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Abstract

The results in this thesis lie at the confluence of triangulations and reconfiguration. We
make the observation that certain solved and unsolved problems about triangulations can
be cast as reconfiguration problems. We then solve some reconfiguration problems that
provide us new insights about triangulations. Following are the main contributions of this
thesis:

1. We show that computing the flip distance between two triangulations of a point set
is NP-complete. A flip is an operation that changes one triangulation into another
by replacing one diagonal of a convex quadrilateral by the other diagonal. The flip
distance, then, is the smallest number of flips needed to transform one triangulation
into another. For the special case when the points are in convex position, the problem
of computing the flip distance is a long-standing open problem.

2. Inspired by the problem of computing the flip distance, we start an investigation into
computing shortest reconfiguration paths in reconfiguration graphs. We consider
the reconfiguration graph of satisfying assignments of Boolean formulas where there
is a node for each satisfying assignment of a formula and an edge whenever one
assignment can be changed to another by changing the value of exactly one variable
from 0 to 1 or from 1 to 0. We show that computing the shortest path between two
satisfying assignments in the reconfiguration graph is either in P, NP-complete, or
PSPACE-complete depending on the class the Boolean formula lies in.

3. We initiate the study of labelled reconfiguration. For the case of triangulations, we
assign a unique label to each edge of the triangulation and a flip of an edge from e
to e′ assigns the same label to e′ as e. We show that adding labels may make the
reconfiguration graph disconnected. We also show that the worst-case reconfiguration
distance changes when we assign labels. We show tight bounds on the worst case
reconfiguration distance for edge-labelled triangulations of a convex polygon and of a
spiral polygon, and edge-labelled spanning trees of a graph. We generalize the result
on spanning trees to labelled bases of a matroid and show non-trivial upper bounds
on the reconfiguration distance.
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Chapter 1

Introduction

Triangulations are a well-studied mathematical object, and, as a research area, are mature
enough to have textbooks [31, 37] written about them. Reconfiguration is a new field
of study and has gained significant attention over the last decade. This thesis is at the
confluence of triangulations and reconfiguration. There are long-standing open problems
about triangulations that can be stated as reconfiguration problems. New results in recon-
figuration often provide new insights for triangulations and problems about triangulations
inspire new questions about reconfiguration. It is this feedback loop that has provided
most of the fuel for this thesis.

In this chapter, we provide an overview of results presented in the thesis. In Section 1.1,
we provide a summary of the known and relevant results in the fields of reconfiguration
and triangulations. In Section 1.2, we describe our contributions. The overall goal of this
chapter is to provide the commentary underlying the collection of results in the thesis. Thus
we do not attempt to provide a comprehensive background for the thesis in this chapter.
Instead, we only discuss those parts of the literature that are necessary to understand
the motivation behind the questions we study and the significance of the results we have
obtained. More thorough literature surveys pertaining to each chapter can be found at the
beginning of the respective chapters.
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1.1 Background

1.1.1 Reconfiguration

Reconfiguration problems are a way to study solution spaces of optimization problems.
Consider the problem of computing the maximum independent set, for example. Given
a maximum independent set I of a graph G = (V,E), one defines a reconfiguration step
as replacing a vertex v ∈ I with a vertex u ∈ V \ I such that the set I \ {v} ∪ {u} is
also independent. Such a step is also called a token jump. Then, given two maximum
independent sets I1 and I2 of G, deciding whether there exists a sequence of token jumps
that transforms I1 to I2 is an example of a reconfiguration problem.

Similar reconfiguration problems can be defined for other problems, including vertex
cover, coloring, maximum matching, shortest path, minimum spanning tree, and satis-
fiability of boolean formulas [59, 76, 58, 55, 47]. For all these cases, we can define a
reconfiguration graph that has a vertex for each solution and an edge whenever the two
solutions can be transformed into one another with the application of one reconfiguration
step. The following kinds of reconfiguration problems have been studied so far.

1. Given two solutions, does there exist a sequence of reconfiguration steps that converts
one into the other? That is, we want to solve st-connectivity on the reconfiguration
graph.

2. Given an instance of an optimization problem, is the reconfiguration graph con-
nected? That is, we want to decide the connectivity of the reconfiguration graph.

3. Given two solutions, what is the smallest number of reconfiguration steps required
to convert one to the other? We call this quantity the reconfiguration distance and
this path the shortest reconfiguration path (SRP) between the two solutions.

4. What is the diameter of the reconfiguration graph in the worst case? Note that unlike
the previous three problems, this one is not a computational problem.

Ideas related to reconfiguration have appeared in the mathematical literature for more
than a century and thus it is difficult to identify the first work on reconfiguration. For
example, one could consider computing any permutation of a given set as a trivial opti-
mization problem and define a reconfiguration step as swapping two adjacent elements.
The reconfiguration graph thus obtained is the permutohedron, which was first studied in
1911 [88]. The recent interest in reconfiguration, however, is from a more computational
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point of view and it is reasonable to say that the first work of this flavor was published
in 2009 by Gopalan et al. [47], where they studied reconfiguring between satisfying assign-
ments of Boolean formulas. They studied st-connectivity, connectivity, and the worst-case
diameter of the reconfiguration graph. Their work, combined with the more recent work
of Schwerdtfeger [89], completely resolves these three problems for Boolean formulas. In
particular, there exists a partition of the set of Boolean formulas into two mutually exclu-
sive and exhaustive classes such that st-connectivity can be computed for one of them in
polynomial time and is PSPACE-complete for the other. There exist similar dichotomies
for the other two problems as well. In Chapter 3 (also [75]) we prove a similar partition
result for the problem of computing the shortest reconfiguration path. Further background
on reconfiguration of Boolean formulas can be found in Chapter 3.

Almost around the same time as Gopalan et al.’s work [47], Ito el al. [55] published
another collection of important results. They considered the problem of st-connectivity
for independent set, clique, vertex cover, set cover, and integer programming and proved
them all to be PSPACE-complete. On the other hand, for matching and spanning trees,
they provided polynomial time algorithms for st-connectivity.

One pattern that emerged from Ito et al.’s work was that the reconfiguration versions of
tractable (in P) optimization problems happened to be in P and the reconfiguration versions
of intractable (NP-hard) optimization problems happened to be PSPACE-complete. There
exists a counterexample to the second pattern in the regime of Boolean formulas, i.e.,
there exists a class of Boolean formulas where deciding satisfiability is NP-complete but
st-connectivity in the reconfiguration graph can be solved in polynomial time [47]. A
counterexample to the first pattern was obtained by Kaminski et al. in 2011 [58] where
they showed that deciding st-connectivity in the reconfiguration graph of shortest paths
was NP-hard; it was later shown to be PSPACE-complete by Bonsma [12].

It was proved in the same paper [12] that reconfiguring between shortest paths in
claw-free and chordal graphs can be done in polynomial time, that the diameter of the re-
configuration graph is linear in these cases, and that the connectivity of the reconfiguration
graph can also be tested in polynomial time. Bonsma later also studied reconfiguration of
shortest paths in planar graphs and showed that to be in P [13]. Many other reconfigura-
tion problems have been studied and the interested reader is referred to the survey by van
den Heuvel [98].
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1.1.2 Triangulations

For a given planar point set P , let an edge be a line segment connecting two points in P
with no other point lying on it. We will say that two edges cross if they intersect at a
point that is not an end point. A triangulation of P is any maximal set of edges such that
no two edges cross each other (Figure 1.1(a)). It is known that every maximal set of edges
such that no two edges cross each other always contain the convex hull edges, and divides
the interior of the convex hull into triangles.

It is clear from an easy application of Euler’s formula that all triangulations of a given
point set have the same number of edges. It is known that all point sets have at most O(30n)
triangulations [90], and there exist point sets with at least Ω(2.43n) triangulations [91].
Finding an asymptotically tight bound is still open.

One can also define a triangulation for a simple polygon by defining an edge to mean any
diagonal of the polygon (as opposed to segments joining any two vertices). Any maximal
set of diagonals such that no two of them cross constitutes a triangulation of the polygon
(Figure 1.1). For a point set that is in convex position, any triangulation can be seen as a
triangulation of the convex polygon formed by the convex hull of the point set.

A flip is an operation that changes one triangulation into another by replacing one edge
by another. In all the cases above, when we remove an edge e there is at most one edge
e′ 6= e that can be added back to form a triangulation. Replacing e by e′ is called a flip.
Edges on the convex hull cannot be flipped. Let e = BC be an edge with two triangles
ABC and BCD on either side (Figure 1.1(a)). If the quadrilateral ABDC is convex, then
BC can be replaced by AD and thus e′ = AD. If ABDC is not convex, then we say that
e is not flippable.

Flips define a flip graph that has a node for each triangulation and edge whenever
exactly one flip is required to convert between the two triangulations. As explained be-
low, the flip graphs always happen to be connected [64, 63, 7], which makes flips a very
fundamental operation. The connectedness implies for any two triangulations of the same
underlying object, there always exists a flip sequence that transforms one to the other.

One of the earliest mentions of flips was in the context of Delaunay triangulations—
there exists an O(n2) algorithm to construct the Deulaunay triangulation using flips. A
Delaunay triangulation of a point set is defined as the triangulation which contains an edge
between two points if and only if there exists a circle that contains only those two points
and no other points. Delaunay triangulations satisfy some very nice properties, providing
a list of which is out of scope for the thesis. However, the algorithm for their construction
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A

B

C

D

(a) (b)

(c) (d)

Figure 1.1: (a) Triangulation of a point set (b) Triangulation of a polygon (c) Canonical
triangulation of a point set in convex position (d) Triangulation of a convex polygon and
the corresponding BST (dashed lines indicate edges, circles indicate nodes, square indicates
root)
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A B

C

D

Figure 1.2: Flipping a non-Delaunay edge. BD is non-Delaunay since the circumcircle of
triangle ABD contains C. Thus it can be flipped to AC, which is a Delaunay edge.

is instructive and explains why the flip graph is connected. Thus we provide a description
of the algorithm in the next paragraph.

Consider any triangulation of a point set and consider any convex quadrilateral ABCD
formed by four edges of the triangulation. Let BD be the diagonal present in the trian-
gulation. If the circumcircle of triangle ABD contains C, or if the circumcircle of triangle
BCD contains A, then the triangulation is not Delaunay: since there exists a circle passing
through B and D that contains either A or C, edge BD cannot be an edge of the Delaunay
triangulation. We say that the edge BD is a non-Delaunay edge (Figure 1.1.2). A simple
geometric argument shows that if BD is non-Delaunay, then AC must be Delaunay, i.e.,
the circumcircle of ABC does not contain D and the circumcircle of ACD does not contain
B. Replacing BD by AC is exactly one flip. The algorithm is now simple to describe:
as long as the triangulation contains a non-Delaunay edge, flip the edge. We will not go
into the details of the proof, but it can be shown that this process always yields a De-
launay triangulation in O(n2) steps (see [37] for a proof). Since any triangulation can be
transformed into the Delaunay triangulation in O(n2) flips, any two triangulations can be
transformed into one another by going through the Delaunay triangulation in O(n2) flips.

This argument can be generalized to triangulations of simple polygons (see [7] for
details) by going through the constrained Delaunay triangulation thus showing that the
flip graph of triangulations of a simple polygon is always connected. When points are
in convex position, this argument already shows the connectivity of the flip graph, but
the O(n2) bound on the worst-case flip distance can be reduced to 2n + O(1) with a
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more careful argument [93]. Both arguments produce flip sequences that pass through a
canonical triangulation, which, for point sets, is the Delaunay triangulation, and for points
in convex position, is a fan (Figure 1.1(c)).

The minimum number of flips required to transform one triangulation to another—the
flip distance—acts as a measure of similarity between the two triangulations. It is often
useful to compute the flip distance given the two triangulations as input. One context where
such measures are useful is in the design of data structures [93] because of a connection with
binary search trees (BST). The set of triangulations of a convex n-gon is in bijection with
the set of binary search trees on n−1 leaves such that the flip operation on the triangulation
corresponds to a rotation operation on the corresponding tree (Figure 1.1(d)). Thus the
flip distance corresponds to the rotation distance—minimum number of rotations required
to transform one tree to another. Measures of similarity between two trees, such as, the
rotation distance, are also used in comparative genomics where evolution is represented by
phylogenetic trees [40].

Thus computing flip distance is useful and fundamental. Interestingly, for the case
of convex polygons, the complexity of this problem has been open since 1987 [93]. The
problem is also important for planar point sets and has appeared in two textbooks and a
survey [33, 31, 15]. We solved the problem in 2011 [66] and showed that for planar point
sets computing the flip distance is NP-complete (see Chapter 2). It was later also shown to
be APX-hard [84]. The problem on simple polygons is now known to be NP-complete [1].
A factor-2 approximation algorithm exists for convex polygons, but no constant-factor
approximation algorithms are known for point sets or simple polygons. The factor-2 algo-
rithm is easy, however, no improvements are known except for an algorithm that achieves
factor 1.98 in some special cases [65].

A special case of point sets was considered by Eppstein [38], namely, point sets that
contain no empty convex pentagons, that is, any convex pentagon that can be formed
with points from the point set as its vertices must have another point inside it or on its
boundary. Eppstein showed that the flip distance for such point sets can be computed
in polynomial time. A complete rectangular grid of points is an example of such a point
set and was independently studied by Caputo et al. [20]. Points in convex position and
points with no empty convex pentagons lie on two opposite ends of a spectrum since for
a point set in convex position every convex polygon formed by a subset of them is empty.
Eppstein’s algorithm uses the fact that the flip graph of triangulations for a point set with
no empty convex pentagons is a partial cube, i.e., a subgraph of the hypercube where the
shortest distance between two vertices is exactly equal to the Hamming distance between
them.
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1.2 Our contributions

The new results in this thesis fall under two general themes. The first theme is about
computing the reconfiguration distance, which is a more general version of the problem
about computing the flip distance between two triangulations. We study the problem for
triangulations and for solutions of Boolean formulas. Our results on Boolean formulas settle
the complexity of computing the reconfiguration distance for a large class of fundamental
problems. We discuss more details in Section 1.2.1 and Chapters 2 and 3.

The second theme is about labelled reconfiguration. Consider any traditional (i.e.,
unlabelled) reconfiguration problem about transforming between different solutions of an
optimization problem using reconfiguration steps. A reconfiguration step usually replaces
a part of the solution with another part. Thus any solution can be divided into parts
that a reconfiguration step operates on. In labelled reconfiguration, we assign a unique
label to each part of a solution and a reconfiguration step preserves this labelling. For
example, for a triangulation, each edge gets a label and if a flip replaces edge e with e′, we
assign the same label to e′ as e. We study labelled reconfiguration of triangulations, and of
independent sets of matroids. More details can be found in Section 1.2.2 and Chapters 4, 5,
and 6.

1.2.1 Computing the reconfiguration distance

Given a planar point set P , consider the graph G that has a vertex for each edge of P and
(u, v) is an edge of G if the edge corresponding to u and the edge corresponding to v cross.
It is easy to see that any triangulation of P corresponds to a maximum independent set of
G and a flip corresponds to a token jump. Thus studying flips in triangulations is exactly
equivalent to studying independent set reconfiguration in a special class of graphs. In fact,
the reconfiguration graph for this problem is exactly the flip graph. Having made this
observation, we can think about triangulations in the context of reconfiguration problems
and ask about the complexity of st-connectivity, connectivity and the worst-case bounds
on diameter. The huge knowledge base about triangulations establishes the answers to
three of the problems listed above—st-connectivity and connectivity are both in P since
the reconfiguration graph is always connected, and the worst-case diameter is Θ(n2) for
point sets [64] and simple polygons [7] and Θ(n) for convex polygons [93]. In fact, for
the case of convex polygons, the worst-case bounds are known to the exact constant, i.e.,
it is known to be 2n − 10. On the other hand, the question of computing the shortest
reconfiguration path is open for convex polygons. Our first result is that the problem is
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NP-complete for point sets [66] and Chapter 2 is devoted to that result. Note that the case
of simple polygons has also been proved to be NP-complete [1]. Nothing much is known
about the best approximation factor achievable, and it is an interesting open question.
Along similar lines, the parametrized complexity has been studied and all these versions
are known to be fixed parameter tractable [25, 60].

Even though we claimed in Section 1.1 that shortest reconfiguration path is one of
the four different kinds of reconfiguration problems studied in the literature, before our
work, it was studied only implicitly, i.e., the only cases where a polynomial-time algorithm
was known were the ones where the algorithm for st-connectivity happened to find the
shortest reconfiguration path itself. Examples include reconfiguration of spanning trees,
matchings, and of satisfying assignments of 2CNF formulas [55, 47]. Our next contribution
is to initiate the study of the problem of computing the shortest reconfiguration paths
by investigating it for satisfying solutions of Boolean formulas. Our results are similar to
the results obtained in the first reconfiguration paper by Gopalan et al. [47] in the sense
that we provide a complete classification of Boolean formulas into mutually exclusive and
exhaustive classes based on the complexity of the problem of computing the reconfiguration
distance. Chapter 3 is devoted to this result.

Out of a myriad of problems for which we could have studied the complexity of recon-
figuration distance, our choice of Boolean formulas is justified for the following reasons.
Satisfiabililty of Boolean formulas is fundamental from a complexity theoretic point of view
since all problems in NP can be reduced to it. Boolean formulas are also amenable to a
more systematic investigation due to a framework invented by Schaefer [87] to classify them.
Due to this framework, researchers have been able to show a complete characterization for
several problems about Boolean formulas (see [28] for a survey). Finally, reconfiguration
on Boolean formulas shares some similarities with flips in triangulations. In particular,
the class of NAND-free formulas (as defined by Gopalan et al. [47]) has the property that
st-connectivity is trivial to solve on it even though computing the reconfiguration distance
is not always trivial, which is exactly what happens with flips in triangulations. The sim-
ilarity, in fact, goes deeper than that. The algorithm for st-connectivity on NAND-free
formulas works as follows. Flip 0’s to 1’s in both satisfying assignments as long as you can
while maintaining feasibility; return ‘yes’ if both assignments lead to the same solution and
‘no’ otherwise. This is reminiscent of the algorithm for flipping between two triangulations
where we flipped non-Delaunay edges to Delaunay edges as long as we could and stopped
when we reached the same triangulation starting from both the given triangulations.

An interesting property about triangulations of a convex polygon was first discovered
in [93] and seems to be fundamental. For two triangulations of a convex polygon, it
was shown that a shortest flip sequence that transforms one triangulation into another
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never flips diagonals that are common between the two. This property does not hold for
point sets and simple polygons. In fact, the NP-completeness proof relies crucially on this
fact, which gives the impression that perhaps this is the property that distinguishes cases
where computing flip distance is NP-complete from cases where it is in P. Our investigation
into computing the reconfiguration distance for Boolean formulas throws some light on this
issue. The only class of Boolean formulas where computing the reconfiguration distance was
known to be in P before our result was 2CNF formulas and they satisfied the property that
the shortest reconfiguration path left those variables unchanged that had the same values
in the two assignments. We showed that the reconfiguration distance can be computed
for a bigger class of formulas that includes classes where the shortest reconfiguration path
flips variables that are assigned the same value.

Another uncanny similarity between reconfiguration of triangulations and of solutions of
Boolean formulas is that before our result, the only known class of Boolean formulas where
the reconfiguration distance could be computed in polynomial time—i.e., 2CNF formulas—
had the property that its reconfiguration graph was a partial cube, and interestingly, the
only class of point sets where computing the flip distance was known to be in P—i.e.,
Eppstein’s point sets—also had the property that their reconfiguration graph was a partial
cube. In fact, the polynomial time algorithm in both cases crucially used the fact that
the graph was a partial cube. Our result on reconfiguration distance for Boolean formulas
exhibits a class, namely, navigable formulas, where the reconfiguration graph is not always
a partial cube. Thus it is not unreasonable to anticipate that there might exist a superclass
of Eppstein’s point set where the flip distance can also be computed in polynomial time.

1.2.2 Labelled reconfiguration

Traditionally, most reconfiguration problems are about reconfiguring between subsets of a
bigger set. For example, all of independent set, vertex set, spanning tree, and matching
are subsets of the set of vertices or edges of a graph. In all the reconfiguration problems
studied so far, all representations of the subset are treated the same. In particular, the
order in which the elements of the subset are listed is not important. We initiate the study
of labelled reconfiguration problems where the subsets are ordered.

For example, we define an edge-labelled triangulation as a triangulation with a unique
label assigned to each of its non-boundary edges. If a flip replaces edge e with edge e′

we assign the same label to e′ as e. Two edge-labelled triangulations are said to be the
same if they have the same edges and the edges have the same labels. We can then
ask the labelled versions of all the questions we consider in the unlabelled setting. More
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generally, for independent set reconfiguration, we assign a unique label to each element of
the independent set and if a token jump replaces v with u, then u gets the same label as
v.

The following intuitive argument suggests that labeling edges might have some relevance
to the problem of computing the flip distance in the unlabelled case. Given two unlabelled
triangulations T1 and T2, assign labels to the edges of T1. Any flip sequence that transforms
T1 to T2 will induce a particular labelling to the edges of T2 based on which edge of T1
takes place of which edge of T2, and different flip sequences that transform T1 to T2 may
induce different labels on T2. The shortest flip sequences will have the property that it
will assign the same label to edges that can be flipped into each other easily. Providing
the labels of both T1 and T2 as input is like providing the labelling induced on T2 by the
shortest flip sequence. Does this extra information make the problem easier to solve?

Eppstein has shown that the flip distance between triangulations of planar point sets
that do not contain an empty convex pentagon can be computed in polynomial time [38].
These kinds of point sets have the property that given a particular labelling for T1, any
flip sequence induces the same labelling on the edges of T2. Moreover, this labelling can
be found in polynomial time given T1 and T2. Thus the only known case where computing
the flip distance is easy is where finding the labelling induced on T2 by the optimal flip
sequence is also easy. This may be interpreted as evidence that the difficulty of computing
the flip distance lies in computing the labels induced on T2 by the optimal flip sequence.

There exists an example in the context of independent set reconfiguration where the
labelled case has the same complexity as the unlabelled case. Reconfiguration of indepen-
dent sets is known to be PSPACE-complete on perfect graphs [59]. Since perfect graphs
have the property that the maximum independent set has the same size as the minimum
cover by cliques, the set of vertices of a perfect graph can be partitioned into subsets such
that any maximum independent set contains exactly one vertex from each subset. Thus
a labelling of the vertices in I1 induces a unique labelling on the vertices in I2 for any
reconfiguration sequence that converts I1 to I2 and this labelling can be found in polyno-
mial time. Thus in the realm of independent set reconfiguration, having a unique induced
labelling does not make computing shortest reconfiguration sequences any easier.

Assigning labels to edges leads to some interesting results. For example, the flip graph
is no longer connected for the case of planar point sets! In Chapter 4 we initiate the study
of labelled reconfiguration. We consider edge-labelled triangulations of convex polygons in
Chapter 4, and of spiral polygons, simple polygons, and planar point in Chapter 5. We
also consider labelled reconfiguration for independent sets of matroids in Chapter 6, which
is equivalent to studying reconfiguration of edge-labelled spanning trees of a graph when
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the matroid is graphic. In all the cases above, we consider the problems of st-connectivity,
connectivity, and diameter of the reconfiguration graph. We show that in all cases except
simple polygons and planar point sets, there exists a flip sequence that transforms one
labelled object into another if and only if for each label, there exists a flip sequence that
transforms the edge with that label in the initial object to the edge with that label in the
final object. We conjecture that the above is true for simple polygons and planar point
sets as well. We also provide bounds on the diameter of the flip graph.

Labelled reconfiguration has not been studied in the context of reconfiguration prob-
lems, but problems of a similar flavor have been studied in the past. For example, problems
about permutations can be considered as labelled reconfiguration since a permutation is
an ordered subset. We can define various reconfiguration steps and study all four kinds of
reconfiguration problems for them. Interestingly, this area is of interest to the Bioinfor-
matics community since genes can often be modelled as permutations and mutations by
reconfiguration steps. Many problems about reconfiguring permutations have been stud-
ied and the central theme is that computing the reconfiguration distance happens to be
NP-complete in most cases but lies in P for “signed” permutations. The reader is referred
to the textbook by Fertin et al. [40] for a thorough survey.

Another place where one can find hints of labelled reconfiguration is in the area of
puzzles. The 15-puzzle, which is a canonical example of a puzzle, can also serve as a
canonical example of a labelled reconfiguration problem. The puzzle can be thought of
as a certain reconfiguration problem on a “grid” graph and has been generalized to other
kinds of graphs. See the survey by van den Heuvel [98] for details.

There exists a problem in the realm of puzzles where computing the reconfiguration
distance is in P for the unlabelled version but is NP-complete for the labelled version.
Consider the problem of reconfiguring arbitrary sets of vertices of a given graph. Here the
reconfiguration step is token sliding, i.e., a vertex v can be replaced with a vertex u if and
only if (u, v) is an edge. Computing the shortest sequence of token slides is in P, as shown
in [98]. However, if we label the vertices of the set, Goldreich [46] showed the problem
to be NP-complete. In fact, even if exactly one of the vertices is labelled, the problem
remains NP-complete [97].

We do not have definitive answers about whether labelling the solution makes the
problem of computing the reconfiguration distance easier or harder, but we provide the
first results for labelled reconfiguration and formulate interesting open questions.
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Chapter 2

Flip distance between triangulations
of a planar point set1

In this chapter, we show that computing the flip distance between two triangulations of a
planar point set is NP-complete.

2.1 Background

Flips have been studied in the geometric setting for triangulations of point sets and of
polygons. In this context, a convex polygon is equivalent to a point set in convex position.
The former generalizes to simple polygons, and the latter to planar point sets. Both of
these are contained in the most general case of a polygon with holes (a “polygonal region”),
so long as we consider a point as a one vertex polygonal hole. There is a survey on flips by
Bose and Hurtado [15]. It also covers flips in the combinatorial setting of maximal planar
graphs, which we will not discuss. Flips are often studied in terms of the flip graph which
has a vertex for every triangulation and an edge when two triangulations differ by one flip,
see e.g., [38].

The foundational result is that the flip graph is connected. This was proved first by
Lawson [64] for the case of point sets. He then re-proved the result [63] by arguing that any
triangulation can be flipped to the Delaunay triangulation, which then acts as a “canon-
ical” triangulation from which any other triangulation can be reached. The constrained

1This chapter represents joint work with Anna Lubiw [66].
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Delaunay triangulation can be used in the same way to argue that any polygonal region
has a connected flip graph [7]. For more direct proofs see [36, 52, 79].

Regarding the number of flips needed to transform one triangulation to another, flipping
via the [constrained] Delaunay triangulation takes O(n2) flips—in fact, a more exact bound
is the number of visibility edges, see [7]. Hurtado, Noy and Urrutia [52] proved that Ω(n2)
flips may be required even for triangulations of a polygon. For the case of a convex
polygon, Sleator et al. [95] proved that for large values of n, the flip distance between
two triangulations of an n-gon is at most 2n − 10, and that 2n − 10 flips are sometimes
necessary. A recent result by Pournin [86] proves the same bound for all values of n using
combinatorial methods.

The problem of computing the exact flip distance between two given triangulations is
especially interesting for convex polygons since it was first stated in 1982 and has been open
since then [29]. Lucas [68] gave a polynomial time algorithm for special cases. The best ap-
proximation factor is trivially 2, and can be improved in some special cases [65]. Recently
it was proved that the problem is fixed-parameter tractable in the flip distance [25]. At-
tempts have also been made to compute good upper and lower bounds on the flip distance
efficiently. See, for example, [5, 81, 69, 32].

The more general problem of computing the flip distance between two triangulations of
a point set is stated as an open problem in the survey by Bose and Hurtado [15], the book
by Devadoss and O’Rourke [33, Unsolved Problem 12], and the book on triangulations
by De Loera et al. [31, Exercise 3.18]. Hanke et al. [50] proved that the flip-distance is
upper bounded by the total number of intersections between the overlap of the initial and
final triangulations. Eppstein [38] provided an algorithm to compute a lower bound on the
flip-distance efficiently. He also showed that the lower bound is equal to the flip-distance
for certain special kinds of point sets.

Pilz [83] independently proved that computing the flip distance between triangulations
of a point set is NP-complete and later extended the result to show that it is, in fact,
APX-hard [84] as well. Aichholzer et al. [1] studied the problem of computing the flip
distance between triangulations of a simple polygon and showed it to be NP-complete.

2.2 Triangulations of polygonal regions

Theorem 2.1. The following problem is NP-complete: Given two triangulations of a poly-
gon with holes and a number k, is the flip distance between the two triangulations at most
k?
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2.2.1 Proof idea

Note that the problem lies in NP since the flip-sequence of size at most k is itself a
polynomial-sized certificate. We prove hardness by giving a polynomial time reduction
from vertex cover on 3-connected cubic planar graphs [8, 100], which is known to be NP-
complete [8, 100].

The idea is to take a planar straight-line drawing of the graph and create a polygonal
region by replacing each edge by a “channel” and each vertex by a “vertex gadget”. We
then construct two triangulations of the polygonal region that differ on the channels, and
show that a short flip sequence corresponds to a small vertex cover in the original graph.

We begin by describing channels and their triangulations, because this gives the intu-
ition for the proof. A channel is a polygon that consists of two 7-vertex reflex chains joined
by two end edges, as shown in Figures 2.1(a) and 2.1(b). Note that every vertex on the
upper reflex chain sees every vertex on the lower reflex chain and vice versa. We identify
two triangulations of a channel: a left-inclined triangulation as shown in Figure 2.1(a); and
a right-inclined triangulation as shown in Figure 2.1(b).

A channel is the special case n = 7 of the polygons Hn of Hurtado et al. [52]. They
prove in Theorem 3.8 that the flip distance between the right-inclined and left-inclined
triangulations of Hn is (n− 1)2. We include a different proof in order to generalize:

Property 2.1. Transforming a left-inclined triangulation of a channel to a right-inclined
triangulation takes at least 36 flips.

Proof. In any triangulation of a channel, each edge of the upper reflex chain is in a triangle
whose apex lies on the bottom reflex chain. This apex must move from lower right (B7)
to lower left (B1), in order to transform the left-inclined triangulation to the right-inclined
triangulation. Similarly, each edge of the lower reflex chain is in a triangle whose apex lies
on the upper reflex chain, and must move from upper left to upper right. However, one
flip can only involve one edge of the upper chain and one edge of the lower chain (no other
4 vertices form a convex quadrilateral), and thus can only move one upper and one lower
apex, and only by one vertex along the chain. Twelve triangles times six apex moves per
triangle divided by two apex moves per flip gives a lower bound of 36 flips.

We now show that the number of flips goes down if a channel has a cap, an extra vertex
that is visible to all the channel vertices, as shown in Figure 1(c).

Property 2.2. The flip distance from a left-inclined to a right-inclined triangulation of a
capped channel is 24.
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(a) A left-inclined channel.
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(b) A right-inclined channel.
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(c) A capped channel.
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(d) The canonical channel

A1 A2 A3 A4 A5 A6
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B2 B3 B4 B5 B6 B7

(e) Narrow (shaded) and wide (dashed) mouths.

Figure 2.1: Channels
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Proof. The canonical triangulation shown in Figure 2.1(d) is 12 flips away from both the
left-inclined and the right-inclined triangulations of a capped channel: To flip the left-
inclined triangulation to the canonical triangulation, flip edges A1B1, . . . , A1B7 followed
by edges A2B7, . . . , A6B7 in that order. Similarly for the right-inclined triangulation.

For the lower bound, we follow the same idea as above. In any triangulation, each edge
of the upper [lower] reflex chain is in a triangle whose apex is either the cap or a vertex
of the lower [upper] chain. There are only two kinds of flips: (1) a flip involving the cap
vertex, an edge of one chain, and a vertex of the other chain; and (2) a flip involving one
edge of each chain. A flip of type (1) moves the apex of only one triangle, and moves the
apex to or from the cap. If a triangle is altered by a flip of type (1) then at least two such
flips are required, one to move the apex to the cap and one to move the apex from the
cap. If a triangle is only altered by flips of type (2), then, as above, it costs 3 flips to get
the apex to its destination. Thus the 12 triangles require at least 24 flips.

We now elaborate on the idea of our reduction. We create a polygonal region by
replacing each edge in the planar drawing by a channel, and each vertex by a vertex
gadget. We make two triangulations of the polygonal region. In triangulation T1 all edge
channels are left-inclined and in T2 all edge channels are right-inclined. The triangulations
are otherwise identical. We design vertex gadgets so that making a few flips in a vertex
gadget creates a cap for a channel connected to it. Since transforming a channel from
left-inclined to right-inclined is less costly if it is capped, the minimum flip sequence that
transforms all the channels is obtained by choosing the smallest set of vertices that covers
all the edges and using them to cap all the channels. Thus, intuitively, a minimum flip
sequence corresponds to a minimum vertex cover.

One complication is that we cannot construct a vertex gadget for a sharp vertex—a
vertex of degree 3 where one of the three incident angles in the planar drawing is greater
than or equal to π. Therefore, we first show how to eliminate sharp vertices. Let G be our
given 3-connected cubic planar graph. Using a result of Bárány and Rote [4], we can find,
in polynomial time, a strictly convex drawing of G on a polynomial-sized grid. Strictly
convex means that each face is a strictly convex polygon. Thus the only sharp vertices
of this drawing are the vertices of the outer face. We replace each sharp vertex v by a
3-vertex chain v1, v2, v3 as shown in Figure 2.2. We claim that G has a vertex cover of size
≤ k if and only if the modified graph has a vertex cover of size ≤ k + t, where t is the
number of vertices on the outer face of G. This is because any minimum vertex cover of
the modified graph can be adjusted to use either {v1, v3} (corresponding to v being in the
vertex cover of G), or {v2} (corresponding to v not being in the vertex cover of G).
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⇒
v v1

v2 v3

Figure 2.2: Eliminating sharp vertices

We remark that Pilz’s independent NP-hardness reduction [84] is from general (non-
planar) vertex cover. His construction begins with the same channel gadgets, but then
uses channels that overlap geometrically while flipping independently.

2.2.2 Details of the reduction

For the remainder of the proof we will assume that we have a graph G with vertices of
degree 2 and 3, and a straight-line planar drawing, Γ, of the graph on a polynomial-sized
grid with no sharp vertices.

We define the narrow and wide mouths of a channel as shown in Figure 2.1(e). Any
point inside the narrow mouth but outside the channel can be a potential cap for the
channel. We show below that a vertex outside the wide mouth does not reduce the flip
distance.

We now describe the triangulated vertex gadgets. See Figures 2.3(a) and 2.3(b). Each
of the 2 or 3 channels attached to the vertex gadget will have one potential cap. We place a
convex quadrilateral CDEF with diagonal CE, called the lock, that separates each channel
from its potential cap. Thus the lock CE must be flipped, or “unlocked”, in order to cap
any channel.

For the degree-2 gadget (see Figure 2.3(a)), place point C in the smaller angular sector
(of angle < π) between the two channels, so that C is outside the wide mouths of both
channels. Place points D, E, and F in the other angular sector, with D inside channel
1’s narrow mouth and outside channel 2’s wide mouth, E outside the wide mouth of both
channels, and F inside channel 2’s narrow mouth and outside channel 1’s wide mouth.
Triangulate as shown. Thus D is a potential cap for channel 1 and F is a potential cap for
channel 2.

For the degree-3 gadget (see Figure 2.3(b)), note that because the vertex is not sharp,
the mouth of each channel exits between the other two channels. We place vertices in
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the angular sectors as shown in the figure. Place D inside the intersection of the narrow
mouths of channels 1 and 2, and outside the wide mouth of channel 3. Place F inside
channel 3’s narrow mouth and outside channel 1 and 2’s wide mouths. Place C and E
outside the wide mouths of all the channels. Triangulate as shown. Thus D is a potential
cap for both channel 1 and 2 and F is a potential cap for channel 3.

Observe that every channel is blocked from its unique potential cap by exactly 3 edges.
(For example, in Figure 2.3(b), channel 1 is separated from its potential cap D by edges
FA, FE, and CE.) Observe furthermore that for each vertex gadget, the sets of blocking
edges of the channels have one edge in common, namely the locking edge CE, and are
otherwise disjoint. These properties are crucial for correctness.

We will say that a vertex gadget is locked if the diagonal CE exists and unlocked
otherwise. We first show what is possible with unlocked vertex gadgets.

Property 2.3. If we unlock a vertex gadget then, for each channel attached to it, there
is a sequence of 28 flips that transforms the channel triangulation and returns the vertex
gadget to its (unlocked) state.

Proof. We first claim that there is a 2-flip sequence that caps the channel. We enumerate
the possibilities (refer to Figure 2.3). Note that we handle channels one at a time, not
simultaneously. For the degree-2 gadget: flip CF followed by CA for channel 1; flip CD
followed by CB′ for channel 2. For the degree-3 gadget: flip FE followed by FA for channel
1; flip CF followed by CA′ for channel 2; flip ED followed by EA′′ for channel 3. Once
the channel is capped, we can transform the left-inclined triangulation to the right-inclined
triangulation in 24 flips by Property 2.2. Then we undo the 2 flips that capped the channel.
The total number of flips is 28.

Next we give lower bounds on the number of flips. First, note that the proof of Prop-
erty 2.1 carries over to:

Property 2.4. Transforming a left-inclined triangulation of a channel to a right-inclined
triangulation takes at least 36 flips even in the presence of other vertices, so long as the
other vertices lie outside the wide mouths at either end of the channel.

We now consider what happens when we unlock some vertex gadgets. Let T ′1 be the
triangulation obtained from T1 by unlocking some vertex gadgets. Let T ′2 be the triangula-
tion obtained from T2 by unlocking the same vertex gadgets. Let C be the set of channels
that have a locked vertex gadget at both ends. Then:
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Property 2.5. If the vertex gadgets at the ends of the channels of C remain locked, then
the number of flips required to transform T ′1 to T ′2 is at least 28|E − C|+ 36|C|.

Proof. Consider a channel of C, with a locked vertex gadget at both ends. The cap vertices
of the channel are not useable. By construction, the other vertices are outside the wide
mouths of the channel. Therefore, by Property 2.4, we need 36 flips to transform it.

Consider the channels with an unlocked vertex gadget at one end. We only save flips
by capping the channel. To do this, we must flip the two edges that block the channel from
its cap. Because the edges that block one channel are disjoint from the edges that block
any other channel, we must do two flips per channel, and we must re-flip those edges to
return to the original state. Finally, by Property 2.2 it takes at least 24 flips to transform
a capped channel. (Note that the proof of Property 2.2 carries over even if the channel is
capped at both ends.) The total number of flips is 28 per channel.

Channel 1

Channel 2

C D

E

F
A

B

A' B'

(a) Degree 2

Channel 1
E

F

C

D

Channel 2

Channel 3A

B

A' B'

A''

B''

(b) Degree 3

Figure 2.3: Gadgets for vertices
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2.2.3 Putting it all together

Lemma 2.1. G has a vertex cover of size ≤ k if and only if the flip distance between the
two triangulations T1 and T2 is ≤ 2k + 28|E|.

Proof. Suppose that G has a vertex cover of size k. Unlock the corresponding k vertex
gadgets. Each edge channel has an unlocked gadget at one end, so by Property 2.3 we can
transform between the two triangulations of the channel in 28 flips. When all channels have
been transformed, we relock the k vertex gadgets. The total number of flips is 2k+ 28|E|.

For the other direction, suppose that there is a flip sequence between T1 and T2 of
length ≤ 2k + 28|E|. Let L be the set of vertices whose gadgets are unlocked in the flip
sequence. Let C be the set of edges not covered by vertex set L. By adding one vertex
to cover each edge of C, we observe that G has a vertex cover of size |L| + |C|. Thus it
suffices to show that |L| + |C| ≤ k. By Properties 2.4 and 2.5 the number of flips is at
least 2|L| + 36|C| + 28(|E − C|) ≥ 2|L| + 28|E| + 8|C|. By assumption, the number of
flips was ≤ 2k + 28|E|. Therefore 2|L| + 8|C| ≤ 2k, which implies that |L| + |C| ≤ k, as
required.

The last ingredient of the NP-completeness proof is to show that the reduction takes
polynomial time. We need the following claim.

Claim 2.1. The size of the coordinates used in the construction is bounded by a polynomial
in n.

Proof. We begin with a straight line drawing of G on a polynomial-sized grid. Expand the
grid, and allocate a square region around each vertex for the vertex gadget (Figure 2.4).
Expand each edge to two parallel line segments. These line segments will become the
channel, but for now, the reflex vertices of the channel are all collinear, which means that
the channel’s wide mouth is equal to its narrow mouth. The points C,D,E, F of the
vertex gadget go in feasible regions defined by the wide and narrow mouths (e.g. in the
3-channel gadget, point D lies in the narrow mouth of channels 1 and 2, but outside the
wide mouth of channel 3). We make the channels narrow enough so that all the feasible
regions intersect the region allocated to the gadget.

To do this, note that the edges incident to the vertex corresponding to the gadget in
the straight line drawing and their extensions (the dotted lines in Figure 2.4) intersect the
square at points whose coordinates have polynomial size. Let S be the set of intersection
points and corners of the square. For the edge corresponding to channel 1, consider the
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point p1 where it intersects the square and find the point p other than itself in S that
lies on the same edge of the square and is closest to it. Setting A to be the point on the
boundary of the square a distance pp1/3 away from p1 towards p and B the symmetric
point on the opposite side determines the channel and its width. Do the same thing at the
other end of the edge corresponding to channel 1 and obtain another width. Finally, pick
the narrower of the two options for channel 1. Since A and B lie on the edge of the square
and their distance to p1 is polynomial, we need a polynomial number of bits to express
the coordinates of A and B as well. Repeat the above for A′, B′, A′′ and B′′. Since all
the possible intersection points between the upper and lower chains of the channels occur
inside the square, all the feasible regions have non-empty intersections with the interior of
the square.

Now we pick points C,D,E, F inside the appropriate regions. Because the boundaries
of the feasible regions are determined by pairs of points on the expanded grid, the new
points can be chosen to have polynomial size (because solutions to linear programs have
polynomial size as shown in Theorem 10.1 of [92]).

Finally we place the reflex points of each channel. The feasible region wherein each set
of reflex points can be placed is bounded by lines through pairs of points already placed.
Thus, we can choose reflex points of polynomial size.

2.3 Triangulations of point sets

We prove the NP-hardness of computing the flip distance between two triangulations of
a point set by reducing from computing the flip distance between two triangulations of
a polygonal region. Given two triangulations T1 and T2 of a polygonal region R with n
vertices, we triangulate all the holes and pockets of R the same way in both triangulations.
Next, we repeat each edge on the boundary of the holes and pockets n2 times (as shown in
Figure 2.5). This gives two triangulations T ′1 and T ′2 of a point set. We will prove that the
flip distance between T ′1 and T ′2 is the same as the flip distance between the original T1 and
T2. Details are below, but the intuition is as follows. The one danger is that in T ′1 and T ′2
we have the freedom to flip the repeated edges that model the fixed edges in the original
polygonal regions. However, the flip distance between T1 and T2 is less than n2 because
the flip distance to the constrained Delaunay triangulation is at most

(
n
2

)
[7]. This means

that the flip distance between T ′1 and T ′2 is also less than n2. Thus “taking apart” a set of
n2 repeated edges does not offer any savings.
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Figure 2.4: Constraints for vertex gadgets.

We now describe the details about repeating the edges. Consider a triangulated hole
or a pocket, say, v1v2v3v4. For each vertex on the boundary, draw the angle bisector of
the angle formed by the two edges incident on that vertex. Thus at v2, we draw the
angle bisector of ∠v1v2v3. Next, we choose n2/2 equally spaced points on a polynomially
small portion of the bisector inside the hole. We claim that we can choose points with
polynomial-sized coordinates. Next we repeat each edge on the boundary of the hole or
pocket n2 times by adding a zig-zag between the new vertices as shown in Figure 2.5.

Note that flipping edges incident to one of the new vertices will not help because the
new vertices behave like the vertex whose angle bisector they were drawn on. This intuition
is captured in the following lemma, which then implies the NP-completeness:

Lemma 2.2. The flip distance between T1 and T2 is equal to the flip distance between T ′1
and T ′2.

Proof. The flip distance between T ′1 and T ′2 is at most the flip distance between T1 and
T2 because imitating a flip sequence that transforms T1 to T2 gives a flip sequence that
transforms T ′1 to T ′2.

It remains to show that the flip distance between T1 and T2 is at most the flip distance
between T ′1 and T ′2. For each vertex vi on the boundary of a hole, there is a set of n2/2

23



v2

v3

Figure 2.5: Repeating edges on the boundary of pockets and holes. On the right is the
detail of how an edge v2v3 is repeated n2 times.

points associated with it. Call the union of the set together with vi itself the cluster
corresponding to vi. Define two triangulations to lie in the same equivalence class if they
are the same when we collapse each cluster into one point.

Consider the smallest flip sequence that transforms T ′1 to T ′2. It has a length of at most
n2. At each step, consider the triangulation obtained by collapsing each cluster into one
point. Since the number of flips is at most n2, we cannot flip all the n2 repetitions of
any edge on the boundary of a hole or pocket. Thus, after collapsing clusters, we have
a triangulation that includes all boundary edges of holes and pockets. We can therefore
convert the flip sequence to a flip sequence that transforms T1 to T2. During the conversion
we ignore flips that happen inside holes and pockets. The resulting flip sequence from T1
to T2 is not longer than the original.

Theorem 2.2. The following problem is NP-complete: Given two triangulations of a point
set in the plane, and a number k, is the flip distance between the triangulations at most k?

2.4 Discussions and open problems

The channel provides an instance of the flip distance problem where the shortest flip
sequence flips edges that are common between the two triangulations. In fact, the NP-
completeness proof exploits the fact that it is computationally hard to determine exactly
which of the common diagonals need to be flipped. It may then appear that the necessity
of flipping common diagonals makes the problem hard. We further explore this theme in
Chapter 3 for the problem of reconfiguring solutions to Boolean formulas.
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Our NP-completeness proof results in problem instances that contain a polynomial
number of points strictly inside the convex hull. Reducing this number would take us
gradually closer to the case of convex polygons. Incidentally, the independent proof of
NP-completeness by Pilz [84] also uses a polynomial number of points strictly inside the
convex hull and it is not clear how to reduce it for either of the proofs.

It will also be interesting to design approximation algorithms for the case of point sets
and simple polygons. For point sets, there exists an APX-hardness proof [84] but for simple
polygons even a PTAS is not ruled out. However, no approximation algorithms are known
other than trivial polynomial-factor ones.
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Chapter 3

Shortest Reconfiguration Paths in
the Solution Space of Boolean
Formulas1

3.1 Introduction

This chapter presents the first example of the feedback loop between reconfiguration and
triangulations that we briefly talked about in Chapter 1. We will not repeat the back-
ground on reconfiguration here, since we covered that in Chapter 1. After proving the
NP-hardness of computing the flip distance between triangulations of planar point sets
and failing to resolve the same question about convex polygons, we ask the obvious next
question: What kinds of reconfiguration problems exhibit a polynomial time algorithm for
finding reconfiguration distances?

Although this problem had not been explicitly studied in the past, many algorithms for
deciding whether a reconfiguration path exists implicitly found the shortest such path. Ex-
amples include reconfiguration on 2CNF formulas [47], matchings, and spanning trees [55].
All these cases also happened to satisfy the symmetric difference property that the shortest
path only changed the parts of the solution that were different in the two target configura-
tions. For example, the shortest reconfiguration path between two satisfying assignments
of a 2CNF formula only flips variables that have different values in the two assignments.
Similarly, for the case of matchings and spanning trees, the SRP only changes the edges

1This chapter represents joint work with Amer Mouawad, Naomi Nishimura, and Venkatesh Raman [75].

26



that are in the symmetric difference of the two solutions. More recently, some work on
the parametrized complexity of reconfiguration problems [76, 77] explored the complex-
ity of computing the reconfiguration distance for some cases all of which adhered to the
symmetric difference property.

The pattern we observe in these cases is that the problem has the symmetric difference
property (a shortest reconfiguration path does not change parts of the solution that are
the same in the source and target configurations) if and only if shortest reconfiguration
paths can be computed in polynomial time.

It is known that the symmetric difference property is also satisfied for triangulations of
a convex polygon: edges that are common are never flipped by the shortest flip sequence.
However, no one knows a polynomial time algorithm to find the flip distance. Triangula-
tions of general point sets do follow the above pattern since computing the flip distance in
NP-complete (as shown in Chapter 1) and the symmetric difference property fails: an edge
that is in both the initial and final triangulations may need to flip in a shortest reconfig-
uration path. Eppstein’s results [38] on point sets without empty convex pentagons also
satisfy the pattern: the symmetric difference property holds and he provided a polynomial
time algorithm for computing the flip distance. So is this pattern universal, or is it just a
matter of chance that all the problems studied so far happened to obey it?

To be able to make any mathematically precise statements about the universality of
something that looks like a pattern to our intuitive senses, we need to tackle reconfiguration
problems with more rigour than what we have seen so far. We want to prove or disprove
the statement: “Computing the reconfiguration distance is in P if and only if the SRP only
flips the symmetric difference”. We cannot mathematically reason about such a hypothesis
until we have precisely defined what a reconfiguration problem is; otherwise it will be easy
to disprove any claim: just construct a new problem where the claim is false and expand
the definition of reconfiguration problems to include the new problem.

Our approach is to limit our attention to a large set of problems where reconfiguration
already has a precise meaning, namely, reconfiguration of satisfying assignments of Boolean
formulas. The size of the set of problems it provides is sufficiently large and should pass all
reasonable scrutiny since any decision problem in NP can be written as the satisfiability
of Boolean formulas. Moreover, this set provides several natural classes of problems to
study that are defined by the corresponding classes of Boolean formulas. Thus, instead of
studying patterns in reconfiguration on various different problems such as independent set,
graph coloring, graph matching, etc., we study patterns in reconfiguration problems defined
on various different classes of Boolean formulas, such as 2CNF formulas, Horn formulas,
etc. This line of investigation is appropriate for our goals because of a framework developed
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by Schaefer [87] that provides a way to divide the class of Boolean formulas into mutually
exclusive and exhaustive classes. Thus we can, at least for reconfiguration on Boolean
formulas, make statements about intuitive patterns without having to be mathematically
imprecise. In particular, as we will see later, the pattern “Computing the reconfiguration
distance is in P if and only if the SRP only flips the symmetric difference” breaks down
for Boolean formulas.

3.1.1 Schaefer’s framework

The problem of deciding whether a given Boolean formula has a satisfying assignment, also
known as SAT, has played an important role in the history of computer science. It was the
first problem that was proved to be NP-complete. Moreover, the complexity of SAT, for
several subclasses of Boolean formulas is also known. For example, 3SAT is NP-complete,
and 2SAT, Horn-SAT, dual-Horn-SAT (as defined in Section 3.2.1) are all in P. Moreover,
since systems of linear equations over finite fields can be solved in polynomial time using
Gaussian elimination, SAT is also in P for formulas that can be written as the conjunction
of several clauses of the form (x1 ⊕ . . . ⊕ xk) where ‘⊕’ is the XOR operator. In 1978,
Schaefer [87] proved that these are the only classes of formulas for which satisfiability is
in P, and that for every other class it is NP-complete. This result is interesting in light of
Ladner’s theorem that states that if P6=NP, then there are an infinite number of problems
that are neither in P nor NP-complete.

The proof of Ladner’s theorem constructs a subclass of SAT and shows it to be neither
in P nor NP-complete under the assumption that P6=NP. The apparent contradiction with
Schaefer’s result, then, is due to the fact that Schaefer has a restricted way of defining
a “class” of formulas. Arguably, Schaefer’s definition of a class is natural and the class
exhibited by Ladner’s theorem does not fit into the framework.

Since Schaefer’s original paper, a myriad of problems about Boolean formulas have been
analyzed, and similar divisions into equivalence classes obtained (see [28] for an excellent
survey). We explain Schaefer’s framework below.

A k-ary Boolean logical relation (or relation for short) R is defined as a subset of {0, 1}k,
where k ≥ 1. Each i ∈ {1, . . . , k} can be interpreted as a variable of R such that R specifies
exactly which assignments of values to the variables are to be considered satisfying.

Roughly speaking, Schaefer’s framework uses relations as a template. A class is then
defined by a set of relations and a CNF formula is said to belong to that class if all of its
clauses are “instantiations” of the template as defined below.
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For any k-ary relation R and positive integer k′ ≤ k, we define a k′-ary restriction of
R to be any k′-ary relation R′ that can be obtained from R by substitution with constants
and identification of variables. More precisely, let X : {1, . . . , k} → {1, . . . , k′}∪{c0, c1} be
a mapping from the variables of R to the variables of R′ and the constants 0 and 1. Any
such X defines a mapping fX : {0, 1}k′ → {0, 1}k as follows. For r ∈ {0, 1}k′ , let fX(r)
be the k-bit vector whose ith bit is 0 if X(i) = c0, 1 if X(i) = c1 and equal to the X(i)th

bit of r otherwise. We say that a k′-ary relation R′ is a restriction of R with respect to
X : {1, . . . , k} → {1, . . . , k′} ∪ {c0, c1} if r ∈ R′ ⇔ fX(r) ∈ R.

A Boolean formula φ over a set {x1, . . . , xn} of variables defines a relation Rφ as follows.
For any n-bit vector v ∈ {0, 1}n, we interpret v as the assignment to the variables of φ
where xi is set to be equal to the ith bit of v. We then say that v ∈ Rφ if and only if v is
a satisfying assignment.

A CNF formula is a Boolean formula of the form C1∧· · ·∧Cm, where each Ci, 1 ≤ i ≤ m,
is a clause consisting of a finite disjunction of literals (variables or negated variables). A
kCNF formula, k ≥ 1, is a CNF formula where each clause has at most k literals. A CNF
formula is Horn (dual Horn) if each clause has at most one positive (negative) literal.

For a finite set of relations S, a CNF(S) formula over a set of n variables {x1, . . . , xn}
is a finite collection {C1, . . . , Cm} of clauses. Each Ci, 1 ≤ i ≤ m, is defined by a tuple
(Ri, Xi), where Ri is a ki-ary relation in S and Xi : {1, . . . , ki} → {1, . . . , n} ∪ {c0, c1} is a
function. Each Xi defines a mapping fXi

: {0, 1}n → {0, 1}ki and we say that an assignment
v to the variables satisfies φ if and only if for all i ∈ {1, . . . ,m}, fXi

(v) ∈ Ri. For any
variable xj, we say that xj appears in clause Ci if Xi(q) = j for some q ∈ {1, . . . , ki} and
for any assignment v to the variables of φ, we say that fXi

(v) is the assignment induced
by v on Ri.

For example, to represent the class 3CNF in Schaefer’s framework, we specify S as fol-
lows. LetR0 = {0, 1}3\{000}, R1 = {0, 1}3\{100}, R2 = {0, 1}3\{110}, R3 = {0, 1}3\{111},
and S = {R0, R1, R2, R3}. Since Ri can be used to represent all 3-clauses with exactly i
negative literals (regardless of the positions in which they appear in a clause), clearly
CNF(S) is exactly the class of 3CNF formulas.

Consider POSITIVE 1-IN-3CNF, which is the class of CNF formulas where each clause
contains a list of three variables and the formula is said to be satisfied if and only if exactly
one out of the three variables in each clause is set to 1. We can represent it in Schaefer’s
framework by CNF(S) where S = {{100, 010, 001}}.
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3.2 Computing shortest reconfiguration paths

3.2.1 Preliminaries

Below we define some classes of relations used in the literature and relevant to our work.
Note that componentwise bijunctive, OR-free and NAND-free were first defined by Gopalan
et al. [47]. Schwerdtfeger [89] later modified them slightly by adding “safely” in front of
each. We adopt Schwerdtfeger’s definition but drop the word “safely”.

Definition 3.1. For a k-ary relation R:

• R is bijunctive if it is the set of satisfying assignments of a 2CNF formula.

• R is Horn ( dual Horn) if it is the set of satisfying assignments of a Horn (dual Horn)
formula.

• R is affine if it is the set of satisfying assignments of a formula xi1 ⊕ . . . ⊕ xih ⊕ c,
with i1, . . . , ih ∈ {1, . . . , k} and c ∈ {0, 1}. Here ⊕ denote the exclusive OR operation
which evaluates to 1 when exactly one of the values it operates on is 1 and evaluates
to 0 otherwise.

• R is componentwise bijunctive if every connected component of the reconfiguration
graph of R and of the reconfiguration graph of every restriction R′ of R induces a
bijunctive relation.

• R is OR-free ( NAND-free) if there does not exist a restriction R′ of R such that
R′ = {01, 10, 11} (R′ = {01, 10, 00}).

Using his framework, Schaefer showed that SAT(S)—the problem of deciding if a
CNF(S) formula has a satisfying assignment—is in P if every relation in S is bijunctive,
Horn, dual Horn, or affine, and is NP-complete otherwise.

Gopalan et al.’s work [47], with corrections presented by Schwerdtfeger [89], shows a
dichotomy for the problem of deciding whether a reconfiguration path exists between two
satisfying assignments of a CNF(S) formula.

They call a set S of relations tight if

• all relations in S are componentwise bijunctive, or

• all relations in S are OR-free, or
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• all relations in S are NAND-free.

They showed that the st-connectivity problem on CNF(S) formulas is in P if S is tight
and PSPACE-complete otherwise.

Our trichotomy relies on a new class of formulas that subdivides the tight classes into
those for which computing the shortest reconfiguration path can be done in polynomial
time and those for which it is NP-complete.

Definition 3.2. For a k-ary relation R:

• R is Horn-free if there does not exist a restriction R′ of R such that R′ = {0, 1}3 \
{011}, or equivalently, R′ is the set of all satisfying assignments of the clause (x∨y∨z)
for some three variables x, y, and z.

• R is dual-Horn-free if there does not exist a restriction R′ of R such that R′ =
{0, 1}3 \ {100}, or equivalently, R′ is the set of all satisfying assignments of the
clause (x ∨ y ∨ z) for some three variables x, y, and z.

Definition 3.3. We call a set S of relations navigable if one of the following holds:

(1) All relations in S are OR-free and Horn-free.

(2) All relations in S are NAND-free and dual-Horn-free.

(3) All relations in S are component-wise bijunctive.

It is clear that if S is navigable, then it is also tight. Our main result is the following
trichotomy.

Theorem 3.1. For a CNF(S) formula φ and two satisfying assignments s and t, the
problem of computing the shortest reconfiguration path between s and t is in P if S is
navigable, NP-complete if S is tight but not navigable and PSPACE-complete otherwise.

In the next section, we establish the hardness results; the rest of the chapter is devoted
to develop our polynomial time algorithm for navigable formulas. Interestingly, unlike
previous classification results, while the NP-completeness result in our case turns out to
be easier, the polynomial time algorithm is quite involved.
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3.2.2 The hardness proofs

Gopalan et al. [47] showed that if S is not tight, then st-connectivity is PSPACE-complete
for CNF(S). This implies that finding the shortest reconfiguration path is also PSPACE-
complete for such classes of formulas.

Theorem 3.2. If S is tight but not navigable, then finding the shortest reconfiguration
path on CNF(S) formulas is NP-complete.

Proof. The problem is in NP because the diameter of the reconfiguration graph is polyno-
mial for all tight formulas, as shown by Gopalan et al. [47]. We now prove that it is, in
fact, NP-complete.

As S is tight but not navigable, all relations in S are OR-free or all relations in S are
NAND-free. Let us assume that all relations in S are NAND-free (we handle the other
case later). Then, as S is not navigable, there exists a relation which is dual-Horn.

We show a reduction from Vertex Cover to such a CNF(S) formula. Given an
instance (G = (V,E), k) of Vertex Cover, we create a variable xv for each v ∈ V . For
each edge e = (u, v) ∈ E, we create two new variables ye and ze and the clauses (ye∨ze∨xu)
and (ye ∨ ze ∨ xv). The resulting formula F (G) has |V |+ 2|E| variables and 2|E| clauses.

It is easy to see that all the relations of F (G) are NAND-free (as we cannot set the
values of all but two of their variables to get a NAND relation), however none of them is
dual-Horn-free (as each clause has two positive literals). Hence the formula F (G) is tight
but not navigable.

Let s be the satisfying assignment for the formula with all variables set to 0, and let
t be the satisfying assignment with all the variables xv with v ∈ V set to 0 and the rest
set to 1. If G has a vertex cover S of size at most k, then we can form a reconfiguration
sequence of length at most 2|E|+ 2k from s to t by flipping each xv with v ∈ S from 0 to
1, flipping the ye and ze variables, and then flipping each xv, v ∈ S back from 1 to 0. To
show that such a reconfiguration sequence exists only if there exists such a vertex cover,
we observe that if neither xu nor xv has been flipped to 1, neither ye nor ze can be flipped
to 1 while keeping the formula satisfied at the intermediate steps.

To show hardness when all relations in S are OR-free but not Horn-free, we give a
reduction from Independent set. Given G = (V,E) and an integer k, we create, as before,
a variable xv for each v ∈ V and two variables ye and ze for each e ∈ E. For each edge
e = (u, v) ∈ E, we create the clauses (ye ∨ ze ∨ xu) and (ye ∨ ze ∨ xv). Clearly, all the
relations of the formula are OR-free, and none of them is Horn-free.
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Let s be the satisfying assignment that sets all the variables to 1, and t be the satisfying
assignment that sets all the variables to 0 except the variables xv, v ∈ V that are set to 1.
If G has an independent set of size at least k, then it has a vertex cover S of size at most
n− k, then we can form a reconfiguration sequence of length at most 2|E|+ 2(n− k) from
s to t by flipping each xv, v ∈ S from 1 to 0, flipping the ye and ze variables, and then
flipping each xv, v ∈ S back from 0 to 1. To show that such a reconfiguration sequence
exists only if there exists such an independent set (of size n−k), we observe that if neither
xu nor xv has been flipped to 0, neither ye nor ze can be flipped to 0 while keeping the
formula satisfied at the intermediate steps.

3.2.3 The polynomial-time algorithm for navigable formulas

In this section, we give the polynomial time algorithm to find the shortest reconfiguration
sequence between two satisfying assignments of a navigable formula.

Gopalan et al. [47] gave a polynomial-time algorithm for finding the shortest recon-
figuration path in component-wise bijunctive formulas. The path, in this case, flips only
variables that have different values in s and t. The NP-completeness proof from the previ-
ous section crucially relies on the fact that we need to flip variables with common values;
in fact, the hardness lies in deciding precisely which common variables need to be flipped.
Thus it is tempting to conjecture that hardness for shortest reconfiguration path is caused
by relations where the shortest distance is not always equal to the Hamming distance.

Interestingly, this intuition is wrong. The reconfiguration graph for the relation P4 =
{000, 001, 101, 111, 110} is a path of length four, where for 000 and 110 the shortest path is
of length four but the Hamming distance is two. However, we can find shortest reconfigu-
ration paths for formulas built out of R in polynomial time, the exact reason for which will
become clear in our general description of the algorithm. The intuitive reason is that there
are very few candidates for shortest paths; if we restrict our attention to a single clause
built out of R, then there exists a unique path to follow. It then suffices to determine
whether there exist two clauses for which the prescribed paths are in conflict. In general,
our proof relies on showing that even if there does not exist a unique path, the set of all
possible paths between two satisfying assignments of a navigable formula is not diverse
enough to make the problem computationally hard. We show that the set of all possible
paths can be characterized using a partial order on the set of flips.
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Notation

Our results make use of two different views of the problem (graph theoretic and algebraic),
and hence two sets of notation.

The graph-theoretic view consists of the reconfiguration graph GR that has a node
for each Boolean string s ∈ R and an edge whenever the Hamming distance between the
two strings is exactly one. We call a path from s to t monotonically increasing if the
Hamming weights of the vertices on the path increase monotonically as we go from s to t,
and define a monotonically decreasing path similarly. A path is canonical if it consists of
a monotonically increasing path followed by a monotonically decreasing path.

The algebraic view consists of a finite state machine, or a token system [39], representing
the graph GR. The token system consists of a set S of states and a set τ of tokens. The
tokens specify the rules of transition between states. Each token t ∈ τ is a function that
maps S to itself. Given a k-ary relation R, we define a token system for it as follows. The
set S of states consists of all the elements of R and a special state s∗ called the invalid
state. The set τ of tokens is the set {x+1 , . . . , x+k } ∪ {x−1 , . . . , x−k }, where x+i denotes a flip
of variable xi from 0 to 1, which we call a positive flip, and x−i denotes a flip of variable xi
from 1 to 0, which we call a negative flip.

To complete the description of the token system, we need to specify the function to
which each token corresponds. For x+i ∈ τ and s ∈ S ,

• x+i (s∗) = s∗ for all i.

• x+i (s) = s∗ if the value of variable xi in s is already 1.

• x+i (s) = s′ if the value of variable xi in s is 0 and the bit string s′ obtained on flipping
it to 1 lies in R.

• x+i (s) = s∗ if the value of variable xi in s is 0 and the bit string s′ obtained on flipping
it to 1 does not lie in R.

The function x−i is defined analogously. In the rest of this article, we will use the word
“flip” instead of “token”, and we will use the words “state,” “vertex,” and “satisfying
assignment” (for all states except s∗) interchangeably.

A sequence of flips also defines a function, that is, the composition of all the functions
in the sequence. We call a flip sequence invalid at a given state s if the sequence applied to
s results in invalid state s∗, and valid otherwise. Starting from a state s, two flip sequences
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are said to be equivalent if they result in the same final state when applied to s. Finally,
we call a flip sequence canonical if all positive flips in it occur before all the negative flips.
That is, the path from its first state (node) to the last is a canonical path. Note that in
any valid canonical flip sequence, each flip occurs at most once. Given two states s, t ∈ S ,
we say that a set C of flips transforms s to t if the elements of C can be arranged in some
order such that the resulting flip sequence transforms s to t. For a given state s and flip
set C , we say C is valid if the elements of C can be arranged in some order such that the
resulting flip sequence applied to s results in a valid state.

We will work with sequences of flips. If F = f1, . . . , fq is a sequence of flips, we
write F(s) for the state that results from applying f1, then f2, . . . , then fq to state s, i.e.
F(s) = fq(fq−1(· · · f1(s)) · · · ). Note that this is well-defined. The flip sequence formed by
removing flip f from F is denoted F \f . The flip sequence obtained by reversing F is F−1,
and by performing F1 followed by F2 is F1 ·F2. We use C (F) to denote the set of flips that
appear in F . A flip sequence (set) consisting of only positive flips will be called a positive
flip sequence (set). We use F0 to denote an empty flip sequence and, by convention, define
it to be valid for all states except s∗. For a flip sequence F , if f ∈ F appears before f ′ ∈ F
in the sequence, then we say f <F f

′. For a tuple t = (xi1 , . . . , xid) of variables and a state
s, we use st to denote the string of values restricted to xi1 , . . . , xid .

We will repeatedly use the following observation.

Observation 3.1. Let F1 and F2 be two positive valid flip sequences starting at s such
that C (F2) = C (F1) \ {x+}. Then x+ is a valid flip at F2(s).

Proof. Clearly, the Hamming distance between F1(s) and F2(s) is 1, the value of x at
F2(s) is 0, and the value of x at F1(s) is 1.

Overview of the algorithm

Consider, once again, the relation P4 = {000, 001, 101, 111, 110} from Section 3.2.3, which
we claimed to be navigable. A satisfying assignment to the formula induces, on each
clause, a boolean string that consists of the values of the variables appearing in that
clause. Similarly, a flip sequence F induces a flip sequence for each clause C, which is the
subsequence of F that flips a variable that appears in C. Note that F is valid if and only
if the sequence induced on each clause is valid.

The relation P4 satisfies two nice properties:

1. Any valid flip sequence of P4 is canonical.
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2. Let x, y, z be the three variables that represent the three bits of P4, then there is a
total order, namely, z+ < x+ < y+, such that any valid positive flip sequence must
satisfy this order.

With this observation, formulating an algorithm is easy. Given two satisfying assign-
ments s and t of the formula, find the Boolean string induced on each clause. The shortest
flip sequence inside each clause can be computed in constant time. Each clause prescribes
a unique order in which the flips of its corresponding flip sequence must be performed. If
no two clauses prescribe conflicting orders, then their sequences can be combined into a
sequence for the entire formula. If there is a conflict, then we know that no path exists.
In general, for navigable formulas, we show, in Lemma 3.2, that any flip sequence can be
transformed into an equivalent canonical flip sequence by rearranging the flips, and, in
Lemma 3.9, that each clause prescribes a partial order instead of a total order. The task
of combining the partial orders prescribed by each clause becomes more involved, but can
still be done efficiently, as shown in Lemma 3.10.

The token system of NAND-free relations

We begin by proving some useful properties of the token system formed by NAND-free
relations. We will first show that valid flip sequences can be made canonical, by moving
the positive flips ahead of the negative flips.

Lemma 3.1. Let R be a NAND-free relation and F = f1 . . . fq be a valid flip sequence at
s ∈ R. If there exists i ∈ {1, . . . , q − 1} such that fi = x− is a negative flip and fi+1 = y+

is a positive flip, with x 6= y, then the sequence F ′ = f1 . . . fi−1fi+1fi . . . fq is also valid at
s and is equivalent to F , i.e., swapping fi and fi+1 results in an equivalent flip sequence.

Proof. Let u be the state right before applying fi in F , v = fi(u) be the state after applying
fi but before applying fi+1, and w = fi+1(v) be the one after applying fi+1. Thus it is clear
that u(x,y) = 10, v(x,y) = 00, and w(x,y) = 01. Also, notice that since no other variables are
flipped between u, v, and w, the values of all variables other than x and y remain the same
in the states u, v and w. Let t be the Boolean string whose value is the same as u, v, and
w on all variables except x and y and t(x,y) = 11. If t /∈ R, then the substitution described
above gives us the relation {10, 00, 01} on x and y, which is precisely the NAND relation.
Since R is NAND-free, t ∈ R (Figure 3.1 (a)) and thus we can replace the path u→ v → w
with the path u→ t→ w. This is equivalent to swapping the flips fi+1 and fi.

Lemma 3.2 now follows immediately. It shows (first proved by Gopalan et al. [47]) that
any valid flip sequence can be made canonical.
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Lemma 3.2. For R a NAND-free relation, if F is a valid sequence at s ∈ R, then there
exists a valid canonical sequence F ′ equivalent to F such that C (F ′) ⊆ C (F) and, for any
two flips f1, f2 ∈ F ′ of the same sign, if f1 <F ′ f2 then f1 <F f2, i.e., the relative order
among flips of the same sign is preserved.

Proof. If F is not canonical, it must have a negative flip followed by a positive flip some-
where. If both flips act on the same variable, we cancel them out; otherwise, we swap
them using the proof of Lemma 3.1. Doing this repeatedly gives us the required canonical
sequence F ′. The order among the flips of the same sign is preserved since we never swap
two flips of the same sign.

Lemma 3.3. For R a NAND-free relation, if C1 and C2 are two positive flip sets that are
valid at s ∈ R, then C1 ∪ C2 is also a valid flip set at s.

Proof. Let u = F1(s) and v = F2(s), where F1 and F2 are valid flip sequences such that
C (F1) = C1 and C (F2) = C2. Clearly, F−11 · F2 is a valid flip sequence from u to v.
Thus, we can apply Lemma 3.2 to the sequence F−11 · F2 to transform it into the canonical
sequence F . Let F+ denote the prefix of F that contains all the positive flips. It is clear
that F1 · F+ is a valid flip sequence at s. We can also see, from the proof of Lemma 3.2,
that C (F1 ·F+) = C1∪C2. Each element of F+ must be an element of F2. If an element of
F2 is not an element of F+, then it must be because it got cancelled out with an element
of F1, in which case, the element must be in F1.

Later, we prove a similar lemma for the intersection of two flip sets, but for dual-Horn-
free relations.

Lemma 3.4. For R a NAND-free relation and F1 and F2 two positive flip sequences that
are valid at s ∈ R, if C (F1) ∩ C (F2) = ∅, then F1 is valid at F2(s) and F2 is valid at
F1(s).

Proof. Consider the sequence F−12 ·F1 that transforms F2(s) to F1(s). Applying Lemma 3.2
to it, we obtain the canonical flip sequence F1 · F−12 . Thus F1 is valid at F2(s). Using the
same argument on the sequence F−11 · F2 proves the other claim.

The token system of dual-Horn-free relations

In this section, we establish stronger properties with the assumption that R is not only
NAND-free, but is also dual-Horn-free. We begin by establishing a simple property of
relations that are NAND-free and dual-Horn-free in the following lemma.
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Figure 3.1: (a) Example for Lemma 3.1 (b) Example for Lemma 3.5

Lemma 3.5. Let R be a NAND-free and dual-Horn-free relation and s, t1, t2 ∈ R be three
distinct states such that the flip sequence F1 = x+k x

+
i transforms s to t1, the flip sequence

F2 = x+j x
+
i transforms s to t2, and xk 6= xj. Then the sequence F ′1 = x+i x

+
k also transforms

s to t1 and the sequence F ′2 = x+i x
+
j also transforms s to t2, i.e., we can swap the flips in

both F1 and F2.

Proof. For u1 = x+k (s) and u2 = x+j (s), the sequence x−j x
+
k transforms u2 to u1. We

can reorder the sequence to obtain x+k x
−
j , using Lemma 3.1. For v = x+k (u2), we can

use a similar argument to show that x+i is a valid flip at v; we let w = x+i (v). The
values of variables xi, xj, and xk at states s, u1, u2, t1, t2, v, and w form exactly the seven
satisfying assignments {000, 001, 010, 101, 110, 011, 111} of the dual-Horn clause (xi ∨ xj ∨
xk) (Figure 3.1 (b)). But since R is dual-Horn-free, there must also exist the state v′ for
which xi = 1, xj = 0, xk = 0. The path s→ v′ → t1 gives the sequence x+i x

+
k and the path

s→ v′ → t2 gives the sequence x+i x
+
j .

The seemingly innocuous lemma above turns out to be very powerful. In the following
sequence of lemmas, we build on top of it to eventually prove that the set of all posi-
tive valid flip sets starting from an assignment s forms a distributive lattice. The lattice
structure then helps us formulate a polynomial time algorithm for computing the shortest
reconfiguration path.

Lemma 3.6. Let R be a NAND-free and dual-Horn-free relation and s, t ∈ R be two
satisfying assignments such that x+y+ is a valid flip sequence at s and y+ is a valid flip
at t. Furthermore, let F be a positive flip sequence such that F(s) = t and x+ 6∈ C (F).
Then, the sequence y+x+ must also be valid at s.

Proof. Let v be the vertex with smallest Hamming weight on the path corresponding to F
from s to t (including s and t) at which y+ is a valid flip. Let F1 = x+y+ and let F2 be the
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Figure 3.2: Dotted lines denote paths and solid lines denote edges. Hamming weight
increases in the upward direction. (a) Proof of Lemma 3.6 (b) Proof of Lemma 3.7.

positive flip sequence that transforms s to v, i.e. v = F2(s). Note that C (F1)∩C (F2) = ∅,
as neither x+ nor y+ can appear in C (F2) (See Figure 3.2(a)). If v = s, we are done
(using Observation 3.1); then let us assume this not to be the case. Let u be the vertex
immediately before v on the path from s to t and let z+(u) = v. Since C (F1)∩C (F2) = ∅
and C (F1)∩ {C (F2) \ {z+}} = ∅, we can apply Lemma 3.4 at s, which implies that x+y+

must be valid at both u and v. Now we use Lemma 3.5 at u. Since both x+y+ and z+y+

are valid sequences at u, y+x+ must also be a valid sequence at u. This contradicts the
assumption that v was the vertex with smallest Hamming weight on the path where y+

was a valid flip.

Lemma 3.7. Let R be a NAND-free and dual-Horn-free relation. If F1 ·x+ ·y+ and F2 ·y+
are both valid positive flip sequences at s ∈ R such that x+ 6∈ C (F2) then F1 · y+ · x+ is
also valid at s.

Proof. Let u = F1(s) and v = F2(s). We apply Lemma 3.2 to the sequence F−11 · F2 that
transforms u to v to obtain the canonical sequence F = F+ · F−. Let w be the vertex
with maximum Hamming weight on this canonical path (Figure 3.2(b)). Hence, we have
w = F+(u) and v = F−(w). Note that F does not involve flips of the variables x or y.

Since y+ is a valid flip at v, y+ 6∈ C (F−), and the path from v to w is monotonically
increasing, from Lemma 3.4, y+ is also valid at w. Now using Lemma 3.6, since x+y+ is
valid at u, x+ 6∈ F+, and y+ is valid at w, we have that y+x+ is also valid at u.

Lemma 3.3 already shows that the set of valid flip sets is closed under union. To prove
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that the set of valid flip sets forms a distributive lattice, we need to show that it is also
closed under intersection, which we do in the next lemma.

Lemma 3.8. Let R be a NAND-free and dual-Horn-free relation. If C1 and C2 are two
positive flip sets that are valid at s ∈ R, then C1 ∩ C2 is also a valid flip set at s.

Proof. If C1 ⊆ C2 or C2 ⊆ C1, then the statement is trivial. Otherwise, consider any valid
ordering F1 of C1. We show that if x+ and y+ are two consecutive elements of F1 such
that x+ ∈ C1\C2, y

+ ∈ C1∩C2 and x+ <F1 y
+, then swapping x+ and y+ also gives a valid

ordering of C1. Applying such swaps repeatedly, we get an ordering where all elements of
C1 ∩ C2 appear before all elements of C1\C2 thus proving that C1 ∩ C2 is a valid set at s.

To see how to swap x+ and y+ in F1, suppose u is the vertex on the path corresponding
to F1 on which the sequence x+ · y+ is performed, and consider an arbitrary valid ordering
F2 of C2. Let v be the vertex on the path corresponding to F2 on which y+ is performed.
Such a vertex exists since y+ ∈ C1 ∩ C2. Now, since x+ · y+ is valid at u, y+ is valid at
v and the monotonically increasing path from s to v does not contain the flip x+ (since
x+ ∈ C1\C2), applying Lemma 3.7, we can swap y+ and x+ in F1.

The above lemma, combined with Lemma 3.3, shows that the set of valid flip sets
starting at s forms a distributive lattice [9]. Using Birkhoff’s representation theorem [9] on
it directly implies the next lemma. However, for clarity, we also provide an independent
proof.

Let ≺ be a partial order defined on a set C of flips. We say a set C ′ ⊆ C is downward
closed if for every x, y ∈ C , y ∈ C ′ ∧ x ≺ y =⇒ x ∈ C ′. We say that an ordering F of a
subset of elements in C obeys the partial order ≺ if (i) C (F) is downward closed and (ii)
for every x, y ∈ F , x ≺ y =⇒ x <F y.

Lemma 3.9. Let R be a NAND-free and dual-Horn-free relation and s be an element of
R. Let P = {x+ | ∃ a positive flip set C at s for which x+ ∈ C }. Then there exists a
partial order ≺ on P such that any positive flip sequence F consisting of a subset of P
is a valid flip sequence at s if and only if it obeys the partial order ≺.

Proof. Our proof proceeds by providing an explicit partial order ≺ on the flips in P. For
x+, y+ ∈ P, let x+ ≺ y+ if all valid positive flip sequences F starting at s that contain
y+ also contain x+ and x+ <F y+. This is clearly a partial order since if x+ ≺ y+ and
y+ ≺ z+ then x+ ≺ z+.

From the definition of the partial order, it is clear that every valid positive flip set must
obey the partial order. For the other direction, consider a positive flip sequence F∗ that
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obeys the partial order. We will show that F∗ is valid by induction on the length of the
flip sequence.

For the base case, F∗ is trivially valid when |F∗| = 0. As the induction hypothesis,
suppose that any positive flip sequence of length i − 1 that satisfies the partial order is
valid. Consider the positive flip sequence F∗ = (f1, . . . , fi) that satisfies the partial order,
and let Fi−1 = (f1, . . . , fi−1). Let X be the set of all positive flip sequences valid at s whose
last element is fi. Consider the set C =

⋂
F∈X C (F). Since F∗ satisfies the partial order,

C ⊆ C (F∗). To see why, suppose that C has an element x+ that is not there in C (F∗).
That would mean that x+ appears before fi in all valid positive sequences starting at s. But
then x+ ≺ fi and the sequence F∗ does not obey the partial order. Thus using Lemma 3.8,
we know that C is a valid flip set. Since C (Fi−1) is also a valid flip set (from the induction
hypothesis), from Lemma 3.3 we know that C ∪C (Fi−1) = C (Fi−1)∪{fi} = C (F∗) (since
C ⊆ C (F∗)) is a valid flip set. Since C (Fi−1) and C (F∗) are both valid flip sets and
C (F∗) \ C (Fi−1) = fi, F∗ must be a valid flip sequence (from Observation 3.1).

Efficiently computing the shortest reconfiguration path

We are now ready to provide a polynomial-time algorithm for finding shortest reconfigura-
tion paths in CNF(S) formulas where S is navigable. If every relation in S is component-
wise bijunctive, we use Gopalan et al.’s algorithm. Otherwise, we assume that every
relation in S is NAND-free and dual-Horn-free since the dual case of every relation being
OR-free and Horn-free can be handled similarly.

Let φ be a CNF(S) formula where every relation in S is NAND-free and dual-Horn-free,
{x1, . . . , xn} be the set of variables, and {C1, . . . , Cm} be the set of clauses in φ. The formula
φ defines a relation Rφ as described in Section 3.1.1. Let Gφ denote the reconfiguration
graph corresponding to Rφ. We wish to compute the shortest reconfiguration path between
s and t in Gφ for s, t ∈ Rφ. Let Ps and Pt be the sets of positive flips that occur in any
positive flip set valid at s and t, respectively. That is, Ps = {f | f is a positive flip and ∃
a valid flip sequence in Rφ containing f and starting at s}. We define Pt similarly.

The following lemma helps us combine the partial orders for each clause into one partial
order for the formula.

Lemma 3.10. Let φ be a CNF(S) formula where every relation in S is NAND-free and
dual-Horn-free. For any s ∈ Rφ, there exists a partial order ≺s on Ps such that any positive
flip sequence Fs consisting of a subset of Ps is a valid flip sequence at s if and only if it
obeys the partial order ≺s. Moreover, Ps and ≺s can be computed in time polynomial in
the size of the formula.

41



Proof. We compute Ps and ≺s using a directed graph Gs which we construct in two
phases. In the first phase, we add vertices and edges, and in the second phase, we delete
some vertices and edges.

We define P = {x+ | ∃ a positive valid flip set containing x+ at s for some relation in
S} and let Gs contain a node for each flip in P. The assignment s induces an assignment
fXj

(s) on clause Cj = (Rj, Xj) and Lemma 3.9 defines a partial order ≺js that characterizes
the valid positive sequences in Rj starting at fXj

(s). For all p, q ∈ {1, . . . , kj} such that
p+ ≺js q+, if Xj(p) 6∈ {c0, c1}, Xj(q) 6∈ {c0, c1} and Xj(p) 6= Xj(q), we add the directed
edge (x+Xj(p)

, x+Xj(q)
) to Gs. We do this for each clause Cj for j ∈ {1, . . . ,m}. This gives us

Gs and marks the end of the first phase.

Now, for the second phase, if the vertex in Gs corresponding to a flip f lies on a cycle
of Gs or is reachable by a directed path from a vertex that lies on a cycle of Gs, then f
cannot lie in a valid positive flip sequence from s. Hence we remove these vertices from
Gs as follows. First, any vertex that appears on a directed cycle is marked to be removed.
Then, we iteratively mark every vertex that has an incoming edge from a marked vertex.
Once the set of marked vertices stops changing, we remove all marked vertices. Let G′s be
the graph thus obtained. Note that G′s is acyclic.

We claim that Ps = V (G′s), and the partial order ≺s is such that f1 ≺s f2 if and only
if there is a directed path from f1 to f2 in G′s. It is clear that any vertex that was removed
in the second phase cannot be a part of any valid flip sequence at s. To see that ≺s is the
required partial order, it is enough to see that any flip sequence is valid for φ if and only
if it is valid for each clause.

Computing the partial orders defined by Lemma 3.9 can be accomplished in constant
time for each relation in S. Then, the construction and deletion phases for Gs can be
accomplished in polynomial time as described above.

For a set P, a partial order ≺ on P, and a subset A ⊆P, the smallest lower set of A
is the smallest superset of A that is downward closed. Such a lower set can be constructed
in time polynomial in the number of elements of ≺ by starting with A and including any
element f ′ not in A such that f ′ ≺ f for some f ∈ A. It is clear that any valid flip set that
contains A must also contain the smallest lower set of A.

Now the algorithm for finding the shortest reconfiguration path is clear. We start from
s and let S be the set of positive flips on the variables that are set to 1 in t and to 0 in
s. Then we compute the smallest lower set S ′ containing S and perform the flips in S ′ as
prescribed by the partial order ≺s (on Ps) to reach s′ ∈ Rφ. We perform a similar set of
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flips starting from t to reach t′ ∈ Rφ. If s′ = t′, we are done. Otherwise, we recursively find
the shortest path between s′ and t′. The complete algorithm is described in Algorithm 1.

Algorithm 1 ShortestPath(s,t)

Require: A CNF(S) formula φ where all relations in S are NAND-free and dual-Horn-free;
two satisfying assignments s and t.

Ensure: Shortest reconfiguration path between s and t.
1: if (s = t) then
2: return F0 {the empty flip sequence}
3: end if
4: Let S be the set of positive flips that flip variables assigned 0 in s and 1 in t.
5: Let T be the set of positive flips that flip variables assigned 0 in t and 1 in s.
6: if S contains an element not in Ps or if T contains an element not in Pt then
7: return Not connected.
8: end if
9: Compute the smallest lower set S ′ of S in Ps with respect to ≺s.
10: Compute the smallest lower set T ′ of T in Pt with respect to ≺t.
11: Let Fs and Ft be orderings of S ′ and T ′ that obey ≺s and ≺t, respectively.
12: Let s′ = Fs(s) and t′ = Ft(t).
13: Let F = ShortestPath(s′,t′).
14: return Fs · F · F−1t .

We are now ready to prove the following theorem.

Theorem 3.3. Let S be a navigable set of relations, φ be a CNF(S) formula, and s and t
two of its satisfying assignments. We can compute the shortest reconfiguration path between
s and t in polynomial time.

Proof. We show that Algorithm 1 finds the shortest path between s and t, and runs in
polynomial time. We first address the running time.

For any Boolean vector x, let η(x) denote the number of 0’s in x and let η = η(s)+η(t).
It is clear that Steps 1 to 10 take time polynomial in the input size N , where N =
|φ| + |S| + |s| + |t|. Here |x| denotes the number of bits needed to represent x. Since Fs
and Ft are both positive flip sequences, η(s′) + η(t′) ≤ η(s) + η(t)− 2. Thus the running
time T (η) of the algorithm satisfies the recursive inequality T (η) ≤ T (η−2)+P (N) where
P (N) is some polynomial in N . Since η < N the recursion solves to a polynomial in N .

Finally, we prove the correctness of the algorithm. We use induction on η. If η = 0,
then s = t and the algorithm is trivially correct.
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If the algorithm returns “Not connected”, then it is either because of Step 6 or Step 11.
If it is because of Step 11, then by the induction hypothesis s′ and t′ are not connected,
and thus s and t are also not connected. Any flip sequence that transforms s to t must
perform each flip in S. Thus it is also clear that if Step 6 returns “Not connected”, then
s and t are not connected.

If the algorithm returns a flip sequence, then we claim that it is a shortest sequence.
From induction, we know that F is a shortest flip sequence from s′ to t′. The claim follows
from the observation that if s and t are connected, then there must exist a shortest path
from s to t that passes through both s′ and t′. Let F1 ·F−12 be a shortest flip sequence from
s to t such that F1 and F2 are both positive. It is clear that S ′ ⊆ C (F1). Since S ′ itself
is valid, from Lemma 3.10, there must exist a valid ordering of C (F1) that first performs
all flips of S ′. In this ordering, the vertex reached after performing all flips of S ′ is exactly
s′. Using a similar argument on F2, we get a shortest path that goes through both s′ and
t′.

3.3 Final remarks

Many problems can be modelled as finding shortest paths in large graphs. Our result pro-
vides new insights into the kinds of structures a graph will need to possess to be amenable
to an efficient shortest path algorithm. The fact that the shortest path in navigable formu-
las flips variables that are not in the symmetric difference is evidence that our algorithm
exploits a property of the reconfiguration graph that is fundamentally new. Any previ-
ously known properties that were used to find shortest paths efficiently also rendered the
graph too simple, in that any shortest path only flipped the symmetric difference. It will
be interesting to see if our results help us understand other large graphs, in particular,
the flip graph of triangulations of a convex polygon where the complexity of finding the
shortest path is still open.
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Chapter 4

Flipping Edge-Labelled
Triangulations: Part I1

4.1 Introduction

Triangulations of point sets and graphs are rich in mathematical structure [31] and have
many practical applications, for example in meshing. This chapter is about reconfiguration
of triangulations. We begin by discussing some necessary background, including some
things we have already discussed in previous chapters in order to make this chapter self-
contained.

In general, reconfiguration means transforming one solution of a problem to another via
elementary steps [55]. Reconfiguration versions of several traditional problems have gained
recent attention, e.g., maximum independent set [55, 59], and satisfiability of boolean
formulas [47].

The basic operation for reconfiguring triangulations, both in the combinatorial and the
geometric setting, is the flip operation that removes one edge of the triangulation and adds
the other diagonal of the resulting quadrilateral. In order to obtain a new triangulation,
there is a constraint on the removed edge. In the geometric setting a triangulation of a
point set is a maximal set of non-crossing edges joining pairs of points. The constraint on
a flip is that the two faces incident to the removed edge must form a convex quadrilateral.
In the combinatorial setting a triangulation is a maximal planar graph with the clockwise

1This chapter represents joint work with Prosenjit Bose and Sander Verdonschot. [18]
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order of edges around each vertex specified. The constraint on a flip is that the other
diagonal of the quadrilateral should not already be an edge of the triangulation.

The fundamental property of flips is that they can be used to reconfigure any triangu-
lation to any other triangulation that has the same size and—in the geometric case—the
same point set. This was proved by Wagner in 1936 for the combinatorial setting (see [15]).
For the geometric setting, it is a consequence of Lawson’s result [63] that any triangulation
of a point set can be flipped to the Delaunay triangulation, which then acts as a “canonical”
triangulation from which every triangulation can be reached.

There is a substantial literature on flipping, see the survey [15]. Flips are useful in
practice in mesh generation and optimizing triangulations [7, 37]. They are also used for
counting and generating triangulations [20, 31, 73].

A main subject of investigation is the minimum length of a flip sequence, the so-called
flip distance, between two triangulations. Most of the work is on worst case bounds. For
combinatorial triangulations on n vertices, the current worst case bound is below 6n [17].
For triangulations of general point sets of size n there is a tight worst case bound of
Θ(n2) [52]. For triangulations of points in convex position a famous result of Sleator et
al. [95] shows that the flip distance is at most 2n−10 and that 2n−10 flips are necessary in
some cases. There is a new proof of this result that does not use hyperbolic geometry [86].

Another interesting problem is to find the exact flip distance between two triangulations.
The complexity of this problem is open in the combinatorial setting. The problem was
only recently shown to be NP-hard [66, 84] (see Chapter 2), and even APX hard [84],
for triangulations of point sets. The case of triangulations of a simple polygon is also
NP-hard [1]. However, the case of points in convex position (equivalently, the case of a
convex polygon) remains stubbornly unresolved, and the hardness reductions used in the
aforementioned papers do not seem to apply.

Flips in triangulations of a convex polygon are especially interesting because they cor-
respond exactly to rotations in a binary tree [95] and flip distance corresponds exactly to
rotation distance, which was first explored in 1982 [29]. There is an easy factor-2 approx-
imation algorithm for rotation distance which can be improved to 1.98 for some special
cases [30]. There are efficient algorithms to compute lower and upper bounds on the rota-
tion distance, but no known guarantees on the gap between these bounds [5, 68, 69, 81].

The idea of performing flips in parallel was introduced by Hurtado et al. [53], see
also [42]. In the geometric setting, a set of edges may be simultaneously flipped if each
edge may be flipped and no two of the edges are incident to the same face. Hurtado
et al. showed that O(log n) simultaneous flips are sufficient and sometimes necessary to
reconfigure one triangulation of a convex polygon to another. Bose et al. [16] were the first
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to explore simultaneous flips in the combinatorial setting—in this case a simultaneous flip
may be performed even if some edges in the set cannot be individually flipped.

In this chapter we initiate the study of edge-labelled flips. If the edges of a triangulation
are labelled and we perform a flip, the newly added edge is assigned the label of the removed
edge. In particular, this means that the set of edge labels is preserved throughout any flip
sequence. In general (for point sets) it is not possible to flip between any two edge-labelled
triangulations, but this is true for combinatorial triangulations and for triangulations of
convex polygons, the settings that we consider in this chapter.

Our initial motivation was to understand the complexity of computing the flip distance
between two triangulations of a convex polygon. Is the problem difficult because we do
not know which edge flips to which edge? Having this information is the same as having a
labelling of the edges.

One result that gives some hope that flip distance might become easier to compute
when edge labels are specified is a polynomial time algorithm by Eppstein [38] to compute
the flip distance between two triangulations of a point set that contains no empty pentagon.
In this case Eppstein shows that each edge of the initial triangulation can only flip to a
unique edge of the final triangulation. In other words, there is a unique labelling of edges,
which is one ingredient in Eppstein’s efficient algorithm.

On the other hand, there is a situation where finding a minimum length reconfiguration
sequence is NP-hard even with the mapping between initial and final elements, namely for
independent set reconfiguration in perfect graphs. For further details, see Section 4.2.

Our Results. We prove tight Θ(n log n) bounds on the worst-case flip distance between
two edge-labelled triangulations of a point set in convex position, and between two edge-
labelled combinatorial triangulations. This contrasts with the Θ(n) bounds for unlabelled
flips [15, 95]. The extra log n factor arises from sorting-related issues. We prove the upper
bound by reducing to the problem of sorting a list using an operation that reverses a
(possibly non-contiguous) subsequence at a cost proportional to the minimum length of
a contiguous sublist containing the subsequence. The special case where the subsequence
itself must be contiguous is the “length-weighted” reversals model introduced by Pinter
and Skiena [85] for applications in comparative genomics. Our model seems more powerful
since the best-known bound for sorting in their model is O(n log2 n). Our Ω(n log n) lower
bound generalizes theirs. Our result provides an efficient O(log n)-factor approximation
algorithm to compute the flip distance between edge-labelled triangulations of a point set
in convex position.

Finally, we consider simultaneous flips. We prove that the simultaneous flip distance
between two edge-labelled triangulations of a point set in convex position is O(log2 n), in
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contrast with the Θ(log n) bound for the unlabelled case [16]. We also prove that Ω(log n)
simultaneous flips may be required in some cases.

4.2 Related work

Planar point sets with no empty convex pentagons. In SoCG ’07, Eppstein [38]
showed that flip distance can be computed in polynomial time between two triangulations
of a planar point set that does not contain an empty convex pentagon (the vertices of the
pentagon are picked from the point set itself). One such point set is the integer lattice,
where flip distance has been explored [20].

Given a planar point set P = {p1, . . . , pn}, define the quadrilateral graph QG to have
a node vij for every pair (pi, pj) and an edge (vij, vkl) if and only if pipj and pkpl cross
and the points pi, pj, pk, pl form an empty convex quadrilateral, i.e., a quadrilateral with no
other points of P inside or on its boundary. Thus QG has an edge (vij, vkl) if and only
if there exists a triangulation of P where pipj can be flipped to pkpl. Eppstein showed
that if P has no empty (strictly) convex pentagons then every triangulation of P contains
exactly one node from each connected component of QG. Thus, given two triangulations
T1 and T2 of P , each edge e of T1 can be flipped to a unique edge e′ of T2, namely, the
one that lies in the same connected component of QG as e. This induces a unique edge
labelling, where two edges have the same label if and only if they lie in the same connected
component of QGP . Although not sufficient, this fact is crucial for Eppstein’s polynomial
time algorithm.

Vertex-labelled triangulations. Although flipping with edge labels is new (to the best
of our knowledge) the effect of vertex labels on flips has already been explored. In the
combinatorial setting, vertices of the triangulation are not labelled, so a target triangulation
is only reached “up to isomorphism”. By contrast, in the geometric setting, the position of
a vertex in the plane essentially provides a label for the vertex. Sleator et al. [96] studied
the effect of vertex labels in the combinatorial setting. They showed that the worst case
flip distance is Θ(n log n), in contrast with the linear bound for the unlabelled case. The
extra log n factor arises from sorting-related issues, which their paper explores in a broader
context.

Flip distance as a reconfiguration problem. Given a set P = {p1, . . . , pn} of points
in the plane, we can define a graph G, which has a node vij for every segment pipj (1 ≤
i < j ≤ n) and an edge (vij, vkl) whenever pipj crosses pkpl at an interior point. Using
this definition, a triangulation of P is a maximum independent set of G. Now a flip can
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be seen as a reconfiguration of the independent set of G, i.e., given an independent set I
of G = (V,E), replace u ∈ I with v ∈ V \I so that for all u′ ∈ I\{u}, (u′, v) /∈ E. This
problem has been studied for general graphs under the title of “reconfigurations” [55, 59].
For a general graph, a reconfiguration sequence does not always exist and deciding whether
it exists is PSPACE-complete. However, just as for Eppstein’s point sets, it is easy to
decide which node goes where for perfect graphs: since the size of a maximum independent
set of a perfect graph is the same as the size of the minimum cover by cliques, each
maximum independent set must contain exactly one vertex from each clique of a minimum
clique cover. Interestingly, reconfiguration of independent sets is PSPACE-complete even
on perfect graphs [58]. Thus at least in this setting, knowing a labelling function is not
enough.

Sorting permutations. As mentioned above, our bound on flip distance relies on bounds
for sorting permutations. Sorting permutations using operations from a restricted set of
operations has been widely studied. A main operation is the reversal of a subsequence.
One of the earliest results of this kind was on “pancake” sorting [44] where a prefix of
the sequence can be reversed. Bubble sort operates by swapping two adjacent elements
at a time, which is a reversal of size two. The number of size-two reversals it makes
is equal to the number of inversions of the permutation and is Θ(n2) in the worst case.
More generally, any permutation can be sorted with Θ(n) reversals [62] if arbitrarily large
reversals are allowed. Computing the minimum number of operations (of a specific kind)
required to sort a permutation is of interest in bioinformatics. In the case of arbitrarily
large reversals, this problem is NP-complete [21] for sorting permutations, but is in P for
sorting signed permutations [3]. Some other kinds of operations that have been considered
include transpositions and block interchanges [31]. Most of the results until now have been
about the number of operations required. Recently, Pinter and Skiena [85] formulated a
model that assigns a cost to each operation based on the length of the interval in which it
is performed. Improved bounds for this model were given by Bender et al. [6]. We use this
cost model but generalize to reversals of non-contiguous sequences.

4.3 Upper bound on the worst-case flip distance

4.3.1 Convex polygons

Note that every triangulation of a convex polygon contains two kinds of edges—a set
of boundary edges that lie on the convex hull and cannot be flipped, and a set E of
non-boundary edges or diagonals that can be flipped. Combinatorial triangulations, by
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contrast, have no boundary edges. We only label the non-boundary edges. More precisely,
an edge-labelled triangulation T is a pair (T, l) where T is a triangulation that has a set E
of non-boundary edges and l : E → {1, . . . , |E|} is a function that assigns a unique label
l(e) to each e ∈ E.

We will denote by T ∗ the unlabelled canonical triangulation as shown in Figure 4.1
where there is one vertex p1 that is shared by all the diagonals. If we draw T ∗ with p1 at
the top, the drawing induces a left-to-right order on the n diagonals. Reading their labels
in this order defines a permutation of [1..n]. Given a permutation ρ of [1..n], we will denote
by (T ∗, ρ) the canonical triangulation where the edge-labels, when read out from left to
right, form the permutation ρ. The next lemma shows that in this canonical triangulation,
ordered subsequences can be easily reversed, which plays an important role for the upper
bound.

p1
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p3

p4

p5 p6

p7

p8

p9

1

1

1

1

2

2

2

2

2, 1

1, 2

2

Figure 4.1: (Left) A canonical triangulation (T ∗, l) with 6 diagonals. (Right) Flip-sequence
to reverse the order of the two diagonals of the canonical triangulation of a pentagon.

Lemma 4.1. Given (T ∗, ρ), let S be a contiguous subsequence of edges, excluding the
polygon boundary edges, adjacent to vertex p1 ordered in counter-clockwise order. Any
ordered subsequence R = i1, . . . , ir of S can be reversed with O(|S|) flips. Note that the
edges of R need not be consecutive.

Proof. We use induction on |S|. If there is any edge in S that is not in R, simply flip that
edge, apply induction since |S| has gotten smaller, and flip the edge back. Therefore, we
only need to consider the case where S = R. If r is odd, first flip i(1+r)/2. Apply induction
to reverse the remaining subsequence of r − 1 edges. Next, flip i(1+r)/2 back. If r is even,
then flip both ir/2 and ir/2+1. Apply induction to reverse the remaining subsequence of
r − 2 edges. Now, flip ir/2 and ir/2+1 back. These two edges are out of order but they can
be reversed with five flips as shown in Figure 4.1. Thus, five flips reduce the problem size
by two. Altogether, at most 2.5r flips are used to reverse the subsequence.
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Theorem 4.1. Any edge-labelled triangulation (T1, l1) of a convex polygon P with n edges
can be transformed into any other edge-labelled triangulation (T2, l2) using O(n log n) flips.

Proof. We first ignore the labels and use O(n) flips to transform (T1, l1) and (T2, l2) to
(T ∗, l′1) and (T ∗, l′2) respectively [95]. Next, we show that a canonical triangulation (T ∗, ρ)
corresponding to any permutation ρ can be transformed using O(n log n) flips into the
triangulation (T ∗, ρ∗), where ρ∗ is the sorted permutation. Combining these steps proves
the theorem. By using Lemma 4.1, we reduce the problem of flipping edge-labelled trian-
gulations to the problem of sorting permutations in the following model.

Non-contiguous reversals Given a permutation ρ of [1..n], pick any interval [i..j] with
1 < i < j < n and j − i + 1 = k. Then pick a subsequence i1, . . . , ir of [i..j] and
reverse it (without changing the position of any element outside the subsequence).
The cost of this reversal is O(k).

In particular, if we can show that any permutation of [1..n] can be sorted with a worst
case cost of O(n log n) in this model, that would give us an O(n log n) cost for flipping
edge-labelled triangulations as well.

We can sort in this model by imitating quicksort. Consider all values of i for which
either: (1) i ≤ n/2 and ρi > n/2; or (2) i > n/2 and ρi ≤ n/2. Reverse the subsequence
formed by these values of i. This costs O(n) and ensures that elements smaller than n/2
lie in the first half of the sequence and the larger elements lie in the second half. Now
recurse in the two halves.

As a corollary to the O(n log n) upper bound, we can get an O(log n)-factor approxi-
mation algorithm for computing the flip-distance.

Corollary 4.1. Given two edge-labelled triangulations T1 = (T1, l1) and T2 = (T2, l2), we
can find an O(log n)-approximation to the flip-distance between them in polynomial time.

Proof. Call an edge pipj fixed if it satisfies the following properties: a) it occurs in both T1
and T2; b) it has the same label in both T1 and T2, i.e., l1(pipj) = l2(pipj); and c) the set
of distinct labels that occurs on the left of pipj in T1 is exactly the same as the set that
occurs on the left of pipj in T2. Our approximation algorithm will not flip any fixed edges.
Note that every non-fixed edge must flip at least once. The set of fixed edges divides the
polygon into several smaller polygons, each of which is triangulated differently in T1 and
T2. Suppose the ith polygon has ni diagonals. These are non-fixed so we have a lower
bound of Ω(ni) flips. We use the O(ni log ni) flip-sequence from Theorem 4.1 on the ith

polygon, thus giving an approximation factor of O(log n).
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Figure 4.2: The labelled canonical triangulation on 8 vertices. The spine is indicated in
bold.

4.3.2 Combinatorial triangulations

With the convex polygon case settled, we turn our attention to combinatorial triangula-
tions. We will assume that the vertices are unlabelled.

Theorem 4.2. Any edge-labelled combinatorial triangulation with n vertices can be trans-
formed into any other by O(n log n) flips.

Proof. We will show that we can transform any edge-labelled combinatorial triangulation
into a canonical one using O(n log n) flips. Since flips are reversible, we can also go from
the canonical triangulation to any other, which proves the theorem.

We use a canonical triangulation like the one used by Sleator et al. [96] for the vertex-
labelled variant. It is a “double wheel”: a cycle of length n− 2 (called the “spine”), plus
a vertex vin inside the cycle and a vertex vout outside the cycle, each connected to every
vertex on the cycle (see Figure 4.2). For our canonical labelling, we place labels 1, . . . , n−2
(called “group S”) consecutively along the spine edges. We place the next n − 2 labels
(group Cin) consecutively on the edges incident to vin and the last n− 2 labels (group Cout)
consecutively on the edges incident to vout.

As for convex polygons, our algorithm first ignores the labels and transforms the given
triangulation into the unlabelled canonical triangulation. This requires O(n) flips [96] and
puts the edges in place, though possibly with the wrong labels. To fix the labels, we first
get the groups right, so all labels in group S are on the spine, etc., and then rearrange
labels within each group.

We use two main tools. The first is a “swap” that interchanges one spine edge with an
incident non-spine edge using the constant size sequence of flips shown in Figure 4.3 (in
Figure 4.3).
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Our second tool is a “scramble” algorithm that reorders all labels incident to vin using
O(n log n) flips. To do this we first flip the spine edge that is part of the exterior face
(labelled 1 in Figure 4.2) and then apply the algorithm from Theorem 4.1 to the outerplanar
graph induced by the spine plus vin, observing that no flip will create a duplicate edge since
the omitted edges are all incident to vout. This method cannot alter the labels on the two
non-spine edges that lie on the exterior face of the outerplanar graph (labelled 12 and 7 in
Figure 4.2), but since there are only two of these, we can move them to their correct places
by swapping them along the spine, using O(n) flips total. Similarly, we can scramble the
labels incident to vout with O(n log n) flips.

To get the labels of group S on the spine, we partner every edge incident to vin that
has a label in S with an edge on the spine that has a label in Cin or Cout. A scramble at
vin makes each such edge incident to its partner, and then swaps exchange partners. We
do the same at vout, thus placing all labels of S on the spine. Next we partner every edge
incident to vin that has a label in Cout with an edge incident to vout that has a label in Cin.
A scramble at vin makes partners incident, and three swaps per pair can then exchange
partners.

Now each edge’s label is in the correct group, but labels within each group may be
wrong. We can scramble at vin and at vout to rearrange the labels in Cin and Cout. The
last thing we need to do is reorder the edges on the spine. We use swaps to exchange the
labels on the spine with those incident to vin in O(n) flips and scramble at vin to order
them correctly. Since this does not affect the labels on the spine, we can simply exchange
the edges once more to obtain the canonical triangulation.

4.4 Lower bounds

Theorem 4.3. There exist pairs of edge-labelled triangulations of a convex polygon with n
diagonals, such that any flip sequence that transforms one into the other contains at least
Ω(n log n) flips.

Proof. Sleator et al. [96] showed that, starting from any binary tree, any sequence of
k rotations can generate at most ck distinct trees, for some constant c. The original
proof assumes a vertex-labelled setting, but translates to any setting where the labelling is
uniquely determined by the labelling before the flip and the edge that was flipped. Since
each permutation of the edge labels in the canonical triangulation results in a distinct
labelled triangulation, there are at least n! distinct labelled triangulations. If we let d be
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Figure 4.3: Swapping two edges a and b that are consecutive around a vertex on the spine.
Although edge e ends up at the same place as at the start of the sequence, it essentially
acts as a catalyst here. If we did not flip it, we would not be able to flip edge a after edge
b, as that would create a duplicate edge.

the minimum number of flips that is sufficient to transform a given labelled triangulation
into any other, then cd ≥ n!, which implies d ≥ Ω(n log n).

The result of Sleator et al. [96] used in the above proof also applies to flips in combi-
natorial triangulations. Since there are at least Ω(n!) distinct edge-labelled combinatorial
triangulations, we immediately obtain the following result.

Theorem 4.4. There exist pairs of edge-labelled combinatorial triangulations on n vertices,
such that any flip sequence that transforms one into the other has at least Ω(n log n) flips.

4.4.1 Sorting in length-weighted models

Consider the following general model of sorting. Given a permutation ρ, pick an interval
[i..j] with 1 ≤ i ≤ j ≤ n and j − i + 1 = k and perform a set of swaps in it. The cost
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of this operation is O(k). Adding constraints on the kinds of swaps leads to more specific
models. For example, in the non-contiguous reversals model from Section 4.3.1, we are
only allowed to swap a set {(i1, j1), . . . , (im, jm)} of pairs such that for any x, y ∈ [1..m],
if x < y, then i ≤ ix < iy < jy < jx ≤ j, i.e., the interval [iy, jy] is nested inside the
interval [ix, jx]. Lemma 4.1 and Theorem 4.3 imply that the worst-case cost of sorting in
the non-contiguous reversals model is Ω(n log n).

A less general model of contiguous reversals was considered by Pinter and Skiena [85]
and later by Bender et al. [6]. In this model, at cost O(k) we pick an interval [i..j] where
j − i = k and reverse it. Our lower bound implies theirs.

More generally, proving that a model can be “simulated” by flips will imply an Ω(n log n)
lower bound on the worst-case cost of sorting in that model. We apply this idea to the
following very general model of sorting:

Non-crossing swaps Pick an interval [i..j] (with k = j−1+1) and swap a set {(i1, j1), . . . , (im, jm)}
of pairs inside it such that there do not exist x, y ∈ [1..m] with x < y for which
ix ≤ iy ≤ jx ≤ jy, i.e, either the two intervals [ix, jx] and [iy, jy] nest or are disjoint.
The cost of this operation is O(k).

Recall that in the non-contiguous reversals model, we wanted all pairs to nest. There-
fore this model is more general. The next lemma shows that this model can be simulated
using flips, which implies that the lower bound also applies to this model.

Lemma 4.2. Let ρ and ρ′ be two permutations of [1..n] such that ρ′ can be obtained from
ρ using one set of non-crossing swaps of cost O(k). Then the triangulation (T ∗, ρ) can be
flipped to (T ∗, ρ′) with O(k) flips.

Proof. The flip-sequence is constructed almost exactly like in Lemma 4.1. We first make
the set of edges that participate in a swap a connected set. Next, we find x ∈ [1..m] such
that the interval (ix, jx) does not contain any interval (iy, jy) for y 6= x and flip ρix followed
by ρjx . Then we recurse on the smallest triangulation containing the rest of the edges and
then perform the required flips on the pentagon containing ρix and ρjx .

Theorem 4.5. The worst-case cost of sorting in the non-crossing swaps model is Ω(n log n).

This lower bound is quite powerful because the non-crossing swaps model is more
general than (length-weighted versions of) a large number of sorting models [31, Chapter
3].
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4.5 Simultaneous flips

Theorem 4.6. Given two edge-labelled triangulations of a convex polygon, O(log2 n) si-
multaneous flips are always sufficient to transform one to the other.

Proof. We first ignore the labels and, by the result of Galtier et al. [42], use O(log n) simul-
taneous flips to transform both (T1, l1) and (T2, l1) to the canonical triangulations (T ∗, l′1)
and (T ∗, l′2) respectively. Next, we show how to transform a general canonical triangulation
(T ∗, ρ) to (T ∗, ρ∗), where ρ∗ is the sorted permutation. We do this by imitating quicksort.
We show that the “separation” step of quicksort can be carried out in O(log n) simultane-
ous flips. We can then recurse in both halves simultaneously. Thus we get the recursion
T (n) = T (n/2) +O(log n), which solves to T (n) = O(log2 n).

We now address the separation step of quicksort. Let El = {ρi | i < n/2 and ρi ≥ n/2}
be the set of edges that are in the left half in ρ but in the right half in ρ∗. Similarly, let
Er be the set of edges that are in the right half in ρ but in the left half in ρ∗. Let E be
the set of all non-boundary edges. We will first flip all the edges of E\(El ∪ Er). One
simultaneous flip can flip every other edge of the set, and therefore O(log n) simultaneous
flips can flip the whole set. The edges of El ∪ Er now form a canonical triangulation of
a smaller convex polygon. For the remainder of the proof we work only with this smaller
convex polygon. In other words, we only consider canonical triangulations (T ∗, ρ) where
every edge on the left half wants to go to the right half and vice versa.

Let T be a canonical triangulation where every edge on the left half is coloured red and
every edge on the right half is coloured blue. Let T ′ be the triangulation with the colours
interchanged. We show how to transform T to T ′ with O(log n) simultaneous flips. We
do this by converting both T and T ′ into a common coloured triangulation in which the
diagonals form a path that alternates between red and blue edges, as shown in Figure 4.4.
We call this triangulation an alternating zig-zag. Note that p1 is the high degree vertex of
the canonical triangulation.

Imagine a line L passing through p1 that separates the red edges from the blue edges in
the canonical triangulation and crosses all the edges in the alternating zig-zag. We show
how to transform the alternating zig-zag to T ′. We claim that in O(1) simultaneous flips,
we can ensure that half the blue edges are to the left of this line and half the red edges
are to the right. Moreover, the edges that still cross L form an alternating zig-zag of a
subpolygon at most half the size of T ′.

To do this, divide the zig-zag into hexagons, as shown in Figure 4.4. Each hexagon
will have three diagonals, two red and one blue. Any transformation of a hexagon takes
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Figure 4.4: (Left) An 11-edge zig-zag alternating between red (dotted) and blue (solid)
edges. (Right) An alternating zig-zag can be thought of as a collection of hexagons. In
O(1) simultaneous flips, we can move half of the edges to the correct side of L.

a constant number of flips. In particular, transform each hexagon to have one blue edge
on the left and one red edge on the right, as shown in Figure 4.4. Perform the same
transformation on all hexagons simultaneously.

Thus with a constant number of simultaneous flips, half the blue edges are completely
to the left of L and half the red edges are completely to the right. Repeating the process
O(log n) times ensures that every blue edge is to the left of L and every red edge is to
the right. The subpolygon to the left of L now has only blue diagonals. With O(log n)
simultaneous flips we can make it canonical with p1 as the top-most vertex [42]. The same
can be done with the red edges. Thus the alternating zig-zag can be transformed into T ′
using O(log n) simultaneous flips. Similarly, we can transform the alternating zig-zag into
T using O(log n) simultaneous flips.

The Ω(log n) lower bound on the worst-case number of simultaneous flips in the unla-
belled case trivially provides an Ω(log n) lower bound in the labelled setting as well. We
prove a stronger lower bound. In particular, we prove that even the “separation” step of
quick sort requires at least Ω(log n) simultaneous flips.

Theorem 4.7. Let T and T ′ be the triangulations defined in Section 4.5, i.e., both are
canonical, in T all edges on the left half are labelled “red” and all edges on the right half
labelled “blue” and in T ′, the labels are interchanged. Transforming T to T ′ requires at
least Ω(log n) simultaneous flips.

Proof. Consider the line L that passes through p1 and separates the red edges from blue
ones in T . For each edge, the side of L it inhabits in T is different from the side it inhabits
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in T ′. A single flip cannot replace an edge that lies completely to the left of L with an edge
that lies completely to the right. Thus in any simultaneous flip-sequence that transforms
T to T ′, for any edge e, there must be a triangulation where e intersects L.

Consider any simultaneous flip-sequence F that transforms T to T ′, i.e., F is the
sequence (T = T1, T2, . . . , Tk−1, Tk = T ′). For any j ∈ [1..k], let cj be the number of edges
e for which there exists a Tr with r ≤ i such that e intersects L in Tr. From the argument
above, it is clear that c1 = 0 and ck = n. We claim that for all j ∈ [1..k−1], cj+1 ≤ 2cj +1.
This shows that k ≥ Ω(log n).

To see why the claim is true, consider the jth simultaneous flip in the sequence. It
makes ∆j = cj+1 − cj new edges cross L. Each flip in the simultaneous flip happens in
its own quadrilateral and exactly two boundary-edges of each quadrilateral intersect L.
Since two adjacent quadrilaterals can share an edge and since the quadrilateral at the top
and bottom share their boundaries with the polygon, the total number of quadrilateral
edges that cross L in Tj is at least ∆j − 1. But this number is also at most cj. Therefore
∆j − 1 ≤ cj, which means cj+1 ≤ 2cj + 1.

4.6 Conclusion

We have initiated the exploration of flips in edge-labelled triangulations. For combinatorial
triangulations and triangulations of convex polygons, any edge-labelled triangulation can
be flipped to any other, and the worst case number of flips is a log n factor more than for
the unlabelled case. With simultaneous flips, edge labels raise the worst case bound by at
most a log n factor, but we could not prove that this is tight.

Our motivation was to settle the complexity of computing the flip distance between
two triangulations of a convex polygon, but this remains an open question, both in the
labelled and unlabelled settings. For proving hardness, we suggest tackling the case when
labels are not necessarily distinct since this generalizes both settings.

Flipping between edge-labelled triangulations of a general point set in the plane is wide
open. In Chapter 5, we generalize our results to spiral polygons and present evidence that
edge-labelled triangulations of planar point sets are hard to analyse.
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Chapter 5

Flipping Edge-Labelled
Triangulations: Part II1

5.1 Introduction

In this chapter, we continue the investigation of Chapter 4 by studying the edge-labelled
triangulations of geometric objects that are more general than convex polygons. Our
first observation is that even a slight generalization changes the nature of the problem
drastically. It is easy to construct, for example, a polygon that has a unique triangulation.
If we label this triangulation in two different ways, it is clear that there is no way to
reconfigure one to the other using flips. This never happens for convex polygons since any
two edge-labelled triangulations of a convex polygon can be transformed into one another.

A slightly more involved example is shown in Figure 5.1. In the polygon ABCDE,
the only diagonal that AC can be flipped to is BE and the only diagonal that BE can
be flipped to is AC. Thus consider the following two labelled triangulations created by
labelling the triangulation shown in the figure: one has AC labelled red and EC labelled
blue, and the other with AC labelled blue and EC labelled red. It is clear that no flip
sequence transforms between these two.

The occasional disconnectedness of the flip graph raises new questions.

1. When is the flip graph connected?

1This chapter represents joint work with Prosenjit Bose, Anna Lubiw, and Sander Verdonschot [18].
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Figure 5.1: A polygon with a disconnected flip graph

2. Given two edge-labelled triangulations, how do we decide whether there exists a flip
sequence that transforms one to the other, i.e., they are connected in the flip graph?

3. Given two edge-labelled triangulations that are connected in the flip graph, what is
the distance between them in the worst case?

4. Given two edge-labelled triangulations, what is the shortest path between them in
the flip graph?

The third question is what we focused on in the previous chapter under the special case
where the predicate was always known to be true. In this chapter, we provide answers
to the first three questions for the case of spiral polygons—simple polygons that have at
most one reflex chain. Next, we provide evidence that polygons with two reflex chains
are already hard to analyze. We end the chapter by making some conjectures about more
general cases.

5.2 Preliminaries

The generalized configurations that one may want to study are planar point sets, simple
polygons, and polygonal domains. All of them fit into the following framework. We are
given a two-dimensional geometric object P that is defined by a set P of points on a plane.
For example, if the object is a point set, then P itself is the object; if the object is a
polygon or a polygonal domain, then P is the set of its vertices. The object partitions the
plane into regions some of which are said to be inside the object and others outside. For
polygons and polygonal domains, the definitions of inside and outside are the natural ones
with the boundary considered to be outside. For planar point sets, we let the region inside
the convex hull to be inside and the region outside, including the convex hull itself, to be
outside. For any pair of points x, y ∈ P , we say that the line segment joining x and y is a
diagonal of P if it is completely inside P and does not contain any other points of P on
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it. We say that two diagonals cross if they intersect at a point that is not an endpoint. A
triangulation of P is any maximal collection of non-crossing diagonals.

We define flips as follows. For a given point set P in the plane and any polygon Q, we
say that Q is empty if it does not contain any points of P other than its vertices, i.e., if
Q has boundary B, interior I and vertices V , then B \ V ∪ I does not contain any points
from P . Given a triangulation T of P , pick four line segments each of which is either a
diagonal of T or a boundary edge of P such that the four segments form the boundary of
an empty convex quadrilateral Q whose interior is inside P . Then one of the diagonals of
Q must also be in T (from maximality). Replacing this diagonal with the other diagonal
of Q will be called one flip.

Flips define the flip graph, where there is a node for each triangulation of P and edge
(T, T ′) whenever there exists a flip that converts T into T ′. It is well known that the flip
graph is always connected [64, 7]. Let D be the set of all diagonals of P and for any
pairwise non-crossing subset D′ of D, let TD′ be the set of all triangulations that contain
all elements of D′. It is also known, using constrained Delaunay triangulations [7], that
the graph induced on the flip graph by the set TD′ is connected. This amounts to saying
that any triangulation can be transformed into any other while keeping a certain desired
set of diagonals fixed.

The following graph, first defined by Eppstein [38], is also useful in our investigations.

Definition 5.1 (Quadrilateral graph). For a geometric object P as defined above, we define
a quadrilateral graph denoted QGP , in which there is a vertex for each diagonal of P and
there is an edge (d, d′) whenever d and d′ cross and their four endpoints form an empty
convex quadrilateral. Whenever the context is clear, we will drop the subscript from QGP .

It is easy to see that there exists an edge between d and d′ in QG if and only if there
exists a triangulation in which d can be flipped to d′.

An edge-labelled triangulation T is a pair (T, l) where T is a triangulation that has a
set D of diagonals and l : D → {1, . . . , |D|} is a function that assigns a unique label l(d)
to each d ∈ D. A flip of an edge e to e′ assigns label l(e) to e′. Since the labels are unique,
we will frequently use the labels to refer to the diagonals. If a flip sequence F transforms
triangulation T1 to T2 such that label i is assigned to d1 in T1 and to d2 in T2, we say that
F moves label i from d1 to d2. For label i, the diagonal with that label is given by l−1(i).

We define the edge-labelled flip graph, denoted FG, as the graph that has a node for
each edge-labelled triangulation and an edge (T , T ′) if there exists a flip that transforms
T to T ′. Since this chapter is about edge-labelled triangulations, we will omit the qualifier
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“edge-labelled” from edge-labelled flip graphs and simply call them flip graphs from now
on.

Unlike the case of unlabelled triangulations, flip graphs and quadrilateral graphs are
closely related for the case of edge-labelled triangulations. For example, the following is
easy to show.

Lemma 5.1. If the flip graph is connected, then the quadrilateral graph is also connected.

Proof. Consider any two diagonals d and d′. Let T be a triangulation containing d and T ′

be a triangulation containing d′. Label both T and T ′ to get T and T ′ such that d and d′

get the same label λ in both. Since the flip graph is connected, there exists a flip sequence
that transforms T to T ′. This flip sequence provides a sequence e1, . . . , ek of diagonals
such that e1 = d, ek = d′, and for any ei and ei+1, there exists a triangulation where ei can
be flipped to ei+1. This means there is a path from d to d′ in QG.

What about the other direction? Does the connectivity of QG imply connectivity of
FG? Although it is unclear whether it is true in general, we prove it for the case of spiral
polygons. For general geometric objects, connectivity of QG does imply a much weaker
condition for FG. In particular, if we care about only one label at a time, connectivity of
QG is all we need to look at.

Theorem 5.1. Let T and T ′ be two triangulations such that label λ is assigned to d in
T and to d′ in T ′. We can move λ from d to d′ if and only if d and d′ lie in the same
connected component of QG.

Proof. We use the fact that any unlabelled triangulation can be flipped to any other while
keeping a desired set of diagonals fixed. If d and d′ do not lie in the same component
of QG, then it is clear that we cannot move λ from d to d′. For the other direction, let
d = e1, . . . , ek = d′ be a path between d and d′ in QG. Consider the empty quadrilateral
Q formed by the endpoints of e1 and e2. We can transform T to some triangulation T1
that has all four boundary edges of the quadrilateral as its diagonals while keeping λ fixed.
Then we flip λ inside Q. This moves λ to e2. In general, suppose we have moved λ to
ei. Let Q be the empty convex quadrilateral formed by ei and ei+1. We create Q while
keeping λ fixed and then flip λ to move it to ei+1.
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5.3 Spiral polygons

For a spiral polygon P with m convex and k reflex vertices, let C = c1c2 · · · cm be the
convex chain and R = r1r2 · · · rk denote the reflex chain such that c1 and r1 are adjacent,
and cm and rk are adjacent. For any i < j, we will denote the subchain ci . . . cj by Cij
and the subchain ri . . . rj by Rij. We will also abuse notation and use C, R, Cij, and Rij

to denote the sets of vertices in the corresponding chains. For chains Cj,j′ and Ri,i′ , if cj
is visible from ri and c′j is visible from r′i, we will use the shorthand “polygon defined by
Cj,j′ and Ri,i′” to denote the polygon whose boundary consists of the chains Cj,j′ , Ri,i′ ,
and the edges ricj and ri′cj′ . For any i < j, we will say that ci occurs to the left of cj, and
ri occurs to the left of rj even though it may not be true geometrically. We will use the
terms left-most and right-most in a similar fashion. For two subchains Cij and Ci′j′ , we
say that Cij occurs to the left of Ci′j′ if i ≤ i′ and j ≤ j′. For what follows, n denotes the
number of diagonals in the triangulations.

For any point c on the convex chain, we define V (c) to be the set of points on the reflex
chain that are visible from c. Similarly, for any point r on the reflex chain, V (r) denotes
the set of points on the convex chain that are visible from r. The following properties are
easy to show.

Property 5.1. For any c ∈ C and r ∈ R, the sets V (c) and V (r) form subchains of R
and C respectively.

Property 5.2. For i < i′ and j < j′, V (ri) occurs to the left of V (ri′) and V (cj) occurs
to the left of V (cj′).

Property 5.3. For any two consecutive vertices ri and ri+1 on the reflex chain, |V (ri) ∩
V (ri+1)| ≥ 1.

5.3.1 Connectivity of the flip graph

In this section, we provide a characterization for the spiral polygons for which the flip graph
is connected. We say that a spiral polygon is locally convex if for every four consecutive
vertices a, b, c, and d on the convex chain, the convex quadrilateral abcd is empty.

Theorem 5.2. For any spiral polygon P, the following statements are equivalent:

1. P is locally convex.
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2. QGP is connected.

3. FGP is connected.

Furthermore, the diameter of each connected component of FG is O(n2) and there are
cases when FG has a diameter of Ω(n2).

Proof. We prove that (1) =⇒ (3), (3) =⇒ (2), and (2) =⇒ (1). The implication
(3) =⇒ (2) is given by Lemma 5.1. Thus we focus on the other two.

For (1) =⇒ (3), we provide an explicit flip sequence. Given any two edge-labelled
triangulations T and T ′, we ignore labels and transform both of them into a canonical
triangulation that we describe later. Using Hanke’s upper bound [50] on the diameter of
the flip graph for unlabelled triangulations of a spiral polygon, this can be done with O(n)
flips. Next, we rearrange the labels on the canonical triangulation.

Our canonical triangulation has the property that each diagonal connects a convex
vertex with a reflex vertex. Any such triangulation induces an ordering on its diagonals:
we say that ricj occurs to the left of ri′cj′ if i ≤ i′. Thus reading the labels of the diagonals
from left to right gives us a permutation of [1..n], which means rearranging the labels
amounts to sorting this permutation.

Our flip sequence will imitate insertion sort. In particular, for a canonical triangulation,
let d1, . . . , dn be its diagonals listed left-to-right. We define an insertion step to be a
sequence of flips that rearranges the labels in the following way: the label of dj moves to di
for some i < j, and for every i′ ∈ [i..j− 1], the label of di′ moves to di′+1. We will say that
any such sequence inserts dj at di. We will show that in our canonical triangulation, any
such insertion step can be performed with a flip sequence of length at most O(n). Since
sorting requires at most O(n) insertions, this gives an upper bound of O(n2).

Before describing the canonical triangulation, we show the following useful property of
locally convex spiral polygons.

Lemma 5.2. For any two consecutive vertices ri, ri+1 ∈ R on the reflex chain, |V (ri) ∩
V (ri+1)| ≥ 3.

Proof. Suppose, for contradiction, that |V (ri) ∩ V (ri+1)| ≤ 2. Let cj be the right-most
vertex of V (ri) and cj′ be the left-most vertex of V (ri+1) (Figure 5.2). From Property 5.3,
we know that either j = j′ or j′ = j − 1. Consider the vertices cj′−1 and cj+1. Note that
they exist since c1 and cm are visibly only from r1 and rk respectively. Consider the infinite
ray starting at ri+1 in the direction of ri+1cj′ and rotate it towards cj′−1 until it hits a point
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Figure 5.2: Proof of Lemma 5.2

inside the triangle ri+1cj′cj′−1. Since ri+1 does not see cj′−1, this ray must hit ri before
it hits cj′−1. That means ri lies inside the triangle ri+1cj′cj′−1. Similarly, ri+1 lies inside
the triangle ricjcj+1. This is possible only if both ri and ri+1 lie inside the quadrilateral
cj′−1cj′cjcj+1 (which is a triangle in case j = j′). But that would mean that the polygon
was not locally convex.

Next, we describe how to construct the canonical triangulation T . We describe T by
specifying, for each boundary edge, the apex of the unique triangle of T that contains it.
For each edge riri+1 of the reflex chain, we pick the apex to be a convex vertex c and
connect both ri and ri+1 with c. Let V (ri) ∩ V (ri+1) = {cj, . . . , cj′}. We pick c to be
c⌊ j+j′

2

⌋. After doing this, each edge cjcj+1 of the convex chain has a unique reflex vertex r

that can be its apex; thus we connect both cj and cj+1 with r. It is clear that this forms a
triangulation such that each of its diagonals joins a convex vertex with a reflex vertex and
thus can be ordered from left to right.

Next, we describe how to perform insertions in T using O(n) flips. We do that by
partitioning the set of diagonals of T into smaller subsets and describing how to perform
insertions inside each subset. We say that a set of diagonals of T is a reflex fan if it shares
a reflex vertex and a convex fan if it shares a convex vertex.

We construct the partitioning using the following iterative procedure. Let D be the set
of subsets {D1, . . . , Dt} of the partition. We start with D being empty and add sets to it
one by one. First, for each convex vertex c of the polygon that has at least two diagonals
incident on it, we add the set of diagonals of T incident on c to D. Next, for each reflex
vertex r that has at least two diagonals incident on it, we add to D the set of all diagonals
of T that are incident on r and have not been already added to D.

It is clear that this is a partition since no diagonal is added in two different subsets.
We claim that the partition satisfies the following two properties: (a) each Di is either a
reflex fan or a convex fan, and (b) for any i < j, all diagonals of Di occur to the left of all
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diagonals of Dj. It is clear that each subset is a fan. To see why (b) holds, consider two
subsets D and D′ of D. If both are convex fans or both are reflex fans, then clearly one of
them lies completely to the left of the other. Thus suppose D is a reflex fan and D′ is a
convex fan that shares the convex vertex c′. Let d′ ∈ D′ occur between di, dj ∈ D. Then
it is clear that T contains at most one diagonal incident on c′ and thus at no point would
the procedure above have added D′ to D.

We show that insertions can be performed using O(n) flips by showing that (a) for any
Di, an insertion between two diagonals of Di can be performed with O(|Di|) flips, and (b)
for any Di and Di+1, an insertion from Di+1 to Di can be performed with O(|Di|+ |Di+1|)
flips. These two together give us the required bound.

Lemma 5.3. For each Di, insertion between two edges of Di can be performed using
O(|Di|) flips.

Proof. We consider the two cases of Di being a convex fan and a reflex fan one by one.

If Di is a reflex fan (Figure 5.3(a)), let r be its common reflex vertex and Cjj′ be the
set of convex vertices. For any two consecutive diagonals rcj′′ and rcj′′+1, if the diagonals
rcj′′−1 and rcj′′+2 also lie in Di, then we claim that we can swap the labels of rcj′′ and
rcj′′+1 with O(1) flips. Consider the pentagon formed by r and the chain cj′′−1 . . . cj′′+2.
Since P is locally convex, this pentagon must be empty and convex. Thus we can swap
rcj′′ and rcj′′+1 with five flips (Figure 4.1(b)).

If rcj′′−1 and rcj′′+2 do not lie in Di, we claim that they must either lie in T or be a
boundary edge of P . If Di is D1, then the left-most diagonal of Di is rc2 and since rc1 is a
boundary edge of P , we are done. Similarly, if i = t, we are also done. Otherwise, let d be
the right-most diagonal of Di and d′ be the left-most diagonal of Di+1. Since no diagonal
of T lies between d and d′, it is clear that they share a common endpoint. If the shared
endpoint is a convex vertex c, then c has at least the two diagonals d and d′ incident on it
and thus the procedure for constructing D would have put both d and d′ into the convex
fan corresponding to c. Thus d and d′ must share the reflex vertex r and therefore it can
be used as rcj′′+2. Similarly, we can also show the existence of rcj′′−1. Thus the pentagon
formed by r and the chain cj′′−1 · · · cj′′+2 is convex and empty and can be used to swap
rcj′′ and rcj′′+1.

This shows that any two adjacent diagonals of a reflex fan can be swapped using five
flips. By performing a sequence of adjacent swaps, we can perform any insertion with
O(|Di|) flips.

Next, for the case when Di is a convex fan, let cj be the common convex vertex and
Rii′ be the set of reflex vertices. This means cj was chosen to be the apex vertex for each
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Figure 5.3: (a) A reflex fan, (b) A convex fan.

edge of Ri,i′ during the construction of T . Using the fact that the apex is always chosen to
be in the “middle” of the set of visible vertices and Lemma 5.2, we get that cj−1 and cj+1

must exist and be visible from all vertices of Ri,i′ . Since Di consists of all the diagonals
incident on cj, the diagonals ricj−1 and ricj+1 must exist. These two diagonals together
with the chains Cj−1,j+1 and Ri,i′ form a polygon that looks like the one in Figure 5.3(b).
Below we describe how to perform insertions in this polygon.

Let the diagonals of this polygon be labelled λ1, . . . , λs from left to right. Figure 5.4(a)
shows how to insert λs (dotted) at λ1 (dashed) in three steps each involving at most |Di|
flips. For inserting an arbitrary λi2 at λi1 , we first perform a flip sequence to get the
triangulation in Figure 5.4(b) and then use the strategy above inside the smaller polygon.

Next, we show how to do insertions from Di+1 to Di. Let d be the right-most diagonal
of Di and d′ the left-most diagonal of Di+1. Note that it is sufficient to describe how to
swap the labels of d and d′ because that combined with insertions within the Di’s is enough
to perform arbitrary insertions.

Lemma 5.4. For any Di and Di+1, let d be the right-most diagonal of Di and d′ be
the left-most diagonal of Di+1. Then the labels of d and d′ can be swapped with at most
O(|Di|+ |Di+1|) flips.

Proof. We need to consider four cases. The case when Di and Di+1 are both convex fans
is shown in Figure 5.5(a) and the case when Di is convex and Di+1 is reflex is shown in
Figure 5.5(b). In both cases, let d and d′ share vertex r. Our strategy is to perform a
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Figure 5.4: Insertions in convex fans. Let λ1, . . . , λs be the labels from left to right.
(a) Inserting λs (dotted) at λ1 (dashed): the three steps represent flip sequences
λ1 . . . λs, λs−1 . . . λ1, and λs followed by λ1 . . . λs−1 respectively. (b) Inserting arbitrary
λi2 (dotted) at λi1 (dashed): flip sequence λ1 . . . λi1−1 followed by λs . . . λi2+1 results in the
triangulation shown. Then use part (a).
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linear number of flips in the convex fans to get an empty pentagon efghr where d and d′

can be swapped.

The case when Di+1 is convex and Di is reflex is symmetric to the case when Di is convex
and Di+1 reflex. Finally, it is not possible to have both Di and Di+1 reflex. Suppose, for
contradiction, that they are both reflex and let d be the right-most diagonal of Di and d′

be the left-most diagonal of Di+1. Clearly, d and d′ share an endpoint, which cannot be
a reflex vertex, otherwise all diagonals of Di ∪ Di+1 would share the same endpoint and
they would not be in different sets. If d and d′ share a convex vertex c, then that convex
vertex is incident to at least two diagonals and hence our procedure for constructing T
would have put them both into the convex fan corresponding to c.

This completes the proof that (1) =⇒ (3). The last step in the proof of Theorem 5.2
is to show (2) =⇒ (1). We show that in the contrapositive. That is, we show that if P is
not locally convex, then QG is not connected. The following lemma is useful.

Lemma 5.5. Let cj, cj+1, cj+2, cj+3 be four consecutive vertices on C such that the quadri-
lateral cjcj+1cj+2cj+3 is not empty. Let ri be the right-most vertex of R that is visible from
cj. Then ri must lie inside the quadrilateral cjcj+1cj+2cj+3.

Proof. Consider the ray starting at cj and extending in the direction of cjcj+1 and rotate
it clockwise around cj (Figure 5.6). Let ri be the first vertex inside the quadrilateral
cjcj+1cj+2cj+3 that it hits. If it hits more than one vertices of R simultaneously, then pick
the left-most one to be ri. It is clear that ri can see cj but ri+1 cannot. Thus ri must be
the right-most vertex of R visible to cj.

Lemma 5.6. If there exist four consecutive vertices cj, cj+1, cj+2, cj+3 on C such that the
quadrilateral cjcj+1cj+2cj+3 is not empty, then there exist three spiral polygons P1, P2, and
P3 such that:

1. Each boundary edge of P1, P2, and P3 is either a boundary edge or a diagonal of P.

2. Each diagonal of P is a diagonal of exactly one of P1,P2, and P3.

3. No diagonal of Ps is connected by an edge in QG to a diagonal of Pt for s 6= t.

Proof. Let P1 be the spiral polygon defined by the chains C1,j+2 and R1,i (Figure 5.6). The
definition of P2 and P3 depends on whether cj+1 is visible from ri+1. If it is, let P3 be
the polygon defined by Cj+1,m and Ri+1,k and let P2 be the quadrilateral cj+1cj+2ri+1ri;
otherwise let P3 be the polygon defined by Cj+1,m and Ri,k and let P2 be the empty polygon.
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Figure 5.5: Swapping labels between adjacent fans Di and Di+1 using the pentagon abcdr.
(a) Di and Di+1 are both convex fans. (b) Di is a convex fan but Di+1 is a reflex fan.
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Figure 5.6: (a) Proof of Lemma 5.5. (b) Decomposition into polygons (Lemma 5.6) if ri+1

is visible from cj+1. (c) Decomposition if ri+1 is not visible from cj+1.
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With these definitions, it is easy to check that conditions (1) and (2) above are satisfied.
For (3), suppose, for contradiction, that there are diagonals ds of Ps and dt of Pt for s 6= t
such that they are connected by an edge in QG. This means ds and dt must cross, which
is possible only if ds is incident on cj+1 and dt is incident on cj+2. However, with this
constraint, whatever we pick the other endpoints of ds and dt to be, the convex quadrilateral
formed by their four endpoints will always contain ri.

This concludes the proof of Theorem 5.2.

Theorem 5.2 gives us a way to decide, in polynomial time, whether a given spiral polygon
has a connected flip graph: for each quadrilateral formed by four consecutive vertices of
the convex chain, check if it is empty. A naive implementation of this procedure will take
O(n2) time: there are O(n) quadrilaterals to check and for each quadrilateral, there are
at most n points that could potentially lie inside it. However, we can reduce the running
time to O(n) using Lemma 5.6 since it provides, for each quadrilateral cjcj+1cj+2cj+3, a
certificate in the form of exactly one point—namely, the right-most point of R that is
visible from cj—such that if the quadrilateral is non-empty, it must contain that point.
Moreover, Property 5.3 implies that if quadrilateral Q lies to the left of Q′ on the convex
chain C, then the certificate of Q lies to the left of the certificate of Q′ on the reflex chain
R. This observation directly gives us a way to find the certificate for each quadrilateral in
linear time. Thus we get the following theorem.

Theorem 5.3. Given a spiral polygon P, we can decide in linear time whether the flip
graph of the edge-labelled triangulations of P is connected.

5.3.2 Connectivity between two given triangulations

We now turn out attention to the problem of deciding whether there exists a path in the
flip graph between two given edge-labelled triangulations of a spiral polygon.

Lemma 5.7. Given any spiral polygon P, there exists a set {P1, . . . ,Pt} of spiral polygons
such that:

1. For each Pi, each boundary edge of Pi is either a boundary edge or a diagonal of P.

2. Each diagonal of P is a diagonal of exactly one of P1, . . . ,Pt.

3. No diagonal of Pi is connected by an edge in QG to a diagonal of Pj for i 6= j.
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4. Each Pi is locally convex.

Proof. If P is already locally convex, we are done. Otherwise P has four consecutive
vertices on its convex chain that form a non-empty quadrilateral. Using Lemma 5.6, we
get three polygons on which we recurse to obtain the desired set {P1, . . . ,Pt}.

The lemma combined with Theorem 5.2 directly gives us the following.

Theorem 5.4. Given a spiral polygon P and two of its edge-labelled triangulations T1 and
T2, there exists a flip sequence that transforms T1 to T2 if and only if for each label λ, the
diagonal of T1 with label λ is in the same connected component of QGP as the diagonal of
T2 with label λ. Moreover, if such a sequence exists, it is of length at most O(n2).

Proof. The ‘only if’ direction is easy. For the ‘if’ direction, we provide a flip sequence.

First ignore labels and transform both T1 and T2 into the same unlabelled triangulation
T . Then rearrange the labels in T . If the diagonal with label λ in T1 was in the same
component of QG as the diagonal with label λ in T2, they must be diagonals of the same
polygon Pi. But since each Pi is locally convex, any rearrangement inside it can be carried
out with at most O(|Pi|2) flips.

It is easy to compute the decomposition of Lemma 5.7 in O(n) time using a slight
modification of the algorithm of Theorem 5.3. Using the decomposition, we can also check,
in linear time, whether for each label λ, the diagonals of T1 and T2 with that label lie in
the same polygon of the decomposition. This gives us the following.

Theorem 5.5. Given a spiral polygon P and two of its edge-labelled triangulations T1 and
T2, one can decide in O(n) time whether there exists a sequence of flips that transforms T1
to T2.

Finally, note that our quadratic bound on the flip distance is tight. Consider, for
example, a locally convex spiral polygon for which every reflex vertex r has |V (r)| ≤ 4.
Let d1, . . . , dn be the diagonals of the canonical triangulation of this polygon listed left-to-
right. It is clear that the distance in QG between any di and dj is Ω(|j − i|). Thus there
are Ω(n2) pairs of diagonals at distance Ω(n2) in QG. Since any flip sequence that moves a
label from di to dj must contain at least Ω(|j − i|) flips, this gives a lower bound of Ω(n2).

Theorem 5.6. There exists a spiral polygon that has a connected flip graph whose diameter
is Ω(n2).
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Figure 5.7: (a) A left-inclined augmented channel. (b) A right-inclined augmented channel.

5.4 More general polygons and planar point sets

In this section, we provide an example of a polygon with two reflex chains where the diam-
eter of the flip graph is Θ(n3). The example also demonstrates a difficulty in generalizing
our results on spiral polygons to more general cases. In particular, for the case of spiral
polygons, Lemma 5.7 shows that whether two diagonals are connected or not can be de-
termined by looking at the region “in between” them. The example in this section fails
to satisfy this property, i.e., even to be able to decide whether two adjacent diagonals are
connected we need to look at the entire polygon.

We call our example an augmented channel since it is obtained by adding two new
vertices to the channel of Chapter 2. An augmented channel consists of two chains A =
a1 . . . am and B = b1 . . . bm+2, as shown in Figure 5.7, such that:

• Every vertex on A is visible from every vertex on B.

• The vertices on A form a convex chain.

• All vertices on B, except for b1, b2, bm+1, and bm+2 are reflex.

The difference between an augmented channel and a channel is the presence of the two
convex vertices b2 and bm+1 on B.

Theorem 5.7. The diameter of the flip graph of an augmented channel is Θ(n3).
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Proof. We first show the upper bound.

Note that any triangulation of the augmented channel induces an ordering on its di-
agonals. If all diagonals connect a vertex on A with a vertex on B, then the ordering
induced is the same as the order in which a ray passing through the polygon from left to
right will hit each diagonal. If, however, one or both of the diagonals b1b3 and bmbm+2 are
present, then we assign to the diagonals the same ordering as we would in the triangulation
obtained on flipping the ones that are present. The ordering on the diagonals defines an
ordering on the labels.

Note also that given an ordering on the labels, all triangulations that induce that
ordering can be transformed into each other with O(n2) flips (using Theorem 3.8 from
Hurtado et al. [52]). Thus for the O(n3) bound on the diameter of the flip graph, the
challenge is in rearranging the labels. For any triangulation, let D1 denote the set consisting
of the first m labels and D2 denote the set consisting of the last m labels. Since there are
2m − 1 labels in total, D1 and D2 will have one label in common, namely, the mth label.
Finally, note that in the left-inclined triangulation (Figure 5.7(a)), D2 is exactly the set
of diagonals incident on bm+1 and thus forms a convex fan. Similarly, in the right-inclined
triangulation (Figure 5.7(a)), D1 forms a convex fan. This means both D1 and D2 can be
sorted in O(n2) flips and any insertion in D1 or D2 can be performed in O(n) flips using
Lemma 5.3.

Thus our strategy is as follows. Given T1 and T2, first ignore labels and transform
both into the right-inclined triangulation. Then, if D1 contains a label bigger than m,
insert it at b2am and transform the triangulation into a left-inclined triangulation while
preserving the order of labels. Next, if D2 contains a label smaller than m, insert the
label at a1bm+1 and transform back into the right-inclined triangulation and repeat until
D1 only contains labels 1, . . . ,m and D2 only contains labels m, . . . , 2m− 1. Finally, sort
both D1 and then sort D2. Since transforming between the left-inclined and right-inclined
triangulations takes O(n2) flips and insertion inside D1 or D2 takes O(n) flips, we get a
bound of O(n3) flips.

To show the lower bound, we use the observation that to move a label from D2 \D1 to

D1\D2, we must first move that label from D2\D1 to the m
th

diagonal and then to D1\D2.
The first step can be performed only if the diagonal a1bm+1 is present and the second step
can be carried out only if the diagonal b2am is present. Going from a triangulation that
has the diagonal a1bm+1 to a triangulation that has the diagonal b2am requires Ω(n2) flips
using the argument from Hurtado et al. [52] or Property 2.1 from Chapter 2. Thus if we
want to transform a triangulation with D1 = {m, . . . , 2m − 1} and D2 = {1, . . . ,m} to a
triangulation with D1 = {1, . . . ,m} and D2 = {m, . . . , 2m−1}, we will need at least Ω(n3)
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flips.

The theorem above demonstrates that deciding whether, say, a1bm and a1bm−1 are
connected depends on the exact position of b2 and bm+1 since in the example above, they
are connected, but if b2 and bm+1 were reflex vertices then they would not be.

Thus the problem of deciding the connectivity of the flip graph for general polygons
and point sets seems to be tricky. However, we conjecture that even in the most general
case, the flip graph is connected if and only if the quadrilateral graph is connected.
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Chapter 6

Reconfiguring Ordered Bases of a
Matroid1

In this chapter we study reconfiguring bases of a matroid when the basis elements are
assigned labels. Reconfiguring unlabelled bases was studied by Ito et al. [55]; their main
message was that unlabelled bases are easy to analyze. Well known properties of matroids
show that the reconfiguration graph is always connected and that its diameter is O(n). To
the best of our knowledge, reconfiguring labelled bases has not been considered before, but
the idea of labelled bases has appeared by the name of ordered bases.

As in the case of triangulations of planar point sets and simple polygons, the reconfig-
uration graph of ordered bases is not always connected. Our main result gives a complete
characterization of reconfigurability, i.e., given two ordered bases, we provide a means of
testing whether one can be transformed to another. We also provide bounds on the total
number of flips needed in the worst case. For general matroids, we show an upper bound
of O(n1.5) where n is the rank of the matroid. For graphic matroids, we show a better
bound of O(n log n).

6.1 A quick primer on matroids

The material in this section and in Section 6.3.3 is based on the exposition in the textbook
by Oxley [80].

1This chapter represents joint work with Jim Geelen.
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Matroids are set systems that were originally defined to study an abstract theory of
dependence. Given an m×n matrix, define the set system M = (E, I) such that E = [1..n]
and I ∈ I if and only if the set of columns corresponding to I forms an independent set of
vectors. This set system is an example of a matroid.

Definition 6.1. A matroid is a tuple M = (E, I) where E is a set and I is a set of its
subsets such that:

(I1) ∅ ∈ I.

(I2) If I ∈ I and I ′ ⊆ I then I ′ ∈ I.

(I3) If I1 and I2 are in I and |I2| > |I1| then there exists an element e ∈ I2− I1 such that
I1 ∪ {e} ∈ I.

It is easy to see that these three properties are satisfied for the set system formed by
independent sets of column vectors of a matrix. The sets of I are called independent sets
and property (I3) above is often called the independence augmentation property. Many
naturally-occurring set systems, often in unrelated areas, happen to be matroids. Since
the linearly independent subsets of columns of a matrix form the independent sets of a
matroid, it is apparent that sets of affinely independent points should also form a matroid.
For example, given a set of points in a plane, the set of subsets of size at most two and
subsets of three non-collinear points forms a matroid. A popular matroid that appears in
graph theory is the one formed by the set of forests of a graph. Given a graph G, define the
matroid M = (E, I) where E conisists of all edges of G and I ∈ I if and only if the edges
corresponding to I form a forest (i.e., do not contain a cycle) in G. A matroid formed this
way is called a graphic matroid.

A maximal independent set of a matroid M = (E, I) is a set I ∈ I such that no
superset of I is a member of I. A maximal independent set is also called a basis (note the
correspondence with bases of a vector space). The set of all bases is often denoted by the
letter B. The following two properties of bases are easy to show.

Property 6.1. If B1 and B2 are both bases of a matroid M = (E, I) then |B1| = |B2|.

Proof. For contradiction, assume |B1| < |B2|. Then from property (I3), there exists an
element e ∈ B2 −B1 such that B1 ∪ {e} ∈ I. Thus B1 was not maximal.

Property 6.2. For any two bases B1 and B2 of a matroid M = (E, I) and an element
x ∈ B1 −B2, there exists y ∈ B2 −B1 such that (B1 − {x}) ∪ {y} is also a basis.
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Proof. Using property (I3) on B1\{x} and B2, we directly get the desired y ∈ B2−B1.

Property 6.1 helps one define a useful quantity—the rank of a matroid, denoted r(M)—
as r(M) = |B| for any basis B. Property 6.2, which we will call the basis exchange property
from now on, already contains hints of reconfiguration. Indeed, given a matroid M = (E, I)
and a basis B, define a reconfiguration step as replacing an element e ∈ B with an element
e′ ∈ E \B such that the new set is also a basis. This defines a reconfiguration graph that
has a vertex for each basis and edge for each reconfiguration step. The following is an easy
consequence of Property 6.2.

Theorem 6.1. The reconfiguration graph of bases of a matroid M is connected and has
diameter at most r(M).

Proof. Given any two bases B1 and B2 of M , one application of the basis exchange property
increases |B1 ∩B2| by one. Since the minimum and maximum possible values of |B1 ∩B2|
are 0 and r(M) respectively, the total number of applications of Property 6.2 required to
transform B1 into B2 in the worst case is r(M).

Matroid reconfiguration was first considered by Ito et al. [55] and the theorem above is
from that paper, although it is a well known result in the literature on matroids.

A basis of a matroid has properties similar to a spanning tree of a graph. One can also
define a circuit of a matroid to have properties similar to a cycle of a graph. A circuit
of a matroid is defined as a minimal non-independent set, i.e., a set C ⊆ E which is not
independent but every subset of C is independent. The set of circuits of a matroid satisfies
some nice properties, including the following circuit exchange property.

Property 6.3. Given any two circuits C1 and C2, an element e ∈ C1∩C2, and an element
f ∈ C2 − C1, there exists another circuit C3 such that f ∈ C3 ⊂ C1 ∪ C2 − {e}.

Circuits help us state the basis exchange property in a way that gives us more control.

Property 6.4. Given a basis B, and an element e /∈ B, adding e to B creates a unique
circuit C and removing any element of C then gives us another basis B′.

Proof. First of all, suppose, for contradiction, that adding e to B creates more than one
circuit, C and C ′ being any two of them. Clearly, e must be a part of both, and therefore,
from Property 6.3, there exists another circuit C ′′ ⊆ C ∪ C ′ − {e}. This is not possible
since C ∪ C ′ − {e} ⊆ B and therefore is independent.

Given that C is unique, it is also clear that removing any element of C will give us a
basis.
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6.2 Matroids and triangulations

The set of triangulations of a point set (or a simple polygon) has some matroid-like prop-
erties. In particular, given a point set P , let E be the set of all line segments d such that
the endpoints of d are in P and no other points of P lie on d and let I be the set of all
subsets of non-crossing segments of E. Then it is clear that the set system (E, I) satisfies
properties (I1) and (I2) but not property (I3). However, the sets of maximal sets in I
do satisfy the property that if B1 and B2 are both maximal, then |B1| = |B2|, because
maximal sets of non-crossing segments correspond to triangulations and all triangulations
contain the same number of edges.

The absence of property (I3) is costly, since it plays a crucial role in proving the
correctness of certain greedy algorithms on matroids. For example, consider the task
of computing the minimum spanning tree of a weighted graph. The age-old Kruskal’s
algorithm does the trick. However, the greedy algorithm does not find a minimum-weight
triangulation of a point set, and, for Euclidean weights, the problem was finally proved
NP-hard in 2008 [78].

In this chapter, we study reconfiguration of ordered (labelled) bases of a matroid, which
may or may not provide new insight about the question of reconfiguring labelled triangu-
lations from the previous chapter. In light of the discussion above, there is evidence both
for and against the hypothesis that matroid reconfiguration may be related to triangu-
lation reconfiguration. In any case, for the purpose of studying labelled reconfiguration,
matroids are a good starting point since the unlabelled case of reconfiguration is very easy
for matroids.

6.3 Reconfiguring ordered bases of a matroid

6.3.1 Problem statement

An ordered basis of a matroid is defined in the same way as an edge-labelled triangulation,
i.e., an ordered basis T = (B, l) is a tuple where B is a basis and l : B → {1, . . . , |B|}
is a function that assigns a unique label to each element of B. A reconfiguration step is
now a basis exchange operation where the new element gets the same label as the replaced
element, i.e., if e ∈ B is replaced with e′ ∈ E \ B, then e′ gets assigned the label l(e).
Two bases are said to be the same if they have the same elements and the elements are
assigned the same labels. From now on, we will use flip to denote one reconfiguration step
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and flip graph to denote the reconfiguration graph. Since the labels are unique, we will
frequently use the labels to refer to the elements they are assigned to. If a flip sequence F
transforms the ordered basis T1 to T2 such that label i is assigned to e1 in T1 and to e2 in
T2, we say that F moves label i from e1 to e2. For label i, the element with that label is
given by l−1(i). When we are talking specifically about graphic matroids, we will use the
terms spanning tree and edge instead of basis and element respectively.

It is easy to show now that the flip graph is not always connected. For example, let G
be a path on n vertices. Clearly, G has only one spanning tree, which is G itself. Now this
spanning tree gives us several ordered bases depending on how we label its edges. However,
none of the elements of this basis can be flipped and thus any ordered basis of G cannot
be reconfigured to any other ordered basis.

This observation makes the following questions interesting:

1. What properties guarantee that we can reconfigure one ordered basis to another?

2. What is the number of reconfiguration steps needed in the worst case?

6.3.2 Graphic matroids

When are two ordered bases reconfigurable?

In this section, we provide a polynomial time algorithm that takes a graph and two labelled
spanning trees as its input and decides whether there exists a reconfiguration sequence that
transforms one to the other.

Theorem 6.2. Given two labelled spanning trees T1 and T2 of a graph G, we can reconfigure
one to the other if and only if for each label i, the edge with that label in T1 and the edge with
that label in T2 lie in the same 2-connected component of G. Moreover, the flip sequence,
if it exists is of length at most O(n2).

Proof. The ‘only if’ direction is clear because any flip of edge e to e′ can be performed
only if both e and e′ lie in the same 2-connected component. For the ‘if’ direction, we will
provide an explicit flip sequence to transform T1 to T2.

First, pick any (unlabelled) spanning tree B and transform both T1 and T2 to B while
ignoring the labels. Let F1 be the sequence that transforms T1 to B and F2 be the sequence
that transforms T2 to B. Obviously, the labels of the edges of B obtained from the two
sequences will not match in general. We show, below, a flip sequence F of length at most
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O(n2) to rearrange the labels in B. Thus performing F1 followed by F followed by the
reverse of F2 transforms T1 to T2.

Thus the problem is now reduced to the following: given one spanning tree B and two
labelled spanning trees T1 = (B, l1) and T2 = (B, l2), we want to transform T1 to T2. We
do that by repeatedly swapping labels. Thus for any label i for which the edge with that
label in T1 is different from the edge with that label in T2, we swap the labels in O(n) flips.
Let e = l−11 (i) and e′ = l−12 (i). Since e and e′ lie in the same 2-connected component of G,
there must exist a cycle C of G that goes through both e and e′. If there exists only one
edge of C that does not lie in B, then we are done: let that edge be e′′; use Property 6.4
to replace e with e′′, e′ with e, and, finally, e′′ with e′. This sequence swaps the labels of
e and e′. Now suppose there exists another edge f of C that does not lie in B. Adding
f to B creates a cycle C ′ that must contain an edge f ′ /∈ C. Thus replacing f ′ with f in
B increases the number of edges of C that currently lie in the spanning tree by one and
does not move the label i. Repeating this at most n − 1 times, we will have a basis that
contains every edge of C except one. In this basis we can swap e to e′.

Tightening the bounds

We show, in this section, that the O(n2) bound on the worst-case flip distance from the
previous section can be improved. Note that the common spanning tree B we chose in
the previous section to flip both T1 and T2 to was chosen completely arbitrary. We could
have perhaps chosen a spanning tree that made the task of swapping labels easier. That
is precisely what we do in this section.

For any spanning tree B of G, its fundamental graph SB is defined as the bipartite
graph that has a vertex for each edge of G and an edge between u and v if and only if:

1. The edge corresponding to u lies in B.

2. The edge corresponding to v lies in E \B.

3. Replacing the edge corresponding to u with the edge corresponding to v in B is a
valid flip. In other words, adding v to B creates a circuit that contains u.

Let the diameter of SB be d. We claim that we can perform any swap in B with a flip
sequence of size at most O(d). We can show this by induction. For two edges e and e′

of G that lie in the same 2-connected component, let e1 and e2 be the two vertices that
occur immediately after e on the path from e to e′ in SB. Replacing e with e1 followed by
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replacing e2 with e and then e1 with e2 results in swapping e with e2. Distance between e2
and e′ is now shorter and thus we can apply induction to swap e2 with e′.

We obtain improved bounds on the diameter of the flip graph by showing that there
exists a spanning tree B such that the diameter of SB is at most O(log n). Note that it
is sufficient to show this for a 2-connected graph since we can just repeat the argument
inside each 2-connected component of the graph.

For a 2-connected graph G and a cycle C of its edges, we denote by G/C the graph
obtained on contracting C, and by E(G) the set of edges of G. Note that E(G/C) =
E(G)−E(C). Contracting C divides G into 2-connected components, or blocks, that are the
maximal subgraphs of G/C that are 2-connected. Note that any two edges e, e′ ∈ E(G/C)
are in different blocks if and only if all paths in G containing both e and e′ pass through
at least one vertex of C. We first show a lemma that helps us formulate an inductive
argument.

Lemma 6.1. Any 2-connected graph G with m edges contains a cycle C such that all blocks
of G/C have at most m/2 edges.

Proof. Let C be the cycle that minimizes the size of the largest block obtained upon
contracting it. If all blocks in G/C are of size at most m/2, then we are done. Otherwise
there exists a block H of size bigger than m/2. Some edges of E(H) are incident on vertices
of C in G; let those vertices be {v1, . . . , vk} in clockwise order along C. There are two
paths between v1 and v2 along the cycle C in G, one clockwise and one counterclockwise.
Let P be the one that is counterclockwise and thus contains all vertices of {v1, . . . , vk}.
There also exists a path P ′ between v1 and v2 that goes through the vertices of H. We
define C ′′ to be P ∪P ′. We claim that the size of the largest block of G/C ′′ is smaller than
the size of the largest block of G/C, hence reaching a contradiction.

First, note that if H ′ is a block of G/C different from H, then for all e ∈ H and e′ ∈ H ′,
if e and e′ lie in G/C ′′, then they must be in different components of G/C ′′. Suppose, for
contradiction, that they lie in the same component. Then there exists a path that contains
both e and e′ but none of the vertices from P . But P contains all vertices of C that have
an edge of H incident on them. Thus the path containing both e and e′ cannot contain
any vertex of C, which means e and e′ were in the same block of G/C.

Now G/C ′′ contains two kinds of blocks: those that contain edges of H and those that
do not. Blocks of the first kind must have size at most the size of H from the argument
above. In fact, they must be strictly smaller than H since C ′′ contains at least one edge of
H. Blocks of the second kind should also be smaller than H since at worst, such a block
contains all edges of G/C that are not edges of H, which has at most m/2 edges.
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We are now ready to construct our spanning tree B.

Lemma 6.2. Given a 2-connected graph G, there exists a spanning tree B such that the
diameter of SB is O(log n).

Proof. We start with setting B to be an empty set and gradually add edges into it. The
algorithm for constructing B proceeds in iterations. In the first iteration we find the cycle
C of Lemma 6.1 such that all blocks of G/C are of size at most m/2. Next, we add all edges
but one of C to B and contract C thus breaking the graph G into several blocks. In general,
in any iteration, we start with the collection of blocks the previous iteration resulted in,
contract a connected set of edges inside each block, and add some of the contracted edges
to B. Each iteration reduces the number of vertices of G by contracting a set of edges.
The algorithm terminates once the graph G is left with just one vertex.

Let H i be a block at the beginning of iteration i, Ei be the edges of H i that we contract
in the ith iteration, and H i+1 be one of the blocks that H i gets decomposed into when we
contract Ei. Then in iteration i+ 1, we pick Ei+1, i.e., the edges of H i+1 to be contracted,
as follows. Let Ci+1 be the cycle of Lemma 6.1 for H i+1. Let c be the vertex of H i+1

corresponding to the contraction of Ei. From 2-connectivity of H i+1, there must exist two
edge-disjoint paths P i+1

1 and P i+1
2 (possibly empty) from c to two different vertices of Ci+1

such that P i+1
1 ∩ Ci+1 = P i+1

2 ∩ Ci+1 = ∅—simply pick the minimal superset of Ci+1 in
H i+1 that makes c 2-connected with Ci+1. The set Ei+1 then consists of all edges but
one of Ci+1 and all edges but one of P i+1

1 ∪ P i+1
2 . This completes the description of the

algorithm.

Since each iteration reduces the size of each block by at least half, it is clear that
the algorithm terminates in at most O(log n) iterations. To see the correctness of the
algorithm, first note that when the algorithm terminates, B spans all vertices of G: it is
clear that the set of all edges contracted through the course of the algorithm spans G;
and the set of edges we add to B in each iteration is chosen such that it spans the graph
induced by the set of edges contracted in that iteration. Next, we claim that the algorithm
maintains the following two invariants: 1) at the end of each iteration, the set B does not
contain a cycle, 2) for each i, and the sets Ei and Ei+1 as defined above, there is a path of
length O(1) in SB between any edge of Ei+1 and any edge of Ei. To see (1), note that the
edges added to B during an iteration do not contain a cycle. Thus the only way they could
create a cycle in B is by completing a cycle some of whose edges were already present in B.
However, this cannot happen since after adding edges to B in each iteration, the algorithm
contracts all those edges that could potentially complete a cycle and thus those edges are
not available in any future iterations. To see claim (2), note that every edge of Ci+1 is
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connected in SB to the omitted edge of Ci+1, and every edge of P i+1
1 ∪P i+1

2 is connected to
the omitted edge of P i+1

1 ∪P i+1
2 . Finally, from 2-connectivity, we know that the endpoints

of P i+1
1 and P i+1

2 that lie in the graph induced by Ei are distinct. Consider any edge on
the path between those two endpoints in Ei. That edge is connected to the omitted edge
of P i+1

1 ∪ P i+1
2 . This completes the proof.

This gives us the following strengthened form of Theorem 6.2.

Theorem 6.3. Given two labelled spanning trees T1 and T2 of a graph G, we can reconfigure
one to the other if and only if for each label i, the edge with that label in T1 and the edge with
that label in T2 lie in the same 2-connected component of G. Moreover, the flip sequence,
if it exists, is of length at most O(n log n).

6.3.3 General matroids

Adding more tools to our matroidal toolbox

We would like to generalize the results from the previous section to more general matroids.
However, we used many concepts about graphs without talking about their analogs in
the world of matroids. The theory of matroids has very elegant generalizations for some
graphic concepts and some graphic concepts have no matroidal analogs. In this section,
we explore what can and cannot be generalized to matroids.

Our proof for graphic matroids relied on induction using edge contraction. Edge dele-
tion and edge contraction are two commonly used operations for carrying out inductive
arguments on graphs. Edge deletion has an obvious matroidal analog. Given a matroid
M = (E, I), deleting a set F ⊆ E of edges results in the matroid M ′ = (E ′, I ′), denoted
by M \ F such that E ′ = E \ F and for each I ∈ I, we add the set I ′ = I \ F to I ′.
Edge contractions also have a matroidal analog that can be elegantly defined using matroid
duals.

Given a matroid M = (E, I), let B∗ = {E − B | B ∈ B(M)}. Then it is known that
B∗ is the set of bases of a matroid on E. The matroid whose set of bases is B∗ is called the
dual of M and is denoted by M∗. One can then define edge contraction as follows. Given
a matroid M = (E, I) and a set F ⊆ E of edges, the matroid obtained on contracting
the edges of F is defined as M/F = (M∗ \ F )∗, i.e., we delete the edges in the dual. This
definition is justified because for a graphic matroid, this operation corresponds exactly to
the operation of contracting the edges of the graph, i.e., if M is a graphic matroid defined
on a graph G, then the set of forests of M/F is exactly the set of forests of the graph
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obtained on contracting F in G. We will not prove this statement here, but a proof can
be found, for example, in [80].

The concept of graph connectivity can also be generalized to matroids. For any matroid
M = (E, I), define the relation ψ by e ψ f if and only if either e = f or there exists a circuit
of M that contains both e and f . It can be shown that the relation ψ is an equivalence
relation and we say that each equivalence class defines a connected component, or a block.

Finally, one can also define the fundamental graph for a basis of a matroid by replacing
‘cycle’ with ‘circuit’ in the definition of the fundamental graph for spanning trees.

Solution for general matroids

With these definitions, many of the proofs from the previous section can be copied almost
verbatim to give analogous proofs for matroids except Lemma 6.3. However, we can prove
a matroidal analog of Lemma 6.3 with looser bounds, which finally leads to a worst-case
upper bound of O(n1.5) on the flip distance.

It is easy to check that every step of the proof of Theorem 6.2 goes through for matroids
and thus we get the following theorem, which we state without proof.

Theorem 6.4. Given two labelled bases T1 and T2 of a matroid M , we can reconfigure one
to the other if and only if for each label i, the element with that label in T1 and the element
with that label in T2 lie in the same block of M . Moreover, the flip sequence, if it exists is
of length at most O(n2).

In order to tighten the bound, we use the following lemma, as proved in [71] (Corollary
1.4).

Lemma 6.3. Let C be the biggest cycle of a matroid M . Then the biggest cycle of M/C
is strictly smaller than C.

This gives us the following theorem.

Theorem 6.5. Given two labelled bases T1 and T2 of a matroid M , we can reconfigure one
to the other if and only if for each label i, the element with that label in T1 and the element
with that label in T2 lie in the same block of M . Moreover, the flip sequence, if it exists is
of length at most O(n1.5).
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Proof. We show this by providing a basis B whose fundamental graph SB has a diameter
of O(

√
n). We do this using almost exactly the iterative algorithm of Lemma 6.2 with one

difference: instead of picking the cycle of Lemma 6.3 for each block in each iteration, we
just pick the biggest circuit of each block. We also need a matroidal analog of the union
P i+1
1 ∪ P i+1

2 of paths. We claim that picking the minimal subset P i+1 of H i that connects
Ei and Ci+1 in H i does the trick. Finally, the elements of H i+1 that will get added to B are
all but one elements of Ci+1 and all but one elements of P i+1. The algorithm terminates
once no elements of the matroid are left to contract.

We first notice that the algorithm terminates in O(
√
n) iterations. This is because the

number of possible iterations for which there exists a block containing a circuit of size
Ω(
√
n) can be at most O(

√
n) and once the size of the biggest circuit in each block has

reduced to O(
√
n), there can be at most O(

√
n) more iterations.

Now, to see the correctness of the algorithm, we once again claim that the following two
invariants hold: 1) the set B never contains any circuits, and 2) for each element e of Ei+1,
there exists an element e′ of Ei such that there is a path of length O(1) between e and e′

in SB. For the second invariant, first note that since P i+1 is minimal, there must exist a
circuit C that contains some elements of Ci+1, some elements of Ei, and all elements of
P i+1. It is clear that there must exist a circuit that contains some elements of Ci+1 and
some elements of Ei because of connectivity; that this circuit contains all elements of P i+1

is clear from minimality. This shows that the second invariant holds.

To see why the first invariant holds, we show that any circuit of Ci+1∪P i+1∪Ei either
contains all elements of P i+1 or none of them. Since we exclude one element of P i+1 and
one element of Ci+1 from B, this shows the first invariant. So suppose, for contradiction,
that there exists a circuit C ′ that contains some elements of P i+1 but not all and let f
be an element of C ′ ∩ P i+1. Clearly, C ′ cannot contain elements of Ci+1 and Ei both,
otherwise P i+1 would not be minimal. Thus suppose without loss of generality that C ′

contains elements from Ei but not from Ci+1. Let g ∈ Ci+1∩C be any element. Then, from
the circuit exchange property (Property 6.3), we know that there exists another circuit C ′′

such that g ∈ C ′′ ⊆ C ∪ C ′ − {f}. It is clear that C ′′ must contain an element from Ei

since otherwise it would be independent. Since C ′′ does not contain f , it implies that P i+1

is not minimal.

Finally, just like in the case of graphic matroids, it is clear that B spans the matroid
once the algorithm terminates.
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6.4 Conclusion

In this chapter we studied the reconfiguration of labelled bases of a matroid and provided an
upper bound of O(n log n) on the worst-case reconfiguration distance for graphic matroids,
and a bound of O(n1.5) for general matroids. The obvious next question is whether this is
tight. The only lower bound we have so far is Ω(n).

Labelled reconfiguration in some other settings might also be interesting to study. For
example, since perfect matchings of a graph also form a matroid, it will be interesting to
see what kinds of bounds can be obtained on the diameter of the reconfiguration graph
of labelled perfect matchings. Unlabelled perfect matchings were studied by Ito et al. [55]
and they showed an upper bound of O(n).

Finally, it will be interesting to find examples where computing the reconfiguration
distance is in P for the labelled version but NP-hard for the unlabelled version.
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shortest paths. Theoretical Computer Science, 412(39):5205–5210, 2011.
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