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Abstract

The introduction of second-generation DNA sequencers has enabled researchers to ex-

plore biological information in ways never before possible. These sequencers provide in-

creased throughput over first-generation sequencers at decreasing costs. However, the in-

formation produced by these sequencing technologies contains errors which may complicate

downstream analyses. The error correction problem involves locating sequencing errors and

making edits that correct or remove errors. We introduce Pollux, a platform-independent

error corrector which identifies and fixes errors produced by second-generation sequencing

technologies. We evaluate Pollux on several diploid bacterial data sets. Using standardized

test data, Pollux corrects 85% of Roche 454 GS Junior, 86% of Ion Torrent PGM, and 94%

of Illumina MiSeq errors. We compare Pollux to several current error correctors. Pollux

performs comparably with the most effective correctors when correcting Illumina data and

makes significant improvements when correcting Roche 454 and Ion Torrent PGM data.

Furthermore, we provide evidence that Pollux can correct errors in the presence of varying

coverage and improves the quality of sequence assemblies.
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Chapter 1

Introduction

The introduction of high-throughput sequencing reads has allowed numerous sequencing

applications, including de novo genome assembly [1], genetic disease detection [18], and

cancer mutation discovery [46], to be performed in significantly less time at decreasing costs

[18]. In pharmacogenomics, DNA sequence data is used to find genetic variations which

have an effect on drug efficacy and toxicity [7, 18, 29]. These applications require high

quality data to perform analyses. However, sequencing technologies produce a non-trivial

number of errors which complicate downstream analyses. This work introduces platform-

independent error correction software named Pollux. Pollux is capable of correcting a

variety of sequencing errors produced by different sequencing technologies and is applicable

for numerous applications.
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1.1 Motivation

Second-generation sequencing technologies have revolutionized genome sequencing [18].

They provide massive throughput at a relatively low cost and enable research that would

have not been practical otherwise. However, the increased throughput and reduced cost

comes at the expense of read length and quality [18], relative to previous Sanger sequencing

technology. There are currently three predominant technologies used for DNA sequencing:

Roche 454, Ion Torrent, and Illumina. However, the overwhelming majority of error correc-

tors [19, 20, 22, 26, 55] primarily target reads produced by Illumina sequencers. This is in

part because of Illumina’s popularity and the relative simplicity in correcting substitution

errors in Illumina data when compared to correcting other error types present in Roche

454 and Ion Torrent data. Modern error correctors [19, 20] have expanded their capabili-

ties to remove insertion and deletion errors in Illumina reads. However, they still remain

largely ineffective at correcting Roche 454 and Ion Torrent data because of the presence of

homopolymer repeats. We show this in detail in Section 5.3.

1.2 Background

All known living organisms encode their genetic instructions required for development and

functioning in deoxyribonucleic acid (DNA) molecules. These DNA molecules typically

exist as a double-stranded structure, with each strand complementary to the other. DNA

is organized within the cell into chromosomes, and may additionally be present within

plasmids for bacteria, or within mitochondria or chloroplasts within eukaryotes. The en-
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tire collection an organism’s genetic information is its genome. The process by which

DNA is copied is called DNA replication. The complementary nature of DNA enables

double-stranded DNA to be constructed from one strand through a process called DNA

polymerization.

The process of obtaining DNA or RNA sequence information from an individual or

group is called sequencing and machines that produce this information are termed se-

quencers. The first generation of sequencers use a technique called Sanger Sequencing.

The second, or next, generation of sequencers moved away from this approach and adopted

various high-throughput techniques. Typically, sequencing information takes the form of

reads, text strings describing the DNA or RNA composition of a fragment within the se-

quencing target. Characters in reads correspond to nucleotide bases in the DNA. These

bases are adenine (A), cytosine (C), guanine (G), and thymine (T) in DNA, with thymine

replaced by uracil (U) in RNA. A region consisting of many repeats of the same base,

such as AAAAAA, is a homopolymer. Coverage refers the amount of oversampling in

a sequencing run or specific location within a sequencing target. The mean coverage a

sequencing project is an approximation of how many times each position in the genome

will be observed in the set of reads. However, there may still exist regions that are not

sequenced as a consequence of sampling and sequencing methodology. Sequencing applied

to one species is genome sequencing and an assemblage of multiple species is metagenome

sequencing. Metagenomics studies sequence information from species in an environmental

sample. A challenge of metagenomics is characterizing function in the presence of similar

individuals as it is not immediately obvious which sequence belongs to which individual.

The complete process by which fragmented reads are reassembled to create a full picture
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of a sequencing target is called sequence assembly. An initial step in sequence assembly is

joining fragmented reads into contiguous sequences called contigs. Contigs can be assem-

bled into scaffolds if information is known about the approximate number of base pairs

between contigs. These scaffolds connect and order multiple contigs into larger structures

which may correspond to chromosomes or plasmids. Scaffold construction is accomplished

with paired-end reads (Figure 1.1), which may be used to bridge missing regions between

sequenced contigs. These reads are similar to non-paired-end reads, but specify the ap-

proximate number of bases between them.

The concept of k -mers is used extensively throughout this work. A k -mer represents

an ungapped sequence of length k. A k -mer profile consists of the r − k + 1 k -mers

which comprise a sequencing read, where r is the length of the read and k is the length

of the k -mers. Where k -mers are repeated across multiple reads, they may be counted

and we refer to the dictionary of (kmer, number of counts) pairs as the set of k-mer

counts. The sequencing quantities of kilobase (kb), megabase (mb), and gigabase (gb)

are used throughout this work and are equal to 1000, 1,000,000 and 1,000,000,000 bases

respectively.

1.3 Error Correction Problem

The error correction problem involves identifying and correcting read errors introduced

during nucleotide sequencing. These errors are not introduced at uniform random loca-

tions [12, 40], but can appear more frequently in certain sites that are more prone to errors

as an artifact of sequencing technology. Common sources of sequencing errors are imper-
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Read 1

Read 2

Figure 1.1: An example of paired-end sequencing. The pairs of reads are sequenced from
the same fragment with Read 1 sequenced in the forward direction and Read 2 sequenced
in the reverse direction.

fect biochemical processes and inaccurate base calling [23, 40]. Additionally, errors may

be introduced during procedures which prepare DNA for sequencing, thereby modifying

the DNA content of the target before sequencing even occurs, and resulting in accurate

sequencing of erroneous bases [28, 53]. The number and type of errors depends primarily

on the sequencing technology employed and the number of sequenced bases, but also on the

true frequency of error-prone regions such as homopolymers and certain sequence motifs

[27, 45].

The error types common to all sequencing methods are substitution, insertion, and

deletion. These errors represent inaccurate or missing sequence information within reads.

A more specific sequencing error is a homopolymer region being miscalled in its length,

resulting in spurious insertions or deletions of the repeated nucleotide. Substitution, or

mismatch, errors are single base errors where one base is replaced by another and are

corrected by replacing the substituted base. Insertion errors are erroneous bases inserted

into the sequence and are corrected by deleting the erroneous bases. Conversely, deletion

errors are bases removed from a sequence and are corrected by inserting the removed bases
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back into the sequence. The error types and rates of Roche 454, Ion Torrent, and Illumina

are varied as a consequence of the differences in their sequencing methodology. This is

discussed in greater detail in Chapter 2.

Correction requires locating erroneous bases and modifying the read to be accurate

with respect to the original sequencing target. This process is complicated by a number

of factors. The first complication involves biases in sequencing technologies. Sequencing

errors are not uniformly random and instead may occur more frequently in the error-

prone regions of specific sequencing technologies, such as homopolymer regions sequenced

by Roche 454 and Ion Torrent technologies. These error-prone regions result in coinciding

errors and are more difficult to correct because with increasing error frequency they become

increasingly difficult to distinguish from non-erroneous bases. An additional complication

involves distinguishing between a sequencing error and a biological variation, such as a

difference in sequence within a repeated region of the genome. Such variations, when

found in low-coverage repeats, may appear as errors that can be corrected to a high-

coverage alternative. However, these reads are correct and describe real biological content.

Similarly, diploid genomes with pairs of homologous chromosomes will have many sites

which differentiate their chromosomes. In infrequent cases, this genetic variation may

appear with the same frequency as sequencing errors and may be incorrectly identified as

such.

6



1.4 Results

We develop software named Pollux which corrects read errors produced by Roche 454, Ion

Torrent, and Illumina sequencing technologies. The errors introduced by these sequencers

is discussed in Chapter 2. Pollux corrects many substitution, insertion, and deletion errors

by removing discontinuities between adjacent k -mer counts in reads. These discontinuities

often correspond to sequencing errors. However, as we discuss in Section 5.1.3, they also

correspond to biological mutations. Sequencing errors may be corrected by modifying the

bases which appear responsible for the discontinuity. We evaluate the fitness of a correction

by whether or not it removes these discontinuities. This is described in detail in Chapter

4.

We perform a number of experiments to evaluate how successful Pollux is at correcting

sequencing errors. We align uncorrected and corrected E. coli reads to a high quality

reference genome and use changes in alignment errors to evaluate our corrections (Section

5.1.2). Pollux corrects the majority of errors in these data sets. The alignment evaluation

procedure is used by many subsequent experiments. We similarly find that Pollux performs

well on a simulated metagenome data set of diverse bacteria (Section 5.2). We compare

Pollux to several error correctors and use several data sets (Section 5.3). Pollux performs

comparably to other error correctors when correcting Illumina data and makes significant

improvements when correcting Roche 454 and Ion Torrent data. Finally, we show Pollux

improves the quality of some genome assemblies when using corrected reads (Section 5.4).
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Chapter 2

Sequencing Technologies

2.1 First-Generation Sequencing

The draft Human Genome Project [6] was primarily composed of many bacterial artificial

chromosomes (BACs) produced with Sanger sequencing. These BACs contained human

DNA fragments of approximately length 100 kb and were amplified using the bacteria’s

own replication pathways. BACs were amplified in bacterial culture, sheared into 2-3

kb fragments, subcloned onto plasmid vectors, and selectively isolated before sequencing.

This process was costly and labourious. Meanwhile, sequencing approaches were moving

away from BAC-based sequencing and towards whole-genome shotgun (WGS) methods

[31]. Sanger WGS methods involve directly shearing the genome and placing fragments

into plasmid subclones. The subclones are oversampled and paired-end information is

generated to allow assembly of whole genomes. The DNA preparation involved in WGS was
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a major improvement over BAC preparation because it allowed genomes to be sequenced

more rapidly and readily [31]. However, both methods used the same sequencing procedure

described below [31].

The Sanger sequencing procedure is first described in Sanger et al. 1975 [52] and au-

tomated in Smith et al. 1986 [56]. More modern Sanger sequencing is accomplished by

introducing a small proportion of dye-terminator nucleotides into the DNA replication

procedure. These nucleotides are ligated with fluorescent markers which identify their

connected base. When incorporated, these nucleotides terminate polymerization. This

procedure results in DNA fragments of various sizes, each with a fluorescent signal iden-

tifying their terminating base. Fragments are run through a polyacarylimide gel using

electrostatic forces. The gel separates the fragments according to their molecular weight

and the spatial configuration of fluorescent markers reveals the DNA composition of the

sequencing target.

2.2 Second-Generation Sequencing

The introduction of second-generation sequencers resulted in significantly more information

being produced in less time [31] at decreasing costs [18]. An overview of second-generation

sequencing times and costs is provided in Table 2.1. This technology has made it practical

for more researchers to sequence and assemble complicated mammalian genomes [8, 25].

Second-generation sequencers no longer require the preparation of BACs and instead use

the WGS assembly techniques developed towards the end of Sanger sequencing. However,

the reads produced by second-generation sequencers are typically shorter and often more
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prone to errors. The three second-generation sequencing technologies that generated the

data used in this work are Illumina MiSeq, Ion Torrent PGM, and Roche 454 GS Junior.

These technologies use different methodologies to produce genetic sequence information

which are imperfect and introduce errors. A detailed description of these technologies

follows.

2.2.1 Roche 454 Sequencing

Roche 454 sequencing was made commercially available in 2004 as the first high-throughput,

whole-genome shotgun sequencing technology [31]. Roche 454 uses an approach called py-

rosequencing, which produces light during DNA polymerization that can be translated into

DNA bases. In pyrosequencing, the process of adding a DNA base releases a pyrophosphate

molecule, which in turn initiates a chemical reaction in the firefly enzyme, luciferase, pro-

ducing a flash of light [31]. The intensity of this light depends on the number of consecutive

bases polymerized.

The Roche 454 sequencing procedure is described in Mardis 2008 [31] and what follows

is a paraphrase of their description. The DNA preparation step involves random shearing of

the genome into small fragments, ligating short adaptor sequences to the ends of the DNA

fragments, and mixing fragments with agarose beads. The agarose beads are equipped

with short nucleotide sequences complementary to the specific adapter sequences in the

fragment library. The beads and fragments associate in a solution with many more beads

than fragments such that on average there is not more than one fragment per bead. Next,

the bead-fragment complexes are isolated and fragments are amplified using polymerase

10



Platform Read Length Throughput Time Machine Cost

454 GS FLX Titanium XL+ 700 700 mb 23 h $500,000
Ion Torrent PGM (316) 200 100 mb 2 h $50,000

Illumina MiSeq 150 1 gb 27 h $125,000
Roche 454 GS Junior 400 35 mb 12 h $108,000

Platform Reagent Cost Primary Error Base Error Rates

454 GS FLX Titanium XL+ $6200 Indel 0.5%
Ion Torrent PGM (316) $750 Indel 1.2%

Illumina MiSeq $750 Substitution 1-2%
Roche 454 GS Junior $1100 Indel 1%

Table 2.1: Metrics for second-generation sequencing technologies as of 2012. Costs are
presented in US dollars. Read lengths and throughputs are the maximum over available
sequencing protocols. Time is with respect to a maximum throughput run. Data from p.
903 of Henson et al. 2012 [18].

chain reaction so that the surface of the bead is covered with many copies of the same

fragment. Sequencing is accomplished by placing DNA-rich beads into individual wells on

a picotiter plate. Wells contain enzymes which facilitate DNA polymerization and others

which catalyze further downstream reactions required for luciferase to produce light. A

solution containing only one type of nucleotide is washed over the plate and into the

wells. If the next nucleotide base needed to be polymerized on a bead in a given well

is the base introduced, then the polymerization reaction occurs and a flash of light is

produced. As all fragments on a bead are identical, they should all be in the same stage

of polymerization and together contribute to the intensity of light produced. If a fragment

contains a repeated base, or homopolymer run, all repeats are polymerized during the

same step and the intensity of light produced is proportional to the number of repeated

bases. This process is repeated by sequentially choosing different bases to be used in the

nucleotide solution washed over the plate. The flashes of light originating from individual
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wells after specific bases are introduced are translated into an ordered series of bases which

corresponds to the DNA fragment or read present in the well. This process is completed

when polymerization of all fragments is complete.

The intensity of light produced is an analog signal proportional to the number of re-

peated bases. This signal must be translated to a digital one that determines the number

of reported nucleotide bases appearing consecutively. The analog-to-digital conversion is

the primary source of errors in the Roche 454 sequencing technology [28]. Many sequencing

errors are therefore a consequence of miscalled homopolymer repeat lengths [28, 31]. Roche

454 GS Junior has reported total error rates of 0.5% [28] and indel rates of 0.38% [27]. Luo

et al. report a homopolymer error rate bias with Roche 454 FLX Titanium reads within

AT-rich homopolymers. Furthermore, they find errors are more frequent in homopolymers

of greater length.

2.2.2 Illumina Sequencing

Similar to the Roche 454 sequencing method, Illumina sequencing relies on creating ho-

mogeneous fragment clusters and identifying polymerized bases by detecting light [31].

However, Illumina creates clusters as spots on a plate whereas Roche 454 uses a water-in-

oil emulsion. The primary difference between Roche 454 and Illumina technologies is in

their nucleotide polymerization procedure. Roche 454 technologies can add multiple bases

of the same type in one cycle whereas Illumina incorporates only one base at time. This

makes homopolymer repeat errors much more rare within Illumina data.

The Illumina sequencing procedure is described in Mardis 2008 [31] and we paraphrase
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their description. The genome is randomly sheared into small fragments and adapters

are ligated to the ends of these single-stranded fragments. Fragments are then randomly

attached to a flow cell and amplified into homogeneous fragment clusters using a bridge

amplification technique. This amplification process requires the next base in the sequence

to be added simultaneously to all reads. Polymerization of single-stranded fragments cre-

ates double-stranded fragments. These double-stranded fragments are denatured into two

separate single-stranded fragments which remain attached to the flow cell. Amplification

is repeated, using each single-stranded fragment as a starting point, until fragment clusters

are sufficiently large. Sequencing is performed by introducing DNA polymerase reagents

and fluorescently labelled variants of all four nucleotides simultaneously. These labelled

nucleotides are chemically blocked to prevent further polymerization, as with Sanger se-

quencing, after they are incorporated. This means that, unlike Roche 454, bases are added

individually. An optical instrument images the fragment clusters and the fluorescent labels

contribute to a signal which is translated into a base in a read. A subsequent chemical

process then removes fluorescent labels and the polymerization terminating components,

thereby preparing fragment clusters for the next round of polymerization and imaging.

While Illumina sequencing involves a conversion of an analog signal to a digital signal,

this does not involve conversion of a measured intensity of light into some number of nu-

cleotide bases. The Illumina sequencing base caller distinguishes between four wavelengths

of light and makes a single base call using that information, with miscalls introducing sub-

stitution errors [23]. As a consequence of Illumina’s single base polymerization procedure,

is it unlikely to miscall homopolymer lengths [28]. Sequencing errors appear to originate

from amplification steps during preparation and low signal quality resulting from sequence-
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specific regions and a degrading sequencing environment over time [40]. This may be a

consequence of fading intensity, decreasing quality of cluster strands, and an accumulation

of fluorescent dyes between sequencing cycles [23].

Illumina MiSeq has estimated substitution error rates of 0.1% and indel rates of under

0.001% [27]. However, additional studies place total error rates at 0.80% [45]. The error

rate will depend on the sequencing target and evaluation method. MiSeq errors are not

uniformly distributed across the genome [40], but appear to be more frequent around

homopolymer runs [41, 45], GGC triplets [40], or towards the 3’ ends of reads [54]. There

appears to be a higher frequency of mismatches within 10 bases downstream of both a GGC

triplet in the forward direction and its reverse compliment (GCC) in the reverse direction.

However, there seems to be no correlation between the GGC triplet and a higher mismatch

rate if the following triplet is AT-rich [45]. Furthermore, these errors seem to represent

as little as 0.0015% of bases [28]. Interestingly, Luo et al. [28] report homopolymer errors

with Illumina Genome Analyzer II in 1% of genes reported from assembly. Likewise, Quail

et al. [45] report errors after homopolymer tracts of length 20 and greater. This suggests

that homopolymers may indirectly introduce sequencing errors into Illumina reads.

2.2.3 Ion Torrent Sequencing

Ion Torrent sequencing differs from Roche 454 and Illumina MiSeq technologies in that it

does not use an optical sensor. The Ion Torrent technology was introduced to overcome

the need for electromagnetic sensors and specialized reagents [48]. Sequencing is performed

on integrated circuits containing sensors which detect the release of hydrogen ions during
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DNA polymerization [48]. This is conceptually similar to the approach used in Roche

454 technologies, which uses a series of chain reactions to observe light produced by DNA

polymerase. The Ion Torrent approach to sequencing allows machines to be manufactured

at a lower cost while still producing significant throughput (Table 2.1) [18].

We paraphrase the Ion Torrent sequencing procedure described in Rothberg et al. 2011

[48]. The DNA preparation step closely resembles the Roche 454 sequencing preparation

described in Section 2.2.1. The genome is fragmented and fragments are ligated to adapters.

The fragments are then amplified onto beads and placed into wells with other sequencing

reagents. The wells contain several copies of the same DNA fragment in an environment

which allows DNA polymerization. Sequencing involves washing all four nucleotides in a

stepwise manner. When an added base is complementary to the base awaiting polymeriza-

tion, then the bases are incorporated to the DNA fragments. This reaction occurs for every

base within a homopolymer. The reactions release protons which shift the pH environment

in the well proportional to the number of bases incorporated. The shift in pH is detected

by a sensor below the well, converted to a voltage, and finally converted to some number of

nucleotide bases. Immediately following a flow of nucleotides, a wash is used to remove any

remaining nucleotides. This process is repeated until all fragments have been polymerized.

It is unsurprising that the sequencing errors produced Ion Torrent sequencing are very

similar to those produced by Roche 454 technologies. The technologies both incorporate all

homopolymer bases simultaneously and must convert analog signals to a number of bases

corresponding to the length of the homopolymer: light intensity for Roche 454, voltage

for Ion Torrent. This process is inaccurate and is a major source of errors in Ion Torrent

sequencing [45]. Ion Torrent PGM has reported total error rates at 1.71% [45] and indel
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rates of 1.5% [27]. The accuracy of PGM reads appears to steadily decrease towards the

end of the read [27]. Furthermore, Ion Torrent PGM has a higher observed error rate for

calling homopolymers of any length than Roche 454 GS Junior [45].

2.3 Summary

The first generation of sequencing was accomplished using Sanger sequencing methods.

The initial Sanger approach used many bacterial artificial chromosomes (BAC). This ap-

proach was costly and time consuming. The BAC sequencing approach was eventually

replaced by whole-genome shotgun sequencing. Sanger WGS methods improved over BAC

methods by enabling more rapid sequencing. Second-generation sequencing improved on

WGS methods by further increasing throughput and reducing costs. However, second-

generation reads are much shorter than first-generation reads and contain a non-trivial

number of errors. The three second-generation sequencing technologies considered in this

work are Roche 454, Ion Torrent, and Illumina. Roche 454 sequencing is accomplished

using an approach called pyrosequencing, which observes light flashes produced as a con-

sequence of DNA polymerization. The pyrosequencing approach has difficulty resolving

the number of repeated bases in homopolymer runs and, as a consequence, the primary

source of errors in Roche 454 sequencing is homopolymer repeats. Similarly, Ion Tor-

rent sequencing is accomplished by observing changes in pH after DNA polymerization

occurs. Ion Torrent data is characterized by an abundance of homopolyer repeat errors.

Finally, Illumina sequencing performs sequencing by polymerizing nucleotides, including

homopolymer repeats, individually. Substitution errors are therefore dominant in Illumina
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sequencing and homopolymer repeat errors are very rare. The expected error rates for

second-generation sequencers is in the range of 0.1% to 2%.
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Chapter 3

Related Work

Sequencing errors create problems for numerous application which use sequencing reads.

We describe sequence assembly approaches, which are necessarily required to overcome er-

rors to produce meaningful assemblies, and highlight the error correction procedures used

by these approaches. However, assembly is not necessary for all sequencing applications

and other analyses not requiring assemblers can also benefit from stand-alone error correc-

tion. We describe below the assembly procedure and existing stand-alone error correction

algorithms similar to our work.

3.1 Sequence Assembly

The sequence assembly problem is closely related to the error correction problem. Sequenc-

ing reads used in assembly contain errors which complicate the assembly process. These

errors obscure true sequence overlaps and introduce erroneous DNA subsequences into the
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assembly. Sequencing errors must therefore be removed or corrected to create an accu-

rate assembly. The earliest efforts of first-generation sequence assembly involved manually

aligning print-outs of reads by hand [18]. The following decades improved the throughput

of Sanger sequencing methods and the increasing data demanded computational assembly

methods. These computational methods performed assemblies by automating the read

alignment process [2]. However, the landscape of sequence assembly changed with the

introduction of second-generation sequencing technologies. Second-generation reads were

significantly shorter and had tremendously greater throughput [18]. The technologies de-

veloped for first-generation sequencing, which expected long reads and low coverage, were

no longer appropriate and new assembly methods needed to be developed.

Sequence assembly is achieved by observing overlaps in reads and producing long se-

quences which are a product of overlapping sequences. In this respect, it is similar to

the longest common substring (LCS) problem. However, this is complicated by repeti-

tions in the true sequences, sequencing errors, and by the computational complexity of

the problem. The assembly process typically involves the creation of contigs, or contigu-

ous sequences, and the formation of scaffolds, which attempt to connect contigs using

additional information [39]. There are three main approaches to sequence assembly [39].

Overlap-Layout-Consensus (OLC) assemblers use an overlap graph and use computation-

ally expensive sequence alignment methods [37]. The de Bruijn graph (DBG) assemblers

use a k -mer graph [37]. These methods use much less memory and computational time

than OLC methods. However, they have difficulty resolving sequencing errors in reads and

repeated regions within genomes [39]. Greedy assemblers tend to be based on either OLC

or DBG methods. However, greedy methods are not commonly used because they cannot
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easily incorporate global information into their assembly process [39].

There are a number of challenges which complicate sequence assembly. Sequences are

repeated within genomes more often than would be expected at random [18]. The con-

sequence of this repetition is that it becomes very challenging to differentiate and fully

assemble repeated regions longer than the read length without additional information.

This is further complicated when assembling a diploid genome with pairs of nearly iden-

tical chromosomes, which will contain repeated regions throughout and between them.

Furthermore, it is especially challenging to differentiate between sequencing errors and

true mutations within nearly identical repeat regions [37]. Another complication involves

staying within the bounds of practical computability [18]. This often requires the imple-

mentation of heuristics to guide the assembly process. We focus on sequence assembly

without a reference genome to highlight their approach to the necessary task of handling

sequencing errors.

3.1.1 Greedy Assemblers

The early implementations of first-generation assemblers for viral genomes used a greedy

approach [18]. This was possible because of the relatively simple complexity of some viral

genomes [13]. Likewise, the first implementations of second-generation assembly packages

used greedy algorithms [37]. These include SSAKE [58] and SHARCGS [11]. The greedy

assembly process involves selecting a read or contig and extending it with another which

produces the next highest scoring overlap [37]. The contigs then grow by greedy extension

and this process is repeated until there remain no possible extension. As is characteristic of
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greedy algorithms, this approach can fall into a local maximum by performing an extension

that would have helped produced contigs of greater size. Greedy assemblers may use a

graph implementation in which nodes represent reads or contigs and edges represent the

overlaps between them. These algorithms produce a single path through the graph by

considering only the highest scoring edge and then merging the connected nodes.

Greedy assemblers are prone to incorporating false-positive overlaps into contigs [37].

They will propagate errors as the assembler continues to build on false overlaps and con-

nect unrelated sequences. Sequencing errors are implicitly avoided by selecting perfect

overlaps before imperfect ones. However, this ignores the possibility of having coinciding

errors in multiple reads as a consequence of error prone regions. These reads will produce

perfect overlaps and be incorporated in the same manner as non-erroneous reads. Similar

approaches attempt to ignore imperfect overlaps entirely. SHARCGS [11] filters errors by

removing reads which do not contain a minimum number of perfect overlaps with other

reads. Additionally, it optionally requires the combined quality of overlaps, as determined

by the sequencer, to meet a minimum threshold. However, these heuristics produce an

incomplete assembly as a consequence of regions which were sequenced infrequently within

the quasi-random genome sampling.

3.1.2 Overlap-Layout-Consensus

Overlap-Layout-Consensus (OLC) assemblers became popular as a means of assembling

larger and more complicated genomes sequenced by Sanger technologies [37]. These ap-

proaches were necessary to address the size of the genomes and the complicated repeat
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structures within. Some examples of OLC assemblers include the Celera assembler [38],

its revised pipeline CABOG [36], and Newbler [32].

Overlaps are precomputed from many computationally expensive pairwise alignments

[37]. However, this procedure is aided by a seed and extend heuristic which looks for exact

matches of length k and performs alignments which originate from these locations. This

heuristic is sensitive to both the length of k and errors within overlap seeds. The overlap

graph is constructed from these overlaps and an approximate genome layout is determined.

The nodes of overlap graphs represent reads and edges represent overlaps between these

reads. The OLC algorithm must determine paths through the graph which represent

possible contigs. This is achieved by performing many multiple sequence alignments to

determine the exact layout and consensus sequence. However, these multiple sequence

alignments are very expensive to compute and heuristics are therefore used to calculate

the consensus sequence progressively.

Sequencing error correction is performed in the consensus stage of assembly. This stage

is more robust to sequencing errors than the overlap detection stage and less sensitive

to imperfect overlaps. The Newbler assembler [32] performs correction in this stage by

exploiting sequence coverage. However, this is done within the instrument-specific “flow

space” of Roche 454 sequencing technologies. As described in Section 2.2.1, homopolymer

lengths are observed as signal intensities and are converted into a fixed number of nucleotide

bases. Newbler maintains the signal intensities of homopolymer repeats and rounds into a

“base space” after the consensus signal intensity is calculated from many overlapping reads.

This “flow space” correction is much more sensitive to the underlying technology which

produces these errors than any correction which operates in a “base space”. However, this
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procedure is specific to the Roche 454 sequencing technology.

3.1.3 De Bruijn Graph

The de Bruijn graph model of assembly became increasingly popular with the introduction

of high throughput second-generation sequencing technologies. The genome assemblies of

the Sanger era required 7x to 10x coverage [18], which may be interpreted as expected over-

sampling. However, second-generation sequencing technologies produce runs with upwards

of 50x coverage [18]. DBG assemblers were introduced to address the problem of short

reads and high coverage which are slow to assemble using the OLC assembly approach.

DBGs require significantly less memory to maintain as they typically do not maintain entire

reads throughout the assembly process. They are therefore more suitable for assemblies

which have limited memory resources. Euler [43] was the first assembler to use a DBG

model and was later improved on by Velvet [60] and ALLPATHS [15].

De Bruijn graphs were developed independently of sequence assembly and assembly

implementations are sometimes referred to as k -mer graphs [37]. These graphs do not

explicitly maintain reads and overlaps. Instead, each k -mer observed in the read set forms

a node of fixed length k and edges are placed between all pairs of k -mers that are the

prefix and suffix of k + 1-mers of reads. The result is a graph of short sequences connected

by edges indicating overlap. If reads were error free, the genome would correspond to

some path through this graph. The advantage of the de Bruijn graph approach is that it

scales well with high sequence coverage. This is because every k -mer is only added once

to the graph. However, connections are added to existing nodes as they are observed in
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reads. Any unbranching path through the graph represents an unambiguous contig which

is typically compressed into a single node with a size larger than k. Conversely, repeated

regions within the genome correspond to branches in the graph. Repeats longer than

length k are impossible to resolve without additional sequencing or assembly techniques.

The scaffolding process uses paired-end information, which provides an approximate inter-

read distance, to resolve repeat regions and close gaps. Additionally, some assemblers

resolve short repeats and simple errors by threading reads through the graph during the

graph reduction process [4].

The consequence of the improved scalability is sensitivity to sequencing errors [18]. As

noted in Sections 3.2.1 and 4.2, a single base error changes k k -mers into ones unlikely

to be observed elsewhere in the read set. However, if no information regarding sequence

coverage is maintained, it can be difficult to resolve these errors. The majority of error

correction within de Bruijn graph assemblers involves observing erroneous graph topology

and attempting to resolve the graph into simpler paths. Errors near the end of reads

typically create short “tips” in which a path is connected to the graph only at one end.

Errors within the read create short “bubbles” in which graph paths branch and reconnect

at nearby locations. Much of the error correction involves removing these “tips” and

“bubbles” [37]. However, these bubbles may correspond to real mutations, and assemblers

must either construct two contigs, increasing the risk of a misassembly error, or merge

branches into a single contig which may not be accurate [18]. Some assemblers additionally

address errors by preprocessing reads to remove errors [37]. Other attempts incorporate

some information of coverage into the graph and remove paths or errors with less support

[42]. However, this risks abandoning areas of the genome which were, by random nature,
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sequenced at a lower coverage.

3.2 Stand-Alone Error Correction

There has been a substantial effort in the development of stand-alone error correction

software [19, 22, 26, 55]. These correctors are designed to correct errors within second-

generation sequencing reads. They must avoid introducing new errors and optionally

remove reads which contribute no information or which might complicate downstream

processes. However, the majority of these correctors [22, 26, 55] are only designed to

correct errors produced by Illumina sequencing technologies. These correctors primarily

target simple substitution errors within these technologies. While there has been an effort

[19, 20] to additionally correct insertion and deletion errors, we will see in Section 5.3 that

these correctors perform inadequately on Roche 454 and Ion Torrent sequencing data.

Second-generation error correction methods typically involve either a k -spectrum ap-

proach, such as Quake [22] and Reptile [59], or a multiple sequence alignment (MSA)

approach, such as Coral [50], ECHO [21], and SGA [55]. The k -spectrum correctors try

to correct reads such that all k -mers that comprise a read have counts above a certain

threshold. MSA correctors use an approach that resembles the error correction procedure

used in OLC assembly (Section 3.1.2). We describe in detail Quake, a k -spectrum based

error corrector, which is similar to the work in this thesis, and additionally describe SGA

[55], RACER [20], Musket [26], and BLESS [19]. We compare the performance of these

error correctors against Pollux in Section 5.3.
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3.2.1 Quake

Quake [22] was published in 2010 and corrects substitution errors in high-throughput,

second-generation sequencing projects. Specifically, Quake currently targets reads pro-

duced by Illumina sequencing technologies. Similar to our work, Quake employs a k -mer

coverage approach to error correction. Quake is designed for sequencing projects with

greater than 15x coverage [22], as it uses k -mer redundancy to locate and correct errors.

However, unlike our correction software, Quake incorporates quality scores into its k -mer

correction algorithm. Quality scores are a measure of confidence about the accuracy of a

base and are assigned during the base calling process [12, 22]. These scores allow Quake

to make corrections which are motivated by an existing measure of trust. Correction

is achieved by categorizing a read’s k -mers into either trusted or untrusted and making

changes to a read until all its k -mers are trusted. When a read contains many untrusted

k -mers which are not corrected, the read is filtered from the set of corrected reads.

Similar to our approach in Section 4.2, Quake makes the observation that single base

errors alter the k -mers that overlap an erroneous base and uses this information to inform

corrections. A frequent consequence is that these erroneous k -mers appear only once or

twice within the entire set of k -mers. The authors therefore assume that k -mers with

low coverage are uncommon in a high-throughput sequencing project and a consequence

of a sequencing errors. Quake first counts all of the k -mers within sequencing reads and

categorizes k -mers as either low-coverage untrusted or high-coverage trusted based on the

number of times they occur in the entire data set. However, rather than incrementing a

k -mer count by 1 when it is observed, Quake instead increments the count by the product
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of the probabilities the base calls are accurate, as defined by the quality scores, for all

bases in the k -mer. They refer to this process as q-mer counting. The q-mer counting

procedure can be understood as weighted k -mer counting that approximates k -mer counts

over the error distribution defined by quality scores. The authors observe that counts of

error k -mers and true k -mers exist as two overlapping distributions. The q-mer count

threshold between untrusted and trusted is chosen by selecting a cutoff between these two

distributions such that the estimated ratio of error k -mers to true k -mers is sufficiently

high.

Quake locates potentially erroneous bases by first exploring the intersection of a read’s

untrusted k -mers. These intersections are the base positions shared by all untrusted k -mers

in the read. In the case of a single substitution error, the error will affect k k -mers and

the intersection will be the erroneous base (Figure 3.1). However, if there exists multiple

errors within a read, the intersection of untrusted k -mers may be empty. When this is

the case, Quake expands its search space by exploring the union of untrusted k -mers.

However, we will show in Section 4.2 that this requires searching a larger search space than

necessary. Quake recognizes this and employs heuristics to avoid searching a larger space.

When the intersection of trusted k -mers is empty, Quake trusts all bases which overlap

the rightmost and leftmost trusted k -mers bordering the untrusted regions. Additionally,

Quake creates correction clusters in longer reads containing multiple errors, within which

localized correction may be performed.

There is some doubt about the effectiveness of quality scores provided by sequencers.

There is evidence to suggest that high quality scores overestimate the true quality of bases

while low quality scores instead underestimate the true quality of these bases [12]. However,
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Figure 3.1: Localizing errors in Quake. The untrusted (orange) and trusted (blue) k -mers
of reads (black) are shown horizontally. The intersection of untrusted k -mers is shown as
a vertical bar and is used to locate positional errors (A). However, this intersection may
contain multiple positions (B) or may be empty as a consequence of multiple errors in a
read (C) [22].

the authors argue that edit-distance based correction methods should not ignore quality

scores entirely as they can be useful in directing the correction search space. Furthermore,

quality scores can be informed by known sequencing biases, such as A and C being mistaken

for one another in Illumina technology because they share a detection laser [12]. Quake

abandons regions containing more than 12 positions with poor quality scores. The authors

define a position to have poor quality if the probability of having an error of at least

1%. This is done because the authors found the software was not effective at correcting

these regions. The decision to quickly abandon these regions is motivated in part by

computational requirements. However, as we will see in Section 5.5, these regions may

contain a considerable number of correctable errors.

A consequence of using a trusted k -mers approach to correction is that it is compli-
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cated when the same sequencing error appears in multiple reads. Since Quake makes the

assumption that sequencing errors produce k -mers that appear infrequently, it may be

less effective at correcting data sets containing errors that do not occur at uniformly dis-

tributed random positions. Furthermore, as explained in Sections 2.2.1 and 2.2.3, Roche

454 and Ion Torrent sequencing introduce insertion and deletion errors as a consequence

of homopolymer repeats. However, Quake does not directly correct these errors.

Since Quake requires a single threshold for separating untrusted and trusted k -mers,

it may be unsuitable for correction of projects with low or mixed coverage. However, the

authors note that low-coverage regions may be present in projects with sufficient over-

all coverage due to the random nature of high-throughput sequencing technologies [22].

Furthermore, Quake will have difficulty correcting metagenomic projects in which multi-

ple targets are sequenced at various levels of coverage [24]. These projects would require

a more flexible correction methodology which can accommodate these levels of coverage.

Additionally, a single threshold approach is complicated by repeated sequences which will

have a higher than expected coverage. This is problematic for Quake when attempting

choose a threshold for untrusted and trusted k -mers. However, the authors avoid this by

determining true k -mer coverage by sampling from multiple distributions.

3.2.2 SGA

The SGA error corrector is a standalone component of the SGA assembly pipeline [55] and

uses multiple correction strategies. The first strategy involves classifying k -mers into either

untrusted or trusted based on their multiplicity. This approach is similar to Quake [22]
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and other correctors [19, 20, 26]. The SGA error corrector assumes that base-calling errors

occur independently at random [55]. SGA identifies read positions which are not present in

any k -mer with a frequency higher than a specified multiplicity threshold. These positions

are substituted with the three other nucleotide bases and accepted if they produce a k -mer

with a frequency which exceeds the threshold. However, as we will see in Section 5.3, this

strategy does not perform well in the presence of insertion and deletion errors found in

Roche 454 and Ion Torrent reads.

The second, and default [55], correction strategy in SGA involves finding inexact over-

laps in reads. This strategy locates the set of reads which overlap the read in question

using a seed and extend algorithm. A multiple sequence alignment is constructed from the

set of reads and sequencing errors are removed using a simple consensus-based correction

procedure. The SGA algorithm uses overlap and consensus techniques in a manner similar

to the OLC assembly process described in Section 3.1.2. SGA employs heuristics to avoid

miscorrecting true sequence variation in diploid genomes. These heuristics remove reads

containing multiple conflicted positions from the multiple sequence alignment. These con-

flicts must be supported by multiple reads. However, performing many multiple sequence

alignments can be a costly operation.

3.2.3 RACER

The authors of RACER provide a short description of their method in Ilie and Molnar 2013

[20]. Similar to other error correctors [19, 22, 55], RACER identifies a k -mer multiplicity

threshold and makes corrections such that a read’s k -mers exceed this threshold. RACER
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encodes k -mers in a 2-bit nucleotide alphabet and maintains observed k -mers in a hash

table. The error correction procedure involves exploring the eight nucleotide possibilities

on either side of a k -mer. A correction is made when a nucleotide substitution improves

the multiplicity of a k -mer over the threshold. However, as we will see in Section 5.3, this

approach introduces many errors in the presence of insertion and deletion errors.

3.2.4 Musket

Musket is introduced in Liu et al. 2013 [26] and, similar to other correctors [20, 22, 19, 55],

uses a k -spectrum approach to correction which classifies k -mers as either untrusted or

trusted. The first stage of Musket involves construction of the k -spectrum by counting

k -mers observed in reads. However, Musket uses a Bloom filter to reduce the number of

k -mers it maintains in its hash table. Similar to the k -mer counting procedure in Pollux,

Musket removes all unique k -mers from the hash table after construction. What remains

is a library of k -mers that have been observed multiple times in the set of reads.

The error correction procedure involves multiple strategies. The first strategy locates

potentially erroneous positions within a read which do not overlap any trusted k -mers.

Musket explores substitution corrections at these positions and accepts corrections that

make all k -mers covering the position trusted. However, no correction will improve all

k -mers when there exists substitution errors in close proximity. Musket uses an aggressive

correction strategy to remove these errors. Musket recognizes that the transition between

a trusted k -mer and an adjacent untrusted k -mer reveals the position of a potential error.

Substitution at this position are explored and correction requires, by default, that at least
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2 k -mers become trusted. However, this requirement suggests that Musket may have

difficulty correcting adjacent errors.

3.2.5 BLESS

The BLESS algorithm is described in Heo et al. 2014 [19] and, similar to Musket [26],

uses a Bloom filter to reduce memory requirements. Similar to other error correctors

[20, 22, 26, 55], BLESS is a k -spectrum error corrector which categorizes k -mers using a

k -mer multiplicity threshold. The k -mers which exceed this threshold are considered solid

and those that do not are considered weak. BLESS counts the multiplicity of k -mers by

distributing k -mers into several files, counting the contents of a file using a hash table,

and then programming solid k -mers into a Bloom filter. This strategy greatly reduces

the memory requirements of error correction because the number of solid k -mers will be

significantly less than the number of overall k -mers.

Correction is accomplished by converting weak k -mers into solid k -mers. This is similar

to Quake’s strategy of converting untrusted k -mers into trusted k -mers. BLESS locates

sequencing errors using an observation that errors should not overlap solid k -mers. There-

fore, read positions which do not overlap solid k -mers may be erroneous. These positions

are modified to produce solid k -mers. BLESS additionally extends reads in a manner

similar to sequence assemblers to enable correction of errors located towards the ends of

reads.
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3.3 Summary

Sequence assembly shares many of the challenges faced by error correction. The assemblers

must resolve and connect imperfect sequence overlaps created by sequencing errors. The

three major approaches to second-generation sequence assembly include: Greedy, Overlap-

Layout-Consensus, and de Bruijn graph. The greedy assembly approach involves extending

one contig with the contig or read that produces the next highest scoring overlap. One

strategy for greedy error correction is filtering reads which do not produce enough perfect

or high-quality overlaps. However, this heuristic will produce incomplete assemblies as a

consequence of low sequence coverage. Overlap-Layout-Consensus approaches construct

assemblies by performing computationally expensive pairwise alignments. Sequencing er-

rors are resolved by taking the consensus sequence of aligned sequences. This approach is

robust to errors. However, it is computationally expensive and many heuristics are used

to approximate this procedure. De Bruijn graph assemblers reduce sequencing reads into

a graph with nodes of length k and edges determined by the observed overlaps. Error cor-

rection involves identifying erroneous graph topology and resolving the graph into simpler

paths. DBG strategies have greater difficulty resolving repeat regions in the genome.

Stand-alone error correctors employ similar strategies as sequence assemblers. The mul-

tiple sequence alignment approach to error correction uses the same strategies as Overlap-

Layout-Consensus assemblers. Likewise, k -spectrum error correctors use similar approaches

as de Bruijn graph assemblers to avoid computationally expensive sequence alignment.

Additionally, the greedy assembler heuristic of filtering reads is used by some stand-alone

error correctors to remove uncorrectable reads. We find that the overwhelming majority
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of second-generation error correctors use a k -spectrum approach that categorizes reads as

either untrusted and trusted. The correction operation in these correctors performs edits

that convert untrusted k -mers into trusted k -mers. However, these error correctors use

a single threshold to separate untrusted and trusted k -mers and may be unsuitable for

applications with variable coverage. Furthermore, many of these correctors only perform

substitution corrections and, as we will see in Section 5.3, may therefore be unsuitable for

Roche 454 and Ion Torrent correction.
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Chapter 4

Error Correction

We introduce Pollux, a platform-independent error corrector for second-generation sequenc-

ing technologies. Similar to other methods [19, 22, 26, 47], we approach the problem of error

correction using k -mers, consecutive k -letter sequences identified in reads. However, our

approach does not identify individual k -mers as erroneous [19, 22], but rather compares the

counts of adjacent k -mers within reads and identifies discontinuities between these counts.

These k -mer count discontinuities within reads are used to find likely error locations and

evaluate correctness. We decompose a read into its k -mers and their associated k -mer

counts, which are the number of times each k -mer has appeared in the entire set of reads.

When we observe an unexpected change in counts between consecutive k -mer counts in a

read, we locate the nucleotide position associated with the discrepancy and identify the

position as a potential error source. We explore possible corrections simultaneously and

accept corrections which remove the k -mer count discrepancies. A pseudocode of our error

correction algorithm can be found in Figure 4.1. The detailed explanation of the algorithm
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follows.

We use default k -mer lengths of 31 throughout this work. This length is slightly larger

than typically used in assembly [3, 60]. However, length 31 k -mers are considered by

other error correctors, such as BLESS [19]. We use longer k -mers because this lets us

avoid common short repeats which might otherwise confound our correction procedure.

Specifically, k = 31 is used because it is the longest odd k that can be represented in a

64-bit word.

4.1 Setup

Pollux begins by scanning across all reads in the data set. A basic preprocessing step

removes all leading and trailing wildcard N characters in the sequence. Internal wildcard

characters are replaced with either A, C, G, or T in a sequential manner. This allows Pollux

to operate within a compressed, four-character alphabet and treat internal, mis-replaced

wildcards as substitution errors. Furthermore, experiments are repeatable because the

wildcard replacement is deterministic. Pollux identifies all the k -mers of length k in each

read (Figure 4.2) and increments their respective counts in a k -mer hash table as they are

observed. We maintain a record of k -mers and their reverse complements. The reverse

complement is included because of DNA’s double-stranded nature. These complements

correspond to the same information and should be observed with comparable frequency

throughout the data set. Pollux only records observed k -mers and therefore maintains an

extremely small subset of all 4k possible k -mers of length k.
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1: table ← hash table
2: for all reads read do
3: trim N(read) {remove leading and trailing Ns}
4: replace N(read) {replace internal Ns with A, C, G, T}
5: for all k -mers kmer in read do
6: hash(kmer)
7: end for
8: end for
9: for all k -mers kmer in table do

10: if table[kmer] = 1 then
11: remove(kmer, table)
12: end if
13: end for
14: for all reads read do
15: errors ← find errors(read) {locate all errors in read}
16: pos ← next(errors)
17: while pos ≥ 0 do
18: {explore possible corrections at position}
19: subs ← substitutions(read, pos)
20: ins ← insertions(read, pos)
21: dels ← deletions(read, pos)
22: {select the best correction at position}
23: correction ← best(subs, ins, dels)
24: if valid(correction) then
25: apply(correction)
26: errors ← find errors(read)
27: else
28: homops ← homopolymers(read, pos)
29: correction ← best(homops)
30: if valid(correction) then
31: apply(correction)
32: errors ← find errors(read)
33: end if
34: end if
35: pos ← next(errors)
36: end while
37: if low information(read) then
38: filter(read)
39: end if
40: end for

Figure 4.1: The Pollux error correction algorithm.
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AGGCCTATTCGATTCGAAATCGAGGATATCGATCGTACTGGATGCTATCGATCGATCACTGCAGT

AGGCCTATTCGATTCGAAATCGAGGATATCG (5)

GGCCTATTCGATTCGAAATCGAGGATATCGA (6)

GCCTATTCGATTCGAAATCGAGGATATCGAT (5)

CCTATTCGATTCGAAATCGAGGATATCGATC (6)

(...)

(6) ATCGTACTGGATGCTATCGATCGATCACTGC

(7) TCGTACTGGATGCTATCGATCGATCACTGCA

(8) CGTACTGGATGCTATCGATCGATCACTGCAG

(8) GTACTGGATGCTATCGATCGATCACTGCAGT

Figure 4.2: An example of counting the k -mers of length 31 that comprise a single read. The
read is shown above and a subset of the corresponding k -mers are found below. Possible
k -mer counts, with respect to the entire data set, are provided in parenthesis.

After aggregating k -mer information from all reads, Pollux frees a significant amount of

memory by removing k -mers observed once from the hash table and implementing a policy

of reporting a count of 1 whenever a k -mer is not found in the hash table. This is similar

to the approach used by Musket [26]. In development, we found that removing these k -

mers significantly reduces memory requirements and improves execution times during error

correction. This is particularly true for larger, error-prone data sets, such as Ion Torrent

PGM. In one E. coli data set [27], which we evaluate in Section 5.1.2, 46% of Roche 454 GS

Junior (1), 85% of Ion Torrent PGM (1), and 41% of Illumina MiSeq k -mers are unique.

Keeping these k -mers in the table contributes no additional information and can be safely

removed using this strategy. When multiple files are corrected simultaneously, unique k -

mers may be removed from the hash table after processing each file or after all preprocessing

is complete. This strategy can significantly improve execution times when memory limits
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are being approached. However, the memory bottleneck remains during k -mer counting

and requires additional strategies [9, 35, 49] to improve. The number of unique k -mers will

depend on sequencing depth, the error rate of the sequencing technology, and the number

of error prone regions [35, 49].

4.2 Locating Errors

Pollux locates errors by observing k -mer count discontinuities inside reads and using that

information to pinpoint potentially problematic bases. Pollux constructs a k -mer counts

array for each read and fills each entry with the count of the k -mer that is left-anchored at

that index position in the sequence (Figure 4.3). There are r−k+1 such counts associated

with a read, where r is the length of the read and k is the length of the k -mers. Reads of

length shorter than k are ignored and left uncorrected.

A read that is not erroneous is assumed to have a k -mer count profile that is reflec-

tive of random sampling across the genome. This is motivated by the WGS approach

second-generation technologies use to produce sequencing information. Second-generation

sequencers fragment the sequencing target [31] and sample enough fragments such that, on

average, a position in the genome will be sequenced numerous times. The sequencing pro-

cess can be thought of as selecting many starting locations within a genome. Sequencing

reads necessarily overlap each other and oversample the genome. The k -mer count profile

assumption holds that k -mers which comprise reads reveal the amount of oversampling,

or coverage, a particular region of the genome has experienced and that this coverage

can be characterized by a Poisson process [4]. It is unexpected that coverage will deviate
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Sequence T T C T T A G G G G
k-mer Count 8 8 6 6 6 6 7 . . .

Index 0 1 2 3 4 5 6 7 8 9

Figure 4.3: A simple k -mer count profile associated with a non-erroneous read. The k -mers
are of length 4. The k -mers are left-anchored and counts represent the number of times
the k -mer has been observed in the entire data set.

significantly between adjacent k -mers within genomes containing little repetition, such as

bacterial genomes. A significant deviation in k -mer counts would require an unexpected

number of reads to either begin or end at exactly the same location within the genome, or

a repeat in the true genome sequence.

A read that contains a characteristic sequencing error will have adjacent k -mer counts

that deviate unexpectedly from a random sampling process (Figure 4.4). This is because

many sequencing errors occur infrequently [27, 28]. We assume that the erroneous sequence

will appear less frequently in reads than the true sequence. These errors produce deviations

in coverage and appear infrequently relative to the coverage of their corresponding region

of the genome. A key assumption of our method is that most k -mers which overlap an

erroneous location will have low k -mer counts. These erroneous k -mer counts comprise a

region of the k -mer count profile which will deviate significantly from the rest of the profile.

For example, a substitution error, located at least k bases away from the ends of the read,

will affect k k -mer counts. If this error is unique within the data set, these k -mer counts

will drop to 1. A similarly defined insertion error will affect k + n k -mer counts and a

deletion error will affect k−n counts, where n is the length of the indel. Thus, unexpected

drops in k -mer counts and corresponding low coverage regions are often a marker of errors.

However, we do not immediately make this assumption.
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Figure 4.4: An example of the k -mer counts associated with an Illumina MiSeq read
containing two highlighted substitution errors. The k -mers are of length 31. A data point
corresponds to the number of times a left-anchored k -mer, starting at that given position
within the sequence, has been observed in the entire read set. The first error is located
near the middle of the read and affects the counts associated with 31 k -mers. The second
error is located only four positions in from the 3’ end of the read and affects only 4 k -mer
counts.

We do not identify reads containing low k -mer counts to be erroneous if such counts

appear to follow a random sampling process with no discontinuities. We define consecutive

k -mer counts to be potentially erroneous if their difference is larger than a specified thresh-

old. This threshold requires consecutive k -mer counts to have a difference of greater than

3 and greater than 20% the larger count to be flagged as a possible error. This threshold

is quite sensitive, and will identify discontinuities corresponding to homopolymer repeats

as well as substitution and indel errors. It additionally works quite well for both high-

coverage and medium-coverage sequencing projects. The fixed-number component of the

threshold operates when correcting low and medium coverage regions while the percent-

based component operates during high coverage correction. The thresholds are designed to

be conservative in high coverage and operate well in moderate coverage. At low coverage,

our approach becomes unable to recognize many errors as there is insufficient k -mer count
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information available. However, we cannot expect to recognize all low-coverage errors, as

the amount of signal required to reliable identify an error is not available to any approach

that only considers k -mer multiplicity.

We determine the erroneous nucleotide position N to be N = d if we observe a low-to-

high k -mer count discontinuity and N = d + k if we observe a high-to-low discontinuity,

where d is the left index of the discontinuity (Figure 4.5). This is applicable for substitution,

insertion, deletion, and homopolymer errors. In the case of deletion errors, a low-to-

high k -mer count discontinuity will point to the base immediately before the deletion and

a high-to-low discontinuity will point to the base immediately following. With respect

to homopolymers, the leftmost base in a homopolymer run is used as an anchor during

correction and is found by scanning left from N+1 in the case of a low-to-high discontinuity

and N − 1 with a high-to-low discontinuity.

4.3 Correction and Evaluation

The correction and evaluation procedures are very closely related and are performed to-

gether. The correction step involves making a change in the nucleotide sequence at the

erroneous base location and the evaluation step creates a measure of fitness by which

other corrections are compared. We choose to explore all substitution, insertion, and

deletion corrections within a read in a single step. We explore homopolymer corrections

independently after all other correction attempts have been exhausted. This is because

homopolymer errors frequently coincide in an often predictable pattern which complicates

correction. A corrected homopolymer may still appear erroneous when evaluated and un-
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Low-to-High
Sequence A C C C G A C T G C ...

k-mer counts 1 1 1 1 18 17 17 16 16 17 ...
Index 00 01 02 03 04 05 06 07 08 09 ...

High-to-Low
Sequence A C C A G A C G G C ...

k-mer counts 17 17 17 18 1 1 1 1 17 16 ...
Index 00 01 02 03 04 05 06 07 08 09 ...

Figure 4.5: Locating erroneous bases using k -mer counts. The erroneous base N is located
at position N = d in the case of a low-to-high discontinuity (top) and N = d + k in the
case of a high-to-low discontinuity (bottom), where d is the left index of the discontinuity
and k = 4. The erroneous bases are underlined.

corrected homopolymers often have less severe discontinuities in their k -mer count profiles.

This makes comparing substitution, insertion, and deletion evaluations incompatible with

homopolymer evaluations.

The correction and evaluation processes are repeated multiple times within a read until

either there remains no detected errors which are correctable or we determine we have

made too many corrections. In the later case, we revert all changes and do not correct

the read. The maximum number of allowable corrections is the greater of 30 and 20%

the length of the read before corrections. The purpose of having a maximum number of

corrections is primarily to avoid over-correcting a highly erroneous read which would be

better removed. It additionally prevents the software from becoming caught in a cycle of

antagonistic corrections being performed repeatedly.
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4.3.1 Substitutions, Insertions, and Deletions

Pollux evaluates substitution, insertion, and deletion corrections by making the appropri-

ate sequence change, updating the read’s k -mer counts array, evaluating the new k -mer

counts, and reverting changes before explore the next possible correction (Figure 4.6). This

process is repeated for all substitution, insertion, and deletion corrections. Substitution

corrections are attempted by replacing the erroneous base with each other nucleotide base

and assessing the success. Pollux performs insertion corrections by deleting the erroneous

base and deletion corrections by inserting the four nucleotide bases to the left and right

of the erroneous base. This results in three substitution, one insertion, and eight deletion

corrections explored and evaluated simultaneously.

The evaluation procedure relates directly to the error location problem. However,

instead of locating a k -mer count discrepancy, Pollux quantifies the fitness of a correction

by the number of k -mer count transitions that have been improved. This is the number

of additional k -mer count transitions for which there are no discontinuities. Therefore,

when we evaluate the corrections, we first build the k -mer counts array to reflect the

updated sequence. However, we note that the recorded k -mer counts in the hash table

are never updated as a consequence of corrections. We choose to evaluate k -mer counts

such that the evaluation k -mers overlap largely with the region of the read which appears

to contain no errors. As most discontinuities can be evaluated from one of two possible

directions, approaching discontinuities from the the non-erroneous direction provides the

greatest context for evaluation. Since Pollux corrects errors by removing k -mer count

discontinuities, it would otherwise be possible to remove discontinuities by reducing all
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Erroneous Read
Sequence A T C G A A A A T C G A ...

k-mer counts 21 20 20 19 01 01 01 01 01 01 01 01 ...

Substitution Correction - Substitute “C”
Sequence A T C G A A A C T C G A ...

k-mer counts 21 20 20 19 01 01 01 01 01 01 01 01 ...

Substitution Correction - Substitute “G”
Sequence A T C G A A A G T C G A ...

k-mer counts 21 20 20 19 19 01 01 01 01 01 01 01 ...

Insertion Correction - Delete
Sequence A T C G A A A T C G A ...

k-mer counts 21 20 20 19 01 01 01 01 01 01 01 ...

Deletion Correction - Insert “G” Left
Sequence A T C G A A A G A T C G A ...

k-mer counts 21 20 20 19 19 19 19 19 19 19 19 19 19 ...

Deletion Correction - Insert “T” Right
Sequence A T C G A A A A T T C G A ...

k-mer counts 21 20 20 19 01 01 01 01 01 01 01 01 01 ...

Figure 4.6: A non-homopolymer correction example. The same read is explored for possible
corrections. The length of the k -mers is 4. The erroneous base is underlined, the correction
bolded, and the improved k -mer counts italicized where applicable. The substitute “G”
operation improves the number of continuous k -mer counts by one. However, the insert “G”
left operation improved many more k -mer counts and would be selected as the appropriate
correction.
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k -mer counts within a read to 1. The contextual information provided by the evaluation

k -mers prevents this. Furthermore, this directional approach allows us to perform multiple

corrections within close proximity.

The very first k -mer we choose to evaluate is the k -mer that entirely overlaps the trusted

region of the read and borders the erroneous region. We define a region to be trusted if

it contains no k -mer count discontinuities. Additional evaluation k -mers extend into the

erroneous region. In order for a correction to be accepted, it must improve the counts of

multiple evaluation k -mers up to at least the k -mer which contains the first base following

the erroneous base. This requires at least two k -mer counts to be improved when correcting

substitution and insertion corrections, which replace and delete a base respectively, and at

least three counts to improved when correcting deletion errors, because a deletion correction

will always insert a base that improves at least one k -mer count. We require information

about the region after the erroneous base to prevent propagating an error further down

the read by performing misleading substitutions or insertions. However, a consequence of

this evaluation method is that we do not correct adjacent errors outside of homopolymer

errors, which are evaluated separately. Pollux considers all possible substitution, insertion,

and deletion corrections simultaneously and selects the correction which extends the size

trusted region maximally.

4.3.2 Homopolymers

Homopolyer corrections are attempted only after all other possible kinds of corrections at

a location have been exhausted. If a substitution, insertion, or deletion correction was
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found meeting an acceptable criteria, then a homopolymer correction is not attempted.

Homopolymer errors differ from other errors in that their correction may require inserting

or deleting multiple adjacent bases. Furthermore, the same homopolymer repeat will of-

ten be miscalled in multiple reads. When homopolymer errors coincide in this way, they

significantly reduce the number of reads containing accurate-length homopolymers and

increase the number of reads containing erroneous-length homopolymers. This compli-

cates the error correction procedure used in Pollux. These coinciding homopolymer errors

will cause the k -mer counts associated with a read containing an accurate homopolymer

length to appear discontinuous and k -mer count discontinuities associated with erroneous

homopolymer lengths to appear less severe than their counterparts. This phenomena is

particularly common for very long homopolymers. Roche 454 and Ion Torrent technologies

have an increased error rate when converting intensity signals produced by homopolymer

runs to the correct number of nucleotide bases. We observe that correct homopolymer

lengths are more frequently observed than incorrect lengths in reads containing the same

homopolymer region (Figure 4.7). Such reads will therefore have the largest k -mer counts

associated with them and deviations from this length will produce smaller k -mer counts.

When Pollux detects a possible homopolymer error, it explores a range of homopolymer

lengths and the evaluation process selects the length which maximizes the average of two

evaluation k -mers (Figure 4.8). When the selected length is different than the original

homopolymer length, then a correction performed and reported. Pollux orientates itself on

the leftmost homopolymer base. This base is important because regardless of the direction

of approach to homopolymer correction, the leftmost base does not change its index as the

length of the homopolymer is varied. When correcting a high-to-low error, the leftmost
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Figure 4.7: An example of homopolymer sizes as would be observed by our error correction
procedure. We align all reads which contain the same 31-mer adjacent to the homopolymer
region containing several Ts (left). The length of the homopolymer region is 6 in the
reference genome. The correct homopolymer length is the one most frequently observed.
However, multiple reads deviate from this length by 1 base.
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homopolymer base is found by scanning left from the base immediately to the left of the

erroneous base until a different base is discovered. When correcting a low-to-high error,

the leftmost homopolymer base is found by scanning left from the base immediately to the

right of the erroneous base. This base is used as an anchor when adjusting the length of

the homopolymer and evaluating the corrections.

Pollux considers possible homopolymer lengths from one half to twice the initial length.

We have found homopolymer errors outside this range to be very rare. Additionally, we

include the possibility of homopolymers being reduced to single nucleotides. We use two

evaluation k -mers in homopolymer correction. The first k -mer originates from the trusted

region, overlaps the entire homopolymer, and overlaps one base of the erroneous region of

the read opposite the trusted region. The second k -mer is similar to the first, except it

is shifted one base further towards the erroneous region. These evaluation k -mers include

important contextual information necessary for a confident correction. Pollux is required

to evaluate the k -mers containing the entire homopolymer and the two bases immediately

following for the same reasons as other corrections: any evaluation k -mers which do not en-

tirely overlap the erroneous region will be misleading. Evaluation k -mers which terminate

within a homopolymer region will have higher counts than the corresponding k -mers that

overlap the entire region and the following base. This is because k -mers which terminate

within a homopolymer region will be common to all homopolymer lengths and confound

evaluations. The k -mer count discontinuities present in reads containing accurate length

homopolymers would be avoided if evaluation k -mers did not include enough contextual

information and instead erroneously short homopolymer lengths would be selected. The

contextual information requirement allows us to make fewer false positive corrections at
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Homopolymer Length - 2
Sequence TCACGCAGCTTATCCAGCAGTGGCATCATTTTCCA ...

k-mer counts 34 34 01 01 01 ...

Homopolymer Length - 1
Sequence TCACGCAGCTTATCCAGCAGTGGCATCATTTTTCCA ...

k-mer counts 34 34 35 15 16 15 ...

Original Homopolymer Length
Sequence TCACGCAGCTTATCCAGCAGTGGCATCATTTTTTCCA ...

k-mer counts 34 34 35 22 19 19 18 ...

Homopolymer Length + 1
Sequence TCACGCAGCTTATCCAGCAGTGGCATCATTTTTTTCCA ...

k-mer counts 34 34 35 22 03 03 03 ...

Homopolymer Length + 2
Sequence TCACGCAGCTTATCCAGCAGTGGCATCATTTTTTTTCCA ...

k-mer counts 34 34 35 22 03 01 01 01 ...

Figure 4.8: An example of the same Ion Torrent PGM read undergoing a homopolymer
correction and evaluation. The length of the k is 31 and the original homopolymer length
is 6. The evaluation k -mers are bolded. We find that the original length is selected as
the appropriate homopolymer length. This example illustrates the nature of homopolymer
errors: there often exists alternative explanations which are not rare and the homopolymer
may appear erroneous during correction.
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the expense of missing errors which are located immediately within two bases of the ho-

mopolymer region. An erroneous base located in these positions may result in insufficient

signal required for correction.

The homopolymer evaluation process is motivated by our observation that the true

homopolymer lengths tend to have the maximum k -mer counts associated with them.

However, it is a different approach to correction than used when correcting substitution,

insertion, and deletion errors, which operate by removing discontinuities in the k -mer

count profile rather than maximizing k -mer counts. We implemented a homopolymer

correction process which attempted to minimize the difference in k -mer counts associated

with the discontinuities on either side of the homopolymer run. However, we discovered

this approach was less successful than simply maximizing the average of our evaluation

k -mers. We suspect it is important to require as small an evaluation window as possible

as this approach is sensitive to errors within k k -mers of a homopolymer error.

4.4 Summary

Pollux approaches the problem of error correction by identifying discontinuities between

adjacent k -mer counts and making corrections which remove these discontinuities. Pol-

lux constructs a library of k -mer counts which is not updated during correction. When

a discontinuity is observed between adjacent k -mer counts, Pollux attempts all substitu-

tion, insertion, and deletion corrections. Pollux selects the correction which best improves

the size of the region of the read with no k -mer count discontinuities. Pollux attempts

homopolymer error correction only after exhausting all other correction types at a given
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position. The evaluation process used by Pollux requires observing the base immediately

following the erroneous region. This prevents Pollux from performing misleading correc-

tions. However, as a consequence, Pollux is unable to correct adjacent errors which are not

within homopolymer repeats.
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Chapter 5

Experiments

We develop evaluation methodology which infers uncorrected, corrected, and introduced

errors using sequence alignments. This methodology is used to evaluate the effect Pollux

when correcting single and mixed genomes. Similarly, we characterize Pollux’s behaviour

when correcting reads at low coverage. We compare Pollux with several error correctors

on a variety of data sets. We additionally evaluate Pollux’s effect on sequence assembly

and provide evidence to support the read filtering strategy used by Pollux.

5.1 E. coli Reference Alignments

The primary application of Pollux is correcting errors in second-generation sequencing

reads generated from one species. We evaluate effect of Pollux by aligning uncorrected and

corrected reads to a reference genome and infer uncorrected, corrected, and introduced

errors from these alignments. We use well-characterized Roche 454, Ion Torrent, and
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Illumina reads, and a high-quality Roche 454 reference generated from the same E. coli

isolate [27]. Other error correctors [22] have been evaluated by their ability to improve

sequence assemblies. However, here we directly evaluate the effect of our error correction

software on sequencing reads. We provide information about Pollux’s effect on sequence

assembly in Section 5.4.

5.1.1 E. coli Sequencing Data

Loman et al. provide E. coli data consisting of read sets from Roche 454 GS Junior, Ion

Torrent Personal Genome Machine, and Illumina MiSeq generated from the same O104:H4

isolate, which was the source of a food poisoning outbreak in Germany in 2011 [34]. The

sequencing metrics for these runs can be found in Table 5.1. These benchtop machines

are designed to accommodate the needs of small laboratories that cannot afford larger

high-throughout sequencers, which are typically suited for large-scale applications [27].

However, these sequencing technologies introduce errors at an often higher frequency than

their larger counterparts. Nonetheless, they produce a substantial amount of data within

a matter of hours or days.

The authors additionally provide a reference genome constructed from reads generated

by a Roche 454 GS FLX+ system. These reads were of very high quality, having a modal

length of 812 bases and over 99% of sequenced bases as Q64 bases (99.99996% accurate).

The reads were used in combination with a paired-end library with 8 kb inserts to produce a

reference assembly to which the benchtop sequencers could be compared with confidence.

This reference E. coli genome consists of multiple scaffolds corresponding to the single
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Number of Number of Mean
Platform (Run) Reads (1000s) Bases (kb) Read Length

Roche 454 GS Junior (1) 136 71,000 522
Roche 454 GS Junior (2) 138 71,711 521

Ion Torrent PGM (1) 2,484 303,579 122
Ion Torrent PGM (2) 2,155 260,017 120

Illumina MiSeq 1,767 250,357 141

Table 5.1: Sequencing metrics for Roche 454 GS Junior, Ion Torrent PGM, and Illumina
MiSeq runs targeting the same E. coli isolate. There are two GS Junior runs and two Ion
Torrent runs. The single MiSeq run is derived from a multiplexed sequencing run in which
multiple targets were sequenced together and separated afterwards to reduce cost.

bacterial chromosome and two large plasmids. There exists 153 gaps within the scaffolds

corresponding to repeated regions, as the sequencing strategy is unable to provide sufficient

information of these regions for the assembly software to resolve them.

Sequencing all data sets from the same E. coli isolate means that the vast majority

of differences observed between the reads and reference genome will be a consequence of

sequencing errors and not genomic variation. We use this data set in an attempt to avoid

confounding errors with the mutations that would otherwise be observed more frequently

and possibly outnumber errors in highly divergent bacterial strains. However, while the

reference genome is of very high quality, there will still exist sequencing and assembly errors

within it. One complication might involve deletion errors, in which a base is removed from

the observed sequence and does not have an associated quality score with it, thereby making

the high quality base statistic misleading in that respect. However, we remain confident

that the number of sequencing and assembly errors present in the reference genome is

outweighed by the sequencing errors introduced by the benchtop sequencers.

The authors perform a comparison of the benchtop reads against their Roche 454 GS
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FLX+ reference genome [27]. They note that the Shiga toxin-producing phage and two

plasmids have significantly higher sequence coverage than elements in bacterial chromo-

some within the Illumina and Ion Torrent data sets. In particular, there is 25x coverage of

the chromosome and 625x coverage of the plasmids in the Illumina data set. This amounts

to approximately half the reads mapping to the large plasmids. This effect is much less

pronounced in the Ion Torrent data sets. Using the Roche 454 GS FLX+ reference as a

ground truth, Loman et al. align the benchtop reads to this reference and infer sequencing

errors produced by the benchtop sequencers. They show that Illumina MiSeq reads con-

tain the fewest sequencing errors overall, followed by Roche 454 GS Junior, and finally Ion

Torrent PGM (Table 5.2). PGM reads aligned the least successfully, with 10% of all reads

being discarded because no suitable alignment was found. Furthermore, the authors con-

firm that the primary error type is substitution within Illumina MiSeq and homopolymer

within Roche 454 GS Junior and Ion Torrent PGM [27].

5.1.2 Pollux Evaluation

We use data from the Loman et al. benchtop sequencing comparison study [27] to evaluate

how well our software performs on bacterial genome data produced by Roche 454 GS

Junior, Ion Torrent Personal Genome Machine (PGM), and Illumina MiSeq sequencing

technologies. We correct each benchtop sequencing data set independently and additionally

correct hybrid data containing GS Junior (1), PGM (1) and MiSeq reads. A summary of

our software’s reported corrections can be found in Table 5.3. These corrections include

true positives, false positives, and compound corrections which may be evaluated differently
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Platform Substitutions Insertions & Deletions Reads Aligned
Roche 454 GS Junior N/A 0.4% 99%

Ion Torrent PGM N/A 1.5% 90%
Illumina MiSeq 0.1% 0.001% 99%

Table 5.2: The per base alignment errors reported by Loman et al. when aligning Roche
454 GS Junior, Ion Torrent PGM, and Illumina MiSeq reads to a Roche 454 GS FLX+
assembled reference genome. The data sets were all sequenced from the same isolate.
Sequence alignments are used to infer errors introduced during the sequencing process.

when aligned to the reference. Consistent with the expected error types present, we disable

homopolymer corrections when running the MiSeq data. We found these errors were very

rare and disabling such corrections avoids introducing a small number of errors. The low

abundance of homopolymers errors in the MiSeq data is supported by Loman et al., who

suggest there exists less than 0.001% insertion and deletion errors in the data [27]. We

allow all corrections in the remaining data sets.

A total of 99% of the GS Junior (1), 89% of the PGM (1), and 99% of the MiSeq reads

are retained as high-information reads after correction. While 89% of PGM reads may

seem lower than expected, we note that Loman et al. were only able to align 90% of PGM

data to the E. coli reference. This suggests that approximately 10% of the reads are not

sufficiently recognizable as E. coli and are possibly of very low quality. Furthermore, the

low-information reads removed by Pollux are corrected, but are separated from the high-

information reads because they appear to contribute little to the downstream assembly

processes. These reads may be used if application-appropriate, such as with low-abundance,

long-jump sequencing information, which bridges contigs and forms larger scaffolds during

assembly.

Pollux requires 3, 5, and 24 minutes for the MiSeq, GS Junior (1), and PGM (2) E. coli
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Corrections Reads
Platform (Run) Mismatches Insertions Deletions Homopolymers Removed
GS Junior (1) 24 K 164 K 56 K 17 K 1%
GS Junior (2) 21 K 168 K 54 K 14 K 1%

PGM (1) 611 K 2,609 K 1,864 K 1,107 K 11%
PGM (2) 561 K 2,215 K 1,765 K 969 K 13%

MiSeq 251 K 2 K 3 K 0 1%
Hybrid 947 K 3,008 K 2,599 K 696 K 7%

Table 5.3: The number of corrections reported and low-information reads removed as
reported by Pollux. All reads are sequenced from the same O104:H4 E. coli isolate. Sub-
stitution, insertion, deletion, and homopolymer corrections are performed on all data sets
except for MiSeq, in which we do not include homopolymer corrections. The percentage of
reads which were removed as a consequence of greater than 50% unique k -mers is provided
under “Reads Removed”.

data sets, respectively, when executed on a 8-core Linux machine with an Intel Core i7-3820

(3.60 gigahertz) processor and 64 GB of memory. The maximum memory requirements

were 9.7 GB when correcting the Ion Torrent PGM (2) data set. However, the Ion Torrent

PGM E. coli data sets had significantly more errors reported than the similar MiSeq and

GS Junior data sets. These errors likely contributed to the longer execution times, as there

existed more k -mer count discontinuities which needed to be explored. In comparison, the

Illumina MiSeq data set required only a maximum of 1 GB of memory. The upper memory

requirements are often temporary and a consequence of using the hash table during k -mer

counting, which requires additional space when expanded, and is often reduced by removing

unique k -mers from the hash table and freeing unused memory.

The evaluation is performed by aligning reads to the reference before and after cor-

rection and observing alignment changes. We use SMALT [44] to align uncorrected and

corrected reads to the reference E. coli scaffolds. A custom Python script is used to aggre-
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gate information from the SMALT alignment about corrected, uncorrected, and introduced

errors. We observe whether a read is aligned or unaligned to the reference and whether

the reference scaffold it is aligned with has changed. During the assessment procedure, we

discard incompatible results such as read pairs which do not align to the same reference

scaffold (e.g. reads aligning to similar repetitive regions) or have alignment starting po-

sitions further than twenty bases apart. This is to prevent confounding mutations within

repeated regions with corrections. Similar to Loman et al., we ignore soft-clipped align-

ment regions and we additionally ignore all aligned bases which are not contained within

the mutual alignment interval of the pair of reads with respect to the reference. These

removal processes leave us with 99% of the GS Junior (1), 95% of the PGM (1), and 94%

of the MiSeq aligned bases for analysis.

We create a list of errors in both reads determined by their error type (mismatch,

insertion, or deletion) and position with respect to the reference. The reference genome is

used as the frame of reference because it is possible for reads to be reverse-complimented by

the alignment software. This process reverses reads and might complicate our evaluation.

The index position of errors with respect to the read index may also change. Another

complication is with regard to N characters. These characters represent wildcards within

DNA sequence and are often a product of knowing the distance between two contiguous

sequences, but having insufficient information about the actual sequence content between

them. We consider a single nucleotide alignment with an N to be erroneous when the N is

located only within the read and not erroneous when located within the reference. This is

important because otherwise any read which aligns to a region of the reference containing

an N will be reported as having uncorrectable mismatch errors.
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When an error is found in an uncorrected read, but not in its corresponding corrected

read, we report a corrected error. Conversely, when an error is found in a corrected read,

but there is no such error in the corresponding uncorrected read, we report an introduced

error. If the same error appears in both the uncorrected and corrected reads, we report

it as an uncorrected error. The results of the alignment comparisons using the Loman et

al. E. coli data are found in Table 5.4 and Table 5.5. We assume that these alignment

errors are primarily a consequence of sequencing errors. Therefore, this procedure reveals

our software’s effect on removing the errors introduced by these sequencing technologies.

We correct the majority of errors within all data sets and corrections are sequencing

technology appropriate. We introduce few errors with respect to the number of errors in the

uncorrected reads. We correct 85% GS Junior (2), 88% PGM (1), and 94% MiSeq errors

in the Loman et al. [27] benchtop sequencing data sets. However, we introduce under 4%

new errors in all data sets; that is, we correct about 20 errors for every 1 error introduced.

The software performs best on Illumina MiSeq data, correcting the vast majority of errors

while introducing very few errors. We report 95% of substitution errors, the dominant

error type, corrected in our MiSeq (1) data set while introducing only 1% more of such

errors. We appear to have some difficulty correcting MiSeq insertion errors, with only 10%

of MiSeq insertion errors corrected. However, these insertion errors make up only 0.2%

of the total errors, and may also include insertion errors present within the Roche 454

GS FLX+ reference assembly. The next most successful corrections were performed on

the Ion Torrent PGM (1) data. We correct 91% of insertion and 86% of deletion errors,

which are primarily consequence of Ion Torrents’ difficulty with homopolymer regions, in

the PGM (1) data set while introducing 2% more insertion, 5% more deletion errors, and
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Corrected (Abundance (counts/kb))
Platform (Run) Total Mismatches Insertions Deletions
GS Junior (1) 81% 76% (0.33) 82% (2.28) 81% (0.81)
GS Junior (2) 85% 79% (0.24) 86% (2.23) 83% (0.76)

PGM (1) 88% 82% (1.68) 91% (7.67) 86% (7.10)
PGM (2) 86% 80% (1.72) 90% (7.47) 84% (7.70)

MiSeq 94% 95% (0.85) 10% (0.0015) 78% (0.007)
Hybrid 94% 89% (1.29) 93% (4.25) 96% (4.05)

Table 5.4: The percentage of errors corrected by Pollux in a variety of E. coli data sets
[27]. The corrected abundance is reported as the number errors corrected per thousand
sequenced bases.

3% more errors overall. Finally, we perform least successfully on the Roche 454 GS Junior

data, although we correct the majority of errors. We correct 86% of insertion and 83% of

deletion errors in the GS Junior (2) data set while only introducing 2% more insertions

and 6% more deletion errors. We introduce 15% more substitution errors in GS Junior

(2), but the overall number of errors introduced in the data set is 4%. We suspect the

introduced substitutions are a consequence of correcting low abundance mutations within

repeat regions to their higher abundance alternatives.

Pollux corrects 94% of all errors in hybrid data containing the Roche 454 GS Junior

(1), Ion Torrent PGM (1), and Illumina MiSeq reads. This is as successful as corrections

performed independently on Illumina MiSeq data and more successful than correcting

either Roche 454 GS Junior and Ion Torrent PGM independently. We find substitutions,

insertions, and deletions to be corrected in overwhelming majority with deletion corrections

being most successful. Pollux introduces 2% more errors into the hybrid data. This is

proportionally more than was introduced when correcting Illumina MiSeq. However, the

individual rates of error introduction are additionally 2%. These results suggest that
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Introduced (Abundance (counts/kb))
Platform (Run) Total Mismatches Insertions Deletions
GS Junior (1) 4% 11% (0.048) 2% (0.065) 6% (0.063)
GS Junior (2) 4% 15% (0.044) 2% (0.059) 6% (0.050)

PGM (1) 3% 2% (0.046) 2% (0.16) 5% (0.44)
PGM (2) 4% 2% (0.052) 2% (0.16) 6% (0.52)

MiSeq 1% 1% (0.010) 4% (0.0007) 8% (0.0007)
Hyrbid 2% 2% (0.032) 2% (0.082) 2% (0.077)

Table 5.5: The percentage of errors introduced by Pollux in a variety of E. coli data sets
[27]. Introduced errors are a consequence of alignment errors found in corrected reads but
not in uncorrected reads. The percentage of introduced errors is calculated dividing the
number of introduced errors of one category by the number of corrected and uncorrected
errors of the same category. The introduced abundance is reported as the number errors
introduced per thousand sequenced bases.

combining reads from different sequencing technologies, in addition to increasing coverage,

may enable one technology to cover the weaknesses of another. For example, the addition

of Illumina data to Roche 454 or Ion Torrent data will simplify homopolymer corrections.

There are a number of issues which should be considered when interpreting the results.

The reference genome is sequenced using Roche 454 GS FLX+ and it will contain some

errors. This will give the MiSeq data the appearance of having higher than expected

amounts of uncorrected indel errors. This is because any indel errors which are incorporated

into the Roche 454 reference genome will appear as uncorrected errors when evaluating the

MiSeq reads. Although we expect very few of these to be present in the reference, they

may appear with greater frequency in the reference than in the MiSeq reads and our

summary of indel corrections. Additionally, a small number of corresponding uncorrected

and corrected reads may produce equal-scoring alignments which differ only slightly. When

these alignments contain an error that is resolved differently in each alignment, the error
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may appear to be corrected and reintroduced. However, we expect alignment noise to be

minimal since we both the reads and the reference are sequenced from the same E. coli

isolate and the reference is of high quality. Furthermore, since our software attempts to

find corrections which improve k -mer counts maximally, it is possible to report compound

errors as an alternative error type. For example, a homopolymer with a single insertion

adjacent to a homopolymer with a single deletion may appear as a mismatch and be

corrected as such. This does not have an adverse affect on the correction itself, but may

result in reporting more substitution corrections than expected.

5.1.3 Introduced Errors

We locate introduced errors by reporting alignment problems that appear to be introduced

as a consequence of error correction. The locations of these problems are determined by

the alignment evaluation procedure described in Section 5.1.2. We manually explore some

of these errors and suggest explanations for the introductions.

A common source of introduced errors appears to be miscorrecting biological alterna-

tives within repeat regions. Within the E. coli genome, there exist large regions that are re-

peated (Figure 5.1). However, the repeated regions are not always identical and sometimes

contain differences which distinguish these regions from their counterparts. This makes

error correction challenging when, as a consequence of repeat region frequency within the

genome, low abundant alternatives appear alongside highly abundant alternatives. This

can give repeated regions containing rare alternatives the appearance of being erroneous.

The k -mer count profiles associated with such regions will sometimes have unexpected
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discontinuities. These discontinuities may be removed by removing miscorrecting the rare

alternative with the more common alternative.

We include one such example (Figure 5.2) of our error correction software replacing

one variant with its more abundant alternative. The error was introduced into read

M10 0139:1:2:20739:2553#ATCACG-1 at position 2,059,940 on reference scaffold 1 (the

chromosome). We use BLAST [61] to compare the O104:H4 E. coli genome against itself

and observe four regions within the chromosome that overlap with this location. The re-

gions are of length 2.4M, 1759, 1753, and 664, with the longest region corresponds to a

large contiguous region of the E. coli chromosome which aligns unambiguously with itself.

The three smaller alignments correspond to very similar regions with 98.1%, 97.5%, and

94.3% identity respectively, which are found elsewhere in the chromosome. The introduced

error corresponds with a variant at position 2,059,940 which is observed in three out of

four of the repeat regions. The k -mer counts associated with the uncorrected read suggest

that the position is correctable by replacing the base with its more abundant alternative

and thereby smoothing many more k -mer counts.

5.1.4 Low Coverage Correction

The coverage of the sequencing projects has a significant effect on the ability of Pollux to

remove errors. However, this is common to all error correctors which depend on multiple

observations of genome positions. This is because Pollux requires multiple observations of

the same location in the genome to observe errors and evaluate corrections within sequenc-

ing reads. We evaluate Pollux at various levels of coverage. Pollux corrects proportionally
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Figure 5.1: An example of repetition within the chromosome of E. coli O104:H4. The two
dark grey tracks at the top of the alignment represent the forward and reverse strand of
the large circular chromosome. The remaining light grey tracks represent regions of the
same chromosome which align to the given region. Multiple alignment tracks are observed
when the region is repeated within the chromosome. The red highlights mismatch errors,
which are presumably a consequence of mutations, within the aligned regions.

more errors as coverage increases. The results are summarized in Figure 5.3.

We evaluate the effect of coverage on correction with Roche 454 GS Junior (2), Illumina

MiSeq, and Ion Torrent PGM (1) reads [27]. The evaluation procedure is as described in

Section 5.1.2. Lower coverage read sets are created by randomly selecting a fraction of the

reads. This is accomplished by including each read with probability p and varying p to

create read sets with differing coverages. The coverage is calculated by dividing the total

number bases within a read set by the number of bases in all scaffolds of the reference

genome. This represents the expected number of times each base in the genome has been

sequenced. The percent of errors corrected corresponds to the proportional amount of

errors within included reads.

Pollux corrects proportionally more errors as coverage increases. With respect to Roche

454 GS Junior (2) and Ion Torrent PGM (1), the effect increases significantly until approx-

imately 10x coverage. However, Pollux requires greater coverage of Ion Torrent data to

correct proportionally as many errors as within Roche 454 and Illumina data. The Illumina

MiSeq data suggests that Pollux is sensitive to correction at very low levels of coverage.

65



0

10

20

30

40

50

60

70

80

90

T

T

A

A

C

C

T

T

T

T

T

T

T

T

C

C

A

A

A

A

A

A

T

T

G

G

T

T

A

A

T

T

G

G

T

T

G

G

C

C

T

T

T

T

A

A

T

T

T

T

T

T

T

T

G

G

A

A

A

A

G

G

C

C

T

T

G

G

A

A

A

A

C

C

T

T

G

G

G

G

T

T

T

T

G

G

A

A

A

A

A

A

T

T

G

G

G

G

A

A

T

T

G

G

G

G

C

C

G

G

A

A

A

A

C

C

C

C

A

A

G

G

A

A

T

T

C

C

A

A

C

C

G

G

T

T

C

C

C

C

A

A

T

T

T

T

T

T

G

G

T

T

T

T

A

A

A

A

T

T

T

T

A

A

A

A

C

C

T

T

A

A

T

A

C

C

C

C

T

T

C

C

C

C

C

C

A

A

A

A

A

A

C

C

T

T

G

G

G

G

C

C

G

G

A

A

T

T

A

A

T

T

C

C

C

C

A

A

G

G

T

T

C

C

T

T

G

G

G

G

T

T

A

A

A

A

A

A

C

C

A

A

G

G

C

C

C

C

T

T

C

C

A

A

A

A

A

A

A

A

G

G

C

C

G

G

T

T

A

A

T

T

C

C

G

G

G

G

G

G

T

T

A

A

G

G

G

G

T

T

T

T

A

A

C

C

T

T

G

G

k
-m

e
r

C
o
u
n
t

Sequence

 Corrected

 Uncorrected

Figure 5.2: An example of an error introduced by Pollux into a read sequenced from the E.
coli O104:H4 genome. Bottom: The region of the chromosome with which the uncorrected
read and repeat regions align. The uncorrected read corresponds to the uppermost light
grey track and has its edges marked vertically on the left and right. Mismatches with the
reference marked with red. The location of the introduced error has been marked with an
arrow. Top: The k -mer counts of the read immediately before and after correction. The
introduced error location has been highlighted.
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Figure 5.3: The percentage of errors corrected by Pollux at various levels of sequencing
coverage. Lower coverage data sets are produced by randomly selecting a subset of reads.

However, as noted in Section 5.1.1, approximately half of Illumina MiSeq reads correspond

to small plasmids with 625x coverage while the chromosome has 25x coverage. This would

account for a significant amount of the errors corrected at the lower levels of whole-genome

coverage. It appears our software requires approximately 5x-10x coverage to make the

majority of corrections within a read set.

5.2 Mixed-Genome Reference Alignments

We believe that our algorithm will be suitable for some metagenomic applications that

target diverse communities, such as soil metagenomics [57]. Metagenomics involves se-

quencing an environmental community rather than an individual or isolated species [24].

There are a number of complications which make metagenomic error correction and evalua-

tion more challenging [10]. As the sequencing target is a community, it may contain closely
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related individuals with differences in genomic content [17]. This is similar to the problem

of variants existing within repeated regions of one individual. However, these regions may

be unique within an individual’s genome, but exist as similar alternatives throughout a

community. Another challenge is the varying sequencing coverage of individuals within the

community [24]. Some individuals may be sequenced very rarely while others are sequenced

in extreme abundance. Finally, it is difficult to create a data set similar to the E. coli data

set used in Section 5.1.2. With current technology, a data set of this quality would require

isolating and sequencing many individuals within a community. This process would be

extremely costly and time consuming. Nonetheless, we attempt to characterize the effect

of Pollux on a simulated metagenomic data set despite these challenges.

5.2.1 Mixed-Genome Sequencing Data

We generate a mixed genome data set to approximate real metagenomics data. This is

accomplished by combining reads from multiple sequencing projects using similar technolo-

gies. We combine two data sets from GAGE [51] with E. coli reads [27] to create mixed

genome data. This data set is comprised of uncorrected Illumina data from E. coli [27],

S. aureus [51], and R. sphaeroides [51] (Table 5.6). The E. coli reads are the same as

previously evaluated and were sequenced using an Illumina MiSeq sequencer whereas the

S. aureus and R. sphaeroides reads were sequenced using an Illumina Genome Analyzer II

sequencer. The data used from the GAGE project is uncorrected and paired fragment files

are concatenated into a single file. The E. coli reference was assembled from Roche GS

FLX+ reads, while the S. aureus and R. sphaeroides references were assembled with reads
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Sequencing Number of Number of Mean Read Total
Organism Technology Reads (1000s) Bases (kb) Length Coverage

E. coli MiSeq 1,767 250,357 141 45
S. aureus Genome Analyzer II 1,294 130,705 101 45

R. sphaeroides Genome Analyzer II 2,050 207,138 101 45
Mixed Illumina 5,111 588,200 115 45

Table 5.6: The sequencing metrics for a mixed genome data set comprised of 35% E. coli,
25% S. aureus, and 40% R. sphaeroides reads. All the reads are sequenced using Illumina
technology. However, the E. coli data set is produced from a MiSeq while the S. aureus
and R. sphaeroides data sets are produced from a Genome Analyzer II.

generated from Sanger sequencing [51]. As our error correction and evaluation procedures

ignore the order of reads, we concatenated all read sets into a single file and similarly

concatenated all references into a single reference file. This mixed data set was comprised

of 35% E. coli, 25% S. aureus, and 40% R. sphaeroides reads. This data set represents a

rough approximation of metagenomics data set and is motivated by the desire to use real

sequencing data over artificial data. However, we note that a better approximation would

only include reads produced by the same sequencing instrument.

5.2.2 Pollux Evaluation

We correct these mixed reads and evaluate the effect using the same alignment procedure

described in Section 5.1.2. We again choose to disable homopolymer corrections when

correcting Illumina data because it avoids introducing a small number of avoidable errors.

A total of 19% of reads were removed using our k -mer removal criteria and not considered

in further downstream analyses. Additionally, we evaluated 94% of aligned bases after

discarding incompatible alignment locations and soft-clipped bases. While removing 19%
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Figure 5.4: The Phred quality scores of the data sets comprising our mixed genome. The
percent abundance per base of each quality score within the individual data sets is shown.
Quality scores reflect confidence in an observed base with higher values being exponentially
more accurate than smaller values.

of reads seems substantial, we note that the Quake [22] and ALLPATHS-LG [3] error

correction procedures removed 37% and 36% of the S. aureus reads, respectively, and

similarly removed 26% and 31% of the R. sphaeroides reads in the GAGE genome study

[51] when correcting reads independently. This aggressive filtering is further supported

by the observation that the S. aureus and R. sphaeroides data sets contain a significant

number of poor quality score bases (Figure 5.4). The R. sphaeroides data has very polarized

quality scores, with 36% of base scores having Phred [14] quality 2, which corresponds to

an accuracy of 37%. This is polarization of quality scores is observed in the S. aureus data,

although to a lesser extent and spread over many more qualities scores. The median base

quality in S. aureus is 15, with a base call accuracy of 96.84%, 33 in R. sphaeroides, with

an accuracy of 99.95%, and 35 in E. coli, with an accuracy of 99.97%.
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Corrected (Abundance (counts/kb))
Organism Total Mismatches Insertions Deletions

Mixed 82% 82% (5.9) 70% (0.087) 73% (0.058)

Introduced (Abundance (counts/kb))
Organism Total Mismatches Insertions Deletions

Mixed 0.61% 0.31% (0.022) 11% (0.014) 11% (0.0091)

Table 5.7: The results of Pollux’s error correction on a mixed genome data set comprised
of E. coli, S. aureus, and R. sphaeroides reads. The abundances are shown as counts/kb
and reflect the frequency of the errors relative to the number of bases.

A summary of our results can be found in Table 5.7. Pollux corrects a total of 82%

of errors in total with only 0.6% more errors introduced. Specifically, Pollux corrects 82%

of substitution errors, 70% of insertion errors, and 73% of deletion errors, with 98% of

all of corrections being substitutions and the remaining 2% distributed between insertions

and deletions. We introduce as few as 0.6% errors, the most abundant of which being

substitutions. We appear to introduce proportionally more insertion and deletion errors

than we did with our E. coli Illumina MiSeq correction. However, within non-filtered reads,

we appear to introduce proportionally fewer errors overall.

5.3 Comparison

We compare Pollux other error correctors. These include Quake [22], SGA [55], BLESS

[19], Musket [26], and RACER [20]. Quake and SGA are popular second-generation error

correctors whereas Musket, RACER, and BLESS represent recent efforts in this area. We

show that Pollux performs comparably with these error correctors and especially improves

on Roche 454 and Ion Torrent error correction.
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5.3.1 Sequencing Data

We use the Roche 454 GS Junior (1), Ion Torrent PGM (1), and Illumina Miseq E. coli

sequencing data sets available in the Loman et al. comparison [27]. We additionally in-

clude S. aureus data (SRX007714, SRX016063) available in GAGE [51], M. tuberculosis

(ERR400373), and L. pneumophila (SRR801797). A summary of the sequencing metrics of

all data is provided in Table 5.8. The coverage varies from 13x with Roche 454 GS Junior

E. coli to 260x with Illumina HiSeq M. tuberculosis.

5.3.2 Error Corrector Evaluation

We evaluate the effect of correction in the same manner as described in Section 5.1.2. The

results of this comparison are located in Table 5.9. We use k = 31 for all software except

Quake, which uses k = 19 because of hardware memory limitations when using a 64 GB

memory machine. This is because of problems with JELLYFISH [30], Quake’s memory

efficient k -mer counting utility. We therefore disable JELLYFISH when running Quake at

the expense of memory efficiency. However, Quake specifies using k -mers of approximately

this size for its error correction [22]. We note that Quake, SGA, and Musket are intended to

only correct Illumina sequencing data. However, we include the effect of their corrections

on Roche 454 and Ion Torrent data for completeness. Pollux, Quake, and SGA perform

read filtering whereas BLESS, Musket, and Racer do not filter reads and may appear to

correct fewer errors as a consequence.

We find that Pollux corrects the greatest percentage of errors in all but the GS Junior

E. coli data and HiSeq L. pneumophila; Pollux is a close second with these sets. Pollux

72



Sequencing Number of Number of Mean Read Total
Organism Technology Reads (K) Bases (kb) Length Coverage

E. coli GS Junior 136 71,000 522 13
E. coli PGM 4,484 303,579 122 55
E. coli MiSeq 1,767 250,357 141 45

S. aureus Genome Analyzer II 1,294 130,705 101 45
L. pneumophila HiSeq 8,850 885,022 100 260
M. tuberculosis HiSeq 2,093 316,035 151 72

Table 5.8: The sequencing metrics for a data used in the error correction comparison. We
include one Roche 454 technology GS Junior and one Ion Torrent PGM data set. We
additionally include multiple Illumina data sets, including MiSeq, HiSeq, and Genome
Analyzer II.

filters reads with similar aggressiveness as Quake and SGA. The effect of read filtering is

significant within S. aureus Illumina data. Pollux is able to obtain a high percentage of

errors corrected in this data because of its ability to remove reads which do not contribute

information. This is supported by the observation that an assembly generated from this

data improves significantly following correction (Section 5.4.2). Pollux introduces errors

slightly more than other software. However, it is comparable to RACER when correcting

Illumina technologies and comparable to all other software when correcting Roche 454 and

Ion Torrent technologies.

RACER corrects the most errors within the Roche 454 GS Junior E. coli data, corrects

the majority of errors in the PGM data, and performs extremely well on both Illumina data

sets while filtering no reads. The amount of errors introduced by RACER is comparable

to Pollux within the Illumina data. However, RACER introduces a significant number of

errors within GS Junior at 24% and PGM at 16%. This suggests that while RACER is

capable of correcting insertion and deletion errors, it performs best with Illumina correc-

tions.
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Illumina MiSeq - E. coli
Errors Errors Reads

Software Corrected (%) Introduced (%) Removed (%)
Pollux 93.81 1.28 0.89
Quake 58.78 0.05 0.92
SGA 78.65 0.09 1.11

BLESS 83.21 0.10 0.00
Musket 81.75 0.15 0.00
RACER 86.59 1.60 0.00

Illumina Genome Analyzer II - S. aureus
Errors Errors Reads

Software Corrected (%) Introduced (%) Removed (%)
Pollux 87.04 0.38 31.73
Quake 75.30 0.10 29.81
SGA 47.45 0.02 10.71

BLESS 55.32 0.06 0.00
Musket 45.04 0.14 0.00
RACER 75.76 0.28 0.00

Illumina HiSeq - L. pneumophila
Errors Errors Reads

Software Corrected (%) Introduced (%) Removed (%)
Pollux 96.16 0.13 6.01
Quake 99.66 0.00 4.25
SGA 84.61 0.03 3.87

BLESS 87.61 0.03 0.00
Musket 83.33 0.10 0.00
RACER 94.09 0.16 0.00
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Illumina HiSeq - M. tuberculosis
Errors Errors Reads

Software Corrected (%) Introduced (%) Removed (%)
Pollux 69.98 0.83 6.51
Quake 68.06 0.12 3.06
SGA 31.99 0.16 0.46

BLESS 60.01 0.13 0.00
Musket 44.68 0.80 0.00
RACER 65.14 1.28 0.00

Roche 454 GS Junior - E. coli
Errors Errors Reads

Software Corrected (%) Introduced (%) Removed (%)
Pollux 81.02 4.14 0.82
Quake 0.21 0.00 0.07
SGA 8.94 3.63 1.64

BLESS 34.68 1.27 0.00
Musket 0.00 0.00 0.00
RACER 82.03 24.27 0.00

Ion Torrent PGM - E. coli
Errors Errors Reads

Software Corrected (%) Introduced (%) Removed (%)
Pollux 87.83 3.43 10.90
Quake 12.35 2.03 37.60
SGA 5.43 1.12 0.16

BLESS 22.82 0.52 0.00
Musket 9.40 4.88 0.00
RACER 67.86 15.95 0.00

Table 5.9: Comparison of error correction software on multiple data. The evaluation is
performed by aligning corresponding uncorrected reads and corrected reads, which were not
removed, against a reference genome using SMALT. Corrected errors are an aggregate of all
alignment errors which are found in uncorrected reads but not in corrected reads. Similarly,
introduced errors are an aggregate of all alignment errors found in corrected reads but not
in uncorrected reads and are relative to the sum of corrected and uncorrected errors. The
percentage of reads removed by each software is noted. We note that Quake, SGA, and
Musket were designed to only correct Illumina sequencing data.

75



We find that Quake corrects the most errors within Illumina HiSeq L. pneumophila

data. Quake corrects 99.66% of corrections while effectively introducing no errors. The

L. pneumophila data has 260x coverage and sequencing errors should be corrected effec-

tively using Quake’s untrusted vs. trusted k -mer strategy (Section 3.2.1). Quake performs

well when correcting Illumina MiSeq S. aureus data. Similar to Pollux, Quake filters a

substantial number of reads and corrects many more errors in the remaining reads than

most other correctors. SGA, BLESS, and Musket correct and introduce similar amounts

of errors within Illumina data with BLESS performing consistently better than SGA and

Musket. These error correctors remove a significant number of errors while introducing ex-

tremely few errors. However, of these three, only BLESS performs meaningful corrections

within GS Junior and PGM data.

All correction software perform poorly on Illumina HiSeq M. tuberculosis data. How-

ever, the inadequate corrections may be a result of complicated errors in the data or a

consequence of having a reference genome which is not similar enough to the sequencing

reads. The reference genome was assembled from M. tuberculosis H37Rv isolated from

a Beijing and Manila patient whereas the reads (ERR400373) were sequenced from an

Oxfordshire patient. The reference may therefore contain mutations not found in the

sequencing reads which appear as uncorrected errors. Pollux performs the greatest pro-

portion of corrections at 69.98%. However, this is at the expense of 6.51% of reads being

filtered. Quake performs comparably with 68.06% of errors corrected and 3.06% of reads

filtered. SGA performs most poorly with only 31.99% of reads corrected.

We conclude that the current landscape of error correction software has largely been

designed specifically for Illumina sequencing technologies. These error correctors either
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perform poorly when correcting insertion, deletion, and homopolymer errors, or, in the

case RACER, introduce an overwhelming amount of errors when performing corrections

on Roche 454 and Ion Torrent technologies. Pollux competes with these error correctors

when correcting Illumina data and performs better than existing correctors when correcting

Roche 454 and Ion Torrent data.

5.4 Assembly

We evaluate Pollux as a preprocessing step before de novo sequence assembly. We use

three data sets and two assemblers for our evaluation. Velvet [60] is used to assemble E.

coli and S. aureus Illumina sequencing reads and MIRA [5] is used to assemble Ion Torrent

E. coli reads. As shown in the GAGE study [51], error correction software can significantly

improve the quality of assemblies.

5.4.1 Sequencing Data

The E. coli Illumina MiSeq [27] and S. aureus Illumina Genome Analyzer II [51] read sets

are used to evaluate the effect of our software on assembly when correcting paired-end reads

with both short and long insert lengths. These reads represent a longer fragment of DNA

which has been sequenced partially from opposite ends. The approximate insert length of

the fragments corresponds to the length of the fragments. This paired-end approach assists

the assembly process by bridging contigs over areas of repetition. The E. coli reads used

in our experiment are paired and have an average read length of 142. The S. aureus data
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set consists of paired fragment reads of length 101 with average insert lengths of 180 and

long-range paired-end reads of length 37 with average insert lengths of 3500.

The E. coli Illumina reads are corrected using our software’s pair-end correction. This

is unlike the similar correction performed in Section 5.1.2, which corrected the reads as

though they were all individual reads. The reason for this is because the paired nature

of the read is not relevant when evaluating corrections in a context that does not need

to connect reads. However, paired information is important when performing assembly,

because the connection between the reads assists in joining contigs and scaffolds. A special

paired-end filtering procedure is required when correcting paired-end reads to avoid having

a miss-pairing of reads in the corrected read set. This can be done by filtering pairs together

or by grouping all reads which become unpaired as a result of filtering into a separate file.

We choose to filter paired-end reads in complete pairs only when both reads have k -mer

counts of 1 comprising more than half of k -mers. This is because the benefit of bridging

these alignment gaps is often worth the expense of including an otherwise low information

read within a pair. The S. aureus paired fragment reads are corrected together using

our software’s paired-end correction and are likewise corrected for the short-jump reads.

However, we choose not to remove any short-jump reads as nearly half of short-jump reads

were flagged as having more than 50% unique k -mers. As with paired-end reads with

short inserts, removing these short-jump reads renders much of the valuable connection

information unusable.

The E. coli Ion Torrent reads [27] reads are unpaired and are corrected using our

software’s normal error correction procedure. The consequence of using unpaired reads is

that the assembly software will be unable to produce scaffolds, as there is no information
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available which connects distant reads. As noted in Section 5.1.2, the Ion Torrent PGM

reads required the longest time to correct out of all E. coli reads in the Loman et. al

benchtop comparison.

5.4.2 Velvet Evaluation

Velvet [60] is used to assemble the E. coli and S. aureus Illumina data sets. Velvet is

designed for de novo assembly of short reads using de Bruijn graphs. We used default

settings for the paired E. coli reads and assembly settings as described by GAGE [51]

for the S. aureus reads. The results of the assemblies can be found in Table 5.10. We

compare the common assembly metrics number of scaffolds and N50 of assemblies using

uncorrected and corrected reads. The N50 statistic represents the contig length such that

equal or greater length contigs account for at least 50% the length of the assembly. We

additionally include the NGA50 statistic, as calculated by QUAST [16], which requires

a reference genome. The NGA50 statistic represents the contig length such that aligned

contigs of equal or greater length account for 50% the length of the reference after breaking

contig misassemblies. This provides a more accurate metric of genome connectedness.

There are fewer scaffolds and larger N50 values in the error corrected assemblies than

there are in there uncorrected counterparts. The uncorrected E. coli assembly produces

2120 scaffolds with an N50 of 31 kb and a maximum scaffold of size 220 kb. This improves

to 1840 scaffolds with an N50 of 37 kb and a maximum contig of size 290 kb. However,

we find the NGA50 improves only slightly from 84 kb to 85 kb. The S. aureus assembly

improves more significantly. The uncorrected assembly produces 737 scaffolds with an N50
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Uncorrected Corrected
Assembly Scaffolds N50 (kb) NGA50 (kb) Scaffolds N50 (kb) NGA50 (kb)

E. coli 2,120 31 84 1,840 37 85
S. aureus 737 192 145 603 1,771 202

Table 5.10: Comparison of de novo assemblies using uncorrected and corrected reads using
Velvet. E. coli reads are paired and assembled using default parameters. S. aureus reads
are paired with average inserts of length 180 and short jump reads with average inserts of
length 3500. These reads are assembled using parameterization as described in GAGE.

of 192 kb and a maximum scaffold size of 435 kb. The corrected assembly reduces the

number of scaffold to 603 and has a N50 of 1771 kb, which is the maximum scaffold size,

and is longer than half the genome length. Furthermore, the NGA50 improves substantially

after correction, increasing from 145 kb to 202 kb.

5.4.3 MIRA Evaluation

MIRA [5] is used to assemble Ion Torrent sequenced E. coli reads. MIRA is designed to

assemble a variety of second-generation sequencing reads using an overlap-layout-consensus

approach. We used default MIRA settings for the assembly. There is no paired-end infor-

mation provided to MIRA. Therefore, the assembly is unable to connect distant contigs

and produce scaffolds. The results of the assemblies can be found in Table 5.11. We con-

sider the full assemblies of uncorrected and corrected reads and compare the number of

contigs and the size of N50 values. We again include the NGA50 statistic, as calculated

by QUAST [16].

We find that our corrections do not produce as significant effect on the assembly as they

did with our assembly of Illumina data using Velvet. There are almost half as many contigs
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Uncorrected Corrected
Assembly Contigs N50 (kb) NGA50 (kb) Contigs N50 (kb) NGA50 (kb)

E. coli 1,779 77 66 1,017 37 36

Table 5.11: Comparison of de novo assemblies using uncorrected and corrected Ion Torrent
E. coli reads using the MIRA assembler. The reads are unpaired and assembled using
default parameters.

produced when using corrected data, suggesting that the assembly is more connected.

However, the N50 value is only half as large when using corrected reads and the largest

contig shrinks from 205 kb to 107 kb. This suggests that the contigs are more medium

sized when using corrected data and more varied in size when using uncorrected data.

Furthermore, the estimated size of the E. coli genome is 5.521 mb, as provided by the

reference genome. MIRA predicts this to be 5.672 mb when using uncorrected reads and

5.454 mb when using corrected reads. The NGA50 value decreases from 77 kb when

using uncorrected reads to 36 kb when using corrected reads. This is despite QUAST

reporting the uncorrected assembly containing 67 misassemblies and only 31 misassemblies

in corrected data.

5.5 Read Filtering

We now show that our approach to optionally filtering reads based on unique k -mers is

an improvement over a naive quality score approach. Furthermore, we show that there

are many errors which are correctable within reads which contain many poor quality score

bases. However, it is not surprising that many errors exist within regions reported as

having poor accuracy. The purpose of read filtering is to remove reads which are of poor
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quality and uncorrectable, and unlike other error correction schemes [22], we choose not

to filter reads which appear to be of poor quality before attempting corrections.

In order to verify this we compared the effect of removing reads using Pollux’s unique k -

mer approach with a simple quality score approach. In Pollux, reads that contain more than

50% unique k -mers after attempting correction are removed. The quality score approach

is accomplished using a custom Python script. The script removes reads which contain

more than 10% low quality bases, as provided by the sequencing technology. We define low

quality bases to be a Phred [14] quality score of Q10 or less. We then consider the reads

which are removed by the quality score approach but not by our k -mer approach. These

are reads that are designated as having poor quality scores, but which Pollux considers

valuable. We find that Pollux is capable of correcting many of the errors in these reads

despite having an abundance of low quality scores. The most notable difference is with

respect to the Ion Torrent PGM (1) E. coli data set (Table 5.12). We find that Pollux

corrects 88% of the 3.4M errors found in reads that would be discarded exclusively through

a simple quality score approach. Pollux’s k -mer based removal approach can evaluate the

usefulness of a read after attempting corrections, retaining more information than filtering

using a simple quality based approach before correction.

5.6 Summary

We evaluate the effect of error correction using a methodology which infers uncorrected,

corrected, and introduced errors from changes in sequence alignments. We show that Pollux

corrects the majority of sequencing errors in Roche 454 GS Junior, Ion Torrent PGM, and
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Filtering Reads Errors (Abundance (counts/kb))
Strategy Removed Corrected Uncorrected Introduced

Naive 869 K 3,409 K (17.20) 465 K (2.35) 125 K (0.62)
Pollux 71 K 3 K (0.77) 34 K (8.20) 2K (0.42)

Table 5.12: The effect of Pollux error correction on reads filtered exclusively by Pollux
and a naive quality score filtering strategy. Pollux corrects many of the errors within
reads removed using the naive strategy. However, unsurprisingly, Pollux performs very few
corrections on reads that it filters after attempting corrections. The counts per kb statistic
is reported with respect to aligned bases in the set of filtered reads.

Illumina MiSeq E. coli reads while introducing few errors. Pollux performs similarly well on

a simulated metagenomic data set comprised of E. coli, S. aureus, and R. sphaeroides reads.

However, we show these corrections require approximately 5x-10x sequencing coverage.

When compared to other error correctors, Pollux performs comparably on Illumina data

and exceptionally better on Roche 454 and Ion Torrent data. We find Pollux’s error

correction improves the quality of an example Illumina assembly when paired with Velvet

[60]. However, it appears Pollux does not improve the quality of an example Ion Torrent

assembly when paired with the MIRA [5] assembler. Finally, we show Pollux’s read filtering

strategy allows for successful correction of many reads which might otherwise be removed.
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Chapter 6

Conclusion

This work introduces and evaluates an approach to error correction of sequencing reads. We

introduce platform independent, second-generation error correction software named Pollux.

The correction algorithm works by observing unexpected changes in k -mer counts within

sequencing reads and attempting edits which remove these unexpected observations. The

k -mer count approach used by our software is highly effective at correcting errors across

different sequencing platforms, including Roche 454, Ion Torrent, and Illumina.

Pollux improves over other error correctors by targeting multiple sequencing technolo-

gies and error types. While other error correctors target only Illumina sequencing, we have

designed Pollux to correct errors common to all sequencing technologies. Pollux is addi-

tionally appropriate for correcting hybrid data. We show our implementation is sensitive

to errors at a low sequencing coverage and can correct errors in the presence of highly

variable coverage. Additionally, we find our software corrects the majority of errors in a
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mixed genome environment, suggesting it will be useful on more complicated metagenomic

sequencing projects.

We show that our corrections are sequencing technology appropriate and agree with

published findings. The number and type of errors reported and corrected by our software

agrees with alignment evaluations performed by ourselves and Loman et al. [27]. We

evaluate our software’s effect as a preprocessing step before sequence assembly and show

that we are able to improve the quality of assemblies on some data sets. We believe our

software is a versatile tool that may be used to improve a variety of sequencing applications.

6.1 Future Work

While the current version of the software is effective, there are some areas that may be

improved by future refinements. The number of corrected errors could be improved by

targeting adjacent errors and other coincident errors that are not homopolymers. Within

the homopolymer correction algorithm, we do not correct errors other than homopolymer

repeats and thereby ignore all other multinucleotide errors. Correcting these errors would

require exploring a larger space of correction possibilities. We recommend disabling ho-

mopolyer corrections when correcting exclusively Illumina data and leaving single insertion

and deletion corrections enabled. The number of potential homopolymer errors that would

not be otherwise removed with single indel corrections is extremely minimal and it is likely

to be close to the number of errors that would be introduced. While this strategy is ef-

fective, the homopolymer correction might be improved further to reduce the number of

miscorrections. There is also room for improvement when correcting the rarer error types
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in sequencing technologies. For example, we appear to be slightly overcorrecting substi-

tution errors in GS Junior reads and potentially under-correcting indel errors in MiSeq

reads. Additionally, we have a somewhat lower success rate correcting deletion errors than

insertion errors across all technologies. This may be a consequence of deletions resulting

in fewer k -mer count evaluations and therefore simpler to correct.

We believe that our success correcting a mixed data set lends evidence to our correction

software’s ability to correct more complicated mixed data sets such as metagenomic data.

This is supported by our successful correction of E. coli MiSeq data which contains 25x

chromosome coverage and 625x plasmid coverage, suggesting our software is able to correct

the majority of errors in the presence of highly variable coverage. However, Pollux has some

difficulty correcting rare alternatives in the presence of highly abundant alternatives. This

might be resolved by placing more emphasis on quality scores and disallowing corrections

which change a high-quality base. The memory limitations of Pollux might be resolved by

incorporating dedicated k -mer counting software [9, 35, 49]. This inclusion would allow

Pollux to operate on larger data sets. However, as these counters are probabilistic, this

would be at the expense of correction accuracy.
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