.7-4.9] simplify considerably, reducing to a direct comparison of 𝜎1 

and 𝜎2, like in [4.10]. Thus, any hypothesis that compares the ratios [4.7-4.11] to 1, can simply 

be stated as  

 𝐻0: 𝜎1 = 𝜎2 versus 𝐻𝐴: 𝜎1 ≠ 𝜎2  [4.11] 

   

Burdick et al. [2002] test this hypothesis by developing modified large sample (MLS) techniques 

for calculating confidence intervals for 𝜎1/𝜎2, and interchangeability is determined by whether 

or not the value one is contained within the interval. 

Similar to [4.6], the null hypothesis in [4.11] assumes equality of repeatabilities and is only 

rejected with sufficient evidence. This hypothesis could be more appropriately framed as an 

equivalence test in which the null hypothesis assumes the repeatabilities are not equivalent 

[Wellek, 2010]. In doing this, the test is protected against the phenomenon that a large enough 

sample will always provide evidence against equality. 

Even still, the comparison of repeatabilities (by [4.11 or an equivalence test) ignores the relative 

bias between the two measurement systems; two systems may be similarly precise, but if a large 

relative bias exists, it would be unwise to use the two systems interchangeably. As such, it is 

important to assess both the relative bias, and relative repeatability sizes when evaluating 

interchangeability. 

4.3 Correlation 

The correlation coefficient is a simple measure of linear association between 𝑌𝑖1 and 𝑌𝑖2, 

measurements on the same subject by different systems. Note that we drop the subscript 𝑘 

because the correlation is based on single measurements (𝑟 = 1). The rationale for its use is that 



74 
 

a correlation coefficient close to 1 may signify agreement between the two measurement 

systems. Using [4.2], the correlation between 𝑌𝑖1 and 𝑌𝑖2 (with 𝑟 = 1) is: 

 

 𝐶𝑜𝑟𝑟(𝑌𝑖1, 𝑌𝑖2) =
𝛽𝜎𝑠

2

√(𝜎𝑠
2 + 𝜎1

2)(𝛽2𝜎𝑠
2 + 𝜎2

2)
     [4.12] 

 

There are two common criticisms of this method; the first is that the correlation coefficient can 

be arbitrarily inflated by increasing the estimate of the between-subject variability, 𝜎𝑠 [Bland 

and Altman, 1983; 1986]. The definition of [4.12] assumes that subjects are randomly sampled 

from some population, but in some MSC studies, investigators non-randomly select individuals 

so that the sample intentionally covers a wide range of true values. When this is the case, we 

would expect 𝜎̂𝑠, and hence an estimate of [4.12] to be large, regardless of the level of agreement 

between the two measurement systems [Barnett and Youden, 1970; Bland and Altman, 1983; 

1986]. Conversely, if 𝜎1 and 𝜎2 are large relative to 𝜎𝑠 then [4.12] will be small regardless of the 

agreement between the two measurements systems. 

The second criticism is that the correlation coefficient is a measure of linear association, not 

agreement. We see that [4.12] does not depend on 𝛼, the fixed bias, and so two measurement 

systems can exhibit a strong linear relationship and hence be highly correlated even if the fixed 

bias is large [Bland & Altman 1983, 1986; Ludbrook 1997; 2002]. In this way, the correlation 

coefficient is “insensitive to inaccuracy” [Bookbinder and Panosian, 1987, p. 1170]. 

It is also possible that if 𝛽, the proportional bias, is very far from 1 the correlation between 𝑌𝑖1 

and 𝑌𝑖2 can still be large. But if 𝛼 ≠ 0 and 𝛽 ≠ 1, the measurements 𝑌𝑖1 and 𝑌𝑖2 are not likely to 

agree and so the two measurement systems should not be used interchangeably, despite a large 

correlation coefficient. For these reasons, the correlation coefficient is not an adequate measure 

of agreement, and so it should not be used to judge interchangeability. 

When each measurement system makes multiple measurements (𝑟 ≥ 2) on each subject, we may 

take the average of these replicate measurements and calculate the correlation for these averages. 

Based on [4.1], this correlation is given by 
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𝐶𝑜𝑟𝑟(𝑌̅𝑖1∙, 𝑌̅𝑖2∙) =
𝑟𝛽𝜎𝑠

2

√(𝑟𝜎𝑠
2 + 𝜎1

2)(𝑟𝛽2𝜎𝑠
2 + 𝜎2

2)
 

 

where 𝑌̅𝑖𝑗∙ = ∑ 𝑌𝑖𝑗𝑘 𝑟⁄𝑟
𝑘=1 .  However, we see that this correlation can be arbitrarily inflated by 

increasing the number of replicate measurements 𝑟. As well, each of the problems discussed in 

the 𝑟 = 1 case also exist for this case, and so we do not recommend use of the correlation 

coefficient to judge interchangeability when 𝑟 ≥ 2 either. 

4.4 Regression 

A closely related alternative to correlation is linear regression. The linear relationship between 

the single measurements (𝑟 = 1) made by each system on a particular subject 𝑖 is given by: 

 

 
𝑌𝑖2 = 𝛼 + 𝛽𝑌𝑖1 + 𝑀𝑖    [4.13] 

 

where 𝑀𝑖 = 𝑀𝑖2 − 𝛽𝑀𝑖1, and 𝑀𝑖1 and 𝑀𝑖2 are as defined in [4.2].  

The core of this analysis technique lies in the comparison of the fitted regression line 𝑦̂2 =

𝛼̂ + 𝛽̂𝑦1, to the line of equality 𝑦2 = 𝑦1, where 𝑦𝑗 represents the observed measurements taken 

by system 𝑗 on the same subject [Linnet, 1993; Ludbrook, 1997]. The idea is that the farther the 

fitted regression line is from 𝑦2 = 𝑦1, and hence 𝛼̂ from 0 and 𝛽̂ from 1, the more evidence there 

is that the two measurement systems do not agree. Formally we can write the null and alternative 

hypotheses as follows [Linnet, 1993]: 

 

 𝐻0: (𝛼; 𝛽) = (0,1) versus 𝐻𝐴:  (𝛼; 𝛽) ≠ (0,1)    [4.14] 

   

A variety of regression techniques can be used to test this hypothesis; the difference among them 

lies in the estimation procedure and its underlying assumptions. It is common to carry out the 

regression analysis based on ordinary least squares (OLS) [Linnet, 1993]. For OLS to be valid, 

we must assume that (i) the measurements made by the reference system are error free, i.e., 𝜎1 =

0, and (ii) the errors in the measurements made by the second system are constant, i.e., 
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homoscedastic, and have mean 0 [Abraham and Ledolter, 2006]. Within the OLS framework, 

the regression coefficients 𝛼 and 𝛽  are estimated by 𝛼̂ and 𝛽̂ which are calculated by solving 

the normal equations resulting from minimizing the sum of the squared vertical distance between 

each point and the fitted line. 

However, in the context of MSC studies assumptions (i) and (ii) are often violated, in which case 

the OLS estimation approach is invalid [Linnet, 1993]. First, the independent variable (the 

measurements made by the reference system) is typically not measured exactly, i.e., 𝜎1 ≠ 0. The 

exception to this is when the reference system is known to make measurements without error. 

Such a system is often referred to as a ‘gold standard’. However, such a system is rare, and so 

the first assumption of OLS is usually broken.  

Supposing we perform an OLS regression analysis even though the reference system does not 

produce error-free measurements, the slope estimate obtained by doing so would be biased 

toward zero [Berkson; 1950] and hence our conclusions could be misleading.  

An alternative to OLS regression is ordinary Deming regression, which allows for error in the 

measurements of both systems. Estimation within this framework is achieved by minimizing the 

sum of squared deviations from the fitted line at an angle that is determined by the ratio of the 

repeatabilities (𝜎1 and 𝜎2), which is assumed known [Deming, 1943; Linnet, 1993]. But unless 

𝜎1 and 𝜎2 are known from a large prior study, this assumption is unreasonable. When 𝜎1 ≠ 0 

and 𝜎2 ≠ 0 this method has been found to give unbiased and more efficient slope estimates than 

OLS [Linnet, 1993]. 

The necessity for weighted regression techniques arises when the second OLS assumption is 

violated: when the measurement variability is heteroscedastic, that is, not constant across the 

distribution of true values. This means that rather than 𝜎𝑗 being a constant value, it is instead 

some function of the true values. It is common in MSC studies for the variance of the error term 

to be proportional to the true values, or for the standard deviation to be proportional to the true 

values [Linnet, 1993].  

In the weighted regression techniques, the variability of the random error need not be constant. 

Weighted least squares (WLS) regression is carried out by minimizing the sum of the weighted 

squared deviations from the fitted line in the vertical direction, where the weights are inversely 
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proportional to the variability of the second measurement system at a given level [Linnet, 1993]. 

Although the WLS regression technique allows for heteroscedasticity in the second measurement 

system, it still assumes that the reference measurement system provides measurements without 

error. Thus the applicability of WLS is still minimal since a gold standard reference system is 

rarely available. 

A more widely applicable, yet more complicated, approach is weighted Deming regression. Not 

only does it allow for measurement error to exist in both measurement systems, it allows for non-

constant variability in both as well. This approach is similar to ordinary Deming regression 

except that here the sum of the weighted squared deviations from the fitted line are minimized. 

As before, the angle at which the deviations are minimized is determined by the ratio of 

repeatabilities 𝜎1 and 𝜎2. It is still assumed that this ratio is constant, which implies that although 

non-constant variability is allowed, its structure must be the same in both measurement systems. 

If the ratio is not constant then small biases may arise, yet the bias is at most of the same order 

of magnitude as that of OLS [Linnet, 1993]. Martin [2000] suggests that when the ratio of the 

standard deviations is not constant, a revised Deming approach called iteratively reweighted 

general Deming regression be used to obtain precise and unbiased estimates of the regression 

coefficients. We further discuss the comparison of heteroscedastic measurement systems in 

Chapter 6. 

While different estimation techniques may be appropriate for different situations, the regression 

approach, regardless of estimation technique, is still flawed. As with [4.6] and [4.11], the 

hypothesis [4.14] could be more appropriately framed as an equivalence test [Wellek, 2010]. 

However, the chief weakness is that [4.14] focuses only on bias (𝛼 and 𝛽); it does not compare 

the repeatabilities of each system. It is possible that 𝛼 may be close to 0, and 𝛽 may be close to 

1, but if one or both of the repeatabilities is large then the measurements 𝑌𝑖1 and 𝑌𝑖2 are unlikely 

to be similar, in which case using the two systems interchangeably is ill-advised. For example, 

if we assume 𝐻0 in [4.14] is true, we still may not want to use the new system in place of the 

reference system if the new one much less precise. 

Another weakness is that each of the estimation techniques discussed is predicated on the design 

in which subjects are measured just once by each system. When replicate measurements (𝑟 ≥ 2) 

are available these estimation techniques are typically carried out on the averages of the replicate 
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measurements, 𝑌̅𝑖1∙ and 𝑌̅𝑖2∙ [Linnet, 1993]. Because there is less variation between averages than 

between single measurements, this results in better estimates of 𝛼 and 𝛽. But regardless of the 

number of replicate measurements, the hypothesis [4.14] still ignores 𝜎1 and 𝜎2, and so no 

comparison of repeatabilities is made. Thus the problematic scenario described in the previous 

paragraph still applies when 𝑟 ≥ 2. 

4.5 The Limits of Agreement Approach 

The usefulness of the previous four approaches in assessing interchangeability is limited, in part, 

because they do not simultaneously assess the relative bias and the relative repeatability of the 

two systems. One approach that attempts to do this is the ‘limits of agreement’ approach, due to 

Bland and Altman [1983; 1986]. This approach appears to be the most widely used technique 

for assessing interchangeability of measurement systems in clinical contexts. It was first 

introduced by Altman and Bland in 1983, but the wide uptake did not begin until the publication 

of their second paper on the topic which appeared in the Lancet in 1986 [Bland and Altman, 

1986]. This article has been nearly 30 000 times and is one of the ten most frequently cited 

statistical articles ever [Ryan and Woodall, 2005].  

4.5.1 The Standard Approach 

To describe this technique, suppose we have only one measurement by each system on each 

subject, and hence model [4.2] applies. The limits of agreement approach characterizes the 

agreement between two measurement systems by evaluating the difference between 

measurements made on the same subject by each system: 𝐷𝑖 = 𝑌𝑖2 − 𝑌𝑖1.  

Using a scatter plot, the observed differences, 𝑑𝑖 = 𝑦𝑖2 − 𝑦𝑖1, are compared to the observed 

average of the two measurements made on a given subject by each system: 𝑎𝑖 = (𝑦𝑖1 + 𝑦𝑖2)/2. 

This is known as the “difference plot” where, for a particular subject 𝑖, the cartesian points have 

the form (𝑎𝑖, 𝑑𝑖), 𝑖 = 1,2, … , 𝑛.  

One purpose of the plot is to evaluate whether the differences are related to the averages, 

surrogates for the unknown true values. If no relationship appears to exist, the distribution of the 

differences is summarized by the limits of agreement, defined as: 

 𝜇̂𝑑 ± 1.96𝜎̂𝑑    [4.15] 
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where 𝜇̂𝑑 = 𝑑̅ =
1

𝑛
∑ 𝑑𝑖

𝑛
𝑖=1  and 𝜎̂𝑑 = 𝑠𝑑 = √

1

𝑛−1
∑ (𝑑𝑖 − 𝑑̅)

2𝑛
𝑖=1  (as in [4.4] and [4.5]) are sample 

estimates of 𝜇𝑑 and 𝜎𝑑. Assuming the differences roughly follow a normal distribution 

(𝐷𝑖~𝑁(𝜇𝑑, 𝜎𝑑
2)), these limits represent the interval within which we expect 95% of the 

differences to lie. Horizontal reference lines corresponding to the upper and lower limits of 

agreement and the average difference 𝑑̅ are added to the plot.  

To decide whether two measurement systems agree sufficiently to be used interchangeably, we 

compare the limits of agreement to the clinically acceptable difference (CAD) [Bland and 

Altman, 1983; 1986]. The CAD is the maximum allowable difference between two 

measurements that would not adversely affect clinical decisions. How far apart two 

measurements can be before it causes difficulties is not a statistical question, instead the answer 

must be based on clinical judgement and should be made prior to executing the MSC study 

[Bland and Altman, 1983; 1986]. In many situations the CAD is defined as a symmetric interval 

around zero: (−𝑐, 𝑐). Note that the term “clinically” is relevant in medical contexts, but we could 

similarly define a practically acceptable difference for use in other settings. 

By incorporating a clinically, or practically, acceptable difference in the analysis, the limits of 

agreement approach provides context for the comparison, which the other methods of 

comparison fail to do. With this approach, interchangeability is not simply judged by a statistical 

test, practical considerations must also be made.  

To describe the decision process, we refer to the upper and lower limits of agreement as 𝑈𝐿𝐴 

and 𝐿𝐿𝐴, respectively. If the limits of agreement are contained within the CAD, i.e. −𝑐 ≤ 𝐿𝐿𝐴 <

0 < 𝑈𝐿𝐴 ≤ 𝑐, we conclude that the differences will be clinically acceptable at least 95% of the 

time, and the measurement systems are interchangeable. Otherwise, if the limits of agreement 

fall outside the CAD, it is likely that measurements by the two systems will differ by more than 

the allowable amount. In this situation we conclude that the two measurement systems do not 

agree sufficiently and should not be used interchangeably. 

Checking whether zero is contained within the CAD ensures that there is no significant relative 

bias, and comparing the limits of agreement to the CAD ensures that the variability of the 
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differences is not excessive. In this way, the limits of agreement approach simultaneously 

addresses bias and variability.  

While the difference plot addresses repeatability to a degree, Bland and Altman suggest that the 

explicit comparison of repeatabilities is also necessary for an informed comparison [1986; 1999]. 

“Lack of repeatability can interfere with the comparison of two methods because if one 

method has poor repeatability, in the sense that there is considerable variation in repeated 

measurements on the same subject, the agreement between the two methods is bound to be 

poor. Even if the measurements by the two methods agreed very closely on average, poor 

repeatability of one method would lead to poor agreement between the methods for 

individuals.” [Bland and Altman, 1999, p. 149]  

However, in order to estimate the repeatability of each system, the MSC study must include 𝑟 ≥

2 replicate measurements by each system on each subject, which is seldom done. Because the 

standard limits of agreement approach does not account for replicate measurements, Bland and 

Altman have suggested amendments to the approach that incorporate this extra information.  

In fact Bland and Altman have authored many articles since the introduction of the limits of 

agreement technique which clarify the method and guide its use in non-standard situations. 

Specifically, they suggest alternate methods of calculating limits of agreement if the differences 

appear to depend in some way on the true value [Bland and Altman, 1999], or if each system 

makes replicate measurements on each subject [Bland and Altman, 2007]. We briefly describe 

these modifications in the following two subsections. 

4.5.2 The Limits of Agreement when Differences are Related to True Values 

When the differences depend in some way on the true values, the difference plot will display a 

non-random scatter of points (as the averages are thought of as a surrogate for the unknown true 

values). Two common non-random patterns that the difference plot may exhibit are a linear trend, 

which arises in the presence of proportional bias (𝛽 ≠ 1), and a funnel-shaped trend, which arises 

when one or both systems is heteroscedastic (𝜎𝑗 is non-constant). In both of these cases the limits 

of agreement as defined by [4.15] are no longer applicable; they would be too wide or too narrow 

for certain true values. As such, an alternate formulation must be used in these cases. 
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If the difference plot displays evidence of proportional bias or heteroscedasticity, Bland and 

Altman suggest that we deal with “such deviations from assumptions” by making a suitable 

transformation of the raw data [Bland and Altman, 1995, p. 1085]. The transformation that they 

suggest is the natural logarithm: “Under these circumstances, logarithmic (log) transformation 

of both measurements before analysis will enable the standard approach to be used. The limits 

of agreements derived from log transformed data can be back-transformed to give limits for the 

ratio of actual measurements” (Bland & Altman 1999, p. 143-144).  

By following this prescription, the back transformed limits of agreement are no longer in terms 

of a simple difference, they are now in terms of a ratio of the original measurements. This may 

not be a large problem, but when deciding whether the two measurement systems are 

interchangeable, the pre-defined CAD needs to be in terms of a percent difference and not an 

absolute difference. For instance, a 3% difference in measurements may be tolerated.  

It seems beneficial that if one is committed to using the limits of agreement approach to analyze 

the MSC data, the clinically acceptable difference should be defined in terms of both absolute 

and percent-differences. By doing this, the conclusions and interpretations are safeguarded 

against the possibility of having to log-transform the data. However, this might not be clinically 

feasible. 

Bland and Altman also acknowledge however, that sometimes the relationship between the 

differences and averages is more complicated and log transformation may not solve the problem 

[Bland and Altman, 1999]. In this situation, they propose modeling the relationship between 

differences and averages, and performing formal tests for proportional bias and 

heteroscedasticity. They propose a simple linear regression of the differences, 𝐷𝑖 = 𝑌𝑖2 − 𝑌𝑖1, on 

the averages, 𝐴𝑖 = (𝑌𝑖1 + 𝑌𝑖2)/2 [Bland and Altman, 1999]. Based on model [4.2] we have 

 

 𝐷𝑖 = 𝜗0 + 𝜗1𝐴𝑖 + 𝑀𝑖    [4.16] 

 

where 𝑀𝑖 = 2(𝑀𝑖2 − 𝛽𝑀𝑖1)/(𝛽 + 1), 𝜗0 = 2𝛼/(𝛽 + 1), and 𝜗1 = 2(𝛽 − 1)/(𝛽 + 1). 
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If the slope 𝜗1 is not significantly different from zero, then 𝛽 ≈ 1 and we return to the standard 

case discussed in Section 4.5.1. If, however, 𝜗1 is significant then the estimated difference 

between any two measurements depends on the average of those measurements, and is given by 

𝜗̂0 + 𝜗̂1𝑎𝑖. The limits of agreement in this case are given by 

 𝜗̂0 + 𝜗̂1𝑎𝑖 ± 1.96𝜎̂𝑑
∗    [4.17] 

 

where  

𝜎̂𝑑
∗ = √

1

𝑛 − 2
∑ 𝑟𝑖

2
𝑛

𝑖=1
 

and 𝑟𝑖 is the residual for subject 𝑖 associated with the regression in [4.16]. Note that the ‘*’ here 

is used to differentiate this estimate from 𝜎̂𝑑 given in [4.5]. 

The limits of agreement in [4.17] correspond to an interval around the fitted regression line 

associated with [4.16], and visually they are straight lines equidistant and parallel to this 

regression line. 

To account for the possibility of heteroscedasticity Bland and Altman [1999] suggest regressing 

the absolute value of the residuals 𝑟𝑖, on the averages 𝑎𝑖, 𝑖 = 1,2… . , 𝑛. If this regression is not 

significant then the variability in differences does not depend on the averages, and so we 

calculate the limits of agreement as in [4.17]. However, if the regression is significant, then 

heteroscedasticity is present and the limits of agreement must account for this.  

When this is the case Bland and Altman [1999] suggest that the limits of agreement be defined 

as in [4.17] but where, for a particular subject 𝑖, 𝜎̂𝑑
∗ is substituted for the fitted value associated 

with regression of |𝑟𝑖| on 𝑎𝑖. These limits of agreement have been dubbed “V-shaped limits” 

[Ludbrook, 2010] as they look like a rotated letter ‘V’ with the points scattered within.  

As a test for heteroscedasticity, this works well if the structure is such that the standard deviation 

of the differences is a linear function of the true values, but if the relationship between differences 

and true values is something more complicated, this test may not accurately identify it. We 

further discuss the comparison of heteroscedastic measurement systems in Chapter 6. 
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The ability to calculate these more accurate and well-behaved limits of agreement might be 

mathematically attractive, but their applicability is still limited. These alternate formulations do 

not account for replicate measurements by each system on each subject, and as we will see in 

Section 5.1.2, there is not a similar adaptation when replicate measurements are available. 

4.5.3 The Limits of Agreement with Replicate Measurements 

When an MSC study includes 𝑟 ≥ 2 replicate measurement by each system on each subject, it 

is desirable to use all of the data to compare measurement systems. As such, Bland and Altman 

developed a modification to the limits of agreement approach that incorporates replicate 

measurements [1999; 2007].  

In particular, they recommend averaging the replicate measurements on a single subject by a 

particular measurement system, and constructing the difference plot using the differences and 

averages of the averaged measurements on each subject.  

If we denote the difference between the 𝑘th replicate measurements by each system on subject 𝑖 

by 𝑑𝑖𝑘 = 𝑦𝑖2𝑘 − 𝑦𝑖1𝑘, the difference in the averages of replicate measurements on subject 𝑖 is 

given by  

𝑑̅𝑖∙ = 𝑦̅𝑖2∙ − 𝑦̅𝑖1∙ 

where 𝑦̅𝑖𝑗∙ = ∑ 𝑦𝑖𝑗𝑘 𝑟⁄𝑟
𝑘=1  and 𝑦𝑖𝑗𝑘 is the observed value of 𝑌𝑖𝑗𝑘 as defined in [4.1]. The average 

of the averages of replicate measurements on subject 𝑖 is similarly given by 

𝑎̅𝑖∙ =
𝑦̅𝑖1∙ + 𝑦̅𝑖2∙

2
 

and the Cartesian points on the difference plot are now (𝑎̅𝑖∙, 𝑑̅𝑖∙) for 𝑖 = 1,2, … , 𝑛. 

When constructing limits of agreement for this plot, we can no longer use those defined in [4.15], 

as they will be too narrow; working with the average of replicate measurements instead of the 

individual measurements results in a reduction of measurement variation. Because the limits of 

agreement are meant to depict the typical range of differences between single measurements, 

they must be constructed with an estimate of 𝜎𝑑 that is based on the standard deviation of 

differences between single measurements, not between averages of several replicates. 

Accordingly, Bland and Altman adjust the calculation of 𝜎̂𝑑 to account for this. 
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When both measurement systems make 𝑟 replicate measurements on each subject, 𝜎𝑑 is 

estimated by 

𝜎̂𝑑
∗∗ = √𝜎̂𝑑̅

2 + (1 −
1

𝑟
) (𝜎̂1

2 + 𝜎̂2
2) 

where 𝜎̂𝑑̅
2 is the observed variance of the differences between the within subject means 𝑑̅𝑖∙, 𝑖 =

1,2, … , 𝑛, and where 

𝜎̂𝑗
2 =

1

𝑛(𝑟 − 1)
∑ ∑(𝑦𝑖𝑗𝑘 − 𝑦̅𝑖𝑗∙)

2
𝑟

𝑘=1

𝑛

𝑖=1

 

is the estimate of the within-subject variability (i.e. the repeatability), of system 𝑗. Note that we 

use ‘**’ to distinguish 𝜎̂𝑑
∗∗ from 𝜎̂𝑑

∗ discussed in the previous subsection. 

Thus, when each system makes 𝑟 ≥ 2 replicate measurements on each of the 𝑛 subjects in the 

MSC study, and the difference plot is constructed using the differences and averages of the 

within-subject means, the limits of agreement are defined as  

 𝜇̂𝑑 ± 1.96𝜎̂𝑑
∗∗    [4.20] 

 

With the difference plot and limits of agreement constructed in the manner just described, the 

assessment of interchangeability proceeds as in the 𝑟 = 1 case. 

4.6 Looking Ahead 

In this chapter, we have introduced the notion of comparing measurement systems. We have 

described a measurement system comparison (MSC) study, the goal of which is to determine if 

the two systems being compared agree well enough to be used interchangeably. In Sections 4.1-

4.5 we described a number of methods for analyzing MSC study data, and for assessing the 

agreement between two measurement systems. 

The comparison of means, comparison of repeatabilities, correlation and regression have all  

been criticized as methods for judging interchangeability because none of them simultaneously 

assess the bias and repeatability of the measurement systems, and because interchangeability is 
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based on statistical significance, not practical importance. Bland and Altman proposed the limits 

of agreement approach as an alternative analysis method which aimed to overcome this 

challenge.  

In Section 4.5 we described the limits of agreement approach in its simplest form, and in other 

more complicated situations. In Chapter 5 we identify a variety of problems associated with the 

limits of agreement approach that can result in misinterpretation of the relationship between the 

two measurement systems being compared, and that can ultimately lead to incorrect conclusions 

regarding their interchangeability. 

The problems we discuss demonstrate the need for a method for quantifying the agreement 

between two measurement systems that is more transparent and more informative. In Chapter 5 

we also introduce the probability of agreement, an intuitive and instructive metric, that more 

effectively and transparently quantifies the agreement between two measurement systems 

[Stevens et al., 2014 (under revision)]. The analysis method we propose consists of plotting the 

probability of agreement across the distribution of true values, thus summarizing the agreement 

between systems for any true value of interest. We also consider the design of an MSC study, in 

light of the probability of agreement, which allows for optimal estimation. 

In Chapter 6 we relax various model assumptions made in Chapter 5 and consider the application 

of the probability of agreement when comparing two measurement systems in these more general 

settings. In particular, we consider the situation in which the true values of the measurand do not 

follow a normal distribution, and when the measurement variation of one or both systems 

depends on this unknown true value. One of the key advantages of the probability of agreement 

analysis is its intuitive interpretation; it can be easily understood by non-statisticians and this 

interpretation does not change if we change assumptions and adjust the model. Application of 

the probability of agreement in the aforementioned settings serves to demonstrate the versatility 

of the suggested analysis method. 

 

  



86 
 

  



87 
 

 

Chapter 5 

 

The Probability of Agreement: An Alternative to the 

Limits of Agreement Analysis 

 

In Chapter 4 we introduced the idea of comparing measurement systems, where the goal is to 

determine whether a new measurement system agrees well enough with an existing one, for the 

two to be used interchangeably. This goal is achieved by a measurement system comparison 

(MSC) study in which a number of subjects are measured one or more times by each system. 

The data from this study are then analyzed and the agreement between the two system’s 

measurements is assessed. 

A variety of statistical techniques can be used to analyze the data from an MSC study and to help 

determine whether the two measurement systems can be used interchangeably. In Chapter 4 we 

reviewed five such techniques: comparison of means, comparison of repeatabilities, correlation, 

regression, and the limits of agreement approach. Four of these methods, correlation, regression 

and the comparison of means and repeatabilities, were deemed inappropriate measures of 

agreement because individually they do not simultaneously address the relative bias, and the 

relative repeatability, of the two systems. As well, in each of these methods the 

interchangeability of two systems is determined by the statistical significance of a hypothesis 

test; the practical significance, and hence the context of the comparison, is not considered.  

In Section 4.5, we described the limits of agreement approach which was proposed by Bland and 

Altman [1983; 1986] as an alternative analysis method to overcome these challenges. However, 

this method faces its own challenges, which we critically examine in Section 5.1. 
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Given the problems with existing methods, we propose a new method for assessing 

interchangeability which is based on the probability of agreement [Stevens et al., 2014 (under 

revision)]. This method accurately and transparently quantifies the agreement between two 

measurement systems in an intuitive manner.  

In Section 5.2 we introduce the analysis method by defining the probability of agreement and 

associated plot, we describe the maximum likelihood-based estimation procedure, and discuss 

the assessment of model assumptions. We also illustrate the analysis method with an example 

from the literature [Bland and Altman, 1999]. Then in Section 5.3 we discuss the design of an 

MSC study, and make recommendations for a design which facilitates precise estimation of the 

probability of agreement. We end the chapter with a summary and discussion in Section 5.4. 

Before proceeding however, we restate model [4.1] as it will help to describe the problems 

associated with the limits of agreement approach, and it is necessary to describe the probability 

of agreement analysis. 

To describe the data collected during an MSC study, we propose the following mixed effects 

model: 

 
𝑌𝑖1𝑘 = 𝑆𝑖 + 𝑀𝑖1𝑘 

𝑌𝑖2𝑘 = 𝛼 + 𝛽𝑆𝑖 + 𝑀𝑖2𝑘 
     [5.1] 

 

where 𝑌𝑖𝑗𝑘 is a random variable which represents the value observed on system 𝑗’s 𝑘th 

measurement of subject 𝑖; 𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2; 𝑘 = 1,2, … , 𝑟. Note that 𝑗 = 1 indexes the 

reference measurement system and 𝑗 = 2 indexes the new measurement system. Recall 𝑆𝑖 is a 

random variable that represents the unknown true value of the measurand for subject 𝑖, with the 

distributional assumption 𝑆𝑖~𝑁(𝜇, 𝜎𝑠
2), and 𝑀𝑖𝑗𝑘 is a random variable which represents the 

measurement error when system 𝑗 makes multiple measurements on subject 𝑖. We further assume 

that the 𝑀𝑖𝑗𝑘  are independent of each other and independent of 𝑆𝑖, and that 𝑀𝑖𝑗𝑘~𝑁(0, 𝜎𝑗
2) where 

𝜎𝑗 quantifies the measurement variation, or repeatability, of system 𝑗. The parameters −∞ <

𝛼 < ∞ and 𝛽 > 0 quantify the bias of the second (new) measurement system relative to the 

existing system. We refer to 𝛼 as the fixed bias and we call 𝛽 the proportional bias [Ludbrook, 

2010].  
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As in Chapter 4, model [5.1] does not include observer effects and so the repeatability 𝜎𝑗 

quantifies the overall measurement system variation of system 𝑗 (i.e. no reproducibility). As well, 

we assume that the measurement systems being compared are both homoscedastic; that is, 𝜎𝑗 is 

constant across the true values of the measurand for 𝑗 = 1,2. We consider the heteroscedastic 

case in Chapter 6. 

Based on [5.1], we say that the two measurement systems are identical if 𝛼 = 0, 𝛽 = 1 and 𝜎1 =

𝜎2. In Chapter 4 we noted that two systems do not need to be identical to be used interchangeably, 

and we informally stated that two measurement systems could be used interchangeably if, most 

of the time, their measurements on the same subject are sufficiently similar, i.e., 𝑌𝑖1𝑘 ≈ 𝑌𝑖2𝑘.  

We can reformulate this criteria in terms of the difference between single measurements by each 

system on a given subject, 𝐷𝑖 = 𝑌𝑖2𝑘 − 𝑌𝑖1𝑘: two measurement systems can be used 

interchangeably if, most of the time, the differences 𝐷𝑖 are small relative to a clinically (or 

practically) acceptable difference. It is by this criterion that two systems will be deemed 

interchangeable by the limits of agreement analysis, and also by the probability of agreement 

analysis. 

5.1 Problems with the Limits of Agreement Approach 

As discussed in Section 4.5, the limits of agreement approach was proposed by Bland and 

Altman [1983; 1986] as an alternative to other methods of assessing interchangeability. By 

evaluating the differences between single measurements on a given subject by the two systems, 

this technique is meant to determine whether the measurements are similar enough for the two 

systems to be used interchangeably. This analysis method is based on the difference plot: a 

scatter plot of the observed differences versus the observed averages of the measurements made 

by both systems on each subject. Although more informative than correlation, regression, and a 

comparison of means and repeatabilities, this approach has challenges of its own that can effect 

judgements of interchangeability. 

5.1.1 Problems when there are no replicate measurements (𝑟 = 1) 

One of the most consequential problems is that, although Bland and Altman [1995; 1999] 

recommend measuring each subject two or more times by each measurement system, this is 
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seldom done in practice. This could, in part, be because the example presented in their landmark 

Lancet paper ignores the fact that each system made two measurements on each subject, and uses 

only the first measurement on each subject to compare the two systems.  

The difference plot, as described in Section 4.5.1, does not provide adequate information about 

the relationship between the two systems, and without the additional information gained by 

replicate measurements, the difference plot can be misleading. To fully understand the 

relationship between the two measurement systems, and hence decide if the two systems are 

interchangeable, it is important to estimate all of the parameters in [5.1].  

However, by not making replicate measurements we cannot separately estimate these 

parameters, a limitation Voelkel and Siskowski [2005] referred to as the problem of 

indeterminacy. Specifically, we can only estimate the following five quantities: 𝐸(𝑌𝑖1) = 𝜇, 

𝐸(𝑌𝑖2) = 𝛼 + 𝛽𝜇, 𝑉𝑎𝑟(𝑌𝑖1) = 𝜎𝑠
2 + 𝜎1

2, 𝑉𝑎𝑟(𝑌𝑖2) = 𝛽2𝜎𝑠
2 + 𝜎1

2  and 𝐶𝑜𝑣(𝑌𝑖1, 𝑌𝑖2) = 𝛽𝜎𝑠
2. 

Recall that in the absence of replicate measurements (𝑟 = 1), we eliminate the subscript 𝑘. 

One consequence of no replicate measurements is that without separate estimates of 𝛼 and 𝛽, we 

cannot distinguish between fixed and proportional bias, and so the biases become confounded. 

As well, without separate estimates of the two repeatabilities, 𝜎1 and 𝜎2, we cannot determine 

which system is more precise, and we risk rejecting interchangeability with a new measurement 

system which is more precise than the existing one. Unfortunately the difference plot cannot 

disentangle confounding biases, and it does not indicate which system is more precise, so 

replicate measurements are necessary to understand how the measurements by the two systems 

are related. 

To illustrate the effect of not explicitly estimating and comparing 𝜎1 and 𝜎2, consider the 

comparison of two measurement systems where both systems are unbiased (𝛼 = 0 and 𝛽 = 1). 

In this situation, the standard deviation of the differences, 𝐷𝑖 = 𝑌𝑖2 − 𝑌𝑖1 is 𝜎𝑑 = √𝜎1
2 + 𝜎2

2, 

which is estimated by 𝑠𝑑, defined in [4.5]. When using the limits of agreement approach to decide 

whether a new measurement system is ‘as good as’ the reference one, the decision depends on 

how ‘good’ the reference system is. For example, when 𝜎1 is large but 𝜎2 is small, 𝜎𝑑 and hence 

𝑠𝑑 might still be large enough to push the limits of agreement outside the CAD, leading one to 

reject interchangeability. When this happens we reject interchangeability with a new 
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measurement system that is more precise than the existing one, even though both are unbiased. 

Thus practitioners who uncritically apply the limits of agreement technique can be misled. Bland 

and Altman [1986; 1999] acknowledge that in using their technique this problem is a possibility. 

We feel that this is a potentially serious problem that practioners want to avoid. 

The absence of replicate measurements and hence estimates of repeatability can result in another 

problem which we call false correlation [Stevens et al., 2014 (under revision)]. Recall that one 

purpose of the difference plot is to detect whether there is a relationship between the differences 

and the averages (which are a surrogate for the unknown true values of the measurand). By using 

the averages on the horizontal axis, we are supposedly protected against the appearance of a 

pattern when no real relationship between differences and true values exists. Bland and Altman 

suggest that the correlation between the differences and averages should be zero because the 

variability of each measurement system should be the same: “as they should if they are 

measurements of the same thing” [2003, p. 91]. However, just because both systems are 

measuring the same thing, does not imply that the repeatabilities should be the same. As such, 

assuming 𝜎1 = 𝜎2 may not be valid. The results below demonstrate that in situations where this 

assumption does not hold, the correlation between differences and averages is not zero, and in 

fact can be quite large.  

Because we wish to determine whether a correlation exists in the absence of any true relationship, 

we use the components of model [5.1] with 𝛽 = 1 to calculate the correlation between 𝐷 = 𝑌2 −

𝑌1 and 𝐴 = (𝑌1 + 𝑌2)/2. Note that we exclude the subscripts 𝑖 and 𝑘  on 𝑌𝑖𝑗𝑘 because we are 

assuming replicate measurements have not been made, and the distribution of 𝐷 and 𝐴 is the 

same for all subjects. With this amendment in notation, the correlation between 𝐷 and 𝐴 is given 

by 

 𝐶𝑜𝑟𝑟(𝐷, 𝐴) =
𝜎1

2 − 𝜎2
2

√(𝜎1
2 + 𝜎2

2)(4𝜎𝑠
2 + 𝜎1

2 + 𝜎2
2)

      [5.2] 

 

Clearly the correlation is zero and hence 𝐷 and 𝐴 are uncorrelated if 𝜎1 = 𝜎2. But if they are not 

equal, which is a more realistic assumption, the differences and averages are correlated.  
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We have investigated the magnitude of this correlation for varying relative sizes of 𝜎1, 𝜎2 and 

𝜎𝑠. Figure 5.1 provides a contour plot which shows the correlation between differences and 

averages for various values of 𝜎𝑠/𝜎1 and 𝜎2/𝜎1. As we can see, the resulting correlations can be 

different from zero, and in some cases very different from zero. It is clear that if 𝜎1 and 𝜎2 are 

small compared to the overall subject variation 𝜎𝑠 (i.e., 𝜎𝑠/𝜎1 is large and 𝜎2/𝜎1 is not), then the 

correlation between differences and averages is not likely to differ materially from zero. But as 

the variation due to the measurement systems increases, the correlation increases. For example, 

if 𝜎𝑠/𝜎1 and 𝜎2/𝜎1 are both 3, which might be common in practice, we get a correlation of -0.37.  

 
Figure 5.1: Contours of the correlation between differences and averages for various relative sizes of 𝜎1, 𝜎2 and 𝜎𝑠 

 

A serious issue arises here. In the absence of any true relationship between differences and true 

values, the difference plot can suggest a significant (positive or negative) relationship exists. 

This may lead an unsuspecting practitioner to log-transform their data when it is not warranted, 

or miscalculate the limits of agreement (see Section 4.5.2). As well, the presence of a false 

negative correlation could mask the existence of a true positive relationship, and vice versa. Thus 

the existence of a false correlation can confuse the relationship between two measurement 

systems and may lead to misinformed judgments of interchangeability. However, by taking 

replicate measurements on each subject with each system, we can obtain the estimates 𝜎̂1, 𝜎̂2 and 

𝜎̂𝑠, and hence estimate the theoretical correlation in [5.2] to help determine whether any 
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relationship seen on the difference plot is due to 𝛽 being different from 1, or just a consequence 

of the relative sizes of the variance components.  

It should be clear that without performing replicate measurements on each subject by each 

system, the limits of agreement approach can be misleading; without replicated measurements 

we cannot adequately assess bias or repeatability, potentially causing a researcher to make the 

wrong decision regarding interchangeability. As such we do not recommend the use of the limits 

of agreement technique when replicate measurements are not available. In fact, we do not 

recommend the comparison of measurement systems at all, if replicate measurements are not 

available. 

5.1.2 Problems when there are replicate measurements (𝑟 > 1) 

As noted in Section 4.5, Bland and Altman [1999; 2007] suggest extensions to the limits of 

agreement technique when replicate measurements are available (𝑟 > 1). In this case they 

recommend averaging the replicate measurements on a single subject by a particular 

measurement system, and constructing the difference plot using the differences and averages of 

the averaged measurements on each subject. By doing this, the typical limits of agreement are 

too narrow and so they adjust the estimate of the variability in differences to account for the 

reduction in measurement variation that results from working with the average of replicate 

measurements instead of individual measurements. Although this results in limits that more 

accurately reflect the distribution of differences in single measurements, the approach is not 

without difficulties. 

First, by plotting averages of the replicate measurements, a transparent display of the raw data 

is unavailable. A plot of the averages can mask large differences in the replicate measurements 

on the same subject by each system, and can make the level of agreement between the two 

measurement systems appear stronger than it truly is. A second issue is that Bland and Altman’s 

method of calculating the limits of agreement in this situation assumes that “the difference 

between the two methods is reasonably stable across the range of measurements” [2007, p. 572]. 

In other words, this technique assumes there is no proportional bias (𝛽 = 1), and so its 

applicability is limited. A third problem is that although replicate measurements are made, there 

is no explicit comparison of repeatabilities, i.e. 𝜎1 and 𝜎2 in [5.1], and so it is still possible to 
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reject interchangeability with a more precise measurement system if the measurement variation 

in the reference system is large. 

5.1.3 Misuse of the Technique 

Another issue that exists – that is not a direct function of the limits of agreement method – is 

that, in general, the technique is widely misused. In fact, Bland and Altman acknowledge the 

misuse of their technique when they say “the 95% limits of agreement method has been widely 

cited and widely used, though many who cite it do not appear to have read the paper” [2003, p. 

91]. To investigate this, Mantha et al. [2000] and Dewitte et al. [2002] undertook large-scale 

literature reviews of MSC studies analyzed by the limits of agreement technique, and found a 

variety of problems. For example, common errors were that repeatability was often not assessed, 

the limits of agreement were incorrectly calculated, the axes on the difference plots were mis-

specified, and that relationships between the differences and averages were often ignored. 

However, the most pervasive and alarming was that in more than 90% of the articles examined 

the authors did not define a clinically acceptable difference, let alone compare their limits of 

agreement to one. Clearly these authors forgot, or were unaware that the crux of the limits of 

agreement approach, and the basis upon which interchangeability is determined, is the 

comparison of limits of agreement to the clinically acceptable difference. Without this 

comparison, the judgement of interchangeability is difficult and can be misinformed.  

In the absence of a clinically acceptable difference, authors would conclude that agreement 

between systems is indicated by the fact that ‘most’ of the differences fall within the upper and 

lower limits of agreement. To this point Bland and Altman have replied: 

“The very wide uptake of the limits of agreement approach has naturally been very 

pleasing. We have been aware, however, that sometimes the method has not been 

adopted with full understanding. For example, we have seen it suggested that two 

methods agree well because most of the observations lie within the 95% limits of 

agreement. The limits are calculated so that this will always be the case.” [2002, p. 802] 

Because these two previous literature reviews were published over ten years ago, we have 

conducted an updated review. In line with these previous reviews, we consulted articles in the 

field of clinical chemistry. Specifically we reviewed articles in Clinical Chemistry and the 
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Annals of Clinical Biochemistry between 2002 and 2012, inclusive. In these journals there were 

respectively 85 and 33 articles which cited Bland and Altman’s 1986 Lancet paper. Of these, 73 

and 29 articles documented actual MSC studies. As in Mantha et al. [2000], we evaluated each 

of these 102 articles on four main criteria: 

 Was a clinically acceptable difference defined and used to assess agreement? 

 Was the repeatability of both systems assessed? 

 Was the horizontal-axis correctly specified as the average of measurements by each 

system? 

 Was the relationship between differences and averages considered? 

 
Total Clinical Chemistry 

Annals of Clinical 

Biochemistry 

CAD 16/102 (15.69%) 11/73 (15.07%) 5/29 (17.24%) 

Repeatability 25/102 (24.5%) 16/73 (21.92%) 9/29 (31.03%) 

X-axisa 77/88 (87.50%) 56/63 (88.89%) 21/25 (84.00%) 

Relationshipb 25/73 (34.25%) 19/53 (35.85%) 6/20 (30.00%) 

Table 5.1: Results of MSC literature review. Values are ratio (%). 
aThe denominators were 88, 63 and 25, respectively, corresponding to the number of articles which 

displayed a difference plot. 
bThe denominators were 73, 53 and 20, respectively, corresponding to the number of articles with evidence 

of proportional bias or heteroscedasticity. 

Table 5.1 summarizes the results of this analysis. We highlight key findings below: 

 Only 16% of studies defined a clinically acceptable difference and compared this with 

the limits of agreement to determine whether or not the systems were interchangeable. 

Although this percentage is higher than in the previous literature reviews, it is still very 

low.  

 Roughly 58% of the studies assessed the repeatability of one or both of the systems being 

compared. However, in only 24.5% of the articles was the repeatability of both systems 

determined.  

 Roughly 87% of the studies correctly specified the horizontal axis as the average of the 

measurements made by each method. Although this percentage seems high, given the 
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volume of literature Bland and Altman have devoted to this topic, this is a problem that 

should rarely be made.  

 Proportional bias and/or heteroscedasticity was visually identified in 73 of the 88 articles 

in which a difference plot was presented. Among these 73 articles, 53 acknowledged that 

such a relationship was present, but in only 25 of them did the authors deal with this 

issue. Common methods for eliminating proportional bias and heteroscedasticity were to 

log-transform the data, plot the differences as a percent of the averages, or to plot the 

ratio of the two measurements vs. the averages. 

The results of this literature review demonstrate that the application of the limits of agreement 

technique has improved somewhat in recent years, but, particularly with regards to defining 

clinically acceptable differences and assessing repeatability, there is still a long way to go.  

The success of the limits of agreement approach for assessing interchangeability has largely been 

due to its perceived simplicity. In this section, we have demonstrated some of the challenges 

associated with the approach, many of which arise because the approach over-simplifies the 

relationship between two measurement systems. It is clear that there is need for an analysis 

method that more accurately quantifies the agreement between two measurement systems and 

that is safeguarded against misuse. 

5.2 The Probability of Agreement Analysis 

In this section we propose a new method of analysis for comparing measurement systems as an 

alternative to the limits of agreement approach. We propose a simple metric, the probability of 

agreement, and an associated plot to clearly quantify the agreement between two measurement 

systems and hence help to decide whether the two systems can be used interchangeably. This 

approach seeks to overcome the deficiencies of the limits of agreement technique described in 

the previous section, and the deficiencies of the approaches discussed in Sections 4.1 – 4.4. 

5.2.1 The Probability of Agreement 

As with the limits of agreement technique, this approach examines the difference between single 

measurements made by two systems, and compares this difference to a clinically acceptable 

difference. Note that the term “clinically acceptable difference” was coined in the medical 
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context, but we could equivalently refer to the concept as a range of “practically acceptable 

differences” in other contexts. 

Here we assume the clinically acceptable difference has the form 𝐶𝐴𝐷 = (−𝑐, 𝑐). Using this and 

the notation associated with model [5.1] we define 𝜃(𝑠), the probability of agreement as 

 𝜃(𝑠) = 𝑃(|𝑌2 − 𝑌1| ≤ 𝑐|𝑆 = 𝑠)      [5.3] 

 

The probability of agreement is the probability that the difference between single measurements 

on the same subject by the two systems falls within the range that is deemed to be acceptable, 

conditional on the value of the measurand. Note that we exclude the subscripts 𝑖 and 𝑘 that are 

used in [5.1] because we are interested in the difference between single measurements and the 

distribution of 𝑆𝑖 and 𝑌𝑖2 − 𝑌𝑖1, conditional on the true dimension 𝑆𝑖, is the same for all subjects. 

Based on [5.1], 𝜃(𝑠) can be written as: 

 𝜃(𝑠) = 𝛷 (
𝑐 − 𝛼 − (𝛽 − 1)𝑠

√𝜎1
2 + 𝜎2

2
) − 𝛷 (

−𝑐 − 𝛼 − (𝛽 − 1)𝑠

√𝜎1
2 + 𝜎2

2
)      [5.4] 

 

where 𝛷(𝑥) is the standard normal cumulative distribution function evaluated at 𝑥.  

Using probabilities of this form, we construct the probability of agreement plot which 

graphically displays the estimated probability of agreement across a range of plausible values 

for 𝑠, the true value of the measurand. On this plot we include approximate pointwise confidence 

intervals for each value of 𝜃(𝑠) which reflect the uncertainty associated with its estimation. In 

Section 5.2.2 we describe how to obtain the standard errors necessary for calculating such 

confidence intervals. 

This plot serves as a simple tool for displaying the results when comparing two measurement 

systems; it summarizes agreement transparently and directly while accounting for possibly 

complicated bias and variability structures. While the modelling and estimation of 𝜃(𝑠) is 

somewhat complicated, its interpretation is extremely simple and one that most non-statisticians 

can understand.  
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Another benefit is that even if a more complicated model than [5.1] is assumed, the interpretation 

of the probability and the plot is unchanged. For example we may wish to relax the assumption 

that 𝑆𝑖 is normally distributed, or perhaps we wish to model measurement variation 

heteroscedasticity. In both cases we might alter model [5.1], but our interpretation of the 

probability of agreement and of the probability of agreement plot remains the same. We address 

both of these scenarios in Chapter 6. 

Note that for simplicity we have assumed 𝐶𝐴𝐷 = (−𝑐, 𝑐); this technique, however, easily 

generalizes to the situation where the clinically acceptable difference is not symmetric: 𝐶𝐴𝐷 =

(𝑐1, 𝑐2) and when the endpoints depend on the true value of the measurand: 𝐶𝐴𝐷 =

(𝑐1(𝑠), 𝑐2(𝑠)). As an example, the clinically acceptable difference may increase proportionally 

with 𝑠, i.e. for non-zero 𝑠 we may have 𝐶𝐴𝐷 = (−0.1𝑠, 0.1𝑠). 

The probability of agreement, 𝜃(𝑠), is a conditional quantity that depends on the value 𝑆 = 𝑠. If 

𝜃(𝑠) is largely unchanged across the possible values for 𝑆 = 𝑠, or if we simply wish to focus on 

the most likely values of 𝑆 = 𝑠, we may summarize the probability of agreement, with a single 

number.  

To do so, we define an unconditional probability of agreement, denoted 𝜃, which is, in a sense, 

the average value of 𝜃(𝑠) across the distribution of values of 𝑆. Using model [5.1], the 

unconditional probability of agreement is: 

 

 

𝜃 = 𝑃(|𝑌2 − 𝑌1| ≤ 𝑐) 

    = 𝛷 (
𝑐 − 𝛼 − (𝛽 − 1)𝜇

√(𝛽 − 1)2𝜎𝑠
2 + 𝜎1

2 + 𝜎2
2
) − 𝛷 (

−𝑐 − 𝛼 − (𝛽 − 1)𝜇

√(𝛽 − 1)2𝜎𝑠
2 + 𝜎1

2 + 𝜎2
2
) 

     [5.5] 

 

Use of this single-number summary is valid when 𝜃(𝑠) is similar for all values of 𝑠, or when the 

range of measurand values of interest is close to the mean, 𝜇.  

Thus we first recommend constructing the probability of agreement plot which is based on the 

(conditional) probability of agreement 𝜃(𝑠), and then we recommend using the plot to determine 
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whether 𝜃(𝑠) depends substantially on 𝑠, and hence whether the use of the unconditional 

probability of agreement 𝜃 is appropriate. 

Whether using the probability of agreement analysis, the probability that is deemed to indicate 

acceptable agreement and hence interchangeability is context-specific and is not a statistical 

decision. Accordingly, we demonstrate how to estimate and interpret 𝜃(𝑠) and 𝜃, but  how large 

they need to be to indicate interchangeability must be decided by the user. One reasonable choice 

might be to require 𝜃(𝑠), 𝜃 ≥ 0.95, similar to the limits of agreement approach.  

If the probability of agreement plot does not indicate acceptable agreement, (i.e. 𝜃(𝑠) is too low 

in the range of interest for 𝑠), then we recommend looking at the separate estimates of 

(𝜇, 𝛼, 𝛽, 𝜎1, 𝜎2, 𝜎𝑠) to determine the source of disagreement. Although the probability of 

agreement plot is informative and simple to interpret, examining the individual parameter 

estimates is the most informative description of the relationship between the two system’s 

measurements. We describe how to obtain these estimates in Section 5.2.2. 

Note that the individual measurements made in the MSC study are used in the estimation 

procedure to construct the probability of agreement plot, but they are not explicitly displayed. 

For this reason we also propose the use of diagnostic plots that display the individual data points 

and that allow us to check various assumptions made by model [5.1]. We discuss this further in 

Section 5.2.3. 

5.2.2 Maximum Likelihood Estimation 

In order to estimate 𝜃(𝑠) and construct the probability of agreement plot, we use maximum 

likelihood estimation to obtain estimates of the parameters in model [5.1]. Using Matlab [The 

MathWorks Inc., 2013], we numerically maximize the log-likelihood function to obtain the 

maximum likelihood estimates (𝜇̂, 𝛼̂, 𝛽̂, 𝜎̂1, 𝜎̂2, 𝜎̂𝑠) which are substituted into [5.4] and [5.5] to 

obtain 𝜃(𝑠) and 𝜃. We sketch the derivation of the log-likelihood function and the estimation 

procedure here. 

Because we assume subjects are independent from one another, we can write the log-likelihood 

contribution for a single subject and obtain the full log-likelihood function by summing these 

components. Thus we begin by deriving the log-likelihood function for a single subject. 
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For a particular subject 𝑖, we order the random vector corresponding to its measurements by 

system and write 𝑌⃗ 𝑖 = (𝑌⃗ 𝑖1
𝑇 , 𝑌⃗ 𝑖2

𝑇)
𝑇
, where 𝑌⃗ 𝑖𝑗 = (𝑌𝑖𝑗1, 𝑌𝑖𝑗2, … , 𝑌𝑖𝑗𝑟)

𝑇
 corresponds to the 𝑟 

measurements by system 𝑗 on subject 𝑖. In what follows we let 𝐽𝑎 be a column vector of 𝑎 1’s, 

𝐽𝑎×𝑏 be an 𝑎 × 𝑏 matrix of 1’s, and 𝐼𝑎 be the 𝑎 × 𝑎 identity matrix. From [5.1] we have for 

subject 𝑖, 𝑌⃗ 𝑖~𝑀𝑉𝑁(𝜇 ,∑) with 

𝜇 = (𝜇, 𝛼 + 𝛽𝜇)𝑇
⊗ 𝐽𝑟 

and 

∑ = 𝜎𝑠
2 [

1 𝛽

𝛽 𝛽2] ⊗ 𝐽𝑟×𝑟 + [
𝜎1

2 0

0 𝜎2
2] ⊗ 𝐼𝑟 

where ⊗ denotes the Kronecker product. 

In order to explicitly write down the log-likelihood function for subject 𝑖 we must first obtain 

the inverse and determinant of the covariance matrix. The form of ∑ allows us to write down 

∑−1 and |∑| explicitly as 

∑−1 = [
1/𝜎1

2 0

0 1/𝜎2
2] ⊗ 𝐼𝑟 −

𝜎𝑠
2

1 + 𝑟𝜎𝑠
2 (

1
𝜎1

2 +
𝛽2

𝜎2
2)

[
 
 
 
 

1

𝜎1
4

𝛽

𝜎1
2𝜎2

2

𝛽

𝜎1
2𝜎2

2

𝛽2

𝜎2
4 ]

 
 
 
 

⊗ 𝐽𝑟×𝑟 

and 

|∑| = (𝜎1
2𝜎2

2)𝑟 {1 + 𝑟𝜎𝑠
2 (

1

𝜎1
2 +

𝛽2

𝜎2
2)} 

See Appendix C for more details on calculating the inverse and determinant of the variance 

covariance matrix ∑. 

Denoting the observed data by 𝑦𝑖𝑗𝑘 𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2 and 𝑘 = 1,2, … , 𝑟 (we distinguish the 

random variable 𝑌𝑖𝑗𝑘 by using a lower-case 𝑦𝑖𝑗𝑘 to denote the observed data), the log-likelihood 

contribution from subject 𝑖 with 𝑟 replicate measurements by both systems is 

−𝑟𝑙𝑛(2𝜋) −
1

2
𝑙𝑛|∑| −

1

2
(𝑦 𝑖 − 𝜇 )𝑇∑−1(𝑦 𝑖 − 𝜇 ) 
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since by model [5.1], 𝑌⃗ 𝑖~𝑀𝑉𝑁(𝜇 ,∑). We can explicitly write this as: 

 

𝑙𝑖(𝜇, 𝛼, 𝛽, 𝜎1, 𝜎2, 𝜎𝑠) = −𝑟𝑙𝑛(2𝜋) −
1

2
ln [1 + 𝑟𝜎𝑠

2 (
1

𝜎1
2 +

𝛽2

𝜎2
2)] 

−
1

2
{

1

𝜎1
2 ∑(𝑦𝑖1𝑘 − 𝜇)2

𝑟

𝑘=1

+
𝑎

𝜎1
4 [∑(𝑦𝑖1𝑘 − 𝜇)

𝑟

𝑘=1

]

2

−
1

𝜎2
2 ∑(𝑦𝑖2𝑘 − 𝛼 − 𝛽𝜇)2

𝑟

𝑘=1

+
𝑎𝛽2

𝜎2
4 [∑(𝑦𝑖2𝑘 − 𝛼 − 𝛽𝜇)

𝑟

𝑘=1

]

2

−
2𝑎𝛽

𝜎1
2𝜎2

2 ∑(𝑦𝑖1𝑘 − 𝜇)(𝑦𝑖2𝑘 − 𝛼 − 𝛽𝜇)

𝑟

𝑘=1

} 

[5.6] 

where  

𝑎 =
𝜎𝑠

2

1 + 𝑟𝜎𝑠
2 (

1
𝜎1

2 +
𝛽2

𝜎2
2)

 

As noted, we assume measurements made on different subjects are independent and so we obtain 

the full log-likelihood function by summing the log-likelihood contribution [5.6] for each 

subject. That is 

 𝑙(𝜇, 𝛼, 𝛽, 𝜎1, 𝜎2, 𝜎𝑠) = ∑𝑙𝑖

𝑛

𝑖=1

      [5.7] 

 

In order to calculate approximate confidence intervals for 𝜃(𝑠) we must obtain asymptotic 

standard deviations for (𝜇, 𝛼, 𝛽, 𝜎1, 𝜎2, 𝜎𝑠) which are found using the expected Fisher 

information matrix. The expected Fisher information matrix is found by taking second partial 

derivatives of [5.7], which are performed symbolically by Maple [Maplesoft, 2014] to avoid 

errors, and by calculating the expected values of the necessary sums of squares. We do not give 

all of the formulas here, but note that we use the following results 

𝐸 [∑ ∑(𝑌𝑖1𝑘 − 𝜇)2

𝑟

𝑘=1

𝑛

𝑖=1

] = 𝑛𝑟(𝜎𝑠
2 + 𝜎1

2) 
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𝐸 [∑{∑(𝑌𝑖1𝑘 − 𝜇)

𝑟

𝑘=1

}

2𝑛

𝑖=1

] = 𝑛𝑟(𝑟𝜎𝑠
2 + 𝜎1

2) 

𝐸 [∑ ∑(𝑌𝑖2𝑘 − 𝛼 − 𝛽𝜇)2

𝑟

𝑘=1

𝑛

𝑖=1

] = 𝑛𝑟(𝛽2𝜎𝑠
2 + 𝜎2

2) 

𝐸 [∑{∑(𝑌𝑖2𝑘 − 𝛼 − 𝛽𝜇)

𝑟

𝑘=1

}

2𝑛

𝑖=1

] = 𝑛𝑟(𝑟𝛽2𝜎𝑠
2 + 𝜎2

2) 

𝐸 [∑ {∑(𝑌𝑖1𝑘 − 𝜇)

𝑟

𝑘=1

} {∑(𝑌𝑖2𝑘 − 𝛼 − 𝛽𝜇)

𝑟

𝑘=1

}

𝑛

𝑖=1

] = 𝑛𝑟2𝛽𝜎𝑠
2 

𝐸 [∑ ∑(𝑌𝑖1𝑘 − 𝜇)

𝑟

𝑘=1

𝑛

𝑖=1

] = 0 

𝐸 [∑ ∑(𝑌𝑖2𝑘 − 𝛼 − 𝛽𝜇)

𝑟

𝑘=1

𝑛

𝑖=1

] = 0 

We then invert the Fisher Information matrix numerically using Matlab [The MathWorks Inc., 

2013]. This gives the asymptotic variances of (𝜇, 𝛼, 𝛽, 𝜎1, 𝜎2, 𝜎𝑠). But because we are interested 

in 𝜃(𝑠) and 𝜃, we find their asymptotic variances by applying the Delta Method [Lehmann and 

Casella, 1998]; we pre- and post-multiply the inverse of the Fisher information matrix by a 

suitable vector of partial derivatives: 𝐷𝑠 for the asymptotic variance of  𝜃(𝑠), and 𝐷 for 𝜃.  

𝐷𝑠 = 
𝜕𝜃(𝑠)

𝜕(𝜇, 𝛼, 𝛽, 𝜎1, 𝜎2, 𝜎𝑠)
      𝐷 =  

𝜕𝜃

𝜕(𝜇, 𝛼, 𝛽, 𝜎1, 𝜎2, 𝜎𝑠)
 

Where 𝜃(𝑠) and 𝜃 are given by [5.4] and [5.5], respectively. 

Again, we use Maple [Maplesoft, 2014] to calculate these partial derivatives and Matlab [The 

MathWorks Inc., 2013] to find their numerical values for any selected parameter values. 

With these asymptotic results we calculate approximate confidence intervals for 𝜃(𝑠) and 𝜃. In 

Section 5.3.1 we use simulation to demonstrate that for typical sample sizes (40 ≤ 𝑛 ≤ 120, and 
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2 ≤ 𝑟 ≤ 5) these asymptotic results match simulated results, suggesting that asymptotic 

confidence intervals are reliable. 

5.2.3 Model Checking 

The first step of any data analysis should be to look at the data and decide whether the intended 

analysis is appropriate. In this context we suggest that the assumptions of model [5.1] be 

checked. The two main assumptions are that (i) the unknown true values of the measurand are 

normally distributed, and (ii) the measurement variation is constant across the range of true 

values. We can assess each of these assumptions respectively with a modified QQ-plot and a 

repeatability plot. 

To evaluate whether 𝑆𝑖~𝑁(𝜇, 𝜎𝑠
2), for each measurement system we average the replicate 

measurements on a particular subject and create a QQ-plot of these 𝑛 averages. By working with 

the averages we reduce the effect of the measurement variation, allowing us to better examine 

the between-subject variation and the distribution of 𝑆𝑖. If the normality assumption holds the 

QQ-plots for both systems should yield a relatively straight line. To aid in their interpretation, 

we suggest overlaying the quantiles of 50 simulated normal datasets with mean and variance 

equal to the sample mean and sample variance of the 𝑛 averages [Oldford, 2014]. Doing so allows 

us to judge more clearly if the sample data can be reasonably modeled with a normal distribution. 

If this modified QQ-plot suggests that the normal distribution is a reasonable assumption for 𝑆𝑖 

then model [5.1] is applicable. However, if it does not, then an alternative to the maximum 

likelihood approach should be used. In Chapter 6 we discuss a moment-based estimation 

procedure which does not require this normality assumption. 

To decide whether the measurement variation for each system is constant across true values of 

the measurand, we suggest constructing what we call a repeatability plot for each measurement 

system, which is also useful for identifying outliers. The plot is an individual values plot of the 

residuals of the replicate measurements on each subject versus the average of those replicate 

measurements, ordered by size. If the residuals seem unrelated to the averages this suggests that 

the measurement variation is homoscedastic. If, however, there appears to be a dependency 

between the residuals and averages, for example if variability in the residuals increases as the 

average increases, we conclude the measurement variation is heteroscedastic. The exact structure 
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of heteroscedasticity will depend on the nature of the relationship between the residuals and 

averages. If the repeatability plots suggest heteroscedasticity of any kind in one or both 

measurement systems then model [5.1] is no longer appropriate and another approach must be 

taken. We propose an alternate model, and the corresponding estimation procedure in Chapter 

6. 

5.2.4 Example 

To illustrate how to determine whether two measurement systems are interchangeable using the 

probability of agreement and the associated plot, we use systolic blood pressure (in mmHg) data 

from an example published by Bland and Altman [1999]. In this example, 85 subjects are 

measured three times by each of two observers, labelled “J” and “R”, both using a 

sphygmomanometer. While this is technically a comparison of two observers using the same 

measurement system, it is statistically equivalent to the comparison of two measurement 

systems; we can think of observer J using the sphygmomanometer as measurement system 1 

(MS1), and observer R using the sphygmomanometer as measurement system 2 (MS2). The data 

can be found in Table C.1 of Appendix C. 

To justify the model assumptions underlying the probability of agreement approach, we present 

the modified QQ-plots and the repeatability plots for this data in Figure 5.2. These plots suggest 

that it is reasonable to assume 𝑆𝑖 is normally distributed, and that the repeatability of each 

measurement system is homoscedastic. Together the diagnostic plots in Figure 5.2 suggest that 

the model and the analysis approach is valid, and that there are no large outliers. 

Having verified that model [5.1] is appropriate, we use this data we obtain maximum likelihood 

estimates and asymptotic standard deviations for each of the parameters in this model. These 

results are presented in Table 5.2. 
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Figure 5.2: Modified QQ-Plot and Repeatability Plot for observers “J” (MS1) and “R” (MS2) from the example 

data. Left panels correspond to observer “J” and right panels correspond to observer “R” 

 

 Estimate Asy. Standard Error 

𝜇 127.3612 3.2937 

𝛼 -1.3623 2.1432 

𝛽 1.0108 0.016377 

𝜎𝑠 30.1959 2.3421 

𝜎1 5.5655 0.28559 

𝜎2 5.4955 0.28347 

𝜃 0.7985 0.09511 
 

Table 5.2: ML estimates and asymptotic standard deviations associated with the systolic blood pressure data  

Using these maximum likelihood estimates, we calculate 𝜃(𝑠) for 𝑠 in the range 

(𝜇̂ − 3𝜎̂𝑠, 𝜇̂ + 3𝜎̂𝑠) and construct the probability of agreement plot given in Figure 5.3. Note that 

the calculation of the probabilities in this plot assumes a clinically acceptable difference with 

𝑐 = 10. This is somewhat arbitrarily chosen since surprisingly Bland and Altman [1999] do not 

explicitly provide a clinically acceptable difference for these data.  
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To justify our assumed CAD we note that when assessing systolic blood pressure measuring 

devices, O’Brien et al. [1993] provide criteria for grading such measurement systems. A blood 

pressure measurement device can be graded as A, B, C, or D depending on the proportion of 

differences that lie within ±5, ±10, and ±15 mmHg. These criteria are based on the difference 

between measurements by a new system and a sphygmomanometer, and are intended for 

assessing the adequacy of a new system relative to this standard. Our goal (assessing 

interchangeability) is different, but we assume these cut-off values are still relevant and use 𝑐 =

10 for illustration. Note that the probably of agreement will increase for larger values of 𝑐 and 

decrease for smaller values. 

 

Figure 5.3: Likelihood-Based Probability of Agreement Plot comparing “J” and “R”  

from the example data with 𝑐 = 10 

 

In Figure 5.3 we see that the probability of agreement is relatively constant (roughly 0.8) across 

the range of common systolic blood pressures. It is not surprising then to find that the estimate 

of the unconditional probability of agreement 𝜃 is 0.799 with an approximate confidence interval 

given by (0.61, 0.98). For this example, use of the unconditional probability seems reasonable. 

Whether these results indicate good enough agreement for the two measurement systems to be 

used interchangeably depends on whether the investigators deem 𝜃 ≈ 0.8 to be sufficiently large. 

Such a judgement will also depend on the assumptions that the chosen CAD of 𝑐 = 10 is 
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appropriate. If an acceptable value of 𝑐 cannot be agreed upon, multiple probability of agreement 

plots could be constructed to investigate the relationship between the level of agreement and 𝑐. 

Suppose that the choice of 𝑐 = 10 is appropriate, but that  𝜃 ≈ 0.8 is not sufficiently large 

(perhaps 𝜃 ≥ 0.95 is necessary), leading us to conclude that the two measurement systems do 

not agree well enough to be used interchangeably. To identify the source of this disagreement 

we should examine the individual parameter estimates and their asymptotic standard errors, 

which are shown in Table 5.2. Note that we define the asymptotic standard error for a parameter 

as the corresponding asymptotic standard deviation (as determined by the Fisher information) 

evaluated at the maximum likelihood estimates of all of the relevant parameters. 

In light of this apparent disagreement, it is perhaps surprising to find that the fixed and 

proportional biases are negligible (𝛼 ≈ 0, 𝛽 ≈ 1) and the repeatabilities are very similar (𝜎1 ≈

𝜎2), indicating that the distribution of the measurements made by each system are similar. The 

issue here is that although 𝜎1 ≈ 𝜎2, both 𝜎1 and 𝜎2 are large relative to 𝜎𝑠 leading to large 

differences between individual measurements made by each system, causing the probability of 

agreement to be small. This is an example in which the reference system is highly variable, and 

so even replicate measurements by that system will not often closely agree. 

For this example, and others like it, whether or not we use the new system interchangeably may 

not be based solely on the probability of agreement; the probability of agreement may be low, 

but if the reference system is used routinely, perhaps a justification can be made for using a new 

system that is equally imprecise, if it is, say, cheaper to operate. Such a decision cannot be made 

by looking at the probability of agreement plot alone; although it accounts for complicated bias 

and repeatability structures, the probability of agreement masks the individual values of these 

parameters. Accordingly, we recommend that if the plot suggests disagreement between two 

measurement systems, the individual parameter estimates be examined for guidance on a final 

decision.  
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Figure 5.4: Repeated measures difference plot comparing “J” (MS1) and “R” (MS2)  

from the example data with 𝑐 = 10 

 

We also present the repeated measures difference plot for these data in Figure 5.4. This plot also 

indicates disagreement, as the limits of agreement lie outside 𝐶𝐴𝐷 = (−10,10). However, the 

difference plot does not quantify the disagreement as concisely as does the probability of 

agreement plot, nor does it offer any indication of the source of this disagreement. 

The probability of agreement analysis technique and plot have been automated, and Matlab [The 

MathWorks Inc., 2013] software is available to practitioners who wish to use it to determine 

whether two measurement systems are interchangeable. 

5.3 Planning an MSC Study 

When using the probability of agreement to decide whether two measurement systems are 

interchangeable, it is important to consider the design of the MSC study. The typical 

recommendation, although not always followed, is for each measurement system to measure 𝑛 

subjects 𝑟 > 1 times for a total of 𝑁 = 𝑛𝑟 measurements each. As we have stated, replicate 

measurements are necessary to ensure that the parameters in model [5.1], and hence the 

probability of agreement, can be estimated.  
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For a fixed total number of measurements 𝑁, we investigate the effect of the number of subjects 

𝑛 and the number of replicate measurements 𝑟 on the precision with which 𝜃 can be estimated. 

Note that we base these comparisons on the unconditional probability of agreement, 𝜃, instead 

of 𝜃(𝑠) because it is difficult to determine in general which values of 𝑠 are relevant. As such, we 

investigate the effect of 𝑛 and 𝑟 on 𝜃, the unconditional probability of agreement. We compare 

designs using the asymptotic standard deviations of 𝜃̃, calculated from the expected Fisher 

information matrix, as described in Section 5.2.2.  

To ensure that the asymptotic results allow us to appropriately rank the possible designs, we first 

conduct a simulation study to compare the asymptotic and simulated standard errors of 𝜃 which 

we describe in Section 5.3.1. This simulation confirmed that the simulated and asymptotic results 

agree, justifying the use of asymptotic results to investigate possible (𝑛, 𝑟) combinations for a 

given value of 𝑁. In Section 5.3.2 we make design recommendations for optimal estimation of 

the probability of agreement. 

5.3.1 Simulation Study 

In the simulation study we compared the simulated and asymptotic standard errors of 𝜃 for a 

variety of (𝑛, 𝑟) combinations and parameter values. To cover a wide range of sample sizes, 

replicate measurements and parameter values, we considered: 

 𝑛 = 40 to 120 in steps of 10  

 𝑟 = 2 to 5 in steps of 1 

 𝜇 = 1, 10, 100 

 𝜎𝑠 = 𝜇/10, 𝜇/4 

 𝜎1 = 𝜎𝑠/10, 𝜎𝑠/4 

 𝜎2 = 3𝜎1/4, 𝜎1, 5𝜎1/4 

 𝛼 = 0, 0.05𝜇 

 𝛽 = 1, 1.1 

For each of the 5,184 combinations of 𝑛, 𝑟 and the parameters, we generated 10,000 samples 

according to model [5.1] and for each sample determined the maximum likelihood estimate of 𝜃 

and the asymptotic standard error associated with that estimate. Note that 𝑆𝐸(𝜃) is defined as 
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the asymptotic standard deviation of 𝜃̃, evaluated at the maximum likelihood estimates the other 

parameters. 

We compare the simulated and asymptotic results by dividing the standard deviation of the 

10,000 estimates of 𝜃 by the average of the 10,000 asymptotic standard errors. Across all 

combinations of 𝑛, 𝑟 and the parameters, the average of this ratio was 0.9915 and it ranges 

between 0.89 and 1.11 with the middle 50% lying between 0.97 and 1.02. A graphical analysis 

of the simulation results suggest that this ratio does not depend materially on 𝑛 or 𝑟, and only 

very minimally on the other parameters. For more information regarding the results of this 

simulation study, see Section C.3 of Appendix C. 

Overall the results suggest that the asymptotic standard deviation of 𝜃̃ closely matches the 

simulated results for all designs. Accordingly we proceed to rank designs based on the 

asymptotic results.  

5.3.2 Recommendations for MSC study design 

For a particular combination of the parameter values and 𝑁 = 40, 60, 100, 120, 200, we iterate 

through 2 ≤ 𝑟 ≤ 10 and take 𝑛 = 𝑁/𝑟. In the case that 𝑁/𝑟 is not an integer, we round this 

quantity down to the nearest integer to determine 𝑛, in which case 𝑛𝑟 < 𝑁. We then rank the 

designs according to the asymptotic standard deviation of 𝜃̃, and consider the design associated 

with the smallest asymptotic standard deviation to be the ‘best’. In doing this it became clear that 

the design in which each subject is measured twice, corresponding to (𝑛, 𝑟) = (𝑁/2,2), always 

has the smallest, or nearly the smallest, asymptotic standard deviation. 

To investigate this further we compare the asymptotic standard deviations of 𝜃 associated with 

the ‘best’ design and the design with two replicate measurements, i.e. (𝑛, 𝑟) = (𝑁/2,2). 

Specifically we divide the standard deviation corresponding to the (𝑛, 𝑟) = (𝑁/2,2) design by 

that of the best design. For 𝑁 = 40, 60, 100, 120, 200, 2 ≤ 𝑟 ≤ 10, and the 729 combinations of 

(𝜇, 𝜎𝑠, 𝛼, 𝛽, 𝜎1, 𝜎2) outlined in C.4 of Appendix C , we found the average of this ratio to be 1.01. 

Thus the asymptotic standard deviation associated with the (𝑛, 𝑟) = (𝑁/2,2) design is on 

average only 1% larger than the best design. We found the maximum of this ratio to be 1.065, 

indicating that the (𝑛, 𝑟) = (𝑁/2,2) design is at most 6.5% worse than the best design. Such 
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large values occur when 𝛼 is different from 0, 𝛽 is different from 1 and when 𝜎1 and 𝜎2 are large 

relative to 𝜎𝑠. See Section C.4 of Appendix C for more details. 

Matlab [The MathWorks Inc., 2013] software is available to practitioners which provides the 

best design for a particular combination of parameter values and maximum number of 

measurements 𝑁. However, because the best design depends on the values of the unknown 

parameters, and the (𝑛, 𝑟) = (𝑁/2,2) design is good across all parameter values we considered, 

we recommend its use. 

5.4 Discussion and Conclusions  

When a new measurement system is available, a potential user must decide whether the 

measurements made by this new system agree suitably with those made by the existing system, 

and hence decide whether the two can be used interchangeably. To do so a measurement system 

comparison (MSC) study must be undertaken. Arguably the most widely used statistical 

technique for analyzing MSC data, and judging interchangeability, is the limits of agreement 

technique due to Bland and Altman. We have discussed this approach, and have shown that there 

are problems associated with it and that misjudgments regarding interchangeability are possible. 

In this chapter, we proposed an alternative analysis technique: the probability of agreement 

[Stevens et al., 2014 (under revision)]. The probability of agreement is, for a particular value of 

the measurand, the probability that the difference between two measurements made by different 

systems falls within a user specified interval that is deemed to be practically acceptable. This 

quantity can be translated into an informative plot which depicts the probability of agreement 

across a range of possible true values for the measurand. The result is a simple and intuitive 

summary of the agreement between two measurement systems. The benefit of this approach is 

that while the statistical modelling and estimation may be complicated for a non-statistician, the 

interpretation is straight forward, intuitive, and easy to understand. 

Many of the problems with the limits of agreement approach stem from the over-simplicity of 

the difference plot, and the misuse of the technique in general. For example, the difference plot 

can be uninformative and misleading, particularly when it is not supplemented by information 

from replicate measurements, and in the absence of a clinically acceptable difference. Another 

benefit of the probability of agreement analysis is that it cannot be performed without replicate 
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measurements on each subject by each system, and without the definition of a clinically 

acceptable difference. As such the analysis implicitly ensures that it will be performed correctly, 

since otherwise it cannot be performed at all. 

Throughout this chapter we have stressed the importance of replicate measurements in an MSC 

study; in order to estimate (𝜇, 𝛼, 𝛽, 𝜎1, 𝜎2, 𝜎𝑠) and the probability of agreement, two or more 

measurements must be made by each system on each subject. Although the probability of 

agreement is the metric of primary interest, the separate estimation of (𝜇, 𝛼, 𝛽, 𝜎1, 𝜎2, 𝜎𝑠) is also 

important. Should the probability of agreement plot suggest disagreement between the two 

measurement systems, estimates of the bias and precision parameters may help to identify the 

source of this disagreement. As well, these estimates allow for the direct comparison of 

repeatabilities, which helps to avoid the possibility of rejecting interchangeability for a new 

system when 𝜎2 ≪ 𝜎1. 

The estimation of each parameter in [5.1] has other benefits as well: for example, we can 

calculate other metrics such as 𝑃(|𝑌𝑗 − 𝑠| ≤ 𝑐|𝑆 = 𝑠), which quantifies how closely the 

measurements by system 𝑗 agree with the true value of the measurand. This quantity could be 

used when assessing system 𝑗 on its own, or when system 𝑗 is being compared to a ‘gold standard’ 

for which the true value of the measurand is known. We may also use the parameter estimates, 

in particular 𝛼̂ and 𝛽̂, to adjust the measurements by the new system to eliminate bias. We could 

then calculate an adjusted probability of agreement that accounts for the estimation error of 𝛼̂ 

and 𝛽̂, and examine the agreement between the two measurement systems after calibrating the 

new one. 

Given that replicate measurements are necessary for this analysis method, we have evaluated 

MSC study designs based on their ability to precisely estimate 𝜃, the probability of agreement. 

We suggest that if 𝑁 = 𝑛𝑟 measurements can be made by each system in the study, the study 

should consist of 𝑛 = 𝑁/2 subjects that are measured 𝑟 = 2 times by each system. This design 

provides optimal or near-optimal estimation of 𝜃 in all situations.  

Here we have considered the case where each measurement system measures each subject 𝑟 

times. A straight forward extension of this work would be to adapt the model and consider the 
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case when the two systems make a different number of replicate measurements per subject, i.e. 

𝑟1 ≠ 𝑟2, or a different number of measurements on each subject. 

We assume that the primary goal of the MSC study is to decide whether two measurement 

systems agree well enough to be used interchangeably, and we answer this question with the 

probability of agreement. The likelihood framework however, also allows us to decide whether 

the two measurement systems are identical. Specifically, we can use a likelihood ratio test to 

simultaneously test 𝐻0: 𝛼 = 0 and 𝛽 = 1 and 𝜎1 = 𝜎2. However, this test suffers from the 

phenomenon whereby the null hypothesis is always rejected if the number of measurements in 

the study is suitably large, even if the differences between the two measurement systems are very 

small. Alternatively we could frame the hypothesis in terms of an equivalence test to avoid this 

issue [Wellek, 2010]. 

We note that although the emphasis of this work is on the comparison of two different 

measurement systems, the methodology also applies to the comparison of two observers using 

the same measurement system, as we saw in Section 5.2.4. Another possible extension is the 

simultaneous comparison of three or more measurement systems (or observers). 

Model [5.1] does not include observer effects; as in Bland and Altman’s limits of agreement 

analysis, we implicitly assume that the measurement systems being compared are each operated 

by a single observer, or if operated by multiple observers, we assume that their effects are the 

same. Another possible extension to this work is to incorporate observer effects into the 

probability of agreement analysis. 

Another notable advantage of the proposed method is that we can alter the model assumptions 

and account for generalizations like observer effects and unbalanced replicate measurements, 

and still calculate the probability of agreement and interpret it in the same way. The modeling 

and estimation procedure may change, but the simple interpretation remains. 

To help decide which model to use, and which assumptions are valid we suggest that model 

diagnostics be performed. We propose the use of a modified QQ-plot to decide whether the true 

values of the measurand follow a normal distribution and the use of a repeatability plot to decide 

whether or not the measurement system repeatabilities are homoscedastic, and to check for 

outliers. 
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In this chapter we have assumed that the unknown true values follow a normal distribution, but 

in some cases this assumption may be unreasonable. When we relax this assumption we must 

alter the method by which we estimate the probability of agreement 𝜃(𝑠), but its interpretation 

does not change. In Chapter 6 we propose moment-based estimates of (𝜇, 𝛼, 𝛽, 𝜎1, 𝜎2, 𝜎𝑠), and 

hence 𝜃(𝑠) that do not require any distributional assumptions for the true values.  

We have also assumed that the repeatability of each measurement system is homoscedastic. That 

is, the measurement variability does not depend on the unknown true value of the measurand. 

Although this assumption is often valid, situations may arise in which it is not. When this is the 

case we suggest using a model different from [5.1] that accounts for a dependence between the 

measurement variation and the unknown true value of the measurand. In Chapter 6 we propose 

such a model, and illustrate the probability of agreement analysis in light of this change. 

Application of the probability of agreement in these two settings serves to demonstrate the 

versatility of the suggested analysis method. 
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Chapter 6 

 

Generalizing the Probability of Agreement Analysis 

 

In Chapter 5 we introduced the probability of agreement and an associated plot as a tool for 

summarizing the agreement between two measurement systems. Recall the probability of 

agreement is defined to be the probability that the difference between single measurements on 

the same subject by the two systems falls within the range that is deemed to be acceptable, 

conditional on the value of the measurand. Statistically the probability of agreement is: 

 𝜃(𝑠) = 𝑃(|𝑌2 − 𝑌1| ≤ 𝑐|𝑆 = 𝑠)      [6.1] 

 

where 𝑌𝑗 represents the single measurements made by measurement system 𝑗 = 1,2 on a 

particular subject, and absolute differences less than or equal to 𝑐 are considered clinically (or 

practically) acceptable.  

Thus the probability of agreement is the probability that the difference between single 

measurements on the same subject by the two systems falls within the range that is deemed to 

be acceptable, conditional on the true values of the measurand. With estimates of 𝜃(𝑠), we 

construct the probability of agreement plot which graphically displays the estimated probability 

of agreement across a range of plausible values for 𝑠. Whether two systems are deemed to be 

interchangeable depends on whether 𝜃(𝑠) (for 𝑠 in the range of interest) is suitably large. The 

determination of how large 𝜃(𝑠) must be to indicate acceptable agreement and hence 

interchangeability is context-specific and, like 𝑐, must be decided by the user.  

This technique is proposed as an alternative to the limits of agreement method (due to Bland and 

Altman [1983; 1986]), for determining whether two measurement systems can be used 

interchangeably. The technique quantifies the agreement between two measurement systems in 
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an intuitive and informative manner. With the estimation and plot-construction automated, the 

probability of agreement analysis can be used and understood by non-statisticians. 

In addition to the ease of interpretation, in Chapter 5 we noted that another important advantage 

of the analysis is its versatility. If we generalize various model assumptions, we can still estimate 

𝜃(𝑠), construct the probability of agreement plot, and interpret the results in exactly the same 

manner as described in the previous chapter. Note that the when model assumptions are changed, 

the method of estimating 𝜃(𝑠) may also change, but the interpretation remains the same. 

In Chapter 5 we proposed the following model to describe the data that arise as a result of a 

measurement system comparison (MSC) study:  

 

 
𝑌𝑖1𝑘 = 𝑆𝑖 + 𝑀𝑖1𝑘 

𝑌𝑖2𝑘 = 𝛼 + 𝛽𝑆𝑖 + 𝑀𝑖2𝑘 
     [6.2] 

 

Thus 𝑌𝑖𝑗𝑘 is a random variable which represents the value observed on system 𝑗’s 𝑘th 

measurement of subject 𝑖, where 𝑖 = 1,2, … , 𝑛 indexes the subjects, 𝑗 = 1 indexes the reference 

measurement system, 𝑗 = 2 indexes the new measurement system and 𝑘 = 1,2, … , 𝑟 indexes the 

replicate measurements. Recall 𝑆𝑖~𝑁(𝜇, 𝜎𝑠
2) is a random variable that represents the unknown 

true value of the measurand for subject 𝑖, and 𝑀𝑖𝑗𝑘~𝑁(0, 𝜎𝑗
2) is a random variable which 

represents the measurement error of system 𝑗. Here 𝜎𝑗 quantifies the measurement variation, or 

repeatability, of system 𝑗, and in [6.2] we assume it is a constant. Model [6.2] also assumes that 

the reference (existing) measurement system is unbiased and the parameters −∞ < 𝛼 < ∞ and 

𝛽 > 0 quantify the bias of the second (new) measurement system relative to the existing one. 

We refer to 𝛼 and 𝛽 as the fixed and proportional bias, respectively [Ludbrook, 2010].  

In this chapter we discuss relaxing some of these model assumptions, and illustrate the 

application of the probability of agreement analysis in these more general settings. In Section 

6.1 we discuss performing the analysis when we no longer assume that 𝑆𝑖, the true values of the 

measurand, are normally distributed; in this case we propose a moment-based estimate of 𝜃(𝑠) 

which does not require this normality assumption [Stevens et al., 2014 (under revision)]. In 
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Section 6.2 we consider the case when at least one of the measurement systems is 

heteroscedastic. That is, when the repeatability (𝜎𝑗), depends on the true value of the measurand. 

We conclude with a summary and discussion in Section 6.3. 

6.1 The Probability of Agreement Analysis with a Non-Normal Measurand 

In some cases, it may be unreasonable to model the unknown true values of the measurand with 

a normal distribution. This may be known prior to analyzing the MSC study data, but in case it 

is not, in Section 5.2.3 we proposed the use of a modified QQ-plot to assess this assumption. 

When modeling the true values of the measurand with a normal distribution is unjustified, we 

should relax this assumption and alter the method by which we estimate the probability of 

agreement. 

In this section we propose a moment-based approach to the probability of agreement analysis 

[Stevens et al., 2014 (under revision)], and we illustrate the procedure on the systolic blood 

pressure example introduced in Section 5.2.4. 

6.1.1 Moment-Based Estimation Procedure 

We begin this subsection by deriving moment-based estimates of (𝜇, 𝛼, 𝛽, 𝜎1, 𝜎2, 𝜎𝑠) that do not 

require any distributional assumptions for 𝑆𝑖. We then use these estimates to obtain a moment-

based estimate of 𝜃(𝑠).  

To begin, we note that given 𝑆𝑖 = 𝑠, model [6.2] becomes 

 
𝑌𝑖1𝑘 = 𝑠 + 𝑀𝑖1𝑘  

𝑌𝑖2𝑘 = 𝛼 + 𝛽𝑠 + 𝑀𝑖2𝑘 
 

where randomness enters only through the measurement error terms 𝑀𝑖𝑗𝑘, 𝑗 = 1,2. As such the 

difference 𝑌𝑖2𝑘 − 𝑌𝑖1𝑘 conditional on 𝑆𝑖 = 𝑠 is given by 

𝛼 + (𝛽 − 1)𝑠 + (𝑀𝑖2𝑘 − 𝑀𝑖1𝑘) 

and so 

𝑌𝑖2𝑘 − 𝑌𝑖1𝑘|𝑆𝑖 = 𝑠~𝑁(𝛼 + (𝛽 − 1)𝑠, 𝜎1
2 + 𝜎2

2 ) 

even though 𝑆𝑖 is non-normal.  
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Thus, because 𝜃(𝑠) is defined as a probability of the difference 𝑌𝑖2𝑘 − 𝑌𝑖1𝑘 conditional on the 

value of 𝑆𝑖 = 𝑠, we can still write the probability of agreement as 

 𝜃(𝑠) = 𝛷 (
𝑐 − 𝛼 − (𝛽 − 1)𝑠

√𝜎1
2 + 𝜎2

2
) − 𝛷 (

−𝑐 − 𝛼 − (𝛽 − 1)𝑠

√𝜎1
2 + 𝜎2

2
)      [6.3] 

 

where 𝛷(𝑥) is the standard normal cumulative distribution function evaluated at 𝑥. Thus we 

substitute (𝜇̌, 𝛼̌, 𝛽̌, 𝜎̌1, 𝜎̌2, 𝜎̌𝑠), the moment-based estimates that we derive later in this subsection, 

into [6.3] to obtain 𝜃̌(𝑠). Note that we overscore the Greek letters with an inverted-circumflex 

to distinguish the moment-based estimates from the maximum likelihood estimates. 

For the derivation of the moment-based estimate 𝜃̌(𝑠) we adopt model [6.2] and all of the 

assumptions associated with it, except that we do not specify a distribution for 𝑆𝑖. Instead we 

simply assume that the mean and variance of the unknown true values are respectively given by 

𝐸(𝑆𝑖) = 𝜇 and 𝑉𝑎𝑟(𝑆𝑖) = 𝜎𝑠
2, for 𝑖 = 1,2, … , 𝑛. As in Section 5.2.2 we order the random data 

vector for subject 𝑖 by measurement system, and denote it by 𝑌⃗ 𝑖 = (𝑌⃗ 𝑖1
𝑇 , 𝑌⃗ 𝑖2

𝑇)
𝑇
, where 𝑌⃗ 𝑖𝑗 =

(𝑌𝑖𝑗1, 𝑌𝑖𝑗2, … , 𝑌𝑖𝑗𝑟)
𝑇
 corresponds to the 𝑟 measurements by system 𝑗 on subject 𝑖. The 2𝑟 × 1 

random vector 𝑌⃗ 𝑖 has mean and variance given by 

𝜇 = (𝜇, 𝛼 + 𝛽𝜇)𝑇
⊗ 𝐽𝑟 

and 

∑ = 𝜎𝑠
2 [

1 𝛽

𝛽 𝛽2] ⊗ 𝐽𝑟×𝑟 + [
𝜎1

2 0

0 𝜎2
2] ⊗ 𝐼𝑟 

where 𝐽𝑎 is a column vector of 𝑎 1’s, 𝐽𝑎×𝑏 is an 𝑎 × 𝑏 matrix of 1’s, 𝐼𝑎 is the 𝑎 × 𝑎 identity 

matrix, and ⊗ denotes the Kronecker product. 

We can estimate 𝜇  and ∑ non-parametrically with the sample mean (denoted 𝜇 ̌), and sample 

variance-covariance matrix (denoted ∑̌) associated with the 𝑌⃗ 𝑖’s, 𝑖 = 1,2, … , 𝑛. These two 

sample estimators are respectively given by  
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𝜇 ̌ =
1

𝑛
∑𝑌⃗ 𝑖

𝑛

𝑖=1

= (𝑌̅∙11, … , 𝑌̅∙1𝑟 , 𝑌̅∙21, … , 𝑌̅∙2𝑟)
𝑇 

and 

∑̌ =
1

𝑛 − 1
∑(𝑌⃗ 𝑖 − 𝜇 ̌)(𝑌⃗ 𝑖 − 𝜇 ̌)

𝑇
𝑛

𝑖=1

 

=
1

𝑛 − 1
∑

[
 
 
 
 
 
 
(𝑌𝑖11 − 𝑌̅∙11)

2 ⋯ (𝑌𝑖11 − 𝑌̅∙11)(𝑌𝑖1𝑟 − 𝑌̅∙1𝑟)

⋱ ⋮
(𝑌𝑖1𝑟 − 𝑌̅∙1𝑟)

2

(𝑌𝑖11 − 𝑌̅∙11)(𝑌𝑖21 − 𝑌̅∙21) ⋯ (𝑌𝑖11 − 𝑌̅∙11)(𝑌𝑖2𝑟 − 𝑌̅∙2𝑟)
⋮ ⋱ ⋮

(𝑌𝑖11 − 𝑌̅∙11)(𝑌𝑖21 − 𝑌̅∙21) ⋯ (𝑌𝑖11 − 𝑌̅∙11)(𝑌𝑖2𝑟 − 𝑌̅∙2𝑟)

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐

(𝑌𝑖21 − 𝑌̅∙21)
2 ⋯ (𝑌𝑖21 − 𝑌̅∙21)(𝑌𝑖2𝑟 − 𝑌̅∙2𝑟)

⋱ ⋮
(𝑌𝑖2𝑟 − 𝑌̅∙2𝑟)

2 ]
 
 
 
 
 
 

𝑛

𝑖=1

 

 

where 𝑌̅∙𝑗𝑘 = ∑ 𝑌𝑖𝑗𝑘 𝑛⁄𝑛
𝑖=1 . 

Note that many of the components of 𝜇 ̌ and ∑̌ are estimates of the same quantities. For example 

𝑌̅∙1𝑘, 𝑘 = 1,2, … , 𝑟 all estimate 𝐸(𝑌𝑖1𝑘) = 𝜇, and ∑ (𝑌𝑖2𝑘 − 𝑌̅∙2𝑘)
2 (𝑛 − 1)⁄𝑛

𝑖=1 , 𝑘 = 1,2, … , 𝑟 all 

estimate 𝑉𝑎𝑟(𝑌𝑖2𝑘) = 𝛽2𝜎𝑠
2 + 𝜎2

2. Thus, averaging the components that estimate the same 

quantities (i.e. averaging over replicate measurements) yields the following estimators:  

𝜓̃1 =
1

𝑛𝑟
∑ ∑ 𝑌𝑖1𝑘

𝑟

𝑘=1

𝑛

𝑖=1

 

𝜓̃2 =
1

𝑛𝑟
∑ ∑ 𝑌𝑖2𝑘

𝑟

𝑘=1

𝑛

𝑖=1

 

𝜓̃3 =
1

(𝑛 − 1)𝑟
∑ ∑(𝑌𝑖1𝑘 − 𝑌̅∙1𝑘)

2

𝑟

𝑘=1

𝑛

𝑖=1

 

𝜓̃4 =
1

(𝑛 − 1)𝑟
∑ ∑(𝑌𝑖2𝑘 − 𝑌̅∙2𝑘)

2

𝑟

𝑘=1

𝑛

𝑖=1

 

𝜓̃5 =
1

(𝑛 − 1)𝑟2
∑ ∑ ∑(𝑌𝑖1𝑘 − 𝑌̅∙1𝑘)(𝑌𝑖2𝑙 − 𝑌̅∙2𝑙)

𝑟

𝑙=1

𝑟

𝑘=1

𝑛

𝑖=1
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𝜓̃6 =
1

(𝑛 − 1)𝑟(𝑟 − 1)
∑ ∑ ∑(𝑌𝑖1𝑘 − 𝑌̅∙1𝑘)(𝑌𝑖1𝑙 − 𝑌̅∙1𝑙)

𝑟

𝑙=1
𝑙≠𝑘

𝑟

𝑘=1

𝑛

𝑖=1

 

𝜓̃7 =
1

(𝑛 − 1)𝑟(𝑟 − 1)
∑ ∑ ∑(𝑌𝑖2𝑘 − 𝑌̅∙2𝑘)(𝑌𝑖2𝑙 − 𝑌̅∙2𝑙)

𝑟

𝑙=1
𝑙≠𝑘

𝑟

𝑘=1

𝑛

𝑖=1

 

Taking their expected values yields: 

𝐸(𝜓̃1) = 𝜇 

𝐸(𝜓̃2) = 𝛼 + 𝛽𝜇 

𝐸(𝜓̃3) = 𝜎𝑠
2 + 𝜎1

2 

𝐸(𝜓̃4) = 𝛽2𝜎𝑠
2 + 𝜎2

2 

𝐸(𝜓̃5) = 𝛽𝜎𝑠
2 

𝐸(𝜓̃6) = 𝜎𝑠
2 

𝐸(𝜓̃7) = 𝛽2𝜎𝑠
2 

Let us denote the observed version of 𝜓̃𝑙 by 𝜓̌𝑙 (𝑙 = 1,2, … ,7) which is found by substituting the 

observed data, 𝑦𝑖𝑗𝑘, for the random variables, 𝑌𝑖𝑗𝑘. Solving the previous equations for the 

parameters of interest, and replacing 𝐸(𝜓̃) with 𝜓̌𝑙 yields what we refer to as the moment-based 

estimates of (𝜇, 𝛼, 𝛽, 𝜎1, 𝜎2, 𝜎𝑠): 

𝜇̌ = 𝜓̌1 

𝛼̌ = 𝜓̌2 − 𝜓̌1𝜓̌5/𝜓̌6 

𝛽̌ = 𝜓̌5/𝜓̌6 

𝜎̌1
2 = 𝜓̌3 − 𝜓̌6 

𝜎̌2
2 = 𝜓̌4 − 𝜓̌7 

𝜎̌𝑠
2 = 𝜓̌6 

As mentioned, we then substitute the moment-based estimates (𝜇̌, 𝛼̌, 𝛽̌, 𝜎̌1, 𝜎̌2, 𝜎̌𝑠) into [6.3] to 

obtain 𝜃̌(𝑠). For values of 𝑠 in the range (𝜇̌ − 3𝜎̌𝑠, 𝜇̌ + 3𝜎̌𝑠) we calculate 𝜃̌(𝑠) and construct the 

probability of agreement plot. To complete the plot, we must also calculate pointwise confidence 

intervals for 𝜃(𝑠), which requires estimation of the standard error for 𝜃̌(𝑠). 
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Because we do not wish to assume a distribution for 𝑆𝑖, we estimate the standard error for 𝜃̌(𝑠) 

by bootstrapping [Efron, 1979]. We construct 𝐵 = 10 000 bootstrap samples in the usual way: 

we randomly sample 𝑛 subjects with replacement from the original sample of 𝑛 subjects. If a 

subject is included in a bootstrap sample, all of their replicate measurements are also included. 

For each sample we then derive the moment-based estimates of (𝜇, 𝛼, 𝛽, 𝜎1, 𝜎2, 𝜎𝑠), and the 

corresponding bootstrap estimates are calculated as the average of these 10 000 estimates. To 

then calculate 𝑆𝐸 (𝜃̌(𝑠)) we must estimate the covariance matrix for (𝜇, 𝛼, 𝛽, 𝜎1, 𝜎2, 𝜎𝑠). The 

estimated covariance matrix is calculated as the sample covariance of the 10 000 bootstrap 

estimates of (𝜇, 𝛼, 𝛽, 𝜎1, 𝜎2, 𝜎𝑠). We obtain 𝑆𝐸 (𝜃̌(𝑠)) in accordance with the delta method 

[Lehmann and Casella, 1998] by pre- and post-multiplying this matrix by a change-of-variables 

vector of suitable partial derivatives: 

𝐷𝑠 = 
𝜕𝜃(𝑠)

𝜕(𝜇, 𝛼, 𝛽, 𝜎1, 𝜎2, 𝜎𝑠)
 

Thus with the moment-based estimate 𝜃̌(𝑠) and its corresponding standard error, which do not 

assume a distribution for 𝑆, we construct and interpret the probability of agreement plot as before. 

Recall in Chapter 5 we discussed the unconditional probability of agreement 𝜃 given in [5.4]. To 

calculate this unconditional probability of agreement, we must assume 𝑆𝑖 is normally distributed, 

and so we do not use it in this scenario.  

6.1.2 Example 

In this subsection we illustrate the moment-based analysis on the systolic blood pressure data 

used in Section 5.2.4. Recall that this data come from an MSC study in which the systolic blood 

pressure of 85 subjects is measured three times by each of two observers labelled “J” and “R”. 

The data can be found in Table C.1 of Appendix C.  

In Figure 5.2 we displayed the modified QQ-plot for these data, which we interpreted as evidence 

that did not contradict the 𝑆𝑖~𝑁(𝜇, 𝜎𝑠
2) assumption, since the plots depicted relatively straight 

lines. However, judging straightness is somewhat subjective, and some might argue that the plot 

suggests that the normality assumption is invalid. Those who are skeptical of the normality 

assumption may perform the moment-based probability of agreement analysis instead. 
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 Estimate Standard Error 

𝜇 127.3608 3.2786 

𝛼 -3.0337 0.75564 

𝛽 1.0239 0.00604 

𝜎𝑠 30.0772 2.8509 

𝜎1 6.0731 0.35814 

𝜎2 5.9637 0.38181 
Table 6.1: Moment-based estimates and bootstrapped standard errors associated with the blood pressure data 

 

The moment-based estimates of the parameters in model [6.2] and their associated standard 

errors (determined using the bootstrap) are presented in Table 6.1 and the probability of 

agreement plot is given in Figure 6.1. Note that as in Figure 5.3, these probabilities are calculated 

assuming a clinically acceptable difference with 𝑐 = 10. 

 

Figure 6.1: Moment-Based Probability of Agreement Plot comparing “J” and “R”  

from the blood pressure data with 𝑐 = 10 

 

In examining these results, we see small differences between the moment-based and maximum-

likelihood-based estimates (see Table 5.2) of some of the model parameters, 𝛼 in particular, but 

the estimated probability of agreement is similar (roughly 0.8) across the plausible values of 𝑆. 

When we compare the standard errors associated with the two methods of estimation (see Table 
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5.2) we see that the standard errors for 𝜇, 𝜎𝑠, 𝜎1, and 𝜎2 are similar (but slightly larger with the 

moment-based method), and the standard errors for 𝛼 and 𝛽 associated with the moment-based 

method are much smaller. These differences result in slightly larger standard errors for 𝜃(𝑠) 

under the moment-based method, which are evident when we compare Figures 5.2 and 6.1. 

Despite this small difference, the results indicate that for these data, the conclusions drawn about 

the agreement between “J” and “R” are not affected by the distributional assumption of the true 

values. 

As with the maximum-likelihood approach, Matlab [The MathWorks Inc., 2013] software for 

the moment-based probability of agreement analysis is available to practitioners. 

6.2 The Probability of Agreement Analysis with Heteroscedastic Measurement 

Error 

In some situations, the variability of a measurement system may depend in some way on the true 

value of the measurand. This is particularly common in the field of clinical chemistry where it 

is typical for measurement variation to increase as the true value increases [Pollack et al., 1992]. 

In Chapter 4 we discussed a few analysis methods that have been developed to assess agreement 

in this situation. For example, we discussed the weighted Deming and weighted least squares 

regression techniques that, unlike ordinary least squares, allow for non-constant variability. We 

also discussed Bland and Altman’s [1999] recommendation to log-transform the data and carry 

out the limits of agreement analysis on the log scale. And we described the V-shaped limits of 

agreement Bland and Altman [1999] recommend if log-transformation does not eliminate non-

random patterns on the difference plot. 

When it comes to assessing the interchangeability of two measurement systems when one or 

both is heteroscedastic, these techniques are a step in the right direction, but they do have 

deficiencies. First, the weighted least squares technique allows for non-constant variability in 

the new measurement system, but it still assumes that the reference system is error free (i.e., 

𝜎1 = 0). We noted in Chapter 4 that this assumption is rarely valid because gold standard 

measurement systems are uncommon. Weighted Deming regression is more general in the sense 

that it allows for heteroscedastic measurement variation, but it assumes that the ratio of 
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repeatabilities is constant. That is, it assumes that both systems are heteroscedastic, and the 

structure of heteroscedasticity is the same for both. 

Within the limits of agreement framework, the log-transformation is problematic because it also 

assumes that both systems are heteroscedastic, which may not be the case. As well, the 

transformation implicitly assumes that the measurement variability is log-linear, which also may 

not be the case. Furthermore, when working on the transformed scale, one must be careful when 

interpreting results. Bland and Altman suggest back-transforming the limits of agreement so that 

they are in terms of the original units. However, in doing so the results are now based on percent-

differences and not absolute differences, and this needs to be accounted for when comparing the 

limits of agreement to the clinically acceptable difference. 

Working with the raw data on the original scale is clearly desirable, and Bland and Altman meet 

this desire with the V-shaped limits of agreement that more accurately reflect the distribution of 

differences when heteroscedasticity is present. However, this approach is not ideal because the 

problems that plague the difference plot (see Section 5.1) still exist in this situation: this approach 

assumes each system measures each subject once (𝑟 = 1) and without the extra information 

gained by replicate measurements the difference plot cannot disentangle confounding biases, and 

it does not provide insight into the magnitude of each system’s repeatability. As well, the 

difference plot does not indicate if heteroscedasticity is present in both, or just one system. 

Therefore, as with the homoscedastic case, we propose that the relationship between two 

measurements systems be modelled directly. This allows us to specify the structure of 

heteroscedasticity that seems plausible, it allows us to work with the raw data on the original 

scale, and when accompanied by replicate measurements (𝑟 > 1) it allows us to separately 

estimate the parameters of interest, allowing us to construct the probability of agreement plot. 

In Section 6.2.1 we propose a model which can be used to describe the relationship between two 

possibly heteroscedastic measurement systems, and we extend the probability of agreement 

analysis to this scenario. In Section 6.2.2 we provide details of the maximum-likelihood 

estimation procedure, and in Section 6.2.3 we demonstrate the analysis with an example from 

the literature. We close this section with a brief discussion of further extensions and other 

considerations in Section 6.2.4. 
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6.2.1 The Model 

In this subsection we propose an extension to model [6.2] in which the measurement variation is 

a function of the true value of the measurand.  Because the variance of each system depends on 

the unknown true value, we use a latent variable model which describes the measurements by 

each system on a given subject, conditional on the true value of the measurand for that subject. 

Given 𝑆𝑖 = 𝑠 we have 

 

 
𝑌𝑖1𝑘 = 𝑠 + 𝑀𝑖1𝑘  

𝑌𝑖2𝑘 = 𝛼 + 𝛽𝑠 + 𝑀𝑖2𝑘 
     [6.4] 

 

As in model [6.2] 𝑌𝑖𝑗𝑘 represents the 𝑘th measurement by system 𝑗 on subject 𝑖, where 𝑖 =

1,2, … , 𝑛; 𝑗 = 1,2; 𝑘 = 1,2, … , 𝑟. We represent the latent variable, the true value of the 

measurand for subject 𝑖, by 𝑠. The estimation procedure described in Section 6.2.2 assumes 

𝑆𝑖~𝑁(𝜇, 𝜎𝑠
2), but we discuss other choices for this distribution in Section 6.2.4. As in [6.2] we 

assume that the existing reference system is unbiased, and that inferences regarding bias are 

made from the new system relative to it. The fixed and proportional bias of the new system 

relative to the existing are respectively quantified by −∞ < 𝛼 < ∞ and 𝛽 > 0. 

The random variable 𝑀𝑖𝑗𝑘 represents the measurement error that arises when measurement 

system 𝑗 makes multiple measurements of subject 𝑖, and we assume 𝑀𝑖𝑗𝑘~𝑁 (0, 𝜎𝑗
2(𝑠)). Thus 

we continue to assume that 𝐸(𝑀𝑖𝑗𝑘) = 0, but now we assume that the measurement variability 

of system 𝑗, 𝑉𝑎𝑟(𝑀𝑖𝑗𝑘) = 𝜎𝑗
2(𝑠), is a function of the true value 𝑠. This model allows for some 

flexibility with regards to the form of the variance function 𝜎𝑗
2(𝑠); for illustration we assume 

that the standard deviation of the measurement error is a linear function of the true value 𝑠 [Rocke 

and Lorenzato, 1995]. Specifically we assume: 

 𝜎𝑗
2(𝑠) = (𝜔𝑗 + 𝜏𝑗𝑠)

2
      [6.5] 
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where 𝜏𝑗 ≥ 0 is the proportionality constant, and 𝜔𝑗 > 0 is a constant term which represents the 

repeatability of measurement system 𝑗 if it is not heteroscedastic (i.e. if 𝜏𝑗 = 0). Note that 

restricting 𝜏𝑗 to be non-negative corresponds to an increase in variability with an increase in true 

values, which is common in the field of clinical chemistry [Pollack et al., 1992]. We also assume 

that the true values of the measurand are positive to ensure that 𝜎𝑗(𝑠) = 𝜔𝑗 + 𝜏𝑗𝑠 > 0, and 

𝜎𝑗(𝑠) = 𝜔𝑗 only when 𝜏𝑗 = 0. If the true values of the measurand lie close to zero, but remain 

positive, then the normality assumption for 𝑆𝑖 may be invalid, and assuming a skewed 

distribution for the true values may be reasonable. We discuss this further in Section 6.2.4. 

Note that when neither measurement system is heteroscedastic, i.e. 𝜏1 = 𝜏2 = 0, model [6.4] 

reduces to the homoscedastic model [6.2]. In Section 5.2.3 we proposed the use of a repeatability 

plot to determine whether the measurement systems are heteroscedastic or homoscedastic. This 

graphical method is effective, but informal; we can formally assess whether heteroscedasticity 

(of the form specified by [6.5]) is present in both systems, by testing the hypothesis 𝐻0: 𝜏1 =

𝜏2 = 0. Within the maximum likelihood framework described in Section 6.2.2 we can use a 

likelihood ratio test to test this hypothesis. We can also use a similar test to decide if just one of 

the two systems is heteroscedastic. 

If one wishes to allow for a different type of heteroscedasticity, we can change the structure of 

the variance function 𝜎𝑗
2(𝑠) to allow for this. For example, to model heteroscedasticity such that 

the measurement variability increases as the true values decrease we could restrict 𝜏𝑗 ≤ 0, but 

we would need to ensure 𝜎𝑗(𝑠) ≥ 0, for all 𝑠. Or if the heteroscedasticity is more complicated 

than a linear function of 𝑠, we could specify a polynomial or exponential function instead. 

Having introduced this extended model we can now define the probability of agreement, 𝜃(𝑠), 

in this scenario. The general definition in [6.1] still holds, but based on the assumptions of model 

[6.4] we have 𝑌𝑖2𝑘 − 𝑌𝑖1𝑘|𝑆𝑖 = 𝑠~𝑁(𝛼 + (𝛽 − 1)𝑠, (𝜔1 + 𝜏1𝑠)
2 + (𝜔2 + 𝜏2𝑠)

2) for all 𝑖 and 𝑘. 

As such 𝜃(𝑠) can be written as 

 𝜃(𝑠) = 𝛷 (
𝑐 − 𝛼 − (𝛽 − 1)𝑠

√(𝜔1 + 𝜏1𝑠)2 + (𝜔2 + 𝜏2𝑠)2
) − 𝛷 (

−𝑐 − 𝛼 − (𝛽 − 1)𝑠

√(𝜔1 + 𝜏1𝑠)2 + (𝜔2 + 𝜏2𝑠)2
)  [6.6] 

 

where 𝛷(𝑥) is the standard normal cumulative distribution function evaluated at 𝑥. 
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With estimates of 𝜃(𝑠) across a range of values for 𝑠, and associated standard errors, we 

construct the probability of agreement plot as we would in the homoscedastic case. However, as 

we will see in Section 6.2.2, the estimation procedure for model [6.4] is much more complicated. 

That being said, one of the key advantages of the probability of agreement analysis is that the 

results are interpreted in exactly the same way, even when the underlying model is more 

complicated.  

6.2.2 Maximum Likelihood Estimation 

In this subsection we describe the maximum likelihood estimation procedure associated with 

model [6.4]. In order to obtain estimates of (𝜇, 𝜎𝑠, 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2) and hence 𝜃(𝑠), we must 

obtain the marginal likelihood of the data 𝑌𝑖𝑗𝑘, 𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2; 𝑘 = 1,2, … , 𝑟. However, 

model [6.4] is written as a latent variable model, which describes the measurements by each 

system on a given subject, conditional on the unknown true value of the measurand for that 

subject. As such, we obtain the marginal likelihood by integrating the joint density function of 

𝑆𝑖 and the data, over the support of 𝑆𝑖, thus eliminating the latent variable.  

As usual, for a particular subject 𝑖, we order the random vector corresponding to its 

measurements by system, and write 𝑌⃗ 𝑖 = (𝑌⃗ 𝑖1
𝑇 , 𝑌⃗ 𝑖2

𝑇)
𝑇
 where 𝑌⃗ 𝑖𝑗 = (𝑌𝑖𝑗1, 𝑌𝑖𝑗2, … , 𝑌𝑖𝑗𝑟)

𝑇
 

corresponds to the 𝑟 measurements by system 𝑗 on subject 𝑖.  

From [6.4] we know 𝑌𝑖1𝑘|𝑆𝑖 = 𝑠~𝑁(𝑠, (𝜔1 + 𝜏1𝑠)
2) and 𝑌𝑖2𝑘|𝑆𝑖 = 𝑠~𝑁(𝛼 + 𝛽𝑠, (𝜔2 + 𝜏2𝑠)

2) 

and so  

𝑌⃗ 𝑖|𝑆𝑖 = 𝑠~𝑀𝑉𝑁(𝜇 (𝑠), ∑(𝑠)) 

where  

𝜇 (𝑠) = (𝑠, 𝛼 + 𝛽𝑠)𝑇
⊗ 𝐽𝑟 

and  

∑(𝑠) = [
(𝜔1 + 𝜏1𝑠)

2 0

0 (𝜔2 + 𝜏2𝑠)
2] ⊗ 𝐼𝑟 

where 𝐽𝑟 is an 𝑟 × 1 vector of ones, 𝐼𝑟 is the 𝑟 × 𝑟 identity matrix, and ⊗ denotes the Kronecker 

product. 
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Denoting the observed data by 𝑦𝑖𝑗𝑘 𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2 and 𝑘 = 1,2, … , 𝑟, and using a lower-

case 𝑦 to denote the observed data vectors, the conditional probability density function of 𝑌⃗ 𝑖|𝑆𝑖 

is given by 

𝑔(𝑦 𝑖|𝑆𝑖 = 𝑠) = (2𝜋)−𝑟|∑(𝑠)|−1/2 exp {−
1

2
(𝑦 𝑖 − 𝜇 (𝑠))

𝑇
∑(𝑠)−1(𝑦 𝑖 − 𝜇 (𝑠))} 

To explicitly write 𝑔(𝑦 𝑖|𝑆𝑖 = 𝑠) we need the inverse and determinant of the covariance matrix 

∑(𝑠). These are calculated as 

∑(𝑠)−1 = [
1/(𝜔1 + 𝜏1𝑠)

2 0

0 1/(𝜔2 + 𝜏2𝑠)
2] ⊗ 𝐼𝑟 

and 

|∑(𝑠)| = [(𝜔1 + 𝜏1𝑠)(𝜔2 + 𝜏2𝑠)]
2𝑟 

giving 

 

𝑔(𝑦 𝑖|𝑆𝑖 = 𝑠) = [2𝜋(𝜔1 + 𝜏1𝑠)(𝜔2 + 𝜏2𝑠)]
−𝑟 × 

exp {
−1

2(𝜔1 + 𝜏1𝑠)2
∑(𝑦𝑖1𝑘 − 𝑠)2

𝑟

𝑘=1

−
1

2(𝜔2 + 𝜏2𝑠)2
∑(𝑦𝑖2𝑘 − 𝛼 − 𝛽𝑠)2

𝑟

𝑘=1

} 
[6.7] 

 

As mentioned, the marginal likelihood function for the measurements on subject 𝑖 is found by 

integrating the joint density function of the data and 𝑆𝑖 across the support of 𝑆𝑖. This joint density 

function is given by  

 ℎ(𝑦 𝑖, 𝑠; 𝜇, 𝜎𝑠, 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2) = 𝑔(𝑦 𝑖|𝑆𝑖 = 𝑠; 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2)𝑓(𝑠; 𝜇, 𝜎𝑠) [6.8] 

 

where 𝑔(𝑦 𝑖|𝑆𝑖 = 𝑠; 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2) is as given in [6.7] and 𝑓(𝑠; 𝜇, 𝜎𝑠) is the probability 

density function for 𝑆𝑖 which has a normal distribution with mean 𝜇 and variance 𝜎𝑠
2: 

 𝑓(𝑠; 𝜇, 𝜎𝑠) =
1

√2𝜋𝜎𝑠
2
exp {

−(𝑠 − 𝜇)2

2𝜎𝑠
2

}     [6.9] 
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Note that we will most often suppress notation and denote ℎ(𝑦 𝑖, 𝑠; 𝜇, 𝜎𝑠, 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2), 

𝑔(𝑦 𝑖|𝑆𝑖 = 𝑠; 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2) and 𝑓(𝑠; 𝜇, 𝜎𝑠) by ℎ(𝑦 𝑖, 𝑠), 𝑔(𝑦 𝑖|𝑆𝑖 = 𝑠) and 𝑓(𝑠), respectively. 

Thus the likelihood function for the measurements on subject 𝑖 by both systems is given by: 

 𝐿𝑖(𝜇, 𝜎𝑠, 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2) = ∫ ℎ(𝑦 𝑖, 𝑠)𝑑𝑠

∞

−∞

    [6.10] 

where ℎ(𝑦 𝑖, 𝑠) is as in [6.8]. Because the integral in [6.10] cannot be solved analytically we must 

approximate it. We do so using a Riemann sum with 𝑝 partitions: {[𝑠1, 𝑠2], [𝑠2, 𝑠3], … , [𝑠𝑝, 𝑠𝑝+1]}. 

Specifically we approximate [6.10] with the following ‘middle’ Riemann sum: 

  𝐿𝑖(𝜇, 𝜎𝑠, 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2) ≈ ∑ℎ(𝑦 𝑖, 𝑠𝑙
∗)

𝑝

𝑙=1

(𝑠𝑙+1 − 𝑠𝑙)    [6.11] 

where 𝑠𝑙
∗ = (𝑠𝑙 + 𝑠𝑙+1)/2 is the midpoint of the partition [𝑠𝑙, 𝑠𝑙+1], 𝑙 = 1,2, … , 𝑝. The 

corresponding log-likelihood function is approximated by 

 𝑙𝑖(𝜇, 𝜎𝑠, 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2) ≈ log(∑ℎ(𝑦 𝑖, 𝑠𝑙
∗)

𝑝

𝑙=1

(𝑠𝑙+1 − 𝑠𝑙))    [6.12] 

The larger the number of partitions 𝑝, the better these approximations become. In fact, as 𝑝 → ∞ 

the approximations in [6.11] and [6.12] become exact [Stewart, 2003]. The choice of 𝑝 is 

discussed in Appendix D. 

Because we assume that measurements on different subjects are independent, the overall log-

likelihood function for all subjects is found by summing [6.11] over 𝑖 = 1,2, … , 𝑛: 

 𝑙(𝜇, 𝜎𝑠, 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2) ≈ ∑log (∑ℎ(𝑦 𝑖, 𝑠𝑙
∗)

𝑝

𝑙=1

(𝑠𝑙+1 − 𝑠𝑙))

𝑛

𝑖=1

    [6.13] 

Estimates of (𝜇, 𝜎𝑠, 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2) are found by numerically maximizing [6.13], which we 

achieve with the constrained optimization routine “fmincon” in Matlab [The MathWorks Inc., 

2013] that accounts for 𝜔𝑗 > 0 and 𝜏𝑗 ≥ 0, 𝑗 = 1,2. These estimates are then substituted into 

[6.6] to obtain the maximum likelihood estimate, 𝜃(𝑠).  



130 
 

In order to correctly build the probability of agreement plot, we must also estimate the standard 

error of 𝜃(𝑠) in order to display approximate confidence intervals for 𝜃(𝑠). To find the standard 

error of 𝜃(𝑠), we calculate the observed information matrix for (𝜇, 𝜎𝑠, 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2).  

To obtain this observed information matrix we calculate negative second partial derivatives of 

[6.13], and substitute the observed data into the appropriate sums of squares. We obtain a 

particular derivative of [6.13] by finding the corresponding derivative of [6.12] and then 

summing over 𝑖 = 1,2, … , 𝑛. The derivatives of [6.12] have the following form: 

𝜕2𝑙𝑖
𝜕𝜆∗𝜕𝜆

=
𝜕

𝜕𝜆∗
(
𝜕𝑙𝑖
𝜕𝜆

) =
∑

𝜕2ℎ(𝑦 𝑖, 𝑠𝑙
∗)

𝜕𝜆∗𝜕𝜆
𝑝
𝑙=1

∑ ℎ(𝑦 𝑖, 𝑠𝑙
∗)𝑝

𝑙=1

− (
𝜕𝑙𝑖
𝜕𝜆

) (
𝜕𝑙𝑖
𝜕𝜆∗

) 

where 𝜆, 𝜆∗ ∈ {𝜇, 𝜎𝑠, 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2} and 

𝜕𝑙𝑖
𝜕𝜆

=
∑

𝜕ℎ(𝑦 𝑖, 𝑠𝑙
∗)

𝜕𝜆
𝑝
𝑙=1

∑ ℎ(𝑦 𝑖, 𝑠𝑙
∗)𝑝

𝑙=1

 

Note that to avoid errors, we use Maple [Maplesoft, 2014] to symbolically take the derivatives 

of ℎ(𝑦 𝑖, 𝑠𝑙
∗). Also note that we use the observed information matrix, and not the expected 

information matrix (as has been done in previous chapters), because the expected values of the 

derivatives of [6.13] are difficult to obtain. 

Once the observed information matrix for (𝜇, 𝜎𝑠, 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2) is calculated, we obtain the 

asymptotic standard deviation of 𝜃̃(𝑠) by pre- and post-multiplying this matrix by a change-of-

variables vector in accordance with the Delta method [Lehmann and Casella, 1998]. We then 

substitute the maximum likelihood estimates of (𝜇, 𝜎𝑠, 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2) into this asymptotic 

standard deviation to obtain the asymptotic standard error of 𝜃(𝑠), which is used in the 

construction of confidence intervals for 𝜃(𝑠). 

6.2.3 Example  

Here we illustrate the application of the probability of agreement analysis when accounting for 

heteroscedasticity. To do so, we use systolic blood pressure data from the same example used 

earlier, published by Bland and Altman [1999]. Previously we have discussed comparing 

observers “J” and “R”, but in this section we focus on the comparison of the measurements by 
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observer “J” using a sphygmomanometer, and the measurements made by a semi-automatic 

blood pressure monitor, denoted “S”. It is this comparison that is presented in the cited article, 

where observer “J” is treated as the reference system (MS1), and the semi-automatic monitor 

“S” is treated as the new system (MS2). As before, the systolic blood pressure (in mmHg) of 85 

subjects is measured three times by both systems (in this case “S” and “J”). These data are given 

in Table C.1 of Appendix C. Note that we use the same data for “J” as in Sections 5.2.4 and 

6.1.2. 

 

Figure 6.2: Modified QQ-Plot and Repeatability Plot for observers “J” (MS1) and “S” (MS2) from the example 

data.  

Left panels correspond to observer “J” and right panels correspond to observer “S” 

Before fitting model [6.4] and estimating the associated parameters, we should first justify its 

use. In Figure 6.2 we present the modified QQ-plots and the repeatability plots for these data. 

The modified QQ-plots suggest that it is reasonable to model the true values of the measurand 

with a normal distribution. When we examine the repeatability plots for evidence of 
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heteroscedasticity, a funnel pattern on the plot for system “S” is apparent. Specifically, the plot 

depicts an increase in residuals as the subject-average increases suggesting that the measurement 

variability for system “S” increases as the true value of the measurand increases. As such, the 

homoscedastic model [6.2] should not be used, and instead we proceed with the use of model 

[6.4]. Note that, as before, the repeatability plot for observer “J” does not suggest much of a 

dependence between true values and the variability of observer “J”.  

With the use of model [6.4] warranted, we use the data in Table C.1 to obtain the maximum 

likelihood estimates of (𝜇, 𝜎𝑠, 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2), and their corresponding asymptotic standard 

errors. These results are presented in Table 6.2. To obtain these estimates we used 𝑝 = 150 

partitions to approximate the likelihood function [6.11]. See Appendix D for details on this 

choice of 𝑝. 

 Estimate Standard Error 

𝜇 127.5222 3.1496 

𝜎𝑠 27.9784 2.3278 

𝛼 3.4501 5.1584 

𝛽 1.0943 0.0429 

𝜔1 0.0000 6.2649 

𝜔2 0.0000 4.0452 

𝜏1 0.0995 0.0454 

𝜏2 0.0779 0.0339 
Table 6.2: Maximum likelihood estimates and standard errors associated with the J vs. S example 

Using these estimates we calculate 𝜃(𝑠) for 𝑠 in the range (𝜇̂ − 3𝜎̂𝑠, 𝜇̂ + 3𝜎̂𝑠) and construct the 

probability of agreement plot shown in Figure 6.3.  Note that the calculation of the probabilities 

in this plot assumes a clinically acceptable difference with 𝑐 = 10 as has been done in the 

previous examples. Given this clinically acceptable difference, the plot suggests that system “S” 

and observer “J” do not agree very well, with the probability of agreement decreasing from 

approximately 0.6 to 0.2 across a typical range of systolic blood pressure values. This probability 

will increase for larger values of 𝑐 and decrease for smaller values, but it is unlikely that a 

practitioner would recommend that system “S” be used interchangeably with observer “J”. 
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Figure 6.3: Probability of Agreement Plot comparing “J” and “S” from the example data with 𝑐 = 10 

 

The source of disagreement is clear when we examine the estimates in Table 6.2. The average 

blood pressure measurement by observer J is estimated to be 𝜇̂ ≈ 127 mmHg, while the average 

measurement by system S is estimated to be 𝛼̂ + 𝛽̂𝜇̂ ≈ 143 mmHg. Thus observer J and system 

S differ on average by roughly 16 mmHg. This difference arises partially because the fixed bias 

is non-zero, but it is largely due to the fact that the proportional bias is significantly different 

from 1 (𝛽̂ = 1.09). The proportional bias also accounts, to some extent, for the decrease in 

agreement across the range of 𝑆𝑖. This dependence of agreement on the true systolic blood 

pressure is also due to the presence of heteroscedasticity. Because 𝜏̂1and 𝜏̂2 are both non-zero, 

this indicates that both systems are somewhat heteroscedastic. And because 𝜏̂1 ≠ 𝜏̂2, the degree 

of heteroscedasticity is not the same in the two systems, which is another source of disagreement. 

We note that 𝜔̂1 and 𝜔̂2 are both approximately zero, which suggests that the structure of 

heteroscedasticity in each system is strictly proportional to the true values. The large standard 

errors associated with these estimates reflects the difficulty of estimating 𝜔𝑗 near the boundary.  
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The estimates in Table 6.2 demonstrate that the underlying distribution for the two 

measurement system’s measurements are different. In addition to using the probability of 

agreement plot to assess the level of agreement, we could also use a likelihood ratio test to 

formally test for equality between the two measurement systems with a hypothesis such as 

𝐻0: 𝛼 = 0, 𝛽 = 1,𝜔1 = 𝜔2, 𝜏1 = 𝜏2. In general, we would expect that if a formal test rejects 

equality, the probability of agreement would be low.   

 

Figure 6.4: Repeated measures difference plot comparing “J” and “S” from the example data with 𝑐 = 10 

 

For comparison, we present the repeated measures difference plot for these data in Figure 6.4. 

From this plot Bland and Altman [1999] draw a similar conclusion, citing a “lack of agreement” 

between “S” and “J”, but they do not quantify this lack of agreement. They also do not 

acknowledge the obvious relationship between the differences and averages. By using the 

repeatability plots in Figure 6.2, we were able to diagnose the heteroscedasticity of system “S”, 

and use the appropriate model. In doing so we estimated the parameters 

(𝜇, 𝜎𝑠, 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2) giving an accurate summary of the relationship between “S” and “J”. 

As in the homoscedastic case, the probability of agreement analysis provides a much more 
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informative assessment of agreement than the limits of agreement analysis, when 

heteroscedasticity is present. 

The probability of agreement analysis technique has been automated for this heteroscedastic 

scenario as well, and Matlab [The MathWorks Inc., 2013] software is available to practitioners 

who wish to use it to determine whether two (possibly heteroscedastic) measurement systems 

are interchangeable. 

6.2.4 Other Considerations 

In this subsection we comment on a few additional factors to consider when using the probability 

of agreement analysis to determine whether two, possibly heteroscedastic, measurement systems 

are interchangeable. We first point out that unlike the homoscedastic case, we do not consider 

an unconditional version of the probability of agreement here. Recall that we defined 𝜃 in [5.4] 

which could be used when the probability of agreement 𝜃(𝑠) was relatively unchanged across 

the range of true values. This unconditional version is based on the marginal distribution of the 

𝑌𝑖𝑗𝑘’s and does not depend on the true value of the measurand, 𝑠. Because the model we propose 

in the heteroscedastic case ([6.4]) explicitly depends on 𝑠, we cannot generalize 𝜃 to this 

scenario.  

Model [6.4] also assumes that the unknown true values of the measurand follow a normal 

distribution, which may not be realistic. For example, when measuring a characteristic whose 

values are positive but clustered near zero, a right-skewed distribution may more accurately 

describe the behaviour of the true values. A skewed distribution may also be reasonable if 

measurements are being made on a mixture of healthy and diseased individuals. In cases like 

these we could relax the normality assumption, and specify a different distribution: perhaps a 

two-parameter gamma distribution.  

Fortunately the maximum likelihood procedure discussed in Section 6.2.2 could still be applied 

in this case. For example if we assume 𝑆𝑖 has a gamma distribution we need only substitute the 

gamma density function for the normal density function in [6.8], the joint density function for 𝑆𝑖 

and the data. In doing this, the parameters 𝜇 and 𝜎𝑠 would no longer be relevant, and instead the 

two parameters of the gamma distribution are pertinent. Note that because 𝜃(𝑠) does not 

explicitly depend on 𝜇 and 𝜎𝑠, they are just nuisance parameters, and not an integral part of the 
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current analysis method; as long as some distribution is assumed for 𝑆𝑖, 𝜃(𝑠) can be estimated, 

and interchangeability can be assessed. Thus the normality assumption for the true values is not 

overly restrictive- it can easily be changed. 

If, however, it is reasonable to assume that the true values are normally distributed, we could use 

Gaussian Quadrature [Lindsey, 2001] to approximate the likelihood function [6.10], instead of 

the Riemann sum approximation. With Gaussian Quadrature integrals of the form  

∫ 𝑒−𝑥2
𝑞(𝑥)𝑑𝑥

∞

−∞

 

are approximated by sums of the form 

∑𝑤𝑙𝑞(𝑥𝑙)

𝑝

𝑙=1

 

where the points 𝑥𝑙 are called nodes and the 𝑤𝑙 are weights. By making the substitution 𝑥 =
𝑠−𝜇

√2𝜎𝑠
 

in [6.10] we get: 

𝐿𝑖(𝜇, 𝜎𝑠, 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2) =
1

√𝜋
∫ 𝑒−𝑥2

𝑔(𝑦 𝑖|𝑆𝑖 = √2𝜎𝑠𝑥 + 𝜇)𝑑𝑥

∞

−∞

 

According to Gauss-Hermite integration, this can be approximated by 

𝐿𝑖(𝜇, 𝜎𝑠, 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2) ≈
1

√𝜋
∑ 𝑤𝑙𝑔(𝑦 𝑖|𝑆𝑖 = √2𝜎𝑠𝑥𝑙 + 𝜇)

𝑝

𝑙=1

 

Where the weights 𝑤𝑙 are functions of the roots of the Hermite polynomial [Abramowitz and 

Stegun, 1965].  

Liu and Pierce [1994] show that the error associated with this approximation has order 

𝑂 (𝑛−[
𝑝

3
+1]) where 𝑝 is the number of nodes used in the approximation. However, through 

simulation we found that the asymptotic standard errors associated with the estimates were more 

accurate with the Riemann sum approximation than with the Gauss-Hermite approximation, 

even for large 𝑝. Both methods provide accurate estimates of the parameters themselves, but we 
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use the Riemann sum as the preferred approximation because it also provides accurate 

asymptotic standard errors. And as mentioned, the Riemann sum approximation has the added 

benefit of being flexible with respect to the distribution of 𝑆𝑖. For a comparison of the two 

approximation methods on a simulated example, see Appendix D. 

The last point we discuss in this subsection is the design of an MSC study when 

heteroscedasticity is present. Until now Section 6.2 has focused largely on analyzing MSC data 

in this case. In Section 5.3 we recommended an optimal design for precisely estimating the 

probability of agreement, in the homoscedastic case. In particular, when each system can make 

a total of 𝑁 measurements in an MSC study, we proposed that 𝑁/2 subjects be measured twice 

by each system. We have not extensively studied the effect of the study design in this case, but 

based on preliminary investigation it appears that more than 𝑟 = 2 replicate measurements by 

each system are necessary to provide sufficiently precise estimates of the variability parameters 

𝜔𝑗 and 𝜏𝑗, and hence 𝜃(𝑠). We remark that this is an important topic, and one that we plan to 

pursue in future work.  

6.3 Discussion and Conclusions 

One of the major benefits of the probability of agreement analysis is that it can be easily adapted 

to more general, and potentially complicated, settings.  But no matter the how complicated the 

generalization might be, the simplicity and the explanatory nature of the probability of agreement 

does not change. 

In this chapter we have developed two generalizations of the probability of agreement analysis: 

we have suggested modifications to the analysis that can be applied when the true values of the 

measurand do not follow a normal distribution, and when one or both measurement systems is 

heteroscedastic. In each of these modifications, we alter the method by which the probability of 

agreement 𝜃(𝑠) is estimated, but in each case we show that the analysis still informatively 

quantifies agreement, and the intuitive interpretation remains the same. For added accessibility, 

the probability of agreement analysis in these two situations has been automated, and Matlab 

[The MathWorks Inc., 2013] software is available to practitioners. 

In future work we plan to continue adapting the probability of agreement analysis for use in other 

settings. For example, we may consider the case when the number of replicate measurements 
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(𝑟𝑖𝑗) by each system and on each subject is different. We may also consider the case when both 

measurement systems are biased. In this case we might account for fixed and proportional bias, 

𝛼𝑗 and 𝛽𝑗, in each system. And lastly, it is of interest to adapt the probability of agreement 

analysis to account for observer effects when each system is operated by more than one 

individual. 

 

  



139 
 

 

Chapter 7 

 

Conclusion and Extensions 

 

7.1 Summary 

The objective of this thesis was to expand upon the statistical methodologies associated with the 

assessment and comparison of continuous measurement systems. Measurement systems are an 

important part of many industrial and medical processes, where understanding a complex system 

or process cannot be done without high quality measurements. As such, evaluating the adequacy 

of a single measurement system, or comparing the performance of two measurement systems, is 

essential. 

In the first part of this thesis (Chapters 1-3), we focused on assessing measurement systems 

where a measurement system’s adequacy is determined by the results of a measurement system 

assessment (MSA) study. The standard design of such a study, which we refer to as the standard 

plan (SP), involves multiple measurements on each of a random sample of subjects. The 

adequacy of the measurement system is quantified by the proportion of overall variation due to 

the measurement system (gauge R&R ratio, 𝛾). Using the data from the MSA study, 𝛾 is 

estimated and the measurement system’s adequacy is evaluated. 

The goal of the work in Chapters 2 and 3 was to consider alternative designs to the standard plan, 

which provide a more precise estimate of the measurement system’s performance. In Chapter 2, 

we propose the use of unbalanced ‘augmented’ designs which augment the standard plan with 

single measurements on additional subjects [Stevens et al., 2010]. The goal of these designs is 

to supplement the information gained from the standard plan, so as to more precisely estimate 

the gauge R&R ratio 𝛾, and hence the measurement system’s performance. When a measurement 

system is operated by multiple observers we show that use of an appropriate augmented plan can 
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produce substantial gains in precision for estimating 𝛾 compared to the best standard plan with 

the same total number of measurements. 

In Chapter 3 we consider the assessment of a measurement system that is used routinely, and for 

which a record of historical (baseline) measurements are kept. In this case we propose 

incorporating these baseline measurements in both the planning and analysis of an MSA study 

[Stevens et al., 2013]. We demonstrated the substantial benefits of incorporating baseline data 

into the analysis, where most of the gains in precision can be obtained with relatively small 

baseline sample sizes. We also recommended good standard plans with a fixed total number of 

measurements that take into account available baseline data. 

The second part of this thesis (Chapters 4-6) is concerned with the comparison of two 

measurement systems, where the goal is to decide whether two systems agree well enough to be 

used interchangeably. To make this determination, a measurement system comparison (MSC) 

study is undertaken in which a random sample of subjects are each measured multiple times by 

both systems. Chapters 5 and 6 develop a novel method for analyzing MSC study data that 

adequately quantifies and summarizes the agreement between two measurement systems. 

In Chapter 5 we propose the probability of agreement analysis as a statistical tool for assessing 

the interchangeability of two measurement systems [Stevens et al., 2014 (under revision)]. This 

analysis is to be used as an alternative to various other methods which fail to evaluate agreement 

concisely and accurately. The proposed method is based on the probability of agreement which, 

for a particular value of the measurand, is the probability that the absolute difference between 

measurements by each system on the same subject is small enough to be considered clinically 

(or practically) acceptable. We then use estimates of this probability to construct the probability 

of agreement plot which quantifies the agreement between two measurement systems across a 

range of plausible values for the measurand. 

The probability of agreement analysis has three main benefits. The first is that the results are 

intuitive, and can be interpreted by non-statisticians. The second is that the estimation procedure 

can be generalized to account for alterations to model assumptions, and the probability of 

agreement plot can still be constructed, and the results are interpreted in exactly the same way. 

We illustrated this versatility in Chapter 6 where we considered comparing measurement systems 

when the true values of the measurand do not follow a normal distribution, or when the 
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measurement variation of one or both systems depends on this unknown true value. The final 

benefit is that the analysis cannot be performed without the definition of a clinically acceptable 

difference, and replicate measurements on each subject by each system must be taken. As such, 

the analysis is safeguarded against misuse, unlike the limits of agreement approach due to Bland 

and Altman. 

7.2 Extensions 

In this section we outline several extensions of the thesis work that can be pursued. Like the 

thesis itself, we consider these extensions separately in terms of measurement system assessment 

(subsection 7.2.1) and measurement system comparison (subsection 7.2.2). We then discuss the 

dissemination of results in subsection 7.2.3. 

7.2.1 Measurement System Assessment Extensions 

In Chapter 2 we chose to use augmented plan A or B and hence chose values of 𝑛, 𝑚, 𝑟 and 𝑛𝐴 

or 𝑛𝐵 based on the ability of the plan to precisely estimate 𝛾, the gauge R&R ratio. An alternative 

method of calculating sample sizes would be to choose 𝑛, 𝑚, 𝑟 and 𝑛𝐴 or 𝑛𝐵 based on their 

ability to achieve a desired power associated with a hypothesis test such as [1.13]: 

𝐻0: 𝛾 ≥ 𝛾0 versus 𝐻𝐴: 𝛾 < 𝛾0 

where reasonable choices for 𝛾0 might be the acceptability/unacceptability criteria 0.1 and 0.3 

suggested by the Automotive Industry Action Group [2010]. It would be interesting to compare 

the optimal allocation of subjects, observers and replicate measurements found with this method 

to that which has already been considered.  

In Chapter 1 we discussed leveraged plans [Browne et al., 2009a; 2009b; 2010] as an alternative 

to the use of standard plans in MSA studies. This series of papers provides one of the only other 

recommendations for an alternate study design, and so it is of interest to compare the 

performance of augmented plans with the performance of these leveraged plans. Note that the 

leveraged plans use fewer subjects, so it is not immediately clear how their performance will 

compare with the augmented plans. 

Two final measurement system assessment extensions have arisen from work on measurement 

system comparison. The first is to explore is the possibility of modeling and testing for the 
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presence of heteroscedasticity. MSA studies in manufacturing contexts typically assume that the 

measurement system is linear, and hence homoscedastic. However, in Chapter 6, we saw that 

heteroscedasticity can be present in clinical contexts and so MSA studies could benefit from the 

added generality of being able to assess the adequacy of a measurement system whose variability 

depends on the true value of the measurand. In Chapter 6 we also discussed the comparison of 

two measurement systems when the true values of the measurand are non-normally distributed. 

A final extension in the assessment context would be to consider assessing a single measurement 

system when the true values are non-normally distributed. 

7.2.2 Measurement System Comparison Extensions 

In future work we plan to extend the work in Chapter 6 and continue to adapt the probability of 

agreement analysis for use in other settings. Specifically, we suggest various model assumptions 

that could be altered, thus expanding the applicability of the probability of agreement analysis. 

One primary extension to consider is the inclusion of observer effects in the analysis. Often a 

measurement system is operated by multiple individuals, but models [5.1] and [6.4] do not 

include observer effects. As such [5.1] and [6.4] implicitly assume that the measurement systems 

being compared are each operated by a single observer, or if operated by multiple observers, we 

assume that their effects are the same. Any variation that is attributable to observers is then 

confounded with the measurement variation. We may relax this assumption and include a fixed 

or random observer effect in these models, as is often done in the analysis of MSA studies.  

Another assumption that we have made in models [5.1] and [6.4] is that when each measurement 

system makes 𝑟 replicate measurements on each subject, we assume that 𝑟 is the same for each 

system and each subject. We may modify the modeling and estimation to accommodate the 

scenario in which the two systems make a different number of replicate measurements per 

subject, i.e. 𝑟1 ≠ 𝑟2, or a different number of measurements on each subject, i.e. 𝑟𝑖𝑗 ≠ 𝑟𝑙𝑗, where 

𝑖, 𝑙 = 1,2, … , 𝑛 index subjects and 𝑗 = 1,2 indexes measurement systems. 

As well, we have assumed that the existing (reference) system is unbiased, and all inferences 

regarding bias are made relative to it through 𝛼 and 𝛽. However, in some situations it might not 

be reasonable to assume the existing system is unbiased. In this case we may model both systems 

as being biased and account for fixed and proportional bias, 𝛼𝑗 and 𝛽𝑗, in each system. By 
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including bias parameters for both systems, the models become over-parameterized and separate 

estimation of each individual parameter becomes infeasible. However, even in such an over-

parameterized model, the probability of agreement is still estimable. 

Another area of extension concerns the design of MSC studies when using the probability of 

agreement analysis. In Chapter 5 we recommended an optimal design for precisely estimating 

the probability of agreement, in the homoscedastic case. We have not extensively studied the 

effect of the study design in the heteroscedastic case, but this is an important topic, and one that 

we plan to pursue in future work.  

With regard to MSC study design (in the homoscedastic or heteroscedastic case), we might also 

consider the effect of incorporating baseline information into the planning and analysis. If the 

measurement system being compared to the existing one is new, baseline data may not be 

available for it. But if baseline data is available for the existing system it could help to accurately 

describe the distribution of true values, which may help to estimate the probability of agreement.  

One other possible extension is the simultaneous comparison of three or more measurement 

systems. Current analysis methods, the probability of agreement included, compare 

measurement systems in a pairwise fashion. However, in some situations it is of interest to 

compare multiple measurement systems. For example, Ungerer et al. [2012] compare four 

methods of measuring cardiac troponin, and Manley et al. [2007] compare eleven assays for 

measuring insulin concentration. In these cases it is of interest to compare each measurement 

system to each other, and not just to the reference system. Using a series of pairwise comparisons 

to achieve this goal is inefficient (particularly when the number of systems is large). As such, 

we wish to modify the probability of agreement analysis to simultaneously compare more than 

two measurement systems. 

7.2.3. Dissemination of Results 

The last extension we discuss concerns the dissemination of results. The results in this thesis are 

largely based on the content of two published papers [Stevens et al., 2010; Stevens et al., 2013], 

and two papers which are currently in progress. The papers that are in progress propose the 

probability of agreement analysis, and contain the content of Chapters 5 and 6. 
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The journals in which these articles are published, or intended to be published, are statistical in 

nature and the readership consists primarily of statisticians. However, because the content is very 

applied, the practitioners that will potentially use these methods are not likely to be statisticians, 

and not likely to read these statistical journals. As such, the ideas developed in this thesis are not 

likely to be used, unless we disseminate them to the non-statisticians that are likely to apply 

them.  

In order to increase the chance that practitioners will learn about (and use) these ideas, we plan 

to publish non-technical articles such as case studies, commentaries, and instructive examples in 

more accessible journals such as Quality Progress, Quality Engineering, or Clinical Chemistry. 

In fact, the benefit and impact of incorporating baseline information in MSA studies (as 

discussed in Chapter 3) has been presented in a relatable and understandable way in a Quality 

Progress article which is to appear in December 2014 [Stevens et al., 2014].  

Another way to ensure the use of these ideas is to automate the methods with software that is 

freely available, and easy to use. Such software is available for planning and analyzing MSA 

studies at www.bisrg.uwaterloo.ca, but we also intend to make software associated with MSC 

studies and the probability of agreement analysis available. 

 

  

http://www.bisrg.uwaterloo.ca/
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Appendix A 

 

A.1 Inverse and Determinant of Covariance Matrix: MSA 

In this appendix we derive the inverse and determinant of the covariance matrix ∑ associated 

with model [2.1]. In Section 2.1 we saw that this covariance matrix is given by: 

∑ = 𝜎𝑠
2𝐽𝑚𝑟×𝑚𝑟 + 𝜎𝑠𝑜

2 𝐼𝑚 ⊗ 𝐽𝑟×𝑟 + 𝜎𝑚
2 𝐼𝑚𝑟 

where 𝐽𝑎×𝑏 is an 𝑎 × 𝑏 matrix of 1’s, 𝐼𝑎 is the 𝑎 × 𝑎 identity matrix and ⊗ denotes the Kronecker 

product. 

Based on the Shermin-Morrison formula [1950] and the Matrix Determinant Lemma [Harville, 

2008] we state the following theorem and corollary. We apply this theorem and corollary to find 

the inverse and determinant of ∑. 

Theorem 1: If  𝑊 = 𝐴 + 𝑣𝑣𝑇 where 𝐴 is non-singular then 

1. 𝑊−1 = 𝐴−1 −
𝐴−1𝑣𝑣𝑇𝐴−1

1+𝑣𝑇𝐴−1𝑣
 

2. |𝑊| = |𝐴|(1 + 𝑣𝑇𝐴−1𝑣) 

 

Corollary 1: If  𝑊 = 𝑎𝐼𝑛 + 𝑏𝐽𝑛×𝑛 then 

1. 𝑊−1 =
1

𝑎
𝐼𝑛 −

𝑏

𝑎(𝑎+𝑏𝑛)
𝐽𝑛×𝑛 

2. |𝑊| = 𝑎𝑛−1(𝑎 + 𝑏𝑛) 

 

We begin by letting 𝐴 = 𝜎𝑠𝑜
2 𝐼𝑚 ⊗ 𝐽𝑟×𝑟 + 𝜎𝑚

2 𝐼𝑚𝑟 and 𝑣 = 𝜎𝑠𝐽𝑚𝑟, where 𝐽𝑚𝑟 is a column vector of 

𝑚𝑟 1’s. Since 𝑣𝑣𝑇 = 𝜎𝑠
2𝐽𝑚𝑟×𝑚𝑟 we see that the covariance matrix ∑ can be written in the rank-

one update form ∑ = 𝐴 + 𝑣𝑣𝑇, allowing us to apply the results of Theorem 1. We will compute 
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𝐴−1, 𝐴−1𝑣𝑣𝑇𝐴−1, 𝑣𝑇𝐴−1𝑣 and finally |𝐴| to obtain all of the elements of the formulae necessary 

to calculate ∑−1 and |∑|. 

Before calculating 𝐴−1, note that 𝐴 = 𝜎𝑠𝑜
2 𝐼𝑚 ⊗ 𝐽𝑟×𝑟 + 𝜎𝑚

2 𝐼𝑚𝑟 can be written as 

𝐴 = 𝐼𝑚 ⊗ [𝜎𝑠𝑜
2 𝐽𝑟×𝑟 + 𝜎𝑚

2 𝐼𝑟] 

Because (𝑃 ⊗ 𝑄)−1 = 𝑃−1
⊗ 𝑄−1 [Jemderson et al., 1983], we have  

𝐴−1 = 𝐼𝑚 ⊗ [𝜎𝑠𝑜
2 𝐽𝑟×𝑟 + 𝜎𝑚

2 𝐼𝑟]
−1 

To find the inverse of 𝜎𝑠𝑜
2 𝐽𝑟×𝑟 + 𝜎𝑚

2 𝐼𝑟 we note that it has the correct form to apply the results of 

Corollary 1. Based on the first result of Corollary 1, we have 

𝐴−1 = 𝐼𝑚 ⊗ [
1

𝜎𝑚
2

𝐼𝑟 −
𝜎𝑠𝑜

2

𝜎𝑚
2 (𝜎𝑚

2 + 𝑟𝜎𝑠𝑜
2 )

𝐽𝑟×𝑟]

−1

 

        =
1

𝜎𝑚
2

𝐼𝑚𝑟 −
𝜎𝑠𝑜

2

𝜎𝑚
2 (𝜎𝑚

2 + 𝑟𝜎𝑠𝑜
2 )

𝐼𝑚 ⊗ 𝐽𝑟×𝑟 

                              = 𝑎1𝐼𝑚𝑟 + 𝑎2𝐼𝑚 ⊗ 𝐽𝑟×𝑟     [A.1] 

 

where we let 𝑎1 =
1

𝜎𝑚
2  and 𝑎2 =

−𝜎𝑠𝑜
2

𝜎𝑚
2 (𝜎𝑚

2 +𝑟𝜎𝑠𝑜
2 )

. 

Next we calculate 𝐴−1𝑣𝑣𝑇𝐴−1: 

𝐴−1𝑣𝑣𝑇𝐴−1 = [𝑎1𝐼𝑚𝑟 + 𝑎2𝐼𝑚 ⊗ 𝐽𝑟×𝑟][𝜎𝑠
2𝐽𝑚𝑟×𝑚𝑟][𝑎1𝐼𝑚𝑟 + 𝑎2𝐼𝑚 ⊗ 𝐽𝑟×𝑟] 

                       = 𝜎𝑠
2[𝑎1𝐼𝑚𝑟 + 𝑎2𝐼𝑚 ⊗ 𝐽𝑟×𝑟][𝑎1𝐽𝑚𝑟×𝑚𝑟 + 𝑟𝑎2𝐽𝑚𝑟×𝑚𝑟] 

                       = 𝜎𝑠
2(𝑎1 + 𝑟𝑎2)[𝑎1𝐼𝑚𝑟 + 𝑎2𝐼𝑚 ⊗ 𝐽𝑟×𝑟][𝐽𝑚𝑟×𝑚𝑟] 

                       = 𝜎𝑠
2(𝑎1 + 𝑟𝑎2)[𝑎1𝐽𝑚𝑟×𝑚𝑟 + 𝑟𝑎2𝐽𝑚𝑟×𝑚𝑟] 

                    = 𝜎𝑠
2(𝑎1 + 𝑟𝑎2)

2𝐽𝑚𝑟×𝑚𝑟     [A.2] 

 

Next we calculate 𝑣𝑇𝐴−1𝑣: 

𝑣𝑇𝐴−1𝑣 = 𝜎𝑠
2𝐽𝑚𝑟

𝑇 [𝑎1𝐼𝑚𝑟 + 𝑎2𝐼𝑚 ⊗ 𝐽𝑟×𝑟]𝐽𝑚𝑟 

                = 𝜎𝑠
2[𝑎1𝐽𝑚𝑟

𝑇 + 𝑟𝑎2𝐽𝑚𝑟
𝑇 ]𝐽𝑚𝑟  
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                = 𝜎𝑠
2(𝑎1 + 𝑟𝑎2)𝐽𝑚𝑟

𝑇 𝐽𝑚𝑟 

                                        = 𝑚𝑟𝜎𝑠
2(𝑎1 + 𝑟𝑎2)     [A.3] 

To calculate |𝐴| we note that if 𝑃 is a 𝑝 × 𝑝 matrix and 𝑄 is a 𝑞 × 𝑞 matrix, then |𝑃 ⊗ 𝑄| =

|𝑃|𝑞|𝑄|𝑝 [Jemderson et al., 1983]. Applying this result we find  

|𝐴| = |𝐼𝑚|𝑟|𝜎𝑠𝑜
2 𝐽𝑟×𝑟 + 𝜎𝑚

2 𝐼𝑟|
𝑚 

Noting again that 𝜎𝑠𝑜
2 𝐽𝑟×𝑟 + 𝜎𝑚

2 𝐼𝑟 has the correct form to apply Corollary 1, we apply the second 

result giving 

 |𝐴| = ((𝜎𝑚
2 )𝑟−1(𝜎𝑚

2 + 𝑟𝜎𝑠𝑜
2 ))

𝑚
     [A.4] 

   

Using Equations [A.1-A.3], and applying the first result of Theorem 1, we have 

∑−1 = 𝑎1𝐼𝑚𝑟 + 𝑎2𝐼𝑚 ⊗ 𝐽𝑟×𝑟 −
𝜎𝑠

2(𝑎1 + 𝑟𝑎2)
2

1 + 𝑚𝑟𝜎𝑠
2(𝑎1 + 𝑟𝑎2)

𝐽𝑚𝑟×𝑚𝑟 

                                   = 𝑎1𝐼𝑚𝑟 + 𝑎2𝐼𝑚 ⊗ 𝐽𝑟×𝑟 −
𝜎𝑠

2

(𝑎1 + 𝑟𝑎2)−2 + 𝑚𝑟𝜎𝑠
2(𝑎1 + 𝑟𝑎2)−1

𝐽𝑚𝑟×𝑚𝑟 

Noting that (𝑎1 + 𝑟𝑎2) = (𝜎𝑚
2 + 𝑟𝜎𝑠𝑜

2 )−1, we have 

 ∑−1 = 𝑎1𝐼𝑚𝑟 + 𝑎2𝐼𝑚 ⊗ 𝐽𝑟×𝑟 + 𝑎3𝐽𝑚𝑟×𝑚𝑟     [A.5] 

 

where 

𝑎1 =
1

𝜎𝑚
2

 

𝑎2 =
−𝜎𝑠𝑜

2

𝜎𝑚
2 (𝜎𝑚

2 + 𝑟𝜎𝑠𝑜
2 )

 

𝑎3 =
−𝜎𝑠

2

(𝜎𝑚
2 + 𝑟𝜎𝑠𝑜

2 )(𝜎𝑚
2 + 𝑟𝜎𝑠𝑜

2 + 𝑚𝑟𝜎𝑠
2)

 

Using equations [A.3] and [A.4], and applying the second result of Theorem 1, we have 

|∑| = ((𝜎𝑚
2 )𝑟−1(𝜎𝑚

2 + 𝑟𝜎𝑠𝑜
2 ))

𝑚
(1 + 𝑚𝑟𝜎𝑠

2(𝑎1 + 𝑟𝑎2)) 

Substituting (𝑎1 + 𝑟𝑎2) = (𝜎𝑚
2 + 𝑟𝜎𝑠𝑜

2 )−1 yields 
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 |∑| = (𝜎𝑚
2 )𝑚(𝑟−1)(𝜎𝑚

2 + 𝑟𝜎𝑠𝑜
2 )𝑚−1(𝜎𝑚

2 + 𝑟𝜎𝑠𝑜
2 + 𝑚𝑟𝜎𝑠

2)     [A.6] 

 

The inverse and determinant given respectively by [A.5] and [A.6] are the ones used in Section 

2.1 to construct the log-likelihood function associated with the standard plan measurements for 

a single subject. Note that when we consider the special case where we assume there is no 

subject-by-observer interaction we set 𝜎𝑠𝑜
2 = 0 in the above calculations. 
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Appendix B 

 

B.1 Comparing Asymptotic and Simulated Standard Errors 

 

In this section we expand on the results of the simulation study described in Section 3.2. Because 

we compare plans using the asymptotic standard error for 𝛾, we must check that the asymptotic 

results match simulated results. This will ensure that we can use the asymptotic results to 

appropriately rank the possible 𝑆𝑃(𝑛, 𝑟) plans for different baseline sizes. In the simulation we 

compare the simulated and asymptotic standard errors for a variety of plans and parameter 

values. We consider:  

 Total number of measurements: 𝑁 = 60, 90 and 120; 

 Number of observers: 𝑚 = 1, 2, 3, and 4; 

 Number of subjects: 𝑛 = 3 to a maximum depending on 𝑁 and 𝑚; 

 Per-observer baseline sample sizes: 𝑏𝑗 = 0, 10, 30, and 100 (recall that 𝑏 = 𝑚𝑏𝑗); 

 Parameter values: 𝛾 = 0.1, 0.3, 𝛿 = 0.1, 0.5, 0.9, and 𝛽 = 0.1, 0.5, 0.9. 

For each plan and set of parameter values, we generate 10 000 samples from model [3.1] and for 

each sample determine the maximum likelihood estimate of 𝛾. We then define the standard 

deviation of the 10 000 estimates of 𝛾 to be the simulated standard error, which we compare to 

the asymptotic standard error as calculated by the expected Fisher Information matrix (see 

Section 3.1.2). 

We illustrate the results in Figures B.1-B.4. In these figures, “ratio” represents the asymptotic 

standard error divided by the simulated standard error corresponding to each combination of 𝑛, 

𝑏, and 𝛾. In these figures we see that the asymptotic standard error for 𝛾 closely matches the 

simulated results for all plans when the baseline sample size (𝑏) is large. For simulations based 

on small baseline sample sizes, the asymptotic results underestimate the simulated results with 

increasing large differences for plans with fewer subjects, 𝑛. We also see that the results are 
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similar for one, two, three, or four observers. In the multiple observer cases, we do not stratify 

by 𝛿 and 𝛽. In Figures B.2-B.4, each cluster of points corresponds to the different values of 𝛿 

and 𝛽 for a specific combination of 𝑛, 𝑏, and 𝛾. We see that the conclusions we have drawn do 

not materially depend on the values of 𝛿 and 𝛽. 

 

 

Figure B.1: Individual Value Plot of “ratio” versus 𝑛, 𝑏, and 𝛾 when 𝑚 = 1 and 𝑁 = 60 

 

 

 

Figure B.2: Individual Value Plot of “ratio” versus 𝑛, 𝑏, and 𝛾 when 𝑚 = 2 and 𝑁 = 60 
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Figure B.3: Individual Value Plot of “ratio” versus 𝑛, 𝑏, and 𝛾 when 𝑚 = 3 and 𝑁 = 90 

 

 

Figure B.4: Individual Value Plot of “ratio” versus 𝑛, 𝑏, and 𝛾 when 𝑚 = 4 and 𝑁 = 120 
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still provide the same ranking of plans as 𝑛 and 𝑟 vary. As such, we proceed to rank plans based 

on the asymptotic results in all scenarios. 
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B.2 REML Simulation Results 

To compare the restricted maximum likelihood (REML) approach and the usual maximum 

likelihood (ML) approach, we conduct a factorial simulation study where we compared the 

estimates of 𝛾 for each approach for a number of different plans, baseline sizes, and values for 

𝛾, 𝛿, and 𝛽. Specifically, we consider: 

 Total number of measurements: 𝑁 = 60, 90, 120; 

 Number of observers: 𝑚 = 1, 2, 3, and 4; 

 Number of subjects: 𝑛 = 3 and 10; 

 Baseline sample sizes: 𝑏 = 0, 25, 50, 75, 100 when 𝑚 = 1; 𝑏 = 0, 30, 60, 90 when 𝑚 > 

1; 

 Parameter values: 𝛾 = 0.1, 0.3; 𝛿 = 0.1, 0.5, 0.9; and 𝛽 = 0.1, 0.5, 0.9. 

For each plan and set of parameter values, we generated 10 000 samples from model [3.1] and 

for each sample determined both the REML and usual ML estimates of 𝛾. We then take the mean 

of these 10 000 estimates and subtract the true value of 𝛾, giving the bias of the estimator. We 

define the standard deviation of the 10 000 estimates of 𝛾 to be the standard error of the estimator. 

We illustrate the results of the one-observer case in Figures B.5 and B.6, and the results of the 

two-observer case in Figures B.7 and B.8. The conclusions we draw from these plots are 

independent of the number of observers 𝑚, which is why the 𝑚 = 3 and 4 cases are not presented 

here. Figures B.5 and B.7 display the bias associated with estimating 𝛾 with each technique, and 

Figures B.6 and B.8 display the associated standard errors. In each plot the clusters of points 

represent the results of each parameter combination at the specified values of 𝑏 and 𝑛. 

Figures B.5 and B.7 suggest that the REML estimator of 𝛾 is indeed substantially less biased 

than the usual maximum likelihood estimator (though still not unbiased) when there are no 

baseline data, especially when the number of subjects (𝑛) in the SP is small. However, when we 

add even a small amount of baseline data, say 𝑏 = 30 observations, the difference in bias between 

the two estimation techniques disappears.  

Figures B.6 and B.8 suggest that that variability of the usual maximum likelihood estimators and 

REML estimators are similar, but for some combinations of the parameter values the usual 

maximum likelihood estimators are in fact less variable. Because the ML and REML estimators 



153 
 

are similarly biased for non-zero baseline sample sizes, and because the variability of ML 

estimators are less than or equal to that of the REML estimators, we continue to use standard 

maximum likelihood estimation. 

 

 

Figure B.5: Individual Value Plot of the bias associated with REML and ML estimates of 𝛾 by 𝑏  

when 𝑁 = 60 and 𝑚 = 1 

 

 

 

Figure B.6: Individual Value Plot of the standard error associated with REML and ML estimates of 𝛾 by 𝑏  

when 𝑁 = 60 and 𝑚 = 1 
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Figure B.7: Individual Value Plot of the bias associated with REML and ML estimates of 𝛾 by 𝑏 and 𝑛 

when 𝑁 = 60 and 𝑚 = 2 

 

 

 

Figure B.8: Individual Value Plot of the standard error associated with REML and ML estimates of 𝛾 by 𝑏 and 𝑛 

when 𝑁 = 60 and 𝑚 = 2 
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Appendix C 

 

C.1 Inverse and Determinant of Covariance Matrix: MSC 

In this section we derive the inverse and determinant of the covariance matrix ∑ associated with 

model [5.1]. In Section 5.2.2 we saw that this covariance matrix is given by: 

∑ = 𝜎𝑠
2 [

1 𝛽

𝛽 𝛽2] ⊗ 𝐽𝑟×𝑟 + [
𝜎1

2 0

0 𝜎2
2] ⊗ 𝐼𝑟 

where 𝐽𝑎×𝑏 is an 𝑎 × 𝑏 matrix of 1’s, 𝐼𝑎 is the 𝑎 × 𝑎 identity matrix and ⊗ denotes the Kronecker 

product. 

As in Appendix A we will compute the inverse, ∑−1, and determinant, |∑|, using the Sherman-

Morrison formula [1950] and the Matrix Determinant Lemma [Harville, 2008] in accordance 

with Theorem 1. For convenience, we restate this theorem here. 

Theorem 1: If  𝑊 = 𝐴 + 𝑣𝑣𝑇 where 𝐴 is non-singular then 

1. 𝑊−1 = 𝐴−1 −
𝐴−1𝑣𝑣𝑇𝐴−1

1+𝑣𝑇𝐴−1𝑣
 

2. |𝑊| = |𝐴|(1 + 𝑣𝑇𝐴−1𝑣) 

To apply the results of this theorem we let  

𝐴 = [
𝜎1

2 0

0 𝜎2
2] ⊗ 𝐼𝑟 

and  

𝑣 = (𝜎𝑠, … , 𝜎𝑠, 𝛽𝜎𝑠, … , 𝛽𝜎𝑠)
𝑇 

Note that we choose 𝑣 to have this form because 
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𝑣𝑣𝑇 =

[
 
 
 
 
 

𝜎𝑠
2 ⋯ 𝜎𝑠

2

⋮ ⋱ ⋮
𝜎𝑠

2 ⋯ 𝜎𝑠
2

𝛽𝜎𝑠
2 ⋯ 𝛽𝜎𝑠

2

⋮ ⋱ ⋮
𝛽𝜎𝑠

2 ⋯ 𝛽𝜎𝑠
2

𝛽𝜎𝑠
2 ⋯ 𝛽𝜎𝑠

2

⋮ ⋱ ⋮
𝛽𝜎𝑠

2 ⋯ 𝛽𝜎𝑠
2

𝛽2𝜎𝑠
2 ⋯ 𝛽2𝜎𝑠

2

⋮ ⋱ ⋮
𝛽2𝜎𝑠

2 ⋯ 𝛽2𝜎𝑠
2]
 
 
 
 
 

= 𝜎𝑠
2 [

1 𝛽

𝛽 𝛽2] ⊗ 𝐽𝑟×𝑟 

Thus the covariance matrix ∑ can be written in the rank-one update form ∑ = 𝐴 + 𝑣𝑣𝑇, allowing 

us to apply the results of Theorem 1. We will compute 𝐴−1, 𝐴−1𝑣𝑣𝑇𝐴−1, 𝑣𝑇𝐴−1𝑣 and |𝐴| to 

obtain all of the elements of the formulae necessary to calculate ∑−1 and |∑|. 

Because (𝑃 ⊗ 𝑄)−1 = 𝑃−1
⊗ 𝑄−1 [Jemderson et al., 1983], we have 

 𝐴−1 = [
1/𝜎1

2 0

0 1/𝜎2
2] ⊗ 𝐼𝑟     [C.1] 

 

Next we calculate 𝐴−1𝑣𝑣𝑇𝐴−1: 

𝐴−1𝑣𝑣𝑇𝐴−1 = ([
1 𝜎1

2⁄ 0

0 1 𝜎2
2⁄
] ⊗ 𝐼𝑟) (𝜎𝑠

2 [
1 𝛽

𝛽 𝛽2] ⊗ 𝐽𝑟×𝑟) ([
1 𝜎1

2⁄ 0

0 1 𝜎2
2⁄
] ⊗ 𝐼𝑟) 

                                  =

(

 
 

[
 
 
 
 
𝜎𝑠

2

𝜎1
2

𝛽𝜎𝑠
2

𝜎1
2

𝛽𝜎𝑠
2

𝜎2
2

𝛽2𝜎𝑠
2

𝜎2
2 ]

 
 
 
 

⊗ 𝐽𝑟×𝑟

)

 
 

([
1 𝜎1

2⁄ 0

0 1 𝜎2
2⁄
] ⊗ 𝐼𝑟) 

            =

[
 
 
 
 

𝜎𝑠
2

𝜎1
4

𝛽𝜎𝑠
2

𝜎1
2𝜎2

2

𝛽𝜎𝑠
2

𝜎1
2𝜎2

2

𝛽2𝜎𝑠
2

𝜎2
4 ]

 
 
 
 

⊗ 𝐽𝑟×𝑟     [C.2] 

In the preceding derivation we applied the mixed-product property (𝑃 ⊗ 𝑄)(𝑅 ⊗ 𝑆) = 𝑃𝑅 ⊗

𝑄𝑆 [Jemderson et al., 1983]. 

Next we calculate 𝑣𝑇𝐴−1𝑣: 
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𝑣𝑇𝐴−1𝑣 = [𝜎𝑠 ⋯ 𝜎𝑠 𝛽𝜎𝑠 ⋯ 𝛽𝜎𝑠]

[
 
 
 
 
 
1 𝜎1

2⁄ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1 𝜎1

2⁄

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

1 𝜎2
2⁄ ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 1 𝜎2

2⁄ ]
 
 
 
 
 

[
 
 
 
 
 
𝜎𝑠

⋮
𝜎𝑠

𝛽𝜎𝑠

⋮
𝛽𝜎𝑠]

 
 
 
 
 

 

                    = [
𝜎𝑠

𝜎1
2 ⋯

𝜎𝑠

𝜎1
2

𝛽𝜎𝑠

𝜎2
2 ⋯

𝛽𝜎𝑠

𝜎2
2 ]

[
 
 
 
 
 
𝜎𝑠

⋮
𝜎𝑠

𝛽𝜎𝑠

⋮
𝛽𝜎𝑠]

 
 
 
 
 

 

                    =
𝜎𝑠

2

𝜎1
2 + ⋯+

𝜎𝑠
2

𝜎1
2 +

𝛽2𝜎𝑠
2

𝜎2
2 + ⋯+

𝛽2𝜎𝑠
2

𝜎2
2  

        = 𝑟𝜎𝑠
2 (

1

𝜎1
2 +

𝛽2

𝜎2
2)     [C.3] 

And lastly, 

 |𝐴| = (𝜎1
2𝜎2

2)𝑟     [C.4] 

 

Using Equations [C.1-C.3], and applying the first result of Theorem 1, we have 

 ∑−1 = [
1/𝜎1

2 0

0 1/𝜎2
2] ⊗ 𝐼𝑟 −

𝜎𝑠
2

1 + 𝑟𝜎𝑠
2 (

1
𝜎1

2 +
𝛽2

𝜎2
2)

[
 
 
 
 

1

𝜎1
4

𝛽

𝜎1
2𝜎2

2

𝛽

𝜎1
2𝜎2

2

𝛽2

𝜎2
4 ]

 
 
 
 

⊗ 𝐽𝑟×𝑟 [C.5] 

 

Using equations [C.3] and [C.4], and applying the second result of Theorem 1, we have 

 |∑| = (𝜎1
2𝜎2

2)𝑟 {1 + 𝑟𝜎𝑠
2 (

1

𝜎1
2 +

𝛽2

𝜎2
2)}     [C.6] 

 

The inverse and determinant given respectively by [C.5] and [C.6] are the ones used in Section 

5.2.2 to construct the log-likelihood function associated with the 𝑟 replicate measurements by 

each system on a single subject. 



158 
 

C.2 Systolic Blood Pressure Example Data 

Subject J1 J2 J3 R1 R2 R3 S1 S2 S3 
1 100 106 107 98 98 111 122 128 124 
2 108 110 108 108 112 110 121 127 128 

3 76 84 82 76 88 82 95 94 98 

4 108 104 104 110 100 106 127 127 135 

5 124 112 112 128 112 114 140 131 124 

6 122 140 124 124 140 126 139 142 136 

7 116 108 102 118 110 102 122 112 112 

8 114 110 112 112 108 112 130 129 135 

9 100 108 112 100 106 112 119 122 122 

10 108 92 100 108 98 100 126 113 111 

11 100 106 104 102 108 106 107 113 111 

12 108 112 112 108 116 120 123 125 125 

13 112 112 110 114 112 110 131 129 122 

14 104 108 104 104 108 104 123 126 114 

15 106 108 102 104 106 102 127 119 126 

16 122 122 114 118 122 114 142 133 137 

17 100 102 102 102 102 100 104 116 115 

18 118 118 120 116 118 118 117 113 112 

19 140 134 138 138 136 134 139 127 113 

20 150 148 144 148 146 144 143 155 133 

21 166 154 154 164 154 148 181 170 166 

22 148 156 134 136 154 132 149 156 140 

23 174 172 166 170 170 164 173 170 154 

24 174 166 150 174 166 154 160 155 170 

25 140 144 144 140 144 144 158 152 154 

26 128 134 130 128 134 130 139 144 141 

27 146 138 140 146 138 138 153 150 154 

28 146 152 148 146 152 148 138 144 131 

29 220 218 220 220 218 220 228 228 226 

30 208 200 192 204 200 190 190 183 184 

31 94 84 86 94 84 88 103 99 106 

32 114 124 116 112 126 118 131 131 124 

33 126 120 122 124 120 120 131 123 124 

34 124 124 132 126 126 120 126 129 125 

35 110 120 128 110 122 126 121 114 125 

36 90 90 94 88 88 94 97 94 96 

37 106 106 110 106 108 110 116 121 127 

38 218 202 208 218 200 206 215 201 207 

39 130 128 130 128 126 128 141 133 146 

40 136 136 130 136 138 128 153 143 138 

41 100 96 88 100 96 86 113 107 102 

42 100 98 88 100 98 88 109 105 97 

43 124 116 122 126 116 122 145 102 137 

44 164 168 154 164 168 154 192 178 171 

45 100 102 100 100 104 102 112 116 116 

46 136 126 122 136 124 122 152 144 147 

47 114 108 122 114 108 122 141 141 137 
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48 148 120 132 146 130 132 206 188 166 

49 160 150 148 160 152 146 151 147 136 

50 84 92 98 86 92 98 112 125 124 

51 156 162 152 156 158 152 162 165 189 

52 110 98 98 108 110 98 117 118 109 

53 100 106 106 100 108 108 119 131 124 

54 100 102 94 100 102 96 136 116 113 

55 86 74 76 88 76 76 112 115 104 

56 106 100 110 106 100 108 120 118 132 

57 108 110 106 106 118 106 117 118 115 

58 168 188 178 170 188 182 194 191 196 

59 166 150 154 164 150 154 167 160 161 

60 146 142 132 144 142 130 173 161 154 

61 204 198 188 206 198 188 228 218 189 

62 96 94 86 96 94 84 77 89 101 

63 134 126 124 132 126 124 154 156 141 

64 138 144 140 140 142 138 154 155 148 

65 134 136 142 136 134 140 145 154 166 

66 156 160 154 156 162 156 200 180 179 

67 124 138 138 122 140 136 188 147 136 

68 114 110 114 112 114 114 149 217 192 

69 112 116 122 112 114 124 136 132 133 

70 112 116 134 114 114 136 128 125 142 

71 202 220 228 200 220 226 204 222 224 

72 132 136 134 134 136 132 184 187 192 

73 158 162 152 158 164 150 163 160 152 

74 88 76 88 90 76 86 93 88 88 

75 170 174 176 172 174 178 178 181 181 

76 182 176 180 184 174 178 202 199 195 

77 112 114 124 112 112 126 162 166 148 

78 120 118 120 118 116 120 227 227 219 

79 110 108 106 110 108 106 133 127 126 

80 112 112 106 112 110 106 202 190 213 

81 154 134 130 156 136 132 158 121 134 

82 116 112 94 118 114 96 124 149 137 

83 108 110 114 106 110 114 114 118 126 

84 106 98 100 104 100 100 137 135 134 

85 122 112 112 122 114 114 121 123 128 
 

Table C.1: Systolic Blood Pressure Measurements made by two observers (J and R) and an 

automatic blood pressure measuring machine (S), each making three observations in quick 

succession on 85 subjects. This table is reproduced from Bland and Altman [1999]. 
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C.3 Comparing Asymptotic and Simulated Standard Errors  

In this section we describe a simulation study which was used to compare the asymptotic and 

simulated standard errors of 𝜃 for a variety of (𝑛, 𝑟) combinations and parameter values. To 

cover a wide range of sample sizes, replicate measurements and parameter values, we 

considered: 

 𝑛 = 40 to 120 in steps of 10  

 𝑟 = 2 to 5 in steps of 1 

 𝜇 = 1, 10, 100 

 𝜎𝑠 = 𝜇/10, 𝜇/4 

 𝜎1 = 𝜎𝑠/10, 𝜎𝑠/4 

 𝜎2 = 3𝜎1/4, 𝜎1, 5𝜎1/4 

 𝛼 = 0, 0.05𝜇 

 𝛽 = 1, 1.1 

For each of the 5,184 combinations of 𝑛, 𝑟 and the parameters, we generated 10,000 samples 

according to model [5.1] and for each sample determined the maximum likelihood estimate of 𝜃 

and the asymptotic standard error associated with that estimate. Note that 𝑆𝐸(𝜃) is defined as 

the asymptotic standard deviation of 𝜃̃, evaluated at the maximum likelihood estimates the other 

parameters. 

We compare the simulated and asymptotic results by dividing the standard deviation of the 

10,000 estimates of 𝜃 (which we refer to as the simulated standard error) by the average of the 

10,000 asymptotic standard errors. Across all combinations of 𝑛, 𝑟 and the parameters, the 

average of this ratio was 0.9915 and it ranges between 0.89 and 1.11 with the middle 50% lying 

between 0.97 and 1.02.  

Figures C.1 and C.2 depict boxplots of this ratio (labelled ‘ratio’) by 𝑛 and 𝑟. In these plots we 

see that the value of ‘ratio’ does not depend materially on the number of subjects, or the number 

of replicate measurements. Similarly, Figure C.3 depicts boxplots of ‘ratio’ by 𝜇. As with 𝑛 and 

𝑟, ‘ratio’ does not depend materially on 𝜇. Similar boxplots (not shown here) demonstrate that 
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this ratio also does not depend on 𝛼 and 𝛽. However, the ratio does seem to depend on the relative 

sizes of the variance components.  

The boxplots in Figure C.4 suggest that when 𝜎𝑠 is large relative to 𝜇 than the ratio is slightly 

less than one (i.e. the simulated standard errors are slightly less than the asymptotic standard 

errors). The boxplots in Figure C.5 demonstrate that this reduction in ‘ratio’ primarily happens 

when  𝜎𝑠 is large and 𝜎1 is large relative to 𝜎𝑠. Otherwise the ratio of simulated and asymptotic 

standard errors are close to 1. Lastly, the boxplots in Figure C.6 indicate that this ratio is 

relatively unaffected by the size of 𝜎2 relative to 𝜎1. 

The conclusions in the previous paragraph, and the results depicted in Figures C.4-C.6 are 

substantiated by the boxplots in Figure C.7 which indicate that there is slight disagreement 

between the simulated and asymptotic standard errors when 𝜎𝑠 is large relative to 𝜇, and 

especially when 𝜎1 is large relative to 𝜎𝑠. However, this disagreement is not substantial. Overall 

the results of this simulation suggest that the asymptotic standard deviation of 𝜃̃ closely matches 

the simulated results for all designs. Accordingly we proceed to rank designs based on the 

asymptotic results. 

 

 

Figure C.1: Boxplots of ‘ratio’ by 𝑛 
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Figure C.2: Boxplots of ‘ratio’ by 𝑟 

 

 

 

 

Figure C.3: Boxplots of ‘ratio’ by 𝜇 
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Figure C.4: Boxplots of ‘ratio’ by 𝜇 and 𝜎𝑠, where 𝜎𝑠 is small (S) or large (L) relative to 𝜇 

 

 

 

 

Figure C.5: Boxplots of ‘ratio’ by 𝜎𝑠 and 𝜎1, where 𝜎1 is small (S) or large (L) relative to 𝜎𝑠 
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Figure C.6: Boxplots of ‘ratio’ by 𝜎1 and 𝜎2, where 𝜎2 is small (S) or large (L) relative to 𝜎1, or equal (E) to 𝜎1 

 

 

 

 

Figure C.7: Boxplots of ‘ratio’ by 𝜇, 𝜎𝑠, 𝜎1, and 𝜎2 
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C.4 Investigating the Recommended 𝑟 = 2 MSC Study Design 

Here we consider balanced designs for an MSC study in which both measurement system 

measures 𝑛 subjects 𝑟 times, for a total of 𝑁 = 𝑛𝑟 measurements each. For a fixed number of 

total measurements 𝑁, we refer to a particular allocation of 𝑛 and 𝑟 as the ‘best’ design if, at a 

particular combination of parameter values, the asymptotic standard deviation of 𝜃̃ is minimized. 

Not surprisingly, the best design depends on the values of the unknown parameters. However, 

through preliminary investigation we found that the design with (𝑛, 𝑟) = (𝑁/2,2), always had 

the smallest, or nearly the smallest, asymptotic standard deviation. 

To investigate this we performed a simulation study in which we compared the asymptotic 

standard deviation of the (𝑛, 𝑟) = (𝑁/2,2) design, with the ‘best’ design. To cover a wide range 

of sample sizes, replicate measurements and parameter values, we considered: 

 𝑁 =  40, 60, 100, 120, 200  

 2 ≤ 𝑟 ≤ 10 

 𝜇 = 1, 10, 100 

 𝜎𝑠 = 𝜇/10, 𝜇/4, 𝜇/2 

 𝜎1 = 𝜎𝑠/10, 𝜎𝑠/4, 𝜎𝑠/2 

 𝜎2 = 3𝜎1/4, 𝜎1, 5𝜎1/4 

 𝛼 = −𝜇/10, 0, 𝜇/10 

 𝛽 = 0.9, 1, 1.1 

For a particular combination of the parameter values and 𝑁 = 40, 60, 100, 120, 200, we iterate 

through 2 ≤ 𝑟 ≤ 10 and take 𝑛 = 𝑁/𝑟. In the case that 𝑁/𝑟 is not an integer, we round this 

quantity down to the nearest integer to determine 𝑛, in which case 𝑛𝑟 < 𝑁. We then rank the 

designs according to the asymptotic standard deviation of 𝜃̃ and we divide the standard deviation 

corresponding to the (𝑛, 𝑟) = (𝑁/2,2) design by that of the best design.  

For 𝑁 = 40, 60, 100, 120, 200, 2 ≤ 𝑟 ≤ 10, and the 729 combinations of (𝜇, 𝜎𝑠, 𝛼, 𝛽, 𝜎1, 𝜎2) 

described above, we found the average of this ratio to be 1.01. Thus the asymptotic standard 

deviation associated with the (𝑛, 𝑟) = (𝑁/2,2) design is on average only 1% larger than the best 
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design. We also found that the maximum of this ratio is 1.065, indicating that the (𝑛, 𝑟) =

(𝑁/2,2) design is at most 6.5% worse than the best design.  

Figure C.8 is a histogram of this ratio (labelled ‘ratio’) when 𝑁 = 100. We see that most often 

this ratio is 1, or very close to 1, but sometimes it can get as large as 1.065. This supports the 

numerical summaries just mentioned. Histograms of ‘ratio’ for the other values of 𝑁 are similar, 

so we do not present them here.  

 

Figure C.8: Frequency Histogram of ‘ratio’ when 𝑁 = 100 

Figures C.9, C.10, and C.11 present boxplots of ‘ratio’ by 𝛼, 𝛽, and 𝜎1/𝜎𝑠, respectively (when 

𝑁 = 100). These plots demonstrate that larger values of ‘ratio’ occur when 𝛼 is different from 

0, 𝛽 is different from 1 and when 𝜎1 and 𝜎2 are large relative to 𝜎𝑠. Based on the boxplots 

depicted in Figure C.12, we deduce that ‘ratio’ attains its largest values when 𝛼 ≠ 0 and 𝛽 ≠ 1, 

simultaneously. These results are the same for other values of 𝑁 as well.  

Thus the performance of the (𝑛, 𝑟) = (𝑁/2,2) design is independent of 𝑁, and seems only to 

depend on 𝛼 and 𝛽. Even still, the (𝑛, 𝑟) = (𝑁/2,2) design is on average only 1% worse than 

the best design in terms of its ability to estimate 𝜃 precisely. Thus because the ‘best’ design 
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depends on the values of all of the unknown parameters, and the (𝑛, 𝑟) = (𝑁/2,2) design is good 

across all of the parameter values we considered, we recommend its use. 

 

Figure C.9: Boxplots of ‘ratio’ by 𝛼 for 𝑁 = 100  

N, P, Z correspond respectively to 𝛼 < 0, 𝛼 > 0, and 𝛼 = 0 

 

 

Figure C.10: Boxplots of ‘ratio’ by 𝛽 for 𝑁 = 100 
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Figure C.11: Boxplots of ‘ratio’ by 𝜎1/𝜎2 for 𝑁 = 100 

L, M, S correspond respectively to 𝜎1 being large, medium, or small relative to 𝜎𝑠 

 

 

 
Figure C.12: Boxplots of ‘ratio’ by 𝛼 and 𝛽 for 𝑁 = 100 

N, P, Z correspond respectively to 𝛼 < 0, 𝛼 > 0, and 𝛼 = 0 
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Appendix D 

 

D.1 Choosing the Number of Partitions 𝑝 for the Riemann Sum Approximation 

In this section we discuss choosing the number of partitions 𝑝 for the Riemann sum 

approximation to the likelihood function in [6.11]. In Section 6.2.3 we discussed the systolic 

blood pressure data where we compared observer J using the sphygmomanometer and the semi-

automatic blood pressure measuring device, S. In that section we noted that 𝑝 = 150 was chosen 

to obtain the parameter estimates shown in Table D.1. We justify this choice of 𝑝 here. 

 Estimate Standard Error 

𝜇 127.5222 3.1496 

𝜎𝑠 27.9784 2.3278 

𝛼 3.4501 5.1584 

𝛽 1.0943 0.0429 

𝜔1 0.0000 6.2649 

𝜔2 0.0000 4.0452 

𝜏1 0.0995 0.0454 

𝜏2 0.0779 0.0339 
Table D.1: Maximum likelihood estimates and standard errors associated with the J vs. S example 

The choice of 𝑝 must balance accuracy of estimates, and computational efficiency. A small 

number of partitions is not computationally expensive, but inaccurate estimates may result. On 

the other hand, a large number of partitions will ensure accurate estimation, but the estimation 

procedure will take much longer.  

Figure D.1 consists of 8 subplots which depict the estimates (blue lines) and associated standard 

errors (red lines) of the parameters associated with model [6.4] (𝜇, 𝜎𝑠, 𝛼, 𝛽, 𝜔1, 𝜔2, 𝜏1, 𝜏2), for 

varying values of 𝑝. In each of these subplots both the parameter estimates and standard errors 

asymptote (toward the values presented in Table D.1) as 𝑝 becomes large. 

We notice that these asymptotes are reached by 𝑝 ≈ 100. For the estimates in Table D.1, we 

chose 𝑝 = 150 to ensure accurate estimation but also to keep computation times reasonable.  
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This choice of 𝑝 is sensible for the current example, but it may not be reasonable for other data 

sets. We have not fully investigated the selection of 𝑝 in general, so we recommend an 

exploratory approach similar to the one just described. Software to construct plots like those 

shown in Figure D.1 is available to aid in this selection process. 

 

Figure D.1: Estimates (solid blue lines) and Standard Errors (dashed red lines) by Number of Partitions 
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D.2 Comparing the Riemann Sum and Gauss-Hermite Approximations 

In this section we use simulation to highlight the difference between the Riemann sum and 

Gauss-Hermite methods of integral approximation. We do so by simulating 500 datasets 

according to model [6.4] with 𝜇 = 140, 𝜎𝑠 = 30, 𝛼 = −16, 𝛽 = 1, 𝜔1 = 3, 𝜔1 = 2, 𝜏1 = 0.04 

and 𝜏2 = 0.06. For purposes of illustration we simulate datasets in which 𝑛 = 2000 subjects are 

measured 𝑟 = 20 times by each system, to ensure ample information is available for estimating 

each parameter. 

For each dataset we calculate the maximum likelihood estimates of the eight parameters, and 

find their asymptotic standard errors. To assess the performance of each approximation method 

individually we compare the average of the 500 estimates for each parameter to its true value, 

and we compare the average of the 500 asymptotic standard errors to the standard deviation of 

the 500 parameter estimates. Checking that the asymptotic and simulated results match is 

important for the validity of inferences based on the asymptotic results. The results of this 

simulation are shown in Table D.2 for the Riemann sum approximation method, and in Table 

D.3 for the Gauss-Hermite approximation. Note that for each method we use 𝑝 = 200 partitions 

to ensure optimal accuracy of the approximation. 

We see that both methods provide accurate estimates of each of the parameters, but the 

asymptotic standard errors associated with the Riemann sum approximation match the simulated 

results more closely than do the asymptotic standard errors associated with the Gauss-Hermite 

approximation. In particular, the asymptotic and simulated standard errors associated with the 

Riemann sum approximation match across all parameters, but with the Guass-Hermite method, 

the asymptotic and simulated results only match for the variability parameters 𝜔𝑗, 𝜏𝑗, 𝑗 = 1,2. 

As such, we use the Riemann sum method as the preferred approximation method. Note that 

even with this method, there is still small disagreement between the asymptotic and simulated 

results for the standard error of 𝜇̂. However, this is inconsequential because 𝜇 is just a nuisance 

parameter, since it is not used in the calculation of the probability of agreement. 

The results discussed here are for a particular combination of parameter values, but the 

superiority of the Riemann sum method is also observed for other parameters, and is exaggerated 

for smaller sample sizes (i.e., smaller 𝑛 and 𝑟). 
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 𝜇 𝜎𝑠 𝛼 𝛽 𝜔1 𝜔2 𝜏1 𝜏2 

True Value 140 30 -16 1 3 2 0.04 0.06 

Average of 

500 Estimates 
140.0027 29.9996 -16.02 1.0002 3.0023 1.9819 0.04 0.0601 

SD of 500 

Estimates 
0.7023 0.4750 0.2643 0.002 0.1343 0.1488 0.0010 0.0011 

Average of 

500 SEs 
0.6722 0.4763 0.2780 0.0021 0.1324 0.1509 0.0010 0.0011 

Table D.2: Simulated versus Asymptotic Performance of Riemann Sum Likelihood Approximation method 

 
 
  

 𝜇 𝜎𝑠 𝛼 𝛽 𝜔1 𝜔2 𝜏1 𝜏2 

True Value 140 30 -16 1 3 2 0.04 0.06 

Average of 

500 Estimates 
139.152 30.06 16.04 1.0002 2.9962 1.9868 0.0400 0.0601 

SD of 500 

Estimates 
2.8718 1.6647 0.9401 0.0069 0.4137 0.4972 0.0031 0.0037 

Average of 

500 SEs 
2.1390 1.5252 0.8549 0.0065 0.4222 0.4852 0.0031 0.0037 

Table D.3: Simulated versus Asymptotic Performance of Gauss-Hermite Likelihood Approximation method 
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