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Abstract

In this work, we study the problem of lossy joint source-channel coding in an energy harvest-

ing single-user communication system with causal energy arrivals, where the energy storage

unit may have leakage. In particular, we investigate the achievable distortion in the trans-

mission of a single source with arbitrary alphabets via an energy harvesting transmitter over

a point-to-point channel.

We first establish a lower bound on the achievable distortion. Then, to minimize the

distortion we consider an adaptive joint source-channel coding scheme, where the length of

channel codewords varies adaptively based on the available battery charge in each communi-

cation block. For this scheme, we obtain two coupled equations that determine the mismatch

ratio between channel symbols and input symbols as well as the transmission power, both

as functions of battery charge.

As examples of continuous and discrete sources, we consider Gaussian and binary sources.

In particular, for the Gaussian case, we obtain a closed form expression for the mismatch

factor in terms of the LambertW function, and show that an increasing transmission power

results in a decreasing mismatch factor and vice versa. We also numerically show that

when the mismatch factor adaptively changes based on the available charge in the battery,

the communication system achieves a smaller distortion compared to that of a constant

mismatch factor.
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Chapter 1

Introduction

1.1 Wireless Sensor Networks

A Wireless Sensor Network (WSN) is a network of spatially distributed sensors which col-

lectively gather and disseminate information (e.g., temperature, vibration, pressure, sound,

humidity, etc) across sensing fields. Sensor tasks include sensing, processing (compression)

and transmission of data through the network to a destination. As each sensor node can

leave or join the network without impacting other nodes, a WSN is typically self-organized

and thus plays an important role in unsupervised control systems. Another advanced feature

in WSNs is decentralized network management for sensor failure detection. Currently, WSNs

are employed in a range of applications such as environmental/earth monitoring [1], health

care monitoring [2] and natural disaster relief operation [3]. Each sensor node is often pow-

ered by a very small and limited energy storage unit (battery) and therefore has a very short

lifetime. Furthermore, in most cases, sensor devices are scattered over remote geographical

areas which makes them inaccessible after installation. As a result, regular maintenance and

battery replacement for each sensor is impractical, if not impossible. Due to these strict
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energy constraints and limitations, the design of energy-efficient WSNs with good lifetime

has become a significant challenge. While energy efficiency has always been a concern in

WSNs and various energy-efficient protocols have been proposed in the literature for routing

[4, 5] and medium access control [6, 7], to develop truly autonomous systems which do not

require regular maintenance it is essential to supply a sustainable energy source to sensor

devices.

1.2 Energy Harvesting

Energy harvesting (EH), i.e., supplying energy by the harnessing of ambient energy resources

such as solar [8], wind [9] and thermal energy [10], is a promising state-of-the-art solution

that can significantly improve sensor lifetime. In a typical EH node, the energy required

for various sensor tasks is incrementally harvested from the environment and stored during

the course of operation. In light of the potential knowledge of future energy arrivals (from

renewable energy resources) at the transmitter, two major categories of EH models are con-

sidered, namely, online and offline. In the offline regime, it is assumed that time and amount

of future energy arrivals are non-causally (deterministic knowledge) known at the transmit-

ter, whereas in the online regime knowledge of future energy arrivals is causally (stochastic

knowledge) known at the transmitter. Hence, due to the stochastic nature of renewable

energy resources, sensor energy consumption for data transmission task (i.e., transmission

power) is a crucial communication resource that must be managed adaptively to achieve

reliable performance.
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1.3 Bandwidth Mismatch In Source-Channel Coding

The design of robust, simple and optimal joint source-channel coding (JSCC) schemes that

can achieve reliable performance for a given channel condition, is a challenge that has been

studied in the literature. For instance, in the source-channel transmission of a Gaussian

source over a Gaussian channel with one channel use per source symbol, i.e., channel band-

width is matched to the source bandwidth, uncoded transmission with a linear scaling of the

source symbols is known to be optimal [11]. On the other hand, for source-channel coding

scheme with a mismatch between source bandwidth and channel bandwidth some achievable

schemes have been proposed in the literature [12, 13, 14]. The two-user broadcast channel is

an example for which achievable schemes with bandwidth compression (less than one chan-

nel use per source symbol) [14], and bandwidth expansion (more than one channel use per

source symbol) [13] have been developed. Moreover, some optimal hybrid analogue-digital

source-channel coding schemes for a given channel condition have been addressed in [15],

where only integer bandwidth compression or expansion has been considered. In addition,

sometimes it happens that there are constrains imposed on the source-channel bandwidth

mismatch ratio which makes the design process even more complicated. This in turn results

in treating the bandwidth mismatch factor as another crucial communication resource whose

optimal scheme must be allocated to achieve reliable performance.

1.4 Related Work

Among prior works that consider lossy communication with EH transmitters/receivers are

[16, 17, 18, 19, 20, 21, 22]. In [16], the mean squared distortion of the estimated source

symbols at the receiver is minimized, where both online and offline EH scenarios are con-

sidered and the mismatch factor is always one. In [17], the problem of energy allocation
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for data acquisition and transmission in WSNs is studied, and the case of a single sensor

as well as the case of multiple sensors are both considered. A similar problem is studied

in [18] for the case of a single source with finite battery and data buffer. Another interest-

ing work is [19], where a perturbation-based Lyapunov technique is proposed to obtain an

online energy management scheme for source-channel coding of correlated sources. In [20],

a Gaussian source is transmitted over a fading channel and the offline minimization of the

total distortion over a finite-time horizon is considered. Therein, the optimal compression

rate and transmission power policy are found subject to a delay constraint for reconstruction

of the source symbols at the receiver. In [21], the problem of uncoded transmission over a

fading channel is investigated, and an optimal energy allocation scheme to minimize the total

distortion is established.

Communication systems with EH transmitters/receivers have also been studied exten-

sively in the context of lossless transmission. For instance, the offline minimization of the

transmission completion time in a single source is considered in [23], where the battery ca-

pacity is infinite. This problem has been also extended to the cases of finite battery [24],

multiple access channels [23], broadcast channels [25, 26, 27] and fading channels [28]. In

another line of work, throughput/sum-throughput maximization is considered for point-to-

point channels [29], interference channels [30] and relay channels [31, 32]. A more realistic

battery model with energy leakage is also considered in this context [33, 34].

1.5 Thesis Statement and Contributions

In this work, we focus on the design of data transmission policies in EH sensor devices.

Specifically, we consider a scenario where a single node continuously senses data from a source

and wishes to transmit this data over a point-to-point channel. The harvested energy is stored
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in a battery that may leak energy at a rate which depends on the available battery charge. In

particular, an ergodic battery charge process can be identified based on a compound Poisson

dam storage model in terms of transmission power, battery leakage rate and the energy

arrival process. The communication is carried by a joint source-channel coding (JSCC)

scheme, where in each communication block a source sequence of fixed length is mapped

into a channel codeword whose length depends only on the battery charge. In other words,

the mismatch factor between the channel symbols and source symbols is adapted to the

battery charge.

We summarize the major contributions of this thesis as follows:

• We formulate and model continuous-time lossy joint source-channel coding in an energy

harvesting communication system, where the transmission power and bandwidth mis-

match factor, i.e., the length of channel codewords per source symbol, are dynamically

adapted to the available battery charge.

• We establish a lower bound on the average distortion and show that in the case of

infinite battery capacity and no leakage it is asymptotically achieved with a constant

transmission power and a constant mismatch factor.

• Using a calculus of variations technique, we find achievable locally optimal transmission

power and mismatch factor policies that minimize the average distortion at the receiver.

• We develop an interesting structural result on the instantaneous distortion. Namely, as

long as the battery is not depleted, locally optimal transmission power and mismatch

factor policies will adaptively adjust with the battery charge in such a way that the

instantaneous distortion is maintained to a constant level.

• For a moderate-size battery, we numerically show that our proposed scheme with an
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adaptively varying mismatch factor achieves a smaller average distortion compared to

a scheme with a constant mismatch factor.

• For Gaussian and binary sources, we numerically find locally optimal power policies and

mismatch factor policies, both as functions of battery charge. With different leakage

rates, i.e., zero leakage rate as well as arbitrary non-zero leakage rates, we observe that

a good transmission power policy and mismatch factor policy increases and decreases

respectively, as the battery charge increases.

1.6 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2, we study the communication

model as well as the EH model. Specifically, the continuous-time formulation of the problem

settings as well as modelling of ergodic battery charge process are addressed in Chapter 2.

In Chapter 3, we present the problem formulation. A lower bound on the average distortion

as well as the achievable scheme of the communication resources are studied in Chapter 4.

Some structural results for the instantaneous distortion and the case of Gaussian source are

also studied in this Chapter. In Chapter 5, we provide numerical results and simulations.

Finally, Chapter 6 concludes this thesis and elaborates on some future research directions.
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Chapter 2

Adaptive Resource Allocation for EH

Communication Systems When Using

A Lossy JSCC Scheme

2.1 Communication Model

We consider the lossy source-channel transmission of a stationary memoryless source with

general alphabet (continuous or discrete) over a point-to-point channel. We first assume

that the communication is carried over K consecutive blocks of joint source-channel coding

(JSCC), where the number of source symbols in each block is fixed, whereas the length of

the channel codewords varies from one block to another based on the available charge in

the battery. Specifically, during the ith block, i = 1, ..., K, a sequence of m independent

and identically distributed (i.i.d.) realizations of the source smi = (si[1], si[2], ..., si[m]),

are mapped to a channel codeword of length ni, x
ni

i = (xi[1], xi[2], ..., xi[ni]). The input xni

i
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induces a distribution on the channel output yni

i = (yi[1], yi[2], ..., yi[ni]), according to the law

PY (yni

i ) =
∏ni

k=1 PY |X(yi[k]
∣

∣xi[k])PX (xi[k]), where PY |X (y|x) is the conditional distribution

of the stationary and memoryless channel.

We assume that τ is the time duration needed for one symbol to be generated/transmitted.

Associated with τ , ∆ts = m × τ is the time duration to generate m source symbols, and

∆tci = ni × τ is the time duration to transmit a channel codeword of length ni during the

ith block (see Fig. 2.1).

Definition 1. We define the bandwidth mismatch factor between the ith channel codeword

block, with duration ∆tci, and the source symbol block, with duration ∆ts, as κ(tci) =

∆tci/∆ts = ni/m for i = 1, ..., K, where tci :=
∑i

j=1∆tcj is the channel output time that we

take as the reference time throughout the thesis. Likewise, {p(tci)}
K
i=1 is the average power

constraints on the codewords, i.e.,

1

ni

ni
∑

j=1

∣

∣xi[j]
∣

∣

2
≤ p(tci), i = 1, ..., K. (2.1)

As demonstrated in Fig. 2.1, the mismatch factor κ(tci) is fixed throughout each block,

nevertheless it can change adaptively from one block to another. Similarly, the transmission

power p(tci) can only change from block to block.

The rate-distortion function (i.e., lossy source coding rate) in the ith block, for a source

S is given by

Rs(Di) = inf I(Ŝ;S), i = 1, ..., K, (2.2)

where the infimum is taken over all conditional distributions PŜ|S such that E[d(Ŝ, S)] ≤ Di

in the ith block, and I(Ŝ;S) is the mutual information between the estimated symbols Ŝ and

the source symbols S. We assume that for a given source S and distortion measure d(ŝ, s)
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. . .

. . .

m m m

n1 n2 n3

∆tc1 ∆tc2 ∆tc3

1

κ(tc1)
∆tc1

1

κ(tc2)
∆tc2

1

κ(tc3)
∆tc3

Source symbols:

Channel codewords:

Figure 2.1: Consecutive blocks of JSCC, where m and ni, i = 1, ...,K, are the number of source
symbols and length of channel codewords in each block, respectively.

the rate-distortion function Rs(D) has two thresholds Dmax and Rth
s (where Dmax is always

finite whereas Rth
s could be finite or infinite), such that:

[S1] Rs(D) is zero for D ≥ Dmax,

[S2] Rs(D) is strictly decreasing, convex and twice continuously differentiable for 0 < D <

Dmax, i.e., R
′
s(D) < 0 and R′′

s (D) > 0, and continuous at D = Dmax,

[S3] limD↓0R
′
s(D) = −∞ , and R′

s(D) is finite everywhere else,

[S4] limD↓0Rs(D) = Rth
s , and Rs(D) is right-continuous at D = 0 if Rth

s is finite.

An example of a source whose rate-distortion function satisfies these conditions is the Gaus-

sian source N (0, σ2), where for a squared-error distortion measure d(ŝ, s) = |s − ŝ|2 its

rate-distortion function is given by [35],

Rs(D) =







1

2
log

σ2

D
0 < D < σ2

0 D ≥ σ2.
(2.3)
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Here, we have that Dmax = σ2 and Rth
s = ∞. Another example is a Bernoulli(p) binary

source with Hamming distortion d(ŝ, s) = 0 for s = ŝ and d(ŝ, s) = 1 otherwise. The

rate-distortion function is then given by [35],

Rs(D) =







H(p)− h(D) 0 ≤ D < min{p, 1− p}

0 D ≥ min{p, 1− p},
(2.4)

where H(p) is the entropy of the source and

h(D) := −D log2 D − (1−D) log2(1−D). (2.5)

For the binary source, Dmax = min{p, 1− p} and Rth
s = H(p).

With respect to channel coding in the ith block, the channel coding rate Rc(p(tci)) is

given by

Rc(p(tci)) = sup I(X ; Y ), i = 1, ..., K, (2.6)

where the supremum is taken over all channel input distributions PX that satisfy the power

constraint p(tci) in (2.1) for the ith block. We assume that the channel coding rate Rc(p)

has the following properties:

[C1] Rc(p) is strictly positive for p > 0, zero at p = 0 and right-continuous at p = 0,

[C2] Rc(p) is strictly increasing, concave and twice continuously differentiable for p > 0,

i.e., R′
c(p) > 0 and R′′

c (p) < 0.

For example, the Shannon rate function Rc(p) =
1

2
log2(1 + p/N), which will be used later

in the thesis, satisfies these properties.

We assume that the block lengths m and ni, i = 1, ..., K, are sufficiently large that the

rate-distortion function and the channel coding rate have operational significance. Since the
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mismatch factor is fixed throughout each JSCC block, source-channel separation holds in

each block. Therefore, based on a separate source and channel coding scheme, the relation

between source coding rate Rs(Di) and the channel coding rate Rc(p(tci)) is given by

Rs(Di) = κ(tci)Rc(p(tci)), i = 1, ..., K. (2.7)

One should note that by the condition [S2] and continuity of Rs(D) at D = Dmax, the

inverse function Di(Rs) of the rate-distortion always exists for 0 ≤ κ(tci)Rc(p(tci)) < Rth
s

(though in most cases there is no closed-form), and we can compute the distortion Di(Rs)

in the ith block in terms of the transmission power p(tci) and the mismatch factor κ(tci)

using (2.7), i.e., Di(Rs) := D(p(tci), κ(tci)). Moreover, if Rth
s is finite then the distortion is

D(p(tci), κ(tci)) = 0 for pairs p(tci), κ(tci) such that κ(tci)Rc(p(tci)) ≥ Rth
s .

From the definition of the mismatch factor and Fig. 2.1, we directly obtain

K ×∆ts =
K
∑

i=1

1

κ(tci)
∆tci . (2.8)

Eq. (2.8) can be used to recast the average distortion in terms of the output reference time

tc. Specifically, the total average distortion per source symbol over K blocks can be written

as

Davg :=
1

K∆ts

K
∑

i=1

D(p(tci), κ(tci))∆ts (2.9)

=
1

K∆ts

K
∑

i=1

D(p(tci), κ(tci))
1

κ(tci)
∆tci . (2.10)
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2.2 Continuous-Time Model

As a practical assumption, we suppose that both the source and the channel block times,

∆ts and ∆tci respectively, are small compared to the battery dynamics. Hence, we develop a

continuous-time model in the asymptotic regimes based on (2.8) and (2.10), and let K grow

so that

Ts := K∆ts

Tc :=

K
∑

i=1

∆tci ,

where the terms Ts and Tc have fixed values as ∆ts → 0, ∆tci → 0 and K → ∞. In the limit

of ∆ts → 0, ∆tci → 0 and K → ∞, (2.8) is a Reimann sum and thus the continuous-time

limit takes the following form

Ts =

∫ Tc

0

1

κ(tc)
dtc. (2.11)

We define

ρ(Tc) :=
Ts

Tc

=
1

Tc

∫ Tc

0

1

κ(tc)
dtc. (2.12)

In this thesis, we are interested in infinite-time horizon communication and long-term aver-

age distortion. We thus let the transmission time become asymptotically large, i.e., Tc → ∞.

If limTc→∞ ρ(Tc) > 1 or limTc→∞ ρ(Tc) < 1, the backlog in either the source symbols queue or

the transmission of channel codewords tends to infinity. Thus, the joint source-channel com-

munication system is asymptotically stable if limTc→∞ ρ(Tc) = limTc→∞ Ts/Tc = 1. There-

fore, from (2.12) for an asymptotically stable joint source-channel communication system we
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require that,

lim
Tc→∞

1

Tc

∫ Tc

0

1

κ(tc)
dtc = 1. (2.13)

Hence, we rewrite the continuous-time limit of (2.10) as

Davg = lim
Tc→∞

1

Ts

∫ Tc

0

D(p(tc), κ(tc))
1

κ(tc)
dtc

= lim
Tc→∞

1

Tc

∫ Tc

0

D(p(tc), κ(tc))
1

κ(tc)
dtc, (2.14)

where (2.14) follows from the fact that limTc→∞ Ts/Tc = 1.

2.3 Storage Model

We assume that the energy arrival times and amounts to the battery are not known at the

transmitter. However, their statistical properties are known. Therefore, the instantaneous

energy of the battery is a stochastic process that can be characterized based on the statistics

of energy arrivals. Let {Ei}
∞
i=1, denote the size of the energy packets arriving to the battery

at time instants {Ti}∞i=1, where Ei > 0 and T1 < T2 < ... . We assume that energy packets are

i.i.d. with the tail distribution function denoted by B(z) = P[E > z], and the corresponding

arrival times are a homogeneous Poisson point process. Specifically, the inter-arrival times

are i.i.d. and exponentially distributed with parameter δ, i.e., ∆Tn := Tn+1 − Tn ∼ Exp(δ).

The total harvested energy at the transmitter up to the time t, {A(t) : t ≥ 0} is thus a

compound Poisson process given by

A(t) =
∑

n∈N

En1{Tn<t}. (2.15)
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We assume that the capacity of the battery L is finite, that is, L < ∞. Furthermore, we

assume that the battery is imperfect in the sense that it may leak energy over time at a rate

which depends only on the current battery charge Z(t), and is denoted by ℓ(t) at time t.

Also, it is clear that there is no leakage when the battery is depleted.

The instantaneous battery charge at time t, {Z(t) : t ≥ 0} is therefore a stochastic

process described by

Z(t) = z0 + A(t)−

∫ t

0+

(

p (s) + ℓ(s)
)

ds− R(t), (2.16)

where z0 = Z(t)|t=0 is the initial battery charge and R(t) is a non-decreasing and continuous-

time reflection process with R(t)|t=0 = 0, that only increases over the set {t : Z(t) = L}

[36]. The reflection process accounts for the excess energy arrivals that overflow the battery

capacity and ensures that even for large energy packet arrivals the storage process satisfies

its capacity limit at all times, i.e., Z(t) ∈ [0, L]. Furthermore, p(t)+ℓ(t) is the instantaneous

battery depletion rate which depends on time only through Z(t), i.e., p(t)+ℓ(t) = p (Z(t))+

ℓ (Z(t)). Likewise, the instantaneous mismatch factor κ(t) is modulated by the battery

charge Z(t), where κ(t) = κ(Z(t)). More specifically, since p(t), ℓ(t) and κ(t) depend on t

only through the battery charge Z(t), with slight abuse of notation we denote by p(z), ℓ(z)

and κ(z) the explicit dependence of these on z. In the rest of this thesis, we refer to p(z)

and κ(z) as the power policy and mismatch factor policy. The storage process Z(t) can then

be viewed as a continuous-time Markov process, where the state space of the process is the

finite interval [0, L]. We impose the following conditions on the feasible set of power policies

and leakage rates

• ∀z ∈ (0, L], p(z) > 0, and p(z)
∣

∣

z=0
= 0,

• sup0<z≤L p(z) < ∞,
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• sup0<z≤L ℓ(z) < ∞, and ℓ(z)
∣

∣

z=0
= 0.

The first condition is to avoid a reserve of energy in the battery that can never be consumed

by transmission, and thus effectively reduces the usable energy stored in the battery. The

second condition reflects the fact that instant depletion of an amount of energy ∆E > 0 is not

allowed. With these conditions on p(z) and ℓ(z), Z(t) becomes irreducible in the sense that

there is only one single communicating class in the state space. For an irreducible Markov

chain, either all states are recurrent or all states are transient. Since, every irreducible

Markov chain with a closed and bounded state space is positive recurrent, the storage process

Z(t) is thus positive recurrent.

We define π̃Tc
(z) as the empirical distribution function of the storage process with respect

to the reference time, i.e.,

π̃Tc
(z) :=

1

Tc

∫ Tc

0

1{Z(tc)≤z}dtc. (2.17)

By the strong law of large numbers, as Tc → ∞, π̃Tc
(z) converges to the stationary probability

measure of the storage process denoted by π(z), almost surely for every value of z. The

following theorem states the ergodicity condition for the storage process Z(t) [37], where we

recall that the inter-arrival times are i.i.d. and exponentially distributed with parameter δ,

i.e., Tn+1 − Tn ∼ Exp(δ).

Theorem 1. For L < ∞, the storage process Z(t) is positive recurrent and there exists a

unique stationary probability measure π(z) = P[Z(t) ≤ z], which may have an atom π0 :=

π(z)|z=0 ≥ 0, and is absolutely continuous on (0, L] such that

π(z) = π0 +

∫ z

0+
f(u)du, (2.18)

where f(z) is the absolutely continuous part of the probability measure of the storage process
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for z > 0. Moreover,

f(z) (p(z) + ℓ(z)) = δπ0B(z) + δ

∫ z

0+
B(z − u)f(u)du. (2.19)

Remark 1. From (2.17), π0 is the fraction of time that the battery remains discharged.

Remark 2. Equation (2.19) is the equilibrium condition between the rate of down-crossing

f(z)(p(z) + ℓ(z)) and the rate of up-crossing δπ0B(z) + δ
∫ z

0+
B(z − u)f(u)du at a threshold

Z = z.

We now assume that the packets of energy are exponentially distributed with parameter

λ, i.e., B(z) = exp(−λz). Therefore, (2.19) reduces to

f(z) (p(z) + ℓ(z)) = δe−λz

(

π0 +

∫ z

0+
eλuf(u)du

)

. (2.20)
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Chapter 3

Problem Formulation

In this chapter, we formulate a non-linear optimization problem whose solution determines

the structure of a locally optimal achievable scheme for transmission power policy and mis-

match factor policy.

Since, π(z) is a probability measure we have

∫ L

0

π(dz) = π0 +

∫ L

0+
f(z)dz = 1. (3.1)

By combining (2.13) and (2.18), we also obtain the following constraint on the mismatch

factor

lim
Tc→∞

1

Tc

∫ Tc

0

1

κ(Z(tc))
dtc = Eπ

[

1

κ(z)

]

a.s. (3.2)

=
π0

κ0
+

∫ L

0+

f(z)

κ(z)
dz (3.3)

= 1, (3.4)
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where κ0 := κ(z)|z=0 is the number of channel uses per source symbol when the battery is

exhausted. Similarly, we apply the ergodicity argument to the distortion function in (2.14).

We first rewrite Davg from (2.14) as

Davg = lim
Tc→∞

1

Tc

∫ Tc

0

D
(

p (Z (tc)) , κ (Z (tc))
) 1

κ (Z (tc))
dtc. (3.5)

Due to the ergodicity of the storage process Z(tc), we obtain

Davg =

∫ L

0

D (p(z), κ(z))
1

κ(z)
π(dz) a.s. (3.6)

= π0D
†(p(0), κ0) +

∫ L

0+
D† (p(z), κ(z)) f(z)dz (3.7)

= Eπ

[

D†

(

p(Z),
1

κ(Z)

)]

, (3.8)

where

D†

(

p(z),
1

κ(z)

)

:= D(p(z), κ(z))
1

κ(z)
. (3.9)

We now wish to find the optimal transmission power policy p(z) and mismatch factor policy

κ(z) such that the distortion at the receiver is minimized. More specifically, we want to

minimize (3.7) subject to the constraints in (2.20), (3.1) and (3.4), i.e.,

inf
f(z),π0,κ(z),κ0

π0D
†(p(0), κ0) +

∫ L

0+
D† (p(z), κ(z)) f(z)dz (3.10)

subject to: f(z) (p(z) + ℓ(z)) = δe−λz
(

π0 +

∫ L

0+
eλuf(u)du

)

(3.11)

π0 +

∫ L

0+
f(z)dz = 1 (3.12)

π0

κ0
+

∫ L

0+

f(z)

κ(z)
dz = 1 (3.13)

f(z) ≥ 0, π0 ≥ 0, κ(z) > 0, κ0 > 0, (3.14)
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where the strict inequalities κ(z) > 0 and κ0 > 0 are implied by (3.13). We note that for a

given f(z), p(z) can be calculated directly using (3.11).

From (3.13), we see that the inverse mismatch factor 1/κ(z) must average to one. Hence, a

feasible mismatch factor policy κ(z) must balance large mismatch factors (which help reduce

the instantaneous distortion) for some battery charge levels z, with small mismatch factors

for other battery charge levels to maintain this average constraint. One can thus view the

mismatch factor κ(z) as a limited resource in the sense that instantaneous deviations from

one are permissible only in as much as they are balanced such that the average constraint

in (3.13) is assured.

Similarly, the transmitter cannot consume more energy than what is stored in the battery,

which itself is replenished at a maximum rate of δ/λ (ignoring the energy that is lost due to

overflow). Thus, similar to the mismatch factor, one can view the transmission power p(z)

as a limited resource in the sense that a large transmission power for some battery charge

levels z must as well be balanced by a small transmission power for other battery charge

levels.
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Chapter 4

Lower Bound on the Total Average

Distortion and Achievable Schemes

4.1 Distortion Lower Bound

In this chapter, we derive a distortion lower bound using Jensen’s inequality and find certain

conditions under which the lower bound is achieved with a proper allocation of transmis-

sion power and mismatch factor. Thereafter, we identify the structure of a locally optimal

achievable scheme for p(z) and κ(z). Furthermore, we study some structural results on the

instantaneous distortion and the case of Gaussian source.
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4.1.1 Finite Battery Capacity

We first note that for any power policy p(z), when the battery capacity is finite, the following

upper bound on the average transmission power can be obtained:

Eπ [p(Z)] =

∫ L

0

p(z)π(dz)

=

∫ L

0+
p(z)f(z)dz

(a)
= δ

∫ L

0+
e−λz

(

π0 +

∫ z

0+
eλuf(u)du

)

dz −

∫ L

0+
f(z)ℓ(z)dz

(b)
= −

δ

λ
e−λz

(

π0 +

∫ z

0+
eλuf(u)du

)

∣

∣

∣

L

0+
+

δ

λ

∫ L

0+
f(z)dz −

∫ L

0+
f(z)ℓ(z)dz

=
δ

λ

[

−e−λL

(

π0 +

∫ L

0+
eλuf(u)du

)

+ π0 +

∫ L

0+

(

1−
λ

δ
ℓ(z)

)

f(z)dz

]

(c)
=

δ

λ

[

−e−λL

∫ L

0

eλuπ(du) + π0

(

1−
λ

δ
ℓ(0)

)

+

∫ L

0+

(

1−
λ

δ
ℓ(z)

)

f(z)dz

]

=
δ

λ

[
∫ L

0

(

1−
λ

δ
ℓ(z)−

eλz

eλL

)

π(dz)

]

≤
δ

λ
sup

z∈[0,L]

(

1−
λ

δ
ℓ(z)−

eλz

eλL

)

=
δ

λ

(

1− e−λL
)

, (4.1)

where (a) follows from (2.19), (b) follows by integrating the first integral by parts and (c)

follows from the fact that π0 = π0

(

1− λ
δ
ℓ(0)

)

. One should note that the upper bound in

(4.1) is potentially a looser bound compared to the case where the leakage is zero. We

now find a lower bound on the objective function Eπ[D
†(p(Z), 1/κ(Z))], based on the upper

bound in (4.1) and the following convexity lemma.

Lemma 1. The function D†(p(z), q(z)) is jointly convex over the pair p(z) and q(z), where

q(z) := 1/κ(z).
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Proof. See Appendix A.

Based on Lemma 1 as well as Jensen’s inequality, we establish a distortion lower bound

as below

Eπ

[

D†

(

p(Z),
1

κ(Z)

)]

≥ D†

(

Eπ [p(Z)] ,Eπ

[

1

κ(Z)

])

(4.2)

≥ D†

(

δ

λ

(

1− e−λL
)

, 1

)

(4.3)

:= DLB,

where (4.3) follows from (4.1) and the fact that the distortion function D† is a non-increasing

function of p(z), and further recalling that Eπ[1/κ(Z)] = 1 from (3.4). The lower bound in

(4.3) holds for any transmission power p(z) and mismatch factor κ(z) that satisfies (3.13)

and (3.14).

4.1.2 Infinite Battery Capacity

When the capacity of the battery is infinite, i.e., L → ∞, and therefore the chance of battery

overflow is zero, for any ergodic power policy p(z), we obtain the following upper bound,

Eπ [p(Z)] = δ

∫ ∞

0+
e−λz

(

π0 +

∫ z

0+
eλuf(u)du

)

dz −

∫ ∞

0+
f(z)ℓ(z)dz

=
δ

λ
π0 + δ

∫ ∞

0+
e−λz

(
∫ z

0+
eλuf(u)du

)

dz −

∫ ∞

0+
f(z)ℓ(z)dz

(a)
=

δ

λ
π0 + δ

∫ ∞

0+
eλuf(u)

(
∫ ∞

u

e−λzdz

)

du−

∫ ∞

0+
f(z)ℓ(z)dz

=
δ

λ

[
∫ ∞

0

(

1−
λ

δ
ℓ(z)

)

π(dz)

]

≤
δ

λ
sup

z∈[0,∞)

(

1−
λ

δ
ℓ(z)

)
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=
δ

λ
, (4.4)

where in (a) we changed the order of the double integral. Consequently the lower bound in

(4.3) simplifies to

Eπ

[

D†

(

p(Z),
1

κ(Z)

)]

≥ D†

(

δ

λ
, 1

)

. (4.5)

One should note that if the leakage rate is zero, every ergodic power policy p(z) is such that

Eπ [p(Z)] = δ/λ. This suggests that in the infinite battery capacity case with no leakage,

separate source and channel coding with a constant mismatch factor κ(z) = 1 may be

optimal. More precisely, consider the following choice of power policy

p⋆(z) =
δ

λ
+ ǫ, z > 0, (4.6)

with p⋆(0) = 0, and ǫ > 0 is a small positive number that ensures the storage process is

positive recurrent, and choose κ⋆(z) = 1 for z ≥ 0. Then,

Eπ [p
⋆(Z)] =

(

δ

λ
+ ǫ

)

(1− π0) , (4.7)

and since we must have Eπ[p
⋆(z)] = δ/λ, then

1− π0 =
δ/λ

δ/λ+ ǫ
. (4.8)

In particular, we then compute the total average distortion of this scheme as

Eπ

[

D†

(

p⋆(Z),
1

κ⋆(Z)

)]

= (1− π0)D
†

(

δ

λ
+ ǫ, 1

)

+ π0Dmax. (4.9)
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As ǫ → 0 the atom π0 tends to zero from (4.8) and the lower bound in (4.5) is thus asymp-

totically achieved.

4.2 Locally Optimal Achievable Scheme

The two functions p(z) and κ(z) are the policies that we wish to design in this subsection

to manage the limited resources of the system in such a way that the average distortion in

(3.10) is minimized. To this end, we use a calculus of variations technique which provides

necessary conditions for a local and therefore global optimal solution to our optimization

problem.

4.2.1 Calculus of Variations Set Up

We define f ǫ(z) and 1/κǫ(z) as a perturbed density function and perturbation of the inverse

mismatch factor, respectively, i.e.,

f ǫ(z) := f(z) + ǫh(z), (4.10)

1

κǫ(z)
:=

1

κ(z)
+ ǫg(z), (4.11)

where h(z) and g(z) are continuous and bounded perturbation functions on (0, L], with

h(0+) = h(L) = 0 and g(0+) = g(L) = 0. For sufficiently small ǫ > 0, the perturbed density

function f ǫ(z) satisfies (3.12) only if

π0 +

∫ L

0+
f ǫ(z)dz = π0 +

∫ L

0+
f(z)dz + ǫ

∫ L

0+
h(z)dz (4.12)

= 1, (4.13)
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which due to (3.1) is true for all ǫ > 0 iff

∫ L

0+
h(z)dz = 0. (4.14)

In addition, from (3.13) we derive the two following conditions

π0

κ0
+

∫ L

0+

f(z)

κǫ(z)
dz = 1, (4.15)

π0

κ0
+

∫ L

0+

f ǫ(z)

κ(z)
dz = 1. (4.16)

We simplify (4.15) using (4.11) as follows

π0

κ0
+

∫ L

0+

(

1

κ(z)
+ ǫg(z)

)

f(z)dz =
π0

κ0
+

∫ L

0+

f(z)

κ(z)
dz + ǫ

∫ L

0+
g(z)f(z)dz (4.17)

= 1. (4.18)

Similarly, we simplify (4.16) using (4.10) as

π0

κ0
+

∫ L

0+

f ǫ(z)

κ(z)
dz =

π0

κ0
+

∫ L

0+

f(z)

κ(z)
dz + ǫ

∫ L

0+

h(z)

κ(z)
dz (4.19)

= 1. (4.20)

Thus, analogous to the constraint in (4.14), both (4.17) and (4.19) are true for sufficiently

small ǫ iff the perturbation functions also satisfy the following constraints

∫ L

0+
g(z)f(z)dz = 0 (4.21)

∫ L

0+

h(z)

κ(z)
dz = 0. (4.22)
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4.2.2 Necessary Conditions for Optimality of p(z) and κ(z)

For sufficiently small ǫ, two necessary conditions for a local and therefore a global optimal

solution to the optimization problem in (3.10)-(3.14) are

Eπǫ

[

D†

(

pǫ(Z),
1

κ(Z)

)]

≥ Eπ

[

D†

(

p(Z),
1

κ(Z)

)]

, (4.23)

Eπ

[

D†

(

p(Z),
1

κǫ(Z)

)]

≥ Eπ

[

D†

(

p(Z),
1

κ(Z)

)]

, (4.24)

where Eπǫ is the expectation with respect to the probability measure with the perturbed

density function f ǫ(z), (see (4.10)).

We now expand the l.h.s of (4.23) as below

Eπǫ

[

D†

(

pǫ(Z),
1

κ(Z)

)]

= π0D
† (p(0), κ0) +

∫ L

0+
D†(pǫ(z), κ(z))f ǫ(z)dz. (4.25)

We then use (3.11) to compute pǫ(z) as follows

pǫ(z) = δe−λz

(

π0 +
∫ z

0+
eλuf ǫ(u)du

)

f ǫ(z)
− ℓ(z) (4.26)

= δe−λz

(

π0 +
∫ z

0+
eλuf(u)du+ ǫ

∫ z

0+
eλuh(u)du

)

f(z) + ǫh(z)
− ℓ(z). (4.27)

We also compute the derivative of pǫ(z) with respect to ǫ as follows

dpǫ(z)

dǫ

∣

∣

∣

ǫ=0
= δe−λz

∫ z

0+
eλuh(u)du

f(z)
−

h(z)

f(z)
p(z). (4.28)

Based on (4.28), we expand D(pǫ(z), κ(z)) to first order in ǫ, i.e.,

D(pǫ(z), κ(z)) = D(p(z), κ(z)) + ǫ
∂D(p(z), κ(z))

∂p(z)

dpǫ(z)

dǫ

∣

∣

∣

ǫ=0
+O(ǫ2). (4.29)
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Substituting D(pǫ(z), κ(z)) and f ǫ(z) into (4.25) results in

Eπǫ

[

D†

(

pǫ(Z),
1

κ(Z)

)]

(4.30)

= π0D
†(p(0), κ0) +

∫ L

0+

(

D(p(z), κ(z)) + ǫ
∂D(p(z), κ(z))

∂p(z)

dpǫ(z)

dǫ

∣

∣

∣

ǫ=0

)

×

(

f(z) + ǫh(z)

κ(z)

)

dz

= Eπ

[

D†

(

p(Z),
1

κ(Z)

)]

+ ǫ

∫ L

0+

(

D(p(z), κ(z))
h(z)

κ(z)
+

∂D(p(z), κ(z))

∂p(z)

dpǫ(z)

dǫ

∣

∣

∣

ǫ=0

f(z)

κ(z)

)

dz, (4.31)

where we have neglected the higher order terms of ǫ (i.e., O(ǫ2)). By substituting (4.31)

into (4.23), we establish the following necessary condition for a local and therefore a global

optimal power policy p(z)

∫ L

0+
D(p(z), κ(z))

h(z)

κ(z)
dz −

∫ L

0+

∂D(p(z), κ(z))

∂p(z)

h(z)

κ(z)
p(z)dz

+ δ

[
∫ L

0+

∂D(p(z), κ(z))

∂p(z)

1

κ(z)

(
∫ z

0+
e−λ(z−u)h(u)du

)

dz

]

= 0. (4.32)

By changing the order of the double integral in the third term of (4.32) we obtain

∫ L

0+
h(z)

(

δ

∫ L

z

∂D(p(u), κ(u))

∂p(u)

e−λ(u−z)

κ(u)
du+

D(p(z), κ(z))

κ(z)
−

∂D(p(z), κ(z))

∂p(z)

p(z)

κ(z)

)

dz = 0.

(4.33)

Equation (4.33) holds for all perturbation functions h(z), that satisfy (4.14) and (4.22). We

can thus rewrite (4.33) as follows

∫ L

0+
h(z)

(

δ

∫ L

z

∂D(p(u), κ(u))

∂p(u)

e−λ(u−z)

κ(u)
du+

D(p(z), κ(z))

κ(z)
−

∂D(p(z), κ(z))

∂p(z)

p(z)

κ(z)
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+
C1

κ(z)
+ C2

)

dz = 0, (4.34)

where C1 and C2 are two free constants. Therefore, based on the fundamental lemma of the

calculus of variations we derive the following equation

δeλzκ(z)

∫ L

z

∂D(p(u), κ(u))

∂p(u)

e−λu

κ(u)
du+D(p(z), κ(z))−

∂D(p(z), κ(z))

∂p(z)
p(z) + C1 + C2κ(z) = 0.

(4.35)

Eq. (4.35) is an integro-differential equation involving p(z) and κ(z). However, by multiply-

ing both sides of (4.35) by e−λz and taking derivative of both sides with respect to z and

performing further simplifications, we derive a first order non-linear autonomous ordinary

differential equation (ODE) equivalent to (4.35) as follows,

D(p(z), κ(z)) (λκ(z) + κ′(z)) +
∂D(p(z), κ(z))

∂p(z)
(δκ(z)− p(z) (λκ(z) + κ′(z)))

− κ′(z)κ(z)
∂D(p(z), κ(z))

∂κ(z)
+ p(z)κ(z)

(

p′(z)
∂2D(p(z), κ(z))

∂p2(z)
+ κ′(z)

∂2D(p(z), κ(z))

∂κ(z)∂p(z)

)

+ C1 (λκ(z) + κ′(z)) + λC2κ
2(z) = 0, (4.36)

We now consider the inequality in (4.24), where the l.h.s can be written as

Eπ

[

D†

(

p(Z),
1

κǫ(Z)

)]

= π0D
† (p(0), κ0) +

∫ L

0+
D†(p(z), κǫ(z))f(z)dz. (4.37)

We compute κǫ(z) using (4.11) as follows

κǫ(z) =
1

1

κ(z)
+ ǫg(z)

, (4.38)
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where its derivative with respect to ǫ at ǫ = 0 can easily be obtained as below

dκǫ(z)

dǫ

∣

∣

∣

ǫ=0
= −g(z)κ2(z). (4.39)

Similar to (4.29), we write the Taylor series of D(p(z), κǫ(z)) up to first order term in ǫ as

below

D(p(z), κǫ(z)) = D(p(z), κ(z)) + ǫ
∂D(p(z), κ(z))

∂κ(z)

dκǫ(z)

dǫ

∣

∣

∣

ǫ=0
+O(ǫ2). (4.40)

Therefore, by substituting (4.11), (4.39) and (4.40) into (4.37), this is then reduced to

Eπ

[

D†

(

p(Z),
1

κǫ(Z)

)]

= Eπ

[

D†

(

p(Z),
1

κ(Z)

)]

+ ǫ

∫ L

0+

(

D(p(z), κ(z))g(z)f(z)−
∂D(p(z), κ(z))

∂κ(z)
κ(z)g(z)f(z)

)

dz. (4.41)

By substituting (4.41) into (4.24) and neglecting the higher order terms of ǫ, we establish

the following necessary condition for a local and therefore a global optimal mismatch factor

κ(z),

∫ L

0+
g(z)f(z)

[

D(p(z), κ(z))−
∂D(p(z), κ(z))

∂κ(z)
κ(z)

]

dz = 0. (4.42)

Equation (4.42) holds for all perturbation functions g(z) that satisfy (4.21). Therefore, we

rewrite (4.42) as

∫ L

0+
g(z)f(z)

[

D(p(z), κ(z))−
∂D(p(z), κ(z))

∂κ(z)
κ(z) + β

]

dz = 0, (4.43)
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where β is a constant. Based on the fundamental lemma of the calculus of variations, we

thus derive the following equation

D(p(z), κ(z))−
∂D(p(z), κ(z))

∂κ(z)
κ(z) + β = 0, z > 0. (4.44)

Solutions to the equations in (4.35) and (4.44) determine structure of a locally optimal power

policy p(z) as well as a locally optimal mismatch factor policy κ(z).

4.2.3 A structural result on the distortion

In this part, we discuss an interesting consequence of (4.44) on the instantaneous distortion

D(p(z), κ(z)), z > 0. Specifically, we find below in Lemma 2 that a locally optimal solution

has the property that the power policy and the mismatch factor policy are adjusted in such

a way that, provided the battery has charge and thus the transmission power p(z) > 0,

D(p(z), κ(z)) is constant for z > 0. In other words, if the transmission power is decreased

(or increased) due to a change in the battery charge, a locally optimal mismatch factor will

always dynamically adjust so that the instantaneous distortion is maintained to a constant

level. As elaborated in section 3, one can think of the transmission power p(z) and the

mismatch factor κ(z) as limited communication resources that must maintain long-term

averages. Intuitively, this shows that the transmitter is trading off one resource for another.

More precisely, since the mismatch factor must satisfy (3.4) (i.e., the inverse mismatch factor

averages to one), as the availability of one communication resource (say the transmission

power) increases due to a large battery charge, the transmitter employs a large transmission

power and saves on the other communication resource (i.e., the mismatch factor) by then

using fewer channel uses per source symbol. Likewise, when the battery charge is low, the

transmitter reduces its transmission power, but employs a large mismatch factor. Formally,
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we have the following Lemma.

Lemma 2. The constant β in (4.44) must be in the range βmin < β < βmax where

βmax = lim
D↓0

Rs(D)

R′
s(D)

, (4.45)

and

βmin = lim
D↑Dmax

Rs(D)

R′
s(D)

−Dmax. (4.46)

Furthermore, for every such a choice of β, (4.44) results in a unique constant solution for

D(p(z), κ(z)), z > 0.

Proof. See Appendix A.2.

Hence, for every fixed value of β the instantaneous distortion D(p(z), κ(z)) in (4.44) is

independent of the power level p(z) and the mismatch factor κ(z) for z > 0. It is easy to verify

that for both Gaussian and binary sources, limD↓0
Rs(D)

R′
s(D)

= 0 and limD↑Dmax

Rs(D)

R′
s(D)

= 0.

Therefore, for the Gaussian source we have the bound −σ2 < β < 0. Likewise, for the binary

source we have the bound −min{p, 1− p} < β < 0.

4.3 A Constant Bandwidth Mismatch Factor

So far, we have studied a general JSCC scheme where the mismatch factor is adaptively

adjusted according to the available battery charge. However it is also interesting to compare

the results with the lower complexity case where the mismatch factor is fixed. Thus, we

now consider the case where the mismatch factor is constant and does not adapt to the

battery charge. For a fair comparison with the general case of dynamic mismatch factor, the

constraint in (3.13) must still be satisfied which results in a constant bandwidth mismatch
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factor of unity, i.e., κ(z) = 1, ∀z ≥ 0. Therefore, there is only one design parameter, the

transmission power p(z), to be adapted to the battery charge to minimize the total average

distortion at the receiver. We thus have

Rs(D(z)) = Rc (p (z)) ,

and thereby the distortion-rate function is computed only in terms of the transmission power

p(z). The optimization problem is therefore described as follows

inf
f(z),π0

π0D̃(p(0)) +

∫ L

0+
D̃ (p(z)) f(z)dz (4.47)

subject to: f(z) (p(z) + ℓ(z)) = δe−λz
(

π0 +

∫ L

0+
eλuf(u)du

)

(4.48)

π0 +

∫ L

0+
f(z)dz = 1 (4.49)

f(z) ≥ 0, π0 ≥ 0, (4.50)

where D̃(p(z)) = D(p(z), 1) is the average distortion with bandwidth mismatch factor of

unity. Moreover, the distortion lower bound in this case is the same as DLB in (4.1).

4.3.1 Achievable Power Allocation

As a necessary condition for a local and thus a global optimal power policy p(z), we can

directly obtain the following equation by replacing κ(z) = 1 into (4.35) with the substitution

λ(C1 + C2) = C,

δ

∫ L

z

D̃′(p(u))e−λ(u−z)du+ D̃(p(z))− D̃′(p(z))p(z) + C = 0, (4.51)

32



where D̃′(·) denotes the derivative of D̃(·). As explained below (4.35), we can derive a first

order non-linear autonomous ODE equivalent to (4.51). This yields

λD̃(p(z)) + (δ − λp(z)) D̃′(p(z)) + p(z)p′(z)D̃′′(p(z)) + C = 0, (4.52)

where D̃′′(·) denotes the second derivative of D̃(·). The following lemma states an important

property of solutions to (4.51).

Lemma 3. Any solution p(z) of (4.52) for C < −λD̃( δ
λ
) is non-decreasing in z, for p(z) > 0.

Proof. See Appendix A.3.

Remark 3. The constant C in (4.52) can be used as a degree of freedom to control the initial

slope of the power policy p′(0+) (see Appendix A.3).

4.4 Gaussian Source and Channel

In this section, we specialize our results for a Gaussian source using the rate-distortion

function Rs(D) given in (2.3). We assume that the Shannon rate function Rc(p) =
1

2
log2(1+

p/N) is considered for the channel coding rate. Consequently, the distortion function D(p, κ)

can be computed as

D(p(z), κ(z)) = σ2

(

1 +
p(z)

N

)−κ(z)

, (4.53)

or equivalently

D†(p(z), 1/κ(z)) =
σ2

κ(z)

(

1 +
p(z)

N

)−κ(z)

. (4.54)
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Moreover, the lower bound on the average distortion in this case is

Eπ

[

D†

(

p(Z),
1

κ(Z)

)]

≥ σ2

(

1 +
δ

λ

(

1− e−λL
)

N

)−1

. (4.55)

To determine structure of an optimal achievable scheme, we first replace D(p(z), κ(z)) in

(4.44) by its closed form expression in (4.53) to obtain

σ2

(

1 +
p(z)

N

)−κ(z)(

1 + κ(z) ln(1 +
p(z)

N
)

)

+ β = 0, z > 0, (4.56)

which can be rewritten as

(

−1− κ(z) ln

(

1 +
p(z)

N

))

exp

(

−1− κ(z) ln

(

1 +
p(z)

N

))

=
β

σ2e
, (4.57)

for z > 0. Therefore, we have

κ (z; β) = −

Wn

(

β

σ2e

)

+ 1

ln

(

1 +
p(z)

N

) , z > 0, (4.58)

where Wn(·) denotes the LambertW function [39] that takes either real or complex values

and has an infinite number of branches, each denoted by an integer n. The notation κ (z; β)

emphasizes the dependence of κ(z) in (4.58) depends on the choice of β. Moreover, (4.58)

shows that κ(z; β) is a decreasing function of z, whenever p(z) is an increasing function of z

and vice versa.

Proposition 1. The only branch that results in positive values of κ(z; β) in (4.58), is n =

−1.
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Proof. See Appendix A.4.

From (4.58), for every fixed value of β, we have

−
1

2

(

W−1

(

β

σ2e

)

+ 1

)

log2 e = κ (z; β)×
1

2
log2

(

1 +
p(z)

N

)

, z > 0. (4.59)

On the other hand, this choice of β results in the instantaneous distortionD(z) := D(p(z), κ(z))

in (2.7) as follows

1

2
log2

σ2

D(z)
= κ(z; β)×

1

2
log2

(

1 +
p(z)

N

)

, z ≥ 0. (4.60)

Therefore, combining (4.59) and (4.60), we obtain

ln
σ2

D(z)
= −

(

W−1

(

β

σ2e

)

+ 1

)

, z > 0. (4.61)

Eq. (4.61) also holds for the optimal choice of β (say β⋆) and the associated optimal instan-

taneous distortion D⋆(z), for z > 0. We thus compute the distortion D⋆(z) in terms of β⋆,

using (4.61), as

D⋆(z) =











σ2 exp

(

W−1

(

β⋆

σ2e

)

+ 1

)

, z > 0,

σ2 , z = 0.

(4.62)

As elaborated in Appendix A.2, (4.62) is the unique constant solution of (4.44) for z > 0

in the Gaussian case. Specifically, p(z) and κ(z) are jointly optimized such that when using

a high (respectively low) transmission power, the transmitter uses a low (respectively high)

mismatch factor to maintain the optimal instantaneous distortion to a constant value.
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Chapter 5

Numerical Results

In this section, we consider numerical solutions to (4.35) and (4.44) to obtain an efficient

power policy p(z) and mismatch factor policy κ(z). In particular, although there is no

apparent closed-form solution to (4.35) for p(z), for every choice of the constants C1, C2 and

the initial condition p(0+), we can apply numerical ODE solution methods. More precisely,

given a fixed choice of β, from (4.44) we can in principle solve for κ(z) in terms of p(z)

(although other than the Gaussian case where a closed-form is found in (4.58), this must be

done numerically). We then substitute κ(z) thus computed into (4.35) and obtain an ODE

for p(z) in terms of C1, C2 and β that can be solved numerically. Once p(z) is thus found,

one can then directly obtain κ(z) using (4.44) again.

We obtain from (2.20) that

f(z)eλz

π0 +
∫ z

0+
eλuf(u)du

=
δ

p(z) + ℓ(z)
, (5.1)

where by integrating both sides over (0+, z] and performing some simplifications, this is
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recast as

π0 +

∫ z

0+
eλuf(u)du = π0 exp

(
∫ z

0+

δ

p(u) + ℓ(u)
du

)

. (5.2)

Taking the derivative of both sides in (5.2) with respect to z, we compute the density f(z),

provided that π0 is known, as follows

f(z) = π0
δe−λz

p(z) + ℓ(z)
exp

(
∫ z

0+

δ

p(u) + ℓ(u)
du

)

. (5.3)

By combining (5.3) and (3.12), we compute the atom π0 as below

π0 =

(

1 +

∫ L

0+

δe−λz

p(z) + ℓ(z)
exp

(
∫ z

0+

δ

p(u) + ℓ(u)
du

)

dz

)−1

. (5.4)

Moreover, the value of the mismatch factor κ0 := κ(z)|z=0 when the battery is dead is

obtained from (3.13) as

κ0 =
π0

1−
∫ L

0+
f(z)/κ(z; β)dz

. (5.5)

We now study a single-user EH communication system with energy arrival rates δ = λ =

1, and noise power N = 1. To find locally optimal policies for p(z) and κ(z), one needs

to search for the optimized values of the free constants β, C1, and C2. In the following we

separately investigate the cases of Gaussian and binary sources.

5.0.1 A Gaussian Source over a Gaussian Channel

For a standard Gaussian source N (0, 1), we have the bound −1 < β < 0 from subsection

4.2.3. We now examine two cases of leakage: (i) zero leakage rate ℓ(z) = 0 for an ideal

battery and (ii) non-zero leakage rate ℓ(z) = 1 − e−z for an imperfect battery. We also

consider the battery capacities L = 1, 2, ..., 5. Table 5.1 and Table 5.2 show the total average
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Table 5.1: Distortion lower bound (DLB), average distortion (Davg), and good values of the con-
stants C1, C2 and β of a standard Gaussian source N (0, 1), for different battery capacities with
the initial condition p(0+) = 0.001, when ℓ(z) = 0. The ratio of Davg to DLB quantifies the gap
between the average distortion and the lower bound.

Capacity of the Battery DLB Davg Davg/DLB Constants

L = 1 0.6127 0.6992 1.14 β = −0.9493, C1 = −1.00, C2 = 0.20

L = 2 0.5363 0.6110 1.13 β = −0.9156, C1 = −1.00, C2 = 0.30

L = 3 0.5128 0.5780 1.12 β = −0.8947, C1 = −0.90, C2 = 0.30

L = 4 0.5046 0.5571 1.10 β = −0.8829, C1 = −0.90, C2 = 0.32

L = 5 0.5017 0.5431 1.08 β = −0.8745, C1 = −0.90, C2 = 0.34

Table 5.2: Distortion lower bound (DLB), average distortion (Davg), and good values of the con-
stants C1, C2 and β of a standard Gaussian source N (0, 1), for different battery capacities with
the initial condition p(0+) = 0.001, when ℓ(z) = 1 − e−z. The ratio of Davg to DLB quantifies the
gap between the average distortion and the lower bound.

Capacity of the Battery DLB Davg Davg/DLB Constants

L = 1 0.6127 0.7706 1.25 β = −0.9000, C1 = −0.90, C2 = 0.08

L = 2 0.5363 0.7078 1.31 β = −0.9000, C1 = −0.90, C2 = 0.17

L = 3 0.5128 0.6838 1.33 β = −0.9000, C1 = −0.90, C2 = 0.26

L = 4 0.5046 0.6760 1.34 β = −0.9000, C1 = −0.90, C2 = 0.29

L = 5 0.5017 0.6726 1.34 β = −0.8997, C1 = −0.90, C2 = 0.30

distortion Davg, the distortion lower bound DLB, and good values of the constants β, C1, and

C2 found by numerical search for both cases. Furthermore, the initial condition of the ODE

for p(z) was chosen to be p(0+) = 0.001. This choice of p(0+) is justified by the fact that

a small amount of available energy in the battery should entail a small transmission power,

as otherwise, the battery will be completely depleted before the next energy arrival. It is

evident from Table 5.1 that as the battery capacity increases, the gap between the achieved

distortion and the lower bound diminishes. In particular, for L = 5 when the leakage rate

is zero this scheme can achieve a distortion which is at most 8% above the lower bound. In

fact, for an ideal battery with infinite capacity as discussed below (4.5) the lower bound is

asymptotically tight and can be achieved via a constant transmission power policy and a
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Figure 5.1: Different functions for the leakage rate ℓ(z), i.e., increasing ℓ(z) = 1− e−z, decreasing
ℓ(z) = e−z, and constant ℓ(z) = 1.

constant mismatch factor policy. Moreover, for case (ii) with non-zero leakage, the achieved

average distortions are larger compared to that of case (i). Since the lower bound in Table

5.2 is potentially looser now, the gap between the achieved average distortion and the lower

bound in this case does not necessarily follow the same trend as in the Table 5.1.

Fig. 5.2 shows the transmission power policy p(z), for to the case of L = 5, for an

ideal battery as well as an imperfect battery with three different leakage rates ℓ(z) (i.e.,

increasing, decreasing and constant) as shown in Fig. 5.1. We observe that in all cases, the

designed transmission power monotonically increases as the battery charge increases. This is

due to the fact that when the remaining charge in the battery is close to the capacity limit,

new energy arrivals are likely to overflow the battery. Therefore, the transmitter consumes

a large transmission power in order to avoid lost energy. Interestingly, for the increasing

leakage and the constant leakage cases, the allocated transmission power increases faster

with battery charge level compared to the transmission power for an ideal battery. This

result is intuitive, since an efficient transmission power policy mitigates the large energy

loss due to leakage by rapidly consuming the stored energy before it is lost. Fig. 5.3 and
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Figure 5.2: Power policy p(z) under 4 different scenarios, namely, zero leakage, constant non-zero
leakage, i.e., increasing and decreasing leakage, when p(0+) = 0.001.

5.4 illustrate the corresponding mismatch factor κ(z) and absolutely continuous part of the

density function of the available charge in the battery, respectively. It can be seen that as

the energy in the battery decreases, the mismatch factor increases. In other words, the low

transmission power due to reduced charge in the battery is compensated by using longer

channel codewords. Conversely, when the transmission power is large, smaller codewords

are used so that the constraint in (3.4) is satisfied. As expected, an increasing transmission

power results in a decreasing density function f(z). In other words, the storage process

spends a smaller fraction of time at higher battery charges that have larger transmission

power.

The average distortion for the two cases of dynamically varying bandwidth mismatch

factor and constant bandwidth mismatch factor is illustrated in Fig 5.5, both as functions of

battery capacity. It can be observed that for a battery with capacity in the range 2 ≤ L ≤ 7, a

communication system with an adaptive mismatch factor, as proposed in this paper, performs
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Figure 5.5: Average distortion for the two cases of adaptive mismatch factor and constant mismatch
factor κ(z) = 1, when the battery capacity varies in the range 0 ≤ L ≤ 30.

better compared to that of κ(z) = 1. On the other hand, regardless of whether or not

we are using a dynamic mismatch factor or a constant mismatch factor, for large battery

capacities the average distortion of both coding schemes approach the lower bound and

merge eventually. Likewise, for small battery capacities the average distortion of both coding

schemes approach Dmax and merge as well.

5.0.2 A Binary Source over a Gaussian Channel

We now consider a binary source with the Bernoulli(1/2) distribution for which we have

H(p) = 1, and the bound −0.5 < β < 0 as explained in subsection 4.2.3. Analogous to

the Gaussian source, with different battery capacities L = 1, 2, ..., 5 and for the two cases

of (i) zero leakage rate ℓ(z) = 0 and (ii) non-zero leakage rate ℓ(z) = 1 − e−z, we evaluate

the achieved average distortion Davg, the distortion lower bound DLB and good values of
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Table 5.3: Distortion lower bound (DLB), average distortion (Davg), and good values of the con-
stants C1, C2 and β of a Bernoulli(1/2) source, for different battery capacities with the initial
condition p(0+) = 0.001, when ℓ(z) = 0. The ratio of Davg to DLB quantifies the gap between the
average distortion and the lower bound.

Capacity of the Battery DLB Davg Davg/DLB Constants

L = 1 0.1651 0.2195 1.32 β = −0.3448, C1 = −0.35, C2 = 0.10

L = 2 0.1270 0.1669 1.31 β = −0.3178, C1 = −0.35, C2 = 0.15

L = 3 0.1161 0.1494 1.28 β = −0.3054, C1 = −0.35, C2 = 0.16

L = 4 0.1122 0.1400 1.24 β = −0.2985, C1 = −0.35, C2 = 0.19

L = 5 0.1108 0.1331 1.20 β = −0.2939, C1 = −0.35, C2 = 0.19

Table 5.4: Distortion lower bound (DLB), average distortion (Davg), and good values of the con-
stants C1, C2 and β of a Bernoulli(1/2) source, for different battery capacities with the initial
condition p(0+) = 0.001, when ℓ(z) = 1−e−z. The ratio of Davg to DLB quantifies the gap between
the average distortion and the lower bound.

Capacity of the Battery DLB Davg Davg/DLB Constants

L = 1 0.1651 0.2732 1.65 β = −0.3000, C1 = −0.30, C2 = 0.10

L = 2 0.1270 0.1943 1.52 β = −0.3000, C1 = −0.30, C2 = 0.14

L = 3 0.1161 0.1540 1.32 β = −0.3000, C1 = −0.30, C2 = 0.15

L = 4 0.1122 0.1447 1.28 β = −0.3000, C1 = −0.30, C2 = 0.18

L = 5 0.1108 0.1358 1.22 β = −0.2950, C1 = −0.30, C2 = 0.18

the constants found by numerical search. The results of case (i) and (ii) are summarized in

Table 5.3 and Table 5.4, respectively. Similar to the Gaussian case, we observe that as the

battery capacity increases the relative gap between the achieved average distortion and the

lower bound diminishes. Particularly, the numerical results further show that for L = 5 the

proposed achievable scheme with no leakage can achieve a distortion which is at most 20%

above the lower bound.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

We have investigated the problem of joint source-channel coding in a point-to-point channel

with an energy harvesting transmitter.

We used a calculus of variations technique to characterize an achievable joint source-

channel coding scheme as well as an achievable transmission power policy to minimize the

distortion at the receiver. We also obtained a distortion lower bound, where we used the

convexity of the distortion function and an upper bound on the average transmission power.

For a moderate-size battery capacity, we numerically showed that the achievable dis-

tortion with a dynamically varying bandwidth mismatch factor is smaller than that of a

constant mismatch factor. However, when the battery capacity is large or small, the distor-

tion performance does not significantly improve with an adaptive mismatch factor compared

to a constant mismatch factor. Moreover, we observed that as the battery capacity tends

to infinity the achievable distortion for both coding schemes approached the lower bound.
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Furthermore, with a constant mismatch factor κ(z) = 1, we found a constant transmission

power policy that can achieve this lower bound for an infinite battery capacity.

As examples of continuous and discrete alphabet sources, we considered both Gaussian

and binary sources to validate our analytical findings. In both cases, we showed numerically

that a good transmission power policy increases as the battery charge increases. In contrast,

the mismatch factor which measures the ratio of the length of channel codewords per source

symbol, is a decreasing function of the battery charge. We further examined these policies

under different possibilities for battery leakage rate, i.e., zero leakage rate as well as non-zero

arbitrary leakage rate.

6.2 Future Work

In real applications, the delay by which the source symbols are reconstructed at the receiver

plays an important role in the performance analysis of lossy communication systems that

has to be taken into account. Therefore, an interesting future extension of this work could

be a finite-time horizon counterpart of this problem setting under a delay constraint for

the reconstruction of symbols. In such a case, the problem can be solved numerically using

dynamic-programming approaches and Bellman’s equation.

Another interesting extension, is to consider a data buffer with finite capacity whose

knowledge could be known at the transmitter either casually or non-causally. Then, the

communication resources must be adaptively allocated according to the current state of the

data buffer as well as available battery charge.

As discussed in Chapter 3, the lower bound on the total average distortion is loose in the

general case of finite battery capacity. Therefore, another line of future directions could be
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reducing the gap between the achievable scheme and the lower bound by either establishing

a tighter bound or improving the achievable scheme.

As discussed in Chapter 2, we only considered a Poisson energy arrival process for which

an elegant dam storage model can be applied to identify an ergodic battery charge process.

Other energy arrival processes could be considered to model the EH process, as another line

of work.

Finally, we have studied the design of optimal communication resources (i.e., transmission

power and mismatch factor) in EH communication systems to minimize the total average

distortion at the receiver. Another interesting future work could be designing optimal MAC

and routing protocols in an EH sensor network.
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Appendix A

APPENDICES

A.1 Proof of Convexity

To prove the convexity of the distortion function D†(p, q) over the domain p ≥ 0, q > 0

where q := 1/κ, we consider two cases: (a) Rth
s = ∞, (b) Rth

s < ∞. As already discussed, an

example of the first case is a Gaussian source and an example of the second case is a binary

source. We first prove the joint convexity with respect to p and q for case (a). To do so, we

compute the Hessian matrix of D†(p, q) for p > 0, q > 0, denoted by H , and show that it is

positive definite. The Hessian is given by

H =









∂2D†

∂p2
∂2D†

∂p ∂q
∂2D†

∂q ∂p

∂2D†

∂q2









,

where by a simple calculation we obtain

H11 :=
∂2D†

∂p2
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=
R′′

c (p)

R′
s (D(p, κ))

+ (R′
c(p))

2
κ×

−R′′
s (D(p, κ))

(R′
s(D(p, κ)))3

(a)
> 0,

where (a) follows from the conditions [S2] and [C2] on Rs(D) and Rc(p), respectively. More-

over, the strict inequality is justified by the fact that since Rth
s = ∞, the distortion D is

strictly positive and therefore R′
s(D) is finite due to [S3]. Similarly, we can show that the

determinant of H is strictly positive, i.e.,

det(H) = (Rc(p))
2 κ3R′′

c (p)×
1

R′
s(D(p, κ))

×
−R′′

s (D(p, κ))

R′
s(D(p, κ))

(b)
> 0,

where (b) again follows from conditions [S2], [C2] and [S3]. Since, H11 > 0 and det(H) > 0,

by Sylvester’s criterion the matrix H is positive definite, and it thus follows that D†(p, q) is

jointly convex over the pair p and q.

To prove the joint convexity with respect to p and q for case (b) where Rth
s < ∞,

one should recall that D†(p, q) = 0 for Rc(p) ≥ qRth
s . Although the function D†(p, q) is

continuous everywhere, and in particular at the points where κRc(p) = Rth
s , the second

derivative at these points may not necessarily exist and a more complicated analysis is

required. Therefore, as illustrated in Fig. A.1 we separate the region p > 0 and q > 0 into

two parts: the open shaded region, Rc(p) < qRth
s , over which the convexity argument reduces

to the case (a) and the closed white region, Rc(p) ≥ qRth
s , over which D†(p, q) = 0. It is not

hard to see that the white region given by Rc(p) ≥ qRth
s (or equivalently q ≤ Rc(p)/R

th
s )

is convex. This is due to the fact that Rc(p) is a concave function and thus the region it

traces is convex. Now, consider two arbitrary points α1 = (p1, q1) and α2 = (p2, q2) such that
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α1, α2 ∈ {(p, q) : p > 0, q > 0}. For λ ∈ [0, 1], we first define the function g(λ) as follows

g(λ) := D† (λα1 + (1− λ)α2)

= D†(λp1 + (1− λ)p2, λq1 + (1− λ)q2).

If g(λ) is convex for all choices of α1 and α2, then so is D†(p, q). With respect to the

closed line segment connecting these two points (i.e., L = {λα1+(1−λ)α2 : λ ∈ [0, 1]}), five

different cases may happen. First, if α1 and α2 are both in the white region, the line segment

L only passes through the white region as the region is convex and thus g(λ) = 0, which is

convex. If α1 and α2 are both in the shaded region, then either L only passes through the

shaded region where the convexity of g(λ) reduces to the case (a), or due to the convexity

of the white region it enters the white region for one and only one contiguous closed interval

[λ2, λ3] ⊂ (0, 1) and again returns to the shaded region for λ > λ3. The function g(λ) in the

latter case is continuous for λ ∈ [0, 1], non-negative and strictly convex for λ ∈ [0, λ2)∪(λ3, 1],

while g(λ) = 0 for λ ∈ [λ2, λ3]. Thus, g(λ) is convex and this case is illustrated in Fig. A.2b.

If α1 and α2 are in two different regions (say α1 is in the white region and α2 is in the shaded

region), there exists λ1 ∈ (0, 1] as shown in Fig. A.2a such that L lies in the shaded region

for λ < λ1 and it enters the white region for λ ≥ λ1. Furthermore, once the line segment

enters the convex white region, it does not exit. Here, g(λ) is again continuous for λ ∈ [0, 1],

non-negative and strictly convex for λ ∈ [0, λ1), while g(λ) = 0 for λ ∈ [λ1, 1]. Thus, g(λ)

is convex. Similarly, when α1 is in the shaded region and α2 is in the white region we have

Fig. A.2c, where g(λ) is convex. Consequently, even for sources for which zero distortion

can be achieved the function D†(p, q) is jointly convex over the pair p and q. This completes

the proof.

49



q

p
Figure A.1: The shaded region shows the area where q > Rc(p)/R
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Figure A.2: Special cases of the function g(λ).

A.2 Instantanous Distortion

We first rewrite (2.7) for z > 0 as

Rs(D(p(z), κ(z))) = κ(z)Rc(p(z)), (A.1)

where by taking the first derivative of both sides with respect to κ(z) at a fixed z > 0 we

obtain
∂D(p(z), κ(z))

∂κ(z)
R′

s (D (p(z), κ(z))) = Rc(p(z)), (A.2)

or equivalently
∂D(p(z), κ(z))

∂κ(z)
=

Rc(p(z))

R′
s (D (p(z), κ(z)))

. (A.3)

With the substitution (A.3), (4.44) for z > 0 reduces to

D(p(z), κ(z))−
Rs(D(p(z), κ(z)))

R′
s (D (p(z), κ(z)))

+ β = 0, (A.4)
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where for the second term we also used the substitution (A.1). Therefore, for each z > 0,

D(p(z), κ(z)) must be a root of (A.4). To simplify notation, we fix z > 0, and simply write

D in place of D(p(z), κ(z)). Solving (A.4) for β, we then obtain

β =
Rs(D)

R′
s (D)

−D. (A.5)

We next show that the r.h.s of (A.5) is strictly decreasing with respect to D. To do so, we

take the first derivative of the r.h.s in (A.5) with respect to D, and show that it is always

negative in the open interval 0 < D < Dmax, i.e.,

d

dD

[

Rs(D)

R′
s (D)

−D

]

=
(R′

s(D))2 − R′′
s(D)Rs(D)

(R′
s(D))2

− 1 (A.6)

=
−R′′

s (D)Rs(D)

(R′
s(D))2

(A.7)

< 0, (A.8)

where (A.8) follows from the assumption of R′′
s (D) > 0 and further recalling that Rs(D) > 0

and R′
s(D) is finite, for 0 < D < Dmax. Therefore, for every fixed β, there is at most one real

root D that solves (A.5), and it does not depend on z. This is also true for the optimized

value of β⋆, and therefore the associated instantaneous distortion D⋆(p(z), κ(z)) is constant

for z > 0. Furthermore, for there to be at least one real root, β in (A.5) must be in the

range βmin < β < βmax, where

βmax = sup
0<D<Dmax

[

Rs(D)

R′
s(D)

−D

]

(A.9)

= lim
D↓0

Rs(D)

R′
s(D)

, (A.10)

51



and

βmin = inf
0<D<Dmax

[

Rs(D)

R′
s(D)

−D

]

(A.11)

= lim
D↑Dmax

Rs(D)

R′
s(D)

−Dmax. (A.12)

A.3 Non-decreasing Power Policy

Solving (4.52) for p′(z) we obtain

p′(z) =
(δ − λp(z)) D̃′(p(z)) + λD̃(p(z)) + C

−p(z)D̃′′(p(z))
. (A.13)

Now, it can be seen that the constant C is a degree of freedom that can be used to control

the initial slope p′(0+) of the power policy.

Clearly, D̃′′(p(z)) > 0, and from the first constraint on feasible power policies we have

that p(z) > 0. Therefore, the denominator of (A.13) is negative for z > 0, and p′(z) ≥ 0 if

C < −
[

(δ − λp(z)) D̃′(p(z)) + λD̃(p(z))
]

. (A.14)

We next find the global minimum for the r.h.s of (A.14). To do so, we must have

d

dp(z)

[

(δ − λp(z)) D̃′(p(z)) + λD̃(p(z))
]

= (δ − λp(z)) D̃′′(p(z))

= 0. (A.15)

We note that D̃′′(p(z)) 6= 0, and therefore p(z) = δ/λ is where the global minimum of the

r.h.s of (A.14) occurs. Substituting p(z) = δ/λ into (A.14), it is then reduced to the sufficient
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condition C < −λD̃(δ/λ) and the proof is complete.

A.4 LambertW Function

Based on the properties of the LambertW function [39], n = 0 and n = −1 are the only

branches that yield a real value for Wn(x), where W0(x) ≥ −1 for x ≥ −1/e and W−1(x) <

−1 for −1/e < x < 0. In addition, we require that Wn(
β

σ2e
) < −1 in (4.58) in order to have

κ(z; β) > 0. Therefore, n = −1 is the only acceptable branch. This provides another proof

for the fact that −1/e <
β

σ2e
< 0 or equivalently −σ2 < β < 0.
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