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Abstract 

The goal of this work was to develop monitoring techniques for use during the production of 

monoclonal antibodies (Mabs) in Chinese hamster ovary cell cultures. Such monitoring would enable 

real-time screening and control of key process variables both upstream and downstream so as to 

guarantee product quality and process consistency. The measurement techniques that are currently 

available are time and labor intensive and in some cases require frequent maintenance. Thus, they are 

not suitable for fast online monitoring of bioprocesses. Thus, with a goal of future real-time 

implementation, data-driven (empirical models) and model-driven (mechanistic models) soft sensors 

were developed. 

The bioreactor is the key component of the upstream manufacturing phase. Continuous monitoring 

and control of this unit is critical in order to maximize production of the Mab with a desired quality 

(i.e. glycosylation pattern). Data-driven soft sensors were developed using intrinsic multi-wavelength 

fluorescence spectra of the culture broth in combination with partial least square regression (PLSR) 

for tracking viable cell, dead cell, recombinant protein, glucose, and ammonia concentrations. To 

better elucidate the relationship between the fluorescence spectra and process operating conditions, 

trajectories of fluorophore-peaks over the course of the culture were investigated and compared to 

changes in key process variables prior to model development. The proposed soft sensors were capable 

of predicting the aforementioned process variables with high accuracy. 

To enhance the extrapolation accuracy of the data-driven soft sensor outside of the region of 

operating conditions used for model calibration and to better track the dynamics of the culture, an 

extended Kalman filter (EKF) was developed based on a combination of mechanistic and empirical 

models. To address the structural and parameter uncertainty of the models, non-stationary 

disturbances were introduced to the model through parameter adaptation. The resulting EKF-based 

soft sensor’s predictions surpassed the accuracy of a standalone fluorescence based soft sensor and 

was capable of tracking process dynamics in between sampling instances with high precision. 

N-linked glycosylation has a significant impact on the therapeutic properties of Mab and is an 

important quality attribute that is associated with the extracellular metabolic state of the culture. 

Based on the primary investigation it was revealed that the fluorescence spectroscopy is not capable 

of accurately tracking the glycosylation profile of the Mab. Thus, to enhance the controllability of the 

glycoprofile, a novel dynamic model was developed that relates the extracellular culture conditions to 
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the accumulated glycosylation pattern of Mab produced through the production of nucleotide sugars 

required for N-linked glycosylation in the Golgi apparatus. The model parameters were estimated 

using the experimental data. The resulting model was capable of accurately predicting the 

glycosylation extent in the form of a galactosylation index as well as individual glycan structures. 

Another area of application of fluorescence was for monitoring protein aggregation. During 

downstream processing proteins are exposed to stress factors such as changes in temperature, pH, or 

shear stress that can increase the propensity of Mab to aggregate. Aggregation can trigger undesirable 

impacts including an increased immunogenicity response in the patient. Therefore, developing an in 

situ technique for fast quality and quantity control of protein aggregation is of great industrial interest. 

Fluorescence-based soft sensors, in conjugation with PLSR, were developed for quality control 

(product classification) and for quantitative monitoring (Mab monomer concentration) at different 

process conditions that typically occur in different stages of the purification process. To better 

elucidate the impact of stress factors on the degree of aggregation and identify the operating 

conditions for which the propensity to aggregate is minimal, a surface response model was fitted to 

the data prior to soft sensor development. The soft sensors were capable of accurately predicting 

monomer concentration of samples exposed to different levels of stress factors as well as for 

classifying the final product into different groupings according to their relative aggregation levels. 
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Chapter 1 
Introduction 

 

1.1 Research Motivations 

The biopharmaceutical industry has undergone substantial growth over the past few decades with 

recombinant proteins outpacing other biopharmaceutical products (Butler 2005; Butler and Meneses-

Acosta 2012; Durocher and Butler 2009). Since the approval of insulin as the first recombinant 

protein, over 150 recombinant protein-based drugs have gained Food and Drug Administration’s 

(FDA’s) approval (Butler 2005; Butler and Meneses-Acosta 2012; Durocher and Butler 2009). 

Monoclonal antibodies (Mabs) constitute the dominant recombinant proteins in the biopharmaceutical 

market with their market value exceeding $100 billion in 2011 (Pais et al. 2014). A continuously 

growing market is forecasted for Mabs in the near future (Butler and Meneses-Acosta 2012; Pais et 

al. 2014). Among all the expression hosts for the commercial production of Mabs, Chinese hamster 

ovary (CHO) cells have been the preferable host. CHO cell lines are reported to grow very efficiently 

under single-cell suspension (Wurm 2004), are able to perform DNA transfection (Butler and 

Meneses-Acosta 2012; Wurm and Hacker 2011), can undergo human-like post-translational 

modification (Pais et al. 2014), and lack human viral-pathogens (Wurm and Hacker 2011).  

Glycosylation is the most important post-translational modification occurring in the Golgi apparatus 

inside the cell and it is believed to profoundly contribute to the Mab’s therapeutic efficacy and its 

circulatory half-life (Hossler et al. 2007; Teixeira et al. 2009a).  

To meet the growing demand for Mabs in the biopharmaceutical market, process analysis, control, 

and optimization are essential for scale-up and process development and to ensure product 

consistency. Process control requires real-time monitoring of process variables. Recent FDA (or other 

regulatory agencies) regulations have fostered biopharmaceutical manufacturers to adopt quality by 

design (QbD) and process analytical technology (PAT) guidelines to ensure product quality (Pais et 

al. 2014; Rathore et al. 2010; Read et al. 2010; Teixeira et al. 2009a). Time consuming, labor 

intensive, and expensive conventional measurement assays have hampered the ability to frequently 

monitor some key process variables thus motivating the adoption of alternative techniques such as 

soft sensors (Gernaey et al. 2012; Kadlec et al. 2009). Soft sensors can be classified into two classes 

(Kadlec et al. 2009): data-driven, which are based on empirical models, and model-driven, which are 
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based on mechanistic models. Electromagnetic spectroscopy based techniques have exhibited great 

potential for online monitoring of process variables due to their non-destructive, non-invasive, and 

informative properties (Lourenco et al. 2012; Teixeira et al. 2009a). Higher sensitivity and selectivity 

of fluorescence spectroscopy, as compared to vibrational techniques such as near infrared (NIR) and 

Raman spectroscopy, ranked this as a viable technique to be used for fast in situ monitoring of 

bioprocesses. The presence of intrinsically fluorescing compounds, which are sensitive to changes of 

their micro-environment, in cell culture’s growth media as well as Mab’s polypeptide chain reinforces 

the potential of this technique for real-time monitoring. The privilege of multi-wavelength 

fluorescence, over single wavelength, in encompassing various fluorophores is emphasized in the 

literature (Haack et al. 2004; Marose et al. 1998; Skibsted et al. 2001) and discussed in further detail 

in Chapter 3.  

Due to the dependence of the fluoresence signal on the environment, it is possible to infer the 

dynamics of the cell culture process from the evolving spectra of the culture-broth (Li and Humphrey 

1991; Ohadi et al. 2014a; Teixeira et al. 2011; Teixeira et al. 2009b). Chemometric methods are 

required to extract such correlations and generate empirical models (data-driven soft sensors) that 

relate multi-wavelength spectra to key process variables. Although this approach has been pursued for 

bacterial, yeast, and mammalian cell cultivation for upstream processes (Haack et al. 2004; Hagedorn 

et al. 2003; Jain et al. 2011; James et al. 2002; Li and Humphrey 1991; Teixeira et al. 2011; Teixeira 

et al. 2009b), a comprehensive soft sensor capable of predicting viable cell, dead cell, recombinant 

protein, and metabolites concentrations has not been developed. Thus, the development of such soft 

sensor(s) is one of the goals of the current work. 

The data-driven soft sensors are developed using chemometric methods merely based on data and 

have no mechanistic insight into the process, and perform as a black-box. As a result they lack 

extrapolation accuracy when the process operating conditions deviate considerably from the 

conditions used for model calibration. On the other hand, properly calibrated mechanistic models, 

also referred as white-box models to contrast them with empirical or black-box models, can be 

utilized to forecast time-dependent changes of culture variables over a wide region of operating 

conditions. Metabolic flux analysis is a well-established approach used to develop dynamic models 

resembling the in vivo evolution of metabolic states (Zamorano et al. 2013). However, development 

of white-box models is taxing due to the complexities of mammalian cell metabolism (Kadlec and 

Gabrys 2009; Kadlec et al. 2009; Shioya et al. 1999) and the resulting large number of parameters 
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that need to be calibrated with data. Therefore, to suppress the individual drawbacks associated with 

white- and black-box models, a framework was pursued in this study that combines fluorescence 

based soft sensor with a dynamic metabolic model using a Kalman filter. 

The quality of the antibodies produced in the cultivation process are highly dependent on the 

degree and extent of glycosylation (Del Val et al. 2011; Durocher and Butler 2009; Pais et al. 2014). 

Glycosylation can be defined as the sequential attachment of nucleotide sugars to the backbone of the 

polypeptide chain and it is quantifiable by the type and number of nucleotide sugars attached to the 

recombinant protein. N-linked glycosylation is the most conventional form of glycosylation in CHO 

cells (Del Val et al. 2011; Hossler et al. 2007), which are the focus of this study. It has been 

demonstrated in the literature that the glycosylation pattern can be affected by the in vivo metabolite 

availability (Del Val et al. 2011; Hossler et al. 2007; Liu et al. 2014). Accordingly, a model was 

developed to relate extracellular metabolite states to the glycosylation pattern of Mab produced 

through the synthesis of nucleotide sugars required for glycosylation.  

The importance of real time monitoring is not limited to the upstream processes. In the downstream 

stages proteins are exposed to changes in pH, temperature, shear stress, and ionic strength making 

them prone to aggregation (Sadavarte and Ghosh 2014; Sahin et al. 2010). The propensity to 

aggregate is particularly high for large hydrophobic proteins such as Mabs. Loss of therapeutic 

efficiency and/or triggering of an immunogenicity response in the patient are listed as unfavorable 

impacts of recombinant protein unfolding and aggregation (Hawe et al. 2008; He et al. 2010; Mahler 

et al. 2009; Printz and Friess 2012). Consequently, it is crucial to develop techniques for fast online 

monitoring of protein aggregation under process conditions typically occurring during downstream 

processing. Most of the conventionally used techniques for measuring aggregation are time 

consuming and expensive assays; consequently they are unsuitable for real-time screening. Due to the 

presence of intrinsically fluorescent amino acids incorporated in the polypeptide chain of Mabs and 

the sensitivity of these amino acids to changes in their microenvironment, fluorescence spectroscopy 

can be implemented as a viable technique for in situ monitoring of protein aggregation (Abbas et al. 

2013; Elshereef et al. 2006; Kumar et al. 2005). Fluorescence spectroscopy has been implemented to 

track α-lactoglobulin and β-lactoglobulin solubility under stressed conditions (Elshereef et al. 2006). 

Abbas et al. 2013 demonstrated the capability of second-derivative fluorescence to qualitatively track 

conformational changes under thermal, pH, and solvent stressed conditions for recombinant proteins. 

However, no soft sensor has been developed to classify and quantitatively assess Mab aggregation. 
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1.2 Research Objectives 

The main objective of this research was to develop soft sensors for fast in situ monitoring of both the 

upstream and downstream monoclonal antibody production processes. Two different types of soft 

sensors were investigated.  A data-driven soft sensor (black-box) was based on the multi-wavelength 

fluorescence spectra coupled with partial least squares regression (PLSR) and a model-driven soft 

sensors (white-box) that use mechanistic models that were developed based on the physical 

phenomena of the system under study. The following research approaches were pursued: 

I. Fluorescence-based soft sensors were developed for fast in situ monitoring of viable cells 

dead cells, recombinant protein, glucose, and ammonia concentrations in batch CHO cell 

cultures. 

II. An adaptive Kalman filter-based soft sensor that combines a fluorescence-based (data-

driven) soft sensor and a dynamic metabolic model (model-driven soft sensor) was 

proposed to enhance the prediction accuracy and to better capture the dynamics of the 

process by providing estimates in between fluorescence samples. 

III. A model was developed to relate the extracellular culture conditions to the glycosylation 

pattern of the Mab produced. This model is instrumental for identifying operating 

conditions that result in a particular glycan structure. 

IV. Fluorescence-based soft sensors were developed for monitoring Mab monomer 

concentration and for classifying the level of Mab aggregation under different process 

conditions that typically occur during downstream processing. 

1.3 Structure of Thesis 

The thesis comprises 7 chapters, references, and appendices. Chapter 2 focuses on the background 

information of the topics covered in the thesis. Chapters 3 to 6 are presented in manuscript format 

each with an individual introduction and conclusion; thus, there might be some repetition between 

introduction of the thesis and introduction to the chapters. The purpose of Chapters 3 to 5 is to 

describe the soft sensors (data-driven and model driven) that were developed for real-time upstream 

quality and quantity monitoring. Chapter 6 presents a data-driven soft sensor for tracking Mab 

monomer levels and Mab aggregation under process conditions that typically occur in downstream 

processes. Finally, Chapter 7 presents the overall conclusions, recommendations and future research 

directions. Further details on the contents of the different chapters are as follows: 



 

5 

Chapter 3. Tracking viable cell and Mab of CHO cell cultivation using intrinsic fluorescence 

spectroscopy has been previously studied in the literature (Teixeira et al. 2011; Teixeira 

et al. 2009b). However, no soft sensor has been developed to monitor dead cell and 

metabolites in addition to viable cell and recombinant protein concentration. In this 

chapter time profiles of different fluorophore peaks were studied to gain a better 

understanding of the correlations between the temporal evolution of the culture and 

changes in fluorescence spectra. Additionally, by implementing a supervised machine 

learning technique, i.e. PLSR, empirical models were developed to individually monitor 

viable cell, dead cell, recombinant protein, glucose, and ammonia concentrations over the 

course of the culture. This chapter has been published in Biotechnology and 

Bioengineering Journal (Ohadi et al. 2014a). 

Chapter 4. Although data-driven soft sensors, such as the one presented in Chapter 3, are fairly 

accurate within the region of operating conditions where data was collected for model 

calibration, their precision might diminish when predicting conditions that deviate 

substantially from this region. In this chapter limitations and advantages of data-driven 

and model driven soft sensors are compared. A data-driven soft sensor is developed to 

track viable cell, dead cell, recombinant protein, glucose, and ammonia concentrations 

using multi-wavelength fluorescence in combination with PLSR. Furthermore, a 

mechanistic model is formulated to dynamically track the metabolic state of the culture. 

Then, the mechanistic model is combined with the data-driven soft sensor using extended 

Kalman filter to enhance predictions at operating conditions that considerably deviate 

from the ones used for model calibration and to accurately reconstruct the dynamics of 

the estimates in between sampling instances. This chapter has been published in 

Biotechnology and Bioengineering Journal (Ohadi et al. 2014b). 

Chapter 5. One of the critical challenges that the biopharmaceutical industry is facing with is to 

ensure the products quality, i.e. therapeutic efficacy. Glycosylation as a post-translational 

modification plays a crucial role in the characteristics of the product and it is related to 

the extracellular state of the culture. In this chapter a novel model is developed consisting 

of three sub-models: metabolic model to capture the dynamics in vivo, production of 

nucleotide sugars in cytosol, and glycosylation inside the Golgi apparatus to relate 

extracellular state to cumulative glycoform profile. The second sub-model is presented as 

the link between extracellular and intracellular conditions. This work has been published 
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in IFAC-CAB (International Symposium on Computer Applications in Biotechnology) 

(Ohadi et al. 2013). 

Chapter 6. During purification proteins are constantly exposed to changes in operating conditions 

such as temperature, pH, shear stress, and ionic strength. Large individual or combined 

variation of these process conditions may result in disruption and consequently 

aggregation of the proteins. In this chapter experiments were performed by exposing 

samples of a Mab, at different concentrations, to changes in temperature and pH. These 

changes were intended to emulate corresponding typical changes in operating conditions 

occurring in downstream processing of Mab. Size exclusion chromatography was utilized 

to quantify protein aggregation. To better elucidate the impact of pH and temperature and 

to identify the operating regions with lower tendency of aggregation, a response surface 

model was calibrated and studied. Multi-wavelength fluorescence spectra of samples that 

experienced different levels of temperature and pH, combined with PLSR, were then 

utilized to develop an empirical model based soft sensor to predict monomer content of 

samples. Moreover, the treated samples were classified into four classes based on the 

ratio of their oligomer to monomer content. A soft sensor, for qualitative control, was 

formulated relating the fluorescence spectra to these classes. This chapter has been 

submitted to Journal of Biotechnology. 
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Chapter 2 
Theoretical Background 

 

2.1 Online Monitoring 

A key challenge faced by the biopharmaceutical industry is to meet the ever-increasing demand of 

bio-drugs while maintaining product quality. Real-time analytical techniques are crucial for both the 

development of a bioprocess as well as for enhancing its controllability. Many methods used for 

bioprocess monitoring are time consuming, labor intensive, and very often require regular 

maintenance steps thus making them unsuitable for online use. Fast online monitoring techniques are 

playing an important role in increasing process efficacy, maximizing productivity, guaranteeing 

consistency, reproducibility and enabling automated control. Process analytical technology (PAT) is a 

systematic framework that encourages manufacturers to adopt tools and techniques for measuring 

quality and performance attributes so as to guarantee process reliability and consistency (Lourenco et 

al. 2012; Mandenius and Gustavsson 2014; Rathore et al. 2010; Teixeira et al. 2009a).  

Monitoring techniques can be classified into three groups (Lourenco et al. 2012): 

• Off-line: Measurements are performed at the laboratory following manual or automatic 

sampling. They are typically time consuming and cannot be used for real-time tracking of key 

variables. 

• At-line: The measurements are done at the process, closer to the sampling location. Although 

these techniques can provide faster answers than the off-line measurements described above, 

they are not best suited for real-time monitoring and control due to the time delay between 

sampling and measurement and to the variability in duration of the manual measurement 

operation. 

• Online: Online techniques can be classified into two subclasses: in situ and ex situ. The in situ 

configuration is a closed system, i.e. either no sample is removed from the vessel or it is 

returned to the vessel after the measurement. The sensor for this class can be invasive (in 

contact with the sample) or non-invasive. In contrast, the ex situ configuration is an open 

system where the sample is transferred to the measuring device and discarded afterwards. 

Both these techniques are useful for real-time monitoring and control. 
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The focus of this study is the development of non-invasive in situ method(s) for measuring key 

process variables of upstream and downstream process stages of Mab production during and 

following mammalian cell cultivation.  

2.1.1 Soft Sensors 

The term soft sensor (software sensor) refers to a combination of a hardware sensor that collects 

signal(s) (secondary measurements) from the process and a mathematical model (in a form of a 

computer model) that relates these signal(s) to a process variable(s) (primary variable(s)) of interest 

(Mandenius and Gustavsson 2014). From a wide perspective soft sensors are classified as data-driven 

and model-driven: 

• Data-driven soft sensors are inferential empirical models that are developed only based on 

the data obtained from the process. Thus, they do not provide mechanistic insight of the 

process dynamics and perform as a black-box model (Kadlec et al. 2009). Since these soft 

sensors are established from the data of the process, they exhibit an accurate prediction 

within the calibration range (Kadlec et al. 2009). However, their prediction quality 

diminishes when operating conditions considerably diverge from the calibration range 

(Shioya et al. 1999). In order to obtain an accurate empirical model a large set of data, 

encompassing a wide range of operating conditions, need to be acquired for rigorous model 

calibration. Other key challenges in the development of the empirical models are 

measurement noise and missing data (Luttmann et al. 2012). The development of data-

driven soft sensors is comparatively easier than model-driven soft sensors, by 

implementing machine learning techniques, thus became a popular approach in the context 

of real-time monitoring. It is worth noting that the development of data-driven soft sensors 

is mostly done on an ad hoc basis.  

• Model-driven soft sensors are based on mechanistic models involving dynamic mass, 

components, and energy balances. Thus, these models are generally given in terms of 

differential or algebraic equations that capture both the steady state and dynamics of the 

physical or chemical phenomena of the process. Due to their ability to extrapolate behavior 

away from the region of calibration, these models can be utilized for process optimization 

and scheduling (Kadlec et al. 2009; Shioya et al. 1999). To contrast them with empirical or 

black-box models, mechanistic models used in model-driven soft sensors are also referred 
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to as white-box models. During the process development stage model-driven soft sensors 

often surpass the data-driven counter parts since a limited amount of data is available. 

However, development of white-box models is taxing due to the complexity of 

biopharmaceutical processes thus requiring expert knowledge of the system.  In addition, 

the presence of a large number of model-parameters exacerbates the modeling challenges 

and increases the model prediction error through parameter uncertainty. Mechanistic 

biochemical models can be classified into structured or unstructured models. Since 

structured models are based on the actual physical/chemical phenomena of the system they 

are generally able to provide more accurate predictions over a wider range of operating 

conditions (Gernaey et al. 2012). 

A soft sensor that is based on a hybrid model that combines a data-driven and a model-driven soft 

sensors, i.e. gray-box model, has been implemented in the current work to tackle individual 

drawbacks pertinent to white- and black-box models (Ohadi et al. 2014b).  

2.1.2 Data-driven Soft Sensor 

Several types of sensors have been investigated in the pharmaceutical industry for rapid process 

monitoring. Among these approaches, spectroscopic methods—such as UV-Vis absorbance, near 

infrared (NIR), mid infrared (MIR), Raman, dielectric, and fluorescence spectroscopy have gained 

popularity due to their noninvasive, nondestructive, and highly informative nature (Kara et al. 2011; 

Lourenco et al. 2012; Mandenius and Gustavsson 2014; Teixeira et al. 2009a). Additionally, their 

signal acquisition is considerably fast thus making them a natural choice of hardware for soft sensor 

development. Apart from these spectroscopic methods, nuclear magnetic resonance (NMR) has also 

been utilized for bioprocess monitoring (Kara et al. 2011). Changes in temperature, the presence of 

bubbles, background noise and variations in medium are some of the challenges that have to be 

overcome when implementing spectroscopic methods. To overcome these obstacles statistical 

methods (chemometric methods) and proper data preprocessing should be implemented (Lourenco et 

al. 2012). Chemometric methods are discussed in detail in subsequent sections. 

These spectroscopic techniques are briefly discussed below: 

• UV-Vis Absorbance: The samples are illuminated in a range of 200 to 780 nm (Lourenco et 

al. 2012; Teixeira et al. 2009a). In absorption spectroscopy the light passes through the 

sample and is attenuated based on a presence of a particular chemical in the sample. The 
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abundance of that chemical can be calculated using Beer’s Law (Lourenco et al. 2012). UV-

Vis spectroscopy has been reported to be capable of tracking conformational changes in 

proteins (Kumar et al. 2005); however, the presence of suspended particles in the sample can 

substantially deteriorate the quality of the signal. Moreover, this technique is not capable of 

providing structural information about the content of the sample under study (Kara et al. 

2011). Although this technique has been extensively used because of its availability, its 

application for biopharmaceutical monitoring is limited. 

• Infrared Spectroscopy: The NIR spectroscopy region ranges from 780 to 2500 nm and the 

MIR region ranges from 2500 to 40000 nm (Lourenco et al. 2012; Teixeira et al. 2009a). 

Upon absorption of the excitation light, molecules rotate or vibrate and subsequently transmit 

light that can be exploited to draw inferences about the molecular composition of the sample. 

Infrared spectra can be acquired using a probe without being in contact with the sample 

(noninvasive). A single probe can provide signals that can be used to predict various physical 

and chemical states of the process. Molecules that contain functional groups with a hydrogen 

bound including: C-H, N-H, O-H, and S-H are responsive to NIR exposure. NIR is by far the 

most extensively used technique for the development of soft sensors (Lourenco et al. 2012; 

Teixeira et al. 2009a). A major drawback of NIR is the low molar absorptivity of molecules 

and therefore, this method is not capable of detecting highly diluted components. 

Additionally, in aqueous solution which is the typical form that samples are collected in 

biopharmaceutical processes, the signal of water molecules highly interferes with other 

substances and diminishes the signal quality. Despite the better resolution of the MIR signal, 

its expensive and sensitive fiber probe made it less attractive for online monitoring (Lourenco 

et al. 2012; Mandenius and Gustavsson 2014). Infrared spectroscopy has been used for 

monitoring mammalian cell cultures (Harthun et al. 1998; Sellick et al. 2010) and 

fermentations (Nordon et al. 2008).  

• Raman Spectroscopy: Raman is another form of vibrational spectroscopy involving a 

scattering light that provides information about the vibrational, rotational, and low frequency 

transitions of the molecule. A large portion of the scattered light (mostly laser light) is an 

incident light with the same specification as the excitation source (Rayleigh scattering). A 

small portion of it is scattered with a different wavelength from the excitation beam (Raman 

scattering). The Stokes-shift—i.e. the shift between the excitation light and the Raman 

scattering wavelength—can provide information about the molecules present in the sample 



 

11 

(Teixeira et al. 2009a). Raman has a lower propensity for absorption, in comparison with NIR 

and MIR, by polar substances (e.g. water). Raman spectroscopy can be implemented for 

different physical states (gas, liquid, and solid) of substances. The drawbacks of all 

vibrational spectroscopic techniques including Raman are weak signal and incapability of 

properly detecting dilute substances (Lourenco et al. 2012; Teixeira et al. 2009a). Use of high 

power laser source makes the instrument costly and in some cases this high-energy light can 

disrupt the sample (Lourenco et al. 2012). Furthermore, the presence of naturally fluorescing 

compounds in bioprocesses interferes with the Raman signal. Li et al. (2010) used Raman 

spectroscopy as a technique for evaluating the performance of culture media. Raman 

spectroscopy has also been implemented for monitoring of metabolites, viable cells, and total 

cell concentrations in mammalian cell culture (Abu-Absi et al. 2011). 

• Dielectric Spectroscopy: dielectric spectroscopy is based on a radio frequency field that 

causes charge separation around the non-conductive cell membrane. Cells with undamaged 

membrane, i.e. viable cells, act as capacitors. Thus, this technique is capable of providing 

information about the size, abundance, and type of only viable cells (Teixeira et al. 2009a). 

• Fluorescence Spectroscopy: Fluorescence spectroscopy is a highly sensitive and selective 

technique. Fluorescence spectroscopy can be intrinsic (through naturally fluorescing 

compounds) or extrinsic (through attaching a dye to the substance of interest). Due to the 

presence of intrinsically fluorescing substances in biological mixtures intrinsic fluorescence 

can be implemented non-invasively. An advantage of this technique over the vibration 

spectroscopies reviewed above is its capability of detecting trace substances (Lindemann et 

al. 1998; Ohadi et al. 2014a; Teixeira et al. 2009b). Details on fluorescence spectroscopy can 

be found in subsequent sections. 

The purpose of this study was to develop soft sensors for monitoring the upstream and downstream 

processes of Chinese hamster ovary cell cultures producing Mab. To achieve this goal multi-

wavelength fluorescence spectroscopy was exploited to develop data-driven soft sensors. Aside, 

model-driven soft sensors were also developed to either enhance the prediction the quality of data-

driven soft sensors or be used standalone for quality control. 

2.2 Protein Aggregation 

Mabs, as any other protein-based product, are prone to aggregation which is considered one of the 

most significant causes of product instability and performance loss (Wang 2005). Protein aggregation 
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can lead to loss of activity of the product and/or adversely affect the patient by triggering an immune 

response (Hawe et al. 2008; He et al. 2010; Mahler et al. 2009). Protein aggregation can occur in 

various stages of the manufacturing process including upstream (fermentation), downstream 

(purification and formulation), and during storage and delivery. Aggregation can be induced by 

factors including, but not limited to, temperature changes/fluctuations, pH changes, shear stress, ionic 

strength changes, and exposure to light (Arosio et al. 2013; Mahler et al. 2009; Printz and Friess 

2012; Wang 2005). Thus, it is crucial to establish methodologies for accurate real-time 

characterization and monitoring of recombinant protein aggregates. In the current study a 

fluorescence-based soft sensor was developed for quantitative and qualitative monitoring of the 

downstream processes (Chapter 6). Prior to analyzing protein aggregation and developing monitoring 

techniques it is crucial to understand the mechanisms by which the aggregates are formed, as well as 

the stress factors that induce such adverse phenomenon. This section briefly discusses the basics of 

protein aggregation and mechanisms, induction factors, and analytical measurement techniques. 

2.2.1 Protein Aggregation Pathways 

Protein aggregation can occur via a variety of pathways, forming either soluble or insoluble 

aggregates in the form of fibrillar or amorphous material, depending on the type of protein as well as 

environmental conditions  (Mahler et al. 2009). Protein molecules can undergo physical aggregation 

by physical protein-protein interactions, or chemical aggregation involving the formation of covalent 

bonds. Chemically induced aggregation can occur via oxidation, which causes modification of the 

protein sequence that leads to aggregation, or via a Maillard reaction in which the amino acids of the 

protein react with reducing sugars, forming a dark-brown aggregate as the end product  (Wang 2005). 

Aggregates may be classified according to different criteria: i-size (ranging from nm to µm in 

diameter)—smaller soluble aggregates or larger visible aggregates; ii- reversible versus irreversible; 

iii- non-covalent—bound by electrostatic forces and Van der Waals interaction, or covalent—formed 

by disulphide bond linkages or non-disulphide cross linking pathways and, iv- protein 

conformation—native structure, or mostly non-native structure (Mahler et al. 2009; Wang 2005). 

Aggregates may be soluble at first, and eventually become insoluble as they increase in size. The 

process of protein aggregation generally involves the unfolding of a native protein, causing a 

hydrophobic amino acid to become exposed. This exposed amino acid then forms new intermolecular 

bonds with other unfolded hydrophobic amino acids, resulting in the formation of protein aggregates 

(Elshereef et al. 2008; Wang 2005). 
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2.2.2 Aggregation Induction Factors 

Protein aggregation can be induced by changes in a number of physiochemical factors, including 

temperature, pH, protein concentration, stresses/shaking, and freeze-thawing. The structure of a 

protein can also affect its aggregation, i.e. the more hydrophobic a protein is, the more it will 

aggregate (Arosio et al. 2013; Calamai et al. 2006). The presence of multiple regions and structural 

sequences of MAbs increase the propensity of these large proteins to form non-native aggregates 

under stressed conditions (Sahin et al. 2010). Sometimes two or more of these factors are 

simultaneously varied in order to study aggregation in greater depth (Elshereef et al. 2006; Elshereef 

et al. 2008). 

The following is an explanation for the stress factors being studied in the current work: 

• Temperature: Temperature has a profound effect on the formation of protein aggregates. 

Higher temperatures can contribute to unfolding of the secondary, tertiary and quaternary 

structure of polypeptide conformations, which can lead to the formation of non-native 

aggregates (Mahler et al. 2009; Printz and Friess 2012). Additionally it can trigger chemically 

induced aggregation (Mahler et al. 2009). Printz and Friess (2012) observed formation of 

oligomeric structure of IgG after being heated for 20 minutes at 60 °C and approximately 

30% reduction in the monomer form. Hawe et al. (2008) concluded that higher temperatures 

can result in significantly large aggregates. Similar conclusions were drawn in Chapter 6. 

Figure 2-1 shows the chromatograms of heat stressed humanized IgG (0.5 mg/ml initial 

concentration) at 60 °C over a 60 minutes time span. The loss of monomeric structure and 

formation of trimmer/tetramer is evident temporally. 
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Figure 2-1. Chromatograms of heat stressed IgG (0.5 mg/ml initial concentration) at 60 °C over 
60 minutes time span 

• pH: Changes in pH can affect protein aggregation by changing the distribution of charges 

on the protein molecule (Wang 2005). The behavior of proteins under different pH 

conditions depends on a number of factors. Elshereef et al. (2008) found that the 

propensity of β-lactoglobulin to aggregate was higher near its isoelectric point. During the 

purification stages of recombinant proteins, such as affinity chromatography (Protein-A), 

low pH buffers are applied which result in the formation of large aggregates and a 

substantial decrease in the monomer concentration (Arosio et al. 2013; Hawe et al. 2008). 

Printz and Friess (2012) observed over 85% loss of the initial monomer IgG when 

subjected to a pH=1.1.  

• Protein concentration: Protein aggregation is believed to increase proportionally to the 

protein concentration. Mahler et al. (2009) argued that high protein concentrations can 

increase aggregation through self-assembly and to also reduce the propensity for unfolding. 

Haw et al. (2008) observed that the effect of temperature at 80 °C on the formation of 

oligomeric structures was more pronounced at higher concentration (2 mg/ml) of IgG. 

However, at 75 °C the sample with lower concentration (0.2 mg/ml) experienced a more 
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significant increase in average particle size. Hence the effect of concentration is dependent 

on other factors.  

2.2.3 Analytical Techniques for Measuring Protein Aggregation 

Protein aggregates can range in size from nanometres in diameter, to being visible to the naked eye. 

In order to obtain further information, it is necessary to measure protein aggregation, either 

qualitatively or quantitatively. A number of methods have been used, including chromatography, 

spectroscopy and light scattering. An inconsistency might be observed in the measurements obtained 

via these techniques pertinent to the difference in the nature of the technique (Mahler et al. 2009). 

Mahler et al. (2009) emphasized the lack of suitable analytical techniques for measuring protein 

aggregation over the whole size range. A detailed discussion of all techniques for measuring 

aggregation can be found in the literature (Mahler et al. 2009). Appendix A summarises some of the 

conventional methods for detecting, analysing, and quantifying protein aggregation and highlights of 

the advantages, disadvantages, and size range for each technique. 

2.2.3.1 Size exclusion chromatography 

Size Exclusion Chromatography (SEC) is ranked as the most frequently utilized method for 

quantitative analysis as well as for particle size evaluation. SEC involves the use of a porous bed to 

fractionate molecules of different sizes which allows for both the determination of aggregates, as well 

as quantification of their size by implementing various detectors (Mahler et al. 2009; Printz and 

Friess 2012). This method is often used in conjunction with other techniques, such as HPLC (High 

Pressure Liquid Chromatography) that involves a column containing a porous separation medium. 

Molecules that are larger than the pore size do not penetrate the porous medium thus passing through 

the column and appearing as the first peak in the chromatogram (total exclusion).  Molecules smaller 

than the pore size penetrate the porous medium in the column thus resulting in a longer transit time 

and eventually eluting after the larger particles (den Engelsman et al. 2011). Figure 2-2 illustrates the 

process of a sample moving through an SEC column. As seen in the elution curve, the higher 

molecular weight components elute first followed by the smaller molecular weight components. In 

this study a HP-SEC equipped with a UV absorbance detector was utilized for sample fractionation 

and estimation of monomer concentration of samples that had been subjected to different stressors 

(Chapter 6). 
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Figure 2-2. Schematic diagram illustrating the elution of molecules through a SEC column. 

2.3 Fluorescence Spectroscopy 

Since the early 1950s, fluorescence spectroscopy has become a popular analytical measurement tool 

in biochemistry, biophysics, and material science (Hof et al. 2005). Fluorescence techniques involve 

monitoring the emission of light from fluorophores resulting from the transfer of electrons from an 

excited energy level back to either one of the vibrational levels of the electronic ground state. This 

excitation is caused by the absorption of electromagnetic radiation (Herman 2003; Hof et al. 2005). 

The term photoluminescence refers to luminescence phenomena involving excitation by UV and/or 

visible light. Photoluminescence can be classified into two types: fluorescence and phosphorescence 

where the latter exhibits a longer excited lifetime than the former (Herman 2003).  Not all molecules 

are capable of undergoing electronic transitions following absorption of light. Molecules that 

fluoresce  following excitation by light are called probes, fluorochromes, or dyes (Herman 2003).  A 

larger molecule with a probe bound to it, is known as a fluorophore and can be classified as intrinsic 

or extrinsic.  

2.3.1 Basic Principles 

The fluorescence process by which molecules are excited by light is depicted in Figure 2-3 and is 

known as a Jablonski diagram (Christensen et al. 2006; Hof et al. 2005). When at room temperature, 

molecules are at the lowest vibrational level of their ground electronic state (𝑆0). By absorbing an 
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external photon (i.e. light) with an energy of 𝐸𝑒𝑒 = ℎ𝜈𝑒𝑒, where ℎ is the Plank constant and 𝜈𝑒𝑒 is a 

frequency of excitation, fluorophores are excited from the electronic singlet state 𝑆0 to either of the 

first excited state (𝑆1) or second excited state (𝑆2). This is followed by a rapid loss of excess energy to 

the lowest vibration level of the excited state, due to interactions with the molecular environment 

through vibrational relaxation, quenching and energy transfer. Subsequently, fluorophores will lose 

energy by emitting at a longer wavelength and consequently a lower energy (𝐸𝑒𝑒 = ℎ𝜈𝑒𝑒) photon 

until they reach the lowest vibrational level of their ground state (Christensen et al. 2006; Hof et al. 

2005; Lakowicz 1999). These sequential events occur within nanoseconds after the sample is excited 

by light. In addition, a slower luminescence phenomena, phosphorescence, can also take place 

involving molecules that go through intermediate states but contrary to fluorescence it is temperature 

dependent (Christensen et al. 2006). The difference between the absorption and emission wavelength 

is referred to as Stokes shift (Christensen et al. 2006; Deshpande 2001). 

 

 

Figure 2-3. A simplified Jablonski diagram illustrating fluorescence and phosphorescence. In 
this figure, (Abs) absorption, (Flu) fluorescence, (Ph) phosphorescence, (ISC) intersystem 
crossing, and (VR) vibrational relaxation. 
 

The fact that each electronic state has multiple vibrational sub-levels suggests that excitation can 

occur at various wavelengths associated with these vibrational transitions. Accordingly, the absorbed 

energy will result in a series of absorption bands. Also, since emission can be produced by electrons 

at several vibrational levels of the ground state, different emission wavelengths are expected. This 

phenomenon will result in a distinct excitation emission profile for a specific fluorophores 

(Christensen et al. 2006). 
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2.3.2 Extrinsic and Intrinsic Fluorophores 

Fluorophores can be formally classified into intrinsic and extrinsic types. Extrinsic fluorophores are 

referred to as dyes or fluorescent labels that are attached to a particular substance and fluoresce with a 

specific spectrum. Intrinsic fluorophores are those that naturally exist in the system.  

The medium, also referred to as the supernatant or broth, in mammalian cell cultures is a complex 

blend of nutrients required for cell growth. This blend includes intrinsic fluorophores, such as certain 

amino acids (tryptophan, tyrosine, phenylalanine), vitamins (pyridoxine and riboflavin), and co-

factors (NAD(P)H and FAD). Thus, making intrinsic fluorescence spectroscopy a viable choice for 

online or at-line monitoring technique. The fluorescent behavior of these compounds is affected 

during the course of the culture through generation, consumption and/or incorporation inside the 

molecules. Each of these fluorophores exhibits a unique absorption and emission wavelength that 

make them distinguishable from each other. Table 2-1 summarizes the approximate region of the 

spectra corresponding to a particular fluorophore. It is important to notice that the quantum yield and 

Stokes-shift of these fluorophores can be affected drastically by their environment; thus, reinforcing 

the capability of fluorescence spectroscopy to serve as a tool to track the dynamics of the cell 

cultivation both qualitatively and quantitatively (Li and Humphrey 1991; Teixeira et al. 2009b). Due 

to peak overlaps, peak-shifts as well as effects imposed by solvent and other fluorophores multi-

wavelength fluorescence spectroscopy is extensively favored over the use of single-wavelength data 

(Haack et al. 2004; Marose et al. 1998; Skibsted et al. 2001). Multi-wavelength fluorescence 

spectroscopy has been previously implemented for a variety of applications such as characterization 

of dissolved organic matter (Peiris et al. 2011a; Peiris et al. 2011b; Peiris et al. 2010), predicting the 

performance of growth media (Ryan et al. 2010), monitoring bacterial cultures (Hagedorn et al. 2003; 

Henneke et al. 2005; Jain et al. 2011; James et al. 2002; Skibsted et al. 2001), monitoring yeast 

cultures (Haack et al. 2004; Li and Humphrey 1991), and for monitoring of viable cell and dead cell 

in mammalian cell cultures  (Teixeira et al. 2011; Teixeira et al. 2009b).  
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Table 2-1. Excitation-Emission wavelength for fluorophores with average stokes shift 
(Lindemann et al. 1998; Ryan et al. 2010; Teixeira et al. 2011) 

 

Fluorophore 

 

Excitation (nm) Emission (nm) 
Average Stokes 

Shift 

Tyrosine 260~280 nm 300~310 nm 35 nm 

Tryptophan 280~300 nm 350~360 nm 65 nm 

Pyridoxine 320~330 nm 390~410 nm 75 nm 

NAD(P)H 340~360 nm 440~460 nm 100 nm 

FAD, Riboflavin 460~470 nm 500~520 nm 45 nm 

 

In the context of protein aggregation, intrinsic fluorescence spectroscopy has been identified as a 

feasible technique for monitoring conformational changes and characterization of tertiary structure 

(Abbas et al. 2013; Kumar et al. 2005; Printz and Friess 2012). Three intrinsically fluorescing 

aromatic amino acids (phenylalanine, tyrosine, and tryptophan) exist in the protein chain that are 

sensitive to changes in their environment. Thus their fluorescence behavior can be exploited to draw 

inferences on the conformational changes as well as native and non-native characteristic of the 

protein (Eriksson L. 2006; Kumar et al. 2005; Printz and Friess 2012). The higher quantum yield and 

extinction coefficient of tryptophan makes it the fluorophore of choice to track protein aggregation 

(Abbas et al. 2013; Poole et al. 2012). The emission maxima of tryptophan shifts depending on the 

environment in terms of degree of exposure of the tryptophan residues to the solvent (Abbas et al. 

2013; Poole et al. 2012). Second-derivative fluorescence has been utilized to investigate protein 

unfolding (Abbas et al. 2013; Kumar et al. 2005). Elshereef et al. (2008) developed a soft sensor 

based on multi-wavelength fluorescence to monitor α-lactoglobulin and β-lactoglobulin monomers’ 

concentrations under stressed condition. 

2.3.3 Excitation Emission Matrix 

The 2D-fluorescence spectra can be organized into a matrix that is referred to as the Excitation-

Emission Matrix (EEM). The fluorescence intensity values in the EEM are obtained by changing the 

excitation wavelength with specific increments and by measuring the corresponding emitted intensity 

over a desired range. Figure 2-4 is a visualization of a 3D-fluorescence spectrum of the growth media 

(Biogro) understudy in the form of a contour plot. A complete EEM can be divided into three major 

sections (Figure 2-4): 
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i. Fluorophores’ Spectra: This is a region that includes intrinsic fluorophore peaks. Generally 

peaks in this region have an emission wavelength larger than their corresponding excitation 

wavelength (𝜆𝑒𝑒 > 𝜆𝑒𝑒). These peaks are summarized in Table 2-1 and are indicated in 

Figure 2-4. 

ii. Light Scattering Region: Not all radiation is absorbed by fluorophores. Instead, some might 

be reflected or scattered in different directions (Figure 2-4). This phenomenon can be due to 

solvent molecules or the presence of suspended colloidal particles and can have a 

considerable impact on the fluorescence EEM (Christensen et al. 2006; Lakowicz 1999). 

Scattering can happen in both clear and unclear (turbid) solutions. Rayleigh (first and second 

order) as well as Raman scatterings are two optical phenomena that occur in clear solution, 

while in opaque solutions Tyndall scatter, caused by large colloidal particles, can also be 

expected. Rayleigh scattering is due to excitation light scattering by air-cell interfaces, cell-

wall solution interfaces and small particles in the sample (Christensen et al. 2006; Deshpande 

2001). This type of scatter happens with 𝜆𝑒𝑒 = 𝜆𝑒𝑒 (first order) and  𝜆𝑒𝑒 = 2𝜆𝑒𝑒 (second 

order) and therefore it normally does not interfere with the emission signal of the 

fluorophores (Christensen et al. 2006). Raman scattering is caused by the interaction of 

incident light with the solvent molecules, during which part of the incident energy can be 

converted to vibrational and rotational energy. Correspondingly, Raman scattering may be 

obtained at an emission wavelength with either lower energy or higher wavelength than the 

excitation one (Deshpande 2001). Raman scattering comes to the fore when dealing with low 

concentration samples while using high instrument sensitivity settings (Deshpande 2001). 

Some studies have made explicit use of different types of scattering to quantify protein 

aggregation (Elshereef et al. 2006; Elshereef et al. 2008). 

iii. Non-informative Region: A triangular-shaped region on the top left-hand side of the Figure 

2-4. This region exhibits emission wavelengths smaller than the excitation wavelengths 

(𝜆𝑒𝑒 < 𝜆𝑒𝑒) which is physically impossible since it would imply that the emitted energy is 

larger than the excitation. 
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Figure 2-4. Multi-wavelength fluorescence spectra of the growth media in a form of a 3D plot: 
(A) Non-informative region, (B) Fluorophores’ region, (C) Scattering region. 

2.3.4 Optimization of Spectrofluorometer Settings 

To guarantee the accuracy and reproducibility of the results the instrument settings of the 

spectrofluorometer should be optimized. This optimization was performed using Biogrow medium 

which has been specifically developed for use by members of MabNet. Three different 

spectrofluorometer settings including photomultiplier tube (PMT) voltage, scanning rate, and slit 

width (SW) were optimized to obtain consistent reproducible results. Additionally, the impact of 

dilution using different media to phosphate buffer saline (PBS) ratios was studied. Detail of this work 

can be found in section 3.2.3 and Appendix B.   

2.4 Chemometric Methods 

Although EEMs contain a large amount of useful information, they consist of a large number of 

variables (excitation-emission pairs) to sample ratio, highly correlated results, and an expected high 

sensitivity to noise. For such a complex dataset, univariate or bivariate methods will fail to extract 

sufficient information. Focusing on a particular peak (peak-picking) is not considered a viable choice 

because the position of the peaks can shift significantly as a result of changes in the environment of 

these fluorophores. Consequently, chemometric methods are crucial in the analysis of multivariate 

dataset and in the development of robust models. These methods can be used to relate changes in 
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multivariate measurements of a process to the actual conditions of a system by utilizing statistical 

approaches. Therefore, they have been widely used by researchers in bioprocess analysis (Rathore et 

al. 2011). Among these techniques data exploratory methods based on dimension reduction—e.g. 

principal component analysis, partial least square regression, and principal component regression—

have gained more attention due to their simplicity as well as the interpretability of the results. In this 

study PLS is applied to relate the actual states of the system in upstream and downstream to the EEM 

obtained from fluorescence spectroscopy.   

2.4.1 Principles of Multi-linear Regression 

Generally, regression can be thought of as a relationship between independent parameters denoted as 

𝑥𝑗s and dependent ones (𝑦𝑗s). Linear regression is the simplest form of regression where the goal is to 

obtain a linear relationship between independent and dependent variables. Contrary to conventional 

wisdom, linear regression is not limited to only one dependent but can be extended for a system of p 

dependent variables as per Equation 2-1. 𝑌 and 𝐸 are 𝑛 × 𝑝 matrices of dependent variables and 

residuals, respectively and 𝐵 is a 𝑚 × 𝑝 matrix of coefficients which can be calculated from 

(Equation 2-2). Additional details on linear regression can be found in Montgomery (2009).  

𝑌 = 𝑋𝑋 + 𝐸 Equation 2-1 

𝐵 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 Equation 2-2 

In practice there are many cases where MLR as given by Equation 2-2 will not provide good 

results. Collinearities among independent variables (i.e. a highly correlated X matrix) combined with 

lower number of samples than variables and noisy measurements such as exhibited by 2-D 

fluorescence EEM, are a major cause for poor performance of MLR. Collinearity results in highly 

sensitive estimates of coefficients to noise (i.e. B`s will change significantly among models calibrated 

with different sets of data). Also, especially when using small data sets as compared to the number of 

parameters to be estimated, there is a possibility of over fitting. In that case the MLR based model 

may perfectly fit the calibration data set but it will fail to produce accurate predictions of data that 

were not used for model calibration (Geladi and Kowalski 1986; Wold et al. 1984). 

2.4.2 Partial Least Squares 

Partial Least Squares Regression (PLSR) was first developed by Herman Wold and it was initially 

used in the social sciences (Wold et al. 1984). In contrast with MLR, PLSR is of interest because of 



 

23 

its ability to handle collinear, noisy data and data sets with a very large number of variables. 

Moreover, PLSR can be used to tackle multiple-response problems, i.e. problems with many 

dependent variables, with a single regression model (Wold et al. 2001). 

PLSR attempts to find new directions, i.e. Latent Variables (LV) in an independent input data space 

𝑋, that both captures the variance in the X (independent variables) space and best describes the output 

(dependent variables) data Y. In other words, a multi-dimensional hyper-plane in X space is found 

such as the projection of independent variables on it (scores) correctly captures X, and at the same 

time, it can describe Y with a desirable degree of accuracy (Figure 2-5). This accuracy is achieved by 

maximizing the covariance between input and output while capturing the variance in the input. In 

PLSR the aim is to predict one set of data from another one and in that sense it is different from 

Partial Least Square Correlation (PLSC) which looks for similarities (correlations) between two 

matrices (Krishnan et al. 2011). 

 

Figure 2-5. Schematic presentation of PLS derivation for an arbitrary 3-D X and Y space as 
well as hypothetical hyper-planes showing first and second LVs  
 

Various algorithms have been investigated to calculate PLS regressions. Non-linear Iterative Partial 

Least Square (NIPALS) is the most commonly used algorithm for studying and understanding PLS 

method. NIPALS estimates scores, loadings and vector of weights iteratively. Detailed information 
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about the algorithm can be found in (Geladi and Kowalski 1986). The iterative nature of NIPALS 

results in numerous calculation steps and higher CPU time. Alternatively, SIMPLS is another method 

(Dejong 1993) that can be implemented. SIMPLS generates exactly the same results as NIPALS 

when only one response variable is considered and it produces slightly different results in the case of 

multivariate responses. 

PLS consists of an outer relation for X and Y where these are given as follows: 

𝑋 = 𝑇𝑃𝑇 + 𝐸 Equation 2-3 

𝑌 = 𝑈𝑄𝑇 + 𝐹 Equation 2-4 

X is an n×m matrix, T is an n×l score matrix, and P is m×l loading matrix of the input data. 
Similarly, Y is an n×p, U is an n×l score matrix, and Q is a p × l loading matrix of the output 
data. l is number of latent variables. The Partial Least Square Regression equations are 
schematically illustrated in ( 

Figure 2-6). 

Finally it can be shown that the regression coefficient matrix B in Equation 2-1 can be calculated as 

Equation 2-5 (Wise 2006) and T, scores for independent matrix X, can be obtained as per Equation 

2-6 (Wold et al. 2001). 

𝐵 = 𝑊(𝑃𝑇𝑊)−1(𝑇𝑇𝑇)−1𝑇𝑇𝑌 Equation 2-5 

𝑇 =X 𝑊(𝑃𝑇𝑊)−1 Equation 2-6 

It can be shown that W contains the eigenvectors of  𝑋𝑇𝑌𝑌𝑇𝑋 with descending order as per the 

corresponding eigenvalues. For example, Equation 2-7 shows the first eigenvector 𝑤1and its 

associated eigenvalue 𝜆. It is also worth mentioning that the SIMPLS algorithm is based on this 

equation (Wold et al. 2001). 

𝜆𝑤1 = 𝑋𝑇𝑌𝑌𝑇𝑋𝑤1     Equation 2-7 
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Figure 2-6. Use of PLS to correlate U (Y scores) to T (X scores) using MLR. Modified from 
(Wold et al. 2001). 

 

In order to utilize the multi-wavelength fluorescence spectra as an input matrix (X), the EEM of 

each sample is organized in the form of a vector as shown in Figure 2-7. Subsequently, these vectors 

are appended together into a matrix, where the columns correspond to different emission and 

excitation wavelength combinations excitation-emission pairs) and rows correspond to different 

samples. 
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Figure 2-7. Schematic of organizing excitation emission matrix of a sample into a form of a row 

vector 

2.4.2.1 Scaling 

Pre-processing mathematical operations are often performed on the data in the input data set (X) and 

output data set (Y) matrices prior to projection to improve the accuracy of the regression. These pre-

processing operations often help to enhance the extraction of relevant information or to improve the 

predictive capability of the resulting model on particular variables (Lourenco et al. 2012). Log and 

square transformations can be used to account for nonlinearity in the data. A derivative operation can 

be applied to suppress offset and a background slope. PLSR and methods based on projection in 

general are very sensitive to pre-scaling of the data. There is no requirement for scaling or even for 

applying the same scaling on X and Y. However, auto-scaling (centering and dividing each column 

by its variance) is generally applied when the relative influence of each variable is unknown a priori. 

In other words applying auto-scaling, assumes a similar impact for all variables involved in the 

regression model (Wold et al. 2001). 

2.4.2.2 Number of latent variables 

Although one might chose the number of LV`s as a function of the amount of variance that is 

explained by them, there is always a risk of over fitting. Cross Validation (CV) is considered a 

practical approach to quantitatively check the prediction quality of the model versus the number of 
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latent variables used and it has become widely accepted for calibrating PLSR and PCR models. CV 

procedures require that the data be divided into two sets, a calibration (Cal), i.e. training, set and a 

prediction (Pred), i.e. test, set. Partitioning of the data can be done in different ways as discussed by 

Shao, 1993. Using the calibration set, a regression model is developed and the Mean Squared Error 

(MSE) or Root Mean Square Error (RMSE) of calibration can be calculated. Then, the model is tested 

by using the prediction set, and the MSE-CV and RMSE-CV can be calculated, respectively to assess 

the prediction accuracy. These steps are done for a different number of LV`s and curves showing the 

RMSE-CV and RMSE-Cal vs. Number of LV`s can be used to choose an appropriate number of LV`s 

to capture a certain amount of variability. Alternatively, the model accuracy can be quantified by 

comparing 𝑅𝐶𝐶2 and 𝑅𝑃𝑃𝑃𝑃2 

2.5 Basics of Mab Glycosylation 

Mabs are the fastest growing class of recombinant proteins in the biopharmaceutical industry (Butler 

2005; Butler and Meneses-Acosta 2012) and are predominantly produced using mammalian cells as 

hosts. Antibodies, mostly immunoglobulins, are Y shaped glycoproteins typically composed of two 

heavy and two light polypeptide chains attached together with disulfide bounds, as depicted in Figure 

2-8. The heavy chains and light chains are shown by purple and green colors respectively in Figure 

2-8. The light chain and heavy chain of the antibody have two structural domains: i) constant domain 

and ii) variable domain, where the latter one, i.e. the antigen-binding domain, determines the affinity 

of a particular antibody towards an antigen. The top part of the Mab that includes the variable region 

of the heavy and light chain is known as the antigen-binding fragment (Fab) while the bottom 

domain, i.e. the two heavy chain terminals, is known as the crystallizable fragment (Fc). The Fab 

specifically binds to a certain antigen and the Fc domain either countervails the antigen or triggers a 

response in the host (Del Val et al. 2010).  

Glycosylation is considered as a crucial post-translational modification of recombinant proteins, such 

as Mabs, and has been extensively specified as a key factor influencing the therapeutic properties of 

proteins (Del Val et al. 2010; Hossler et al. 2009; Stanley 2011). The extent and the structure of 

glycosylation, known as microheterogeneity, can profoundly affect the Mab’s serum half-life and the 

response mechanisms evoked in the patient (Del Val et al. 2011; Hossler et al. 2007; Krambeck and 

Betenbaugh 2005; Umana and Bailey 1997).  Hence, being able to predict the microheterogeneity in a 

timely manner is of interest for effective cell culture operation and control. Additionally, the 

extracellular metabolic state can also influence the glycan structure. As a result, a model relating the 
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extracellular culture conditions to the glycan structure can be implemented to calculate and 

implement operating conditions to achieve a desirable glycan structure. 

 

Figure 2-8. Schematic presentation of a monoclonal antibody (Mab). 

2.5.1 Glycosylation Process 

Most of the glycosylation process occurs within the intracellular Golgi apparatus. Based on their 

attachment sites, the glycans are characterized as O-linked (through serine or threonine link) and N-

linked (through asparagine link) (Del Val et al. 2010). Several studies have emphasized the 

importance of N-linked glycans (Del Val et al. 2010; Hossler et al. 2009). O-linked glycosylation 

rarely occurs for antibodies (Hossler et al. 2009). The N-linked glycosylation can occur in both Fc 

and Fab regions, although the latter one reported to be unconventional (Del Val et al. 2010). The 

focus of the model presented in the current study is on the N-linked glycosylation occurring on the 

C𝛾2 domain of the heavy chain (as specified by red lines in Figure 2-8). The process of N-linked 

glycosylation initiates in the endoplasmic reticulum (ER) by attachment of an oligosaccharide 

(Glc3Man9GlcNAc2) to the nascent polypeptide chain (bottom left part of Figure 2-9). This is 

followed by proper folding of the protein and removal of three glucose residues and at least one 

mannose (top left part of Figure 2-9). Subsequently, the properly folded protein will be transferred to 

the Golgi apparatus. Prior to further expansion of glycan branches in the Golgi apparatus, more 

mannoses need to be removed. The glycosylation process occurring inside the Golgi can be simply 

defined as a sequential attachment/detachment of nucleotide sugars to the backbone of the Mab to 



 

29 

form a complex oligosaccharide. Examples of these attachments inside the Golgi are demonstrated in 

Figure 2-9 where different nucleotide sugars are sequentially connected to the oligosaccharide chain. 

The attachments/detachments of monosaccharides are triggered by a number of enzymes resulting in 

a large network of reactions and combination of oligosaccharide structures (Del Val et al. 2011; 

Hossler et al. 2009; Hossler et al. 2007). A software package referred to as GlycoVis (Hossler et al. 

2006) can be utilized to visualize this network of glycoproteins and corresponding reactions. 

 

 

Figure 2-9. Schematic presentation of N-linked glycosylation initiating in the endoplasmic 

reticulum (left) and continuing in Golgi apparatus (right).  

 

2.5.2  Mechanisms of transport in the Golgi Apparatus that were considered for model 
development 

Structurally, the Golgi apparatus can be viewed as a set of biochemically heterogeneous membrane 

compartments, known as cisternae. These non-similar cisternae fall into four group: cis, medial, trans, 

and trans-Golgi network (TGN), in which a unique distribution of enzymes catalyze reactions in 

particular directions (Figure 2-9). Despite the debate regarding the nature of the Golgi apparatus, two 

main hypotheses, vesicular transport and Golgi maturation, have been used to formulate the 

glycosylation models for the Golgi apparatus (Del Val et al. 2011; Hossler et al. 2007).  
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The vesicular transport model assumes stationary compartments/cisternae with secretary cargo 

moving by vesicles, compartment by compartment. According to this assumption, the Golgi can be 

represented by a continuous stirred-tank reactors (CSTRs) in series where each reactor represents a 

cisterna containing a particular level of enzymes and the cargo (Mab) is transported across these 

reactors and is glycosylated according to its residence time within each reactor. In contrast, the Golgi 

maturation approach uses a constant secretary cargo assumption where the cargo is constant but each 

compartment or cisternae experiences maturation and transitions from early cisternae to a late 

cisternae status. Consequently, all Mabs will spend a similar time in the Golgi apparatus. In this case, 

plug flow reactors (PFRs) in series are used to represent the Golgi maturation process described 

above (Hossler et al. 2007). Although in earlier studies researchers favored the vesicular transport 

approach (Krambeck and Betenbaugh 2005; Umana and Bailey 1997), recent findings tend to support 

the Golgi maturation assumption (Del Val et al. 2011; Hossler et al. 2007). Thus, in the current work, 

the system is mathematically modeled using four plug flow reactors (PFRs) in series where each 

compartment represents one state of the Golgi during maturation. 

2.5.3 Glycosylation Enzymes 

N-glycosylation involves a series of successive reactions that are catalyzed by a small number of 

enzymes in the Golgi. Each enzyme is capable of catalyzing a number of reactions. Each glycan can 

be directed into different pathways by reacting with different enzymes. From a broad perspective 

these enzymes can be categorized into two classes: a) exoglycosidases that are enzymes acting on one 

substrate and detaching a mannose from the oligosaccharide chain and b) glycotransferases (GTs) that 

are enzymes acting on two substrates and attaching a particular monosaccharaide to the chain. GTs 

are reported in Stanley, (2013) to be over 250 for mammals, which can be classified in groups based 

on the type of monosaccharide they are acting on. Depending on the cell line some of these GTs are 

not expressed. Hence, the branches of the reaction network pertinent to these enzymes can be 

trimmed to reduce the complexity of the mathematical problem as explained later. Although some 

GTs can have more than one functional domain, a single type is assumed in this study. Due to the 

sequential nature of the glycosylation process, GTs are distributed along the Golgi (Hossler et al. 

2007; Stanley 2011). Accordingly, the oligosaccharide structures can be profoundly affected by how 

the enzymes are localized. In the current study only reactions that occur in the Golgi apparatus are 

considered and reactions in the ER are assumed to proceed to completion. 
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Hossler et al. (2007) assumed 341 glycans and addressed this complex network of reactions with a 

relationship-matrix (Hossler et al. 2007). For a hypothetical reaction tree of five glycans the 

relationship-matrix is illustrated by Figure 2-10. Each non-zero element in the matrix appears as a 

possible reaction with its corresponding enzyme number. 

 

Figure 2-10.  Relationship matrix (Hossler et al. 2006): a hypothetical example of 5 glycans and 

their corresponding relationship-matrix. 𝑮𝒊s are representing glycans and 𝒆𝒊𝒔 representing the 

type of enzyme. 

Theoretical models for glycosylation have been proposed in the literature. However either no 

connection has been proposed in these models between the extracellular states and the glycosylation 

pattern (Del Val et al. 2011; Hossler et al. 2007) or they have not been properly verified by 

experimental data. 
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Chapter 3 
Fluorescence-based Soft Sensor for at situ Monitoring of Chinese 

Hamster Ovary Cell Cultures* 

 

 

Multi-wavelength fluorescence spectroscopy was investigated as a potential tool for use in monitoring 

key process variables that include: viable and dead cells, recombinant protein, glucose, and ammonia 

concentrations for Chinese hamster ovary (CHO) cells during cultivation. For the purpose of 

calibrating the fluorescence-based empirical model, cells were grown in batch mode with different 

initial glucose and glutamine concentrations. Spectrofluorometer settings were optimized to ensure 

reproducibility and accuracy of the acquired spectra. With the purpose of gaining qualitative insight 

into the evolution of the spectra, the trajectories of individual fluorophore peaks were studied during 

the cultivation process. Spectral changes related to biomass and secreted proteins were investigated 

by comparing the spectra at various stages during the downstream processing. A partial least square 

regression (PLSR) was used to formulate empirical models that related the input data set, i.e. the 

fluorescence excitation-emission matrix, to the actual state of the system including viable cell and 

dead cells and recombinant protein, glucose and ammonia concentrations. The models exhibited 

accurate prediction ability for the process variables of interest. 

3.1 Introduction 

Since the approval of recombinant insulin as the first recombinant drug product, the 

biopharmaceutical industry has experienced dramatic growth and advances in the production of 

recombinant proteins with humanized monoclonal antibodies (Mabs) surpassing the sales of other 

biologics (Butler 2005; Butler and Meneses-Acosta 2012). Chinese hamster ovary (CHO) cells are 

considered the dominant expression host for the commercial production of recombinant proteins due 

to their efficacious single-cell suspension growth (Wurm 2004), DNA transfection capabilities (Butler 

and Meneses-Acosta 2012; Wurm and Hacker 2011), inability  for reproducing various human viral-

pathogens (Wurm and Hacker 2011), and human-like glycosylation capacity. Rigorous process 

                                                      
* Ohadi, K., Aghamohseni, H., Legge, R. L. and Budman, H. M. (2014), Fluorescence-based soft sensor for at 
situ monitoring of Chinese hamster ovary cell cultures. Biotechnol. Bioeng., 111: 1577–1586. 
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analysis and optimization are required for scale-up to meet the five-fold proliferation of Mabs’ 

demand that has occurred since 2000 (Butler 2005). Additionally, the essence of guaranteeing 

consistent production-quality reinforces the need for proper monitoring and control. The recently 

launched process analytical technology (PAT) by food and drug administration (FDA) has motivated 

manufacturers to utilize new in situ monitoring tools for real-time tracking of key process variables to 

ensure product quality (Rathore et al. 2010; Teixeira et al. 2009a). As a result of prolonged, 

laborious, and expensive measurement assays required for some of these key variables, manufacturers 

are urged to adopt alternative monitoring methodologies. 

The nondestructive, noninvasive, and highly informative nature of electromagnetic spectroscopic 

techniques make these techniques attractive as potential tools for in situ monitoring of bioprocesses 

(Lourenco et al. 2012; Teixeira et al. 2009a). Among these techniques, multi-wavelength 

fluorescence spectroscopy is noteworthy due to  its high sensitivity and selectivity, as compared to 

vibrational spectroscopic techniques, and that it encompasses a wide range of fluorophores that exist 

both in and outside of the cells (Lourenco et al. 2012; Marose et al. 1998). The adequacy of multi-

wavelength fluorescence spectroscopy is supported because culture media and supernatant possess 

different intrinsic fluorophores, including amino acids (tyrosine and tryptophan), vitamins 

(pyridoxine and riboflavin), and cofactors (NAD(P)H and FAD) and that their fluorescent behavior 

changes through the cultivation process. These naturally fluorescent compounds are distinguishable 

by their excitation/emission wavelength maxima (Li and Humphrey 1991; Lindemann et al. 1998; 

Teixeira et al. 2009b). The quantum yield and Stokes shift of these compounds also exhibit a high 

dependency on their environment. Consequently, tracking culture-broth fluorescence over the course 

of the cell cultivation can provide qualitative and quantitative insight into the dynamics of the process 

(Li and Humphrey 1991; Teixeira et al. 2009b). Many studies emphasize the advantages of multi-

wavelength spectrofluorometry over single-wavelength counterparts in handling peak overlaps, peak-

maximum shifts, and signal quenching (Haack et al. 2004; Marose et al. 1998; Skibsted et al. 2001). 

Applications of multi-wavelength fluorescence spectroscopy for online monitoring of bacterial, 

(Hagedorn et al. 2003; Henneke et al. 2005; Jain et al. 2011; James et al. 2002; Skibsted et al. 2001), 

and yeast (Haack et al. 2004; Li and Humphrey 1991) cultivation have been well documented. Jain et 

al. (2011) monitored dry cell mass and non-fluorescing compounds (glucose concentration and 

carbon dioxide production rate) in recombinant bacterial cultures. Skibsted et al. (2001) argued that 

the ability to predict non-fluorescing compounds from the fluorescing ones is probably related to the 

stoichiometric relationship among them. Applications of multi-wavelength fluorometry for 
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mammalian cell cultivation have not been investigated as thoroughly. Rayan et al. (2010) used 2D-

fluorescence fingerprints coupled with multivariate statistical techniques to predict mammalian 

growth-media performance for fed batch cultures. The capability of multi-wavelength fluorescence to 

track viable cell density and recombinant protein concentration, expressed in BHK21A, in batch and 

semi-batch modes has been described (Teixeira et al. 2009b). This same group also used a microwell 

plate reader for high-throughput prediction of biomass and secreted protein for a CHO culture 

(Teixeira et al. 2011). 

Machine learning techniques have been utilized to generate empirical predictive-models (soft 

sensors) that relate the actual state of the system to 2D-fluorescence spectra obtained in situ.  

Mammalian cells can only incorporate, but not synthesize, vitamins and fluorescent amino acids that 

necessitate drawing an indirect inference about the key process variables from the fluorescence maps. 

Additionally, the large ratio between the number of fluorescence related variables, i.e. intensities 

measured at different combinations of excitation\emission wavelengths, to the number of samples, 

high collinearity among these intensities and the occurrence of measurement noise supports the use of 

chemometric methods for mining the fluorescence data (Rathore et al. 2010). Partial least square 

regression (PLSR) is the most frequently used supervised data mining technique capable of handling 

data sets that do not have a full rank (Wold et al. 1984).  

The objective of this study was to develop an empirical predictive-model using multi-wavelength 

fluorescence spectroscopy coupled with PLSR as a tool for at-line monitoring of CHO cell cultivation 

in batch mode. Previous research documented the suitability of 2D-fluorometry for tracking viable 

cell and recombinant protein concentration trajectories (Teixeira et al. 2011; Teixeira et al. 2009b). 

The aim of the current study was to demonstrate the capability of multi-wavelength fluorescence 

spectroscopy for monitoring dead cell concentrations, a key nutrient (glucose) and inhibitor 

(ammonia) concentrations in addition to viable cell and Mab concentrations. 

3.2 Materials and Methods 

3.2.1 Cell Cultivation Conditions 

A descendent of CHO-DXB11, specifically engineered by MabNet (National Science and 

Engineering Research Council Mab Network), was utilized as an expression host for producing EG2-

hFc, a camelid-based Mab. The cell line is adapted to grow in a serum and protein free defined 

Biogro (provided by MabNet) media, supplemented with 0.9% HT (Invitrogen: 11067-030), under 
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suspension conditions with sub-culturing every 2 to 3 days with a seeding density of 0.25 million 

cells/ml to obtain seed cultures. Batch cultures, distinguished by their initial glucose and glutamine 

concentration (Table 3-1), were performed with an initial cell density of 0.2 million cells/ml in 500 

ml polycarbonate shake-flasks (with 250 ml of working volume) and incubated at 37◦C with 5% CO2 

while agitated at 120 rpm. Viable and dead cell density (using hemocytometer and trypan-blue 

exclusion) and fluorescence maps were obtained at situ on a daily basis. To conduct off-line 

analytical measurements of recombinant protein and metabolite concentrations, additional samples 

were collected, centrifuged at 300×g for 10 min, and the supernatant stored at -20˚C. 

Table 3-1. Batch cell cultivation notations and experimental design 

Culture 

Notations  
Media Type 

Initial Concentration 

Glucose (mM) Glutamine (mM) 

A I 25 0 

B I 25 4 

C I 25 4 

D I 25 8 

E I 45 0 

F I 45 4 

G I 45 8 

H II 25 4 

I II 35 4 

J II 45 8 

 

3.2.2 Analytical Methods 

The extracellular recombinant protein concentration was measured using an Enzyme-Linked 

Immunosorbent Assay (ELISA) method developed by MabNet. 96-well plates were coated with an 

anti-human IgG1 (Fc specific) produced in goat (Sigma Aldrich, ON) and detected using IgG (Fc 

specific)-peroxidase antibody produced in goat (Sigma Aldrich, ON) after the addition of samples and 

standard. Addition of peroxidase’s substrate, i.e. TMB, results in a colored product. The reaction was 

stopped using 2M sulfuric acid and the absorbance read in a Biotek Synergy 4 multi-plate reader at 

450 nm. Glucose concentrations were determined utilizing a Megazyme assay kit (Cedarlane) with 
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the absorbance measured at 510 nm using a Biotek Synergy 4 multi-plate reader. An Ammonia Ion-

Selective electrode connected to a pH/ISE meter model 710A of VWR was used to determine the 

ammonia concentration. 

3.2.3 Fluorescence Map Acquisition 

Fluorescence maps of the samples were acquired using a Cary Eclipse spectrofluorometer (Palo Alto, 

CA) equipped with a Peltier multi-cell holder using quartz cuvettes (Thermo Scientific, ON) at room 

temperature. The spectra were obtained over an excitation range from 240 to 500 nm at 10 nm 

increments and emission wavelengths of 280 to 600 nm with 2 nm increments. The resulting 2D-

fluorescence maps were organized into a matrix referred to as excitation emission matrix (EEM). An 

initial investigation was conducted to obtain optimal settings of the instrument to guarantee accuracy 

and reproducibility of the signals using a three-factor Box-Behnken experimental design involving 

different levels of the photomultiplier tube (PMT) voltages, slit widths (SW), and scanning rates 

performed on Biogro media. The results of this optimization revealed that a higher excitation intensity 

results in a higher signal to noise ratio but the magnitudes of the peaks are limited by the detector’s 

measuring range. The impact of PMT voltage and SW were found to be significant on the 

repeatability of the spectra in contrast with a small effect of the scanning rate. This corroborates the 

earlier findings observed for  drinking water applications (Peiris et al. 2009). As a result, a PMT of 

600V with a SW of 5 nm for both excitation and emission, and a scanning rate of 1200 nm/min were 

identified as optimum instrument settings for the media employed in this study. To determine the 

occurrence of signal quenching, a series of experiments were conducted with media at different levels 

of dilution using phosphate buffer saline (PBS). These experiments revealed the occurrence of signal 

quenching for peaks corresponding to tyrosine, tryptophan, and pyridoxine. A dilution corresponding 

to a sample to buffer ratio of 1:19 was found to be optimal to prevent the occurrence of signal 

quenching and was used for the remaining experiments. 

3.2.4 Purification Effect 

A set of experiments were conducted to identify whether the presence of cells and recombinant 

protein have a direct impact on the fluorescence map. This is relevant for understanding whether the 

predictions of cell and Mab concentrations to be presented later are based on a direct correlation or on 

an indirect inference from the supernatant composition. To investigate the contribution of the 

presence of the cells in the supernatant on the spectra, experiments were conducted by removing the 
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cells using centrifugation at 300×g for 10 min and collecting the spectra before (Stage I) and after 

centrifugation (Stage II). To assess correlations between the spectra and the recombinant protein 

concentration, culture samples obtained after centrifugation were eluted through a Protein A column 

(Sigma Aldrich, ON), which can specifically bind Mab, and the spectra before (Stage II) and after 

passage through the column (Stage III) were acquired.  

3.2.5 Data Analysis 

PLSR was exploited as the machine learning technique to generate predictive empirical-models that 

relate the input data set, i.e. fluorescence map, to the actual state of the system including viable and 

dead cells, glucose, ammonia and recombinant protein (Mab) concentrations. The principle behind 

PLSR is to find a compact set of new coordinates—for a highly redundant input data space X—onto 

which the data are projected, i.e. latent variables (LVs), that captures both the variance in 𝑋 space and 

best describes the output data 𝑌. In other words, a multi-dimensional hyper-plane, defined by the 

latent variables, in the 𝑋 space is found such that the projection of independent variables on it (i.e. 

scores) correctly captures the input data 𝑋, and at the same time, accurately describes the output data 

𝑌 (Geladi and Kowalski 1986; Wold et al. 1984; Wold et al. 2001). In the current work the input data 

X contained the fluorescence spectra at different emission excitation wavelengths and the output 

space Y is composed of the variables to be predicted: viable and dead cells, Mab, glucose and 

ammonia concentrations. For the purpose of training the PLSR models, the EEM elements of each 

sample were organized into a one row vector and then, the rows corresponding to all the samples 

were appended one above the other to form the matrix of input data (𝑋). To eliminate background 

noise effects, the fluorescence map of the phosphate buffer saline (PBS) was obtained on a daily basis 

and subtracted from the samples’ spectra. In order to prevent a dominant effect of fluorophores with 

high intensity peaks, as compared to parts of the spectra with lower intensity, data preprocessing was 

performed to improve the accuracy and to focus the predictive capability of the resulting model on 

particular variables. Similar weight was assigned to every variable corresponding to a particular 

excitation-emission pair using a column-wise auto-scaling (mean centering and dividing by variance) 

of input and output data matrices. An orthogonal projection to latent structures (O-PLS) was adopted 

to enhance the interpretability of the resulting predictive models through removing variation in input 

data that is orthogonal to the output data (Trygg and Wold 2002). In this study the SIMPLS algorithm 

(Dejong 1993) was pursued in preference to its computationally more expensive counterpart, NIPALS 

(Geladi and Kowalski 1986). To suppress model over-fitting, an optimal number of LVs was sought 
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by utilizing cross validation and minimizing the root mean square error of cross validation 

(RMSECV) as a measure of out of sample error and generalization capacity. Due to the time 

dependency, errors for samples in each batch are not utterly random and independent of each other 

but rather correlated; thus, an improper cross-validation (CV) procedure may result in a biased 

prediction of out of sample error and increase the sensitivity of the empirical model to noise. To 

address these issues the leave one batch out cross validation procedure (LOBO-CV) was utilized in 

this work (Hagedorn et al. 2003). Chemometric analyses were performed using the PLS-Toolbox 

7.0.3 (Eigenvector Research Inc., Manson, WA) running in the MATLAB 8.0.0 (MathWorks, Natick, 

MA) environment. 

3.3 Results and Discussion 

Empirical predictive PLSR based models for viable and dead cells, recombinant protein, glucose, and 

ammonia concentrations were calibrated and tested using data collected from a set of batch cultures. 

Various initial glucose and glutamine concentrations (Table 3-1) were utilized with the objective of 

ensuring sufficient variability in culture conditions so as to produce robust models with predictive 

ability over a large range of operating conditions. Another factor that was evaluated was the effect of 

variations of the basal media on model prediction quality by growing cells in two different batches of 

media, to be referred as Media I and II (Table 3-1).  

3.3.1 Analysis of Individual Fluorophore Peaks 

According to the literature, different regions of the fluorescence map can be attributed to particular 

intrinsic fluorescent compounds (Lindemann et al. 1998; Ryan et al. 2010; Teixeira et al. 2009b). 

Although the merits of multi-wavelength, compared to single-wavelength spectrofluorometry, have 

been reported and were used for the current work (Haack et al. 2004; Marose et al. 1998; Skibsted et 

al. 2001), the trajectories of individual peaks (fluorophores) during the cultivation process was first 

investigated to gain a qualitative insight into the dynamics of the system. Accordingly, the temporal 

evolution of peak intensities were compared (Figure 3-1a-d) for two batches that were initiated with 

different glutamine concentrations (0 and 4 mM) and the same glucose concentration (25 mM). It is 

apparent from Figure 3-1a and b that the fluorophores exhibited similar trends for these two batches. 
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Figure 3-1. Comparison of trajectories of different peak intensities and attributes for cultures 
with the same initial glucose concentration (25 mM) and different glutamine concentrations (0 
and 4 mM). a) Left axis: Trajectories of tyrosine peak ( 305/270/ =emex λλ  nm) intensity, 
Right axis: Trajectories of tryptophan peak ( 350/300/ =emex λλ  nm); b) Left axis: Trajectories 
of NAD(P)H peak ( 450/360/ =emex λλ  nm) intensity, Right axis: Trajectories of an scattering 
peak ( 300== emex λλ ); c) Left axis: Trajectories of viable cell concentrations, Right axis: 
Trajectories of dead cell concentrations; d) Left axis: Trajectories of recombinant protein and 
glucose concentrations, Right axis: Trajectories of ammonia concentrations. 

 

The tyrosine (𝜆𝑒𝑒 𝜆𝑒𝑒⁄ = 270/305 nm) peak decreases (solid lines in Figure 3-1a) possibly due to 

an uptake of this amino acid by the cells for biomass synthesis and for protein production but then it 

plateaus when the maximum cell concentration was achieved (Figure 3-1c).  This supports the notion 

that the uptake of tyrosine is growth associated and correlates with its higher consumption for the 

batch initiated with 4 mM glutamine which exhibits much greater biomass growth compared to the 
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culture initiated with no glutamine (Figure 3-1c). Mammalian cells are unable to synthesize 

tryptophan (Teixeira et al. 2009b) and the increase in the tryptophan peak could be explained by the 

incorporation of this amino acid into the protein structure. While tryptophan exposure to a 

hydrophobic environment results in increased emission-intensity, exposure to a hydrophilic 

environment or abundance of quenchers diminishes emission-intensity (Callis and Liu 2004; Teixeira 

et al. 2011). The tryptophan peak-intensity at 𝜆𝑒𝑒 𝜆𝑒𝑒⁄ = 300/350 nm (shown by dashed lines in 

Figure 3-1a) exhibited a more pronounced increase for the culture that commenced with the higher 

initial glutamine concentration in comparison to the culture with no glutamine other than residual 

glutamine from the inoculum. This conclusion further corroborates the contribution of tryptophan to 

biomass and recombinant protein concentrations, since higher cell growth and Mab productivity was 

observed for the batch initiated with 4 mM glutamine (Figure 3-1c-d). The slight decline in 

tryptophan intensities at the end of the culture might be explained by protein denaturation or a large 

amount of cell debris at the end of the cultivation process which can cause signal quenching. The 

peak related to NAD(P)H 𝜆𝑒𝑒 𝜆𝑒𝑒⁄ = 360/450 nm exhibits a temporal increase during the 

cultivation process until the culture reaches the stationary phase and remains approximately constant 

afterwards (Figure 3-1b). Production of NADH is mostly attributed to the glycolysis and citric acid 

cycles (Marose et al. 1998) and as such is proportional to the number of growing cells. Notably, the 

NAD(P)H peak`s slope declines after approximately 80 hours when glucose is consumed for the 

batch with 4 mM initial glutamine or glucose consumption is diminished for the 0 mM initial 

glutamine culture (Figure 3-1d). Accordingly, NAD(P)H might be used to track the process 

metabolic-state (Haack et al. 2004). Rayleigh scattering corresponds to 𝜆𝑒𝑒 𝜆𝑒𝑒⁄  and is often reported 

to result from cell-solution interface and/or suspended particles (Christensen et al. 2006; Deshpande 

2001), that might explain its increasing trajectory illustrated with dashed lines in Figure 3-1b 

corresponding to a scattering peak obtained at 300 nm over the course of the culture. Despite the 

reduction in the number of viable cells after the transition to the post-exponential phase, a surge was 

observed in the scattering peak intensity, possibly due to cell debris.  

After obtaining the fluorescence spectra at different stages of purification, differences in spectra 

between stage I and II and between stages II and III were calculated (Figure 3-2a and b respectively; 

day 9 of culture B) and normalized by the maximum intensity to determine the relative changes 

before and after centrifugation and before and after purification through the Protein A column. From 

the difference of spectra for stage I and II, it was found that the biomass is significantly correlated 

with the scattering region intensities as well as to the tryptophan peak (Figure 3-2a-spectra of stage II 
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subtracted from I). By comparing the spectra of the sample before and after elution through the 

Protein A column it was observed that Mab only contributes slightly to the scattering and tryptophan 

intensities (Figure 3-2b). Similar dependencies were observed with different relative magnitudes for 

various days during cell culture (results not shown). 

 

Figure 3-2. a) Surface plot of difference spectra for after centrifugation (Stage II) subtracted 
from before centrifugation (Stage I); b) Surface plot for difference spectra of after Protein A 
(Stage III) subtracted from after centrifugation (Stage II). 

3.3.2 Predictive Models 

The acquired spectra were utilized to formulate models for dynamic state estimation of various 

culture variables during the cultivation process using the PLSR method. As a direct correlation does 

not exist between the multi-wavelength fluorescence map and system-states, indirect inferences were 

drawn using PLSR. Individual models were developed for each attribute to facilitate interpretation
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Figure 3-3. a) Scores of latent variable 2 vs. 1 for the viable cell concentration predictive-model (trained by cultures grown in Media I and 
tested with cultures grown in Media II); b) Surface plot for the fluorescence spectra of Media I subtracted from Media II; c) Comparison 
of viable cell density trajectories of culture I for two different model predictions and experimental results. 
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As a primary assessment, prediction accuracy of a model for viable cell concentrations, trained 

using data for batches grown in Media I, was tested with data for cultures grown in Media II (see 

Table 3-1 for notations). Using 5 LVs, selected based on LOBO-CV, the calibrated model is capable 

of capturing 92.9% of variation in output data with 𝑅𝐶𝐶2 =81.5%; however, the model failed to 

accurately predict the viable cell concentrations (𝑅𝐶𝐶2 =49.5%) for cultures H, I, and J that were 

conducted with Media II. Figure 3-3a shows that the scores for cultures grown in Media II exhibit 

higher and lower values for LV1 and LV2 respectively than the corresponding scores obtained from 

the training set. This difference becomes more apparent at the end of the culture. The source of this 

deviation is evident from Figure 3-3b which shows the difference in spectra for pure Media I 

subtracted from pure Media II. A higher intensity peak is observed in the region corresponding to 

tyrosine and moderately higher in the region of pyridoxine for Media II. It was encouraging that 

despite this discrepancy between the pure media the model is still capable of properly predicting the 

trend in viable cell concentration (Figure 3-3c) implying that the fluorophores follow similar behavior 

in both media and reinforcing the capability of multi-wavelength fluorescence spectroscopy as a 

monitoring tool. 

In order to formulate accurate models, the calibration of the models for each of the attributes was 

performed using data from cultures grown in both Media I and II. For a rigorous evaluation of 

prediction quality and out of sample error, data for one batch grown in Media I and one batch grown 

in Media II (culture E and I) were set aside for testing. 

 

Table 3-2. PLSR results and goodness of fit for target process variables based on LOBO-CV 
strategy and prediction capability of model using cultures E and I.  

Target 

Variable 

Number 

of LVs 

 Calibration  Cross-Validation  Testing (Prediction) 

 𝑅𝑅𝑅𝑅𝐶𝐶𝐶 𝑅𝐶𝐶𝐶2   𝑅𝑅𝑅𝑅𝐶𝐶 𝑅𝐶𝐶2   𝑅𝑅𝑅𝑅𝑃 𝑅𝑃2 

Viable Cells 7  0.213 96.3%  0.437 84.7%  0.383 89.2% 

Dead Cells  5  0.227 94.5%  0.303 90.4%  0.174 90.4% 

Mab (Eg2) 7  1.284 96.7%  2.157 87.2%  2.085 92.9% 

Glucose 6  0.078 94.3%  0.120 86.7%  0.100 87.7% 

Ammonia 4  0.262 93.6%  0.387 86.2%  0.540 93.5% 
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3.3.2.1 Viable cell concentration 

Figure 3-4a shows the RMSE of calibration and cross validation for viable cell concentration versus 

the number of LVs. It clearly indicates that 7 LVs minimize the RMSE-CV to 0.44 million cell.ml-1 

that corresponds to less than 25% of the average viable cell density. Considering a measurement error 

of approximately 15%, this result was deemed reasonable. The resulting model can capture 89.2% of 

the variability of the test set (Table 3-2). As illustrated in Figure 3-4b, the model accurately predicts 

both the calibration and test data sets with the residuals being normally distributed. Thus, by 

including cultures grown in Media II in the calibration set, the prediction capability of the model 

improved significantly (see Figure 3-3c for culture I). In Figure 3-4b most of the deviation of the 

predicted from the measured values is observed at the end of the culture, possibly due to cell debris 

that interferes with the fluorescence measurements and cell counting. The first two dimensions (LVs) 

accounts for over 60% of variance in the input data. LV1 scores increases to reach a maximum at a 

time pertinent to each culture’s highest viable cell concentration, and then decreases until the end of 

the culture, i.e. LV1’s trajectory resembles the temporal changes of viable cell concentration for each 

culture (Figure 3-4c). The contribution of the regions of the spectra for a specific LV is carried by its 

corresponding loading. Figure 3-4d is the contour plot of the first loading, obtained by performing the 

inverse of the reshape explained earlier. For the first loading, a strong correlation is observed with the 

region pertinent to tyrosine and tryptophan, while the excitation emission pairs corresponding to the 

cofactors are not as crucial, which corroborates a conclusion drawn by Marose et al. (1998) that 

viable cells are better correlated with the tyrosine and tryptophan regions of the spectra. Additionally, 

the contribution of the Rayleigh scattering should not be neglected, as it encompasses information 

regarding suspended particles. In contrast to the moderate impact of scattering on the first loading, the 

second loading is dominated by the region corresponding to the incident light (result not shown) 

which explains the persistent increase in the second LV’s scores. A large contribution by the regions 

associated with tryptophan, NAD(P)H, and the flavines is observed in the regression coefficient for 

viable cell concentration predictive-model (Figure C- 1-Appendix C). These findings are in 

agreement with the earlier result regarding the direct contribution of cell mass to the spectra (Figure 

3-2a). 
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Figure 3-4. Results of predictive model for viable cell concentration: a) Evolution of RMSE for 
training and cross-validation set versus the number of latent variables; b) Model prediction vs. 
measured values for training and test set and normal percentiles of the residuals (inset); c) 
Latent variable (LV) 2 vs. 1; d) Contour plot of the first loading. 

3.3.2.2 Dead cell concentration 

Dead cell concentration is also a critical variable to be monitored as it provides insight into the 

growth stage of the culture and could be used for triggering feedback control corrections to mitigate 

death. A predictive model, established for dead cell concentration by using an approach similar to 

viable cell count, exhibited an adequate prediction quality for calibration, validation, and test sets, 

being summarized in Table 3-2 and Figure 3-5a. The increased prediction error for  higher dead cell 

counts towards the end of the culture can possibly be attributed to cell lysis that results in an increase 
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in the number of suspended particles (Figure 3-5a) increasing both cell counting and signal 

acquisition noise. Figure 3-5b provides the regression coefficient of the PLSR model for dead cell 

concentration that is dominated by the region of the spectra pertinent to light scattering. 

 

Figure 3-5. Results of predictive model for dead cell concentration: a) Model prediction vs. 
measured values for training and test set and normal percentiles of the residuals (inset); b) 
Contour plot of the regression coefficient. 

3.3.2.3 Recombinant protein concentration 

The PLS model—targeted at capturing the dynamics of the recombinant protein production—

demonstrated an accurate calibration and cross-validation results with coefficient of determinations 

(𝑅2) equal to 96.7% and 87.2% respectively and predicted the test set with a precision of 92.9% 

(Table 3-2) with 𝑅𝑅𝑅𝑅𝑃 equal to approximately 20% of the average Mab produced. It should be 

noted that measurement error of ELISA is approximately 15%. In Figure 3-6a the predicted vs. 

measured data fall very closely to the 45˚ line. The adequacy of this model is acceptable considering 

the ELISA’s measurement error. LV1 was found to explain over 50% of variation in 𝑋 and 94% of 

variation in 𝑌 with its corresponding loading, shown as a contour plot in Figure 3-6b, being 

dominated by a region associated with tyrosine, tryptophan and pyridoxine. A slight deviation from 

the normal distribution is observed in Figure 3-6a for the residuals, which might be due to a 

negligible nonlinear relation between Mab and the fluorescence spectra. 
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Figure 3-6. Results of predictive model for secreted recombinant protein concentration: a) 
Model prediction vs. measured values for training and test set and normal percentiles of the 
residuals (inset); b) Contour plot of the first loading. 

3.3.2.4 Glucose and ammonia concentrations 

In cell culture operations it is highly desirable to monitor key nutrients and inhibitors such as glucose 

and ammonia, as they hold a vital role in culture sustainability. Since these metabolites are not 

intrinsically fluorescent it is not possible to directly track their concentrations in culture broth using 

multi-wavelength fluorescence spectroscopy. However, since these metabolites are correlated through 

stoichiometric relations with fluorescent compounds, it is possible to infer their consumption or 

production rate (i.e. their normalized evolvement) from changes in the spectra (Skibsted et al. 2001). 

With this logic, the fluorescent spectra should be correlated to changes in glucose and ammonia with 

respect to their known initial concentrations. For glucose, the change with respect to initial 

concentration is normalized for model training by subtracting the glucose concentration from the 

initial batch concentration and dividing by the initial concentration. For ammonia, a non-normalized 

change with respect to the measured initial concentration (approximately equal to zero) is used for 

model training. The normalization was used for each batch prior to auto-scaling of the data.   

Table 3-2 summarizes the prediction models obtained for glucose and ammonia concentrations and 

Figure 3-7a-b provides the model prediction versus measured values. Probability plots showing the 

normalized percentiles as a function of the residuals are within Figure 3-7a-b. Based on the results, 

fluorescence spectra exhibited a potential to accurately fit the calibration data set and predict the test 
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set with the residuals following a normal trend for both ammonia and normalized glucose 

concentrations (Figure 3-7a-b).  

 

Figure 3-7. Results of predictive model for glucose and ammonia concentrations: a) Normalized 
glucose concentration model prediction vs. measured values for training and test set and 
normal percentiles of the residuals (inset); b) Ammonia concentration model prediction vs. 
measured values for training and test set and normal percentiles of the residuals (inset). 

3.4 Conclusion 

Evidence is presented which demonstrates the potential for multivariate PLSR based models to 

monitor different mammalian culture variables from 2-D fluorescence spectra. As a first step, to 

guarantee reproducibility and accuracy of the acquired spectra, the spectrofluorometer settings were 

optimized by performing a three level Box-Behnken design. For the purpose of better understanding 

the relationship between dynamics of mammalian cell culture and changes in the spectra over time, 

time profiles of specific fluorophore peaks were studied. The impact of biomass and secreted protein 

on the multi-wavelength spectra was investigated by comparing the spectra acquired during 

downstream processing that included centrifugation and Protein A purification. Empirical predictive 

PLSR based models were developed that provided accurate estimates of viable and dead cell 

concentrations, recombinant protein, glucose, and ammonia concentrations.  This combined approach 

is an attractive candidate for in situ monitoring of mammalian cell culturing. 
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Chapter 4 
Development of a Soft-Sensor Based on Multi-Wavelength 

Fluorescence Spectroscopy and a Dynamic Metabolic Model for 
Monitoring Mammalian Cell Cultures* 

 

A soft-sensor based on an Extended Kalman Filter (EKF) that combines data obtained using a 

fluorescence-based soft-sensor with a dynamic mechanistic model, was investigated as a tool for 

continuous monitoring of a Chinese hamster ovary (CHO) cell cultivation process. A standalone 

fluorescence based soft-sensor, which uses a combination of an empirical multivariate statistical 

model and measured spectra, was designed for predicting key culture variables including viable and 

dead cells, recombinant protein, glucose, and ammonia concentrations. The standalone fluorescence 

sensor was then combined with a dynamic mechanistic model within an EKF framework, for 

improving the prediction accuracy and generating predictions in-between sampling instances. The 

dynamic model used for the EKF framework was based on a structured metabolic flux analysis and 

mass balances. In order to calibrate the fluorescence-based empirical model and the dynamic 

mechanistic model, cells were grown in batch mode with different initial glucose and glutamine 

concentrations. To mitigate the uncertainty associated with the model structure and parameters, non-

stationary disturbances were accounted for in the EKF by parameter-adaptation. It was demonstrated 

that the implementation of the EKF along with the dynamic model could improve the accuracy of the 

fluorescence-based predictions at the sampling instances. Additionally, it was shown that the major 

advantage of the EKF-based soft-sensor, compared to the standalone fluorescence-based counterpart, 

was its capability to track the temporal evolution of key process variables between measurement 

instances obtained by the fluorescence-based soft-sensor. This is crucial for designing control 

strategies of CHO cell cultures with the aim of guaranteeing product quality. 

4.1 Introduction 

The past few decades have witnessed significant growth and development in biopharmaceutical 

industries that produce recombinant proteins via mammalian cell cultivation. Among these protein 
                                                      
* Ohadi, K., Legge, R. L. and Budman, H. M. (2014), Development of a soft-sensor based on multi-wavelength 
fluorescence spectroscopy and a dynamic metabolic model for monitoring mammalian cell cultures. Biotechnol. 
Bioeng. doi: 10.1002/bit.25339 
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products, monoclonal antibodies (Mabs) constitute the fastest growing segment using Chinese 

hamster ovary (CHO) cells as the dominant expression host (Butler 2005; Butler and Meneses-Acosta 

2012). The importance of real-time monitoring of cell cultivation processes to guarantee productivity 

and consistent production-quality has been repeatedly emphasized (Pohlscheidt et al. 2009; Teixeira 

et al. 2009a). Due to time-intensive, labor-intensive, and costly nature of the assays available for 

some of the crucial cell culture variables, soft-sensors have been often proposed and adopted as an 

alternative approach to conventional measurement analytical techniques (Gernaey et al. 2012; Kadlec 

et al. 2009). Soft-sensors can be classified into two classes: model-driven based on mechanistic 

models and data-driven based on empirical predictive models (Kadlec and Gabrys 2009). 

Multi-wavelength fluorescence spectroscopy has shown promise as a potential non-destructive and 

non-invasive tool for online or offline monitoring of bacterial (Hagedorn et al. 2003; Skibsted et al. 

2001), yeast (Haack et al. 2004; Li and Humphrey 1991), and mammalian (Ohadi et al. 2014a; Ryan 

et al. 2010; Teixeira et al. 2009b) cell cultures. Multivariate statistical techniques have been utilized 

to draw an indirect inference about the key process variables from 2D-fluorescence spectra (Lourenco 

et al. 2012) and formulate an empirical predictive model (data-driven soft-sensor). Thus, this soft-

sensor is strictly developed based on data and it does not use mechanistic knowledge of the process; 

thus, performing as a black-box. Despite the precision of such data-driven soft-sensors to predict the 

process attributes close to the calibration conditions of the model, their accuracy diminishes for 

process conditions that substantially deviate from the region used for model calibration. In other 

words, data-driven soft-sensors often lack proper extrapolation capabilities (Shioya et al. 1999). 

Accordingly, a large data set is required for model calibration in order to obtain a robust model over a 

large range of operating conditions. Measurement noise in fluorescence data and missing data are 

additional issues that reduce the reliability of the data-driven model predictions (Luttmann et al. 

2012).  

Lack of mechanistic insight into the process requires utilization of model-driven soft-sensors 

(white-box model), specifically at the process development stage when scarce process data are 

available (Pohlscheidt et al. 2009), whereas a dynamic mechanistic model can be implemented for 

forecasting the temporal evolution of key culture variables. Structured models are generally preferred, 

over their unstructured counterparts, since they properly account for the actual metabolic reactions 

occurring in the process thus often resulting in more accurate models (Gernaey et al. 2012). 

Metabolic flux analysis (MFA) is a well-established technique in the biopharmaceutical industries 
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used in variety of applications such as simulation, optimization, and control (Zamorano et al. 2013) to 

elucidate in vivo metabolic states of the cell cultivation as well as cell growth dynamics. In spite of 

the advantages of white-box models in capturing the dynamics of the process, it is challenging to 

formulate and calibrate such models due to complexities of mammalian cell metabolism (Kadlec et al. 

2009; Shioya et al. 1999). Additional challenges arise from the significant uncertainty associated with 

the large number of parameters and model-structure, which results in susceptibility of the model 

predictions to high levels of noise (Wang et al. 2010).  

To address the respective limitations of black- and white-box models, recursive state observers can 

be implemented to combine a dynamic metabolic model with a data-driven soft-sensor (Dochain 

2003). The Kalman filter (KF) and its nonlinear version, the extended Kalman filter (EKF), are 

recognized as the most extensively used state estimator implemented in process industries (Dewasme 

et al. 2013; Dochain 2003). The accuracy of a KF-based soft-sensor is significantly impacted by the 

accuracy of the mechanistic model (de Assis and Maciel 2000); thus, reinforcing the superiority of 

structured metabolic models over their unstructured counterparts.  

A data-driven soft-sensor, based on multi-wavelength fluorescence spectroscopy, was proposed 

previously by the authors (Ohadi et al. 2014a) which exhibited a potential for at situ monitoring of 

CHO cell cultures.  However, this soft-sensor as a black-box model, is inherently limited to predicting 

key process variables in discrete space and hence cannot accommodate the dynamic evolution of the 

variables in between measurement instances. The objective of this study was to formulate a KF-based 

soft-sensor, which combines a mechanistic metabolic model and a multi-wavelength fluorescence-

based soft-sensor, in order to: (i) filter noise in the fluorescence data by using the mechanistic model 

and (ii) produce estimates of culture variables in-between fluorescence data samples that are acquired 

at discrete time intervals. For this purpose, a simplified structured metabolic-model was initially 

developed to capture the dynamics of the extracellular metabolite concentrations. The structure of this 

model was identified based on a preliminary metabolic flux model to establish the most important 

reactions relating the main nutrients to by-products. Since the previously proposed fluorescence based 

soft-sensor was not amenable for the formulation of the KF-based soft-sensor, a new model was 

developed for the current study. For the data-driven soft-sensors, partial least square regression 

(PLSR) was used to draw an indirect inference about the actual state of the CHO cell cultivation 

process from the 2D-fluorescence spectra and consequently generate an empirical predictive-model 

for at situ measurement of viable and dead cells, recombinant protein, glucose, and ammonia 
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concentrations. Then, the fluorescence based sensor was integrated together with the mechanistic 

model using an EKF with adaptation of the model parameters. 

4.2 Materials and Methods 

4.2.1 Cell Culture 

A CHO cell line provided by MabNet (National Science and Engineering Research Council Mab 

Network) was utilized for expressing EG2-hFc Mab. To obtain the seed culture, cells were sub-

cultured every 2 to 3 days, with a seeding density of 0.25 million cells/ml, and then grown in a serum 

and protein-free defined media (Biogro) supplemented with 0.9% HT (Invitrogen: 11067-030). To 

increase the richness of the data for model calibration purposes, batch cultures were performed at 

different initial glucose and glutamine concentrations (Table 4-1) in 500 ml polycarbonate shake-

flasks (250 ml of working volume at 37 °C with 5% CO2 and 120 rpm agitation rate) with an initial 

cell density of 0.2 million cells/ml. Two different media formulations to be referred as Media I and II 

were used as shown in Table 4-1 for the corresponding cultures. Samples were withdrawn for 

analytical measurements and fluorescence spectra acquisition. 

  



 

54 

Table 4-1. Experiment Design (Actual concentrations might slightly deviate). 

Culture 

Notations  
Media Type 

Initial Concentration 

Glucose (mM) Glutamine (mM) 

A I 25 0 

B I 25 4 

C I 25 4 

D I 25 8 

E I 45 0 

F I 45 4 

G I 45 8 

H II 25 4 

I II 35 4 

J II 45 8 

 

4.2.2 Analytical Measurements 

Cells were counted under suspension using a hemocytometer and trypan-blue exclusion at situ. An 

Enzyme-Linked Immunosorbent Assay (ELISA) method, developed by MabNet (NSERC 

Monoclonal Antibody Network), was implemented to determine recombinant protein concentration. 

Briefly, 96-well plates were coated with an anti-human IgG1 (Fc specific) produced in goat (Sigma 

Aldrich, ON) followed by the addition of samples and standard. Samples and standard were detected 

using IgG (Fc specific)-peroxidase antibody produced in goat (Sigma Aldrich, ON) and subsequently 

the addition of peroxidase’s substrate (TMB) resulted in a colored product. Two M sulfuric acid was 

added to stop the reaction and the absorbance read using a Biotek Synergy 4 multi-plate reader at 450 

nm. Glucose concentrations were measured using a Megazyme assay kit (Cedarlane, ON) protocol 

and the absorbance measured at 510 nm using a Biotek Synergy 4 multi-plate reader. Ammonia 

concentrations were determined using an ammonia ion-selective electrode—connected to a VWR 

pH/ISE meter (model 710A). 

4.2.3 Fluorescence Signal Acquisition 

2D-fluorescence spectra for samples were obtained at situ by employing a Cary Eclipse 

spectrofluorometer (Palo Alto, CA) equipped with a Peltier multi-cell holder using quartz cuvettes 
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(Thermo Scientific, ON) over an excitation and emission range from 240 to 500nm at 10 nm 

increments and 280 to 600 nm with 2 nm increments, respectively. Based on a preliminary 

investigation (Ohadi et al. 2014a), a photomultiplier tube (PMT) voltage of 600 V, slit width (SW) of 

5 nm for both excitation and emission, scanning rate of 1200 nm/min and a dilution proportional to a 

sample to buffer ratio of 1:19 were identified to be optimal for signal acquisition. The measured 2D-

fluorescence spectra was organized for analysis in the form of a matrix being referred hereafter to as 

an excitation emission matrix (EEM). The growth media was a complex mixture of components 

including amino acids, vitamins, and co-factors, some of which intrinsically fluoresce when being 

excited by light. Table 4-2 summarizes the approximate excitation/emission range of known 

fluorophores in the 2D-spectra. 

Table 4-2. Summary of approximate excitation/emission range of various components of media 

in the 2D-spectra. 

Fluorophore Excitation (nm) Emission (nm) 

Tyrosine 260~280 300~310 

Tryptophan 280~300 350~360 

Pyridoxine 320~330 390~410 

NAD(P)H 340~360 440~460 

FAD, Riboflavin 460~470 500~520 

4.3 Model Development 

4.3.1 Data-driven Predictive Model 

Due to the high dimensionality of the 2D-fluorescence spectra, required in order to encompass 

regions pertinent to informative fluorophore peaks, compared to the limited number of samples 

available, high collinearity among the spectral variables and fluorescence-associated noise, 

multivariate statistical methods are required to formulate a reliable empirical model. For this purpose 

the partial least square regression (PLSR) method (Geladi and Kowalski 1986; Wold et al. 1984) with 

SIMPLS algorithm (Dejong 1993) was exploited to develop predictive empirical-models for at-line 

monitoring of viable and dead cells, glucose, ammonia and recombinant protein (Mab) 

concentrations. A comprehensive review of PLSR was conducted by Wold et al. (1984). For 

formulation of the PLSR model, the samples EEMs were individually re-arranged into a row vector 

and appended one above the other to form the input data matrix (𝑋). The fluorescence spectra of the 
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phosphate buffer saline (PBS) was acquired parallel to that of the samples and subtracted from them 

so as to filter background noise. For simplicity, data for viable and dead cells, glucose, ammonia and 

Mab concentrations were combined into a single matrix to be referred hereafter as the output data set 

(𝑌). Both the input and output data sets were auto-scaled (mean centered and divided by variance) 

column-wise to avoid dominance by columns involving variables of relatively large magnitudes. In 

order to obtain an optimal number of latent variables (LVs) and avert model over-fitting, the leave 

one batch out cross validation (LOBO-CV) approach was applied based on the minimization of the 

root mean square error of cross validation (RMSECV). This cross validation procedure is expected to 

mitigate the problem of biased of out of sample error prediction and the sensitivity of the data-driven 

model to noise in the spectra (Hagedorn et al. 2003; Ohadi et al. 2014a). Chemometric analyses were 

performed using the PLS-Toolbox 7.0.3 (Eigenvector Research Inc., Manson, WA) running in the 

MATLAB 8.0.0 platform (MathWorks, Natick, MA). 

Although metabolites such as glucose and ammonia are not intrinsically fluorescent, their 

consumption or production rates are expected to be associated with media-fluorophores through 

stoichiometric correlations (Ohadi et al. 2014a; Skibsted et al. 2001). Previous work by the authors 

(Ohadi et al. 2014a) have confirmed that the evolution of the fluorescence-spectra over time can be 

utilized to track normalized—with respect to initial concentration—glucose and ammonia trajectories. 

For glucose the normalization was performed by subtracting the current concentration from the initial 

culture concentration and dividing by the initial concentration (Ohadi et al. 2014a). On the other 

hand, since batch cultures were initiated with a negligible amount of ammonia, this metabolite was 

not normalized with respect to an initial value. The normalizations were executed prior to auto-

scaling. Replicated spectra were included in the model regression step to improve the accuracy of the 

predictions. To ensure richness of data for calibration and to produce a robust model, the soft-sensor 

was calibrated using cultures initiated with various glucose and glutamine concentrations specified in 

Table 4-1. For a rigorous evaluation of prediction quality for interpolation and extrapolation, data 

from cultures A, C, G, and I (Table 4-1) were excluded from the calibration set and used to estimate 

the prediction precision. 

4.3.2 Dynamic Metabolic Model 

A structured model based on the metabolic network was used to describe the evolution of 

extracellular metabolites over time.  However, the network of possible reactions for mammalian cells 

is very large and modeling the entire cell metabolism network is challenging, requiring a large 
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amount of data for parameter estimation and most probably resulting in an inaccurate model due to 

noise and scarcity of data. Hence, the network was trimmed based on metabolic flux analysis (MFA) 

to embrace merely metabolites and fluxes that mostly explain the distribution of carbon and nitrogen 

in the process (Naderi et al. 2011; Nolan and Lee 2011). The MFA analysis is based on the pseudo-

steady states mass balances, i.e. the internal metabolite accumulation is assumed to be negligible 

during the culture process (Nolan and Lee 2011). The metabolic network consist of pathways that are 

associated with the consumption of carbon including glycolysis, the TCA cycle, energy-related amino 

acid metabolism, and production of biomass and MAb (Naderi et al. 2011). A systematic approach 

was implemented to eliminate insignificant fluxes and reduce the network (Naderi et al. 2011). By 

assuming that there is no accumulation of intermediate compounds it is possible to eliminate 

intermediate reactions thus generating a set of macro-reactions that directly relate the main nutrients 

to main by-products (Table 4-3).  It is noteworthy that a single metabolic network was used 

throughout the whole course of the culture encompassing both the exponential and post-exponential 

phases of growth. Based on the identified macro-reactions, a set of dynamic mass balances was 

formulated for each one of the metabolites involved in these reactions as reactants or products. 

Monod-kinetic models were assumed for the majority of the reactions involved in the dynamic 

balances, unless stated otherwise. 

Table 4-3. Set of macroscopic-reactions relating extracellular metabolite concentrations. 

Reaction No. Macro-reaction 
R1 Glc → 2 Lac  
R2 Glc → 6 CO2  
R3 Asn → Asp + NH3 
R4 Ala → NH3 + 3 CO2 
R5 Gln + 0.5 Glc→ Asp+Ala+ CO2 
R6 Asp→ NH3 + 4 CO2 
R7 Glc+2 NH3→2 CO2 + Gln 
R8 Gln+Asp → Asn+Ala+2 CO2 
 

Viable cell temporal trajectory is a crucial factor profoundly affecting the rate of metabolite 

consumption and production. Based on the observation in a previous study by the authors (Ohadi et 

al. 2014a) that some of the viable cells are not proliferating during different culture stages, the viable 

cell population was divided into growing and non-growing fractions. Then, it was hypothesized that 

the viable cell population is dependent on glucose availability as shown in Equation 4-1. It has been 
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substantiated from the experimental data and corroborated by the literature (Ahn and Antoniewicz 

2011; Jang and Barford 2000) that CHO cell growth and metabolism are generally characterized by 

high uptake rates of glucose and glutamine, growth is suppressed by lactate and ammonia while 

ammonia accumulation and glucose starvation stimulate cell death rate (Zustiak et al. 2008). It was 

also assumed that dead cells lyse along the culture time (Jang and Barford 2000). Following these 

observations, growth and death rates were mathematically described as (Equation 4-2 and Equation 

4-3). 
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Equation 4-3 

 

The lactate production rate is assumed to be proportional to the rate of glucose consumption. 

Following the MFA analysis ammonia is assumed to be partially produced from asparagine, aspartate, 

and alanine as well as glutamine consumption. Based on the lumped macro-reactions obtained from 

the preliminary metabolic flux analysis, the dynamic balances for the main extracellular metabolites 

are given by equations (4-4, 5, 6, 7, 8, 9, and 10). 
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Based on the experimental results, it was found that cultures with lower glutamine concentration 

consumed glucose at a slower rate. Consequently, viability was sustained for a longer duration 

resulting in higher recombinant protein productivity. Also, cultures initiated with higher amount of 

glucose accumulated more Mab in comparison to their counterparts at equal initial glutamine 

concentrations. Accordingly, the dynamic balance for the recombinant protein as the main product 

was proposed as Equation 4-11.  

( )][8281 GlcKKX
dt

dMab
v +=  Equation 4-11 

4.3.2.1 Parameter estimation 

The parameters of the model were determined by minimizing the sum of squared error (SSE) between 

model predictions and experimental results (analytically measured as explained in 4.2.2 Analytical 

Measurements section) of culture B, with recursive cross validation with data from culture D (Table 

4-1), conducted by a constrained optimization algorithm (fmincon) in the MATLAB environment. To 

avoid convergence to a local minimum a global search method (GlobalSearch function in MATLAB) 

was implemented to systematically generate different initial guesses for the fmincon algorithm. The 
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GlobalSearch function is also capable of performing parallel computation to reduce the overall run 

time of the optimization search. Table 4-4 summarizes the estimated-parameters. 

Table 4-4. Parameter values of Equations 4-1 to 11. 

Parameter Value Parameter Value 
𝐾11 0.25 𝐾41 4.56 
𝐾12 9.99 𝐾42 10.18 
𝜇𝑚𝑚𝑚 1.38 𝐾43 4.96 
𝑘𝑑 1.34 𝐾51 0.53 
𝑘𝑙𝑙𝑙 0.2 𝐾61 1.91 
𝐾21 1 𝐾62 27.03 
𝐾22 0.037 𝐾63 3.03 
𝐾23 6.24 𝐾64 7.9 
𝐾24 110 𝐾65 0.39 
𝐾25 2.37 𝐾66 1 
n 2.85 𝐾67 0.031 
𝐾26 0.006 𝐾68 5.5 
𝐾31 20.9 𝐾69 34.75 
𝐾32 46 𝐾71 0.45 
𝐾33 0.044 𝐾72 0.25 
𝐾34 0.92 𝐾81 1.1 
𝐾35 47.51 𝐾82 0.062 
𝐾36 0.16   

4.3.3 Kalman Filter Model Development 

The conventional Kalman observer (Kalman 1960) recursively updates the states’ estimates when 

using noisy measurements and it gradually minimizes the estimation-error covariance on the 

assumptions of a linear process and/or measurement models and Gaussian distribution for all error 

terms. Instead, the EKF is a variant of the KF observer, suitable for nonlinear systems, that is based 

on the piecewise linearization of the process around the time trajectories of the variables. In the 

context of this work, the process dynamics is formulated in a continuous time domain while in 

contrast, measurements are obtained in a discrete fashion with low sampling frequencies. To tackle 

this, a hybrid (continuous-discrete) EKF formulation is utilized. 

Following the large number of assumptions and simplifications that were done to formulate the 

dynamic model, kinetic parameters and the model structure of the metabolic model have a significant 

level of uncertainty that necessitates parameter adaptation so as to suppress state-estimates bias 
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(Dochain 2003; Kozub and Macgregor 1992). In this study non-stationary metabolic-model 

parameters (𝜇𝑚𝑚𝑚,𝑘𝑑 ,𝑎𝑎𝑎 𝐾31) were allowed to change with time by considering them as additional 

states. These specific parameters were selected for adaptation based on the sensitivity of the results to 

these parameters. Accordingly, the vector of states to be used by the EKF is composed of the states of 

the dynamic model (observed and non-observed) and the 3 adapting parameters as: 

 𝝃 = [ 𝑋𝑣 ,𝑋𝑑 ,𝐺𝐺𝐺,𝐴𝐴𝐴,𝑀𝑀𝑀,𝑓𝑓𝑓,𝐺𝐺𝐺, 𝐿𝐿𝐿,𝐴𝐴𝐴,𝐴𝐴𝐴,𝐴𝐴𝐴, , 𝜇𝑚𝑚𝑚,𝑘𝑑 ,𝐾31]𝑇.  

Consequently, the process and measurement models can be represented as Equation4-12 and 

Equation4-13, where the term 𝜑(𝝃(𝑡), 𝑡) is zero for the adapting parameter, i.e. for the last three 

elements of the vector of states. 
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The terms ω and ν are independent random Gaussian process noise and measurement noise with 

zero mean covariance matrices Q and R, respectively. Using the linear terms of a Taylor expansion 

the covariance of the states can be formulated in the continuous time domain by Equation4-14, where 

𝐉 is the Jacobian matrix.  
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The a priori estimate of states (𝝃𝑘|𝑘−1) and covariance of states (𝐏𝑘|𝑘−1) at time k, when a new 

measurement is acquired, are estimated by solving Equation4-12 and Equation4-14 from 𝑡𝑘−1 to 𝑡𝑘. 

The posterior estimates are attained by exploiting the measurements obtained at 𝑡𝑘 and the Kalman 

gain K in Equation4-16. The expressions for the time-varying Kalman gain (K) as well as the 

recursive equations for updating states (𝝃𝑘|𝑘) and state covariance matrix (𝐏𝑘|𝑘) are as follows: 
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1|| )( −−= kkkkkk PHKIP  Equation4-18 

It is noteworthy that when using the multi-wavelength fluorescence data as the only available 

measurements, the inference of observed states are indirect; thus, Z is assumed to be equal to a 

function of the entire fluorescence spectra using the regression model explained in the 4.3.1 Data-

driven Predictive Model section. Accordingly, 𝐻 = �𝐈5×5 𝟎
𝟎 𝟎� and ν is the model noise associated to 

the PLSR regression model. 

4.3.3.1 Estimation of covariances to be used in the EKF 

As a result of the complexity of the mammalian cell cultivation process and the uncertainty associated 

with model structure and parameters, the mechanistic model is susceptible to noise (Wang et al. 

2010). The data-driven soft-sensor also suffers from an inaccuracy being exacerbated while predicting 

values far from the calibration conditions (Shioya et al. 1999). Proper evaluation of the process model 

noise, ω in Equation4-12, as well as the fluorescence-based soft-sensor noise, ν in Equation4-13, are 

required to guarantee the performance of the EKF and the precision of the posterior estimates. 

However, it is a challenging task to properly estimate the out-of-sample error, i.e. the error of the 

prediction set, for both fluorescence and mechanistic models due to the limited amount of data. 

Therefore, simplification assumptions were done to estimate these errors and their corresponding 

covariance. The process and measurement model-noise were assumed constant and uncorrelated, i.e. 

the noise-covariance matrices are constant and diagonal, with the diagonal elements being the noise 

variances.  

Variance of residuals of the data-driven soft-sensor (R) for the calibration set was assumed to be 

equal to the in sample measurement noise. The diagonal elements of the matrix  (R) for the prediction 

set was set equal to the variance of the residuals of the LOBO-CV procedure that was used as an 

approximation of the out of sample error. To obtain the covariance of process noise (Q), curves were 

fitted to data that were collected by analytical methods other than fluorescence as explained in section 

4.2.2 for the cultures used for calibration of the fluorescence based soft-sensor (Table 4-1). The 

deviations of the slopes of these fitted curves from the derivatives of the dynamic metabolic model 

gradients were utilized to construct the process-noise covariance matrix (Q) for metabolic states. This 

calculation was performed for each of the cultures. The process noise variances for the three non-

stationary model parameters were optimized to minimize the SSE of the posterior estimates. 
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 The initial covariance of states (P) is assumed diagonal with zero variances for all metabolic states 

since actual data were used for the initial point. For the non-stationary parameters, the corresponding 

elements of P were acquired through minimization of the SSE of the posterior estimates. 

4.4 Results and Discussions 

PLSR was exploited to draw indirect inference between the multi-wavelength fluorescence map and 

key system-states that included viable and dead cells, recombinant protein, glucose, and ammonia 

concentrations. For simplicity a single model was calibrated for all these key attributes. 

Based on the RMSECV, 6 LVs were selected capable of capturing 96.35% of variation in 𝑋 matrix 

and explaining 87.51% of variation in 𝑌. The loadings were visually analyzed to interpret the 

contribution of different regions of the fluorescence spectra on the LVs. The loading of the first LV, 

that captures 69.35% of the input variability, was found to be dominated by the region of spectra 

attributed to amino acids (tryptophan and tyrosine) and, with less pronounced magnitude, pyridoxine 

(Figure 4-1a) that corroborates previous findings (Marose et al. 1998). While these same regions also 

contributed to the second LV that explains 12.1% of input variance, this second LV is significantly 

impacted by the scattering region (Figure C- 2-Appendix C). To better understand the correlation of 

the spectra with the viable cell density, Figure 4-1b provides the contour plot of the regression 

coefficient corresponding to the viable cell concentration as a function of the emission and excitation 

wavelengths. From this figure, a strong inverse correlation can be observed with the region associated 

with tryptophan and NAD(P)H, which coincides with previous observations (Marose et al. 1998). 

Although not shown for brevity, other correlations between the regression coefficients of the other 

inferred variables with the intensities of the fluorescence spectra were also identified. For example, 

the Rayleigh scattering dominated the regression coefficient of dead cell concentration, vitamins 

contributed to the regression coefficient of glucose, amino acids and co-factors contributed to the 

Mab’s regression coefficient, and NAD(P)H region played a critical role in the ammonia’s regression 

coefficient.
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Figure 4-1. Results of fluorescence based predictive model: a) Contour plot of the first loading; b) Contour plot of regression coefficient 
for viable cell concentration; c) Model prediction vs. measured values for training and test set and normal percentiles of the residuals 
(inset) for viable cell concentration. 
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Table 4-5 exhibits the PLSR model results and goodness of fit for the key process variables. Figure 

4-1c presents the data-driven soft-sensor prediction vs. measured (as explained in 4.2.2 Analytical 

Measurements section) values for viable cell concentration for the calibration and test set with normal 

percentiles of residuals. From the figure it can be seen that the points fall into a region close to 45° 

line and residuals are normally distributed. A similar conclusion was drawn for other key process 

variables of interest (for brevity graphs are not provided).  The PLSR model predicts the calibration 

and test data sets fairly well with the residuals being approximately normally distributed.  However, it 

is clear that the PLSR model can only infer the value of the variables at the instances of sampling but 

it cannot predict the behavior in between these instances.  

Table 4-5. Data-driven soft-sensor results and goodness of fit for key process variables based on 
LOBO-CV strategy and prediction precision of model using cultures A, C, G, and I. 

Target 
Variable 

Number 
of LVs 

Calibration   Cross-Validation   Testing/Prediction  
𝑅𝐶𝐶𝐶2   𝑅𝐶𝐶2   𝑅𝑃2 

Viable Cells 6 84.01%  64.8%  79.31% 
Dead Cells  6 94.23%  90.31%  92.49% 
Glucose 6 90.2%  60.08%  89.04% 
Ammonia 6 83.42%  42.21%  79.62% 
Mab (Eg2) 6 85.26%  27.56% 85.9% 
 

The EKF, which is based on the combination of the dynamic mechanistic model with the 

fluorescence-based soft-sensor, is implemented to improve the prediction precision at the point of the 

data–driven based measurements, enhance the extrapolation (out of calibration region) capability, and 

better predict the dynamic profiles between the sampling instances until the next measurement 

becomes available. 
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Table 4-6. Comparison of the key process variables SSEs of the Fluorescence-based (Flu) with 
that of the EKF based soft-sensors for the performed batch cultures.  

 Sum of Squared Error (SSE) 

Culture 
Notations 

Viable Cell 
Concentration 

 Glucose 
Concentration 

 Ammonia 
Concentration 

 Mab  
Concentration 

Flu EKF  Flu EKF  Flu EKF  Flu EKF 
A 2.07 0.68  116.04 112.97  0.68 0.36  46.94 16.95 
B 0.76 0.56  45.56 22.05  2.65 1.42  18.35 18.71 
C 3.14 2.20  48.79 9.34  3.25 1.59  59.45 60.31 
D 1.93 1.94  71.80 34.36  8.91 7.96  10.31 9.80 
E 0.33 0.18  67.91 69.32  0.23 0.34  77.81 58.39 
F 2.15 1.75  232.32 277.71  0.57 0.132  8.9 2.54 
G 0.90 0.31  237.23 204.86  9.71 6.59  69.73 28.01 
H 0.32 0.13  48.82 28.89  5.07 5.41  68.15 66.93 
I 3.29 3.12  26.18 30.17  8.66 8.28  27.52 26.56 
J 1.56 1.44  167.36 197.06  2.33 2.33  39.38 40.01 

  

After tuning the unknown variances, as explained in the 4.3.3.1 Estimation of covariances to be 

used in the EKF section, the EKF was implemented to obtain estimates for the prediction set. The 

performance of the EKF was investigated by calculating the SSE of each state at sampling points, 

assuming correct analytical measurements, and comparing them with the SSE of these attributes 

obtained using the data-driven soft-sensor. Table 4-6 compares the SSE over the entire course of a 

culture of the data-driven soft-sensor with that of the EKF-based sensor. For the calibration set 

(cultures B, D, E, F, H, and J in Table 4-6) only a slight improvement is observed, while for the 

prediction set (A, C, G, and I in Table 4-6) a considerable reduction is observed in the SSE of each 

variable when the EKF model is implemented. For instance, the average reduction in the SSE for the 

cultures used for validation is 51% in favor of the EKF-based approach. 
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Figure 4-2. Comparison between data-driven soft-sensor, Kalman Filter based soft-sensor, and 
real measurement results of culture A for: a) Viable cell concentration; b) Glucose 
concentration; c) Ammonia concentration; d) Recombinant protein concentration. 

As described in the materials and methods section, two different growth media formulations were 

used in the experiments. These two media resulted in very significant differences of growth pattern 

and evolution of metabolites. It was observed that the EKF provides only a slight improvement in the 

SSE of the cultures grown in Media II (cultures H, I, and J in Table 4-6) due to the considerable 

differences between the two media which is not well captured by the mechanistic model. For the dead 

cell concentration the data-driven soft-sensor was already accurate thus the EKF based sensor did not 

noticeably improve the dead cell concentration prediction accuracy. Figure 4-2 and Figure 4-3 

compare the mechanistic model, the data-driven soft-sensor, the EKF soft-sensor, and analytical 

measurement (as explained in 4.2.2 Analytical Measurements section) results for cultures A and G, 

respectively, for viable cell (a), glucose (b), ammonia (c), and Mab (d) concentrations. As illustrated 
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in Figure 4-2a and Figure 4-3a for A and G respectively, the EKF generally improved the estimates at 

the sampling instances. The EKF based soft-sensor was capable of reducing the overall SSE of viable 

cell concentration, over the time course of the culture, for approximately 67% for culture A and G and 

for approximately 30% for culture C (Table 4-6). However, the true advantage of using the EKF-

based sensor is for predicting the evolution of the variables in between the sampling instances. For the 

glucose, the temporal evolution is well captured for culture A (Figure 4-2b), although the EKF-based 

soft-sensor did not improve significantly the precision at measurement points, as compared to the 

stand-alone fluorescence-based soft-sensor. For culture G initiated with a higher glucose 

concentration, the superior performance of the EKF soft-sensor is evident at the beginning of the 

culture where the glucose concentration decreases rapidly (Figure 4-3). The EKF reduced the overall 

SSE of glucose for roughly 14% for culture G (Table 4-6). For both cultures A and G the EKF soft-

sensor accurately approximated the trajectories of ammonia and Mab and considerably improved their 

estimation at the measurement instances. For culture A, the EKF reduced the overall SSE at 

measurement instances for about 47% and 64% for ammonia and Mab concentrations, respectively 

(Table 4-6). Similarly, the implementation of the EKF enhanced the prediction accuracy for ammonia 

by 32% and Mab by 60% at measurement instances for culture G. The large jumps, e.g. observed in 

Figure 4-2, between the prior to the posterior estimates of the EKF is due to the accumulation of state 

covariance (P) along a large time span caused by the relatively low sampling frequency of the 

fluorescence measurements. It can be concluded (Figure 4-2 & Figure 4-3; Table 4-6), that the EKF 

soft-sensor can enhance the accuracy of the predictions outside of the calibration range. 
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Figure 4-3. Comparison between data-driven soft-sensor, Kalman Filter based soft-sensor, and 
real measurement results of culture G for: a) Viable cell concentration; b) Glucose 
concentration; c) Ammonia concentration; d) Recombinant protein concentration.  

Low sampling frequency of measurements, missing data, and/or outliers associated with analytical 

techniques, including fluorescence spectra acquisition, diminish the controllability of the bioprocess 

(de Assis and Maciel 2000) thus affecting process consistency. In view of this, the key advantage of 

the EKF-based sensor, apart from enhancing the precision at measurement instances, is its ability to 

predict between samples, which is particularly important for monitoring and automatic control.  

 To better elucidate this advantage a simplistic first order hold extrapolation approach was 

implemented based on the fluorescence based soft-sensor measurements to predict the dynamic 

behavior between measuring instances and these predictions are then compared to the ones obtained 

with the EKF based sensor. A first order hold extrapolation is based on a simple linear extrapolation 
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using a present and past measurement to infer future behavior until the next measurement becomes 

available. This operation is illustrated in Figure 4-4 for the temporal evolution of the viable cells and 

the recombinant protein concentrations of cultures A, C, and G. It is evident that the data-driven soft-

sensor has an inferior temporal extrapolation capability and cannot be relied on for automated control, 

while in contrast the EKF-based soft-sensor better tracks the actual dynamics of the system. A similar 

conclusion can be drawn for the temporal evolutions of the glucose and ammonia concentrations 

(results not shown for brevity). For quantitative evaluation of the improvement achieved by the EKF-

based soft-sensor compared to the first order hold extrapolation approach, the integrals of absolute 

error (IAE) between a two-point linear extrapolation and real dynamics of the culture (obtained by 

fitting a curve to process data measured by conventional analytical techniques) was compared to the 

IAE between EKF-based soft-sensor and the actual dynamics of the culture (Figure 4-4). For the 

viable cell concentration of culture A (Figure 4-4a) the total sum of the IAE between  the predicted 

behavior by the first order hold and real dynamics of the culture is 5.76, while in contrast, 1.94 was 

obtained between EKF-based soft-sensor and real dynamics of the culture. For the recombinant 

protein concentration of culture A (Figure 4-4d), the IAE between the predictions with the first order 

hold and the real dynamic was 40.7 whereas for the EKF approach was 17.03. Similarly for culture G, 

the EKF based soft-sensor, compared to the first order hold approximation,  reduces the IAE for 

approximately 61% for both viable cells (from 4.72 to 1.83) and Mab (from 30.56 to 11.98) 

concentrations. 

 



 

71 

 

Figure 4-4. Comparison between (temporal) extrapolation performance of Kalman Filter based 
soft-sensor, first order hold and real dynamics for viable cell concentration: a) Culture A; b) 
Culture C; c) Culture G, and recombinant protein concentration for: d) Culture A; e) Culture 
C; f) Culture G. 

 

4.5 Conclusion 

An extended Kalman filter-based soft-sensor that combines fluorescent measurements and a dynamic 

mechanistic model is presented. Components of the fluorescence spectra were related to key process 

variables using a multivariate statistical model. The output from this regression model was combined 

together with the mechanistic model using an EKF observer framework. It was shown that the 

dynamic model can generally improve the accuracy of the fluorescence-based predictions at the 

instances of sampling. Beyond these improvements, the true advantage of the EKF model is its ability 

to generate accurate predictions of the temporal evolution of the culture variables in between 

sampling instances. Thus, the proposed approach is valuable for process monitoring and 

implementation of automated strategies of the bioprocess.  
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4.7 Nomenclature 

𝜇𝑚𝑚𝑚 Specific growth rate 

𝝂 Error matrix of measurement-model noise 

𝝃 Vector of states 

𝝃� Vector of estimated states 

𝝎 Error matrix of process-model noise 

fgr Fraction of growing cells 

𝑘𝑑 Death rate constant 

𝑘𝑙𝑙𝑙 Constant of cell lysis 

T Time 

Ala Alanine 

Amm Ammonia 

Asn Asparagine 

Asp Aspartate 

Glc Glucose 

Gln Glutamine 

H Matrix relating states to the measured variables 

J Jacobian matrix of the function 𝜑 

𝐾𝑖,𝑗 Reaction constants 

𝐊𝑘 Matrix of Kalman gain at time step k 

Lac Lactate 

Mab Monoclonal antibody 

P Covariance matrix of states 

𝐏� Estimate of covariance matrix of states 

Q Error covariance matrix of process-model noise 

R Error covariance matrix of measurement-model noise 

𝑋𝑑 Dead cell  

𝑋𝑣 Viable cell  
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Z Vector of measured variables 

Subscript k Time step k 

Superscript T Transpose of matrix 

Superscript -1 Inverse of matrix 
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Chapter 5 
Novel Dynamic Model to Predict the Glycosylation Pattern of 

Monoclonal Antibodies from Extracellular Cell Culture Conditions* 

 

Glycosylation is a critical protein post-translational modification with a profound impact on the 

therapeutic properties of Mab and research indicates that it depends on extracellular culture 

conditions. A novel dynamic model was developed to relate extracellular metabolites’ concentrations 

to a cumulative glycoprofile. The model has three components: dynamic evolution of extracellular 

metabolites, production of nucleotide sugars in the cytosol, and glycosylation inside the Golgi 

apparatus. Following comparisons with experimental data obtained from batch CHO cell cultures, the 

model was found capable of predicting the glycoform profile of Mab temporally, as well as the extent 

of galactosylation given in the form of galactosylation index. The model has the potential for use in 

controlling the glycoform profile by manipulating culture conditions. 

5.1 Introduction 

Monoclonal antibodies (Mabs) comprise the dominant products in the fastest growing segment of the 

biopharmaceutical market. Chinese hamster ovary (CHO) cells are widely used as hosts for Mab 

production. Several studies have reported the profound impact of glycosylation, as post-translational 

modification, on Mabs’ therapeutic properties. The degree and extent of glycosylation can be 

quantified in terms of the type and number of nucleotide sugars attached to the Mab (Durocher and 

Butler 2009).  

N-linked glycosylation, the most common form of glycosylation in mammalian cells, is initiated in 

the endoplasmic reticulum (ER) by a covalent attachment of a sugar to the polypeptide chain that is 

followed by proper folding of the protein and removal of three glucose molecules and at least one 

mannose. The resulting glycoprotein is then transferred into the Golgi apparatus where the final 

glycosylation process takes place (Del Val et al. 2011; Hossler et al. 2007; Stanley 2011).  

                                                      
* Ohadi SK, Aghamohseni H, Gädke J, Moo-Young M, Legge RL, Scharer J, Budman HM. December 2013. 
Novel Dynamic Model to Predict the Glycosylation Pattern of Monoclonal Antibodies from Extracellular Cell 
Culture Conditions, 12th IFAC Symposium on Computer Applications in Biotechnology. IIT Bombay, 
Mumbai, India, DOI: 10.3182/20131216-3-IN-2044.00009 
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It has been reported (Del Val et al. 2011; Hossler et al. 2009) and experimentally observed by the 

authors that culture conditions can be manipulated to obtain a specific oligosaccharide (OS) structure 

attached to the Mab. Accordingly, a mathematical model that could describe the effect of culture 

conditions on glycosylation may be instrumental for manufacturing a Mab with a desired 

glycoprofile. Such a model should be able to relate the extracellular culture conditions to intracellular 

glycosylation mechanisms at the cell level. To the knowledge of the authors, no such model has yet 

been developed. 

Quality by Design (QbD) is a recent FDA initiative that promotes a systematic approach to drug 

development, emphasizing that product quality considerations should be introduced at the design 

stage of the manufacturing process. Predictive mathematical models, such as the one proposed in this 

study, have been identified as key for designing novel manufacturing operations within the QbD 

framework (Hossler et al. 2009). 

In the current work a specifically engineered CHO cell line, provided by MabNet (National Science 

and Engineering Research Council of Canada Mab Network), has been used to produce glycosylated 

Mab. A comprehensive model is developed for this cell line that is composed of three main parts as 

shown in Figure 5-1. The first part consisting of a metabolic flux analysis (MFA) model, developed to 

describe changes in extracellular metabolites concentrations. The second part bridges the gap between 

metabolite uptake and glycosylation in the Golgi apparatus. This part, shown by the middle block in 

Figure 5-1, involves modelling the synthesis of the essential nucleotide sugars from glucose and 

glutamine in the cytosol (or the nucleus for CMP-Neu5Ac).  In the third part, to the right of Figure 

5-1, the glycosylation inside the Golgi apparatus is mathematically modelled based on the Golgi 

maturation assumption (Del Val et al. 2011; Hossler et al. 2007).  Since many of the parameters of 

three parts of the model have not been explicitly documented in the literature or they have not been 

reported for the specific cell line under consideration, a comprehensive sensitivity analysis with 

respect to parameters was conducted based on experimental results to identify which parameters are 

more critical for model calibration. Preliminary model calibration was done with data for extracellular 

metabolites’ concentrations and glycosylation pattern at different days of the cell cultures. It should, 

be emphasized that while the first block in Figure 5-1 is used to describe average extracellular 

metabolites’ concentration in the culture media, the third block of the model describes glycosylation 

at the intracellular level. Since samples were collected at different days of culture, the glycoprofiles 

reported in this work reflect a cumulative time average of producing cells undergoing glycosylation 
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under varying culture conditions.  Consequently, as further explained in the following sections, for 

comparing model predictions with measurements, it was necessary to translate the intracellular OS 

concentration values, calculated by the third component shown in Figure 5-1, to a cumulative average 

value over culture time based on the instantaneous Mab productivity along the time course of the 

culture. The subsequent sections describe the experimental techniques followed by theoretical details 

about the mathematical model and comparisons of model predictions with experimental data. 

 

Figure 5-1. Schematic representation of the comprehensive-model: Metabolic Flux Analysis 
(left), Nucleotide Sugar (centre), Glycosylation based on Golgi Maturation (right). 

5.2 Materials and Methods 

5.2.1 Culture condition 

The cell line used in the present study is a CHO cell line derived from the parental CHO-DXB11 cell 

line, specifically engineered and provided by MabNet expressing EG2-hFc, a camelid Mab. The cells 

were maintained in regular serum-free Biogro medium (Provided by MabNet) supplemented with 0.9 

% HT (Invitrogen:11067-030). Seed cultures were produced by sub-culturing the cells every 2 to 3 

days with a seeding density of 0.25 million cells/ml. Cultures were grown in 500 ml polycarbonate 

shake-flasks with 250 ml working volume at initial cell density of 0.2 million cell/ml. Flasks were 

agitated at 120 rpm, and incubated at 37◦C with 5% CO2. Batch experiments were performed at initial 

glucose concentration of 25 mM at different levels of initial glutamine concentration (0 and 4 mM). A 

glucose concentration of 25 mM was found to be optimal for growth. Samples were taken on daily 

basis for at situ analysis of viable and dead cell concentration using trypan-blue exclusion method. In 

MFA Model

Nucleotide Sugar
 Model

Glycosylation Model
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addition, samples were collected, centrifuged at 300×g for 10 minutes, and their supernatant were 

stored at -20˚C to perform off-line measurements. 

5.2.2 Analytical methods 

An Enzyme-Linked Immunosorbent Assay (ELISA) method, developed by MabNet, was applied to 

obtain recombinant protein concentration. The Mab concentration was calculated conventionally by 

comparing the optical density of each sample with the standard curve.  

Glucose, glutamine, lactate, and ammonia concentration of culture broth were measured using a 

multi-parameter bioanalytical system, Bioprofile 400 (Nova Biomedical, Waltham, MA), off-line.  

In order to obtain the composition of the glycans/OSs attached to Mab, a hydrophilic interaction 

chromatography, following by an exoglycosidase enzyme array digestion method was implemented 

(Brockhausen 2006). This analysis was performed on samples obtained every other day, starting from 

the third day of the culture. 

5.3 Model Development 

The development of the dynamic metabolic flux equations commenced with a detailed steady state 

flux analysis for this CHO line using the procedure described previously (Naderi et al. 2011).  An 

important conclusion of the flux balance analysis, not shown here for brevity, was that all non-

essential amino acid synthesis could be described in terms of co-metabolism of glucose [𝑔𝑔𝑔] and 

glutamine [𝑔𝑔𝑔]. Obviously, this co-metabolism also affects biomass (𝑋𝑣) and ultimately Mab 

synthesis as well.  

The viable biomass population is differentiated as growing (𝑓𝑔𝑔) and a non-growing (1 –  𝑓𝑓𝑓) 

fraction. The non-growing fraction includes both resting cells arrested in the G phase as well as 

apoptotic cells. In our previous study (Naderi et al., 2011) these two sub-populations were modelled 

separately. However, in the present case no significant differences in either metabolite uptake or Mab 

productivity were observed to necessitate separation. Consequently the dynamic model for cell 

growth is as Equation 5-1. 
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Where µ is specific growth rate, 𝑘𝑑 is specific death rate and 𝐾𝑖𝑖s are model parameters. As in case 

of our previous models (Naderi et al. 2011) the rate of death is enhanced by the ammonia 

concentration, [N]. The total ammonia concentration, in turn, was calculated from the metabolic flux 

balance equations (not shown here).  

The estimation of the temporal dependence of the growing cell fraction is a key aspect of the model. 

A number of plausible model structures were considered and the following choice was made by 

invoking Akaike’s information criterion for model selection (Burnham and Anderson 2002) using a 

comparison of predicted versus simulated total viable biomass concentration, being formulated as 

Equation 5-2. 

22
21 /]][[1 Kglnglc

fgrK
dt

dfgr
+

−=  Equation 5-2 

Equation 5-2 simulates the dependence of the observed growth rate on the product of the glutamine 

and glucose concentration. Also, as observed experimentally, the growth did not stop immediately if 

either glucose or glutamine were exhausted from the medium. 

The dynamic metabolic flux models for glucose and glutamine metabolism are shown in Equation 

5-3 and Equation 5-4 respectively. 
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As shown above, both glucose and glutamine metabolism consists of growth associated and a non-

growth associated terms. Glucose and glutamine appear to be co-metabolized. It is noteworthy that an 

identical half-saturation constant for the co-metabolism (K32 and K42) satisfied both equations (15.77 

mM2). 

The selection of a robust model that adequately describes the system requires careful examination 

of the parameter values.  The parameter values (not shown for brevity) and their distributions in this 

study were generated by the Gibbs sampler version of the Metropolis-Hastings algorithm 

(Jitjareonchai et al. 2006). Markov Chain Monte Carlo (MCMC) methods such as the Metropolis-



 

79 

Hastings algorithm used here have been proven to be powerful tools, especially when some prior 

knowledge about the parameters is available from the literature. 

The middle block in Figure 5-1 consists of a simplified model to simulate the production of 

nucleotide sugars from glucose and glutamine in the cytosol (or nucleus for CMP-Neu5Ac). This 

model is formulated to connect between the extracellular metabolites’ concentration and the 

glycoform profile of produced MAb. Figure 5-2 exhibits the simplified reaction network connecting 

the extracellular glucose and glutamine concentrations to nucleotide sugars based on the database 

Kyoto Encyclopaedia of Genes and Genomes (KEGG) where the intermediate reactions are lumped 

together for simplicity (Kanehisa and Goto 2000; Kanehisa et al. 2012). The amount of glucose and 

glutamine being consumed towards the production of nucleotide sugar is negligible compared to the 

consumption of these nutrients towards cell growth and maintenance. Thus this consumption (Figure 

5-2) is not included in the MFA model. The reaction rates are assumed to be irreversible following a 

one or two-substrate Michaelis-Menten kinetics, as shown in Equation 5-6. Additionally, a first order 

dissociation kinetic rate is utilized to depict the dissociation of nucleotide sugars following their 

incorporation into biomass production. The mass balance for each of the nucleotide sugars is given in 

general form by Equation 5-5, assuming that the cytosol (or nucleus) acts as an ideal batch reactor. 

The model uses the extracellular glucose and glutamine concentration and accounts for the mass 

transfer across the cell membranes through the calibrated parameters. 
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Although the glycosylation starts in the ER, in the current study it is assumed that the proteins are 

properly folded in ER and only contain nine-mannose attached to their constant heavy chain. Thus the 

glycosylation model, represented by the rightmost block in Figure 5-1, simulates the transfer of 

nucleotide sugars inside the Golgi only. In the Golgi, a small number of enzymes will catalyse a large 

number of sequential reactions that shift the high mannose structure of the saccharide exiting the ER 

towards complex and hybrid conformations; hence, each enzyme can trigger various reactions (Del 

Val et al. 2011; Hossler et al. 2007; Stanley 2011). This large network of reactions has been 

mathematically described in a form of relationship-matrix by Hossler, et al, 2007. Previous studies 
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have reported that the Golgi apparatus, consisting of four different cisternae, can be approximated as 

if each compartment converts to a successive one through a maturation procedure (cisternal 

maturation). Consequently, and following (Del Val et al. 2011; Hossler et al. 2007) in this study the 

Golgi was represented by four ideal (no radial and axial dispersion) plug flow reactors (PFR) in 

series, each representing one cisterna, at steady state conditions. Different overall retention time in the 

Golgi has been assumed in literature. In this work the overall residence time of Golgi (all four 

compartments) is set to be forty minutes as postulated in Hossler et al. 2007. 

 

Figure 5-2. Simplified reaction-tree of nucleotide sugars inside the cytosol (or nucleus). Man: 
mannose, Gal: galactose, GlcNAc: N-acetylglucosamine, Fuc: Fucose, Sia: sialic acid. 
 

The glycosylation reactions occurring in the Golgi are catalyzed by two main groups of enzymes: 

exoglycosidases and glycosyl-transferases (GTs) (Del Val et al. 2011; Hossler et al. 2007; Stanley 

2011). For simplicity, exoglycosidases were assumed to follow irreversible one-substrate Michaelis-

Menten kinetics shown in Equation 5-7 while the GTs follow irreversible two-substrate kinetic, as 

shown in Equation 5-8 (Hossler et al. 2007). It is worth mentioning that GTs were assumed to have 

only one functional group and each can only transfer an specific nucleotide sugar (Stanley 2011). 

The superscript 𝑛 specifies the compartment/cistern number, 𝑘 determines the corresponding 

enzyme and its nucleotide sugar (for GTs). The 𝛼 −s in Equation 5-7 and Equation 5-8 are 

coefficients that define the spatial distribution of enzymes along the Golgi compartments (Hossler et 

al. 2007; Stanley 2011). Thus, they can determine the direction along the network of reactions. 
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Kinetic parameters presented in Equation 5-7 and Equation 5-8 strongly depend on the cell line, thus 

different values are reported in literature. In this work 𝐾𝑘𝐺 ,𝐾𝑘𝑆, and 𝑟𝑘𝑚𝑚𝑚 values were selected as per 

the values documented by Hossler, et al, 2007. 
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Concentration of 9-Mannose, UDP-Gal, UDP-GlcNAc, GDP-Fuc, and CMP-Sia (Neu5Ac), depend 

on the extra cellular availability of glucose and glutamine. After being produced in the cytosol (or the 

nucleus), these sugars are fed into the Golgi apparatus.  

The glycosylation model, as presented in previous studies (Del Val et al. 2011; Hossler et al. 

2007), depicts the instantaneous OS pattern of the Golgi in one individual cell. However, the 

experimental results provide a cumulative average of the glycosilated Mab accumulated in the 

supernatant over the time of the culture up to the time of the measurement. To account for this effect, 

Equation 5-9 was utilized to convert the instantaneous glycan composition calculated as per Golgi 

maturation model to the accumulated one measured experimentally. 

∫

∫
•

•

= t

t
Ins

i
Acc

i

dtMab

dtGlycMab
Glyc

0

0

][
][  

Equation 5-9 

For the purpose of comparisons and for simplicity it was hypothesized that the experimental glycan 

composition at day three is identical to the instantaneous OS composition at the beginning of the 

culture. This claim can be supported by the fact that a negligible amount of glycoprotein was 

measured during the first three days of the culture. For the purpose of model calibration, the 𝛼- s were 

obtained by minimizing the sum of square error (SSE) of OSs using genetic algorithm (GA), while 

the nucleotide sugars were assumed to be in excess (at the beginning of the culture). The nucleotide-

sugar model’s parameters were calibrated by minimizing the SSE between comprehensive-model 

predictions and measured glycoprofiles along the culture time, using data from the batch with no 

glutamine added to it initially.  



 

82 

In order to simplify the quantification of glycosylation extent, the relative abundance area of 

predominant glycan structures can be lumped together in a form of glycosylation indices: 

galactosylation index (GI), sialiation index (SI), and fucosylation index (FI). However, the focus of 

current work is on GI since this cell line is highly galactosylated. The agalctosylated (𝐺𝑖0), 

monogalctosylated (𝐺𝑖1), and digalctosylated (𝐺𝑖2) OSs were lumped within the GI as shown by 

Equation 5-10. This grouping is further motivated by the fact that the therapeutic properties of Mabs 

have been often correlated to these indices (Majid et al. 2007).  
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Due to the large number of OSs proposed in Hosslet et al. 2007 (341 OSs), the computation is very 

costly. To reduce computations, the large network of reactions was trimmed based on the 

experimental data, to encompass only the plausible Mab’s OSs for this particular cell line. At current 

stage the model solves the mass balance equations for 100 OSs and four nucleotide sugars inside the 

Golg apparatus. This has significantly reduced the run time as compared to the original model. To 

further decrease the CPU time, conditional statements were avoided. By perusing the matrix 

calculation and the use of binary matrices, instead of conditional statements, the CPU time was 

drastically reduced. Additionally, the program was modified to take advantage of parallel 

computation toolbox in MATLAB that reduced the run time by 1/10. On a hex-core Intel CPU 

computer equipped with 16 gigabyte of RAM, it takes approximately 30 seconds to run the program 

for simulating 9 days of culture. 

5.4 Results and Discussion 

The simulations of the viable cell concentration with 4 and 0 mM glutamine added are shown in 

Figure 5-3. This particular CHO cell line is relatively fast growing, having a minimum generation 

time of approximately 16.5 hours. With 4 mM glutamine initially, a maximal viable cell density of 

over 3.7 million cells/ml is reached after 5 days of incubation. In contrast, the maximum cell density 

when no glutamine is added to the medium is about one-half of that obtained with the 4 mM. 



 

83 

 

Figure 5-3. Viable cell concentration time profile of two different batch cultures; simulated vs. 
experimental. 

The model slightly underestimates the viable cell density concentration for the culture when no 

glutamine is added. It should be emphasized that the 0 mM glutamine experiments have not been used 

for model calibration so as to test the predictive capabilities of the model. Although the culture 

commencing with 4mM glutamine reaches a higher viable cell concentration, the viability drops 

sharply after day five. This is probably due to the glucose concentration being depleted more quickly, 

compared to the culture with no glutamine added at the beginning (Figure 5-4). 

The time profiles of the extracellular glucose and glutamine concentrations are shown in Figure 5-4 

and Figure 5-5, respectively. With 4 mM glutamine present initially, glutamine exhaustion coincided 

with the maximum cell concentration. Glucose was exhausted somewhat later, after 6 days of culture. 
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Figure 5-4. Extracellular glucose concentration time profile of two different batch cultures; 
simulated vs. experimental. 

When no glutamine is added, the initial glutamine concentration reflects the residual concentration 

introduced with the inoculum. In this case, glutamine is rapidly consumed and after 2 days it is below 

detection limits. It is noteworthy that the minimum measurement threshold of the bioprofile for 

glutamine is 0.2 𝑚𝑚. Due to the observed co-metabolism of glutamine and glucose, glycosylation 

was expected to stop after glutamine depletion. However, in reality glycosylation continued after the 

point that glutamine fell below a non-detectable amount. Accordingly, it was necessary to assume a 

nonzero intracellular glutamine concentration beyond this point, possibly indicating that glutamine is 

consumed at very slow rates at low concentrations. On the other hand, beyond that point, the glucose 

concentration was consumed at a much slower rate and significant concentrations were observed and 

predicted even after nine days of culture. This can be attributed to the co-metabolism with glutamine. 

Based on the experimental results (not shown), it can be concluded that this cell line produces a 

highly galacosylated Mab. The concentration of nucleotide sugars was found to be strongly correlated 

with glucose and glutamine concentrations. Following the parameter estimation exercise, explained in 

the previous section, the model was found to be less sensitive to the glutamine compared to the 

glucose concentration.  
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Figure 5-5. Extracellular glutamine concentration time profile of two different batch cultures; 
simulated vs. experimental. 

The evolution of individual glycans strongly depends on the nucleotide sugar levels. For example, 

Figure 5-6 compares the accumulated composition of F(6)A2G2, a dominant OS structure with two 

galactose, and F(6)A2G0, with no galactose, along the culture time. The F(6)A2G2 availability 

diminishes along the culture time. The steepest decline can be seen from approximately the 3rd to the 

5th day of the culture, which might be attributed to the glucose reduction exhibited in Figure 5-4. On 

the contrary, an increase is observed in F(6)A2G0 abundance, supporting the dependency of OS 

structure on the extracellular metabolites. The model correctly predicted these trends. 
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Figure 5-6. Time profile of simulated and measured cumulative oligosaccharides (F(6)A2G0 
and F(6)A2G0) concentrations for a batch culture with no additional glutamine at the 
beginning. 

Figure 5-7 provides the time profile of accumulated GI in the culture, illustrating the ability of the 

model to predict the trends in the index. As explained earlier, due to the consumption of glucose and 

glutamine, the nucleotide sugar concentration decline with culture time. This leads to an increase in 

the abundance of agalctosylated OSs and a relative decrease in digalactosylated OSs and hence, a 

decrease in GI. 
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Figure 5-7. Accumulated galactosylation index (GI) time profile of two distinguishable batch 
cultures. Red: calibration vs. experiment, Blue: prediction vs. experiment. 

As glucose depletes faster in the presence of glutamine (squares in Figure 5-7), the accumulated GI 

for the culture commenced with initial 4mM glutamine lies beneath the one with no glutamine. The 

dashed line shows the calibration quality of the model for the GI of culture with no initial glutamine, 

while the solid line depicts the prediction capability of the model for forecasting the GI for the culture 

with initial glutamine concentration of 4mM. It is worth mentioning that the measurements of OSs 

and recombinant protein concentrations suffer from considerable experimental error, due to the large 

number of experimental steps required for analysis. 

5.5 Conclusion 

The dynamic metabolic flux model provided an adequate approximation of the extracellular 

metabolite concentrations, assuming glucose and glutamine co-metabolism. The parameters of this 

model were calibrated using experimental results for the culture with 4 mM glutamine presented 

initially and validated by comparing the simulation results with experimental results of the culture 

with an initial glutamine concentration of zero. The production of nucleotide sugars in the cytosol (or 

nucleus) as a function of extracellular glucose and glutamine concentrations were formulated. This 

model plays a crucial role in linking the glycosylation pattern of Mab to the corresponding 
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extracellular culture conditions. Ultimately, the glycosylation of Mab inside the Golgi apparatus has 

also been formulated based on the Golgi maturation hypothesis and successfully linked to the above 

mentioned models. Additionally, for comparing the model predictions to experiments, an averaging 

calculation was implemented to convert instantaneous glycoprofiles within the cell to accumulated 

ones. The model correctly predicted dynamic trends in glycosylation indices as well as specific 

glycan species. 
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Chapter 6 
Intrinsic Fluorescence-based at Situ Soft Sensor for Monitoring 

Monoclonal Antibody Aggregation† 

 

 

Intrinsic fluorescence spectroscopy, in conjunction with partial least squares regression (PLSR), was 

investigated as a potential technique for online quality control and quantitative monitoring of 

Immunoglobulin G (IgG) aggregation that occurs following exposure to conditions that emulate those 

that can occur during protein downstream processing. Initially, the impact of three stress factors 

(temperature, pH, and protein concentration) on the degree of aggregation determined using size 

exclusion chromatography (SEC) data, was investigated by performing a central composite design 

(CCD) experiment and fitting a response surface model (RSM). This investigation identified the 

influence of the factors as well as the operating regions with minimum propensity to induce protein 

aggregation. Spectral changes pertinent to the stressed samples were also investigated and found to 

corroborate the high sensitivity of the intrinsic fluorescence to conformational changes of the proteins 

under study. Partial least squares regression (PLSR) was implemented to formulate fluorescence-

based soft sensors for quality control—product classification—and quantitative monitoring—

concentration of monomer. The resulting regression models exhibited accurate prediction ability and 

good potential for in situ monitoring of monoclonal antibody downstream purification processes. 

6.1 Introduction 

Monoclonal antibodies (MAbs) are the dominant products in the biologics market (Butler and 

Meneses-Acosta 2012) with the immunoglobulin Gs (IgGs) outpacing other bioproducts (Sahin et al. 

2010). Hydrophobic recombinant proteins (e.g. IgGs) are inherently susceptible to aggregation 

(Sadavarte and Ghosh 2014; Sahin et al. 2010) during downstream processing following exposure to 

stress factors such as pH, temperature, and physical shear (Mahler et al. 2009; Printz and Friess 

2012). Protein aggregation is considered as the most common hindrance for process development 

(Wang 2005) with such adverse effects as loss of efficacy and/or provoking an immunogenicity 

                                                      
† Ohadi, K., Legge, R. L. and Budman, H. M. (2014), Intrinsic Fluorescence-based at Situ Soft Sensor for 
Monitoring Monoclonal Antibody Aggregation. Submitted to Journal of Biotechnology-manuscript number: 
JBIOTEC-D-14-01402  
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response (Hawe et al. 2008; He et al. 2010; Mahler et al. 2009; Printz and Friess 2012). These issues 

are fueling the development of in situ techniques that enable real-time accurate quality and quantity 

control of protein aggregation.  

Conventional techniques for monitoring protein aggregation, such as size exclusion 

chromatography, are comparatively time consuming, while intrinsic fluorescence spectroscopy is a 

fast, non-invasive, and non-destructive technique with high sensitivity and a signal to noise ratio 

which is amenable to online monitoring (Abbas et al. 2013; Elshereef et al. 2006; Hawe et al. 2008; 

Ohadi et al. 2014a). Fluorescence spectroscopy has been identified as a plausible technique for 

monitoring conformational changes and characterization of protein tertiary structure (Abbas et al. 

2013; Kumar et al. 2005; Printz and Friess 2012).  

Three intrinsically fluorescent aromatic amino acids (phenylalanine, tyrosine, and tryptophan) have 

been found to be sensitive to the micro-environment they are exposed to in the protein. During protein 

disruption and aggregate formation, the surrounding environment of the fluorophores change. 

Accordingly, changes in their fluorescence behavior can be exploited to draw inferences on 

conformational changes as well as native and non-native characteristics of the protein (Elshereef et al. 

2006; Kumar et al. 2005; Printz and Friess 2012). The higher quantum yield and extinction 

coefficient of tryptophan makes it a desirable probe to track protein aggregation (Abbas et al. 2013; 

Poole et al. 2012). The emission maxima and intensity of tryptophan shift depending on its 

environment indicating whether it is exposed to the surrounding solvent or buried within the protein 

(Abbas et al. 2013; Poole et al. 2012). Multi-wavelength intrinsic fluorescence has previously been 

investigated for use as a soft sensor for monitoring α-lactoglobulin and β-lactoglobulin solubility 

under stressed conditions (Elshereef et al. 2006; Elshereef et al. 2008) and for discriminating between 

different types of cheeses (Herbert et al. 2000). Kumar et al. (2005) demonstrated the suitability of 

second-derivative fluorescence spectra of tryptophan to identify subtle structural changes in β-

lactoglobulin and interferon alpha-2a upon exposure to various solvent conditions. Second-derivative 

fluorescence has also been implemented to qualitatively assess MAb conformational changes under 

thermal, pH, and solvent stressed conditions (Abbas et al. 2013). However, the utilization of intrinsic 

multi-wavelength fluorescence spectroscopy in the development of a soft sensor for both qualitative 

and quantitative monitoring of MAb aggregation has not been explored. 

The implementation of chemometric methods has been explored in the context of fluorescence-

based soft sensor development (Ohadi et al. 2014a; Rathore et al. 2010; Teixeira et al. 2009a). Partial 
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least square regression (PLSR), one of the most commonly used data exploratory techniques (Wold et 

al. 1984), was utilized to draw indirect inferences from the fluorescence spectra to generate predictive 

models for monitoring aggregation. 

The objective of this study was to develop soft sensors based on intrinsic fluorescence, coupled 

with PLSR, for at-line quality control—classification of product—and also for quantitative 

monitoring—prediction of monomer concentration—at different stages of a downstream purification 

process. For simplicity and to have better control of experimental conditions, the measurements were 

collected by exposing the samples to operating conditions analogous to those that occur during 

protein purification. Given the diverse aggregation patterns induced by various stress factors imposed 

along downstream processes, IgG samples of different concentrations were subjected to different 

temperature and pH levels. A response surface method (RSM) was formulated to describe the 

aggregation patterns induced by different stress factors. RSM was performed to better comprehend 

the effect and interaction of the stress factors as well as to determine the regions with minimum 

propensity to cause aggregation. Additional experiments were also conducted to produce a diverse 

data set for soft sensor development. High-pressure size exclusion chromatography (HP–SEC) was 

utilized for IgG-sample fractionation and independent quantification. Finally, PLSR-based models 

were formulated between HP-SEC measurements and fluorescence spectra collected for the 

corresponding samples. These models can be used as a soft sensor for predicting monomer 

concentration and inferring conformational changes from measured fluorescence spectra. 

6.2 Materials and Methods 

6.2.1 Sample Preparation 

ChromPure Human IgG (Cedarlane, ON) with a concentration of approximately 11.3 mg/ml in 0.01 

M phosphate buffer saline (PBS) was utilized for the experiments. To study the impact of 

temperature, pH, and protein concentration on the aggregation, an asymmetric central composite 

design (CCD) with 4 center points was implemented (Table 6-1). Due to the sample limitations and a 

need for a certain combination of conditions for soft sensor development purposes, it was not possible 

to perform symmetric CCD. Sample dilution was performed using HyClone 0.01 M PBS (Fisher 

Scientific, ON) at pH 7. For the experiments performed at different pH levels, the pH of the buffer 

was adjusted using HCl (1 M) and NaOH (1 M) prior to sample dilution. Samples were thermally 

stressed at different temperatures in a water bath for 20, 40, and 60 min then cooled for 20 min at 
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room temperature in a water bath before being centrifuged at 400×g for 5 min. The resulting 

supernatant was decanted and used for the fluorescence and HP-SEC measurements. For the purpose 

of developing a soft sensor for in situ monitoring of protein aggregation, additional experiments were 

carried out (Table 6-1).  

Table 6-1 Summary of experimental design. Experiment 1-18: Asymmetric central composite 

design (CCD) with 4 center points and experiment 19-29: Complimentary set of experiments. 

Experiment 
No. 

Temperature 
(°C) 

pH Concentration 
(mg/ml) 

1 70 5.1 0.2 
2 70 8.1 0.2 
3 70 8.1 1 
4 70 5.1 1 
5 50 5.1 0.2 
6 50 8.1 0.2 
7 50 8.1 1 
8 50 5.1 1 
9 80 7 0.5 
10 40 7 0.5 
11 60 9.1 0.5 
12 60 3.1 0.5 
13 60 7 1.5 
14 60 7 0.1 
15-18 60 7 0.5 
19 60 7 1 
20 60 7 0.2 
21 60 8.1 0.5 
22 60 5.1 0.5 
23 60 5.1 0.2 
24 60 5.1 1 
25 60 3.1 0.2 
26 60 3.1 1 
27 60 9.1 0.2 
28 70 7 0.5 
29 70 7 0.2 
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6.2.2 High-Pressure Size Exclusion Chromatography 

The resulting supernatant was analyzed by HP-SEC on an Agilent 1200 chromatography system (Palo 

Alto, CA) equipped with a UV detector. 200 𝜇𝜇 of sample were injected into a Speax Zenix-C SEC-

300 (Sepax Technologies, Newark, DE) column with a flow rate of 1 ml/min for 20 min with a 

mobile phase of 1.5 M PBS at pH 7.4 and detected at 280 nm. Measurements were carried out in 

duplicate. A calibration curve was prepared with various concentrations of pure IgG1 ranging from 

1.5 to 0.01 mg/ml. Protein concentration calculations were based on the area under the curve (AUC) 

pertinent to the peak of the monomeric form of the IgG1. To avoid errors related to elution caused by 

column saturation or attachment of highly hydrophobic molecules, a new calibration curve was 

generated after column regeneration on a regular basis. The aggregation percentage was defined as 

the difference between the concentration of the protein in monomeric form before and after being 

subjected to the imposed stresses. This difference was then normalized with respect to the initial 

monomer concentration of unstressed sample. As such, the calculated aggregation percentage is 

equivalent to a measure of product loss. 

6.2.3 Fluorescence Spectroscopy 

Multi-wavelength fluorescence spectra of the supernatant were acquired at room temperature utilizing 

a Cary Eclipse spectrofluorometer (Palo Alto, CA) equipped with a Peltier multi-cell holder in 700 µl 

far UV quartz cells with path length of 10 mm (Mandel Scientific, ON). The measurements were 

collected over an excitation range from 260 to 350 nm at 5 nm increments and emission range from 

280 to 450 nm with 1 nm increments. The photomultiplier tube (PMT) voltage of 600 V, slit width 

(SW) for excitation and emission of 5 nm, and scanning rate of 600 nm/min were set for signal 

acquisition. The measured fluorescence spectra were arranged in a form of a matrix (19 

excitation×121 emission) known in the literature as an excitation emission matrix (EEM). 

6.2.4 Chemometric Analysis 

With the goal of developing empirical models (soft sensors) based on multi-wavelength fluorescence 

spectra for quality control and quantitative monitoring, the PLSR (Geladi and Kowalski 1986; Wold 

et al. 1984) technique was applied. The input data matrix (X) is formed by individual re-arrangement 

of EEMs of samples into row vectors followed by their row-wise attachment. Sample duplicates were 

included in the X matrix separately. The formation of the response matrices (Ys) for each soft sensor 

is explained separately in the corresponding sections. The optimal number of latent variables (LVs) 
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can be obtained by minimizing the root mean square error of cross validation (RMSE-CV) to avoid 

model over-fitting. In the current study, a random subset routine with 20 iterations was carried for 

cross validation (CV). Chemometric analyses were performed utilizing the PLS-Toolbox 7.0.3 

(Eigenvector Research Inc., Manson, WA) running in the MATLAB 8.0.0 (Mathworks, Natick, MA) 

platform. 

6.3 Results and Discussion 

6.3.1 Impact of Stress Factors 

To better understand the impact of stress factors and investigate diverse aggregation patterns, an 

asymmetric central composite design with a complementary set of experiments (to encompass a wide 

range of stress factors) was conducted. Additionally, the relevance of the tryptophan fluorescence-

spectra of the samples for tracking Mab conformational changes was thoroughly studied. It is worth 

noting that the samples that were not subjected to stress factors contained less than 5% dimers which 

are neglected in the current study. 

Temperature plays a crucial role to evoke aggregation. Higher temperatures contribute to the 

protein conformational changes, exposure of hydrophobic regions of the polypeptide chain to the 

external medium, and consequently to the formation of non-native aggregates (Mahler et al. 2009; 

Printz and Friess 2012). 
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Figure 6-1 Temporal evolvement of the degree of aggregation under stressed conditions for: (a) 

Samples with 0.5 mg/ml initial IgG at pH=7 under different temperatures; (b) Samples with 0.5 

mg/ml initial IgG stressed at 60 °C under different pHs; (c) Samples with different initial IgG 

concentrations stressed at 60 °C and pH=7; (d) Samples with different initial IgG 

concentrations stressed at 60 °C and pH=5.1. 

 

Figure 6-1a exhibits the changes in aggregation percentage of IgG samples (pH=7 and 

concentration=0.5 mg/ml) with time at different temperatures. From the results it can observed that 

the propensity for aggregation is proportional to the temperature and occurs when samples are heated 

above a minimum temperature. For instance, over 20% of the IgG monomer is aggregated after 20 

min of heat treatment at 60 °C, while at 40 °C the level of aggregation is negligible. Higher 

temperatures (70 and 80 °C) resulted in a significant loss of the monomer structure as well as induced 

formation of large insoluble oligomers that precipitate as supported by the chromatograms in Figure 
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6-2a for samples subjected to these higher temperatures (pH=7 and concentration=0.5 mg/ml) for 20 

min. This phenomenon is attributed to the formation of greater levels of unfolded IgG at higher 

temperatures (Hawe et al. 2008). Regardless of the initial IgG concentration and pH, similar trends 

were observed for temperature-induced aggregation (Figure C- 3-Appendix C) which is in accordance 

with the literature (Hawe et al. 2008; Printz and Friess 2012). 

 

  

Figure 6-2 Chromatograms of samples obtained from SEC for: (a) Samples with 0.5 mg/ml 

initial IgG at pH=7 after 20 min of treatment under different temperatures; (b) Samples with 

0.5 mg/ml initial IgG stressed at 60 °C for 20 min under different pHs; (c) Samples with 1 

mg/ml initial IgG and pH=5.1 stressed at 70 °C at different sampling time; (d)  Samples with 1 

mg/ml initial IgG and pH=8.1 stressed at 70 °C at different sampling time. 

 

Changes in pH can trigger aggregation by altering the polypeptide charge-distribution (Wang 2005) 

and the aggregation response to pH depends on the type of the protein. Based on the experimental 

results obtained at different pHs, it was concluded that samples with pH close to neutral levels had a 
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very small tendency to aggregate while deviations from pH 7 resulted in an increase in the rate of 

aggregation (Figure 6-1b). Figure 6-2b is a comparison between the heat-treated samples, at 60 °C 

monomer concentration of 0.5 mg/ml after 20 min, at different pHs. It can be seen that under acidic 

conditions (pH=3.1) the rate of loss of monomer is significantly higher. The substantial increase in 

the intensity of tryptophan fluorescence is in agreement with this conclusion. Additionally, it was 

observed that at 70 °C and an initial IgG concentration of 1 mg/ml, the sample with pH 5.1 

experienced more pronounced loss of monomer and formation of insoluble oligomeric structures over 

time, in contrast with samples subjected to pH 8.1 that exhibited a higher tendency of forming trimer 

and tetramers (Figure 6-2c and d). 

Although protein aggregation is generally found to increase with protein concentration (Mahler et 

al. 2009; Wang 2005), the pattern of protein aggregation is found to be inconsistent (for the 

concentration range of this study) under different pH conditions. For instance, at pH 7 a sample with 

concentration of 1.5 mg/ml experienced the greatest loss of monomers and at the same time formed 

more trimers/tetramers after 20 and 40 min exposure to 60 °C (Figure 6-1c), while at pH 5.1 the 

aggregation percentage of the sample with initial concentration of 0.2 mg/ml outpaced that of 0.5 and 

1 mg/ml samples (Figure 6-1d). In spite of the high level of aggregation observed under acidic 

conditions (pH=3.1), the sample with an initial concentration of 1 mg/ml (at 60 °C after 20 min) 

aggregated 10% and 7% more than samples with initial IgG of 0.5 and 0.2 mg/ml respectively (results 

not shown). 
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Figure 6-3 Fluorescence signal of stressed samples: (a) Emission spectra (at excitation 280 nm) 

for samples with 0.5 mg/ml initial IgG and pH=7 stressed at 60 °C at different sampling time; 

(b) Intensity of scattering-maxima (at excitation 305 nm) for samples with 0.5 mg/ml initial IgG 

and pH=7 stressed at different temperatures over time; (c) Emission spectra (at excitation 280 

nm) for samples with 0.5 mg/ml initial IgG and pH=7 stressed after 20 min at different 

temperatures; (d) Second derivative of emission spectra (at excitation 280 nm) for samples with 

0.5 mg/ml initial IgG after 20 min treatment at 60 °C at different pHs. 

 

Figure 6-3a provides the tryptophan fluorescence (Excitation=280 nm) of IgG samples (pH=7 

concentration=0.5 mg/ml) stressed at 60 °C over a 60 min time span. An increase in the tryptophan 

intensity over time and a red-shift of peak maxima are indicative of protein unfolding and the 

formation of oligomeric structures that are observed in the HP-SEC results for the same samples 

during the course of heat induced aggregation. A pronounced change in the tryptophan fluorescence 

between 20 to 40 min and a subtle change occurring between 40 to 60 min are in agreement with the 
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results in Figure 6-1a. Rayleigh light scattering is an incident light, occurring at equal excitation and 

emission wavelengths and it is generally attributed to the presence of suspended particles and their 

size (Ohadi et al. 2014a). The scattering intensity (Excitation=Emission=305 nm) for the 

aforementioned samples continually increases (Figure 6-3b) over time and is attributed to the 

formation of larger oligomers in the samples in agreement with the protein fractionation results 

(results not shown). At higher temperatures (80 ºC) the overall protein concentration decreases due to 

the precipitation of large oligomers. This is evident in the sudden reduction in the tryptophan 

fluorescence intensity and a higher red-shift in the peak maxima of samples (pH=7 concentration=0.5 

mg/ml) after 20 min of heat treatment (Figure 6-3c) as well as the scattering levels (Figure 6-3b) 

which agrees with the HP-SEC results in Figure 6-2a. Abbas et al. (2013) argued that the second 

derivative of the normalized tryptophan signal can be implemented to track induced conformational 

changes. Figure 6-3d provides the second derivative (calculated using the Savitzky-Golay algorithm) 

of the normalized emission signal obtained at an excitation of 280 nm for a sample with 0.5 mg/ml 

initial IgG after 20 min of heat treatment at 60 °C under various pHs. A reduction in the peak value at 

approximately 327 nm is an indicator of the loss of the native structure of IgG with larger disruption 

occurring for the samples exposed to pH=3. From Figure 6-3d a similarity can be found between the 

aggregation pattern of samples at pH=8 and 9 and pH=5 and 7, which is in agreement with previous 

observations inferred from Figure 6-1b and 2b and agrees with the findings of Abbas et al. (2013).  

The subtle changes in the intrinsic fluorescence-spectra of stressed samples reinforce the capability of 

fluorescence spectroscopy to serve as a tool for quantitative and qualitative monitoring of 

aggregation.



100 

 

 

Figure 6-4 Contour plots of fitted surface model for Agg% after 20 min: (a) Temperature vs. pH at initial IgG of 0.5 mg/ml; (b) 

Temperature vs. concentration at pH=7; (c) Concentration vs. pH at 60 °C
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6.3.2 Response Surface Model 

An RSM was developed to describe the impact of stress factors on the percentage of aggregation. The 

experimental error was calculated based on a replicated center point and is estimated to be 

approximately 12%. The response variable was defined as the percentage of aggregation after 20 min. 

For better accuracy, a logarithmic transformation of the response variable was used for model 

calibration. Since the aggregation was bounded to 0% and 100%, the model output was forced to be 

equal to 0 for prediction values below 0 and 100 for prediction values above 100. Analysis of 

variance (ANOVA) along with an F-test was performed for various model structures to evaluate the 

lack of fit for each proposed model. Consequently, a function containing quadratic, interactions, and 

linear terms was found to be the best fit to the experiments. ANOVA with t-test was then performed 

to determine significant effects and fine tune the final model. Table 6-2 summarizes the ANOVA of 

final RSM including only the significant effects. Temperature was found to have the most profound 

impact on aggregation. It was also noted that the impact of pH and concentration are slightly 

dependent on the temperature, while no considerable interaction was observed between pH and 

protein concentration. Additionally, a curvature effect was noted for all three effects which were 

evident from the conclusion drawn previously. Figure 6-4 provides the contour plots of aggregation 

percentage after 20 min of treatment, obtained from the surface model, with respect to two factors 

while the third is kept constant. These contour plots can be employed to evaluate the operating 

regions where the propensity of aggregation formation is lower. For example, it was found that the 

tendency of aggregation at pH values ranging from 6 to 7 is comparatively lower than  pH levels 

above or below this range at any temperature (Figure 6-4a) and monomer concentration (Figure 6-4c) 

investigated. At a protein concentration of 0.5 mg/ml, the impact of basic pH levels on aggregation is 

more substantial at higher temperatures, compared to lower ones (Figure 6-4a). A similar behavior 

was observed for other concentrations. Regardless of the sample pH, the degree of aggregation at 

different concentrations was found to be dependent on temperature (Figure 6-4b for pH=7). To 

improve the extrapolation accuracy of the surface model at high temperatures and monomer 

concentrations, more data were acquired for further calibration. 
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Table 6-2 Analysis of Variance (ANOVA) of the final response surface model (RSM) after 

excluding the insignificant factors. 

 Degree of 
Freedom 
(df) 

Sum of 
Square (SS) 

Mean 
Square (MS) 

𝐹𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐹𝐴𝐴𝐴𝐴𝐴𝐴 

SSE 10 394.72 39.47   

SSLF 7 373.65 53.38 7.596 8.89 

SSPE 3 21.08 7.02   

 

 

6.3.3 Soft Sensor for Quantitative Monitoring 

An empirical model (soft sensor) was developed based on multi-wavelength fluorescence spectra, by 

utilizing the PLSR method, in order to predict the concentration of the monomeric IgG of pure 

(unstressed) and stressed samples. This soft sensor can be used at situ to track desirable product 

concentrations as well as monitor loss of monomers. Since the aim of this soft sensor is to estimate 

the monomeric content, only the part of spectra pertinent to the tryptophan peak were implemented as 

input to the model. Thus, the scattering region, which is believed to provide information about the 

suspended particles and is probably more relevant to oligomeric structures, was eliminated from the 

spectra using a MATLAB program. The concentrations of the IgG in monomeric structure obtained 

via protein fractionation (as explained in section 6.2.2) were appended together to form the output 

matrix (Y). To ensure the model-prediction accuracy, experiments 2, 13, 17, 20, 23, and 25 (Table 

6-1) were randomly selected and eliminated from the calibration set. These experiments were then 

used to test the prediction accuracy of the resulting model. Five LVs were found to minimize the 

RMSE-CV resulting in a minimal error of 0.053 mg/ml of monomer concentration which is 

equivalent to approximately 16% of the average monomer-IgG concentration; in accordance with 

13% SEC measurement error. The resulting model was capable of capturing roughly 100% of 

variation in the input (X) and simultaneously explains 97.1% of the output (Y) for the calibration set 

which is deemed highly reasonable considering the 𝑅𝐶𝐶2  equal to 96.9%. The resulting model 

predicted the test set with a precision of 𝑅𝑃2=97.6% that verifies the accuracy of the cross-validation 

procedure necessary to avoid model over-fitting. The model precision is depicted in Figure 6-5a 

where the calibration and validation sets are aligned closely to a 45° line with the residuals being 
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approximately normally distributed (Figure 6-5a inset). The first latent variable of the PLSR model 

accounts for 98% and 57% of variance of the input and output data sets, respectively. Although the 

second LV only contributes to 1% of variation in the X matrix, it can describe roughly 34% of the 

response matrix Y. Figure 6-5b shows the scores of LV2 versus LV1 with the 95% confidence region. 

As shown in Figure 6-5b, the scores on the LV1 are discriminated into four regions that correspond to 

a different range of monomer concentrations. This correlation becomes more apparent in Figure 6-5c 

that shows the monomer concentration versus LV1 scores. In spite of the group of outliers with 

extremely low LV2-scores (Figure 6-5b and c), a correlation is observed between monomer 

concentration and the scores on the LV1. The outliers observed in Figure 6-5b have very low 

leverage; hence, impose a minimal effect on the model accuracy. Figure 6-5d shows the trajectories of 

LV2-scores for three different experiments with an initial IgG concentration of 0.5 mg/ml. For 

experiments performed at 60 °C at pH 7 and 9.1, the LV2-scores are constantly decreasing which is in 

agreement with the trend of formation of oligomers noted earlier in section 6.3.1. On the other hand, 

for the experiment performed at 70 °C and pH 7, an increase in LV2-scores is observed after reaching 

a minimum that can be explained by the formation of precipitates that were eliminated by the 

centrifugation step performed before the measurement. 
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Figure 6-5 Results of the soft sensor for quantitative analysis: (a) Model predictions vs. 

measured values for calibration and test set and normal percentiles of residuals (inset); (b) 

Scores of LV2 vs LV1; (c) Measured values vs. scores on LV1; (d) Scores on LV2 for three 



 

105 

different experiments over time; (e) Contour plot of the first loading; (f) Contour plot of second 

loading. 

 

The physical relevance of the latent variables can be explained by investigating the matrix of 

loadings. By performing an inverse of the matrix transformation, explained in section 6.2.4, the 

loadings pertinent to each latent variable were converted to the form of an EEM. Figure 6-5e and f are 

the contour plots of the first and second LVs. The first loading (Figure 6-5e) is related to the region 

corresponding to tryptophan with an emission peak at approximately 330 nm, which resembles the 

tryptophan buried in the hydrophobic core in the native protein and in agreement with previous 

observation by Elshereef at al. (2006). This conclusion reinforces the stronger relevance of LV1 to the 

monomeric-IgG concentration. The LV2 encompasses regions of spectra attributed to tryptophan in 

the native and in the non-native protein with positive and negative correlations, respectively (Figure 

6-5f).  

 

Table 6-3 Confusion table for calibration and test set for the soft sensor for quality control. 

 Calibration Set  Test Set 
 Class 0 Class 1 Class 2 Class 3  Class 0 Class 1 Class 2 Class 3 
Predicted as Class 0 74 8 0 0  13 2 0 0 
Predicted as Class 1 0 43 4 0  3 18 3 0 
Predicted as Class 2 0 3 26 2  0 0 3 0 
Predicted as Class 3 0 0 0 32  0 0 0 6 

 

6.3.4 Soft Sensor for Quality Control 

The presence of oligomeric structures of Mab substantially diminishes the quality of the final product 

and can have profound negative impacts in the patient (Hawe et al. 2008; He et al. 2010; Mahler et al. 

2009; Printz and Friess 2012). It imposes a need for a non-invasive approach for rapid quality control 

of final product. Fluorescence spectra, in conjunction with PLSR, were implemented to develop an 

empirical model capable of at situ classification of the final product into classes with different 

degrees of aggregation. In order to calibrate the model, samples were grouped into 4 classes that were 

defined based on the ratio of the percentage of the area under the SEC chromatograms’ peak pertinent 

to tri/tetramers and that of the monomer IgG. For the purpose of model calibration, classes were 
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assigned corresponding integer values: 0, 1, 2, and 3. A possible description of the classes 

corresponding to each one of these integer values could be as follow: 0) no to very small aggregates-

acceptable sample; 1) mostly monomer with few aggregates-acceptable sample with caution; 2) equal 

amount of aggregates and monomers-require further evaluation; and 3) over half of the sample are 

aggregates-rejected sample. Clearly, the description of the classes is subjective and it could be 

modified if additional information such as the therapeutic efficacy of the Mab were available from 

other sources. The integer values describing the classes were used to form the response matrix Y that 

was regressed with respect to the input matrix containing the measured fluorescence spectra of the 

samples.  As mentioned before, the scattering region of the spectra is attributed to larger particles and 

can provide information about the presence of oligomeric structures. Thus, for the formulation of this 

soft sensor the complete fluorescence spectra, encompassing both the scattering regions and region 

attributed to tryptophan, were implemented as the input matrix (X). To validate the model precision, 

randomly selected experiments were excluded from the calibration step. The cross validation 

procedure revealed that 6 LVs minimizes the RMSE-CV and generates a model capable of capturing 

99.99% of input data set and explains 92.12% of output data with 𝑅𝐶𝐶2  being equal to 90.1%. The 

subsequent model is capable of predicting the test set with the 𝑅𝑃2 of approximately 79%.  

Figure 6-6a illustrates the model predictions for the calibration set and validation set distinguished 

based on their specified class. Since the predictions of the model are continuous variables, i.e. 

continuous values between 0 to 3, thresholds were selected as boundaries of classes in order to assign 

to each predicted value one of the integer values between 0 to 3. It can be concluded from the Figure 

6-6a that the model properly discriminates between classes with few samples being misclassified. 

Table 6-3 summarizes the confusion table for the calibration and validation sets where this table 

indicated the percentages of correct and incorrect detections obtained for each data set under study. 

From this table, the maximum probability for a true positive prediction (sensitivity) is observed for 

classes 0 and 3 for both calibration and validation sets, which supports the fact that the definite 

acceptance or rejection of the final product can be done with a high degree of certainty. The 

confusion table also indicates that the probability of true negative (selectivity) of different classes for 

calibration and validation sets are over 90%, except for class 1 for the validation set which is roughly 

80%. Despite the presence of some misclassified samples, the model demonstrates high selectivity 

and sensitivity which strengthens the potential of this model for quality control. The first LV plays the 

most crucial role accounting for approximately 84% of variation in X and predicting 90% of the 

response Y. From Figure 6-6b, the scores of LV2 vs. LV1, it is observed that there is a strong 



 

107 

correlation between the LV1 scores and classes. The physical relevance of LV1 is demonstrated by 

the contour plot of its loading, Figure 6-6c, which is dominated by the regions of spectra pertinent to 

scattering and, to a lesser degree, tryptophan-related emission. 

 

Figure 6-6 Results of the soft sensor for qualitative analysis: (a) Model classification of different 

samples (initial classes specified by symbols and colors); (b) Scores of LV2 vs LV1; (c) Contour 

plot of first loading. 

6.4 Conclusion 

Based on a comparison of HP-SEC and multi-wavelength fluorescence data it is demonstrated that 

intrinsic multi-wavelength fluorescence spectroscopy can be utilized for at situ quality control and 

quantitative monitoring of protein aggregation for different process conditions that typically occur 

during the downstream purification of monoclonal antibodies. To simulate the diverse processing 
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conditions during downstream processing, IgG samples were stressed under various conditions that 

included concentration, pH, and temperature that resulted in different aggregation patterns. The 

impact of these factors on the fluorescence signal was investigated and compared with the results 

obtained from HP-SEC-based sizing. To systematically comprehend the influence of these operating 

factors individually or in conjugation with each other, on the degree of aggregation, a non-

symmetrical CCD was performed. A surface response model was fitted to the data which helped to 

identify the operating regions where the propensity to aggregation was lower. An empirical predictive 

model was then established providing fast and accurate predictions of the monomer-IgG 

concentration in the sample. Finally, a model was developed using PLSR that successfully 

discriminated the samples into different classes corresponding to different degrees of aggregation. In 

view of the adverse impact of aggregation on therapeutic efficacy of antibodies, such a PLSR based 

model could be extremely beneficial for future online quality control. The feasibility of a 

fluorescence-based soft sensor for predicting both monomer concentration and aggregation patterns 

for a diverse set of operating conditions was demonstrated.  The proposed approach offers potential 

for at situ monitoring of downstream processes for monoclonal antibody production.  
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Chapter 7 
Conclusions and Recommendations 

 

The goal of this research was to develop soft sensors for real-time monitoring of monoclonal 

antibodies production by Chinese hamster ovary (CHO) cells both upstream (bioreactor) and 

downstream (purification). Two types of soft sensors were developed: data-driven (empirical model 

or black box) and model-driven (mechanistic model or white-box). Multi-wavelength spectra 

acquired by spectrofluorometry were used for the development of the data-driven soft sensors. The 

following discussion summarizes the challenges and the approaches adopted to overcome them. 

7.1 Upstream Monitoring 

In Chapter 3 evidence was presented that shows the ability of multi-wavelength fluorescence 

spectroscopy to serve as an analytical tool for in situ monitoring of CHO cell cultures. The 

importance of the spectrofluorometer settings on signal quality and experimental error were 

investigated by performing a Box-Behnken design. The optimum settings that lead to reproducible 

and accurate spectra were obtained through a systematic experimental design exercise. With the 

purpose of model calibration batch cell cultures were performed in shake-flasks with various initial 

glucose and glutamine concentrations in two different growth media (Media I & II) that resulted in 

significantly different growth patterns. The temporal evolution of the fluorophore peaks intensities 

were compared to the dynamics profile of culture variables in order to gain a better understanding 

about the correlations between them. The conclusion from this step was that the fluorescence spectra 

can be used for tracking cell culture variables and complemented a previous investigation (Teixeira et 

al. , 2009b). Moreover, the impact of biomass and recombinant protein on the spectra was studied by 

comparing spectra for culture broth before and after centrifugation as well as following protein A 

purification. These results were in agreement with the conclusions drawn from comparing the time 

evolution of fluorophore peaks and culture variables that indicated strong correlations between these 

variables. To develop soft sensors capable of predicting the actual state of the culture, PLSR was 

implemented to draw inferences about process variables from the fluorescence spectra. Preliminary 

modeling revealed that soft sensors developed using data from cultures grown in Media I resulted in 

less accurate predictions of culture variables for cells grown in Media II since the variation in growth 

Media had not been incorporated into the models. However, the models did track the trend in 
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variables properly thus reinforcing the notion that there are strong correlations between the dynamic 

evolution of fluorophores and other culture variables. To capture more accurately the dynamic 

behavior of the culture variables, the data set was randomly sliced into calibration and prediction sets 

(each containing cultures grown in both Media 1 & 2). Individual soft sensors were calibrated using 

PLSR to track viable cell, dead cell, recombinant protein, glucose, and ammonia concentrations. The 

physical relevance of the spectra used to predict each attribute was investigated in depth by studying 

the loading plots of PLSR models that corroborated the prior conclusions regarding the existence of 

clear correlations between fluorescence spectra and other culture variables. The soft sensors 

demonstrated accurate prediction quality after being tested using the prediction set. No previous study 

has investigated the impact of diverse growth media on model development and soft sensors capable 

of tracking dead cell density and metabolite concentrations for mammalian cell cultures as developed 

in this work. 

Chapter 4 developed the hypothesis that data-driven soft sensors, such as the fluorescence-based 

soft sensors presented in Chapter 3, are not accurate for extrapolation since they lack mechanistic 

insight into the process dynamics and are merely empirical. Thus, their prediction quality might 

diminish while predicting conditions that considerably diverge from the ones used for model 

calibration. Additionally, since fluorescence measurements are acquired at discrete sampling intervals 

the resulting soft sensors based on these infrequent measurements are incapable of capturing 

dynamics of the process in between measurement instances. A framework was proposed in Chapter 4 

based on an extended Kalman filter (EKF) that combines the results obtained from a fluorescence-

based soft sensor with a mechanistic model with the goals of: (a) filtering the noise from the estimates 

of the fluorescence-based soft sensor and (b) improving the accuracy of predictions of the culture 

variables in between sampling instances. Although the Kalman filter is a well-established technique, 

the proposed approach involving the combination of a fluorescence-based soft sensor and a metabolic 

flux based model has not been previously reported for mammalian cell cultures. Accordingly, a 

hybrid (continuous-discrete) EKF was implemented in this study to combine model-driven and data-

driven soft sensors. To account for structural and parameter uncertainty a non-stationary error was 

assumed for three model parameters. A key challenge in formulating the EKF is the calculation of the 

covariance matrices of measurement and process noise. Approaches were presented in this chapter to 

systematically identify these values from experimental data. The EKF-based soft sensor significantly 

enhanced accuracy of predictions at measurement instances. A critical advantage of EKF-based soft 

sensor is to track process variables in between sampling instances. This advantage is beneficial to 
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address the loss of accuracy associated with less frequent sampling, missing data, and outliers. To 

better comprehend this advantage, predictions of the dynamic behavior in between sampling points of 

the EKF-based soft sensor were compared with a simplistic first order hold extrapolation approach 

obtained from the fluorescence-based soft sensor’s measurements. The prediction accuracy of the 

EKF-based soft sensor substantially surpassed the first order hold extrapolation approach. 

The importance of the N-linked glycosylation on the therapeutic efficacy of Mab was discussed in 

Chapter 2. Preliminary investigations conducted revealed that the multi-wavelength fluorescence 

spectra cannot directly predict the glycosylation profile of the recombinant protein produced. 

However, as reported in the literature and experimentally observed here, the instantaneous 

glycosylation profile is correlated with the extracellular metabolic state of the culture. Thus, in 

Chapter 5 a mechanistic model was proposed relating the extracellular glucose and glutamine 

concentrations to the extent of the glycosylation. The model consisted of three blocks: (i) a dynamic 

metabolic model based on metabolic flux analysis (MFA) that predicts the extracellular state of the 

culture, (ii) a nucleotide sugars’ model that predicts the production of the nucleotide sugars, required 

for the glycosylation, in cytosol (or nucleus), and (iii) a dynamic model that simulates the 

glycosylation reactions occurring in the Golgi apparatus. The dynamic metabolic model and the 

glycosylation model (blocks i and iii) have been individually investigated in the literature. However, 

connections have not been made between the extracellular metabolites’ models to the dynamic 

glycosylation processes. Accordingly, a key novelty of this work was the development of the 

nucleotide sugar model that links the extracellular condition to the glycosylation inside the Golgi. 

This model was developed based on the reaction network of nucleotide sugars—relating the extra 

cellular glucose and glutamine to nucleotide sugars—obtained from the database Kyoto 

Encyclopaedia of Genes and Genomes (KEGG), where the intermediate reactions are lumped together 

for simplicity. Due to the unavailability of experimental data of nucleotide sugars the parameter 

estimation was a challenging task. To be able to compare the prediction results to the experimental 

data an averaging step was added to the model that converts the simultaneous glycoform profile to the 

accumulated form. In Chapter 5 assumptions and approaches were presented to overcome the 

parameter estimation related challenges for the proposed model. The computation time was another 

complexity in the parameter estimation problem that resulted from the large number of glycosylation 

reactions, unknown parameters, and number of iterations to predict over 9 days of culture. Systematic 

trimming of the network of reactions, utilizing matrix calculation, favoring binary matrices instead of 

conditional statements, and adopting parallel calculation by modifying the program were approaches 
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taken to drastically reduce the CPU time. The model performance was tested with a set of 

experimental data that was not used for model calibration. The resulting model was found capable of 

tracking the glycosylation profile of the Mab over the course of culture and it will be instrumental for 

identifying operating conditions that lead to a desirable glycan profile. It is also worth mentioning 

that in the context of process monitoring the first block of this model could be substituted with the 

EKF-based soft sensor, presented in Chapter 4, for at-line or online estimation of the extracellular 

state of the culture. Then, the extracellular state could be used to infer the corresponding 

glycosylation pattern by using the model proposed in Chapter 5.  

7.2 Downstream Monitoring 

In a standard manufacturing process the Mabs produced need to be purified using various 

downstream processes, which expose the product to various stress factors such as pH, temperature, 

ionic strength, and shear stress. In Chapter 6 the capability of multi-wavelength fluorescence 

spectroscopy for qualitative and quantitative monitoring of Mab aggregation was demonstrated. The 

use of intrinsic fluorescence spectroscopy for the development of predictive models for Mab 

aggregation has not been previously documented in the literature. In order to emulate the process 

conditions occurring during downstream processing.  For the sake of simplicity, samples were 

exposed to changes similar to the conditions that occur during purification rather than conducting an 

actual purification process. An asymmetric central composite design (CCD), consisting of three 

factors: temperature, pH, and initial recombinant protein concentration, was used to obtain diverse 

aggregation patterns. Mab samples were exposed to these factors over a 60 min time period (with 20 

min sampling instances). The stressed samples were then analyzed using multi-wavelength 

fluorescence spectroscopy and high-pressure size exclusion chromatography (HP-SEC). The 

qualitative impact of stress factors on the formation of oligomers (or loss of monomers) and 

conformational changes were studied by comparing the chromatograms obtained from the HP-SEC 

and tryptophan spectra obtained with the spectrofluorometry. The changes in fluorescence spectra 

resulting from conformational changes in recombinant protein structure of samples exposed to pH and 

temperature changes were in agreement with the corresponding changes observed in the 

chromatograms obtained from HP-SEC thus reinforcing the hypothesis that fluorescence spectra can 

be used to track protein aggregation. To better understand the impact of these parameters on the 

degree of aggregation (calculated based on HP-SEC results) and to identify a set of conditions with 

less propensity to cause aggregation, a response surface model was formulated and studied. With the 
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purpose of developing soft sensors for predicting aggregation the experimental data were randomly 

divided into calibration and test sets. Using the fluorescence spectra in combination with a PLSR 

model, a soft sensor was developed capable of predicting the monomeric content of samples 

(exposed/not exposed to changes in temperature or pH). This empirical based model predicted the test 

set with high precision. Finally, a soft sensor was formulated using fluorescence spectra in 

combination with PLSR regression model for classifying the final product into classes with different 

degrees of aggregation. To calibrate this model, samples were classified into 4 classes pertinent to 

their level of tri/tetramer and monomer Mab with integer values assigned into each class. The model 

was found to accurately predict the different levels of aggregation by using the test set data. In 

summary, the study performed in Chapter 6 demonstrated that fluorescence spectroscopy is a 

potential tool for at situ monitoring of downstream processes of recombinant protein production. 

From the work presented in this thesis it can be concluded that intrinsic fluorescence spectroscopy 

is a viable non-invasive and non-destructive technique for real time monitoring of mammalian cell 

cultivation at different stages of the process. The inherent limitations of this technique can be 

addressed by introducing process knowledge through mechanistic models in combination with 

empirical ones. 

7.3 Future Work Suggestions 

7.3.1 Use of a Fiber-Optic Probe for Online Fluorescence Acquisition 

The fluorescence-based soft sensor developed in this research (Chapter 3 and 6) relies on cuvette-

based signal acquisition and therefore only suitable for at situ monitoring. The spectrofluorometer can 

be equipped to acquire fluorescence signals using a fiber optic-based probe. This may allow for 

extending the capabilities of the proposed soft sensors to online monitoring. For bioreactor 

applications where sterility is critical, the fluorescence signals could be acquired through a quartz 

window. The implementation of such an online measurement would require the mitigation of 

perturbations arising from the presence of air bubbles and motion due to stirring. 

7.3.2   Use of Sensor-Fusion to Improve Predictability of the Soft Sensor 

Vibration techniques such as near infrared (NIR) spectroscopy are capable of detecting materials such 

as metabolites, e.g. glutamine (Teixeira et al. 2009a). NIR has been formerly investigated as a 

potential tool for monitoring mammalian cell cultivation (Harthun et al. 1998; Sellick et al. 2010). 
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The NIR data for the culture broth could be combined with the fluorescence data to form the input 

matrix (X) to be used for soft sensor calibration. Such a combination of different types of 

measurements, referred to in the literature as sensor fusion, could lead to improved prediction 

accuracy of the soft sensor developed in Chapter 3. Additionally, with this approach, the calibrated 

soft sensor could be used to predict the concentrations of different metabolites that could not be 

properly inferred from fluorescence signals alone. 

Such a combination of measurements could be also implemented with an extended Kalman filter 

(EKF) framework as presented in Chapter 4. Due to the larger number of observed variables, the 

consequent EKF-based soft sensor prediction accuracy, at and in between sampling instances, would 

be expected to improve.  

As demonstrated in this thesis, fluorescence spectroscopy is capable of providing information about 

the conformational changes of the monoclonal antibody, i.e. protein tertiary structure. In contrast, 

NIR spectroscopy would provide information on the secondary structure of the protein (van de Weert 

and Jørgensen 2012). The applicability and prediction accuracy of the soft sensor developed in 

Chapter 6 could be enhanced by incorporating the NIR signal along with the fluorescence spectra in 

the input data set (X) for model calibration using partial least square regression (PLSR). In order to 

tackle the possible nonlinear correlation between the input data set (X), that would consist of the 

combination of fluorescence and NIR data, and the output data set (Y) involving protein aggregation 

data as measured by SEC, support vector machine (SVM) could be utilized in combination with 

partial least square (PLS) or principal component analysis (PCA). SVM is a supervised learning 

technique capable of capturing nonlinear relationships between the input and output without 

increasing the dimensionality of the model thus avoiding over-fitting. 

7.3.3 Improvement of the Glycosylation Model 

The culture broth pH and cultivation temperature have been reported to have a significant impact on 

the growth pattern of the cells as well as the glycosylation pattern of the Mabs (Aghamohseni et al. 

2014). The effects of pH and temperature could be integrated into the models presented in Chapter 5. 

The metabolic model could be modified to account for the diverse growth pattern due to changes in 

culture pH and temperature. Additionally, the glycosylation processes occurring in the Golgi 

apparatus could be affected through changes in the enzymatic activity. 
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7.3.4 Inference of the Mab Glycosylation Pattern 

The presence of glycans on the backbone of the Mab has been reported to have a significant impact 

on their aggregation pattern. This phenomenon could be used as an indirect approach for inferring the 

glycan structure of the Mab. For instance, Mabs with different glycosylation levels could be subjected 

to temperature and pH changes such as to cause protein aggregation. The resulting aggregation levels 

could then be correlated to the degree of glycosylation. This could be a more practical and more 

inexpensive approach for monitoring glycosylation compared to the time consuming methods 

currently available, e.g. hydrophilic interaction liquid chromatography (HILIC) followed by 

exoglycosidase enzyme array digestion. Also, the empirical model presented in Chapter 5 could be 

used in combination with the aggregation results to enhance the prediction of the glycosylation 

pattern. 
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Appendix A 
Protein Aggregation: Analytical Techniques 

Method Size range Application Advantages Disadvantages References 
Visual inspection 50 µm - mm Determination of the 

absence or presence 
insoluble aggregates 

Easy to perform 
Provides information on 
size/ shape of particle and 
clarity of solution 

Does not give quantitative 
results 
Cannot be used with soluble 
aggregates 

(den Engelsman 
et al., 2011) 

SDS-PAGE kDa - MDa Separation in a gel, by an 
electric field 
Size (molecular weight) 
estimation 

Differentiates between 
covalent and non-covalent 
aggregates 

Separated protein bands must 
be stained in order to be visible, 
making quantification of results 
difficult 

(den Engelsman 
et al., 2011) 
(Wang, 2005) 
(Mahler et al., 
2009) 

AF4 1 nm - 50 µm Size estimation and 
quantification of soluble 
aggregates 

Does not need a stationary 
phase 
Can be combined with 
other techniques (UV, 
MALLS) 
Has a large detection range 

Difficult to validate 
Dependent on size of aggregate 
Less rigorous than 
chromatography 

(Mahler et al., 
2009) 
(den Engelsman 
et al., 2011) 

MALLS kDa - MDa Detect different aggregate 
species & determine their 
molecular mass 
 

No calibration required 
Independent of order of 
elution 
Can be combined with SEC 
to give useful results 

Highly sensitive to 
contamination of sample 
Concentration of elution 
fraction, and differential 
refractive index increment must 
be known 

(den Engelsman 
et al., 2011) 
(Mahler et al., 
2009) 

DLS 1nm - 5µm Determination of size 
distribution of soluble 
aggregates 

Non-destructive 
Non-invasive 
Allow samples to be reused 
Very small volume of 

Does not yield quantitative 
results 
Highly sensitive to 
contamination (dust, bubbles) & 

(Mahler et al., 
2009) 
(den Engelsman 
et al., 2011) 
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sample required for analysis 
Rigorous sample 
preparation not needed 

large aggregates 
 

CD N/A Analysis and identification 
of secondary, tertiary or 
quaternary structures of 
proteins 
 

Non-destructive 
Small sample volume 
required 
Samples can be dissolved in 
aqueous buffers without 
need for co-solvents 

Data obtained is difficult to 
interpret, must be deconvoluted 
before structures can be 
quantitatively assessed 
Light scattering particles 
interfere with results 

(den Engelsman 
et al. 2011; Li et 
al. 2006) 

FT-IR N/A Identification and 
characterization of 
secondary structures 

Non-destructive 
Convenient 
Absorption spectra can be 
obtained for proteins in a 
range of environments 
Small sample volume 
required 
Does not require calibration 

Low sensitivity 
Aqueous solvent may interfere 
with absorption 
High (>10mg/ml) concentration 
of protein & small path length 
needed 

(Kong and Yu 
2007; Mahler et 
al. 2009) 

NMR N/A Identification and analysis 
of secondary protein 
structures 

Non-invasive 
Used instead of x-ray 
techniques – eliminate 
exposure to radiation 
 

NMR spectra of large proteins 
difficult to interpret 
Concentration dependent 
Insensitive 
Only works if aggregate soluble 

(Li et al. 2006; 
Surewicz et al. 
1993) 

Fluorescence 
spectroscopy 

N/A Highly sensitive method for 
protein quantification and 
characterization 

Rapid 
Non-invasive 
Non-destructive 
Can be combined with 
microscopic tools 
Possible online detection 

Low resolution 
Can be affected by polarity of 
solvent 
Presence of dissolve oxygen can 
reduce emission due to 
oxidation of the protein 
Use of dyes may affect protein 
conformation 
Impurities may affect 
fluorescence 

(Abbas et al. 
2013; Elshereef 
et al. 2006) 
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Appendix B 
Optimization of Spectrofluorometer Settings 

B. 1 Fluorescence Measurements 

A Varian Carry Eclipse Fluorescence spectrofluorometer equipped with a Peltier multi-cell holder, 

was used to acquire spectra from samples of Bio-Grow media. To monitor the evolution of various 

amino acids, vitamins, and cofactors, that may fluoresce in a wide range of excitation emission the 

instrument settings have to be carefully selected to generate statistically accurate results. In this study, 

fluorescence spectrometry was performed at room temperature (~25˚C) within an excitation and 

emission range of wavelengths of 240-500 nm (with increments of 10 nm) and 280-550 nm 

respectively to encompass the emission-excitation wavelengths’ combinations corresponding to the 

main fluorophores (Lindemann et al. 1998; Peiris et al. 2009; Ryan et al. 2010; Teixeira et al. 2011). 

Three different parameters of the spectrofluorometer, including photomultiplier tube (PMT) voltage, 

scanning rate, and slit width (SW), were manipulated to obtain consistent results with low noise to 

signal ratio as well as a high sensitivity spectrum. MATLAB 7.11.0 software (Mathwork Inc., Natick, 

Massachusetts, U.S.A.) was utilized for data processing. In some cases to increase the accuracy with 

respect to the fluorophores’ peaks, scattering related signals were eliminated using MATLAB based 

software (Zepp et al. 2004).  

A 33 Box-Behnken (Montgomery 2009) experimental design was implemented to get a preliminary 

assessment of the impact of the instrument settings as well as finding the feasible range of values for 

these settings. The experimental design is summarized in Figure B-1 and was performed for samples 

of three different ratios of media to buffer (1:0, 1:3, 1:19). 



 

119 

 

Figure B-1. Box Behnken design for 3 instrument parameters (A) PMT voltage: Low=400V, 
Medium =600V, High =800V; (B) SW: 2.5 nm, 5 nm, 10 nm for both excitation and emission; 
(C) Scanning rate: Medium (600 nm/min, Em interval of 1 nm), Fast (1200 nm/min, Em interval 
of 2 nm), Fastest (9600 nm/min, Em interval of 2 nm) 

Based on the preliminary measurements, it was found that low intensity signals are associated with 

higher noise to signal ratio, while signal intensities above a particular strength exceed the detector’s 

measuring range.  Signal resolution is another factor that is affected by instrument settings. It was 

also observed as shown in Figure B- 2 that following dilution peak intensities related to some 

fluorophores increase until a certain dilution and then decrease with further dilution. It is believed that 

this initial increase of peak intensity followed by a decrease may be due to quenching of the 

fluorescence signal and dilution of quenching agents. 

PMT VOLTAGE

SCANNING  RATE

SLIT WIDTH

(0,0,0)
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Figure B- 2. Tyrosine, tryptophan, and pyridoxine peak intensity (a.u) vs. media to PBS ratio. 

B. 2 Results and Discussions 

To further assess the effect of the device settings, samples were collected in triplicates and 95% 

confidence intervals error as well as signal to noise ratio have been calculated and compared with 

different instrument settings. Impacts of instrument settings are as follow: 

B. 2.1 PMT Voltage 

At constant slit width of 5 nm and medium scanning rate an increase in PMT voltage from 400 V to 

600 V, significantly improved signal`s noise but a subtle improvement was observed with increase in 

PMT voltage from 600 V to 800 V. Additionally, the increase in PMT voltage from 400 to 600V 

decreased error dramatically but further increase of PMT voltage to 800V caused the error to rise 

significantly. These observations are consistent with previous studies (Casado-Terrones et al. 2007; 

Peiris et al. 2009). 

B. 2.2 Slit Width 

Possibly the most influential instrument setting is the emission and excitation slit-width (SW) as it 

significantly affects the trade-off between noise to signal ratio and signal resolution. It is  important to 

notice that SW cannot be increased above a certain point, constrained by Equation B-1 (Peiris et al. 

2009). Respectively, tyrosine with a Stokes-shift of approximately 40 nm, suggesting that both 

emission and excitation SW should not exceed 10 nm. 
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2 × (𝑆𝑆𝑒𝑒 + 𝑆𝑆𝑒𝑒) ≤ 𝑆𝑆𝑆𝑆𝑆𝑆. 𝑆ℎ𝑖𝑖𝑖 Equation B- 1 

With constant PMT of 600 V and Fast scanning rate measurement it was revealed tha, error tends 

to diminish when shifting to higher SW, although the improvement from SW equal to 5 nm to 10 nm 

is negligible. 

Regarding the signal resolution, it was concluded that lower SW contributes to better resolution but 

higher noise, which corroborates with previous findings (Peiris et al. 2009). These results also 

suggest that SW above 10 nm is not satisfactory from the resolution point of view. 

B. 2.3 Scanning Rate 

At constant PMT of 600 V and SW of 5 nm, no significant difference was observed in the results 

acquired in different scanning rates. Thus, since fluorescence spectroscopy is aimed to be used as an 

in situ monitoring technique; higher scanning rates are more favorable. 
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Appendix C 
Additional Graphs 

 

Figure C- 1. Contour plot of regression coefficient for viable cell density model presented in 

Chapter 3 
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Figure C- 2. Contour plot of second latent variable of model presented in Chapter 4 
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Figure C- 3. Het treated samples with 0.5 mg/ml initial IgG at 60 °C and pH 7 for 60 min  
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Appendix D 
Supplementary Information for Chapter 5 

Below are the set of equations related to the production of nucleotide sugars: 
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