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Abstract

In his pioneering 1941 papers, Kolmogorov derived that the energy spectrum follows a uni-

versial form within a range of wavenumbers removed from both the forcing and dissipation and

depending only on the wavenumber and the rate of dissipation. Analysis of the spectral ki-

netic energy budget can help explain the dynamics of the energy spectrum. Each term in this

budget, representing nonlinear transfer, external forcing, and viscous dissipation, have been ex-

tensively studied in the idealised triply periodic case. In this thesis we apply these ideas to the

study of convective boundary layer turbulence for both the dry and moist cases. To this end, the

large-eddy simulation technique is employed to numerically integrate the anelastic Navier-Stokes

equations. Each term in the spectral budget is computed and dependence on surface heating and

water vapour flux, grid resolution, and domain size is investigated. It is found that the buoyancy

term acts as a relatively large-scale forcing, i.e. horizontal scales of the boundary layer thickness.

Energy at large-scales is then transfered to small scales by the nonlinear term where it is then re-

moved through dissipation. This down-scale energy transfer is consistent with three-dimensional

turbulence theory. It is also found however that the forcing term, while peaked at large-scales,

actually extends all the way to the small scales. Also, despite increases in resolution, the trans-

fer spectrum exhibited no range of constant spectral flux. Both of these results indicate that the

convective boundary layer setup differs from the assumptions used in deriving the -5/3 inertial

range scaling. Indeed, the kinetic energy spectrum itself did not exhibit an exact -5/3 scaling in

the present study. Instead the spectrum was found to follow a shallower power law closer to -4/3,

likely as a result of the broad spectrum of buoyancy flux.
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Chapter 1

Introduction and Background

“When I meet God, I am going to ask him two

questions: Why relativity? And why turbulence? I

really believe he will have an answer for the first.”

— Werner Heisenberg

The atmosphere is divided up into a number of different layers: the troposphere occupying

the bottom 10-15 km, then the stratosphere ranging from 12-50 km, followed by the mesosphere,

thermosphere, and exosphere, which have approximate ranges 50-80 km, 80-500 km, 500-10000

km respectively [74]. We will only be concerned with a lower subset of the troposphere occu-

pying a region between the ground and 2-3 km where convective boundary layers form. In the

atmosphere, a convective boundary layer develops when heat flux dominates shear. Typically the

air is stably stratified in the morning, i.e. the potential temperature increases with height. The

Sun rises and begins to heat the ground, which causes hotter, less dense, air near the surface to

rise and mix with the overlying colder, denser air. It is precisely this mixing that expands the

boundary layer thickness through the process of entrainment. The boundary layer will continue

to expand until surface heating is turned off, i.e. when the Sun sets, at which point the boundary

layer will collapse [21, 67]. This evolution is shown graphically in Figure 1.1.

As shown in Figure 1.1, the convective boundary layer is typically divided into four regions:

the surface layer, mixing layer, entrainment zone, and the stable layer [67]. The first of these

regions, the surface layer, occupies only a few meters between the surface and the mixing layer.

Here, there is a fairly rapid temperature adjustment between the hotter surface potential tempera-

ture (from the heating via the Sun) and the cooler potential temperature found in the mixing layer.

The mixing layer, usually extending from just above the surface up to 0.5-2 km, is characterized
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Figure 1.1: A typical dry convective boundary layer evolution through the day following [67].
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by strong thermal plumes and eddies ranging in size from under one meter up to the mixing layer

thickness. Because of the large amount of mixing that occurs within this layer, the potential

temperature is much more homogeneous and on average constant with vertical height. Above

the mixing layer the atmosphere is again stably stratified and hence is referred to as the stable

layer, which extends through the rest of the troposphere. The interface between the mixing layer

and the stable layer is called the entrainment zone and it is here where overlying air is pulled (or

entrained) into the mixing layer causing the continual growth of the mixing layer depth [67].

In trying to model this convective boundary layer, we need an equation that advances the

three velocities (u, v, and w) and additional equations for the pressure, temperature, and density,

which are the relevant quantities in a dry atmospheric simulation. The velocities are described by

the Navier-Stokes equations. Additional equations of state, continuity, and energy conservation,

link the three variable of pressure, temperature, and density with momentum. Moisture will be

represented by the mixing ratio (ratio of the density of liquid water and water vapour to dry air)

and follows a similar equation as temperature along with terms to account for changes of state.

Ideally this set of equations would be solved such that all scales are resolved fully, however as is

well known for three dimensional fluid simulations, this would require computational resources

in excess of what is currently available. Thus we will employ a numerical technique called

Large-eddy Simulation (LES) that resolves the large-scale energy containing eddies, while only

parameterizing the effect of the unresolved small scales on the larger scales.

This thesis is structured as follows. The equations of motion, background on large eddy

simulation, and additional topics on how the momentum fluxes are parameterized at the surface,

how cloud formation is handled, and an overview of turbulence theory, are covered in the chapter

Introduction and Background. In the Methodology chapter we provide details on the code used

as well as the dry and moist model setups. In the Results chapter we present our findings in

computing the spectral kinetic energy budget for both dry and moist convective boundary layers,

which for the dry experiments have been submitted for publication in the Journal of Turbulence

[63]. Finally we summarize our results in the Conclusions chapter.

1.1 Equations of Motion

1.1.1 Boussinesq Approximation

Consider the incompressible Navier-Stokes equations [40]:

ρ(
∂ui

∂t
+u j

∂ui

∂x j

) =− ∂p

∂xi

+ρgδi3 +µ
∂2ui

∂x j
2
.

3



Let us decompose the density into a constant background state and a perturbation and similarly

decompose pressure into a basic state dependent on height and a perturbation, i.e. let ρ = ρ0+ρ′

and p = p0(z)+ p′. Substituting this into the momentum equation, dividing through by ρ0, and

making the assumption that the background flow is in hydrostatic balance, i.e. ∂p/∂z = ρ0g,

results in [40]:

(1+
ρ′

ρ0
)(

∂ui

∂t
+u j

∂ui

∂x j

) =− 1

ρ0

∂p′

∂xi

+
ρ′

ρ0
gδi3 +ν

∂2ui

∂x j
2
.

If we assume ρ′/ρ0 ≪ 1 then (1+ρ′/ρ0) ≈ 1. The buoyancy term however is very important

in causing vertical accelerations and so is retained. In the above incompressible equations we

implicitly assumed (1/ρ)Dρ/Dt is small which thus replaces the continuity equation [40]:

Dρ/Dt +ρ
∂ui

∂xi
= 0,

with

∂ui

∂xi

= 0.

This assumption is valid when the flow speeds are much less than the Mach number, and when

the vertical variation in density is not too large [40]. In the atmosphere this is appropriate for

heights less than 10 km. Finally we prescribe a temperature equation [40]:

∂T

∂t
+u j

∂T

∂x j
= κ

∂2T

∂x j
2
.

Thus we arrive at the complete set of equations for the Boussinesq approximation [40]:

(
∂ui

∂t
+u j

∂ui

∂x j

) =− 1

ρ0

∂p′

∂xi

+
ρ′

ρ0
gδi3 +ν

∂2ui

∂x j
2
,

∂ui

∂xi
= 0,

∂T

∂t
+u j

∂T

∂x j
= κ

∂2T

∂x j
2
,

ρ′ =−αρ0(T −T0),

which assumes a linear equation of state.
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1.1.2 Anelastic Approximation

The Boussinesq approximation outlined above is actually a simplification of the anelastic ap-

proximation, which accounts for some compressibility in the vertical and thus relaxes some of

the height restriction that exists in the Boussinesq approximation and is a more accurate approx-

imation for atmospheric flows [55, 71, 20]. The derivation for the anelastic momentum equation

follows that of the Boussinesq approximation where we again assume ρ′/ρ0 ≪ 1. Important dif-

ferences may exist however in the continuity equation. With this in mind, let us perform a scale

analysis with a vertically dependent reference density. Writing out the continuity equation with

the ρ = ρ0(z)+ρ′ substitution and with horizontal and vertical derivatives written out explicitly

results in [59]:

∂ρ′

∂t
+ρ0(

∂u

∂x
+

∂v

∂y
)+ρ0

∂w

∂z
+(u

∂ρ′

∂x
+ v

∂ρ′

∂y
)+w

∂ρ′

∂z
+w

∂ρ0

∂z
= 0. (1.1)

Now define LH to be a horizontal length scale and LV to be a vertical length scale. Also define

Lρ =

∣

∣

∣

∣

1

ρ0

∂ρ0

∂z

∣

∣

∣

∣

−1

,

which is about 10 km in the atmosphere [59]. Comparing the first term in the above continuity

equation (1.1) with ρ0∂w/∂z tells us [59]:

∂ρ′

∂t

ρ0
∂w
∂z

∼ ρ′

ρ0
≪ 1.

Here we have assumed an advective time scale T ∼W/Lz. From [7] an additional condition on

the flow is that

n2L2
z

c2
≪ 1,

where n is the dominant frequency of the flow and c is the speed of sound (in air for the atmo-

sphere). This condition comes from the fact that for compressible flows:

∣

∣

∣

∣

1

ρc2

∂p

∂t

∣

∣

∣

∣

<<
W

Lz
,
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where W and Lz are typical velocity and length scales of the flow [7]. Again assuming that the

advective time scale is representative of n−1, then this reduces to the Mach number condition [7]:

W 2

c2
≪ 1,

which in the case of convective boundary layers is clearly satisfied as W ∼ 1 m/s while c ∼ 340

m/s [7]. Comparing the remaining terms (1.1) with ρ0∂w/∂z gives:

u
∂ρ′

∂x
+ v

∂ρ′

∂y

ρ0
∂w
∂z

∼ LV

LH

ρ′

ρ0
≪ 1 provided

LV

LH
≤ 1,

w
∂ρ′

∂z

ρ0
∂w
∂z

∼ ρ′

ρ0
≪ 1,

w
∂ρ0

∂z

ρ0
∂w
∂z

∼ LV

Lρ
.

It is clear from this last term that in situations where LV/Lρ ∼ 1 the vertical dependence of

the density will become important [59]. In these situations we must retain the vertical depen-

dence on the density which then results in a slightly more complicated version of the continuity

equation from what was seen in the Boussinesq approximation. The momentum and continuity

equation (1.1) are now [59]:

(
∂ui

∂t
+u j

∂ui

∂x j
) =− 1

ρ0

∂p′

∂xi
+

ρ′

ρ0
gδi3 +ν

∂2ui

∂x j
2
,

∂

∂xi

(ρ0ui) = 0.

(1.2)

The Boussinesq energy equation is not valid over significant depths of the atmosphere. Instead,

atmospheric scientists often use a different quantity called the potential temperature which we

define as [61]:

θ = T (
p0

p
)

R
cp . (1.3)
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We can say that the potential temperature is the temperature a parcel of fluid would have if

adiabatically (i.e. no heat exchange with its surroundings) brought to a reference pressure. If we

take the logarithm of (1.3) and use the ideal gas law, p = ρRT , we get [71]:

log(θ) =
1

γ
log(p)− log(ρ)+ constant, (1.4)

where γ = cp/cv. Calculating the differential of (1.4) (we assume here that these differentials

are representative of the perturbations of their respective functions, i.e. dθ ≈ θ′) and finding the

derivative with respect to z, we get [71]:

1

θ0
θ
′
=

1

γ

p
′

p
− ρ

′

ρ
≈ 1

γ

p
′

p0
− ρ

′

ρ0
and

d

dz
logθ0 =−g

γ

ρ0

p0
− 1

ρ0

dρ0

dz
. (1.5)

We can re-write the momentum equation in (1.2) [71],

∂ui

∂t
+u j

∂ui

∂x j
=− ∂

∂xi
(

p
′

ρ0
)− p

′

ρ2
0

∂ρ0

∂z
δi3 −

ρ′

ρo
gδi3 +ν

∂2ui

∂x j
2
.

Now using (1.5) [71],

∂ui

∂t
+u j

∂ui

∂x j
=− ∂

∂xi
(

p
′

ρ0
)− p

′

ρ2
0

∂ρ0

∂z
δi3 −

g

γ

p
′

p0
δi3 +

θ′

θo
gδi3 +ν

∂2ui

∂x j
2
,

=− ∂

∂xi
(

p
′

ρ0
)+

p′

ρ0

d

dz
(logθ0)δi3 +

θ′

θo
gδi3 +ν

∂2ui

∂x j
2
,

=− ∂

∂xi

(
p
′

ρ0
)+

p′

ρ0
(

1

θ0

dθ0

dz
)δi3 +

θ′

θo

gδi3 +ν
∂2ui

∂x j
2
.

Consider the first two terms on the rhs of the above equation. We expect p′/ρ0 to be small,

however, −∂/∂xi(p
′
/ρ0) may be quite large as p′ is a perturbation and may have large derivatives

despite being small in magnitude itself. The (1/θ0)dθ0/dz is small as we do not expect the

potential temperature to change by a large amount over a vertical height of a couple kilometers.

For example typical values of θ0 would be around 300 K and might change by at most 10 K

over 2000 m which would give this term a magnitude of around 6×10−4. Compare this to the

7



buoyancy term which might have a magnitude around O(1 m/s2). In fact while the density may

change by around 20% over 2 km, the temperature will only change by around 2%. Therefore

with this in mind we retain the z dependence in ρ0(z) while approximating θ0 as a constant, Θ0.

Thus we may neglect the second term from the equations and we are therefore left with [71, 20]:

∂ui

∂t
+u j

∂ui

∂x j
=− ∂

∂xi
(

p
′

ρ0
)+

θ′

θo
gδi3 +ν

∂2ui

∂x j
2
. (1.6)

It is common to rewrite the pressure in terms of the Exner (or dynamic pressure) function [71, 20],

π = (
p

p00
)

R
cp .

From this we see that [71, 20]:

cpθ
∂π

∂xi
= cpθ(

R

cp
(

p

p00
)

R
cp
−1 1

p00

∂p

∂xi
)

=
T R

p00
(

p

p00
)−1 ∂p

∂xi

=
T Rρ

p

1

ρ

∂p

∂xi

=
1

ρ

∂p

∂xi
, where we have used the ideal gas law p = ρRT .

Substituting in p = p0 + p′, π = π0 + π′, and θ = Θ0 + θ′, into the above equation we get the

approximation [71, 20]:

p′

p0
= cpΘ0π′.

Putting this into 1.6 we arrive at the momentum equation written in terms of potential tempera-

ture and the pressure Exner function [71, 20]:

∂ui

∂t
+u j

∂ui

∂x j

=−cpΘ0
∂π′

∂xi

+
θ′

Θo

gδi3 +ν
∂2ui

∂x j
2
. (1.7)
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Above we derived the anelastic Navier-Stokes momentum equation. Here we look at the

corresponding equation for scalar advection, for example for potential temperature. We clearly

need such an equation since potential temperature appears in the above momentum equation and

we need to know how it is advected and changed by the flow. Depending on the complexity of

our model we could include such scalars as liquid water potential temperature θl and total water

mixing ratio qt , however for the purpose of simplicity we only derive the scalar equation for

potential temperature as the scalar equations have the same form regardless. We begin with the

conservation of heat energy (first law of thermodynamics) [7, 71]:

ρcp
DT

Dt
−αT

Dp

Dt
= 0,

where cp is the specific heat. We note that the dimensions of [cp] ∼ J/ kg Kelvin and so the

quantity [ρcpT ] ∼ J/m3 is the thermal energy per unit mass. Also the coefficient of thermal

expansion, α, is given by [7]:

α =−1

ρ
(

∂ρ

∂T
)p,

=
1

ρ
(

ρ

T
)p,

=
1

T
, using ideal gas law.

We are then left with:

ρcp
DT

Dt
− Dp

Dt
= 0.

We want an equation for potential temperature θ, not temperature T , and so we plug in our

previously defined potential temperature to get the following [71]:
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ρcp
Dθ

Dt
(

p

p0
)

R
cp +ρcpθ

R

cp

(
p

p0
)

R
cp
−1 1

p0

Dp

Dt
− Dp

Dt
=0,

ρcp
Dθ

Dt
+ρθR

1

p

Dp

Dt
− (

p0

p
)Rcp

Dp

Dt
=0,

ρcp
Dθ

Dt
+

θ

T

Dp

Dt
− θ

T

Dp

Dt
=0,

ρ
Dθ

Dt
= 0.

Now by introducing ρ= ρ0+ρ′ and θ=Θ0+θ′ as before and dividing by ρ0 we can approximate

the above equation as:

∂θ′

∂t
=−ui

∂θ′

∂xi
. (1.8)

There are two terms left to add to this equation: subsidence and radiative cooling. Subsidence

occurs when cooler, denser air from above sinks. As this happens adiabatic warming occurs. All

this sinking air results in high pressures and diverging winds and appears as a linear advection

term in the potential temperature equation [67].

∂θ′

∂t
=−ws

∂θ′

∂z
. (1.9)

Radiative cooling occurs when the atmosphere loses heat from thermal radiation. This is ac-

counted for in the potential temperature equation as [67]:

∂θ′

∂t
=−Q. (1.10)

Combining (1.8), (1.9), and (1.10):

∂θ′

∂t
=−ui

∂θ′

∂xi

+
∂Fθ

∂xi

δi3 −ws
∂θ′

∂z
.
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1.2 Large-eddy Simulation

We would ideally solve the anelastic Navier-Stokes equations using direct numerical simula-

tion (DNS), which means using sufficient resolution to resolve all scales of motion down to the

molecular dissipation scale [57], limited computational resources prevents this method from be-

ing a viable option for all but the most restrictive domain sizes. For example, in the atmosphere

molecular viscosity acts at scales of O(1) mm which on even a modest 5× 5× 2 km domain

would require 5 million points in both horizontal directions and 2 million points in the vertical!

Currently on the fastest supercomputers, simulations of around 40963-81923, i.e. [35, 12], have

been performed meaning that DNS of even a relatively small section of the atmosphere will be

impossible for some time. In fact we can illuminate the problem even more explicitly by consid-

ering the number of grid points that would be required to resolve a fluid flow in terms of Reynolds

number. A reasonable criteria for sufficient resolution is kmaxη ≈ 1, where kmax = π/∆x is the

maximum wavenumber and η is the dissipation length scale [57]. For a domain size of L and

∆x = N/L,

πη

∆x
≈ 1 ⇒ N ≈ L

πη
⇒ N ≈ 1

π
Re

3
4 ,

where we have used η = (µ3/ε)1/4 and ε ≈U3/L (ε is the rate of dissipation of kinetic energy)

[43, 11]. Given the high Reynolds numbers found in atmospheric flows, this gives us a prohibitive

increase in the number of grid points needed for DNS. An alternative is to perform a large-eddy

simulation (LES), in which large-scale turbulent eddies are resolved but small scales eddies are

parameterized [57, 3]. An overview of LES is presented in the following pages.

The central idea of LES is to separate the flow variables into resolved and unresolved parts

through the action of a spatial filter. Specifically, we define ui = ūi + ur
i where (¯) indicates a

filtered field and (r) is a residual field 1, sometimes called a sub-grid field. The filtering is defined

by [57]:

ūi(x) =
∫∫∫

G(x−xr)ui(x
r)dxr,

where G is a spatial filter. If we take the Fourier transform of the filtered velocities ūi and use the

convolution theorem we get [57]:

1Often the residual fields will be represented with a prime notation, i.e. u
′
, however we are already using primes

to denote perturbations about a basic state
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Figure 1.2: Total velocity, filtered velocity, sub-grid velocity, and filtered sub-grid velocity for

(a) Gaussian filter and (b) sharp filter following [57]. In the case of the sharp filter all motions

smaller than the cut-off wavenumber kc = π/∆, i.e. the residual motions, are removed by the

filter.

ˆ̄ui(k) = Ĝ(k)ûi(k).

As can be seen, the filter G essentially removes the effects of the residual motions from the total

field. In choosing a filter we require that Ĝ(0) = 1 and that Ĝ be symmetric about k = 0 [57].

The most common choices of filter function are [57]:

Sharp: Ĝ(k) = H(kc −|k|) where kc =
π

∆
,

Box: Ĝ(k) =
sin(1

2
k∆)

1
2
k∆

,

Gaussian: Ĝ(k) = e−
k2∆2

24 .

An important property of the sharp cut-off filter is that the filtered residual motions are zero, i.e.

ur = 0. This is not true of all filters as is shown in 1.2, which plots the Gaussian and sharp filters

applied to the total velocity, u, and the residual velocity, ur. In the case of the sharp filter the

residual motions are all smaller than the cut-off, kc = π/∆, and are thus removed by the filter.

On the other hand the Gaussian filter influences all scales and so the filtered residual field is not

zero. Applying the sharp filter to the anelastic Navier-Stokes equations results in:
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∂ūi

∂t
+

1

ρ0

∂

∂x j

(ρ0uiu j) =−cpΘ0
∂π̄′

∂xi

+
θ̄′

Θ0
gδi3 +ν

∂2ūi

∂x j
2
,

∂

∂xi
(ρ0ūi) = 0,

∂θ̄′

∂t
+

1

ρ0

∂

∂x j

(ρ0u jθ′) =
∂F̄θ

∂xi

δi3 −ws
∂θ̄′

∂z
.

Now, we define [57]:

τ̄i j = uiu j − ūiū j and γ̄θ j = θu j − θ̄ū j.

Because we are modelling the atmosphere within the O(10 km) range, with grid sizes O(10 m)

and thus much larger than the dissipation range where molecular diffusion dominates, we do not

need to include the effect of molecular viscosity. Instead all effects smaller then our grid size

will be modelled. The updated filtered equations then become:

∂ūi

∂t
=−ū j

∂ūi

∂x j
− cpΘ0

∂π̄′

∂xi
+

θ̄′

Θ0
gδi3 +

1

ρo

∂(ρoτ̄i j)

∂x j
,

∂(ρoūi)

∂xi
= 0,

∂θ̄′

∂t
=−ū j

∂θ̄′

∂x j
+

1

ρ0

∂(ρ0γ̄θ j)

∂x j
+

∂F̄θ

∂x j
δ j3 −ws

∂θ′

∂z
.

(1.11)

It is clear that the above equations are not closed. Instead we must model τ̄i j and γ̄θ j in terms of

the filtered fields ū, v̄, w̄, and θ̄′. The most popular and simplest choice is to use an eddy-viscosity

model [43, 57].

τ̄i j =−2KmSi j and γ̄θ j =−Km

Pr

∂θ̄′

∂x j
,

where Pr is the Prandtl number and Km is the eddy viscosity and where different choices of Km

define different LES eddy-viscosity models.
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1.2.1 Smagorinsky-Lilly model

One of the simplest models for the eddy-viscosity is the Smagorinsky-Lilly model [45, 65, 46]:

Km = (Csl)
2S

√

1− Ri

Pr
,

where the resolved rate of strain tensor, Si j, is defined by [57]:

Si j =
1

2
(

∂ūi

∂x j
+

∂ū j

∂xi
).

The calculation of the Richardson number, Ri, is given by [46]:

Ri =
N2

S2
where N2 =

g

Θ0

∂θ̄′

∂z
,

and S2 is defined as [57]:

S2 = 2Si jSi j.

This model is a modification of the original Smagorinsky eddy viscosity parameterization in

that the added square root term ensures that when the atmosphere is stably stratified the eddy

viscosity goes to zero, which is what we want. The eddy viscosity, Km, is chosen so that it has

the correct dimensions of viscosity, i.e. L2/L, and Csl is the mixing length. With this model

for the sub-grid fluxes τ̄i j and γ̄i j, our equations are now closed and a solution can be found in

terms of the filtered variables. In particular no explicit choice of filter G is required in the above

equations and so we say that this filter is only conceptually applied [57].

1.2.2 Turbulent Kinetic Energy model

In the turbulent kinetic energy (TKE) model [17, 56, 3], the sub-grid fluxes are parameterized

by solving a prognostic equation for the unresolved TKE, which itself is parameterized using the

resolved velocities. As a result the TKE model is often referred to as a 1.5 order closure model.

Here we choose [17, 21, 56]

Km = cml
√

e and Kh = chl
√

e, (1.12)
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where e = ur
i u

r
i/2 is the turbulent kinetic energy [17, 21], i.e. the kinetic energy of the unresolved

turbulence. Notice that this gives the correct dimensions for Km. To close the system we need to

formulate an equation for e. To do this let us first recall the total field momentum equation and

the filtered momentum equation:

∂ui

∂t
+

1

ρ0

∂

∂x j
(ρ0uiu j) =−cpΘ0

∂π′

∂xi
+

g

Θ0
θ′δi3 +ν

∂2ui

∂x j
2
, (1.13)

and,

∂ūi

∂t
+

1

ρ0

∂

∂x j

(ρ0ūiū j) =−cpΘ0
∂π̄′

∂xi

+
θ̄′

θo

gδi3 +ν
∂2ūi

∂x j
2
− 1

ρo

∂(ρour
i u

r
j)

∂x j

. (1.14)

Now subtracting 1.13 − 1.14 and then multiplying by ur
i results in [21, 3]:

∂

∂t
(
1

2
ur

i u
r
i ) =− 1

ρ0
ur

i

∂

∂x j
(ρ0(uiu j − ūiū j −ur

i u
r
j))− cpΘ

∂

∂xi
(π′rur

i )+
g

Θ
ur

i θ
′rδi3 +νur

i

∂2ur
i

∂x j
2
,

=
1

ρ0
ur

i

∂

∂x j

(ρ0(ūiu
r
j +ur

i ū j))− cpΘ
∂

∂xi

(π′rur
i )+

g

Θ
ur

i θ
′rδi3 +

∂

∂x j

(ν
∂

∂x j

1

2
ur

i u
r
i )−ν

∂ur
i

∂x j

2

,

=− 1

ρ0

∂

∂x j
(ρ0ū j

1

2
ur

i u
r
i )+

∂

∂x j
(
1

2
ur

ju
r
i u

r
i )−ur

ju
r
i

∂ūi

∂x j
− cpΘ

∂

∂xi
(π′rur

i )+
g

Θ
ur

i θ
′rδi3

+
∂

∂x j
(ν

∂

∂x j

1

2
ur

i u
r
i )−ν

∂ur
i

∂x j

2

,

=− 1

ρ0

∂

∂x j

(ρ0ū je)+
∂

∂x j

(
1

2
ur

ju
r
i u

r
i )−ur

ju
r
i

∂ūi

∂x j

− cpΘ
∂

∂xi

(π′rur
i )+

g

Θ
ur

i θ
′rδi3

+
∂

∂x j
(ν

∂

∂x j

1

2
ur

i u
r
i )−ν

∂ur
i

∂x j

2

,

∂e

∂t
=− 1

ρ0

∂

∂x j

(ρ0ū je)+
∂

∂xi

(ur
i e− cpΘπ′rur

i +ν
∂e

∂x j

)−ur
ju

r
i

∂ūi

∂x j

+
g

Θ
ur

i θ
′rδi3 −ν

∂ur
i

∂x j

2

.

The following approximations are then made [3]:
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ν
∂ur

i

∂x j

2

= cε
e3/2

l
,

ur
i e− cpΘπ′rur

i = 2Km
∂e

∂xi

,

resulting in

∂e

∂t
=− 1

ρ0

∂

∂x j

(ρ0ū je)+
∂

∂xi

(2Km
∂e

∂xi

+ν
∂e

∂x j

)−ur
ju

r
i

∂ūi

∂x j

+
g

Θ
ur

i θ
′rδi3 − cε

e3/2

l
.

We can actually recover the Smagorinsky model by setting the first three terms to zero. These

three terms correspond to the time derivative of TKE, the advection of TKE by the resolved flow

and dissipation of TKE. We can think of the Smagorinsky model as a simplification of the TKE

model. Then substituting in [3]:

ur
ju

r
i =−2KmSi j and ur

i θ
′r =−Kh

∂θ̄

∂xi
,

gives,

2KmSi j
∂ūi

∂x j
−Kh

g

Θ

∂θ̄

∂xi
δi3 − cε

e3/2

l
= 0.

Then using our definitions for the eddy viscosity coefficients 1.12 we get [3]:

√
e(cmlS2 − chlN2 − cε

e

l
) = 0.

One root is [3]:

e =
cm

cε
(lS)2(1− ch

cm

N2

S2
)

=
cm

cε
(lS)2(1− ch

cm
Ri).
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Using 1.12 again we arrive at the Smagorinsky model [3]:

Km = (Csl)
2|S|

√

(1− Ri

Pr
), where

Km

Kh

= Pr =
cm

cε
, and Cs = (cm

√

cm

cε
)1/2.

Plugging in cm = 0.1 and cε = 0.3 (corresponding to a Pr = 1/3) gives Cs = 0.24 which is very

close to the value of Cs ∼ 0.21 found by Deardorff [13] for convection dominated flows and our

choice of Cs = 0.23.

1.3 The Law of the Wall and Monin-Obukhov Theory

1.3.1 The Law of the Wall for Unstratified Boundary Layers

Previously we neglected molecular viscosity as not important [11, 40]. This is appropriate away

from the boundary. However, this does not make sense near the surface, where viscous stress

becomes important. For example consider the mean momentum equation (regular momentum

equation with no buoyancy and written in terms of pressure):

∂ūi

∂t
+ ū j

∂ūi

∂x j

=− 1

ρ0

∂p̄

∂xi

+
∂τ̄i j

∂x j

,

where

τ̄i j = µ
∂ūi

∂x j

−u
′
iu

′
j. (1.15)

Clearly the total stress, τi j, is the sum of the viscous stress, µ∂ūi/∂x j, and the Reynolds stress,

u
′
iu

′
j [11, 40]. Near the boundary the total stress is approximately equal to the viscous stress

(where the Reynolds stress goes to zero), while away from the boundary the total stress is approx-

imately equal to the Reynolds stress (where the viscous stress is assumed to be approximately

zero), as shown in Figure 1.3 [11, 40].

We want to determine how the velocity should scale as we move away from the wall. To do

this we assume that the velocity is only a function of u, ρ, ν, τ0, and z (where we assume that the

total stress near the wall is a constant τ0). In terms of dimensions:
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Figure 1.3: Total stress decomposed into Reynolds stress and viscous stress as one approaches

a boundary. Near the boundary the viscous stress becomes important while the Reynolds stress

disappears. Figure following [40]

[u]∼ L

T
, [ρ]∼ M

L3
, [ν]∼ L2

T
, [τ0]∼

M

LT 2
, [z]∼ L.

which from the Buckingham Pi theorem gives [40]:

u
√

τ0

ρ

= f (

√

τ0

ρ z

ν
).

This is usually written in terms of a friction velocity defined as u∗ =
√

τ0/ρ [11, 40]. Now

referring to equation 1.15 and Figure 1.3 we can conclude that near the wall the total stress is

approximately equal to the viscous stress [11, 40]:
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µ
du

dz
= τ0,

which using no-slip boundary conditions gives a solution for u near the boundary as linear (after

dividing by ρ to get a solution in terms of u∗ and ν) [11, 40]:

u =
u∗z

ν
.

Further from the boundary we might expect that the velocity gradient no longer depends on ν
directly. Thus again from dimensional arguments:

[
du

dz
]∼ L

T
, [ρ]∼ M

L3
, [τ0]∼

M

LT 2
, [z]∼ L,

which gives [11, 40]:

u =
u∗
κ

ln(z),

where we have added the dimensionless constant 1/κ called the von Karman constant [40]. Thus

the velocity should scale linearly close to the boundary (this region is often referred to as the

viscous sublayer) and logarithmically further away (known as the log-layer). In the case of

atmospheric boundary layers it is common to include a surface roughness parameter that modifies

the above solution to include effects from non-smooth boundaries. In this case we retain the log-

layer solution, but require that at a height z0 the mean velocity ū equals 0. This is achieved by

writing [11, 40]:

ū =
u∗
κ

ln(
z

z0
), (1.16)

where z0 is the roughness parameter and above this roughness height, the solution follows as a

log-layer.

1.3.2 Monin-Obukhov Similarity Theory for Stratified Boundary Layers

As we approach the surface the viscosity becomes important and has an affect on the scaling

of the mean velocity. We need to determine how to parameterize the surface momentum fluxes
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near the surface. It is common to apply Monin-Obukhov similarity theory to determine the

temperature and momentum fluxes within the surface layer. These fluxes are parameterized as a

function of the dimensionless length parameter above the surface [40]:

ζ =
z

L
, (1.17)

where L is the Obukhov length scales defined as [11, 40]:

L =− u3
∗θ̄

κgw
′
θ
′ . (1.18)

This length parameter describes the relative importance of shear production of turbulent kinetic

energy as compared to buoyancy production of turbulent kinetic energy. Consider the problem

of trying to find a parameterization of the eddy viscosity KM near the wall for the 1-dimensional

case. If we assume that the parameterized momentum flux near the wall only depends on u∗, z,

and dū/dz then by the Buckingham Pi theorem we can find one dimensionless group [11, 40]:

κz

u∗

dū

dz
= φ(ζ).

Now this gives:

(κz)2

φ(ζ)2

dū

dz
= κz

u∗
φ(ζ)

.

The l.h.s looks quite similar to the 1-dimensional eddy viscosity given in the Smagorinsky model

except now Cs is replaced by κ/φ(ζ). Thus near the boundary we parameterize the eddy viscosity

as:

KM = κz
u∗

φ(ζ)
. (1.19)

The dimensionless function φ(ζ) must satisfy φ(0) = 1. Notice that this then gives KM = 0 on

the boundary surface. Determined largely from experiments (e.g. the Kansas study of 1968 [31])

we choose the following relations [8]:
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φ(ζ) = (1+4.8ζ) ζ > 0,

φ(ζ) = (1−19.3ζ)−1/4 ζ < 0.

(1.20)

Putting this all together we can use (1.16), (1.17), (1.18), and (1.20) to find the momentum

fluxes on the lowest level above the ground (1.19).

1.4 Saturation Adjustment Scheme

The LES equations above (1.11) describe a dry CBL. The real atmospheric boundary layer of

course includes water vapor and suspended liquid water (i.e. clouds), and thus we need an

additional equation that describes this total water content. This is accomplished by including the

equation:

∂q̄t

∂t
=−ū j

∂q̄t

∂x j

+
1

ρ0

∂(ρ0γ̄qt j)

∂x j

+
∂F̄qt

∂x j

δ j3 −ws
∂θ′

∂z
, (1.21)

where qt is the total mixing ratio, which is the ratio of the density of dry air to water vapor

[61, 67]. This quantity is conserved [61, 67] neglecting precipitation and in the above equation

we include a possible forcing term and total mixing ratio subsidence analogous to what was

done in the potential temperature equation. This section describes how water vapor is converted

to liquid water and how this change of state affects the potential temperature.

The condensation of water vapor results in the release of heat (the opposite is true with

evaporation which causes cooling) and thus acts as an additional forcing term in the potential

temperature budget. To model this phenomenon we use a simple saturation adjustment scheme

[61, 66]. Simply put this calculates the saturation mixing ratio given the current state variables,

and if the mixing ratio is above the saturation level the temperature is adjusted and the liquid

water mixing ratio is increased (at the expense of vapour mixing ratio). This model will assume

that water can only be in vapour or suspended liquid water form, i.e. we will assume no pre-

cipitation, and that changes from vapour to liquid occur instantaneously. Before presenting the

details of how this is accomplished, let us first define the important quantities that will be used.

The vapour, liquid, and total mixing ratios are defined as [61]:
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qv =
ρv

ρd

=
density of water vapour

density of dry air
,

ql =
ρl

ρd

=
density of liquid water

density of dry air
,

qt =
ρv+ρl

ρd

=
density of liquid water and water vapour

density of dry air
= qv +ql.

These give the moisture content (whether as vapour or liquid) in dimensionless form, i.e. g/kg.

The total mixing ratio is a conserved variable since we do not consider precipitation.

Dalton’s’ law of partial pressures says the total pressure of a mixture of gases is the sum of

the pressures of the individual components [61, 21]. Therefore vapour pressure is the pressure

exerted by a vapour in thermodynamic equilibrium at a given temperature. We denote vapour

pressure by e. Now imagine a thermodynamically insulated box that contains both liquid water

and dry air. If the temperature of the dry air is hot enough, then water molecules on the surface

of the liquid water will become excited enough to evaporate and become water vapour [61].

On the other hand as the temperature cools, water vapour molecules will crash into the liquid

water as condensation. Eventually a balance will be achieved where there is no net evaporation-

condensation. The vapour (now a mixture of water vapour and dry air) pressure at which this is

achieved is called the saturation vapour pressure which is denoted by es. The saturation mixing

ratio is defined as the mass of water vapour at saturation vapour pressure divided by the mass of

dry air [61, 21]:

qs =
Mvs

Md

=
ρvs

ρd

=

es

RvT
p−es

RdT

= ε
es

p− es
.

where ε = Rv

Rd
and ed = p− es = ρdRdT ⇒ ρd = p−es

RdT
. For example 100% relative humidity

means that any more water vapour would result in condensation, i.e [61, 21]:

RH = 100
qv

qs
= 100

e

es
.

We will also need the Clausius-Clapeyron equation, which describes the dependence of es on T

[61, 21]:

des

dT
=

Lves

RvT 2
,
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where Lv is the latent heat of vaporization. If we assume that the latent heat of vaporization is

constant, which to a good approximation in the atmosphere it is, then this differential equation

becomes separable and so can be solved [61]:

es = Ae
− Lv

RvT .

An appropriate initial condition, determined from experiments is es(273.16) = 611 Pa. This

gives the equation for saturation vapour pressure to be [61]:

es(T ) = Ae
− Lv

RvT where A = 2.53×1011 kPa.

Finally, we introduce a number of important variables that describe the joint effects of heat and

moisture. The virtual potential temperature is defined as [61, 21, 67]:

θv = θ(1+(
Rv

Rd

−1)qt − (
Rv

Rd

)ql),

≈ θ(1+0.6qv−ql),

where we can also define the virtual temperature as:

Tv = T (1+(
Rv

Rd

−1)qt − (
Rv

Rd

)ql),

≈ T (1+0.6qv−ql).

We should point out that water vapour is actually lighter than dry air 2 [67]. Virtual potential

temperature is the temperature that dry air must have to equal the density of moist air at the

same pressure [67]. Because moist air is less dense than dry air, this ensures that the virtual

potential temperature of unsaturated moist air is always greater than the potential temperature of

dry air. The liquid water potential temperature is defined as [61]:

2This is because both O2 and N2, the primary molecules in the dry atmosphere, both have higher atomic mass

than the water molecule H2O
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θl = θe
(− ql Lv

cpT
)
,

or the liquid water temperature:

Tl = Te
(− qlLv

cpT
)
.

The liquid water potential temperature is conserved in a reversible adiabatic process (along with

the total mixing ratio). It is the liquid water potential temperature that we use for our energy

equation:

∂θ′l
∂t

=−ui
∂θ′l
∂xi

+
∂Fθ

∂xi
δi3 −ws

∂θ′l
∂z

.

which we can see reduces to the potential temperature in the dry case.

How do we use the preceding definitions to determine when clouds (i.e. liquid water sus-

pended in the atmosphere) should form? First we note that total mixing ratio is conserved

(clearly the total amount of water, whether in liquid or vapour form, must remain constant by

conservation of mass assuming no precipitation). Secondly, consider Figure 1.4 which plots the

saturation mixing ratio against temperature. Let us assume that we initially begin with ql = 0

which means that initially qv = qt since the total mixing ratio is conserved. Also then Tl = T

initially. Let us assume then that in the coarse of integrating our equations forward in time we

arrive at the situation where qv > qs as shown in the Figure by point (a). Then the air is super-

saturated and the excess water vapour will condense into liquid. This results in a decrease in qv

followed by a corresponding increase in ql . Also the temperature increases so that we return to

saturation as shown in the Figure by point (b). Because the total mixing ratio is conserved, the

increase in ql is simply the difference between qt −qs. The only question then is how to actually

find the correct temperature adjustment.

Consider the equation for liquid water temperature. We can write:

Tl = Te
(− ql Lv

cpT
)
,

= Te
(− (qt−qs)Lv

cpT
)
,

0 = Tl −Te
(− (qt−qs)Lv

cpT
)
.
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Figure 1.4: Illustration of phase change between vapour and liquid water as well as correspond-

ing temperature increase.

This equation has the form f (T ) = 0 where f (T ) equals the r.h.s. Thus we can solve for T by

using Newton’s method of root-finding [41, 66].

Tn+1 = Tn −
f (Tn)

f ′(Tn)
, (1.22)

where f ′(T ) equals:

f ′(T ) = e
(− (qt−qs)Lv

cpT
)
+Te

(− (qt−qs)Lv
cpT

)
[

dqs

dT
LvcpT +(qt −qs(T ))Lvcp

c2
pT 2

]

.

Therefore,
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f (T )

f ′(T )
=

Te
(− (qt−qs)Lv

cpT
)−Tl

e
(− (qt−qs)Lv

cpT
)
+Te

(− (qt−qs)Lv
cpT

)
[ dqs

dT LvcpT+(qt−qs(T ))Lvcp

c2
pT 2

]

,

=
T −Tle

( (qt−qs)Lv
cpT

)

1+T
[ dqs

dT
LvcpT+(qt−qs(T ))Lvcp

c2
pT 2

]

,

≈
T −Tl

[

1+ (qt−qs(T ))Lv

cpT

]

1+ Lv

cpT

[

T
dqs

dT
+(qt −qs(T ))

] . (1.23)

We can find an equation for q′s(T ) by using the definition of qs and the Clausius-Clapeyron

equation [66]:

dqs

dT
= ε

(
des

dT
(p− es)− des

dT
es

(p− es)2

)

,

=
Lvqs

RvT 2
− 1

ε

Lvq2
s

RvT 2
,

=
Lvqs

RvT 2
− Lvq2

s

RdT 2
. (1.24)

Thus 1.22, 1.23, and 1.24 give us an iterative method for finding the adjusted temperature.

1.5 Turbulence and Convective Boundary Layers

1.5.1 A Brief History of Turbulence

The study of turbulence dates back to at least the time of da Vinci who referred to the phe-

nomena as “Turbolenza” [50] and hence cemented its modern name. Despite the length of time

that turbulence has been investigated and despite, as we shall see, the long list of mathematical

and physical titans of their respective times, turbulence remains, to use Richard Feynman’s own

words, ”the most important unsolved problem of classical physics”. In fact no universally ac-

cepted definition for turbulence even exists. Perhaps the most famous informal description of

turbulence comes in the form of a poem by Richardson in 1922 [60, 50]:
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Big whorls have little whorls,

which feed on their velocity;

And little whorls have lesser whorls,

And so on to viscosity.

A quote from G.I. Taylor on the definition of turbulence reads [72, 50]:

Turbulence is an irregular motion which in general makes its appearance in fluids,

gaseous or liquid, when they flow past solid surfaces or even when neighboring

streams of the same fluid flow past or over one another.

Despite the ambiguity found in trying to define precisely what turbulence is, we do know

it when we see it. A turbulent flow appears chaotic and irregular. Turbulent flows are also

characterized as having vorticity and the formation of eddies at both large and small scales. This

vorticity is generated by vortex stretching meaning that turbulence is, strictly speaking, a 3-

dimensional phenomena (although many of the same ideas and tools used in turbulence research

are also used when investigating 2-dimensional flows).

One difficulty faced in the study of turbulence is that its very underlying equations, i.e the

Navier-Stokes equations, do not admit analytical solutions except for the most trivial of cases

often accompanied by drastically simplifying assumptions. While finding unique solutions to

linear differential equations is relatively easy, doing the same for the Navier-Stokes equations,

which are nonlinear, is impossibly hard and so little traction can be found on the analytical front.

This is one of the reasons for the prominence of statistical methods in turbulence research.

Some of the most important early work on turbulence was done by Osbourne Reynolds. His

famous flowing dye experiments investigating the transition in fluids from laminar to turbulent

are well known within the fluids community (1883) [11]. It was Reynolds who first investigated

this transition and discovered the non-dimensional number bearing his name that describes the

relative importance of the diffusive term to the nonlinear advective term in the Navier-Stokes

equations. It was also Reynolds who first decomposed the Navier-Stokes equations into a mean

part and a fluctuating perturbation part, similar to what is done in LES by separating the flow

field into filtered and unfiltered parts. The notion that turbulence is a random process also dates

to the late 19th century, with Reynolds and Poincaré being notable contributors.

One of the first major results of the statistical view of turbulence came from Boussinesq’s

eddy-viscosity idea and the subsequent work of Prandtl in 1925 who introduced Prandtl’s mixing

length theory [58]. This theory, actually drawing on ideas from thermodynamics, assumes that
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the velocity has a linear profile. For example consider a fluid flowing in the x-direction, where

the fluid velocity only depends on the y-direction:

u = u(y) v = 0 w = 0.

Now consider a small distance away we can approximate the u(y = l) velocity through use of a

Taylor expansion [40]:

u′ = u(y)−u(y− l)≈ l
du

dy
− l2

2

d2u

dy2
.

Therefore in general we may approximate u′i ≈ l(∂ui∂x j) which then gives:

−u′iu
′
j ≈ l2(

∂ui

∂x j
)2.

It should be noted that this mixing length idea is far from rigorous - Prandtl himself recog-

nizing that this approximation has limitations. Nonetheless this idea has remained important, for

example in the eddy viscosity of LES.

Much of the statistical theory and tools well known to turbulence researchers, such as sta-

tistical correlations and power spectra, originates with the work of G.I. Taylor in the 1930’s.

Taylors’ hypothesis [70, 25, 75], which says that the velocity measured at a fixed point within an

eddy remains unchanged at a later time except for the effect of being advected by the mean flow,

i.e. u(x, t) = u(x−Ut, t) where U is the mean flow speed. Thus it is often said that the turbu-

lence within the passing eddy is frozen. This hypothesis is clearly only valid if the turbulence is

relatively weak within the eddy as compared to the background velocity.

Perhaps the most important discovery in the field of turbulence, at least from the point of

view of the work presented in this thesis, comes from the Russian mathematician Andrei N.

Kolmogorov, in his 1941 papers [36, 37] and his 1962 paper [38]. In these papers Kolmogorov

found the form of the kinetic energy spectrum and hence found the distribution of energy as a

function of eddy size. We will return to Kolmogorov theory in the subsequent pages and explain

it in more detail.

The 1960s ushered in great opportunities for research in turbulence with the advent of bet-

ter experimental techniques, and perhaps most importantly, with the introduction of the digital

computer. For example as early as 1963, Lorenz was performing crude simulations of weather

using digital computers. In particular Lorenz noted the sensitivity his system exhibited to initial

conditions, often referred to as the butterfly effect.[40].
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Figure 1.5: Scatter plots of velocities u and w and velocities u and v. Clearly there exists more

anisotropy in the vertical than there does in the horizontal. The data was taken from a convective

boundary simulation.

Despite the great successes of the statistical approach, there remains no universal turbulence

theory. Instead we have different theories for different flow types, i.e. boundary layer theory [11].

The problem arises because no closed set of equations that describe the statistical quantities like

the mean and variance of a flow exist. This is the problem of closure. It is a great irony that we

have equations for the velocities, ui, which are random, and yet have no equations for statistical

quantities like the mean, ūi, which are well behaved!

1.5.2 The Energy Spectrum

The previous discussion has been somewhat informal; we have introduced some of the big ideas

of turbulence theory while at the same time avoiding much of the formal definitions and equa-

tions. Let us now present the idea of the energy spectrum and the meaning of isotropy.

A fluid is said to be isotropic if the mean properties of the flow have reflectional symmetry and

are invariant under rotations within the frame of reference [11]. Likewise a fluid is homogeneous

if its properties are invariant under translation [11]. One simple and intuitive way to test whether

a fluid is isotropic is to look at a scatter plot comparing the u, v, and w velocities (see Figure 1.5.

For example the uu, vv, and ww products would show up in a scatter plot as dots evenly distributed

around their centre in a circular pattern. For anisotropic flows, these velocity products would

result in an elliptical pattern in the scatter plot.

Another related way to think about isotropic turbulence is through the velocity correlation

tensor defined as [11]:
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Qi j(~r) = 〈ui(~x)u j(~x+~r)〉, (1.25)

where the angled brackets indicate an average. When~r = 0 for isotropic flows, we would expect

that the following holds:

〈u1u1〉= 〈u2u2〉= 〈u3u3〉=U2,

and,

〈u1u2〉= 〈u1u3〉= 〈u2u3〉= 0.

For non-zero~r the above velocity correlation is often referred to as a two-point correlation. In

this case we would expect that for large |~r|, the velocity correlations will go to zero. On the

other hand, for |~r| → 0, we get the one-point correlations shown above. If we look at the velocity

correlation tensor in the x-direction, based on the above ideas, we might get something like

[11, 75]:

Q11(rêx) =U2 f (r) and Q22(rêx) =U2g(r),

where f (r) and g(r) are shown in Figure 1.6 and are called the longitudinal and lateral velocity

correlation functions respectively [43, 11, 40, 75]. These functions then tell us how well cor-

related nearby velocities are along the x-axis. Two velocities within an eddy are likely to be

well-correlated, while two velocities separated by a larger distance and residing in different ed-

dies are likely to be poorly correlated. This gives us a more formal way of computing the length

scale of the largest eddies. We can define the integral length scale as [11]:

l =
∫ ∞

0
f (r)dr.

We can also take the Fourier transform of the velocity correlation tensor, called the spectral

tensor [11, 75]:

φi j(~k) =
1

(2π)3

∫ ∞

0
Qi j(~r)e

−i~k̇~rd~r, (1.26)

which then defines the velocity correlation tensor as [11, 75]:
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Figure 1.6: Longitudinal (f) and Lateral (g) velocity correlation functions.
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Qi j(~r) =
∫ ∞

−∞
φi j(~k)e

i~k̇~rd~k. (1.27)

Therefore the velocity correlation tensor and the spectral tensor form a Fourier transform pair

[11, 75]. For isotropic turbulence it can be shown that φi j must have the form [11]:

φi j = A(k)kik j +B(k)δi j. (1.28)

The incompressibility condition implies [11]:

kiφi j = k jφi j = 0. (1.29)

Combining 1.28 and 1.29 gives [11]:

kiφi j = A(k)k2
i k j +B(k)kiδi j = 0,

= A(k)k2k j +B(k)k j = 0 where k2 = k2
1 + k2

2 + k2
3,

= (A(k)k2+B(k))k j = 0,

⇒ A(k) =−B(k)

k2
.

Thus φi j has the form [11, 75]:

φi j = B(k)(δi j −
kik j

k2
).

Then,

1

2
φii = B(k),

where we have summed over i. Now consider: [11]
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1

2
〈u2

i 〉=
1

2

∫
φii(~k)~dk,

=
∫ ∞

0
2πk2φiidk,

=

∫ ∞

0
E(k)dk where E(k) = 2πk2φii.

But since 1
2
φii = B(k) then,

1

4
E(k) =

1

2
πk2φii = πk2B(k).

Therefore [11, 75],

φi j =
E(k)

4πk2
(δi j −

kik j

k2
). (1.30)

In an unbounded domain, the horizontal wavenumber spectra of vertical and horizontal ki-

netic energy are defined as:

Ev(kh) =

∫ ∞

0

∫ 2π

0

1

2
φ33khdθdkz Eh(kh) =

∫ ∞

0

∫ 2π

0

1

2
(φ11 +φ22)khdθdkz, (1.31)

where integration is over a cylinder in wavenumber space centred on the kz axis with radius kh.

We assume the spectral tensor, φi j, has the usual isotropic form (e.g. [57]):

φi j =
E(k)

4πk2

(

δi j −
kik j

k2

)

, (1.32)

where k =
√

k2
x + k2

y + k2
z . Substituting (1.32) into (1.31) yields:

Ev =
1

4

∫ ∞

0

E(k)

k2
(
k2

h

k2
)khdkz Eh =

1

4

∫ ∞

0

E(k)

k2
(
k2

h +2k2
z

k2
)khdkz.
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Using k2
z = k2 − k2

h, the substitution τ = k/kh, and assuming a Kolmogorov energy spectrum

E(k) = αε2/3k−5/3, the above integrals can be reduced to:

Ev =
1

4
αε2/3k

−5/3

h

∫ ∞

1

τ−14/3

√
τ2 −1

dτ

Eh =
1

4
αε2/3k

−5/3

h

∫ ∞

1

(2τ2 −1)τ−14/3

√
τ2 −1

dτ.

These integrals can be numerically evaluated to give a vertical-to-horizontal ratio:

Ev

Eh

≈ 0.611861

1.07075
≈ 0.5714.

Thus we have rudimentary measure for testing whether a flow might be isotropic using 2-

dimensional slices of the flow. In the case of one-dimensional spectra, this ratio would be 4/3

[75].

1.5.3 Kolmogorov Theory

Kolmogorov’s 1941 [36, 37, 38] theory of isotropic turbulence ranks as one of the most signifi-

cant advances in the study of turbulent fluids. In particular, Kolmogorov was able to derive the

form of the kinetic energy spectrum thus giving the distribution of energy as a function wavenum-

ber, or eddy size. His ideas of course were not born in a vacuum - drawing instead on earlier

works for example Richardsons energy cascade theory [11]. Before deriving this energy spec-

trum, let us first examine a fundamental difference between inviscid flows and flows with very

low viscosity.

Consider a turbulent flow, i.e. the atmospheric convective boundary layer. Let l be a length

scale of the largest eddies 3. These eddies will be at most the thickness of the boundary layer,

say ∼ 1000 m. Also let U be a velocity scale of the largest eddies. We might expect this to

be ∼ 1 m/s for example. Thus at the largest scales, we can define the Reynolds number as

Re = Ul/ν ∼ 6×107 ≫ 1 (where ν ∼ 1.5×10−5 for air). Because Re ≫ 1, we might expect

that the flow would behave as an inviscid flow where viscosity is not important. This turns

out to be incorrect however as we shall see. Now let us define a length and velocity scale that

3We will follow Davidson here and informally define an eddy as a blob of vorticity and its associated velocity

field [11]
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represent small scale motions. Let η be such a scale. Kolmogorov proposed that η = f (ν,ε)
where ε = 2νSi jSi j [11] is the molecular dissipation rate of KE.

We can perform some simple dimensional analysis to determine the function f. We know that

[ν] = L2/T and [ε] = L2/T 3. Therefore [43, 11, 75],

η = (
ν3

ε
)

1
4 .

Thus the effect of decreasing ν is to decrease η to smaller scales. Regardless of how much

we decrease ν though, the nonlinear term will always ensure that viscosity becomes important at

some scale η. This last statement then highlights the fundamental difference between completely

inviscid flows and flows which may seem nearly inviscid because of very small viscosity! No

matter how small the viscosity (or equivalently how high the Reynolds number) the nonlinear

term will ensure that at some scale the viscosity will become important. In the same way we

found a small length scale η, we can also use dimensional analysis to find a small time scale, τ,

and a small velocity scale v. Doing so gives [43, 11, 75]:

τ = (
ν

ε
)

1
2 v = (νε)

1
4 .

Richardson proposed a theory of energy cascade. The idea is that on average energy transfers

from larger eddies to smaller ones in a step by step cascade. If we let ki be the wavenumber

at which energy is injected into the fluid and if we let kd be the wavenumber where energy is

dissipated from the fluid by viscosity, then in between energy moves from small ki to large kd in

a incremental way. Around ki the energy is dictated by the forcing, but for k ≫ ki Kolmogorov

hypothesized that the turbulence is largely independent of the large scale eddies. In the range k ≫
ki, known as the universal equilibrium range, Kolmogorov suggested that the energy spectrum

should depend on k, kd , and ε. With this assumption, he used dimensional analysis to find E(k)
[43, 11, 75]:

[E(k)] =
L3

T 2
[k] = [kd] =

1

L
[ε] =

L2

T 3
.

Buckingham Pi theorem tells us that there are 4−2 = 2 dimensionless groups. Using k
kd

as one

group we find that:

E(k) = ε
2
3 k

−5
3 f (

k

kd

).
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If we define ki as the wavenumber at which energy is injected and kd as the wavenumber at

which energy is dissipated, Kolmogorov hypothesized that for the range of k, ki ≪ k ≪ kd ,

f ( k
kd
) = constant. This range is known as the inertial range and we get [43, 11, 75]:

E(k) = cε
2
3 k

−5
3 . (1.33)

In addition to the above energy spectrum, we can find a similar result for the spectrum of tem-

perature fluctuations. To do so we apply dimensional analysis in the same way as before. We

are given three dimensional units: Co (temperature), meters (length), and seconds (time), and we

have six physical variables: γ, εT , ε, k, kd kT , where ¯T ′2 =
∫ ∞

o Γ(k)dk, and εT = κ(∂T ′/∂x j)2

[5, 6]. Thus again by the Buckingham Pi theorem we expect three dimensionless groups. Two of

these dimensionless groups will be k/kd and k/kT .

[Γ] = (Co)2m [εT ] =
(Co)2

s
[ε] =

m2

s3
[kd] = [kT ] = [k] =

1

m
,

Γ(k)

εαε
β
T kγ

= (Co)2−2βm1+γ−2αs3α+β,

⇒ β = 1 α =−1

3
γ =−5

3
,

Γ(k) = εT ε−
1
3 k−

5
3 f (

k

kd

,
k

kT
).

This therefore gives a −5/3 scaling within the inertial range for the temperature spectrum. We

can actually go a step further. When Pr = (ν
κ) ≪ 1, then κ ≫ ν. Thus we expect the temper-

ature to be smeared out by thermal diffusivity before the velocity is smeared out by viscosity.

Therefore we may consider an additional range, known as the “viscous convective subrange”

where thermal diffusivity is strong, but where viscosity is still weak. Batchelor (1959) did this

and found that for the case where κ ≫ ν, the temperature fluctuation spectrum should look like

[5, 6]:

Γ(k) = εT ε
2
3 κ−3k−

17
3 . (1.34)
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1.5.4 The Kinetic Energy Budget

An equation for the kinetic energy budget can be found by multiplying by 1
2
ρ0 ˆ̄u∗i , and adding the

complex conjugate. The resulting equation is:

∂E

∂t
(~k,z) = T (~k,z)+P(~k,z)+B(~k,z)+D(~k,z), (1.35)

where

T (~k,z) =−Re( ˆ̄u∗i F (
∂

∂x j

(ρ0ūiū j))),

P(~k,z) =
1

2
cpΘ0ρ0 Re(−ik ˆ̄u∗ ˆ̄

π′− il ˆ̄v∗ ˆ̄
π′− ˆ̄w∗∂ ˆ̄π′

∂z
),

B(~k,z) =
g

Θ0
Re(ρ0 ˆ̄w∗ ˆ̄

θ′),

D(~k,z) = Re( ˆ̄u∗i F (
∂

∂x j
(ρ0τ̄i j))).

The evolution of E(~k,z) is defined by four terms: the advection or nonlinear transfer T (~k,z),

the pressure term P(~k,z), the buoyancy flux or heat flux B(~k,z), and the SGS dissipation D(~k,z).
Taking the horizontal Fourier transform of the anelastic continuity equation gives: The pressure

term P can be rewritten using the continuity equation,

−ik(ρ0 ˆ̄u∗)− il(ρ0 ˆ̄v∗)+
∂

∂z
(ρ0 ˆ̄w∗) = 0.

Multiplying by π̄′, the pressure term P can be rewritten as:

P(~k,z) =−cpΘ0 Re(
∂

∂z
(ρ0 ˆ̄w∗ ˆ̄

π′)), (1.36)

which implies that it goes to zero when integrated over the depth of the domain. From these

quantities, we can compute one-dimensional spectra in terms of the horizontal wavenumber kh =√
k2 + l2 by binning over k and l in the usual way [73]. It is precisely this budget that we will be
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examining for the atmospheric boundary layer. By examining each term, i.e. nonlinear transfer,

forcing from buoyancy, and dissipation, we hope to gain insight into the dynamics of the kinetic

energy spectrum.

1.5.5 A Brief History of Convective Boundary Layer Research

With the gradual increase in computing power between the 1960’s and the present it became

feasible to numerically solve the equations of motion for an atmospheric boundary layer. These

simulations relevant to the present investigation were first being performed throughout the 1960-

1970’s, in particular the pioneering work of D.K. Lilly [45] and Deardorff [13, 14] that led to the

development of LES. It is LES that appears to hold the most promise in modeling engineering

and atmospheric flows, at least for the foreseeable future. In fact a lot of recent work has been

dedicated to finding improved models of the parameterized sub-grid scale fluxes, for example

dynamical models.

Lilly [45] extended the Smagorinsky eddy viscosity model [65] to include convection and per-

formed one of the first three-dimensional LES experiments [46]. Throughout the early 1970’s,

Deardorff used different techniques to parameterize the sub-grid scale (SGS) fluxes in a CBL,

including the Smagorinsky model [14] and the turbulent kinetic energy (TKE) model [17]. Key

differences were found between CBLs simulated with these two SGS models. For example, the

Smagorinsky model tended to smooth out gradients in the entrainment zone more than the TKE

model. Deardorff [13] found that for flows dominated by thermal convection, a Smagorinsky co-

efficient near Cs = 0.21 is appropriate, while for flows dominated by shear a lower Smagorinsky

coefficient around Cs = 0.13 should be used.

The kinetic energy budget was measured in physical space by Moeng [52]. In the spec-

tral domain, kinetic energy spectra in the CBL have been found to have a −5/3 slope (e.g.

[15, 16, 54, 68]). This spectral slope is a necessary condition of isotropic turbulence, and local

isotropy has been investigated by considering the spectral ratio of one-dimensional vertical-to-

horizontal (transverse to longitudinal) kinetic energy, which should be 4/3 in isotropic turbulence

[75]. Deardorff [13] found ratios that were much larger than this value as did the subsequent

studies of Mestayer [51], Moeng & Wyngaard [54], and Schmidt & Schumann [64]. It seems

that the pressure perturbations are only strong enough to encourage local isotropy at the smallest

scales. Indeed, the wind tunnel experiments [34] have since found ratios that are very close to

the theoretical value (only slightly larger) in the small scales.

The heat flux spectrum is an important term in the spectral KE budget, as it corresponds to a

source of KE from buoyant production. Results from the LES experiments of Schmidt & Schu-

mann [64] and the observational study of Kaimal et al. [32] indicate that near the surface heat
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is transported up by small scale turbulent motions followed by a rapid transfer to larger scales

throughout the mixing layer. Significantly, heat appears to be transported within the entrainment

region predominantly by the large scale turbulent motions and not small scale motions as is the

case near the surface. Similar results were seen in the wind tunnel experiments of Kiaser & Fe-

dorovich [34] throughout the CBL except near the surface where the experiments showed large

scale heat transport which was attributed to surface shear effects.

Observational studies have been performed by many authors (e.g. [42, 32, 9, 33, 28]), and

these findings have been very useful for validating numerical results. Good agreement has been

found between observed and simulated KE and heat flux spectra (for example comparing the

computed LES heat flux spectra of Schmidt & Schumann [64] with the observed spectra of

Kaimal et al. [32]). Large-scale peaks in the heat flux and kinetic energy spectra have been

seen in some studies, possibly caused by coherent structures in the flow [28]. The LES work

of Schmidt & Schumann [64] found similar peaks, but cautioned that the coherent structure

interpretation is not universally accepted. For example, Deardorff & Willis’ [18] water tank

study of CBL did not find statistically significant peaks in the spectra corresponding to coherent

structures nor were such peaks observed in the overland aircraft measurements of Lenschow [42].

Numerous comparison studies examining differences in sub-grid scale parameterizations

[23, 69, 24, 30] and differences between shear and buoyancy driven flows [53] have also been

performed. In particular, Niewstadt et al [23] compared four LES codes that were run with sim-

ilar domain setups but different parameterizations of the sub-grid scale fluxes. Despite these

differences, the LES results showed a high level of agreement in both physical space statistics

and kinetic energy spectra. In [30] the standard Smagorinsky-Lilly model was compared with the

dynamic Smagorinsky parameterization and similar insensitivities were found. The robustness of

LES simulations despite differences in the SGS parameterization is partially due to the inherent

large scale eddies that develop in convection driven turbulent flows. It is also encouraging that

the LES results are reasonably insensitive to the choice of SGS model as it gives confidence in

the use of LES as a tool for studying CBL turbulence.

More recent high-resolution LES of the CBL have examined the effects of grid resolution on

physical space statistics and kinetic energy spectra [68]. Resolutions of up to 10243 grid points

(corresponding to 5×5×2 m grid spacings) were employed. Within the mixing layer (0.1< zi <
0.9, where zi is the inversion height) the variances and vertical heat flux converged (in physical

space) for resolutions of 2563. However, the temperature variance increased with successive

resolutions within the entrainment zone. Both horizontal and vertical velocities showed −5/3

spectra, however a two-slope character was observed in the horizontal spectra particularly near

the surface and the boundary layer height. It was observed that the horizontal spectra were

shallower than −5/3 in the larger scales followed by a transition to a −5/3 slope at smaller

scales. The peak vertical velocity spectra also shifted to higher wavenumbers as z/zi decreased.
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Chapter 2

Methodology

“But I don’t want to go among mad people,” said

Alice. ”Oh, you can’t help that,” said the cat.

”We’re all mad here.”

—Lewis Carrol in Alice in Wonderland

In this chapter we present a description of the UCLA LES model [4] that is used to numer-

ically integrate the anelastic equations (1.11). This code was chosen because it allowed for the

solution of both dry and moist CBL’s using either Smagorinsky or TKE subgrid parameteriza-

tions. The code has been used in a number of related studies and includes fairly comprehensive

documentation. In the following sections we provide details on how the UCLA LES model

integrates the anelastic equations and the model configurations we used.

2.1 Overview of UCLA LES Model

The anelastic LES equations (1.11) are integrated using the UCLA LES model [4]. This model

is a finite difference code implemented on a staggered Arakawa C grid [20] (see Figure 2.1),

which means that all velocities are staggered half a grid point up-grid from the thermal/pressure

points. For example, the w velocities reside half a grid point above the thermal points, while the

u velocities are half a grid point to the right of the thermal points.

The model uses fourth order centred finite differences for momentum advection. It is com-

mon to choose a fourth order discretization for the advective derivatives not for higher accuracy,
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but instead to reduce phase speed errors [20]. Because of the staggering, this involves first inter-

polating the velocities to the thermal points using the 4th order interpolation scheme:

w j+1/2 =
7

12
(w j +w j+1)−

1

12
(w j−1 +w j+2),

followed by a centred difference of two consecutive velocities (now at the thermal points). For

example, computing the vertical derivative of w would look like:

∂w

∂z
=

w j+1/2 −w j−1/2

∆z

=
7

12
(w j +w j+1)− 1

12
(w j−1 +w j+2)− 7

12
(w j−1 +w j)+

1
12
(w j−2 +w j+1)

∆z

=
w j+2 +8w j+1 −8w j−1 +w j−2

12∆z
,

which we can see does work out to a fourth order centred finite difference scheme. The velocities

are then marched forward in time using the leapfrog method. Using the leapfrog time discretiza-

tion for nonlinear differential equations results in a computational mode that can grow in time.

To control this computational mode we apply a asselin filter [44, 2, 20]:

θ̄n = θn + ε(θn+1 −2θn +θn−1),

where ε = 0.1. The second derivative finite difference term damps the high frequencies. Scalar

advection is achieved using the Lax-Wendroff scheme [44, 2, 20]. For example in the case of

vertical advection of potential temperature this scheme looks like:

θn+1
j = θn

j − [w j(
∆t

2∆z
)(θn

j+1−θn
j−1)−w2

j

∆t2

2∆z2
(θn

j−1 −2θn
j +θn

j−1)−θn
j

∆t

∆z
(w j −w j−1)].

Because the Lax-Wendroff scheme is known to result in oscillations at discontinuities, a flux

limiter [44, 2, 20] is applied. This approach allows for second order spatial discretization for

most of the domain, only switching to a lower order scheme when gradients become steep.
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The pressure solver exploits horizontal periodicity and uses 2D discrete Fourier transforms.

Specifically, the pressure is found by the projection method [10] which involves applying conti-

nuity to the momentum equation:

∂

∂xi
(ρ0cpΘ0

∂π̄′

∂xi
) =

[ ∂

∂xi

(

−ρ0ū j
∂ūi

∂x j
+ρ0

gθ̄′

Θ0
+

∂(ρ0τ̄i j)

∂x j

)]

. (2.1)

This results in a one dimensional equation for every horizontal wave vector,

d2 ˆ̄π
′

dz2
− (k2 + l2) ˆ̄π

′
= f̂ ,

where f̂ is the just the horizontal Fourier transform of the rhs of (2.1), which is evaluated with a

tridiagonal solver.

Horizontal boundary conditions are periodic. Vertical boundary conditions are no-normal-

flow at the upper and lower boundaries, along with zero Neumann conditions on the scalars,

i.e. temperature and total mixing ratio. These boundary conditions are enforced by an odd (no-

normal flow) or even (Neumann) extension of the grid. For example, the Neumann condition

of the u velocity would look like u(x,y,−∆z/2) = u(x,y,∆z/2). Because we do not specify

the momentum fluxes they are instead determined from Monin-Obukhov similarity theory as

described in the previous chapter. This gives the eddy-viscosity on the bottom boundary as:

KM = κz
u∗

φ(ζ)
,

where the friction velocity, u∗ is determined from the law of the wall equation for the mean

velocity within the surface layer [11]:

U =
u∗
κ

ln(z).

This mean velocity, U , is just the mean of u2 + v2 at the bottom slice of the domain and the

dimensionless scaling functions, φ, are given by [8]:

φ(ζ) = (1+4.8ζ) ζ > 0,

φ(ζ) = (1−19.3ζ)−1/4 ζ < 0.

42



Figure 2.1: Arakawa-C grid

The domain size is L×L×H, with n×n×m grid points. In all simulations, the temperature

flux Qs and moisture flux Ql are constant and are imposed through the SGS model. Different

domain sizes, temperature and moisture fluxes, subsidence profiles, and initial conditions are

chosen for the dry and moisture cases (see subsequent sections).

In order to compute profile statistics and spectra, which requires all model fields on a com-

mon grid, we use spectral interpolation in the horizontal, i.e. FFT’s of ˆ̄u and ˆ̄v are taken at

the staggered points and then corrected by multiplication by e−ik(∆x
2 ) and e−il(∆y

2 ) respectively.

Derivatives in the transfer, dissipation, and pressure spectra are computed from the unstaggered

fields spectrally in the horizontal and using fourth order finite differences in the vertical. Thus

each term in the budget is calculated at order of accuracy at or above what is used in the under-

lying numerical model.

The UCLA LES code is written entirely in Fortran and uses the message passing interface

(MPI) to accomplish a 2-dimensional parallelization. All simulations were run on the Shared

Hierarchical Academic Research Network (SHARCNET), primarily on the orca cluster which

is composed of a mixture of 24-core nodes using AMD Opteron @ 2.2GHz and 16-core nodes
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Run (L,H) [m] (n,m) (dx,dz) [m] Qs [Kms−1]

B40 (5750,1990) (144,50) (40.2,40.6) 0.071

B20 (5750,1990) (288,100) (20.0,20.1) 0.071

B10 (5750,1990) (576,200) (10.0,10.0) 0.071

B5 (5750,1990) (1152,400) (5.0,5.0) 0.071

H40 (5750,1990) (144,50) (40.2,40.6) 0.142

H20 (5750,1990) (288,100) (20.0,20.1) 0.142

H10 (5750,1990) (576,200) (10.0,10.0) 0.142

D80 (11500,1990) (144,50) (80.4,40.6) 0.071

D40 (11500,1990) (288,100) (40.7,20.1) 0.071

D20 (11500,1990) (576,200) (20.0,10.0) 0.071

Table 2.1: Domain size, number of grid points, grid spacings, and surface heating strength for

each numerical experiment.

using Intel Xeon @ 2.6GHz CPU’s. Because the nodes are not dedicated (i.e. resources were

shared with other jobs), timing results were not reliable and so were not included.

2.2 Dry and Moist Convective Boundary Layer Simulations

For the dry case we consider domain sizes, resolutions, and constant surface heating strengths

shown in Table 2.1. These 10 simulations are separated into three problem configurations: the

B* (where * is the approximate grid spacing in meters) represents the base case setup, the H*

simulations represent the higher surface heat experiments, while the D* experiments indicate the

larger domain setup. The initial potential temperature, subsidence, and radiative cooling profiles

are shown in Figure 2.2. A constant Θ = 300 K was also chosen.

Most simulations are run to 12000 s, with outputs every 1000 s. Simulations reach statistical

stationarity after approximately 4000 s, and various quantities including the energy spectra and

spectral budget terms are averaged from 4000 to 12000 s. The highest-resolution simulation (B5)

is only integrated to 7500 s with outputs at 500 s intervals. This high resolution experiment took

over one month in simulation time to complete.

For the moist simulations we follow a setup very similar to [22]. We consider domain sizes,

resolutions, constant surface heating flux, and constant moisture flux shown in Table 2.2. Here a

constant Θ0 = 298.7 was chosen.
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Figure 2.2: Initial θ0, subsidence, and radiative cooling profiles. The dashed line corresponds to

experiments with a higher surface heat flux. The vertical axis is in metres. These profiles follow

[19]

The subsidence, radiative cooling, and initial potential temperature and initial mixing ratio

are shown in Figure 2.3 [22]. The primary difference between the dry and moist cases is the

inclusion of the water vapour mixing ratio (see below) as an active scalar. This not only effects

the buoyancy, as moist air is less dense than dry air, but it also allows for the possibility of

condensation (releasing latent heat) and the formation of clouds. The moist experiments were

run up to 30000 s, except for M10 which was only run to 25000 s, and all profiles and spectra

were computed by averaging between 21000-30000(25000).
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Run (L,H) [m] (n,m) (dx,dz) [m] Qs [Kms−1] Ql [ms−1]

M80 (5750,3000) (72,38) (80.1,81) 0.008 0.000052

M40 (5750,3000) (144,75) (40.2,40.6) 0.008 0.000052

M20 (5750,3000) (288,150) (20.0,20.1) 0.008 0.000052

M10 (5750,3000) (576,300) (10.0,20.1) 0.008 0.000052

Table 2.2: Domain size, number of grid points, grid spacings, surface heating strength, and

moisture flux for each numerical experiment.
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Figure 2.3: Top: initial θ0, initial total mixing ratio, and radiative cooling profiles. Bottom:

subsidence velocity and moisture decrease. These profiles follow [22]
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Chapter 3

Results

“There’s something about this that’s so black, it’s

like how much more black could this be? And the

answer is none. None more black.”

— Nigel Tufnel from Spinal Tap

3.1 Dry Boundary Layer Results

3.1.1 Overview

To investigate a spectral kinetic energy budget that is approximately stationary we run each

simulation up to statistical stationarity as determined from time series of the volume mean kinetic

energy:

K =
1

d

∫ d

0

1

2
〈(ū2+ v̄2 + w̄2)〉dz,

where 〈〉 denotes horizontal average. The time series for experiments B40-B5 are show in Fig-

ure 3.1. The flow has reached approximate stationarity by 4000 s. Vertical profiles of horizon-

tally averaged potential temperature and heat flux are plotted in Figure 3.2(a,b). The results show

nearly identical potential temperature profiles, which implies that the equilibrium potential tem-

perature structure is independent of resolution. The heat flux profiles differ between resolutions

only in the entrainment layer and the surface layer, where increased resolution causes sharper
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adjustment between adjacent layers. Velocity variance profiles are shown in Figure 3.2(c,d): the

vertical velocity variance is largest within the mixing layer, while the horizontal variance has

peaks within the entrainment zone and the surface layer. Interestingly, the horizontal variance

shows significant dependence on resolution, not just in the entrainment and surface layers, but

also within the mixing layer, but the profiles appear to be converging with increasing resolu-

tion. A discrepancy exists in the plots of vertical and horizontal velocity variances where for

increasing resolution (runs B40, B20, & B10) the variances increase slightly while for the high-

est resolution (run B5) there is an unexpected decrease. This may be caused by the fact that

the highest resolution was only averaged up to 7500 s instead of the full 12000 s. However,

other studies [68, 49] have also shown significant scatter rather than a monotonic increase in the

mixing layer velocity variances as resolution is increased.

Overall, a high degree of convergence is seen in all the plots and the shapes of these statistics

are consistent with previous studies of dry convective boundary layers [53, 68, 30, 49]. Statis-

tics for the larger domain size and larger surface heat flux experiments have similar profiles are

not shown. Potential temperature profiles from the simulations with higher surface heat flux are

shown in Figure 3.3. The effect of increased Qs on the boundary layer thickness from approxi-

mately 1100 m and 1600 m is clearly visible.

Figure 3.4 shows vertical slices of the model fields at the final time of the highest resolu-

tion run B5. The corresponding heat flux is shown in Figure 3.5. By this time the boundary

layer height has reached its equilibrium level and a balance has been achieved between the sur-

face heating, radiative cooling, and subsidence. Several rising plumes can be seen with positive

potential temperature perturbations. Additionally, plume cores exhibit strong positive vertical

velocity and positive heat flux. Outside these plume cores, but still within the plume structure,

there exist regions of positive temperature perturbations and negative vertical velocity corre-

sponding to negative vertical heat flux. These regions of negative heat flux are likely the result

of the highly turbulent mixing that the plumes generate, particularly on their outer shell. Often

the plumes may extend the entire boundary layer depth and may even penetrate into the stable

layer resulting in sharp potential temperature changes at the plume/stable layer interface [64].

To the side of these penetrating plumes near the boundary layer height, warm air is often seen

being pulled downward into the mixing layer as is most clearly seen in an animation of the po-

tential temperature perturbation [64]. Well within the mixing layer, the plumes themselves are

separated by large regions of sinking air (Figure 3.5). Generally within the mixing layer these

regions correspond to cooler sinking air (positive vertical heat flux), but as we approach the en-

trainment layer there exists regions of hotter sinking air (negative vertical heat flux). Finally both

horizontal velocities (u and v) exhibit equally sized regions of positive and negative velocities.

No significant difference is observed between the u and v velocities which is consistent with the

lack of background shear.
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Figure 3.1: Time series of volume mean kinetic energy for experiments B40-B5.
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Figure 3.2: Horizontally and time averaged (a) potential temperature, (b) heat flux, (c) vertical

velocity variance, and (d) horizontal velocity variance for experiments B40-B5.
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Figure 3.3: Horizontally averaged potential temperature for experiments H40-H10.
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Figure 3.4: Vertical (x-z) slices of (a) θ′, (b) w, (c) u, and (d) v taken at y = 0 m and time 12000

s for experiment B5.
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Figure 3.5: x-z slice of vertical heat flux, wθ′, at y = 0 m and time 12000 s for run B5
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3.1.2 Spectral Budget

Heat Flux

Of the various terms in the spectral KE budget, we consider first the heat flux B(k,z), which plays

a key role as the source of KE in the CBL. We have shown above that the averaged physical space

statistics, i.e. the velocity variances and heat flux, match what has been seen in numerous other

LES studies. In particular the physical space heat flux profile appears to have almost completely

converged for run B5 which might mean that run B5 is sufficiently resolved. However, an impor-

tant question is whether the spectral quantities exhibit similar convergence. Indeed, if the heat

flux spectrum has a broad and resolution-dependent contribution from intermediate and small

scales, this could have implications for the development of a locally isotropic inertial range.

Heat flux spectra from run B5 at different vertical levels are shown in Figure 3.6 (spectra

are labeled with wavelength λ = 2π/k along the x axis for clarity). As expected the heat flux

near the surface is positive and peaked at large wavenumber implying a small scale injection

of KE [32, 64, 34]. Moving up through the mixing layer the spectrum remains positive but the

peak shifts to larger scales [32, 64, 34]. This transition of the maximum heat flux from smaller

scales to larger scales as one moves up through the mixing layer is consistent with horizontal

slices of potential temperature and heat flux (Figure 3.7). Near the surface, heating causes the

formation of fine filamentary structures reminiscent of the honeycomb patterns seen in Rayleigh-

Bernard flows. Well within the mixing layer, however, large-scale thermal plumes have formed

with diameters around 100-500 m which are associated with the larger scale heat flux. At higher

levels near the entrainment zone strong negative values of the heat flux are obtained at large

scales corresponding to the downward movement of warmer stably stratified air being pulled

into the mixing layer.

The peaks of positive flux transition from small scales in the surface layer to large scales in

the mixing layer. This transition occurs rapidly with increasing height, suggesting that the surface

layer occupies only the bottom O(10) m and that the large-scale thermal plumes begin forming

at a height relatively close to the surface. This surface layer however is likely not resolved

by the Smagorinsky parameterization and its detailed structure requires further fine resolution

experiments beyond the scope of the current study. Within the mixing layer, the location of the

peak positive flux was found to remain approximately constant around λ ∼ 1150 m for all the

base case experiments (B40-B5) and the larger domain sized experiments (D80-D20). There is,

however, a shift in the peaks to larger scales for the case of stronger surface heating (runs H40,

H20, and H10). This is not surprising as the peak follows the scale of the boundary layer depth

and the higher surface heating experiments naturally result in deeper boundary layers. Once the

boundary layer height is reached, the peaks in positive flux move to small scales again where
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Figure 3.6: Time averaged horizontal heat flux spectra at different height levels for run B5.

Spectra have been multiplied by kh to preserve area on the log-linear plot.

they do not inject a significant amount of energy in the entrainment layer.

While the large scale injection of kinetic energy by positive heat flux appears to remain

approximately independent of resolution and domain size and only moves to large scales for the

higher surface heating, the contribution from small scales is more sensitive; such small-scale

forcing could have implications for the existence of an inertial range removed from the forcing,

since it could signify injection of KE over a broad range of scales, possibly down to the LES

dissipation scale. In order to compare the heat spectra of different resolutions, we plot them

together in Figure 3.8 averaged over the depth of the domain. These spectra are consistently

broadening as resolution increases. This broadening also holds for the larger domain experiments

as well as the larger surface heating experiments. On the other hand, the large scale contributions

appear to remain relatively independent of resolution. These heat flux spectra do appear to exhibit

a saw-tooth pattern in the large scales, which seems to be an artifact of the binning over annuli

on the kx-ky plane.

We also compute the integral of the heat flux spectra as a function of wavenumber:

FB(k) =
∫ k

0
Bk(k

′)dk′, (3.1)
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Figure 3.7: Horizontal (x-y) slices of θ̄′ at (a) z = 2.5 m, (b) z = 501 m, and of
g

Θ0
w̄θ̄′ at (c)

z = 2.5 m, (d) z = 501 m.
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Figure 3.8: Time averaged heat flux spectra averaged over the boundary layer depth for (a) the

base runs B40-B5, (b) the enhanced surface heat flux runs H40-H10, and (c) the large domain

runs D80-D20. Spectra have been multiplied by kh to preserve area on the log-linear plot. For

the larger domain runs we have restricted the λ axis to 5750 m for better comparison with the

base case experiments.
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Figure 3.9: Integrated heat flux FB(k) for all runs. I, II, and, III, mark out the points at which the

interated heat flux has converged for successive increases in resolution. Other details are as in

Figure 3.8.
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Figure 3.10: (a) Time-averaged heat flux spectra averaged throughout mixing layer (z = 200−
800 m) for runs B40-B5. Spectra have been multiplied by kh to preserve area on the log-linear

plot. (b) FB(k) within mixing layer for runs B40-B5.

which gives the contribution to the total injection rate of KE from heat flux from wavenumbers

less than k. The integral of the vertically averaged heat flux spectra is shown in Figure 3.9. As

the resolution increases, FB(k) is seen to converge at small scales. Consider the B runs in Fig-

ure 3.9(a): the wavenumber below which FB(k) has converged with resolution (marked by I, II,

& III) moves further to the right as resolution increases. For example, as ∆x is decreased from

20 m to 10 m, there is a 6% increase in the total wavenumber-integrated heat flux. Figures 3.8

and 3.9 indicate that the heat flux spectrum, while peaked at large scales, has a positive contri-

bution over a broad range of scales; fine grid spacings of ∆x ∼ 5 m are required for the total

wavenumber-integrated heat flux to converge.

It is possible that the small-scale heat flux contribution is caused solely by the surface layer

where small scale convective motions are most likely to occur, given that most of the contribution

to the heat flux spectrum in the surface layer is at small scales (see Figure 3.6). To investigate this,

we plot the heat flux spectra averaged over the mixing layer (z = 200−800 m; see Figure 3.10)

and surface layer (z= 0−100 m; see Figure 3.11). It is clear that a rightward shift in Bk to smaller

scales with increased resolution exists for both regions; however, the shift is significantly smaller

for the mixing layer than for the surface layer. Near the surface a combination of diffusion

and small scale convective motions transports the surface heat into the overlying air. Thus by

increasing resolution, we are resolving these features more fully and hence capturing them in the

surface layer heat flux spectra. By contrast, the mixing layer heat flux is dominated by larger

structures and is more robust to changes in resolution.
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Figure 3.11: (a) Time-averaged heat flux spectra averaged throughout surface layer (z = 0−100

m) for runs B40-B5. Spectra have been multiplied by kh to preserve area on the log-linear plot.

(b) FB(k) within surface layer for runs B40-B5.

Transfer, Dissipation, & Pressure

The remaining terms in the spectral kinetic energy budget for the base case experiments are

plotted in Figure 3.12, while the budgets for the highest resolution experiments B5, H10, and

D20 are shown in Figure 3.13. The transfer, pressure, and dissipation spectra are all plotted on

the same axis (along with the heat flux spectra discussed in section 3.2.1) in order to highlight

the relative strength, and related large and small scale features, of each term within a statistically

stationary CBL. Each term in the budget extends to a maximum horizontal wavenumber of kmax =
π/∆x, and so with each successive increase in resolution the spectra are extended to smaller

scales.

The role of each term in the budget is evident from the evolution equation of the kinetic

energy spectrum (1.35). When the time rate of change of the spectral kinetic energy is zero (as is

approximately the case for time-averaged spectra in a statistically stationary boundary layer), the

heat flux (Bk), transfer (Tk), pressure (Pk), and dissipation (Dk) spectra must balance. In each plot

we see that energy is injected over a rather broad range of scales, but most significantly at larger

scales, by the heat flux spectra as was previously discussed. Energy is then removed from the

relatively large scale region (negative transfer spectra), and injected into the small scales (positive

transfer spectra). Once transferred, the energy at small scales is dissipated by the LES model

through the eddy viscosity parameterization of the SGS fluxes at large wavenumbers (negative

dissipation spectra), as expected for a downscale energy cascade.

We have also included plots showing the transfer and dissipation spectra at different heights
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Figure 3.12: Time averaged terms in the spectral budget, averaged in z over the boundary layer

depth, for runs (a) B40, (b) B20, (c) B10, and (d) B5.
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Figure 3.13: Time averaged terms in the spectral KE budget, averaged in z over the boundary

layer depth, for runs (a) B5, (b) H10, and (c) D20. For the larger domain run we have restricted

the λ axis to 5750 m for better comparison with the base case experiments.
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Figure 3.14: (a) Time averaged horizontal transfer spectra at different levels for run B5. (b)

Time averaged horizontal dissipation spectra at different levels for run B5. Spectra have been

multiplied by kh to preserve area on the log-linear plot.

(Figure 3.14). The transfer generally shows a cascade from large scales to small scales consistent

with the domain averaged spectra. The dissipation spectra also show a similar profile to the

domain averaged plots, except that we can see that this spectra is strongest within the first 500 m

where the thermal plumes are developing. As we move through the mixing layer the strength of

the dissipation decreases until we reach the boundary layer height at which point the dissipation

turns off. This is consistent with the fact that the eddy viscosity becomes zero within the stable

layer for the Smagorinsky model.

The vertically integrated pressure spectrum is approximately zero in all cases, as expected

since w = 0 at the upper and lower boundaries (1.36). The small deviations from 0 arise as a

result of the interpolation of variables to the thermal points which results in small errors. We have

confirmed that these small errors decrease as resolution is increased. The pressure perturbation

spectrum at a given horizontal slice is not zero, and in fact may be rather large near the surface

where strong surface heating and large vertical w velocity gradients exist (not shown).

In all cases, the large-scale transfer spectra and heat flux spectra are in balance, consistent

with the statistical stationarity of the boundary layer over the averaging interval. The higher

surface heat flux experiments (Figure 3.13 b) have large-scale heat flux and transfer spectra with

magnitudes approximately twice that of their lower surface heat flux counterparts, in line with the

stronger forcing of these runs. In the case of the larger domain (Figure 3.13 c) the wavenumber

axis extends further to the left (larger-scales); however the heat flux and transfer spectra remain

approximately unchanged from the smaller domain case, implying that the budget is insensitive

to domain size. Thus increasing the domain size does not result in the organization of larger-
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Figure 3.15: Time averaged KE spectra, averaged in z over the depth of the boundary layer, for

(a) the base runs, (b) the enhanced surface heat flux runs, and (c) the larger domain runs, all at

different resolutions.
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scale features within the flow in a significant way as might be expected in simulations with

strong background rotation (e.g. [26]) or as has been seen in temperature spectra (e.g. [29]) and

experiments involving moisture (e.g. [62]).

The spectral budget at small scales is dominated by the dissipation; however, it is significant

that in all experiments there is broad overlap between the heat flux and dissipation spectra. This

overlap follows from the fact that, as discussed above, the heat flux spectrum is very broad

and extends to smaller scales as resolution is increased. Only in the highest resolution case

(Figure 3.12 d) do we begin to reduce this overlap. As a result none of the experiments show

a resolved inertial range of intermediate wavenumbers with approximately zero transfer. For

more insight into the existence (or not) of an inertial range in these simulations, we compute the

spectral flux:

Πk =−
∫ k

0
Tk(k

′)dk′.

An inertial range corresponds to a range of k with constant spectral flux, and is a fundamental

assumption in the derivation of the Kolmogorov -5/3 spectrum [11]. The spectral flux for exper-

iments B40-B5 are shown in Figure 3.16. No inertial range emerges as resolution is increased;

instead, the maximum spectral flux increases and shifts to smaller scales. This increase and shift

is perhaps caused by the small-scale heat flux that develops as resolution increases and by the

fact that increased resolution results in the dissipation spectra also moving to smaller and smaller

scales. Thus the transfer spectra must make up the difference in the budget.

The kinetic energy spectra for each experiment are shown in Figure 3.15. Assuming KE

spectra of the form:

y = eakm
h ,

we can use least squares to find a and m for regions where the spectra have approximately con-

stant slope in the log-log plots (Table 3.1). All the experiments have KE spectra with slopes

slightly shallower than −5/3. For the base case experiments and the higher surface heating ex-

periments the KE slopes appear to be closer to −4/3. For the larger domain experiments the

slopes appear to be slightly shallower then −4/3. For the experiments with higher surface heat

flux, the spectra have a larger magnitude, in line with the stronger surface forcing. In all cases,

the spectra peak at wavenumbers related to the boundary layer depth. In the SGS dissipation

range at large kh, the spectra become shallower as resolution is increased which indicates that

the model becomes less dissipative as resolution is increased. In the previous section we saw

that the heat flux spectrum injects significant energy over a wide range of scales throughout all
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Figure 3.16: Spectral flux for experiments B40-B5.

Run m a λ range

B40 -1.4549 -10.9464 1150 < λ < 302.6
B20 -1.3503 -10.6660 1150 < λ < 198.3
B10 -1.3410 -10.6494 1150 < λ < 130.7
B5 -1.4088 -11.0234 1150 < λ < 83.3

H40 -1.5837 -10.5009 1150 < λ < 302.6
H20 -1.4150 -9.9946 1150 < λ < 198.3
H10 -1.3697 -9.8427 1150 < λ < 130.7
D80 -1.3222 -10.6365 1150 < λ < 575

D40 -1.2931 -10.4577 1150 < λ < 338.2
D20 -1.2678 -10.8854 1150 < λ < 250

BTKE40 -1.3740 -10.9435 1150 < λ < 302.6
BTKE20 -1.3657 -10.9097 1150 < λ < 198.3

Table 3.1: Values of a and m computed by least squares assuming KE spectra have the form

y = eakm
h .
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Figure 3.17: (a) Time averaged KE spectra at different levels for run B5. (b) Time averaged

spectra of vertical KE at different levels for run B5.

the CBL layers. It is possible that this broad-scale forcing is responsible for these spectra being

consistently shallower than the theoretical −5/3 power law. Surface layer effects may also be

important here. In Figure 3.17 we show the KE spectra and the spectrum of vertical KE at differ-

ent levels. For example, in computing the spectrum of vertical kinetic energy within the mixing

layer we found that the slope more closely resembled a −5/3 scaling, consistent with [68], while

the full KE spectra remain closer to −4/3.

The energy spectra in Figure 3.15 are clearly shallower than what we would expect for

isotropic 3D turbulence. To investigate this discrepancy further, we consider whether local

isotropy is emerging at small scales in the highest resolution cases. In isotropic turbulence,

the ratio of one-dimensional transverse and longitudinal energy spectra (e.g. kx spectra of KE in

w and u) will attain a constant value near 4/3 when local isotropy is reached [75]. Because we

compute two-dimensional horizontal wavenumber spectra however, a modification of the 4/3

isotropy condition is required. Defining the horizontal wavenumber spectra of horizontal and

vertical KE over cylindrical wavenumber shells results in an isotropic vertical-to-horizontal ratio

of approximately 0.57 (see Appendix). Of course, this theoretical ratio assumes a −5/3 spec-

trum; isotropic turbulence with a −4/3 spectrum would likely correspond to a slightly smaller

ratio. We plot this ratio for experiments B40-B5 in Figure 3.18 (a). At large scales this ra-

tio is larger than 1 and progressively moves lower as we transition to small scales indicating

that within the large-scales the vertical motions are more energetic than the horizontal. In fact,

increased resolution results in higher ratios at large-scales, suggesting that lower resolution sim-

ulations suppress the relative strength of the vertical KE. While the low resolution experiment

B40 takes on a ratio that is roughly a constant value near 1 over all wavenumbers (although it
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Figure 3.18: a) Ratio of vertical to horizontal kinetic energy spectra averaged in the vertical

over whole domain, b) vertical-to-horizontal ratio of energy spectra averaged in the surface layer

(z = 0−100 m)

does decrease below 1 as we move to smaller scales), the higher resolution experiments seem to

form plateaus at successively smaller values below 1 as resolution is increased. For the highest

resolution experiment this ratio is approximately equal to 0.65−0.70 for λ in the range 30−160

m. Thus with increasing resolution, the ratio might be approaching 0.57 from above. The finding

that this ratio is generally larger than the theoretical value for isotropic turbulence agrees with

previous results [51, 54, 64]. Finding spectral ratios of 0.57 is only a necessary condition of

local isotropy, however these results suggest that local isotropy, if it emerges, would require grid

spacings < O(1) m.

In order to further investigate the effect of the surface heating on the energy spectra, we

compare the spectral ratios restricted within the surface layer (z = 0−100 m). These results are

shown in Figure 3.18 (b). Unlike in the domain-averaged case, the vertical-to-horizontal ratio

does not show peaks in the large-scales indicating that the vertical energy spectra is much weaker

than the horizontal energy spectra at these scales. This confirms that within the surface layer the

vertical spectra remain energetic primarily in the small-scales and this property can also be seen

in Figure 3.17. We have confirmed however that the horizontal spectra do peak at large scales.

Thus within the surface layer the horizontal and vertical energy spectra differ significantly in the

large-scales. Even for the highest resolution case, the ratio of vertical to horizontal KE is around

0.8, suggesting that the surface layer turbulence remains much more anisotropic than the mixed

layer.
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Sensitivity to SGS Parameterization

We have seen that the dissipation spectrum is shifted to small-scales as resolution is increased.

An important question then is what effect do alternative subgrid-scale parameterizations have

on the spectral KE budget; in particular do more sophisticated parameterizations result in less

dissipation in the large scales and a greater shift in the peak dissipation to small scales for a

given resolution? Previous studies (e.g. [23, 30]) have found that both physical space statistics

and energy spectra were relatively robust to changes in the SGS parameterization. To investigate

the SGS sensitivity of the current study, we re-run some of our experiments using the TKE model

[17]. We solve the same equations as before (1.11), except that now the eddy-viscosity is changed

to:

Km = 0.1lm
√

e, Kh = (1+
2lm

ln
)Km,

where e is the turbulent kinetic energy and is found by solving an additional prognostic equation

[17]. The subgrid-scale mixing length lm, and the grid-scale ln, are defined as:

lm = min(0.82

√

e

max(ε,N2)
, ln) ln =

√

1

( 1
∆x
)2 +(0.23

zκ )2
,

where ε = 10−12. Thus Kh/Km ranges between 1 and 3 and the SGS mixing length lm is at

most ln, but can be much smaller in stably stratified regions. We run this model only for the

experiments B40 and B20 and refer to the TKE runs as BTKE40 and BTKE20. The resulting

spectral budget and KE spectra are shown in Figure 3.19(a,b).

A number of important conclusions can be derived from these results. Firstly, the dissipation

spectrum is seen to peak at smaller scales with the TKE model than it did with the Smagorinsky

model for a fixed resolution. In fact for the experiment BTKE20, the dissipation spectrum peaks

at wavenumber close to where the highest resolution (B5) Smagorinsky dissipation spectrum

peaked despite being a quarter of the resolution. Nevertheless, even for the TKE runs the heat

flux spectrum remains quite broad and the transfer spectra still does not show any region of

constant spectral flux (not shown). The decreased dissipation does however have an effect on the

KE spectra by decreasing the slope within the SGS dissipation range. The approximately −4/3

slope for the KE spectra observed in the Smagorinsky model appear to remain unchanged when

the TKE model is used indicating that this result is robust to changes in the SGS parameterization.
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Figure 3.19: a) Spectral KE budget for BTKE20. b) KE spectra for BTKE40 and BTKE20.

3.2 Moist Boundary Layer Results

3.2.1 Overview

The moisture experiments closely resemble the setup of [22] which use subsidence, radiative

cooling, surface heat and moisture fluxes, and an initial temperature profile that correspond to

different atmospheric conditions from the dry experiment setup. Unlike the dry case however,

the boundary layer does not reach stationarity as shown in Figure 3.20. We thus choose to run

the moist simulations much longer (up to 30000 s instead of 12000 s) in order to ensure a fully

developed boundary layer simulation that is not significantly affected by the initial conditions.

Because of the added moisture and the subsequent cloud formation, we also include a time series

plot showing the total cloud cover in Figure 3.20. Interestingly this total cloud cover does appear

to stabilize after a few thousand seconds, despite the systematic increase in KE over longer times.

Physical space profiles of potential temperature, velocity variances, and heat flux are com-

puted following the dry results (Figure 3.21). In addition we also compute the cloud cover

fraction, total mixing ratio, and liquid water mixing ratio as shown in Figure 3.22. All of these

results are consistent with [22, 1], however the addition of water vapour results in significant

differences from the purely dry experiments. Firstly, while the profiles shown in Figure 3.21

generally match the qualitative features of the dry experiments (Figure 3.2) within the surface

layer and mixing layer, there does appear to be an entirely new region between the mixing layer

and stable layer, which we call the cloud forming region. This region appears to occupy a rather

extended depth from around 500 m all the way up to 1800 m, although cloud formation is most

active between 700 m and 1300 m. Despite averaging, there exists rather significant variation in
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Figure 3.20: (a) Time series of volume mean kinetic energy for experiments M80-M10. (b) Time

series of total cloud cover for experiments M80-M10.

the profiles between successive resolutions. In fact, it appears that the most variation between

resolutions is seen within this cloud forming region in all profiles except the temperature and total

mixing ratio. Based on the time series of cloud cover (Figure 3.20) and the plots of cloud fraction

and liquid water mixing ratio (Figure 3.22), it appears that increased resolution results in more

clouds forming. This generally seems to correspond to increased horizontal and vertical velocity

variances where clouds are present. The fact that the physical space profiles have not converged

with increasing resolution in regions where clouds form is not surprising because these clouds

are not even close to being resolved. For example, looking at horizontal slices of the liquid water

mixing ratio shown in Figure 3.23, the clouds have a diameter at most 400 m and frequently may

be under 100 m in diameter. This means that even for the 20 m grid spacings, a cloud contains

at most 10−20 grid points and frequently may contain only 5 grid points. It is also evident from

the cloud cover fraction that increased resolution results in more clouds penetrating higher up

into the atmosphere, examples of which can be seen in the vertical slices of liquid water mixing

ratio in Figure 3.24.

The plot of buoyancy flux 1 versus height is shown in Figure 3.21. As previously noted, the

cloud forming region between 600−1500 m shows significant positive buoyancy flux. Remem-

ber that in the dry simulations (Figure 3.2) the heat flux became negative at the top of the mixing

layer corresponding to entrainment and then became roughly zero as we moved up through the

stable layer. Now with the addition of moisture we still get some negative entrainment buoyancy

flux at the top of the boundary layer, but we then get a large increase in positive buoyancy flux

above corresponding to cloud formation. This makes sense since cloud formation results from

1We no longer refer to this as heat flux as water vapour alone can result in buoyancy in addition to temperature.
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Figure 3.21: Horizontally and time averaged (a) potential temperature, (b) buoyancy flux, (c)

vertical velocity variance, and (d) horizontal velocity variance for experiments M80-M10.
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Figure 3.22: Horizontally and time averaged (a) Cloud cover fraction (liquid water mixing ratio),

(b) Total mixing ratio, (c) liquid water mixing ratio for experiments M80-M10.
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Figure 3.23: Horizontally and time averaged (a) potential temperature, (b) virtual potential tem-

perature, (c) total mixing ratio, and (d) liquid water mixing ratio for experiment M10 at z = 600

m.

water vapour condensing into suspended liquid and this change of state from gas to liquid re-

leases latent heat which then results in increased buoyancy. We underscore here that this source

of buoyancy flux is significant. In fact looking at the buoyancy flux plot in Figure 3.21 the peak

positive buoyancy flux within the cloud forming region is only surpassed near the ground. Thus

cloud formation can be an important source of buoyancy flux, comparable to the heating from

the ground, in the convective boundary layer.
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Figure 3.24: Vertical (x-z) slices of (a) θv, (b) ql , taken at time 25000 s for experiment M10.

3.2.2 Spectral Budget

Buoyancy Flux

The buoyancy flux spectra are shown at different vertical levels in Figure 3.25. We can see that

like the dry simulations, the buoyancy flux peaks at small scales at the surface and then rapidly

moves to large scales as we move up through the mixing layer. At the top of the mixing layer

a transition to negative flux corresponding to entrainment occurs. Unlike the dry experiments

though, the formation of clouds results in a transition back to positive buoyancy flux. This is

consistent with the physical space profiles shown in Figure 3.21. In Figure 3.26(a) we plot the

domain averaged buoyancy flux and in Figure 3.26(b) the buoyancy flux restricted to the mixing

layer (200− 500 m) and cloud forming layer (900− 1200 m). Similar to the dry experiments,

the domain averaged spectra peaks at relatively large scales. The peak appears to remain approx-

imately unchanged as resolution increases, consistent with the fact that the peak scales as the

boundary layer depth, however energy is injected at increasingly smaller scales. It is clear that

the buoyancy spectra within the cloud layer is shifted to smaller scales than the buoyancy spectra

restricted to the mixing layer. This presumably corresponds to smaller eddies associated with the

cloud formation than the eddies of the mixing layer, which scale as the boundary layer depth.

Transfer, Dissipation, & Pressure

The spectral kinetic energy budgets for experiments M80, M40, and M20, are shown in Fig-

ure 3.27. These budgets have a number of similarities to their dry counterparts. Firstly, we see

that there is broad overlap between all terms. In fact this overlap is probably more pronounced
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Figure 3.25: Time averaged horizontal buoyancy flux spectra at different height levels for run

M10. Spectra have been multiplied by kh to preserve area on the log-linear plot.
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Figure 3.26: (a) Time averaged buoyancy flux spectra averaged over the boundary layer depth

for runs M80-M10. (b) Time averaged buoyancy flux spectra averaged over the mixing layer and

cloud forming layer for run M10. Spectra have been multiplied by kh to preserve area on the

log-linear plot.
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than what was seen in the dry runs. Secondly, the spectra are extended to smaller scales as reso-

lution is increased. We see that at the largest scales (larger than the boundary layer depth) there is

very little energy injection, transfer or dissipation. Thus we could have chosen a smaller domain

and still captured the peak forcing. The magnitude of the dissipation spectrum is quite large,

however appears to decrease as resolution is increased. There are a number of explanations for

this. Firstly the coarser runs likely suffer from more pronounced errors associated with the inter-

polations and derivatives. This would show up strongest in the dissipation term as it is by far the

most nonlinear of the budget terms. Secondly, the budget is not stationary, and in fact it is quite

possible that the spectrum of dEk/dt is not zero. We plot the energy spectra for experiments

M80, M40, and M20 in Figure 3.28. It is interesting that the KE spectrum, particularly for the

lowest resolution experiment M80, does scale as −5/3. Each successive experiment experiences

less dissipation as can be seen in both Figures 3.27 and 3.28. As we move away from M80

to the finer grid spacing experiments M40 and M20, the scaling of the KE spectrum becomes

less clear. In fact moving along the wavenumber axis, the slope appears to first be shallower then

−5/3 and then becomes steeper than −5/3 as we move to where the dissipation is strongest. This

is not surprising since all the budgets have such broad overlap between the transfer, buoyancy,

and dissipation spectra. All of this evidence points to the need for experiments with significantly

increased resolution. This was noted as being important for the dry experiments, but it is likely

even more crucial for the cloud experiments which can have significant forcing at scales even

smaller than the dry experiments because of latent heating from clouds.
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Figure 3.27: Time averaged terms in the spectral KE budget, averaged in z over the boundary

layer depth, for runs (a) M80, (b) M40, and (c) M20.
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Chapter 4

Conclusions

“If at first you don’t succeed, try, try, again. Then

quit. No use being a damn fool about it.”

—W. C. Fields

In this thesis we have presented large-eddy simulations of both the dry and moist convective

boundary layer. The physical space statistics of the simulations are in good agreement with other

recent high-resolution CBL studies, i.e. [24, 68, 27] for dry CBL and [22, 1] for moist. The

main contribution of this work is the calculation and analysis of the full spectral kinetic energy

budget, which provides insight into the shape of the horizontal wavenumber KE spectrum. KE is

injected via heat flux, the spectrum of which is peaked at large horizontal scales when integrated

over the depth of the boundary layer. At large scales, the heat flux spectrum is balanced by

the nonlinear transfer, which transfers energy to small scales where it is removed by the SGS

dissipation. Increasing the surface heat flux leads to a larger injection of KE and therefore a

stronger cascade to small scales. The domain size of 6 km seems sufficiently large to capture this

cascade; the budget terms are robust to increases in the domain size.

While the convective boundary layer setup does not conform to a traditional triply periodic

isotropic turbulence simulation, boundary-layer and atmospheric turbulence researchers have at-

tempted to explain some of the characteristics of CBL flows using classical turbulence theories

[51, 54, 64]. At first glance, the spectral budget seems to agree with this classic picture of three-

dimensional turbulence with large-scale forcing and small-scale dissipation. However, this inter-

pretation is complicated somewhat by the fact that the heat flux spectrum, which plays the role

of the KE forcing, is quite broad. Indeed, while the heat flux is peaked at scales of around 1 km,

there is a significant injection of kinetic energy from smaller scales that emerges as the resolution
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increases. This small-scale heat flux is dominated by small eddies in the surface layer. Indeed,

the integrated heat flux spectrum – i.e. the total injection rate of KE – only begins to converge for

the dry experiments with very fine grid spacings of ∆x = 5 m. As a result, there is a significant

degree of overlap of the heat flux and dissipation spectra, even in the highest-resolution experi-

ments. This overlap raises doubts about the possibility of an inertial range in these simulations.

Our suspicions here were confirmed by analysis of the spectral flux. Rather than a wavenumber

range of constant spectral flux, which is expected for isotropic three-dimensional turbulence, we

find that the flux is peaked at increasingly small scales as the resolution increases.

The kinetic energy spectra for the dry experiments are consistently slightly shallower than

what would be expected for isotropic three-dimensional turbulence, with spectral slopes closer

to -4/3 rather than -5/3. This discrepancy with the classical theory is not surprising given the

overlap between the forcing and dissipation spectra. It seems that the broad heat flux spectrum is

injecting energy directly at intermediate and small scales, yielding a shallower energy spectrum

than would otherwise be expected with purely large-scale forcing. Local isotropy was inves-

tigated by considering the ratio of the vertical and horizontal two-dimensional kinetic energy

spectra, which gives a necessary condition for local isotropy. This ratio is larger than the theo-

retical value of 0.57 for isotropic turbulence, but seems to be approaching 0.57 at the smallest

scales in the highest-resolution case of the dry CBL. As a result, grid spacings of ∆x = 5 m seem

to be almost sufficient to result in ratios that match the theoretical value. This provides some

evidence that higher resolution experiments might result in regions of local small-scale isotropy

around scales of 5 m or less.

Overall, using the TKE parameterization resulted in dissipation spectra more restricted to

small scales, i.e. peak was shifted further to small scales compared to the Smagorinsky model

for a fixed resolution. The heat flux spectra however continued to inject energy at a broad range

of wavenumbers and the transfer spectra did not show any range of constant spectral flux. Both

of these results are consistent with the Smagorinsky model results. It is difficult to say whether

the TKE model was more computationally efficient in terms of moving the dissipation spectra

to small scales as compared with the Smagorinsky model since the TKE model required an

additional equation for e to be integrated and thus naturally took longer to run. Precise timing

results are not available because dedicated nodes were not used.

The moist experiments were shown to have many similarities with their dry counterparts.

In particular, the moist budgets showed broad overlap between the forcing, transfer, and dissi-

pation. Like the dry experiments, the buoyancy spectra peaked a relatively large scales for all

resolutions, but was also found to inject energy at increasingly smaller scales as resolution was

increased. Significant differences between the dry and moist experiments were found however.

With the addition of water vapour, the moist runs showed a significant source of buoyancy flux

above the entrainment zone corresponding to the formation of clouds which release latent heat
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during condensation. This cloud cover was shown to increase with resolution. In comparing the

buoyancy flux within the mixing layer and the cloud forming layer, it was shown that buoyancy

associated with cloud formation peaks at smaller scales than buoyancy associated with surface

heating.

Despite the simple set-up, there remain a number of avenues for future work on this problem.

First, it would be interesting to see whether higher resolution would yield an inertial range and

a -5/3 spectrum at very small scales. Second, this work employs the Smagorinsky-Lilly SGS

model (and some preliminary work with the TKE model), which is quite dissipative. Another

choice of model, such as the dynamic Smagorinsky model [47], [30], might yield a wider range

of undamped scales. Finally, it would be of significant interest to run moisture experiments with

greatly increased resolution as clouds in the current study are clearly under-resolved. Further

work incorporating precipitation would also be of interest.
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