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Abstract 

 

        Cationic lytic peptides (CLPs) have emerged as new anticancer agents with a new mode of 

action. This category of peptides is given the characteristics of overall positive charges and 

amphiphilicity, inducing cell death by disrupting integrity of cytoplasmic membranes or 

depolarizing mitochondrial membranes. Cationic lytic peptides show advantages to conventional 

chemotherapeutics in preferential killing of cancer cells and ability to avoid general mechanisms 

of multidrug resistance associated with cancer cells. The biocompatibility and the 

biodegradability of many CLPs are other advantages. These properties make CLPs promising 

therapeutics for cancer therapy.  

        Although significant progress has been achieved over the past decade, high activity and high 

specificity towards cancer cells, as well as enhanced stability in serum, are still needed for 

clinical usage of CLPs. To address these issues, this thesis focuses on three aspects: a) the 

molecular mechanism of the preferential activity of CLPs on different lipid membranes, which is 

the main cause for the CLP selective cytotoxicity; b) stimuli-responsive design in CLPs for self-

guided delivery; c) utilization of CLPs as delivery vehicles for the hydrophobic anticancer drug 

ellipticine (EPT). The last aspect is to take advantage of CLP’s capability to encapsulate 

hydrophobic compounds and deliver to cancerous cells. The studies include: (i) investigation of 

the CLP induced leakage on liposomes with various lipid compositions; (ii) characterization of 

the stimuli-responsive properties of the CLP and the properties of CLP-ellipticine complexes; (iii) 

evaluation of the selective cytotoxicity of the CLPs and CLP-ellipticine complexes on various 

cell lines; (iv) evaluation of the anticancer activity of CLPs in vitro and in vivo. 

        The peptide C6, an 18-mer arginine-rich peptide, was found to adopt an amphiphilic helical 
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conformation on 1-palmitoyl-2-oleoyl-3-sn-glycero-phosphocholine (POPC) membranes, and 

induce membrane leakage. The POPC liposome leakage and A549 cell death induced by C6 was 

shown in a concentration-dependent manner. The amount of C6 required to achieve a given level 

of membrane damage, as measured by efflux of fluorescent dye or cell mortality, increases 

linearly with lipid concentration or cell count. The hydrogen bonding between arginine residues 

of C6 and cholesterol-rich membrane was found to play an important role in the lytic activity of 

the peptide, as evidenced in both the leakage study and molecular dynamics analysis. The effect 

of hydrogen bonding was also observed in subsequent cytotoxicity studies performed on A549 

(lung cancer cells with low cholesterol content), MCF-7 (breast cancer cells with high cholesterol 

content) and erythrocytes (abundant cholesterol in membranes). These results provide a new 

insight in tuning the activity of CLPs against cholesterol-rich membranes by modulation of 

hydrogen bonding. 

         The peptide C6 was shown to possess moderate selectivity towards cancerous cells in vitro. 

By comparing the IC50 values, C6 was ~2-fold more effective against A549 and MCF-7 cells than 

NIH-3T3 fibroblast cells. Intratumoral injection of C6 in an A549 nude mouse tumor model 

resulted in a marked reduction in tumor size. Except for being a therapeutic agent, C6 was found 

to be able to stabilize neutralEPT in aqueous solution. The cytotoxicity study showed that C6-

EPT complexes were more efficient in inhibiting the growth of A549 cells than either C6 or EPT 

alone. At the IC50 of C6-EPT complexes, neither C6 nor EPT alone was toxic at their complex 

concentration, demonstrating the synergistic effect between C6 and delivered EPT. Neutral EPT 

showed comparable cytotoxicity towards A549 and NIH-3T3 cells; in contrast, C6-EPT 

complexes showed ~2-fold higher activity than C6 against A549 cells, and comparable 

cytotoxicity to C6 against NIH-3T3 cells. These results indicate that C6 could enhance the 

efficacy of EPT (synergistic effect) and selectively deliver EPT in accordance with its own 

selectivity. To explain the enhanced cytotoxicity of C6-EPT complexes and selectivity of C6-EPT 

complexes, a “CLP-assisted uptake” mechanism was proposed: the membrane lytic action of C6 
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could increase cell membrane permeability, facilitating the cellular uptake of EPT, resulting in 

the enhancement of cytotoxicity.  As C6 is shown to be less active against NIH-3T3, less 

permeability is induced by C6 on NIH-3T3 cell membranes than A549 cell membranes, leading 

to different degrees of enhancement.  This is the essence of the selective delivery.  

         Stimuli-responsive strategy is widely used in drug delivery systems to improve delivery 

efficiency and reduce side effect, but CLP with stimuli-responsive cytotoxicity has not been 

reported. C8, a stimuli-responsive cationic peptide, was designed based on our amino acid pairing 

principle (AAP). The C8 peptide sequence contained five types of amino acid residues, arginine, 

isoleucine, asparagine, histidine and tryptophan, which are alternatively arranged in the sequence. 

According to the properties of the side chain of the amino acids, positively charged arginine 

residues provide repulsive electrostatic forces, while isoleucine residues and asparagine residues 

provide attractive hydrophobic interactions and hydrogen bonding, respectively. The ionizable 

histidine residues could provide either hydrogen bonding or electrostatic repulsion depending on 

their protonation status. Controlled by the balance of intermolecular forces between repulsive and 

attractive interactions, the peptide can self-assemble into β-sheet rich nanofibers or disassemble 

into unstructured monomers. C8 was shown to be a triple-responsive self-assembling peptide: the 

pH affects protonation state of the three histidine residues, temperature affects hydrogen bonding 

and hydrophobic interactions, and the presence of urea interferes with the formation of hydrogen 

bonds. Cytotoxicity studies confirmed that the nanostructure formation of C8 could work as the 

“switch” to control the lytic activity: the nanostructured C8 is non-toxic while the disassembled 

C8 monomers are toxic. This work showed the potential of CLPs to deliver themselves for 

stimuli-triggered (self-guided) delivery.  

        The potential of C8-mediated EPT delivery system was also investigated. The C8 nanofibers 

were found to encapsulate neutral EPT in aqueous solution at pH 8.0, and disassemble at pH 4.0, 

releasing protonated EPT. In addition to the enhanced efficacy and selectivity found in C6-

mediated system, C8-EPT complexes further showed pH-triggered cytotoxicity: the 
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nanostructured C8-EPT complexes/co-assemblies showed minimal cytotoxicity, and became 

cytotoxic after disassembling in acidic environment. The studies on C6- or C8- mediated EPT 

delivery systems demonstrate the potential of using CLPs as multifunctional carriers for 

hydrophobic drugs. 
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  errors	
  of	
  ±10%	
  
efflux.	
  (c)	
  Equi-­‐activity	
  analysis:	
  The	
  peptide	
  concentration	
  required	
  to	
  induce	
  a	
  
particular	
  leakage	
  value	
  at	
  a	
  specific	
  CL.	
  The	
  line	
  of	
  best	
  fit	
  for	
  each	
  efflux	
  value	
  
yields	
  parameters	
  in	
  equation	
  (1).	
  (d)	
  IC50	
  of	
  C6	
  against	
  A549	
  cells	
  as	
  a	
  function	
  
of	
  seeding	
  density	
  in	
  the	
  cell	
  proliferation	
  assay.	
  The	
  IC50	
  value	
  for	
  each	
  cell	
  
density	
  was	
  averaged	
  from	
  at	
  least	
  three	
  independent	
  experiments.	
  Error	
  bars	
  
represent	
  standard	
  deviations	
  (n	
  ≥	
  3).	
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Figure	
  3.3	
  Efflux	
  vs.	
  C6	
  concentration	
  profiles	
  for	
  POPC	
  (100	
  µM)	
  as	
  well	
  as	
  for	
  
POPC	
  and	
  cholesterol	
  liposomes	
  in	
  NaCl	
  (N)	
  and	
  in	
  phosphate	
  (P)	
  buffers.	
  
Vertical	
  error	
  bars	
  are	
  standard	
  deviations	
  obtained	
  from	
  at	
  least	
  three	
  
independent	
  experiments.	
  Horizontal	
  error	
  bars	
  represent	
  the	
  instrumental	
  
error	
  in	
  the	
  lipid	
  concentration	
  measurement.	
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Figure	
  3.4	
  (a)	
  A	
  snapshot	
  of	
  simulation	
  from	
  above	
  the	
  membrane	
  at	
  67	
  ns.	
  The	
  
arginine	
  residues	
  in	
  C6	
  peptide	
  are	
  shown	
  in	
  green	
  with	
  the	
  rest	
  residues	
  
shown	
  in	
  yellow,	
  POPC	
  molecules	
  in	
  red	
  and	
  cholesterol	
  molecules	
  in	
  blue.	
  The	
  
arginine	
  residues	
  are	
  labeled	
  with	
  numbers	
  to	
  indicate	
  the	
  position	
  of	
  each	
  
arginine	
  residue	
  in	
  C6	
  molecule.	
  The	
  N-­‐terminus	
  of	
  C6	
  orients	
  to	
  right	
  in	
  the	
  
snapshot.	
  (b)	
  The	
  occurrence	
  of	
  H-­‐bonds	
  between	
  the	
  guanidinium	
  group	
  of	
  
each	
  arginine	
  residue	
  and	
  POPC	
  (black	
  line)	
  or	
  CHOL	
  (red	
  line)	
  molecules	
  over	
  
time.	
  The	
  simulation	
  shows	
  that	
  each	
  guanidinium	
  group	
  can	
  form	
  a	
  maximum	
  
of	
  7	
  H-­‐bonds	
  with	
  neighbouring	
  POPC	
  molecules.	
  All	
  the	
  arginine	
  residues	
  form	
  
H-­‐bonds	
  with	
  neighbouring	
  POPC	
  molecules;	
  while	
  only	
  arginine	
  residues	
  at	
  
position	
  1,	
  4,	
  11,	
  15	
  and	
  18	
  (refer	
  to	
  ARG1,	
  ARG4,	
  ARG11,	
  ARG15,	
  and	
  ARG18)	
  
form	
  ~	
  1	
  H-­‐bond	
  with	
  neighbouring	
  CHOL	
  molecules,	
  respectively.	
  A	
  
neighbouring	
  molecule	
  is	
  defined	
  whenever	
  POPC	
  head	
  groups	
  or	
  cholesterol	
  
hydroxyl	
  groups	
  are	
  not	
  farther	
  than	
  0.35	
  nm	
  of	
  any	
  atom	
  of	
  C6	
  peptide.	
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  54	
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Figure	
  3.5	
  (a)	
  Relative	
  cholesterol	
  levels	
  of	
  A549	
  cell	
  line	
  and	
  MCF-­‐7	
  cell	
  line.	
  In	
  
vitro	
  cytotoxicity	
  of	
  C6	
  towards	
  (b)	
  A549	
  lung	
  cancer	
  cells,	
  (c)	
  MCF-­‐7	
  breast	
  
cancer	
  cells,	
  and	
  the	
  hemolytic	
  activity	
  of	
  C6	
  on	
  (d)	
  rabbit	
  red	
  blood	
  cells.	
  The	
  
results	
  were	
  averaged	
  from	
  at	
  least	
  three	
  independent	
  experiments.	
  Error	
  bars	
  
represent	
  the	
  standard	
  deviation	
  of	
  multiple	
  experiments.	
  .......................................	
  56	
  

Figure	
  3.6	
  CD	
  spectra	
  of	
  80	
  μM	
  C6	
  in	
  N	
  buffer	
  solution	
  (110	
  mM	
  NaCl,	
  10	
  mM	
  Tris,	
  
0.5	
  mM	
  EDTA	
  at	
  pH	
  7.4)	
  or	
  in	
  P	
  buffer	
  solution	
  (50	
  mM	
  NaH2PO4,	
  60	
  mM	
  NaCl,	
  
10	
  mM	
  Tris	
  and	
  0.5	
  mM	
  EDTA	
  at	
  pH7.4),	
  with	
  the	
  presence	
  of	
  2	
  mM	
  POPC	
  
liposomes	
  or	
  2	
  mM	
  POPC/cholesterol	
  (4:1)	
  liposomes,	
  after	
  1h	
  incubation.	
  .....	
  60	
  

	
  
Figure	
  4.1	
  In	
  vitro	
  cytotoxicity	
  evaluation.	
  (a)	
  Cytotoxicity	
  of	
  C6	
  against	
  A549	
  (lung	
  

carcinoma),	
  MCF-­‐7	
  (breast	
  carcinoma)	
  and	
  NIH-­‐3T3	
  (mouse	
  fibroblast).	
  (b)	
  
A549	
  cells	
  were	
  treated	
  with	
  water	
  or	
  C6	
  peptide	
  for	
  18	
  h.	
  The	
  apoptotic	
  stage	
  
of	
  cells	
  was	
  determined	
  by	
  FITC-­‐Annexin	
  V	
  and	
  7-­‐AAD	
  staining.	
  ............................	
  73	
  

Figure	
  4.2	
  Intratumor	
  administration	
  of	
  C6	
  in	
  BALB/c	
  nude	
  mice.	
  (a)	
  The	
  tumor	
  
sizes	
  and	
  (b)	
  The	
  body	
  weights	
  of	
  mice	
  in	
  untreated,	
  saline	
  or	
  C6	
  treated	
  
groups.	
  (c)	
  The	
  representative	
  images	
  of	
  A549	
  tumor	
  in	
  untreated,	
  saline	
  or	
  C6	
  
treated	
  groups.	
  *p<0.05	
  versus	
  untreated	
  group.	
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  74	
  

Figure	
  4.3	
  Physicochemical	
  characterization	
  of	
  C6	
  and	
  C6-­‐EPT	
  complexes.	
  (a)	
  
Helical	
  wheel	
  of	
  C6.	
  (b)	
  Critical	
  aggregation	
  concentration	
  of	
  C6	
  determined	
  by	
  
equilibrium	
  surface	
  tension	
  of	
  C6.	
  (c)	
  Nanostructures	
  of	
  C6	
  or	
  C6-­‐EPT	
  
complexes	
  determined	
  by	
  AFM.	
  The	
  scale	
  bar	
  is	
  200	
  nm.	
  (d)	
  Size	
  distributions	
  
of	
  C6	
  or	
  C6-­‐EPT	
  complexes	
  determined	
  by	
  DLS.	
  (e)	
  Secondary	
  structures	
  of	
  C6	
  
in	
  aqueous	
  solution	
  or	
  in	
  C6-­‐EPT	
  complexes	
  determined	
  by	
  CD.	
  (f)	
  Normalized	
  
fluorescence	
  emission	
  spectrum	
  of	
  C6-­‐EPT	
  complexes.	
  ..............................................	
  75	
  

Figure	
  4.4	
  C6-­‐mediated	
  CLP-­‐assisted	
  cellular	
  uptake	
  of	
  EPT.	
  (a)	
  Illustration	
  for	
  the	
  
CLP-­‐assisted	
  delivery	
  mechanism.	
  The	
  formulation	
  of	
  C6-­‐EPT	
  complexes	
  is	
  
based	
  on	
  the	
  characterizations.	
  (b)	
  Cellular	
  uptake	
  of	
  EPT	
  delivered	
  by	
  C6	
  
monitored	
  using	
  fluorescence	
  microscope.	
  EPT	
  is	
  shown	
  in	
  green,	
  DAPI	
  is	
  
shown	
  in	
  blue.	
  1X	
  sample	
  refers	
  to	
  complexes	
  with	
  with	
  125	
  μg/ml	
  (53.6	
  μM)	
  
C6	
  and	
  ~3.5	
  μg/ml	
  (14.2	
  μM)	
  EPT	
  in	
  the	
  final	
  culture	
  media.	
  The	
  concentration	
  
of	
  C6	
  sample	
  was	
  125	
  μg/ml	
  (53.6	
  μM).	
  (c)	
  Time	
  study	
  of	
  cellular	
  uptake	
  of	
  EPT	
  
from	
  1X	
  C6-­‐EPT	
  complexes	
  at	
  10	
  min,	
  20	
  min,	
  30	
  min	
  and	
  40	
  min,	
  respectively.
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Figure	
  4.5	
  Evaluation	
  of	
  the	
  cytotoxicity	
  of	
  (a)	
  neutral	
  EPT	
  and	
  C6-­‐EPT	
  complexes	
  
against	
  (b,c)	
  A549	
  (lung	
  carcinoma)	
  and	
  (d,e)	
  NIH-­‐3T3	
  (mouse	
  fibroblast).	
  C6+	
  
and	
  C6-­‐EPT+	
  refer	
  to	
  the	
  samples	
  diluted	
  with	
  80	
  μg/ml	
  (32.4	
  μM)	
  C6	
  aqueous	
  
solution.	
  X-­‐axis	
  represents	
  the	
  concentration	
  of	
  C6	
  in	
  each	
  sample,	
  including	
  C6	
  
alone	
  and	
  C6-­‐EPT	
  complexes;	
  the	
  concentrations	
  of	
  EPT	
  in	
  C6-­‐EPT	
  complexes	
  
are	
  shown	
  in	
  the	
  brackets.	
  The	
  concentrations	
  presented	
  are	
  mass	
  
concentrations	
  (μg/ml)	
  in	
  the	
  culture	
  media.	
  The	
  viabilities	
  were	
  averaged	
  
from	
  at	
  least	
  three	
  independent	
  experiments.	
  Error	
  bars	
  are	
  standard	
  deviation	
  
(n>3).	
  *p<0.05,	
  **p<0.01	
  between	
  the	
  two	
  samples.	
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  82	
  

	
  
Scheme	
  5.1	
  Design	
  of	
  the	
  model	
  stimuli-­‐responsive	
  self-­‐assembling	
  CLP	
  C8.	
  (a)	
  

Helical	
  wheel	
  of	
  C8.	
  The	
  charged	
  amino	
  acid	
  residues	
  are	
  shown	
  as	
  light	
  blue	
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triangles,	
  uncharged	
  hydrophilic	
  amino	
  acid	
  residues	
  are	
  shown	
  as	
  red	
  circles,	
  
and	
  hydrophobic	
  amino	
  acid	
  residues	
  are	
  shown	
  as	
  green	
  diamonds.	
  The	
  
amount	
  of	
  green	
  decreases	
  with	
  the	
  decreased	
  hydrophobicity.	
  (b)	
  The	
  
mechanism	
  of	
  the	
  intermolecular	
  forces	
  controlled	
  self-­‐assembly/disassembly	
  
of	
  C8.	
  The	
  colors	
  represent	
  different	
  types	
  of	
  forces	
  provided	
  by	
  the	
  side	
  chains	
  
of	
  amino	
  acids.	
  Depending	
  on	
  the	
  protonation	
  status	
  of	
  histidine	
  residues,	
  the	
  
overall	
  intermolecular	
  forces	
  could	
  become	
  repulsive,	
  leading	
  to	
  unstructured	
  
C8	
  monomers,	
  or	
  become	
  attractive,	
  leading	
  to	
  fibrous	
  self-­‐assemblies.	
  ............	
  92	
  

	
  
Figure	
  5.1	
  Characterization	
  of	
  the	
  self-­‐assembly	
  and	
  disassembly	
  of	
  C8.	
  (a)	
  circular	
  

dichroism	
  spectra	
  of	
  C8	
  at	
  pH	
  8.0	
  and	
  at	
  pH	
  4.0.	
  (b)	
  fluorescent	
  emission	
  of	
  
tryptophan	
  residual	
  of	
  C8	
  at	
  pH	
  8.0	
  and	
  at	
  pH	
  4.0.	
  c-­‐d,	
  AFM	
  images	
  of	
  C8	
  
samples	
  at	
  pH	
  8.0	
  (c)	
  and	
  at	
  pH	
  4.0	
  (d).	
  The	
  scale	
  bar	
  is	
  500	
  nm.	
  ...........................	
  94	
  

Figure	
  5.2	
  Secondary	
  structures	
  of	
  C8	
  at	
  various	
  conditions.	
  a-­‐c,	
  circular	
  dichroism	
  
spectra	
  of	
  C8	
  at	
  various	
  pHs	
  after	
  incubation	
  at	
  0	
  0C	
  (a),	
  22	
  0C	
  (b)	
  and	
  37	
  0C	
  (c),	
  
respectively.	
  .....................................................................................................................................	
  96	
  

Figure	
  5.3	
  AFM	
  images	
  of	
  C8	
  samples	
  at	
  various	
  conditions.	
  (a)	
  C8	
  at	
  pH	
  5.4	
  and	
  at	
  
pH	
  5.8	
  incubated	
  at	
  0	
  0C	
  for	
  2	
  d	
  and	
  10	
  d,	
  respectively.	
  (b)	
  C8	
  at	
  pH	
  5.0	
  and	
  at	
  
pH	
  5.4	
  incubated	
  at	
  22	
  0C	
  for	
  2	
  d	
  and	
  10	
  d,	
  respectively.	
  (c)	
  C8	
  at	
  pH	
  5.0	
  
incubated	
  at	
  37	
  0C	
  for	
  6	
  h.	
  The	
  scale	
  bar	
  is	
  500	
  nm.	
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  97	
  

Figure	
  5.4	
  Imaging	
  the	
  self-­‐assembling	
  process	
  of	
  C8	
  by	
  AFM.The	
  sample	
  at	
  pH	
  8.0	
  
incubated	
  at	
  0	
  0C	
  was	
  imaged	
  at	
  12	
  hours,	
  1day,	
  2	
  days	
  and	
  4	
  days,	
  respectively,	
  
after	
  pH	
  adjustment;	
  1	
  hour,	
  3	
  hours,	
  8	
  hours	
  and	
  1day	
  were	
  chosen	
  for	
  the	
  
sample	
  incubated	
  at	
  22	
  0C;	
  and	
  0.5	
  hour,	
  3	
  hours,	
  6	
  hours	
  and	
  9	
  hours	
  were	
  
chosen	
  for	
  the	
  samples	
  incubated	
  at	
  37	
  0C.	
  The	
  scale	
  bar	
  is	
  500	
  nm.	
  ....................	
  99	
  

Figure	
  5.5	
  Imaging	
  the	
  disassembling	
  process	
  of	
  C8	
  by	
  AFM.	
  The	
  sample	
  at	
  pH	
  8.0	
  
incubated	
  at	
  0	
  0C	
  was	
  imaged	
  at	
  1	
  hour,	
  3	
  hours,	
  8	
  hours	
  and	
  18	
  hours,	
  
respectively,	
  after	
  pH	
  adjustment	
  to	
  pH	
  4.0;	
  1	
  hour,	
  3	
  hours,	
  8	
  hours	
  and	
  20	
  
hours	
  were	
  chosen	
  for	
  the	
  sample	
  incubated	
  at	
  22	
  0C.	
  The	
  scale	
  bar	
  is	
  500	
  nm.
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Figure	
  5.6	
  The	
  morphology	
  of	
  C8	
  samples	
  at	
  pH	
  4.0	
  (a)	
  after	
  1	
  d	
  incubation	
  at	
  37	
  0C	
  
and	
  that	
  at	
  pH	
  3.0	
  (b)	
  after	
  6	
  h	
  incubation	
  at	
  37	
  0C.	
  Both	
  samples	
  are	
  made	
  from	
  
C8	
  sample	
  at	
  pH	
  8.0	
  with	
  1	
  d	
  incubation	
  at	
  37	
  0C.	
  The	
  scale	
  bar	
  is	
  500	
  nm.	
  ....	
  101	
  

Figure	
  5.7	
  Characterization	
  of	
  C8	
  with	
  the	
  presence	
  of	
  urea.	
  (a)	
  Circular	
  dichroism	
  
spectra	
  of	
  C8	
  at	
  pH	
  6.0	
  with	
  the	
  presence	
  of	
  20	
  mM	
  urea	
  after	
  2	
  d	
  incubation.	
  
The	
  CD	
  spectra	
  of	
  C8	
  (pH	
  6.0)	
  without	
  urea	
  was	
  taken	
  from	
  Figure	
  5.2.a.	
  (b)	
  
AFM	
  images	
  ofthe	
  sample	
  after	
  2	
  d	
  o	
  f	
  incubation	
  and	
  10	
  d	
  incubation,	
  
respectively.	
  The	
  scale	
  bar	
  is	
  500	
  nm.	
  ...............................................................................	
  102	
  

Figure	
  5.8	
  Evaluation	
  of	
  the	
  cytotoxicity	
  and	
  hemolytic	
  effect	
  of	
  nanostructured	
  and	
  
unstructured	
  C8	
  samples.	
  a-­‐e,	
  viabilities	
  of	
  cancerous	
  cell	
  lines:	
  A549	
  (a),	
  
U87MG	
  (b),	
  MCF-­‐7	
  (c)	
  and	
  non-­‐cancerous	
  cell	
  lines:	
  NIH-­‐3T3	
  (d),	
  HUVEC	
  (e)	
  
after	
  1	
  day	
  treatment	
  of	
  C8	
  at	
  pH	
  7.4	
  or	
  C8	
  at	
  pH	
  4.0.	
  The	
  data	
  are	
  averaged	
  
from	
  at	
  least	
  three	
  independent	
  replicates.	
  The	
  standard	
  deviations	
  are	
  shown	
  
as	
  error	
  bars.	
  ................................................................................................................................	
  106	
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Figure	
  5.10	
  The	
  hemolysis	
  induced	
  by	
  C8	
  at	
  pH	
  7.4	
  and	
  C8	
  at	
  pH	
  4.0	
  on	
  rabbit	
  red	
  
blood	
  cells,	
  respectively.	
  The	
  data	
  are	
  averaged	
  from	
  three	
  independent	
  
replicates.	
  The	
  standard	
  deviations	
  are	
  shown	
  as	
  error	
  bars.	
  ...............................	
  108	
  

Figure	
  5.11	
  Visualization	
  of	
  morphologies	
  of	
  A549	
  cells	
  before	
  and	
  after	
  incubation	
  
with	
  nanostructured	
  or	
  unstructured	
  C8.	
  a-­‐f,	
  SEM	
  images	
  (a-­‐c)	
  and	
  deflection	
  
images	
  associated	
  with	
  corresponding	
  reconstructed	
  3-­‐D	
  images	
  (d-­‐f)	
  of	
  non-­‐
treated	
  A549	
  cells	
  (a,d)	
  and	
  A549	
  cells	
  after	
  incubation	
  with	
  20	
  μM	
  C8	
  at	
  pH	
  7.4	
  
(b,e)	
  or	
  with	
  5	
  μM	
  C8	
  at	
  pH	
  4.0	
  (c,f)	
  for	
  3	
  hours,	
  respectively.	
  ..............................	
  110	
  

	
  
Figure	
  6.1	
  Cytotoxicity	
  of	
  C8	
  against	
  A549	
  (lung	
  carcinoma),	
  MCF-­‐7	
  (breast	
  

carcinoma)	
  and	
  NIH-­‐3T3	
  (mouse	
  fibroblast).	
  The	
  cells	
  were	
  incubated	
  with	
  C8	
  
for	
  24	
  h.	
  The	
  data	
  are	
  averaged	
  from	
  at	
  least	
  three	
  independent	
  replicates.	
  The	
  
error	
  bars	
  represent	
  standard	
  deviations.	
  ......................................................................	
  119	
  

Figure	
  6.2	
  The	
  mechanism	
  of	
  cell	
  death	
  induced	
  by	
  C8.	
  (a)	
  The	
  apoptotic	
  stage	
  of	
  
A549	
  cells	
  treated	
  with	
  unstructured	
  C8	
  determined	
  by	
  FITC-­‐Annexin	
  and	
  7-­‐
AAD	
  labeling.	
  (b)	
  The	
  morphology	
  of	
  A549	
  cells	
  treated	
  with	
  unstructured	
  C8.	
  
The	
  images	
  were	
  produced	
  using	
  a	
  EVOS	
  ®	
  FL	
  Cell	
  imaging	
  system	
  (AMG,	
  Mill	
  
Creek,	
  USA).	
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Figure	
  6.3	
  Characterization	
  of	
  C8-­‐EPT	
  co-­‐assemblies	
  and	
  proposed	
  co-­‐assembly	
  
and	
  delivery	
  mechanism.	
  a-­‐c.	
  the	
  characterization	
  of	
  physicochemical	
  
properties	
  of	
  C8-­‐EPT	
  co-­‐assemblies	
  at	
  pH	
  4	
  or	
  pH	
  8	
  using	
  AFM	
  (a),	
  fluorescence	
  
microscopy	
  (b)	
  and	
  circular	
  dichroism	
  (c).	
  The	
  C8-­‐EPT	
  co-­‐assemblies	
  contain	
  
500	
  μg/ml	
  (214.6	
  μM)	
  C8	
  and	
  50	
  μg/ml	
  (203.3	
  μM)	
  EPT,	
  the	
  C8	
  pH	
  8	
  sample	
  is	
  
at	
  the	
  concentration	
  of	
  500	
  μg/ml	
  (214.6	
  μM).	
  d)	
  Schematic	
  of	
  the	
  co-­‐assembly	
  
of	
  C8-­‐EPT	
  and	
  the	
  on-­‐demand	
  CLP-­‐assisted	
  delivery	
  mechanism.	
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Figure	
  6.4	
  (a)	
  Cytotoxicity	
  of	
  (left)	
  EAK16-­‐II-­‐EPT	
  co-­‐assemblies	
  (1X	
  refers	
  to	
  125	
  
μg/ml	
  EAK16-­‐II	
  (77.4	
  μM)	
  and	
  25	
  μg/ml	
  (51.8	
  μM)	
  EPT)	
  or	
  (right)	
  C8-­‐EPT	
  (pH	
  
4)	
  sample	
  (1X	
  refers	
  to	
  125	
  μg/ml	
  (53.6	
  μM)	
  C8	
  and	
  12.5	
  μg/ml	
  (50.8	
  μM)	
  EPT)	
  
against	
  A549	
  cells	
  with	
  1h	
  of	
  incubation.	
  The	
  viabilities	
  were	
  averaged	
  from	
  at	
  
least	
  three	
  independent	
  experiments,	
  error	
  bars	
  are	
  standard	
  deviations.	
  (b)	
  
Optical	
  microscopy	
  images	
  of	
  untreated	
  A549	
  cells	
  and	
  A549	
  cells	
  treated	
  with	
  
C8-­‐EPT	
  (pH	
  4)	
  sample	
  for	
  2	
  min.	
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Figure	
  6.5	
  Evaluation	
  of	
  the	
  cytotoxicity	
  of	
  EPT	
  and	
  C8-­‐EPT	
  co-­‐assemblies	
  against	
  
A549	
  (lung	
  carcinoma)	
  and	
  NIH-­‐3T3	
  (mouse	
  fibroblast).	
  Cytotoxicity	
  of	
  
protonated	
  EPT	
  (a)	
  and	
  C8-­‐EPT	
  co-­‐assemblies	
  diluted	
  with	
  water	
  (b,d)	
  and	
  
unstructured	
  C8	
  aqueous	
  solution	
  at	
  concentration	
  of	
  60	
  μg/ml	
  (25.2	
  μM)	
  (c,e).	
  
The	
  samples	
  with	
  “+”	
  represent	
  that	
  they	
  are	
  diluted	
  with	
  unstructured	
  C8	
  
aqueous	
  solution.	
  1X	
  refers	
  to	
  12.5	
  μg/ml	
  (50.8	
  μM)	
  EPT,	
  or	
  125	
  μg/ml	
  (53.6	
  
μM)	
  C8,	
  or	
  the	
  C8-­‐EPT	
  co-­‐assemblies	
  with	
  125	
  μg/ml	
  (53.6	
  μM)	
  C8	
  and	
  12.5	
  
μg/ml	
  (50.8	
  μM)	
  EPT	
  in	
  the	
  final	
  culture	
  media.	
  The	
  viabilities	
  were	
  averaged	
  
from	
  at	
  least	
  three	
  independent	
  experiments,	
  Error	
  bars	
  are	
  standard	
  deviation.	
  
*p<0.05,	
  **p<0.01	
  between	
  the	
  two	
  samples.	
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Figure	
  6.6	
  Membrane	
  leakage	
  induced	
  by	
  C8.	
  (a)	
  Leakage	
  induced	
  by	
  C8	
  on	
  pure	
  
POPC,	
  POPC+20%	
  cholesterol	
  and	
  E.	
  coli	
  extract	
  lipid	
  membranes.	
  (b)Atomistic	
  
molecular	
  dynamics	
  simulations	
  of	
  C8	
  aggregation	
  within	
  different	
  model	
  
membranes.	
  Representations	
  are:	
  water,	
  red;	
  lipid	
  tails,	
  thin	
  cyan;	
  POPC	
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Figure	
  6.7	
  (a)	
  The	
  top	
  view	
  of	
  a	
  pore	
  in	
  the	
  POPC	
  bilayer	
  with	
  neutral	
  (left)	
  and	
  
charged	
  (right)	
  C8	
  peptides.	
  Water	
  is	
  not	
  shown	
  for	
  clarity,	
  and	
  the	
  peptide	
  and	
  
lipids	
  are	
  in	
  Van	
  der	
  Waals	
  representation.	
  The	
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  is	
  coloured	
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  for	
  
hydrophobic	
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  green	
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  polar	
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  A	
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  representation	
  is	
  over	
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  on	
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  pore	
  to	
  illustrate	
  
that	
  the	
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  enough	
  to	
  leak	
  calcein	
  when	
  C8's	
  histidines	
  are	
  charged,	
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  not	
  when	
  neutral.	
  (b)	
  Free	
  energy	
  profiles	
  for	
  moving	
  a	
  single	
  C8	
  peptide	
  
from	
  water	
  to	
  the	
  center	
  of	
  the	
  different	
  membranes.	
  These	
  calculations	
  were	
  
performed	
  with	
  the	
  MARTINI	
  coarse-­‐grained	
  model.	
  The	
  free	
  energy	
  troughs	
  at	
  
the	
  water-­‐membrane	
  interface	
  show	
  that	
  monomers	
  would	
  bind	
  to	
  the	
  lipid	
  
environment.	
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Chapter 1 

Introduction 

	
  

1.1 Overview 

        To date, surgery, radiotherapy and chemotherapy are the major means to treat cancer in 

clinics [1, 2]. Surgery and radiotherapy are often successful for localized primary tumor treatment, 

whereby chemotherapy is the usual choice for metastatic tumor treatment. The use of 

conventional chemotherapeutic agents is often limited by poor solubility and the deleterious side 

effects to normal tissue cells [3, 4]. Moreover, cancer cells always generate multidrug resistance 

(MDR), normally arising from an over-expression of the membrane bound P-glycoprotein. The P-

glycoprotein pumps the conventional anticancer drugs out of the cell cytoplasm, resulting in 

reduced therapeutic efficacy [5]. To address these issues relating to conventional 

chemotherapeutic agents, current research efforts are focusing on developing: (i) a new class of 

anticancer agents and (ii) efficient drug delivery systems for conventional anticancer drugs.   

        Cationic lytic peptides (CLPs) are one of the promising drug candidates under investigation 

for cancer treatment. As a class of anticancer agents, CLPs offer two important advantages over 

conventional chemotherapeutic agents: selective cytotoxicity towards cancerous cells and ability 

to combat MDR [6, 7]. This class of peptides were first discovered in a diverse range of natural 

sources, including microbes, insects, plants, animals and humans [8], and were initially 

recognized as antimicrobial peptides (AMPs) because of their broad spectrum of antimicrobial 

activities [9]. In addition to antimicrobial activity, some of these peptides exhibit cytotoxicity 

towards various types of cancer cells [7]. These peptides are generally positively charged (i.e., 

their net charges vary from +2 to +9 at pH 7), and have an amphiphilic structure which is 
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considered to be a key factor influencing their membrane lytic activity [6]. Most CLPs are 

unstructured in aqueous solutions, but adopt a bioactive α-helical conformation [10] or β-

sheet/hairpin structures [11, 12] when they contact the surface of membrane mimics or biological 

membranes. The amphiphilicity enables the insertion of CLPs into phospholipid bilayers, 

disrupting the membrane integrity, causing the leakage of the intracellular contents and lysis of 

the cells. Thus, in this context, these peptides are referred to as “cationic lytic peptides”. There 

are several membrane-disruption models that have been proposed to explain the membrane 

actions of CLPs. Some of the most accepted models used to illustrate the process of membrane 

permeabilization include the carpet model [13, 14], barrel-stave model [15, 16], toroidal model 

[17] and detergent-like membrane-lytic model [18] (Figure 1.1).  

  

    

Figure 1.1 The proposed models of action for CLPs in bilayer membrane. Reprinted with 
permission from reference [6] © 2014 Elsevier. 

	
  
        These cationic peptides are believed to preferentially bind to negatively charged cell 

membranes due to electrostatic interactions. As a number of cancer cells possess negatively 
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charged surfaces due to over-exposure of phosphatidylserine [19, 20] and high levels of aberrant 

O-glycosylated mucins [21, 22], CLPs could target this trait and selectively lyse cancerous cells 

[12, 23, 24]. CLPs kill cells via direct membrane lysis, which should avoid the general 

mechanisms of MDR. Thus, CLPs also show the ability to combat multidrug resistant cancer cells 

[25, 26]. Although CLPs have shown promises through in vitro studies, enzymatic degradation in 

serum becomes the major obstacle for their in vivo application [7, 27]. One approach to preserve 

the activity of CLPs in vivo involves the utilization of all-D-amino acid in the peptide design [27, 

28]. To understand the mode of actions of CLPs, the effects of peptide length and charge density 

[29], overall hydrophobicity [30], and bulky amino acids [31] on the interaction between CLPs 

and phospholipid membranes (including zwitterionic, anionic and cholesterol-rich membranes) 

have been investigated. This established understanding provides important implications for 

designing CLPs with enhanced efficacy and specificity towards cancerous cells. Other 

alternatives involve conjugating CLPs with tumor-homing peptides [32] or antibodies [33], and 

nanotechnology-based delivery strategies [34, 35]. These approaches will be reviewed in the 

following sections.      

        In the past several decades, nanotechnology has offered numerous possibilities to improve 

bioactivity and prolong bioavailability of conventional chemotherapies for cancer therapy [36, 

37]. A broad range of nanoparticle-based drug delivery systems has been developed to achieve 

cancer specific delivery of therapeutic agents via improved pharmacokinetics and 

pharmacodynamics, and ligand-mediated targeting. The basic principle of these delivery systems 

is to provide a protective, hydrophobic interior that can solubilize hydrophobic anticancer drugs 

in aqueous solutions. Furthermore, nanoparticles with proper size range (between ~10 nm and 

100 nm) could have prolonged circulation time by avoiding renal clearance or reticuloendothelial 

system (RES) clearance, and enhanced passive accumulation by extravasation to tumor 

neovasculatures, a phenomenon known as the enhanced permeability and retention (EPR) effect 

[37, 38]. Moreover, surface properties of nanoparticles also play an important role in avoiding the 
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adsorption of proteins that are recognized by RES cells; coating drug surfaces with hydrophilic 

polymers, such as polyethylene glycol (PEG), has been a predominant strategy to reduce protein 

adsorption and elongate the blood circulation of the drug [39]. There have been several FDA 

approved polymer-drug conjugates in the market. For instance, Oncaspar® is PEGylated L-

asparaginase, which was approved in 1994 for acute lymphoblastic leukemia treatment [40]. The 

nanoparticle surfaces can also be decorated by targeting ligands, which allow the accumulation of 

nanoparticles at surfaces of cancer cells that overexpress tumor-associated receptors and enhance 

the cellular uptake of nanoparticles by receptor-mediated endocytosis [41].  

        Currently, smart stimuli-responsive (or on-demand) delivery systems have received 

tremendous attention in the field of tumor specific drug delivery research [36, 42]. The design of 

stimuli-responsive system involves multi-disciplinary principles, which require a bond cleavage 

or molecular/supermolecular conformational changes in response to endogenous or exogenous 

stimuli, leading to the tailored release of a delivered cargo at the desired sites. The endogenous 

stimuli involve changes in pH [43, 44], elevated levels of glutathione (GSH) [45, 46] and 

enzymes [47-50]. The externally applied stimuli can be light [51-53], ultrasound [54-56], heat 

[57, 58] or magnetic fields [59, 60]. Although these targeted- or stimuli-responsive drug delivery 

systems have shown promising results in in vitro and in vivo studies, very few of them have 

reached clinical stages. Challenges remain in translating concepts to applications, such as 

inefficient delivery, biocompatibility and biodegradability of materials [42].  

        Peptide-based drug delivery systems have drawn much attention due to their versatility in 

design [61-65], bio-functionalities [41], and potential advances in biocompatibility and non-toxic 

degradation product [66]. Our lab for many years has investigated the potential use of a class of 

ionic-complementary, self-assembling peptides as anticancer drug carriers. These peptides 

contain alternatively arranged negatively charged glutamic acid (E) residues and positively 

charged lysine (K) residues, resulting in ionic complementarity, which leads to stable β-sheet-rich 

self-assembled structures [67, 68]. Additionally, the presence of hydrophobic residues, such as 
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alanine (A) or phenylalanine (F), allows the peptides to encapsulate hydrophobic molecules [69, 

70]. EAK16-II, one of the ionic complementary peptides, has shown promise in both in vitro and 

in vivo delivery of hydrophobic anticancer drug ellipticine (EPT) by exhibiting significantly 

higher anticancer efficacy when compared to the free drug [71, 72]. Encouraged by these results, 

an amino acid pairing (AAP) principle has been proposed for designing self-assembling peptides 

with side chain complementarity. This design principle is primarily guided by three types of side 

chain interactions: hydrophobic, hydrogen bonding and electrostatic. The side chain 

complementarity could lead to paired interactions, meanwhile the choice of amino acids should 

also achieve certain physiochemical stability to maximize the paired affinity and minimize free 

energy [73]. One of the CLPs studied in this research project is designed based on the AAP 

principle. 

        This research project focuses on exploring the potential of CLPs in anticancer treatment, 

involving acting as anticancer agents or anticancer drug carriers. An arginine-rich CLP, C6 (Ac-

RLLRLLLRLWRRL-LRLLR-NH2), was used to study the hydrogen bonding effect on the lytic 

activity of CLP towards membranes with or without cholesterol. The membrane selectivity of C6 

was studied by monitoring the leakage induced by peptides on phospholipid membranes with 

different compositions. Molecular dynamics (MD) simulations were performed to provide 

molecular level insight. The cytotoxicity of peptides against two cancerous cell lines, A549 lung 

cancer cells and MCF-7 breast cancer cells, and NIH-3T3 fibroblast cell line, as well as their 

hemolytic activity, were evaluated to show the impact of membrane selectivity on the lytic 

activity of C6 towards different cell lines.. To incorporate the advantages of stimuli-responsive 

system into CLPs, a stimuli-responsive self-assembling CLP C8 (Ac-WHIINNIIHHIINNIIRR-

NH2) was designed based on the AAP principle. The side chains of arginine (R) residues could 

provide repulsive electrostatic forces, while the side chains of isoleucine (I) residues and 

asparagine (N) residues provided attractive hydrophobic interactions and hydrogen bonding, 

respectively. The Tryptophan (W) residue could provide hydrogen bonding, hydrophobic 
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interaction and π-π stacking. The ionizable histidine (H) residues could provide either hydrogen 

bonding or electrostatic repulsion depending on their protonation status. The balance between 

attractive forces and repulsive forces was tunable in response to applied stimuli, such as heat and 

changes in pH, resulting in transitions between β-sheet-rich nanofibers and unstructured 

monomers. The cytotoxicity of C8 was found to correlate with the formation of nanofibers. The 

impact of other stimuli (temperature and the presence of urea) on the reversible self-assembly of 

C8 was characterized using atomic force microscopy (AFM) and circular dichroism (CD).  

        The amphiphilic nature of C6 and C8 allowed them to interact and encapsulate hydrophobic 

drugs, showing the possibility as drug carriers. This research project also investigated the 

complexation and in vitro delivery of hydrophobic anticancer drugs using CLPs. The interesting 

aspect was that the delivery vehicles were also drugs. Ellipticine was used as the delivery cargo 

for several reasons. First, EPT is a hydrophobic molecule. Second, the fluorescent properties of 

EPT have been fully studied [74], which made it easy to characterize its molecular state. Third, an 

effective delivery system is required urgently to reduce the adverse effects encountered during 

early clinical trials of its derivatives [75, 76]. The physicochemical properties of peptide-EPT 

complexes were characterized by various techniques, including fluorescence spectroscopy, CD, 

dynamic laser scattering (DLS) and AFM. Cytotoxicity studies have shown an enhanced 

therapeutic efficacy of delivered EPT with C6 and that the C6-EPT complexes selectively killed 

cancerous cells. These observations were explained by a proposed “CLP-assisted uptake” 

mechanism. Furthermore, utilizing the stimuli-responsive properties, the C8-EPT delivery system 

showed a potential for on-demand delivery: nanostructure formed C8-EPT co-assembly showed 

minimal cytotoxicity; while C8-EPT co-assembly disassembled in acidic environment, releasing 

the encapsulated EPT and C8 peptide monomers, which exhibited enhanced and selective 

cytotoxicity as that found in C6-EPT system. Taken together, the results reported in the works 

provide a new strategy to design CLPs for the purpose of stimuli-responsive delivery and therapy, 

as well as a new concept to use CLPs as drug carriers for multifunctional delivery (including 
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enhanced, selective and on-demand delivery). The fully characterized stimuli-responsive 

properties of C8 and the information on molecular mechanism of membrane selectivity of CLPs 

would be helpful to develop CLPs or CLP-mediated drug delivery systems with desired stimuli-

responsive properties and improved tumor specificity.  

 

1.2 Objectives 

        The goals of this research project involve three aspects: 1) investigating the potential of 

incorporating CLPs with stimuli-responsive properties on both nanostructure and lytic activity; 2) 

investigating the potential of CLP-mediated drug delivery systems for multifunctional delivery; 

and 3) investigating the molecular mechanism of CLP membrane activity. The specific objectives 

of the research project are listed below: 

a. Study of molecular mechanism by which CLPs interact with membrane of membrane 

selectivity of CLPs; the knowledge will aid the design of CLPs to improve the cancer 

specificity of CLPs or CLP-based drug delivery systems.  

b. Characterization of the stimuli-responsive self-assembling properties of C8 in response to 

changes in pH, temperature and the presence of urea; these properties provide essential 

information to design CLPs with desired stimuli-responsiveness.  

c. Investigation of the nanostructure-dependent cytotoxicity of C8  

d. Investigation on the potential of CLP-mediated drug delivery system for multifunctional 

(enhanced, selective, on-demand) delivery.  

 

1.3 Outline of the thesis 

This thesis consists of seven chapters. The scope of each chapter is listed as follows: 
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        Chapter 1 gives an overview of the thesis. It includes a brief introduction to problems in 

conventional chemotherapy for cancer treatment, CLPs and the progress in their anticancer 

application, and the recent advances in the development of drug delivery systems. The objectives 

and the scope of the thesis are also given in this chapter.  

        Chapter 2 provides a review of current advances in the development of CLPs, stimuli-

responsive drug delivery systems, and self-assembling peptide-mediated drug delivery systems.  

        Chapter 3 introduces an arginine-rich lytic peptide C6. The membrane lytic behavior of C6 

is characterized with liposome vesicles and mammalian cells. Of particular interest is that 

inhibition of hydrogen bonding between C6 and phospholipid membranes reduces the leakage on 

cholesterol-rich membranes. This effect is also seen in cytotoxicity studies. 

        Chapter 4 reports the in vivo anticancer activity of C6 by intratumoral administration. The 

potential use of C6 as ellipticine carriers is also investigated. The C6-mediated drug delivery 

system shows selectivity towards cancerous cells, along with synergism between C6 and the 

delivered drug. 

        Chapter 5 introduces a novel stimuli-responsive cationic lytic peptide C8. The peptide is 

found to self-assemble into β-sheet rich nanofibers and disassemble into unstructured monomers 

in response to changes in pH. The nanostructure-controlled lytic activity of C8 is also 

demonstrated. 

        Chapter 6 investigates the enhanced, selective and on-demand delivery of ellipticine 

mediated by C8. The membrane selectivity of C8 is also discussed. 

        Chapter 7 presents the conclusions of studies of the thesis, contributions of this research 

project and recommendations for future work.  
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Chapter 2 

Literature Review 

	
  

	
  

2.1 Current advances in cationic lytic peptides as anticancer agents 

        As early as the first half of the 20th century, many polypeptides isolated from various 

sources, including bacteria, insects, invertebrates and vertebrates, have shown antimicrobial 

activities [77]. Although these naturally occurring antimicrobial peptides (AMPs) are highly 

heterogeneous in their amino acid sequences, they still share some features in common, such as 

amphiphilic nature and positive charges. These characteristics allow them to selectively bind to 

anionic phospholipids or other negatively charged components on the outer surface of bacterial 

membranes via electrostatic interaction, followed by insertion into membrane bilayers to form 

pores [6, 77]. Most AMPs possess a broad spectrum of antimicrobial activity against Gram-

positive and Gram-negative bacteria, along with ability to combat antibiotic-resistance developed 

by bacteria, which make AMPs a promising class of antimicrobial agents [77-79]. 

        In addition to antimicrobial activity, some cationic antimicrobial peptides were also shown 

to have anticancer activities. Sharing the same mode of action, AMPs disrupt the integrity of cell 

membranes and lyse cells via necrosis [80, 81], or induce apoptotic death by depolarizing 

mitochondrial membranes [23, 24, 81]. They can selectively kill cancerous cells [24, 82] and 

combat MDR generated by cancerous cells [25, 83]. Although naturally occurring AMPs have 

advantages of selective killing of cancerous cells and combating MDR when compared to 

conventional chemotherapeutics, they are still facing issues such as serum stability, hemolytic 
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activity and insufficient tumor specificity that cause failures in in vivo studies[6]. Synthetic 

cationic lytic peptides provide multiple alternatives to improve upon those deficiencies. The 

strategies involve introducing D-amino acids in peptide sequences, conjugating CLPs to targeting 

moieties or rendering CLPs nanostructures. The detailed cases are briefly reviewed in the 

following sections.  

 

2.1.1 Naturally occurring AMPs for cancer treatment 

	
  	
  	
  	
  	
  	
  	
  	
  In	
  this	
  section,	
  studies	
  on	
  naturally	
  occurring	
  AMPs	
  and	
  their	
  derivatives	
  as	
  anticancer	
  

agents	
  are	
  reviewed.	
  The	
  most	
  studied	
  AMPs	
  are	
  listed	
  in	
  Table	
  2.1.	
  

	
  

Table 2.1 Naturally occurring AMPs with anticancer activities. 

Peptide	
   Source	
   Amino	
  acid	
  sequence*	
  

Cecropin A Hyalophora 
cecropia  (insect) 

KWKLFKKIEKVGQNIRDGIIKAGPAVAVVGQATQIAK 

Cecropin B Hyalophora 
cecropia  (insect) 

KWKVFKKIEKMGRNIRNGIVKAGPAIAVLGEAKAL 

Melittin Bee venom GIGAVLKVLTTGLPALISWIKRKRQQ 

Tachyplesin I Horseshoe crab KWCFRVCYRGICYRRCR 

Magainins 2 Frog (amphibian) GIGKFLHSAKKFGKAFVGEIMNS 

Gaegurins 5 Frog (amphibian) FLGALFKVASKVLPSVKCAITKKC 

Bovine 
Lactoferricin  

Mammalian lactoferrin FKCRRWQWRMKKLGAPSITCVRRAF 

LL-37 Human cathelicidin LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES 

BMAP-28 Bovine cathelicidin GGLRSLGRKILRAWKKYGPIIVPIIRI 

* bold letters indicates cationic amino acids  

 

        Cecropin A and cecropin B are the most studied antimicrobial peptides in the cecropin-

family, which are isolated from insects.  Both of the peptides possess a secondary structure of two 

α helices, of which the N-terminal helix is amphiphilic while the C-terminal helix is relatively 
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hydrophobic [84, 85]. Cecropin A and cecropin B were proven to be effective at lysing different 

human cancer cells, while they were not harmful to normal tissue cells at the same concentrations 

[83, 86, 87]. Moreover, a synergistic effect was found when combining treatments of cecropin A 

with the chemotherapeutic agents 5-fluorouracil and cytarabine on CCRF-SB leukemia cells [87]. 

Srisailam et al. compared the lytic activities of two cecropin B analogues (cecropin B1 and 

cecropin B3) against several human leukemia cell lines [88]. The analogues were designed by 

multiple amino acid substitutions in the cecropin B sequence. Cecropin B3, which possesses two 

hydrophobic α-helices, was found to lose its pore-forming ability; in contrast, cecropin B1, 

consisting of two amphiphilic α-helices, lysed the cancer cells successfully with minor 

cytotoxicity against normal fibroblasts. These results may indicate the importance of an 

amphiphilic N-terminal α-helix in initiating the binding of cecropin B to anionic cancer cell 

membranes.  

        Melittin is an AMP extracted from European honeybee venom. Melittin has a hydrophobic 

N-terminal portion and a positively charged C-terminal portion. Studies have indicated that the 

melittin monomer was not effective towards destabilizing lipid bilayer membrane, while a 

melittin dimer perturbed the integrity of a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 

membrane successfully [89]. Membrane disruption caused by melittin is suggested to be the 

consequence of self-association of melittin monomers via the barrel-stave mechanism [90]. 

Interestingly, besides membrane destabilization, melittin could transiently activate phospholipase 

D, which may activate an uncharacterized signal transduction pathway enhancing cell lysis [91]. 

However, melittin was found to be cytotoxic to both cancerous and healthy cells [92-94]. Due to 

its lack of selectivity for malignant cells, research efforts have been focused on targeting melittin 

to tumor vasculature and/or cancerous cells via attachment to moieties that recognize over 

expressed surface structures on cancer cells. Holle et al. reported an attempt to utilize matrix 

metalloproteinase-2, which is over expressed by tumor vascular endothelium and cancer cells 

[95]. The strategy was based on the cleavage of a melittin-avidin conjugate by matrix 
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metalloproteinase-2 at the targeted sites, reactivating the lytic function of melittin [96]. The 

melittin-avidin conjugate proved to be cytotoxic against DU145 prostate cancer cells and SKOV3 

ovarian cancer cells. Normal fibroblast cells, which possess less matrix metalloproteinase-2, were 

barely affected by the melittin-avidin conjugate. Russell et al. reported an alternative strategy by 

conjugating monoclonal antibodies with a melittin like peptide for tumor targeting [97]. An 

improved survival of mice bearing subcutaneous human prostate cancer xenografts was observed 

after being treated by this immunoconjugate.   

         Tachyplesin I is another well studied AMP, which is isolated from hemocytes of horeshoe 

crabs.  Tachyplesin I contains two anti-parallel β-sheets with all six positively charged residues 

exposed on the peptide surface, resulting in an enhanced structural amphiphilicity [98]. There are 

two disulfide bonds that facilitate the stabilization of the peptide configuration. Moreover, the 

disulfide bonds are believed to protect tachyplesin I against proteolytic degradation [99]. Unlike 

other anticancer AMPs, tachyplesin I was found to kill TSU prostate cancer cells by binding to 

hyaluronan that over-expressed on the cell surface, followed by activating the classic complement 

pathway and inducing complement-mediated cell death to the cancer cells coated with tachyplesin 

I [100]. Since hyaluronan is also largely expressed on the endothelial cell surface involved in 

tumor neovascularization [101], tachyplesin I induced complement-mediated lysis might be 

utilized to inhibit tumor angiogenesis. Chen et al. synthesized RGD-tachyplesin I for targeting to 

integrins on the surface of endothelial cells and TSU prostate cancer cells [102]. The results 

indicated that the cell death was induced by destruction of the cell membranes and caspase-

dependent apoptosis. The activation of the apoptotic pathway is probably due to the disruption of 

mitochondrial membranes by the positively charged RGD-tachyplesin I internalized by cancer 

cells. Although the in vivo study showed that RGD-tachyplesin I successfully inhibited the 

growth of B16 melanoma cells in mice [102], it was found to interact with neutral lipid at high 

concentrations, resulting in increased hemolytic activity [103].  Interestingly, a non-lytic killing 

mechanism was also observed in tachyplesin I treated SMMC-7721 hepatoma cells, involving 
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morphological alteration, decreased expression of the c-myc oncogene and tumor associated 

antigen, and increased expression of the tumor suppressor gene p21WAP/CIP1 [104].  

        Magainins are a class of AMPs isolated from skin secretions of the African clawed frog 

[105]. Among them, magainin 2 shows selective cytotoxicity towards cancerous cells [26, 28, 

106]. To improve the anticancer efficacy, analogues of magainins were developed by multiple 

amino acid substitutions. Magainin A and magainin G, which were designed to have enhanced α-

helical structure, are more potent on hematopoietic and solid tumor cell lines, while show low or 

non-hemolytic effect at effective concentrations [26]. Moreover, they are also effective against 

drug-resistant tumor cell lines. MSI-136, another magainin analogue, and its all-D-amino acid 

counterpart, MSI-238, were found to be more potent than magainin 2 in in vivo study [28]. 

Gaegurins are also found in skin secretions of amphibians. They are random-coils in aqueous 

solution, but adopt amphiphilic α-helical conformations when in contact with membranes, 

inducing pore-formation via barrel-stave and/or carpet mode [14]. Among the gaegurins family, 

gaegurin 5, as well as its analogues, show broad and selective cytotoxicity towards various types 

of tumor cells [107].  

        Lactoferricin is a product of acid-pepsin hydrolysis of mammalian lactoferrin that possess 

anti-microbial properties [108]. Bovine lactoferricin (LfcinB) isolated from cow’s milk is 

reported to have higher anti-bacterial potency than human lactoferricin [109]. LfcinB is suggested 

to form a distorted β-sheet conformation placing the positively charged amino acid residues on 

one face and most hydrophobic amino acid residues on the other [110]. LfcinB was proven to be 

cytotoxic against various types of neoplastic cells originating from humans and mice through in 

vitro studies [24, 80, 111, 112], at concentrations that are not harmful to healthy cells, including 

untransformed lymphocytes, fibroblasts, endothelial cells and erythrocytes [24, 113]. The 

lactoferricin-mediated cancer cell killing involves both necrosis and apoptosis. Initially, LfcinB 

binds to the cell membranes and forms transmembrane pores, causing the loss of plasma 

membrane integrity. Subsequently, peptides enter the cytoplasmic compartment through the pores 
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and attach to negatively charged mitochondrial membranes, inducing a collapse of the 

mitochondrial membrane potential and activation of caspase-dependent apoptosis [80, 114]. 

LfcinB treated mouse fibrosarcoma cells and human neurboblastoma cells were mainly killed via 

necrosis due to membrane lysis, whereas leukemia and breast cancer cells exposed to LfcinB died 

via an apoptotic way involving the generation of reactive oxygen species, dissipation of 

mitochondrial membrane potential, and activation of caspase-3 and caspase-9 [24]. This is 

possibly because that the LfcinB-mediated membrane damage in the aforementioned case was 

repairable and the internalized LfcinB induced the apoptotic cell death. Although the presence of 

high concentrations of serum reduces the activity of LFcinB [115], LfcinB is effective in 

inhibiting tumor growth in vivo [80, 116]. A study has also shown that LfcinB exhibited a 

structure induced antiangiogenic activity [117]. Nevertheless, the exact contributions of the lytic 

and antiangiogenic effect of LfcinB to the suppression of tumor growth still require investigation.  

        Among the cathelicidin-related antimicrobial peptides, LL-37 is the only one derived from 

human sources. It is reported that LL-37 is unstructured in pure water, while its helical structure 

can be stabilized either by increasing the peptide concentration or by adding salts [10]. The 

formation of the helical oligomer is believed to help LL-37 escape enzymatic proteolysis [82]. 

Although LL-37 successfully shows antitumor activities against a gastric cancer xenograft [118], 

the fact that LL-37 exhibits a significant hemolytic effect [82] and lacks the ability to specifically 

target to cancer cells [119] limits its development as a therapeutic drug. Interestingly, a recent 

study shows that LL-37 was strongly expressed in malignant melanoma and, instead of inhibiting 

the growth of melanoma cells, promoted melanoma cell proliferation and migration [120].  

        There is another class of AMPs that are derived from bovine cathelicidin. Typically, these 

peptides consist of a cationic N-terminal portion forming an amphiphilic α-helix and a 

hydrophobic C-terminal portion. BMAP-28 is a member of the cathelicidin-related AMPs. The 

anticancer activities of BMAP-28 have been demonstrated on various leukemia cell lines [121]. 

Cells exposed to the BMAP peptides went through a membrane permeabilization with an influx 
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of Ca2+, followed by an apoptotic DNA fragmentation. A continuous study further revealed that 

BMAP-28 created a permeable transition pore in mitochondrial membranes of U937 and K562 

human leukemia cell lines, resulting in a drop in mitochondrial membrane potential that lead to a 

cytochrome c release and apoptotic death [122]. BMAP-28 was not effective against non-

proliferating lymphocytes [121], showing their inability to eliminate dormant cancerous cells. 

Along with their severe hemolytic activity at concentrations above 30 µM [123], the application 

of BMAP-28 was limited as an anticancer agent.  

 

2.1.2 Synthetic CLPs for cancer treatment 

        The amphiphilic α-helical structure of CLPs is thought to play an important role in AMP-

mediated transmembrane pore forming. Studies on the synthetic analogues of naturally occurring 

AMPs designed by amino acid substitutions revealed that enhanced amphiphilicity could promote 

the antimicrobial activity of AMPs as well as their cytotoxicity [124]. To better understand the 

structure-activity relationship, synthetic peptides have drawn considerable interest because the 

flexibility of sequence design allows different degrees of amphiphilicity and helicity. Some of the 

de novo designed lytic peptides have received much attention [125, 126]. One of the most popular 

synthetic peptides is (KLAKLAK)2 comprised of 14 amino acids. The (KLAKLAK)2 peptide 

exhibits selectivity between killing bacteria and killing eukaryotic cells [126].   

        Due to the fact that diastereomeric peptides are capable of resisting proteolytic degradation 

while maintaining their original lytic activities [127, 128], incorporating D-amino acids is widely 

applied in synthetic lytic peptides. A study showed that an amphiphilic peptide D-K6L9, modified 

from L-K6L9 (LKLLKKLLKKLLKLL-NH2) by selectively substituting 5 L-amino acids with D-

amino acids, exhibited specific in vitro cytotoxicity against prostate cancer cells with low 

hemolytic activity [27]. Interestingly, it was also found that L-K6L9 exhibited severe hemolytic 

activity, which may imply another advantage of D-amino acids as building blocks for synthetic 
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peptides. Surprisingly, the intratumoral treatment with D-K6L9 almost inhibited the growth of 

22RV1 prostate cancer xenografts completely. In contrast, L-K6L9 lost its function in serum, 

barely showing antitumor activity. Subsequent studies conducted involved the systemic injection 

of D-K6L9 to 22RV1 xenograft-bearing mice, showing suppressed growth of tumors and possible 

vascular targeting and antiangiogenesis activity of D-K6L9 [81]. The study also demonstrated 

necrotic cell death, accompanied with depolarization of the cytoplasmic membrane induced by D-

K6L9. 

        To further enhance tumor specificity of CLPs, targeting strategies have also been applied to 

enhance the selective cytotoxicity towards cancerous cells. Ellerby et al. coupled a homing 

domain (CNGRC or RGD-4C) with an all-D-form (KLAKLAK)2 peptide aiming at facilitating 

the recognition by targeted cells and internalization of peptides [32]. The designed peptide 

showed selective cytotoxicity to angiogenic endothelial cells, such as tumor vasculature, and as a 

consequence inhibited tumor progression with no obvious side effects. In another approach, anti-

CD19 and anti-CD33 antibodies were selected as targeting moieties to conjugate with D-

(KLAKLAK)2 [32]. The antibody-peptide conjugates showed high selectivity towards cells 

expressing suitable surface recognition structures. Anti-CD19 conjugated peptide was also found 

to be effective against fresh chronic lymphocytic leukemia cells from patients. Rapid 

internalization of (KLAKLAK)2 was attempted by fusing the pro-apoptotic domain with a protein 

transduction domain, PTD-5 [129]. This peptide (DP-1) triggered rapid apoptosis in cell lines 

isolated from murine fibrosarcoma and human head and neck tumors. Furthermore, in vivo test of 

DP-1 by intratumoral injections showed effective inhibition of MCA205 tumor caused by DP-1, 

while no apparent side effects were observed. Zhong et al. adopted a membrane type 1-matrix 

metalloproteinase (MT1-MMP) sensitive linker to cyclize a CLP (LRLALKLALKALKAALKL), 

inducing spatial constrain on the formation of amphiphilic conformation [130]. The MDA-MB-

435 cell line is known to overexpress MT1-MMP, while MCF-7 does not. The cyclized CLP 

showed higher cytotoxicity towards MDA-MB-435 than that towards MCF-7, showing the 
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possibility of targeting the tumor-associated enzyme. A recent study utilized negative charges on 

cancerous cell membranes to neutralize positive charges on CLPs, allowing CLP to adopt an 

active β-turn conformation [12]. The peptide showed selective killing of cancerous cells and low 

hemolytic effect. 

        Taking advantage of the high-aspect-ratio of nanostructures, Standley et al. incorporated 

(KLAKLAK)2 peptide with a β-sheet promoting sequence and a hydrophobic alkyl tail to form 

nanofibers [131], for the purpose of overcoming poor cell penetration and fast in vivo degradation. 

This peptide, which is termed KLAK PA (peptide amphiphile), showed enhanced cellular uptake 

and cytotoxicity when compare to (KLAKLAK)2 peptide. Subsequent in vivo study showed that 

KLAK PA successfully suppressed the growth of MDA-MB-231 human breast cancer orthotopic 

tumors in mice [34], which supports that the nanostructure formation could provide proteolytic 

resistance and elongate the circulation time.  Agemy et al. conjugated all-D-form (KLAKLAK)2 

with a targeting sequence CGKRK, and coupled this peptide to iron oxide “nanoworms” (NW) to 

peptide (CGKRKD[KLAKLAK]2-NWs) for a targeted delivery [132]. Interestingly, after coupling 

to the NW, the system showed a significant cytotoxicity enhancement in vitro. Moreover, 

intravenously injected CGKRKD[KLAKLAK]2-NWs were found to accumulate in tumor vessels 

of glioblastoma-bearing mice and were able to eradicate most tumors. Lee et al. used a pH-

responsive polysaccharidic ionic complex to deliver an all-D-form (KLAKLAK)2 to an acidic 

tumor microenvironment [35]. This strategy also provides an alternative to reduce the side effect 

of CLPs.  	
  

 

2.1.3 Membrane selectivity of CLPs 

         In this section, the current progress on the studies of CLPs membrane activity and 

selectivity will be reviewed. The outer leaflet of bacteria membrane is rich in anionic 

phospholipids, such as phosphatidylglycerol (PG) and cardiolipin [133]; cancerous cells over 
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express phosphatidylserine (PS) and have elevated levels of aberrant O-glycosylated mucins on 

their membrane surfaces. These traits contribute to negative charges on cell membrane surfaces, 

which are considered to be the reason for the selectivity of CLPs towards bacteria or cancer cells 

via electrostatic interaction. The high amount of cholesterol presents in eukaryotic cell 

membranes increases the membrane cohesion and stiffness by condensing the phospholipid 

bilayers [134], which is thought to hinder the insertion of CLPs into membranes. A recent study 

evaluated the activities of melittin analogues, which were designed by multiple amino acid 

substitutions at 10 selected positions on melittin sequence, on membranes with various 

compositions [135]. Some of the melittin analogues showed better pore-forming ability on 

cholesterol-rich membranes or on negatively charged membranes, while there are cases showing 

no pronounced preference on negatively charged, cholesterol-rich or zwitterionic membranes 

[135]. These findings imply that there is still more to discover on the mechanism of CLP 

membrane selectivity.  

        In order to stabilize the pores on membranes, CLPs should be able to span the thickness of 

the membrane bilayers. Hence, the length of CLPs could be one factor that affects the pore-

forming ability. Ringstad et al. investigated the membrane lytic activities of (AKKARA)n (n=1-4) 

and (ARKAAKKA)n (n=1-3) peptides [29]. These peptides existed as random coils in both buffer 

and the presence of phospholipid bilayers. Hence, the effect of changes in secondary structure can 

be excluded. The peptide-induced leakage was studied on either a zwitterionic membrane 

(DOPC/cholesterol) or an anionic membrane (DOPC/DOPA/cholesterol), showing that peptides 

with increased length induced enhanced leakage on both membranes; longer peptides also 

exhibited stronger antimicrobial activities. The author attributed increased membrane adsorption 

of long peptides to the enhanced activities. In the same work, the author also investigated the 

effect of electrostatic interaction. They reduced the peptide charge density by substituting 

arginine and lysine by histidine or added NaCl to screen the surface charges of peptide and 

phospholipid membranes. In both cases, the peptides showed decreased membrane lytic and 



	
   19	
  

antimicrobial activities, indicating the importance of electrostatic interaction in membrane lytic 

activity of CLPs. However, too much peptide charge will limit the adsorption of CLPs due to 

electrostatic repulsion among peptides [136], and decreases antimicrobial activity [137]. 

Increasing the negative charges on membrane is another alternative to enhance electrostatic 

interaction between peptides and membranes, leading to increased peptide adsorption. However, 

negative charges may hinder the insertion of peptides by arresting them electrostatically close to 

the interface of the phospholipid bilayer [138]. Furthermore, there are studies that showed 

polyanionic glycosaminoglycans expressed on the cell surfaces or in biological fluids inhibited 

the lytic activities of CLPs [139, 140].  

        Ringstad et al. found that increasing the hydrophobicity of CLPs enhanced adsorption on 

phospholipid membranes as well as membrane lytic activity [30]. However, this enhancement 

accompanies a reduced membrane selectivity. Cornut et al reported that CLPs with high 

hydrophobicity to charge ratio showed strong lytic activity towards both bacteria and eukaryotic 

cells [141]. To increase the hydrophobicity of CLPs, attachment of a hydrophobic block made of 

hydrophobic amino acids can be used. For example, GKH17 (GKHKNKGKKNGKHNGWK) 

showed an increased lytic activity on anionic cholesterol-free (DOPE/DOPG) membranes after 

being end-tagged with one, three and five tryptophan residues (GKH17-W, GKH17-WWW and 

GKH17-WWWWW) [31]. However, as cholesterol condenses phospholipid membranes, it is 

energy costly for the bulky tryptophan-tags to insert into the compact cholesterol-rich 

membranes; as a consequence, GKH17 with an end-tag of five tryptophan residues induced less 

leakage on DOPC/cholesterol membranes than on DOPC membranes [31].   
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Figure 2.1 Guandinium-phosphate complex stabilized by bidentate hydrogen bonds and 
electrostatic interaction. Reprinted with permission from reference [11] © 2014 ACS. 

 

        It was also found that the guanidinium group of arginine can complex with the phosphate 

head groups of phospholipids via both electrostatic interaction and bidenate hydrogen bonds 

(Figure 2.1) [11]. The bonded polar groups form lipophilic ion-pairs, and hence, facilitate the 

entry of arginine residuals into non-polar lipid membrane cores [142, 143]. As a consequence, 

arginine-rich CLPs are more efficient in penetrating cell membranes than corresponding lysine-

rich CLPs [142]. 

 

2.2 Current advances in anticancer drug delivery. 

        The “free” traditional hydrophobic anticancer drugs suffer from poor solubility, poor 

pharmacokinetics and adverse side effects, which cause most of the failures at clinical stage 

[144]. Since Richard Feynman raised the concept of nanodrug delivery devices in his talk 

“There’s Plenty of Room at the Bottom” in 1959, a tremendous number of nanoscaled drug 

delivery systems have been developed to address these issues by improving the solubility, altering 

the pharmacokinetics (PK) and biodistribution of the delivered drugs [37]. Several of the 
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nanomedicines have already been approved by FDA. Table 2.2 summarizes the problems of free 

drugs and the improvements made by drug delivery systems. Figure 2.2 is a timeline of major 

events and discoveries during the development of nanomedicines.  

 

Table 2.2 Non-ideal properties of drugs and their therapeutic implications. Adapted from 
reference [145].   

Problem Implication Effect of drug delivery system (DDS) 

Poor solubility A convenient pharmaceutical format is 
difficult to achieve, as hydrophobic 
drugs may precipitate in aqueous media. 
Toxicities are associated with the use of 
excipients such as Cremphor® EL (the 
solubilizer for paclitaxel in Taxol). 
 

DDS such as lipid micelles or 
liposomes provide both hydrophilic 
and hydrophobic environments, 
enhancing drug solubility. 
 

Tissue damage on 
extravasation 

Inadvertent extravasation of cytotoxic 
drugs leads to tissue damage, e.g., tissue 
necrosis with free doxorubicin. 
 

Regulated drug release from the DDS 
can reduce or eliminate tissue damage 
on accidental extravasation. 
 

Rapid breakdown of 
the drug in vivo 

Loss of activity of the drug follows 
administration, e.g., loss of activity of 
Camptothecins at physiological pH. 

DDS protects the drug from premature 
degradation and functions as a 
sustained release system. Lower doses 
of drug are required. 
 

Unfavorable 
pharmacokinetics 

Drug is cleared too rapidly by the 
kidney. For example, requiring high 
doses or continuous infusion. 

DDS can substantially alter the PK of 
the drug and reduce clearance. Rapid 
renal clearance of small molecules is 
avoided. 
 

Poor biodistribution Drugs that have widespread distribution 
in the body can affect normal tissues, 
resulting in dose limiting side effects, 
such as the cardiac toxicity of 
doxorubicin. 

The particulate nature of DDS lowers 
the volume of distribution and helps to 
reduce side effects in sensitive, Non-
target tissues. 
 

Lack of selectivity 
for target tissues 

Distribution of the drug to normal tissues 
leads to side effects that restrict the 
amount of drug that can be administered. 
Low concentrations of drugs in target 
tissues will result in suboptimal 
therapeutic effects. 

DDS can increase drug concentrations 
in diseased tissues such as tumors by 
the EPR effect. Ligand-mediated 
targeting of the DDS can further 
improve drug specificity. 
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        The size and surface properties of the therapeutic nanoparticles play a key role in their 

pharmacodynamic behavior, biodistribution and cell internalization.  Nanoparticles in the size 

range of 10-100 nm can avoid rapid clearance by the kidneys or through extravasation [146], 

while they are still small enough to accumulate in tumor tissue via enhanced permeability and 

retention effect [37]. The surfaces of nanoparticles need charges (negative or positive) to prevent 

self-aggregation. Yet the charges should be low enough to inhibit the non-specific interactions 

between the nanoparticles and proteins in vivo, and avoid the macrophage scavenging [39]. 

Coating the nanoparticles with hydrophilic polymers, such as polyethylene gloycol (PEG), also 

minimizes the non-specific interactions via steric stabilization, resulting in elongated body 

circulation [147]. The adding of targeting ligands provides specific interactions between 

nanoparticles and cell surfaces via ligand-receptor recognition, enhancing cellular uptake of 

nanoparticles into cancer cells and accumulation in tumor [41].  

        Stimuli-responsive systems received tremendous attentions in recent research for drug 

delivery owing to their tailored release profiles with excellent spatial, temporal and dosage 

control [42]. Self-assembling peptides are also emerging as a promising class of biomaterials for 

drug delivery application due to bio-functionality, design flexibility and potential 

biocompatibility [71, 148]. In this section, I reviewed several recent stimuli-responsive or self-

assembling peptide-mediated systems to indicate the current advance in the development of drug 

delivery systems.  
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Figure 2.2 Timeline of the development of nanomedicines. Adapted with permission from 
reference [37] © 2014 NPG. 

 

2.2.1 Stimuli-responsive systems 

        The concept of stimuli-responsive drug delivery was first suggested by Yatvin, M.B. in the 

late 1970s [149]. The stimuli-responsive delivery is an efficient delivery strategy, which in 

principle allows controlled release of drug at desired disease sites. In the past decade, owing to 

progress in material science, a great number of stimuli-responsive materials have been developed 

for anticancer drug delivery. These delicate systems can react to various stimuli, which are 

generally categorized into exogenous applied stimuli and endogenous stimuli.   

 

Exogenous stimuli-responsive systems 

Thermo-sensitive systems 

	
  	
  	
  	
  	
  	
  	
  	
  The first stimuli-responsive drug carrier, a liposome-based thermo-sensitive system, was 
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introduced by Yatvin [149]. This system utilized liquid-crystalline transition of liposome at 

elevated temperature to trigger the release of encapsulated contents. Since then, several types of 

thermo-sensitive liposomes (TSLs) have been studied [150-152]. The TSL-based doxorubicin 

delivery system, ThermoDox (Celsion Corporation), has reached phase II trials for the treatment 

of breast cancer and colorectal liver metastasis, and phase III trials for the treatment of 

hepatocellular carcinoma [153], showing the potential of TSLs systems in clinical usage. For 

cancer treatment, ideal thermosensitive drug carriers should retain their cargo at body temperature 

(~37 oC), and release the loaded drug rapidly at a locally heated tumor site (~40-42 oC). Recently, 

Al-Ahmady et al. introduced leucine zipper peptide-lipid hybrid vesicles [57], which combine the 

advantages of traditional TSLs with the dissociative, unfolding properties of a temperature-

sensitive peptide to optimize drug release at 42 oC (Figure 2.3.a). Chen et al. developed a 

promising bubble-generating liposomal system for rapid local drug release [154]. These 

liposomes encapsulated ammonium bicarbonate, which decomposed at mild hyperthermia (~42 

oC), generating carbon dioxide bubbles. The carbon dioxide bubbles created permeable defects in 

the lipid bilayer, leading to the release of encapsulated drug (Figure 2.3.b).  
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Figure 2.3 Schematic illustrations of the mechanisms for thermosensitive liposomal drug delivery 
systems. (a) The temperature-triggered unfolding of a leucine zipper peptide in the peptide-lipid 
hybrid systems. Reprinted with permission from reference [57] © 2014 ACS. (b) Drug-permeable 
pores created by the temperature-triggered generation of carbon dioxide bubbules. Reprinted with 
permission from reference [154] © 2014 ACS.  

 

Light-sensitive systems 

        There are various strategies to induce light-trigged drug release. Azobenzene groups and 

their derivatives undergo a reversible isomerization on irradiation of ultraviolet or visible region. 

This property has been utilized to control the uncapping/capping of molecular pore gates of 

mesoporous silica nanoparticles (MSNPs), enabling photoregulated drug release (Figure 2.4.a) 
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[155, 156]. Furthermore, Tong et al. took advantage of the photoisomerization between 

Spiropyran (SP) and merocyanine (MC), inducing ultraviolet light-triggered size shrinkage in 

spiropyran-PEGylated lipid nanoparticles for better tissue penetration (Figure 2.4.c) [157]. 

Further in vivo studies confirmed the shrinkage enhanced tumor penetration [158]. Alternatively, 

He et al. used a photodimerization-cleavage cycle of thymine as a switch for MSNP opening and 

closing (Figure 2.4.b) [159]. Comparing to ultraviolet light sources, near-infrared (NIR) is more 

favorable to clinical applications owing to deeper tissue penetration, lower scattering properties 

and minimal harm to tissues. Recently, Carter et al. reported a liposomal system containing 10 

mol% porphyrin–phospholipid for NIR-triggered drug release [53]. Systemic administration of 

the system showed enhanced deposition of loaded doxorubicin in response to NIR irradiation.  

 

Ultrasound and magnetically responsive systems 

        Ultrasound can trigger the release of drugs from various types of nanocarriers by inducing 

thermal and/or mechanical effects and transiently increase cell membrane permeability, leading to 

enhanced cellular uptake [160]. Ultrasound triggered conversion from nanoemulsions into 

microbubbles is also a prevailing strategy for ultrasound-responsive systems. Rapoport et al. 

encapsulated paclitaxel (PTX)-loaded perfluoropentane (PFP) nanoemulsions using poly(ethylene 

oxide)-co-poly(L-lactide) (PEG-PLLA) micelles for ultrasound-trigger drug release [55]. Under 

therapeutic ultrasound, PFP microbubbles were generated through acoustic droplet vaporization, 

promoting release and/or cellular uptake of the encapsulated PTX in tumor tissue. Magnetic 

guidance also provides a means to improve drug accumulation in tumor tissues. Plassat et al. 

developed a PEG-coated liposomal system with superparamagnetic nanocrystals of maghemite 

(γ-Fe2O3) encapsulated for selective delivery of the steroid anti-estrogen RU 58668 [60]. The 

results showed that the magnetic force essentially accumulated the liposomes nearby the cancer 

cells, promoting cellular uptake and anti-estrogentic activity. Hua et al. also demonstrated a 

poly[aniline-co-N-(1-one-butyric acid) aniline] (SPAnH) coated magnetic system enhanced the 
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concentration and retention of the bound drug in tumor site [161]. 

 

 

Figure 2.4  Schematic illustrations of the mechanisms for photosensitive drug delivery systems. 
(a) Azobezene-modified DNA-controlled reversible release system. Reprinted with permission 
from reference [155] © 2014 ACS. (b) Photosensitive thymine modified MSNPs. Reprinted with 
permission from reference [159] © 2014 ACS. (c) Photoswitching spiropyran-PEGylated lipid 
system. Reprinted with permission from reference [157] © 2014 ACS.  

 

Endogenous stimuli-responsive systems 

pH-sensitive systems 
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        The irregular angiogenesis in fast-growing tumors causes abnormal metabolism, leading to a 

slightly acidic extracellular tumor pH (6.5-7.2) [162]. This trait is widely used by pH-sensitive 

drug delivery systems to target tumor microenvironments. The major strategies for constructing 

pH-sensitive systems involve the use of ionizable groups that undergo pH-responsive 

conformational and/or solubility changes, and the cleavage of pH-sensitive bonds. Min et al. 

introduecd a methyl ether poly(ethylene glycol)-block-poly(β-amino ester) (MPEG-PAE) micelle 

system for camptothecin (CPT) delivery [44]. The ionization of tertiary diamine moieties of 

MPEG-PAE caused a sudden disassembly at pH 6.4-6.8, releasing entrapped CPT. Cell 

penetrating moieties are commonly used to decorate the surface of nanocarriers for enhanced cell 

internalization. Koren et al. conjugated PEG chains via an acid-sensitive hydrazone bond to 

sheild TAT peptide (transactivating regulatory protein sequence) decorated liposomes [163]. The 

hydrolyzation of the bonds at lowered pH allowed exposure of the TAT sequence for improved 

cell internalization (Figure 2.5.a). Alternatively, Lee et al. ultilized the protonation of 

polyhistidine at acidic tumor extracellular pH to extend copolymer chain, facilitating exposure of 

terminal TAT sequences (Figure 2.5.b) [164]. An et al. developed a transmembrane peptide 

which either adsorbed to membrane or inserted into membrane in response to changes in pH 

[165]. They linked a hydrophobic toxin, phalloidin, with the peptide to facilitate the cell 

internalization in a pH-dependent manner.  

 

Redox-sensitive systems 

        Disulphide bonds are sensitive to glutathione (GSH). Taking advantage of dramatic variation 

in intracellular and extracellular GSH concentrations [166], single disulphide bonds connecting 

two polymer blocks [167] or disulphide cross links [168] can be used to trigger the intracelluar 

release of drug. Matrix metalloproteinase 2 (MMP2) is known to be overexpressed in the tumour 

microenvironment [42]. Zhu et al. reported MMP2-sensitive systems using a synthetic peptide 

linker (GPLGIAGQ) to trigger the deshielding of long PEG chains, improving the exposure of 
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TAT peptide for enhanced cell internalization [48, 49]. 

 

 

Figure 2.5 Schematic illustrations of the mechanisms for pH-triggered exposure of TAT peptide. 
(a) pH-degradable hydazone bond (Hz) allows the removal of the PEG2kshield at low pH. 
Reprinted with permission from reference [163] © 2014 Elsevier. (b) Acid-induced pop-up of 
folded PEG chains. Reprinted with permission from reference [164] © 2014 Elsevier.  

 

2.2.2 Multi-responsive systems 

        Drug delivery systems that respond to more than one stimulus have been developed to 

further improve the delivery efficiency. For example, a pH-sensitive polypeptidic micelle system 

with a redox-sensitive crosslinked interlayer disassemble in a reductant-rich environment, 

resulting in improved release and therapeutic efficacy of loaded doxorubicin in vivo [169]. 

Polymeric vesicle systems can undergo size changes in response to ultrasound and acidic-
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stimulus, leading to fast drug release. A biodegradable polymeric nanocapsule system that shows 

triple-responsiveness to ultrasound, pH and GSH has also been reported [46]. 

 

2.2.3 Self-assembling peptide-mediated systems 

        Self-assembling peptides are emerging as promising nano-biomaterials in the field of drug 

delivery because of their favorable properties such as biocompatibility, less-immunogenicity and 

the ability to be biodegraded to non-toxic amino acids. The unique propensities of many peptides 

for cell penetration and bio-recognition [170, 171] also make them promising to overcome some 

major problems in drug delivery, such as delivery efficiency and targeting.   

 

 

Figure 2.6 Schematic illustrations of (a) the nanoribbon formed by self-assembly of TβP and 
encapsulation of hydrophobic guest molecules. Reprinted with permission from reference [172] © 
2014 Wiley. (b) Conformational change of KP

160(L0.3/K0.7)40 coploypeptide, and release of 
entrapped Fura-2 dye from peptide vesicles. Reprinted with permission from reference [173] © 
2014 NPG.  

 

        Lim et al. designed a TβP peptide consisting of three blocks: a TAT cell penetrating block 

(GRKKRRQRRRPPQ), a linker (GSGG), and a β-sheet forming block (FKFEFKFEFKFE) 

(Figure 2.6.a) [172]. The peptide could self-assemble into β-sheet nanoribbons, creating 
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hydrophobic interior to carry guest molecules. The exterior cell penetrating motifs facilitated 

internalization of the nanoribbons into cells and release of drug into the cytoplasm. Holowka et 

al. developed a group of KxLy diblock copolypeptides for vesicle formation [62]. Further 

modification on the leucine-rich block (substituting leucine with lysine) induced pH-responsive 

conformational change, leading to destablization of the vesiclar assembly and leakage (Figure 

2.6.b) [173]. Another arginine-rich analogue showed the potential of intracellular delivery in vitro 

[174]. 

 

 

Figure 2.7 (a) Chemical structure of ionic-complementary peptide EAK16-II. (b) Schematic 
illustration of EAK 16-II self-assembly. Reprint with permission from reference [68] © 2014 
Elsevier. 
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        Ionic complementary peptides are a special class of self-assembling peptides. These peptides 

feature a unique amphiphilic structure consisting of alternating hydrophobic and hydrophilic 

amino acids in the sequence. The positive and negative charges are alternatively arranged, 

resulting in a complementary ionic structure. The first ionic complementary peptide, EAK16-II, 

was discovered from a yeast Z-DNA binding protein by Zhang et al. [175]. EAK16-II 

(AEAEAKAKAEAEAKAK) is composed of 16 amino acids alternating pairs of negatively 

charged glutamic acids and positively charged lysine, separated by a hydrophobic alanine (Figure 

2.7.a). It self-assembles into β-sheet rich nanofibers through hydrogphobic interaction, backbone 

hydrogen bonding and ionic-complementarity, exhibiting separated hydrophobic and hydrophilic 

faces (Figure 2.7.b) [68]. The amphiphilic nature and good biocompatibility with cultured 

mammalian cells [176] make EAK16-II a promising biomaterial to construct nanocarriers for 

hydrophobic drugs.  

        To investigate the potential use of EAK16-II as a hydrophobic drug carrier, pioneering work 

was done by Keyes-Baig et al. using pyrene as a model hydrophobic compound [70]. The 

EAK16-II peptide was found to stabilize crystalline pyrene in aqueous solution with high loading 

efficiency. Fung et al. found that EAK16-II could stabilize hydrophobic anticancer drug 

ellipticine at two molecular states (protonated or crystalline) depending on the combinations of 

EAK16-II and ellipticine (EPT) concentrations (Figure 2.8.a-b) [71]. The compositions of 

EAK16-II-ellipticine complexes were found to affect their anticancer efficacy in vitro. 

Subsequent studies used two EAK16-II analogues, EAK16-IV (AEAEAEAEAK-AKAKAK, 

changed charge distribution) and EFK16-II (FEFEFKFKFEFEFKFK, increased hydrophobicity), 

to study the effect of charge distribution and hydrophobicity on the complexation and in vitro 

delivery of ellipticine [69]. Similar as EAK16-II, EAK16-IV was found to stabilize protonated or 

crystalline ellipticine depending on the peptide concentration; on the other hand, EFK16-II could 

stabilize neutral ellipticine and ellipticine crystalline in aqueous solution. Cytotoxicity studies 
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showed that the charge distribution of the EAK peptide did not affect the anticancer efficacy of 

the complexes in vitro; in contrast, the increased hydrophobicity enhanced the stability of EFK16-

II-ellipticine complexes upon dilution.  

 

 

Figure 2.8 (a) The fluorescence spectra of EAK16-II-ellipticine complexes after 24 h stirring 
with 0.1 mg/ml ellipticine and various peptide concentrations. The fluorescence emission peak at 
~520 nm indicates protonated ellipticine, and peak at ~468 nm indicates crystalline ellipticine. (b) 
SEM images of the EAK16-II-ellipticine complexes. Reprinted with permission from reference 
[71] © 2014 Wiley. 

 

2.2.4 Amino acid pairing (AAP) principle 

        Amino acid pairing (AAP) is a systematic design principle for complementary self-

assembling peptides, developed in Dr. Chen’s research group [73].  The amino acid side chains of 

the 20 naturally existing amino acids provide major intermolecular interactions involving 
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electrostatic interaction, hydrogen bonding and hydrophobic interaction, driving the process of 

self-assembly. To form hydrogen bonding, a hydrogen donor and a hydrogen acceptor are 

required. Two amino acids that can form hydrogen bonding via their side chains are seen as a 

hydrogen pair (e.g., asparagine-serine pair). Two amino acids with oppositely charged side chains 

form an ionic pair (e.g., glutamic acid-lysine pair). The hydrophobic amino acid pairing utilizes 

non-polar side chains with similar structures (e.g. alkyl chains or aromatic structures) to facilitate 

self-assembly [73]. Table 2.3 lists the amino acids and their corresponding interactions provided 

by side chains at physiological condition. The AAP principle suggests alternatively arranged 

paired interactions for better matching and achieving certain stereo-chemical and 

physicochemical stability, and minimum free energy [73]. Table 2.4 lists examples of different 

AAP self-assembling peptide systems: HBPP peptide series are designed based on hydrogen 

bonding pairs; EAK16-II is ionic-complementary peptide; APP8 peptide contains all types of 

pairs.   

 

Table 2.3 Properties of the side chains of natural amino acids at physiological condition. Adapted 
from reference [73]. 

 

 

 

 

 

 

 

 

                                           a)  uncharged H at pH>6; b) protonated H at pH<6. 

 

        The all-pairing self-assembling peptide (APP8) is a special amino acid pairing self-

assembling peptide. This peptide consists of glutamine and asparagine to form hydrogen bonding 

 Amino acids 

Hydrogen donor S, T, C, N, H, Q, W, R, Y, K 

Hydrogen acceptor S, T, C, N, M, D, Q, W, R, E, Ha), Y 

Positively charged Hb), K, R 

Negatively charged D, E 
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pair, glutamic acid and lysine to form ionic pair, and phenylalanine to provide hydrophobic 

interaction assisted by π-π stacking via aromatic rings to stabilize the self-assembled structure. 

The paired interactions facilitate an anti-parallel β-sheet formation as illustrated in Figure 2.9.c. 

Those β-sheets further self-assemble into fibrous structures in a concentration dependent manner. 

The critical aggregation concentration (CAC) of this peptide is ~10 µM. As shown in Figure 

2.9.a-b, the peptide nanofibers form bundles beyond this concentration. 

 

Table 2.4 Hydrogen bonding, ionic complementary and all pairing self-assembling peptides. 
Summarized from reference [73]. 

Peptides Primary amino acid sequences Secondary structures* Self-assembly 

HBPP-1 QN r.c Needle-like aggregates 

HBPP-2 QNQN r.c Fibers 

HBPP-3 QQNN r.c Amorpohous aggregates 

HBPP-4 NS n.a Fibers 

HBPP-5 NSNS n.a Fibers 

HBPP-6 NNSS n.a Fibers 

HBPP-7 NSNSNSNS β-sheet Fibers 

EAK16-II AEAEARARAEAEARAR β-sheet Fibers 

APP8 FEFQFNFK β-sheet Fibers 

 

*r.c: random coil; n.a: not available. 
 

        Besides providing paired interactions, the hydrophobic nature of phenylalanine provides 

hydrophobic region to encapsulate hydrophobic compounds. The charged amino acids and polar 

amino acids increase overall hydrophilicity of peptide. Further study has shown the potential of 

APP8 as EPT carrier [73]. The cytotoxicity of APP8-EPT complexes was tested on two cancer 

cell lines, A549 and MCF-7. The APP8-EPT complexes maintained good anticancer efficacy 

upon serial dilution in water (Figure 2.9.d). 
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Figure 2.9 (a) AFM images of the self-assembled nanostructures of APP8 at various 
concentrations (2.2–87 µM). The scale bar is 250 nm. (b) A proposed self-assembly mechanism 
in relation to the CAC of APP8. (c) APP8 anti-parallel β-sheets that form with the assistance of 
paired interactions: hydrophobic amino acid pairing (involving π-π stacking), ionic pairing and 
hydrogen bonding pairing. (d) The cytotoxicity of the APP8-EPT complexes on serial dilutions. 
1x refers to the complexes with 25 µg/ml-1 (21.8 µM) APP8 and 10 µg/mL-1 (40.6 µM) EPT in the 
final culture media. Reprinted with permission from reference [73] © 2014 Wiley.  
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Chapter 3* 

Beyond Electrostatics: Tuning the Membrane Selectivity of a 

Cationic Lytic Peptide by Hydrogen Bonding 

 

 

3.1 Introduction 

        Cationic lytic peptides (CLPs) have received increasing recognition as anti-tumor agents due 

to their activity against tumours [25, 27, 177] and their ability to avoid multidrug resistance 

(MDR) occurring in cancer cells [26, 80]. Although the mechanisms of action of CLPs are not 

completely understood, most CLPs are believed to lyse cells by permeabilizing their cell 

membrane [6, 178]. Several models have been proposed to describe the mode of membrane 

disruption including barrel-stave [15], toroidal pore [17], detergent-like mode of action [18], and 

molecular electroporation[179]. Many of the CLPs that demonstrate membrane activity are 

unstructured in aqueous solution. However, when they come into contact with the membrane, 

most of the CLPs will adopt an amphiphilic helical structure with a hydrophilic face and a 

hydrophobic face [9, 10, 126]. The hydrophilic face is largely cationic that allows the peptide to 

adsorb to the targeted membrane surface via electrostatic interactions and hydrogen bonding, 

while the hydrophobic face facilitates the insertion of peptide into the hydrophobic domain of the 

lipid bilayer.  
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        CLPs are classically known to be antimicrobial agents due to their electrostatic interactions 

with negatively charged bacterial membranes [180]. However, it has been shown that when the 

amphiphilic CLP has a large fraction of hydrophobic residues, it becomes active against 

mammalian cells [181]. Unlike normal mammalian cell membranes which contain mostly 

zwitterionic lipids, cancer cell membranes typically contain elevated levels of negatively charged 

components such as phosphatidylserine (PS) [19, 182] and O-glycosylated mucins which are high 

molecular weight glycoproteins with negatively charged saccharides [21, 22]. The electrostatic 

attraction between CLPs and negatively charged cancer cell membranes is the standard 

explanation for the cancer specificity of CLPs, although the overall mechanism is not understood 

[6, 12, 27]. 

        Cholesterol is an essential structural component of eukaryotic cell membranes and is 

abundant in the outer leaflet of red blood cell membranes [183, 184]. Cholesterol regulates 

membrane fluidity and permeability and thus interferes with the membrane disrupting efficacy of 

CLPs [185]. Previous studies in synthetic lipid systems have shown that the presence of 

cholesterol decreases the efficacy of CLPs [186-188]. However, interestingly, a recent study on 

high-throughput screening of melittin-like peptides showed that some variants of melittin have 

improved potency on cholesterol containing lipid vesicles [135]. This finding suggests that 

besides the preference of negatively charged phospholipids due to electrostatic interactions, 

cholesterol can also contribute to the membrane selectivity of CLPs although the reason for the 

improved efficacy against cholesterol-rich vesicles was not discussed.  

        We previously reported a study on peptide-siRNA co-assembly involving an arginine-rich 

peptide with a sequence of (n-RLLRLLLRLWRRLLRLLR-c) [189], or C6 in short. In the 

present work, we study the activity of C6 against artificial membranes with the well-established 

calcein leakage assay. Membrane leakage is evaluated by time-resolved fluorescence 

spectroscopy in an assay previously published by Patel et al. [190]. In contrast to the classic 

calcein leakage assay, the fluorescent lifetimes of the self-quenching dye can be determined from 
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time-resolved fluorescence decay profiles. The efflux value is determined from the relative 

contribution of lifetimes of the free dye and the entrapped dye inside vesicles to the overall decay 

curve, rather than from total fluorescence intensities. The time-resolved fluorescence assay offers 

information on how the peptide disrupts the membrane, which can be classified into two broad 

categories: all-or-none leakage or graded leakage [190]. All-or-none leakage typically involves 

the formation of stable pores or asymmetry-induced membrane ruptures, where the disruption in 

the membrane allows all of the contents of the vesicle to equilibrate with the bulk solution 

environment. Graded leakage typically involves transient disordering in the membrane that allows 

only a small amount of the vesicle contents to leak out at a time. 

        In the current study, we compared the performance of C6 in vesicles and in cells by 

examining its water-membrane partition coefficients in the two systems. Two cancer cell lines as 

well as red blood cells were tested in the in vitro assays. We also investigated the impact of 

cholesterol and arginine residues on the efficacy of the peptide against cholesterol-rich 

zwitterionic membranes.  

 

3.2 Materials and methods 

3.2.1 Materials 

        The peptide C6 (Mw 2470 g/mol, purity > 95%) was purchased from CanPeptide Inc. 

(Montreal, Canada), which followed solid phase peptide synthesis method on Rink amide MBHA 

resin (AAPPTec, Kentucky, USA) manually, with Fmoc (fluorenylmethyloxycarbonyl) 

chemistry. Briefly described: the deprotection of Fmoc (AAPPTec, Kentucky, USA) was 

accomplished by the treatment with 20% Piperidine (≥99.5%, Sigma Aldrich, Oakville, Canada) 

in DMF (N,N-dimethylformamide) (≥99.8%, Sigma Aldrich, Oakville, Canada), followed by 

coupling with activated carboxyl functional group of the next amino acid. During the synthesis, 

the coupling process was monitored with Kaiser Test. Before the synthesized peptides were 
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cleaved from resin with 95% TFA (trifluroacetic acid) (Sigma Aldrich, Oakville, Canada), the 

acetylation of N-terminal was carried out applying acetate anhydride (Sigma Aldrich, Oakville, 

Canada). The crude peptides were purified in Waters LC200 preparative system (Waters, 

Massachusettes, USA) equipped with Phenomenex Gemini C18 column (Phenomenex, 

California, USA).  

        Calcein, cholesterol, Tris(hydroxymethyl)aminomethane (Tris) hydrochloride, 

ethylenediaminetetraacetic acid (EDTA), Triton X-100, chloroform (≥99.5%) and methanol 

(≥99.8%) and MTT-based In Vitro Toxicology Assay Kit were obtained from Sigma Aldrich 

(Oakville, Canada); 1-palmitoyl-2-oleoyl-3-sn-glycero-phosphocholine (POPC) and 1,2-

distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(poly-ethyleneglycol)-2000] (DSPE-

PEG2000) were obtained from Avanti Polar Lipids (Alabaster, USA); phosphate colorimetric 

assay kit was purchased from BioVision (Milpitas, USA); A549 cells (non-small cell lung cancer) 

and MCF-7 cells (breast cancer) were obtained from ATCC (Manassas, USA); the culture media 

F-12 (Kaighn’s modification) and MEM Eagles with Earle’s Balanced Salts were obtained from 

HyClone Laboratories (Mississauga, Canada); fetal bovine serum (FBS) and trypsin-ETDA were 

obtained from Invitrogen (Burlington, Canada); phosphate buffer saline (PBS) and 

penicillin/streptomycin (10000 U) were obtained from MP Biomedicals (Montreal, Canada). 

Fresh rabbit ear venous blood (2-year old female New Zealand White rabbit, 4.5 kg) was obtained 

from Central Animal Facility (Waterloo, Canada).  

 

3.2.2 Sample preparation 

        For the leakage assays, freshly made aqueous solutions of 600 mM C6 were diluted in either 

10 mM Tris, 110 mM NaCl, and 0.5 mM EDTA at pH 7.4 (N buffer) or 10 mM Tris, 50 mM 

NaH2PO4, 60 mM NaCl and 0.5 mM EDTA at pH 7.4 (P buffer). For all other experiments C6 

was directly dissolved in either N buffer or P buffer. Two membrane compositions were 
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investigated: POPC and POPC with ~20 mol% cholesterol. The lipid in chloroform was dried 

under nitrogen and then vacuum to form a film, which was hydrated in N buffer followed by eight 

freeze-and-thaw cycles. The resulting multi-lamellar vesicles were extruded at least fifteen times 

through 100 nm pore size filters (Waters, Ontario, Canada) to obtain large unilamellar vesicles 

(LUVs). 

 

3.2.3 Circular dichroism spectroscopy 

        The secondary structures of the peptide in buffer alone and in the presence of POPC 

membranes were determined with a J-810 spectropolarimeter (Jasco Europe, Cremella, Italy). The 

spectra were recorded from 250 nm to 200 nm at 25°C. To determine the secondary structure of 

C6 in solution, 80 µM peptide in N buffer or P buffer was measured in a 1mm long quartz cell 

(Hellma, Concord, Canada) at various time points, respectively. For experiments with LUVs, 80 

µM C6 was incubated with 2 mM POPC for 1 hour before spectra acquisition. The raw CD 

ellipticity (millidegrees) was presented. The spectra were averaged from three replicates.  

 

3.2.4 Steady-state fluorescence 

        A Type QM4-SE Fluorometer (PTI, London, Canada) with a continuous xenon lamp source 

was used to monitor the intrinsic fluorescence of tryptophan in C6. Solutions of 10 µM C6 were 

incubated with POPC LUVs at concentrations ranging from 2.5 to 20 µM for 1 hour (in N buffer), 

then scanned at an excitation wavelength of 280 nm and emission wavelength range of 310 to 400 

nm, with slit widths of 0.5 mm and 2 mm, respectively. Fluorescence spectrum of N buffer was 

used as blank. 
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3.2.5 Time-resolved fluorescence leakage assay 

        LUVs of POPC or POPC and ~20 mol% cholesterol were prepared by extrusion as 

previously described, except with a hydrating buffer consisting of 70 mM calcein, 10 mM Tris 

and 0.5 mM EDTA at pH 7.4. Calcein was then removed from outside the liposomes by 

exchanging the external buffer for N buffer (containing 135mM NaCl) on a PD-10 De-salting 

Column (GE healthcare, New Jersey, USA). The lipid concentration was then determined by a 

phosphate assay kit. The calcein-loaded vesicles (CLVs) were added to varying concentrations of 

C6 (in N buffer or P buffer) in polystyrene cuvettes (Fisher scientific, Ottawa, Canada). After 1 

hour of incubation on a rotatory shaker, the samples were assayed in a Horiba JobinYvon 

FluoroLog 3 (Edison, NJ, USA) equipped with time-correlated single photon counting (TCSPC) 

for time-resolved fluorescence. The excitation source was a 467 nm, 1 MHz laser diode and 

emission was measured at 515 nm for 180 seconds. The resulting decay profiles were then saved 

with the instrument response function for further analysis as previously described [190]. The 

leakage profiles obtained from at least three independent experiments were then averaged to 

obtain the final results.  

 

3.2.6 Estimation of cell surface 

        The images of A549 cells were obtained using an EVOS ® FL Cell Imaging System (AMG, 

Mill Creek, USA). The surface area of each single cell was estimated by counting the pixels that 

the cell occupied in the image. Matlab 2008 (MathWorks, Natick, USA) was used to analyze the 

images. The surface area of a single A549 cell was averaged from the surface area of 133 cells, 

which was calculated to be 2076 ± 714 µm2.  

 

3.2.7 Partition coefficient estimated in cellular system 

        The peptide to lipid ratio for membrane-bound peptide in a cellular system can be calculated 
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by dividing the concentration of membrane-bound peptide (𝐶!"!#$%&"!!"#$%  !"!#$%") to number 

of cells ratio (obtained from the linear trend line equation shown in Figure3.2.d) by the 

concentration of lipids that one single cell can contribute (Ca). Considering the bilayer structure 

of cell membranes, a factor of 2 should multiply the average cell surface area. Hence, the 

concentration of lipids contributed by a single A549 cell can be estimated by the following 

equation, 

                      𝐶! =
!×  !"#$!%#  !"##  !"#$%&'  !"#!

!!  ×  !"#"$  !!"#  !"#!  ×  !"#$%&  !"  !"#$"%&  !"#$%(!""  !!)  
                                Eq. 3.1 

        As 2076 µm2 was adopted as the average cell surface area and 0.65 nm2 was adopted as the 

lipid head area, Ca was calculated to be 5.3×10-5 µM. Since A549 cells split in around 22 hours, 

the number of A549 cells could double after 1 day of incubation. Hence, the lipid concentration 

contributed by A549 cells should also double, and the membrane-bound peptide to lipid ratio (Re) 

for the cellular system can be calculated as  

                      𝑅! =
(!!"!#$%&"!!"#$%  !"!#$%")  !"  !"#$%&  !"  !"##$  !"#$%

!  ×  !!
= 14.2                              Eq. 3.2 

The aqueous concentration of free C6 was known to be 10.35 µM, so the partition coefficient was 

calculated to be 1.4 ×106 M-1. This is a rough estimation due to factors, such as a) the presence of 

other components in the membrane and b) the vertical dimension of the cell membrane surface is 

not counted in microscopy images. Hence, the calculated number may still have an error in the 

range of 50%. 

 

3.2.8 Determination of cholesterol level 

        The cholesterol levels of A549 cell line and MCF-7 cell line were quantified using an 

Amplex® Red Cholesterol Assay Kit (Invitrogen, Burlington, Canada). The cholesterol was 

extracted by mixing 200 µl culture media containing 5 × 106 A549 cells or MCF-7 cells with 400 

µl chloroform-methanol (v/v 2:1) in1.5 ml microcentrifuge tubes. The tubes were vortexed and 

incubated for 1 day. Afterwards, the tubes were centrifuged for 10 min at 14000 rpm to separate 
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the aqueous phase and organic phase. The organic phase was transferred to a clean tube and dried 

under nitrogen (prepurified). The dried cholesterol/lipids mixture was then dissolved in 250 µl 

reaction buffer provided in the kit, following with 10 min sonication. The cholesterol/lipids buffer 

solution was mixed with the reagents following the protocol provided by the company. The kit 

reacted with cholesterol and produced fluorescent resorufin, which was excited at 560 nm. The 

fluorescence intensity at 587 nm was averaged from 584 to 590 nm. A 10 µg/ml cholesterol 

sample was adopted as reference to standardize the fluorescence intensities from each 

independent experiment. The relative cholesterol levels of cell lines were obtained by dividing the 

fluorescence intensities of samples by the fluorescence intensity of the cholesterol standard 

sample. The relative cholesterol level of the standard sample was set as 1.  

 

3.2.9 Cell proliferation assay 

        The in vitro cytotoxicity of C6 was evaluated in both buffers using the MTT assay. A549 

cells were cultured in F12K media containing 10% FBS and 1% penicillin/streptomycin. They 

were then seeded into 96-well plates at 5000 cells/well, 10000 cells/well and 20000 cells/well 

followed by a 24 hour incubation. MCF-7 cells were cultured in MEM media containing 10% 

FBS and 1% penicillin/streptomycin. They were seeded at 20000 cells/well and incubated for 24 

h. The cells were then incubated with C6 for 1 hour before adding MTT. A detailed description of 

the MTT assay can be found in literature [71].  

 

3.2.10 Hemolysis assay 

        The hemolysis assay was performed in vitro by using fresh rabbit ear venous blood. The 

venous blood was collected in K2EDTA anticoagulant tubes (BD medical, Mississauga, Canada), 

centrifuged at 1500 rpm for 15 min and washed three times with PBS buffer. After washing, the 

red blood cells (RBCs) were isolated and suspended in N buffer or P buffer to obtain a 5% 
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hematocrit solution. Varying concentrations of C6 were incubated with 1% RBCs at 37°C for 2 

hours. RBCs mixed with 1% Triton X-100 and the corresponding buffer were used as positive 

and negative controls to obtain 100% and 0% hemolysis, respectively. The samples were 

centrifuged at 3000 rpm for 5 min and the supernatants were collected in a 96-well plate. The 

released hemoglobin was monitored at 540 nm using a FLUOstar microplate reader (BMG 

Labtech, Ortenberg, Germany). The percentages of hemolysis were then determined with the 

following equation:  

𝐻𝑒𝑚𝑜𝑙𝑦𝑠𝑖𝑠  % =
𝐴𝑏𝑠(𝑠𝑎𝑚𝑝𝑙𝑒) − 𝐴𝑏𝑠(−)
𝐴𝑏𝑠(+) − 𝐴𝑏𝑠(−)

  ×100% 

where Abs(sample), Abs(+) and Abs(-) denote the absorbances of C6-treated, Triton-treated and 

buffer-treated RBCs, respectively. The animal studies followed the protocols approved by the 

University of Waterloo Office of Research Ethics and the Animal Care Committee.  

 

3.3 Results 

3.3.1 Physicochemical characterization of C6 and C6/POPC interactions 

        As reported in our previous study, C6 mainly adopted a random coil conformation in 

aqueous solution, in accordance with what is found for classic antimicrobial peptides [181, 189]. 

We then characterized the secondary structure of C6 in N buffer. The CD spectrum of C6 in N 

buffer (Figure 3.1.a) exhibited a minima at 208 and 222 nm which indicated that C6 took on an α-

helical conformation in N buffer. The difference in peptide conformation in water versus in buffer 

may be due to the presence of salt which screens the positively charged arginine residues, 

resulting in reduced electrostatic repulsion between them thus stabilizing the helical structure. 

The kinetics of secondary structure formation in C6 was also studied (Figure 3.1.c), which 

suggested that the α-helical conformation of C6 was fairly stable in N buffer. 

        Most membrane-active cationic peptides fold into an amphiphilic structure when associated 



	
   46	
  

with lipid membranes, which facilitates peptide insertion [79]. The general form of the CD 

spectrum of C6 was conserved when C6 was incubated with POPC vesicles, but the ratio of the 

ellipticity minima at 208 nm and 222 nm increased (Figure 3.1.a). The spectrum also became 

more negative between 208 nm and 222 nm, which may result from the formation of β-

sheets/turns [191]. These changes suggested that C6 changed conformation upon associating with 

the membrane. 

 

 

Figure 3.1 (a) CD spectra of 80 µM C6 in N buffer (110 mM NaCl, 10 mM Tris, 0.5 mM EDTA 
at pH 7.4) incubated for 1 hour with and without 2 mM POPC LUVs. (b) Fluorescence spectra of 
tryptophan at 10 µM C6 incubated with varying POPC concentrations up to 20 µM. CD spectra of 
80 µM C6 in (c) N buffer solution (110 mM NaCl, 10 mM Tris, 0.5 mM EDTA at pH 7.4) or in 
(d) P buffer solution (50 mM NaH2PO4, 60 mM NaCl, 10 mM Tris and 0.5 mM EDTA at pH7.4) 
with different incubation times. 

         

        To further confirm the association between C6 and POPC membranes, the intrinsic 
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fluorescence of the single tryptophan residue located in the centre of the C6 sequence was 

monitored by incubating the peptide with varying concentrations of POPC vesicles. Hydrophobic 

interactions between the acyl chains of POPC and the tryptophan of C6 would be expected to 

cause blue shifts in the fluorescence spectra. This was indeed observed for peptide to lipid ratios 

of up to 4:1, as shown in Figure 3.1.b where the tryptophan emission peak shifted from ~335 to 

~323 nm. The blue shift from above 330 nm to below 330 nm indicated a transfer of the 

tryptophan residue from a polar to an apolar environment as a result of the membrane association 

of C6 [192]. The blue shift was accompanied by approximately a two-fold increase in 

fluorescence intensity at the highest lipid concentration studied (1:2 peptide:lipid molar ratio). 

The fluorescence spectra showed no further changes above equi-molar ratios of C6 and POPC. 

 

3.3.2 Time-resolved fluorescence leakage assay 

        Both CD and steady-state fluorescence spectra suggest that C6 binds or inserts into POPC 

membranes. To evaluate the extent of membrane permeabilization caused by C6, time-resolved 

fluorescence leakage assays were carried out with POPC LUVs in the presence of N buffer. The 

N buffer contained 135 mM NaCl instead of the 110 mM used in other experiments for it to be 

iso-osmotic with the buffer in the liposome interior. Calcein, a self-quenching fluorescent dye 

was loaded into the vesicles. Bi-exponential functions were fitted to the fluorescence decay traces 

with one component for entrapped calcein and the other for free calcein in bulk solution: well-

entrapped calcein yields a lifetime τE of about 0.4 ns while greatly diluted calcein (< 5 µM) in 

bulk solution has a lifetime τF of 4 ns. Calcein efflux or leakage values resulting from C6 addition 

were then calculated based on the pre-exponential factors for the two different lifetime 

components [190].  
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Figure 3.2 (a) Fluorescence lifetime τ vs. peptide concentration Cp. τE and τF are entrapped and 
free lifetimes respectively, and letters indicate sample series with lipid concentrations (CL) of 100 
µM (A), 200 µM (B), 300 µM (C) and 400 µM (D). (b) Efflux as a function of Cp for the four 
series, with errors of ±10% efflux. (c) Equi-activity analysis: The peptide concentration required 
to induce a particular leakage value at a specific CL. The line of best fit for each efflux value 
yields parameters in equation (1). (d) IC50 of C6 against A549 cells as a function of seeding 
density in the cell proliferation assay. The IC50 value for each cell density was averaged from at 
least three independent experiments. Error bars represent standard deviations (n ≥ 3). 

 

        The leakage assay with POPC consisted of four series of samples with increasing lipid 

concentrations (CL): 100 µM, 200 µM, 300 µM and 400 µM. As shown in Figure 3.2.a, τE for all 

four series remains largely unchanged with increasing C6 concentrations. This indicates that a 

vesicle in the solution is either intact (0.4 ns lifetime), or have all of its calcein equilibrated with 

bulk solution (4 ns lifetime). Therefore the mechanism of C6-induced leakage is all-or-none, 

which is associated with membrane defects that last on the order of milliseconds, allowing all of 

the entrapped calcein to equilibrate. The calculated efflux values for the four series are plotted 
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against peptide concentration in Figure 3.2.b. The results show that for 100–400 µM POPC, C6 

induces significant membrane disruption at low micromolar concentrations—a typical active 

range for CLPs. Also, more C6 is needed to induce the same leakage level at higher lipid 

concentrations, indicating that membrane permeabilization is unequivocally associated with C6-

membrane interactions.  

 

3.3.3 Partitioning behaviour in liposome and cellular systems 

        To further investigate the partitioning-dependent membrane activity of C6, peptide 

concentrations that cause specific efflux values were plotted against their corresponding lipid 

concentrations in an equi-activity analysis (Figure 3.2.c). To induce the same amount of leakage, 

the required concentration of C6 increases linearly with increasing lipid concentration as 

described by 

                                                𝐶! = 𝑅!𝐶! + 𝐶!
!"                                                                  Eq. 3.3        

where the slope 𝑅! is the peptide to lipid ratio in the membrane and 𝐶!
!" is the concentration of 

free peptide in aqueous solution. The 𝑅! and 𝐶!
!" for each arbitrarily chosen efflux value were 

obtained from linear fits and are summarized in Table 3.1. It was observed that with increasing 

efflux values, higher amounts of peptide were found in both aqueous solution and in the 

membrane environment, although the differences in aqueous concentrations were not statistically 

significant. Since the lifetime of the entrapped component of calcein remained largely unchanged 

at 0.4 ns in Figure 3.2.a as a result of all-or-none leakage caused by C6 in POPC vesicles, higher 

peptide concentrations were expected to cause more vesicles to sustain C6-induced defects that 

would result in complete calcein efflux. The increase in the fraction of empty vesicles translated 

to the increased efflux values observed. With 𝑅!/𝐶!
!", the partition coefficient 𝐾 was calculated 

for each efflux value (see Table 3.1). The values remain largely unchanged within error, at about 

20 mM-1. 
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        Currently, much of the research on the mechanisms of CLP-membrane interactions involves 

biophysical characterization techniques such as the leakage assay. Since therapeutic application is 

a major goal of the research into CLPs, it is important to compare the performance of CLPs in 

artificial systems with that in cells. However, direct comparison or extrapolation of behaviour is 

difficult to establish as liposomal systems are easily manipulated compared to in vitro assays, 

which involve complex experimental conditions that involve solvent environment, membrane 

composition, and potential competitive binding. Here we attempted to correlate the partition 

behaviour of C6 between the two systems. A549 cancer cells were assayed to evaluate the 

cytotoxicity of C6 at three different seeding densities: 5000, 10000, and 20000 cells/well. The 

calculated IC50 values are 18.1±0.6 µM, 27.4±1.7 µM, and 43.9±5.2 µM respectively. By plotting 

the IC50 values against the cell numbers as shown in Figure 3.2.d, we see that IC50 values 

increased proportionally to cell densities in agreement with results from the leakage assay. 

Extrapolating to a cell number of 0, the aqueous concentration of C6 was calculated to be 10.5 

µM. Given that cells double in number over the initial culturing period, the membrane-bound 

peptide to cell number ratio was found to be 0.75 nM/cell.  

	
  
Table 3.1 Partition coefficient 𝐾, 𝑅! and 𝐶!

!" obtained from the calcein leakage assay with C6 
and POPC LUVs. 

Leakage 
values 8% 28% 36% 50% 58% 69% 

𝐶!
!"(µM) 0±0.06 0.26±0.14 0.64±0.16 1.05±0.21 0.91±0.24 0.66±0.26 

𝑅!   (10!!) 7.4±0.4 14.2±0.8 15.3±0.9 17.8±1.1 21.5±1.3 25.6±1.5 

K (mM-1) N/A 54±29 24±6 17±4 24±6 39±16 
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3.3.4 Activity of C6 against cholesterol-rich membranes 

        The membrane selectivity of CLPs is of interest from a therapeutic perspective: the 

electrostatic attraction between cationic amino acids and negatively charged membranes is cited 

as the primary cause for the selectivity of CLPs against cancerous cells [12, 27].  However, 

bacteria also have negative surface charges which usually render them more susceptible to CLPs. 

Another reason for the susceptibility is the absence of cholesterol in bacteria; cholesterol orders 

the lipid tails in eukaryotic cell membranes, thus rendering them more resistant to CLPs [6, 191]. 

The absence of anionic lipids in our model liposome system allowed us to examine the influence 

of cholesterol on CLP-membrane interactions. Therefore we investigated the leakage induced by 

C6 in cholesterol-rich POPC LUVs in N buffer. As shown in Figure 3.3, C6 was less active on 

membranes composed of POPC and about 20 mol% cholesterol compared with membranes of 

only POPC, but the shift was small and of significance at higher efflux values. The presence of 

cholesterol increased membrane rigidity, which detered increased partitioning of C6 into the 

membrane beyond the initial uptake. 
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Figure 3.3 Efflux vs. C6 concentration profiles for POPC (100 µM) as well as for POPC and 
cholesterol liposomes in NaCl (N) and in phosphate (P) buffers. Vertical error bars are standard 
deviations obtained from at least three independent experiments. Horizontal error bars represent 
the instrumental error in the lipid concentration measurement.  

	
  

3.3.5 Effect of phosphate ions on membrane activity of C6 

        With the demonstration of disruptive activity of C6 against both POPC and cholesterol-rich 

POPC membranes, it was of interest to understand the role of cholesterol in membrane 

permeabilization and the related interactions in the process.          

        Hydrogen bonding and electrostatic interaction are the two major forces believed to be 

involved in the initial contact between C6 peptides and exposed lipid head groups. Since the 

liposome leakage assay was performed at high ionic strength, the impact of electrostatics could be 

weak[29]. Moreover, molecular dynamics analysis performed by our collaborator found that the 

numbers of H-bonds between arginine residues and phosphate head groups of POPC were not 

uniformly distributed. As shown in Figure 3.4.a, arginine residues at position 1, 4, 11, 15 and 18 

in C6 sequence were in the vicinity of cholesterol molecules, which was also evidenced by the 
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occurrence of H-bonds observed between those arginine residues and cholesterol molecules 

(Figure 3.4.b). These arginine residues formed more H-bonds with POPC molecules than the 

other arginine residues within the tested time of simulation (Figure 3.4.b). Taken together, it 

seems to suggest that the role of cholesterol involved providing higher chance for arginine to 

contact phosphate head groups, which could be due to the compact packing of POPC lipids 

around cholesterol. This observation might suggest that hydrogen bonding between C6 and 

membrane components plays a key role in the membrane activity of C6 on cholesterol-rich 

zwitterionic membranes.  

        To elucidate the role of hydrogen bonding in C6’s effectiveness against cholesterol rich 

membranes, the calcein leakage assay was carried out in a buffer containing 50 mM NaH2PO4, 60 

mM NaCl, 10 mM Tris and 0.5 mM EDTA at pH 7.4 (P buffer). The purpose of adding 

phosphates was to interfere with the hydrogen bonding between C6 and the membrane by 

occupying the “binding sites” on C6. As shown in Figure 3.3, the membrane disruptive activity of 

C6 decreased against cholesterol-rich membranes in P buffer when compared to that in N buffer. 

In the presence of POPC vesicles, the leakage profile of C6 showed no significant difference 

between N buffer and P buffer. In the case of cholesterol-rich POPC vesicles, higher order in the 

packing of lipid chains rendered the membrane less susceptible to peptide-induced membrane 

disorder and thus efflux was lower at a given peptide concentration. Comparing cholesterol-free 

and cholesterol-rich vesicles in N buffer, the profile was shifted to higher peptide concentrations 

for cholesterol-POPC vesicles (as shown Figure 3.3). The shift was small but not negligible. 

However, when comparing cholesterol-free and cholesterol-rich vesicles in P buffer, the 

difference was at least a two-fold increase in peptide concentration required to induce the same 

efflux from 50% upwards.  
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Figure 3.4 (a) A snapshot of simulation from above the membrane at 67 ns. The arginine residues 
in C6 peptide are shown in green with the rest residues shown in yellow, POPC molecules in red 
and cholesterol molecules in blue. The arginine residues are labeled with numbers to indicate the 
position of each arginine residue in C6 molecule. The N-terminus of C6 orients to right in the 
snapshot. (b) The occurrence of H-bonds between the guanidinium group of each arginine residue 
and POPC (black line) or CHOL (red line) molecules over time. The simulation shows that each 
guanidinium group can form a maximum of 7 H-bonds with neighbouring POPC molecules. All 
the arginine residues form H-bonds with neighbouring POPC molecules; while only arginine 
residues at position 1, 4, 11, 15 and 18 (refer to ARG1, ARG4, ARG11, ARG15, and ARG18) 
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form ~ 1 H-bond with neighbouring CHOL molecules, respectively. A neighbouring molecule is 
defined whenever POPC head groups or cholesterol hydroxyl groups are not farther than 0.35 nm 
of any atom of C6 peptide. 

 

        To investigate how the membrane selectivity of C6 in liposomes extrapolates to cells, we 

evaluated the cytotoxicity of C6 on two cancer cell lines, A549 and MCF-7. It was reported that 

MCF-7 cancer cells contained elevated levels of cholesterol-rich lipid rafts in their cell 

membranes [193]. We also confirmed that MCF-7 cells contain approximately two-fold higher 

cholesterol than that of A549 cells although the absolute mole-percentage could not be evaluated 

(Figure 3.5.a). As shown in Figure 3.5.b-c, C6 demonstrated comparable cytotoxicity against 

A549 cells and MCF-7 cells within error in N buffer, similar to leakage assay results where 

cholesterol only slightly inhibited C6 activity. Interestingly, the cytotoxicity of C6 against A549 

cells increased significantly in P buffer compared to N buffer, but cytotoxicity against MCF-7 

cells almost remained the same. 

 

3.3.6 Hemolytic activity of C6 

        Clinical application of CLPs is expected to have many advantages over conventional 

chemotherapeutic agents, such as increased specificity and reduced hemolysis. The outer leaflet 

of red blood cell membranes contains zwitterionic phospholipids and cholesterol (~26%) [184]. 

According to our results, it would be possible to enhance the cytotoxicity of CLPs against cancer 

cells with lower cholesterol levels while limiting the hemolytic activity by inhibiting the 

hydrogen bonding between peptide and lipids. The hemolytic activities of C6 in both N and P 

buffers were tested using rabbit blood which showed similar hemolytic activity (Figure 3.5.c). 

Although there was no significant reduction in hemolytic activity with P buffer, the results still 

demonstrated potential in enhancing the specificity of CLPs towards cancerous cells by 

modulating their membrane selectivity.     
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Figure 3.5 (a) Relative cholesterol levels of A549 cell line and MCF-7 cell line. In vitro 
cytotoxicity of C6 towards (b) A549 lung cancer cells, (c) MCF-7 breast cancer cells, and the 
hemolytic activity of C6 on (d) rabbit red blood cells. The results were averaged from at least 
three independent experiments. Error bars represent the standard deviation of multiple 
experiments.  

 

3.4 Discussion 

        CD spectroscopy and steady state fluorescence results indicated that C6 interacted with the 

zwitterionic membrane but did not distinguish between association and insertion, although the 

secondary structure of the peptide changed from alpha-helical to more beta-sheet-like upon 

membrane-association. The mechanism of leakage as observed from the calcein leakage assay 

was all-or-none for both cholesterol-free and cholesterol-rich vesicles, which indicated that 

membrane permeabilization lasted long enough to equilibrate the vesicle contents with bulk 
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solution, likely on the order of milliseconds. If C6 did not initially have access to both leaflets, 

and translocated to the inner leaflet only after membrane permeabilization, then one would expect 

the partition coefficient to increase, as the inner leaflets of vesicles accommodated more peptide 

at higher efflux values. However, the partition coefficients in Table 3.2 did not increase with 

increasing peptide concentration within error, which suggested that that C6 penetrated the 

membrane and had access to both leaflets even at low peptide concentrations. Another possibility 

is that the inner leaflet of the bilayer did not influence partitioning behaviour. Given the large 

errors in the partition coefficient due to errors in extrapolated aqueous concentrations of the 

peptide, experimental limitations precluded a definite conclusion. The aforementioned results 

from various experiments indicated that C6 likely induced pore formation with a structure similar 

to the toroidal pore. However, the number of peptide molecules involved in the process is 

unknown.  

        In order to compare the leakage and in vitro assays, one could establish an empirical 

correlation between the activities of the peptide on model membranes and on cells, or an effective 

partition coefficient of C6 into cells based on results from the cell proliferation assays, or an 

effective C6 concentration per vesicle based on results from the leakage assays. Empirical 

correlations were unreliable and highly dependent on cell type, bilayer curvature (liposome/cell 

size), membrane composition and experimental details. The effective partition coefficient in cells 

and the effective C6 concentration per vesicle were estimated and discussed below. 

        To estimate an effective partition coefficient of C6 in cells, surface areas of cells were 

obtained by counting the pixels of cells occupied in microscopy images. The head group area of 

0.65 nm2 for POPC was divided from the surface area to roughly approximate the number of 

phospholipids on the cell surface [194]. The membrane-bound C6 to lipid ratio and the partition 

coefficient were then estimated to be about 14 and 1.4×106 M-1, respectively (see section 3.2.7 for 

details). The estimated effective partition coefficient was about five orders of magnitude greater 

than the values obtained from the leakage assay in Table 3.1. 
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        To estimate the effective concentration of C6 per vesicle from leakage data, a surface area of 

3.8×104 nm2 was calculated for an average vesicle diameter of 110 nm, which corresponded to 

about (1.17± 0.15)×105 lipids per vesicle. IC50 can be considered as akin to 50% leakage or efflux 

since the leakage mechanism for C6 was all-or-none. The Caq value of 1.05 µM was a reasonable 

difference from the 11 µM aqueous concentration obtained from cell proliferation assays, given 

that higher aqueous concentrations were associated with higher peptide partitioning. However, Re 

of 0.018 at 50% efflux corresponded to a C6 concentration of 3.5×10-21 M/vesicle or 3.3×10-12 

nM/vesicle (± ~20% error); about eleven orders of magnitude less than the value obtained from 

the cell proliferation assays. If one takes into account that the surface area of a cell is much larger 

than that of a liposome (about 5 orders of magnitude higher), the difference in concentration of 

peptide per vesicle/cell between leakage and cell proliferation assays is reduced to about six 

orders of magnitude, which is similar to the difference obtained from the estimation of the 

effective partition coefficient in cells above. 

        A major factor that contributed to the great discrepancies in these effective partitioning 

estimates lay in the experimental setup: cells were seeded as sheets whereas leakage assays were 

done in solution. Therefore the interaction kinetics was different for the two experiments. Both 

estimation approaches indicated that cell membranes took up a greater amount of C6 at IC50 

compared to the simple POPC liposome system at 50% efflux. Several considerations account for 

this observation: first and foremost, only having zwitterionic species in a model system neglected 

a major aspect of C6-cell interactions, as cancer cells have elevated levels of negatively charged 

components. As a consequence of the negative surface charge of cells, more C6 was able to bind 

to the cell membrane before electrostatic repulsion became prominent as compared with 

zwitterionic membranes. Also, the presence of proteins and other membrane components added 

complexity which interfered with C6 activity. Second, arginine-rich peptides have been proposed 

to disrupt the membrane by clustering anionic lipids [195]. Other groups have reported reduced 

activity of antimicrobial peptides in the absence of anionic lipids [180]. We did not observe the 
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effect of this added interaction in our leakage results with a POPC model system. Third, the 

overall C6 concentration required to disrupt the cell membrane was greater than that required for 

liposomes because of unspecific binding with other components in the culture media as well as 

repair mechanisms of the cell that counteract damages from C6. Overall, the efficacy of 

membrane-disruption of C6 can be expected to be much less in biological systems than in 

synthetic lipid systems. 

        In the membrane selectivity study, we intended to investigate the role of hydrogen bonding 

in C6 induced membrane leakage by inhibiting the hydrogen bonding between C6 and 

phospholipid membranes with phosphate ions. To find out whether there was any additional 

effect, other than hydrogen bonding with C6, induced by using P buffer, we also determined the 

secondary structures of C6 in P buffer with or without the presence of lipid vesicles. CD spectra 

showed that P buffer did not induce a conformational change of C6 (Figure 3.1.d). Furthermore, 

the conformation of membrane-associated C6 was similar in the two buffers (as shown Figure 

3.7), which suggested that the process of membrane association remained the same. However, C6 

was observed to be less stable in P buffer than in N buffer as the CD spectra show reduced signal 

intensity over the span of several hours with precipitation occurring within a day of dissolution 

(Figure 3.1.d). These observations indicated an enhanced hydrophobicity of C6 in P buffer. 

Hence, the changes in the membrane lytic activity of C6 in P buffer could mainly result from two 

factors: reduced hydrogen bonding opportunities between C6 and membranes, and enhanced 

hydrophobicity of C6. It has been reported that enhanced hydrophobicity of CLPs promotes their 

activity on both zwitterionic and cholesterol-rich membranes [92, 180]. Comparing the leakage 

profiles of C6 with POPC in the two buffers (Figure 3.3), the inhibited hydrogen bonding 

opportunities expected to cause a reduction in the activity of C6 in P buffer were likely 

compensated by the enhancement in the hydrophobicity of C6. On the other hand, the 

permeabilization of C6 was further inhibited in P buffer on cholesterol-rich membranes. This 

cannot be attributed to increased mechanical rigidity of the membrane alone, because the shift 
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caused by cholesterol inhibition of permeabilization in N buffer was less. The reduced hydrogen 

bonding opportunities between arginine, cholesterol and POPC as a result of C6’s complexation 

with free phosphate ions was likely responsible for the enhanced inhibition.  

 

 
Figure 3.6 CD spectra of 80 µM C6 in N buffer solution (110 mM NaCl, 10 mM Tris, 0.5 mM 
EDTA at pH 7.4) or in P buffer solution (50 mM NaH2PO4, 60 mM NaCl, 10 mM Tris and 0.5 
mM EDTA at pH7.4), with the presence of 2 mM POPC liposomes or 2 mM POPC/cholesterol 
(4:1) liposomes, after 1h incubation.  

 

        Although the cytotoxicity results were quite different from liposome leakage results, the 

same hydrogen bonding effect could still be seen: the enhanced activity of C6 against A549 cells 

could be attributed to the enhanced hydrophobicity of C6 in P buffer; however, the enhancement 

was compensated by phosphate induced inhibition of hydrogen bonding between C6 and MCF-7 

membranes (higher cholesterol), resulting in the unchanged cytotoxicity against MCF-7 cells. We 

did not observe a significant enhancement in activity from increased peptide hydrophobicity in 
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leakage experiments―the inhibition of hydrogen bonding was likely more significant than 

increased hydrophobicity because it reduced peptide adsorption in the presence of phosphate 

which leaded to reduced leakage on cholesterol-rich membranes. However, the enhanced 

hydrophobicity seemed to be significant in cells, likely due to the complexity of their membrane 

composition and surface features, which could not be identified in this study. Except for 

zwitterionic lipids and cholesterol molecules, anionic lipids were another type of major cancerous 

cell membrane component that were related with the activity of CLPs via electrostatic 

interactions. However, the liposome leakage induced by C6 at high ionic strength suggested that 

electrostatics, in this particular case, was not playing a major role in the membrane 

adsorption/association of the peptide [29].  

        Arginine-rich peptides have been shown to cluster anionic lipids into domains [195]. The 

electrostatic interaction between C6 and anionic lipids was not the focus of the current study, 

although the CLPs that were previously investigated to cause much less damage to zwitterionic 

membranes compared to negatively charged membranes, as little leakage was observed. Since no 

anionic lipids were involved in our experiments, peptide-induced lipid clustering as a result of 

electrostatic attraction was largely eliminated. As CLPs were usually antimicrobial, we also 

assayed C6’s activity on vesicles composed of E. coli polar lipid extracts (results not shown here). 

C6 caused the bacterial lipid extract vesicles to aggregate, which was likely due to the 

neutralization of the membrane surface charge by the peptide. The efflux values therefore could 

not be credited because decay profiles cannot be accurately measured for aggregated systems. 

The E. coli lipid extract was then supplemented with about 1 mol% PEG2000-DSPE to prevent 

vesicle aggregation. The leakage profile was greatly shifted to higher peptide concentrations, 

which seemed to be consistent with the insusceptibility of C6 to ionic strength. However, this 

lowered activity could either be a result of reduced permeabilizing efficacy against the bacterial 

membrane mimic, or reduced access of C6 to the membrane due to pegylated DSPE. Thus the 

effect of having a negative membrane charge could not be conclusively elucidated.  
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        Similar to the case of MCF-7, the hemolytic activity of C6 against red blood cells 

maintained the same level due to the combined effects of inhibition of hydrogen bonding and 

enhanced hydrophobicity. As increased hydrophobicity of CLPs also promotes hemolysis [92], 

we could conclude that the activity of CLPs on cholesterol-rich membrane was related with their 

hemolytic activity. As we have shown that the hydrogen bonding had an important role in the 

efficacy of C6 against cholesterol-rich membranes, however, it may not solely due to simple 

“hydrogen bonding”. It was suggested that the guanidinium group of arginine residue could form 

bidentate hydrogen bonds with the phosphate groups of POPC, which converted the bonded polar 

groups to lipophilic ion-pairs. This facilitated the entry of arginine residues into non-polar 

membrane cores once the peptide associated with the membrane [11, 196]. Furthermore, the 

ability of the guanidinium group to form multiple H-bonds could be the reason for the 

observation in Figure 3.4.b.  In comparison, lysine may be less active against cholesterol-rich 

membranes as it is incapable of forming either bidentate H-bonds with phosphate or multiple H-

bonds simultaneously. Consequently, lysine-rich CLPs are likely less hemolytic compared to 

arginine-rich CLPs. Here we summarized the hemolytic activities of several naturally occurring 

CLPs, as well as their arginine to lysine (R:K) ratios in Table 3.2. The peptides with higher 

arginine content were generally more hemolytic than the ones with higher lysine content, a trend 

uncorrelated with the overall proportion of cationic residues.  The exception is melittin, whose 

hemolytic activity is partly attributed to hydrophobicity. Furthermore, synthetic lysine-rich CLPs 

also showed limited hemolytic activities [12, 27, 126]. The general trend of earlier studies 

indicates that arginine plays an important role in inducing hemolysis, albeit the ability of CLPs to 

form bidentate hydrogen bonds or multiple hydrogen bonds is not the sole determinant of 

hemolytic activity.  
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Table 3.2 Arginine-to-lysine ratio and hemolytic effect of selected naturally occurring CLPs. 

Peptide Primary amino acid sequence R:K 
ratio 

Hemolytic 
effect 

 

Reference 

BMAP-28 
 

GGLRSLGRKILRAWKKYGPIIVPIIRI 4:3 ++ [197] 

Magainin 2 
 

GIGKFLHSAKKFGKAFVGEIMNS 0:4 - [92] 

Ceropin B 
 

KWKVFKKIEKMGRNIRNGIVKAGPAIAVLGEAKA
L 

2:7 - [82] 

Melittin 
 

GIGAVLKVLTTGLPALISWIKRKRQQ 2:3 +++ [92] 

LL-37 
 

LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTE
S 

5:6 + [82] 

Gaegurin 5 
 

FLGALFKVASKVLPSVKCAITKKC 0:5 - [107] 

Indolicindin 
 

ILPWKWPWWPWRR 2:1 + [198, 199] 

Tachyplesin I KWCFRVCYRGICYRRCR 5:1 + [99] 

Note: Bold letters indicate cationic amino acids. More “+” represents stronger hemolytic effect; “-” means no 
significant hemolysis at 100 µM.  
 

        Here, we demonstrated the roles of arginine and cholesterol in inducing leakage on 

cholesterol-rich membranes from a molecular basis. We also showed the potential of altering the 

specificity of CLPs towards cells with different surfaces by modulating the cholesterol-rich 

membrane selectivity of CLPs. Notwithstanding, the membrane selectivity of CLPs can also be 

altered by the length [200] and the residual volume [31] of peptides, adopting D-enantiomers of 

amino acids [27] and possibly the position of amino acids in the peptide sequence [201]. To 

manipulate the membrane selectivity of CLPs and to create CLPs with high specificity towards 

targeted cells, further studies are required to fully understand the interplay between the above 

factors, as well as targeted cell membrane compositions.  
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3.5 Conclusion 

        In this work, we have characterized an arginine-rich CLP, C6, and evaluated its membrane 

activity on pure and cholesterol-containing POPC membranes. The comparison between liposome 

and in vitro systems indicates that having only POPC in liposomes does not provide a 

comprehensive reference to predict the performance of CLPs in biological systems, especially 

when it comes to evaluating factors that affect membrane selectivity. The roles of arginine and 

cholesterol in the membrane disruption of cholesterol-rich POPC vesicles were investigated using 

molecular dynamics simulations. The guanidinium group of arginine can form bidentate hydrogen 

bonds with the phosphate of the lipid head group and the hydroxyl of cholesterol at the same time, 

likely facilitating the association of CLPs with the membrane. The disruptive activity of C6 on 

cholesterol-rich membranes was shown to decrease when hydrogen bonding between C6 and the 

membrane was inhibited by adding phosphate ions. The cytotoxicity of C6, with and without the 

presence of phosphate ions, was tested against cancer cells with low cholesterol (A549) and high 

cholesterol levels (MCF-7). Hemolytic activity was also assayed. Due to the complexity of cell 

membranes, changes in cytotoxicity with change in buffer are not correlated with results from the 

model membrane system: with phosphate buffer, the cytotoxicity of C6 is significantly enhanced 

against A549 cells but remains largely unchanged against MCF-7 cells and red blood cells. We 

attribute this discrepancy to enhanced hydrophobicity of C6 in P buffer and other unaccounted 

factors attributed to the complexity of cell membranes. However, there is great potential in 

enhancing the activity of CLPs towards specific cell types by modulating their membrane 

selectivity, with means beyond electrostatic intermolecular interactions. We hope to have 

provided valuable insight into the molecular mechanism of the interaction between arginine-rich 

CLPs and cholesterol-rich POPC membranes, as to benefit the future design of CLPs. 
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Chapter 4* 

Antitumor Activity of an Amphiphilic Cationic Lytic Peptide 

and its Potential as Anticancer Drug Carrier for Enhanced and 

Selective Delivery 

 

 

4.1 Introduction 

        With the progress of nanotechnology and materials science, nanoscaled drug delivery 

systems with various sizes, architectures and surface properties have been engineered for cancer 

therapy [39, 202]. The purpose of these nanocarrier systems aims to enhance the efficacy of 

delivered therapeutics in the aspects of controlling pharmacokinetics and pharmacodynamics, and 

targeted delivery. The size of the nanocarriers is essential for extended circulation time and 

accumulation in the tumor via the enhanced permeability and retention (EPR) effect [37]. 

Incorporating bioactive ligands provides specific interactions between nanocarriers and cancer 

cell surfaces, facilitating the localization and cellular uptake of therapeutics at the targeted site 

[170]. Moreover, the stimuli-responsive designs applied in drug delivery systems enable on-

demand delivery. The stimuli-responsiveness allows drug delivery systems to recognize specific 

microenvironments, for instance, with a lower pH [44] or increased level of matrix 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
* This chapter is based on a manuscript "S. Lu, Y. Wu, Y. Ding, R. Wang, Z. Wan, R. Pan, Y. Yuan and P. Chen, Antitumor Activity of an Amphiphilic 
Cationic Lytic Peptide and its Potential as Anticancer Drug Carrier for Enhanced and Selective Delivery ". Y. Wu, R. Yang and Y. Yuan are collaborators 
from NO.3 people's hospital affiliated to Shanghai Jiao Tong University.  
Author contribution: S.L. conceived idea and designed experiments; Y.W., R.W. and Y.Y. performed animal works; Y.D. performed AFM; S.L. 
performed in vitro characterization experiments; S.L., Z.W. and R.P. performed cytotoxicity studies; S.L., Y.D. and Y.W. analyzed data; S.L. wrote the 
manuscript; P.C. edited the manuscript. 



	
   66	
  

metalloproteinases [49], and release the loaded drug in a tailored way. The sustained release of 

the loaded drug can also be triggered by exogenous stimuli, such as light [53, 156], heat [203, 

204] or ultrasound [54, 55], at the disease sites. These rationally designed nanoparticle-base drug 

delivery systems offer numerous possibilities for therapeutic applications.  

        Peptides have shown great potential as drug carriers due to their favorable biocompatibility, 

non-toxic degradation products, as well as numerous design possibilities and bio-functionalities. 

The physicochemical properties of peptides vary with their sequences, and an amphiphilic 

structure is generally required to stabilize hydrophobic drugs in aqueous solution [69]. There is a 

special class of peptides called cationic lytic peptides (CLPs), which show anticancer activity by 

themselves [6]. These peptides are characterized by their overall positive charges and 

amphiphilicity, which enable them to insert into phospholipid bilayers, leading to the disruption 

of cell membranes. Many CLPs were found to selectively kill cancerous cells partly due to the 

interaction between the positive charges of CLPs and elevated negative charges on the surfaces of 

cancerous cells [12, 27]. Besides the lytic function, the amphiphilic structure of CLPs makes it 

also possible to use CLPs as a hydrophobic drug carrier.  A similar idea has been carried out by 

Stephen et al. using a self-assembling peptide amphiphile (A CLP conjugated with a hydrophobic 

alky chain) to carry camptothecin in vitro and in vivo [66]. They claimed that the peptide 

amphiphile could enhance the cellular uptake of camptothecin. In our point of view, CLP-

mediated drug delivery systems may have more advantages, such as selective delivery.  

        Previously, we reported on a cationic amphiphilic peptide, C6 (Ac-

RLLRLLLRLWRRLLRL-LR-NH2), and its potential as a siRNA carrier [189]. In this work, a 

model hydrophobic anticancer drug, ellipticine (EPT), was chosen as the cargo to be delivered by 

C6. We evaluated the anticancer activity and selective killing of C6 in vitro, against A549 lung 

carcinoma cells, MCF-7 breast carcinoma cells and NIH-3T3 mouse fibroblast cells. Preliminary 

intratumoral administration of C6 on a xenograft A549 lung carcinoma model was also performed, 

showing that C6 was effective at inhibiting tumor growth. Furthermore, the ability of C6 to 
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stabilize EPT was demonstrated in vitro. Interestingly, the C6-EPT formulation showed enhanced 

anticancer efficacy (synergistic effect) and selective delivery. A membrane disruption-assisted 

mechanism was proposed to explain our observations.  

 

4.2 Materials and methods 

4.2.1 Sample preparation 

        Amphiphilic cationic peptide C6 was synthesized by Canpeptide Inc. (Montreal, Canada) 

with a purity above 95%. The procedure for peptide synthesis is briefly described in section 3.2.1. 

The anticancer drug ellipticine (EPT) was purchased from ENZO life science (Brockville, 

Canada).  The peptide only samples were prepared by dissolving C6 powder in Milli-Q water. 

The C6-EPT complexes were prepared by adding freshly prepared 0.5 mg/ml C6 aqueous 

solution into a glass vial containing a thin film of EPT at the bottom [205]. The sample was 

stirred at 900 rpm by magnetic bar overnight before use. The neutral EPT control was prepared 

by dissolving EPT powder in DMSO (≥99.9%, Sigma, Oakville, Canada) at concentration of 

1mg/ml; the EPT DMSO solution was diluted into culture media with a final content of 1% 

DMSO before treatment.   

 

4.2.2 Cell culture 

        Mouse fibroblast cells (NIH-3T3), non-small lung carcinoma cells (A549) and breast 

carcinoma cells (MCF-7) were purchased from ATCC (Manassas, USA). All cell lines were 

cultured in ATCC recommended growth media: A549 cells were cultured in F-12 (Kaighn’s 

modification) (F12K) media (HyClone Laboratories, Mississauga, Canada); MCF-7 cells were 

cultured in MEM Eagles with Earle’s Ballanced Salts (HyClone Laboratories, Mississauga, 

Canada); NIH-3T3 cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) 
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(HyClone Laboratories, Mississauga, Canada). All the media contained 10% fetal bovine serum 

(FBS) (Invitrogen, Burlington, Canada) and 1% penicillin/streptomycin (MP Biomedicals, 

Montreal, Canada). The cells were cultured at 37 °C and 5% CO2.  

 

4.2.3 Cellular uptake of C6-EPT complexes 

        A549 cells were seeded into a 24-well plate at a density of 5×104 cells per well and cultured 

overnight. The cells were then treated with C6 or C6-EPT complexes and incubated for 10 min, 

20 min, 30 min, 40 min and 1 h, respectively. The cells were washed with phosphate-buffered 

saline three times, and then incubated with FluoroshieldTM mounting solution with 4’,6-

diamidino-2-phenylindole (DAPI) (Sigma-Aldrich, Oakville, Canada) for 30 min. Afterwards, the 

cellular uptake of C6-EPT complexes was immediately imaged using an Axio Observer 

microscope (Carl Zeiss, Jena, Germany). 

 

4.2.4 MTS assay 

        A549 cells were seed into a Falcon 96-well plate (Corning, USA) at the density of 10000 

cells per well, while MCF-7 and NIH-3T3 cells were seeded at the density of 20000 cells per well. 

The seeded cells were incubated for 24 h before treatment. After the media was removed, 150 µL 

fresh media was added with 50 µL of treatment was added.  Following 24 h incubation, MTS 

assays were performed using a CellTiter 96® AQueous Kit (Promega, Madison, USA) according 

to the manfacture’s protocol. The absorbance was measured at 485 nm using a FLUOstar plate 

reader (BMG Labtech, Ortenberg, Germany). The untreated cells were used as the negative 

control. IC50 values were calculated by fitting to a sigmoid function. 
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4.2.5 Annexin V assay 

        Untreated or treated cells were labeled using FITC-Annexin V and 7-AAD (BD bioscience, 

Mississauga, Canada) after 18 h incubation. The staining procedure was following the 

manufacturer’s instruction.  

 

4.2.6 Lung carcinoma xenograft experiments 

        The xenograft tumor model was established using six-week-old male BALB/c nude mice. 

A549 lung carcinoma cells (5 × 106) were implanted subcutaneously into mice at the right armpit. 

The mice were then randomized into 3 groups (untreated, saline and C6 group, 5 mice in each 

group). The intratumoral administration was performed when the tumor volume reached 100-200 

mm3. C6 was injected at a dosage of 1mg/kg 3 times per week for 9 injections in total. The mice 

body weights and tumor sizes were recorded after each injection. Tumor volume was calculated 

as 0.5 × longest diameter × (shortest diameter)^2. The inhibition rate was calculated as (1- tumor 

weight of C6 group/ tumor weight of untreated group) ×100%.  

 

4.2.7 Statistical analysis 

        Results were expressed as mean±SD. Statistical significance was determined by one-way 

analysis of variance (ANOVA). Differences were considered significant if p<0.05. 

 

4.2.8 Ellipticine loading capacity 

        The amount of EPT stabilized by C6 in aqueous solution was determined by a UV-

adsorption method described previously [205]. Briefly, a calibration curve of EPT UV-adsorption 

at concentrations ranging from 1×10-4~ 5×10-4mg/ml was made. The UV-adsorption of diluted 

C6-EPT complexes was measured, subtracting the UV-adsorption of C6, and substituted into the 
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calibration curve to obtain the EPT concentration. The value of EPT concentration in C6-EPT 

complexes was averaged from 3 measurements.  

 

4.2.9 Dynamic laser scattering 

        The size distribution of C6 peptide and C6-EPT complexes were investigated on a Zetasizer 

Nano ZS (Malvern Instruments, Malvern, UK) with experimental parameters as previously 

described [205]. Disposable Solvent Resistant Micro Cuvettes (Malvern Instruments) were used 

to perform the measurements. Three measurements were performed to generate the intensity-

based size distribution.   

 

4.2.10 Surface tension measurement 

        The dynamic surface tensions of C6 aqueous solutions at various concentrations were 

measured using ADSA-P technique. The experimental set-up was described before [206].  The 

equilibrium surface tensions were estimated by averaging 10 data points at the end of each 

dynamic surface tension profile. The equilibrium surface tensions were plotted as a function of 

C6 concentration to determine the critical aggregation centration (CAC) of C6.  

 

4.2.11 Atomic force microscopy 

        The nanostructures of C6 and C6-EPT complexes were imaged on a Dimension Icon AFM 

(Bruker, Santa Barbara, USA). The AFM samples were prepared by mounting 50 µl of solution 

on a freshly cleaved mica surface (SPI, West Chester, USA). The mica was washed with 80 µl 

Mili-Q water 5 times after the 15 min incubation. The air-dried AFM samples were scanned at 

room temperature using the peak force quantitative nanomechanical mapping (PF-QNM) mode. 

All images were acquired using a SCANASYST-AIR probe (Bruker, Santa Barbara, USA). 
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4.2.12 Fluorescence spectroscopy 

        The molecular states of EPT in C6-EPT complexes were identified using fluorescence 

spectroscopy. The samples were transferred into a square quartz cell and excited at 295 nm. The 

emission scans were performed on a QM4-SE spectra fluoremeter (PTI, London, Canada). The 

fluorescence emission of C6 aqueous solution was used as background. Detailed experimental 

settings have been described previously [205]. A standard (2 mM EPT in ethanol, sealed and 

degassed) sample was used in each run to correct the lamp intensity variations. The standard 

fluorescence intensity was obtained by taking an average of the fluorescence (Is) from 424 to 432 

nm (for the peak at 428 nm). The spectra of samples were normalized with Is.   

 

4.2.13 Circular dichroism spectroscopy 

        The secondary structure of C6 in aqueous solution or in C6-EPT complexes was determined 

using a J-715 circular dichroism spectrometer (Jasco Europe, Cremella, Italy). The samples were 

transferred into a 1 mm quartz cell (Hellma, Concord, Canada), and spectra were collected from 

190 nm to 260 nm with a 1 nm bandwidth and data pitch, 2 s response time and 100 nm min-1 

scanning speed. The reported spectra were averaged from two replicates, and solvent absorbance 

was subtracted from the data. The mean residue molar ellipticity of C8 peptide presented here 

was calculated following the formulas: Ellipticity (θ in deg cm2 dmol−1) = (millidegrees × mean 

residue weight)/(path length in millimetres × concentration of C8 peptide in mg ml-1).  
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4.3 Results and discussion 

4.3.1 In vitro cytotoxicity evaluation 

        To evaluate the cytotoxicity of C6, two cancerous cell lines, A549 and MCF-7, and a normal 

tissue cell line, NIH-3T3, were treated with varying concentrations of C6. The viability of the 

treated cells was determined using a MTS assay (Figure 4.1.a). The calculated IC50 values against 

A549 and MCF-7 cells were 27.2±2.8 µg/ml (11.1±1.1 µM) and 21.6±4.5 µg/ml (8.8±1.8 µM), 

respectively; while 55.6±4.5 µg/ml (22.6±1.8 µM) of C6 was needed to cause 50% death of NIH-

3T3 cells, showing a moderate selectivity of C6 towards cancerous cells. 	
  

        The cell death mechanism was investigated using Annexin V apoptosis detection kit. A549 

cells were treated with water, or C6 solutions for 18 hours, and stained with FITC-Annexin V and 

7-AAD. As shown in Figure 4.1.b, C6 induced both Annexin V and 7-AAD positive cells, 

suggesting a possible apoptotic mechanism of cell death [131].   
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Figure 4.1 In vitro cytotoxicity evaluation. (a) Cytotoxicity of C6 against A549 (lung carcinoma), 
MCF-7 (breast carcinoma) and NIH-3T3 (mouse fibroblast). (b) A549 cells were treated with 
water or C6 peptide for 18 h. The apoptotic stage of cells was determined by FITC-Annexin V 
and 7-AAD staining. 

	
  

4.3.2 Inhibition of tumor growth in xenografts 

        The lung cancer xenograft model was established by subcutaneous inoculation of A549 cells 

in BALB/c nude mice. C6 aqueous solution was injected intratumorally at a dosage of 1 mg/ml. 
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As shown in Figure 4.2.b-c, C6 inhibited the growth of tumor effectively with an inhibition rate 

of 42%. Furthermore, C6 did not show obvious toxicity to mice as the body weight of mice did 

not drop during the treatment (Figure 4.2.a).  

 

 

Figure 4.2 Intratumor administration of C6 in BALB/c nude mice. (a) The tumor sizes and (b) 
The body weights of mice in untreated, saline or C6 treated groups. (c) The representative images 
of A549 tumor in untreated, saline or C6 treated groups. *p<0.05 versus untreated group. 

 

4.3.3 Drug delivery potential of C6 

        After demonstrating the anticancer activity of C6, we further investigated the potential use of 

the peptide-based drug as a hydrophobic drug delivery vector. Ellipticine (EPT) was used as the 

cargo for several reasons. First, EPT is a hydrophobic molecule. Second, the fluorescent 

properties of EPT has been fully studied [74], which makes it easy to characterize its molecular 

state. Third, an effective delivery system is required to reduce the adverse effects encountered 

during early clinical trials of its derivatives [75, 76].    
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Figure 4.3 Physicochemical characterization of C6 and C6-EPT complexes. (a) Helical wheel of 
C6. (b) Critical aggregation concentration of C6 determined by equilibrium surface tension of C6. 
(c) Nanostructures of C6 or C6-EPT complexes determined by AFM. The scale bar is 200 nm. (d) 
Size distributions of C6 or C6-EPT complexes determined by DLS. (e) Secondary structures of 
C6 in aqueous solution or in C6-EPT complexes determined by CD. (f) Normalized fluorescence 
emission spectrum of C6-EPT complexes.  

 

        The helical wheel of C6 (Figure 4.3.a) illustrates that the C6 molecule possesses a 

hydrophilic side and a hydrophobic side when it is in a helical conformation. We hypothesized 

that the amphiphilic structure allows C6 to create a hydrophobic domain in aqueous solution, with 
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the hydrophobic sides facing inward to encapsulate hydrophobic EPT molecules; while the 

hydrophilic sides contact with aqueous environment, stabilizing the C6-EPT complex in water. 

The critical aggregation concentration (CAC) of C6 was determined to be ~49 µg/ml (20 µM) 

(Figure 4.3.b), indicating that the proposed formulation between C6 and EPT could happen above 

this concentration.  

        To test the proposed C6-EPT formulation, the stock solution of C6-EPT complexes was 

prepared by stirring 500 µg/ml (203. 3 µM) C6 solution in a vial containing a thin EPT film. The 

amount of EPT loaded by C6 was determined to be 14 ± 0.6 µg/ml (56.9 ± 0.2 µM) using a UV-

based method [205]. The fluorescence emission spectrum of the loaded EPT had a maxima at 

~430 nm (Figure 4.3.f), indicating neutral molecules [74]. As shown in the circular dichroism 

spectra (Figure 4.3.e), the spectrum of C6 had a negative peak at ~ 203 nm, with a negative 

shoulder centering at ~ 220 nm, indicating that C6 stayed as a mixture of random coil and α-helix 

in aqueous solution; the molar ellipticity [θ]222 (-4,400 deg cm2 dmol-1) at 222 nm corresponds to 

~19% helical content [207]. In contrast, after formulating with EPT, the spectrum of C6-EPT 

complexes had a negative peak at ~208 nm with increased absorbance at ~222 nm when 

compared to C6 alone, indicating the α-helical content increased to ~27% with a [θ]222 value of -

7,400 deg cm2 dmol-1; there was a small dip in the spectrum at ~218 nm, suggesting that a part of 

C6 adopted a β-sheet conformation. This observation is partially consistent with our hypothesis: 

the interaction between EPT molecules and hydrophobic residues stabilized the helical 

conformation, resulting in the increased content of α-helical conformation; the amphiphilic C6 

helixes encapsulated EPT molecules into a hydrophobic interior to form nanoparticles. On the 

other hand, EPT molecules may also acted as bridges to connect extended C6 monomers, 

resulting in the β-sheet conformation. AFM images showed that C6 formed spherical aggregates 

by itself, and C6-EPT complexes became mixtures of filaments and irregular aggregates (Figure 

4.3.c). The changes in nanostructure were in line with the changes in secondary structure. The 

particle sizes shown in AFM images were below 200 nm for both C6 and C6-EPT complexes, 
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and the width of fibrous C6-EPT particles was less than 30 nm. The hydrodynamic radius of C6 

and C6-EPT complexes was also measured using dynamic laser scattering. The results showed 

that C6 particles have a major population at ~350 nm, and after formulating with EPT, the main 

sizes of the complexes shifted to ~190 nm (Figure 4.3.d). As C6 peptides were largely 

unstructured in aqueous solution, part of their arginine residues may be embedded in the core of 

the aggregates, resulting in loosen particles with large sizes; after formulating with EPT, with 

well ordered structure, the positively charged arginine residues oriented towards aqueous phase at 

particle surfaces, providing electrostatic repulsions, hence, leading to decreased particle sizes.  

The discrepancies in the size measurements by two techniques may be due to the different 

environments while the measurements were performed. Nevertheless, the particle sizes of C6-

EPT complexes measured by either technique are ideal for passive targeting to tumor via the 

enhanced permeability and retention effect [208].  

 

4.3.4 CLP-assisted delivery. 

        There are several potential advantages of using C6 as a drug carrier. First, the delivery 

vector is also an anticancer agent. Second, the lytic activity of C6 weakens the barrier function of 

cell membranes, resulting in enhanced cellular uptake of EPT. We refer to this mechanism as 

“CLP-assisted uptake”, which is illustrated in Figure 4.4.a. Furthermore, the membrane disruptive 

ability of C6 varies depending on the type of cell membrane, which could cause selective delivery. 

        To investigate the potential of this CLP-mediated drug delivery system, the cellular uptake 

of EPT was monitored using fluorescence microscopy. In this study, A549 cells were treated with 

C6 or C6-EPT complexes at two different concentrations for 1 h and the fluorescence emission of 

EPT was observed via a green channel. The C6 treated cells were used as a control to indicate 

that the observed fluorescence was not from the peptide, and DAPI was used to locate the nucleus. 

As shown in Figure 4.4.b, in the case of high concentration of C6-EPT complexes, the green 
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fluorescence of EPT overlapped with DAPI.  This suggested that EPT accumulated at the nuclei, 

where EPT is supposed to execute its function [72]. Also, from the merged image, we found that 

the cell membranes were broken, which resulted from membrane disruption induced by C6 [27, 

131]. Due to the reduced concentration of C6, after treated with 4-time diluted C6-EPT 

complexes, there were cells that still maintained the integrity of their membranes. The green 

fluorescence of EPT shown on intact cells had a low intensity or distributed on the entire cell 

(indicated by solid arrows); in contrast, EPT again located at nuclei of the broken cells (indicated 

by dashed arrows) (Figure 4.4.b). This observation implies that EPT can easily penetrate the 

disrupted cell membranes to reach the nucleus, which supports “CLP-assisted uptake”. This might 

be the reason for the observed synergistic effect between CLPs and anticancer agents [27, 87]. 

Based on this observation, we reasonably assume that cell membranes hinder the permeation of 

EPT, but still, the cellular uptake could happen through endocytosis. However, EPT may not be 

able to escape lysosomes, staying in cytoplasm [209]; on the other hand, EPT could directly 

penetrate the damaged cell membranes, easily reaching nucleus. This mechanism requires further 

detailed investigation.  

        A time-resolved study of cellular uptake of EPT was performed. Owing to the membrane 

disruption induced by C6, strong uptake of EPT was observed within 30 min incubation with 

most of the EPT localizing at the nucleus (Figure 4.4.c). Previous work from our group has 

studied the cellular uptake of EPT delivered by an ionic complementary peptide, EAK 16-II, 

which does not possess membrane lytic activity [72]. In that work, the concentration of EPT in 

EAK16-II-EPT complexes was 25 µg/ml, almost 7-fold higher than that in C6-EPT complexes. 

Higher concentration normally associates with stronger and faster uptake [210], however, it took 

more than 1 h to observe the accumulation of EPT in nuclei, which suggested the cellular uptake 

of C6-EPT complexes was faster and more efficient than EAK16-II-EPT complexes. This could 

also result from the “CLP-assisted uptake” mechanism.   
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Figure 4.4 C6-mediated CLP-assisted cellular uptake of EPT. (a) Illustration for the CLP-assisted 
delivery mechanism. The formulation of C6-EPT complexes is based on the characterizations. (b) 
Cellular uptake of EPT delivered by C6 monitored using fluorescence microscope. EPT is shown 
in green, DAPI is shown in blue. 1X sample refers to complexes with with 125 µg/ml (53.6 µM) 
C6 and ~3.5 µg/ml (14.2 µM) EPT in the final culture media. The concentration of C6 sample 
was 125 µg/ml (53.6 µM). Cells with intact membranes are indicated by solid arrows, broken 
cells are indicated by dashed arrows. (c) Time study of cellular uptake of EPT from 1X C6-EPT 
complexes at 10 min, 20 min, 30 min and 40 min, respectively. 

 

        The in vitro cytotoxicity of EPT and C6-EPT complexes against lung cancer A549 cells and 

fibroblast NIH-3T3 cells was then evaluated. The cells were treated with C6-EPT complexes at 
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stock concentration or dilutions for 24 h incubation before performing a MTS assay. C6-EPT 

complexes exhibited significantly enhanced cytotoxicity compared with C6 or EPT control 

towards both A549 and NIH-3T3 cells (Figure 4.5 a,b,d). IC50 value of C6-EPT complexes was 

12.2 µg/ml C6 with 0.34 µg/ml EPT on A549 cells and 40.7 µg/ml C6 with 1.14 µg/ml EPT on 

NIH-3T3 cells, which was much lower than that of EPT control (IC50 ~2.9 µg/ml on both A549 

cells and NIH-3T3 cells) and C6 (IC50 27.2 µg/ml on A549 cells and 55.6 µg/ml on NIH-3T3 

cells), respectively. These results suggested an synergistic effect between C6 and EPT. The 

synergistic effect could result from our proposed enhanced cellular uptake of EPT, which may 

also be a general reason for the previously reported synergistic effect between other CLPs and 

anticancer agents [27, 87]. Furthermore, it was shown that the IC50 value of C6 on NIH-3T3 cells 

was 2-fold higher than that obtained for the A549 cells (Figure 4.1.a) and EPT was not selective 

toward the two cell lines. Although C6-EPT complexes presented enhanced cytotoxicity towards 

both cell lines, the enhancement on A549 cells was more significant than that on NIH-3T3 cells; 

IC50 value of C6-EPT complexes on NIH-3T3 cells became 3.4-fold higher than that obtained for 

the A549 cells, demonstrating an even greater selectivity compared to C6. This supported the 

proposed selective delivery. We postulated that, at the same concentration, C6 was less active 

against NIH-3T3 cells, hence, induced less permeability on NIH-3T3 cell membranes than A549 

cell membranes; this difference may lead to different degrees of “CLP-assisted uptake” of EPT 

for the two types of cells. Consequently, EPT exerted different therapeutic efficacy on the two 

cell lines, which resulted in selective cytotoxicity of C6-EPT complexes.  

        The cytotoxicity results also showed that, at the concentrations where C6 could induce 30% 

to 60% cell death, C6-EPT complexes exhibited significantly enhanced cytotoxicity compared to 

C6, which could be contributed by EPT; with further decrease of C6 concentration, the enhanced 

cytotoxicity of C6-EPT complexes compared to C6 became less significant (Figure 4.5.b-d). The 

reason could be that the low concentration of C6 was no longer capable of inducing strong 

membrane disruption to assist cellular uptake of delivered EPT. To further investigate the potency 
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of “CLP-assisted uptake” and selective delivery, C6 aqueous solution at a concentration of 80 

µg/ml (32.4 µM) was used to dilute C6-EPT complexes (referred to as C6-EPT+) instead of water 

for cytotoxicity test. The purpose was to keep C6 above a concentration that can activate the 

“CLP-assisted uptake”. C6 only samples diluted with the low concentration C6 solution (referred 

to as C6+) were used as controls to show the contribution of C6 on the cytotoxicity of C6-EPT 

complexes. Compared to C6+, C6-EPT+ killed 30% more A549 cells at the lowest test 

concentration, where the concentration of EPT was only 0.11 µg/ml (0.44 µM) (Figure 4.5.c). In 

contrast, the enhancement on the cytotoxicity of C6-EPT+ against NIH-3T3 cells was not 

remarkable compared to C6+; although the cytotoxicity of C6-EPT+ was stronger than the C6-

EPT complexes, the elevated cytotoxicity was majorly contributed by the increased concentration 

of C6 (Figure 4.5.d,e). Taken together, it suggested that C6-EPT+ possessed an even greater 

selectivity. Since C6-EPT+ inhibited more than 50% of A549 cell proliferation within the tested 

range of concentrations, IC50 values were not estimated. .  

 

 



	
   82	
  

 

Figure 4.5 Evaluation of the cytotoxicity of (a) neutral EPT and C6-EPT complexes against (b,c) 
A549 (lung carcinoma) and (d,e) NIH-3T3 (mouse fibroblast). C6+ and C6-EPT+ refer to the 
samples diluted with 80 µg/ml (32.4 µM) C6 aqueous solution. X-axis represents the 
concentration of C6 in each sample, including C6 alone and C6-EPT complexes; the 
concentrations of EPT in C6-EPT complexes are shown in the brackets. The concentrations 
presented are mass concentrations (µg/ml) in the culture media. The viabilities were averaged 
from at least three independent experiments. Error bars are standard deviation (n>3). *p<0.05, 
**p<0.01 between the two compared samples. 
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        In this work, we have demonstrated the potential use of C6 as a drug carrier empowered by a 

“CLP-assisted uptake” mechanism, which is the basis for the enhanced activity and selectivity of 

the CLP-mediated drug delivery system. This mechanism is also applicable for continued in vivo 

application. Different from in vitro studies, in vivo administration requires continuous injections 

of treatments to keep an effective concentration of therapeutic, allowing sufficient CLP to assist 

the uptake of the delivered anticancer agent. This would allow a lowered dosage of anticancer 

agent, reducing side effect. The selectivity of CLP-mediated systems could further limit the 

cytotoxicity towards normal tissues. Although the anticancer efficacy of C6-EPT is remarkable, 

an alternative encapsulation method might be considered for higher loading efficiencies and even 

higher anticancer efficacy. Selective delivery is a unique advantage of CLP-mediated drug 

delivery systems. To further improve the selectivity of the system, it is possible to design CLPs 

with high specificity towards cancerous cells for drug delivery purposes, which requires fully 

understanding the underlying mechanism for CLP-induced membrane lysis. Adopting cancer-

specific drugs [211] as delivered cargo is another alternative to enhance the selectivity of the 

entire drug delivery system. Besides the functionalities mentioned above, we also postulate that 

CLP-mediated drug delivery systems may overcome the multidrug resistance (MDR) developed 

by cancer cells. It has been reported that many CLPs were active against multidrug resistant 

cancer cell lines [25, 83], possibly because CLPs attack cell membranes directly, which avoids 

general mechanisms of drug resistance [212]. The drug delivered by CLP may also not be 

affected by transmembrane protein pumps and transporters, which may be disabled disrupting the 

membrane. This should be further investigated with proper experiments.  

 

4.4 Conclusion 

        In this study we have shown the anticancer activity of a cationic lytic peptide, C6, in vitro 

and in vivo. We also have demonstrated that the amphiphilic property allows C6 to encapsulate a 
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hydrophobic anticancer drug ellipticine in aqueous solution. The C6-EPT complexes exhibit high 

anticancer efficacy against A549 cells due to the enhanced cellular uptake of EPT. Selective 

delivery of EPT towards cancerous cells is also demonstrated. A “CLP-assisted uptake” 

mechanism is proposed to explain these observations. This C6-mediated drug delivery system 

presented provides a new concept to develop drug carriers: using CLPs (drug) work as drugs and 

vectors to deliver other drugs. The multifunctionalities of C6-EPT complexes demonstrated in 

this work suggest the great potential of CLP-mediated drug delivery systems.  
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Chapter 5* 

Stimuli-responsive Self-assembling Cationic Lytic Peptide and 

its Potential for Self-guided Delivery 

 

 

5.1 Introduction 

        Cationic lytic peptides (CLPs) are emerging as potential anticancer reagents with a new 

mode of action by inserting into cell membranes, disrupting their integrity, which leads to cell 

lysis [6]. The overall positive charge of CLPs suggests their preferential binding to negatively 

charged cell membrane surfaces. As a number of tumor cells possess negatively charged surfaces 

due to over-exposure of phosphatidylserine [19, 20] and high levels of aberrant O-glycosylated 

mucins [21, 22], CLPs could target this trait and lyse tumorous cells selectively [12, 23, 24]. 

CLPs can also overcome the drug resistance mechanisms occurring in tumor cells [25, 26], 

possibly because CLPs attack the cell membranes directly [6].  

        Despite these favorable features of CLPs, compared to conventional chemotherapeutic 

agents, there are issues such as hemolysis [82, 103, 213] and susceptibility to proteolytic 

degradation [178, 214], impeding the clinical usage of CLPs. To explore the potential of this class 

of peptides, synthetic diastereomeric lytic peptides consisting of D-amino acids were designed 

and showed to enhance selectivity towards cancerous cells in vitro and in vivo [27, 81], 
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minimized hemolytic effect [27] and increased resistance to proteolytic degradation [215]. 

Strategies for conjugating cationic lytic peptides to tumor targeting moieties, such as antibodies 

[33] or “tumor-homing” domains [32, 132], also represent improvements in targeted therapy.  

        The development of stimuli-responsive nanodevices is an active area of current drug 

delivery research because these systems can enhance biological specificity by releasing drugs at 

the pathological site in response to local stimuli [36, 42]. Self-assembling peptides that undergo a 

conformational change in response to applied environmental stimuli, leading to disassembly or 

transition of nanostructures, can also be achieved through rational sequence design [216-219]. 

Recently, our group has proposed an Amino Acid Pairing (AAP) strategy for constructing the 

sequence of self-assembling peptides [73]. This design strategy aims to achieve complementary 

intermolecular affinity by alternatively arranging amino acids, whose side chains provide 

different types of paring interactions (e.g., ionic, hydrophobic and hydrogen bonding), along the 

peptide sequence. This complementarity can lead to a variety of self-assemblies, including stable 

β-sheet-rich fibrous nanostructures Spontaneous Assembly [67, 73]. Inspired by the finding that 

the cytotoxicity of PI3-SH3 and HypF-N proteins can be eliminated by the formation of fibrillar 

structures [220], we come up with the idea of using stimuli-responsive nanostructures as a 

“swtich” to control the activity of CLPs, which could allow CLPs to navigate and target 

themselves with minimal side effect. Based on this idea, we herein propose a self-guided strategy 

which incorporates three elements: (i) self-assembled nanostructure of CLPs to improve their 

stability in physiological environments (and hence pharmacokinetics), (ii) nanostructure 

formation as a “switch” to turn off the lytic activity of CLPs when circulating in the normal tissue, 

and (iii) disassembly of the nanostructure in response to environmental stimuli, which allows the 

“release” of lytic activity at the targeted site. We postulate that a stable nanostructure formed by 

CLP is the key reason for the elimination of lytic activity: the CLP monomers with lytic activity 

are entrapped in the nanostructure, hence, unable to insert into and disrupt cell membranes. The 
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AAP principle could be suitable to design a self-guided CLP by incorporating controllable charge 

repulsion.  

        To prove the concept of self-guided, transformable peptide design, we devise and examine a 

stimuli-responsive CLP, C8, which is found to self-assemble into β-sheet rich nanofibers or 

disassemble into unstructured monomers in response to changes in pH, temperature and the 

presence of urea. The resulting stimuli-responsive self-assembly properties of C8 is shown to 

derive nanostructure-dependent cytotoxicity, along with selective cytotoxicity towards cancerous 

cells, demonstrating its self-guided navigation towards both environmental and molecular/cellular 

targets.  This self-guided strategy integrates the advantages of stimuli-responsive nanodevices and 

inherent selective activity of CLPs, offering a new route to explore more sophisticated CLPs. 

 

5.2 Materials and methods 

5.2.1 Sample preparation 

        C8 peptide was purchased from company (Canpeptide Inc., Montreal, Canada) with a purity 

of 95%. The procedure for peptide synthesis is briefly described in section 3.2.1. The peptides 

were dissolved in Mili-Q water to give 80 µM stock. In the hemolysis study, C8 aqueous 

solutions (430 µM) at pH 7.4 or pH 4.0 were prepared as stock solution 3 or 5 days before use. 

The pH of the peptide solution was adjusted using hydrogen chloride solution or sodium 

hydroxide solution. The final pH was in the range of ±0.05 to the targeted value. 

 

5.2.2 Fluorescence spectroscopy 

        The intrinsic tryptophan fluorescence of C8 peptides was monitored on a QM4-SE 

spectrafluoremeter (PTI, London, Canada). The emission spectra of C8 peptides (λex 280 nm) 
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were collected from 310 nm to 400 nm. The slit widths of excitation and emission were set at 2 

nm and 8 nm, respectively. 

 

5.2.3 Circular dichroism spectroscopy 

        The secondary structure of C8 peptides in solution was monitored by circular dichroism on a 

J-715 circular dichroism spectrometer (Jasco Europe, Cremella, Italy) using 1 mm quartz cells 

(Hellma, Concord, Canada). Spectra were collected from 190 nm to 260 nm with a 1 nm 

bandwidth and data pitch, 1 s response time and 100 nm min-1 scanning speed. All the spectra 

were averaged from two replicates and solvent absorbance was subtracted from the data. The 

mean residue molar ellipticity of C8 peptide presented here was calculated following the formulas: 

Ellipticity (θ in deg cm2 dmol−1) = (millidegrees ×  mean residue weight)/(path length in 

millimetres × concentration of C8 peptide in mg ml-1). 

 

5.2.4 Microscopy 

        The morphologies of C8 peptides at different environments were imaged on a Dimension 

Icon AFM (Bruker, Santa Barbara, USA). A 50 µl of sample solution was mounted on a freshly 

cleaved mica surface (SPI, West Chester, USA). Following 15 min incubation, the mica was 

washed with 80 µl Mili-Q water for 5 times. After drying, AFM imaging was performed at room 

temperature using peak force quantitative nanomechanical mapping (PF-QNM) mode. All images 

were acquired using a SCANASYST-AIR probe (Bruker, Santa Barbara, USA).   

        To prepare the cell samples for AFM or SEM, A549 cells were seeded on coverslips, which 

were placed into a 6-well plate containing 150,000 cells. The cells were incubated for 24 h at 

37°C and 5% CO2. After removing media, 1.5 ml media and 500 µL of sample were added into 

each to make a final concentration of 5 µM for sample at pH 4.0 and 20 µM for sample at pH 7.4. 

Following 3 h incubation under the same condition, peptide solutions were removed, and then 
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cells were washed with 1 mL of PBS for fixation. The cell fixation protocol was described 

previously [12]. For AFM, the morphology of A549 cells was imaged using a Dimension Icon 

AFM (Bruker, Santa Barbara, USA) at room temperature. The MLCT probes consisting of silicon 

nitride cantilevers (nominal spring constant of 0.01 N/m) with silicon nitride tips (tip radius of 

around 20 nm) were used. Topography was imaged by contact mode with low deflection set point 

and scan rate is 0.5 Hz to minimize the disturbance during the scan process. For SEM, the 

coverslips were mounted on metal stubs using double-sided sticky conductive tape. Then, the 

cells were sputter coated with 10 nm gold and imaged in a ULTRA plus SEM (Zeiss, Jena, 

Germany). 

 

5.2.5 Cell culture 

        Human umbilical vein endothelial cells (HUVEC), mouse fibroblast cell lines (NIH-3T3) 

and adherent cancer cell lines (A549, non-small lung carcinoma; U87MG, glioblastoma; and 

MCF-7, breast carcinoma) were purchased from ATCC (Manassas, USA). A549 cells were 

cultured in F-12 (Kaighn’s modification) (F12K) media (HyClone Laboratories, Mississauga, 

Canada); MCF-7 cells and U87MG cells were cultured in MEM Eagles with Earle’s Ballanced 

Salts (HyClone Laboratories, Mississauga, Canada); NIH-3T3 cells were cultured in Dulbecco’s 

Modified Eagle’s Medium (DMEM) (HyClone Laboratories, Mississauga, Canada); HUVEC 

cells were cultured in EGM-2 media (Lonza, Allendale, USA).  All the media contained 10% 

fetal bovine serum (FBS) (Invitrogen, Burlington, Canada). An incubator (Thermo Scientific, 

Ottawa, Canada) was used to keep cells maintained at 37 °C and 5% CO2. 

 

5.2.6 MTS assay 

        A549 and HUVEC cells were seeded onto a 96-well plate at a density of 5000 cells per well, 

and MCF-7, U87MG and NIH-3T3 cells were seeded at a density of 10000 cells per well. A549, 
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MCF-7, U87MG and NIH-3T3 cells were incubated for 24 h before treatment, and HUVEC cells 

were incubated for 48 h before treatment. After the media was removed, 150µL fresh media was 

added with 50 µL of C8 peptide solution at pH 4 or pH 7.4 to reach final concentrations of 5, 10 

and 20 µM. Mili-Q water at pH 4 or pH 7.4 was added as 0 µM samples. The untreated cells were 

used as a control of 100% viability.  Following 24 h incubation, MTS assays were performed 

using a CellTiter 96® AQueous Kit (Promega, Madison, USA) according to the manfacturer’s 

protocol. The absorbance was measured at 485 nm using a FLUOstar plate reader (BMG Labtech, 

Ortenberg, Germany).  

 

5.2.7 Hemolysis study 

        The hemolysis assay was performed by using fresh rabbit ear venous blood obtained from a 

2-year old female New Zealand White rabbit (Central Animal Facility, Waterloo, Canada). The 

rabbit ear venous blood was collected in K2EDTA anticoagulant tube (BD medical, Mississauga, 

Canada). The blood sample was centrifuged at 1500 rpm for 15 min and washed three times by 

adding Phosphate Buffered Saline (PBS). After washing, the red blood cells (RBC) were isolated 

and suspended in PBS to make a 5% hematocrit solution. Test samples were diluted and mixed 

with RBC suspensions to create a final mixture (1 ml) containing 1%RBC and various 

concentrations of samples. The red blood cells mixed with 1% triton X-100 (Sigma, Oakville, 

Canada) and DPBS solution (HyClone Laboratories, Mississauga, Canada) were used as positive 

and negative controls to obtain 100% and 0% hemolysis, respectively. The mixture were 

incubated in water bath at 37 °C for 2 h. The samples were centrifuged at 3000 rpm for 5 min to 

separate RBC precipitation. The supernatants were collected in a 96-well plate. The released 

hemoglobin was monitored at 540 nm using a FLUOstar plate reader (BMG Labtech, Ortenberg, 

Germany). The percentage of hemolysis was calculated using the following equation:  

𝐻𝑒𝑚𝑜𝑙𝑦𝑠𝑖𝑠% =
𝐴𝑏𝑠(𝑠𝑎𝑚𝑝𝑙𝑒) − 𝐴𝑏𝑠(−)
𝐴𝑏𝑠(+) − 𝐴𝑏𝑠(−)

  ×100 
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Where Abs (sample), Abs (+) and Abs (-) represent the absorbance of C8 treated samples, 100% 

hemolysis sample and 0% hemolysis sample, respectively. The animal studies followed the 

protocols approved by the University of Waterloo Office of Research Ethics and the Animal Care 

Committee.  

 

5.3 Results and discussion 

5.3.1 Peptide design 

         The model peptide C8 consists of five types of amino acid residues, isoleucine (I), 

asparagine (N), arginine (R), histidine (H) and tryptophan (W).  According to the properties of the 

amino acid side chains, isoleucine residues and asparagine residues provide attractive 

hydrophobic interactions and hydrogen bonding, respectively; while positively charged arginine 

residues provide electrostatic repulsion and hydrogen bonding [73]. Histidine residues, whose 

side chains have a pKa ~6, could provide either hydrogen bonding or electrostatic repulsion 

depending on their protonation status. Tryptophan residues provide hydrophobic interactions, 

hydrogen bonding and work as internal fluorescent indicators; their aromatic rings could also 

stabilize the self-assembled nanostructures via π-π stacking [73].  

        The arrangement of the amino acids follows two criteria, which provide lytic activity and 

stimuli-responsively self-assembling properties, respectively. First, the peptide should possess 

separated hydrophobic and hydrophilic faces when adopting an α-helical conformation in 

associate with phospholipid membranes, resulting in membrane lytic ability (Scheme 5.1.a). 

Second, according to the AAP principle[73], the amino acids that provide different types of 

interactions are alternatively arranged in the sequence, leading to paired side chain interactions, 

facilitating the stacking of the β-sheets in aqueous solution (Scheme 5.1.b). Including the 

backbone hydrogen bonding, the competitions between repulsive and attractive forces governs the 
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assembly behavior of C8 molecules, whether to self-assemble into β-sheet rich nanofibers or 

disassemble into unstructured monomers (Scheme 5.1.b).  

 

 

Scheme 5.1 Design of the model stimuli-responsive self-assembling CLP C8. (a) Helical wheel 
of C8. The charged amino acid residues are shown as light blue triangles, uncharged hydrophilic 
amino acid residues are shown as red circles, and hydrophobic amino acid residues are shown as 
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green diamonds. The amount of green decreases with the decreased hydrophobicity. (b) The 
mechanism of the intermolecular forces controlled self-assembly/disassembly of C8. The colors 
represent different types of forces provided by the side chains of amino acids. Depending on the 
protonation status of histidine residues, the overall intermolecular forces could become repulsive, 
leading to unstructured C8 monomers, or become attractive, leading to fibrous self-assemblies.  

	
  
 

5.3.2 Self-assembly/disassembly of C8 in response to pH change 

        To verify the proposed self-assembling/disassembling behavior of C8, 80 µM C8 peptide 

was first prepared in aqueous solution at a pH of 8.0, where ~99% of histidine residues are 

supposed to be neutralized. The solution was incubated for 24 h at ambient temperature (22 0C). 

The secondary structure and morphology of the sample at pH 8.0 were determined by circular 

dichroism (CD) spectroscopy and atomic force microscopy (AFM). As shown in Figure 5.1.a, the 

spectrum had a negative peak at ~218 nm, indicating β-sheet conformation. The AFM image 

(Figure 5.1.c) confirmed the formation of fibrous networks [68]. Afterwards, the pH value of the 

sample was decreased to 4.0, where ~99% of the histidine residues were supposed to be 

protonated. The solution was incubated for another 24 h. The CD spectrum was recorded and 

showed that the C8 peptide at pH 4.0 became largely unstructured with a negative peak centered 

at ~200 nm. Furthermore, the AFM image (Figure 5.1.d) showed “melted” nanofiber networks 

with short and thin fibrils still existing. This self-assembling/disassembling process was 

reversible when the pH value was adjusted between 4.0 and 8.0.  

 



	
   94	
  

 

Figure 5.1 Characterization of the self-assembly and disassembly of C8. (a) circular dichroism 
spectra of C8 at pH 8.0 and at pH 4.0. (b) fluorescent emission of tryptophan residual of C8 at pH 
8.0 and at pH 4.0. c-d, AFM images of C8 samples at pH 8.0 (c) and at pH 4.0 (d). The scale bar 
is 500 nm. 

 

        The intrinsic fluorescence emission of tryptophan in both samples at pH 4.0 and pH 8.0 were 

monitored. As shown in Figure 5.1.b, the fluorescent emission peak of tryptophan shifted from 

~356 nm in sample at pH 4.0 to ~344 nm in sample at pH 8.0, indicating that tryptophan residues 

are located in a more hydrophobic environment when such peptides self-assembled into fibers 

[221]. This is consistent with our proposed mechanism of C8 self-assembly shown in Scheme 

5.1.b, where the amino terminal tryptophan residues in C8 orient inside the hydrophobic core of 

the fibers while the C-terminal arginine residues remain exposed to water.     
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5.3.3 Temperature effect on reversible self-assembly/disassembly of C8 

        The reversible assembly of C8 was achieved through modulating intermolecular interactions,. 

To investigate further the effects of environmental stimuli on the intermolecular force balance, C8 

peptide solutions (80 µM) were prepared at various pH values. These solutions were then either 

incubated at ambient temperature (22 0C) or at 0 0C on ice for 2 days, or heated at 37 0C for 6 h. 

The obtained secondary structure information showed that, at 0 0C, C8 peptides were unstructured 

when the environmental pH was lower than 5.4. When the pH increased to 5.8 and above, β-sheet 

became dominant conformation (Figure 5.2.a). In comparison, when the temperature increased to 

220C, the CD spectrum of the C8 peptide started to gain β-sheet content (minima at 218 nm) at 

pH 5.2 and became dominant β-sheet at pH 5.4 (Figure 5.2.b). The heated C8 samples underwent 

a secondary structure transition at pH 5.0 (Figure 5.2.c). This tendency indicated that, with 

increased temperature, C8	
   molecules	
   needed	
   more	
   charged	
   histidine	
   residues	
   to	
   compete	
   the	
  

attractive	
  forces. Hence, the overall effect of increasing temperature enhances the attractive forces.  
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Figure 5.2 Secondary structures of C8 at various conditions. a-c, circular dichroism spectra of C8 
at various pHs after incubation at 0 0C (a), 22 0C (b) and 37 0C (c), respectively. 
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Figure 5.3 AFM images of C8 samples at various conditions. (a) C8 at pH 5.4 and at pH 5.8 
incubated at 0 0C for 2 d and 10 d, respectively. (b) C8 at pH 5.0 and at pH 5.4 incubated at 22 0C 
for 2 d and 10 d, respectively. (c) C8 at pH 5.0 incubated at 37 0C for 6 h. The scale bar is 500 nm. 
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        To match the secondary structure with their corresponding nanostructures, AFM images of 

samples at pH 5.4 and pH 5.8 at 0 0C, and samples at pH 5.0 and pH 5.4 at 22 0C were obtained 

after 2 d and 10 d incubation, respectively (Figure 5.3.a-b). For the dominantly unstructured 

samples, they seldom contained nanofibers even after 10 d incubation, while the samples showing 

β-sheet conformations formed abundant nanofibers after 2 d incubation. Interestingly, the heated 

C8 peptides at pH 5.0 appeared as short fibers and globular aggregates (Figure 5.3.c). Our 

explanation is that, as tryptophan is very hydrophobic, the enhanced hydrophobic interaction 

would make the tryptophan-terminus of C8 interact tightly, while due to the weakened hydrogen 

bonding and repulsions from protonated histidine residues, the peptide chains may stack in a less 

compact arrangement, resulting in the breakage of long fibers and the formation of spherical 

micelles, eventually growing into large aggregates (illustrated in Figure 5.3.c). 

        To investigate the temperature effect on the rate of self-assembly and disassembly of C8 

peptides, we also performed dynamic studies using AFM. C8 samples at pH 8.0 were first 

prepared from the same C8 sample at pH 4.0, and then incubated at 0 0C, 22 0C or 37 0C. The 

process of the nanofiber formation was imaged over time. As shown in Figure 5.4, C8 peptides 

started to form mature fibers after 1 d at 0 0C, and required 4 d to grow into condensed fiber 

networks. With increased temperatures, only 1 d was needed to form the condensed fiber 

networks for 22 0C, and only 3 h for 37 0C, indicating that higher temperatures could promote the 

rate of self-assembly. Since the higher temperature enhances the overall attractive forces, it is 

essentially the intermolecular forces that control the self-assembly rate. This trend could also be 

seen from the self-assembly rates of the sample at pH 5.8 at 0 0C and the sample at pH 5.4 at 22 

0C (Figure 5.3 a-b). Although they formed nanofibers, the required incubation time was quite 

long due to the low overall attractive intermolecular forces. Additionally, the long fibers formed 

in the sample at pH 8.0 at 37 0C become short after 9 h incubation, which may also result from 

the enhanced hydrophobic interaction and the weaken hydrogen bonding as discussed above. 
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Figure 5.4 Imaging the self-assembling process of C8 by AFM.The sample at pH 8.0 incubated at 
0 0C was imaged at 12 hours, 1day, 2 days and 4 days, respectively, after pH adjustment; 1 hour, 
3 hours, 8 hours and 1day were chosen for the sample incubated at 22 0C; and 0.5 hour, 3 hours, 6 
hours and 9 hours were chosen for the samples incubated at 37 0C. The scale bar is 500 nm.  

 

 



	
   100	
  

 

Figure 5.5 Imaging the disassembling process of C8 by AFM. The sample at pH 8.0 incubated at 
0 0C was imaged at 1 hour, 3 hours, 8 hours and 18 hours, respectively, after pH adjustment to pH 
4.0; 1 hour, 3 hours, 8 hours and 20 hours were chosen for the sample incubated at 22 0C. The 
scale bar is 500 nm. 

 

        In the disassembly process, the C8 samples at pH 8.0 with condensed fiber networks were 

acidified to pH 4.0 and imaged at 0 0C and 22 0C, respectively. As shown in Figure 5.5, the 

condensed fiber networks “melted” within 3 h at both temperatures. However, it seemed that a 

lower temperature could facilitate the melting of short fiber fragments from the fiber network, as 

the sample at 0 0C contained much less short fiber fragments when compared to the sample at 22 

0C. We did not perform the dynamic study for 37 0C because high temperature also caused the 

breakage of long fibers, which made it hard to identify the degree of disassembly. The AFM 

image of the sample at 37 0C with 1 d incubation after the pH was adjusted to 4.0 was still taken, 

and showed that abundant short fibers still existed (Figure 5.6.a). This may also indicate that high 

temperature is not favorable to the disassembling process. Furthermore, another sample at 37 0C 

was further acidified to pH 3.0 and was found to disassemble more after 6 h incubation (Figure 

5.6.b). Regarding this observation, we suggest two possible reasons: i) the formation of stable 
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nanofibers need overwhelming repulsive forces to diminish, and ii) the formation of the 

nanostructures may cause the pKa of histidine residues shift to a lower value, hence the histdine 

residues are not fully protonated at pH 4.0, resulting in insufficient repulsive forces. These factors 

should be taken into account in designing stimuli-responsive peptides that disassemble at a 

specific pH value.  

 

 

Figure 5.6 The morphology of C8 samples at pH 4.0 (a) after 1 d incubation at 37 0C and that at 
pH 3.0 (b) after 6 h incubation at 37 0C. Both samples are made from C8 sample at pH 8.0 with 1 
d incubation at 37 0C. The scale bar is 500 nm. 

 

5.3.4 Effect of urea on self-assembly of C8 

        As urea is known to unfold proteins by “breaking” hydrogen bonding, we added 20 mM urea 

into a C8 sample (80 µM) with a final pH of 6.0 and incubated it at 0 0C. After 2 d incubation, the 

sample showed a considerable content of β-sheet conformation, but not as high as that of the 

sample at the same conditions without urea (Figure 5.7.a). This may indicate a decreased self-

assembly rate in the presence of urea. The AFM image confirmed the fiber formation of the urea 

added sample (2 d incubation); however, unlike the samples without urea, the fibers did not grow 
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to long fiber networks after 10 d incubation (shown in Figure 5.7.b), which may suggest that 

hydrogen bonds play an important role in the fiber growth and network formation.  

 

 

Figure 5.7 Characterization of C8 with the presence of urea. (a) Circular dichroism spectra of C8 
at pH 6.0 with the presence of 20 mM urea after 2 d incubation. The CD spectra of C8 (pH 6.0) 
without urea was taken from Figure 5.2.a. (b) AFM images of the sample after 2 d o f incubation 
and 10 d incubation, respectively. The scale bar is 500 nm.  

 

5.3.5 Estimation of force contributions 

        We have shown that increasing temperature enhanced the overall attractive forces in the case 

of C8 peptide. Knowing the significance of the enhancement induced by increased temperature 

could benefit the design of the next generation of self-guided CLPs with refined thermo-

responsive properties. The secondary structure information shown in Figure 5.2 indicates that, 

with increased temperature, more protonated histidine residues are needed to counter the 

enhanced attractive forces to maintain C8 unstructured in solution. The percentage of protonated 

histidine residues at a specific pH can be estimated from Henderson-Hasselbalch equation. 
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Therefore, by knowing the pH values where the equilibrium of intermolecular forces composed of 

repulsive and attractive forces is reached at different temperatures, we may estimate the 

temperature-induced changes of forces relative to the side chain interactions provided by the 

amino acids. In our estimation, the highest pH value before a significant increase in the molar 

ellipticity at 200 nm occurs  (Figure 5.2) was adopted as the point closest to the equilibrium of the 

repulsive forces and attractive forces: pH 5.6, pH 5.2 and pH 4.8 were selected for 0 0C, 22 0C 

and 37 0C, respectively. Substituting the concentrations of 𝐻!, which correspond to each pH 

value, into Henderson-Hasselbalch equation: 𝑝𝐻 = 𝑝𝐾! + 𝑙𝑜𝑔!"(
!"#$%&%'(&"!  !!"#!$!%&
!"#$#%&$'(  !!"#!$!%&

) (a Ka of 

10-6 was used in the calculation), we can obtain that ~72% histidine residues are protonated at pH 

5.6, while ~86% and ~94% for pH 5.2 and pH 4.8, respectively. At these pHs, the repulsive 

forces provided by the side chains of arginine (𝐸!) and protonated histidine (𝐸!) are considered 

to be at the same level as the major attractive forces involving hydrogen bonding provided by the 

side chains of asparagine (𝐻𝐵!), arginine (𝐻𝐵!), tryptophan (𝐻𝐵!) and deprotonated histidine 

(𝐻𝐵!) (protonated histidine residue only serves as hydrogen donor [73], its contribution on 

hydrogen bonding is not counted in our estimation), along with hydrophobic interactions 

provided by the side chains of isoleusine (𝐻!) and tryptophan (𝐻!), as well as the peptide 

backbone hydrogen bonds (BHB). According to the ratio of each amino acid in C8, we obtain the 

balances between repulsive and attractive forces at each temperature as follow, 

    0 0C:   2𝐸! + 72%×3  𝑜𝑟  2.16 𝐸! ≈   8𝐻! + 𝐻! + 4𝐻𝐵!   + 2𝐻𝐵! + 𝐻𝐵! + (28%×
3  𝑜𝑟  0.84)𝐻𝐵! + 𝐵𝐻𝐵             Eq. 5.1 

    22 0C: 2𝐸! + 86%×3  𝑜𝑟  2.58 𝐸! ≈   8𝐻! + 𝐻! + 4𝐻𝐵! + 2𝐻𝐵! + 𝐻𝐵! + (14%×
3  𝑜𝑟  0.42)𝐻𝐵! + 𝐵𝐻𝐵 + 𝑓!     Eq. 5.2 

    37 0C: 2𝐸! + (94%×3  𝑜𝑟  2.82)𝐸! ≈   8𝐻! + 𝐻! + 4𝐻𝐵! + 2𝐻𝐵! + 𝐻𝐵! + (6%×
3  𝑜𝑟  0.18)𝐻𝐵! + 𝐵𝐻𝐵 + 𝑓!     Eq. 5.3 

 

        In the balances, the symbols represent the strength of each type of force at 0 0C. The overall 

change in the strength of hydrogen bonding and hydrophobic interactions induced by increasing 
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temperature is denoted as 𝑓! . The impact of temperature-induced force enhancement on 

individual C8 molecule from 0 0C to 22 0C could be estimated as (0.42𝐸! + 0.42𝐻𝐵!), or 

0.019(𝐸! + 𝐻𝐵!)/0C, by subtracting balance (5.1) from balance (5.2).  The estimation for the 

enhanced attractive interactions from 0 0C to 37 0C is obtained as (0.66𝐸! + 0.66𝐻𝐵!), or 

0.018(𝐸! + 𝐻𝐵!)/ 0C, by subtracting balance (5.1) from balance (5.3). The two numbers are not 

significantly different from each other, which may suggest the impact of temperature changes 

linearly with the change in temperature. However, due to the low accuracy of the estimation, a 

solid, accurate conclusion cannot be made. The estimation also indicates that the impact of 

temperature is not strong. Since electrostatic interaction is normally stronger than hydrogen 

bonding, the enhancement on attractive forces induced by increased temperature (up to 37 0C) 

could be easily countered by adding one or two more positively charged amino acids in the C8 

sequence.  

        According to the ratio of different amino acids in C8 sequence, it suggests that If we further 

approximate the same type of interaction from different amino acid residues as one identical force 

contribution (E denotes electrostatic force, H denotes hydrophobic interaction and HB denotes 

hydrogen bonding contributed by one amino acid side chain, respectively), from balance (5.1), it 

can be estimated that 4.16𝐸 ≈   9𝐻 + 7.84𝐻𝐵 + 𝐵𝐻𝐵  or 𝐸 ≈   2.16𝐻 + 1.88𝐻𝐵 + 0.24𝐵𝐻𝐵 . 

This information can be used to adjust the stimuli-responsive properties of self-guided CLP using 

C8 as design template. For example, we could expect that adding one more arginine residues and 

two more isoleucine residues in C8 sequence allow the peptide to self-assemble at higher pH 

when compare to C8, because extra repulsion is induced rather than attractive force.  

 

5.3.6 Nanostructure-dependent lytic action of C8 

        In the process of CLP induced membrane disruption, the insertion of the peptide into lipids 

is a required step. According to our assumption, the stable β-sheet fiberous structure of C8 will 
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limit its building blocks to attack cell membranes (there are free monomers, but the concentration 

is not high enough to cause damage), resulting in limited or even zero toxicity. This safe 

nanostructured C8 is supposed to be the delivery vehicle, and when it reaches the target, the fibers 

could disassemble into monomeric membrane disruptors and execute the therapeutic function, 

achieving the targeted therapy. To prove the self-guided delivery strategy, the lytic action of C8 at 

both pH 7.4 and pH 4.0 (prepared by acidifying the sample at pH 7.4, 0 0C) was evaluated for low 

pH targeting. Although the unstructured C8 peptides would start to self-assemble when added 

into culture media (pH 7.4), the monomers could bind to cell membranes and lyse them before 

they form stable nanostructures. As expected, the proliferation of A549 (non-small cell lung 

carcinoma) cells was severely inhibited by the sample at pH 4.0 (unstructured); C8 at the 

concentration of 20 µM kills almost all the cells, and still reduced the number of cells by more 

than 60% at a low concentration of 5 µM. In contrast, C8 at pH 7.4 does not inhibit, but even 

slightly enhances the growth of the cells (Figure 5.8.a), which may be due to the formation of 

fiber networks [222, 223]. Besides the nanostructure formation, increasing pH also reduces the 

net positive charges on the C8 molecules, which may also be one possible reason for the “turn-off” 

of lytic action. To determine whether the lytic action of C8 is positive charge-dependent or 

nanostructure-dependent as we proposed, the lytic action of the sample at pH 5.4 prepared both at 

0 0C and at 37 0C was tested. Supposedly, the two samples have the same net positive charge level, 

but one is unstructured at 0 0C and one forms β-sheet based nanostructures at 37 0C (Figure 5.2 

a,c); and the results show that the 0 0C sample still maintained activity; in contrast, the 37 0C 

sample lost its lytic action (Figure 5.9), suggesting that the formation of nanostructure is the 

“switch” that controls the ability of membrane disruption of C8. We also observed that samples at 

pH 7.4 were still effective against the cancer cells before the condensed fiber networks formed 

(data is not shown), which could also support our hypothesis here.  
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Figure 5.8 Evaluation of the cytotoxicity and hemolytic effect of nanostructured and unstructured 
C8 samples. a-e, viabilities of cancerous cell lines: A549 (a), U87MG (b), MCF-7 (c) and non-
cancerous cell lines: NIH-3T3 (d), HUVEC (e) after 1 day treatment of C8 at pH 7.4 or C8 at pH 
4.0. The data are averaged from at least three independent replicates. The standard deviations are 
shown as error bars. 

	
  

        Two other cancer cell lines, U87MG (glioblastoma) and MCF-7 (breast carcinoma), were 

also used to test the broad-spectrum anticancer activity of C8 peptide. Similar to the results on the 

A549 cell line, the C8 sample at pH 7.4 slightly promotes the growth of the cancer cells, and the 

C8 sample at pH 4.0 kills the cancer cells effectively (Figure 5.8.b-c). However, it seems that 

U87MG and MCF-7 are less sensitive to C8 than A549, evidenced by the higher viabilities after 

treatments with different concentrations of C8 samples at pH 4.0 than that of A549.  
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Figure 5.9 The viabilities of A549 cells treated with C8 pH 5.4 samples prepared by incubating 
the solutions at 0 0C or at 37 0C for 10 h. The data are averaged from three independent replicates. 
The standard deviations are shown as error bars. 

        The inherent selective lytic activity of C8 was investigated using two non-cancerous cell 

lines, NIH-3T3 (fibroblast) and HUVEC (Human Umbilical Vein Endothelial Cells). As shown in 

Figure 5.8.d, almost 70% of NIH-3T3 cells were still alive even when they were treated with 20 

µM of C8 sample at pH 4.0, suggesting that NIH-3T3 was only slightly susceptible to the lytic 

action of C8. In the case of HUVEC cells, the viability was ~25% after treatment with C8 (20 µM) 

at pH 4.0, and the viabilities were ~70% for those treated with 10 µM and 5 µM of C8 samples at 

pH 4.0 (Figure 5.8.e), also showing that the activity of C8 pH 4.0 samples towards HUVEC cells 

was less than that towards cancerous cells. Probably due to the fragility of HUVEC cells, the cells 

treated with water at pH 4.0 only showed ~85% viability. Taking this into account, the lytic 

activity of C8 could be more limited towards HUVEC than it appeared in Figure 5.8.e. The C8 

sample at pH 7.4 also did not show lytic action towards non-cancerous cells.  
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Figure 5.10 The hemolysis induced by C8 at pH 7.4 and C8 at pH 4.0 on rabbit red blood cells, 
respectively. The data are averaged from three independent replicates. The standard deviations 
are shown as error bars. 

 

        Except for “turning off” the lytic action of C8, the formation of nanostructures may also 

limit the hemolytic effect of CLPs [224]. To further investigate this potential, the hemolysis of 

rabbit red blood was evaluated after incubation with C8 samples at both pH 4.0 and pH 7.4. The 

results showed that the hemolytic effect of C8 has been significantly reduced at pH 7.4 (Figure 

5.10). We also tested a 15 day-old pH 7.4 sample, which induced less than 10% hemolysis at the 

concentration of 20 µM (data is not shown). This suggests that the nanostructure formation could 

also control the hemolytic activity of C8 to a relatively low level, which requires peptide 

monomers to form mature nanofibers completely.  

        To visualize the membrane disruption, SEM and AFM were used to monitor the surface 

morphology changes of the A549 cells before and after peptide treatment. The representative 

SEM images of untreated cells, and cells treated with C8 samples at both of pH 7.4 and pH 4.0 (3 

h incubation) were shown in Figure 5.10.a-c, respectively. The untreated cells and the cells 

treated with the sample at pH 7.4 exhibited an intact cell membrane with a smooth surface. On 

the other hand, the cells treated with the sample at pH 4.0 showed rough and porous cell 
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membrane surfaces, indicating that the cell membranes were disrupted. The AFM images showed 

the same observations (Figure 5.10.d-f).  

        Our study has shown the potential of controlling the lytic activity of C8 by the formation of 

nanostructures in a pH dependent way, which demonstrates the potential of targeting the acidic 

tumor microenvironment. Furthermore, the environmental stimuli-triggered lytic action combined 

with the inherent selectivity of CLPs could further enhance the specificity of lytic peptide-based 

drugs, along with a reduced hemolytic effect, resulting in minimal side effect. Additionally, since 

most of the CLPs are unstructured in aqueous solution, the formation of nanoparticles may also 

benefit from the enhanced permeability and retention (EPR) effect and elongated blood 

circulation time [39, 225]. The application is not just limited to cancer therapy, but could also be 

used to target acidophilic bacteria [226]. As shown previously, the self-assembling/disassembling 

behavior of C8 can be affected by various environmental stimuli. Therefore, other than pH, 

temperature and urea concentrations can also be the targeted stimuli, depending on applications. 

Our semi-quantitative estimates of the forces and temperature effect will help in designing CLP 

peptides for specific microenvironment targeting. 
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Figure 5.11 Visualization of morphologies of A549 cells before and after incubation with 
nanostructured or unstructured C8. a-f, SEM images (a-c) and deflection images associated with 
corresponding reconstructed 3-D images (d-f) of non-treated A549 cells (a,d) and A549 cells after 
incubation with 20 µM C8 at pH 7.4 (b,e) or with 5 µM C8 at pH 4.0 (c,f) for 3 hours, 
respectively.  

 

        In principle, our strategy is flexible enough to work with current strategies (adopting D-

amino acids and conjugating with targeting moieties) for peptide design, which may add to the 
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potency of drugs in clinical usage. It is also possible for the stimuli-responsive CLPs to deliver 

and release chemotherapeutic agents at targeted sites. As CLPs could act synergistically with 

chemotherapeutic agents [27], in this delivery system, except for the roles of carrier and drug, the 

peptides may provide functionality in promoting the efficacy of the delivered chemotherapeutic 

agent.  

 

5.4 Conclusions 

        We have successfully designed a stimuli-responsive cationic lytic peptide, C8, following our 

AAP principle. The model peptide can self-assemble into β-sheet rich nanofibers and disassemble 

into unstructured monomers, a transition that can be modulated by the equilibrium of 

intermolecular forces composed of repulsive electrostatic forces and attractive hydrogen bonding 

and hydrophobic interactions. The designed peptide shows triple-responsiveness towards pH, 

temperature and urea concentration, which influences the different types of intermolecular 

interactions seen for C8. The relative strength of repulsive forces and attractive forces, as well as 

the overall effect of temperature on the hydrophobic interaction and hydrogen bonding, was 

estimated, which could benefit the design of the next generation of stimuli-responsive peptides. 

The nanostructure-dependent lytic activity of C8 is tested in vitro, demonstrating the potential of 

self-guided delivery of stimuli-responsive, therapeutic CLPs. Along with the inherent selective 

toxicity of the cationic peptide itself, stimuli-responsive CLPs may further minimize side effects. 

We believe that our strategy opens a new path for developing CLP-based drugs with this study 

providing a basis for designing simuli-responsive CLPs that respond to targeted 

microenvironments.  
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Chapter 6* 

pH-responsive Cationic Lytic Peptide for Synergistic, Selective 

and On-demand Delivery 

 

 

6.1 Introduction 

        Nanotechnology offers tremendous possibilities for drug delivery systems to overcome the 

adverse side effects of conventional chemotherapeutics and enhance their anticancer activity[37]. 

Nanoscale drug delivery systems with size range of 10-100 nm can accumulate in tumor regions 

via the enhanced permeability and retention effect (EPR) [211, 227]. Except for the passive 

targeting, strategies using targeting ligands that aim at overexpressed receptors on cancer cell 

surfaces were reported to have promising results [41, 228, 229]. Stimuli-responsive systems 

provide another attractive alternative for on-demand delivery. Unlike ligands that target the 

surface traits of cancer cells, on-demand delivery systems react to external stimuli, such as 

temperature [154, 203], pH [163], or extracellular up-regulated enzymes [49] and release loaded 

drugs in a controlled manner. 

        Peptides are a promising class of molecules for bio-application owing to their bio-

functionalities, potential biocompatibility, and design flexibilities. Peptides that self-assemble 

into micelles [230], vesicles [174] or fibrous structures [73] were designed and their potentials in 
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drug delivery has now been demonstrated. Aside from acting as drug carriers, peptides can also 

act as anti-cancer drugs themselves. Many natural antimicrobial peptides (AMPs) and synthetic 

cationic lytic peptides (CLPs) have shown activity against cancer cells by disrupting the integrity 

of cytoplasmic membranes (necrosis) or by depolarizing mitochondrial membranes (apoptosis) 

[6]. These peptides exhibit selective activity towards cancerous cells, which render them superior 

to conventional chemotherapeutics. This selective activity is generally attributed to the 

electrostatic interaction between the positive charges of the peptides and the negatively charged 

cancerous cell surfaces [6, 12]. However, the detailed mechanism of the selectivity is still not 

understood in detail. This knowledge is crucial to improve the selectivity of these peptides 

towards targeted cells or cell membranes.  

        We have reported a stimuli-responsive CLP, C8 (n-WHIINNIIHHIINNIIRR-c), which can 

self-assemble into β-sheet rich nanofibers or disassemble into unstructured monomers in response 

to changes in pH and temperature (reported in chapter 5). The formation of nanostructure works 

as the “switch” to control the lytic activity: the nanofibers are not toxic while the unstructured 

monomers or oligomers are membrane-active. According to the nanostructure-dependent 

membrane lytic activity, we proposed a “self-guided” strategy for CLPs. Here, we use C8 as a 

carrier for a model anticancer drug, ellipticine (EPT), to introduce a new method for drug 

delivery. This system holds several advantages when compared to conventional delivery systems. 

First, the drug carrier vehicle is also a drug, which participates in inhibiting the proliferation of 

cancer cells, enhancing the efficacy of the drug delivery system; furthermore, a synergistic effect 

is also found between active C8 and delivered EPT. Second, the stimuli-responsive property of 

C8 allows the drug delivery system to release the drug and activate the lytic activity of C8 in 

response to the change in pH (on-demand). Lastly, the drug delivery system also shows a 

selective cytotoxicity towards cancerous cells, which is consistent with the selectivity of C8. We 

attribute this to a proposed CLP-assisted uptake mechanism.  
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        As the selective delivery of drugs originates from the different lytic activities of C8 on cell 

membranes with varying compositions, we investigated the lytic activities of C8 on model lipid 

membranes with different surface properties (zwitterionic, negatively charged and cholesterol-

rich). Contrary to the traditional understanding, C8 shows better activity on cholesterol-rich 

membranes, but is less active on negatively charged membranes. Molecular dynamics (MD) 

simulations support this unusual membrane selectivity and provide an insight from the molecular 

level. 

 

6.2 Materials and methods 

6.2.1 Sample preparation 

        Cationic lytic peptide C8 was synthesized by Canpeptide Inc. (Montreal, Canada) with a 

purity above 95%. The procedure for peptide synthesis is briefly described in section 3.2.1. The 

anticancer drug ellipticine was purchased from ENZO life science (Brockville, Canada).  The 

peptide only samples were prepared by dissolving C8 powder in Milli-Q water. The C8-EPT co-

assemblies were prepared by adding EPT powder into C8 pH 4 aqueous solution. When EPT 

powder dissolved, the pH was then adjusted to 8 by adding sodium hydroxide solution. The 

sample was stirred using a magnetic bar at 900 rpm overnight. The pH 4 sample was prepared by 

adding hydrogen chloride solution into pH 8 samples and incubated for 2 days before usage. The 

final pH was in the range of ±0.2 to the targeted value. 

 

6.2.2 Cell culture 

        Mouse fibroblast cells (NIH-3T3), non-small lung carcinoma cells (A549) and breast 

carcinoma cells (MCF-7) were purchased from ATCC (Manassas, USA). All cell lines were 

cultured in ATCC recommended growth media: A549 cells were cultured in F-12 (Kaighn’s 
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modification) (F12K) media (HyClone Laboratories, Mississauga, Canada); MCF-7 cells were 

cultured in MEM Eagles with Earle’s Ballanced Salts (HyClone Laboratories, Mississauga, 

Canada); NIH-3T3 cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) 

(HyClone Laboratories, Mississauga, Canada). All the media contained 10% fetal bovine serum 

(FBS) (Invitrogen, Burlington, Canada) and 1% penicillin/streptomycin (MP Biomedicals, 

Montreal, Canada). The cells were cultured at 37 °C and 5% CO2.  

 

6.2.3 MTS assay 

        A549 cells were seeded into wells of 96-well plates at the density of 10000 cells per well, 

while MCF-7 and NIH-3T3 cells were seeded at the density of 20000 cells per well. The seeded 

cells were incubated for 24 h before treatment. After the media was removed, 150µL of fresh 

media was added with 50 µL of the treatment solution.  Following a 24 h incubation period, MTS 

assays were performed using a CellTiter 96® AQueous Kit (Promega, Madison, USA) according 

to the manfacturer’s protocol. The absorbance was measured at 485 nm using a FLUOstar plate 

reader (BMG Labtech, Ortenberg, Germany). Untreated cells were used as the negative control. 

IC50 values were calculated . 

 

6.2.4 Statistical analysis 

        Results were expressed as mean±SD. Statistical significance was determined by one-way 

analysis of variance (ANOVA). Differences were considered significant if p<0.05. 
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6.2.5 Annexin V assay 

        Untreated or treated cells were labeled using FITC-Annexin V and 7-AAD (BD bioscience, 

Mississauga, Canada) after an 18 h incubation period. The staining procedure was performed as 

described by the manufacturer.  

 

6.2.6 Atomic force microscopy 

        The nanostructures of the C8 peptide aqueous solution (pH 8), C8-EPT co-assemblies at 

both pH 8 and pH 4 were imaged on a Dimension Icon AFM (Bruker, Santa Barbara, USA). The 

AFM samples were prepared by mounting 50 µl of sample solution on a freshly cleaved mica 

surface (SPI, West Chester, USA). The mica was washed with 80 µl Mili-Q water for 5 times 

after 10 min incubation. The air-dried AFM samples were scanned at room temperature using 

peak force quantitative nanomechanical mapping (PF-QNM) mode. All images were acquired 

using a SCANASYST-AIR probe (Bruker, Santa Barbara, USA).  

 

6.2.7 Fluorescence spectroscopy 

        The molecular states of EPT in C8-EPT co-assemblies were identified using fluorescence 

spectroscopy. The samples were transferred into a square quartz cell and excited at 295 nm. The 

emission scans were performed on a QM4-SE spectra fluoremeter (PTI, London, Canada). 

Detailed experimental settings have been described previously [205]. 

 

6.2.8 Circular dichroism spectroscopy 

        The secondary structures of C8-EPT co-assemblies were determined using a J-715 circular 

dichroism spectrometer (Jasco Europe, Cremella, Italy). The samples were transferred into a 1 

mm quartz cell, and spectra were collected from 190 nm to 260 nm with a 1 nm bandwidth and 
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data pitch, 2 s response time and 100 nm min-1 scanning speed. The presented spectra were 

averaged from two replicates, and solvent absorbance was subtracted from the data. The mean 

residue molar ellipticity of C8 peptide presented here was calculated following the formulas: 

Ellipticity (θ in deg cm2 dmol−1) = (millidegrees ×  mean residue weight)/(path length in 

millimetres × concentration of C8 peptide in mg ml-1). 

 

6.2.9 Membrane leakage assay 

        Large unilamellar vesicles (LUVs) of pure POPC, POPC/cholesterol (20 mol%) and E. coli 

polar extract lipids (PE/PG/CA 67/23.2/9.8 wt%) (Avanti Polar Lipids) were prepared by 

extrusion. The lipids were first dissolved in chloroform (≥99.5%, Sigma, Oakville, Canada), then 

dried under a gentle stream of nitrogen (prepurified) and placed under vacuum to remove trace 

amount of solvent.  The lipid film was re-dissolved in a calcein buffer containing 70 mM calcein, 

10 mM Tris and 0.5 mM EDTA at pH 7.4, then freezed in dry ice and thawed in warm water for 7 

cycles. The lipid solutions were extruded using 100-nm pore size filters to obtain LUVs. Free 

calcein was then removed by exchanging the external buffer for a Tris buffer (110 mM NaCl, 10 

mM Tris and 0.5 mM EDTA at pH7.4) on a PD-10 De-salting Column (GE healthcare, New 

Jersey, USA). The lipid concentration was then determined by a phosphate colorimetric assay kit 

(BioVision, Milpitas, USA). The calcein-loaded vesicles (CLVs) were added to varying 

concentrations of freshly prepared C8 Tris buffer solutions. After one hour of incubation on a 

rotatory shaker, the samples were placed in a Horiba JobinYvon Fluorolog 3 (Edison, NJ, USA) 

for fluorescence lifetime measurements. The excitation source was a 467 nm 1MHz laser diode 

and emission was measured for 180 seconds at 515 nm using time-correlated single photon 

counting. The resulting decay curves were then saved with the instrument response function for 

further analysis. The detailed analysis for efflux value was previously described [190]. 
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6.2.10 Molecular dynamics simulations 

        We ran 6 sets of MARTINI CG [231] simulations using GROMACS 4 [232]. Nine C8 

monomers were restrained to remain within the bilayer core, and self-assembled into aggregates 

within 1 µs of simulation. The simulations were run with the standard run parameters [231]. Each 

bead represents 3-4 heavy atoms that interact with a standard Lennard-Jones potential (1.2 nm 

cut-off) and shifted Coulomb potential (0-1.2 nm shift with no long-range electrostatics). The CG 

simulations were then converted to atomistic resolution using the Backwards method [233]. The 

simulations were then continued using the atomistic GROMOS peptide force field [234] and the 

GROMOS lipid parameters [235, 236]. 

 

6.3 Results 

6.3.1 Selective cytotoxicity 

        The cytotoxicity of the unstructured peptide C8 (at pH 4) towards A549 (lung carcinoma), 

MCF-7 (breast carcinoma) and NIH-3T3 (mouse fibroblast) was evaluated using an MTS cell 

viability assay. Figure 6.1 shows that cytotoxicity of peptide was dose-dependent. The IC50 value 

for unstructured C8 against A549 was calculated to be 20.9±6.6 µg/ml (9.0±2.8 µM), and 

21.7±4.5 µg/ml (9.3±1.9 µM) for MCF-7 cells. These values are comparable to IC50 values 

reported for synthetic anticancer peptides in the literature [12, 27, 130, 131]. Meanwhile, the IC50 

value for unstructured C8 against the noncancerous cell line NIH-3T3 was 40.5±2.3 µg/ml 

(17.4±1.0 µM), showing a moderate selectivity of about two-fold greater against cancerous cells.  
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Figure 6.1 Cytotoxicity of C8 against A549 (lung carcinoma), MCF-7 (breast carcinoma) and 
NIH-3T3 (mouse fibroblast). The cells were incubated with C8 for 24 h. The data are averaged 
from at least three independent replicates. The error bars represent standard deviations. 

 

6.3.2 Mechanism of cell death induced by C8 

        To investigate the mechanism of cell death induced by unstructured C8, A549 cells were 

treated with 25 µg/ml (10.7 µM)  or 50 µg/ml (21.4 µM)  of C8. After 18 h of incubation, we 

observed numerous floating dead cells and debris from lysed cells in wells containing treated 

cells. Washing the cells three times to remove the floating cells and cell debris, the remaining 

cells were stained with FITC-Annexin V and 7-AAD. As shown in Figure 6.2.a, most of them 

were still intact or at the early apoptosis stage. The optical microscopy image (Figure 6.2.b) 

shows that A549 cells were lysed with their nuclei remaining intact after a treatment of 53.6 µM 

C8 for 2 min. Both of these observations suggest that C8 kills cells mainly through a necrotic 

mechanism [27, 131]. 
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Figure 6.2 The mechanism of cell death induced by C8. (a) The apoptotic stage of A549 cells 
treated with unstructured C8 determined by FITC-Annexin and 7-AAD labeling. (b) The 
morphology of A549 cells treated with unstructured C8. The images were produced using a 
EVOS ® FL Cell imaging system (AMG, Mill Creek, USA). 
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6.3.3 Selective and on-demand drug delivery 

        Based on our knowledge of peptide-based EPT delivery systems [71, 73], we proposed a 

mechanism for the co-assembly of C8 and EPT at pH 8. At pH 8, the histidine residues are 

deprotonated while arginine residues remain positively charged. Hence, the C8 peptides stack 

together via hydrogen bonding between histidine, asparagine, tryptophan and the peptide 

backbone, and hydrophobic interactions between isoleucine and tryptophan to form β-sheets (π-π 

stacking provided by tryptophan may also be involved), leading to the formation of nanofibers. In 

the context of β-sheets, the positively charged arginine residues are orientated toward the aqueous 

environment, while the rest of the residues in C8 form the hydrophobic core of the nanofibers. 

Ellipticine molecules can interact with C8 peptide via hydrogen bonding and hydrophobic 

interaction, and localize in the core of the nanofibers (Figure 6.3.d).  

        To confirm the proposed mechanism, AFM images of C8 and C8-EPT co-assemblies were 

obtained at pH 8 (Figure 6.3.a). Similar to the case of EAK16-II and EPT [205], C8 formed thin 

nanofibers by itself, while thick nanofibers and large nodes were present in C8-EPT co-

assemblies. This indicates that EPT participated in the self-assembly process. The fluorescence 

spectrum of EPT in C8-EPT co-assemblies at pH 8 indicates that EPT remained mostly as neutral 

molecules (fluorescence emission peak centered at ~430 nm) [74] (Figure 6.3.b), which should be 

encapsulated in the hydrophobic core of the nanofibers, supporting our proposed mechanism.  

        The AFM images showed that the condensed nanofiber network and nodes formed by C8 

and EPT “melted” to short fragments after the pH was reduced to 4 (Figure 6.3.a). The secondary 

structure of C8 in the co-assemblies as probed by CD had a significant reduction in β-sheet 

content when the pH was reduced to 4 (Figure 6.3.c), indicating disassembly. Protonated EPT 

(fluorescence emission peak centered at 530 nm) dominated at low pH [205], which could further 

destabilize the aggregate (Figure 6.3.b).  
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Figure 6.3 Characterization of C8-EPT co-assemblies and proposed co-assembly and delivery 
mechanism. a-c. the characterization of physicochemical properties of C8-EPT co-assemblies at 
pH 4 or pH 8 using AFM (a), fluorescence microscopy (b) and circular dichroism (c). The C8-
EPT co-assemblies contain 500 µg/ml (214.6 µM) C8 and 50 µg/ml (203.3 µM) EPT, the C8 pH 8 
sample is at the concentration of 500 µg/ml (214.6 µM). d) Schematic of the co-assembly of C8-
EPT and the on-demand CLP-assisted delivery mechanism.  
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        The in vitro cytotoxicity of C8-EPT samples at pH 8 (referred to as C8-EPT (pH 8)) and pH 

4 (referred to as C8-EPT (pH 4)) was evaluated on A549 and NIH-3T3 cell lines. We postulated 

that the membrane damage induced by active C8 monomers could facilitate cellular uptake of the 

delivered EPT (as illustrated in Figure 6.3.d), which we term “CLP-assisted uptake” mechanism. 

As shown in Figure 6.5.b-d, the C8-EPT (pH 8) co-assemblies exhibited almost no toxicity 

towards either cell line. Our previous work has reported that neutral EPT and EPT crystalline 

delivered by EFK16-II are active in inhibiting the proliferation of A549 cells [69]. Therefore, the 

minimized cytotoxicity of C8-EPT (pH 8) could be attributed to the inactive nanostructured C8, 

which is in line with our hypothesis. In contrast, the disassembled C8-EPT (pH 4) co-assemblies 

were active in inhibiting the growth of both types of cells (Figure 6.5.b). The C8-EPT (pH 4) 

could still kill ~95% of A549 cells after a 4-fold dilution. In comparison, when treated with the 

same concentration of C8, the A549 cells still showed ~30% viability. Water at pH 4 or pH 8 did 

not affect the growth of cell significantly (viability of both A549 and NIH-3T3 cells treated with 

water control at either pH was above 90%). EPT aqueous solution at pH 4 was used as the 

protonated EPT control. It was also less active than C8-EPT (pH 4) (Figure 6.5.a). Taken together, 

these results suggest that the combination of C8 and EPT is more effective than either C8 or EPT 

alone. We also performed a one-hour treatment with C8-EPT (pH 4) and EAK16-II-EPT drug 

delivery system (EAK16-II only acts as the drug carrier) [205]. C8-EPT (pH 4) showed strong 

cytotoxicity and the morphologies of the treated cells also changed in 2 min (Figure 6.4.b), while 

one hour is too short for EPT to induce apoptotic cell death (Figure 6.4.a). These results strongly 

suggest that C8 can still exert its lytic action in the C8-EPT (pH 4) system.  
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Figure 6.4 (a) Cytotoxicity of (left) EAK16-II-EPT co-assemblies (1X refers to 125 µg/ml 
EAK16-II (77.4 µM) and 25 µg/ml (51.8 µM) EPT) or (right) C8-EPT (pH 4) sample (1X refers 
to 125 µg/ml (53.6 µM) C8 and 12.5 µg/ml (50.8 µM) EPT) against A549 cells with 1h of 
incubation. The viabilities were averaged from at least three independent experiments, error bars 
are standard deviations. (b) Optical microscopy images of untreated A549 cells and A549 cells 
treated with C8-EPT (pH 4) sample for 2 min.   

 

        Beyond the pH-responsive (on-demand) delivery, the differential membrane activity of C8 

may also be utilized to achieve a selective delivery of EPT and synergistic effect between C8 and 

EPT. The cytotoxicity of protonated EPT against A549 and NIH-3T3 cell lines was evaluated, 

and found to be not particularly selective (Figure 6.5.a). As shown above, the delivery of drug 

depends on the membrane activity of C8. Since C8 was less active against NIH-3T3 cell lines 

than A549 (Figure 6.1), the unstructured C8 was expected to cause less damage to NIH-3T3 cells 

when treating both cell lines with the same concentrations of C8-EPT (pH 4), leading to less 
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efficient cellular uptake of EPT. Comparing the cytotoxicity of C8-EPT (pH 4) against A549 and 

NIH-3T3 cell lines (Figure 6.5.b-d), we found that C8-EPT (pH 4) was more active, although not 

significantly, against A549 cells. For example, after 8-fold dilution, C8-EPT (pH 4) kills ~65% of 

A549 cells, but kills ~30% less of NIH-3T3 cells. Moreover, the cytotoxicity of C8-EPT 

complexes against NIH-3T3 cells was comparable to that of EPT, implying that the C8 induced 

enhancement in cellular uptake of EPT weakens due to less activity of C8 against NIH-3T3 cells. 

With further dilution, C8 is incapable of disrupting the cell membrane of both cell lines; C8-EPT 

(pH 4) became less active and selective against both cell lines. 

        To further investigate the potential of selective delivery, we used 60 µg/ml (25.2 µM) C8 

aqueous solution at pH 4 to dilute C8-EPT (pH 4) (referred to as C8-EPT+), instead of water. The 

motivation is to maintain the concentration of C8 at a level that is capable of disrupting the 

membrane of A549 cells but not the NIH-3T3 cells. C8 samples at corresponding concentrations 

were used as controls to show the contribution of C8 to the cytotoxicity of C8-EPT+. As shown 

in Figure 6.5.c,e, the C8-EPT+ samples presented a significant enhancement on its cytotoxicity 

against A549 cells. Even diluted by 32-fold, C8-EPT+ sample still showed enhancement on 

cytotoxicity when compared to C8 alone, inhibiting ~20% more of cell growth (Figure 6.5.c). At 

the same concentration as in 32-fold diluted C8-EPT+, EPT was non-toxic, which demonstrated 

the synergistic effect resulting from the “CLP-assisted uptake” mechanism. In contrast, no 

significant enhancement was observed on the cytotoxicity against NIH-3T3 cells (Figure 6.5.e), 

because NIH-3T3 cells were less susceptible to the increased amount of C8. As a consequence, 

the selectivity of C8-mediated EPT delivery system towards A549 cells has been enhanced. 
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Figure 6.5 Evaluation of the cytotoxicity of EPT and C8-EPT co-assemblies against A549 (lung 
carcinoma) and NIH-3T3 (mouse fibroblast). Cytotoxicity of protonated EPT (a) and C8-EPT co-
assemblies diluted with water (b,d) and unstructured C8 aqueous solution at concentration of 60 
µg/ml (25.2 µM) (c,e). The samples with “+” represent that they are diluted with unstructured C8 
aqueous solution. 1X refers to 12.5 µg/ml (50.8 µM) EPT, or 125 µg/ml (53.6 µM) C8, or the C8-
EPT co-assemblies with 125 µg/ml (53.6 µM) C8 and 12.5 µg/ml (50.8 µM) EPT in the final 
culture media. The viabilities were averaged from at least three independent experiments, Error 
bars are standard deviation. *p<0.05, **p<0.01 between the two samples. 
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6.3.4 Membrane selectivity and lysis 

        The leakage of calcein from large lamellar vesicles was measured to address the mechanism 

of C8 selectivity and cell lysis. At low concentrations (sub micromolar), C8 induced leakage from 

both a pure POPC liposome and a POPC liposome containing 20 mol% cholesterol (Figure 6.6.a). 

A model bacterial membrane with polar lipid extracts of E.coli required roughly 10 times higher 

concentration of C8 to induce leakage. An antimicrobial ring test was also performed on E.coli, 

showing that C8 did not have antimicrobial activity (data not shown), which supports this unusual 

membrane selectivity. The mechanism of leakage in all 3 model membranes was found to be 

graded [190] (data not shown).  

        Figure 6.6.b showed atomistic stimulations for C8 aggregates, in 3 model membranes: pure 

POPC, 20 mol% cholesterol/POPC, and 1:3 POPG: POPE mixtures. When all three histidines 

were neutral, no large pores were observed in any of the model membranes. Relatively large 

dynamic disordered toroidal pores were observed in POPC and 20 mol% cholesterol membranes 

when the histidines were charged, while no pores are observed for the POPE/POPG mixture. 

These pores were sufficiently large to allow calcein molecules to diffuse through them (Figure 

6.7.a). For the POPE/POPG mixture C8 preferred to interact with the interface, likely due to the 

strong electrostatic interactions between the peptide and the PG head group, as well as the 

increased hydrogen bonding capacity of PE compared to PC. Free energy profiles for single C8 

molecules to move from water to the center of the 3 model membranes are shown in Figure 6.7.b. 

The deep free energy minima at the interface of the PE/PG mixture supports our hypothesis that 

the negatively charged PG attracted C8 to the interface, which reduced pore formation.  
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Figure 6.6 Membrane leakage induced by C8. (a) Leakage induced by C8 on pure POPC, 
POPC+20% cholesterol and E. coli extract lipid membranes. (b)Atomistic molecular dynamics 
simulations of C8 aggregation within different model membranes. Representations are: water, 
red; lipid tails, thin cyan; POPC phosphorous, yellow; POPG phosphorous, blue; cholesterol 
oxygen, white; the peptides are in cartoon representation colored by residue type (charged and 
histidine, blue; hydrophobic white; polar, green). 
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Figure 6.7 (a) The top view of a pore in the POPC bilayer with neutral (left) and charged (right) 
C8 peptides. Water is not shown for clarity, and the peptide and lipids are in Van der Waals 
representation. The peptide is coloured white for hydrophobic residues, green for polar and blue 
for histidine and arginine. A calcein molecule in licorice representation is over laid on the pore to 
illustrate that the pore is large enough to leak calcein when C8's histidines are charged, but not 
when neutral. (b) Free energy profiles for moving a single C8 peptide from water to the center of 
the different membranes. These calculations were performed with the MARTINI coarse-grained 
model. The free energy troughs at the water-membrane interface show that monomers would bind 
to the lipid environment.  
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6.4 Discussion 

        We presented C8, a novel anticancer peptide and pH-triggered drug delivery vector. Based 

on our in-depth characterization, Figure 6.3.d presents a schematic for our hypothesized 

mechanism of enhanced (synergistic) and selective delivery of EPT. This peptide illustrates 3 

main design features: pH responsive co-assembly with an effective anticancer drug (EPT), low 

toxicity in the high pH co-assembled form and high toxicity in the low pH disassembled state, 

and membrane selectivity.    

        The unique advantage of using a CLP to deliver an anticancer drug is that both the delivered 

drug and delivery vector can execute a therapeutic function. We have shown that C8 has the 

potential for on-demand delivery, which likely originates from its membrane lytic action: it is 

possible that C8 permeabilizes the cell membrane, weakening its barrier to the anticancer drug, 

which leads to enhanced uptake and efficacy. We postulate that the EPT is encapsulated in the 

non-toxic C8 nanofibers, at pH 8, which limits its toxicity. When the co-assemblies reach the 

targeted environment (in our case low pH), the peptide nanofibers disassemble to release active 

monomers and the encapsulated EPT which work synergistically via the proposed “CLP-assisted 

uptake” mechanism. This mechanism may also explain the synergistic effects observed in other 

combinations of CLPs and chemotherapeutic drugs [27, 87]. As “CLP-assisted uptake” 

mechanism is largely dependent on the membrane activity of CLPs, we utilized the discrepancy 

on the activity of C8 against A549 cells and NIH-3T3 cells to achieve selective delivery of EPT. 

The synergistic effect between C8 and EPT allows a reduced dosage, limiting the adverse side 

effects; the selectivity rendered by C8 could improve the safety issue further. This “CLP-assisted 

uptake” mechanism mediated synergistic effect could be quite applicable in in vivo application. In 

vivo administration requires continuous injections of treatments to maintain an effective 

concentration in the body, which allows the CLP to possess sufficient membrane activity to 
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enhance cellular uptake of delivered drug. Furthermore, the choice of dosage would be important, 

utilizing the selectivity, to minimize the side effects but still maintain a good antitumor efficacy.  

        CLPs can selectively bind and lyse specific cell membranes, which is a promising property, 

given that cancer cells and microbes have different lipid compositions from healthy mammalian 

cell membranes [6]. C8 has unusual membrane selectivity in contrast to many traditional CLPs. 

Many CLPs have anticancer and antimicrobial activity that has been attributed to the negatively 

charged surfaces of both types of cell membranes and lower cholesterol concentrations [6]. C8 

does not have antimicrobial activity but does selectively kill cancer cells. The model membrane 

vesicle leakage assays showed that 20 mol% cholesterol did not reduce the effectiveness of C8, 

but a E.coli lipid extract membrane was markedly more resistant to C8 induced leakage. These 

studies support the finding that C8 is not particularly antimicrobial, but do not explain its 

selectivity for cancer cells. This suggests that the traditional view that the membrane selectivity 

of CLP’s is due to the negatively charged lipids or cholesterol content is incomplete. Future 

studies into the specific structure and composition of different cell membranes would enable 

more comprehensive model membrane studies and drug delivery targets.    

        The mechanism for C8 permeabilization of the membrane on a molecular level involves the 

amphiphilic helices aggregating within the bilayer core, forming a disordered torroidal pore 

which agrees with many previous MD simulations of CLPs [237, 238]. The protonation state of 

histidine is crucial for pores to form, with relatively large pores when protonated and charged. 

This suggests the interesting possibility of tuning activities based on the local pH. The 

simulations agree qualitatively with the leakage results, with pore formation in zwitterionic 

bilayers with and without cholesterol, but not the bacterial mimic (largely PE and PG). C8 has a 

stronger affinity or lower free energy for the interface of the bacterial bilayer compared to the 

POPC and POPC/CHOL bilayers, which cause them to bind to the interface and not aggregate 

into toroidal pores.    
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        The potential for peptide-based nano-drug carriers is promising. C8 provides a solid basis for 

future peptide designs. Our characterization and design features, including pH responsive co-

assembly, drug delivery, and membrane selectivity and lysis, will expand a new and important 

area of research—CLP-mediated multi-functional drug delivery system. Due to the flexibility in 

the choice of amino acids, many possible substitutions may improve the design of C8 to enhance 

the effectiveness for cancer treatment. Mutations in peptide sequence to shift the pH responsive 

disassembly from around 4 to 6.2-7.2, close to the extracellular environment of solid tumor [42, 

165], would make C8 more effective. Decreasing the hydrophobic content, or increasing the 

number of charged or polar residues, may destabilize the beta sheets in higher pH conditions. 

Increasing the selectivity towards cancer cells is also crucial, but is much more difficult to 

accomplish. Similar multi-disciplinary approaches with libraries of peptides and more model 

membranes will allow for a more thorough basis for understanding the membrane selectivity. 

Incorporating multiple histidines into the design of C8 with two additional arginine residues may 

explain the unique properties of the peptide. We expect that variants of C8 have the potential for 

effective drug delivery and therapeutic applications.   
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Chapter 7 

Conclusions and Recommendations 

 

 

8.1 Original contributions to research 

        This thesis represents new findings in the application of CLPs for anticancer treatment from 

three aspects: 1) the molecular mechanism of membrane selectivity of CLPs; 2) development of 

stimuli-responsive CLPs; 3) the potential use of CLPs as hydrophobic drug carriers. The thesis 

includes the following parts: (i) studies on the membrane activity and selectivity of an arginine-

rich amphiphilic peptide using liposomes and mammalian cells; (ii) investigation of anticancer 

activity of an arginine-rich peptide in vitro and in vivo, and the therapeutic effect of peptide-

ellipticine complex against cancerous or healthy cells; (iii) characterization of a stimuli-

responsive CLP and its nanostructure-dependent cytotoxicity; and (iv) investigation of the 

potential use of stimuli-responsive CLP as ellipticine nanocarrier for synergistic, selective and/or 

on-demand delivery. The original contributions to research of each part are summarized in the 

following sections.  

 

8.1.1 Tuning the membrane selectivity of C6 by hydrogen bonding.  

        An arginine-rich amphiphlic peptide C6 was found to show comparable membrane lytic 

activity against pure POPC membranes or cholesterol-rich (20 mol%) POPC membranes based on 

liposome leakage assay. After inhibiting the hydrogen bonding between C6 and membrane 
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components by adding phosphate salt, the membrane lytic activity of C6 against cholesterol-rich 

membrane reduced significantly while did not change much against pure POPC membranes. This 

demonstrates that hydrogen bonding plays an important role in the activity of CLP against 

cholesterol-rich membranes, which is reported for the first time.  

        The effect of hydrogen bonding was also shown in cytotoxicity studies of C6 on A549 cells, 

MCF-7 cells and red blood cells with various membrane-cholesterol contents. Although the 

outcomes were consequences of a combinatial factors due to the complexity of the cellular system, 

the results still could demonstrate the potential of tuning the activity of CLPs against specific cell 

types by modulating their membrane selectivity. This study adds new molecular insights into the 

mechanism of membrane selectivity of CLPs. 

 

8.1.2 In vitro and in vivo anticancer activity of C6 and in vitro delivery of C6-EPT complexes. 

        The cytotoxicity of C6 was evaluated in vitro, and found to be selective towards cancerous 

cells. Its anticancer activity was demonstrated in the context of an A549 nude mice tumor model. 

A subsequent study found that C6 could stabilize neutral ellipticine in aqueous solution. C6 was 

prone to become unstructured in aqueous solution, but maintained a helical conformation and a β-

sheet component after forming complexes with ellipticine.  

        The C6-EPT complexes exhibited enhanced cytotoxicity towards A549 cells when compared 

to C6 or neutral EPT alone. The membrane permeability induced by C6 was suggested to be the 

reason for the enhancement in cytotoxicity. Such an enhancement became more pronounced 

when the C6-EPT complexes were diluted with a low concentration C6 aqueous solution, which 

maintained the concentration of C6 constant in complexes that disrupted cell membranes. In 

contrast, the enhancement was not significant for NIH-3T3 cells, in both cases of dilution with 

water or C6 aqueous solution. This could be due to that C6 may be less active against NIH-3T3, 

hence induced less permeability on NIH-3T3 cell membranes than on A549 cell membranes at the 
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same concentration. We term this “CLP-assisted uptake” mechanism. This mechanism results in 

different degrees of enhancement, leading to the selectivity of C6-EPT complexes. This study 

demonstrates the capability of amphiphilic CLPs as hydrophobic anticancer drug carriers for 

enhanced and selective delivery.  

 

8.1.3 Stimuli-responsiveness and nanostructure-dependent cytotoxicity of C8. 

        A stimuli-responsive peptide, C8, was designed based on our amino acid pairing principle. 

Controlled by the balance of intermolecular forces between repulsive electrostatic forces and 

attractive hydrogen bonding and hydrophobic interactions, the designed peptide can self-assemble 

into β-sheet rich nanofibers or disassemble into unstructured monomers. As the pH controls 

protonation status of histidine residues, temperature affects hydrogen bonding and hydrophobic 

interactions and urea interferes with the formation of hydrogen bonds, C8 was shown to be a 

triple-responsive self-assembling peptide.  

        We also proposed the balance equations for the repulsive and attractive forces at different 

temperatures using the critical pH, at which the peptide starts to assume a β-sheet conformation. 

With these equations, we can estimate the relative strength of different types of intermolecular 

forces, as well as the overall effect of temperature on the hydrophobic interaction and hydrogen 

bonding. This knowledge will provide a basis to modulate the intermolecular interactions of the 

stimuli-responsive peptides, to respond to specific environmental conditions. 

        The nanostructure formation was found to work as the “switch” to control the lytic activity 

of the therapeutic peptide: the non-toxic nanostructured peptide is a carrier, and it disassembles 

into active monomers in response to the target microenvironment. We showed the nanostructure-

dependent lytic action of C8 in vitro, demonstrating the potential of this “self-guided delivery” 

strategy.  Furthermore, the hemolytic activity of the nanostructured peptide was significantly 

reduced. Along with the inherent selective killing of cancerous cells, the results extend the usage 



	
   136	
  

of cationic lytic peptides as “self-guided” therapeutic agents. The approach proposed here has 

never been reported in the literature. 

 

8.1.4 Co-assembly of ellipticine with C8 and pH-responsive, synergistic and selective 

delivery of C8-EPT complexes.  

        C8 was found to co-assemble with neutral EPT, forming thicker nanofibers and globular 

aggregates at pH 8 when compare to the thin nanofiber networks formed by C8 alone at the same 

condition. The C8-EPT co-assemblies disassemble at pH 4.0, releasing protonated ellipticine.  

          The formation of nanostructure of co-assemblies of C8-EPT was found to greatly affect 

their cytotoxicity. The C8-EPT co-assemblies at pH 8 showed minimal cytotoxicity against both 

A549 cells and NIH-3T3 cells. In contrast, the disassembled C8-EPT samples were active in 

inhibiting cell growth. This could be due to the inactivation of membrane lytic activity of C8 by 

the formation of nanostructures. The enhanced efficacy and selectivity found in C6-mediated 

system were also shown in this C8-mediated system, along with the pH-responsive cytotoxicity, 

which may suggest the “CLP-assisted uptake” mechanism represents a general behavior of CLP-

mediated drug delivery system. This study further shows the possibility to involve stimuli-

responsiveness into CLP-mediated drug delivery system.  

 

8.2 Recommendation 

        Based on the outcomes of this thesis, the following recommendations are suggested for the 

future development of CLP-related therapeutics: 

1. To investigate the effect of hydrogen bonding on the membrane activity and 

selectivity of CLPs further, peptides with lysine residues (positively charged, less 

capable of forming hydrogen bonding than arginine), or peptides contain asparagine, 
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glutamine residues (neutral, provide hydrogen bonding) may be studied . The 

positions of the amino acids in the peptide sequences may also affect membrane 

activity and selectivity. This should also be studied. Furthermore, evaluation of 

membrane lytic activity on various types of model membranes maybe considered. 

This information could provide criteria to target a specific type of cell membranes 

with complicate compositions.  

2. To optimize CLPs with desired stimuli-responsive properties, the designs can benefit 

from our study in chapter 5. For instance, using C8 peptide as a template, new 

peptides can have more arginine or histidine residues to target higher pH; more 

hydrogen bonding and less hydrophobic interaction between peptides could facilitate 

disassembly at increased temperature and/or an environment with high urea content.  

The peptides also need to maintain an amphiphilicity to preserve membrane lytic 

activity.  

3. To minimize hemolytic effect of CLPs, new peptide design may involve D-amino 

acid or tumor-targeting sequence (such as an iRGD sequence [239], which is short, 

and contains positively charged R and negatively charged D that facilitate self-

assembly). Partial substitution of arginine residues with lysine residues may also help. 

4. For CLP-mediated drug delivery systems, there are three approaches can be used to 

enhance their tumor-specificity: (i) using CLPs with high selectivity towards 

cancerous cells; (ii) adopting cancer cell-specific therapeutic agents, such as alpha-

tocopheryl succinate, as the delivered cargo; (iii) incorporating exogenous stimuli-

responsive moieties to achieve multi-responsiveness.  

5. It will be necessary to adopt an efficient method to encapsulate hydrophobic drug 

with amphiphilic CLP, such as solvent evaporation technique [66]. There is also a 

need to develop a robust method to evaluate the encapsulation efficiency of the CLP-

mediated delivery systems.  
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6. To further understand the “CLP-assisted uptake” mechanism, the cellular uptake 

pathway and the subcellular distribution of the delivered drug should be investigated.  
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