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Abstract 

When using motion gestures - 3D movements of a mobile phone - as an input modality, one significant 

challenge is how to teach end users the movement parameters necessary to successfully issue a 

command. Is a simple video or image depicting movement of a smartphone sufficient? Or do we need 

three-dimensional depictions of movement on external screens to train users? In this thesis, we explore 

mechanisms to teach end users motion gestures and analyze the user’s perceived reliability of motion 

gesture recognition. Regarding teaching motion gestures, two factors were examined. The first factor 

is how to represent motion gestures: as icons that describe movement, video that depicts movement 

using the smartphone screen, or a Kinect-based teaching mechanism that captures and depicts the 

gesture on an external display in three-dimensional space. The second factor explored is recognizer 

feedback, i.e. a simple representation of the proximity of a motion gesture to the desired motion gesture 

based on a distance metric extracted from the recognizer. Our results show that, by combining video 

with recognizer feedback, participants master motion gestures equally quickly as end users that learn 

using a Kinect. These results demonstrate the viability of training end users to perform motion gestures 

using only the smartphone display. Regarding user’s perceived reliability of the gesture recognizer, the 

effects of bi-level thresholding on the workload and acceptance of end-users were examined. Bi-level 

thresholding is a motion gesture recognition technique that mediates between false positives, and false 

negatives by using two threshold levels: a tighter threshold that limits false positives and recognition 

errors and a looser threshold that prevents repeated errors (false negatives) by analyzing movements in 

sequence. By holding recognition rates constant but adjusting for fixed versus bi-level thresholding, we 

show that systems using bi-level thresholding result in significantly lower workload scores on the 

NASA-TLX. Overall, these results argue for the viability of bi-level thresholding as an effective 

technique for balancing between different types of recognizer errors. 

 



 

 iv 

Acknowledgements 

I would like to give a special thanks to the most awesome supervisor, Prof. Edward Lank for always 

guiding me in the right direction, helping me and being so friendly to me. A thanks to the HCI lab 

members too for helping make this happen. Thank you Yi, Valerie, Jeff, Krzysztof, Corona, Ming, 

Adam, Dan, Mike and especially Keiko, my project partner, who helped me so much in part of my 

thesis work. I would also like to thank the participants in all our studies for helping in our research. 

And at last, my thanks to my parents for their unceasing encouragement and support. 



 

 v 

Dedication 

This is dedicated to my parents, my brother and my best friends - Mary and Zeeshan. 



 

 vi 

Table of Contents 

AUTHOR'S DECLARATION ............................................................................................................... ii 

Abstract ................................................................................................................................................. iii 

Acknowledgements ............................................................................................................................... iv 

Dedication .............................................................................................................................................. v 

Table of Contents .................................................................................................................................. vi 

List of Figures ....................................................................................................................................... ix 

List of Tables .......................................................................................................................................... x 

Chapter 1 Introduction ............................................................................................................................ 1 

1.1 Overview ...................................................................................................................................... 1 

1.2 Teaching Motion Gestures ........................................................................................................... 1 

1.2.1 Our Contribution ................................................................................................................... 2 

1.3 User’s perceived reliability of a motion gesture recognizer ......................................................... 3 

1.3.1 Our contribution .................................................................................................................... 4 

Chapter 2 Related Work ......................................................................................................................... 5 

2.1 Work on Gestural Interaction ....................................................................................................... 5 

2.1.1 Previous research on motion gestures ................................................................................... 5 

2.1.2 Previous research on teaching surface gestures ..................................................................... 7 

2.2 Work on Motion Gesture Recognizers ......................................................................................... 9 

2.2.1 Designing Motion Gesture input ........................................................................................... 9 

2.2.2 Recognizing Motion Gestures ............................................................................................. 10 

2.2.3 Bi-Level Threshold recognizer ............................................................................................ 11 

Chapter 3 Observational Study to Teach Motion Gestures .................................................................. 14 

3.1 Gesture Recognizer Design ........................................................................................................ 14 

3.2 Preliminary Study – Depicting Motion Gestures ....................................................................... 16 

3.2.1 Recruiting and Participants .................................................................................................. 16 

3.2.2 Experimental Design ........................................................................................................... 16 

3.2.3 Procedure ............................................................................................................................. 17 

3.2.4 Metrics ................................................................................................................................. 18 

3.2.5 Results ................................................................................................................................. 18 

3.3 Evaluation of Techniques to Teach Motion Gestures ................................................................ 20 

3.3.1 Recognizer Feedback design ............................................................................................... 20 



 

 vii 

3.3.2 Recruiting and Participants .................................................................................................. 23 

3.3.3 Experimental Design ........................................................................................................... 23 

3.3.4 Procedure ............................................................................................................................. 23 

3.3.5 Metrics ................................................................................................................................. 24 

3.3.6 Results ................................................................................................................................. 25 

Chapter 4 Discussion and Limitations - Teaching Motion Gestures .................................................... 30 

4.1 Teaching Motion gestures .......................................................................................................... 30 

4.2 Limitations .................................................................................................................................. 30 

4.3 User’s opinions and qualitative feedback on Motion Gestures .................................................. 30 

4.4 Summary .................................................................................................................................... 32 

Chapter 5 Observational Study to analyze the Congnitive Effects of Bi-Level Thresholding ............. 33 

5.1 Introduction ................................................................................................................................ 33 

5.2 The Experiment .......................................................................................................................... 33 

5.2.1 Experimental System ........................................................................................................... 33 

5.2.2 Recruiting and Participants .................................................................................................. 37 

5.2.3 Measures .............................................................................................................................. 38 

5.3 Study Procedure ......................................................................................................................... 40 

5.4 Hypotheses ................................................................................................................................. 40 

5.5 Results ........................................................................................................................................ 41 

5.5.1 Self-Report Measurement Results ....................................................................................... 41 

5.5.2 Objective Measures ............................................................................................................. 45 

Chapter 6 Discussion and Limitations - Bi-Level Thresholding for Perceived Relaibility .................. 46 

6.1 Cognitive effects of Bi-Level Thresholding ............................................................................... 46 

6.2 Implications for interaction design ............................................................................................. 47 

6.2.1 Usability Improvement with Bi-Level Tresholding ............................................................ 47 

6.2.2 Preventing False Positives More Viable .............................................................................. 47 

6.2.3 Workload of the Motion Gesture Interface .......................................................................... 47 

6.3 Limitations .................................................................................................................................. 48 

Chapter 7 Conclusion and Future Work ............................................................................................... 49 

7.1 Introduction ................................................................................................................................ 49 

7.2 Teaching Motion Gestures ......................................................................................................... 49 

7.3 Perceived Reliability of recognizers ........................................................................................... 49 



 

 viii 

7.4 Future Work ............................................................................................................................... 50 

7.4.1 Broader Implications to Gestural Input ............................................................................... 50 

7.5 Final Conclusion ......................................................................................................................... 50 

 REFERENCES .................................................................................................................................... 52



 

 ix 

List of Figures 

 

Figure 2. 1 The user-defined motion gesture set. A flick is defined by a quick movement in a 

particular direction and returning to the starting position. ..................................................................... 6 

Figure 2. 2 GestureBar after clicking Delete. Commands are not executed when clicked; rather the 

Gesture Explorer dropdown displays an illustrative animation with detail tips, a replay button, a text 

description and a practice area. .............................................................................................................. 8 

Figure 2. 3 Bi-Level threshold Recognizer .......................................................................................... 12 

 

Figure 3. 1 Iconic representation of the motion gestures ..................................................................... 15 

Figure 3. 2 A screen-grab of the video on the phone describing the correct motion gesture ............... 17 

Figure 3. 3 Average number of correct gestures (out of 120) performed by participants. 95% CI 

shown.................................................................................................................................................... 19 

Figure 3. 4 Average gesture count (out of 30) over the four types of gestures at which participants 

converged to the correct gesture. 95% CI shown ................................................................................. 19 

Figure 3. 5 A screen shot of the recognizer .......................................................................................... 21 

Figure 3. 6 A screen shot of the Kinect-based teaching mechanism that captures and depicts the 

gestures on an external display in three-dimensional space ................................................................. 22 

Figure 3. 8 Average gesture count (out of 30) over the four types of gestures at which participants 

converged to the correct gesture. 95% CI shown ................................................................................. 25 

Figure 3. 7 Average number of correct gestures (out of 120) performed by participants. 95% CI 

shown.................................................................................................................................................... 25 

Figure 3. 9 Median Likert rating from -3 to 3 for how much participants liked the teaching technique. 

The bars show 95% CI for median ....................................................................................................... 27 

Figure 3. 10 Median Likert rating from -3 to 3 for participant’s opinion of motion gestures as an input 

modality along with surface gestures. The bars show 95% CI for median .......................................... 28 

 

Figure 5. 1 Five Gestures for the experiment. ...................................................................................... 35 

Figure 5. 2 Estimated marginal means of NASA-TLX scores. ............................................................ 41 

Figure 5. 3 Difference observation ratio. .............................................................................................. 44 

Figure 5.4 The cause of the difference in perception. .......................................................................... 45 

 

file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302160
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302160
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302161
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302161
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302161
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302170
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302172
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302172
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302173
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302173
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302174
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302175
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302175
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302176
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302176
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302177
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302177
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302178
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302178
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302179
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302179
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302187
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302188
file:///D:/STUDY%20STUFF/THESIS/FINAL%20THESIS%2004.01.15.docx%23_Toc408302189


 

 x 

List of Tables 

  

Table 5. 1 The number of required attempts and frequency. ................................................................ 37 

Table 5. 2 MANOVA result of Nasa-TLX scores. ............................................................................... 42  

Table 5. 3 Wilcoxon rank test of positive questions result. .................................................................. 43 

Table 5. 4 Wilcoxon rank test of negative questions result. ................................................................. 43 

Table 5. 5 The number of participants that preferred each session. ..................................................... 44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 1 

Chapter 1 

Introduction 

1.1 Overview 

Hand motion—pointing, gesturing, grasping, shaking, tapping—is a rich channel of communication. 

We point and gesture while we talk; we grasp tools to extend our capabilities; we grasp, rotate, and 

shake items to explore them. Surface gestures on a smartphone like swipe, tap and pinch to zoom are 

the common mode of input in our time. However sometimes, surface gestures can be distracting in 

certain scenarios like walking or climbing stairs. This could in fact prove to be dangerous. We 

sometimes need a more eyes-free input modality in such scenarios where the touchscreen is not readily 

available. This is where motion gestures come into the picture. Inspired by these everyday movements 

to extend conversation, researchers [29, 30, 36, 37, 42] have begun to explore motion gestures, i.e. 

deliberate movements to issue commands to a device, as an input modality. Motion gestures have been 

applied to, for example, large-screen displays, desktop computers, and smartphones.  

    We were particularly interested in motion gestures as an input modality for modern smartphones. 

The reasons for this are twofold. First, modern smartphones contain an evolving set of sensors for 

recognizing movement of the phone, including accelerometers, gyroscopes and cameras, so the 

technology already exists to support motion gesture input. Second, using a motion gesture provides 

many attendant benefits, including an expanded input space and the ability to issue commands eyes-

free without using the touch screen by leveraging proprioception [30]. In this thesis, we – (1) explore 

mechanisms to teach end users motion gestures and (2) analyze the user’s perceived reliability of 

motion gesture recognition, as presented in the following sections. 

1.2 Teaching Motion Gestures 

One of the most significant barriers to widespread adoption of motion gesture input involves teaching 

end-users to perform motion gestures. Motion gestures are not self-revealing; end-users need to be 

taught the set of motion gestures supported by a smartphone device. As well, for each of these gestures, 

end-users need to understand exactly how to perform the gestures to ensure maximum recognition 

accuracy. Constraints on movement include the shape of the movement of the motion gesture (its three-

dimensional path in space) and the kinematics of the motion gesture (the tolerances for fast or slow 



 

 2 

motion gestures). In order to properly convey this information to the user, some kind of scaffolding is 

needed. 

    The process of instructing and correcting the actions of a learner is typically called scaffolding. 

Scaffolding involves both a depiction of the desired activity and assessment to correct inaccuracies. 

Many questions arise when considering how to depict motion gestures. Can we simply show icons of 

motion gestures that depict movement (see Ruiz et al. [37]). Do we instead need to show a brief video 

of movement on the smartphone display? Or do we require an external display to see movement in 

larger scale? Alongside techniques for depicting the form of a motion gesture, recognizing a motion 

gesture involves contrasting the gesture performed with some desired template, i.e. providing some 

form of feedback that guides a user more quickly to the correct action. We wish to also understand how 

feedback can be used to help a user converge to the ideal motion gesture more quickly.  

1.2.1 Our Contribution 

We contrast three techniques for teaching motion gestures:  icons, smartphone videos, or Kinect plus 

videos on external displays. For each of these techniques, we also study the effect that simple recognizer 

feedback – more specifically a visualization of the distance between a desired template and the actual 

input movement of the user – on the ability of end-users to accurately perform motion gestures. 

     We show that Kinect-based instruction, where the movement is displayed as a 3D wireframe and 

participant movement is captured and replicated for direct contrast, teaches motion gestures very 

quickly for a group of participants. As well, for Kinect-based feedback, the presence of a visualization 

of recognizer distance had limited additional effect on accuracy, primarily because the Kinect’s 

contrasting of input motion from template was sufficient. However, we also show that, while video on 

a smartphone screen is worse than Kinect, video on a smartphone screen plus a simple visualization of 

recognizer feedback causes the smartphone video condition to converge to the performance of Kinect-

based instruction. 

    The significance of these results lies in the training of end-users on motion gestures as input to 

smartphones. Before embarking on this research, we were unsure whether it was possible to train end 

users effectively on motion gestures without someone present to demonstrate the motion gestures, or 

without external hardware (e.g. a Kinect) to allow users to master the kinematics of the motion gesture 

commands. Given our results, it now seems plausible to construct a teaching aid for motion gestures 

that uses only the smartphone display. 
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1.3 User’s perceived reliability of a motion gesture recognizer 

Research on smartphone motion gestures is primarily motivated by a desire to make motion gesture 

more desirble and reliable as an input modality. To improve motion gesture input, researchers have 

characterized what constitutes a "natural" gesture [36], trained users to perform gestures more 

accurately [19], or improved the precision and recall of recognizers that seek to interpret motion gesture 

input to smartphones [29]. However, for reliable recognition of these “natural” gestures, some form of 

safety net is needed in order to distinguish them from everyday noise. 

Our work focuses specifically on the goal of improving the perceived reliability of motion gesture 

recognizers. Designing highly accurate motion gesture recognizers is challenging because of the 

similarity between a motion gesture and everyday device movement. In their work on eliciting motion 

gesture sets, Ruiz et al. [37] note that the motion gestures that were elicited from their participants have 

low kinematic impulse, and tend to represent short duration movement with one or two degrees of 

freedom. Figure 2.1 depicts these sets. As a result, it becomes difficult to distinguish motion gesture 

input from everyday device movement and to distinguish one motion gesture from another. The typical 

approach to address this is to tighten thresholds for recognition (i.e. criterion values) such that end-

users must be more precise when performing an input action, reducing the likelihood of false positives 

and recognition errors. Unfortunately, tighter thresholds make it more difficult for end-users to perform 

input with sufficient precision to exceed the threshold, increasing the number of errors of omission 

made by a system, i.e. the false negative rate. 

     In recent work, bi-level thresholding has been proposed as a recognition technique to mediate 

between the false positive and false negative rates [29]. In bi-level thresholding, the system uses two 

thresholds, a tighter threshold that is selected to prevent false positives and recognition errors, and a 

looser threshold that prevents repeated false negatives. If a gesture is sufficiently precise to meet the 

tighter threshold, it is recognized. If, instead, it does not meet the tight threshold but meets the looser 

threshold, the system moves to a primed state. From this primed state, if a second gesture exceeds the 

looser threshold, the gesture is recognized. In other words, two near-misses are equivalent to one 

successful gesture. In earlier work, Negulescu et al.  analyzed the effect that bi-level thresholding has 

on overall recognition, and found that bi-level thresholding permitted near perfect recognition within 

two attempts with no false positives for a majority of users (95.3% success rate overall with one outlier). 

As well, 74% of gestures in their study were observed to have a first-instance loose threshold, followed 

by a tight threshold. Typical errors (4.7%) were a result of users (very infrequently) missing the loose 

threshold on their first attempt and needing three attempts to successfully perform the gesture [36]. 
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While bi-level thresholding seems to hold promise as a means for enhancing the reliability of 

recognition, we remain unsure of users reaction to bi-level thresholding. In particular, consider two 

systems with identical recognition rates. Does bi-level thresholding actually provide an advantage over 

a similarly accurate recognition system with a single threshold? If given a choice, should developers 

expend more effort improving first-instance recognition, or is engineering against repeated failures 

sufficient? At what recognition rate – 70%, 80% – does the effect of bi-level thresholding become less 

significant? 

1.3.1 Our contribution 

With these questions in mind, we perform a deeper analysis of the cognitive effects of bi-level 

thresholding. We implement a tunable recognition system that controls error rate and analyze the effects 

of bi-level thresholding using a set of dependent measures: walking speed while performing motion 

gestures; NASA TLX workload scores; and physiological measures (GSR/BVP). We show, in 

particular, a statistically significant TLX workload difference between single-threshold and bi-level 

threshold systems when recognition rate is identical across both systems. Overall, these results provide 

additional evidence of the benefits of bi-level thresholding as a strategy for the recognition of gestural 

input in the presence of everyday movement. This work was done in collaboration with Keiko 

Katsuragawa, our lab member. 

     The remainder of this thesis is organized as follows. Chapter 2 highlights the related work in motion 

gestures - techniques for teaching gestures and recognizing motion gestures. Chapter 3 presents our 

pilot study and a final study for evaluating techniques to teach motion gestures and finally we discuss 

our results. In Chapter 4, we have a discussion about teaching motion gestures. Chapter 5 presents a 

study to analyze the cognitive effects of fixed vs bi-level thresholding in motion gesture recognizers 

and we discuss our results. Chapter 6 presents a discussion, implications and limitations of the study in 

chapter 5. We finally conclude our findings in chapter 7. 
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Chapter 2 

Related Work 

2.1 Work on Gestural Interaction 

Free-space hand gesture interaction (as in the movie Minority Report) has been perceived of as a novel, 

futuristic input technique, despite known problems with fatigue, i.e. gorilla arm. Bolt designed a “put-

that-there” system in 1980 that combined pointing with voice commands [7]. Vogel and Balakrishnan 

[42] explored the design space for freehand gestural interaction for large vertical displays.  

    Motion gestures are a known, albeit underutilized, technique for controlling smartphones. Hinckley 

et al. [17] proposed using tilt on mobile devices to allow a user to change screen orientation—a feature 

now commonly found on many smartphones. In addition to navigation, tilt sensors have also been used 

for text input [18] and accessing data on virtual shelves around a user [23]. Commercially, the use of a 

shake motion gesture to shuffle music is one common example of controlling a smartphone or personal 

music player (e.g. iPod) via a motion gesture. As well, some modern smartphones allow the user to 

place the smartphone face-down on a desk to mute the ringtone for an incoming phone call. Finally, the 

Google App for iPhone turns on voice search if the iPhone is brought to your ear.  

2.1.1 Previous research on motion gestures 

Ruiz et al. [37] created a taxonomy describing the attributes of smartphone motion gestures and their 

natural mappings onto smartphone commands. They showed that a consensus exists among users on 

parameters of movement and on mappings of motion gestures onto commands. They also enumerated 

a user-defined motion-gesture set for smartphone input. Figure 2.1 shows the motion gesture set. 

    Alongside work on motion gesture input, Ruiz and Li [36] explored how best to discriminate between 

deliberate motion gestures and everyday movement of a smartphone. They proposed “DoubleFlip”, a 

motion gesture designed as an input delimiter for smartphone motion gestures. The DoubleFlip 

delimiter is performed by quickly rotating the wrist such that the phone’s display is facing away from 

the user and back to the original position with the display of the phone facing the user. They showed 

that DoubleFlip is easy to invoke and unlikely to be accidentally invoked by users. 
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Negulescu et al. [30] analyzed the relative cognitive cost of taps, surface gestures, and motion gestures 

for distracted input on smartphone devices. They show that there is no significant difference in reaction 

Figure 2. 1 The user-defined motion gesture set. A flick is defined by a quick movement 

in a particular direction and returning to the starting position. 
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time for motion gestures, taps, or surface gestures on smartphones, and that the use of motion gestures 

results in participants in a study spending significantly less time looking at the smartphone during 

walking than taps, even with eyes-free optimized input interfaces. 

    Negulescu et al. [29] also explored techniques for limiting false positives and false negatives for 

motion gesture input. They devised a “bi-level threshold” recognizer which helped lower the rate of 

recognition failures by accepting either a tightly thresholded gesture or two consecutive gestures 

recognized by a looser-threshold model. 

2.1.2 Previous research on teaching surface gestures 

Our research in this paper focuses specifically on teaching motion gestures to smartphone users. 

Significant past work exists in teaching users gestural input languages. Kurtenbach’s [22] Marking 

menus, an extension of pie menus [11], combine feed-forward and feedback to provide a fluent 

transition between novice and expert use. Marking menus take advantage of novice user’s hesitation 

when they are unsure of a gesture or command. Users flick the pen or mouse in a particular direction 

in order to indicate a command. After a “press and wait” gesture, a circular feed-forward display 

appears around the mouse cursor, showing each available command. Highlighting the current selected 

item during input provides feedback on how a user's input is being interpreted. This approach offers a 

good compromise between learning and efficient use. Novices often pause to take advantage of the 

feed-forward display. As they become experts, they move more quickly and no longer needing the feed-

forward menu, significantly increase overall performance.  

    In the same vein as marking menus, Bau et al. [5] designed a dynamic guide called “Octopocus” that 

combines on-screen feed-forward and feedback to help users learn, execute and remember surface 

gesture sets. Octopocus continuously updates the state of the recognition algorithm by gradually 

modifying the thickness of possible gesture paths, based on its ‘consumable error rate’. They show that 

users can better learn, execute and remember gesture sets if one reveals, during input, what is normally 

an opaque process, the current state of recognition, and represents gestures in a graphical form that 

shows the optimal path for the remaining alternatives. 

One challenge with gesture-based systems is that end-users need to be made aware of the gestures that 

can be performed to invoke commands. Alongside this awareness, as users are learning the mechanics 

of gestures, they must also have the opportunity to practice and receive feedback on the gestures they 

attempt. To satisfy these goals, Bragdon et al. [8] designed a unique training system, GestureBar, which 

can be incorporated into gesture-based systems for pen-tablet computers. Figure 2.2 shows the 
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GestureBar interface. GestureBar is, conceptually, a simple scratch pad which allows the user to select 

a gesture and then attempt the gesture within a region of the display. Feedback depicting the deviation 

between desired input and the user’s input is displayed so the user can modify and correct any errors in 

the pen strokes that they draw on the screen. In their research, Bragdon et al. describe the design 

iterations, the final GestureBar system, and its effectiveness as a training tool based on subjective user 

feedback. 

    One of our goals is to adapt aspects of the training systems described above to motion gestures on 

Smartphones. However, how we communicate motion gestures to end users is somewhat ambiguous. 

With Marking menus, Octopus, and GestureBar, because users were drawing on a two-dimensional 

surface, the system could render the two-dimensional shape. Users could start out with an animation of 

Figure 2.2 GestureBar after clicking Delete. Commands are not executed when clicked; 

rather the Gesture Explorer dropdown displays an illustrative animation with detail tips, a 

replay button, a text description and a practice area. 

Figure 2. 2 GestureBar after clicking Delete. Commands are not executed when clicked; 

rather the Gesture Explorer dropdown displays an illustrative animation with detail tips, 

a replay button, a text description and a practice area. 
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the movement, then over time simply see the final, complete gesture. However, a smartphone cannot 

move itself through space. Communicating the relative displacement obviously requires some form of 

a movie that displays motion relative to the end-user. To the best of our knowledge, no previous 

research has been done to train people to perform motion gestures.   

2.2 Work on Motion Gesture Recognizers 

2.2.1 Designing Motion Gesture input 

Much of the past research on gestural interaction has been from the perspective of gestures in support 

of human discourse [46]. However, free-space hand gesture interaction (as in the movie Minority 

Report) has been perceived of as a novel, futuristic input technique, despite known problems with 

fatigue, i.e. gorilla arm. Bolt designed a "put-that-there" system in 1980 that combined pointing with 

voice commands [7]. More recently, Vogel and Balakrishnan [42] explored the design space for 

freehand gestural interaction for large vertical displays. Multimodal interaction frequently leverages 

physical gestures alongside other input modalities [27, 43], and toolkits have been developed to 

simplify the design and deployment of gesture sets [2, 6]. 

    When used as input to smartphones, a motion gesture leverages on board sensors such as the 

accelerometer and gyroscope to sense changes in orientation. In this vein, early work by Rekimoto [33] 

demonstrated how mapping motion to tilt can be used for selecting menu items, interacting with scroll 

bars, panning or zooming around a digital workspace, and performing complex tasks such as 3D object 

manipulations. Tilt sensors have also been used to navigate through widgets on mobile devices [4, 14, 

39]. Modern smartphones use tilt to change screen orientation, an innovation creditied to Hinckley et 

al. [17]. As well, motion input has also been used for variety of other input tasks, for example, text 

input [18,32,45], controlling a cursor [43], user verification [25], and accessing data on virtual shelves 

around a user [23].  

    Motion gestures as an input modality have been studied by the research community, particularly in 

work by Jaime Ruiz et al.  Ruiz et al. [37] elicited a consensus set of motion gestures for a set of 

smartphone tasks. In analyzing the consensus set, they noted that their participants tended to specify 

gestures that had low overall degrees of freedom to the movement, i.e. gestures that represented 

translation or rotation around a single axis (e.g. double-flip, flick-left, flick-up, etc.). As well, 

movements tended to exhibit low to moderate intensity in magnitude and change in acceleration, i.e. 

low kinematic impulse, a result of the propensity of end-users to bias toward movement profiles that 
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minimize abrupt changes in acceleration [13]. Ruiz and Li [36] also examined everyday smartphone 

movement and proposed using a specialized motion gesture, the double-flip, as a delimiter for other 

motion gestures. The use of a delimiter partially mitigates the challenges associated with disciminating 

between everyday smartphone movement and intentional motion gestures, but at the expense of 

performing two input actions per command. 

    The use of motion gestures as an input modality for invoking commands on smartphones has seen 

some commercial success. The use of a shake motion gesture to shuffle music is one common example 

of controlling a smartphone or personal music player (e.g. iPod) via a motion gesture. As well, some 

modern smartphones allow the user to place the smartphone face-down on a desk to mute the ringtone 

for an incoming phone call. Finally, the Moto X leveraged Ruiz and Li's double-flip gesture [36] to 

activate the camera. 

2.2.2 Recognizing Motion Gestures 

Computational recognition of gestural input has a long history. In the domain of surface gestures, 

Rubine's recognizer [35] is a widely used, single-gesture recognizer that uses a simple set of geometric 

properties to interpret a gesture. Other variants of spatial recognizers exist, notably variants of elastic 

matching [40], including the 1$ recognizer [47] and Protractor [12]. Recognition of gestures need not 

be limited to elastic matching of spatial templates; machine learning algorithms such as Hidden Markov 

Models [34, 38] have also been used to interpret gestural input. 

    When interpreting spatial movement of a smartphone, the displacement of the phone is sensed 

indirectly through sensors including an accelerometer and gyroscope. As a result, input data streams 

provide data that is not purely spatial. While simple spatial template algorithms such as elastic matchers 

may be modified to match smartphone sensor data to templates, elastic matchers also assume that the 

start and end of a template gesture can be accurately identified. This is easy with gestures performed 

on a display:  The gesture is delimited by an explicit pen/finger/mouse down action, and a 

pen/finger/mouse up action. However, with smartphones which are always in motion and sensing, 

cleanly delineating start and end can be challenging. When start and end of an input signal cannot be 

clearly identified, there are algorithms that monitor data streams and recognize templates within those 

stream. Two common algorithms which have been used to recognize motion gestures on smartphones 

are dynamic time warping [36, 41] and HMMs [29, 38]. 

    The overall goal of any recognition algorithm is to support high precision and recall [12]. More 

specifically, we want each gesture to be correctly recognized as that gesture and no other (high 
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precision) and we want all instances of the gesture to be identified (high recall). When characterizing 

the performance of recognizers, techniques used to represent precision and recall include confusion 

matrices and receiver operating characteristic (ROC) curves [12]. The goal of these representations is 

to help researchers identify correct thresholds, i.e. criterion values, to discriminate between what is a 

specific gesture and what is not. However, frequently precision and recall are at odds. To prevent 

confusion between gestures, a tighter threshold can increase precision and avoid misrecognition, but, 

with a tighter threshold, recall can suffer as certain gestures may not be recognized at all. In the presence 

of noisy input, these issues are often discussed using terms such as false positives (where a gesture is 

misrecognized as another or where random noise such as everyday movement is recognized as a 

gesture) and false negatives (where specific movement is not recognized as a gesture and is, instead, 

incorrectly labeled as noise or everyday movement) [29]. 

    The most basic strategy to optimize precision and recall is to set appropriate criterion values from 

ROC curves such that the confusion matrix is optimized [12, 29]. Alongside criterion values, 

recognizers that learn from end-users, either by manually allowing end-users to specify templates [35] 

or by providing some form of feedback or learning [16] can be used to refine recognition algorithms 

on the fly. The selection or criterion values and tailored training of recognizers are complimentary and 

orthogonal approaches to improving recognition. In this work, we focus specifically on criterion values 

and, specifically, how one mechanism to mediate between false positives and false negatives -- bi-level 

thresholding -- affects perceived efficacy of motion gesture interaction. 

2.2.3 Bi-Level Threshold recognizer 

Bi-level thresholding is a recognition strategy that uses two thresholds, a more restrictive threshold 

(tight threshold) designed to limit false positives and recognition errors, and a more permissive 

threshold (relaxed threshold) which prevents repeated false negatives.  The recognition strategy can be 

represented via a 3-state state machine (Figure 2.3). 
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Figure 2. 3 Bi-Level threshold Recognizer 

 

    The recognizer begins in an Initial state. Most sensor data received by a smartphone is simply noise, 

i.e. everyday device movement, and this everyday movement does not cause a state change. From the 

Initial state, if the recognizer observes a movement which exceeds the tight threshold for a candidate 

gesture in the template library, the system moves to the Recognized state and the gesture is recognized. 

If, in contrast, candidate movement exceeds the relaxed-threshold for a template gesture, the system 

moves to an Intermediate state. In this state, if the system receives either a tight-threshold or relaxed-

threshold input for the same gesture, the system moves to the Recognized state and the gesture is 

recognized. If no such gesture occurs the system moves back to the Initial state after a timeout, typically 

3 seconds in our implementation. 

    The design of bi-level thresholding was motivated by observing participants performing motion 

gestures while traversing a walking path [29]. It was noted that, if a recognizer misfired, participants 

would simply try again. However, if subsequent errors occurred, participants would slow down or even 

stop and would try to perform the gesture in a different fashion. It seemed that a single failure resulted 

in very minimal disruption to participants, but that repeated failures were significantly more costly. Bi-

level thresholding is designed to protect against these repeated failures while preserving a tight initial 

threshold that prevents false positives. As we noted in the introduction, in early experimental results 

[29], bi-level thresholding seemed to enhance recognition: 95.3% of gestures were recognized with bi-
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level thresholding. Only 35% of gestures would have been captured within two attempts using a single, 

tight threshold (25% on first attempt and an additional 10% on second attempt).  

    However, one issue left unaddressed by past work is the usability of bi-level thresholding as a 

recognition strategy. Good usability isn’t just about reliable recognition, but also about how well is the 

user’s perceived reliability of the recognizer. As a result, we evaluate the workload and user acceptance 

of bi-level threshold as a strategy for recognizing motion gesture input. 
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Chapter 3 

Observational Study to Teach Motion 

Gestures  

3.1 Gesture Recognizer Design 

Ruiz et al. [37] note that, when end-users design motion gestures, the gestures they select tend to be 

simple (non-compound), single-axis movements with low kinematic impulse. As a result, we base our 

study around four single-axis gestures – right flick, left flick, flick up towards face and flick down away 

from face. 

    Our four gestures were chosen from the user defined set in Ruiz et al. [37], and we would argue that 

they represent the simplest set of useful motion gestures for smartphone control. Nominally, the 

gestures correspond to next, previous, zoom-in and zoom-out gestures respectively.  Essentially, we 

chose the gestures we did because these are the types of gestures – single axis, low kinematic impulse 

– users specify when we elicit gestures from them [37]. 

    Our recognizer was developed in Java using the Android SDK [1] for use on Nexus S phones with 

an ARM Cortex A8 1GHz processor and a three-axis accelerometer. Sensor input, i.e. filtered 

acceleration data, is matched to gesture templates using Dynamic Time Warping (DTW) [28].  DTW 

is a dynamic programming algorithm that measures the similarity of two time series with temporal 

dynamics [28] when given a function for calculating the distance between the two time samples. The 

result is a warp distance that can be used to determine how similar a set is to the reference set. A warp 

distance of 0 (zero) indicates absolute identical sets. The bigger the distance, the more different the sets 

are. Our implementation of our gesture recognizer uses a weighted Euclidean distance function for 

calculating the distance between the quantized time series of acceleration data to the template. As a full 

discussion of DTW is beyond the scope of this paper, we refer the reader to Wobbrock et al. [47] for 

more information. The sampling rate of acceleration data was 32 Hz.  

    One challenge with the gestures we select is that, because they are single-axis and because they have 

low kinematic impulse, the gestures are virtually indistinguishable from everyday movement of a 

smartphone.  The typical way designers of recognizers address a collision between noise and signal is 
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via a tight criterion function to discriminate true positives from false positives [29]. The challenge with 

a tight criterion function is the propensity to cause false negatives. In other words, seeking to avoid 

accidental activation of a motion gesture, we require greater precision in the performance of a motion 

gesture. This, in turn, makes it more essential to teach end users the careful kinematics needed to 

successfully invoke a motion gesture; otherwise, they repeatedly fail to invoke their desired motion 

gesture.  

    To simulate this tight criterion function, the DTW templates for each gesture type were created by 

an expert user, specifically one of the authors of the work presented here. The expert performed the 

correct gesture 20 times. Each gesture was compared to the 19 other gestures using DTW. Then, the 

average warp distance for the respective gesture was calculated, and the gesture with lowest average 

warp distance from all other gestures was selected as the gesture template for that particular gesture. 

This is a common approach found in related work (Kar et al. [20]). In a second step, the selected gesture 

template was compared to the remaining 19 gestures. The 19 warp distances were then used to calculate 

the mean, median, minimum, maximum and standard deviation of distances. These values were used 

to calculate the threshold of the DTW Distance metric within which an input gesture is considered as 

valid. The threshold was chosen as the median plus the standard deviation. The result of the use of a 

single expert user is that, to successfully invoke a motion gesture on a smartphone, the end-user must 

perform the gesture in nearly the same manner as the expert from whom the template was elicited. 

    In the following sections, we describe our experiments where we explore various types of 

mechanisms to teach end users motion gestures, examining two factors. The first factor we explore is 

how to represent motion gestures: as icons that describe movement, video that depicts movement using 

the smartphone screen, or as video on an external screen. The second factor we explore is feedback, i.e. 

Figure 3. 1 Iconic representation of the motion gestures 
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a simple representation of the proximity of a motion gesture to the desired motion gesture based either 

on a distance metric extracted from the recognizer or based upon movement tracked by Kinect. 

3.2 Preliminary Study – Depicting Motion Gestures 

We performed a preliminary study to compare the performance of two basic representations of motion 

gestures as teaching methods: icons describing the movement (see Ruiz et al. [37]) and short videos 

depicting the movement on the smartphone screen. Feedback mechanisms were not explored in this 

study. The reason for conducting this study was to check if very basic representations of the motion 

gesture, e.g. icons or simple videos, are sufficient to teach motion gestures. 

3.2.1 Recruiting and Participants  

We recruited 12 participants (8 male, 4 female, ages 20-35) from the general student body of our 

institution. We advertised the study widely to get a sample of participants with diverse backgrounds 

and levels of experience using computers. All participants owned a smartphone. and knew what motion 

gestures were, but not with respect to movement of the smartphone device. All were familiar with 

motion gestures pertaining to the Nintendo Wii or Kinect based games, but none were familiar with 

smartphone-based motion gestures (beyond shake-to-shuffle). 

3.2.2 Experimental Design 

We used a between-subjects design with the two conditions - teaching via icons and via videos. The 

reason for choosing a between-subjects design is that if a user masters a gesture using one technique, 

the evaluation of the other technique becomes invalid. Six participants were asked to perform motion 

gestures based on the iconic representation of the motion gesture shown and the other six were asked 

to perform gestures based on the video shown on the phone. The iconic representations that were 

displayed on the Android device are shown in Figure 3.1. These iconic representations of the motion 

gestures were taken from the user-defined set created in the work done by Ruiz et al. [37]. The videos 

of gestures were captured from gestures performed by an expert user, and they depict the gesture used 

for the correct template in our recognizer from an eyes-view. i.e. as if one was looking at the smartphone 

while performing the gesture, Figure 3.2.  
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Figure 3. 2 A screen-grab of the video on the phone describing the correct motion gesture 

3.2.3 Procedure 

Each participant was asked to perform four blocks (corresponding to the four gesture types) of thirty 

gestures each, i.e., 4 x 30 = 120 gestures. The order of the blocks of gestures to be performed was 

presented randomly. We did not give any hint to our participants regarding the correct gesture. When 

our DTW recognizer recognized a correct gesture, a beep sound was generated, indicating the 

completion of the correct gesture. Participants could refer to the icons or watch the videos as many 

times as they wanted. Some of them did watch the videos many times. A total of 4 x 30 x 12 = 1440 

gestures were performed. 
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3.2.4 Metrics 

We extracted two metrics from our participants:  

No. of correct gestures:  The number of correct gestures out of the total of 120 performed by each user. 

This is a measure of performance of the user. 

Average converging gesture count: This value is the average number of gestures it took for the 

participant to converge (or learn) to the correct gesture. Convergence is essentially, the point after which 

the gesture is performed consistently correctly. In our data, we chose to define it as  80 - 100% success 

rate, and represents the speed of learning a specific gesture. 

3.2.5 Results 

Figure 3.3 shows the number of correct gestures (out of 120) performed by all 12 participants for the 

two conditions – videos and icons. A Student’s t–test showed significant differences for the number of 

correct gestures performed. Participants performed significantly better (p < .001) in terms of number 

of correct gestures performed with videos (M = 98.5, S.D = 1.87) versus icons (M = 83, S.D = 3.74). 

Figure 3.4 shows the average number of gestures (out of 30) over the four kinds of gestures at which 

the participants converged to the correct gesture. A Student’s t–test showed significant differences for 

the average converging gesture count. Participants performed significantly better (p < .001) in terms of 

average number of gestures to converge to the correct gesture with videos (M = 5.5, S.D = 0.55) than 

with icons (M = 9.5, S.D = 1.04). The primary reasons for not performing a correct gesture were 

differences in speed and direction (acceleration of the device along a particular axis to be precise). If 

the DTW distance (which was based on acceleration along a particular axis) was within a specified 

threshold, then the gesture was considered correct. 

    Our initial results indicate that, by only showing icons, participants take a significant amount of time 

to converge to the correct gesture (10 gestures on an average) and perform poorly. Videos perform 

significantly better (6 gestures on an average) than icons as a teaching method, but scope for 

improvement exists. In the next section, we describe a set of designs that support feedback on the 

accuracy of performing motion gestures. We also evaluate our mechanisms for teaching gestures and 

assessing gesture accuracy. 
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Figure 3. 4 Average gesture count (out of 30) over the four types of gestures at which 

participants converged to the correct gesture. 95% CI shown 

Figure 3. 3 Average number of correct gestures (out of 120) performed by participants. 

95% CI shown 
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3.3   Evaluation of Techniques to Teach Motion Gestures 

Our second user study explores additional representations of motion gestures, specifically examining 

the presentation of motion gestures on an external screen. We also explore additional feedback 

mechanisms for depicting motion gestures. These include using the Kinect to provide feedback, and 

also providing feedback from our recognizer using a distance metric extracted from the DTW 

algorithm.  

3.3.1 Recognizer Feedback design 

In their work on bi-level thresholding, Negulescu et al. [29] note that, when users repeatedly fail to 

perform a motion gesture, they begin to vary the parameters of movement, attempting, essentially, to 

re-acquire the correct movement parameters needed to perform the motion gesture. We use the term 

annealing to describe this process of exploration.  

Feedback that allows end users to assess the accuracy of a gesture exists on a continuum, from simple 

to more complex forms. The simplest form of feedback is some indication of correct versus incorrect 

from a recognizer. However, given the annealing process of users who fail to perform motion gestures, 

the goal of our feedback designs was to guide users to the correct gesture, i.e. to guide this annealing 

process. We design two feedback mechanisms, one on smartphone and one on an external display. 

    For feedback on the smartphone, our approach was one of minimal feedback, as in we tried to adopt 

the simplest feedback we could while still guiding the annealing process. We performed a series of pilot 

studies to design our recognizer feedback. We began with simple, three-level textual feedback (correct, 

near, far), a feedback mechanism that corresponds to the children’s game Cold, Warm, Hot, where 

someone hides an object and then guides a child’s search. In early pilots, we found that the textual 

information was difficult to acquire and so was ignored. We also explored simple colors to provide 

feedback, but this, too, seemed insufficient. As a result, we moved to a numerical scale, based directly 

upon DTW distance.  
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    Figure 3.5 shows a screen shot of the final design of our recognizer feedback mechanism. An arrow 

maps to the DTW distance metric of the recognizer. A feedback bar provides some basic context for 

the position of the arrow. The feedback bar is divided into 3 equal mini bars: Green is sufficiently close 

to be correct, yellow is within a loosened threshold, and red quite far from the correct template.  

When feedback is enabled, after every gesture performed by the user, the recognizer displays the 

performance feedback bar with the arrow indicating the proximity to the gesture template. A distance 

of 0, i.e. a perfect gesture, would result in the arrow being positioned at the top of the green region. We 

continue to provide auditory feedback of recognition, specifically using three distinct sounds depending 

on which of the three regions the arrow points to. For gestures that pass the threshold for correctness, 

the bar comes up immediately after the gesture is performed. For gestures that land in the almost correct 

or incorrect area, the feedback bar is displayed after a pause of 2-3 seconds. This is because any gesture 

below the threshold cannot be recognized immediately. 

Figure 3. 5 A screen shot of the 

recognizer 
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    We also designed a more complex feedback mechanism that used an external screen and Kinect to 

provide users with a three dimensional depiction of movement and an ability to directly contrast their 

movement with the desired template, shown in Figure 3.6. Users were shown a Kinect skeleton 

performing a motion gesture and a video of the expert performing the gesture. As a user performed the 

motion gesture, the movement was displayed in an adjacent skeleton. After completing the gesture, 

they could replay their movement and the correct template simultaneously to identify deviations 

between their motion and that of the perfect template. 

    We used the nuiCapture Analyse (Trial Version) software [31] to capture and display the motion data 

from the Kinect sensor. The Kinect depth sensor provides various motion tracking views. We captured 

videos of the expert performing the correct gestures along with the corresponding skeletal movement 

as shown in Figure 3.6.  On one PC screen, the user could see a large sized captured video of the human 

(RGB) and skeletal movement of the correct motion as shown in Figure 3.6. On another adjoining 

screen they could see their own motion- both skeletal and human. Both, the prerecorded video and their 

own motion was presented as a mirror image so that their movements correspond to the correct side. 

Figure 3. 6 A screen shot of the Kinect-based teaching mechanism that captures and depicts the 

gestures on an external display in three-dimensional space 
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We could also record the motion of the participant and play it against the correct motion to compare 

movements.  

The end result is that, for the purposes of evaluating feedback, we provide three different levels of 

feedback to end users: correct/incorrect (no feedback); numerical scale depicting DTW distance (DTW 

feedback); and full motion feedback with Kinect (Kinect). Our initial hypothesis was that Kinect 

feedback would best teach users to perform motion gestures. However, using the Kinect requires 

external hardware, whereas our other forms of training and feedback can be provided using only the 

smartphone device. The specific question we ask is how much worse than Kinect other forms of 

presentation and feedback for teaching motion gestures are. 

3.3.2 Recruiting and Participants 

We recruited 50 participants (23 male, 27 female, ages 20-35) from the general student body of 

institution. As in our earlier study, we advertised the study widely to get a sample of participants with 

diverse backgrounds and levels of experience using computers. All participants owned a smartphone 

and knew what motion gestures were, but not with respect to movement of the smartphone device. 

Some of the participants were familiar with some hand gestures above the screen that can be performed 

on the Samsung Galaxy S4 Android device. All participants were remunerated with a $10 Tim Horton’s 

gift card after the completion of the experiment. 

3.3.3 Experimental Design 

We again used a between-subjects design for this study. The rationale for choosing a between-subjects 

design is that, if a user masters a gesture using one technique, the evaluation of the other technique 

becomes invalid. In this experiment, we evaluate the following 5 motion gesture teaching techniques – 

icons with DTW feedback, videos, videos with DTW feedback, Kinect, and Kinect with DTW 

feedback. We did not evaluate icons as a teaching mechanism in this study due to their poor 

performance in our preliminary study.  

3.3.4 Procedure 

As in the preliminary study, the gestures that the participants were asked to do were right flick, left 

flick, flick towards the face and flick away from face. Participants were required to perform the gesture 

presented to them 30 times. Thus, each participant was asked to do four blocks (corresponding to the 

four gesture types) of thirty gestures, i.e., 4 x 30 = 120 gestures. Each gesture block was presented to 

them randomly. We described the presentation and feedback mechanisms for the desired gesture, but 
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did not provide any guidance on when or how to use feedback during the experiment. The goal of the 

participants was to perform as many correct gestures as possible. Given 50 participants in our study, 

for each of the 5 teaching/feedback mechanisms, we had 10 participants. Thus a total of 4 x 30 x 50 = 

6000 gestures were performed, 1200 per feedback mechanism. In the case of the Kinect with DTW 

feedback, the DTW feedback, was displayed on the smartphone after each gesture. After performing 

all the gestures, each participant was asked to complete an exit questionnaire, followed by a semi-

structured interview. The questionnaire examined the subjective preferences of our participants, and 

the interview was intended to obtain their opinion on motion gestures in general as an input modality 

for smartphones. 

3.3.5 Metrics 

As in our previous study, we capture the following measures: 

No. of correct gestures:  The number of correct gestures out of the total of 120 performed by each user. 

This is a measure of performance of the user. 

Average converging gesture count: This value is the average number of gestures it took for the 

participant to converge (or learn) to the correct gesture. Convergence is essentially, the point after which 

the gesture is performed consistently correctly. In our data, we chose to define it as 80 - 100% success 

rate, and it measures how quickly users can learn motion gestures. 
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3.3.6 Results 

0

20

40

60

80

100

120

140

Kinect with
Feedback

Kinect Video with
feedback

Video Icon with
feedback

A
v
e

ra
g

e
 N

u
m

b
e

r 
o

f 
C

o
rr

e
c
t 

G
e
s
tu

re
s

Teaching Technique

0

1

2

3

4

5

6

7

Kinect with
feedback

Kinect Video with
feedback

Video Icon with
feedback

Teaching Technique

A
v
g

. 
C

o
n
v
e

rg
in

g
G

e
s
tu

re
 C

o
u
n

t

Figure 3. 7 Average gesture count (out of 30) over the four types of gestures at which 

participants converged to the correct gesture. 95% CI shown 

Figure 3. 8 Average number of correct gestures (out of 120) performed by participants. 95% CI 

shown 
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Figure 3.7 shows the number of correct gestures (out of 120) performed by all 50 participants for the 5 

teaching mechanisms - icons with the DTW feedback, videos, videos with DTW feedback, Kinect, and 

Kinect with DTW feedback. A one-way analysis of variance shows that teaching technique had a 

significant effect on number of correct gestures performed  (F4,45 = 43.9, p < 0.001). Post-hoc analysis 

using Bonferroni  correction showed significant differences between Kinect with feedback and videos 

(p < 0.001), Kinect with feedback and icons with feedback (p < 0.001), Kinect and videos (p < 0.001), 

Kinect and icons with feedback(p < 0.001), videos with feedback and icons with feedback(p < 0.001) 

and finally between videos with feedback and videos(p < 0.001). Participants performed significantly 

better in terms of number of correct gestures with video with feedback (M = 110.7, S.D. = 3.5), Kinect 

(M = 111.3, S.D. = 3.4) and Kinect with feedback (M=112.5, S.D. = 2.9) than with videos (M = 99.8, 

S.D. = 3.5) or icons with feedback (M = 96.3, S.D. = 4.2). No significant differences were found in 

terms of number of correct gestures among Kinect with DTW feedback, Kinect, and videos with DTW 

feedback teaching mechanisms (p = 1.00 for all). This shows that, by combining video with DTW 

feedback, participants perform almost equally well as end users that learn using a Kinect or Kinect with 

DTW feedback. 

Figure 3.8 shows the average number of gestures (out of 30) over the four kinds of gestures at which 

the participants converged to the correct gesture. A one-way analysis of variance shows that the 

teaching technique had a significant effect on the average converging gesture count (F4,45 = 37.9, p < 

0.001). Post-hoc analysis using Bonferroni correction showed significant differences between Kinect 

with feedback and videos (p < 0.001), Kinect with feedback and icons with feedback (p < 0.001), Kinect 

and videos (p < 0.001), Kinect and icons with feedback (p < 0.001), videos with feedback and icons 

with feedback (p < 0.001) and between videos with feedback videos (p < 0.001). Participants performed 

significantly better in terms of average number of gestures to converge to the correct gesture with video 

with feedback (M = 2.3, S.D. = 1.15), Kinect (M = 2.2, S.D. = 1.03) and Kinect with feedback (M=1.9, 

S.D. = 0.73) than with videos (M = 5.3, S.D. = 1.2) or icons with feedback (M = 6, S.D. = 1.05). No 

significant differences were found in terms of the average number of gestures to converge to the correct 

gesture among Kinect with feedback, Kinect and videos with feedback teaching mechanisms (p = 1.00 

for all). This shows that, by combining video with DTW feedback, participants perform equally quickly 

(i.e., just after 2 incorrect gestures) as end users that learn using a Kinect or Kinect with DTW feedback. 

These results demonstrate the viability of training end users to perform motion gestures using only 

the smartphone display. In particular, given some graphical representation of distance from correct 
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gesture and a video depicting kinematics of movement, participants performed as well and learned as 

quickly as participants trained using full graphical feedback via the Kinect. 

3.3.6.1 Subjective Preferences of exit questionnaire 

We further examined the subjective preferences of our participants via an exit questionnaire. 

Participants were to circle choices on a Likert Scale from -3 to 3. The following questions were asked 

in the questionnaire: 

1. How did you like the motion gesture teaching technique in this experiment? Here, a rating of -3 

corresponded to   very poor and 3 to very good. 

2. Would you like to have motion gestures for device commands along with surface gestures? Here, a 

rating of -3 corresponded to least preferred and 3 to most preferred. 

Figure 3.9 shows the results of the first question. i.e., How much did the participant like the teaching 

technique. A one-way analysis of variance shows that teaching technique had a significant effect on the 

average rating of how much the users liked it (F4,45 = 6.142, p < 0.001). 

 

 

 

 

 

Figure 3. 9 Median Likert rating from -3 to 3 for how much participants liked 

the teaching technique. The bars show 95% CI for median 



 

 28 

 

 

Post-hoc analysis using Bonferroni correction showed significant differences between Kinect with 

feedback and icons with feedback (p < 0.05), Kinect and icons with feedback (p < 0.05), videos with 

feedback and icons with feedback (p < 0.05) and finally,  videos and icons with feedback (p < 0.05). 

Participants gave significantly better ratings for video (M = 2.1, S.D. = 0.87), video with feedback (M 

= 2.4, S.D. = 1.15), Kinect (M = 1.7, S.D. = 0.96) and Kinect with feedback (M=1.9, S.D. = 1.28) than 

icons with feedback (M = 0.1, S.D. = 1.37). Video with feedback got the highest average ratings. One 

of the reasons for this could be that videos along with the recognizer feedback are much more suitable 

to display on the smartphone and no external display is needed. 

    Figure 3.10 shows the results of the second question. i.e., if participants would like to have motion 

gestures as an input modality along with touch (surface) gestures. A one-way analysis of variance again 

shows that teaching technique had a significant effect on the average rating of whether participants 

would like to have motion gestures as an input modality along with surface gestures (F4,45 = 5.045, p < 

0.05). Post-hoc analysis using Bonferroni correction showed significant differences between Kinect 

with feedback and icons with feedback (p < 0.05), videos with feedback and icons with feedback (p < 

0.05) and finally,  between videos  and icons with feedback (p < 0.05). Participants gave significantly 

better ratings in the case of video (M = 1.5, S.D. = 1.5), video with feedback (M = 2.4, S.D. = 0.69) 

and Kinect with feedback (M= 2, S.D. = 1.05) than icons with feedback (M = 0.3, S.D. = 1.7)  

Figure 3. 10 Median Likert rating from -3 to 3 for participant’s opinion of motion 

gestures as an input modality along with surface gestures. The bars show 95% CI for 

median 
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Again, video with feedback got the highest average ratings, higher than both the Kinect-based 

teaching mechanisms. One of the reasons for this could be that videos along with the recognizer 

feedback are much more believable as a prospective teaching method on the smartphone than those that 

require any external display like the Kinect based- mechanisms.  
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Chapter 4 

Discussion and Limitations - Teaching Motion 

Gestures 

4.1 Teaching Motion gestures 

Our experiments demonstrate that, as a teaching mechanism, showing a video of a desired gesture on 

the phone along with some feedback of how close a gesture is to optimal can effectively aid learning 

of motion gestures. This clearly demonstrates the viability of training end users to perform motion 

gestures using only the smartphone display. Teaching on the phone itself is more pragmatic, as you do 

not need specialized hardware. This means that people can learn motion gestures over time easily.  

  Also, we saw the same “annealing” process in our experiment that Negulescu et al. [29] observed 

when evaluating motion gesture interaction. Based on the feedback provided on the phone, participants 

changed their gesture accordingly till they mastered it. Given that we saw slower improvement with 

video only, it is not just an instance of needing a couple of tries but some guidance on how to improve 

the gesture helps. 

4.2 Limitations 

We acknowledge that the four gestures in our evaluation were simple gestures, requiring only lateral or 

vertical motion of the phone. For complicated gestures, e.g. gestures using twists or curves, only 

providing feedback about how close a person is to the desired gesture may not be sufficient. The exact 

path of the gesture may need to be shown to the user in an efficient manner.  

  We also conducted semi-structured interviews. These interviews led to many interesting themes and 

qualitative feedback regarding motion gestures and are described in the next section below. 

4.3 User’s opinions and qualitative feedback on Motion Gestures 

We also conducted an exit semi-structured interview after each participant completed the experiment. 

Transcripts of the recorded interviews were used to identify common themes that emerged from our 

study.  
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Subtle gestures 

16 out of 50 participants commented about the kind of motion involved in the motion gesture. A 

common theme that emerged was that the gesture should involve as little movement as possible.  

Well, I mean motion gestures are ok and all, but I would rather use my wrist than using my arm.[P28]. 

The four kinds of gestures in this study did involve some lateral and vertical arm movement. 

Participants felt that too much arm movement in any gesture would be strenuous and might also invade 

an adjoining person’s private space. 

If I’m in a packed place or say on the bus, my arm might accidentally bump into the person next to me 

while doing the gesture. [P12]. 

Social Acceptability 

36 out of 50 participants indicated their fondness for motion gestures and mentioned that, just like any 

new technology, motion gestures would eventually be accepted and used in public.  

I don’t mind these in public. I think they’re pretty cool. [P21] 

I think motion gestures could go mainstream really soon. It’s kind of a cool new technology after all. 

Eventually everyone would be using them. [P40] 

However a few of the participants indicated that motion gestures may become “awkward” in public 

places.  

I would feel weird doing them in public. If all of us start doing motion gestures, it’ll feel like a crazy 

world.[P3] 

Fatigue 

12 out of 50 participants mentioned that with prolonged use, motion gestures may cause some damage 

to the arm, especially for older people. 

With prolonged use, my arms could pain and the older folks, say my grandfather, wouldn’t want to do 

these at all. [P11] 

Individual privacy 

9 out of 50 participants indicated that, if motion gestures are standardized, then observers may be more 

aware of their actions, i.e. that the observability of motion gestures may result in a loss of privacy.  

If all motion gestures are the same, your motion might indicate what you’re doing. Other people might 

see me doing actions on the phone which I, you know, don’t want to show them.  [P12] 

False positives/negatives 

The last theme that came up from the quotes of many participants (33 out of 50) was the problem of 

false positives and negatives. Participants mentioned the problem of distinguishing everyday motion 
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from motion gestures and minimizing false positives. They also said that the recognizer should be very 

responsive and should have a minimal false negative rate. 

What if I’m like, running with the phone in my pocket or maybe stretching? Then if I accidentally start 

calling someone, that would be a big problem. [P35] 

As we note earlier, significant past work addresses the question of balancing false positives and false 

negatives [13, 16].  

Gamification of Recognizer Feedback 

31 out of 50 participants indicated that one of the reasons they liked the DTW feedback in our study 

was that it challenged them to get the arrow point to the correct (green) area of the bar and as high as 

possible on each attempt.  

I felt like, you know, I can totally do this. I just didn’t want to let that arrow to drop down. It was fun.  

[P17] 

4.4 Summary 

In chapter 3, we looked at different ways of training motion gestures. Our experiments demonstrate 

that, as a teaching mechanism, showing a video of a desired gesture on the phone along with some 

feedback of how close a gesture is to optimal can effectively aid learning of motion gestures. This 

clearly demonstrates the viability of training end users to perform motion gestures using only the 

smartphone display. 

However, another aspect that we need to explore is how to support reliable recognition. The following 

chapters – Chapter 5 and Chapter 6 deal with the aspect of reliable recognition of motion gestures. 
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Chapter 5 

Observational study to analyze the Cognitive 

Effects of Bi-level Thresholding. 

5.1 Introduction 

This chapter addresses the reliability of motion gesture recognition, and, in particular, whether an 

approach such as bi-level thresholding (described previously in chapter 2) can be used to enhance the 

perceived reliability of recognition. It may be the case that when recognition rates are similar, bi-level 

thresholding helps a lot over fixed level thresholding (single threshold). However, it may also be the 

case that, when recognition rates are similar, bi-level thresholding does not help. 

In the following sections in this chapter, the usefulness of bi-level thresholding as a recognition 

strategy is explored. We do this by via an empirical evaluation of bi-level thresholding versus a standard 

optimal recognition algorithm. Our results support the utility of bi-level thresholding as a technique to 

lower the mental workload associated with performing motion gestures. 

5.2 The Experiment 

To assess the usability of the bi-level threshold recognizer, we conducted an experiment that evaluated 

bi-level thresholding (BL) against fixed-level thresholds (FL). We simulated 3 levels of recognition 

rates: 50%, 60% and 70%. Finally, because a smartphone is used in the various situations, we tested 

our recognizers in two separate conditions; walking and seated condition. As a result, our experimental 

design consisted of a 2X3X2 mixed design with bi-level/fixed-level threshold (BL/FL) as a within 

subjects factor and recognition rate (50, 60, 70) and seated/walking as between subjects factors. This 

work was done in collaboration with Keiko Katsuragawa, our lab member. 

5.2.1 Experimental System 

In this subsection, we describe the experimental system we developed. 
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5.2.1.1 Gestures 

Ruiz et al. [37] noted that when end-users design motion gestures, the gestures they select tend to be 

simple (non-compound), single-axis movements with low kinematic impulse. As a result, we base our 

study around five single-axis gestures – right flick (1), left flick (2), flick up towards face (3), flick down 

away from face (4) and double flip (5). The images of five gestures are shown in the Figure 5.1; these 

gestures were drawn directly from Ruiz et al.’s consensus set.  

    We argue that the selected gestures represent the simplest set of useful motion gestures for 

smartphone control. Nominally, the gestures correspond to next, previous, zoom-in, zoom-out and 

mode switch (delimiter) gestures, labeled 1 through 5 respectively in Figure 5.1.  Essentially, we chose 

the gestures we did both because they represent a useful subset of potential commands issuable via 

motion gestures and because the selected gestures are the types of gestures – single axis, low kinematic 

impulse – the participants specified when gestures were elicited from them [37].  
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5.2.1.2 Apparatus 

Our experimental softare was developed in Java using the Android SDK [1]. Software ran on Nexus 5 

phones with a 2.26 GHz quad-core Krait 400 processor and a three-axis accelerometer and gyroscope. 

The Android version used was KitKat 4.4.4.  

5.2.1.3 Recognizer 

To discriminate between a deliberate gesture and noise, we used a dynamic time warping (DTW) 

algorithm [41]. Two expert users iteratively decided on the threshold values for each of the 5 gestures 

within the recognizer. We found that, for our experiment where participants were constantly performing 

motion gestures, a low threshold simply ensured that participants would need to perform an action to 

activate the threshold. However, the thresholds were sufficiently permissive that we observed no false 

negatives. On the other hand, if used in practice these thresholds would result in a high false positive 

Figure 5. 1 Five Gestures for the experiment. 
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rate. The thresholds were only appropriate for a situation where a simulated recognition algorithm was 

being used. 

    To control error rate, we simulated (wizard-of-ozzed) the recognition such that gestures that 

exceeded our base-level threshold for a gesture (tuned above) were either correctly or incorrectly 

recognized based on a probability function.  When the recorded acceleration or gyroscope value would 

reach beyond the threshold, recognition result (either correct or incorrect based on our desired 

recognition rate) would be displayed. Since we simulate the recognition rates, there will be some 

instances where even perfectly performed gestures will fail, but the important thing is that is the case 

anyway in actual use since accelerometer data is noisy. 

    We collected the raw accelerometer and gyroscope data. All raw sensor data was saved with 

timestamps into files. The sampling rate for both accelerometer and gyroscope was 50 Hz. We also 

collected the timestamps for all important events like the cue of each task, and successful or 

unsuccessful gestures.  

    We controlled error rate by equalizing the number of attempts that participants needed to perform 50 

successful motion gestures. To understand how recognition rate was equalized, consider Table 5.1. The 

columns 1 to 6 show the number of gestures attempts and their corresponding row values indicate the 

frequency for each attempt. For example, for a recognition rate of 70% and for the fixed threshold 

recognizer, recognition was presented as correct on the first attempt 35 times (70% of 50 gestures), 

correct on the second attempt 11 times (70% of 15 (50 - 35) gestures), correct on the third attempt 3 

times (70% of 4 (15 -11) gestures) and correct on the fourth attempt once. This gives a total of 35x1 + 

11x2 + 3x3 + 1x4 = 70 gesture attempts and 20 unsuccessful gesture attempts (errors). Similarly for the 

70% case and bi-level threshold recognizer, there were a total of 30x1 + 20x2 = 70 gesture attempts 

and 20 unsuccessful attempts.  As a result, 50 correct gestures were recognized out of 70 gesture 

attempts, giving an overall recognition rate of 50/70 or 71.4%.  
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  Required attempts Total 

attempts 
  1 2 3 4 5 6 

70% 
Fixed 35 11 3 1   70 

Bi-level 30 20     70 

60% 
Fixed 30 12 5 2 1  82 

Bi-level 18 32     82 

50% 
Fixed 25 13 6 3 2 1 97 

Bi-level 0 50     100 

Table 5. 1 The number of required attempts and frequency. 

The 50% case is particularly interesting from the perspective of bi-level thresholding. To preserve 

parity in recognition rates (so that we could determine whether overall recognition rate or bi-level 

thresholding was most effective at enhancing usability) participants performed 50 correct gestures out 

of approximately 100 gesture attempts. For the bi-level case, this means that, for 50% recognition, the 

gesture was always reported as incorrect on the first attempt and correct on the second attempt. 

While we could have chosen different error rates, for the length of our study, we were reluctant to raise 

the error rate above 70% for two reasons. First, at 80%, it becomes highly unlikely that more than two 

attempts are needed to recognize a gesture: at 80% recognition, only two gestures would have used a 

third attempt, making 80% virtually identical for bi-level and fixed-level thresholding. As well, past 

experience preventing false positives in motion gesture input results in first-instance recognition rates 

that are closer to 25% [29], not the 50% rate that is the lowest recognition rate we use in this study. 

Given that gestures are often single-axis movements with low kinematic impulse, we find it unlikely 

that recognition rates would ever reach as high as 80% for first-instance recognition without resulting 

in prohibitively high false-positive rates. 

5.2.2 Recruiting and Participants 

We recruited 67 participants (43 male, 24 female, ages 20 -39) from the general student body of our 

institution. We advertised the study widely to get a sample of participants with diverse backgrounds 

and levels of experience using computers. 36 participants were assigned to the walking condition and 

31 participants to the seated condition.  One participant in the seated condition did not follow the 
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instructions in the experiment, instead trying to fool the recognizer by performing incorrect gestures, 

so the data of this participant had to be eliminated from the final analysis, yielding 66 data points, 36 

walking and 30 seated.  

   All participants owned a smartphone and knew what motion gestures were, but not with respect to 

movement of the smartphone device. Some of the participants were familiar with some hand gestures 

above the screen that can be performed on the Samsung Galaxy S4 Android device. All participants 

were remunerated with $10 cash after the completion of the experiment. 

5.2.3 Measures 

We capture both self-report and objective measures from our participants. 

5.2.3.1 Self-Report Measures 

Our self-report data consists of two questionnaires and an interview. After each block, participants 

completed a computerized version of the NASA Task Load Index (NASA-TLX) [15]. The NASA-TLX 

is a widely used questionnaire, the details of which are beyond the scope of this paper.  

At the end of the study, participants completed a post-experiment questionnaire comprised of a set of 

ten point Likert scaling ratings for each block. The questionnaire included both positive questions 

(Likable”, “Easy To Use”, “Fun to use”, “Comfortable”, “I felt relaxed”, “The application was stable”, 

“I performed well” and “The application performed well”) and negative questions (“Inefficient”, 

“Difficult to use”, “Confusing”, “Tired” and “Boring”) on each block. Each Likert scale was labeled 

with strongly disagree (0) to strongly agree (9).  An additional set of four questions asked participants 

to compare blocks. The comparison questions were: 

1. Did you oberve any difference between first and second session? 

2. Which session did you like better? 

3. Do you think you performed the gestures differently in those two sessions?  

4. Do you think the application performed differently in those two sessions?  

Question 1, 3 and 4 were a six point scale Likert labeled with “Absolutely Yes”, “Probably Yes”, 

“Somewhat Yes”, “Somewhat No”, “Probably No” and “Absolutely No”. Question 2 was a seven point 

scale labeled with “Absolutely First one”, “Probably First one”, “Somewhat First one”, “Indifferent”, 

“Somewhat Second one”, “Probably Second one” and “Absolutely Second one”. Finally, two free-form 

questions asked participants if they or the application performed differently in the two sessions and, if 
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so, what the difference was. Exit interviews were primarily used to cross-validate the results of the 

post-experiment questionnaire. 

5.2.3.2 Objective Measures 

For the walking condition, we used walking speed as an objective measure in our experiment, and for 

the seated condition we attached physiological sensors to participants to measure Galvanic Skin 

Response (GSR) and Blood Volume Pressure (BVP). 

    During the walking condition in our study, participants were asked to walk to and from two specified 

points, 14.5 meters apart at their normal walking speed. We measured the walking speed by the number 

of steps the participants made and the distance they walked. We developed a step counter application 

to save the timestamp of each step on the Nexus 5 phones used in the experiment. The distance they 

walked was measured by counting the number of trips made between the two points.    The experimenter 

manually recorded the timing the participant made during turns. A pair of video recorders was placed 

at each end of the walking path and all the gesture sessions were video recorded. All data was 

synchronized with the gesture input data using time stamps to assess walking speed. 

In the seated condition, the physiological sensing system consisted of Galvanic Skin Response (GSR) 

and Blood Volume Pressure (BVP) sensors. Galvanic Skin Response, also known as skin conductance 

is a measure of sympathetic arousal [3,9]. GSR is often used as an index of stress. For example, Bach 

et.al [3] derived a summary statistic for sympathetic arousal as indexed by spontaneous fluctuations 

(SF) of the skin conductance. From the BVP signal, we obtained Heart Rate Variability (HRV) to assess 

the sympathetic-vagal balance of an organism. Low-frequency/high-frequency ratio (LF/HF) is an 

indicator of mental stress [21,26]. Mean Heart Rate (HR) and Heart Rate standard deviation (HRsd) is 

also obtained from BVP.  We recorded physiological data using a ProComp Infiniti5 (Thought 

Technology Ltd.,) encoder with Biograph Infiniti software that ran on a Lenovo laptop PC, thinkpad 

T430s, Core i5 processor. Although the laptop PC was in the same room, the display of the laptop PC 

was hidden from the participant’s view. Signals were sampled at a sampling rate of 256 for GSR and 

2,048 for BVP 

  The sensors were attached to the first three fingers of the participant’s hand. The participant chose the 

hand to use for the motion gesture and the sensors were attached to the other hand.  
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5.3 Study Procedure 

Before the study began, we conducted a briefing session where detailed instructions about the study 

were communicated to the participants. During this briefing, we informed participants that they would 

perform a training block and two experimental blocks, but did not inform them that the recognizers 

were different in the two experimental blocks. After the briefing, there was a training block in which 

participants familiarized themselves with the gestures. 

    This was followed by collection of participants baseline measurements. In the case of walking 

condition, the baseline was just a measure of normal walking speed to and from two specified points, 

14.5 meters apart. We had spotters to ensure their safety while walking. In the case of seated condition, 

we wrapped the GSR sensors and BVP sensor on their fingers of the hand not used for the gestures, 

typically their non-preferred hand. The electrodes were sanitized with rubbing alcohol between 

participants to maintain hygiene. The baseline measurement for the seated condition involved sitting in 

a relaxed state for two to three minutes. In the seated condition, the participants were asked not to talk 

during the baseline measurement and the gesture task because conversation can affect the physiological 

signal. Participants then performed the experimental blocks. 

As noted above, during experimental blocks we used five gestures in our experiment - right flick, 

left flick, flick up towards face, flick down away from face and double flip. Each gesture was performed 

ten times per block, yielding 50 gestures per block. The order of gestures displayed to the participant 

was randomized within the block, and the order of the fixed versus bi-level block was counterbalanced. 

After each gesture attempt where the simulated recognizer reported a correct result, a check mark was 

displayed on the screen for 1 second. Following the check mark, there was a 3 second pause before the 

next task (gesture) was presented as an image. Dependent measures, both self-report and objective, 

were collected as described above. 

5.4 Hypotheses 

We analyze data with respect to the following hypotheses: 

H1: Workload scores are lower for bi-level thresholding (BL). 

H2: Subjective ratings of users were higher for BL. 

H3: Walking speed was negatively affected by repeated errors in FL. 

H4:  Physiological measures were impacted by recognition strategy (BL/FL). 
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5.5 Results 

5.5.1 Self-Report Measurement Results 

5.5.1.1 NASA-TLX 

Subjective workload was measured using the composite score of the NASA-TLX weighted workload 

(WWL). The estimated marginal means of WWL is shown in Figure 5.2. A three-way MANOVA of 

between-subjects and within-subjects effects for threshold strategy, recognition rate, and scenario was 

performed. The overall workload scores on the bi-level threshold recognizer shows significantly lower 

workload compared to the fixed threshold recognizer (F(1,60) = 8.214, p < .01). As a between subjects 

effect, the effect of recognition rate was significant (F(2,60) = 4.272, p < 0.05, 50% > 70%). No 

significant effect of condition (walking or seating) was found (F(1,60) = 1.938, p = 0.169).  

The significance of the effect of thresholding (Fixed/Bi-level) on the Nasa-TLX subscales is shown in 

Table 5.2. A linear mixed analysis indicates significant differences for Performance(PF) F(1,60)=7.642, 

p < .01 and Effort(EF) F(1,60)=8.349, p < .01 and  a tendency to significance was found for 

Frustration(FR) F(1,60) = 3.987, p = .05 
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 Fixed Bi-level   

 M SD M SD F p 

WL 36.5 17.4 31.7 17.2 8.214 < .01 

MD 24.4 22.4 24.2 22.4 0.02 .888 

PD 35.8 24.1 33.9 25.0 1.042 .311 

TD 32.4 22.0 29.0 20.9 2.183 .145 

PF 28.5 19.4 22.3 17.5 7.642 < .01 

EF 37.2 24.8 30.8 23.9 8.349 < .01 

FR 34.7 24.9 29.9 23.8 3.987 .05 

Table 5.2 MANOVA result of Nasa-TLX scores. 

5.5.1.2 System Impression 

Impression of the system was assessed using a 10-point scale Likert scale (0-9). The mean of positive 

questions are shown in Table 5.3 and negative questions are shown in Table 5.4. In the positive 

questions, the higher score represents more positive impression and in the negative questions, the higher 

score represents more negative impression. In order to analyze the influence of the threshold type 

difference on the system impression, a Wilcoxon Signed-Rank test was performed. The test results are 

also shown in Table 5.3 and Table 5.4. 

    Overall, the bi-level threshold recognizer had better scores than the fixed threshold recognizer. 

Significant differences were found for “Comfortable” (Z = -2.069, p < .05), “I felt relaxed” (Z = -2.011, 

p < .05), “The application was stable” (Z = -2.827, p < .01), “I performed well” (Z = 2.87, p < .005) 

and “The application performed well” (Z = -1.967, p < .05). For all of these statistically significant 

differences, the bi-level threshold recognizer outperformed the fixed threshold recognizer. 
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 Fixed 

mean 

Bi-level 

mean 

Z p 

Likeable 5.4 5.5 
-0.4 

.968 

Easy to use 5.9 6.2 -1.623 .105 

Fun to use 4.7 4.6 -0.14 .989 

Comfortable 5.3 5.7 -2.069 < .05 

I felt relaxed 5.6 6.1 -2.011 < .05 

App was stable 5.5 6.2 -2.827 < .01 

I performed well 6.4 7.0 -2.87 < .005 

App performed well 5.4 5.8 -1.967 < .05 

Table 5. 3 Wilcoxon rank test of positive questions result. 

 Fixed 

mean 

Bi-level 

mean 

Z p 

Inefficient 3.8 3.6 
-.808 

.419 

Difficult to use 3.2 2.8 -1.865 .062 

Confusing 1.7 1.7 -.198 .843 

Tired 3.6 3.5 -.437 .662 

Boring 4.5 4.4 -.225 .822 

Table 5.4 Wilcoxon rank test of negative questions result. 

5.5.1.3 Preference of the system usage experience 

Participants were asked to score the preference of the entire experience of each session. Participants 

scored the preference by choosing from a 7-point scale (Absolutely First one to Absolutely Second 

one). The scale was converted to three categories; fixed threshold recognizer preferable (FL), bi-level 

threshold recognizer preferable (BL), or indifferent/equal preference (EL).  The number of choices of 

each category is shown in Table 5.5.  

The majority of participants (n=36, 54.5%) chose the block with the bi-level threshold recognizer as 

their preferred block (BL), followed by fixed-threshold (FL) (n=17, 25.8%) and no difference (EL) 



 

 44 

(n=13, 19.7%). A Chi-square test showed that there was a significant difference in these numbers (χ2 

(2) = 13.727, p < .005, significant difference was shown between BL-FL and BL-EL).  This result 

suggests that, if the overall recognition rate is the same, the bi-level threshold recognizer is more 

preferred than the fixed threshold recognizer.   

 Fixed (FL) Bi-level (BL) Either (EL) 

 Walk Seat Walk Seat Walk Seat 

70% 1 3 6 4 5 3 

60% 2 4 9 6 1 0 

50% 4 3 7 4 1 3 

Total 17(25.8%) 36(54.5%) 13(19.7%) 

Table 5. 5 The number of participants that preferred each session. 

5.5.1.4 Observed difference between systems 

Participants were not informed that they were using two different artificial recognizers. In the 70% 

recognition rate condition, more than half (55.5%) of the participants declared they did not observe any 

difference between the two sessions. This is shown in Figure 5.3 

Differences between the two blocks (Fixed vs Bi-Level thresholding) could be caused either by 

differences in the application or in the participants themselves (i.e. they performed better or worse). In 
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the 70% and 60% recognition rate conditions, the percentage of the participants who thought the cause 

of the difference was the application and the cause was themselves was about same (Figure 5.4). In the 

50% recognition rate, more participants noticed the application performed differently in the two blocks, 

but still 27% of the participants did not notice the application performed differently.  

 

 

Figure 5.4 The cause of the difference in perception. 

 

5.5.2 Objective Measures 

Neither walking speed in our walking condition nor skin conductance and blood volume pressure in 

our seated condition showed any statistically significant differences for our study.  
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Chapter 6 

Discussion and Limitations – Bi-level 

Thresholding for Perceived Reliability 

6.1 Cognitive effects of Bi-Level Thresholding 

Revisiting our hypotheses, we see that hypotheses H1 and H2 which are based upon our self-report data 

were both supported by our results. Bi-level thresholding places statistically significantly lower mental 

workload on our participants, and participants prefer the bi-level thresholding strategy. However, H3 

and H4, our hypotheses grounded in our objective measures – walking speed and physiological sensors 

– did not reveal statistically significant differences, leading us to reject H3 and H4 and conclude that, 

despite higher reported workload, this higher workload is not being demonstrated in physiological 

arousal. 

    The lack of significance in our physiological data is perhaps unsurprising. Our task were relatively 

benign, and much of the work on physiological measures of stress is grounded in risky decision making 

tasks [9], not in more benign tasks like the one used in our experiment.  

However, the success of bi-level thresholding in this work is, perhaps, more surprising. Consider : each 

of our participants performed exactly the same number of gesture attempts in both blocks of our 

experiments. There are no physical workload benefits to the bi-level thresholding condition because, at 

any one recognition rate, participants still perform exactly the same number of gesture attempts to 

complete 50 gestures. For example, participants who received the 70% recognition rate performed 70 

gesture attempts for both fixed and bi-level thresholds; it simply is the case that, with bi-level 

thresholding, they fail more frequently on the first attempt, but achieve more reliable first or second 

attempt recognition than does a user providing input to a system with a fixed-level threshold. 

    One of the observations that motivated bi-level thresholding was the high cost of repeated errors. 

Both in Negulescu et al. [29] and here, we claim that first-instance failure seems much lower cost than 

subsequent failures – the observation that participants would stop after a second or third failure and try 

to diagnose why the error was occurring. Our results validate that the cost of repeated errors is 
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disproportionately more important than the overall error rate of a system, specifically because in this 

experiment we hold error rate constant. 

6.2 Implications for interaction design 

6.2.1 Usability Improvement with Bi-Level Tresholding 

In many situations, designers and developers need to make difficult decisions about allocating resources 

to improve systems. In the case of motion gestures, one of the trade-offs developers must make is 

whether to improve overall recognition or simply to improve systems such that repeated errors become 

less frequent. While doing both would undoubtedly be the ideal, in the real world resources are often 

tight.  

    Given the need to trade-off limited resources, exploring additional ways to guard against repeated 

errors may prove an effective long-terms solution to enhancing the perceived reliability of recognition 

algorithms for motion gestures. Our results, together with other recent results [29] seem to demonstrate 

that you can both enhance user satisfaction and improve overall recognition rates [29] by considering 

any candidate motion in the context of movement immediately preceding or following the candidate 

motion. 

6.2.2 Preventing False Positives More Viable 

Errors of commission (false positives) can be very costly in user interfaces. In many ways, a false 

negative simply requires that a user try again, whereas a system that performs an incorrect action 

requires that the user determine that an incorrect action was performed, undo that incorrect action, and 

then try to perform his or her desired action again. One of the tensions to recognizer design in interfaces 

is the trade-off that must occur when selecting criterion values. Sufficiently tight that false positives 

are rare, but sufficiently loose that false negatives are not prohibitively high is the rule of thumb.  

    Our results argue that it may, potentially, be possible to satisfy both goals through a more restricted 

criterion function for first attempts followed by a looser function for subsequent attempts. It seems 

theoretically possible that such a strategy may represent the ‘best of both worlds’. 

6.2.3 Workload of the Motion Gesture Interface 

One positive aspect of our study is the lack of effect of motion gestures on walking speed. Motion 

gestures, in that they leverage proprioperception, can potentially be performed eyes-free. Given the 
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relatively visible output on our screen, it seems that participants were able to parallelize perceiving 

recognizer output and attending to another task with low mental workload, i.e. walking. 

6.3 Limitations 

In our study, one challenge with generalizing results is that the task was quite simple and may not be 

fully ecologically valid. Participants were cued and then performed a specific motion gesture. In real-

world use, participants may be more concerned about reliability in interaction than our participants.  

    As well, in many ways our study design unfairly penalizes bi-level thresholding. In Negulescu et 

al.’s earlier work [29], they found that bi-level thresholding enhances recognition rate overall. For 

example, a 70% recognition rate with bi-level thresholding might increase recognition accuracy to 75%. 

For a 50% recognizer, accuracy would increase to approximately 67%. This is because false positives 

are more limited on second attempts.  Overall, our study shows that, beyond the recognition benefits of 

bi-level thresholding, even when recognition rates are the same, bi-level thresholding is preferred to 

fixed-threshold recognition. 
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Chapter 7 

Conclusion and Future Work 

7.1 Introduction 

In this thesis, we were particularly interested in motion gestures as an input modality for modern 

smartphones. The reasons for this are twofold. First, modern smartphones contain an evolving set of 

sensors for recognizing movement of the phone, including accelerometers, gyroscopes and cameras, so 

the technology already exists to support motion gesture input. Second, using a motion gesture provides 

many attendant benefits, including an expanded input space and the ability to issue commands eyes-

free without using the touch screen by leveraging proprioception [30]. In this thesis, we – (1) explore 

mechanisms to teach end users motion gestures and (2) analyze the user’s perceived reliability of 

motion gesture recognition. This thesis contributes in both of these areas and the conclusions are 

presented in the following sections. 

7.2 Teaching Motion Gestures 

We addresses the challenge of teaching people to do motion gestures. Specifically, we examine two 

factors. The first factor is how to represent motion gestures: as icons that describe movement, video 

that depicts movement using the smartphone screen, or a Kinect-based teaching mechanism that 

captures and depicts the gesture on an external display in three-dimensional space. The second factor 

we examine is recognizer feedback, i.e. a simple representation of the proximity of a motion gesture to 

the desired motion gesture based on a distance metric extracted from the recognizer. We show that, by 

combining video with recognizer feedback, participants master motion gestures almost equally quickly 

as end users that learn using a Kinect and perform equally well.  

7.3 Perceived Reliability of recognizers 

Overall, the lesson to be drawn from this part of our research is simple: If a user’s input is a near miss 

to something that may be a specific command, then that near miss provides valuable information which 

can be used to enhance the perceived reliability of recognition-based interactions. We show that, by 

doing this, we lower the mental workload of end-users and increase their satisfaction, even when the 

overall number of attempts they make to perform actions remains constant. 
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The significant effect we see on mental workload remains surprising because, in our experimental 

design, bi-level thresholding did not save any physical effort. Participants still performed exactly the 

same number of gesture attempts, but the reduced first-attempt reliability was more than offset by the 

enhanced second-attempt reliability. 

We feel that the overall benefit to these results is specifically in the perceived reliability of interfaces 

that incorporate recognition algorithms. Overall, the promise seems to be that we can be slightly more 

aggressive in preventing false positives while leveraging near-misses to prevent repeated false 

negatives. 

7.4 Future Work 

One of the things to work upon in the future is the design space of more complicated motion gestures 

like curve gestures and how to teach them. Is the kind of feedback we provided in our work sufficient 

or would we need more enhanced techniques of giving feedback in order to properly convey the path 

constraints of the gesture? Another question to ask is do we need delimiters for motion gestures? Are 

these delimiters necessary to distinguish noise from the gesture or can we use something else instead? 

Also, merging surface and motion gestures together in the future may arise to a better and more 

expanded input modality for smartphones. Then, enabling efficient use of motion gestures in a multi 

device environment is something to consider. 

7.4.1 Broader Implications to Gestural Input 

Overall, we have found only limited use of techniques like bi-level thresholding in other domains. 

However, in any domain where computational intelligence is used to interpret input (sketch recognition, 

assistive technologies, speech input), bi-level thresholding may make sense as a recognition strategy. 

Exploring this would be a useful area of future work as well.  

7.5 Final Conclusion 

Despite the rising popularity of the phablet form factor, the trade-off between portability and input will 

continue to place limitations on what can practically and efficiently be supported on a smartphone 

display screen. Screen size and the multi-touch paradigm limits the number of display widgets and the 

size of widgets, thus forcing feature rich applications to either provide multiple input screen or to seek 

outside input modalities. 
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  We believe that the expressive nature of everyday movement in the form of motion gestures can be 

leveraged by modern smartphones as an attendant input modality and, with this in mind, this thesis 

explores techniques to teach users a gestural language and explores the perceived reliability of gestural 

recognition systems. 
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