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Abstract

Neutral organic radicals have been pursued for conductive and magnetic solid state

properties associated with their unpaired electron. Historically, synthetic challenges and

design limitations restricted these materials into Mott insulating states as a result of a

strong Coulomb repulsion preventing the mobility of electrons. As a result, electrons were

localized to their parent radicals, and exhibit only weak magnetic interactions. Recent

synthetic advances by the Oakley group have allowed access more strongly interacting

regimes in neutral radicals, where the kinetic and potential energies are in competition, and

the electrons are on the verge of delocalization. This regime is characterized by a variety of

strong magnetic interactions, and, under pressure, metallic states have been accessed for the

first time. For this reason, it is important to consider the placement of these radicals with

respect to other “strongly correlated” materials at the border between metals and magnets,

which has proved a fruitful region, hosting unconventional high Tc superconductors, colossal

magnetoresistive oxides, and other materials of technological interest. The purpose of

this thesis is to consider radicals within this context, as well as introduce theoretical and

experimental methods for probing this emerging class of correlated solids.

We consider, in particular, the role of orbital degrees of freedom on the electronic

and magnetic properties. To this end, we present a general framework for computing

magnetic exchange interactions incorporating Hund’s rule coupling and multiple orbitals

in the vicinity of the Fermi level. We extend this framework to include spin-orbit coupling,

which directly mixes the spin and orbital degrees of freedom over wide energy scales.

This effect leads to anisotropic exchange interactions, which are responsible for a wide

variety of magnetic phenomena in heavy selenium-based radicals. A new ab-initio method

for constructing effective Hubbard models is presented, which allows us for the first time

to directly compute the magnitude and character of anisotropic interactions for organic

materials. In order to directly probe the effects of spin-orbit coupling, we have performed

magnetic resonance experiments on an isostructural series of heavy selenium-based radicals.

We demonstrate conclusively that the observed effects are the result of anisotropic exchange

interactions, and find excellent agreement between the experimental and theoretical results,

both at ambient, and high pressures.
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The modes of magnetic order are investigated over a range of pyridine-bridged bis-

dithiazolyl radicals. On the basis of symmetry analysis, such materials may be grouped

according to the sign of magnetic exchange along their π-stacks, with ferromagnetic in-

teractions required for the appearance of a net moment, either due to bulk ferromagnetic

order or spin-canting in antiferromagnets. We find evidence for a strong multi-orbital ferro-

magnetic contribution to the interactions between stacks in a selection of Se-based radicals.

However, the empty orbitals responsible for this effect are not sufficiently low in energy to

contribute to the states in the vicinity of the Fermi level in the solid state. This observation

has implications for the response of these materials to pressure, which enhances solid state

bandwidth, and prompts a transition from an insulating magnetic state to one exhibiting

metallic properties above 6−8 GPa. We compare the properties of this metallic state to

those predicted using the Dynamical Mean Field approach.

We further consider how the modification of the orbital manifold may stabilize metallic

states at lower pressures, and without need for synthetically challenging Se incorporation.

The first materials considered are hybrid dithiazolyl/thiadiazinyl radicals for which addi-

tional orbitals may be introduced near the Fermi level through judicious choice of exocyclic

groups. However, despite demonstrating a new and general synthetic pathway to these rad-

icals, we find that the introduced orbitals do not satisfy the requirements for hybridization

with the SOMO band appearing at the Fermi energy. Instead, we investigate the proper-

ties of sulphur based oxobenzene bridged radicals. These materials are found to have an

exceedingly low-lying empty LUMO that is strongly coupled to the SOMO through Hund

exchange. The interaction of the LUMO and SOMO allows metallic states to be accessed

as low as 3 GPa, and generates strong ferromagnetic interactions. We investigate this Mott

transition through infrared measurements, and introduce a phenomenological model for the

evolution of the electronic structure, which is is confirmed through Dynamical Mean Field

calculations. On the basis of this model, we consider chemical modifications to further

tune the properties of these radicals, which leads to a nearly metallic material already at

ambient pressure, and a spin-orbit coupled system that can only be understood outside

the context of Moriya’s standard treatment of anisotropic exchange.

Viewing neutral radicals within the context of other strongly correlated materials not

only provides insights into their properties, but also suggests routes to future functional
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materials. The most dramatic and exotic properties are often found where different energy

scales compete, as in the kinetic and potential energy in the vicinity of the Mott transition.

The results of this thesis suggest neutral organic radicals may additionally be influenced

by spin-orbit effects and Hund’s rule coupling of similar magnitude, the full exploration of

which will no doubt lead to novel properties.
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Chapter 1

Introduction

1.1 Radicals as Strongly Correlated Materials

The notion that radicals, molecules with unpaired electrons, could display electronic or

magnetic properties associated with metallic elements was first advanced in 1911 when

McCoy and Moore1 wrote:

“If the electron theory of the metallic state is as fundamental as it seems to be,

there would be little reason to doubt that an aggregate of free radicals would be

a body having metallic properties; for such a hypothetical body would be made

up of radicals which, analogous to metallic atoms, could easily lose electrons.”

The realization of the envisioned aggregates displaying metallic conduction is faced with

two main challenges. The first is that typical radical species are highly reactive and short

lived owing to the significant energetic drive to couple the unpaired electrons in covalent

bonds.2 This fact implies that radicals will tend to be unstable, either to reactions with

other species in the environment, or with each other to form covalently bonded dimers.

The achievement of stable free radicals therefore requires special synthetic strategies. The

historical development of such strategies is briefly reviewed in the second section of this

chapter. The second challenge for the development of metallic radicals is to design species
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that can“easily lose electrons”, that is, radicals for which the electrons are sufficiently

mobile in the solid state to allow for conduction over large distances. From a chemical

perspective, this condition is satisfied when there is i) a large electronic communication

between orbitals hosting the unpaired electrons on adjacent radicals, as well as ii) various

accessible oxidation states in a narrow energy window, so that the energetic cost of trans-

ferring electrons between radicals is low. These ideas were originally given a physical basis

particularly through the seminal work of Mott3–6 and Hubbard,7–10 who noted that the

competition between the kinetic energy and potential Coulomb repulsion of the unpaired

electrons would give rise to various electronic states. The kinetic energy is minimized by

delocalization of electrons across many (radical) sites, while the Coulomb interaction is

minimized by localization of electrons to their parent sites in order maximize the distance

between any two electrons. In the naive model of one orbital and one electron per site,

the energy barrier for electron motion can be approximated by the local Coulomb repul-

sion U between electrons forced to occupy the same (radical) site. This is, essentially, the

disproportionation enthalpy:

U ∼ ∆Hdisp = E(+) + E(−)− 2E(·) (1.1)

where E(+), E(−), and E(·) are the energies of the +1, -1, and neutral oxidation states of

the radical. If this Coulomb term significantly exceeds the kinetic energy, parameterized by

the solid state one-electron bandwidth U � W , then a Mott-Hubbard insulating state is

expected. In such a state, residual interactions between localized unpaired electrons results

in the broad range of magnetic properties. In the case where W � U , a metallic state

should instead prevail, in which the magnetic response is largely quenched, and electrons

are instead freely conducting. Of particular physical interest are materials at the border

of these two regimes, in the vicinity of the metal to insulator transition U ∼ W , which has

been shown to play host to various exotic phenomena including superconductivity, and still

evades a complete physical description. Due to significant synthetic progress in recent years,

this strongly-correlated border region is beginning to be accessible by current generations

of neutral radical materials especially through the application of physical pressure. It is

for this reason that understanding the properties of such materials, as well as the design

of future synthetic targets, requires insights from both experiment and theory. The most

recent developments by the Oakley group in the design of radical materials has focussed on
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the role of multiple orbitals in determining the magnetic and electronic properties, either

when such orbitals are all in close proximity to the Fermi level, or through spin-orbit

coupling. This thesis will seek to discuss these advances.

1.2 Introduction to the Hubbard Model

1.2.1 Definitions

The origin of the Hubbard model is attributed to a series of papers by Hubbard ap-

pearing from 1963 to 1965,7–10 although similar models were studied by Gutzwiller11 and

Kanamori12 around the same time. Since that time, the model has become ubiquitous in

solid state physics, and has been reviewed extensively.13–16 The early work focussed on the

properties of a single electronic band with narrow bandwidth comparable to the strength

of electron-electron repulsion. The model may be easily extended to include multiple or-

bitals, as is required for discussion of organic radical materials. The generic Hamiltonian

of a solid is given by:

H = F + V (1.2)

F =
∑
i,j

∑
α,β

fαβij c†i,αcj,β (1.3)

V =
1

2

∑
i,j,k,l

∑
α,β,γ,δ

Wαβγδ
ijkl c†i,αc

†
j,βck,γcl,δ (1.4)

where c†i,α,s creates an electron at site i, in the orbital labelled α, and with spin s. For

convenience of notation, we will often write these local creation and annihilation operators

in vector (spinor) form:

c†i,α =
(
c†i,α,↑ c†i,α,↓

)
, ci,α =

(
ci,α,↑

ci,α,↓

)
(1.5)

so that summations over spin indices become matrix operations:

c†i,αcj,β =
∑
s

c†i,α,scj,β,s (1.6)
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The parameters of the Hamiltonian are given by the integrals:

fαβij =

∫
x

φαi (x)∗
[
− ~2

2m
∇2

x + u(x)

]
φβj (x) (1.7)

Wαβγδ
ijkl =

∫
x

∫
x′
v(x− x′) φαi (x)∗φβj (x′)∗φγk(x

′)φδl (x) (1.8)

In order to simplify these expressions, Hubbard suggested some practical approximations

for fαβij and Wαβγδ
ijkl . He noted that the magnitude of the Fock integrals falls off rapidly

with distance between sites, and may be ignored in all cases where sites are farther than

nearest neighbours. This approximation is particularly valid for radical crystals, due to

the relatively large volume of each molecular site. In this “tight-binding” approximation:

fαβij =


εαi i = j, α = β

tαβij i, j are nearest neighbours

0 otherwise

(1.9)

where εαi is the energy of the α orbital at site i, and tαβij is the “tunnelling”, “transfer” or

“hopping” integral between orbitals α at site i and β at site j. Hubbard also suggested

that the two-electron integrals may be similarly truncated to on-site terms due to near

complete screening of the long-range Coulomb interaction. The two-electron integrals are

thus approximated:

Wαβγδ
ijkl =


Uαβ
i i = j = k = l and α = δ, β = γ

Qαβ
i i = j = k = l and α = γ, β = δ

Kαβ
ij i = k, j = l, α = γ, β = δ and i, j are nearest neighbours

0 otherwise

(1.10)

Here Uαβ
i is the on-site Coulomb repulsion, Qαβ

i is the on-site ferromagnetic exchange,

and Kαβ
ij is the nearest neighbour ferromagnetic exchange. For historical reasons, the

ferromagnetic exchange terms are often called Hund’s rule coupling terms, as the Qαβ
i

term is the origin of the Hund’s rule of maximum multiplicity. With these approximations,
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the full Hamiltonian is:

HEH =
∑
i,α

εαi c
†
i,αci,α +

∑
〈i,j〉
α,β

tαβij c†i,αcj,β +
∑
i,s,s′

α,β

Uαβ
i nαi,sn

β
i,s′

+
∑
i,α 6=β

Qαβ
i c†i,αc

†
i,βci,αci,β +

∑
〈i,j〉
α,β

Kαβ
ij c†i,αc

†
j,βci,αcj,β

(1.11)

where the notation 〈i, j〉 denotes a sum over nearest neighbours. The competition be-

tween the non-commuting Coulomb and kinetic terms is responsible for the electronic and

magnetic phases that emerge in different parameter regimes of the Hubbard model. Such

phases may be anticipated on the basis of a mean-field decoupling of the interaction terms,

as discussed in the next section.

1.2.2 Phases of the Hubbard Model

In the absence of Coulomb terms (U,Q,K = 0), the Hamiltonian may be diagonalized in

terms of the Bloch states:

φβk(x) =
∑
i,α

bα,βk φαi (x) eik·ri (1.12)

c†k,β =
∑
i,α

bα,βk c†i,α e
ik·ri (1.13)

H|U,Q,K=0 =
∑
k,β

εβk c†k,βck,β (1.14)

where k is the crystal momentum, and the coefficients bαβk describe the possible k-dependent

mixing of local orbital functions to form the solid state energy bands. The energy of a

particular Bloch state is given by εβk. The ground state “Fermi sea” |FS〉 is obtained by

filling all such one-electron Bloch states up to the Fermi energy εF :

|FS〉 =
∏
εβk<εF

(
c†k,β,↑c

†
k,β,↓

)
|Vac〉 (1.15)

where |Vac〉 represents the vacuum state, containing no electrons. Provided εF lies within

5



(a) (b) (c)

Figure 1.1: (a) Cartoon of the density of states D0(ε) in the metallic Fermi liquid state |FS〉. (b)

Comparison of mean-field energies of the metallic and Mott insulating state |MI〉 as a function of Coulomb

repulsion U . (c) Cartoon of the finite temperature phase diagram. MO = Magnetic Order, SC = Semi-

conducting, BM = Bad Metal. ∆c ∼ U −W is the charge gap. Such phases will be described in greater

detail in Chapter 3.

an energy band, this state is a conventional metal, whose high electrical conductivity arises

due to the fact that an infinitesimally small electric field is required to shift the occupancy

of Bloch states to produce a net current. However, |FS〉 is severely penalized at finite

U , due to the fact that it contains component states of nonuniform electron density, e.g.

where a surplus of electrons occupy the same local site. The opposite limit where hopping

t is set to zero describes the case of isolated molecules with uniform electron density whose

Mott insulating ground state |MI〉 is described best in terms of the localized φαi (x) orbitals.

Such a state can be written:

|MI〉 =
∏
i,{σ}

c†i,0,σ
∏
i,α<0

(
c†i,α,↑c

†
i,α,↓

)
|Vac〉 (1.16)

for a particular arrangement of unpaired spins, given by {σ}. Consider the case in which the

SOMO band (α = 0) is energetically isolated from the remaining bands, and is half-filled,

having one electron on average per site. In this case, the energy of the Mott insulator is

independent of the hopping t00
ij and Coulomb repulsion U00

i ; ignoring the Coulomb exchange
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terms, the energy of the above states can be approximated:

E(|MI〉) ∼ const. +
N∑
i

ε0i (1.17)

E(|FS〉) ∼ const. +
∑
k

ε0k c†k,0ck,0 + U00
i

∑
k,k′

〈nk,0,↑〉〈nk′,0,↓〉 (1.18)

= const. +
N

4
U00
i +

∫ εF

−∞
ε D0(ε) dε (1.19)

where the constant terms reflecting the contribution to the energy by all electrons in other

bands or orbitals. The density of states of the SOMO band is given by D0(ε). Here, we

have taken advantage of the fact that
∑

k〈nk,0,σ〉 = 1/2 for the half-filled band assuming no

net spin-polarization. On the basis of this discussion, we define the single electron charge

gap as:

∆c ≡ U00
i −

4

N

∫ εF

−∞

(
ε0i − ε

)
D0(ε) dε ∼ U −W (1.20)

where the final integral representing the reduction in kinetic energy through delocalization

of the electron into Bloch states is of the order of the width of the isolated SOMO band W ,

but not precisely equal. For example, in the one-dimensional case, ε0k = ε0i − 2t00
ij cos(ka),

εF = ε0i , W = 4t00
ij , and ∆c = U − (4/π)W . It is easy to see that a Mott insulating state

will tend to prevail for cases where ∆c > 0, while a Fermi liquid metal will be preferred

for ∆c < 0, offering a rough estimate of the location of the Mott transition (Fig 1.1(b)). It

is worth noting, however, that the crossover between the metallic and insulating states is

only expected to be sharp at low temperature. At high temperature, a smooth crossover is

typically observed between semiconducting-like states1 at U > W for which the electrical

resistivity ρ obeys dρ/dT < 0 and bad metal states at U < W for which dρ/dT > 0

(Fig 1.1(c)).17–19 The properties of such states will be discussed further in chapter 3 with

1Semiconducting-like states refer to those with sufficiently small thermal activation energies that a

significant carrier density and thus conductivity is possible at reasonable temperatures. Conductivity

is expected to be activated σ ∼ e−EA/kT with small activation energy EA due to correlation effects,

although this specific temperature dependence is not strictly required. Such states should be contrasted

with conventional semiconductors where the the activation energy corresponds to a band gap of kinetic

origin, and is not correlation induced.
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reference to the Dynamical Mean Field approach to treat strong correlations in the solid

state. There are three general strategies employed for the development of organic materials

capable of accessing the metallic state:

1. The design of molecular building blocks to have low on-site Coulomb repulsion U ,

and favourable crystal packing to allow for large hopping integrals tij and therefore

bandwidth W . This approach, applied to neutral radicals, has been pursued strongly

by the Oakley group.

2. Altering the filling of the SOMO band typically through doping by cocrystallization

of different organic or inorganic components. It is easy to see from the above that

reduction of
∑

k〈nk,0,σ〉 rapidly suppresses the effects of Coulomb repulsion. For

example, in the case of a quarter-filled band, with one electron on average per two

sites, the charge gap as defined above would be reduced to ∆c ∼ U/4 −W , clearly

favouring a metallic state. In fact, this naive approach greatly underestimates the

stability of the metallic state as the doped holes are almost immediately mobile, as

evidenced by several orders of magnitude changes in conductivity with very little

hole doping.20,21 This approach has been used with great success in the so-called

radical-ion and charge transfer salts.

3. Designing molecular radicals with multiple orbitals in close proximity to the Fermi

energy. This design tends to enhance
∫ εF
−∞ (ε0i − ε) D0(ε) dε by pushing filled Bloch

states down in energy through band hybridization, as well as reduce the average

Coulomb repulsion between electrons at a given site. The latter result follows from

the fact that the Coulomb repulsion between electrons in different orbitals Uαβ
i will

tend to be lower than that in the same orbital Uαα
i , and that local orbitals may

always hybridize to minimize the repulsion. As will be discussed below, this effect is

critical to the properties of certain classes of radical-ion salts. It’s understanding and

exploitation of multi-orbital effects in neutral radical materials represents a major

topic of this thesis.

As a final point, we note that at the level of approximation described above, the energy of

the Mott insulator was assumed to be independent of spin configuration, which does not

8



generally hold in the presence of finite Kij or tij. These terms give rise to residual magnetic

interactions that will be discussed in great detail in chapter 2, particularly in multi-orbital

models with inclusion of relativistic spin-orbit coupling. In organic materials based on light

atoms, the magnetic interactions are predominantly isotropic, being described in terms of

the Heisenberg Hamiltonian:

Hspin = −
∑
〈i,j〉

Jij Si · Sj , Jij ∼ O(K, t2/U) (1.21)

The scale of J is indicative of the strength of electronic communication between radicals in

the insulating state, with strong interactions J /kB ∼ 102− 103 K suggesting proximity to

the Mott transition. Exploration of the resultant magnetic properties represents a major

theme in this thesis.

1.3 Historical Perspective on Radical Design

1.3.1 Carbon-Centered Radicals

The first radicals to be isolated were stabilized largely by virtue of bulky groups sterically

blocking reaction at spin-bearing sites. A classic example is Gomberg’s triphenylmethyl

radical 1-1, reported in 1900.22 However, despite protection of the central carbon centre, an

equilibrium exists in solution between the radical and its sigma-bonded dimer [1-1]2 formed

by covalent bonding through the spin-bearing para position of one phenyl ring.23 Moreover,

exposure to oxygen results in rapid oxidation to form the peroxide 1-2. Further protection,

through perchlorination of the phenyl rings to afford 1-3, is necessary to produce a stable

species that is monomeric in both the solid state, and in solution.24,25

C H

Ph

Ph
Ph

C

Cl

Cl

Cl Cl

Cl

3

1-1 [1-1]2 1-3

O O Ph
Ph Ph

Ph

PhPh

1-2
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The most significant disadvantage to the use of steric protection to stabilize radical ma-

terials in the solid state is that all electronic communication between adjacent radicals is

compromised by such bulky groups. Not only is dimerization avoided, but also all mag-

netic interactions and solid state bandwidth is quenched producing trivial paramagnetic

insulators. A complementary strategy for avoiding dimerization without steric protection

involves delocalization of the unpaired electron across many sites in the molecule, which

reduces the energy of any local covalent bonding mode. In carbon-based radicals, a well-

studied example of such a delocalized radical is the phenylenyl 1-4, although this radical

also forms σ-bonded dimers [1-4]2.26 Steric protection through addition of bulky t-butyl

groups at the β-carbon position prevents σ-dimerization in 1-5, but such radicals associate

instead via multicenter π-interactions in the solid state.27 Perchlorination of the phenylenyl

rings is again required in order to produce stable, monomeric species 1-6.28

Cl
Cl

Cl

Cl
Cl Cl

Cl

Cl

Cl

1-4 [1-4]2 1-5 1-6

The propensity for dimerization through σ-bond formation in carbon centred radicals can

be anticipated on the basis of the strong C-C single bond, which has a bond dissociation

energy of ∼ 370 kJ/mol compared with 150−250 kJ/mol for O-O and N-N single bonds.29

The instability of the latter bonds may be attributed to repulsion between stereochemically

active lone pairs on the atomic centres: what Coulson called the “alpha-effect”.30 This

effect may be exploited to achieve stable π-radicals in the absence of steric protection by

ensuring that spin-bearing sites are predominantly heteroatoms.

1.3.2 Light Heteroatom Radicals

Over the years, many varieties of oxygen and nitrogen centred radicals have been studied,

with various properties and chemical stabilities. Particularly notable examples include the

10



very stable hydroxyl radical DPPH 1-7 and nitroxide radical TEMPO 1-8, both of which

have seen applications in EPR (electron paramagnetic resonance) spectroscopy, and radical

polymerization reactions.2

N N NO2

O2N

NO2

Ph

Ph N
O

1-7 1-8

N
N N

NAr

R'

Ar
RR

N
N N

NR

R'

R
OR

N NO O

1-9 1-10 1-11

In both cases, stability arises through both steric protection and heteroatom radical centres

due to the alpha effect.31 The need for steric protection may be partially alleviated by delo-

calization of the unpaired electron across multiple heteroatoms as in the nitronyl-nitroxide

1-9, verdazyl 1-10, and oxoverdazyl 1-11 type radicals. These classes are sufficiently

unhindered to allow communication between unpaired spins in the solid state giving rise

to weak magnetic interactions. For example, the magnetic response of the thioverdazyl

p-CDTV 1-12 has been interpreted in terms of a one dimensional (1D) ferromagnetic

chain with interchain J /kB = 12 K and intrachain zJ ′/kB = 0.4 K,2 where z denotes the

number of nearest neighbours.32 The weakness of the intrachain interactions ultimately

suppresses magnetic order, although evidence suggest bulk ferromagnetic order below 0.68

K.33 A ferromagnetic ordering temperature of similar magnitude (TC = 0.6 K) is also seen

for the β-phase of the p-nitrophenyl substituted nitronyl nitroxide p-NPNN 1-13 the re-

port of which in 1991 represented the first ordered purely organic ferromagnet.34,35 The

γ-phase of the same material displays antiferromagnetic order at TN = 0.65 K.36 Shortly

after the report of such materials, Chiarelli showed ferromagnetic order at TC = 1.48 K in

the adamantane biradical 1-14.37 Since then, the magnetic response of many nitroxyl38,39

and verdazyl40 radicals has been studied.

NN

N N

Me

Me

SCl
N

N

O

O

O2N
N

N

O

O

1-12 1-13 1-14

2with reference to the Hamiltonian Hij = −Jij Si · Sj
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The most significant limitation of the above N,O-based radicals is that the combination of

bulky nonmagnetic R-groups and the small spatial extent of the singly occupied molecular

orbital (SOMO, Fig. 1.2) results in weak, low-dimensional interactions in the solid state.

These materials are thus strongly one-dimensional Mott insulators, with magnetic ordering

temperatures ∼ 1 K determined essentially by weak interchain interactions.

SCl O2N

1-12 (SOMO) 1-13 (SOMO)

Bulky diamagnetic spacers Bulky diamagnetic spacers

Figure 1.2: Nodal properties of the π-type Singly Occupied Molecular Orbital (SOMO) of verdazyl and

nitronyl-nitroxide radicals. The SOMO density is largely confined to one part of the molecule, with strong

interactions in the solid state being mitigated by the presence of bulky groups.

1.3.3 Heavy Heteroatom Radicals

Interactions may be enhanced by further reduction of steric bulk, and incorporation of

heavier elements into the radical framework, in order to take advantage of more dif-

fuse 3p or 4p orbitals.41 These conditions may be satisfied, in principle, in the several

known classes of stable thiazyl (S-N) and related selenazyl (Se-N) radicals based on the

1,2,3,5-dithiadiazolyl42–48 1-15, 1,3,2-dithiazolyl49–53 1-16, 1,2,3-dithiazolyl54–57 1-17, and

1,2,4,6-thiatriazinyl58–60 1-18 frameworks.

R

N
SS

N
N
S

S

R'

R
S
S

N

R'

R
N

S
N

NR R

1-15 1-16 1-17 1-18

The SOMO of such radicals is largely exposed, having significant density along the outer

periphery of the molecule, which allows for strong intermolecular interactions (Fig. 1.3).

As a consequence, however, such thiazyl (and related selenazyl) radicals tend to dimerize
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both in solution and in the solid state, through a variety of π-dimerization modes.61 In the

solid state, this dimerization quenches the unpaired spins and results in the opening of a

large one-electron energy gap at the Fermi level, analogous to the well-known phenomenon

of Peierls distortions or charge-density waves. Such dimers are thus diamagnetic insulators

even in the absence of correlation effects. As a result, dimerization was historically consid-

ered to be undesirable. However, in some cases, the coupling is sufficiently weak to allow

the dimers to be ruptured in the solid by heating, resulting in magnetostructural phase

transitions between the S = 0 dimer and S = 1
2

radical forms.62–64

R R

R R'

R

R'

R

1-15 (SOMO) 1-16 (SOMO) 1-17 (SOMO) 1-18 (SOMO)

Strong intermolecular interactions

Figure 1.3: Nodal properties of the π-type SOMO of thiazyl radicals. The SOMO density is largely

located around the periphery of the molecule, allowing strong solid state intermolecular interactions in the

directions indicated.

In order to suppress dimerization, the Oakley group developed the resonance delocal-

ized pyridine bridged bis-dithiazolyl65–67 1-19 and bis-thiadiazinyl68,69 1-20 radicals in

which the unpaired electron is shared amongst multiple organic rings. This design ensures

that the majority of such radicals are monomeric in the solid state due to the weakness of

any local dimerization mode. Nonetheless, for some choices of R-groups, the former crys-

tallize as dimers [1-19]2 linked through hypervalent chalcogen−chalcogen σ-bonds rather

than π-interactions.70–74 The unique nature of such bonds allows them to be opened photo-

chemically in the solid state through excitation to higher orbital states.75,76 We have shown

that the photo-generated S = 1
2

radicals may be trapped at low temperatures, analogous
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to the LIESST3 effect observed in transition metal spin-crossover (SCO) materials.77,78

N
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NN
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R1

R2
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S
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S
S

N S
N

S
N

N

N
S
S

N
S

S

R1

R2

R2

R1

[1-19]2

Those examples of 1-19 that are monomeric in the solid state crystallize in one-dimensional

slipped π-stacks, with the specific packing arrangement determined by the nature of the ex-

ocyclic R-groups. The absence of bulky groups allows relatively strong interactions between

stacks, producing a quasi-3D network of magnetic interactions. The average character of

these magnetic interactions can be probed by measurement of the magnetic susceptibility,

χ, which far above the ordering temperatures typically follows a Curie-Weiss law:

χ =
C

T −Θ
(1.22)

for “Curie constant” C ∼ 0.375 for S = 1
2

spins, and Weiss constant Θ indicating roughly

the sign and strength of magnetic interactions. For 1-19, the Weiss constants range be-

tween Θ = −15 to +7 K indicating significant interactions. However, the presence of mag-

netic order has not been thoroughly investigated in the majority of derivatives. Perhaps the

most well-studied example is the case of R1 = Me, R2 = H, which orders antiferromagnet-

ically at TN = 5 K, and shows metamagnetic behaviour at low temperatures.79 In contrast

to the properties of 1-19, the two currently reported variants of 1-20 (R1 = Me, Et, R2 =

Cl) are sterically protected by bulky R3 = Ph groups and thus form strongly interacting

but essentially electronically isolated 1D radical stacks in the solid state. The magnetic

response of the R1 = Et material, for example, is consistent with a one-dimensional an-

tiferromagnetic chain with J /kB = −141 K, and interchain interactions zJ /kB = −9 K.

In addition to avoiding dimerization, a significant advantage of the resonance stabilized

1-19 and 1-20 from the perspective of charge transport is that delocalization of electron

3LIESST = “Light Induced Excited Spin State Trapping”
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Table 1.1: Properties of selected pyridine bridged radicals 1-19 as a function of exocyclic groups R1 and

R2. MM = Metamagnet, SC-AFM = Spin Canted Antiferromagnet. Ecell ∼ U is the electrochemical cell

potential, and EA ∼ U −W is the thermal activation energy for conductivity.

R1 R2 Space Group Θ Ecell EA Notes Ref

Me H P212121 ∼ 0 K 0.79 V 0.41 eV MM, TN = 5 K 65, 67

Me Cl P212121 −13 K 0.83 V 0.40 eV 66

Et H P21/c −4.5 K 0.76 V 0.41 eV 67

Et Cl P 4̄21m +7 K 0.83 V 0.43 eV Maybe SC-AFM 67

Et Br P 4̄21m +7.6 K SC-AFM, TN ∼ 10 K Unpublished

Et I P 4̄21m −9.6 K Maybe SC-AFM Unpublished

Pr Cl P 4̄21m −11.5 K 0.48 eV 67

density results in significant reduction of on-site Coulomb repulsion, U .80 This may be seen

from comparison of the experimental electrochemical cell potential Ecell = E
(0/+1)
1/2 −E(−1/0)

1/2 ,

which measures the potential difference in solution between oxidation and reduction of the

neutral radical. This value is analogous to the gas-phase disproportionation enthalpy,

but the screening effects of the solvent in the experiment more closely approximate the

crystalline environment. While the mono-dithiazolyl radicals 1-17 have U ∼ Ecell ∼ 1.4

eV, the resonance delocalized 1-19 has U ∼ Ecell ∼ 0.8 eV representing a lowering of

U by nearly a factor of two. Nonetheless, solid state bandwidth in 1-19 is not sufficient

to overcome this repulsion barrier, and all such radicals are Mott insulators displaying

activated conductivity σ = σ0 e−EA/kT . The activation energy EA ∼ U − W remains

large, and ranges from 0.40 eV to 0.48 eV depending on solid-state packing. For this

reason, Se-incorporation into the 1-19 framework to produce 1-21, 1-22 and 1-23 was

pursued by the Oakley group as a means of enhancing intermolecular interactions and

thus bandwidth.81–88
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Table 1.2: Properties of selected mixed S/Se pyridine bridged radicals 1-21 as a function of exocyclic

groups R1 and R2. FM = Ferromagnetic Order, PM = Paramagnet. “Strong AFM” refers to materials

with strong antiferromagnetic coupling that may order but do not display a canted moment. Ecell ∼ U is

the electrochemical cell potential, and EA ∼ U −W is the thermal activation energy for conductivity.

R1 R2 Space Group Θ Ecell EA Notes Ref

Me Cl P21/c < −100 K 0.20 eV Strong AFM 88

Et F P 4̄21m +17.6 K FM, TC = 12 K Unpublished

Et Cl P 4̄21m +20.3 K 0.74 V 0.27 eV FM, TC = 12.8 K 85, 86

Et Br P 4̄21m +21.0 K 0.70 V 0.29 eV FM, TC = 14.1 K 87

Et I P 4̄21m +4.4 K FM, TC = 10.0 K Unpublished

Et Me P 4̄21m +18.4 K 0.73 V 0.27 eV FM, TC = 13.6 K 87

Pr Cl P 4̄21m −3.5 K 0.69 V 0.31 eV Essentially PM 87

CH2CF3 Cl P 4̄21m −0.4 K 0.69 V 0.31 eV Essentially PM 87
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This approach results in the lowering of EA to 0.20 - 0.30 eV for the mixed S/Se rad-

icals 1-21 and 1-22, and EA ∼ 0.18 eV for the all-Se radicals 1-23. Concomitant with

the enhancement of intermolecular hopping integrals is a significant enhancement of the

strength and dimensionality of magnetic interactions, resulting in a variety of magnetically

ordered phases. Such phases range from bulk ferromagnets to spin-canted antiferromag-

nets, as summarized in Tables 1.2− 1.4. In some cases such as 1-21 (R1 = Me, R2 = Cl),

strong antiferromagnetic interactions are observed (Θ < −100 K), but ordering has not

been conclusively demonstrated due to the absence of a canted moment. The correlations

between the various magnetic phases and structural packing motifs is addressed in chapter
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Table 1.3: Properties of selected mixed S/Se pyridine bridged radicals 1-22 as a function of exocyclic

groups R1 and R2. SC-AFM = Spin canted antiferromagnetic order. Ecell ∼ U is the electrochemical cell

potential, and EA ∼ U −W is the thermal activation energy for conductivity.

R1 R2 Space Group Θ Ecell EA Notes Ref

Me H P212121 −78.3 K 0.24 eV 83

Me Cl P212121 −28 K 0.30 eV 88

Et H P21/c +6.3 K 0.22 eV SC-AFM, TN = 18 K 84

Et Cl P 4̄21m −2.3 K 0.84 V 0.31 eV SC-AFM, TN = 14 K 86

4. The incorporation of Se also enhances the strength of spin-orbit coupling resulting in a

large anisotropic component to the magnetic exchange. This effect is responsible for both

large coercive fields in the Se-based ferromagnets, and spin-canting in the antiferromagnets.

Such anisotropic interactions represent a major topic of this thesis, and will be addressed

in great detail in chapter 6, through both ab-initio calculations and electron spin resonance

(ESR) measurements. The response of 1-23 (R1 = Et, R2 = Cl and Br) to pressure has

also been investigated; in both cases the further enhancement of tαβij with pressure results in

an apparent breakdown of ferromagnetic order in the vicinity of ∼ 3 GPa,90,91 and metallic

transport (dρ/dT > 0) is observed above ∼ 6 GPa.89 This observation likely represents

the first example of a metallic state in a neutral radical material, although its properties

are not consistent with a true Fermi liquid, but rather a “bad metal” state, as discussed

in chapter 4.

Further development of radical materials by the Oakley group has focussed on the

question whether a metallic state could be achieved at lower pressure in order to facilitate

study. This work has followed two approaches. The first is to manipulate the energies

of various filled or empty orbitals in the vicinity of the SOMO so that U may be further

reduced through electronic push-pull effects in asymmetric radicals. In order to test the

effectiveness of this approach, synthetic techniques were developed for obtaining the hybrid

dithiazolyl/thiadiazinyl radical 1-2492 with an expanded range of R3 groups compared with

previous 1-20 radicals. These will be addressed in chapter 7.
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Table 1.4: Properties of selected all-Se pyridine bridged radicals 1-23 as a function of exocyclic groups

R1 and R2. FM = Ferromagnet, SC-AFM = Spin canted antiferromagnetic order. “Strong AFM” refers

to materials with strong antiferromagnetic coupling that may order but do not display a canted moment.

Ecell ∼ U is the electrochemical cell potential, and EA ∼ U − W is the thermal activation energy for

conductivity.

R1 R2 Space Group Θ EA Notes Ref

Me H P212121 −44.3 K 0.17 eV 83

Me Cl P21/c < −100 K 0.17 eV Strong AFM 88

Et H P21/c −8.0 K 0.19 eV SC-AFM, TN = 27 K 84

Et Cl P 4̄21m +22.9 K 0.19 eV FM, TC = 17 K 86

Et Br P 4̄21m +23.2 K 0.23 eV FM, TC = 17.5 K 89
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The second approach recently pursued by the Oakley group was initially intended to en-

hance bandwidth through further reduction of steric bulk by replacement of the N-R1 in

1-19 with the isoelectronic C=O to form 1-25. These materials indeed show very small

activation energies EA = 0.05 − 0.20 eV, lower even than the pyridine bridged Se variants

1-23.93–97 Moreover these oxo-benzo bridged radicals display a strong propensity for mag-

netic order, particularly as spin-canted antiferromagnets often with large positive Weiss

constants indicating strong ferromagnetic interactions. We will discuss in chapter 7 that

these two observations are related not to favourable solid-state packing, but rather the pres-

ence of a low-lying LUMO afforded by the C=O group that hybridizes with the SOMO to

significantly lower the one-electron charge gap. The influence of the low-lying LUMO on

spin-orbit anisotropic exchange will also be considered in chapter 7. The importance of the
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LUMO for the charge transport properties can be appreciated from discussion of related

radical-ion and charge transfer salt materials, addressed in the next section.

1.3.4 Radical Ion and Charge Transfer Salts

Although this thesis is devoted to the study of neutral radical materials, we introduce for

completeness an alternate design strategy that involves producing charged radicals in-situ

through co-crystallization of multiple components of differing electron affinity. The utility

of this approach is that band-filling can be controlled essentially by the stoichiometry of

the various components, so that metallic states can be promoted by ensuring non-half-filled

bands as discussed in section 1.2.2. The first purely organic material to display metallic

conductivity was formed by cocrystallization of the strong electron donor TCNQ 1-27 and

strong electron acceptor TTF 1-26 in a 1:1 ratio.98,99 In the solid state, the two components

form segregated π-stacks, providing well dispersing 1D bands along the stacking axis.

Charge transfer, estimated to be on the order of 0.6 electrons per molecule,100,101 from the

HOMO band of TCNQ to the overlapping LUMO band of TTF then results in two partially

filled bands of hole and electron character, respectively. The solid remains metallic above T

= 60 K, but below this temperature an incommensurate charge density wave state emerges

as a result of the relative one-dimensionality of the Fermi surface.102 From a chemical

perspective, the charge transfer between components can be considered as a partial redox

reaction to generate some density of organic radical ions in the solid.
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Viewed in this way, it is natural to consider alternate materials where the oxidation state of

the organic donor is well defined by crystallization with strong inorganic acceptors so that

charge transfer is essentially complete. The most well-studied examples of such radical ion

materials are based on the TTF-like donors TMTTF 1-28 and ET 1-29 (and Se analogues)

in 2:1 salts with inorganic components, i.e. [TMTTF]2[X], where X = (PF6)−, (AsF6)−,
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(ClO4)−, etc.103–107 This 2:1 stoichiometry ensures 3
4
-filled bands, which are significantly

less susceptible to a Mott insulating state than 1:1 salts with 1
2
-filled bands. These salts

crystallize in a variety of structural motifs, depending on the specific combination of organic

and inorganic components, and thus display a wide variety of properties from charge and

spin density wave insulators to metals to superconductors.108–111

A related class of materials are the spiro-phenalenyls 1-30 first studied by the Haddon

group.112–116 In such systems, charge transfer from two phenalenyl radicals to a coordinated

boron atom results in a neutral complex with one unpaired electron on average, shared

between two phenalenyl components.

X

YX

Y
B X = O, NR

Y = O, NR'

1-30

Of particular note is the case where X = O, Y = NR, R = cyclohexyl, which simultane-

ously displays a large but activated conductivity (EA = 0.05 eV) and a weak temperature

independent paramagnetic susceptibility. These results were interpreted by the authors

in terms of a intermolecular resonating valence bond state.117,118 In such spiro-phenalenyl

complexes, the overlap of the two phenalenyl SOMOs denoted φA and φB provides two

orbitals in the vicinity of the Fermi energy:

|ψ+〉 =
1√
2

(|φA〉+ |φB〉) (1.23)

|ψ−〉 =
1√
2

(|φA〉 − |φB〉) (1.24)

The unpaired electron associated with each complex occupies the orbital denoted ψ+ formed

by the in-phase combination of the individual phenalenyl SOMOs, while an empty LUMO

representing the out-of-phase combination appears at higher energy (Fig. 1.4(a)). The en-

ergetic splitting of the two orbitals is twice the hopping integral between the two phenalenyl

SOMOs, denoted 2 tAB. In the solid state, each of these orbitals broadens into a band,

where the lower in-phase band is nominally half-filled, similar to the neutral radical mate-

rials described in previous sections. However, the presence of the low-lying LUMO band

has significant consequences for the charge transport properties.
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Figure 1.4: Electronic structure of (a) spiro-phenalenyl 1-30 and (b) [ET]2 dimer based materials in the

absence of Coulomb repulsion. In the former, there is one unpaired electron per 1-30 complex, occupying

an in-phase combination of phenalenyl monomer SOMOs. In the latter, there is one unpaired electron per

dimer, occupying the out-of-phase combination of ET monomer HOMOs.

Before discussing this point in detail, we remark that a very similar situation applies

to the well-studied κ-phase of [ET]2[X] salts, in which ET molecules are dimerized with

one unpaired electron on average per [ET]+•2 dimer. The dimerization results in a similar

splitting of the HOMO band into bonding (in-phase) ψ+ and anti bonding (out-of-phase)

ψ− bands with respect to the local dimers (Fig. 1.4(b)). In this case, it is the higher lying

anti-bonding band that is half-filled. It has become customary in the literature to treat each

whole dimer as a single Hubbard site, so that such ET dimers are discussed in the context

of an effective single band, half-filled Hubbard model.119 However, in analogy with spiro-

phenalenyl materials, the effective parameters of this model are significantly influenced by

the additional degrees of freedom associated with the filled HOMO bonding band. To see

this, note that the charge gap ∆c ∼ Ueff−W is related to the disproportionation enthalpy,

which is given for each of these systems by:

(a) Spiro-Phenalenyls: Ueff ∼ ∆Hdisp = E([1-30]+) + E([1-30]−)− 2 E([1-30]•) (1.25)

(b) ET Dimers: Ueff ∼ ∆Hdisp = E([ET]2) + E([ET]2+
2 )− 2 E([ET]+•2 ) (1.26)

In both cases, it is useful to consider the energy of the state in which two electrons or
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holes occupy the same site, either E([1-30]−) or E([ET]2+
2 ). In the latter case, because the

on-site Coulomb repulsion between two electrons occupying the same ET monomer Umono

is very large, the [ET]2+
2 ground state is essentially non-bonding, being best described

by having two holes completely localized to the HOMO of the different monomers within

the dimer site, i.e. [ET+•]2. This state is thus open-shell, and is nether stabilized by

delocalization of the electrons across the dimer nor destabilized by Coulomb repulsion

between the holes since they are far apart. This situation is in contrast with state with one

unpaired electron per dimer, [ET2]+•, which is kinetically stabilized by sharing the electron

between monomers to form a weak dimer bond. In accordance with this discussion, it is

straightforward to show that in the limit where Umono � tAB the effective energy cost for

transferring electrons between dimer sites is given by:

Ueff ∼ E([ET]2) + E([ET+•]2)− 2 E([ET]+•2 ) (1.27)

∼ (2Umono) + (0)− 2(Umono − tAB) (1.28)

= 2 tAB < Umono (1.29)

This value is precisely the binding energy of the dimer. More generally, ignoring repulsion

between electrons on different monomers,

Ueff = 2 tAB +
Umono

2
−

√
(2 tAB)2 +

(
Umono

2

)2

(1.30)

which is shown in Fig. 1.5 as a function of tAB; Ueff < 0.5 Umono for all values of tAB. The

same condition applies for spiro-phenalenyl materials, for which:

Ueff ∼ E([1-30]+) + E([1-30]−)− 2 E([1-30]•) (1.31)

∼ (0) + (0)− 2(−tAB) (1.32)

= 2 tAB < Umono (1.33)

A cartoon of the integrated one-electron spectral density (see Appendix B) for this latter

material in the presence of interactions is shown in Fig. 1.5. The important lesson for neu-

tral radical design that emerges from this discussion is that although the above materials

may be considered in the context of single, half-filled bands, the additional degrees of free-

dom inherited from multiple bands in the vicinity of the Fermi level provides a significant
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Figure 1.5: Cartoon of the integrated one-electron spectral density for spiro-phenalenyl materials 1-

30. Despite being considered an effective half-filled system, the presence of a low-lying LUMO results in

additional open-shell states appearing at low energy. Access to such states significantly lowers the charge

gap denoted ∆c.

reduction in the effective Coulomb barrier. This energy barrier, in the context of a single-

band Hubbard model, is a measure of the energy cost of forcing two electrons (or holes)

to occupy the same site. When there are multiple orbital degrees of freedom available to

such electrons, this energy cost will always tend to be lower, because the electrons are free

to arrange themselves in whatever state minimizes such energy.

This discussion can be made concrete by noting that electrochemical measurements

suggest that the on-site Coulomb repulsion of a single phenalenyl radical is Umono ∼ 1.0−1.6

eV,120–122 while tAB ∼ 0.2− 0.4 eV has been computed by extended Huckel methods. This

provides the theoretical estimate Ueff ∼ 0.26−0.44 eV for the spiro-phenalenyl complex 1-

30, in agreement with the measured cell potential 0.29 − 0.37 V,113,114 and optical gaps e.g.

∆E ∼ 0.34 eV,117 both of which are significantly lower than the bare Coulomb repulsion. In

contrast, the stronger conjugation of the phenalenyl moieties afforded by a cyclopentadiene
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bridge, as in 1-31, results in a much larger cell potential of Ueff ∼ ∆Ecell = 1.03 V.123

1-31

In this case, the energetic splitting of the SOMO and LUMO is much greater, so that

there is no substantial stabilization due to low-lying orbital degrees of freedom. From this

discussion, it should be clear that the reduction of Ueff is crucial to the realization of

highly conducting states in both κ-phase [ET]2[X] salts and spiro-phenalenyl materials.

Investigating how to take advantage of such effects in Oakley-type radicals represents a

major topic of this thesis.

1.4 Thesis Organization

In order to motivate the discussion of the electronic and magnetic properties of neutral

radicals presented in this thesis, we present, in chapters 2 and 3, an introduction to the

theoretical concepts and methods employed in later chapters. In particular:

• Chapter 2: We focus on the theoretical aspects of magnetic properties. We present

a systematic method for the derivation of effective spin Hamiltonians, and employ

this method to consider the effects of multiple orbitals, Hund’s rule coupling, and

spin-orbit effects in combination. We discuss theoretical methods for determining the

parameters in such effective Hamiltonians from first principles, and introduce a new

method for computing hopping integrals that allows us to treat spin-orbit anisotropic

exchange interactions.

• Chapter 3: This brief chapter discusses theoretical aspects of charge transport. We

introduce Dynamical Mean Field Theory calculations, and describe the phenomenol-

ogy of the Mott transition in terms of measured resistivity and optical conductivity.

Importantly, we introduce the concept of Mott’s minimum metallic conductivity, and

define bad metal states, which appear in radicals in the vicinity of the Mott transition.
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On first reading, one may wish to skip these chapters, as they are referred to in the

remainder of the thesis when necessary. In the remaining four chapters, we employ the

introduced methods to understand the properties of several classes of organic radicals.

Specifically:

• Chapter 4: We address the correlations between structure and magnetic response

in pyridine-bridged radicals 1-19, 1-20 − 1-22. Through the classification of the

symmetries of various magnetic order parameters, we derive restrictions on magnetic

structures that may exhibit a net canted moment, such as bulk ferromagnets and

spin-canted antiferromagnets. This provides a natural division of materials by the

sign of magnetic exchange along the π-stacks. We then go on to discuss a series

of low-dimensional radical spin-ladders where magnetic order is avoided by strong

quantum fluctuations.

• Chapter 5: We focus on the magnetic and electronic properties of the isostructural

tetragonal radicals 1-19, 1-20 − 1-22 (R1 = Et, R2 = Cl) both at ambient and

high pressure. We suggest that the dichotomy in the magnetic response between the

ferromagnets 1-20,1-22 and spin-canted antiferromagnets 1-19,1-21 arises to due

relative importance of ferromagnetic exchange through weak multi-orbital effects.

Under pressure, these magnetic phases are suppressed, and a bad metallic state

appears.

• Chapter 6: In this chapter, we further address the magnetic anisotropy in the tetrag-

onal family 1-19, 1-20 − 1-22 (R1 = Et, R2 = Cl) through electron spin resonance

measurements and spin-orbit calculations.

• Chapter 7: In this final chapter, we focus on the design and study of radicals incor-

porating multiple orbitals in the vicinity of the Fermi level. We discuss unsuccessful

efforts to tune hybrid radicals 1-24 to this condition, but find a low-lying empty

LUMO in oxobenzene bridged radicals 1-25. By studying three such radicals, we

discuss the effect of this low-lying LUMO on the magnetic, electronic, and spin-orbit

physics of these materials.
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Chapter 2

Theoretical Aspects of Magnetism

2.1 Derivation of Effective Spin Hamiltonians

In this section, the systematic derivation of low-energy magnetic Hamiltonians starting

from the extended Hubbard model is reviewed. The formal method of choice is to formulate

a perturbation theory directly in terms of electron creation and annihilation operators,

allowing for direct calculation of effective spin Hamiltonians. We introduce a diagrammatic

method for keeping track of the terms emerging from 1/U expansion that allows for rapid

evaluation of such magnetic Hamiltonians. As some derivations of this section are formal

and somewhat lengthy, the main physical consequences of each calculation are summarized

at the end of each subsection. It is worth emphasizing that while the results of Chapters

4−7 rely heavily on the discussion in this chapter, the mathematical details may be skipped

without loss of understanding.

2.1.1 Adiabatic Concept and Low-Energy Theories

When experimentally probing physical systems, there is typically an energy scale associated

with each measurement, as determined by the temperature of the sample, or the nature of

the experiment. Microstates of the system that exist at far higher excitations energies than
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either the experimental temperature kBT , or the excitation frequency ~ω, are not accessed,

and remain experimentally irrelevant. For example, when probing the response of a Mott

insulator for kBT, ~ω � ∆c, only the magnetic degrees of freedom are typically relevant.

In order to describe the properties of a material at a specific energy scale, it is therefore

advantageous to develop an effective model that includes only the (much smaller) subspace

of states accessible by the experiment. For strongly interacting systems, determining these

low-energy states exactly is often impossible, as it amounts to solving the fully interacting

problem. For conceptual simplicity therefore, low-energy models are often formulated in

terms of an unphysical Hilbert space of states that becomes exact only in some limit, but

is adiabatically connected to the true low energy subspace.1 The relevant example to this

section is the use of spin Hamiltonians in quantum magnetism. Such Hamiltonians act

on pure spin states with exactly one electron confined to each magnetic orbital, which

are the true low energy eigenstates only in the limit t/U → 0. As we will discuss below,

magnetic interactions arise expressly because these pure spin states are mixed with higher

energy charge separated states at finite hopping. The effective spin Hamiltonians are

constructed with parameters designed to obtain correct state energies for fictitious pure

spin wavefunctions.

In order to make this discussion more concrete, consider a system described by the

Hamiltonian H = H0 + λH1, where λ is a parameter that varies the strength of H1. For

λ = 0, the eigenstates of the system are those of H0, which we label by some quantum

number n, with associated energy H0|Φ0
n〉 = E0

n|Φ0
n〉. Usually H0 is chosen so that these

eigenstates are well understood, and there is considerable conceptual advantage to working

with such states. Suppose we divide the Hilbert space into two sections by introducing a

high energy cut-off Λ so that all states n ≥ Λ, denoted {|Φ0
n≥Λ〉}, are essentially inaccessible

to the experiment. An effective theory incorporating only the low energy subspace {|Φ0
n<Λ〉}

may therefore be developed and remains valid below the energy scale E0
Λ. The Hamiltonian

for this theory at λ = 0 is given simply by:

H0
eff = P0

LH0P0
L (2.1)

1In the sense of the Quantum Adiabatic Theorem.
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Figure 2.1: Cartoon of the evolution of state energies for the generic Hamiltonian H = H0 + λH1. As

λ is increased, all states below the energy cutoff EΛ, are adiabatically connected to corresponding λ = 0

states. A low-energy effective theory may therefore be written in terms of such states, and remains valid

until λ = λc.

where PL is a projection operator into the lower energy subspace, and is given by:

P0
L =

∑
n<Λ

|Φ0
n〉〈Φ0

n| (2.2)

=

{
1 if state is in lower Hilbert space {|Φ0

n<Λ〉} for λ = 0

0 otherwise

so that:

H0
eff|Φ0

n〉 =

{
E0
n|Φ0

n〉 if state is in lower Hilbert space {|Φ0
n<Λ〉} for λ = 0

0 otherwise
(2.3)

As λ is increased from zero, the effect of “turning on” H1 will be to alter the energies and

composition of the eigenstates appearing at low energy. The new eigenstates of H may be

generally written in terms of the eigenstates at λ = 0 since both form a complete basis:

|Φλ
m<Λ〉 =

∑
n<Λ

Aλmn|Φ0
n<Λ〉+

∑
n≥Λ

Bλ
mn|Φ0

n≥Λ〉 (2.4)

The associated energies of such states are given by H|Φλ
m〉 = Eλ

m|Φλ
m〉. For the case

where Bλ
mn 6= 0 it is clear that the zeroth order lower Hilbert space {|Φ0

n<Λ〉} does not

represent a complete subspace for the H1 operator, which appears to invalidate the choice

of Hilbert space. That is, because H1 may mix states above and below the cutoff Λ, it
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seems impossible to ignore the high energy states {|Φ0
n≥Λ〉}. However, it is important to

observe that all low energy states appearing at finite λ < λc are adiabatically connected

to those appearing at λ = 0, so that they may be labelled by identical quantum numbers.

That is, we can slowly turn on the interactions λ and find that the states in the lower

Hilbert space remain in 1:1 correspondence with those at λ = 0. This makes it possible to

define a Hamiltonian that acts on the unphysical zeroth order lower Hilbert space {|Φ0
n<Λ〉}

but yields the correct energies:

Hλ
eff|Φ0

m〉 =

{
Eλ
m|Φ0

m〉 if state is in lower Hilbert space {|Φ0
m<Λ〉} for λ = 0

0 otherwise
(2.5)

where |Φ0
m〉 is defined essentially as the state appearing in {|Φ0

n<Λ〉} that is adiabatically

connected to the state |Φλ
m〉. For small λ, this often implies |Aλmn| is maximal. In this

way, the high energy states {|Φ0
n≥Λ〉} may be safely neglected so long as the Hamiltonian

is appropriately modified to preserve the exact spectrum. Colloquially, this process is

known as “renormalization”, and the new parameters of the Hamiltonian are said to be

“renormalized” in the process of projecting out the high energy states. It is very important

to note that virtually all models in materials science are effective low energy theories and

one must be careful not to apply such theories outside their range of applicability, that is

E < EΛ, λ < λc. In order to avoid certain interpretation problems, one must also always

remember that the states described in these models are not identical to the true states

of the system. As discussed further in the Appendix section A.1.1, low-energy effective

Hamiltonians may often by calculated reliably using perturbation theory, via:

Heff (ω) = P0
L H0 P0

L +
∞∑
n=0

λn+1P0
L H1 [P0

U (ω −H0)−1 P0
U H1 ]n P0

L (2.6)

where P0
U is the projection operator into the upper Hilbert space:

P0
U = 1− P0

L =

{
0 if state is in lower Hilbert space

1 otherwise
(2.7)

The most significant disadvantage of this perturbative formulation is that the effective

Hamiltonian depends explicitly on the exact energy of the state it acts upon, through

29



the appearance of ω in the denominator! However, provided there is a significant energy

gap between the low and high energy subspaces, ω may be replaced approximately by the

zeroth order energy, that is ω ∼ E0
n, which for all cases considered below is a constant.

2.1.2 Diagrammatic Representation in the U � t Limit

Of particular interest in this chapter is the case of the large U limit of the Hubbard model,

in which one seeks to project out all high energy states in which the occupancy of the

SOMO (α = 0) differs from one, which costs at least an energy U , and/or the occupancy

of the α = +(−)n orbitals differs from zero (two), which costs at least |εn − ε0|. The

resulting renormalized Hamiltonian is written in terms of spin operators, and describes the

varied magnetic properties of the Mott insulating state. A formalism for accomplishing

this systematically is presented below, with useful expressions given in Appendix A. We

identify:

H0 = E + U (2.8)

H1 = T +K +Q (2.9)

where:

E =
∑
i,α

εαi c
†
i,αci,α , U =

∑
i,s,s′

α,β

Uαβ
i nαi,sn

β
i,s′ , T =

∑
〈i,j〉
α,β

tαβij c†i,αcj,β (2.10)

K =
∑
〈i,j〉
α,β

Kαβ
ij c†i,αc

†
j,βci,αcj,β , Q =

∑
i,α,β

Qαβ
i c†i,αc

†
i,βci,αci,β (2.11)

Inserting these expressions for H0 and H1 into eq’n (2.6) allows for the evaluation of Heff in

terms of products of electron creation and annihilation operators. A particular feature of

the effective theory is that only products of operators that connect states within the lower

Hilbert space survive projection by P0
L. This means, typically, that the vast majority of

operator products appearing at a particular order n are irrelevant. It is therefore advan-

tageous to introduce a diagrammatic method for quickly identifying those combinations

that survive projection. The diagrammatic convention used throughout this thesis will be
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as follows. Singly occupied local orbitals are represented by a single line, doubly occupied

orbitals by a double line, and empty orbitals by a dashed line. Each line carries a set of

indices (i, α) identifying the orbital, and an arrow indicating its connectivity with vertices:

(2.12)

Operators in H1 are represented by vertices. The hopping vertex, associated with T is

represented by an empty circle. In order to conserve particle number, the number of

electrons contained in incoming lines must match those in outgoing lines. This restricts

the vertex to take the following form:

T =
∑
〈i,j〉
α,β

tαβij

 + h.c.


(2.13)

where the Hermitian conjugate of a diagram, denoted (h.c.) is obtained by reversing the

direction of all arrows. These four diagrams refer, respectively, to the following types of

hops:
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The Coulomb exchange vertices are indicated by a square box:

K =
∑
〈i,j〉
α,β

Kαβ
ij


 (2.14)

Q =
∑
i,α,β

Qαβ
i


 (2.15)

Diagrams representing terms that survive projection are obtained by linking lines so that

the directions of arrows match, and all lines external to the diagram are consistent with

the lower Hilbert space. All internal combinations of lines must correspond to states in

the upper Hilbert space, so that only so-called “irreducible” diagrams contribute. In the

true physical system, these states are mixed with those in the lower Hilbert space, but

in the renormalized effective model they enter only as corrections to the Hamiltonian.

Interactions between spins at sites i, j must include external single lines for the SOMOs

|0i〉, |0j〉 at both sites. Diagrams may be translated to mathematical expressions by the

following rules:

1. All permutations of internal indices are summed.

2. The matrix elements associated with each vertex are multiplied together. Diagrams

contain n+ 1 vertices.

3. A value for 〈(ω−H0)−1〉 is assigned to each set of internal lines between each vertex.

Diagrams contain n such Green operators. These values are also multiplied.

4. Appropriate products of creation and annihilation operators are assigned to each

vertex, and combined in the order the vertices appear in the diagram; the opposite

direction of the arrows.
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For example, the simplest irreducible linked diagram for hopping vertices is:

= −
∑
i,j

t00
ij t

00
ji

1

U00
j

c†i,0cj,0c
†
j,0ci,0 (2.16)

The two hopping vertices contribute t00
ij and t00

ji , while the single set of internal lines con-

tributes 〈(ω − H0)−1〉 = −1/U00
j . The conversion of such terms into spin Hamiltonians

may be affected using the relations in Appendix A. In the next sections, we finally show

how such diagrams aid in the calculation of effective spin Hamiltonians.

2.1.3 Spin Hamiltonian from the One-Orbital Hubbard Model

In this section, we demonstrate the formalism outlined above and in Appendix A to derive

the well known spin interactions arising in single band Hubbard model. In this case, we

consider only the electrons occupying each radical SOMO, so that the orbital energy and

on-site Hund’s coupling may both be ignored. The electron Hamiltonian may be written:

H0 = U = U
∑
i

ni,0,↑ni,0,↓ (2.17)

H1 = T +K =
∑
〈i,j〉

t00
ij c†i,0cj,0 +

∑
〈i,j〉

K00
ij c†i,0c

†
j,0ci,0cj,0 (2.18)

with the projection operator into the lower Hilbert space given by:

P0
L =

∏
i

δ(c†i,0ci,0 − 1) (2.19)

which ensures there is exactly one electron per site for all states in the lower Hilbert space.

It is useful to note in this case that:

P0
L U P0

L = 0 , P0
U U P0

U = U , P0
L T P0

L = 0 (2.20)

P0
U K P0

L = P0
L K P0

U = P0
U K P0

U = 0 (2.21)

so that the effective spin Hamiltonian may be derived from:

Heff = P0
L K P0

L +
∞∑
n=0

P0
L T

[
(ω −H0)−1 P0

U T
]n P0

L (2.22)
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Coulomb Exchange, n = 0:

The zeroth order contribution arises from Hund’s rule coupling between electrons occupying

the SOMO of different radicals, described by the diagram:

H(n=0)
eff = = P0

L

∑
〈i,j〉

K00
ij c†i,0c

†
j,0ci,0cj,0 P0

L (2.23)

Using eq’n (A.20), this is:

H(n=0)
eff = P0

L

∑
〈i,j〉

K00
ij

(
c†i,0cj,0c

†
j,0ci,0 − c†i,0ci,0

)
P0
L (2.24)

But P0
L c†i,0ci,0 P0

L = 1 is a constant, and may be subtracted from the Hamiltonian. Using

eq’n (A.18), this is:

H(n=0)
eff = P0

L

∑
〈i,j〉

K00
ij c†i,0

(
1

2
I− Sj · ~σ

)
ci,0 P0

L (2.25)

= P0
L

∑
〈i,j〉

K00
ij

(
1

2
c†i,0ci,0 − Sj · c†i,0~σci,0

)
P0
L (2.26)

which, using eq’n (A.10) gives:

H(n=0)
eff = P0

L

∑
〈i,j〉

K00
ij

(
1

2
c†i,0ci,0 − 2Sj · Si

)
P0
L (2.27)

Finally, applying the projection operators, and subtracting constant terms gives:

H(n=0)
eff = −

∑
〈i,j〉

2K00
ij Si · Sj → J FM

ij = −2K00
ij (2.28)

As is well known, the so-called Coulomb contribution to the magnetic exchange provides

a ferromagnetic interaction, with H(n=0)
eff minimized for adjacent spins aligned in parallel.

This effect arises due to the physics of the Pauli exclusion principle, which requires the

many-body wavefunction to vanish whenever two electrons occupy the same state. Elec-

trons with the same spin thus tend to avoid one another in space, reducing the average

Coulomb repulsion between such electrons, and lowering the energy of such a configura-

tion.124 This effect is opposed by antiferromagnetic kinetic exchange:
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Kinetic Exchange, n = 1:

As discussed above, the lowest order irreducible diagram from the hopping term is:

H(n=1)
eff = = −

∑
i,j

t00
ij t

00
ji

1

U
c†i,0cj,0c

†
j,0ci,0 (2.29)

Using the expressions in the previous section, and dropping constant terms, this becomes:

H(n=1)
eff = +

∑
i,j

2(t00
ij )2

U
Si · Sj (2.30)

Finally, summing over internal lines gives the two combinations (i, j) and (j, i), both of

which give identical terms. Therefore, the total summation is:

H(n=1)
eff = +

∑
〈i,j〉

4(t00
ij )2

U
Si · Sj → J AFM

ij =
4(t00

ij )2

U
(2.31)

This term arises due to the effect of local (quantum) charge fluctuations, which reduce

the kinetic energy of electrons through partial delocalization to neighbouring radical sites.

Due to the Pauli exclusion principle, this delocalization may only occur in single orbital

models if the electron spins on neighbouring sites are aligned oppositely, leading to a net

antiferromagnetic interaction. Combining this term with the n = 0 Coulomb exchange

gives the familiar result:

Heff =
∑
〈i,j〉

JijSi · Sj (2.32)

Jij =
4(t00

ij )2

U
− 2Kij (2.33)

2.1.4 Ferromagnetism in Multi-Orbital Models

Diagrammatic Approach

In the previous section, all magnetic interactions were considered to arise from direct

interactions between partially filled SOMO orbitals. An alternate mechanism for magnetic

35



exchange through filled and empty orbitals on the magnetic centers was originally proposed

by Anderson,125 and later described by Goodenough.126 Their result may be recovered, in

spirit, from the following diagrams, appearing at order n = 2:

H(n=2)
eff = (2.34)

= P0
L


∑

i,j,α>0

Q0α
j (t0αij )2

(U0α
j +εα−ε0)2

(
c†i,0cj,αc

†
j,αc

†
j,0cj,αcj,0c

†
j,αci,0

)
+
∑

i,j,α<0

Q0α
j (t0αij )2

(U0α
j +ε0−εα)2

(
c†j,αci,0c

†
j,αc

†
j,0cj,αcj,0c

†
i,0cj,α

)
P0

L (2.35)

which after some manipulations, and neglecting constant terms gives:

H(n=2)
eff = P0

L


∑
i,j
α 6=0

Q0α
j (t0αij )2

(U0α
j + ∆εαj )2

(
c†i,0cj,0c

†
j,0ci,0

)P0
L (2.36)

= −
∑
〈i,j〉
α 6=0

{
2Q0α

j (t0αij )2

(U0α
j + ∆εαj )2

+
2Q0α

i (t0αji )2

(U0α
i + ∆εαi )2

}
Si · Sj (2.37)

where ∆εαj = |εαj − εoj |. This expression agrees with Anderson’s result, apart from fixing

the denominator to include the energy difference between the orbitals. However, it is very

straightforward to improve on this result. For this specific case, the Coulomb vertex can

in fact be summed to infinite order; we introduce the resummed vertex:

(2.38)

which is given by:

= G−1
U

∞∑
n=0

(Qαβ
i GUc†i,αc

†
i,0ci,αci,0)n (2.39)

=
G−3
U

G−2
U − (Qαβ

i )2
(1 +Qαβ

i GUc†i,αc
†
i,0ci,αci,0) (2.40)
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Inserting this expression into Heff gives, up to second order in t, but infinite order in Q:

Heff = −
∑
〈i,j〉
α 6=0

{
2Q0α

j (t0αij )2

(U0α
j + ∆εαj )2 − (Q0α

j )2
+

2Q0α
i (t0αji )2

(U0α
i + ∆εαi )2 − (Q0α

i )2

}
Si · Sj (2.41)

which is similar to the expression found by Kahn by comparison of state energies of cen-

trosymmetric magnetic centres.127 As interacting radicals rarely possess such symmetry,

the general expression in eq’n (2.41) is of greater utility. From the sign of the exchange

constant, it is clear that this interaction is ferromagnetic, and as such it is colloquially

known as “ferromagnetic exchange through empty and filled orbitals”.127 The effect arises

due to a lowering of the kinetic energy of electrons (holes) through delocalization onto

empty (filled) orbitals on neighbouring sites in the crystal. The zeroth order ground state

is mixed with configurations that have multiple unpaired electrons in different orbitals on

the same site, for which on-site Hund’s coupling is active. The Hund interaction stabilizes

high spin configurations through the reduction of Coulomb repulsion between like spins,

so that delocalization is enhanced for ferromagnetic alignment of spins.

2.1.5 Importance of Multi-orbital Exchange in Organics

Combining the previous expressions for ferromagnetic multi-orbital exchange with the di-

rect SOMO-SOMO coupling gives:

Jij = J AFM
ij + J FM

ij , J AFM
ij =

4(t00
ij )2

U
, J FM

ij = −2K̃ij (2.42)

where K̃ij represents the renormalized Hund’s coupling:

K̃ij = K00
ij +

∑
α 6=0

{
Q0α
j (t0αij )2

(U0α
j + ∆εαj )2 − (Q0α

j )2
+

Q0α
i (t0αji )2

(U0α
i + ∆εαi )2 − (Q0α

i )2

}
(2.43)

For metal ions, Anderson suggested that both contributions to K̃ij would be small and

of similar magnitude, and therefore one should expect |J AFM
ij | > |J FM

ij |, leading to a

significant preference for antiferromagnetic interactions between localized spins.125 For this

reason, organic Mott insulators with an integral number of unpaired electrons per site tend
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to be dominated by antiferromagnetic interactions. The generation of strong ferromagnetic

interactions, in contrast, requires satisfying a combination of the following conditions:

• Small hopping t00
ij directly between SOMOs in order to suppress the antiferromagnetic

exchange. This condition is known as “orthogonal overlap”,128 for historical reasons,

arising from an alternate descriptions of magnetic coupling based on nonorthogonal

local orbitals. Examples of orthogonal overlap of p-orbitals are shown below:

These geometric conditions for small t00
ij are the same even when the local orbitals

are chosen to be explicitly orthogonal.

• The presence of a very low-lying empty orbital (∆ε1i ∼ Q01
i ) or high lying filled

orbital (∆ε−1
i ∼ Q0−1

i ). This condition ensures that the multi-orbital component of

K̃ij is large, and competitive with the usual antiferromagnetic exchange. In this case,

provided that t01
ij , t

10
ij > t00

ij , ferromagnetism is expected.

In prominent examples of “high-TC” (i.e. TC > 5 K) organic ferromagnets, it is likely that

both these conditions are satisfied. Consider, for example, the fullerene salt TDAE·C60

(TC ∼ 15 K), for which the role of multi-orbital exchange in generating strong ferromag-

netic interactions is already well recognized.129,130 The electronic structure at each [C60]•−

molecule consists of a single unpaired electron, donated by the TDAE, occupying a set

of triply degenerate orbitals (Fig. 2.2(a)). With reference to the above model, this can

be considered the extreme limit where ∆ε01,∆ε02 → 0, providing for strong multi-orbital

ferromagnetic interactions in combination with Hund’s coupling.

A second example of interest is γ-BBDTA·GaCl4 (TC ∼ 7 K).131–133 Each [BBDTA]•+

site contains one unpaired electron occupying a non degenerate SOMO (Fig. 2.2(b)). In

addition to the SOMOs on adjacent molecules being nearly orthogonal, there is strong
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Figure 2.2: Electronic structure of (a) [C60]−, (b) [BBDTA]+ and (c) neutral BBDTA. Ferromagnetism

in TDAE·C60 originates from multi-orbital interactions occasioned by the triply degenerate SOMO. Mul-

tiorbital exchange may also play a role in BBDTA·GaCl4 for which the presence of a low lying SOMO+1

orbital is evidenced by the low-lying triplet state of the neutral BBDTA molecule.

evidence for the presence of a low-lying empty LUMO. This may be seen in the fact

that the neutral molecule, containing one additional electron, is a ground state singlet

with significant biradical character, and with a low-lying excited triplet state shown in

Fig. 2.2(c).134,135 That is, Q01 ∼ ∆ε01. For this reason, multi-orbital exchange may

be expected to play a prominent role in this material as well,136 provided a sufficient

discrepancy between hopping integrals t00
ij and t01

ij .

In contrast, despite having multiple relevant orbitals, and low-lying open shell states

when two electrons (holes) occupy the same site, the spiro-phenalenyl 1-30 and κ-phase

[ET]2X salts introduced in section 1.3.4 do not satisfy the above conditions for ferromag-

netic coupling. Due to geometrical packing constraints, t00
ij ≈ t01

ij , t
10
ij , t

11
ij for the spiro-

phenalenyl or t00
ij ≈ t0−1

ij , t−10
ij , t−1−1

ij for the ET salts. This follows from the fact that the

SOMO and HOMO/LUMO in such dimeric materials are simply in-phase and out-of-phase

combinations of local monomer orbitals |0i〉, |1i〉 = 1√
2

(|ai〉 ± |bi〉). This implies, for 1-30,
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the hopping integrals follow:

t00
ij =

1

2

(
taaij + tabij + tbaij + tbbij

)
(2.44)

t01
ij =

1

2

(
taaij − tabij + tbaij − tbbij

)
(2.45)

t10
ij =

1

2

(
taaij + tabij − tbaij − tbbij

)
(2.46)

t11
ij =

1

2

(
taaij − tabij − tbaij + tbbij

)
(2.47)

However, by geometrical considerations, only one monomer from each dimer site is expected

to interact strongly, so that taaij � tabij , t
ba
ij , t

bb
ij , for example. Therefore all hopping integrals

in the dimer basis are nearly equal, and antiferromagnetic interactions are expected to

dominate. It is thus not surprising that such materials do not display ferromagnetism.

2.2 Role of Spin-Orbit Effects in Magnetism

2.2.1 Introduction

In a semiclassical picture, spin-orbit coupling (SOC) is a relativistic effect that involves the

interaction of the electronic spins with the magnetic field generated by their own orbital

motion.137–139 The Hamiltonian associated with this effect is often written with respect to

field operators:

HSO =
∑
s,s′

∫
x

∫
r

ψ†s(x)

[
−i~µB
mc2

1

r

∂u(r)

∂r
(r×∇x) · S

]
ψs′(x) (2.48)

where u(r) is an effective one-electron potential. Chemists usually first meet this interaction

in the context of hyperfine splitting of single atomic energy levels.140,141 In this case, u(r)

is a central potential, and −i~(r × ∇x) = L is the angular momentum about the atomic

center. The Hamiltonian can be rewritten in the more familiar form:

Hhyd
SOC = λL · S (2.49)
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where λ is the spin-orbit constant is the expectation value:

λ =

〈
e2

2m2
ec

2

Zeff
r3

〉
(2.50)

where Zeff is the screened effective charge of the atomic nucleus. For atoms with only one

electron, Zeff = Z and 〈r3〉 ∝ (n/Z)3, where n is the principle quantum number. From

this discussion one can see that the strength of spin-orbit coupling will tend to increase

significantly in heavier elements, naively as λ ∼ Z4/n3. For example, in isolated neutral

chalcogen atoms:142

λS = 0.06 eV λSe = 0.22 eV λTe = 0.49 eV

For this reason, spin-orbit coupling becomes most prominent in heavy atom materials. In

the solid state, the mixing of spin and orbital angular momentum produces anisotropic

exchange interactions between the resulting local moments. In heavy element radicals

incorporating S and especially Se, such interactions can play a prominent role in the

magnetic response, as discussed in chapter 6.

2.2.2 Qualitative Aspects of Atomic Spin-Orbit Coupling

In this section, we consider an artificial example that allows for understanding of the salient

aspects of spin-orbit coupling in p-block materials. Consider the case of a single atom, with

a single electron confined to occupy a particular p-orbital manifold. For the isolated atom,

the Hamiltonian commutes with the total spin S2, orbital angular momentum L2 and total

angular momentum J2 operators; it is thus conventional to label states by the term symbol
(2S+1)LJ . In the absence of spin-orbit coupling, all term symbols are degenerate. When

spin-orbit coupling is turned on, the states are split such that the ground state is the

Kramers’ doublet 2P1/2. The two components of this doublet with mz
J = ±1/2 may be

represented in terms of pure spin and orbital states as:

|2P1/2,+1/2〉J =

√
1

3
|p0, ↑〉S −

√
2

3
|p+, ↓〉S (2.51)

|2P1/2,−1/2〉J =

√
1

3
|p0, ↓〉S −

√
2

3
|p−, ↑〉S (2.52)
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where the states on the left are pure J-states, indicated by a subscript J , while those on

the right are pure S-states for which ↑ (↓) indicates mz
S = +1/2 (−1/2). Here, we have

also introduced the pure angular momentum orbitals with mz
L = 0,+1,−1, respectively:

|p0〉 = |pz〉 , |p+〉 =

√
1

2
(|px〉 − i|py〉) , |p−〉 =

√
1

2
(|px〉+ i|py〉) (2.53)

In terms of these orbitals, quartet-J manifold appearing at higher energy is given by:

|2P3/2,+3/2〉J = |p+, ↑〉S (2.54)

|2P3/2,+1/2〉J =

√
2

3
|p0, ↑〉S +

√
1

3
|p+, ↓〉S (2.55)

|2P3/2,−1/2〉J =

√
2

3
|p0, ↓〉S +

√
1

3
|p−, ↑〉S (2.56)

|2P3/2,−3/2〉J = |p−, ↓〉S (2.57)

Taken together, these states form an appropriate one-electron basis even for describing

multi-electron states at strong spin-orbit coupling, as in the so-called j−j coupling scheme.

The ground state of atomic Pb, for example, is well described as a J-singlet with one

electron occupying the j = 1/2,mz
j = +1/2 state of eq’n (2.51), and one electron occupying

the j = 1/2,mz
j = −1/2 state of eq’n (2.52).143 It is important to note, however, that

while these one-electron states are eigenstates of Jz, they are clearly not eigenstates of

either Lz or Sz. Indeed, the effect of spin-orbit coupling is to mix states of different mS

and mL values. In the presence of a crystal field, the effects of spin-orbit coupling may be

mitigated. Returning to the one-electron example, consider an equatorial crystal field such

that εp+ = εp− = εp0 + ∆ε. As ∆ε is increased, the increasing cost of occupying the |p−〉
and |p+〉 orbitals modifies the composition of the eigenstates (Fig. 2.3). For example, as

∆ε/λ → ∞, the ground state becomes a pure spin doublet {|p0, ↑〉, |p0, ↓〉}, in which only

the p0 orbitals are occupied and all orbital momentum has been quenched. For arbitrary

coupling, the two-fold degeneracy of the ground state is ensured by Kramers’ theorem, and

time-reversed pairs can be written:

|(+)〉 = γ|p0, ↑〉S −
√

1− γ2|p+, ↓〉S (2.58)

|(−)〉 = γ|p0, ↓〉S −
√

1− γ2|p−, ↑〉S (2.59)
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Figure 2.3: Evolution of the one-electron state energies as a function of crystal field splitting ∆ε for

single atom model. The ground state remains a Kramers’ doublet at all relative strengths of spin-orbit

coupling, but the admixture of pure spin and orbital functions changes.

where γ → 1 as λ/∆ε→ 0, and γ →
√

1/3 as λ/∆ε→∞. Similarly, the second quantized

operators associated with these one-electron states are:

c̃†(+) = γc†p0,↑ −
√

1− γ2c†p+,↓ , c̃†(−) = γc†p0,↓ −
√

1− γ2c†p+,↑ (2.60)

c̃†(γ) =
(
c̃†(+) c̃†(−)

)
, c̃(γ) =

(
c̃(+)

c̃(−)

)
(2.61)

Suppose we embed our atom into a crystal, find that electrons are localized to these states,

and wish to describe the magnetic properties of such electrons. This description is ham-

pered by the fact that at intermediate coupling, |(+)〉 and |(−)〉 are neither eigenstates

of spin nor total angular momentum invalidating use of either S or J operators to con-

struct our effective magnetic Hamiltonian. However, one may define analogous pseudospin

operators:

S̃ = c̃†(γ) ~σ c̃(γ) (2.62)
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Figure 2.4: Anatomy of the |(+)〉 state as a function of γ. At all values of γ, this state is an eigenstate

S̃z, and therefore has well defined pseudospin along the z-direction. The expectation values of the pure

spin and pure angular momentum density along the same direction are shown. Positive values are shown

in red, and negative values in blue. For γ = 0, |(+)〉 = |pz, ↑〉S ; the spin density is confined entirely to

the pz orbital, and the expectation value of the angular momentum is zero everywhere. For γ =
√

1/3,

|(+)〉 = |2P1/2,+1/2〉 and has significant angular momentum component to the total moment.

that have the usual properties of angular momentum operators, but act in the intermediate

basis. For example:

S̃z|(+)〉 = +
1

2
|(+)〉 , S̃z|(−)〉 = −1

2
|(−)〉 (2.63)

While these operators may appear to be purely mathematical constructions, they represent

approximately the true physically observable magnetic moment at intermediate coupling.

In the appropriate limits, S̃ becomes equal to either S or J. At intermediate coupling, the

total pseudospin moment is composed, very roughly speaking, of different parts real spin

and real orbital components. In order to visualize such components, it is useful to consider

expectation values of spin and orbital angular momentum density 〈Sz δ(r)〉 and 〈Lz δ(r)〉,
along the pseudospin quantization axis (z-axis), as shown in Fig. 2.4 for |(+)〉. For λ = 0,
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Figure 2.5: Anatomy of the |(R)〉 state as a function of γ. The expectation values of the pure spin

and pure angular momentum density along the x-direction are shown. The pattern of spin density can be

compared with that of |(+)〉 shown in Fig. 2.4.

or γ = 1, the state is a pure spin state, with positive spin density localized to the pz orbital.

As may already be seen from eq’n (2.58), increasing λ/∆ε introduces an orbital component

to the magnetic moment, which is offset by negative spin-density through mixing with the

|p+, ↓〉S state. The key observation is that this pattern of orbital and spin density depends

on the orientation of the overall pseudospin moment with respect to the crystal field. For

example we may equally define pseudospin states that are eigenstates of S̃x; these are given

by:

|(R)〉 =

√
1

2
(|(+)〉+ |(−)〉) (2.64)

|(L)〉 =

√
1

2
(|(+)〉 − |(−)〉) (2.65)

S̃x|(R)〉 = +
1

2
|(R)〉 , S̃x|(L)〉 = −1

2
|(L)〉 (2.66)
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where |(R)〉 has a well defined pseudospin moment along the right direction, and |(L)〉 has

a pseudospin moment along the left direction. The spin and angular momentum densities

〈Sx δ(r)〉 and 〈Lx δ(r)〉 of this state are shown in Fig. 2.5. In this case, the induced

orbital moment actually opposes the majority spin moment, and the pattern of induced

spin density in the xy-plane is altered with respect to |(+)〉. These observations highlight

two important characteristics of the pseudospin moments:

• The pseudospin states are generally composed of linear combinations of pure spin and

angular momentum functions. The specific contributions to the pseudospin moment

by such functions depend on the orientation of the moment with respect to the crystal

field. This has an important consequence on the Zeeman splitting of pseudospin states

when placed in an external magnetic field, for which the Hamiltonian is generally

written:

H =
∑
i

S̃i · g ·Hext (2.67)

Specifically, because g-values of pure spin and orbital moments differ by a fac-

tor of two, the Zeeman splitting of pseudospin moments are generally anisotropic;

this is roughly speaking the origin of the so-called Orbital-Zeeman contribution to

anisotropy of the g-tensor.144

• When considering the interactions between such pseudospin moments, it is important

to note that the magnetic interactions typically depend only on the spin components

of the pseudospin state. Since this component is orientation dependent, such interac-

tions may be energetically minimized only for specific orientations of the pseudospin

moments both with respect to one another, and the crystal field. Thus the in-

teractions between pseudospin moments are typically anisotropic, with interactions

reduced to the symmetry of the local crystalline environment.

Finally, we note that while this section considered only single electrons in atomic p-orbitals,

many of the salient aspects apply equally to many-electron organic radicals in which the

unpaired electron is contained in a π-SOMO. This molecular orbital can be considered a
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linear combination of pz orbitals centred on different atoms. The action of spin-orbit cou-

pling is to mix the SOMO with orbitals of px and py character making up the σ-bonding

framework. In this way, the crystal field splitting the atomic orbitals in the above exam-

ple represents the energetic splitting of such molecular orbitals due to covalent bonding

interactions in molecules. This analogy will be useful in sections 6.2.3 and 7.3.4; next we

describe how to construct anisotropic exchange Hamiltonians for molecular systems.

2.2.3 Derivation of Anisotropic Exchange Hamiltonians

Mean Field Molecular One-Electron SOC Operators

In this section, we review the construction of spin-orbit coupling operators appropriate for

molecular systems with many electrons. The mean-field decoupling scheme is attributed

originally to Hess,145,146 and has since been implemented by Neese and coworkers147 in the

ab-initio program ORCA.148 The discussion in this section follows closely Ref. 147. In the

semi-classical picture, spin-orbit coupling arises because in the rest frame of an electron

orbiting a charged body, the relative motion of the charged body appears as a magnetic field

which couples to the electron spin.138 The treatment of spin-orbit coupling in molecules

begins from the Breit-Pauli Hamiltonian, which is comprised of three components:

HBP
SO = H(1)

SOC +H(2)
SOC +H(2)

SOO (2.68)

The first term in eq’n (2.68) is a one-electron term that describes the interaction between

the electron labelled {k} and its own orbit about the positively charged nuclei {A}:

H(1)
SOC =

e2

2m2
ec

2

∑
A,k

ZA
r3
A,k

LA,k · Sk (2.69)

≡ 1

2

∑
α,β,µ

〈α|gµ1 |β〉 c†i,ασµci,β (2.70)

where ZA is the atomic number of nucleus A, ra,b is the absolute distance between a and

b and La,b = ra,b × pb is the angular momentum of b about a. The second term in eq’n

(2.68) is a two-electron term that describes the coupling between an electron spin its and
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own orbit around other negatively charged electrons labelled {l} which screen the nuclear

charges:

H(2)
SOC = − e2

2m2
ec

2

∑
k 6=l

1

r3
k,l

Ll,k · Sk (2.71)

≡ − 1

2

∑
α,β,δ,γ,µ

〈δα|gµ2 |βγ〉 c†i,δ

(
c†i,ασµci,β

)
ci,γ (2.72)

The final term is the so-called spin-other-orbit term which accounts for the coupling be-

tween the spin of electron l to the real orbit, in the laboratory frame, of electron k:

H(2)
SOO = − 2

e2

2m2
ec

2

∑
k 6=l

1

r3
k,l

Ll,k · Sl (2.73)

≡ −
∑

α,β,δ,γ,µ

〈δα|gµ2 |βγ〉 c†i,α

(
c†i,δσµci,γ

)
ci,β (2.74)

The presence of the two-electron terms makes full evaluation of the spin-orbit operator

computationally expensive. However, accurate results can be obtained from an effective

one-electron operator obtained by making a mean-field decomposition of the two-electron

terms similar to the Hartree-Fock approximation for Coulomb repulsion. After some further

approximations one arrives at:

HMF
SOC =

1

2

∑
α,β,µ

〈α|Lµi |β〉 c†i,ασµci,β (2.75)

with the matrix elements of the pseudo-angular momentum operator Lµi given by:

〈α|Lµi |β〉 = 〈α|gµ1 |β〉 −
1

2

∑
δ

ni,δ [ 2〈δα|gµ2 |βδ〉 (2.76)

−3〈δα|gµ2 |δβ〉 − 3〈αδ|gµ2 |βδ〉 ]

It is worth noting that HMF
SOC does not explicitly contain the spin-orbit constant λ, which

follows from that fact that the strength of spin-orbit coupling of any two molecular orbitals

cannot be related to a single energy scale as it can for atomic orbitals.
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Moriya’s Approach to Anisotropic Exchange

The first major development in the theory of anisotropic exchange was due to Dzyaloshin-

skii, who observed that weak ferromagnet moments in compounds such as α-Fe2O3 (re-

sulting from spin-canting) could arise due to symmetry-allowed terms in the magnetic free

energy like Si×Sj.
149 The origin of such terms was explained by Moriya, who extended An-

derson’s super exchange theory to include local spin-orbit coupling.150 Moriya’s approach

was to assume that spin-orbit effects could be described entirely in terms of a rotation of

the local single particle operators into the pseudospin basis described in section 2.2.2:

c̃†i,α = c†i,α +
1

2

∑
β

~Lβαi · ~σ
εβ − εα

c†i,β +O(L2) (2.77)

where ~Lαβi is given by:

~Lαβi = 〈αi|Lxi |βi〉̂i+ 〈αi|Lyi |βi〉ĵ + 〈αi|Lzi |βi〉k̂ (2.78)

The key observation is that, while hopping preserves the electron spin, it generally does

not preserve the pseudospin. Therefore, after rotation into this basis, the hopping vertex

must be replaced by a 2× 2 matrix quantity:

c̃†j,0
{
t00
ji I + C00

ji · ~σ
}

c̃i,0 (2.79)

where Cij is Moriya’s spin-orbit mediated hopping parameter given by:

C00
ij =

1

2

∑
α

{
~L0α
i

∆εαi
tα0
ij + t0αij

~Lα0
j

∆εαj

}
+O(L2) (2.80)

It is worth noting that, in the case where the SOMO is non degenerate, then the orbital

functions |0i〉 and |αi〉 can always be chosen to be completely real without loss of generality.

This implies that C00
ij is completely imaginary, and has the property C00

ij = (C00
ji )
∗ = −C00

ji .

In terms of this modified hopping operator, the lowest order hopping diagram is:

= − 1

U

∑
i,j

c̃†i,0
{
t00
ij I + C00

ij · ~σ
}

c̃j,0c̃
†
j,0

{
t00
ji I + C00

ji · ~σ
}

c̃i,0 (2.81)
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This term represents the modified antiferromagnetic component of the exchange when

rotated into the pseudospin basis. Ignoring constant terms, and using eq’n (A.18), this can

be written:

+
1

U

∑
i,j

c̃†i,0
{
t00
ij I + C00

ij · ~σ
}

S̃j · ~σ
{
t00
ji I + C00

ji · ~σ
}

c̃i,0 (2.82)

This may be evaluated using identities (A.15) and (A.16). After summation over internal

indices, the effective Hamiltonian is:

Heff =
∑
〈i,j〉

Jij S̃i · S̃j + Dij · S̃i × S̃j + S̃i · Γij · S̃j (2.83)

Jij =
4

U

{
(t00
ij )2 − |C00

ij ·C00
ji |
}

(2.84)

Dij =
4i

U

{
t00
ij C00

ji −C00
ij t

00
ji

}
(2.85)

Γij =
4

U

{
C00
ij ⊗C00

ji + C00
ji ⊗C00

ij

}
(2.86)

The first of these terms, paramaterized by Jij, is the isotropic (antiferromagnetic) exchange

between pseudospin moments. There is a small ferromagnetic spin-orbit correction that

arises due to relaxation of the Pauli exclusion blockage for hopping of pseudospin electrons

onto the same site. The second term is the celebrated Dzyaloshinskii-Moriya antisymmet-

ric interaction, which is minimized when local spins are orthogonal to one another, and

thus is often responsible for spin-canting in the solid state. The third pseudo-dipolar term

provides an energetic preference for collinear orientation of pseudospins along specific crys-

tallographic directions. In chapter 6, we discuss the role of this latter term in the magnetic

anisotropy of Se-based radical ferromagnets.

The next significant advance in the understanding of anisotropic exchange was not made

until 35 years after the publication of Moriya’s work, when Yildirim et. al. pointed out

that the single-particle pseudospin transformation was generally inappropriate for study-

ing more complicated models.151,152 In particular, they noted an anomalous symmetry of

Moriya’s expressions Γij ∝ Dij⊗Dij, which does not follow from any fundamental symme-

try of the lattice.153,154 In fact, this symmetry is only preserved if one neglects all Hund’s

coupling between excited states, and assumes that Coulomb repulsion is orbital indepen-

dent. When either of these conditions are violated, the excited charged states (in the upper
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pseudospin Hilbert space) are not obtained simply in terms of the defined c̃†i,α operators.2

To see this, note that for non constant U , the pair of creation operators describing a state

with two electrons at the same site transform as:

c†i,αc
†
i,β →

λ

2

∑
γ

(〈γi|L|αi〉 · ~σc†i,γ)c
†
i,β

εγ − εα + Uγβ
i − U

αβ
i

+
c†i,α(〈γi|L|βi〉 · ~σc†i,γ)

εγ − εα + Uγα
i − U

αβ
i

+O(λ2) (2.87)

which can generally not be decomposed into the pseudospin operators c̃†i,αc̃
†
i,β due to the

discrepancies in the energy denominator. Yildirim et. al. showed how Hund’s coupling and

the deviation from uniform U could be accounted for perturbatively, within the pseudospin

basis.152 The major advantage of their approach is that the pseudospin basis may be defined

arbitrarily, so the form of the resulting effective Hamiltonian is valid to any order in spin-

orbit coupling. The disadvantage is that spin-orbit corrections enter into the effective

Hamiltonian through modifications to both the H1 = T + Q vertices and state energies

(i.e G0
U), which becomes particularly inconvenient to actually evaluate at finite order.

In this light, it is useful to note that the pseudospin operators S̃i are adiabatically

connected to the real spin operators Si as spin-orbit coupling λ → 0. For this reason,

we can choose to label the true pseudospin states in terms of the zeroth order pure spin

quantum numbers. It is possible therefore to derive identical effective anisotropic exchange

Hamiltonians directly in terms of the unphysical pure spin basis, provided that spin-orbit

coupling is added to the perturbing Hamiltonian H1. This approach, while mathematically

less elegant, facilitates calculation of exact Hund’s coupling corrections, and admits a

simple diagrammatic expansion. In the following sections, we show how Moriya’s results

may be reproduced in this approach, and go on to investigate the effect of multi-orbital

exchange on the anisotropic terms.

2This observation should not be surprising to chemists because it is precisely the reason why different

spin-orbit coupling schemes are necessary to predict energetic ordering of atomic term symbols in either

the K � λ limit (Russell-Saunders) or K � λ limit (j − j coupling). The Hund’s and spin-orbit coupling

don’t commute, and so do not have simultaneous eigenstates.
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Diagrammatic Derivation of Anisotropic Hopping Exchange Terms

The mean-field form of the spin-orbit Hamiltonian derived in the previous section appears

as an on-site hopping term that is spin-dependent. In this way, it may be represented

diagrammatically in an analogous fashion to the hopping operator T :

HMF
SOC =

∑
i,α,β

 + h.c.


(2.88)

where the SOC vertex is represented by a filled circle, and is translated for all the above

diagrams as the compact form 1
2
c†i,α( ~Lαβi ·~σ)ci,β. With the inclusion of spin-orbit coupling,

we divide the Hamiltonian as:

H0 = E + U (2.89)

H1 = T +K +Q+HMF
SOC (2.90)

The lowest order diagrams incorporating HMF
SOC appear at order t2L:

= P0
L

∑
i,j,α

t00
ij t

0α
ji

2Uα
i ∆εαi

c†i,0cj,0c
†
j,0ci,αc

†
i,α( ~Lα0

i · ~σ)ci,0 P0
L (2.91)

= P0
L

∑
i,j,α

tα0
ij t

00
ji

2∆εαi U
c†i,0( ~L0α

i · ~σ)ci,αc
†
i,αcj,0c

†
j,0ci,0 P0

L (2.92)
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= P0
L

∑
i,j,α

t00
ij t

α0
ji

2U(∆εαj + U)
c†i,0cj,0c

†
j,0( ~L0α

j · ~σ)cj,αc
†
j,αci,0 P0

L (2.93)

= P0
L

∑
i,j,α

t0αij t
00
ji

2(∆εαj + U)U
c†i,0cj,αc

†
j,α( ~Lα0

j · ~σ)cj,0c
†
j,0ci,0 P0

L (2.94)

= P0
L

∑
i,j,α

t0αji t
00
ij

2(∆εαi + U)∆εαi
c†j,0ci,αc

†
i,0cj,0c

†
i,α( ~Lα0

i · ~σ)ci,0 P0
L

(2.95)

= P0
L

∑
i,j,α

t00
ij t

α0
ji

2∆εαj (∆εαj + U)
c†j,0( ~L0α

j · ~σ)cj,αc
†
i,0cj,0c

†
j,αci,0 P0

L

(2.96)

All of the above diagrams represent the mixing of the SOMO with empty orbitals through

spin-orbit coupling. Analagous diagrams may be drawn with all double and dashed lines

reversed representing the mixing with filled orbitals. However, as these diagrams evaluate

to precisely the same expressions, they are omitted for brevity. Using identity (A.15), and

the fact that:

1

∆εα(∆εα + U)
+

1

U(∆εα + U)
+

1

∆εαU
=

2

U∆εα
(2.97)

it is easy to show that the full summation over third order diagrams (2.91)-(2.96) gives the

expected expression for the Dzyaloshinskii-Moriya (DM) antisymmetric exchange interac-

53



tion in terms of the ordinary spin operators:

HDM =
∑
〈i,j〉

Dij · (Si × Sj) (2.98)

Dij = 4i

(
C00
ij t

00
ji

U
−
t00
ij C00

ji

U

)
(2.99)

The pseudodipolar part of the anisotropic exchange is obtained at higher order in spin-

orbit coupling. The following diagrams appear at order t2L2. For compactness, diagrams

are split into two sections, with complete diagrams obtained by linking all combinations of

left and right halves. The first set of diagrams all involve intermediate double occupation

of one SOMO:
. . .

. . .

. . .

. . .




. . .

. . .

. . .

. . .


= P0

L

∑
i,j,α,β

−1

4U

{
t0βij

∆εβj + U
c†i,0cj,βc

†
j,β

(
~Lβ0
j · ~σ

)
cj,0 +

tβ0
ij

∆εβi
c†i,0

(
~L0β
i · ~σ

)
ci,βc

†
i,βcj,0

}
×

×
{
t0αji
∆εαi

c†j,0ci,αc
†
i,α

(
~Lα0
i · ~σ

)
ci,0 +

tα0
ji

∆εαj + U
c†j,0

(
~L0α
j · ~σ

)
cj,αc

†
j,αci,0

}
P0
L

(2.100)
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The second two sets of diagrams involve interchange of electrons at sites i, j without double

occupation of any orbital:
. . .

. . .

. . .

. . .




. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .


= P0

L

∑
i,j,α,β

−t0βji t0αij
4(∆εαj + ∆εβi )(∆εβi + U)

{
c†j,0ci,βc

†
i,0cj,α

}
×

×

{
1

∆εαj
c†i,β

(
~Lβ0
i · ~σ

)
ci,0c

†
j,α

(
~Lα0
j · ~σ

)
cj,0 +

1

∆εβi
c†j,α

(
~Lα0
j · ~σ

)
cj,0c

†
i,β

(
~Lβ0
i · ~σ

)
ci,0

}
P0
L

(2.101)


. . .

. . .

. . .

. . .




. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .


= P0

L

∑
i,j,α,β

−t0βji t0αij
4(∆εαj + ∆εβi )∆εαj

{
c†j,0

(
~L0α
j · ~σ

)
cj,αc

†
i,0

(
~L0β
i · ~σ

)
ci,β

}
×

×

{
1

∆εβi + U
c†j,αci,0c

†
i,βcj,0 +

1

∆εαj + U
c†i,βcj,0c

†
j,αci,0

}
P0
L (2.102)

The final set of diagrams involves an intermediate state where both electrons occupy the

same site in excited orbitals. Although not explicitly shown, for α = β, the electrons will
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both occupy the same orbital.
. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .




. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .


= P0

L

∑
i,j,α,β

−t0αji t
β0
ij

4(∆εαi + ∆εβi + U)

{
1

∆εαi + U
c†j,0ci,αc

†
i,0

(
~L0β
i · ~σ

)
ci,β+

+
1

∆εβi
c†i,0

(
~L0β
i · ~σ

)
ci,βc

†
j,0ci,α

}{
1

∆εβi + U
c†i,α

(
~Lα0
i · ~σ

)
ci,0c

†
i,βcj,0+

+
1

∆εαi
c†i,βcj,0c

†
i,α

(
~Lα0
i · ~σ

)
ci,0

}
P0
L

(2.103)

These diagrams may be easily evaluated using identity (A.16) and the fact that: 1

(∆εβi +U)U∆εαj
+ 1

∆εβi U(εαj +U)
+ 1

(∆εβi +U)(∆εβi +∆εαj )∆εαj
1

∆εβi (∆εβi +∆εαj )(∆εβi +U)
+ 1

εαj (∆εβi +∆εαj )(∆εβi +U)
+ 1

(εαj +U)(∆εβi +∆εαj )εiα

 =
2

U∆εαj ∆εβi

(2.104) 1

(∆εβj +U)U(∆εαj +U)
+ 1

∆εβj (∆εβj +∆εαj +U)∆εαj
+ 1

(∆εβj +U)(∆εβj +∆εαj +U)(∆εαj +U)

1

∆εβj U∆εαj
+ 1

∆εαj (∆εβj +∆εαj +U)(∆εαj +U)
+ 1

(∆εβj +U)(∆εβj +∆εαj +U)∆εβj

 =
2

U∆εαj ∆εβj

(2.105)

giving both the pseudodipolar part and ferromagnetic correction to the isotropic exchange

in terms of the ordinary spin operators:

Heff =
∑
〈i,j〉

Jij Si · Sj + Si · Γij · Sj (2.106)

Jij = − 4

U

{
|C00

ij ·C00
ji |
}

(2.107)

Γij =
4

U

{
C00
ij ⊗C00

ji + C00
ji ⊗C00

ij

}
(2.108)
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It is interesting to note from eq’ns (2.97), (2.104) and (2.105) that Moriya’s expressions

for the anisotropic exchange emerge from the more general simultaneous perturbation

expansion in both T and HSO due to fortunate cancellation of many terms. As noted

above, this cancellation is not exact when U is not constant, or Hund’s coupling is included.

We consider the latter case in the next section.

2.2.4 Multi-Orbital Anisotropic Exchange

In the same vein as section 2.1.4 we consider the influence of Hund’s rule coupling and

empty and filled orbitals on the anisotropic exchange terms. As suggested by Ref. 152,

and discussed in section 2.2.3, the incorporation of Hund’s coupling invalidates the single-

particle pseudospin basis of Moriya, which can be expected to lead to very complicated

expressions for the anisotropic exchange terms. In order to simplify this problem, we

consider only the case of strong Hund coupling between the SOMO and a single low-lying

empty orbital, which is relevant to materials discussed in chapter 7. In this case, there

are two sources of corrections to the theory of the previous section. The first involves

direct modification of the diagrams already presented by addition of the renormalized

Hund vertex of eq’n (2.38) wherever two electron lines exist on the same site in the SOMO

and SOMO+1 orbitals. As this represents a very small fraction of diagrams, we expect

these corrections to be small, but nonetheless have computed them approximately under

the assumption (U + ∆ε1)� Q01. The second modification involves wholly new diagrams,

which we have computed exactly.

Corrections to the antisymmetric exchange appear first at order ∼ t2QL. In total, the

Dzyaloshinskii-Moriya vector can be written:

Dtot
ij = DAFM

ij + ∆Dij + DFM
ij (2.109)

where DAFM
ij is the component given in eq’n (2.85), which originates from predominantly

antiferromagnetic interactions between the spin-orbit mixed states. The correction to such

interactions by Hund’s coupling is denoted ∆Dij, which is given approximately:

∆Dij = 2i
t00
ij

U

{
t01
ijQ

01
j
~L10
j

(U + ∆ε1j)
2 − (Q01

j )2
−

t01
jiQ

01
i
~L10
i

(U + ∆ε1i )
2 − (Q01

i )2

}
(2.110)
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This correction slightly enhances the magnitude of the DM-interaction by lowering the

energy of the excited high spin states mixed into the ground state. The DFM
ij component

originates from primarily ferromagnetic interactions within the spin-orbit mixed states, as

described by the four diagrams obtained by linking the combinations of the following:
. . .

. . .

. . .

. . .




. . .

. . .


(2.111)


. . .

. . .




. . .

. . .

. . .

. . .


(2.112)

Summing over the above diagrams yields:

DFM
ij = −2i

{
C01
ij t

10
ji

Q01
j

(U + ∆ε1j)
2 − (Q01

j )2
− t10

ij C01
ji

Q01
i

(U + ∆ε1i )
2 − (Q01

i )2

}
(2.113)

where we have introduced the spin-orbit mediated hopping parameter between the SOMO

and SOMO+1, given by:

C01
ij =

1

2

∑
α

{
~L0α
i

∆εαi
tα1
ij + t0αij

~Lα1
j

∆εαj + U

}
+O(L2) (2.114)

The corrections to the pseudo-dipolar part of the anisotropic exchange appearing at

order ∼ t2L2Q may be divided in a similar fashion:

Γtot
ij = ΓAFM

ij + ∆Γij + ΓFM
ij (2.115)
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where ΓAFM
ij is given by eq’n (2.86). The correction term to the hopping diagrams evaluates

approximately to:

∆Γij =
4

U

{
t01
ijQ

01
j C01

ij ⊗ ~L10
j

(U + ∆ε1j)
2 − (Q01

j )2
+

t01
jiQ

01
i C01

ji ⊗ ~L10
i

(U + ∆ε1i )
2 − (Q01

i )2

}
(2.116)

The ΓFM
ij contribution may be computed from the following four additional diagrams:

. . .

. . .

. . .

. . .




. . .

. . .

. . .

. . .

×

×


. . .

. . .

. . .

. . .


(2.117)

which evaluate to give:

ΓFM
ij = −2

{
C01
ij ⊗C10

ji

Q01
j

(U + ∆ε1j)
2 − (Q01

j )2
+ C01

ji ⊗C10
ij

Q01
i

(U + ∆ε1i )
2 − (Q01

i )2

}
(2.118)

Some important observations are in order regarding these modifications to the total pseudo-

dipolar exchange Γtot
ij . In Moriya’s original expressions, which included only antiferromag-

netic exchange between pseudospin moments, the pseudo-dipolar tensor can be written as

the outer product of the single (pseudo)-vector quantity ΓAFM
ij ∝ C00

ij ⊗ C00
ij . One can

always rotate the coordinate system so that one axis lies along the direction of C00
ij , and

in terms of such coordinates it is easy to see that ΓAFM
ij has only one nonzero eigenvalue,

and that it must be positive. In terms of such coordinate, the pseudo-dipolar part of the

59



Hamiltonian is for example:

H = Si ·

 |Γ| 0 0

0 0 0

0 0 0

 · Sj (2.119)

If Si and Sj are ordered antiferromagnetically with respect to one another, then this

interaction is minimized when both spins are oriented parallel to C00
ij , so that 〈H〉 = −|Γ|/4.

This direction therefore represents an easy-axis for AFM coupled spins. In contrast, for

ferromagnetically ordered spins, the same direction represents a hard axis of magnetization,

and the interaction is minimized for spins oriented anywhere in the plane normal to C00
ij ,

for which 〈H〉 = 0. There are two important modifications to this picture that occur with

the addition of Hund’s rule coupling:

• With the addition of ∆Γij and ΓFM
ij , the pseudo-dipolar tensor may have multiple

nonzero eigenvalues, leading to local easy, intermediate, and hard directions of mag-

netization, regardless of the ordering of spins Si and Sj. This result can be anticipated

already from the fact that these latter terms depend not on a single (pseudo)-vector

quantity, but rather two quantities C01
ij and C10

ij , which are generally unrelated to

one another.

• Particularly with the addition of ΓFM
ij , the eigenvalues of Γij may be negative. This

has the potential to reverse the above criteria, leading to easy axes for ferromagnet-

ically coupled spins rather than easy planes.

Finally, we may comment on the symmetry properties of the above terms. In his seminal

paper on anisotropic exchange, Moriya summarized the restrictions on Dij based on the

relative crystallographic symmetries of sites i and j.150 These restrictions are, specifically:

Dij =



0 i and j are related by inversion

⊥ m̂ i and j are related by a mirror plane with normal m̂

|| m̂ i and j are bisected by a mirror plane with normal m̂

⊥ 2̂ i and j are related by a two-fold rotation axis along 2̂

|| n̂ i and j fall on the same n-fold rotation axis along n̂
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Such properties follow from two observations: (1) by definition, Dij = −Dji, and (2)

the DM-vector must transform in the same way as angular momentum i.e. as a pseudo-

vector. Such pseudo-vectors have the property that their orientation is unchanged under

inversion, but they transform as ordinary vectors under rotation. For example, if sites i

and j are related by inversion then the pseudo vector property implies Dij = Dji, which

is consistent with Dij = −Dji only if the DM-vector vanishes exactly. These symmetry

properties are independent of the nature of the anisotropy, and hold true in the presence of

Hund’s coupling as may be verified by inspection. In fact, the spin-orbit mediated hopping

parameters must as transform as pseudo-vectors. Thus, if sites i and j are related by

inversion,

C00
ij = C00

ji = −C00
ij = 0 i and j are related by inversion (2.120)

For this reason, ΓAFM
ij vanishes under the same conditions as Dij. It was shown that this

condition holds to all orders in perturbation theory in spin-orbit coupling, as ΓAFM
ij ∝

DAFM
ij ⊗DAFM

ij .153,154 This same symmetry does not apply to ΓFM
ij . To see this, note that:

C01
ij = C01

ji = −C10
ij i and j are related by inversion (2.121)

While these restrictions indeed imply the vanishing of DFM
ij , they do not place similar

restrictions on the form of ΓFM
ij . This observation is of vital importance for thinking about

the magnetism of high symmetry structures with significant multi-orbital contributions to

the magnetic interactions, as it allows anisotropy where Moriya’s theory predicts none. In

this case, the anomalous additional symmetry Γij ∝ Dij ⊗Dij is broken, but the resulting

terms are all consistent with the symmetry of the lattice. An exceptionally clear example

of such a material is discussed in section 7.3.4.
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2.3 Ab-Initio Methods for Exchange Interactions in

Organics

2.3.1 Broken-Symmetry Density Functional Theory

Molecular broken symmetry density functional theory (BS-DFT)155–158 is extensively used

for estimating isotropic magnetic exchange parameters Jij organic and organometallic ma-

terials.159–165 All unique pairs of neighbouring (radical) molecules i, j are identified, and

separate calculations are performed on each to determine the relative energy of the lowest

energy singlet (ESS) and triplet (ETS) states of the pair. The BS-DFT method is a trick,

essentially, aimed at estimating ESS. In terms of such energies, the exchange constant is

given by:

J = ESS − ETS (2.122)

To see this correspondence, note that the (single-orbital) Hubbard model on two sites (i, j)

has six basis states:

|(i)(j)〉 =
∣∣ ↑ i ↑ j〉 , |(i)(j)〉 =

∣∣ ↑ i ↓ j〉 , |(i)(j)〉 =
∣∣ ↓ i ↑ j〉 ,

|(i)(j)〉 =
∣∣ ↓ i ↓ j〉 , |(i)(i)〉 = |↑↓i j〉 , |(j)(j)〉 =

∣∣
i ↑↓j

〉
where (i) signifies a spin orbital localized to site i, with an overline signifying spin-down

with respect to the chosen quantization axis. The first four of such states are charge

neutral, having one electron localized to each site, while the final two are charge separated,

having both electrons occupying the same site. The effect of the on-site repulsion U is

to penalize the charge separated states, while hopping mixes such states with the S = 0

neutral states. For arbitrary values of the parameters, the eigenstates are as follows:

• The lowest energy singlet state for all parameters, |SS
(0)
(−)〉 is given by:

|SS
(0)
(−)〉 =

γ√
2

(
|(j)(i)〉+ |(i)(j)〉

)
+

√
1− γ2

√
2

(
|(i)(i)〉+ |(j)(j)〉

)
(2.123)
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where γ ranges between 1√
2

for U = 0 and 1 as U → ∞. The energy of this state is

given by:

ESS = Kij +
1

2

(
U −

√
U2 + (4t)2

)
(2.124)

• The highest energy singlet state for all parameters |SS
(0)
(+)〉, given by:

|SS
(0)
(+)〉 =

√
1− γ2

√
2

(
|(j)(i)〉+ |(i)(j)〉

)
− γ√

2

(
|(i)(i)〉+ |(j)(j)〉

)
(2.125)

where γ ranges between 1√
2

for U = 0 and 1 as U → ∞. The energy of this state is

given by:

ESS+ = Kij +
1

2

(
U +

√
U2 + (4t)2

)
(2.126)

• The purely charge separated S = 0 singlet |CSS(0)〉, composed entirely of charge

separated states in which both electrons occupy the same site:

|CSS(0)〉 =
1√
2

(
|(i)(i)〉 − |(j)(j)〉

)
, ECSS = U −Kij (2.127)

• The degenerate S = 1 triplet state manifold denoted |TS(ms)〉, whosems = {−1, 0,+1}
states are composed entirely of charge neutral states:

|TS(+1)〉 = |(i)(j)〉
|TS(0)〉 = 1√

2

(
|(j)(i)〉 − |(i)(j)〉

)
|TS(−1)〉 = |(i)(j)〉

 ETS = −Kij (2.128)

For U/t � 1, double occupation of either site in the two-site model is severely penalized,

so that the only states appearing at low energy are the triplet state {|TS(ms)〉, and lowest

energy singlet |SS
(0)
(−)〉, which contains very little mixture of charge separated states:

|SS
(0)
(−)〉
∣∣∣
U→∞

≈ 1√
2

(
|(j)(i)〉+ |(i)(j)〉

)
, ESS ≈ Kij −

4t2

U
(2.129)
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where the antiferromagnetic exchange term 4t2/U comes from expansion of the square root

in the energy. The remaining two singlet states |CSS(0)〉 and |SS
(0)
(+)〉 are charge separated,

and have very large energy of order U . On this basis, we have:

Jij = ESS − ETS = 2Kij − 4t2/U (2.130)

which is of course the expected result. The most inconvenient aspect of density func-

tion calculations for direct calculation of exchange interactions is the limitation to single-

determinant (product) states inherent to the method. While the energy of the triplet may

be obtained from the single determinant state |TS(+1)〉, the lowest energy singlet |SS
(0)
(−)〉

is intrinsically multideterminental. This problem may be circumvented by introduction of

an alternate broken symmetry state that is the lowest energy ms = 0 state that can be

written as a single determinant over unrestricted spin orbitals. For the large U limit, this

state is equivalent to the Néel ordered state on two-sites:

|BSS〉|U→∞ =
1√
2

(
|TS(0)〉+ |SS

(0)
(−)〉
∣∣∣
U→∞

)
= |(j)(i)〉 (2.131)

EBSS|U→∞ =
1

2
(ETS + ESS|U→∞) (2.132)

Jij|U→∞ = 2 (EBSS − ETS) (2.133)

In the opposite limit where U → 0, the lowest energy singlet and broken symmetry singlet

become identical. To see this, note that the lowest energy singlet in this limit is the

conventional closed shell bond, and is representable as a single determinant:

|SS
(0)
(−)〉
∣∣∣
U→0
≈ 1

2

(
|(j)(i)〉+ |(i)(j)〉+ |(j)(j)〉+ |(i)(i)〉

)
= |φ+φ+〉 (2.134)

where φ+ = 1√
2

[(i) + (j)]. Although it is not necessarily sensible to employ spin Hamilto-

nians to describe such a weak correlation limit, we nonetheless have the relation:

|BSS〉|U→0 = |SS
(0)
(−)〉
∣∣∣
U→0

(2.135)

Jij|U→0 = (EBSS − ETS) (2.136)

At intermediate coupling, it is common to approximate the magnetic exchange constant

by the expression:166–168

Jij ≈ − 2
ETS − EBSS

〈S2〉TS − 〈S2〉BSS
(2.137)
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which becomes exact in both limits. Here, 〈S2〉 is the expectation value of the square of

the spin operator; nominally, 〈S2〉TS = S(S + 1) = 2, while 〈S2〉BSS ranges between 0 and

1 in the limits of weak and strong Coulomb repulsion, respectively.

There are several notable disadvantages of BS-DFT. The first is that only the total Jij
is estimated, which does not allow for discussion of the various components of the magnetic

exchange. Often such analysis is of interest to the chemist because it allows one to correlate

various chemical modifications to observed properties. The second disadvantage is that

we have found this method to be unreliable in cases where multi-orbital ferromagnetic

exchange is expected to be important, in which case the true triplet itself takes on multi-

determinantal character. The breakdown of BS-DFT in this case can usually be diagnosed

by large spin contamination in the triplet 〈S2〉TS > 1.2, and is characterized by an over

stabilization of the triplet by ∼ 50− 200 cm−1, which results from overestimation of K̃ij.

2.3.2 Failure of Existing SOC Calculations for Organics

In principle, anisotropic exchange parameters for a pair of radicals (i, j) may be calculated

by ab-initio methods in analogy with the BS-DFT technique discussed in the previous

section. One computes the zero-field splitting (ZFS) tensor D of the triplet state of a pair

of radicals, which corresponds to the Hamiltonian:

HZFS = ST · D · ST (2.138)

= (Si + Sj) · D · (Si + Sj) (2.139)

= 2 Si · D · Sj + const. (2.140)

where ST is the total spin variable of the pair. Terms like Si · D · Si evaluate to constant

terms for S = 1
2

operators, and are thus neglected. The matrix D can then be decomposed

into scalar, antisymmetric, and traceless symmetric components:

J̃ij ≡
2

3
Tr D (2.141)

Dij ≡
(
D− DT

)
(2.142)

Γij ≡
(
D + DT − 2

3
Tr D

)
(2.143)
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which provide the conventional anisotropic exchange terms. However, we have found

that currently available methods (implemented in ORCA) fail for the weakly interact-

ing pairs of organic radicals of interest in this thesis. These methods can be grouped

into two categories: (i) explicitly multiconfigurational methods,169 and (ii) perturbative

DFT-based approaches.170 Both have seen great success in computing ZFS terms for metal

complexes.171–174 We provide some suggestions as to why these methods fail for organics

below.

In the first of these methods, D is obtained via comparison of spin state energies af-

ter diagonalizing the SOC matrix in a specific space of multiderterminent states.169 For

transition metal complexes, the state space may often be confined to the few orbitals with

significant contributions from metal d-orbitals (. 10 orbitals). In contrast, for organic

materials, one naively must include all valence molecular orbitals (∼ 100 orbitals), which

is completely impossible with current methods. Not surprisingly, we have found that trun-

cating the state space to computationally tractable sizes results in ZFS magnitudes an

order of magnitude smaller than experimental anisotropic exchange. In contrast, inclu-

sion of all orbitals can be done, in principle, using the coupled-perturbative DFT approach

implemented in ORCA.170 In this case, the ZFS is treated as a response function of a gener-

alized spin-orbital perturbation; D is obtained by solving coupled equations describing the

mixing of various Kohn-Sham spinorbitals in response to the spin-orbit interaction. In the

absence of Hartree-Fock exchange, this becomes equivalent to the perturbative approach of

Pederson and Khanna.175 However, as this method relies on the validity of the Kohn-Sham

orbital energies, it is likely to fail for weakly interacting radicals where correlation effects

are important, and the Kohn-Sham orbitals are not particularly meaningful as a result.

Indeed, we have found this method to routinely produce ZFS values an order of magnitude

greater than the experimental anisotropic exchange terms in organic radical pairs.

An alternate method, developed as part of this thesis, is similar in spirit to the Pederson-

Khanna approach, but the perturbation is carried out within an effective Hubbard Hamil-

tonian, whose parameters are obtained from ab-initio methods. In this way, the Coulomb

interaction can be properly treated by hand, and there is no practical limitation to the size

of our orbital basis. Our method for building such Hubbard models is discussed in the next

section. The successful applications to heavy Se-based organic radicals, and multi-orbital
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radicals is presented in chapters 6 and 7, respectively.

2.4 Constructing Effective Hubbard Models

2.4.1 Introduction

Given the detailed expressions for magnetic interactions Jij, Dij, and Γij presented in

sections 2.1 and 2.2, an alternative approach for the discussion of magnetic properties is

in terms of computed microscopic Hubbard Hamiltonian parameters (t, U,Q,K), rather

than state energies. This approach has the advantage that such Hubbard parameters are

at least two orders of magnitude larger than the spin Hamiltonians terms, and thus in

principle may be obtained with less relative error. Moreover, the effect of the variation

of any particular microscopic parameter can be more easily considered. Finally, obtaining

t, U,Q,K is desirable because they allow for discussion of other properties such as charge

transport and optical response. Of these, the Coulomb parameters are essentially proper-

ties of isolated sites, and can therefore be estimated from high level multiconfigurational

calculations on individual molecules. Hopping integrals, which are solid state properties,

require special care, as discussed in the next sections.

2.4.2 Calculation of Hopping Parameters

By far the greatest complication to calculating solid state hopping integrals from single

determinant methods such as DFT is that the one-electron eigenstates in these methods

are naturally described in terms of delocalized orbitals. Such crystal orbitals may extend

over many molecules in the case of discrete clusters, or the entire crystal as in the Bloch

states obtained from solid state band structure calculations. In order to obtain hopping

parameters in a local basis, which are more useful for describing highly correlated states,

one must transform the Hamiltonian, which is complicated by the apparently infinite num-

ber of valid choices for such a local basis. To see this note that, while there is only one

eigenbasis that diagonalizes the one-electron Hamiltonian, there are an infinite number of
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non-eigenbases in which off-diagonal hopping matrix elements remain. Without explicitly

including Coulomb repulsion terms such as U , we do not know which local orbitals pro-

vide the best description of the insulating state. In this section, we present two general

approaches for uniquely defining local orbitals that are quite reasonable choices. The first

is to construct the most spatially local orbitals, which in principle minimizes the Coulomb

repulsion between any two electrons occupying different orbitals. This approach is im-

plemented in the wannier90 code,176 which is available as an add-on to band structure

programs such as PWSCF.177 The second was developed as part of this thesis, and rec-

ognizes that for organic molecules, the local basis should not be more local than a single

molecule. This method employs molecular ab-initio codes such as ORCA to obtain local

molecular orbitals for the solid state that have maximal overlap with those of isolated

“gas-phase” molecules.

Maximally Localized Wannier Orbitals (PWSCF+wannier90)

In the maximally localized Wannier orbital (MLWO) approach,178–181 local orbitals are con-

structed from Bloch states obtained from solid state band structure calculations, typically

calculated using density functional theory (DFT) methods. A particular energy range is

chosen, and Bloch states falling within that range are remixed (by unitary transformation)

in order to attempt to minimize the spatial spread of the orbitals defined by:

Ω =
∑
i,α

[
〈i, α|r2|i, α〉 − 〈i, α|r|i, α〉2

]
(2.144)

where i, α label those orbitals within the chosen energy window. In this sense, the ML-

WOs are the solid state equivalent to Foster-Boys localized orbitals sometimes employed

in molecular ab-initio codes.182 The hopping integrals associated with such orbitals are

obtained by performing the same transformation to the Bloch Hamiltonian, and reading

the off-diagonal matrix elements. The technique is implemented in wannier90 code, which

serves as an add-on to the band structure code PWSCF (or Quantum Espresso, as it is

currently known). The general usage flow follows the steps:

1. A band structure calculation is performed using input crystal structure geometry and

the pw.x component of the PWSCF program.
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2. Necessary files for MLWO construction are prepared using the pw2wannier90.x com-

ponent of the PWSCF programs.

3. The local hopping Hamiltonian is constructed by iterative minimization of Ω using

the wannier90.x component of the wannier90 code.

For organic systems, when the molecular orbitals of the isolated molecules are well

separated in energy, the energy bands in the solid state will tend to be grouped into

multiples equal to the number of molecules per primitive unit cell. Experience suggests

that restricting the energy window to encompass only one such group will result in a set

of MLWOs localized to each individual molecule, and closely resembling the corresponding

orbitals obtained from calculations on isolated single molecules. However, when there

are multiple orbitals of interest, or multiple overlapping groups of bands included in the

energy window, the MLWOs obtained will always be more local than the expected molecular

orbitals of the isolated molecules. To see this, note that in the limit where every Bloch state

is included in the energy window, the MLWOs will closely resemble the atomic orbitals

localized at each atom in the unit cell. Such orbitals represent a very poor starting point

for describing the properties of organics, where Coulomb repulsion may localize electrons to

a particular molecule, but not to a particular atom. The MLWO approach doesn’t “know”

that there are supposed to be discrete molecules, and indeed is more commonly used to

study inorganic materials.

With this in mind, all is not lost. The expected molecular orbitals may often be

recovered by performing a manual rotation of the MLWO basis in order to diagonalize the

local on-site kinetic energy provided there is a relatively small number of bands in the

energy window. When a very large number of bands (> 20) are included, the minimization

of the total spread Ω becomes challenging. For example, it is much easier to accidentally

fall into a local minimum where the majority of orbitals are sufficiently localized, but a

few are hugely delocalized meaningless soup. For this reason, the MLWO approach is not

effective for organic systems where a large number of hopping integrals are desired. In

order to describe the effects of multiple orbitals, and particularly spin-orbit coupling, such

hopping integrals are required. For this reason, we were motivated to develop an alternate

approach for constructing local orbitals, one that “knows” about the molecular orbitals of
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the isolated molecules, and can more easily treat large numbers of such orbitals.

Maximally Overlapped Molecular Orbitals (computed with ORCA)

An alternate approach for constructing well-defined local orbitals for the solid state is to

require their spatial overlap with corresponding orbitals in isolated “gas-phase” molecules

to be maximal under the constraint that all one-electron matrix elements between orbitals

at the same site vanish. Such orbitals are dubbed “Maximally Overlapping Molecular Or-

bitals” or MOMOs. This scheme is similar in spirit to an old proposal for constructing

Wannier orbitals from atomic orbitals,183 and bears some resemblance to recent proposals

for parameterization of tight binding models for solid state calculations.184 In our cur-

rent implementation, the hopping integrals are constructed using the molecular ab-initio

program ORCA by the following scheme:

1. Calculations are performed separately on each pair of molecules between which hop-

ping integrals are required. Molecular geometries for the pair of molecules i, j are

obtained from the crystal structure. The molecules are translated so that they (i)

are related by a point group symmetry element such as a two-fold rotation, or mirror

plane, and (ii) are sufficiently far apart so as to eliminate electronic communication

between molecules. A symmetry restricted DFT calculation is then performed at this

“far geometry”, resulting in orbitals that are delocalized over both molecules (by na-

ture of the method), but appear in symmetry related degenerate pairs φα,−, φα,+:

(From Calculation)
φα,+ = 1√

2
(φi,α + φj,α)

φα,− = 1√
2

(φi,α − φj,α)
(Isolated Molecules) (2.145)

where φi,α, φj,α are the local orbitals associated with the isolated molecular sites

i, j. By enforcing the orbitals φα,+ and φα,− to transform as a representation of the

introduced two-fold or mirror symmetry, it is ensured that they are exactly either the

in-phase or out-of-phase combinations of φi,α, φj,α. This holds provided there are no

degenerate orbitals φi,α, φi,β at a given molecule, which applies to all the molecules

studied in this thesis, whose highest point group symmetry is C2v. The site-local
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orbitals are thus obtained by exactly a 45◦ rotation of each degenerate pair obtained

in the calculation:

(Isolated Molecules)
φi,α = 1√

2
(φα,+ + φα,−)

φj,α = 1√
2

(φα,+ − φα,−)
(From Calculation) (2.146)

These serve as the reference orbitals for the isolated molecules. In the DFT calcula-

tion, these are represented as a linear combination of atomic orbitals φA associated

with a particular Gaussian basis:

φi,α =
∑
A

ci,α,A φA (2.147)

where A labels the atomic basis functions. The coefficients ci,α,A may be stored in

a matrix Ciso. The goal is to construct similar orthonormal basis of orbitals φi,α′ to

describe the pair of molecules in their actual crystal geometry that approximately

maximizes the total overlap function Π:

Π =
∑
i,α

〈i, α′|i, α〉 = Tr
[
(C′)TCiso

]
(2.148)

where CT indicates the transpose of the matrix. Applying this restriction allows

site-local orbitals to be defined unambiguously.

2. The pair of molecules are translated back to their crystal geometries, and a DFT

calculation at the same level of theory is performed at the “close geometry”. From

this calculation, we obtain orbital energies stored in a matrix E∗, in terms of orbitals

defined by C∗, as well as the overlap matrix SA in terms of atomic orbital basis

functions. The matrix elements of the latter are SAB = 〈A|B〉. The overlap matrix

in the isolated molecular orbital basis φi,α but crystal geometry is obtained as:

Siso = (Ciso)
TSACiso (2.149)

Inspection of this matrix reveals that the isolated molecular orbitals φi,α do not form

an orthonormal basis once the molecules are brought back together. This is because

the molecular orbitals on adjacent molecules now overlap, so that the matrix elements

of Siso given by Sαβij = 〈i, α|j, β〉 are generally nonzero. For this reason, we cannot

simply choose C′ = Ciso in order to construct our local orbitals.
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3. In order to define an orthonormal basis that maximizes Π, we perform a symmetric

(Löwdin) orthogonalization:185,186

C′ = (Siso)
− 1

2 Ciso (2.150)

and the Fock matrix for this basis is obtained simply by transforming the diagonal

energy matrix into the orthogonalized basis:

F′ = (Siso)
− 1

2 (Ciso)
T [(C∗)−1]T E∗ (C∗)−1 Ciso (Siso)

− 1
2 (2.151)

The off-diagonal elements of F′ give the desired hopping integrals, while the on-

diagonal elements are the isolated molecular orbital energies. These parameters serve

as a starting point for constructing an effective extended Hubbard model for the

molecular solid. Since the eigenvalues of F′ are identical to those of E∗ this approach

is internally consistent. That is, in the limit where Coulomb terms U → 0, diag-

onalization of the one-electron part of the Hamiltonian reproduces the Kohn-Sham

eigenvalues obtained from the DFT calculation. What remains is estimation of the

Coulomb parameters themselves.

4. One slight shortcoming of this method for constructing the Fock matrix is that F′

as written will generally contain small off-diagonal matrix elements between orbitals

within the same molecular site. This effect is expected, because when placed in

the crystal, the action of the local environment may remix and deform the molecu-

lar orbitals of the isolated molecule, slightly perturbing their energies. For ease of

interpretation, it is therefore advantageous to perform a partial diagonalization of

the Fock matrix by a unitary transformation U in order to remove the off-diagonal
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elements between orbitals at the same site. The new form of the matrix becomes:

C′′ = U C′ (2.152)

F′′ = U−1 F′ U (2.153)

=



εi,1 0 · · · 0 t11
ij t12

ij · · · t1nij
0 εi,2 · · · 0 t12

ij t22
ij · · · t2nij

...
...

. . .
...

...
...

. . .
...

0 0 · · · εi,n tn1
ij tn2

ij · · · tnnij
t11
ij t21

ij · · · tn1
ij εj,1 0 · · · 0

t12
ij t22

ij · · · tn2
ij 0 εj,2 · · · 0

...
...

. . .
...

...
...

. . .
...

t1nij t2nij · · · tnnij 0 0 · · · εj,n


(2.154)

Since the offending off-diagonal elements in F′ are typically small compared to the dif-

ference in energy between any two orbitals, the partial diagonalization usually results

in minimal alteration of the orbitals, and remaining energies. That is, the crystal

environment does not significantly perturb the molecular orbitals. In fact, experience

suggests that the combined orthogonalization and diagonalization in steps 3 and 4

results in orbitals for which 〈i, α′′|i, α〉 > 0.98. However, it must be emphasized that

the true crystalline environment is not well represented in the calculations described

here because only one neighbouring molecule is present. Orbitals appearing very close

in energy may be significantly and anomalously altered by partial diagonalization.

An example of this anomalous alteration of orbitals can be seen in the application to 1-23

(R1 = Et, R2 = Cl), which is discussed in greater detail in chapter 6. Partial diagonalization

results in overlocalization of α = +1,+2 orbitals, which is symptomatic of a rare case in

which intermolecular hopping integrals t are on the same order as the energetic splitting

ε+2 − ε+1. In this case, the crystal environment can represent a significant perturbation

to the orbital density. In the tetragonal P 4̄21m unit cell of these materials, each molecule

is bisected by a mirror plane, so that the α = +1,+2 orbitals, which are symmetric

and antisymmetric with respect to the mirror, cannot be mixed in the full symmetry of

the crystalline environment. However, inspection of the obtained orbitals for the pair of
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Figure 2.6: MOMOs for 1-23 (R1 = Et, R2 = Cl) for a particular pair of radicals showing over localization

of the α = +1,+2 orbitals at site i.

radicals shown in Fig. 2.6 reveals a significant mixing of such orbitals at site i (although

not at site j). It is worth noting, however, that so long as the SOMOs on each site are

appropriately reproduced in the MOMO basis, any values of interest appearing at low

order in perturbation theory may still be accurately computed even in the over-localized

basis provided energy denominators are properly symmetrized. To see this, consider the

calculation of a property requiring:

A =
(t01
ij )2

D1

+
(t02
ij )2

D2

(2.155)

for some energy denominatorDα(ε, U). These denominators depend on only single molecule

properties, and may be approximated by their single-molecule values, which are guaranteed

to respect all appropriate symmetries. However, an error will be incurred whenever the

orbital basis for calculation of the hopping integrals significantly differs from that of the

isolated molecule. In this case, we may perform an orbital rotation by an arbitrary angle
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θ to remix orbitals α = +1,+2, providing new hopping integrals. :

A(θ) ∼
cos2(θ)(t01

ij )2 + 2 sin(θ) cos(θ)t01
ij t

02
ij + sin2(θ)(t02

ij )2

D1

(2.156)

+
sin2(θ)(t01

ij )2 − 2 sin(θ) cos(θ)t01
ij t

02
ij + cos2(θ)(t02

ij )2

D2

The MOMO basis and isolated molecule basis will tend to be largest when the two orbitals

in question are close in energy, suggesting that D1 ≈ D2. Setting D2 = D1 + ∆D gives a

relative error of:

A(θ)− A
A

=

{
2 cos(θ)t01

ij t
02
ij + sin(θ)[(t02

ij )2 − (t01
ij )2]

(t01
ij )2 + (t02

ij )2

}
sin(θ)∆D

D1

+O(∆D2) (2.157)

which evaluates typically to an error of smaller than 10%. Since all quantities depend

on the square of the hopping integrals, in the limit where ∆D → 0, the error vanishes

because the choice of basis for the two orbitals becomes irrelevant. The error similarly

vanishes in the case where ∆D → ∞ because no remixing is necessary, and we may set

θ = 0. For summations over large numbers of orbitals, in which only a small number

are anomalously mixed, this over localization therefore should not be considered a large

source of error provided one uses, for the energy denominators, the associated values for

the isolated molecules.

There are several major advantages of the MOMO method over the MLWO technique

for estimating one-electron terms in the Hamiltonian for organics. The first is that all

hopping integrals and orbital energies are obtained, rather than just those within a select

energy window. This feature was the main motivation for developing the MOMO method,

and allows for calculation of spin-orbit mediated hopping parameters C00
ij , which naively

requires summations over all valence molecular orbitals according to eq’n (2.80). The sec-

ond is that the MOMO method is significantly less computationally expensive in practice,

because the construction of MLWOs requires band structures to be computed which be-

comes very expensive for large unit cells. In some cases, at equivalent levels of theory, all

desired hopping integrals can be obtained in 1/100th of the computational time by the

MOMO method. This allows more expensive DFT functionals to be employed for MOMO

calculations; for example, hybrid functionals like B3LYP or PBE0, which are used exten-

sively in molecular ab-initio calculations, are far too costly for most routine band structure
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calculations on single work stations. Finally, since the local orbitals of the MOMO method

are built within ORCA and are very similar to those of the isolated molecules by con-

struction, we can reliably employ calculations on isolated molecules in ORCA to estimate

other site-local properties for the effective Hubbard model such as Coulomb parameters or

spin-orbit matrix elements. This has a huge advantage of allowing us to build an entire

effective Hubbard model including all relevant terms but using the same DFT functionals,

basis sets, and ab-initio program.

2.5 Chapter Summary

This chapter detailed the origin of various solid-state magnetic interactions, the construc-

tion of effective spin Hamiltonians, and ab-initio approaches to compute the parameters of

such Hamiltonians. Starting in Sec. 2.1, we introduced a systematic perturbative approach

with an accompanying diagrammatic note-keeping device, and derived various isotropic in-

teractions in the large U limit of the Hubbard model. In particular, Section 2.1.4 showed

how ferromagnetism may occur via multiorbital contributions arising from strong Hund’s

rule coupling between the SOMO and either an empty low-lying LUMO or a filled high

lying HOMO. This interaction, we will argue in the following chapters, is relevant to many

Oakley-type radicals. Spin-orbit coupling, which also becomes relevant in heavy S-, Se-

based radicals, was discussed extensively in section 2.2. Introduction of a pseudospin

picture allowed rationalization of Moriya’s theory of anisotropic exchange interactions. In

the presence of multi-orbital contributions, this picture was shown to be incomplete; we

thus derived extensions to Moriya’s theory to include such effects, and observed significant

qualitative differences. Finally, sections 2.3 and 2.4 detailed ab-initio construction of Hub-

bard and Spin Hamiltonians. An alternate method for computing hopping integrals was

described, and will be used below to address various materials.
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Chapter 3

Theoretical Aspects of Electrical

Transport

As discussed in the introduction, a significant goal in the research of the Oakley group

has been the design of a neutral organic radical displaying a metallic transport properties.

It is therefore pertinent that such properties be briefly reviewed. In this chapter, we

supplement the theoretical discussion of magnetic properties of the previous chapter with

a brief description of theoretical aspects of charge transport in the vicinity of the Mott

transition. We also introduce the dynamical mean field approach for the calculation of

properties, which is employed in various studies presented in this thesis. In order to

introduce the language of Green functions, we refer the reader to Appendix B, which

provides a pedagogical introduction to this mathematical technique.

3.1 Conventional Theory of Metals

In the previous chapter, we discussed how the properties of magnetic Mott insulating

radicals may be derived perturbatively incorporating the effects of hopping into an effective

spin Hamiltonian that acts on pure spin states that become exact eigenstates only in the

U/t → ∞ limit. The validity of this approach was guaranteed for U > Uc by the fact
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that the magnetic states at finite hopping were adiabatically connected to the pure spin

states. Here Uc is the critical value of Coulomb repulsion above which there is a finite

charge gap ∆c ∼ U − W , and electrons are localized at low energy. The conventional

theory of metals is predicated on a similar premise, but starts from the opposite U/t→ 0

limit. One assumes that the low energy excitations of an interacting system of electrons

at finite U < Uc are adiabatically connected to those of the noninteracting electron gas

at U = 0.187–189 In this non-interacting limit, the electrons form a Fermi sea state |FS〉
introduced in section 1.2.2, with electrons occupying all one-electron Bloch states |φαk,0〉
below the chemical potential µ = εF at (T = 0).

|FS〉 =
∏
εβk<εF

(
c†k,β,↑c

†
k,β,↓

)
|Vac〉 (3.1)

In the momentum state basis, the fully interacting Hamiltonian can be written:

H =
∑
α,k

(εαk,0 − µ) c0†
α,kc

0
α,k +

∑
α,β,k1,k2,k3

Uαβc0†
α,k1

c0
α,k2

c0†
β,k3

c0
β,k1+k3−k2

(3.2)

where εαk,0 gives the Bloch state energies. The characteristic properties of the free electron

gas result from excitation of electrons from below to above the Fermi surface at ε = εF by

the application of an external field. For example, an electric field may shift the occupancies

in order to generate a net current j =
∑

α,k∇kε
α
k c†α,kcα,k. As we adiabatically turn up U

from zero, the bare electronic excitations will become increasingly mixed and scattered from

one another. However, we may describe the resulting physical excitations as free electron-

like “quasiparticles” that occupy states in momentum space |φαk〉 with a renormalized

Hamiltonian given by

Heff =
∑
α,k

(εα∗k − µ)c†α,kcα,k (3.3)

where the renormalized single-particle energies are given by:189

εα∗k = εαk,0 + Σ(α,k) (3.4)

in terms of the complex self-energy function Σ(α,k), which completely determines the effect

of interactions. The real part of Σ(α,k) describes the shifting of quasiparticle energies with
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respect to those of the free electrons, which typically results in a narrowing of the band-

width and relative enhancement of the effective mass m∗ = ∂2ε∗/∂k2 > m0 = ∂2ε0/∂2k.

The imaginary part of Σ(α,k) gives the inverse lifetime or scattering rate of the quasi-

particles, which measures the time over which the true many body state is well described

by a particular configuration of quasiparticle occupancies. That is, residual interactions

between quasiparticles cause them to scatter from one another into new Bloch states over

a characteristic timescale given by τ(ω) = ~/Im[Σ(ω)]. Standard solid state DFT band

structure calculations provide only εαk = Re[Σ] in principle. However, in the conventional

“Fermi liquid” metal Im[Σ] can be nearly neglected as the scattering rate goes as:124

~
τ

= Aω2 +B(kBT )2 , A,B ∼ O(1/W ∗) (3.5)

where ω gives the energy of the quasiparticle state with respect to µ, T is the temper-

ature, and W ∗ is the renormalized quasiparticle bandwidth. For measurements such as

DC conductivity and magnetic susceptibility, which impart little energy to the system, all

experimentally relevant excitations are confined to a narrow energy region near εF (i.e.

ω ∼ 0 � W ∗) and typical temperatures satisfy kBT � W ∗ ∼ 104 K. As a result, the

quasiparticle lifetimes are long, and the response of the interacting system is essentially

that of a free electron gas with appropriately renormalized εαk. The frequency dependence

of the electrical conductivity can be expected to follow a Drude form:190

σ(ω) =
σ0

1 + iωτ(ω)
, σ0 =

ne2τ(0)

m∗
(3.6)

for charge carrier density n, and electron charge e. As n is essentially temperature indepen-

dent in the Fermi liquid metal, the DC electrical resistivity ρDC = 1/σ0 is dominated by the

temperature dependence of τ , which leads e.g. to ρDC ∝ T 2 for scattering due to Coulomb

interactions. In contrast, in an insulating state, an energy barrier for charge carriers leads

to n ∝ e−EA/kBT , which provides the strongest temperature dependence, and ρ ∝ eEA/kBT .

For this reason, a resistivity that increases with increasing temperature dρ/dT > 0 is often

taken as a sign of a vanishing activation energy, and referred to as “metallic transport”.

This observation is, however, not sufficient to indicate a conventional Fermi liquid state

with coherent quasiparticle transport. The breakdown of the Fermi liquid with increasing
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U can be anticipated by studying the mean free path of quasiparticles, which measures the

average distance travelled before a scattering event:

` = vτ =
τ

~
∂ε

∂k
∼ τ

~
W ∗

π
a (3.7)

where a is a lattice spacing associated with the direction of transport. If the scattering

rate ~/τ exceeds the bandwidth W ∗, then the mean-free path will be less than a lattice

spacing, which is inconsistent with the our ansatz of nearly free quasiparticles with well

defined momenta. This threshold value allows us to estimate the minimum conductivity

or maximum resistivity consistent with a conventional metal, which was first discussed by

Mott, Ioffe and Regel (MIR):191–193

σMIR =
ne2

m∗
π~
W
∼ 103 − 104 S/cm , ρMIR ∼ 10−3 − 10−4 Ω cm (3.8)

provided W ∼ 1 eV, m∗ ∼ me, and reasonable electron densities in organics. Conven-

tionally, one expects materials approaching ρMIR to either fall into an insulating state, or

exhibit saturation of the resistivity as the scattering rate cannot grow further.194,195 It is an

important observation that there are many examples of correlated materials, denoted “bad

metals”1 that display metallic transport (dρ/dT > 0) with resistivities exceeding the MIR

limit, which cannot be understood in a quasiparticle transport picture.19,196 For example,

the normal state above the superconducting transition temperature in high-Tc supercon-

ductors is often a bad metal at optimal doping.197–199 Another example is found in the

quasi-1D radical ion Bechgaard salts (TMTSF)2X, where resistivity along the conducting

π-stacks is in the vicinity of the MIR limit, but interstack resistivity is far greater, implying

the absence of coherent transport between chains.200 As discussed in chapters 5 and 7 we

find bad metal behaviour in radical materials in the vicinity of the Mott transition. In such

cases, one clearly needs a different theoretical framework for discussing material properties

that incorporates the large Im[Σ] and is thus capable of interpolating between the Mott

insulating and Fermi liquid metallic limits. We discuss the use of one such method in the

next section.

1This nomenclature can be traced to Ref. 196, and has survived in the literature despite being poorly

descriptive. A more appropriate name might be “non-saturating metals”.
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3.2 Dynamical Mean Field Approach

In the Dynamical Mean Field Theory (DMFT) approach,17,201–204 the self-energy is ap-

proximated as being momentum independent, so that, in Matsubara representation:

ΣM(α,k, σ, iωn) ≈ ΣM(α, σ, iωn) (3.9)

which is exact in both the noninteracting limit U/t → 0, where Σ = 0, and the strongly

interacting Mott insulator U/t → ∞ where all states are localized and k is no longer a

good quantum number. This approximation is also exact in the limit where the coordi-

nation number of the lattice is infinite; for this reason DMFT is often referred to as an

infinite dimensional method,17 as with other mean-field approaches. Since the self-energy

is momentum independent by assumption, it may be computed in real space, with respect

to the finite temperature Green function at a single site i:

Gαβi (σ, τ) = − i
~

〈
Tτ (fα,σ(τ), f †β,σ(0))

〉
(3.10)

where f †α,σ = c†i,α,σ creates an electron at the given site in orbital α. The philosophy of

the DMFT approach can be understood in analogy to the more familiar density functional

method. The basis of the latter method is that the energy of any interacting system may

be written as a universal functional E = F [n(r)] of the exact electron density n(r).205 In

practice, one does not know the exact density functional; different approximations lead to

different flavours of DFT. The utility of the method lies in the fact that an approximation

of the exact density, denoted n∗(r), may be obtained by self-consistent solution of the aux-

iliary problem of a noninteracting system (i.e. single determinant state) in the presence of

an effective field that depends on n∗(r) through F [n∗(r)].206 Provided an appropriate func-

tional is chosen, and n∗(r) ≈ n(r), a good approximation for the energy of the interacting

system E ≈ E∗ is obtained without needing to solve the fully interacting problem. In anal-

ogy, DMFT may be motivated by noting the existence of a similar universal functional Θ[Σ]

which is extremized by the exact single particle self-energy Σ(k, α, ω).207,208 On this basis,

we may find approximations to Σ(k, α, ω) by constructing and solving auxiliary problems

designed to extremize Θ[Σ] within a constrained space of possible Σ’s. If one approximates

the self-energy to be momentum independent, i.e Σ(α, ω), the appropriate auxiliary prob-

lem is that of an interacting impurity embedded in an effective medium whose spectrum
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Figure 3.1: Schematic representation of the Dynamical Mean Field Approach. A single site of the

interacting lattice is embedded in an effective medium that is self-consistently determined to have the

same spectrum self-energy as the “impurity” site.

depends on Σ (Fig. 3.1). Since this problem may be solved self-consistently, properties

that depend on the single particle Green function G(Σ), such as conductivity, spectral

properties, and energy density, may be computed in an approximate, but nonperturbative

way. This fact has a significant advantage near the Mott transition, where U ∼ W , and

there is no small perturbative parameter. Different methods of constructing and solving

this impurity problem leads to different flavours of DMFT.

To make the above discussion more concrete, consider site i as a single impurity that is

embedded in a bath of electrons. The effective Hamiltonian is analogous to an Anderson

impurity model, which is given by:

Heff =
∑
α,σ

εi,αf
†
α,σfα,σ +

∑
α,β,σ

Uα,β
i f †α,σfα,σf

†
β,σfβ,σ (3.11)

+
∑
γ,σ

∫
k

{
c†γ,σ,k G

−1(α,k, σ, iωn) cγ,σ,k + V α
γ,kc

†
γ,σ,kfα,σ + (V α

γ,k)∗f †α,σcγ,σ,k

}
V α
γ,k =

∑
j

tαγij e
ik·(ri−rj) (3.12)

where V α
γ,k describes the hopping between the localized impurity states and the states in
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the bath representing the rest of the lattice. Since the impurity and the bath are really

one and the same, the local Green function Gαβi (σ, ω) must have the same self-energy as

the lattice Green function Gαβ(k, σ, ω).

Gαβi (σ, iωn) =
1

iωn + µ− εi,αδα,β − Σαβ(σ, iωn)−∆α,β(σ, iωn)
(3.13)

∆α,β(σ, iωn) =
∑
γ,δ

∫
k

V α
γ,k(V β

δ,k)∗Gγδ(σ,k, iωn) (3.14)

Gγδ(σ,k, iωn) =
1

iωn + µ− εγ,k − Σγδ(σ, ω)
(3.15)

where ∆α,β(σ, iωn) is the so-called hybridization function. Together, these equations allow

us to determine the self-energy self-consistently by the following cycle:

1. Compute hybridization function(s) ∆α,β(σ, iωn) from lattice Green functionGγδ(σ,k, iωn).

2. Solve the impurity problem to find the local Green function Gαβi (σ, iωn) given ∆α,β(σ, iωn).

3. Compute the self-energy by Σαβ(σ, iωn) = iωn+µ−εi,αδα,β−∆α,β(σ, iωn)−[Gαβi (σ, iωn)]−1.

4. Compute the lattice Green function Gαβ(σ,k, iωn) from the self-energy Σαβ(σ, iωn).

5. Repeat steps 1-4 until no further changes in Σαβ(σ, iωn).

The most nontrivial step in this procedure is solution of the impurity problem, which

despite containing only a single site (coupled to an electron bath), includes all Coulomb

interaction terms. Luckily, there are now a variety of options available. The two employed

in this thesis will be the simplest methods applicable to multi-orbital problems that have

been shown to capture the correct physics:

• Hirsch-Fye Quantum Monte Carlo (HF-QMC) Impurity Solver:209–213 In this case,

the thermodynamic Green function is computed on discrete points in imaginary time

τn. On each time slice, the local electron-electron interactions are decoupled via a

Hubbard-Stratonich transformation, which allows rewriting of the partition function

of the interacting impurity as a noninteracting system coupled to an Ising variable.
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The Green function is then sampled with respect to different configurations of the

Ising variables using a Monte Carlo algorithm. Since this sampling is somewhat

computationally expensive, the method is limited to n ∼ 100 points on single work-

stations. This places a limit on the temperatures at which the HF-QMC is applicable,

since the Green function must be computed on the imaginary time interval 0 ≤ τ ≤ β

that grows with decreasing temperature, reducing the resolution of G(τ).

While the HF-QMC method is numerically exact, apart from the discretization error,

the most significant disadvantage is that it is formulated in imaginary variables, and

thus observables in real frequency can only be obtained after analytic continuation

to the real axis iωn → ω+ iη. When G(iωn) is known analytically, operation is rarely

a problem, but when it is only known numerically, the analytic continuation is not

well posed. Usually it can be done reliably using the Maximum Entropy method

(MaxEnt), which yields only the spectral density A(ω) = −Im[G(ω)], or by fitting

the imaginary time data with a Padé approximant:

Pm,n(x) =

∑m
i=0 aix

i

1 +
∑n

j=0 bjx
j

(3.16)

for some order (m,n). The HF-QMC code employed in this thesis is available as an

add-on to the PW-SCF band structure software, and is based on the original lisaqmc

code distributed as part of Ref. 17.

• Iterative Perturbation Theory (IPT):214–220 In this method, the impurity problem is

not solved exactly to obtain the local self-energy, as above in steps 2 and 3. Rather,

it is approximated by a function of its 2nd order value Σαβ
(2) with respect to a pertur-

bation in Uαβ
i :

Σαβ(ω) ≈ Uαβ
i nαi +

AΣαβ
(2)

1 +BΣαβ
(2)

(3.17)

where A and B depend on the system in question, and are chosen so that the ap-

proximate form of Σαβ(ω) becomes exact in limits of U → 0, U → ∞, and ω → ∞.

Since this approximation respects both the weak and strong correlation limits, it

is expected to give a reasonable description of the intermediate Mott transition,
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and benchmarking against more exact methods suggest good qualitative agreement.

The two major advantages of the IPT method is that it is very computationally

inexpensive, and that the self-energy is calculated analytically, which facilitates or

eliminates the need for analytic continuation between real and imaginary frequency.

For the purposes of an experimentalist, IPT therefore represents an ideal DMFT

method, although one should generally compare the results of different methods.

The IPT code employed in this thesis is distributed by LA-SIGMA2, and available

at http://www.institute.loni.org/lasigma/package/mo-ipt/.

3.3 Phenomenology of the Mott Transition

In this section, we briefly review the conventional picture of the Mott transition that

has emerged through both DMFT calculations,17,203 and a wide variety of experimental

studies.221–229 In such studies, organic materials have played a particularly prominent role,

because they are often well described by a single-orbital Hubbard model, which is easily

treated by DMFT calculations. For this reason, correspondence between the calculation

and experiments has proven to be excellent.230–232 The typical phase diagram with respect

to U and T is shown in Fig. 3.2, with data computed for 5-4 via IPT-DMFT calculations

(see section 5.3.3).

Starting on the metallic side of the transition at zero temperature, as U is increased,

the effective bandwidth W ∗ of the quasiparticles becomes increasingly narrow, resulting

in a strongly renormalized peak in the density of states A(ω) around the Fermi level.

The strongly correlated quasiparticles associated with this peak are nonetheless coherent,

and the system behaves, at low energy, as a Fermi liquid. In contrast, the states at the

edge of the band, representing high energy excitations, become increasingly localized, as

their scattering rate exceeds the coherence limit. As U approaches Uc1, spectral weight is

transferred from the quasiparticle peak to the localized “Hubbard” bands. At Uc1 the last

of the coherent quasiparticles dies, and a gap of order ∆c = U −W opens at the chemical

potential, signifying a Mott insulating state. This spectral weight transfer may be observed

2Louisiana Alliance for Simulation-Guided Materials Applications
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Figure 3.2: Evolution of spectral density A(ω) and self-energy Σ(ω) as a function of U/W (horizontal

axis) and temperature (vertical axis). Re[Σ] is shown in red, and Im[Σ] ∼ 1/τ is shown in blue. At low

temperature for U < Uc1 a renormalized Fermi liquid state (FL) prevails with 1/τ ∝ ω2, but localized

Hubbard features at the band edges. For U > Uc2 a Mott insulator (MI) exists with a diverging scattering

rate at low energy, and clear upper and lower Hubbard bands. At high temperature, a smooth crossover

occurs between the gapless incoherent bad metal (BM) state and the gapped Mott insulator.

in the frequency dependent conductivity σ(ω) obtained from infrared measurements, as

illustrated schematically in Fig. 3.3(b), and discussed in section 7.3.2. At large U > Uc1,

a clear gap is seen in Re[σ(ω)] at zero energy, signifying a finite ∆c. At small U , and low

temperature, a metallic Drude peak is instead observed at low frequency signifying coherent

quasiparticles.230,231 In this region, ρ ∝ T 2 is also observed in organic [ET]2X salts (Fig.

3.3(a)).200,232 However, the narrow width of the quasiparticle peak at zero temperature sets

an additional temperature scale T ∗ above which 1/τ exceeds the coherence limit even at

the Fermi level, and all charge carriers become nearly localized. Above this temperature,

the quasiparticle peak in A(ω) disappears along with the Drude peak in σ(ω), leaving a

finite density of incoherent states in the vicinity of εF . As a result, the metal and insulator

are smoothly connected above T ∗, similar to a classical liquid and gas above their critical
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(a) (b)

Figure 3.3: (a) Schematic temperature dependence of the DC resistivity in the vicinity of the Mott

transition for decreasing U/W from top to bottom. Curves for U > Uc1 are shown in red, while those

for U < Uc1 are shown in black. In the latter case, ρ ∝ T 2 < ρMIR is observed below the quasiparticle

coherence temperature T ∗, but metallic transport dρ/dT > 0 may still be observed above this scale. (b)

Frequency dependence of Re[σ(ω)] showing transfer of spectral weight.

temperature and pressure. For this reason, the crossover between the bad metal and Mott

insulator is shown as a dashed line in Fig. 3.2. At large U one expects activated behaviour

σ ∝ e−EA/kBT at high temperature, while at small U the transport is often found to be

metallic dρ/dT > 0, but ρ > ρMIR signifying a bad metallic state. Finally, starting from the

insulating state, and decreasing U , one finds a transition to the metal of similar description,

but at a different critical Uc2, signifying a small coexistence region consistent with the first

order nature of the transition at low temperature.

3.4 Chapter Summary

In this short chapter, we discussed the phenomenology of the Mott transition, and in-

troduced the Dynamical Mean Field approach for treating strongly correlated solid state

materials. This method will be used to supplement DFT band structure calculations in

order to build a more accurate picture of the Mott physics in the organic radicals discussed

below. We also introduced the concept of a minimum metallic conductivity σMIR, which

distinguishes electronic transport via incoherent charge carriers, and coherent quasiparti-

cles. Only when the latter exist do the conventional expectations of Fermi liquid theory
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apply. Nonetheless, metallic transport (dσ/dT < 0) occurs in excess of this limit in strongly

correlated materials, which defines a bad metallic state. Elucidating the physics of such

states remains an ongoing challenge,19 motivating study of bad metallic states in neutral

radicals presented in chapters 5 and 7.
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Chapter 4

Magnetic Properties of

Pyridine-Bridged bis-Dithiazolyls

and Their Selenium Analogues

4.1 Synthetic Review

The exploration of the magnetic and electronic properties of pyridine-bridged bis-dithiazolyl

radicals 4-1 and their related Se analogues 4-2−4-4 has represented an ongoing project

pursued by the Oakley group over the last decade. At the time I joined the group, efficient

synthetic pathways to these materials had been developed, and work had begun to focus

on the various properties and crystallographic structures obtained by modification of the

R1, R2, E1, and E2 positions.

NN
E2

E1 E1

E2

N
E2E1

S Se
SSe
SeSe

S S 4-1
4-2
4-3
4-4

R1

R2

The generic synthesis of the all-sulfur derivative 4-1 begins with reaction of a desired 2,6-

dihalopyridine with an alkyl triflate to afford an alkyl pyridinium salt, which is subsequently
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treated with gaseous ammonia to install amino-groups in the 2,6-positions.233 The 2,6-

diaminopyridinium salt so obtained is then treated with sulfur monochloride resulting in

dithiazolyl ring formation via a Herz-type reaction. Finally, one-electron reduction of

the cation [4-1][OTf], typically using an appropriate chemical reducing agent such as a

octamethyl- or decamethylferrocene produces the desired radical 4-1.67

NX X

R2

R1OTf

X = Cl, F

NX X

R2

R1

NH3
NH2N NH2

R2

R1

S2Cl2
NN

S
S S

S
N

R1

R2

[4-1][OTf]

+e-
4-1

Radicals with selenium in the E1 position may be obtained by a somewhat more involved

synthetic pathway.83 A 2,6-diaminopyridine is treated with KSeCN in the presence of

bromine to install -SeCN groups in the 3,5-positions. The selenium is then reduced with

NaBH4, and methylated to afford the -SeMe derivative, which may be reacted with thionyl

chloride to generate the 4-3 framework with R1 = H as a chloride salt. After metathesis

to a more soluble triflate salt for example using AgOTf, Proton Sponge may be employed

to remove the proton in the R1 position affording a zwitterionic intermediate 4-5 which

when treated with the desired alkyl triflate results in [4-3][OTf]. As with [4-1][OTf], a

one-electron reduction provides the desired radical.

NH2N NH2

R2

1. KSeCN, Br2

2. NaBH4 3. IMe
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SeMeMeSe

SOCl2
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H
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The remaining radical frameworks 4-2 and 4-4 with Se in the E2 position may be obtained

by treatment of the related triflate salts with SeO2 typically in acetic acid.

NN
S

E1 E1
S

N
R1

R2

[4-1][OTf]
[4-3][OTf]

SeO2 NN
Se

E1 E1
Se

N
R1

R2

[4-2][OTf]
[4-4][OTf]

My most significant contributions to the understanding of these materials have been

through theoretical analysis of their magnetic and electronic properties, as presented in

chapter 5 and the remainder of this chapter. However, during my tenure with the group, I

also contributed to the synthesis of several such materials following known procedures and

in support of ongoing projects led by other members of the Oakley group. For example,

I helped Dr. Leitch to prepare the zwitterionic intermediate 4-5, R2 = H, from which

various 4-3 and 4-4 derivatives were generated by treatment first with a variety of alkyl

triflates, and then halogenating agents such as PhICl2 or Br2 to introduce either Cl or Br

in the R2 position.89 The magnetic properties of such materials will be discussed in this

chapter.

NN
S
Se Se

S
N R1OTf

R1 = Me, Et

NN
S
Se Se

S
N

R1
PhICl2

Br2

NN
S
Se Se

S
N

R1

Cl

NN
S
Se Se

S
N

R1

Br

4-5

Together with Dr. Lekin, we also prepared 4-1, 4-2 (R1 = Et, R2 = F, I). Of particular

interest is the F-substituted 4-1, which crystallizes as a σ-bonded dimer displaying thermal,

pressure, and light induced spin-state transitions.74–76
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Computed Spin-Density(a) (b)

Computed Hyperfine Coupling

Figure 4.1: (a) Evolution of solution EPR spectrum of 4-1 (R1 = Me, R2 = OMe) showing percent

conversion to the N -Me radical 4-6 as a function of time. In the former, hyperfine coupling to two

symmetric wing nitrogens results in a five line pattern. Formation of 4-6 localizes the unpaired electron

to one side of the molecule, producing instead a three line EPR pattern due to hyperfine coupling to

predominantly a single nitrogen. (b) Computed spin-density and hyperfine coupling constants were found

to be consistent with the observed spectra. Figures reproduced from Ref. 234.

While resonance stabilization and heteroatom incorporation allows materials 4-1 − 4-4

to enjoy exceptional chemical and thermal stability compared with previous generations of

radicals (chapter 1), it is useful to consider possible decomposition pathways in order to

prevent degradation of samples. For this purpose, we have also shown that the appropriate

choice of R-groups plays a significant role in the radical stability. For example, I found that

4-1 (R1 = Me, R2 = OMe) undergoes a stepwise decomposition in solution, hampering
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any efforts to isolate the radical.234
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The first step in this process is believed to involve a shift of the Me group from the

basal oxygen to a wing nitrogen presumably through bimolecular reactions, to form the

unsymmetrical radical 4-6 in which the unpaired electron is localized to one side of the

molecule. This species was identified on the basis of its solution EPR spectrum, which

shows hyperfine coupling to primarily a single N and is consistent with computed spectral

parameters (Fig. 4.1). However, attempts to purify either 4-1 (R1 = Me, R2 = OMe) or

4-6 by recrystallization from hot solution or vacuum sublimation resulted in loss of the

Me group to form instead the closed-shell zwitterionic bisdithiazolylpyridone 4-7. This

study suggests avoidance of R-groups with “labile” alkyl components, as such materials

are susceptible to rearrangement. As discussed in section 4.3.2, similar rearrangements also

occur with shifts of R1 from the pyridine to wing nitrogen, which must be considered when

preparing samples for measurement. Having reviewed the synthetic aspects of pyridine-

bridged radicals, we we turn to their magnetic structures in the following section.

4.2 Magnetostructural Phase Diagram

4.2.1 Structural Organization

In this section, we consider an organizing principle for classifying the various magnetic

phases of pyridine-bridged dithiazolyl radicals 4-1 and their selenium analogues 4-2−4-4.

All such materials crystallize as slipped π-stack arrays (Fig. 4.2), whose particular slippage

and relative solid-state packing are determined both by the chalcogen atoms in the wing

heterocyclic rings and by the exocyclic R1 and R2 groups. In Fig. 4.3, we have organized

the crystallographic phases and magnetic response as a function of the approximate size of
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Figure 4.2: Examples of slipped π-stacks.

the R-groups. In Fig. 4.4 we show the relative slippage of adjacent radicals occupying the

same π-stack; the increased steric repulsion of larger R-groups tends to increase slippage.

For example, when both such R-groups are relatively large, as is the case for R1 = Et, R2

= Cl/Br/Me, the radicals tend to crystallize in the tetragonal space group P 4̄21m with

significant slippage along the short axis of the molecules.85–87 We refer to this direction

as the molecular y-axis. This crystallographic phase displays a range of ordered magnetic

states including bulk ferromagnetism and spin-canted antiferromagnetism. Reducing the

size of the R2 group initially yields a band of σ-bonded dimers,73,74,235 such as the β-phase

of 4-1 (R1 = Et, R2 = F), which display light, pressure, and heat induced opening of

the dimer in the solid state.75,76 Substitution of the R2 position with even smaller R2 =

H provides a series of spin-canted antiferromagnets for R1 = Et that crystallize in the

centric space group P21/c, and exhibit large slippage primarily along the long-axis of the

molecules.84 This axis is referred to as the molecular x-direction. Replacement of the R1

position with a Me group provides a variety of crystallographic packing motifs of reduced

slippage. The two P212121 phases (R2 = H, and R2 = Cl/Br) exhibit slippage primarily

along the long axis of the molecules, and weak antiferromagnetic response (Weiss constant

−70 K < Θ . 0 K), although magnetic order has not been convincingly demonstrated in
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Figure 4.3: A selection of magnetic properties of pyridine-bridged bis-dithiazolyl radicals 5-1 and Se

analogues 5-2−5-4, indicated by a triangle, square, circle, and diamond, respectively. The basic magnetic

responses are indicated by the colour of each symbol. Materials are organized by exocyclic R-groups, which

are listed roughly in order of increasing size. Radicals with R2 = F have a propensity to dimerize in the

solid state, and thus only a selection are included.

the majority of cases due to the absence of a canted moment.65–67,83,88 For R1 = Me, R2 =

Cl, half of the S/Se variants crystallize instead in the P21/c space group, and display strong

antiferromagnetic coupling (Θ < −100 K) associated with slippage along both molecular

axes.88 Based on broken-symmetry DFT calculations of the unique magnetic exchange

constants Jij, this response has been interpreted in terms of very strong antiferromagnetic

interactions between adjacent molecules in the π-stacks. However, magnetic order at high

temperatures is unlikely in these materials, due to the relatively one-dimensional nature

of their magnetic interactions.

In order to understand the relationship between the observed magnetic phases of the

above radicals and their solid state structures we appeal to both symmetry arguments and

theoretical exchange calculations. Symmetry considerations provide that such phases may

be separated by the sign of the isotropic exchange along the π-stacks. Only a ferromagnetic

J (π)
ij allows for ordered states with a net moment, both bulk ferromagnets and spin-canted
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Figure 4.4: Comparing the relative slippage of adjacent radicals in the same π-stack, viewed perpendic-

ular to the molecular planes.

antiferromagnets. Ab-initio calculations of this exchange interaction provide a structure-

property map, relating the known crystallographic packing motifs with their magnetic

properties.

4.2.2 Symmetry Considerations

There are two types of symmetry to consider when discussing magnetically ordered states:

the symmetry group of the underlying Hamiltonian, denoted S0, and the symmetry of the

physical state of the system, denoted S.236 In the high temperature, paramagnetic phase,

these two groups are equal, S = S0. This property stems from strong thermal fluctuations

which ensure that all micro states of the system are occupied according to their Boltzmann
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weight. Since any microstates related by symmetry are degenerate, and thus have the same

statistical weight, the symmetries of the Hamiltonian are maintained by the macrostate

of the system. As the material is cooled through its ordering temperature, a spontaneous

breaking of symmetry occurs - the system settles into a local minimum of the free energy,

and a large kinetic barrier develops that prevents accessing other degenerate symmetry

related states. An obvious example of this effect can be seen in the Heisenberg ferromagnet

with isotropic exchange H = Jij Si · Sj, for which the energy is invariant under a global

rotation of all spins by arbitrary angles.1 When the system orders, it spontaneously breaks

this continuous rotational symmetry by choosing a particular direction for the ordered

moment.237 Even though the Hamiltonian has rotational symmetry, the ordered state does

not. However, the symmetry group of the state is a subgroup of full Hamiltonian symmetry,

S ⊂ S0. In crystalline systems, the symmetry of the Hamiltonian is determined by the

space group and local site symmetry of the magnetic centre, as well as the nature of

the magnetic interactions. Ordered magnetic structures can be classified by noting the

combination of such symmetries that is broken upon ordering.

A particularly important symmetry element for classifying magnetic symmetries is time-

reversal R̂, which acts on spins by flipping their orientation, so that R̂| ↑〉 = | ↓〉.238 We

denote the remaining space-group symmetry elements collectively as {Ĝ}. The Hamil-

tonian commutes with both R̂ and {Ĝ}, as well as any product of the two, so that

S0 = {Ĝ} ∪ {R̂Ĝ}. In nonmagnetic or paramagnetic phases, the average spin moment

at every site is zero, so that time reversal acts trivially on the state, and it can easily be

seen that S = S0 for this case. When magnetic systems order, only certain combinations

of R̂ and the space group elements are retained as symmetries of the state. These retained

symmetries classify the type of magnetic order. In order to demonstrate the utility of

classifying various ordered states by symmetry, we make a small diversion to discuss some

results from the Landau theory of phase transitions.236,239–241 As a function of temperature,

we can write the magnetic moment as a function of position as a linear combination of

1The technical jargon for this symmetry makes reference to the continuous (Lie) groups; one says that

the Hamiltonian has SU(2) symmetry.

97



symmetry adapted functions:

m(ri, T ) =
∑
p

ηp(T ) np(ri) (4.1)

where the np basis function belong to the symmetry group S0, but have the property that

R̂np = −np, and are thus antisymmetric with respect to time reversal. Above Tc, the order

parameters ηp(T ) are all precisely zero, so that the average moment at every site is zero.

Below Tc one or more of such parameters become nonzero, reducing the symmetry group of

the state to S which contains only those elements for which np transforms symmetrically.

Very often S is a maximal subgroup of S0.241 The magnetic part of the free energy may

be expanded as a power series in such order parameters as:

F (T ) =
∑

p,q,..,r,s,...

cr,s,...p,q,...(T ) (ηp)
r(ηq)

s... (4.2)

but the restriction that F transform as the totally symmetric representation of S0 places

restrictions on the coefficients cr,s,...p,q,.... For example, since all ηp are antisymmetric with

respect to R̂, they can only appear in even powers. Moreover, the second order expansion

may only contain cross terms ηpηq with p 6= q if ηp and ηq transform as the same representa-

tion of S0. Consider the case where there are two order parameters of the same symmetry,

then:

F (T ) = c2
p(T ) (ηp)

2 + c2
q(T ) (ηq)

2 + c1,1
p,q(T ) ηpηq + ... (4.3)

At high temperature, all coefficients c2
p(T ), c2

q(T ) are positive, so that the free energy is

minimized for all ηp, ηq = 0. At Tc the phase transition occurs typically because one

coefficient in the expansion such as c2
p becomes negative, so that the free energy is minimized

instead for a finite value of the associated order parameter ηp. This critical order parameter

defines the emerging magnetic order. However, when small cross terms are present, a finite

ηp may prompt the emergence of additional order parameters ηq of the same symmetry. To

see this note that:

∂F

∂ηq
= 0 → ηq = −

c1,1
p,q

2c2
q

ηp + ... (4.4)
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This effect is ultimately due to some badness in the original choice of basis functions np(ri),

which can always be remixed within symmetry constraints in order to remove cross terms

in the free energy. In essence, ηp and ηq are not independent parameters. In this section,

we are mostly concerned with cases where ηp and ηq represent collinear antiferromagnetic

and ferromagnetic order parameters, respectively. The simultaneous emergence of both

parameters at Tc signifies a spin canted antiferromagnetic state with a weak ferromagnetic

moment. Our interest in this case is due to the following observations:

• When two order parameters ηp, ηq emerge simultaneously they must be associated

with basis functions np,nq of the same symmetry with respect to the grey group S0.

• When weak canting is observed in antiferromagnets, it occurs because the dominant

critical antiferromagnetic order parameter ηp is coupled to a ferromagnetic order

parameter ηq.

• Typically, there are only a select number of representations within S0 that allow a

net ferromagnetic moment, which places similar restrictions on the symmetry of nq.

• As a result, when canting is observed in antiferromagnets, the symmetry of the anti-

ferromagnetic basis function can be determined, which often unambiguously defines

the pattern of magnetic order. In other words, when canting is observed, symmetry

analysis may immediately give the magnetic structure. Conversely, when an antifer-

romagnet orders, but does not show canting, details of the magnetic structure may

also be anticipated.

These assertions rely on some features of organic materials, namely that the magnetic

interactions are typically dominated by nearest neighbour isotropic exchange, which plays

the most significant role in selecting the critical order parameter. In the absence of magnetic

frustration, such interactions prefer simple collinear magnetic structures with at most two

magnetic sublattices, justifying our expansion in terms of collinear basis functions. The

cross terms coupling such functions arise from weaker spin-orbit effects, which do not

directly select the pattern of magnetic order, but may modify the magnetic properties, for

example, by promoting spin-canting if allowed by symmetry. It is possible that these weaker
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Figure 4.5: Positions of the symmetry elements in the unit cell of 4-4 (R1 = Et, R2 = H), as viewed

down the π-stacking a-axis. The material orders as a spin-canted antiferromagnet.

interactions result in further symmetry breaking at lower temperatures, as additional order

parameters become critical, but the typical energy scale for such transitions should always

fall below the experimental range T > 2 K.

In order to begin classifying magnetic symmetries of the basis functions np, we first

must review the transformation properties of spin functions under the action of the regular

point group symmetries. Representing angular momenta, np functions transform locally

as pseudovectors which means their orientation is unaltered by spatial inversion, while

regular vectors are inverted. Pseudovectors transform in the normal way under rotation.

The action of a mirror operation, which can be considered an inversion followed by a

two-fold rotation, inverts only the components of the spin in the plane of the mirror.

Example 1: As an example of this symmetry analysis, we consider the case of 4-4 (R1

= Et, R2 = H), which crystallizes in the space group P21/c, and orders as a spin-canted

antiferromagnet at TN = 27 K.84 The unit cell consists of four radicals, labelled 1−4 in Fig.

4.5, clustered around an inversion centre, which together form the basis for extended radical

π-stacks propagating along the a-axis. There are four groups of collinear basis functions

that define np within the unit cell, and may be labelled according to the corresponding

C2h point group representations. Of these, the first three are totally ferromagnetic states,

labelled fx, fy, fz, where the magnetic moments of all four sites in the unit cell are oriented

along the a, b, c-axes, respectively. In terms of the magnetic moments mi at each site, these
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Table 4.1: Symmetry classification of basis functions for describing the magnetic structure of 4-4 (R1 =

Et, R2 = H). Only structures of type AFM1 may cant to produce a net magnetic moment.

Point Group Magnetic Group

State Basis Function E 21 || b i c-glide ⊥ b Symmetry in C2h assuming k = [0, 0, 0]

FM fx +1 −1 +1 −1 Bg P2′1/c
′

↑ ↑ fy +1 +1 +1 +1 Ag P21/c

↑ ↑ fz +1 −1 +1 −1 Bg P2′1/c
′

AFM1 l1x +1 +1 +1 +1 Ag P21/c

↑ ↓ l1y +1 −1 +1 −1 Bg P2′1/c
′

↓ ↑ l1z +1 +1 +1 +1 Ag P21/c

AFM2 l2x +1 −1 −1 +1 Bu P2′1/c

↑ ↑ l2y +1 +1 −1 −1 Au P21/c
′

↓ ↓ l2z +1 −1 −1 +1 Bu P2′1/c

AFM3 l3x +1 +1 −1 −1 Au P21/c
′

↑ ↓ l3y +1 −1 −1 +1 Bu P2′1/c

↑ ↓ l3z +1 +1 −1 −1 Au P21/c
′

are:

fµ = mµ
1 + mµ

2 + mµ
3 + mµ

4 (4.5)

where µ ∈ {x, y, z}, and the site numbering is defined in Fig. 4.5. The remaining nine

basis functions are collinear antiferromagnetic functions:

l1µ = mµ
1 −mµ

2 −mµ
3 + mµ

4 (4.6)

l2µ = mµ
1 + mµ

2 −mµ
3 −mµ

4 (4.7)

l3µ = mµ
1 −mµ

2 + mµ
3 −mµ

4 (4.8)

In order to classify the symmetries of these functions it is necessary only to consider their

transformation properties with respect to the crystallographic elements {Ĝ}, because the
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characters satisfy Γ(Ĝ) = −Γ(R̂Ĝ). The characters of these functions are shown in table

4.1. The ferromagnetic basis functions, which display a net moment, transform as either

Ag or Bg with respect to the point group symmetry of the cell. The only antiferromagnetic

basis functions of these symmetries are of type l1µ, which can be unambiguously identified

with the experimental magnetic structure due to the observation of a canted moment. This

finding suggests an important rule:

• In centric space groups, canting may only occur if sites related by inversion belong

to the same magnetic sublattice. Otherwise, the symmetry of the antiferromagnetic

state will always differ from the totally aligned ferromagnet, and canting is not pos-

sible.

So far, we have not considered the relationship between the spins in adjacent unit cells,

which are related by translation. The representations of the translation operators can be

labelled according to their wave vector k in the Brillouin zone, with T̂ (r) np = Re
[
eik·r

]
.

For example, the totally aligned ferromagnetic state for the entire crystal is given by fµ,

with k = [0, 0, 0]. We may alternately consider a layered antiferromagnetic structure based

on the fµ function for each unit cell, but with wave vector k = [π, 0, 0], so that spins in

adjacent cells along a are required to be oppositely aligned. In the present example, this

state breaks inversion symmetry, so canting is forbidden. More generally, however:

• Canting may only occur if all molecules related by translation belong to the same

magnetic sublattice. This implies that canting is forbidden for any antiferromagnetic

ordering mode for which k 6= [0, 0, 0], as the symmetry with respect to translation

must also match that of the totally aligned ferromagnetic state.

On the basis of these observations, therefore the magnetic structure of 4-4 (R1 = Et,

R2 = H) must be l1µ[0, 0, 0] suggesting the isotropic interactions along the π-stacks must

be predominantly ferromagnetic, while those between stacks must be antiferromagnetic.

The anisotropic interactions will tend to prefer a specific orientation µ of the sublattice

moments, but this cannot be determined by symmetry analysis alone in this case.

Example 2: We consider, as a second example, 4-3 (R1 = Me, R2 = Cl).88 This

material crystallizes in the space group P212121, with pairs of the four molecules per unit
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Figure 4.6: Positions of the symmetry elements in the unit cell of 4-3 (R1 = Me, R2 = Cl), as viewed

down the π-stacking a-axis. The material does not order as a spin-canted antiferromagnet.

cell related by each 21 axis. In this case, we may label the basis functions np by their point

group symmetry 222 = D2. We consider the same basis functions, fµ, l
1
µ, l

2
µ, l

3
µ as in the

previous section, with molecules numbered according to Fig. 4.6. While a Weiss constant

of Θ = −28 K for this material is indicative of significant antiferromagnetic interactions,

canted antiferromagnetic order has not been detected.

In the P212121 space group, the totally ferromagnetic basis functions fµ for the unit cell

transform as either B1, B2, or B3 depending on the orientation of the local moments with

respect to the crystallographic axes (Table 4.2). For all antiferromagnetic arrangements

considered, there is at least one orientation of the local moments that matches the above

representations, indicating that canting is allowed by symmetry for any antiferromagnetic

state with k = [0, 0, 0]. In this light, the absence of a canted moment in 4-3 (R1 = Me, R2 =

Cl) indicates that either the material does not magnetically order, or the magnetic structure

is described by k 6= [0, 0, 0]. In the latter case, the most likely ordering vector is k = [π, 0, 0],

requiring interactions along the π-stacks to be predominantly antiferromagnetic. In this

case, translational symmetry is broken, and canting is forbidden. This finding is in contrast

to the previous example of 4-4 (R1 = Et, R2 = H), which was found by symmetry to require

ferromagnetic interactions along the π-stacks.
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Table 4.2: Symmetry classification of basis functions for describing the magnetic structure of 4-3 (R1 =

Me, R2 = Cl). All antiferromagnetic structures with k = [0, 0, 0] may exhibit a canted moment, excluding

such states from consideration, as the material does not cant.

Point Group Magnetic Group

State Basis Function E 21 || c 21 || b 21 || a Symmetry in D2 assuming k = [0, 0, 0]

FM fx +1 −1 −1 +1 B3 P2′12′121

↑ ↑ fy +1 −1 +1 −1 B2 P2′1212′1

↑ ↑ fz +1 +1 −1 −1 B1 P212′12′1

AFM1 l1x +1 +1 +1 +1 A P212121

↑ ↓ l1y +1 +1 −1 −1 B1 P212′12′1

↓ ↑ l1z +1 −1 +1 −1 B2 P2′1212′1

AFM2 l2x +1 +1 −1 −1 B1 P212′12′1

↑ ↑ l2y +1 +1 +1 +1 A P212121

↓ ↓ l2z +1 −1 −1 +1 B3 P2′12′121

AFM3 l3x +1 −1 +1 −1 B2 P2′1212′1

↑ ↓ l3y +1 −1 −1 +1 B3 P2′12′121

↑ ↓ l3z +1 +1 +1 +1 A P212121

4.2.3 Organization of Magnetic Phases by J (π)
ij

In the previous section, it was shown that a net moment, either in bulk ferromagnetic, or

canted antiferromagnetic structures can only occur if all molecules related by either trans-

lation or inversion belong to the same magnetic sublattice. For radical materials in which

molecules within the π-stacks are related by translation, this restriction suggests exchange

along the π-stack must be ferromagnetic in order for a net moment to be observed. As

discussed in section 2.1.5, the sign of magnetic exchange depends greatly on the relative

orientation of molecules, and thus the relative slippage. In order to investigate the specific

relationship between slippage and J (π)
ij , we performed a series of broken-symmetry density
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functional calculations2 on a model 4-1 radical pair for which R1, R2 = H.88 All calculations

were performed at the B3LYP/6-31G(d,p) level. The geometry of each molecule was sep-

arately optimized imposing C2v symmetry, and single point exchange energy calculations

were performed as a function of slippage. In all cases the separation of the molecular planes

was held constant at ∆z = 3.5 Å. Slippage was measured relative to direct eclipse of the

molecules, with ∆x (∆y) giving the slippage along the long (short) axis of the molecules.

Representative slippage coordinates are shown in Table 4.3 for the various crystallographic

phases. The results of the exchange energy calculations are summarized in Fig. 4.7, with

respect to the Hamiltonian:

H = −2
∑
〈i,j〉

Jij Si · Sj (4.9)

so that the exchange constant goes like:

Jij = K̃00
ij −

2(t00
ij )2

U
(4.10)

In the model system, positive and negative values of ∆x,∆y provide equivalent structures,

so we have shown only one quadrant in the above figure. Similar calculations we performed

on all S/Se variants 4-2−4-4, but incorporation of Se serves only to enhance the magnitude

of the exchange interactions, while retaining the basic slippage dependence of J (π)
ij .

When the model molecules are eclipsed at [∆x,∆y] = [0.0, 0.0], the open-shell broken

symmetry singlet state becomes unstable to the closed shell solution, and the resulting J (π)
ij

is strongly antiferromagnetic. From this position, slippage in either the ∆x or ∆y direction

reaches a narrow ferromagnetic ridge at a distance of roughly 1.75 Å. Beyond this ridge,

a broad antiferromagnetic region appears centred at [∆x,∆y] = [2.0, 1.5]. A second ferro-

magnetic region appears at extreme slippage along the long axis of the molecule, beyond

∆x > 2.5 Å. This complex topology arises due to variations in the SOMO-SOMO hopping

integral along the π-stacks, denoted t
00,(π)
ij , which controls the sign of J (π)

ij by modulation

of the antiferromagnetic kinetic exchange. These hopping integrals were additionally esti-

mated on the basis of Extended Huckel calculations of the dispersion energy of the SOMO

band in 1D π-stacks, which follows ∆Ek = 4t
00,(π)
ij . The results, summarized in Fig. 4.8,

2see Section 2.3.1 for description of the BS-DFT method.

105



SC-AFMWeak
AFM

Strong
AFM

FM and
SC-AFM

Figure 4.7: Variation of magnetic exchange interactions J (π)
ij along the π-stacks as a function of slippage

estimated by broken symmetry density functional theory calculations. Slippage along the long (short) axis

of the molecule is denoted by ∆x (∆y). The locations of various crystallographic phases are indicated.

confirm that the ferromagnetic ridge is associated with a region of vanishing SOMO-SOMO

hopping t
00,(π)
ij . This orthogonality condition is satisfied along the ridge due to two factors:

(1) the electron-rich heteroatom rings are associated with strongly anti-bonding SOMOs

with many nodes, and (2) alignment of these nodes with the SOMOs of adjacent radicals

results in negligible hopping integrals.

The results of these calculations correlate well with the observed magnetic response of

4-1−4-4 radicals. For example, the tetragonal P 4̄21m materials for R1 = Et all lie very

close to the ridge at [∆x,∆y] = [0.0, 2.15], indicating a ferromagnetic J (π)
ij consistent with

the observation of ordered ferromagnetic and canted antiferromagnetic states.85–87 The

P21/c canted antiferromagnets for R1 = Et, R2 = H also fall in a region of ferromagnetic

J (π)
ij , near [∆x,∆y] = [3.3, 0.8], just beyond the edge of the calculated region.84 In contrast,
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Figure 4.8: Variation of 1D dispersion energy ∆Ek = 4t
00,(π)
ij with slippage, calculated using Extend

Huckel theory. The line of t
00,(π)
ij = 0 corresponds well with the position of the ferromagnetic ridge of Fig.

4.7. For each crystallographic phase, the overlap of the SOMOs on adjacent radicals is shown.

the materials that do not display a net moment fall in regions of antiferromagnetic J (π)
ij .

For example, the strongly AFM coupled R1 = Me, R2 = Cl P21/c phase lies in the region

of slippage near [∆x,∆y] = [1.5, 1.6], a region predicted to host strong antiferromagnetic

interactions.88 Not surprisingly, these materials also display enhanced conductivity and the

lowest activation energies amongst the pyridine-bridged series, due to large hopping inte-

grals t
00,(π)
ij . The two P212121 phases with weaker AFM coupling are found near ∆x = 2.2,

falling between the two ferromagnetic ridges.65–67,83,88 In these materials, the antiferromag-

netic J (π)
ij excludes the possibility of a canted moment, complicating the demonstration

of magnetic order from purely magnetic measurements. Ideally, antiferromagnets should

display a kink in the magnetic susceptibility at the Néel temperature TN , as the ordered

state (for which ∂χ/∂T > 0) gives way to the paramagnetic phase (where ∂χ/∂T < 0).124

However, in low-dimensional systems where the magnitude of antiferromagnetic exchange
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Table 4.3: Representative slippage coordinates for the various crystallographic phases of pyridine-bridged

radicals.

S/Se R1 R2 Space Group Θ ∆x ∆y ∆z

4-2 Me Cl P21/c < −100 K 1.60 Å 1.54 Å 3.52 Å

4-4 Me Cl P21/c < −100 K 1.49 Å 1.63 Å 3.57 Å

4-3 Me H P212121 −78.3 K 1.94 Å 0.85 Å 3.52 Å

4-4 Me H P212121 −44.3 K 2.04 Å 0.78 Å 3.59 Å

4-1 Me Cl (T > 93 K) P212121 −13 K 2.45 Å 0.07 Å 3.47 Å

4-3 Me Cl P212121 −28 K 2.31 Å 0.11 Å 3.50 Å

4-3 Et H P21/c +6.3 K 3.25 Å 0.93 Å 3.66 Å

4-4 Et H P21/c −8.0 K 3.30 Å 0.71 Å 3.69 Å

4-2 Et Cl P 4̄21m +20.3 K 0 Å 2.14 Å 3.52 Å

4-2 Et Br P 4̄21m +21.0 K 0 Å 2.17 Å 3.52 Å

4-2 Et Me P 4̄21m +18.4 K 0 Å 2.20 Å 3.51 Å

is very anisotropic, initial singlet formation along directions of strong exchange occurs

far above TN and is associated with a broad maximum in χ, followed by rapid suppres-

sion of the susceptibility as T is further lowered. Any susceptibility peaks appearing at

TN may therefore be obscured as the susceptibility is already strongly suppressed in this

temperature region. In contrast, a net canted moment appearing at TN is immediately

apparent in magnetic experiments regardless of dimensionality because the spontaneous

ordered moment may be directly observed. For this reason, we have only demonstrated

antiferromagnetic order in the canted materials. Magnetic order has not been conclu-

sively shown in the majority of P212121 materials, although further studies will likely shed

light on these phases. A notable exception is the well-studied 4-1 (R1 = Me, R2 = H),

which belongs to the P212121 phase, and which shows a frequency-independent peak in

the AC-susceptibility at TN = 5 K, which we have interpreted in terms of antiferromag-
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netic long-range order.79 Below this temperature the material exhibits a metamagnetic

response, showing a field-induced spin transition to a nearly saturated ferromagnetic state

above Hext = 5 Tesla. However, ab-initio calculations provided essentially no insight into

the magnetic structure, as the computed exchange values are inconsistent with the ob-

served metamagnetic behaviour and absence of a canted moment. As a result, the specific

magnetic phases observed in this radical remain an open question.

As a final note, we remark that while the bulk of this chapter has been concerned

with magnetic order, the absence of order can be equally interesting from a fundamental

perspective. This is true of low-dimensional spin systems with strong magnetic interaction,

but which may display unique quantum disordered rather than ordered ground states that

are driven by strong quantum fluctuations. An example of such low-dimensional materials

will be discussed in the next section.

4.3 Low Dimensional Radical Systems: Ladders

4.3.1 Theoretical Introduction

One-dimensional spin systems have recently attracted interest due to their hosting of quan-

tum disordered spin-liquid states that fail to order due to strong quantum fluctuations. In

many cases, such systems can be formally represented as fermionic models through the fa-

mous Jordan-Wigner transformation.242 In this representation, spin operators are written

as creation and annihilation operators of spinless fermions with the addition of a string

operator to ensure correct commutation relations:

S+
i = c†ie

iπ
∑
j<i c

†
jcj (4.11)

S−i = e−iπ
∑
j<i c

†
jcjci (4.12)

Szi = c†ici −
1

2
(4.13)

The phase associated with each fermion operator depends on the number fermions existing

on sites to the “left” of the site in question. In terms of such operators, one-dimensional
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spin chains may thus be described in terms of interacting fermions with nearest neighbour

repulsion:

Jij Si · Sj →
Jij
2

(c†icj + c†jci) +

(
ni −

1

2

)(
nj −

1

2

)
(4.14)

HSzi → H

(
c†ici −

1

2

)
(4.15)

The transformation is exact in one dimension due to cancellation of the string phase oper-

ators. The interest in this representation of the Hamiltonian is that interacting fermions

in one dimension are predicted to form an exotic Tomonaga-Luttinger liquid (TLL) phase

with metal-like properties but no sharp Fermi surface, and consequently non-Fermi liquid

temperature or field dependence of response functions.243,244 Instead, the response func-

tions scale according a single parameter K, where K > 1 for attractive interactions, and

K < 1 for repulsive interactions. Demonstration of such a state in one-dimensional elec-

tronic conductors has been met with difficulty for two main reasons i) low-dimensionality

often produces instabilities toward insulating phases such as charge or spin-density waves

that can only be avoided through higher dimensional interactions, and ii) there is often

no convenient method for investigating TLL scaling in a range of properties and over a

range of band-fillings.245 In contrast, the density of Jordan-Wigner fermions can also be

tuned by an external magnetic field (which plays the role of chemical potential). Moreover,

the Green function 〈c†icj〉 ∝ 〈S+
i S
−
j 〉 may be directly measured via electron spin resonance

(ESR) and inelastic neutron scattering, thus facilitating investigation. As a result of this

experimental convenience, one-dimensional spin chains have been pursued as “quantum

simulators” of low-dimensional electronic systems.

Particular interest has been paid to been so-called “spin ladders”, which depart from

strictly one-dimension through strong interactions coupling a small number of spin chains.

For example, the two-leg spin ladder consists of two coupled chains (labelled a, b), and

may be described by the ratio of magnetic exchange along the chain direction, Jleg, to that
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between the chains Jrung.

H = Jleg
∑
i

Si,a · Si+1,a + Si,b · Si+1,b + Jrung
∑
i

Si,a · Si,b +
∑
i

h(Szi,a + Szi,b) (4.16)

In the case where both interactions are antiferromagnetic, it is known that ladders with

an even number of legs display an energy gap ∆ to all spin excitations for any finite

Jrung > 0.246 However, the nature of the ground and excited states varies as a function of

the ratio Jrung/Jleg. The most well-studied case is the strong rung limit Jrung � Jleg, for

which the ground state is a product state of singlets existing on each rung of the ladder.247

Excited states consist of rung-triplons which are dispersive due to the intrachain coupling

Jleg. In the presence of a magnetic field h ∼ ∆, the ms = +1 branch of the triplons can

be brought to sufficiently low energy to allow for a finite triplon density in the ground

state. In this case, the low-energy theory can be formulated by projecting out the higher

energy triplon branches, and is described in terms of a single chain in which each rung

forms a site with a pseudospin variable ~τi. This variable describing whether rung is in

the singlet |S0〉 or triplet |T+1〉 state, with τ zi |S0〉 = +1/2, τ zi |T+1〉 = −1/2. Performing

the J-W transformation on these pseudospin variables provides the fermionic model with

repulsive interactions (K < 1):

HJ−W = t
∑
i

(c†ici+1 + h.c.) + V
∑
i

nini+1 − µ
∑
i

ni (Jrung � Jleg) (4.17)

t = V =
Jleg

2
, µ = h− Jrung , ∆ ∼ Jrung − Jleg (4.18)

For µ > −2t → h > Jrung − Jleg ∼ ∆, there is a finite density of J-W fermions, and

the model is expected to display a TLL-like phase. This prediction has been investi-

gated experimentally and demonstrated convincingly in the Cu-based ladder materials

(CH3)2CHNH3CuCl3
248,249 and (C5H12N)2CuBr4.250–254

In contrast, the opposite limit strong leg limit Jrung � Jleg has been less studied due to

the absence of a well-controlled expansion. The standard theoretical approach in this case
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R1 = Bu R1 = Pn R1 = Hx

Figure 4.9: Unit cells of spin ladders 4-1 (R2 = F) viewed parallel to the π-stacking axis.

is to apply the J-W transformation to each chain, providing initially decoupled chains with

gapless TLL excitations. The interchain interactions Jrung are then treated perturbatively,

and result in an energy gap for spinons. The ground state is thus qualitatively similar to

the strong rung case, being a singlet state with triplon excitations. The spin-gap has been

estimated by fitting QMC data:255

∆ ∼ 0.4030 Jrung + 0.0989

(
Jrung
Jleg

)3

Jrung (Jrung � Jleg) (4.19)

In the presence of a magnetic field h & ∆, projection into the subspace of the lowest singlet

and triplon states is thought to result in a 1D fermionic model similar to (4.17), except with

attractive interactions (K > 1).256,257 This regime has been experimentally probed only

recently due to the discovery of a long sought after spin ladder compound (C7H10N)2CuBr4

with Jrung < Jleg.258,259 Preparation of materials in the isotropic intermediate coupling

regime for which Jrung ∼ Jleg and with spin gaps ∆ small enough to be reached with

laboratory fields has remained an open synthetic challenge.

4.3.2 Studies of Radical Spin Ladders

In this context, we discuss a series of spin-ladder compounds recently discovered by the

Oakley group through the synthetic efforts of Dr. Lekin and Ms. Wong (Fig. 4.9, 4.10).260

In order to reduce the dimensionality of magnetic interactions, she incorporated bulky alkyl
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R1 = Pn R1 = HxR1 = Bu 

Figure 4.10: Comparison of π-stack slippage of spin ladders 4-1 (R2 = F), which occurs in both the

molecular x- and y-directions consistent with strong antiferromagnetic interactions. Electrostatic S-F

interactions bind such π-stacks together into ladders as shown below.

groups into the R1 position of the all-sulfur 4-1, forming a series of isostructural radicals

that crystallize in the P21/c space group. These radicals exhibit moderate slippage along

both the molecular x- and y-directions, consistent with a region of strong antiferromagnetic

exchange Jleg along the π-stacking chain direction. The bulky groups separate the radi-

cals, so that π-stacks are largely isolated. However, adjacent stacks, which are related by

inversion, are pinned together into ladders by strong S-F electrostatic interactions afforded

by R2 = F, thus forming ladders.

The magnetic topology was investigated through broken symmetry DFT calculations

of the values of each pairwise nearest neighbour exchange interactions, which may be di-

vided into five categories by relative proximity. The closest neighbours are adjacent radicals

within the same π-stack, with exchange denoted J(π) = Jleg. The second closest neighbours

are in different legs of the ladders, with J(1) = Jrung. These ladders are held together by

close S-F contacts between neighbours labelled (2) with associated exchange constant J(2).

Finally, there are interladder neighbours labelled (3) and (4) as shown in Fig. 4.11. The

results of such calculations are summarized in Table 4.4 with reference to the Hamiltonian
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Figure 4.11: Definitions of unique magnetic interactions J(π) and J(1)−(4).

H = JSi · Sj. In all three ladder materials, J(2) and interladder couplings J(3) and J(4)

were estimated to have magnitudes below 10 K, an order of magnitude smaller than the in-

traladder couplings J(1) and J(2). These results are thus in agreement with the anticipated

one-dimensional spin-ladder topology. However, while the calculated exchange constants

suggest that all three materials lie within the strong-rung regime (J(1) > J(π)), the experi-

mental magnetic susceptibility is inconsistent with this prediction. We have demonstrated

this observation in two ways. First, we fit the observed magnetic susceptibility to func-

tions obtained by Johnston et. al. from analysis of QMC simulations of spin ladders.255

To these functions, we added a fractional paramagnetic impurity term to account for the

observed Curie tail at low temperatures. The results of such fitting are shown in Table

4.4 and Fig. 4.12. In contrast with the computed exchange values, 4-1 (R1 = Bu, Hx)

were found to lie within the strong-leg regime (J(1) < J(π)), while we found R1 = Pn to

be a nearly isotropic ladder (J(1) ∼ J(π)). As a second demonstration of the discrepancy

between computed and experimental values, we performed QMC simulations in order to

obtain the theoretical susceptibility corresponding to the calculated exchange constants.

These latter calculations employed the ALPS program looper, and were performed on 104

sites of a single ladder. In all cases, the simulated susceptibilities show suppressed magni-

tude compared to the experimental data due to an overestimation of the rung exchange.
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Table 4.4: Magnetic exchange parameters for spin-ladder compounds 4-1 R2 = F with reference to the

Hamiltonian H = JSi · Sj . Experimental values were obtained by fitting the magnetic susceptibility as

described in the text. For convenience of discussion, the spin gap ∆ is presented in magnetic field units

Tesla. F% denotes the fraction of paramagnetic impurity.

BS-DFT Calculations (B3LYP/6-31G(d,p)) Experimental Fitting

R1 J(π) (K) J(1) (K) J(2) (K) J(3) (K) J(4) (K) Jleg (K) Jrung (K) ∆ (T) F%

Bu +91.1 +144.9 −1.2 −8.9 −8.7 +190 +49 34.3 2.8

Pn +26.2 +133.7 −0.2 −2.4 +4.2 +75 +75 56.1 4.2

Hx +90.2 +189.6 −0.5 −4.1 −5.9 +164 +37.4 22.7 6.1

While all three radical spin-ladder compounds described in this section fall within the

desirable strong-leg or isotropic regime, their application for the study of TLL physics is

hampered by two main factors. The first is that the spin-gaps ∆ are quite large due to the

significant magnitude of the exchange interactions, so that accessing the TLL phase will

require excessive magnetic field. That being said, for R1 = Hx, the spin-gap is only 22.7

T, which is easily achievable in high field facilities such as the National High Magnetic

Field Lab in Tallahassee, Florida. Of particular interest would be to take advantage of the

basal F substituent, and measure F19 spin-lattice NMR relaxation rate (1/T1), for which

theoretical predictions have been made for various ground states of spin-ladders.261 This

experiment is currently being considered. However, the second factor hampering such work

is the existence of a significant fraction of paramagnetic impurities particularly in the Hx

sample indicating possible contamination. This contaminant most likely stems from the

the somewhat atypical method of preparing magnetic samples directly by recystallization

of the radicals from hot solution. The heating process may result in various decomposi-

tion products, but many such products will be short lived or not posses an unpaired spin,

and thus should not contribute to the paramagnetic signal. In this light, the most likely

candidate impurity is the rearranged radical 4-8, which can be anticipated based on the

observed shifting of alkyl groups for 4-1 (R1 = Me, R2 = OMe)234 discussed in the first
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R1 = Pn 

R1 = Hx

R1 = Bu 

R1 = Pn 

R1 = Hx

R1 = Bu 
(a) (b)

Figure 4.12: (a) Experimental magnetic susceptibility χ = M/H and inset χT for ladder compounds

4-1 (R1 = Bu, Pn, Hx) (open squares). The results of fitting to the strong-leg ladder function of Johnston

et. al. is indicated by a red line. (b) Susceptibility after subtraction of fractional impurities (open squares)

with the same fits shown with red lines. The results of QMC simulations based on computed exchange

parameters is shown by a green dashed line.

section of this chapter.
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This rearrangement is also consistent with the EPR spectrum observed after allowing the

radicals 4-1 (R2 = F) to sit in very dilute solutions at room temperature for several days

(Fig. 4.13). The unrearranged radicals 4-1 with R2 = F display a characteristic seven line
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Figure 4.13: (a) Evolution of EPR spectra of dilute solution of 4-1 (R1 = Hx, R2 = F) in MeCl as a

function of time showing conversion to an asymmetric radical consistent with 4-8. (b) The fraction of the

two radicals as estimated by fitting the spectra as a mixture of products.

pattern in the EPR due to hyperfine coupling primarily to the two wing nitrogens (I = 1)

and basal F (I = 1/2). However, even the initially prepared solutions show some contami-

nation with a single alternate radical whose fraction grows with time. Consistent with 4-8

this contaminant radical shows instead a four line pattern due to coupling to the basal F

and only one wing nitrogen. As the conversion may occur as a bimolecular reaction, its rate

of formation would be expected to increase significantly with both concentration and heat,

suggesting a potential for formation during short heating in concentrated solutions during

recrystallization. Indeed, such samples, after initially dissolving them in the EPR cell (in

dichloromethane) and degassing already contain a 12% impurity according to the fits of the

initial spectrum. Learning to better control this impurity represents an important future

area of investigation.
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4.4 Chapter Summary

This chapter focussed on the magnetic properties of pyridine-bridged bis-dichalcazolyl rad-

icals. Section 4.1 reviewed the synthetic routes to these materials, all of which were de-

veloped prior to my tenure with the Oakley group, but which continued to be employed

both by myself and other group members to generate a range of materials. The dominant

structural and magnetic phases were discussed in detail in section 4.2. Through symmetry

analysis, we suggested that materials 4-1−4-4 could be grouped into two categories based

on the sign of J (π)
ij . Those materials that display ferromagnetic interactions along the

π-stacks are allowed to order as bulk ferromagnets and canted antiferromagnets displaying

a net moment. In contrast, those that display dominantly antiferromagnetic π-stack inter-

actions are forbidden from possessing a net moment even when ordered. Model BS-DFT

calculations of J (π)
ij allowed us to correlate the magnetic response with the packing modes

of the various structural phases, and explained the clustering of ordered ferromagnets and

canted antiferromagnets into the two P 4̄21m and P21/c space groups. Finally, section

4.3 discussed the properties of a new class of radical spin-ladders, for which magnetic or-

der is avoided as a result of strong quantum fluctuations characteristic of one-dimensional

magnets. Analysis of their magnetic response suggested these materials are examples of

theoretically desirable strong-leg or isotropic ladders. However, their magnetic interactions

are likely too strong to allow easy access to the Luttinger liquid regime at high magnetic

field. Future work could focus on reducing the strength of interactions, as well as the

preparation of samples of higher magnetic purity.
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Chapter 5

Isostructural Tetragonal Radical

Family R1 = Et, R2 = Cl

5.1 Introduction

This chapter focusses on the properties of the isostructural radical family 5-1−5-4 (R1

= Et, R2 = Cl), all of which crystallize in the non-centric tetragonal space group P 4̄21m

introduced in the previous chapter (Fig. 5.1):

NN
E2

E1 E1

E2

N
Et

Cl

E2E1

S Se
SSe
SeSe

S S 5-1
5-2
5-3
5-4

The fact that the entire family 5-1 − 5-4 are isostructural provides the opportunity to

study the effects of Se incorporation on the electronic and magnetic response independent

of other structural details. In the first section, we contrast the ambient pressure magnetic

structures of the four radical materials. Of key interest is the observation that in the

tetragonal P 4̄21m phase, those radicals with S in the E2 position tend to order as spin-

canted antiferromagnets, while those with Se in this position prefer ferromagnetic order.85,86
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Figure 5.1: Crystal structure of 5-4 viewed (a) parallel to the c-axis, and (b) parallel to the b-axis. All

four S/Se variants 5-1−5-4 are isostructural. Unique nearest neighbours are labelled (π), and (1) − (3).

Crystallographic mirror planes are emphasized. The positions of the remaining symmetry elements are

shown in (c).

Indeed, for the specific case of R1 = Et, R2 = Cl, 5-2 and 5-4 order ferromagnetically at

TC = 12.8 and 17 K, respectively, while 5-3 orders as a canted antiferromagnet at TN = 14

K. Magnetic order in 5-1 has not yet been conclusively demonstrated, but the isostructural

material with Br in the R2 position does indeed show spin-canted order below TN ∼ 10 K.

In this case, magnetic order is indicated both by a bifurcation in the FC-ZFC susceptibility,

and the observation of a spontaneous magnetization that displays hysteresis.

In this chapter, we argue that the dichotomy of magnetic order may be rationalized

in terms of multi-orbital contributions to the magnetic exchange between π-stacks. The

second section will detail the phase diagram of the all-selenium 5-4 under applied pressure,

which prompts not only a loss of ferromagnetic order through enhancement of intermolecu-

lar hopping integrals,90,91 but also a region of metallic conductivity above 7 GPa.89 Finally

we address the observation of large magnetic coercivity in the ferromagnets 5-2 and 5-4,

which displays a coercive field Hc orders of magnitude larger than previous organic fer-

romangets composed of lighter N, S, O atoms. We demonstrate that this effect is due to

spin-orbit effects through studies at both ambient and high pressure.262,263
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5.2 Magnetic Structures

The unit cell of 5-1−5-4 consists of four radicals encircling a 4̄-point, with each radical

being bisected by a mirror plane normal to either the (110) or (11̄0) directions. Adjacent

radical stacks are related by 21 axes along both the a- and b-directions. Nearest neighbour

pairs expected to have significant magnetic interactions may be organized in order of

proximity (Fig. 5.1(a),(b)). Those interactions between adjacent radicals in the same π-

stack, related by translation along c are labelled (π). The two closest interstack contacts,

labelled (1) and (2) occur between radicals related by 21 axes in the ab-plane located

at x = 0.0, 0.5, respectively. Finally, interaction (3) occurs between radicals across the

4̄-point, related by 2 = (4̄)2.

As explained in the previous chapter, the observation of a net moment in the ordered

phase of all such materials suggests that J (π)
ij must be ferromagnetic for all of 5-1−5-4.

The magnitude of the remaining interactions are expected to satisfy |J (1)
ij | ∼ |J

(1)
ij | > |J

(3)
ij |

due to the relative proximity of each radical pair. In order to analyze the possible magnetic

structures, we employ a series of collinear basis functions consistent with the D2d point

group symmetry of the cell:

fµ = mµ
1 + mµ

2 + mµ
3 + mµ

4 (5.1)

l1µ = mµ
1 −mµ

2 −mµ
3 + mµ

4 (5.2)

l2z = mz
1 + mz

2 −mz
3 −mz

4 (5.3)

l3z = mz
1 −mz

2 + mz
3 −mz

4 (5.4)

where µ = {x, y, z}. The latter two functions l2z and l3z only transform as a representation

of D2d for orientation of the moments along the z-direction. For this reason, and for

completeness, the basis functions must be supplemented by non-collinear functions with

no net moment:

nc1 = mx+y
1 + mx−y

2 −mx−y
3 −mx+y

4 (5.5)

nc2 = mx+y
1 −mx−y

2 + mx−y
3 −mx+y

4 (5.6)

nc3 = mx−y
1 + mx+y

2 −mx+y
3 −mx−y

4 (5.7)

nc4 = mx−y
1 −mx+y

2 + mx+y
3 −mx−y

4 (5.8)
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Table 5.1: Symmetry classification of collinear basis functions for describing the magnetic structure of

5-1−5-4. Only antiferromagnetic structures of E symmetry may give rise to a canted moment.

Point Group

State Function E 4̄, 4̄3 2-fold (4̄2) 21 || a, b σ ⊥ x+ y, x− y in D2d

� �
� �

fz +1 +1 +1 −1 −1 A2(
↑ ↑
↑ ↑

,
→ →
→ →

)
(fx, fy) +2 0 −2 0 0 E

� ⊗
⊗ �

l1z +1 −1 +1 +1 −1 B1(
↑ ↓
↓ ↑

,
→ ←
← →

)
(l1x, l

1
y) +2 0 −2 0 0 E

(
� �
⊗ ⊗

,
� ⊗
� ⊗

)
(l2z, l

3
z) +2 0 −2 0 0 E

Assuming that the isotropic magnetic interactions are dominant, the only antiferromag-

netic structures capable of exhibiting a net canted moment must transform as either A2 or

the doubly degenerate E representation, and have a k = [0, 0, 0] propagation vector (Table

5.1, 5.2). This provides two possible canted antiferromagnetic structures for 5-1 and 5-3

obtained from predominantly either (l1x, l
1
y) or (l2z, l

3
z) basis functions, both of E symmetry.

In both cases, the corresponding order parameters can be mixed with the ferromagnetic

functions (fx, fy) of E symmetry, resulting in a net canted moment in the ab-plane. Of

these, the striped order given by (l2z, l
3
z) is expected to prevail only for antiferromagnetic

J (3)
ij < 0, and provided |J (3)

ij | > |J
(1)
ij +J (2)

ij |. Since this condition is unlikely to be satisfied

given the relative proximity of each radical pair, the basis functions (l1x, l
1
y) should be con-

sidered the most likely candidate for the zeroth order magnetic structure. The anticipated

order can therefore be described by ferromagnetic 1D π-stacks, coupled antiferromagnet-
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Table 5.2: Symmetry classification of noncollinear basis functions for describing the magnetic structure

of 5-1−5-4. Only antiferromagnetic structures of E symmetry may give rise to a canted moment.

Point Group

State Function E 4̄, 4̄3 2-fold (4̄2) 21 || a, b σ ⊥ x+ y, x− y in D2d

↗ ↘
↖ ↙

nc1 +1 −1 +1 +1 −1 B1

↗ ↖
↘ ↙

nc2 +1 +1 +1 +1 +1 A1

↘ ↗
↙ ↖

nc3 +1 −1 +1 −1 +1 B2

↘ ↙
↗ ↖

nc4 +1 +1 −1 −1 −1 A2

ically with their closest neighbours, related by 21 axes. On the basis of this discussion,

we therefore anticipate that the ferromagnets 5-2 and 5-4 can be distinguished from their

canted antiferromagnetic counterparts 5-1 and 5-3 primarily by the sign of J (1)
ij and J (2)

ij ,

which must be antiferromagnetic for the latter materials. In the next section, we discuss

how such a dichotomy may arise due to the relative importance of ferromagnetic exchange

through empty σ-orbitals.

5.2.1 Molecular Electronic Structure

At each radical site in the crystal, we label molecular orbitals according to their energy

relative to the highest, singly occupied molecular orbital (SOMO, α = 0). Those orbitals

with greater energy are labelled sequentially with α > 0, with the lowest unoccupied

molecular orbital (LUMO) having α = +1. The filled orbitals, at lower energy than the

SOMO have α < 0. The local point group symmetry of each molecular site is Cs which is

sufficiently low to ensure the absence of degenerate orbitals. Nonetheless, the α = +1 and

α = +2 orbitals are nearly degenerate, consisting of A′ and A′′ combinations of chalcogen-

chalcogen σ-antibonding orbitals (Fig. 5.2). Here we suggest that these orbitals play an
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Figure 5.2: Relevant orbitals in three orbital model of the electronic structure of 5-1−5-4. Plots were

generated from B3LYP/6-311G(d,p) calculations on 5-4.

important role in determining the magnetic structure through small hybridization with

the SOMO bands. Within the three orbital manifold we consider a singe-site Hamiltonian

given by:

Hi =
∑
α

εαi c
†
i,αci,α + U

∑
α

ni,α,↑ni,α,↓ + V
∑
α>0

ni,0ni,α + V ′ni,+1ni,+2 (5.9)

+
∑
α>β
σ,σ′

Kαβ
i c†i,β,σ′c

†
i,α,σci,α,σ′ci,β,σ

where we have explicitly assumed the Coulomb repulsion between electrons in the same

orbital U = U00
i = U11

i = U22
i to be orbital-independent, and that V = V 01

i = V 02
i . The

former Coulomb term can be estimated from electrochemical measurements to be on the

order of U ∼ 0.8 eV,86 while the remaining terms can be estimated on the basis of state

energy calculations on the isolated molecular anion. To see this, note that the two-electron,

three-orbital system admits 15 states at each radical site. The first 9 can be organized into

three sets of triplets of increasing energy with varying occupancy of the three orbitals:

3|110〉 , E = ε0i + ε1i −K12
i + V (5.10)

3|101〉 , E = ε0i + ε2i −K12
i + V (5.11)

3|011〉 , E = ε1i + ε2i −K23
i + V ′ (5.12)

where the notation 3|110〉 refers to a triplet state (with multiplicity 3), with one electron

occupying the SOMO α = 0, and one occupying the LUMO α = +1. The remaining states
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Table 5.3: Single-site Hamiltonian parameters for 5-4 (R1 = Et, R2 = Cl) assuming U ≡ 0.8 eV.

Method ε0 ε1 ε2 V V ′ K01
i K02

i K12
i

DDCI3 ≡ 0 +1.6 eV +1.9 eV 0.80 eV 0.81 eV 0.11 eV 0.11 eV 0.66 eV

SORCI ≡ 0 +1.5 eV +1.7 eV 0.87 eV 0.82 eV 0.10 eV 0.10 eV 0.63 eV

are singlets organized in order of increasing energy are given approximately by:

1|200〉 , E = 2ε0 + U (5.13)

1|110〉 , E = ε0i + ε1i +K12
i + V (5.14)

1|101〉 , E = ε0i + ε2i +K12
i + V (5.15)[

1√
2

1|020〉 ± 1√
2

1|002〉
]

, E = ε1 + ε2 + U ±
√

(ε2 − ε1)2 +K23
i (5.16)

1|011〉 , E = ε1i + ε2i +K23
i + V ′ (5.17)

where the significant mixing of 1|020〉 and 1|002〉 states results from the large repulsion

between electrons in the two LUMOs in comparison to the energetic splitting ε2− ε1. The

energies of the above states have been computed for the all-selenium 5-4 using the rela-

tively inexpensive multiconfigurational methods implemented in ORCA:148 (i) Difference

Dedicated Configuration Interaction with three degrees of freedom (DDCI3)264 and (ii)

Spectroscopy Oriented Configuration Interaction (SORCI)265 method. The results should

be considered generic for the series 5-1 to 5-4. Input orbitals we generated from a DFT

calculation on the closed shell anion state (1|200〉) at the B3LYP/6-311G(d,p) level, fol-

lowed by a CASSCF calculation on the CAS(2,3) space with equal energetic weight placed

on all above states. The effective Hubbard Hamiltonian parameters were then obtained

by fitting the calculated state energies to those in eq’ns (5.10) − (5.17). The results are

summarized in table 5.3.

While the energetic splitting of the α = +1 and α = +2 LUMOs is found to be small

in both methods (0.2 − 0.3 eV), both orbitals are well separated from the SOMO, by a

large energy of at least 1.5 eV at the molecular level. The value of the Hund’s coupling

between the SOMO and LUMOs is also small, on the order of 0.1 eV for both K01
i and K02

i ,
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Figure 5.3: MOMOs for 5-4 for interaction (2) showing over localization of the α = +1,+2 orbitals at

site i.

which follows from the large difference in the spatial density of these orbitals. Given these

findings, mixing of the SOMO and LUMO bands in the solid state is expected to be small

except in special packing arrangements where the intermolecular hopping integrals between

such orbitals t01
ij , t

02
ij becomes large compared to the SOMO-SOMO hopping integrals t00

ij .

As will be discussed in the following sections, such an arrangement is indeed observed in

the present family, so that the empty-orbital contribution to the ferromagnetic exchange

may be significant. This possibility is explored in the next section.

5.2.2 Solid State Electronic Structure

In order to investigate the role of multi-orbital exchange in 5-1−5-4, we have computed

hopping integrals for each material using the Maximally Overlapping Wannier Orbital

(MOMO) approach detailed in section 2.4.2. In this case, calculations were performed

at the B3LYP/6-311G(d,p) level, based on atomic coordinates from room temperature
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single crystal x-ray structures. Results for 5-4 are summarized in Table 5.4, and may

be compared with the results using the MLWO approach below. Hopping integrals for

interaction (3) are not printed because they were found to be small in all cases. The

orbital energies agree essentially with those obtained by calculations on single molecules,

with ε2− ε1 ∼ 0.3 eV, although the energetic separation between the SOMO and LUMO is

found to be increased to > 2 eV, in comparison with ∼ 1.5 eV found in the previous section.

For all radicals pairs, hopping integrals between SOMOs were found to be small, on the

order of t00
ij ∼ 25 − 40 meV, so that all pairs satisfy the orthogonal overlap requirement

for ferromagnetic interactions. In contrast, the hopping integrals between the SOMO and

LUMOs on adjacent sites were found to be much larger for interstack interactions (1) and

(2), up to t10
ij (2) ∼ 350 meV. Inspection of the obtained MOMOs (Fig. 5.3) reveals an

anomalous mixing of the α = +1,+2 orbitals in the case of type (1) and (2) interactions,

as a result of the small energetic splitting of these orbitals in comparison with the large

inter orbital t01
ij (1), t02

ij (1), t10
ij (2), t20

ij (2) hopping integrals. As discussed in section 2.4.2,

this overlocalization should not be considered a significant source of error for perturbative

calculations of pairwise magnetic interactions.

The exceptionally large inter orbital hopping elements for interactions of type (2) stem

from the unique packing of radicals, which results in the strong overlap of σ-LUMOs and

π-SOMOs on adjacent radicals through orbital density at the E2 position on both sites.

Experimentally, it is also this position that strongly determines the nature of magnetic

coupling between such radicals. Recall, for E2 = Se, ferromagnetic interstack interactions

are expected, while for E2 = S, the anticipated magnetic structure is consistent with

antiferromagnetic J (1)
ij ,J

(2)
ij . In order to compare the magnitude of such hopping integrals,

and given the observed over localization of the LUMOs, it is useful to discuss values that

are independent of orbital rotations. Therefore, we compute the root mean square hopping:

trms =
1

2

√
(t01
ij )2 + (t02

ij )2 + (t10
ij )2 + (t20

ij )2 (5.18)

As can be seen from the values in Table 5.5, the calculated SOMO-SOMO hopping t00
ij

is not strongly affected by the identities of the chalcogen atoms E1 and E2. In contrast,

the magnitude of SOMO-LUMO hopping (characterized by trms) depends strongly on the

chalcogen atom in the E2 position, particularly for the interstack hopping terms (1) and
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Table 5.4: Computed one-electron Hamiltonian parameters for 5-4 using the MOMO method. Calcu-

lations were performed at the B3LYP/6-311G(d,p) level. The orbital energies εαi represent those of the

isolated molecules.

α

0 1 2

εαi (eV) ≡ 0 +2.39 +2.68

β

tαβij (π) (meV) 0 1 2

0 +28.8 0 +56.8

α 1 0 +23.2 0

2 −61.6 0 +25.0

β

tαβij (1) (meV) 0 1 2

0 +13.1 −25.3 +82.1

α 1 −6.0 −0.8 +6.0

2 −9.0 −1.3 +9.1

β

tαβij (2) (meV) 0 1 2

0 +1.6 −8.5 +12.7

α 1 +112.1 +8.6 −29.0

2 −351.9 −8.2 +29.3

(2). The magnetic exchange depends on these values approximately as (see section 2.1.4):

H =
∑
〈i,j〉

Jij Si · Sj (5.19)

Jij ≈
4(t00

ij )2

U
− 8t2rmsK

01
i

[U +
ε1i+ε

2
i

2
]2 − (K01

i )2
(5.20)

so that those materials with large trms/t
00
ij will display ferromagnetic interstack interactions,

while antiferromagnetic coupling will be observed for small trms. For nearest neighbours

(1) and (2), trms is found to be nearly twice as large for the heavier E2 = Se than for E2 = S

suggesting ferromagnetic interactions four times larger, and a possible explanation for the

dichotomy in the magnetic response. However, the SOMO-SOMO hopping is sufficiently

small in all of 5-1−5-4 that direct estimation of Jij(1),Jij(2) via eq’n (5.20) suggests

both interactions should dominated by multi-orbital exchange and be ferromagnetic for all

materials. This computational finding is clearly at odds with the experimental magnetic

structures. It may suggest a systematic error in the computational method, or be related to
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Table 5.5: Hopping integrals computed by the MOMO method for 5-1−5-4.

Molecule E1 E2 t00
ij (π) trms(π) t00

ij (1) trms(1) t00
ij (2) trms(2)

5-1 S S +33.6 29.5 +10.8 22.3 +2.2 135.1

5-2 S Se +27.7 57.8 −15.2 84.8 ∼ 0 269.9

5-3 Se S +38.7 34.1 −6.1 25.2 +4.0 104.4

5-4 Se Se +28.8 40.2 −13.1 43.3 +1.6 184.8

the fact that all calculated values were based on room temperature structures, and should

be expected to shift on cooling.

Taken together, these observations suggest multi-orbital exchange may play a role in the

ferromagnetic interactions observed in the tetragonal P 4̄21m radical phase. However, these

interactions are partially mitigated by the relatively large energy gap between the π-SOMO

and empty σ-LUMOs. For this same reason, we expect the SOMO band to be essentially

electronically isolated despite the fact that it’s specific dispersion may be affected by small

SOMO-LUMO mixing. To emphasize this point, we show in Fig. 5.4 the band structure

of 5-4 computed using PW-SCF,177 and employing ultra-soft PBE pseudo-potentials, with

a plane-wave cutoff of 25 Ry and integration mesh of 250 Ry. Self-consistent field (SCF)

calculations were performed on a 4 × 4 × 4 Monkhorst-Pack k-point mesh. At no point

in the Brillouin zone does the SOMO and LUMO bands intersect, so that the low-energy

transport physics should be completely describable within the context of the single SOMO

band. At the DFT level of theory, 5-4 is predicted to be a metal, with the Fermi level

crossing the half-filled, and isolated SOMO band. However, the bandwidth of W < 0.3

eV is far too small to overcome the estimated on-site Coulomb repulsion U ∼ 0.8 eV at

ambient pressure. In the next section, we will consider the evolution of the electronic

structure under pressure including correlation effects. The obtained band structure was

further analyzed using wannier90.x176 to construct maximally localized Wannier orbitals,

which may be compared with those computed with the MOMO method. These MLWO

hopping integrals are shown in Table 5.6, and show excellent qualitative agreement with

the corresponding MOMO parameters, although the latter are slightly larger in magnitude
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SOMO

Energy
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Figure 5.4: (a) Band structure of 5-4 computed with PW-SCF as described in the text. The large

energetic spacing between the SOMO and LUMO bands in the solid state suggests that while SOMO-

LUMO hopping may alter the dispersion of the bands, the energy levels never overlap. (b) Cartoon of the

electronic structure in the absence of correlation.

on average.

5.2.3 Summary / Conclusions

Within the tetragonal P 4̄21m structural phase, those radicals with Se in the E2 position

tend to order as ferromagnets, while those with S in this position tend to order antifer-

romagnetically, and display a canted moment. Symmetry analysis suggested that these

two magnetic phases must result from a difference in the sign of the magnetic interactions

between π-stacks. This dichotomy was argued to arise from an enhancement hopping be-

tween the π-SOMO and empty σ-LUMOs on adjacent radicals in the solid state through

incorporation of Se into the critical E2 position. As this hopping sets the magnitude of

multi-orbital ferromagnetic exchange, the bulk ferromagnets 5-2 and 5-4 are expected to

have more ferromagnetic interstack interactions than the antiferromagnetic 5-1 and 5-3

materials. However, we suggested that the mixing of the SOMO and LUMOs should not

significantly alter the charge transport properties, which can be considered within the

context of a single band.
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Table 5.6: Computed one-electron Hamiltonian parameters for 5-4 using the MLWO method followed

by manual site-diagonalization. Calculations were performed as described in the text.

α

0 1 2

εαi (eV) ≡ 0 +0.94 +1.23

β

tαβij (π) (meV) 0 1 2

0 +16.4 0 +3.0

α 1 0 ∼ 0 0

2 −66.04 0 ∼ 0

β

tαβij (1) (meV) 0 1 2

0 +12.3 +41.6 +41.6

α 1 −4.0 −0.8 ∼ 0

2 −1.6 −2.5 −2.4

β

tαβij (2) (meV) 0 1 2

0 +5.8 −9.6 +11.8

α 1 −141.1 −26.0 −25.6

2 −143.0 −22.4 −21.5

5.3 Response to Physical Pressure

The previous sections have focussed on the variation of magnetic response with chemical

modifications and the corresponding solid state structural changes. In contrast to this

chemical pressure approach, one can also study the response of these materials to physical

pressure. The following sections will consider the pressure evolution of the magnetic and

electronic properties of 5-4 and the related isostructural material, denoted 5-5, in which

the basal Cl is substituted for a Br.

N

Se
Se

NN
Se

Se

Et

Cl

N

Se
Se

NN
Se

Se

Et

Br
5-4 (Cl) 5-5 (Br)
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(a) (b)

Figure 5.5: AC-susceptibility χ′ as a function of pressure for (a) 5-5 and (b) 5-4. Above Above 4.8 and

3.0 GPa, respectively, the sharp peak in χ′ is smeared out, and strongly suppressed, indicating a possible

magnetic phase transition to an antiferromagnetic or disordered state.

5.3.1 Magnetic Response

In Ref. 91, we reported the evolution of the crystal structure and magnetic properties of 5-

4 (Cl) under pressure. Magnetic susceptibility χ′ (1 Hz) measurements were performed on

several (microcrystalline) powder samples. Upon initial compression, such measurements

showed an enhancement of TC from 16 K at ambient pressure to 21 K at 1 GPa (Fig. 5.5).

However, above this pressure TC began to retreat with increasing pressure, falling to 16 K

at 2.4 GPa (Fig. 5.6). At these higher pressures, the characteristic jump in χ′ at TC was

also observed to become increasingly smeared out, with the magnitude of χ′ significantly

suppressed, so that no clear ordering transition was observed above 2.4 GPa. As discussed

in the next section, the electrical transport is still activated in this pressure region, suggest-

ing a Mott insulating state survives at least until 7 GPa. Therefore, the apparent absence

of ferromagnetic order above 2.4 GPa signifies either an experimental complication, or

a genuine magnetic phase transition to an antiferromagnetic or magnetically disordered

state. In support of the latter explanation is the fact that nonhydrostaticity of the pres-

sure may generate a distribution of ordering temperatures within the sample, smearing out
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(a) (b) (c)

Figure 5.6: (a) Pressure dependence of ferromagnetic ordering temperature for 5-4 and 5-5. (b) Def-

inition of slippage coordinate ∆y and plate-to-plate separation ∆z. (c) Pressure dependence of slippage

coordinates.

otherwise sharp phase transitions. Support for a magnetic phase transition in the vicinity

of 3 GPa can be taken from the theoretical pressure dependence of the magnetic exchange

parameters, discussed below.

At ambient pressure, a π-stack slippage of [∆x,∆y] = [0.0 Å, 2.14 Å] place 5-4 (Cl)

on the edge of a narrow region of ferromagnetic J (π)
ij predicted to occur around ∆y ≈ 1.75

Å. This ferromagnetic “ridge” was described previously in section 4.2.3, and corresponds

to vanishing dispersion along the π-stacks t00
ij (π) ∼ 0 that separates regions of positive

t00
ij (π) > 0 at greater ∆y from those of negative t00

ij (π) < 0 at smaller slippage. Consis-

tent with this placement of ambient pressure structure of 5-4 (Cl) is the fact that the

computed SOMO-SOMO hopping integrals along the π-stacks are found to be small and

positive (Sec. 5.2.2). The action of physical pressure, in addition to overall compression

of the unit cell, is to reduce the slippage ∆y, thus decreasing t00
ij (π). Upon compression,

t
00,(π)
ij initially approaches zero, and then becomes increasingly negative (Fig. 5.7(c)). This

effect is most dramatically seen in the pressure dependence of J (π)
ij , which BS-DFT calcu-

lations suggested should exhibit a maximum (at 3 GPa), due to initial suppression of the

antiferomagnetic kinetic exchange. These calculations were based on room temperature

powder x-ray structural parameters and were performed at the B3LYP/6-311G(d,p) level;

the results of these calculations are shown in Fig. 5.7(a) with reference to the Hamiltonian

H = −2JijSi · Sj. In ref. 91 we argued that this specific pressure dependence of J (π)
ij is

primarily responsible for the maximum in TC around 1 GPa. Further compression beyond
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(a) (b)

(c)

Figure 5.7: (a) Theoretical pressure dependence of magnetic exchange constants for 5-4 (Cl) with

reference to the Hamiltonian H = −2JijSi · Sj . Values were computed using the BS-DFT method, at

the B3LYP/6-311G(d,p) level. (b) Definition of nearest neighbour interactions (π), (1), (2). (c) Pressure

dependence of SOMO-SOMO hopping integrals computed using the MOMO method at the same level of

theory.

1 GPa is predicted to eventually result in antiferromagnetic J (π)
ij , as t

00,(π)
ij becomes in-

creasingly negative with reduced slippage. In contrast, the computed pressure dependence

of the interstack interactions J (1)
ij ,J

(2)
ij was found to be much milder within BS-DFT, with

both interactions remaining ferromagnetic at all pressures. In the latter case, the increas-

ing magnitude of t00
ij (2) is offset by similar enhancements of inter orbital hopping, so that

multi-orbital ferromagnetic contributions to the exchange dominate at all pressures.

Taken together, the anticipated pressure dependence of the magnetic interactions sug-

gests the possibility of a magnetic phase transition in 5-4 (Cl) at high pressure, brought

on by an increasingly antiferromagnetic J (π)
ij . However, as measurements on 5-4 and 5-5

were performed on powder samples, disorder is expected to be particularly important due

to the fact that the pressure gradient is unlikely to be uniform within the sample. The

combination of structural disorder and the vicinity of a magnetic phase transition may lead
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to a glassy magnetic phase, which may be responsible for the weakening of the magnetic

response at high pressures. Measurements of the frequency dependent AC-susceptibility

should shed light on this high pressure magnetic phase, and represent a possible avenue of

future investigation. At this point, we tentatively classify the low temperature magnetic

phase of 5-4 (Cl) appearing between 3.0−7.0 GPa as an antiferromagnetic spin glass.

Since the report of the magnetic response of 5-4 (Cl) to pressure, similar properties

were also observed in the isostructural 5-5 (Br).89 In this case, the larger Br atom results

in slightly larger slippage of ∆y = 2.17 Å at ambient pressure, and a more sluggish pressure

response. In this case, the ambient pressure TC of 17 K was observed to increase up to 24

K near 3.0 GPa, and a strong suppression of χ′ was observed above 4.8 GPa. It is worth

noting that this pressure dependence of χ′ was also observed to be irreversible, so that

only a small fraction of the magnitude returned upon pressure release. This implies the

possibility of some sample degradation under pressure and/or a slow response of the lattice

to changes in pressure. Both of these are consistent with our suggestion that structural

disorder is an important factor to consider when interpreting these results.

5.3.2 Transport Properties and Metallization

With increasing pressure, the enhancement of t00
ij (π) may be anticipated to eventually be-

come sufficient to a induce a metallic state. Indeed, in Ref. 89 we reported transport data

on 5-4 (Cl) and 5-5 (Br), which showed a region of metallic response above a critical

pressure of Pc = 7 GPa and 9 GPa, respectively, as defined by a resistivity that increases

with increasing temperature (dρ/dT > 0) above T = 200 K (Fig. 5.8). In the same pres-

sure ranges, the resistivity appears to saturate at low temperatures, rather than diverge as

would be expected of an insulating state for which all charge carriers eventually become

gapped out at low temperature. On this basis, we classified this high pressure state in

both materials as a metallic phase, the first observed in neutral radical materials. How-

ever, we emphasized the fact that the resistivity of 5-4, 5-5 in this state above Pc greatly

exceeds the Mott-Ioffe-Regal (MIR) limit,191–193 of ρMIR ∼ 10−3 Ω cm (see section 3.1). By

definition, the high pressure state of 5-4, 5-5 therefore appears to be a bad metal in the

vicinity of room temperature, as dρ/dT > 0. However, at this time, and without single
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Figure 5.8: (a) Resistivity data measured on pressed pellet samples of 5-4. Above Pc ∼ 6 GPa, the

resistance becomes a weak function of pressure, and shows a metallic temperature dependence (dρ/dT > 0)

above T = 200 K. At lower temperatures, the resistivity increases, but saturates, which may be related

to disorder or grain boundary scattering. (b) Resistivity data measured on pressed pellet samples of 5-5

showing similar response to 5-4, but with Pc ∼ 9 GPa. (c) Putative phase diagram. MI = Mott Insulator,

BM = Bad Metal, FM = Ordered Ferromagnet, SG = Spin Glass, AFM = Ordered Antiferromagnet; “??”

indicates an unknown phase discussed in the text.

crystal transport measurements, it is very difficult to gain further insight into this obser-

vation. What can be said is that the putative metallic state is consistent with theoretical

predictions for this material, which we detail in the following section.

5.3.3 Evolution of Electronic Structure

In this section, we focus on the lowest partially filled band in the solid state, which despite

being formed from a mixture of molecular SOMO and LUMO density, remains electroni-

cally isolated from the other bands at all pressures. We also focus on 5-4, and take the
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Figure 5.9: Evolution of momentum-resolved spectral density A(k, ω) for 5-4 with pressure. (top)

MLWO-interpolated band structures reveal increasingly 1D character. (bottom) Band structures supple-

mented with IPT DMFT self energy at T = 300 K. At 0 GPa and 4 GPa, distinct upper and lower Hubbard

bands are observed, but at 8 GPa, dispersion along the π-stacks is sufficient to merge the spectral features

providing a narrow band near the Fermi level, and suggesting formation of a putative metallic state

results to be generic for 5-5 as well. Band structures for 5-4 as a function of pressure were

computed using PW-SCF using the same methods as detailed in section 5.2.2 employing

reported x-ray structures at 0.0, 3.9, and 8.0 GPa.89,91 The hopping parameters for the

SOMO band alone were extracted by analysis with wannier90.x. The MLWO interpolated

band structures are shown in Fig. 5.9 (top). Not surprisingly, the SOMO-SOMO hopping

integral along the π-stacks t00
ij (π) is found to have the strongest pressure dependence, de-

creasing from +16.4 meV at ambient pressure to −51 meV at 3.9 GPa and −120 meV at 8.0

GPa as the molecules are shifted away from orthogonal overlap. This effect can be clearly
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Figure 5.10: (a) Comparison of the momentum-integrated spectral function at kBT = 0.1 eV with cor-

relation (i.e. density of states) obtained from IPT (top), and integration of A(α,k, ω) obtained from the

DFT band structure and analytic continuation of the HF-QMC DMFT self-energy using Padé approxi-

mants. The close correspondence validates both methods. (b) Cartoon of the electronic structure showing

merging of the upper and lower Hubbard bands with pressure.

seen in the direction and magnitude of the dispersion between the Γ and Z points. In the

previous section, we discussed how this enhancement could initially lead to a magnetic

phase transition, provided W < U so that the electrons were still sufficiently localized at

low temperatures to behave as magnetic spins.

In contrast, at 8 GPa, we find a total SOMO bandwidth of W = 0.75 eV, on the same

order as the anticipated on-site Coulomb repulsion U ∼ 0.8 eV, suggesting the possibil-

ity of metallization. In order to investigate this possibility, we employed the computed

band structures as a starting point for effective one-orbital Iterated Perturbation The-

ory (IPT)214,215 and Hirsch-Fye QMC DMFT17,209–213 calculations including an on-site

Coulomb repulsion of U = 0.8 eV. For the former method, real frequency data is imme-

diately obtained from the calculation, and a variety of temperatures may be studied. For

the HF-QMC calculations, we are restricted to a temperature of kBT = 0.1 eV (T = 1160

K). In this case, the imaginary frequency DMFT self-energy ΣDMFT (iωn) was analytically

continued using Padé Approximants. The close correspondence between the density of

states
∑

α

∫
dkA(α,k, ω) of both methods at kBT = 0.1 eV (Fig. 5.10(a)) provides valid-

ity for the results. On this basis, we have employed the IPT self-energy to compute the
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Figure 5.11: (a) Evolution of spectral density A(ω) predicted from IPT-DMFT calculations with de-

creasing temperature for 5-4 showing the development of a coherent quasiparticle peak below ∼ 500K.

(b) Predicted resistivity as a function of temperature, with specific temperatures highlighted. The dis-

agreement between theory and experiment can be attributed to additional scattering mechanisms.

momentum-resolved spectral function at T = 300 K according to:

A(α,k, ω) =
−Im [ΣDMFT (ω)]

(ω + µ− εα,k − Re [ΣDMFT (ω)])2 + Im [ΣDMFT (ω)]2
(5.21)

The results of these calculations are shown in Fig. 5.9 (bottom) for T = 300 K. The

temperature dependence of the density of states at 8 GPa is shown in Fig. 5.11.

At low pressure, the existence of distinct upper and lower Hubbard bands is clearly seen

in A(k, ω), but at 8.0 GPa, the bandwidth is sufficient to merge these spectral features and

generate a finite density of states at the Fermi level. At high temperatures (Fig. 5.10),

both the IPT and HF-QMC DMFT calculations suggest a bad metallic state, evidenced

by the absence of a quasiparticle peak in A(ω), appearing in this pressure region, which is

roughly consistent with the high temperature metallic phase observed experimentally. The

bandwidth of 5-4 at 8.0 GPa should thus be considered theoretically sufficient to produce

a metallic state. However, as the temperature is lowered, results from IPT calculations

suggest the formation of coherent quasiparticles (Fig. 5.11), which should theoretically be

associated with a significant drop in ρ to a value below ρMIR. Experimentally, while the

absence of a diverging resistivity as T → 0 is characteristic of some gapless charge carriers,

the insulating temperature dependence of the resistivity rules against a large density of
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coherent quasiparticles expected in DMFT. This observation prompts the consideration

of scattering effects that go beyond the paramagnetic single-site DMFT picture. The

first possible reason for the suppression of coherent quasiparticles at low temperature is

that the antiferromagnetic / spin-glass phase extends to high pressures. In this Slater

insulator scenario, such a spin symmetry breaking opens residual energy gap on the order

of TN ∼ J already at the single particle level, resulting in an insulating behaviour.266

The appearance of magnetic order significantly shifts the critical value Uc/W of the Mott

transition to lower values, so bandwidth enhancement in 5-4 and 5-5 may not be sufficient

to access a Fermi liquid state. This effect could be probed with further studies of the low

temperature magnetic phase of these materials. An additional important observation is

that, with increasing pressure, the bandwidth enhancement occurs mainly along the π-

stacks, resulting in a very one-dimensional (1D) electronic structure. For this reason, the

results of a mean field method such as DMFT should be considered with caution.

Indeed, one-dimensional conductors are highly susceptible to a variety of charge and

spin density instabilities that ultimately destroy the coherent charge carriers at low tem-

peratures that are not properly captured by DMFT. In the present case, we can rule out

the possibility of a commensurate charge density wave (Pierls distortion of the lattice) from

powder x-ray analysis which does not reveal any reflections associated with a superlattice

at high pressure and low temperature. However, even if insulating charge and spin density

states are avoided, the presence of Coulomb interactions ensures that charge transport in

strictly one dimension proceeds mainly via the collective sliding motion of bosonic charge

density waves, rather than free electron-like excitations.244 In this Luttinger liquid state,

the temperature and frequency dependence of the conductivity is not expected to be that

of a conventional metal, complicating interpretation.243,267 Scattering from impurities or

grain boundaries also becomes pronounced in 1D for the intuitive reason that charges con-

fined to travel in straight lines cannot avoid any “bumps” along the way. For this reason,

in all but the cleanest 1D conductors, one expects disorder driven (Anderson) localization

to set in at low temperatures. This effect ensures a transition to insulating (dσ/dT > 0)

behaviour below some temperature scale set by the energy barrier for tunnelling of charges

through the disorder.268 As measurements were performed on pressed pellet samples, in-

homogeneous pressure, and grain boundaries would contribute to the disorder scattering.
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Inspection of the measured resistance for 5-4 reveals a change in the slope of the resistivity

at T ∼ 100 K, which we attribute to the effects of magnetic and/or disorder scattering

on nearly coherent charge carriers. In the Anderson insulator scenario, as temperature is

increased, the conductivity is expected to become metallic-like (dσ/dT < 0) due to suffi-

cient thermal activation across the disorder barriers. In the magnetic symmetry breaking

scenario, suppression of the order parameter at high temperatures also results in the ap-

pearance of a metallic state. However, given the possibility for a complex interplay between

correlation, low-dimensionality, and disorder, it is difficult to make any strong conclusions.

Studies on high quality single crystals of both materials, where disorder may be mostly

mitigated, represents an important goal of future work.

5.3.4 Summary / Conclusions

Upon initial pressurization, the ferromagnetic ordering temperature of 5-4 (5-5) is en-

hanced due largely to a suppression of the hopping integrals t
00,(π)
ij along the π-stacks,

which reduces the magnitude of antiferromagnetic exchange. Further compression reverses

the sign and enhances these integrals, initially suppressing TC above 1.6 GPa, and then

leading to a putative frustrated region in the vicinity of 3.5 GPa (5.0 GPa), which is an-

ticipated to display glassy spin dynamics due to the presence of disorder. At still higher

pressures, above 7.0 GPa (9.0 GPa), the radicals display metallic conductivity above 200

K, which does not diverge at low temperatures, and is largely pressure independent. Such

a metallic state is anticipated by electronic structure calculations combining DFT and

DMFT methods. However, this putative metallic state does not behave as a conventional

metal, having a resistivity far above the Mott-Ioffe-Regal limit, and non-metallic transport

below a temperature T ∗. We have suggested that the explanation of these observations

may be related to the combination of disorder, magnetic and grain boundary scattering in

a material with an essentially 1D electronic structure, which makes it particularly suscepti-

ble to localization of charge carriers. Further studies should be performed on single-crystal

samples in order to discern the relative roles of each of these factors.
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Chapter 6

Spin-Orbit Effects in Heavy Atom

Radicals

6.1 Introduction

In this section, we address the observation of significant magnetic anisotropy in the ordered

phases of 5-2−5-4, which we attribute to spin-orbit anisotropic exchange interactions

occasioned by incorporation of the heavy Se atoms. For the sake of clarity, we label these

radicals according to the scheme in the previous chapter:

NN
E2

E1 E1

E2

N
Et

Cl

E2E1

S Se
SSe
SeSe

S S 5-1
5-2
5-3
5-4

In the ferromagnets 5-2 and 5-4, this manifests most evidently as a large coercive field

Hc of 250 Oe and 1370 Oe (at 2 K), respectively.86 The antiferromagnet 5-3 displays a

small canted moment, with a spontaneous magnetization of 2×10−4µB, and Hc = 66 Oe.

To put these values in perspective, recall that prior to their report in 2008, the magnetic

properties of the light organic ferromagnets such as nitroxyls,35,37,269 thiazyls,132,133,270
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and doped fullerenes271 had already been the subject of extensive research for over 30

years.2,41,272,273 However, none of these materials (neutral or charged) displayed coercive

fields (Hc) more than a few tens of oersteds.274 For this reason, the initial report of orders

of magnitude larger Hc in 5-2 and 5-4 was met with considerable scepticism. In contrast to

S > 1/2 metal-based systems, where magnetic anisotropy may be a property of individual

ions, Kramers’ theorem forbids zero-field anisotropy for single S = 1/2 radicals. Instead,

the magnetic anisotropy, and therefore coercivity, must result from interactions between

radicals. We argue in this chapter that a significantly enhanced magnitude of spin-orbit

coupling in the Se-based radicals 5-2−5-4 explains their contrasting magnetic response

with previous generations of light-atom materials.

The content below is based, in part, on studies reported in Refs 262 and 263, where

we employed single crystal ferromagnetic resonance (FMR) measurements to probe the

magnetic anisotropy. Much of the theoretical background for this section was outlined

in section 2.2. The main experimental findings, reproduced below, are that conventional

dipole-dipole interactions, which represent an alternate source of magnetic anisotropy, are

not consistent with all observations, while SOC provides a natural explanation for all the

data. These studies are then extended in this chapter in two ways: i) the development

of an ab-initio scheme capable of estimating anisotropic exchange terms in organics, and

applying this method to understanding the evolution of SOC under pressure in 5-4, and

ii) studying of the antiferromagnet 5-3, whose resonance properties are consistent not only

with the calculated magnetic interactions, but also the anticipated magnetic structure.

6.2 FMR Studies of Tetragonal Ferromagnets

6.2.1 Experimental

In order to probe the magnetic anisotropy of 5-2 and 5-4 we have measured electron spin

resonance (ESR) spectra at low temperature, a technique that is sensitive to the bulk

magnetic excitations (spin-waves) of the ferromagnetically ordered phase.275,276 This tech-

nique has been employed in the study of various organic materials including charge-transfer
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salts,277,278 doped fullerenes,279 and radicals.280,281 In a typical single crystal experiment,

microwave radiation is applied to a sample at a set frequency, and the energies of magnetic

excitations are tuned using an external field Hext that can be varied in magnitude and

direction with respect to the crystal. Whenever the energy of such excitations matches

the frequency of applied radiation, resonant absorption is observed. In a semiclassical

approach, this resonant frequency is given by the precession frequency of total ordered

magnetization M, which may be determined by solving the Landau-Lifshitz equation of

motion:

∂M

∂t
= γM×∇MF (6.1)

where γ = gµB/~ is the gyromagnetic ratio, and F is the free energy density. For tetragonal

materials, the latter quantity may be expanded as:282

F = −M ·Hext −K2 cos2 θM −K4⊥ cos4 θM −K4|| (3 + 4 cos 4φM) sin4 θM − . . . (6.2)

where Hext is the external field, {K} are phenomenological anisotropy constants, and θM

and φM are the polar and azimuthal angles defining the direction of M with respect to the

crystallographic c-axis. It holds, for the vast majority of microscopic sources of magnetic

anisotropy, that the higher order anisotropy constants will diminish in magnitude, so that

|K2| > |K4⊥| ∼ |K4|||. For this reason, the anisotropy in 5-2 and 5-4 is expected to

have primarily uniaxial character; a K2 > 0 denotes easy c-axis anisotropy, while K2 < 0

represents easy ab-plane anisotropy. An alternate view, which allows more transparent

relation of the microscopic spin Hamiltonian and the resonant properties, is to consider

the excitations of the ordered state as quantized bosonic spin-waves. Since the dimensions

of the crystal are much smaller than the wavelength of the applied radiation, only k = 0

spin waves are usually excited, which for ferromagnets correspond to uniform precession of

M as above. Consider, for example, a hypothetical 1D ferromagnetic chain described by

the Hamiltonian:

H =
∑
〈i,j〉

J Si · Sj − ΓSzi S
z
j −

∑
i

gµBHext · Si (6.3)

where the coordinates {x, y, z} refer to the crystallographic axes. It is useful to choose,

as our quantization axis, the direction of M, which we label z′. This direction will de-

pend, generally, on both the nature of the anisotropy, and the external field. These new
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coordinates are related to the crystallographic ones via:

x′ = x cos θM − z sin θM (6.4)

y′ = y (6.5)

z′ = x sin θM + z cos θM (6.6)

In terms of such coordinates, we may write the spin-operators in the (Holstein-Primakoff)

representation:

S+′
i =

(√
1− a†iai

)
ai , S−′i = a†i

(√
1− a†iai

)
, Sz′i =

1

2
− a†iai (6.7)

where a†i creates a bosonic magnon at site i. This mapping associates those sites with

spin oriented along the positive z′-axis as being empty, while those with spins along the

negative z′-axis have exactly one boson, that is a†iai = ni = 1.

In the ferromagnetic ground state below TC , we expect only small deviations of the mag-

netization M away from the equilibrium orientation along z′, which corresponds to the

dilute limit 〈a†iai〉 � 1. It is convenient to work with Fourier transformed operators:

ai =
1√
N

∑
k

ake
ikri , a†i =

1√
N

∑
k

a†ke
−ikri (6.8)

After some manipulations, and retaining only terms quadratic in magnon operators, the

Hamiltonian may be written for the k = 0 uniform spin precession:

H|k=0 =

{
gµB
|M|

Hext ·M +
Γ

2

(
3 cos2 θM − 1

)}
a†0a0 −

Γ

2

(
a†0a

†
0 + a0a0

)
sin2 θM (6.9)

This equation may be brought into regular form H|k=0 = ∆0 b
†
0b0 by a Boguliubov trans-

formation of the magnon operators:

a†0 = u b†0 + v b0 , a0 = u b0 + v b†0 , u2 − v2 = 1 (6.10)
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which for suitable choice of u, v we finally obtain:

~ωres = ∆0 = gµB

√{
Hext cos(θM − θH) +

HA

2
(3 cos2 θM − 1)

}2

−
{
HA

2
sin2 θM

}2

(6.11)

which gives the quantized excitation energy of spin-waves, and thus the FMR resonance

frequency ωres. Here, we have introduced the anisotropy field:

HA|T→0 ≡
Γ

gµB
≡ 2K2

|Msat|
(6.12)

as well as θH , the polar angle between Hext and the crystallographic c-axis, and the satura-

tion magnetization density |Msat|. It is worth noting that the isotropic exchange constant

J does not contribute to the energy of the k = 0 mode, and therefore does not enter

into the FMR resonance frequency. Rather, ωres is sensitive only to the (typically) smaller

anisotropic interactions, which allows the latter to be studied with great accuracy. Al-

though the coercive field Hc is also related to these anisotropic interactions, experimentally

Hc is typically found to vary between 10% and 40% of the more intrinsic quantity HA.283

The discrepancy is related to the fact that measured Hc values depend on the dynamics of

magnetization reversal, which are affected by e.g. sample morphology and disorder.

In order to probe 5-2 and 5-4 we therefore used single crystal ferromagnetic reso-

nance (FMR) absorption to provide an independent measure of the solid-state magnetic

anisotropy. Measurements were performed in collaboration with Professor Hill’s group at

the National High Magnetic Field Laboratory (NHMFL) in Tallahassee, Florida. Single

crystals (dimensions 0.1×0.1×0.2 mm3) were prepared by known methods.86 Orientation-

and temperature-dependent studies were performed at multiple frequencies (50−120 GHz)

using a superheterodyne-cavity-based spectrometer developed around a Quantum Design

PPMS configured with a 7 T split-pair magnet.284,285 Measurements below 50 GHz were

performed in a homodyne transmission instrument and a commercial X-band (9.7 GHz)

spectrometer. Data at 240 GHz were collected using a quasi-optical spectrometer.286 In

both materials, the variation of ωres with the orientation of Hext is consistent with uniaxial

easy c-axis anisotropy, HA > 0, and small K4⊥, K4||. For this case, when Hext || c, then

θH = θM = 0 at all values of Hext, and eq’n (6.11) reduces to:
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(a) (c)(b)

Figure 6.1: (a) Dependence of resonance frequency fres = ωres/2π on magnitude of external field Hext for

5-4 (circles) at T = 10 K with fits of eq’n (6.13) and (6.14) shown in black lines. (b) Angular dependence

of the resonant field at fixed high frequency of f = 73, 240 GHz for 5-2 and 5-4, respectively. The cos2 θH

dependence confirms uniaxial anisotropy. (c) Temperature dependence of HA for 5-2 and 5-4. The fact

that the former is approximately a third of the latter is well explained by spin-orbit effects.

ωres = γ(Hext +HA) (Hext || c) (6.13)

Conversely, when Hext ⊥ c (θH = π/2), the reorientation of M with increasing field results

in a resonant frequency given by:

ωres =

{
γ
√
H2
A −H2

ext Hext ≤ HA

γ
√
Hext (Hext −HA) Hext ≥ HA

(Hext ⊥ c) (6.14)

As shown in Fig 6.1(a) for 5-4, the observed multi-high-frequency resonance positions

correspond precisely to these expected relations. Furthermore, at high frequency, such

that Hext and ω/γ � HA, then θH = θM for all orientations, the approximate angular

dependence of the resonance field at fixed frequency can be written:

Hext(res) ≈
ω

γ
− HA

2
(3 cos2 θH − 1) (6.15)

This relation holds assuming purely uniaxial anisotropy (K4⊥, K4|| = 0). Such higher-order

free energy terms, which are associated with the anisotropy in the ab-plane, introduce

higher order cos4 θH and sin4 θH terms in this high-field limit. Therefore, the finding that
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Hext(res) at high frequency for 5-2 and 5-4 conforms to a cos2 θH dependence suggests

negligible K4⊥, K4|| = 0 within experimental limits (Fig. 6.1(b)). Taken together, the

ferromagnetic resonance response of both materials identify them as uniaxial ferromagnets

with an easy c-axis. The temperature dependence of HA was obtained for 5-2 and 5-4 from

fits of eq’n (6.13) to several different frequencies (Fig. 6.1(c)). The results show the onset of

anisotropy at temperatures about 10 K above the respective ordering temperatures of the

two ferromagnets. As the temperature is decreased, HA continues to rise, having values of

8.2 kOe (at 5 K) for 5-4 and 3.1 kOe (at 4 K) for 5-2 at the lowest measured temperatures.

Not surprisingly, this observed anisotropy field is several orders of magnitude larger than

that observed for light atom organic ferromagnets such as TDAE·C60 (HA = 0.058 kOe

at 5 K)279 and β-p-NPNN (HA = 0.12 kOe at 0.4 K).280 This trend mirrors the large

discrepancy between observed coercive fields.

6.2.2 Sources of Magnetic Anisotropy

In homogeneous magnetic materials, HA may be viewed in terms of contributions arising

from (i) microscopic spin dipole-dipole interactions (Hdip
A ), (ii) macroscopic demagnetizing

fields (Hdem
A ) (for nonspherical crystals), and (iii) spin-orbit effects (HSO

A ):

HA = Hdip
A +Hdem

A +HSO
A (6.16)

Of these, the first two terms arise from the conventional spin dipole-dipole interaction:

Hdip = − gµ0µB
4π|rij|3

{
3

|rij|2
(Si · rij)(Sj · rij)− Si · Sj

}
(6.17)

where rij is the translation vector relating spins i, j. At the microscopic level, this inter-

action favours alignment of spins along directions of maximum linear spin density, which

in the case of 5-2 and 5-4 corresponds to the c-axis. Although the magnitude of this

effect can be estimated numerically by using Ewald summation techniques, it should by

inspection be on the same order of magnitude as the total anisotropy field HA measured

for spherical samples of β-p-NPNN, for which the demagnetizing and spin-orbit effects are

negligible. On this basis, it is reasonable to conclude that Hdip
A is ∼ 0.1 kOe for 5-2 and
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5-4, which represents a very small relative contribution. The second dipolar effect, the

shape-dependent demagnetizing field Hdem
A , which is often substantial in transition-metal

materials, is also small as a result of the low density of spins in 5-2 and 5-4 (and any

organic magnet). Indeed, approximating the needlelike crystals as cylinders of infinite

length suggests that Hdem
A = µ0|Msat|/2, which affords a contribution of only ∼ 0.1 kOe.

Finally, since 5-2 and 5-4 are isostructural, and have similar crystal morphology, the ef-

fects of dipole-dipole interactions should be essentially identical in both materials, and

as such cannot explain the observation that HA for 5-4 is three times greater than that

of 5-2. Therefore, the details of the magnetic anisotropy cannot be explained by dipole

contributions Hdip
A , Hdem

A , which is contrary to what is found for light-element organic

magnets.287,288 This leaves spin-orbit effects HSO
A as the only plausible cause for the large

anisotropy observed.

In order to understand the effects of SOC in 5-2 and 5-4, recall that for S = 1
2

radicals, SOC introduces anisotropic exchange interactions between local spin-orbit coupled

pseudospin moments (Sec 2.2):

Heff =
∑
〈i,j〉

Jij S̃i · S̃j + Dij · S̃i × S̃j + S̃i · Γij · S̃j (6.18)

Assuming negligible anisotropic contributions from multi-orbital exchange:

Jij = − 2K̃ij +
4

U

{
(t00
ij )2 − |C00

ij ·C00
ji |
}

(6.19)

Dij =
4i

U

{
t00
ij C00

ji −C00
ij t

00
ji

}
(6.20)

Γij =
4

U

{
C00
ij ⊗C00

ji + C00
ji ⊗C00

ij

}
(6.21)

where the spin-orbit mediated hopping parameter is:

C00
ij =

1

2

∑
α

{
~L0α
i

∆εαi
tα0
ij + t0αij

~Lα0
j

∆εαj

}
+O(L2) (6.22)

As explained in the previous chapter, the observation of ferromagnetic interactions in 5-2

and 5-4 implies that t00
ij is small for all nearest neighbours in the crystal, implying that the

Dzyaloshinskii-Moriya interaction, paramaterized by Dij will be very small in these mate-

rials. We therefore focus our attention on the pseudo-dipolar interaction, paramaterized
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Figure 6.2: Value of weighting function defined in eq’n (6.23) as a function of energy window ε. When

ε becomes large, such that all relevant orbitals are included in the spin-orbit summation, the weighting

function approaches a value determined by the average atomic spin-orbit coupling constant of the chalcogen

atoms, which are the heaviest atoms in each molecular framework.

by the symmetric tensor Γij ∝ |C00
ij |2. In order to compare the relative magnitude of this

interaction in various materials, we introduce the weighting function:

P(ε) =

|∆εαi | ≤ ε∑
α

∣∣∣∣∣ ~L0α
i

∆εαi

∣∣∣∣∣ (6.23)

which measures, for a single site, the total weight of orbitals perturbatively mixed with

the SOMO that lie within an energy window ε. In the limit where ε is taken to be large

enough to include all relevant orbitals, this dimensionless weighting function generalizes the

concept of atomic spin-orbit coupling constants to molecular species, provided a common

energy scale for ∆εαi . This weighting function was computed using ORCA at the B3LYP/6-

311G(d,p) level based on room temperature crystal geometries for 5-1, 5-2, and 5-4.

The magnitudes of the spin-orbit matrix elements ~L0α
i were computed via the Spin-Orbit

Mean Field (SOMF) method, and orbital energies were taken to be the Kohn-Sham orbital
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eigenvalues in the absence of SOC. The results, shown in Fig. 6.2, suggest that P(ε)

converges toward a value for each molecule determined essentially by the average atomic

spin orbit constant of the chalcogen atoms within the molecular framework. Thus, all

other factors assumed equal, the ratio of spin-orbit mediated hopping between 5-2 and

5-4 should follow:

|C00
ij | (5-2)

|C00
ij | (5-4)

∼
1
2
(λS + λSe)

λSe
∼ 0.6 (6.24)

and consequently,

HA (5-2)

HA (5-4)
∼ |Γij| (5-2)

|Γij| (5-4)
∼
{ |C00

ij | (5-2)

|C00
ij | (5-4)

}2

∼ 0.3− 0.4 (6.25)

Comparison of HA for the lowest measured temperatures, 8.2 kOe (at 5 K) for 5-4 and

3.1 kOe (at 4 K) for 5-2, provides the ratio of anisotropy fields to be in the range of 0.38,

which is consistent with the above theoretical predictions. That is, the magnitude of HA,

and therefore the coercive fields Hc in these materials is determined entirely by the relative

importance of SOC between the mixed S/Se radical 5-2, and the heavier all-Se 5-4.

6.2.3 Analysis of Anisotropic Exchange

Having shown that spin-orbit effects are responsible for the magnetic anisotropy in 5-2 and

5-4, we now address the microscopic spin Hamiltonian. Inspection of Fig. 6.2 suggests

that a large number of molecular orbitals ultimately make significant contributions to the

summation in C00
ij , which may be contrasted with the qualitative discussions presented in

Sec. 2.2.2. Therefore, in order to facilitate qualitative discussion of such organic systems,

it is useful to collect the orbital summation in eq’n (6.22) into a set of orbital-like functions

|ηµi 〉 defined at each site:

|ηµi 〉 =
1

2

∑
α 6=0

|αi〉
〈αi|Lµi |0i〉
εα − ε0

(6.26)

where µ = {x, y, z}. The purely imaginary |ηµi 〉 functions are neither normalized nor

eigenstates of the Fock operator, and so have no well-defined ε, but consideration of their
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spatial density and symmetry properties is nonetheless useful. In terms of such functions,

the pseudospin creation operator for the SOMO may be written:

c̃†i,0 = c†i,0 +
∑
µ

σµc
†
i,ηµ (6.27)

and the components of the spin-orbit mediated hopping parameter are simply a sum of

hopping integrals:

[Cij]µ = tη
µ0
ij + t0η

µ

ij (6.28)

This latter relationship allows us to qualitatively understand the structural dependence of

anisotropic exchange terms within the same framework as we discussed the t00
ij dependence

of the isotropic exchange in section 4.2.3. For this discussion, we define local coordinates

for each molecular site i in the P 4̄21m unit cell: the x̂i-axis is normal to the crystallographic

mirror plane bisecting the molecule, while the ẑi-axis is oriented along the normal of the

molecular plane. The |ηµi 〉 functions are shown in Fig. 6.3 for 5-4 in terms of such

coordinates, as obtained from ORCA using the SOMF method at the B3LYP/6-311G(d,p)

level. For this choice of coordinates, the SOMO (Fig. 6.3(a)) is approximately a linear

combination of pz orbitals, so that |ηzi 〉 ≈ 0, since Lzi |0i〉 ∼ Lz|pz〉 = 0. The remaining

functions |ηxi 〉 and |ηyi 〉 are composed of orbitals within the σ-framework of the molecule,

and have density largely confined within the molecular plane, but with significant extension

around the periphery of the molecule. Just as we found in the example of section 2.2.2,

the action of spin-orbit coupling is to mix the SOMO (of |pz〉 character) with orbitals of

local |px〉 and |py〉 character.

On the basis of the shapes of the |ηµi 〉 functions, we may make the following qualitative

observations:

• In many radicals, molecules within the same π-stack are related by translation, im-

plying that they share a common set of molecular coordinates, i.e. x̂i = x̂j, etc. Such

molecules are also bisected by a common crystallographic mirror plane in 5-2 and 5-

4, making it useful to discuss the symmetry of the SOMO |0i〉 and |ηµi 〉 functions with

respect to the local Cs symmetry. While both |0i〉 and |ηxi 〉 are antisymmetric with
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SOMO 

(a) (b)

Figure 6.3: (a) Highest occupied orbital (SOMO, α = 0) at each radical site i for 5-4 computed that the

B3LYP/6-311G(d,p) level. (b) Pseudo-orbital functions defined in eq’n (6.26) to describe SOC hopping

parameters Cij . The shape of |ηµi 〉 enhances anisotropic exchange between adjacent π-stacks.

respect to the mirror, and have a representation A′′, the |ηyi 〉 (and |ηzi 〉) functions are

symmetric, and transforms as A′. This implies the only non-zero hopping integrals

are t0η
x

ij and tη
x0
ij , such that C00

ij (π) must be oriented in the x̂ direction normal to the

local mirror plane. This symmetry constraint is already a well known restriction on

the orientation of Dij(π) ∝ C00
ij (π),150 but emerges naturally in this language.

• The finding that |ηzi 〉 ≈ 0 holds, in fact, for any planar organic π-system, and suggests

that Cij will tend to be oriented perpendicular to both ẑi and ẑj. In 5-2 and 5-4, this

preference ensures that all Cij lie within, or close to the crystallographic ab-plane.

In other materials, it may have more drastic consequences. For example, when the

symmetry of sites i, j is such that ẑi = ẑj, the component of Cij along this direction

will vanish almost exactly. When the two sites are bisected by a common mirror

plane, as above, but ẑi is normal to the mirror, the interactions between the two sites

will be entirely isotropic. All components of Cij will vanish. To see this, note that this

orientation ensures the σ-like |ηxi 〉 and |ηyi 〉 functions are precisely orthogonal to the

π-SOMO |0j〉, so that all hopping integrals tη
µ0
ij and t0η

µ

ij are zero. This restriction

arises not only due to symmetry constraints, but also the specific π-nature of the

SOMO.

• The fact that |ηxi 〉 and |ηyi 〉 are largely confined to the molecular plane, and have a

complex arrangements of nodes that differ in placement from the nodes in the SOMO

will tend to suppress interstack tη
µ0
ij (π) and t0η

µ

ij (π) integrals. At the same time, the
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(a) (b) (c)

Figure 6.4: (a)-(c): Orientations of the local C00
ij for 5-4, viewed down the c-axis for interactions (π),

(1), and (2), respectively. Molecules are represented by boxes, with shaded boxes indicating interacting

molecules (see Fig. 1(a)). For interactions (1) and (2), C00
ij has components in the c-direction, as indicated

by tapered arrows.

extension of the pseudo-orbital functions around the molecular periphery enhances

interstack tijηµ0 integrals so that |C00
ij (1)|, |C00

ij (2)| > |C00
ij (π)| is expected.

Having these qualitative observations in mind, we estimated C00
ij for 5-4 according to

eq’n (6.22) for each nearest neighbour radical pair. An appropriate site-local orbital basis

was constructed using the MOMO method in ORCA, which provides the necessary inter

orbital hopping integrals. Spin-orbit matrix elements were first computed using the SOMF

method on isolated molecules, and then rotated into the final MOMO basis. The results,

summarized in Fig. 6.4, conform to the qualitative expectations detailed above. The

weakest interactions occur between adjacent radicals in the same π-stack, with C00
ij (π) =

i(0.34, 0.34, 0.00) meV for the stack closest to the origin of the unit cell. The remaining

interstack interactions are greater in magnitude, with C00
ij (1) = i(1.26, 1.76, 0.67) meV

and C00
ij (2) =i(1.91, −2.92, −1.45) meV, for the pair of stacks closest to the x-axis of

the unit cell. On the basis of these calculated values, the pseudodipolar component of

the anisotropic exchange Si · Γij · Sj may be computed using eq’n (6.21), assuming U ∼
Ecell = 0.8 eV in related materials (Sec. 1.3.3). For ferromagnetically coupled spins,

such interactions prefer alignment of Si and Sj in the plane normal to C00
ij . The finding

that the largest magnitude components of C00
ij fall in the ab-plane for all interactions
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therefore identifies the crystallographic c-axis as the easy axis of magnetization. Indeed,

the anisotropy field may be computed from the zero-field gap in the spin-wave excitations

at k = 0, which is given for the tetragonal cell by:

∆0 ≡ gµBHA =
1

2

∑
j

[Γij]aa + [Γij]bb − 2[Γij]cc (6.29)

where {a, b, c} refer to the crystallographic axes. Here, we have explicitly assumed a

collinear magnetic structure, which should prevail given the argued weakness of the DM-

interaction. Via this formula, we compute the anisotropy field of 5-4 to be 9.7 kOe, which

compares reasonably well in both sign and magnitude with the measured value of 8.8 kOe

(T = 2 K). Of the total calculated HA value, roughly 30% is contributed by (1)-type

interactions, and 70% by (2)-type interactions, with essentially negligible anisotropy due

to (π)-type interactions.

In the previous section, we discussed that the relative magnitude of HA between 5-2

and 5-4 was within the expected relationship given strong anisotropic exchange interac-

tions. In this section, we find that the absolute magnitude of HA also conforms to the

predictions from spin-orbit coupling. In calculating HA we have taken the simplest ap-

proach in ignoring both DM-interactions and contributions from multi-orbital anisotropic

exchange, discussed in Sec. 2.2.4. The former interaction, characterized by |Dij| ∝ t00
ij |C00

ij |,
makes a contribution to HA that scales naively as ∼ (1/gµB)|Dij|2/Jij ∼ 0.1 − 0.5 kOe,

and therefore could be included in a more thorough future study. Given the large ener-

getic separation between the SOMO and LUMOs in 5-2 and 5-4, the contribution due to

multi-orbital effects is expect to be smaller by a factor of K01
i /∆ε ∼ 0.1, and thus may

also represent a significant correction to the calculated HA. Nonetheless, we feel the most

important contribution to HA, namely Γij has been well addressed using the above com-

putational scheme. Future refinements of this method must address smaller contributions

to the anisotropic exchange, as well as extend the studies to a wider range of materials. In

the next section, we use this scheme to address the evolution of the magnetic anisotropy

of 5-4 under pressure.
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(a) (b) (c)

Figure 6.5: (a) Schematic of the 5-4 sample and experimental coordinates. (b) Angle dependent FMR

spectra recorded as a function of the polar angle θH at f = 58 GHz and T = 2 K. The angle-dependent

dip in transmission (red dash line is a guide to the eye) corresponds to FMR, while the sharp resonance

marked by an asterisk (*) corresponds to an impurity signal (see main text). (c) Field dependence of

fres = ωres/2π as a function of pressure for θH = 0◦, i.e. Hext || c.

6.3 FMR Under Pressure

In order to probe experimentally the variation of HA under pressure for 5-4 and there-

fore the magnitude of the SOC, we employed recently developed instrumentation at the

NHMFL capable of performing high-frequency EPR (or FMR) measurements under quasi-

hydrostatic pressure. In this work, high-pressures were obtained by the Hill group using a

plastic diamond anvil cell (DAC),289 enabling FMR measurements up to 2.2 GPa. At each

pressure, alignment of the sample with respect to the applied field was achieved by per-

forming two-axis crystal rotation studies using a vector magnet by seeking the minimum in

the resonant field, which corresponds to Hext || c. The pressure in the DAC was calibrated

in situ at the measurement temperature by recording the luminescence from a ruby chip

via the diamond window and an optical fiber.290 FMR spectra recorded at different polar

angles, θ (φ undetermined), are shown in Fig. 6.5(b). The FMR signal is seen as a dip in

the transmission through the cavity, whose angle-dependence distinguishes it from a strong

angle-independent g = 2 impurity signal from the diamonds in the DAC. At each pressure,
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Figure 6.6: (a) Comparison of experimental (for T = 2 K) and calculated values of HA for 5-4 as a

function of pressure, with contributions from interactions (1) and (2) indicated by the heights of the bars.

The contribution from (π) interactions is negligible on this scale. (b)-(d) Calculated magnitude of C00
ij

terms as a function of pressure in meV.

the anisotropy field was extracted from linear fits to multifrequency data with Hext || c,
and was seen to increase monotonically with pressure, as shown in Fig. 6.5(c).

The sensitivity of HA to structural details is highlighted in its doubling over the pressure

range 0−2.2 GPa. In order to probe this result computationally, we performed calculations

of C00
ij for each interaction as described in the previous section, but employing crystal

geometries obtained from powder x-ray diffraction studies under pressure (Fig. 6.6).89,91

These same structures served as a starting point for calculations of the isotropic exchange

presented in Sec. 5.3.1. The results suggest that while |C00
ij (π)| remains small at all

pressures, the two interstack terms |C00
ij (1)| and |C00

ij (2)| are significantly enhanced by the

compression of the unit cell. The orientation of these (pseudo)vectors remains relatively

constant with pressure. Interestingly, the magnitude enhancement is due to the relatively

small (2%) compression of a and b from 0 to 3 GPa, which results, for nearest neighbours

(2), in an approximately 7% reduction in the E2−E2 contact from 3.4 to 3.2 Å.91 In other

words, the structural changes are subtle. Nonetheless, the predicted HA values derived

from the computed C00
ij terms track the experiment fairly well, reproducing the monotonic

enhancement with pressure. At all pressures, HA is dominated by contributions from
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Γij(2), which is not surprising given the large values of t01
ij , t

02
ij expected for this nearest

neighbour pair. Comparison of the calculated values of t00
ij and C00

ij reveals that the pressure

dependence of these terms need not be related, which has far reaching consequences for

pressure studies of a wide range of spin-orbital coupled materials.

Finally, it is worth noting that, while magnetic measurements on powder samples re-

vealed both a suppression of the TC and coercive field Hc of 5-4 above 1.6 GPa, that

the more intrinsic quantity HA, measured on single crystal samples, does not show this

behaviour. Indeed, the theory and experiment both suggest HA continues to increase

monotonically with pressure even above 1.6 GPa. As Hc may be strongly dependent on

sample morphology, this implies the possibility of pressure induced disorder in the powder

measurements, which is consistent with our interpretation given in the previous chapter.

6.4 AFMR in Mixed S/Se Antiferromagnet

In this section, we discuss preliminary results on the canted antiferromagnet 5-3. In

this case, spin resonance measurements may also be employed to probe the spin-wave,

or antiferromagnetic resonance (AFMR) modes. For this case, the resonance conditions

are often more complicated, and depend on the strength of isotropic interactions, as the

multiple magnetic sublattices give rise to various precession modes at k = 0. In many

cases, however, only one such mode appears at low frequency that is able to couple to the

microwave field. For example, in the case of an easy ab-plane antiferromagnet (HA < 0):276

ωres =

{
γHext

√
1 + |HA|

2HE
Hext ⊥ c

γ
√

2H2
ext + 2|HA|HE Hext || c

(6.30)

where the exchange field HE:

HE ≡
∑
j

Jij
4gµB

(6.31)

with reference to the Hamiltonian H = JSi · Sj. This quantity may be estimated by

measuring the magnetization versus external field, which saturates for antiferromagnets at
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Figure 6.7: (a) Powder AFMR derivative line shape for 5-3 at T = 5 K and a frequency of 329 GHz,

along with semiclassical simulations for (b) easy-plane anisotropy, and (c) easy-axis anisotropy. The sharp

signal in the centre of the resonance is due to S = 1/2 impurities. The close correspondence between

(a) and (b) identifies 5-3 as an easy-plane antiferromagnet. (d) Temperature dependence of the ESR line

shape showing sharpening on AFMR modes below TN = 14 K.

Hext = 2HE. The antiferromagnetic resonance signal intensity is typically much weaker

than the FMR signals, and requires large samples and/or high fields to be detected. For this

reason, we performed AFMR measurements on powder samples of 5-3, as sufficiently large

single crystals were not attainable. The experimental results are summarized in Fig. 6.7.

Modes in the powder spectra corresponding to spin-wave excitations become prominent

below TN = 14 K (Fig. 6.7(d)), and may be identified by their narrowing at high fields, as

resonances corresponding to the extreme limits at Hext ⊥, || c coalesce with one another.

Analysis of both symmetry restrictions and the microscopic anisotropic exchange inter-

actions in 5-3 suggest that it should be an easy ab-plane antiferromagnet, with a canted

moment also confined to this plane. In order to see this, note that the C00
ij terms in

5-3 are expected to have a similar orientation as found computationally for 5-4 in the

previous section. They should similarly be dominated by interstack interactions (1) and

(2). When the spins related by such interactions are antiferromagnetically coupled, as

suggested for 5-3, the pseudodipolar interactions Si ·ΓijSj energetically prefer orientation

of the sublattice moments parallel to the local C00
ij (1) and C00

ij (2). Since these terms have
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their largest components in the ab-plane, 5-3 is theoretically predicted to have an easy

ab-plane anisotropy. This prediction is entirely consistent with the observed AFMR line

shape. While the powder spectra naturally provide less angular information, for tetrago-

nal systems the distribution of spectral density is always dominated by Hext ⊥ c as this

orientation covers the largest solid angle. When this orientation corresponds to an easy

direction, the largest and sharpest resonance appears on the high field side, while the con-

verse is true for easy c-axis anisotropy. In order to emphasize this result, we show in Fig.

6.7(b) and (c) semiclassical simulations of the powder AFMR line shape for a simplified

model of four magnetic sublattices, with a classical Hamiltonian:

H = J (m1 ·m2 + m2 ·m3 + m3 ·m4 + m4 ·m1) (6.32)

+ Γ (mx
1m

x
2 +my

2m
y
3 +mx

3m
x
4 +my

4m
y
1)

where J /gµB = 250 kOe, and Γ/gµB = ± 2 kOe. This model represents a cartoon of the

anticipated interactions. For positive Γ, corresponding to easy ab-plane anisotropy (Fig.

6.7(b)), the correspondence between the experimental and simulated line shapes is fair. In

contrast, for Γ < 0 (Fig. 6.7(c)), representing easy c-axis anisotropy, the large spectral

density at low field is not consistent with the experimental line shape.

It is interesting to note that while symmetry analysis suggested that the canted moment

of 5-3 must lie in the ab-plane, that such canting is not due to the DM-interaction. For

example, an ab-plane moment cannot arise due to the DM-interaction between molecules

within the same π-stack because the z-component of D
(π)
ij is restricted by symmetry to be

zero. Such a moment also cannot arise as a result of the DM-interaction between pairs (1)

or (2), because the z-component of both D
(1)
ij and D

(2)
ij must have the same sign for all pairs

in the unit cell. As such, only spiral structures are promoted, not those with net moments.

Canting arises instead due to the much weaker pseudodipolar interaction within the π-

stacks Γ
(π)
ij , which is associated with local easy-planes for each π-stack that are orthogonal

with those of neighbouring stacks. When the sublattice magnetic moments of each stack

are confined to the ab-plane, a collinear spin arrangement cannot simultaneously satisfy all

(π)-type pseudoodipolar interactions. As a result, the moments in neighbouring π-stacks

cant with respect to one another not due to interactions between such spins, but rather

in an effort to satisfy the local interactions within a given stack. This effect is ultimately
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weak, and as a result the canted moment is observed to be small, with a spontaneous

magnetization of 2×10−4µB, despite the expectation of significant anisotropic exchange

occasioned by the heavy Se atom. This value may be compared, for example, with the

larger value of 5×10−3µB reported for the S-based radical p-NC-C6F4-CNSSN.291 In 5-3,

the energy barrier for reversal of the canted moment is also determined essentially by the

weak Γ
(π)
ij interactions, which explains the observation of a coercive field Hc = 66 Oe, which

is noticeably smaller than that of 5-2 and 5-4.

6.5 Discussion of Magnitudes

Research into the understanding and exploitation of spin-orbit coupling has recently at-

tached much attention due to the discovery of materials with nontrivial band topologies

in weakly correlated (band) insulators. In these topological insulating materials, the dif-

ference in the nature of band mixing due to SOC at the material surface, and in the

bulk, guarantees interesting states living near the edge, with a variety of exotic and de-

sirable properties. In magnetic insulators, anisotropic exchange terms are also implicated

in a variety of magnetic phenomena including multiferroicity and topological spin phases.

However, the search for materials exhibiting these properties has largely focussed on in-

organic solids, drawing particularly from heavy elements with principle quantum number

n ≥ 5 in order to ensure strong spin-orbit coupling. In this light, it is useful to com-

pare the relative strength of spin-orbit effects in the Se-based organics discussed in this

chapter. Above, we have introduced a computational scheme for calculating spin-orbit

mediated hopping parameters C00
ij , and employed these values to calculate theoretical HA

values. The close agreement between the experimental and theoretical HA values over

the studied pressure range of 5-4 and explanation of the relative HA in 5-2 validates the

magnitude |Cij| found to be ∼ 1 − 10 meV for Se-based organics. In comparison, the

ordinary hopping parameters for the SOMO band t00
ij can be expected to fall in the range

∼ 10 − 100 meV, suggesting for Se-based organics that |C|/t ∼ 0.1 reflects a reasonable

estimate. This same ratio of magnitudes has been suggested for low energy theories of

topological insulators such as Bi2Se3, implying heavy atom organic materials may also fall

into the category of strongly spin-orbit coupled materials. This observation follows from

161



a key feature of organics: due to their molecular nature, all relevant energy scales, such

as hopping integrals t, Coulomb repulsion U , and orbital energy splittings ∆ε, may be an

order of magnitude smaller than for inorganic materials. Thus SOC can play a significant

role in organics despite them being composed of relatively lighter elements (Se, Te vs. Bi).

Moreover, SOC must always be considered when it can result in the splitting of otherwise

degenerate levels, in which case the only other relevant energy scale is temperature. The

materials studied in this section represent an example of the latter case; in 5-2−5-3, SOC

manifests as anisotropic exchange between local moments, opening a gap in the otherwise

gapless (anti)ferromagnon spectrum. Such anisotropic exchange terms are also considered

important in magnetically ordered sulfur-based organics, such as the spin-canted antiferro-

magnets (BEDT-TTF)2Cu[N(CN)2]Cl,292–294 and p-NC-C6F4-CNSSN.291 The possibility

of realizing topologically nontrivial phases in organics remains essentially unexplored.295

6.6 Chapter Summary

In this section, we rationalized the magnetic anisotropy observed in the tetragonal Se-

based radical magnets 5-2−5-4 in terms of spin-orbit anisotropic exchange. In the two

ferromagnets 5-2 and 5-4, this effect gives rise to a large coercive field arising from pseudo-

dipolar interactions. Through ferromagnetic resonance (FMR) measurements, we probed

the magnitude and character of the anisotropy, summarized in the magnitude and sign

of the anisotropy field HA. In both cases, uniaxial easy c-axis (HA > 0) anisotropy was

observed. Both the sign and magnitude of HA in 5-2 and 5-4 were shown to be consistent

with predictions from spin-orbit coupling. In order to do so, we introduced an ab-initio

scheme for computing C00
ij in organic materials based on the MOMO method, and al-

lowing spin-orbit coupling to be considered over a large orbital manifold. The computed

interactions were also shown to be consistent with preliminary powder AFMR studies of

the antiferromagnet 5-3. Taken together, the large magnitude of such spin-orbit terms

identify 5-2−5-4 as strongly spin-orbit coupled materials. The methods and qualitative

observations presented in this section will provide a basis for such future exploration of

SOC physics in other organics.
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Chapter 7

Multi-Orbital Radicals

7.1 Introduction

Thus far in this thesis, we have emphasized that the exploration and understanding of

strongly correlated electron systems represents a challenging but fruitful subject, which

is driven by synthesis of new materials, and the development of new experimental and

theoretical avenues of investigation. In this vein, multi-component organic materials such

as radical ion salts (ET)2X and (TMTTF)2X,296,297 phenylenyl complexes and alkali doped

fullerenes298,299 X3C60 have played a prominent role, offering unique opportunities for the

study of superconductivity,110 Mott criticality,200,227,300 and frustrated magnetism.301,302

In the introductory chapters it was emphasized that the remarkable properties of many of

these materials are related to the presence of local orbital degrees of freedom, which are

associated with low Coulomb barriers for charge transport and in some cases ferromagnetic

interactions. In comparison, all neutral radicals have displayed Mott insulating behaviour

at ambient pressure. In Chapter 5, we discussed a putative 1D metallic state accessed in

the Se-based radicals 5-4 and 5-5, which requires enhancement of solid state bandwidth

through both Se-incorporation and the application of high pressures P ∼ 6− 8 GPa. The

transition to this state was understood in the context of a single electronic band associated

with the SOMO at each molecular site. The question addressed in this final chapter is

whether a metallic state may be accessed at lower pressures in S-based radicals, thereby
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eliminating the need for the synthetically challenging incorporation of Se. To this end, we

address radical design strategies for introducing an additional orbital in the vicinity of the

Fermi level, and study a new class of such “multi-orbital” radicals. In order to guarantee

significant solid-state effects, we consider the following requirements:

• The additional orbital(s) must be sufficiently close in energy (|εα − ε0| ∼ tα0
ij ) to

hybridize with the SOMO in the solid state, which requires either a high-lying α = −1

HOMO or low-lying α = +1 LUMO at the molecular level.

• The additional orbital should be of π-character in order to ensure a wide bandwidth,

which will enhance hybridization and dimensionality of interactions.

In the first section of this chapter, we consider the hybrid dithiazolyl/thiadiazinyl radicals

7-1, which possess the desired π-orbitals for suitable choice of R3 group. However, we show

that these orbitals, both α = −1,+1 are not sufficiently close to the SOMO to produce

any significant effects on the charge transport. The remainder of the chapter is devoted

to the oxobenzene-bridged bis-dithiazolyl radicals 7-2 denoted “RBBO”, which possess a

very low-lying O-based LUMO, and display remarkable magnetic and transport properties.

S
S

NN
S

S

O

R
7-2 "RBBO"

NN

N
S S

S
N

R1
R3

R2

7-1

7.2 Hybrid Dithiazolyl/Thiadiazinyl Radicals

7.2.1 Synthesis and Structure

As a first approach to the development of multi-orbital radicals, we pursued hybrid dithi-

azolyl/thiadiazinyl radicals 7-1, which possess both an α = +1 π-LUMO and α = −1

π-HOMO for suitable choice of R3 group, in contrast to previous bis-dithiazolyl radicals

164



Figure 7.1: Frontier molecular orbitals of hybrid radicals 7-1 (R1 = Me, R2 = H, R3 = 2-thiophene)

showing π-character of orbitals in the energetic vicinity of the SOMO.

(e.g. 4-1) discussed in previous chapters (see Fig. 7.1). As the LUMO is largely localized

to the R3 group, it was believed that its energy relative to the SOMO could be tuned by

appropriate chemical modification. As a result, we required a sufficiently generic synthetic

route to allow for a variety of R3 groups to be explored. Such a synthetic route was devel-

oped by myself as part of this thesis. In the first series of steps, there are two pathways

to generate the intermediate amidine functionalized pyridinium cation 7-3. The first be-

gins by treatment of an alkylated 2,6-dichloropyridinium salt with gaseous ammonia at

low temperature in order to selectively replace one Cl, followed by reaction with a desired

amidine under basic conditions. The second route begins with the stoichiometric reaction

of an alkylated 2,6-difluoropyridium salt with nonamethyltrisilazane in the presence of

catalytic F− ion followed by workup in MeOH to remove the remaining N -silyl groups.92

The amidine functionality can be introduced following a similar reaction with the desired

persilylated amidine.43,303 The obtained intermediate 7-3 could then treated with S2Cl2

in a variant of the double Herz reaction to produce the desired framework as the cation

[7-1]+, which yields the radical 7-1 after one-electron reduction with octamethylferrocene

(OMFc). We have employed this synthetic pathway to provide [7-1]+ with R1 = Me, R2

= H, F, and R3 = H, phenyl (Ph), 2-thiophene (2-Th), and 4-pyridine (4-Pyr) in order to

investigate the ion energetics as a function of R-groups.
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While the prototypal 7-1 radicals with R3 = H possess electrochemical cell potentials of

Ecell = 0.83 V, the hybrid radicals with π-substituents such as R3 = Ph, 2-Th possess lower

cell potentials of Ecell = 0.76 V. This modest reduction in the effective Coulomb repulsion

was thought to occur via electronic push-pull effects, which rely on R3-based π-orbitals in

the vicinity of the Fermi level that are capable of sequestering charge from or furnishing

charge to the central radical. In this way, the electron affinity (EA) may be increased

in the case of π-accepting substituents, or the ionization potential (IP ) reduced for π-

donating groups, resulting in a lower U ∼ ∆Hdisp = IP −EA. Indeed, unlike bis-dithiazyl

4-1 radicals, the frontier molecular orbitals of 7-1 are all π-orbitals. However, the range

of Ecell values observed for 7-1 are the same for 4-1 and bis-thiadiazinyl 1-20 radicals,

namely 0.76−0.83 V (See Table 1.1), implying this effect is relatively weak. This point

is emphasized in the following section where we consider the electronic structure of these

radicals.

Inspection of the solid-state structures and magnetic response of the hybrid radicals

7-1 also suggests that intermolecular interactions are relatively weak. For example, 7-1
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Figure 7.2: (a) Crystal packing of 7-1 (R1 = Me, R2 = H, R3 = Ph) showing ABAB π-stacking. (b)

Crystal packing of 7-1 (R1 = Me, R2 = H, R3 = 2-Th) showing close contacts between pairs of π-stacks.

(c) Experimental magnetic susceptibility of R3 = Ph (open circles) with 1D AFM chain fit shown with

a solid line. (d) Experimental magnetic susceptibility of R3 = 2-Th (open circles) with Curie-Weiss fit

shown with a solid line.

(R1 = Me, R2 = H, R3 = 2-Th) crystallizes as slipped π-stack arrays in the P212121 space

group, with short interstack contacts only between pairs of stacks, occurring in a zig-zag

fashion (Fig. 7.2(b)).92 The presence of the bulky R3 group prevents any other strong

lateral interactions, and the material behaves as a Curie-Weiss paramagnet (Θ = −8.4

K) down to T = 2 K (Fig. 7.2(d)). For 7-1 (R1 = Me, R2 = H, R3 = Ph), the π-

stacks are composed of an alternating ABAB pattern of radicals, which crystallize in the

P 1̄ space group (Fig. 7.2(a)). This arrangement allows for a somewhat more developed

network of magnetic interactions, although the magnetic response is that of a 1D AFM
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chain (Fig. 7.2(c)), with J = −17 K along the chain, and weak ferromagnetic interchain

zJ = +6.6 K.1 Taken together, these observations imply that intermolecular interactions

are weak in these materials, which is not conducive to realization of a metallic state.

Indeed, preliminary conductivity measurements indicate room temperature values in the

range σ(T = 300 K) ∼ 10−7 − 10−5 which is the same order as previous pyridine bridged

radicals 4-1 and 1-20.

7.2.2 Electronic Structure

In order to discuss the electronic structure of radicals 7-1, we consider, at the single site

level, an effective three-orbital Hamiltonian that is the sum of orbital energy, Coulomb

repulsion, and on-site Hund’s rule coupling, respectively:

Hi = Ei + Ui +Ki (7.1)

where

Ei =
∑
α,σ

εαni,α (7.2)

Ui = U
∑
α

ni,α,↑ni,α,↓ + V αβ
∑
α>β

ni,αni,β (7.3)

Ki =
∑
α>β
σ,σ′

Kαβc†i,β,σ′c
†
i,α,σci,α,σ′ci,β,σ (7.4)

and α ∈ {−1, 0, 1} includes the orbitals in the vicinity of the Fermi level. Parameters of

the Hamiltonian can be estimated by state energy calculations on the molecular cation and

anion obtained by subtracting or adding an electron from the radical. When mapped into

the three-orbital model, the low energy anionic states consist of one triplet in which the

SOMO and LUMO are both singly occupied 2S+1|ni,−1ni,0ni,1〉 = 3|211〉, and three singlets

with varying occupancies {1|220〉,1 |211〉,1 |202〉} (Fig. 7.3). The energies of the eigenstates

are:

1Values with respect to the Hamiltonian H = −2JijSi · Sj .
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Figure 7.3: Cartoon representation of the electronic states obtained by either removal (left) or addition

(right) of an electron to 7-1 R1 = Me, R2 = H, R3 = 2-Th. Calculation of these state energies allow for

estimation of various Hamiltonian parameters.

E(3|211〉) = V 01 + ε0 + ε1 −K01 (7.5)

E(1|220〉+ γ1|202〉) = U + ε0 + ε1 −
√

(ε0 − ε1)2 + (K01)2 (7.6)

E(1|211〉) = V 01 + ε0 + ε1 +K01 (7.7)

E(1|202〉 − γ1|220〉) = U + ε0 + ε1 +
√

(ε0 − ε1)2 + (K01)2 (7.8)

From these reference states, the true low energy states may be obtained by explicit inclusion

of correlation effects, which mix these configurations not only with one another, but also

with those outside the three-orbital active space. It is in this sense that eq’n (7.1) may be

considered an effective Hamiltonian, for which {K01, U, V 01,∆ε} are chosen to reproduce

the exact low energy spectrum when acting on the unphysical reference space. As an

example, the state energies for 7-1 (R1 = Me, R2 = H, R3 = 2-Th) were estimated using

the Difference Dedicated Configuration Interaction method264,304 with three degrees of

freedom (DDCI-3), on the basis of the above CAS(4,3) reference states, as implemented in

the ORCA program.148 Starting orbitals were obtained from a single point B3LYP/def2-

VDZ calculation on the closed shell anion using molecular geometry from the ambient

pressure crystal structure.
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Fitting the obtained state energies to the above expressions yields: K01 = 0.10 eV,

ε1 − ε0 = 1.79 eV, and the difference of Coulomb repsulion U − V 01 = 0.05 eV. The

Coulomb parameters may be estimated by taking U to be the electrochemical cell potential,

suggesting U ∼ 0.76 eV, and V 01 ∼ 0.71 eV. Comparison of these values for those obtained

in Sec. 5.2.1 suggest that the π-LUMO in 7-1 (R1 = Me, R2 = H, R3 = 2-Th) is no

lower lying than the σ-LUMOs in 4-1−4-4. This is perhaps not surprising, as thiophene

is a weak π-donor, so that the empty thiophene-based π-orbitals are expected to be high-

lying. When these orbitals mix with those of the central radical framework, the resulting

π-LUMO is also high in energy. However, we have also investigated computationally the

effects of π-acceptor substituents at the R3 position, such as -NO2 and -CN, but find that

the LUMO cannot be appreciably lowered by such chemical substitutions.

In this sense, it may be more promising to consider a possible high-lying α = −1 filled

HOMO level for π-donating substituents. Analogous calculations to those above may be

performed on the molecular cation of 7-1 (R1 = Me, R2 = H, R3 = 2-Th), whose low-energy

states are:

E(3|110〉) = V −10 + ε−1 + ε0 −K−10 (7.9)

E(1|200〉+ γ1|020〉) = U + ε−1 + ε0 −
√

(ε−1 − ε0)2 + (K−10)2 (7.10)

E(1|110〉) = V −10 + ε−1 + ε0 +K−10 (7.11)

E(1|020〉 − γ1|200〉) = U + ε−1 + ε0 +
√

(ε−1 − ε0)2 + (K−10)2 (7.12)

DDCI-3 calculations on the molecular cation on the basis of CAS(2,3) reference states yield

K−10 = 0.50 eV, ε0− ε−1 = 1.62 eV, and V −10 ∼ 0.57 eV. The validity of these parameters

may be verified by comparing with the solution absorption spectrum of [7-1]+ (R1 = Me,

R2 = H, R3 = 2-Th), which shows singlet→ singlet transitions of 1.95 eV and 3.87 eV. The

above calculations estimate 2.01 eV and 3.38 eV based on state energy differences, which

correspond reasonably well with the experiment. Taken together, these values suggest that

radicals 7-1 do not offer significant promise for realizing desirable multi-orbital effects,

despite the presence of π-orbitals in the energetic vicinity of the SOMO. Such orbitals are

simply not sufficiently close to the Fermi level to hybridize with the SOMO in the solid

state. Moreover, the bulky R3 group tends to reduce lateral inter-π-stack interactions in the

solid state, which together account for the relatively weak interactions and low conductivity
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Table 7.1: Properties of selected oxobenzene bridged radicals 7-2 as a function of exocyclic group R.

SC-AFM = Spin canted antiferromagnetic order. “Strong AFM” refers to materials with strong antiferro-

magnetic coupling that may order but do not display a canted moment. Ecell ∼ U is the electrochemical

cell potential, and EA ∼ U −W is the thermal activation energy for conductivity.

R Solvent Space Group Θ Ecell EA Notes Ref

F None Cmc21 −18.3 K 0.69 V 0.10 eV SC-AFM, TN = 13 K 97

H None Fdd2 +15.6 K 0.56 V 0.10 eV SC-AFM, TN = 4.5 K 96, 305

Ph None P212121 +32.8 K 0.60 V 0.20 eV SC-AFM, TN = 4.5 K 93

Cl MeCN Pna21 −61.7 K 0.64 V 0.11 eV Strong AFM 95

I EtCN Pnma +20.9 K 0.66 V 0.15 eV SC-AFM, TN = 34.5 K Unpublished

NO2 MeCN P21/c − 0.45 V 0.07 eV Pauli; χ = const. Unpublished

of these materials. That being said, the synthetic variability possible at the R3 position

may allow other applications of radicals 7-1, for example, as polydentate radical ligands

for metal complexes with suitable choice of exocyclic R3 group. This application has yet

to be explored. In the remainder of this chapter, we focus instead on an alternate class

of radical developed by the Oakley group, in which a strong π-acceptor in the form of a

C=O group is built directly into the main radical framework, resulting in much stronger

modifications to the electronic structure.

7.3 oxobenzene Bridged Radicals

7.3.1 Introduction

Concurrent with the study of the hybrid dithiazolyl/thiadiazinyl radicals 7-1, an alternate

class of oxobenzene bridged radicals 7-2 were also developed by the Oakley group, which

differ from the pyridine bridged framework 4-1 via an isoelectronic substitution of N-R1

for C=O. Properties of selected radicals is shown in Table 7.1. The initial motivation for

this substitution was to reduce steric bulk associated with the exocyclic R-group of the
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Figure 7.4: Arrhenius plots of conductivity σ = 1/ρ in order to compare the response of pyridine 4-1

(R1 = Me, R2 = Cl) and oxobenzene bridged 7-2 (R = F, Cl, H, Ph) radicals. Data for R = Cl represents

the MeCN solvate. The oxobenzene bridged materials display orders of magnitude enhanced conductivity

and lower thermal activation energies.

former materials, which is partially responsible for the one-dimensional slipped π-stacked

packing of 4-1−4-4.93–95 As demonstrated via pressure studies in Sec. 5.3.2, increasing

the dimensionality of the interactions and reducing the slippage both represent viable

strategies for enhancing solid state bandwidth, and thus breaking out of the Mott insulating

state. However, introducing the strong π-accepting C=O into the central framework also

has drastic effects on the electronic structure of 7-2, generating a very low-lying LUMO

capable of hybridizing with the SOMO in the solid state.96,306 We discuss this effect in great

detail below. The consequences of this additional orbital can be immediately observed in

the electrical conductivity, which remains activated, but is several orders of magnitude

larger in RBBO radicals 7-2 in comparison with the pyridine-bridged 4-1 (Fig. 7.4). The

thermal activation energy is also significantly reduced in the former, falling from 0.4 − 0.5

eV for 4-1 radicals to 0.1 − 0.2 eV for 7-2. This enhanced conductivity is related to a

decrease in the effective Coulomb repulsion, indicated by exceptionally low cell potentials

Ecell = 0.45 − 0.69 V for 7-2. Interestingly, these radicals also show a propensity for

spin-canted antiferromagnetic order at ambient pressure, which we suggest below provides

important clues in regard to their electronic structure. Given the potential for realizing

highly conductive states in RBBO radicals 7-2, research in the Oakley group quickly shifted
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(a) (b)

Figure 7.5: (a) Evolution of room temperature electrical conductivity of HBBO and FBBO under

pressure, showing saturation above 3 GPa and 5.5 GPa, respectively. (b) Activation energy obtained from

Arrhenius fits to σ(T ) measured from 25−95 ◦C indicating metallic transport dσ/dT . 0 at high pressures.

The approximate metallization pressure is indicated for each material by a dashed line.

to focus on these multi-orbital systems, with synthetic contributions led by Dr. Mailman,

Ms. Wong and Ms. Yu. Pressure induced metallization (dρ/dT > 0) has now been

observed for R = F under applied pressure of P ∼ 3 GPa,97 and for R = H with P ∼ 5

GPa96 in the vicinity of room temperature (Fig. 7.5). My part in this work was performing

optical studies on these materials, and developing a model to understand the consequences

of the low-lying LUMO, which will be the focus of the remainder of this chapter. We begin

by studying the FBBO (i.e. 7-2 R = F), which represents the most well characterized

member of the family. We then go on to discuss more recent results on modification of

the properties through introduction of a strong π-accepting R-group (NO2), and a heavy

iodine substituent.
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(b)

(c)

1 2

34

Figure 7.6: (a) Unit cell of FBBO viewed parallel to a. Molecules at x = 1
2 are shaded to indicate

depth. (b) Unit cell of FBBO viewed parallel to c. In both cases, nth nearest neighbour contacts are

labelled (1)-(4), with corresponding magnetic interactions shown in Fig. 7.8. (c) Simplified view of the

unit cell defining molecular numbering employed in symmetry analysis of magnetic structures.

7.3.2 Fluorine Substituted Radical FBBO

Magnetic Response at Low Pressure

The contents of this section draw from Refs 97 and 306. FBBO (7-2, R = F) crystallizes

in the high symmetry orthorhombic space group Cmc21, with first and second nearest

neighbour pairs, labelled (1) and (2), providing the basis for π-stacked layers in the ab-

plane (Fig. 7.6). In both cases these neighbouring molecules are related by translation,

either by C-centering, or translation along b. The ab-plane layers are bound together by

electrostatic interactions through close S−N, S−O, and S−F contacts with third (3) and

fourth (4) nearest neighbours in adjacent layers, which are related by 21 axes. At ambient

pressure, FBBO orders as a spin-canted antiferromagnet, displaying a bifurcation in the
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(a) (b)

Figure 7.7: (a) Field-Cooled (FC) and Zero-Field-Cooled (ZFC) susceptibility for FBBO showing a

bifurcation at TN = 13 K as a result of spin-canting. (b) The spontaneous magnetization due to the small

canted moment. Data taken from Ref. 97.

field cooled (FC) and zero-field cooled (ZFC) magnetic susceptibility at TN = 13 K, (Fig.

7.7). Below this temperature, a spontaneous moment saturating at 1.8 × 10−3 µB per

molecule is observed. Fits of the Curie-Weiss law to the high temperature data (50− 300

K) give an antiferromagnetic Weiss constant of Θ = −18.3 K.

As discussed extensively in Sec. 4.2.2, for two-sublattice antiferromagnets a net mo-

ment may only be induced by weak anisotropic interactions provided the ordered structure

retains all the translational symmetry of the underlying lattice. In order to analyze the

symmetry of possible magnetic structures of FBBO, we therefore employ the basis func-

tions:

fµ = mµ
1 + mµ

2 + mµ
3 + mµ

4 (7.13)

lµ = mz
1 + mz

2 −mz
3 −mz

4 (7.14)

where µ = {x, y, z} refers to the orientation of (sub)lattice moments with respect to the

crystallographic directions. Numbering of radicals in the unit cell is shown in Fig. 7.6(c).

First nearest neighbours (i.e 1/2 and 3/4) are related by C-centering translation, requiring

such sites to belong to the same magnetic sublattice in any structure able to exhibit a

canted moment. For this reason, the antiferromagnetic basis function lµ corresponds with

the only two-sublattice AFM structure consistent with the magnetic response. As shown

in Table 7.2, when sublattice moments are oriented in the bc-plane, corresponding to basis
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Table 7.2: Symmetry classification of basis functions for describing the magnetic structure of FBBO

(7-2, R = F).

Point Group Magnetic Group

State Basis Function E 21 || b c-glide ⊥ b m ⊥ a Symmetry in C2v assuming k = [0, 0, 0]

FM fx +1 −1 −1 +1 B2 Cmc′2′1

↑ ↑ fy +1 −1 +1 −1 B1 Cm′c2′1

↑ ↑ fz +1 +1 −1 −1 A2 Cm′c′21

AFM lx +1 +1 +1 +1 A1 Cmc21

↑ ↑ ly +1 +1 −1 −1 A2 Cm′c′21

↓ ↓ lz +1 −1 +1 −1 B1 Cm′c2′1

functions ly (A2), and lz (B1), symmetry allows a canted moment also confined to the

bc-plane, through mixing with fz (A2), and fy (B1). The only structure consistent with

canting therefore requires a net ferromagnetic J1 and J2, in order to ensure alignment

of spins within each ab-plane layer, as shown in Fig. 7.8. As shown below, the proximal

metallic state in FBBO, which is accessed above 3 GPa, is predicted to have a strongly

2D electronic structure, with maximal dispersion within the ab-layers. Thus ferromagnetic

interactions within these layers cannot be understood without the influence of multiple

orbitals in proximity to the Fermi level. That is, in single-band Hubbard models, highly

conductive states are associated with large t00
ij , and as such are characterized by strong

antiferromagnetic interactions.

In order to investigate the stability of the layered antiferromagnetic state under pres-

sure, field-cooled susceptibility at 100 Oe was measured by the group of Masaki Mito

(Kyushu, Japan) using a piston cylinder cell, installed into the commercial SQUID mag-

netometer, in the range 0.0 to 1.2 GPa (Fig. 7.9(a)). At low pressures < 0.2 GPa, a surge

in χT is observed in the field-cooled susceptibility at TN = 13 K, signalling the transition

to the spin-canted ordered state described in the previous section. However, above 0.2

GPa, this surge is reversibly suppressed, indicating either the absence of magnetic order,
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(a)

(b)

(c)

(d)

Figure 7.8: Unique nearest neighbour magnetic interactions J1 − J4 for FBBO, as viewed along the

a-direction (a), and c-direction (b) showing triangular lattice architectures. The number assigned to each

interaction corresponds to the contacts defined in Fig. 7.6. The suggested ambient pressure magnetic

structure is also shown, viewed along the a-direction (c), and c-direction (d). Canting to produce a net

moment in the bc-plane is emphasized.

or a new magnetic order with no net canted moment. Upon further compression, > 0.6

GPa, χT is further reduced, and shows only weak temperature dependence below 20 K.

This high pressure response is roughly consistent with a Curie-like paramagnetic state, but

with significantly reduced moment of ∼ 0.2 µB compared to the expected 1.0 µB for an

S = 1
2

material. Given the previous observation of room temperature metallic conductivity

in FBBO for pressures exceeding 3.0 GPa, it is tempting to associate the changes in low

temperature magnetic response with the onset of a conducting state. However, evidence

against such an electronic phase transition can be seen in the temperature dependence of

the resistivity, which was measured in the pressure range 0.0 to 2.0 GPa on pressed pellet

samples (Fig. 7.9(b)). Throughout the entire pressure range, FBBO displays activated (in-

sulating) behaviour down to the lowest measured temperatures ∼ 10 K. This observation

suggests the pressure induced changes in magnetic response between 0.2 and 0.6 GPa are
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(a) (b)

Figure 7.9: (a) Field-Cooled (FC) susceptibility of FBBO under pressure. The increase in χT at

low temperatures is suppressed by pressure, indicating a magnetic phase transition. (b) High pressure

resistivity. Insulating behaviour under pressure indicates the absence of an electronic phase transition

below 2.0 GPa.

related to a genuine magnetic phase transition, rather than the onset of a metallic state.

Below, we study the electronic structure of this material, and suggest a possible identity

for this high pressure magnetic phase.

Molecular Electronic Structure

A particular feature common to oxobenzene bridged bis-dithiazolyl radicals is the π-

accepting character of the carbonyl group ensures the lowest unoccupied molecular orbital

(LUMO, α = +1) is low-lying, and of π-character, as shown in Fig. 7.10. As described

below, explicit consideration of this empty orbital is of key importance not only in the

character of the magnetic interactions, but also charge transport properties. Accordingly,

at the single site level, we consider an effective two-orbital Hamiltonian that is the sum of

orbital energy, Coulomb repulsion, and on-site Hund’s rule coupling, as in the case of the

hybrid 7-1 radicals:

Hi = Ei + Ui +Ki (7.15)
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SOMO

LUMO +e-

Figure 7.10: Cartoon representation of the states of the anion of FBBO. Comparison of calculated state

energies allows estimation of various molecular parameters. The molecular SOMO and LUMO are shown,

as computed at the B3LYP/6-31G(d,p) level.

Parameters of the Hamiltonian were estimated by DDCI-3 state energy calculations on the

molecular anion obtained by adding an electron to FBBO. Starting orbitals were obtained

from a single point B3LYP/6-31G(d,p) calculation on the closed shell anion using molecular

geometry from the ambient pressure crystal structure. Relative to the lowest singlet,
1|20〉, the energies were found to be E(3|11〉) = +0.174 eV, E(1|11〉) = +0.581 eV, and

E(1|02〉) = +1.234 eV. This suggests K01 = 0.20 eV, ∆U = U − V = 0.24 eV, and

∆ε = ε1 − ε0 = 0.58 eV. As these values may be significantly influenced by the solid state

environment, they should be considered only an approximate starting point for further

analysis. It is worth mentioning that the results also depend greatly on the level of theory;

Broken Symmetry DFT calculations, for example, suggest triplet ground states for RBBO

anions.96 Isolation of such an anion of RBBO materials, in order to further characterize its

electronic state represents an important goal in order to verify this picture. Finally, we note

that while explicit calculation of the solid state Coulomb potential U is not possible by this

method, an experimental estimate can be obtained from electrochemical measurements.

Given the known Ecell = 0.69 V for FBBO, we therefore estimate U ∼ 0.69 eV, and

V ∼ 0.45 eV.
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Table 7.3: Tight-binding parameters for FBBO for maximally localized orbitals shown in Fig. 7.12; in

this basis, φ− and φ+ orbitals are nearly degenerate and T is not diagonal at a given site, indicated by

t−+
ii 6= 0. The number in parenthesis beside each label tαβij indicates the associated contact defined in Fig.

7.6.

β

tαβij (1) (meV) − +

α − −125.0 +48.7

+ −98.3 +34.9

β

tαβij (2) (meV) − +

α − −19.1 +18.2

+ −58.3 +38.5

β

tαβij (3) (meV) − +

α − +5.3 +6.1

+ +40.4 −7.0

β

tαβij (4) (meV) − +

α − −17.0 −1.6

+ +28.5 ∼ 0

Solid State Electronic Structure

In the solid state, the single-site Hamiltonian of eq’n (7.15) must be supplemented by an

intermolecular hopping term:

H = T +
∑
i

Hi (7.16)

where

T =
∑
α,β,σ
i,j

tαβij

(
c†i,α,σcj,β,σ + h.c.

)
(7.17)

In order to determine appropriate hopping integrals tαβij for FBBO, band structures were

first computed at the DFT level with the PWSCF package177 using ultrasoft PBE pseu-

dopotentials and a plane-wave cutoff of 25 Ry and a 250 Ry integration mesh. Self-

consistent field calculations employed a 4 × 4 × 4 Monkhorst-Pack k-point mesh and the

molecular geometry was taken from the ambient pressure crystal structure. At first glance,
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Total

(a) (b)

(c)

Figure 7.11: (a) Computed DFT band structure of FBBO (open circles). Tight-binding bands obtained

by Wannier interpolation are shown with solid lines, the colour of which indicated the contribution of

MLWOs. (b) Tight-binding Fermi surfaces shown in the first Brillouin zone. The two bands associated

with each of the ab-layers in the unit cell are colored grey and red. Labelling follows the convention in

Ref. 307. (c) Density of states obtained from MLWO interpolation. The Fermi level is indicated by εF ,

while the energies of the SOMO and LUMO in the rotated basis are indicated by ε0 and ε1, respectively.

the resulting band structure (Fig. 7.11(a), open circles) is quite simple. In the first Bril-

louin zone, there are a pair of bands associated with each of the SOMO and LUMO, arising

from the two ab-layers of radicals in the unit cell (a total of four bands). Each pair of bands

is only very weakly split, due to little interaction between layers, and consequently only

weak dispersion along the z-direction. The Fermi level resides in the lower band, and the

resulting Fermi surfaces are open (Fig. 7.11(b)), resembling roughly that of an isotropic

square lattice near half-filling. However, this relatively simple electronic structure hides a

more complicated orbital picture. We have employed the wannier90 code176,179 to generate

maximally localized Wannier orbitals (MLWOs) {φ+, φ−} for each ab-layer (pictured in Fig.
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Rotated Site-Diagonal
Wannier Basis 

LUMO

SOMO

(a) (b)

Figure 7.12: Comparison of the Maximally Localized Wannier Orbital (MLWO) basis, and rotated

SOMO/LUMO basis orbitals from solid state calculations. The latter may be compared with the orbitals

obtained from single molecule calculations in Fig. 7.10.

7.12).2 The Wannier interpolated band structure is shown in Fig. 7.11(a) by a solid line,

the colour of which indicates the parentage of the crystal orbitals in terms of the derived

MLWOs at each k-point. Excellent agreement is observed between the interpolated and

DFT bands, validating the fitting procedure. Derived tight-binding hopping integrals for

this MLWO basis are shown in Table 7.3.

Visual inspection of the MLWOs φ+ and φ− suggests they are overly localized with

respect to the expected molecular orbitals. That is, the MLWOs are in- and out-of-phase

combinations of the molecular SOMO and LUMO. They are nearly degenerate each with

orbital energy ∼ (ε0+ε1)/2, which exceeds that of the molecular SOMO by ∆ε/2. However,

this local hybridization energy cost for introducing LUMO character into the occupied

states is offset by minimization of the intermolecular kinetic energy (hopping) so that,

over a large region of k-space, the computed crystal orbitals are well described as arising

from purely φ+ or φ−. Inspection of the hopping integrals in Table I suggest that, within

2Images generated using XCrysden software; code available from http://www.xcrysden.org/.308
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Table 7.4: Tight-binding parameters for FBBO obtained from a rotation of maximally localized orbitals to

ensure a site-diagonal (t01
ii = 0) hopping Hamiltonian, as described in the text. The number in parenthesis

beside each label tαβij indicates the associated contact defined in Fig. 7.6.

β

tαβij (1) (meV) 0 1

α 0 +1.2 −3.7

1 +143.3 −91.3

β

tαβij (2) (meV) 0 1

α 0 +37.0 −16.2

1 +60.3 −17.6

β

tαβij (3) (meV) 0 1

α 0 −24.9 +17.8

1 −16.6 −23.2

β

tαβij (4) (meV) 0 1

α 0 −19.1 +27.0

1 −3.2 −2.0

the ab-plane, the bands arising from φ− and φ+ are described in terms of nearly isotropic

square and triangular lattices, respectively. The signs of the hopping integrals are opposite,

so that the two bands are well separated over a large region of k-space. Where they meet,

interband hopping leads to avoided crossings, ultimately producing discrete lower (half-

filled) and upper (empty) bands. Integration of the partial density of filled states (Fig.

7.11(c)) for each orbital, reveals the occupancy to be 0.6 and 0.4 electrons in each of

the φ− and φ+ orbitals, respectively. As this picture of the solid state electronic structure

inherently neglects correlation effects, it represents a zeroth order description of the metallic

state found at high pressure. For this reason, we suggest that the high pressure phase of

FBBO is best described as being pseudo quarter-filled with one electron per site on average,

occupying one of two degenerate hybrid orbitals.

In contrast, in the Mott insulating state, intermolecular kinetic energy is suppressed by

the large Coulomb repulsion barrier, thus eliminating the impetus for local hybridization.

For this reason, the hybrid MLWO basis is inappropriate for describing the electronic struc-

ture of the low-pressure insulator. In the MLWO basis, hybridization of the SOMO and

LUMO results in a kinetic energy T that is not site-diagonal (i.e. t−+
ii 6= 0). Diagonalizing
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Table 7.5: Ambient pressure magnetic exchange parameters for FBBO up to second order in hopping c.f

eq’n (7.19) using hopping integrals from Table 7.4, K01 = 0.20 eV, ∆ε = 0.62 eV, V = 0.45 eV, U = 0.69

eV obtained in section III.

Location of Site

Label i j Value (K)

J1 (x, y, z) ( 1
2 + x, 1

2 + y, z) +86.9 (FM)

J2 (x, y, z) (x, 1 + y, z) −74.3 (AFM)

J3 (x, y, z) (1 + x, 1 + y, z) −38.6 (AFM)

J4 (x, y, z) (1 + x, 1 + y, z) −21.1 (AFM)

the on-site kinetic energy by orbital rotation undoes the hybridization resulting in a more

appropriate basis for describing the Mott insulator. Inspection of these rotated orbitals

(Fig. 7.12) reveals that they correspond well with the molecular SOMO and LUMO, apart

from slight asymmetry due to the local crystal field. Interestingly, ∆ε is predicted to be

only ∼ 0.18 eV by this method, which is much reduced from the 0.62 eV predicted by

molecular CI calculations in the previous section. In the rotated (SOMO/LUMO) basis,

hopping between ab-planes is enhanced, due the more even distribution of electron densities

across the molecule. Thus, the 2D electronic structure of the metallic state arises directly

from SOMO-LUMO mixing; in the insulating state interactions are significantly more 3D.

For molecules in the same ab-plane, the largest hopping integrals are found to occur be-

tween the SOMO and LUMO on different sites (t01
ij (1), t10

ij (1)). This fact not only drives

orbital hybridization in the metallic state, but also has important consequences on the

magnetic interactions in the insulator. In the next section, we consider such interactions

arising from the multiple orbitals together with strong Hund’s rule coupling.

Magnetic Model

As a consequence of a low-lying α = +1 LUMO, and strong Hund’s Rule coupling, molec-

ular calculations suggested a low-lying triplet state 3|11〉 in the molecular anion. In the

Mott insulator, the importance of this observation can be seen from the fact that magnetic

interactions arise from virtual hopping of electrons between sites, which mixes such higher
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energy “charged” states into the low energy manifold (composed of “neutral” states with

equal electron distribution amongst sites). As described in Sec. 2.1.4, in the present two

band case, hopping between bands allows access to excited high-spin states, which results

in a ferromagnetic interaction. For the two-band model, at second order in hopping, one

obtains the familiar Heisenberg Hamiltonian:

Hspin = −
∑
〈i,j〉

Jij Si · Sj (7.18)

with exchange constant given by contributions from the usual antiferromagnetic kinetic

exchange, and ferromagnetic empty-orbital exchange, respectively:

Jij = −
4(t00

ij )2

U
+

2K01
[
(t01
ij )2 + (t10

ij )2
]

(V + ∆ε)2 − (K01)2
(7.19)

In cases where K01 and/or t01
ij , t

10
ij are large, one expects the ferromagnetic term to domi-

nate, providing a signature of multi-band character in the magnetic structure. Using eq’n

7.19, together with the hopping integrals for site-diagonal basis from Table 7.4, and the

molecular parameters described in section III, we have estimated the exchange parameters

for the Mott insulating state of FBBO. Results are shown in Table 7.5. We have also com-

puted corrections up to fourth order in hopping (not shown), and confirm little qualitative

difference, justifying use the SOMO/LUMO basis to describe the Mott insulating state.

The computed exchange interactions are in complete agreement with the experimental

ambient pressure magnetic structure for FBBO (Fig. 7.8). Within the ab-planes, there

are two competing terms J1 and J2. As a result of the dominant interband hopping in-

tegral t10
ij (1) = +143.3 meV between molecules related by C-centering, J1 is found to be

the strongest magnetic interaction and is ferromagnetic, a fact that agrees with the ex-

perimental alignment of spins in the ab-planes. This ferromagnetic interaction is partially

frustrated by the antiferromagnetic J2 term, so that every triangular plaquette contains

two ferromagnetic and one antiferromagnetic interaction. While the frustration may re-

duce both the ordering temperature, and the observed Weiss constant, even for the fully

frustrated case where J1 = J2, a quantum disordered (spin-liquid) state is not expected.

This is because quantum fluctuations are likely suppressed by interlayer couplings J3 and
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(a) (b)

Figure 7.13: Possible magnetic structure of FBBO for pressures above 0.2 GPa viewed down the

a-axis (a) and c-axis (b). The stripe pattern emerges as a compromise between ferromagnetic J1 and

antiferromagnetic J2 interactions.

J4. These antiferromagnetic interactions between planes stabilize the experimentally ob-

served layered antiferromagnetic structure. A possible cause of the magnetic transition

under pressure may be seen by studying the computed exchange terms. In the ambient

pressure magnetic structure, the J2 interaction is the only term not minimized energeti-

cally. As J2 is increased, we suggest stabilization of a new striped ordered phase with wave

vector (π, π, 2π) or (π,−π, 2π) as shown in Fig. 7.13. This phase arises as a compromise

in which all of the J2 interactions, but only half of the J1 interactions are satisfied, and

should occur around |J2/J1| & 1. Based on the above estimates, the ambient pressure

structure has |J2/J1| = 0.85, already on the verge of this transition. As this striped struc-

ture breaks translational symmetry, no canted moment can be observed, in agreement with

experiment. However, further studies (in particular high pressure AFMR) will be required

to shed further light on this phase.

Optical Response Under Pressure

In order to probe the evolution of the electronic structure of FBBO with pressure, we have

obtained the real part of the optical conductivity σ1(ω) from analysis of normal incidence

reflectivity measurements. The former is related to the complex dielectric function ε(ω)
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via:190,309

σ(ω) = σ1(ω) + iσ2(ω) =
ω

4πi
ε(ω) (7.20)

in terms of which the reflectivity R(ω) is given by the Fresnel formula:

R(ω) =

∣∣∣∣∣1−
√
ε(ω)

1 +
√
ε(ω)

∣∣∣∣∣ (7.21)

It is possible to reconstruct both the real and imaginary parts of the complex dielec-

tric function from the real reflectivity because causality requires they are related by the

Kramers-Kronig relations, namely:

ε(ω) = ε1(ω) + iε2(ω) (7.22)

ε1(ω) = 1 +
2

π
P
∫ ∞

0

dν
νε2(ν)

ν2 − ω2
(7.23)

ε2(ω) = − 2

π
P
∫ ∞

0

dν
νε1(ν)

ν2 − ω2
(7.24)

where P denotes the principle value of the integral. For this reason, ε1(ω) and ε2(ω) are not

independent functions. However, as the relation between the two is given by an integral

over all frequencies, ε(ω) may only be determined exactly from knowledge of R(ω) at all

ω. In practice, however, the reflectivity is known over a finite frequency range, so analysis

is performed by fitting R(ω) with a variational trial ε(ω) that is constrained to satisfy the

Kramers-Kronig relations. For frequencies outside the known data range, the dielectric

function is typically approximated via a simple q-component Drude-Lorentz form:

ε(ω) = ε(∞) +
∑
q

ω2
p,q

ω2
0,q − ω2 − iγqω

(7.25)

where ωp,q, ω0,q and γq are the plasma frequency, resonant frequency, and scattering rate

for component q. For the contribution to ε by charge carrying excitations, these are often

written:

ωp,q =

√
4πnqe2

m∗q
(7.26)

γq =
1

τq
(7.27)
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where e is the elementary charge, and nq, m
∗
q and τq are the charge carrier density, effec-

tive mass, and scattering time associated with charge carrier flavour q. In this case, the

conductivity is simply:

σ(ω) =
∑
q

nqe
2τq

m∗q

ω

ω + iτq(ω2 − ω2
0,q)

(7.28)

with ω0 → 0 representing the Drude limit. In all cases presented in this chapter, fitting

of the reflectivity was performed using the REFFIT program310 by performing an initial

background fitting using a small number of Drude-Lorentz terms (typically q = 2), followed

by detail-fitting using a Kramers-Kronig constrained local function associated with every

data point in the experimental R(ω).

Ambient pressure, single crystal reflectivity was measured at room temperature with

a commercial Nicolet Continuµm FT-IR microscope with an MCT detector. The light

was polarized in the plane of the plate-like crystals, which corresponds to the [111] face.

The resulting optical conductivity shows a significant absence of spectral weight at low

frequencies, as expected for the Mott insulating state. In this case, for a single band

model, σ1(ω) is expected to display a broad feature centred at ~ω = U , and with width

2W corresponding to excitations from the lower to upper Hubbard band. The case of the

multi-band model is discussed below with reference to results from DMFT calculations. It

is worth noting that in the present case, the Hubbard feature is centred at the solution

electrochemical cell potential of FBBO Ecell = 0.69 V, which validates the latter as a

measure of the effective Coulomb potential. The width of the feature is also on the order

of twice the Coulomb repulsion, so that some spectral weight extends down to 0.1 eV, which

represents the limit of the experimental spectral window, and the thermal activation energy.

The optical conductivity was also obtained under pressure based on reflectivity mea-

surements conducted at at the U2A beamline sidestation of the NSLS3. Infrared spectra

were collected using a Bruker Vertex 80v FTIR spectrometer and a Hyperion 2000 IR mi-

croscope attached with an MCT detector on pressed powder samples in a diamond anvil

cell with KBr as a pressure transfer medium. In this case, reflectance from the sample

3National Synchrotron Light Source, Brookhaven National Laboratory, New York, USA
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Figure 7.14: (a) Ambient pressure single crystal optical conductivity of FBBO for light polarized in

the [111] face. (b) Optical conductivity under pressure. The grey bar denotes an area of the spectrum

dominated by phonon modes of the diamond anvil pressure cell. (c) Pressure dependence of the scattering

rate obtained from extended Drude analysis as described in the text.

occurs directly at the diamond interface, so that experimental data corresponds to:

R(ω) =

∣∣∣∣∣
√
εD −

√
ε(ω)

√
εD +

√
ε(ω)

∣∣∣∣∣ (7.29)

where εD = 5.84 is the dielectric function of the diamond, which we assume to be real and

constant over the frequency range. As an additional complication, the diamond is asso-

ciated with very strong phonon modes in the spectra range 1700−2700 cm−1, or roughly

0.2−0.35 eV, which obscure the sample reflectance. For this reason, reliable optical con-

ductivity cannot be obtained in this region (shown as a grey bar in Fig. 7.14(b)).

With increasing pressure, there is significant transfer of spectral weight to lower fre-

quencies, resulting in a shift of the peak in σ1(ω). In the vicinity of 3 GPa, a Hubbard-like

feature is still observed at high frequency, indicating a significant influence of correlation

effects at this pressure. By 6.4 GPa, the high frequency Hubbard features are nearly ab-

sent, and the response is essentially Drude-like. The results can be further analyzed in an

extended Drude formalism309,311,312 in order to exact the effective quasiparticle scattering
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rate at zero frequency:

1

τ
≡ lim

ω→0
−
ω2
p

ω
Im

[
1

ε(ω)− ε(∞)

]
(7.30)

where the plasma frequency is approximated via:∫ Λ

0

σ1(ω) dω =
ω2
p

8
(7.31)

for some suitably large cutoff Λ. As discussed in section 3.1, when 1/τ > W , the strength

of scattering exceeds the natural energy scale for the quasiparticle kinetic energy, and

the mean free path is much smaller than a lattice spacing ` < a, implying that coherent

quasiparticles cannot exist.191–193,195 Analysis of the obtained optical conductivity suggests

that the scattering rate 1/τ decreases by an order of magnitude over the pressure range

2−10 GPa, saturating above 4 GPa at a value of 0.5 eV ∼ W (Fig. 7.14(c)). This result

is consistent with the observed order of magnitude enhancement and saturation of the DC

conductivity σ(ω = 0) ∝ τ over the same pressure range (Fig. 7.5). However, the large

value of the scattering rate suggests a bad metallic state at room temperature. Indeed, the

room temperature resistivity at high pressure, which saturates near 0.1 Ω cm, exceeds the

Mott-Ioffe Regel limit of ∼ 10−3 Ω cm by several orders of magnitude.

Taken together, these optical conductivity results presented in this section provide

strong evidence for a Mott insulator to metal transition in FBBO in the vicinity of 3 GPa,

as evidenced by significant shifts in spectral weight to low frequencies, and suppression of

the effective quasiparticle scattering rate. Future studies of the temperature dependence of

these quantities, and extensions to lower frequency, could provide greater insight into the

evolution of the electronic structure of FBBO through this transition. For example, the

appearance of Drude-like features has been observed in many strongly correlated systems

at low temperature (T < T ∗ ∼ 40 K for organics) and frequency (ω < 0.05 eV for organics)

associated with quasiparticles that become coherent only below a strongly renormalized

effective Fermi temperature T ∗, as discussed in Section 3.3.200,309,313 Preliminary diamond

anvil cell measurements ofρ(T ) obtained by the Julian group at the University of Toronto

on a pressed pellet of FBBO show a similar response in FBBO (Fig. 7.15). At 2.7 GPa,

a downturn of the resistivity and metallic conductivity (dρ/dT > 0) is observed below
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Figure 7.15: Preliminary high pressure resistivity measurements on FBBO showing a region of metallic

conductivity at 2.7 GPa and below 20 K.

20 K, while activated behaviour is observed at lower pressures and higher temperatures.

However, we find no region of ρ < ρMIR below this downturn, in contrast with more widely

studied radical-ion salts.200,228,229 Continued studies of FBBO would help to map out the

phase diagram of this material as well as elucidate the reason for this dichotomy. In the

next section, we discuss the qualitative picture of the Mott transition in FBBO within the

context of the suggested multi-band model.

Description of the Multi-Orbital Mott Transition

In this section, we consider the nature of the insulator to metal transition observed in FBBO

around 3.0 GPa, in reference to the described electronic structure. In the insulator, the half-

filled SOMO is split into lower and upper Hubbard bands (LHB and UHB, respectively),

with a relatively wide LUMO band and small V implying overlap of the LUMO band and

UHB. Under applied pressure, a Mott transition in the SOMO band alone is unlikely, due

to small t00
ij ’s and large U . For this reason, we have suggested that this transition proceeds

mainly through orbital rehybridization of the molecular SOMO and LUMO to produce a

degenerate set of orbitals resembling the MLWOs. Concomitant with this transition is the

reduction in the chemical potential, due to LUMO states being drawn to lower energy. The
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Figure 7.16: Cartoon of the electronic structure of FBBO in the insulating and metallic states. Occupied

one-electron states are indicated by diagonal hatching. In the insulator, the SOMO is split into a filled

lower Hubbard band (LHB), and empty upper Hubbard band (UHB), which overlaps with the empty

LUMO band. In the metal, the SOMO and LUMO hybridize to overlapping φ− and φ+ bands, with

roughly equal occupation.

resulting MLWO bands are wide and nearly equally occupied in the metallic state, so that

the transition is expected to occur directly between the half-filled insulator and quarter-

filled metal, as represented in Fig. 7.16. This scenario is in agreement with previous studies,

which suggest a direct transition in the case where the splitting of the MLWOs ∆ε′ ∼ 0, but

such studies considered only weak orbital hybridization (t−−ij , t
++
ij � t−+

ij ).314 Proximity to

this metallic state is also related with the observation of ferromagnetic interactions in the

insulator; in the same limit of negligible hybridization, the quarter-filled two-orbital model

is known to display ferromagnetically ordered insulating states.315

In section III, approximate Coulomb parameters were computed in the SOMO/LUMO
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basis; these can be transformed into the MLWO basis:

U ′ =
U + V

2
+K01 ∼ 0.77 eV (7.32)

V ′ =
U + V

2
−K01 ∼ 0.37 eV (7.33)

K−+ =
U − V

2
∼ 0.12 eV (7.34)

∆ε′ ∼ 0 eV (7.35)

As expected, localizing the MOs has the effect of increasing the Coulomb repulsion between

electrons in the same orbital, while decreasing the repulsion between electrons in different

orbitals. On the basis of these values, the potential energy cost for formation of a metallic

state can be estimated in a mean field sense from the expectation value of the Coulomb

operator:

〈Ui〉 =
U ′

4

(
〈ni,−〉2 + 〈ni,+〉2

)
+ V ′〈ni,−〉〈ni,+〉 (7.36)

which reduces to 〈Ui〉 ∼ 0.13 U ′ + 0.24 V ′ ∼ +0.19 eV using 〈ni,−〉 ∼ 0.6 and 〈ni,+〉 ∼
0.4. For comparison, the reduction in kinetic energy upon formation of the metallic state

(including the cost of orbital hybridization) can be estimated by:

∆Ek =

∫ εF
−∞(ε0 − ω)D(ω)dω∫ εF

−∞D(ω)dω
(7.37)

where D(ω) is the total density of states for the two bands as shown in Fig. 7.11(c), and ε0

is the orbital energy of the unhybridized SOMO. We find ∆Ek ∼ −0.25 eV per electron at

ambient pressure, which is the same order as the potential cost of 0.19 eV above, consistent

with proximity to the Mott transition. However, as |∆Ek| > 〈Ui〉, a metallic state is

anticipated even at ambient pressure, in contrast with experimental findings. Indeed, we

show below that DMFT calculations come to the same conclusion. This discrepancy is

most likely due to an underestimation of the SOMO-LUMO splitting ∆ε ∼ 0.18 eV in the

solid state calculations, resulting in a slight overestimation of ∆Ek. It is worth noting that

Extended Hückel calculations on isolated molecules incorrectly predict a reversal in the

ordering of the SOMO and LUMO, giving negative ∆ε values. In this sense, ∆ε is sensitive

193



to the theoretical method employed, and may not be properly estimated by the solid state

DFT technique.

The role of Hund’s rule coupling in stabilizing the metallic state of RBBO materials

has been previously discussed, but is revisited here in the context of the above picture of

orbital rehybridization. In multiorbital models with no orbital mixing, the effects of Hund

coupling, K, has been demonstrated to have a strong filling dependence. In particular, for

multiple electrons/holes per site, a large K reduces both the charge gap in the insulating

state, and the quasiparticle coherence in the metal, ultimately promoting bad-metallic

states over a wide range of t/U .316,317 In contrast, for the case with only one electron per

site on average, the latter effect is diminished, so that a normal metallic state is always

stabilized for large K. For the present picture of orbital mixing in RBBO materials,

this discussion is complicated by the state dependency of the Hund coupling magnitude

(i.e., K01 6= K−+). We therefore restrict the discussion to the influence of K01. On

the insulating side, increasing K01 reduces the charge gap, thus promoting a metallic

state. On the metallic side, the only effect of increasing K01 is to increase repulsion

between electrons in the same MLWO (U ′), while reducing the repulsion between electrons

in different orbitals (V ′). This combination should stabilize the metal, as the large value

of U ′ is expected to have little impact on the quarter-filled metallic state.315,318 That

being said, further theoretical investigations into the interplay of orbital hybridization and

Hund’s rule coupling are of great interest.

In order to further explore the evolution of the electronic structure through the metal-

lization, we have employed Hirsch-Fye QMC DMFT17,209–213 calculations, which are par-

ticularly suitable for studying multi-orbital strongly correlated problems.319–321 For these

calculations, we focus on a single ab-plane layer, ignoring all hopping to nearest neighbours

(3) and (4). The Coulomb parameters are taken to be K01 = 0.2 eV, V = U − 0.2 eV, and

we adjust U in order to tune the Mott transition. In order to ensure convergence of the

discrete time Green function G(τ), we employ a large temperature T = 0.1 eV/kb = 1160

K. At each stage, the Green function is made site-diagonal, so that the two orbitals in the

DMFT calculation smoothly commute between the MLWO {φ+, φ−} and SOMO/LUMO

{φ0, φ1} basis. For this reason, we label the majority and minority occupied orbital φa

and φb, respectively. In the absence of correlation (U = V = K01 = 0), the fractional
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Figure 7.17: Evolution of (a) quasiparticle weight, (b) orbital occupancy, and (c) double occupancy

for FBBO as a function of U . The point labelled U = 0 corresponds to V = 0,K01 = 0, while all other

points have V = U − 0.2 eV and K01 = 0.2 eV. The metallic states at weak correlation consist of partially

occupied SOMO and LUMO bands, in which the effective Coulomb barrier is reduced to V − K01, and

double occupancy is dominated by 〈nai,↑nbi,↑〉. Extrapolation of Za to zero suggests an insulating state

above Uc ∼ 2.6 eV.

occupancy of these two orbitals is found to be ∼ 0.6 and ∼ 0.4, consistent a quarter filled

metallic state with φa = φ− and φb = φ+. Setting U = 0.7 eV, which corresponds with

the parameters estimated above, we still find a metallic solution. This can be seen by es-

timating quasiparticle weight Z from the value of the self energy at the lowest Matsubara

frequency:209

Zα =
m

m∗
=

1

1− ∂
∂ω

Re Σ(α, ω)|ω→0−
≈ 1

1− 1
πT

Im Σ(α, iωn)|n=1

(7.38)

which measures the overlap of the states close to the Fermi energy with their uncorrelated

counterparts at U = V = K01 = 0. An insulating state is characterized by the divergence

of Re Σ(ω) at ω = 0, implying a quasiparticle weight of exactly zero. Estimate of Z from

the self-energy at discrete Matsubara frequencies via eq’n (7.38) always provides a finite

value for Z. Nonetheless, extrapolation Za to zero suggests an insulating state appearing

above an unrealistically large Uc ∼ 2.6 eV (Fig. 7.17(a)). For U = 0.7 eV, the quasiparticle

weight in both bands is found to be in the range 0.6−0.7, suggesting a metallic solution.

At this U , the fractional occupancy of each orbital is also altered very little from the
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Figure 7.18: Evolution of the integrated spectral weight (i.e. density of states) for FBBO with increasing

correlation computed using HF-QMC DFT. As U is increased, the SOMO and LUMO are decoupled, while

the LUMO density is pushed to high energy.

uncorrelated values, and inspection of the imaginary time Green functions G(τ = 1/2T ) ∼
πA(ω = 0) suggests finite density at the Fermi level. Even at low U , however, statistics

of the HF-QMC simulations show that the double occupancy of both minority 〈nai,↑nai,↓〉
and majority 〈nbi,↑nbi,↓〉 orbitals is strongly suppressed from their uncorrelated values (Fig.

7.17(c)). In contrast, the occupancy of both orbitals by electrons of the same spin 〈nai,↑nbi,↑〉
remains essentially unaltered. The strong Hund’s coupling ensures the majority of Coulomb

repulsion at low U for can be offset by ferromagnetic alignment and occupation of different

orbitals by electrons at the same site. With increasing correlation, the occupancy of φbi
is suppressed, falling to 〈nbi〉 < 0.1 in the vicinity of the estimated metal-to-insulator

crossover near Uc ∼ 2.6 eV. In this same region, 〈nai,↑nai,↓〉 ≈ 〈nai,↑nbi,↑〉, and the HF-QMC

solver shows signatures of instability to strong spin polarization, suggesting the possibility

of magnetic order at the mean-field level. We suggest, in this strong correlation limit, that

φai ≈ φ0
i , and φbi ≈ φ1

i . The changes in the electronic structure can be tracked by following

the evolution of the approximate integrated spectral density of each orbital, obtained by

analytic continuation of the self-energy via Padé fitting (Fig. 7.18). As U is increased,

the φb density is shifted to higher energies along with incoherent excitations of the upper
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Figure 7.19: (a) Computed real part of the optical conductivity σ1(ω) within the DMFT approximation

for different values of U , with V = U − 0.2 eV and K01 = 0.2 eV for FBBO. (b) Extrapolated experi-

mental optical conductivity based on KK-analysis of normal incidence reflectivity (arb. offset). At weak

correlation, a dominant Drude peak is found at low energies. At strong correlation, a single amalgamated

feature is found to be peaked near ω = U , corresponding to excitations from the lower Hubbard band to

a combination of the upper Hubbard band and the empty LUMO band.

Hubbard band, while the occupied states become increasingly of pure φa character. The

results of these DMFT calculations are therefore consistent with our assertion that the

metallic state relies crucially on overlap of SOMO and LUMO spectral density to from a

pseudo-quarter-filled system. As U is increased, the LUMO and SOMO are decoupled with

the spectral density of the LUMO pushed to higher energies. However, the large value of

Uc is alarming; although these calculations provide a compelling cartoon of the metal to

insulator transition in FBBO, a more thorough investigation will be required to provide

quantitative comparison with experiment.

An important qualitative prediction of DMFT is the strong overlap of the upper Hub-

bard band and empty LUMO in the insulating state, which has consequences for the optical

conductivity, which may be estimated σ(ω) within the DMFT approximation via:322–325

σ(ω) = σ0

∑
α

∫
ν

∫
ε

Aα0 (ε)Aα(ε, ν)Aα(ε, ν + ω)
f(ν)− f(ν + ω)

ω
(7.39)
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where Aα0 (ε) is the non-interacting momentum integrated spectral function for the α orbital:

Aα0 (ε) =

∫
k

Im

[
1

ε− εα,k + iη

]
(7.40)

and Aα(ε, ν) is the DMFT impurity spectral function:

Aα(ε, ν) = Im

[
1

ν − ε− Σ(α, ν) + iη

]
(7.41)

The equation is, strictly speaking, only appropriate for bands where εα,k is an injective

(1:1) function of momentum and orbital index, as it overcounts the Drude component of

the optical conductivity otherwise. However, we can still obtain qualitatively meaningful

data provided the computed conductivity is normalized according to the optical f -sum

rule:
∫
ω
σ(ω) = const. Results of these calculations are shown in Fig. 7.19. At strong

correlation, the overlapping of the LUMO spectral density with that of the upper Hubbard

band results in a single feature in the optical conductivity centred around ω = U . Thus,

only one Hubbard feature is expected, despite contributions from multiple orbitals. Com-

parison with the experimental optical conductivity (Fig. 7.19(b)) shows good qualitative

agreement with the calculations, although the experimental energy scale of interactions

is much smaller as noted above. However, the experimental Mott transition is driven by

pressure, it is expected to proceed mainly by enhancement of the bandwidth, rather than

tuning of the Coulomb repulsion. For this reason, the apparent shifting of the peak in σ1(ω)

should be considered a sign of large particle-hole asymmetry, although further studies will

be required to determine the origin and validity of this observation.

Summary and Conclusion

In this section, we studied the charge transport properties and magnetic response of the

F-substituted oxobenzene bridged radical (7-2, R = F) denoted FBBO. On the basis of

the observation of spin canting at ambient pressure, the magnetic structure of FBBO was

established to have ferromagnetic interactions within the ab-plane layers. This observation

was explained on the basis of both molecular and solid state calculations, which implicate

a combination of Hund’s rule coupling, and a low-lying π LUMO, both of which necessitate
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a two-orbital model for the electronic structure. As both of these properties are molecular

in origin, they are expected to be common to the entire family of RBBO materials 7-2.

It is therefore satisfying that ferromagnetic interactions are indicated by ferromagnetic

Weiss constants Θ > 0 in a large number of RBBO materials, despite variations in solid

state packing. For example, substitution of the exocyclic fluorine by a phenyl group to

produce PhBBO (7-2, R = Ph) provides to one-dimensional chains with large ferromagnetic

intrachain coupling J|| = +84.9 K,4 (interchain zJ⊥ = −7.2 K) and positive Weiss constant

of Θ = +32.8 K.93 Evidence for ferromagnetism has also been observed in HBBO (Θ =

+15.6 K), although in this latter case, the complexity of the crystal structure has hindered

analysis of the antiferromagnetic order appearing at TN = 4.5 K.305 Analysis of the optical

conductivity of HBBO under pressure, reported in Ref. 96, suggests a similar picture of the

Mott transition in both FBBO and HBBO. Given these similarities, the essential details

discussed in this section for FBBO are expected to be common to the entire radical family.

The enhancement of the conductivity in RBBO radicals in comparison with previous

generations of pyridine-bridged radicals can therefore be understood to arise directly from

the presence of the low-lying π LUMO. In this section, we have suggested that this LUMO

hybridizes with the SOMO in the solid state, which significantly enhances the scale of the

electron kinetic energy, promoting delocalization. We considered the evolution of the prop-

erties of FBBO under pressure. However, given that the existence of the low-lying LUMO

is essentially a molecular property, it is possible to consider how chemical modifications to

the radical framework might also alter the magnetic and electronic properties. Preliminary

studies of such effects are considered in the remaining sections of this chapter.

7.3.3 Nitro Substituted Radical NO2BBO

Molecular Electronic Structure

Having described the electronic structure of RBBO materials, we now consider how chem-

ical modification may enhance charge transport properties by lowering the SOMO-LUMO

gap δε = ε1−ε0. In oxobenzene bridged RBBO radicals, the SOMO possesses a nodal plane

4With respect to the Hamiltonian H = −JijSi · Sj .
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Figure 7.20: Frontier molecular orbitals relevant to the electronic structure of NO2BBO obtained from

DFT calculations at the B3LYP/6-31G(d,p) level.

along the central axis of the molecule, and therefore has little density on the exocyclic R-

groups. In contrast, the low-lying LUMO of RBBO radicals has significant density along

this axis, and as a result may be tuned via substitution at the R-position. The combination

of a strong π-acceptor (C=O) and weak π-donor (R = F, Cl, etc.) results in an estimated

SOMO-LUMO gap of ∆ε ∼ 0.6 eV, and electrochemical cell potential of Ecell = 0.6−0.7

V. Introducing a non-π substituent in the form of R = H results in a modest reduction to

Ecell = 0.56 V. It was therefore suggested, and pursued by Dr. Mailman, that substitution

with a strong π-acceptor R = NO2 would result in significant reduction in the Coulomb

gap. Indeed, NO2BBO exhibits an Ecell = 0.45 V, which is lower than that of FBBO by

a factor of 1/3. At the molecular level, the NO2 group provides an additional low-lying

empty π orbital, which may hybridize with the LUMO to produce an exceedingly low-lying

α = +1 and moderately low-lying α = +2 orbital (Fig. 7.20).

In this section, we focus our attention on the just the α = 0,+1 orbitals, in order to

treat NO2BBO on the same footing as FBBO. State energy calculations at the DDCI3 level

based on a CAS(2,2) reference space on the molecular anion of NO2BBO suggest an open

shell ground state with triplet and lowest singlet energies essentially degenerate. This result

may be anticipated from the following Lewis structures, which suggest that localization of
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Figure 7.21: Crystal structure of MeCN solvate of NO2BBO, viewed (a) down the a-axis, and (b)

down the c-axis. The presence of the solvent molecules buffers interactions between π-stacks, resulting in

a one-dimensional electronic structure with strong interactions only along the π-stacking a-axis.

the negative charge to the C=O and NO2 moieties naturally gives a diradical structure:
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Relative to lowest singlet and triplet the remaining singlets have energies E(1|11〉) = +1.042

eV, and E(1|02〉−γ1|20〉) = +1.190 eV. Based on these values, we therefore estimate ∆ε =

0.29 eV, K01 = 0.52 eV, V 01 = 0.37 eV, with U = 0.45 eV. The reduction in ∆ε results

from the significant mixing of the empty π-orbitals associated with the NO2 group with

only the LUMO, as these orbitals are not of correct energy or symmetry to mix with the
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Figure 7.22: Electronic structure of NO2BBO at the DFT level. (a) Computed band structure (open

circles) with Wannier interpolated tight-binding band structure shown with solid lines, the colour of which

indicates the contribution from the three MLWOs φ−i , φ
+
i , φ

2
i . (b) Density of states obtained by MLWO

interpolation. (c) Predicted Fermi surfaces corresponding to the eight φ−i , φ
+
i bands in the Brillouin zone

showing 1D character.

SOMO. This mixing also draws LUMO density away from the C=O group in comparison

with the LUMO of FBBO, which enhances the overlap density between the SOMO and

LUMO. This effect explains the predicted increase of the Hund’s coupling K01 relative to

FBBO by more than a factor of two. Taken together, the predicted suppression of ∆ε and

enhancement of K01 should place NO2BBO in closer proximity to a metallic state.

Solid State Electronic Structure

To date, several crystallographic phases have been found for this material; in this section

we focus on the best characterized phase, in which NO2BBO crystallizes together with

MeCN solvent (Fig. 7.21). In this case, the radicals adopt a P21/c space group, with

solvent molecules separating uniform π-stacks, each with small slippage along the long
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Figure 7.23: Site diagonal orbitals for NO2BBO. The mixing of the SOMO and LUMO to produce |φ+
i 〉

and |φ−i 〉 is reflective of the near degeneracy of the orbitals at this level of theory.

axis of the molecules. Preliminary 4-probe conductivity measurements on pressed pellets

of this material suggest a small thermal activation energy of 0.07 eV, which is the lowest

observed at ambient pressure in any radical material. However, given the relatively one-

dimensional structure, single crystal measurements are desirable. In order to explore the

electric structure of this phase, we performed band structure calculations at the DFT

level with the PWSCF package177 using ultrasoft PBE pseudopotentials and a plane-wave

cutoff of 25 Ry and a 250 Ry integration mesh. Self-consistent field calculations employed

a 2 × 2 × 2 Monkhorst-Pack k-point mesh and the molecular geometry was taken from

the preliminary crystal structure, with solvent omitted. At this level of theory, all bands

associated with the admixed SOMO and LUMO are found to be essentially degenerate,

producing a cluster of eight bands (two from each molecule) intersecting the Fermi energy

(Fig. 7.22). These bands show strong dispersion only along the π-stacking a-axis as

interstack interactions are buffered by the presence of solvent molecules in the crystal

structure. The Fermi energy resides at quarter filling of the combined band cluster, which

has a large bandwidth of nearly 1.5 eV, and thus overlaps slightly with the α = +2 band

appearing 1 eV above εF .

In order to further analyze the orbital structure, we have employed wannier90 to obtain

hopping integrals in the MLWO basis. In contrast with the results on FBBO, the site-

diagonalization of the resulting tight binding Hamiltonian does not recover the molecular

SOMO and LUMO; as these orbitals are found to be essentially degenerate in these solid

state calculations, there is no hybridization cost for their mixing. The MLWOs, shown
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Table 7.6: Computed hopping integrals for NO2BBO 7-2 R=NO2 obtained via MLWO interpolation.

β

tαβij (π) (meV) − + 2

− +230.5 −33.3 +8.9

α + +22.7 +221.4 ∼ 0

2 +12.6 −9.5 +100.2

in Fig. 7.23, are already nearly site-diagonal, and may represent an appropriate basis for

describing the insulating state. If this result is correct, it implies that even the insulating

state of NO2BBO must be considered in a quarter-filled context, and that the extra orbital

degree of freedom afforded by the low-lying LUMO no longer represents only a perturbative

effect. Indeed, we find the three MLWOs, denoted φ−i and φ+
i , φ2

i , given by:

|φ−i 〉 ≈
1√
2

(|0i〉 − |1i〉) ε−i ≡ 0 eV (7.42)

|φ+
i 〉 ≈

1√
2

(|0i〉+ |1i〉) ε+i = 0.06 eV (7.43)

|φ2
i 〉 ≈ |2i〉 ε2i = 0.72 eV (7.44)

Hopping integrals between nearest neighbours in the π-stacks are given in Table 7.6. As a

result of the small slippage of the π-stacks, the largest integrals occur between like orbitals,

with the wide φ−/φ+ bands characterized by tαβij > 200 meV. In contrast, all interstack

hopping integrals (not shown) are at least an order of magnitude smaller.

Optical and Magnetic Response

The measured ambient pressure single crystal reflectivity shows marked anisotropy, ex-

hibiting negligible response to light polarized perpendicular to the π-stacking a-axis, and

a nearly metallic response, although with R ∼ 0.25, for light polarized parallel to this

axis (Fig. 7.24). This anisotropy is not surprising, given the one dimensional electronic

structure suggested in the previous section, and is similar to previous results on quarter
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(a) (b)

Figure 7.24: (a) Polarized single crystal reflectivity of NO2BBO at ambient pressure and room tempera-

ture. The strong anisotropy is characteristic of the 1D electronic structure, which permits conduction only

along π-stacking a-axis. (b) Comparison of the optical conductivity σ1(ω) obtained by Kramers-Kronig

analysis for NO2BBO and FBBO. The dashed lines indicate the solution electrochemical cell potential

values, which correspond with a peak in σ1 resulting from excitations across the Coulomb gap.

filled organic salts such as [TMTSF]2[X].326–328 The optical conductivity for the conductive

direction, derived from Kramers-Kronig analysis, shows a broad Hubbard feature centred

around the solution electrochemical cell potential Ecell = 0.45 V. As a result, there is sig-

nificantly more spectral weight at low energies compared with FBBO, which is consistent

with the suggestion that NO2BBO is closer to the Mott transition at ambient pressure.

The magnetic response is also consistent with this picture, as the magnetic susceptibility

follows χT ∝ T , i.e. χ is temperature independent, as one might expect for a metallic con-

ductor (Fig. 7.25).124 The measured value of 6 × 10−4 emu mol−1 is enhanced compared

with the Pauli susceptibility ∼ 10−6 emu mol−1 typically found for monovalent metals such

as Na, although this is not surprising given the order of magnitude smaller bandwidth in

NO2BBO, and expected influence of correlations. Indeed, susceptibility of this order has

been seen in previous metallic organic conductors.107,329–331 Reconciling this temperature

independent paramagnetic response with the apparent insulating behaviour at ambient

pressure represents an important question for future investigation. At this stage, the fact

that the electronic structure may be directly tuned via modification of the radical build-
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Figure 7.25: Ambient pressure magnetic susceptibility of NO2BBO showing linear χT , i.e. a tempera-

ture independent susceptibility. Such a response might be anticipated for a metallic conductor, indicating

proximity to the Mott transition.

ing block offers promise for exploration of strong correlation physics in this new class of

multi-band organic radicals.

7.3.4 Iodine Substituted Radical IBBO

Introduction

As the final topic of this chapter, we explore the magnetic properties of 7-2, R = I, denoted

IBBO. As with NO2BBO, this radical crystallizes in several structural phases; here we focus

on the EtCN solvate, which adopts a Pnma space group. In this structure, the IBBO

radicals form alternating ABAB π-stacks running along the crystallographic b-direction,

with adjacent radicals in the same stack related by a crystallographic inversion centre.

Such pairs of radicals are labelled (π) in Fig. 7.26. Each radical falls on a crystallographic

mirror plane normal to b, and is linked to adjacent stacks by an a-glide (or 21), which

is the generator of extended ribbons of radicals propagating along the a-axis. Nearest

neighbours within these ribbons are labelled (1). The presence of the solvent molecules,

which also form ribbons along the a-axis, separates the radicals such that nearest neighbour

interactions (π) and (1) represent the only large symmetry non-equivalent terms. Given
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Radical RibbonSolvent

Figure 7.26: Crystal structure of EtCN solvate of IBBO showing definition of nearest neighbour

interactions (π) and (1). Hydrogens are omitted from the solvent molecules for clarity.

this relative simplicity, the magnetic response of IBBO is quite compelling.

At ambient pressure, IBBO·EtCN orders as a spin-canted antiferromagnet at TN = 34.5

K, as evidenced by a bifurcation in the field cooled and zero field cooled susceptibility, and

the appearance of a spontaneous moment ∼ 1.2× 10−3 µB that displays a relatively large

coercive field of 1150 Oe (Fig. 7.27). Given this large magnetic anisotropy, we suspect that

spin-orbit effects play an appreciable role in this material. In this light, it is important

to note that while SOMO has little density on the heavy I substituent, that the LUMO

does contain significant density at this position. For this reason, the R-group may directly

influence the scale of spin-orbit coupling corrections to the LUMO, which enter into the

multi-orbital anisotropic exchange introduced in section 2.2.4. As the atomic spin-orbit

constant of neutral I is λI = 0.63 eV, three times larger than that of Se, even small density

on iodine may strongly influence the magnetic anisotropy. We investigate this possibility

in this section.
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(a) (b) (c)

Figure 7.27: Magnetic data on IBBO. (a) Field cooled magnetic susceptibility as a function of tem-

perature showing a surge at the ordering transition TN = 34.5 K. Inset: Magnetization as a function of

temperature at low field showing hysteresis of the canted moment. (b) Magnetization over a broader field

range. (c) Spontaneous magnetization as a function of temperature.

Isotropic Magnetic Interactions

As with FBBO, the observation of a canted moment in IBBO allows for unambiguous iden-

tification of its ordered magnetic structure. In this case, symmetry requires all molecules

related by either inversion or translation to belong to the same magnetic sublattice, which

implies that adjacent molecules along the π-stack must be ferromagnetically aligned. In

contrast, nearest neighbours within the radical ribbons, related by the a-glide must be anti-

ferromagnetically coupled. Given the simplicity of the interactions, this requires Jij(π) > 0

and Jij(1) < 0 with reference to the Hamiltonian H = −JijSi · Sj. In order to analyze

the magnetic interactions, we have estimated hopping integrals via the MOMO method,

employing the single crystal structure at 100 K, at the B3LYP/6-311G(d,p) level. The

results, shown in Table 7.7, reveal large SOMO-LUMO hopping integrals t01
ij (π) = t10

ij (π)

between adjacent molecules in the same π-stack. In contrast, interactions along the ribbons

are characterized by more evenly distributed magnitudes of all integrals. On the basis of

these hopping parameters, and using the Coulomb parameters of FBBO, we estimate the
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Table 7.7: Tight-binding parameters for IBBO obtained from a rotation of maximally localized orbitals to

ensure a site-diagonal (t01
ii = 0) hopping Hamiltonian, as described in the text. The number in parenthesis

beside each label tαβij indicates the associated contact defined in Fig. 7.26.

β

tαβij (π) (meV) 0 1

α 0 +7.7 +182.1

1 +182.1 +127.9

β

tαβij (1) (meV) 0 1

α 0 +29.8 +52.2

1 +25.2 +35.3

exchange terms to be:

Jij(π) = + 297.3 K (FM) (7.45)

Jij(1) = − 39.4 K (AFM) (7.46)

The signs of these terms agree with the anticipated magnetic structure, although the

magnitude of Jij(π) is likely overestimated. Nonetheless, the experimental observation

of a large positive Weiss constant of Θ = +20.9 K does suggest dominant ferromagnetic

interactions.

Anisotropic Magnetic Interactions

The observed anisotropy and spin-canting arise from a combination of long-range magnetic

dipolar and spin-orbit anisotropic exchange interactions. For the simple example of a two-

sublattice antiferromagnet, the former interaction prefers orientation of a particular local

moment along directions of maximum spin density associated with the same sublattice.

For the suggested magnetic structure, dipolar interactions can therefore be anticipated

to provide an easy b-axis, corresponding to orientation of moments along the π-stacks.

Such an orientation, however, is unlikely to lead to a canted moment. As in the case

of FBBO, the second order terms in the free energy are restricted by the presence of

the mirror plane, which admits only the invariants lxfz and lzfx. That is, the sublattice

magnetization and canted moment must lie in the ac-plane. Indeed, we have explicitly

estimated the magnitude of the dipolar interactions, assuming the calculated spin density
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of each atom is localized to the atomic position, and find a small dipolar contribution to

the anisotropy on the order of ∼ 70 Oe. Given that this does not account for the observed

anisotropy, we have also estimated the effects of anisotropic exchange interactions in IBBO

via the DFT methods. Recall that the anisotropic exchange may be described by the

Hamiltonian:150

Hanis =
∑
i,j

Dij · Si × Sj + Si · Γij · Sj (7.47)

where Dij is the Dzyaloshinskii-Moriya vector, and Γij describes the pseudo-dipolar com-

ponent of the anisotropic exchange. Due to the presence of the low-lying LUMO with

density on the heavy iodine, the multi-orbital FM components of these expressions is ex-

pected to produce a significant contribution, and as such must be considered. Accordingly,

the anisotropic terms may be decomposed into parts arising from antiferromagnetic in-

teractions between pseudospin moments, described by Moriya’s equations,150 and those

arising from ferromagnetic interactions:

Dij = DAFM
ij + DFM

ij (7.48)

DAFM
ij =

4i

U

{
t00
ij C00

ji −C00
ij t

00
ji

}
(7.49)

DFM
ij = − 2i

{
C01
ij t

10
ji

Q01
j

(U + ∆ε1j)
2 − (Q01

j )2
− t10

ij C01
ji

Q01
i

(U + ∆ε1i )
2 − (Q01

i )2

}
(7.50)

Γij = ΓAFM
ij + ΓFM

ij (7.51)

ΓAFM
ij =

4

U

{
C00
ij ⊗C00

ji + C00
ji ⊗C00

ij

}
(7.52)

ΓFM
ij = − 2

{
C01
ij ⊗C10

ji

Q01
j

(U + ∆ε1j)
2 − (Q01

j )2
+ C01

ji ⊗C10
ij

Q01
i

(U + ∆ε1i )
2 − (Q01

i )2

}
(7.53)

The local crystallographic symmetry of each IBBO radical pair places severe restrictions

on the form of these interactions. Specifically,

• Due to the fact that nearest neighbours in the same π-stack are related by inversion,

Dij(π) = DFM
ij (π) = DAFM

ij (π) = 0. To see this, note that the DM-vector transforms
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as a pseudo-vector, and is therefore left invariant under inversion, while the sites i, j

are interchanged, so that [H, î] = 0 = 2 î DijSi × Sj implies Dij = 0, where î is the

inversion operator.

• Since ΓAFM
ij (π) ∝ DAFM

ij (π) = 0, the AFM contribution to the pseudodipolar inter-

action also vanishes along the π-stacks.

• For nearest neighbours labelled (1), both molecules lie on the same crystallographic

mirror plane, which restricts C00
ij ,C

01
ij , and C10

ij to be oriented normal to the molecular

plane. However, since both |0i〉 and |1i〉 are π-orbitals, the normal component of all

these Cij terms is required to vanish. As a result, all anisotropic interactions Dij(1)

and Γij(1) are essentially zero.

In order to emphasize this last point, and in analogy with the discussion of section 6.2.3, we

introduce the pseudo-orbital functions |ηµi 〉 and |κµi 〉 associated with the spin-orbit mixing

of the SOMO and LUMO, respectively:

|ηµi 〉 =
1

2

∑
α 6=0,1

|αi〉
〈αi|Lµi |0i〉
εα − ε0

(7.54)

|κµi 〉 =
1

2

∑
α 6=0,1

|αi〉
〈αi|Lµi |1i〉
εα − ε0 + U

(7.55)

in terms of which, the spin-orbit mediated hopping parameters may be written:[
C00
ij

]
µ
≡ tη

µ0
ij + t0η

µ

ij (7.56)[
C01
ij

]
µ
≡ tη

µ1
ij + t0κ

µ

ij (7.57)

We introduce the following molecular coordinate system: ẑi is chosen to be normal to

the molecular plane at site i, which in the Pnma cell of IBBO also corresponds with the

crystallographic b-axis; the x̂i and ŷi directions are along the long and short axis of the

molecule, respectively. The pseudo-orbital functions |ηµi 〉 and |κµi 〉 with respect to this

coordinate system are shown in Fig. 7.28, as computed at the B3LYP/6-311G(d,p) level.

For µ = z, these functions nearly vanish, as explained in section 6.2.3. The SOMO |0i〉
and LUMO |1i〉 are both π-orbitals, and are antisymmetric with respect to the local mirror
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SOMO

LUMO

(a) (b)

Figure 7.28: (a) SOMO (α = 0) and LUMO (α = +1) at each radical site i for IBBO computed that the

B3LYP/6-311G(d,p) level. (b) Pseudo-orbital functions defined in eq’n (7.54) and eq’n (7.55) to describe

SOC hopping parameters Cij .

plane, while |ηµi 〉 and |κµi 〉 (µ = x, y) are composed of linear combinations of σ-orbitals,

and are symmetric with respect to the mirror. For this reason, both C00
ij and C01

ij vanish

for pairs of IBBO radicals bisected by the same mirror plane, since t0η
µ

ij = t1η
µ

ij = t0κ
µ

ij = 0.

Given the above discussion, and provided the crystallographic symmetry is maintained

through the ordering transition, it is clear that the only anisotropic exchange interaction

allowed by symmetry is the multi-orbital contribution to the pseudodipolar term ΓFM
ij (π).

We have employed the MOMO method at the B3LYP/6-311G(d,p) level to construct hop-

ping integrals necessary for computing ΓFM
ij (π), as discussed in section 2.4.2. The Coulomb

parameters were assumed to be those of FBBO. The results indicate that such interactions

provide an easy axis for each π-stack that lies in the ac-plane nearly along the short axes

of the molecules, making an angle of 16◦ with the a-axis. The magnitude of this effect is

estimated to be |HA| ≡ |Tr ΓFM
ij (π)/gµB| = 528 Oe. In this picture, a canted moment along

the c-axis arises due to the misalignment of the local easy axis of the two magnetic sublat-

tices (Fig. 7.29). On the basis of this interaction, and the previously computed isotropic

interactions, minimization of the magnetic energy allows us to estimate a canted moment
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Figure 7.29: Magnetic structure predicted for IBBO·EtCN, emphasizing canting of spins to produce a

net moment along the c-direction. Dashed lines indicate the orientation of the local easy-axis associated

with each π-stack arising from Γij(π). Canting arises due to the noncollinearity of these local easy axes.

of 0.5 × 10−3 µB, which is about half of the observed moment. Given the sensitivity of

the canting to the orientation of Γij(π), and relative magnitude of Γij(π) and Jij(1), this

agreement between experiment and theory is satisfying. From linear extrapolation of the

magnetization as a function of field, we can approximate the exchange field for IBBO to

be HE = 38 T, suggesting a spin-flop field of Hsf =
√

2HE|HA| = 2.0 T,276 based on the

computed HA. Evidence for such a spin-flop can be seen in the derivative of the powder

magnetization versus field, which displays a marked peak near H = 2.1 T, in complete

agreement with the predicted Hsf (Fig. 7.30).

On the basis of the above findings, we suggest that multi-orbital anisotropic exchange

provides a natural and consistent explanation for the observed anisotropy in IBBO. This

is remarkable, because these interactions are not included in Moriya’s conventional theory

of anisotropic exchange, which serves as the basis for the vast majority of analysis in

the literature. Additionally, they rely on the presence of a low-lying LUMO, with strong

Hund’s coupling to the SOMO, which validates our picture of the electronic structure of

these RBBO materials.
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Figure 7.30: dM/dH curves over one hysteresis loop for IBBO showing evidence for a spin-flop transition

near 2.1 Tesla. Dashed lines indicate the theoretically predicted spin-flop field Hsf = 2.0 T.

7.4 Chapter Summary

This final chapter focussed on the recent developments by the Oakley group toward the

design of radicals incorporating multiple orbitals in the vicinity of the Fermi energy. The

first section focused on our attempts to tune the electronic structure of pyridine-bridged

radicals in order to ensure either a low-lying empty LUMO or high-lying filled HOMO. We

introduced the asymmetrical hybrid radical family 7-1, in which variation of the exocyclic

R3 group in principle would allow for modification of the frontier molecular orbital energies.

However, evidence from both experiment and state energy calculations suggest that these

radicals cannot be tuned to the favourable ∆ε ∼ t0αij regime. In contrast, the semquinone

bridged radicals 7-2 “RBBO” were shown to have a very low-lying LUMO by virtue of

the π-accepting C=O group. This orbital has important consequences for the electronic

and magnetic properties of these radicals in the solid state, promoting both ferromagnetic

interactions, and charge delocalization. For the case of R = F (FBBO), this last effect

allows for a metallic state to be accessed under relatively mild pressure of P ∼ 3 GPa, which

represents the first observation of such a state in S-based neutral radicals. The mechanism

for the insulator to metal transition was argued to involve orbital rehybridization, with

decreasing effects of correlation introducing more LUMO character into the occupied states.
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As this hybridization drives down the kinetic energy of occupied states, it represents an

additional effect promoting formation of a metallic state. Charge delocalization is also

promoted by strong Hund’s coupling between orbitals, which permits double occupation of

a given radical site provided triplet polarization of spins. In this way, the presence of the

low-lying LUMO is vital for realization of metallic properties in these radicals. Given this

understanding, we then described preliminary work on the chemical modification of these

radicals through judicious choice of R-group. For the case of the strong π-acceptor R =

NO2, the LUMO is lowered further in energy, and Hund’s coupling enhanced, resulting in a

highly conductive material with Pauli-like susceptibility, despite crystallization with MeCN

solvent, which reduces the dimensionality of the electronic structure. With introduction of

the heavy iodine substituent into the R-position, the strength of spin-orbit coupling could

also be tuned, bringing together many of the themes of this thesis. For the EtCN solvate of

IBBO, we discussed how the magnetic properties could only be understood in the context

of multi-orbital anisotropic exchange interactions, which go beyond Moriya’s conventional

description. Taken together, these results demonstrate a rich variety of physics in this

class of multi-band neutral radical materials, which spans from magnetic to metallic states.

Given that the RBBO materials were first reported only three years before the writing of

this thesis, and represent a small fraction of potential multi-band radicals, much of this

physics remains to be explored.
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Appendix A

Mathematical Details

A.1 Details for BW Perturbation Section

A.1.1 Operator Perturbation Theory

Renormalization to produce Heff may be systematically accomplished through the use

of Brilloiun-Wigner (B-W) perturbation theory. Following the notation of the previous

section, the “Green operator” which is the resolvent operator for the full Hamiltonian

H = H0 + λH1 is defined as1:

Gλ(ω) = (ω −H)−1 =
∑
n

|Φλ
n〉〈Φλ

n|
ω − Eλ

n

(A.1)

Following the adiabatic concept, we relabel the states according to the associated states

at λ = 0. The desired effective Hamiltonian Hλ
eff also has a Green operator, which satisfies

the equation:

Gλeff(ω) = (ω −Hλ
eff)−1 =

∑
n<Λ

|Φ0
n〉〈Φ0

n|
ω − Eλ

n

= P0
L Gλ(ω) P0

L (A.2)

1Note that the Green operator may be expanded in any complete basis of states for H, so that G(ω) =∑
n,m |φn〉〈φn|(ω −H)−1|φm〉〈φm|. A particularly useful choice is to expand in the eigenstates, for which

of course 〈Φn|H|Φm〉 = Enδn,m
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Note that the exact energies Eλ
n appear in the denominator, but the numerator contains

the zeroth order states. We introduce the projection operator into the upper high energy

subspace:

P0
U = 1− P0

L =

{
0 if state is in lower Hilbert space

1 otherwise
(A.3)

In terms of this projection operator, the full Hamiltonian may be recast in matrix form:332

ω −H =

(
P0
L(ω −H)P0

L −P0
LHP0

U

−P0
UHP0

L P0
U(ω −H)P0

U

)
≡

(
A B

C D

)
(A.4)

with each entry in the matrix representing a block that acts only on states in either the

lower or upper Hilbert space. On this basis, it is easy to see that the full Green operator

in matrix form is given by the general equation for the block inverse of a matrix:

Gλ(ω) = (ω −H)−1 =

(
(A−BD−1C)−1 −A−1B(D−CA−1B)−1

−D−1C(A−BD−1C)−1 (D−CA−1B)−1

)
(A.5)

So that Gλeff(ω) is given by the upper left quadrant, which reads:

ω −Hλ
eff = A−BD−1C (A.6)

which after some algebra yields:

Heff (ω) = P0
L H0 P0

L +
∞∑
n=0

P0
L H1 [P0

U (ω −H0)−1 P0
U H1 ]n P0

L (A.7)

Finally, it is worthwhile to note that eq’n (A.7) may be written in terms of the zeroth order

Green operator for the higher energy subspace, denoted G0
U(ω):

Heff (ω) = P0
L

{
H0 +

∞∑
n=0

H1 [G0
U(ω) H1 ]n

}
P0
L (A.8)

which proves to be a useful form for later discussions.
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A.1.2 Representations of Spin Operators

Recall the use of spinor electron operators:

c†i,α =
(
c†i,α,↑ c†i,α,↓

)
, ci,α =

(
ci,α,↑

ci,α,↓

)
(A.9)

A significant advantage of such operators is that spin operators in this notation are repre-

sented in terms of the Pauli matrices:

2 Si,α = c†i,α~σci,α (A.10)

where ~σ = σxî + σy ĵ + σzk̂ is the Pauli vector. For example, the z-component of the spin

at site j, in orbital α is given by:

Szj,α =
1

2
c†j,ασzcj,α =

1

2

(
c†j,α,↑ c†j,α,↓

)( 1 0

0 −1

)(
cj,α,↑

cj,α,↓

)
=

1

2
(nj,α,↑ − nj,α,↓) (A.11)

A.1.3 Properties of Pauli Matrices

Along with the 2× 2 identity matrix, I, the Pauli matrices form a complete basis for 2× 2

matrices. These matrices are given by:

I =

(
1 0

0 1

)
σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
(A.12)

The product rule for the Pauli matrices is:

σaσb = δab · I + i
∑
c

εabcσc (A.13)

where εabc is the Levi-Civita symbol, which has the definition:

εabc =


+1 if (a, b, c) = {(x, y, z), (y, z, x), (z, x, y)}
−1 if (a, b, c) = {(x, z, y), (y, x, z), (z, y, x)}
0 if a = b or b = c or a = c

(A.14)
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Some particularly particularly useful identities that follow from these properties relates the

dot product of Pauli matrices to a cross product:

(A · ~σ)(B · ~σ) = A ·B + i(A×B) · ~σ (A.15)

(A · ~σ)(B · ~σ)(C · ~σ) = (A ·B)(C · ~σ) + (B ·C)(A · ~σ)

− (A ·C)(B · ~σ) + i(A×B) ·C (A.16)

These can be exploited in order to simplify resulting spin Hamiltonians.

A.1.4 Expansion of Operator Products

Since the Pauli matrices and identity matrix form a complete basis, they may also be used

for expansion of operator products such as cc†, which can be written as a 2× 2 matrix as

follows:

cc† =

(
c↑

c↓

)(
c†↑ c†↓

)
=

(
c↑c
†
↑ c↑c

†
↓

c↓c
†
↑ c↓c

†
↓

)
=

(
1− c†↑c↑ −c†↓c↑
−c†↑c↓ 1− c†↓c↓

)
(A.17)

It is straightforward to show that:

ci,αc
†
i,α =

{
1− 1

2
c†i,αci,α

}
I− Si,α · ~σ (A.18)

Given the above projection operator, this combination evaluates to:

P0
Lci,αc

†
i,αP0

L =


0 α < 0

1
2
I− Si,α · ~σ α = 0

I α > 0

(A.19)

A.1.5 Commutation Relations in Spinor Form

The following commutation relations will be occasionally useful:[
c†1c2, c3

]
= − δ1,3 c2 (A.20)[

c†1, c
†
2c3

]
= − δ1,3 c†2 (A.21)[

c†1c2, c
†
3c4

]
= δ2,3 c†1c4 − δ1,4 c†3c2 (A.22)
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Appendix B

Green Functions Review

In this section, we review the Green function method in the context of computing properties

of solid state systems. We refer the interested reader to the many adequate texts that treat

this subject in greater detail, such as Refs 188, and 189.

B.1 Zero Temperature Correlation Functions

Description of solid state systems is significantly complicated by the presence of many

degrees of freedom, making it essentially impossible to obtain the exact wave function for

the general case, or even to compute properties given a wave function of ∼ 1023 coordinates.

It is therefore very useful to have techniques that allow for estimation of properties that

does not require direct knowledge of the eigenstates of the system. One such technique

is the Green function method, which we now briefly review. Consider an experiment in

which the sample is perturbed by a weak time dependent external field so that:

Htot = H +H′ (B.1)

H′ = Ô1(t) f(t) (B.2)

where f(t) is a time dependent field, and Ô1(t) represents an operator acting at time t. An

example would be a magnetic experiment, in which an external magnetic field couples to
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the system through the Zeeman interaction H′ = gµB S(t) ·H(t); here Ô1 is a spin operator

and f(t) is the external magnetic field. Now, suppose we make a measurement with respect

to a second operator at a later time; the expectation value of this measurement is given in

linear response theory by the Kubo formula:

〈Ô2(t′)〉 = 〈Ô2(t′)〉0 +

∫ t′

−∞
χ(t′ − t)f(t)dt (B.3)

χ(t′ − t) = − i

~
Θ(t′ − t)

〈
[Ô2(t′), Ô1(t)]±

〉
0

(B.4)

where 〈...〉0 denotes an average with respect to the ground state of H. The commutator

[Â, B̂]± = ÂB̂ ± B̂Â takes a “+” sign if Â, B̂ are fermonic operators, and a “−” sign for

bosonic operators. The function χ(t′ − t) is a generalized susceptibility or retarded corre-

lation function. More commonly, an experiment will measure the frequency dependence of

this quantity, which is obtained by Fourier transform:

χ(ω) =

∫ ∞
−∞

d(t′ − t) e−iω(t′−t)χ(t′ − t) (B.5)

This quantity may be rewritten in a useful form by noting that the time dependence of an

operator in the Heisenberg representation is given by:

Ô(t) = eiHt/~ Ô e−iHt/~ (B.6)

Identifying the ground state energy as E0, the susceptibility may be rewritten:

χ(ω) =
〈
Ô2 Ĝ>(ω) Ô1 ± Ô1 Ĝ<(ω) Ô2

〉
0

(B.7)

where the Green operators Ĝ>(ω) and Ĝ<(ω) are given by:

Ĝ>(ω) = − i

~

∫ ∞
−∞

dt Θ(t) ei(H−E0−~ω)t/~ = lim
η→0+

1

~ω + E0 −H + iη
(B.8)

Ĝ<(ω) = − i

~

∫ ∞
−∞

dt Θ(t) e−i(H−E0+~ω)t/~ = lim
η→0+

1

~ω +H− E0 + iη
(B.9)

and the Sokhotski−Plemelj formula has been used to achieve the final result. The first

term Ĝ>(ω) resembles the resolvent operator of section A.1.1, and represents absorption
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of energy from the field to excite the system into a higher energy state. The second term

Ĝ<(ω) represents stimulated relaxation of the system from a high lying state to lower energy.

These Green operators satisfy the properties of resolvents discussed in section A.1.1. The

utility of the Green operator formulation is that the susceptibility may be obtained if

the Green operator is expanded in any basis, allowing properties to be computed without

knowledge of the actual eigenstates of the system. It is convenient to choose a basis that

is both conceptually simple, and for which the operators Ô are trivially evaluated. In the

next section, we discuss a particularly useful correlation function, which may be related to

many physical observables such as the density of states, and conductivity.

B.2 Two-Point Green Functions and Spectral Theory

Consider the following hypothetical experiment: We drop an electron into our system at a

position x, and ask what is the probability of extracting that electron at another position

x′, at a time t later. This function, we denote:

GR(x′ − x, σ, t) = − i
~

Θ(t)
〈
[cx′,σ(t), c†x,σ(0)]+

〉
0

(B.10)

where Θ(t) is a step function ensuring the logical constraint t > 0. This function already

tells us a great deal about the electronic structure of the material; if the added electron is

delocalized as in a metal, then its wavefunction will tend to spread out over time, and there

will be an increasing probability of finding the electron away from its initial position. For

reasons that will become clear, it is convenient to discuss the momentum space equivalent

of this function. Consider, then, the following related experiment: we connect the system

to a featureless bath of electrons that may exchange an electron of a particular crystal

momentum and orbital index with those in the system. This may be accounted for by

choosing:

Ô1(α,k) = c†α,k,σ , Ô2(α,k, σ) = cα,k,σ (B.11)

where c†α,k,σ creates an electron with spin σ in the Bloch state defined by:

|α,k〉 =
∑
i

eik·ri|α, i〉 (B.12)
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Such a hypothetical experiment allows us to probe the states of the system obtained by

injection or removal of a single electron. The correlation function associated with this

experiment is called the two-point or single particle retarded Green function:

GR(α,k, σ, t) = − i
~

Θ(t)
〈

[cα,k,σ(t), c†α,k,σ(0)]+

〉
0

(B.13)

which literally gives the probability that an electron added to |α,k〉 with spin σ may be

removed from the same state at a time t later. The fourier transform of this function is:

GR(α,k, σ, ω) =
〈
cα,k,σ Ĝ>(ω) c†α,k,σ + c†α,k,σ Ĝ<(ω) cα,k,σ

〉
0

(B.14)

= lim
η→0+

〈
cα,k,σ

1

~ω + E0 −H + iη
c†α,k,σ + c†α,k,σ

1

~ω +H− E0 + iη
cα,k,σ

〉
0

(B.15)

which measures the “susceptibility” for the addition or removal of an electron in a particular

Bloch state and a particular energy ~ω. Suppose we divide the Hamiltonian of the system

H = H0 +H1 as follows:

H0 = E + T “Kinetic Energy Terms” (B.16)

H1 = U “Coulomb Energy Terms” (B.17)

In the basis of Bloch states, these can be written:

H0 =
∑
α,σ

∫
k

(εα,k − µ) c†α,k,σcα,k,σ (B.18)

H1 =
∑
σ1,σ2

∑
α,β

∫
k1,k2,k3,k4

Uα,β c
†
β,k4,σ1

c†α,k3,σ2
cα,k2,σ2cβ,k1,σ1δ(k1 + k2 − k3 − k4) (B.19)

where the dispersion of Bloch states is described by εα,k, the chemical potential is µ,

and Uα,β gives the repulsion between electrons occupying α, β orbitals. Conventional band

theory is recovered by in the absence of Coulomb termsH1, in which case the many-electron

eigenstates are single determinants specified the occupancy of the various one-electron

Bloch states. The ground state at zero temperature is obtained by filling all such states

below the chemical potential, which results in N electrons in the system. Schematically,

the nth eigenstate with N electrons in this non-interacting limit are:

|Ψn
N〉0 = c†α1,k1,σ1

c†α2,k2,σ2
...c†αN ,kN ,σN |Vac〉 (B.20)
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where |Vac〉 is the vacuum state containing no electrons. The action of the Coulomb terms

H1 is to scatter pairs of electrons into new Bloch states, so that the exact many-electron

wave functions in the presence of Coulomb repulsion are generally not representable as

single determinants, and instead are:

|Ψn
N〉 =

∑
m

an,m|Ψm
N〉0 (B.21)

We will discuss two useful representations of the two-point Green function GR(α,k, σ, ω),

which may be obtained by expanding the Green operator in each of these bases. Consider

expansion in the exact eigenstates of the N + 1 or N − 1 electron system:

GR(α,k, σ, ω) = lim
η→0+

∑
n

〈Ψ0
N |cα,k,σ|Ψn

N+1〉〈Ψn
N+1|c

†
α,k,σ|Ψ0

N〉
~ω + E0

N − En
N+1 + iη

(B.22)

+
〈Ψ0

N |c
†
α,k,σ|Ψn

N−1〉〈Ψn
N−1|cα,k,σ|Ψ0

N〉
~ω + En

N−1 − E0
N + iη

This may be rewritten:

GR(α,k, σ, ω) = lim
η→0+

1

2π

∫ ∞
−∞

A(α,k, σ, ν)

~ω − ~ν + iη
dν (B.23)

where the spectral function is related to the imaginary part of the Green function:

A(α,k, σ, ν) = − Im
[
GR(α,k, σ, ν)

]
(B.24)

= 2π
∑
n

{
|〈Ψn

N+1|c
†
α,k,σ|Ψ

0
N〉|2 δ(E0

N − En
N+1 − ~ν) (B.25)

+|〈Ψn
N−1|cα,k,σ|Ψ0

N〉|2 δ(En
N−1 − E0

N − ~ν)
}

which gives the overlap between the states obtained by injection of an electron or hole into

a particular Bloch state with the exact eigenstates of the N+1 or N−1 electron system at

a particular energy ~ν. To understand the meaning of the spectral function, consider once

again the non-interacting case where H1 is neglected. If we attempt to inject an electron or

hole into the Bloch state |α,k〉, the new state with N + 1 or N − 1 electrons, respectively,

will be an exact eigenstate of the system with an energy difference of precisely ~ν = εα,k.
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In this case, the spectral function is a delta function:

A0(α,k, σ, ν) = 2π δ(εα,k + µ− ~ν) (B.26)

GR
0 (α,k, σ, ω) = lim

η→0+

1

~ω + µ− εα,k + iη
(B.27)

Integration of the spectral function over the Brillouin zone in this case gives simply the

one-electron density of states:

D0(α, σ, ν) =

∫
k

A0(α,k, σ, ν) (B.28)

In the time domain, the Green function is:

GR
0 (α,k, σ, t > 0) = ei(εα,k−µ)t/~ (B.29)

which is just the relative quantum mechanical phase accrued over a time t between the

zeroth order ground state |Ψ0
N〉0 and the (typically higher) energy state with an injected

electron or hole, c†α,k,σ|Ψ0
N〉0 or cα,k,σ|Ψ0

N〉0. There is a perfect probability that the injected

particle remains in the same Bloch state, indicated by |GR
0 (t > 0)| = 1, as there is no

scattering mechanism in the absence of Coulomb repulsion. As we turn on the Coulomb

terms H1, the states c†α,k,σ|Ψ0
N〉 and cα,k,σ|Ψ0

N〉 will generally not be eigenstates, but rather

will overlap with multiple eigenstates of differing energies in the N + 1 or N − 1 subspace.

The spectral density will thus not be a delta function, but rather will be spread across

these energies. We may still build a picture of {|Ψn
N+1〉, |Ψn

N−1〉} in terms of single-particle

states by expanding the Green operators Ĝ>(ω) and Ĝ<(ω) in the suitably normalized basis

states c†α,k,σ|Ψ0
N〉 and cα,k,σ|Ψ0

N〉, respectively. However, this basis is incomplete, because it

does not allow us to fully represent the states obtained by scattering of the added electron

or hole with the other particles in the system. We know from the discussion of section

A.1.1 that the Green operator in an incomplete basis may be written:

ĜI(ω) = P0
I

1

[Ĝ0
I (ω)]−1 − Σ̂(ω)

P0
I (B.30)

Σ̂(ω) = H1 P0
O ĜO(ω) P0

O H1 (B.31)
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where subscript I refers to the inner subspace described above, and subscript O refers to

the outer subspace that contains all other states that do not differ from |Ψ0
N〉 by simple

addition of an electron or hole. Defining the retarded self-energy function as:

ΣR(α,k, σ, ω) = Re
[
〈Σ̂(ω)〉

]
+ i sgn(~ω − µ) Im

[
〈Σ̂(ω)〉

]
(B.32)

〈Σ̂(ω)〉 = 〈Ψ0
N |cα,k,σΣ̂(ω)c†α,k,σ|Ψ

0
N〉 (B.33)

The two-point retarded Green function may be written:

GR(α,k, σ, ω) =
1

~ω + µ− εα,k − ΣR(α,k, σ, ω)
(B.34)

The meaning of the self-energy may be seen from considering the Green function in the

time domain:

GR
0 (α,k, σ, t > 0) = ei(εα,k+Re[ΣR(α,k,σ,ν)]−µ)t/~e−Im[ΣR(α,k,σ,ν)]t/~ (B.35)

From this form, one can see that the real part of the self energy Re
[
ΣR(α,k, σ, ν)

]
describes

the shifting of the energies of one-electron states by the Coulomb interactions, and appears

only in the relative phase. The probability that the injected particle remains in the Bloch

state of choice is no longer unity, but rather exponentially decays |GR
0 (t > 0)| = e−Im[Σ]t/~

with a characteristic lifetime related to the imaginary part of the self-energy. The associated

spectral function is:

A(α,k, σ, ν) =
−Im

[
ΣR(α,k, σ, ν)

]
(~ν + µ− εα,k − Re [ΣR(α,k, σ, ν)])2 + Im [ΣR(α,k, σ, ν)]2

(B.36)

From which one can obtain the density of states in the N + 1 and N − 1 electron subspace

exactly as in the non-interacting limit:

D(α, σ, ν) =

∫
k

A(α,k, σ, ν) (B.37)

From these expressions, it is easy to see that the spectrum of states in the many-electron

case can be obtained with knowledge of the Bloch dispersion εα,k which is usually trivially

computed, and the self energy ΣR(α,k, σ, ν), which is generally difficult to compute ex-

actly. There are many approximate perturbative schemes, but these methods are generally
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inappropriate for studying materials in the vicinity of the Mott transition, because they

rely on expansion in U/t ∼ 1, and are thus weakly convergent. In this light, it is very use-

ful to have an approximate but nonperturbative method for calculation of the self-energy.

The method employed in this thesis is the Dynamical Mean Field Approach described in

Chapter 3.

B.3 Finite Temperature Formalism

We define the finite temperature Green function to be a thermodynamic average:

GR(α,k, σ, t) = − i

~
Θ(t)

〈
[cα,k,σ(t), c†α,k,σ(0)]+

〉
β

(B.38)

= − i

~ Z
Tr
{
e−βH[cα,k,σ(t), c†α,k,σ(0)]+

}
(B.39)

where Z is the partition function. The Fourier transform of this quantity is:

GR(α,k, σ, ω) = lim
η→0+

∑
n,m

e−βE
m
N

{
〈Ψm

N |cα,k,σ|Ψn
N+1〉〈Ψn

N+1|c
†
α,k,σ|Ψm

N〉
~ω + Em

N − En
N+1 + iη

(B.40)

+
〈Ψm

N |c
†
α,k,σ|Ψn

N−1〉〈Ψn
N−1|cα,k,σ|Ψm

N〉
~ω + En

N−1 − Em
N + iη

}

which is particularly inconvenient to directly compute. An alternate approach is the so-

called Matsubara imaginary time formalism. We introduce the Matsubara Green function:

GM(α,k, σ, τ) =
〈
Tτ (cα,k,σ(τ)c†α,k,σ(0))

〉
β

(B.41)

where Tτ denotes time ordering with respect to the imaginary time variable τ = it, which

is defined over the interval −β < τ < β. This may be Fourier transformed in terms of

discrete frequencies ωn = π(2n + 1)/β, since only odd frequencies have nonzero Fourier

components, due to the antiperiodicity of GM(τ) with respect to τ .

GM(α,k, σ, iωn) =

∫ β

0

dτ eiωnτGM(α,k, σ, τ) (B.42)
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We may choose to compute this integral following an alternate contour, by noting that:∫ β

0

dτ = − i

~

∫ ∞
0

dt [(τ → it/~)− (τ → it/~ + β)] (B.43)

since the integral vanishes for τ = i∞. Thus:

GM(α,k, σ, iωn) = − i

~Z

∫ ∞
0

dt e−ωnt/~ Tr
{
e−βHeiHt/~cα,k,σe

−iHt/~c†α,k,σ

}
(B.44)

− e−ωnt/~+iωnβTr
{
eiHt/~cα,k,σe

−iHt/~e−βHc†α,k,σ

}
= − i

~ Z

∫ ∞
0

dt e−ωnt/~ Tr
{
e−βH[cα,k,σ(t), c†α,k,σ(0)]+

}
(B.45)

= GR(α,k, σ, ω)|~ω+iη→iωn (B.46)

Thus, if the Matsubara Green function is known as a function of the discrete frequencies

ωn, then the retarded Green function may be obtained by replacing all iωn → ~ω + iη.
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[186] Löwdin, P.-O. Adv. Phys. 1956, 5, 1–171.

[187] Giuliani, G.; Vignale, G. Quantum Theory of the Electron Liquid ; Cambridge Uni-

versity Press, 2005.

[188] Abrikosov, A.; Gorkov, L.; Dzyaloshinskii, I.; Silverman, R. Methods of Quantum

Field Theory in Statistical Physics ; Dover Books on Physics; Dover Publications,

2012.

[189] Mahan, G. Many-Particle Physics ; Physics of Solids and Liquids; Springer, 2000.
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