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Abstract

Intelligibility of speech is of critical importance in many respects. Diminished speech
intelligibility causes part or all of the intended message to be lost to listeners; the outcome
is frustration of speakers and listeners in the least, but impaired communication may be
dangerous in some situations. Consequently, improved understanding of the factors which
contribute to intelligibility of speech is of great interest in the speech community. For
example, the rapid closing of the glottis in the closing phase of the phonatory cycle is gen-
erally understood to contribute favourably to the intelligibility of speech by increasing the
high frequency content of the resulting speech signal. Recent experimental and numerical
studies have suggested that the presence of intraglottal vortices in the closing phase of
the phonatory cycle might promote rapid closing of the glottis due to the pressure gradi-
ents which arise in the presence of the vortices. To date, computational studies to assess
the impact of vortex shedding within the glottis which incorporate a dynamical model of
the vocal fold tissues together with a vortex advection scheme are not prevalent. In a
recent computational study, an ad hoc pressure condition, of magnitude on the order of
the disturbances observed in experimental work, was superimposed upon the medial vocal
fold surfaces to simulate the e�ect of a perturbation of the pressure �eld. However, this
approach, while it is able to quantify the e�ect of a perturbation of the pressure �eld, is
not wholly satisfactory because the temporal or spatial evolution of the perturbation of
the pressure �eld is not a consequence of a modelled physical e�ect or mechanism which
is fundamentally related to the physics of the �uid or the �uid-structure interaction.

In the present study, a two-dimensional ideal potential �ow model is developed and
coupled to a low-order lumped-element dynamical model of the vocal folds. Irrotational
vortices are superimposed upon the glottal �ow and allowed to advect through the glottis
from an upstream station at a rate which ensures that they will arrive at the superior
portion of the glottis in the closing phase of the phonatory cycle, when the glottis obtains its
diverging con�guration. This is to emulate the roll-up and shedding of intraglottal vortices
occurring in the closing phase of the phonatory cycle. The vortices may be removed to
compare the dynamical response of the vocal fold tissue model in the absence or presence
of the intraglottal vortices.

The extension of the glottal �ow model to two-dimensions is important in general, not
merely because it allows for the inclusion of e�ects which require higher spatial dimen-
sion for their description, such as advecting vortices, but the two-dimensional glottal �ow
model captures the salient physics of glottal �ow with improved �delity over the standard
one-dimensional Bernoulli �ow models which have typically been employed in studies of
phonation. Additionally, the pressure �eld, which is unsteady in glottal �ow, is determined
with the unsteady Bernoulli equation; the unsteady term is found to be signi�cant, thus,
again, the model improves upon potential �ow models employed to date. The surface pres-
sure on the medial surface of the vocal folds exhibits strong deviation near the inferior and
superior margins of the medial surfaces, and, because these entail longer moment arms,
larger pitching moments are obtained. It is demonstrated that the mucosal wave, in the
transverse motion of the vocal folds, as the cover tissues pitch about their respective nodal
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points, a greater amplitude of angular displacement is observed with the two-dimensional
model. The resulting glottal area waveform obtains a more skewed appearance which
causes it to qualitatively appear more closely akin to clinically obtained glottal waveforms
despite that the simulation model is uncoupled from the acoustics of the upper vocal tract.

In comparing the simulation results, the e�ect of the vortices is seen to be ephemeral;
the vortices rapidly advect into the supraglottal space whence they impart little upstream
in�uence. The vortex strength determines two competing e�ects, which entails that the
vortices should have little e�ect upon the dynamics of the vocal folds. In particular, as
the strength of the vortices increases, the magnitude of the pressure perturbation becomes
more signi�cant, however, for a given vortex spacing, the vortices will advect more rapidly
into the supraglottal region thus rapidly reducing their e�ect; because the perturbation of
the pressure �eld is brief, it does not impart su�cient impulse to overcome the inertia of
the vocal fold tissues. Alternatively, as vortex strength decreases, the intraglottal vortices
dwell in the glottal space longer, but the magnitude of the pressure perturbation is signi�-
cantly diminished. Again, the modi�ed pressure �eld does not impart su�cient impulse to
overcome the inertia of the vocal folds, and their behaviour remains relatively unperturbed.
That the glottal area waveform in its closing phase is essentially una�ected by the presence
of intraglottal vortices is demonstrated within the proposed modelling framework.
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1 | Introduction

Speech is a uniquely human capacity which pervades all of human activity, whether it be
social, political, economic, or cultural; to speak is to partake of the human experience.
Voice is the foundation of speech and can be impacted by a number of pathological con-
ditions, which either diminish or impair a speakers capacity to produce intelligible voiced
speech [88, 98], severely a�ecting the su�erer's quality of life. These conditions include
hoarseness due to aperiodic vocal fold vibration [33], vocal fatigue due to subglottal pres-
sures too high for vocal register [89], breathy voice due to incomplete glottal closure [88],
aphonia due to inability to produce vocal fold vibration [61], reduced phonational range
due to di�culty in register transition [101], pitch break due to intermittency between vi-
bratory patterns [94], vocal fold nodules due to excessive vocal fold contact stress [45],
and paralysis [63]. Phonation is the quasi-periodic oscillatory response of vocal fold tis-
sues to the glottal �ow which drives them; the phonatory oscillation of vocal folds is the
primary source of sound in voiced speech [92]. An improved understanding of the mech-
anisms of phonation grounded on insight into the fundamental physical interaction of the
visco-elastic vocal fold tissues and the glottal air�ow has the potential to improve clin-
ical implementations of approaches to treat, habilitate, or train voice [98]. Such insight
may also contribute to the development of speech processing applications such as speech
compression, synthesis, detection, and recognition algorithms [17, 78, 83].

Since the pioneering work of van den Berg [104], glottal �ow has been modelled as
an ideal one-dimensional potential �ow with the steady Bernoulli equation employed to
compute the pressure �eld to determine the loading on the vocal fold surfaces, and has
been employed as a model deemed to be su�ciently accurate to describe intraglottal �ow
behaviour [82, 97, 99, 106]. Past studies have described this �ow thoroughly, but the
consequences of temporally evolving �ow structures and viscous e�ects had been foregone.
In fact, de Vries et al. [18] study a computational model in which a Navier-Stokes solver is
coupled to a lumped-element vocal fold tissue model and contrast the results with the same
tissue model coupled to a traditional Bernoulli solver. They note that the Navier-Stokes
solution determines a lower fundamental frequency, larger peak �ow attributed to moving
points of �ow separation throughout the phonatory cycle, and phonation threshold pressure
more similar to clinically measured threshold pressures. Symmetric �ow separation is
assumed; however, more recent investigations have revealed that in the divergent phases of
the phonatory cycle, the glottal �ow fully separates from one medial vocal fold surface and
adheres to the opposite medial vocal fold surface which may be attributed to a coanda e�ect
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[25, 27, 28, 29]. Additionally, other investigations have shown �ow patterns and structures
of notable complexity such as vortex shedding [53, 58, 70, 71], shear-layer instabilities
[108], transition to turbulence [44], and three-dimensional e�ects [26]. Features of the
supraglottal �ow have also been revealed to investigators, and studies which incorporate
these e�ects to quantify their in�uence on the vibratory mechanism of the vocal fold tissues
are beginning to appear [65]. The extent to which temporally evolving �ow structures in
the intraglottal and supraglottal regions a�ects the vocal fold dynamics has not been
conclusively determined. It is for this reason that these e�ects must be incorporated into
models of phonation and evaluated in terms of their contribution to the overall dynamics.

It is desirable to increase our understanding of factors which a�ect the intelligibility of
speech. Fant [36] showed that the magnitude of the derivative of the glottal volumetric
�ow rate in the closing phase of the phonatory cycle is proportional to the energies of
higher formants. Moreover, it has been determined that improved intelligibility of speech
is a subjective correlate of increased energy content of speech at higher frequencies [38].
Consequently, it is desirable to elucidate any mechanism which determines the rate of
glottal closure or contributes to increasing the rate of glottal closure in the closing phase of
the phonatory cycle. Recent experimental and computational studies have suggested that
the presence of intraglottal vortices have the potential to contribute to the rapid closing of
the glottis in the closing phase of the phonatory cycle [52, 53, 62]. Therefore, the goal of
the investigation presented herein is to ascertain the e�ect of the presence of intraglottal
vortices, and, in particular, determine whether they have any meaningful e�ect upon the
dynamics of the vocal folds in the closing phase of the phonatory cycle.

In order to capture higher dimensional e�ects within the glottal �ow, such as ad-
vecting vortices and their concomitant pressure and velocity �elds, which vary in more
than one spatial dimension, the extension of a one-dimensional glottal air�ow model to a
two-dimensional version is required. To quantify the e�ect of intraglottal vortices, a two-
dimensional ideal potential �ow model of the glottal air�ow which incorporates advecting
vortices has been developed and coupled to a suitable low-order lumped-element dynamical
model of the vocal fold tissues.

1.1 Thesis Outline

Chapter 2 begins with a background of structure and function of the vocal organs. This
is followed by the mechanical modelling of vocal fold tissues and glottal aerodynamics.
Chapter 3 presents the work which was performed in conjunction with this investigation;
the 2-D potential �ow model of glottal �ow and vocal fold aerodynamics is developed to-
gether with a parametric characterization of the overall system dynamics via dimensional
analysis. Chapter 4 presents validation against an existing model, and simulation results
capturing vortical motion are discussed. In terms of the validation, two points are kept
in mind; a primary goal is that a physiologically appropriate self-oscillatory behaviour of
vocal fold tissues be captured and the two-dimensional glottal �ow include advecting vor-
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tices. Ultimately, su�cient but simple models elucidate and clarify the nature of physical
e�ects which might be obfuscated by the results of a complicated numerical simulation.
There is greater intellectual appeal of semi-analytic models in spite of the often consid-
erable degree of assumption necessary for tractability. Moreover, because semi-analytic
approaches provide mathematical analogues of physical systems, this enables one to focus
on the discrepancies between modelled outcomes, which bestows these models their ex-
planatory power. It is precisely the assumptions of the model and the real physics which
they discard which cause the deviation of the modelled results from those expected physi-
cally, and this allows the investigator to focus on these areas in order to draw conclusions
about the adequacy of a model or the signi�cance of a modelled e�ect. The conclusions
drawn based upon the results are then discussed in Chapter 5. Finally, recommendations
are supplied based on the work performed in this development and investigation. The doc-
ument concludes with three appendices: the �rst provides su�cient background in complex
analysis, intended to motivate the reader unfamiliar with this body of theory; the second
appendix supplies detailed derivations of the results presented in Chapter 3; and the �-
nal appendix presents a discussion of the simulation codes, and is intended to be a user's
manual of sorts in order that future researchers at this institution may be able to employ
or extend the codes developed in conjunction with this research project.
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2 | Background

This chapter furnishes background which places the work of this thesis in the framework
of the existing science of speech communication, of speech modelling, and of the biome-
chanics of phonation in particular. Anatomy and physiology speci�c to speech production
is presented �rstly in order to develop the language appropriate to discuss the structure
and function of the vocal organs but ultimately to justify choices made in the development
of the simulation model. Subsequent to the structural and functional background, preced-
ing the model development of the following chapter, is a general discussion of vocal fold
(VF) modelling, approaches and outcomes. The desire is to place the present work in the
context of existing approaches to the modelling of speech phenomena and place this work
on a �rm physical basis; this thesis extends one-dimensional glottal �ow (GF) models to
capture �uid structures of higher dimensionality within the framework of a lower order
model in a manner compatible with anatomical constraints and emulating physiological
mechanisms. Detail of the complexity of speech production and structures and mecha-
nisms relevant to subsequent model development and simulation outcomes is presented.
The discussion herein follows similar development presented in the general references of
Titze [98] and Stevens [92], which broadly discuss these ideas with the same intent to pro-
vide an appropriate physiological and physical basis for model development and simulation
of human speech. It must be maintained that of speci�c interest herein are the structure
of vocal fold tissues, the physiological mechanisms responsible for glottal air�ow, and the
�uid-structure interaction (FSI) in phonation.

2.1 Anatomy and Physiology of the Vocal Organs

This section on the structure and function of the vocal organs summarizes some of the
relevant descriptions and �ndings of the general references for anatomy and physiology
pertaining to speech. In addition to Titze and Stevens [92, 98], speci�c references are,
for example, Hixon's treatise of respiratory anatomy and physiology of respiration for
speech, [43], and Seikel, King, and Drumright, [84], which is a more recent general treat-
ment of anatomy and physiology for speech. Dickson and Maue-Dickson, [20], furnish a
background to anatomy and physiology from histology of epithelial and connective tissue
to neuromuscular and musculoskeletal relationships, including structure and function of
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myological tissues; subsequently, they extensively treat anatomy and physiology of respira-
tion, phonation, and articulation, of particular interest to the biomechanical investigation
of speech. Additionally, each section of [20] includes a discussion of innervation, and the
reference concludes with chapters on audition and the nervous system, speci�cally as it
pertains to speech.

The classi�cation of the organs of the respiratory system due to their involvement in
the mechanisms of speech production as vocal organs is a functional classi�cation. Speech
is a complicated set of events which necessitates and is a consequence of highly integrated
neuromotor co-ordination of respiratory, phonatory, and resonatory and articulatory sys-
tems. The gross anatomy of the respiratory system is displayed schematically in Figure 2.1
below. The �gure displays the relation between the respiratory passages which comprise
the upper vocal tract, the larynx, and the lower vocal tract.

Clavicle

Frontal sinus
Nasal choncae
Nasal vestibule

Hard palate
Soft palate
Epiglottis

Right lung

Diaphragm

Glottis
Vocal fold
Esophagus

Tongue
Mandible

Thyroid cartilage
Hyoid bone

Cricoid cartilage
Trachea

Ribs

Sternum

Right primary
bronchus

Figure 2.1: Gross anatomy of respiratory system, shown schematically from the
front with the layers of the thoracic structures transparently and the structures of
the skull shown in midsagittal section (adapted from [31]). Many of the important
landmarks are shown, placing the lungs, trachea, larynx, and upper vocal tract in
the context of local structures of the upper torso, neck, and head.
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The upper vocal tract includes the oral and nasal passages and the pharynx. These are the
structures of the resonatory and articulatory system. The larynx is located at the juncture
of the upper and lower vocal tracts. To provide additional anatomical context, Figure
2.5 provides an anterolateral view of the neck from the front left, it displays the extrinsic
musculature and places the trachea and larynx relative to the mandible and to the clavicle
and scapula of the shoulder girdle. The larynx supports the vocal folds, and permits their
adjustment. The vocal folds are the principal vocal organs involved in the production
of voiced speech and will be described in detail in what follows. The lower vocal tract
comprises the trachea, which leads to the bifurcating passages of the pulmonary system,
the bronchi, bronchioles, and alveolar structures at the �nest scale. The primary role of
the pulmonary tissues is in the exchange of gases required for cellular respiration, which is
of vital importance.

The trachea extends superiorly from the lungs, the larynx sits atop the trachea, and the
upper vocal tract is above. That these passages are continuous and form parts of the same
continuous airway is acoustically relevant. Egressive air�ow from the lungs is in�uenced by
the glottis, the tongue, and cavities of the vocal tract. The sound source for speech may
be the quasi-periodic interruption of the pulmonic �ow at the vocal folds, an impulsive
opening or sudden occlusion of the vocal folds to produce a stoppage of air, or due to
turbulence generated at a deliberate narrowing of some part of the tract. In particular, it
is phonation, the quasi-periodic opening and occlusion of the glottis, which is the primary
source mechanism for voiced speech. The adjustments necessary to place and con�gure
the tongue, palate, teeth, nasal passages, jaw, and lips in order to modify the source to
produce intelligible sounds of natural language is referred to as articulation. To reiterate,
the vibration of the vocal folds in phonation provides the primary source mechanism for
the modal register by periodically modulating the air�ow to generate a periodic pressure
signal, and this acoustical signal is �ltered by the upper vocal tract. This framework for
an acoustical model of speech was proposed by Fant in [34]. In what immediately follows,
and, because the lungs are the source of the glottal air�ow which ultimately provides the
energy which drives and sustains the phonatory source mechanism, respiration is discussed.

2.1.1 Respiration

Figure 2.1 presents an anterior view of the torso and neck with head in sagittal section.
The trachea and bronchi are shown in the �gure. The trachea is a �exible tube of �brous
elastic tissue approximately 11 [cm] long with cross-sectional area approximately 5 [cm2]
in adult humans. it bifurcates into the bronchi, it is punctuated by 16 to 20 discontinu-
ous rings of hyaline cartilage which provide strength and allow the radial expansion and
contraction of the trachea. The respiratory passages are lined with a continuous and �ex-
ible mucous membrane, beneath which are distributed submucosal glands which facilitate
clearing of the trachea. The tracheal rings are actuated by the trachealis muscle, a smooth
muscle (involuntary), which is in a state of contraction and relaxes exclusively when the
body's oxygen needs increase beyond some threshold. In this case, the trachea expands
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diametrically and causes the trachea to be less restrictive until oxygenation of the blood is
su�cient. The manifold branching of the passages of the lung ultimately leading to each
alveolus have the e�ect of increasing the surface area required for the exchange of gases;
there are approximately 3×108 alveoli with diameters of approximately 200-300 [µm], and
this yields an overall surface area of approximately 70 [m2].

The pulmonary tissues are richly vascularized in order to exchange oxygen from the air
drawn into the lungs and carbon dioxide dissolved in the blood across the membranes of the
alveoli. In inhalation, the thoracic cavity expands, reducing alveolar pressure and causing
air to enter the lungs. It is drawn in through the oral and nasal cavities and �ows through
the larynx and down the trachea into the bronchi which bifurcate. The dendroidal structure
of the bronchial passages, which narrow to the bronchioles which have an approximately 1
[mm] diameter and are terminated by the �ne structure of the alveoli interconnected via
alveolar ducts. Each alveolus is surrounded by a bed of capillaries. It is the membrane of
the alveolus which allows the exchange of respiratory gases, oxygen and carbon dioxide via
a di�usive process with the surrounding �ne structure of blood vessels.

The secondary process of voiced speech is, in some sense, superimposed upon the pri-
mary mechanisms of respiration. Phonation, the process of producing voiced speech, entails
the aeroelastic interaction of the vocal fold tissues with the glottal air�ow ultimately gen-
erated by pressures within the lungs. Consequently, the relevant anatomy and physiology
of respiration, determines the �ows and pressures for phonation. The mechanism which
determines the pressures is now discussed. It is seen in Figure 2.1 that the dozen pairs
of ribs impart the general volume to the thorax, the cavity of the torso superior to the
diaphragm. Anteriorly, the ribs cartilaginously attach to the sternum. Posteriorly, the ribs
have arthroidal articulation with the thoracic vertebrae. These connections ensure that
the motion of the ribs contributes to the volumetric expansion and contraction of the tho-
racic cavity. The lungs move with the boundaries of the thoracic cavity due to the pleural
interface between the lungs and the deep tissues of the thoracic cavity wall.

The pleural structure of the pulmonary organs located within the thorax is shown in
Figure 2.2, and, a schematic of thoracic pressures and their origins is supplied in Figure
2.3. The lungs are not supported with ligament or cartilage, rather, it is the combination
of tissues and �uids which allows the shape of the lungs to be determined by the tho-
racic volume. The deepest layer of the thoracic wall is lined by the parietal pleura. The
super�cial-most layer of the lungs is lined by the visceral pleura. Regions of the pleural
linings and their relations are displayed in Figure 2.2. The visceral and parietal pleurae are
continuous with each other and adhere by surface tension due to the �uid between their
tightly conforming surfaces. The negative pleural pressure is maintained because the intra-
pleural space is sealed and separated from atmosphere. At rest, thoracic volume exceeds
pulmonary volume. Contraction of the diaphragm, which imparts an upward displacement
to it, as shown in Figure 2.4, also enlarges the thoracic cavity in a superior-inferior di-
rection. Elevation of the ribcage enlarges the ribcage in the transverse dimension. The
pleural lining transmits these forces from the thoracic wall to the lungs. The regions of
the parietal pleura are identi�ed by location in Figure 2.2. The mediastinal pleura covers
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the mediastinum, the cavity occupied by the heart. The diaphragmatic pleura covers the
diaphragm. The apical pleura covers the superior-most region of the ribcage. Finally, the
costal pleura covers the inner lateral surface of the ribcage. In early development, the lungs
completely �ll the thorax but the ribcage grows more rapidly than the pulmonary tissues,
so a negative intrapleural pressure is established.

Diaphragm

Mediastinal pleura
Costal pleura

Apical pleura

DiaphragmaticRibcage

Abdominal

Parietal pleura
Visceral pleura

wall

pleura

Regions of Parietal pleura

Figure 2.2: Thoracic cavity, sagittal section anterior view (adapted from [31, 84,
98]). Regions of parietal pleura are identi�ed by location. These are shown in relation
to the ribcage, diaphragm, abdominal wall, and torso.

The bulk movement of air is due to muscular interaction which causes volumetric change in
the volume of the thoracic cavity, which, in turn, causes a volumetric change in pulmonary
volume. The structure and function of the pleural linings ensure that the lungs conform
to the volume of the thoracic cavity and therefore expand and contract in unison with it.

The chondral tissue of the costal cartilage permits signi�cant movement of the ribs,
and the joint at the spinal attachment enables the ribs to rock laterally and anteriorly
in respiration. The �oating ribs, the inferior-most pair, articulate with the eleventh and
twelfth thoracic vertebrae, however, are joined to the sternum via connective tissue. The
actions of the respiratory muscles displayed in Figure 2.4 serve to reduce thoracic volume
upon exhalation and to increase thoracic volume upon inhalation. Elevators of the ribcage
cause the ribs to rotate superiorly and therefore increase the sectional area of the thorax in
transverse section therefore increasing the thoracic volume. Depressors of the ribcage e�ect
the opposite outcome. During inhalation primary and auxiliary respiratory muscles elevate
the ribs and �atten the diaphragm. In exhalation primary and auxiliary respiratory muscles
depress the ribs and elevate the diaphragm. When the ribs are elevated or the diaphragm
depressed, possibly in concert, thoracic volume increases. Increase of lung volume causes
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Figure 2.3: Schematic of thoracic pressures (adapted from [92, 98]). Q is the
volumetric �ow rate in the trachea determined by the alveolar pressure Palveolar and
the fact that velocity of air within the lung is approximately stationary. Ppleural is the
pressure which prevails in the intra-pleural space. Subscripts t and d refer to thorax
and diaphragm respectively. LabelsM , k, b, and P refer to mass, elasticity, damping,
and pressure respectively. The dynamics of the thorax and diaphragm are due to the
viscoelastic tissues and the masses of the supporting structures and the pressures
generated by muscle activation of the muscle tissues of the thorax and abdomen.

atmospheric air to enter the pulmonary organs. The outward and upward motion of the
ribs is possible because of the spinal articulation and the general con�guration of the
protagonistic muscles of the torso which are recruited. The outward movement of the ribs
as they are elevated resembles the outward swing of a raised bucket handle. The reverse
is true for exhalation.

The number of muscles recruited for inspiration and expiration increase with demand
for greater volumetric change of the pulmonary volume. However, the diaphragm alone
is able to provide volumetric adjustment which is su�cient for quiet breathing. The di-
aphragm, a sheetlike structure oriented approximately transversely, is the primary muscle
of respiration. It is the inferior separation of the thoracic cavity from the abdominal cav-
ity. It comprises an aponeurosis, a central tendon, which is punctured by three hiatae,
which allow communication between abdominal and thoracic cavities. It is surrounded by
muscle extending radially and inserting along the lower margin of the ribcage at ribs 7 to
12 along inner borders of to the costal cartilage, and at the sternum at the xiphoid process
and dorsally to the lumbar vertebrae 1 to 4. Contraction of the diaphragm displaces the
central tendon simultaneously inferiorly and anteriorly. This causes a volumetric increase
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Figure 2.4: Action of respiratory muscles (adapted from [31]), (a) at rest, (b) during
inhalation, and (c) during exhalation.

of the thoracic cavity by expanding the ribcage superiorly along a superior-inferior axis.
Relaxation of the diaphragm reduces the volume of the thoracic cavity along the same axis.

There are some capacities, volumes, and pressures of respiratory system which are
worthy of note. Again, with reference to the schematic of Figure 2.3, there is contrast
between quiet and forced inspiration as well as passive and active expiration. Forces
inherent in tissues due to their elasticity restore the thoracic cavity to some neutral position.
Muscular e�ort is expended to decrease thoracic volume beyond this rest state. Quiet tidal
respiration is approximately one half litre per cycle. Tidal volume is the volume of air
exchanged per cycle of respiration. Residual volume is quantity of air which may not be
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expelled it is the volume remaining in the lungs after a maximum exhalation. Inspiratory
reserve volume is volume which may be inhaled after a tidal inspiration. Expiratory reserve
volume is resting lung volume, the volume of air which may be expired following a passive
tidal expiration. The vital capacity is the volume of air which may be inhaled following a
maximal exhalation. The vital capacity is the lung capacity available for speech. Functional
residual capacity is the volume of air at the end of passive exhalation. Inspiratory capacity
is maximal inspiratory volume possible after tidal expiration. Total lung capacity is the
sum of inspiratory reserve volume, tidal volume, and expiratory reserve volume.

Phonation is produced by egressive glottal �ow. Consequently, it is the pressures of
the thorax which are generated in expiration which are of interest. The pressures which
prevail externally are atmospheric. Subglottal pressure exists immediately inferior to the
VFs. Alveolar pulmonic pressure Palveolus is lung pressure. Pleaural pressure refers to
intraplearal pressure, and it is always negative in adults. The pressures generated by the
tissue displayed in 2.3 cause the chest wall to recoil and return to a stasis determined by
the muscles of the torso, cartilage, bronchi, bronchioles, blood vessels, and elastic tissue of
the lung. Phonation for speech typically entails steady lung pressure and steady volumetric
�ow rate. The onset of phonation is achieved when the transglottal pressure, the di�erence
between epilaryngeal pressure and subglottal pressure attains some threshold value. The
subglottal pressure required to produce speech of a steady intensity is relatively �xed.
Subglottal pressure may be adjusted to e�ect syllabic stress. Utterances are su�ciently
short so lung recoil need not be checked but merely supplemented by the contraction of
expiratory muscles to force air past a normal breathing level; the thoracic muscles are
recruited to ensure that the desired intensity is obtained. The structure of the larynx
and vocal folds is now discussed leading up to the detailed discussion of the mechanism of
phonation.

2.1.2 The Larynx and the Vocal Folds

The larynx is a musculo-cartilaginous structure; it comprises cartilage, ligament, muscle,
and is lined with mucous membrane. The larynx is located within the neck at the superior
end of the trachea as shown in Figure 2.1. It is suspended from the hyoid bone. The rigid
structure is due to three paired and three unpaired cartilages bound by ligaments. The
geometry of the cartilages exhibit re�ective symmetry through the midsagittal plane. Three
generate the structure of the larynx and articulate only slightly with respect to each other
and three exist in pairs and allow greater articulation of tissues. The larynx is supported
and positioned by the extrinsic musculature, those muscles which originate externally to the
larynx but insert on the larynx. The intrinsic laryngeal muscles, those which originate and
insert on the laryngeal cartilages, are responsible for the �ne adjustments of the laryngeal
cartilages which are essential for speech production.

The vocal folds are bands of mucous membrane, connective tissue, and muscle which are
located within the larynx in the path of the pulmonic �ow; The vocal folds are attached to
the larynx in a manner that they may completely constrict or interrupt the pulmonic �ow.
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The vocal folds are capable of strong and rapid closure in response to threat of intrusion
by foreign objects. Three pairs of muscles are responsible for adducting and one pair of
muscles for abducting the vocal folds.

Amongst the non-speech functions are coughing, a re�exive response of respiratory tis-
sues to the presence of foreign material. Coughing is a forceful evacuation of the respiratory
passageway; deep inhalation through widely abducted folds, tensing and tight adduction
of folds and the elevation of the larynx, and followed by forceful expiration where the high
subglottal pressure blows the vocal folds apart under a maximal air�ow. Another non-
speech function is abdominal �xation, a capturing of air within thorax to provide �xed
structure for muscles achieved by a large respiratory charge and tight adduction which fol-
lows a deep inspiration. It is, of course, the speech functions which are of interest herein.
The remainder of this subsection provides a more detailed discussion of the larynx and the
vocal fold morphology and histology.

The Larynx

Figure 2.1 places the larynx in the context of the gross anatomy of the respiratory system.
The extrinsic musculature which supports the laryngeal structures is shown in Figure 2.5.
Further, the cartilaginous tissues which comprise the larynx are shown in exploded view
in Figure 2.7. Figure 2.6 shows the natural con�guration of the vocal folds, in which the
cartilages are shown with the intrinsic ligaments and connective tissues. Finally, Figure
2.10 exhibits the deep tissues of the larynx in coronal section.

Mandible

Manubrium of
 sternum Scapula

Clavicle

Skull Styloid process
Mastoid process

Hyoid bone
Sternothyroid muscle
Sternohyoid muscle

Omohyoid muscle
Thyroid cartilage
Cricoid cartilage

Thyrohyoid muscle

Digastricus muscle,

Stylohyoid muscle
Hyoglossus muscle

posterior head

Digastricus muscle,
posterior head

Geniohyoid muscle
Milohyoid muscle

Trachea

Figure 2.5: Anterolateral view of extrinsic muscles of the larynx (adapted from
drawings prepared by Harold Lumby in [35]).

The cartilages of the larynx are linked by connective tissues, by median and lateral
thyroid ligaments, and by the thyroid membrane. Cartilages are lined with membrane.
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Figure 2.6: Laryngeal structure displaying cartilages and ligaments in (a) antero-
lateral view and (b) posterior view (adapted from [84, 98]).
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The extrinsic ligaments provide attachment between hyoid and trachea and cartilages of
the larynx. The thyroid membrane lies between the greater cornu of the hyoid and the
lateral thyroid. The lateral thyroid ligament connects superior cornu of thyroid to posterior
tip of the greater cornu of the hyoid. Referring to the cartilaginous structure shown in
Figure 2.6, the tracheal rings of the trachea are conjoined via �rboelastic membrane. The
larynx is immediately superior to the most superior tracheal ring. The larynx is parallel
to cervical vertebrae 4 to 6 in adults. The average length of the trachea is 36 [cm] in
females but 44 [cm] in adult males. Intrinsic ligaments interconnect cartilages of larynx
and support laryngeal cavity and vocal folds. The inferior-most cartilages of the larynx
is the cricoid, from Greek krikos, ring, meaning ringlike or ringform; it is a full ring with
posterior wider than anterior. The thyroid cartilage, the most substantial of the laryngeal
cartilages, is located superiorly to the cricoid, it articulates with it at the cricothyroid joints.
The paired arytenoid cartilages articulate with the cricoid cartilage on its superior surface.
The joint provides a signi�cant range of motion. The arytenoid cartilage is the location for
attachment of vocal folds. The corniculate cartilages are located on superior surfaces of
arytenoids. Not shown are the cuneiform cartilages which are located within aryepiglottic
folds providing some rigidity. The triticeal cartilages might not be present, but when they
are, they are located between superior cornu of thyroid and hyoid bones. The epiglottis
is an unpaired cartilage of the larynx. It is shaped like a leaf with its stem attached to
the anterior part of the thyroid cartilage. The epiglottis drops to cover the opening of
the larynx in swallowing, by articulating with the thyroid cartilage at its base. Extrinsic
ligaments provide attachment between hyoid trachea and cartilages of larynx, these are the
cricotracheal ligament, median thyroid ligament, hyoepiglottic ligament, lateral and medial
glossoepiglottic ligaments. The cavities of the larynx are most clearly depicted in Figure
2.10. The aditus laryngis is the entry to larynx from the pharynx above. The anterior
boundary of the larynx is the epiglottis. Lateral margins of the aditus are aryepiglottic
folds. The �rst cavity of the larynx is the vestibule, the space between the aditus and
the ventricular folds. The vestibule is wide at aditus and narrows to the region between
ventricular folds. The lateral walls are the aryepiglottic folds. At the posterior walls,
membrane covers the arytenoid. The false folds are made up of mucous membrane and
�brous vestibular ligament. The false folds do not have muscle to adjust their con�guration.
The laryngeal ventricle, the glottis, is approximately 20 [mm] wide at rest, its posterior is
8 [mm] wide. The glottis is de�ned as the space between the vocal folds.

The paired arytenoid, meaning pyramidal, contact the superior posterolateral surface
of the cricoid cartilage and provide the mechanism for onset and o�set of voicing, for
adduction and abduction of the vocal folds, i.e., the muscular adjustments necessary to �x
the vocal folds in either a closed or open con�guration. Their inferior surfaces are concave
and they articulate with convex arytenoid facet of the cricoid cartilage. Vocal processes
project anteriorly and the posterior portion of vocal folds attach here. The muscular
process is the lateral projection and is the point of muscular attachment of abducting and
adducting muscles of the vocal folds. Interestingly, the hyoid bone is the only bone of
the body not attached to another bone. It forms a union between tongue and laryngeal
structure, and it articulates loosely with the superior cornu of thyroid.
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Figure 2.7: An exploded anterolateral view of laryngeal cartilages displaying the
primary cartilages of the larynx, which impart its structure (sketches of cartilages
photographed in [20]).

It is worth repeating that the extrinsic laryngeal muscles originate on structures out-
side of the larynx and insert on laryngeal cartilages. The intrinsic laryngeal muscles have
both origin and insertion on laryngeal cartilages. Whereas the extrinsic laryngeal muscles
e�ect major adjustments to the larynx, elevation and depression motions of tongue, and
swallowing, �ne adjustments to vocal mechanism are achieved by the intrinsic musculature.
Furthermore, because the lateral boundary of the glottis is determined by the vocal fold
tissues slung between the thyroid cartilage and the arytenoid cartilage, and the arytenoid
cartilages articulate relative to the cricoid cartilage, any adjustment of the arytenoid carti-
lage must modify the vocal fold con�guration and, therefore, the nominal glottal geometry.
The intrinsic muscles of the larynx indeed achieve the �ne adjustments required for voiced
speech and phonation in particular; they e�ect a continuum of open and closed glottal
con�gurations and some a�ect the mechanical properties of the vocal folds by tensing and
relaxing along the axis of the medial fold boundary. The structure and function of the in-
trinsic laryngeal muscles responsible for vocal fold con�guration will be discussed here, but
the function of the muscles responsible for the modi�cation of the mechanical properties
will be discussed in the immediately following subsection of �ne vocal fold morphology.

The intrinsic muscles of the larynx which are relevant for speech are adductors and
abductors of the vocal folds as well as the muscles which contribute to the mass and mod-
ify the sti�ness of the vocal folds. These muscles and their actions are shown in Figures
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2.8 and 2.9. There are three adductors, the paired lateral cricoarytenoid, the transverse
arytenoid, which is unpaired, and the oblique arytenoid. There is a lone abductor, and it
is a paired muscle, the posterior cricoarytenoid. The cricothyroids are subdivided into the
pars recta and the pars oblique, their action is to lengthen or tension the vocal folds. The
cricoarytenoid muscles originate on the cricoid cartilage and insert on the arytenoid carti-
lages. The action of the cricoarytenoid muscles a�ects pitch by either modifying the length
or the tension of the vocal folds. The transverse and oblique are interarytenoid muscles in
that they both insert and originate on the medial surfaces of the arytenoid cartilages, and
thereby serve to adduct the vocal folds. The intrinsic muscles which form the mass of the
vocal folds are the thyroarytenoid muscles, and are displayed in Figure 2.8 and in coronal
section in Figure 2.11. The thyroarytenoid muscles originate on the thyroid cartilage and
insert on the arytenoid cartilages. Each muscles has two heads, the thyrovocalis is the
medial head and the thyromuscularis is the lateral head. The thyroarytenoid muscles form
the bulk of the vocal fold mass and structure and control tension, elasticity, and adduc-
tion of the VFs. The thyroarytenoid muscles, the interarytenoid muscles, and the lateral
cricoarytenoid muscles are innervated by the recurrent laryngeal nerve. The cricothyroid
muscles are innervated by the superior laryngeal nerve. With the musculo-cartilaginous
framework of the larynx in place, a more detailed description of the vocal folds is possible.

Glottis

Thyrovocalis muscleNotch of
thyroid cartilage 

Vocal process of
arytenoid cartilage 

Muscular process of
arytenoid cartilage 

Apex of arytenoid
cartilage 

Thyromuscularis muscle
Vocal ligament

Cricoid cartilage

Thyroid cartilage

anterior

posterior

Figure 2.8: Superior view of intrinsic muscles of the larynx and their roles in the
articulation of the laryngeal cartilages to abduct and adduct the vocal folds. (adapted
from [84]).

Morphology and Histology of the Vocal Folds

The immediately preceding section conveyed the overall laryngeal structure. The structure
of the vocal folds may be placed in this context. The vocal folds are bands of mucous mem-
brane, connective tissue, and muscle, speci�cally the thyrovocalis muscle, slung between
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Posterior cricoarytenoid muscles Transverse arytenoid muscles

Lateral cricoarytenoid muscles

Figure 2.9: Superior view of glottis including glottal con�gurations due to activa-
tion of various intrinsic muscles of the larynx to articulate the laryngeal cartilages
to abduct and adduct the vocal folds. (adapted from [84]). The posterior cricoary-
tenoids abduct the arytnoid cartilages, causing the vocal folds to open. The Lateral
cricoarytenoid muscles adduct and rotate the arytenoid cartilages, bringing the VFs
together. The transverse arytenoid attaches on each side to the whole length of the
dorsolateral ridge and the dorsomedial surface of the arytenoid. It approximates the
arytenoids and thus adducts the vocal folds.

arytenoid and thyroid cartilages. Figure 2.10 displays a coronal section of the larynx in
posterior aspect. The �gure shows the relation of the tissues of the larynx, including the
gross anatomy of the laryngeal tissues, and places the vocal fold tissues in the context of
the overall laryngeal anatomy, together with the spaces and cavities they de�ne.

The vocal folds comprise a layered structure of �ve histologically distinct layers of tissue.
Figure 2.11 exhibits the tissue structure of the vocal folds schematically. The super�cial
layer is a squamous epithelium, meaning that it comprises �attened and scale like epithelial
cells oriented approximately parallel to the surface (in contrast to columnar which are
oriented approximately perpendicular to the surface or cuboidal which are symmetrical).
The tissue is bound to the layer below via basement tissues. The epithelium protects the
vocal fold tissues beneath it and retains moisture to keep the vocal fold tissues moist and
compliant. The deeper layers comprise connective tissues and muscle tissues. The next
deeper layer of tissue is the super�cial lamina propria. The super�cial lamina propria is a
layer approximately 1-2 [mm] thick of unoriented elastin �bres which are able to store elastic
potential energy. Throughout each phonatory cycle, the vocal folds signi�cantly impact
each other, and it is hypothesized that the super�cial lamina propria and its elastin �bres
are able to cushion the vocal folds from impact. Deeper to the super�cial lamina is the
intermediate lamina propria, which is a layer likewise of 1-2 [mm] thickness of elastin �bres
which obtain an anterior-posterior orientation. The isotropy entailed by the orientation
entails that these tissues will elastically deform in one axis but not transversely to the
�bre orientation. The deepest layer of the lamina propria is, aptly identi�ed as, the deep
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Figure 2.10: Posterior aspect of coronal section of larynx (adapted from [32]). This
schematic displays the structure and relation of the cartilages and soft tissues of the
larynx. The vocal folds are shown in an abducted con�guration, open glottis.

lamina propria. It is a layer of collagen �bres approximately 1-2 [mm] thick. Collagen
is comparably sti� and resists extension, consequently, this layer sti�ens the vocal folds
and provides some structural support for the vocal folds. The intermediate and deep
laminæform the vocal ligament. Deeper to these are the tissues of the thyrovocalis and
thyromuscularis muscles, which form the preponderance of the vocal folds. [41, 42, 98]

The paired vocal folds are symmetric about a midsagittal plane. The VFs comprise
multiple and varied layers of tissue. The deepest tissue layers are the muscles of the
vocal folds. Super�cial to these are the ligaments of the vocal folds, and the super�cial-
most layers are the mucosa. The mucosa comprises a layer of epithelial tissue with the
super�cial lamina propria deeper to it. The ligament comprises the intermediate lamina
propria super�cially and the deep lamina propria deeper to it. The muscle tissue is the
tissue of the thyroarytenoid muscle, the thyrovocalis medially and the thyromuscularis
laterally, and hence deeper relative to the vocal fold structure. Table 2.1 suggests, in
light of the morphology and histology of the vocal folds discussed in [41, 42] that several
decompositions into functional groups are useful for understanding and practical from the
standpoint of modelling. In table 2.1, amongst the di�erent approaches to classifying these
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Figure 2.11: Schematic of the histological structure of the vocal folds (adapted
from [84, 98]).

tissues, in the three layer scheme, the epithelium and super�cial lamina propria comprise
the mucosal lining of the vocal fold which protects and cushions the fold. The vocal
ligament is then formed from the deeper connective tissues which give form and structure
to the folds, the elastin of the intermediate lamina propria and the collagen of the deep
lamina propria. In the two layer scheme, the cover comprises the epithelium, super�cial
and intermediate lamina propria. The deep lamina propria and thyroarytenoid muscle,
which impart signi�cant mass and potential sti�ness to the structure is the body.

The lamina propria is subdivided into deep, intermediate, and super�cial based upon
histological properties, in particular, density and compliance due to the collagenous �bres.
A classi�cation of VF tissues into body, comprising thyroarytenoid muscle and deep lamina
propria, and cover, comprising the tissues super�cial to those, i.e., grouping the tissues
as shown in Table 2.1, yields a division more suitable for generating tractable models as
shall be shown in section 2.2 to follow. The body and cover layers of the VF tissues
are grouped in terms of parts with mechanical properties which may be determined by
muscle activation and obtain speci�c mass, in contrast to the cover, which is viscoelastic,
compliant, and a�xed, but loosely to the base body tissue and is capable of motion relative
to the body [12].

The vocal folds are oriented in an anterior-posterior direction. Vocal folds lengths are
typically 15 [mm] in adult males and 13 [mm] in adult females. The muscles of the vocal
folds are varied in length, thickness, and con�guration. The paired arytenoid cartilages
rock and slide to adduct and abduct the vocal folds. In normal breathing, the vocal folds
are fully abducted. The glottis is a variable opening which lies between the vocal folds.
It is approximately 8 [mm] wide at rest. In the myoelastic-aerodynamic theory of vocal
fold motion, the oscillatory behaviour is not due to a muscular action. In fact, it is due
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Table 2.1: Vocal fold tissue layer schemes. [98]

3-layer scheme 5-layer scheme 2-layer scheme

mucosa
{

epithelium
 coversuper�cial lamina propria

ligament
{

intermediate lamina propria
deep lamina propria

}
bodymuscle { thyroarytenoid muscles

to a �ow induced vibration. Subglottal pressures range from 5 to 15 [cm H2O] with peak
glottal volumetric �ow rates of Qpeak between 250 and 750 [cm3/s]. [90]

The motion of the mucosal wave is the primary mechanism of phonation, the source
mechanism by which the vocal folds of the larynx convert egressive pulmonic �ow within
the glottis to sound [12]. The mucosal wave travels along the medial surfaces of the vocal
folds. It is shown schematically in Figure 2.12. The physics of the propagation of waves in
a visco-elastic medium must be examined in the context of tissue biomechanics and what
may be inferred from the histological structure of the vocal folds. For detailed treatment
of tissue modelling, consult Fung's monumental treatise of the biomechanics of tissues [39].
The vocal folds comprise a layered tissue structure, described in detail by Hirano in [41, 42]
relayed by Titze in [98].

Indeed, after an inhalation to charge the lungs preceding the phonatory process, the
vocal folds adduct and completely occlude the trachea. The inspiratory muscles relax
and the tissues of the thorax relax to reduce thoracic volume and increase lung pressure.
This, in turn, increases the subglottal pressure. When the subglottal pressure has increased
su�ciently that the transglottal pressure is above some threshold, the vocal folds are forced
open by the wall-normal tractions due to pressure at the �uid-tissue interface. When a
self-sustaining oscillation is established in the VF tissues, throughout each period of the
phonatory cycle, the propagation of the mucosal wave causes the glottis to evolve in time
and therefore modify the GF at relatively �xed frequency. This is the essence of the
phonatory process which is now discussed.

2.1.3 Phonation and Vocal Fold Dynamics

Speech communication is made possible by pulmonic air�ow, either ingressive or egressive,
modi�ed by the constrictions of the glottis and of the vocal tract. The pulmonic air�ow
is determined by the respiratory muscles and the mechanical properties of the thoracic
tissues supported by the thoracic structure. These establish the air�ow in the trachea as
it enters the larynx. Speech production generates an audible pressure wave by the speaker
which is intelligible to the listener. The pressure wave is generated by a source mechanism
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within the larynx which modi�es the tracheal �ow either due to turbulence at a narrowing
of a passage or due to the impulsive or quasi-periodic motion of the VF tissues. The
acoustical wave generated at the glottis is modi�ed by the resonators and articulators of
the vocal tract superior to the glottis. In voiced speech, it is the quasi-periodic oscillation
of the VF tissues which produces a glottal waveform of particular frequency. This is
phonation. Phonation occurs in the larynx when an egressive pulmonic �ow generated at
relatively constant pressure by the lungs is interrupted by the quasi-periodic self-sustaining
oscillation of the vocal folds. The action of the vocal folds is an aeroelastic response to the
�ow. The vocal fold tissues merely oscillate due to their inherent elasticity and excitation
by the glottal �ow, which originates in the lungs entering the larynx via the trachea and
supplies the energy for the oscillation. Phonation refers speci�cally to the quasi-periodic
opening and full occlusion of the vocal folds which modulates the tracheal �ow to produce
an acoustical source of quasi-steady frequency f0. This is the fundamental frequency of
phonation and it correlates to what listeners perceive as pitch.

Figure 2.12 schematically shows the temporal evolution of the VF tissues in one com-
plete phonatory cycle. The �gure displays a mid-membranous coronal section of the vocal
folds together with corresponding supraglottal view at successive instants of time as the
tissues evolve throughout one phonatory cycle. The onset of voiced sound occurs after in-
halation when the thoracic cavity is in an expanded state. The vocal folds adduct, occluding
the glottis, and maintain a �xed position. Apart from the muscle activation required to
hold the muscles in an e�ectively steady con�guration, the subsequent motion of the vocal
folds is merely a response of the viscoelastic vocal fold tissues to the prevailing �uidic
loading. The thoracic elevators relax and the thorax recoils due to the elastic potential
energy of the thoracic tissues. The pressure generated by the contracted lungs elevates the
pressure on the inferior surfaces of the vocal folds and pushes them open. Once the vocal
folds are initially separated due to the pressure loadings, the tracheal �ow produced enters
the larynx and loads the vocal folds causing them to separate further. The aerodynamic
loading causes an evolving pressure distributions which results in the observed motions.
The vocal folds eventually occlude in response to a suction due to the Bernoulli e�ect at
the narrowing passage, and the cycle repeats. Utterances of longer duration are possible
not merely due to recoil of thoracic tissue, but are aided by the expiratory muscles which
cause the lungs to be contracted beyond their resting position. The wavelike response of
the medial surfaces of the VF tissues is known as the vertical medial mucosal wave, or,
simply, the mucosal wave, because the most signi�cant tissue displacements occur in the
mucosa of the fold. It is worth noting that the mucosa obtain a convergent con�guration
throughout the opening phase and a divergent con�guration throughout the closing phase.

An early description of phonation was presented in 1848 by Johannes Müller, who was
a medical doctor and professor of anatomy and physiology at the University of Berlin who
proposed, in [66], that the vocal folds vibrate the way a membrane �utters in a musical
instrument when it is excited by an air�ow. His physiological characterization is compatible
with the phonatory cycle described above, entirely accurate, but qualitative. A quantitative
theory of phonation was �rst proposed by van den Berg in Myoelastic-Aerodynamic Theory
of Voice Production [102]. The theory suggests that the self-oscillatory response of the vocal
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fold tissues is a consequence of the interaction of the VF tissues and the glottal �ow. The
quantitative investigation of phonation was begun in earnest by van den Berg in the mid-
20th century in [102, 103, 104]. The mechanism of the mucosal wave has been an object
of investigation for quite some time. For example, in [95], Timcke, Von Leden, and Moore
investigate the asymmetry of the mucosal wave in various vocal registers. They determined
that the opening phase is shorter than the closing phase and discuss the asymmetry in terms
of open quotient and speed quotient in relation to variation in pitch and in intensity. The
open quotient, OQ, is de�ned as a duty cycle which identi�es the fraction of one period of
a phonatory cycle throughout which the glottal area is non-zero. The speed quotient, SQ,
is de�ned, for one phonatory cycle, to be the ratio of time to maximal glottal area from
closure and time to close from maximal opening.

More recently, for example in [12], the mucosal wave is described in greater detail and
more quantitatively. It has become clear that phonatory output is a consequence of VF
tension and elasticity, determined by the intrinsic muscles of the larynx in a coordinated
and controlled manner. It must be emphasized that the oscillatory behaviour of vocal
folds in phonation is a passive interaction of glottal �ow and vocal fold tissues and is not a
consequence of periodic activation of laryngeal muscles. The intrinsic muscles of the larynx
are held relatively �xed throughout many periods of the oscillatory cycle.

Titze, in [97], relates the mucosal wave to the body cover model of the vocal folds;
he also identi�es conditions necessary for the condition of propagation of a mucosal wave.
He suggests that to sustain self-oscillatory behaviour, the GF must impart more energy
to the VFs in the opening phase of the phonatory cycle than they dissipate viscoelasti-
cally throughout the cycle. Nominal values for �ow rates, lung pressures, and other �ow
parameters were discussed by Ishizaka and Flanagan [48].

In light of the description of VF morphology in the previous section and the description
of phonation and the mucosal wave herein, it is clear that phonatory outputs are regulated
by the coordination of the musculature of the thorax and larynx subject to the various
mechanical properties of the tissues of the vocal organs. For a comprehensive discussion,
see for example [43]. In particular, the motion of the vocal folds is determined speci�cally
by the tissue density, sti�ness, and viscosity. The capacity for the body to adjust these pa-
rameters allows for variability in the fundamental frequency and loudness of the acoustical
signal produced at the larynx. The vibrating mass of the vocal fold tissues may be modi�ed
through the various adjustments of the intrinsic muscles of the larynx. Speci�cally, VF
tension may be varied by extension of the vocal folds in contraction of the cricothyroid or
by recruitment of the thyroarytenoid muscle. Additionally, �exion of the thyroarytenoid
muscles permits alteration of the sti�ness of the vocal fold tissues without causing the
length of the vocal fold to change [41]. The cover sti�ness, while not determined explicitly,
is in�uenced by longitudinal strains imparted by adjacent structures. The tissue viscosity
itself damps the oscillatory behaviour, and must be overcome by the energy imparted to
the VFs by the GF.

In modal phonation, at conversational intensities, the glottal waveform exhibits a duty
cycle of approximately 50% opening, 30% closing, and 13% completely closed [6]. When
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Figure 2.12: Schematic of vibratory cycle of vocal folds (adapted from [84]). The
schematic displays corresponding pairs of coronal sections and supraglottal views at
di�erent instants throughout a vibratory cycle. The sequence of con�gurations of the
mucosa shown in coronal section is the mucosal wave. The numbering corresponds
to the sequence in which the sections evolve in time throughout one cycle. Con�g-
urations (1) and (7) are closed, con�gurations (3) shows the opening phase; (5) and
(6) are the intermediate phase; and (6) is in the closing phase of the vibratory cycle.
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the vocal folds are tightly adducted, the return to closure is rapid and the glottis remains
occluded for longer period. In additional to the modal register, registers which have been
identi�ed are glottal fry, falsetto and whistle, pressed and breathy phonation, and whisper.
Postures of the intrinsic muscles of the larynx determine the con�gurations necessary to
produce these registers. Pitch is the psychological correlate of frequency, and it is de-
termined by the tension, length, and mass of the VF tissues. These parameters are in
voluntary control of the speaker. The mass distribution is a function of elongation of the
vocal fold [98]. Contraction of the cricothyroid, which e�ects a tilting of the thyroid car-
tilage relative to the cricoid cartilage, causes a shortening of the VFs, and this, in turn,
causes f0 to increase. The thyrovocalis is also a VF tenser, it approximates the cricoid
and thyroid. Flexion of this muscle causes the VF tension to increase, but also reduces
the distribution of mass per unit length of the vocal folds. These competing contributors
to f0 nevertheless allow adjustment. There is also a relation between subglottal pressure,
Ps, and fundamental frequency of phonation, f0. Increasing f0 increases glottal resistance
and, therefore, increases Ps. Loudness is the psychological correlate of sound intensity
(measured as a sound pressure level), and is increased as Ps increases. A doubling of Ps
typically causes a measurable 8-12 dB increase in vocal intensity [91].

In all investigations of phonation and the mucosal wave, there is an interplay between
the clinical measurements and the computational models. However, there are tremendous
obstacles to relating experimental results obtained in vitro to the tissue biomechanics of tis-
sues in vivo. Muscle activation is di�cult to simulate, and the tissues in vitro are not kept
moist and lubricated. These and other di�culties are outlined by, for example, Titze [98].
Determining the mechanisms of self-sustained oscillation of the vocal folds requires charac-
terization of intraglottal aerodynamics. Exactly because the aerodynamics are di�cult to
determine in vivo, and many in vitro studies exhibit the drawbacks mentioned, much of the
current understanding of vocal fold vibration mechanism is a consequence of mechanical,
analytical, and computational models. Section 2.2 is entirely devoted to the modelling
background necessary to undertake computational model development.

2.1.4 Articulatory and Resonatory Organs

The acoustical signal produced in the larynx is modi�ed by articulatory and resonatory
system. Articulation is the process of approximating two or more structures to a�ect or
shape the glottal sound source to produce the intelligible sounds of natural language. The
articulatory system comprises mobile and immobile articulators. The tongue is largest
and most important mobile articulator. It is capable of adjustments of tip elevation and
depression, as well as lateral deviation. The tongue may narrow, a groove may be formed
along its centre, the tongue may protrude and retract. The posterior of the tongue may
elevate or the body may depress. The three immobile articulators are the alveolar ridge of
maxillae, hard palate, and teeth. The cavities of the vocal tract, the oral, buccal, nasal,
and pharyngeal cavities, shape acoustic output. The oral cavity is the most signi�cant
for speech, capable of undergoing the greatest volumetric and geometric alteration at the
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region modi�ed by motions of tongue and mandible. The mouth is the source of orally
emitted phonemes. The lips of the mouth are important for articulation of consonants
and vowels. The velum, attached anteriorly to the palatine extension of the hard palate,
separates oral and nasal cavities. The mandible supports lips tongue and teeth, carries
them to maxillary targets, the lips teeth alveolar ridge, and hard palate.

Figure 2.13 shows a close up of the region of the vocal tract superior to the larynx
shown in Figure 2.1. The articulatory and resonatory organs comprise the structures
and cavities of the upper vocal tract, the region superior to the larynx. This anatomical
placement downstream (in exhalation) of the laryngeal structures enables the modulation
of the laryngeal sound sources. Oropharyngeal, nasopharyngeal, oral, and nasal cavities
are resonating cavities and their geometry is altered by articulation, i.e., the adjustments
of the resonatory cavities and spaces which ultimately �lter the sound produced by vocal
folds in phonation. Figure 2.13 also shows the eight places of articulation, these are speci�c
spaces which may be expanded or contracted in order to produce the consonantal sounds of
natural languages. In natural language, vowels are those sounds produced with a relatively
open vocal tract, the phonatory source is due to the vocal fold vibration, and it is modi�ed
little in the upper vocal tract. Consonantal sounds of natural language are produced from
partial or complete closure when articulators are approximated to articulating surfaces
within the vocal tract. Consonants may include harmonic components of the fundamental
frequency, but they always contain turbulent noise generated as the air�ow is modi�ed by
sudden stoppage, release, or restricted �ow within the upper vocal tract. The anatomy
is described in detail by Dickson and Maue-Dickson [20] and also by Stevens [92], who
additionally describes the physiological mechanism speci�cally as it pertains to speech
modelling.

Ultimately, the acoustical signal produced in phonation, with fundamental, f0, has
many overtones with intensity inversely proportional to frequency [20]. The fundamental
frequency is the physical aspect of the speech signal which is perceived as pitch. The
spectrum of voiced speech contains f0 and higher harmonics. The vocal tract continuously
varies its geometry, so speech spectra of voiced speech are not discrete, they are quasi-
periodic over tens of milliseconds for one particular sound. The transition between sounds
is gradual; the acoustical signal changes from characteristics of one sound to the next on
the order of 40 milliseconds [91].

Nothing more shall be said about articulation in this manuscript. This brief discussion
has been included merely to round out the picture of speech production. In the frame-
work of the linear source-�lter theory of voice production, the volumetric �ow rate of the
glottal �ow is held to be the primary source mechanism which excites the resonators and
articulators of the upper vocal tract. This theory, initially proposed by Fant in [34] and
discussed thoroughly in Stevens [92], requires that the source mechanism, e.g. vocal folds
in phonation, and the vocal tract acoustical �lter are independent of each other, in partic-
ular, that the acoustics of the upper vocal tract do not in�uence the volumetric �ow rate
of the glottal �ow. Despite that this assumption may be called into question [70], that
coupled acoustics must surely modify the dynamical VF behaviour, it shall be assumed
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Figure 2.13: Schematic of articulators and resonators together with places of ar-
ticulation: (1) glottal, (2) pharyngeal, (3) uvular, (4) velar, (5) palatal, (6) alveolar,
(7) dental, and (8) labial (adapted from [74, 84]).

throughout the remainder of this development that the mechanism of phonation may be
investigated independently of the acoustical �eld.

Before proceeding, as an aside, it should also be mentioned that articulatory phonet-
ics, the subject of Stevens's monograph [92], furnishes a general framework to study the
intelligible phonetic sounds of natural language and their production. Ladefoged, in [55],
supplies a detailed account of the mapping between the physiological con�gurations and
the phonatory structures of natural languages. Additional context in terms of natural
language, speech synthesis, and communication theory is furnished in [74]. Again, the dis-
cussion in the remainder of this thesis focuses on the models of phonation in the absence
of the acoustical �eld.

2.2 Approaches to the Modelling of Phonation

The �rst section, Section 2.1, of this chapter introduced the anatomy and physiology of
the vocal organs of the body and the physiological mechanisms involved in the production
of voiced speech. The respiratory organs of the chest together with the structure and
musculature of the larynx are capable to furnish the �ow conditions necessary to incite self-
sustaining oscillations of the vocal fold tissues in phonation. It was brie�y mentioned that
the resonators and articulators modify the acoustical waveform generated at the glottis
to produce the sounds of spoken natural languages. It is the mechanism of phonation
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which is of particular interest herein because the question which this thesis attempts to
address pertains to whether the intraglottal vortices, whose presence has been observed in
simulation and experimentally to form in the closing phase of the phonatory cycle when the
glottis obtains a divergent con�guration, contribute signi�cantly to the observed dynamical
response of the VF tissues. It has been hypothesized that intraglottal vortices determine
negative (gauge) pressures in the intraglottal spaces in the closing phase of the phonatory
cycle near the superior edge of the vocal folds, and that these vortices possess su�cient
strength to incite signi�cant accelerations of the vocal fold tissues due to �uidic loading.
This section attempts to furnish a treatment of glottal modelling and glottal aerodynamics
su�cient to comprehend and appreciate these hypotheses and to place the work of this
thesis within the modelling framework of the existing body of literature of the speech
science community.

Recall Figure 2.12, which displays a simpli�ed schematic of the mucosal wave produced
in one phonatory cycle, the mucosal wave is a consequence of the �uid-structure interac-
tion of the glottal �ow and the vocal fold tissues. The determiners of f0, the fundamental
frequency of VF vibration, are the tension of activated vocalis and cricothyroid muscles
and the compliance of the VF epithelial tissues which cover them, as well as the other
connective tissue of the vocal fold body. Consequently, the tissues may be modelled as
a continuum and characterized by a distribution of density, compliance, and visco-elastic
damping. The GF imparts energy to the tissues, which respond dynamically. The mere fact
that the tissues may be quanti�ed in terms of their geometry and mechanical properties
suggests the desirability of modelling the dynamics of phonation, with the idea that greater
quanti�able and therefore predictive insight and understanding of voiced speech may be
gained. Ultimately, a practical dynamical model of phonation will capture this behaviour,
and will, moreover, model appropriate physical e�ects and therefore suggest relevant phys-
ical causes for the simulated dynamics. It is the goal of this section to describe how such
simulation models may be constructed, especially how they are constructed subject to the
physiological phenomena which determine the actual dynamics of vocal folds in phona-
tion. The overall interaction of glottal �ow and vocal fold tissues is one of �uid-structure
interaction.

2.2.1 Computational Fluid-Structure Interaction

FSI is a burgeoning �eld in engineering [11, 22], with applications, for example, in aeroelas-
ticity [21], design of turbine blades [9, 10], �apping and bending bodies [85], the in�ation
of parachutes [76], and energy harvesting with immersed �exible bodies [4, 77]. Generally,
in problems of engineering, FSI leads to improved design decisions because it sheds light
on processes which lead to fatigue failure of critical components, as well as an improved
understanding of processes which involve the interaction of solids and �uids. More rele-
vant to and aligned with this thesis are the biomechanical applications of FSI techniques;
biological �uid mechanics interact with �exible tissue structures. For example, pulsatile
�ow of viscous �uid through compliant tubes, i.e., cardiovascular hemodynamics, see for
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example [47]. Again, in the context of this thesis, it should be apparent from the devel-
opment of Section 2.1, that the GF-VF interaction is an example of FSI and is amenable
to the methods of computational �uid-structure interaction. The glottal �ow imparts a
�uidic loading to the vocal folds which respond by deforming and thereby alter the �ow and
consequently modify the loading. This process of continuous coupled interaction between
the glottal �ow and the vocal fold dynamics is the focus of this thesis.

Due to the shortcomings of experimental studies, a program of computational studies
in parallel to experimental work and clinical investigation with actual subjects enriches the
collective understanding of the phenomena of interest. In the case of glottal air�ow and
of vocal fold dynamics, real VF tissues have in�nitely many degrees of freedom as tissue
properties are distributed, additionally, real GF is constant viscous Newtonian with uniform
density (phonation is isothermal; the vibration of vocal cords does not cause signi�cant
heating and therefore does not modulate the viscosity of the �uid which, in general, is a
strong function of temperature) but with some compressibility (the acoustical �eld, which
is due to the transmission of compression waves in a �uid medium, in general, requires
the compressibility of the medium). Computational studies may be performed in a way in
which they neglect some e�ects. If the simulation outcomes exhibit no physiological basis
or di�er from experimentally observed behaviours, a measure of con�dence is obtained that
the ignored e�ect is important and may not be discarded. Alternatively, if the discarding
of an e�ect does not seem to impact simulation outcomes, the e�ect may be deemed to be
minor, and subsequent computational or experimental studies may neglect these e�ects.
This is perilous, however, because coupled GF and VF dynamics are highly non-linear, an
e�ect considered to be minor in one context might be signi�cant in another. Nevertheless,
the computational complexity of the overall �uid-structure interaction problem for the GF-
VF interaction requires that simplifying assumptions be made in order that the problem
remain tractable. These assumptions will be carefully stated in model development in
Chapter 3; this is to ensure that the outcomes of the computational study undertaken
herein may be directly related to the assumptions of the model so that the simulated
behaviour may be explained in light of the assumptions to which it is subject.

The vibration of the vocal folds is a consequence of the coupling of visco-elastic tissue
excited by the air expelled from the lungs. It is a problem of FSI in which the air�ow
supplies the energy and the tissue provides a varying boundary determined by elastic
potential energy and viscous damping due to the tissue structure. The problem is di�cult
to solve in a general or complete sense because neither the tissue structure, the geometry of
the glottis, nor the coupled acoustical pressure �elds which modify the �ow are known or
have been characterized completely. Solutions to the problem are subject to computational
limitations due to the approach of the FSI problem, strong dependence on tissue properties
for the visco-elastic tissue deformation problem and boundary conditions for the �uid �ow
problem.

Whereas, full-blown monolithic solvers must recast the FSI problem to a purely nu-
merical basis, the partitioned approach to FSI allows analytical or semi-analytical solution
of part of the problem. In the case of the �uid loading due to the glottal �ow in the
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vocal fold dynamics problem, the �ow �eld, subject to appropriate constraints, may be
written analytically and obtained via a direct numerical computation of various analytical
expressions.

The monolithic approach to FSI problems simultaneously solves a system of equa-
tions derived from the discretization of the governing equations which govern the multiple
phenomena and solves them simultaneously. In a partitioned approach, the solver is de-
composed to treat distinct physical e�ects separately. For example, the physics of the
deforming and displacing vocal fold tissues is treated separately from the loading due to
the aerodynamics of air driven through a deforming channel by an upstream source of
constant pressure and velocity conditions.

The monolithic approach to the problem of glottal �ow and vocal fold dynamics, be-
cause solutions are strongly in�uenced by material properties and boundary conditions
of the �ow, in addition to being computationally expensive, is inherently complex, and
the uncertainties of the boundary conditions and tissue properties yield simulations with
di�cult to justify outcomes. This approach has not been pursued aggressively in the liter-
ature, whereas the partitioned approached with lumped-element models of the vocal fold
tissues coupled to simple aerodynamics models to determine the �uidic loading on the
medial surfaces of the vocal folds due to glottal �ow have been carefully studied and well
established [30, 65].

A signi�cant advantage of the partitioned approach in vocal fold modelling is that it has
fostered the development of increasingly complicated models of the vocal fold dynamics
with increasing explanatory power. The �exibility of allowing simple one-dimensional
Bernoulli solvers, two-dimensional �ow solutions employing ideal �uid, or CFD solutions
of two- or three-dimensional Navier-Stokes equations coupled to tissue models of varying
complexity, has permitted investigators to focus on various phenomena of interest while
providing a basis of comparison with existing models.

2.2.2 Vocal Fold Tissue Models

The structure of vocal fold tissues has been described in Subsection 2.1.2 to be rather com-
plex. To restate this more precisely, the tissues of the vocal folds are nonlinear, viscoelastic,
inhomogeneous, and nonisotropic. Furthermore, signi�cant uncertainty in measured prop-
erties of excised tissue persist because moisture content and muscular activation levels
obtained in-vitro are unlike the actual tissues in-vivo [15, 98]. Additionally, mechanical
properties of the vocal fold tissues are spatially distributed; VF tissue models have in�nitely
many degrees-of-freedom in general, but may be reduced to lumped-element models of sig-
ni�cantly fewer degrees of freedom. Lumped-element models combine a small �nite number
of lumped masses linked by springs and dampers, and they attempt to capture the dis-
tributed VF tissue structure and appropriate physiological behaviour. The validity of this
approach hinges on the serendipitous fact that the most signi�cant modes of vibration
also account for nearly all of the energy exchange between the glottal �ow and vibrational
response of the vocal folds; therefore, the response which is rendered with a small �nite
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number of degrees of freedom is su�cient to emulate the mucosal wave in computational
models with some measure of accuracy.

Amongst the prevailing approaches to the modelling of vocal fold tissues, sophisticated
continuum models. These possess the advantages that they represent relevant physiological
structures via detailed constitutive models with greater �delity than do lower order lumped-
element models. Lamentably, this quality is also to their detriment; whereas, in principle,
their accuracy enables them to be more directly mapped to experimentally measured tissue
properties and to physiological structures, the good measures of tissue properties that
this would require have not been devised. Consequently, many higher order models are
dependent upon parameter tuning, e.g. [81, 100, 105]. This is in contrast to lower order
lumped-element models which merely seek to phenomenologically reproduce the temporal
evolution of glottal waveforms either of minimal projected cross-sectional transverse area of
the glottis or of the mean glottal volumetric �ow rate, the signals of greatest signi�cance in
driving the acoustics of the upper vocal tract. Mapping of parameter values from clinically
observed tissue behaviour to lower-order vocal fold tissue models requires that values be
assigned in a meaningful way to the �nite number of spring rates, damping coe�cients,
and masses which comprise the model. Typically, the biomechanical tissue properties
have been assigned by �tting the behaviour of the model to dynamical response of VF
tissues in clinically obtained visualization of the phonatoy cycle [19]. In investigations
which employ reduced-order VF tissue models, there is an attempt to continually improve
the extent to which the models emulate, in a manner representative of the physiological
vocal sound source, the dynamical behaviour of the vocal fold tissues. The development
of lumped-element models is described at length in the review [13], and, more generally,
within the overall context of speech modelling, in [30]. Consequently, the particular bar-
plate model which is employed in the model developed in this thesis is brie�y described.
The mathematical details of the chosen model are subsequently stated in Section 3.1.1 in
the following chapter.

A lower order lumped-element model of the VF tissues has been selected for the present
study because it has been deemed su�cient to capture the salient features of vocal fold
oscillation in a physiologically representative manner, but, more importantly, because the
model is computationally tractable. The model will allow the rapid computation of many
phonatory cycles. The model employed herein is the bar-plate body-cover model of Titze,
it is displayed schematically in Figure 2.14 below. This has been chosen for its amenability
to the glottal �ow in contrast to block and spring models, which are aerodynamically
unreasonable. The model is a modi�ed version of one initially set forth by Liljencrants,
who had proposed a translating and pitching 2 DOF single-mass model in [59]. This
single-mass would capture the phase of the mucosal wave in the inferior-superior axis, but
would not reveal a transverse phase relationship between body and cover of the vocal fold
tissues in the phonatory cycle. Titze coupled this model to a translating body mass to
add an additional degree of freedom to account for transverse phase between the body and
cover. The lumped-element model which is employed herein is this bar-plate model used
to investigate the regulation of glottal air�ow in phonation by Titze in [99] and Titze and
Story in [100]. This layered body-cover model attempts to capture the layered structure of
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body and cover which is evident in the mid-membranous coronal section of the vocal folds.
Again, the model does this with a surface which is not stepped as in other multi-mass
models, so that it is aerodynamically more reasonable. Three mass models with a single
body mass and a pair of cover masses possess three translational degrees of freedom, but
the surface, where �uidic loadings would be computed, are stepwise discontinuous, and this
introduces unreasonable �ow conditions at the transition between masses.

M

m

Figure 2.14: A schematic showing the layered tissue structure of a vocal fold to-
gether with the 3 DOF bar-plate body-cover lumped-element model of the VF tissues
which attempts to capture tissue structure in an aerodynamically reasonable fashion.
The body mass M models the contribution to the dynamics due to the combination
of deep lamina propria and thyroarytenoid muscles and the massm pitches and trans-
lates with respect to m as the mucosa and intermediate lamina propria would move
relative to the body. The visco-elastic translational and torsional coupling models
the linkages between these layers. The model cannot account for displacement of the
VF tissues in the axial direction.

2.2.3 Glottal Aerodynamics

Most reduced-order computational simulations of phonation employ a one-dimensional
inviscid irrotational incompressible �ow solver and compute the pressure distribution with
the steady one-dimensional Bernoulli equation along the glottal centreline and impress
this pressure condition upon the medial surfaces of the vocal folds. However, phonation is
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the outcome of a �uid-structure interaction of the glottal �ow and the vocal fold tissues
(possibly coupled to the acoustical e�ects due to the articulators and resonators of the
upper vocal tract), and, due to signi�cant variation of geometry within the larynx, viscous
e�ects, for which ideal potential �ow models do not account without ad hoc assumptions
about the presence and behaviour of singularities, cause simulated glottal �ow �elds to
di�er from the observed �ows in the clinic and the laboratory. Consequently, the pressures
which arise in the neighborhood of the glottis and, thereby, modify the aerodynamic loading
of the vocal fold tissues and the resulting behaviour of the vocal fold tissues, are not
adequately captured by these models.

Increasingly realistic �ow solvers which determine glottal �ow �elds coupled to lumped-
element VF models in the partitioned FSI architecture are facilitated by increasing com-
putational power. The drawback of ideal potential-�ow �uid physics centre on the ad hoc
utilization of singularities which are required in the attempt to model viscous e�ects which
are not implicitly captured in an ideal �ow model. The trade-o� of runtime associated
with glottal �ow solvers of higher �delity over potential �ow solvers become less signi�-
cant as computational power increases. Nevertheless, ideal potential �ow models together
with their accompanying ad hoc assumptions have the capacity to elucidate �ow physics
which are otherwise obscured by numerical solvers. They allow investigators to rapidly
test dynamical response to hypothetical conditions.

In the present computational study, an ideal incompressible unsteady two-dimensional
potential �ow solver is developed and coupled to the 3 DOF VF tissue model described
above in Section 2.2.2. To account for viscous e�ects in an inviscid model, ad hoc assump-
tions about the point of �ow separation are employed together with ad hoc assumptions
about the locations and strengths of advecting irrotational vortices to capture the e�ects
of coherent intra-glottal �ow structures. The nature of �ow separation and intra-glottal
vortical structures is examined in the remaining two sections of this background chapter.

2.2.4 Flow Separation and the Glottal Jet

Flow separation is a viscous e�ect. Flow separation of a viscous glottal air�ow occurs
in the presence of an adverse pressure gradient in the closing phase of the phonatory
cycle when the glottis has obtained the geometry of a diverging channel. The results of
an experimental particle image velocimetry (PIV) study of a driven scaled-up mechanical
model of a glottis are shown in Figure 2.15. Flow is from left to right in these images
and the grey areas are the vocal folds. The image shows a sequence of four consecutive
instants in the closing phase of the phonatory cycle; the glottal jet is seen to issue from
the glottis into the quiescent supraglottal region. The jet forms when the glottal air�ow
separates from the surface of the vocal fold at some point at or upstream of the glottal exit
during the closing phase of the phonatory cycle when the glottis has obtained a diverging
con�guration. The glottal jet is initially symmetrical, but, as the glottis closes, the jet
skews and adheres to one of the vocal folds creating a recirculation of �uid between the jet
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and the opposite vocal fold. The roll-up of vortices is also apparent in this recirculation
region; the vortices shall be discussed in the following subsection.
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Figure 2.15: PIV study of glottal �ow in a scaled-up physical model of a driven
vocal fold model at four consecutive instants in the phonatory cycle. Instant (a) is
at t = 0.60Topen, (b) t = 0.70Topen, (c) t = 0.80Topen, and (d) t = 0.90Topen, in
which Topen is the amount of time the glottis is open in a single phonatory cycle.
(Reproduced from [28]).

To account for �ow separation in an ideal potential �ow solver, the point at which
�ow separates from the medial vocal fold surface must be prescribed in an ad hoc manner.
This will be based upon some criterion derived from a physical understanding of �ow
separation in oscillatory �ow, such as that presented in [87]. In early glottal �ow models,
�ow separation was speci�ed to occur at an axial station where the minimal glottal area
is achieved; however, if this approach were employed in the bar-plate lumped-element
model described in Section 2.2.2, the �ow would separate at the inferior medial edge in a
diverging glottal con�guration but would separate at the superior medial edge otherwise.
This would exclude the possibility of pressure recovery in the glottal jet in the diverging
con�guration of the glottis, it would also constrain the computation of pressure on the
medial vocal fold surface; either an ad hoc pressure would be applied in the separation
region or pressure would not be de�ned there. A point of �ow separation on the medial
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surface which moves along the surface would circumvent this de�ciency. Several studies
to assess and determine the moving location of the point of �ow separation have been
undertaken, for example [2, 59, 75]. In [59], Liljencrants proposed another ad hoc correction
in which the separation occurs at a point at which the ratio of the cross sectional area
the point of �ow separation to the minimal glottal area obtains a speci�c �xed value.
In [99], Titze employs a value of 1.2 for this ratio of glottal area at separation to minimal
glottal area. This separation model is employed in the validation of the simulation model
developed herein against the simulation model of Titze described therein. In the extension
of the simulation model which incorporates advecting vortices developed herein, the ad
hoc condition that the �ow always separates at the trailing edge is employed. This is
required to ensure that the pressure perturbation due to the presence of the vortices is
communicated to the portion of the vocal folds near the glottal exit and will be discussed
below.

2.2.5 Intraglottal and Supraglottal Vortices

The discussion of �ow separation in Section 2.2.4 above is critical from the standpoint
of determining the pressure distribution impressed upon the medial surfaces of the vocal
folds because, in an inviscid �ow model, the sole contributor to aerodynamic loading of
the vocal fold tissues is pressure, which is signi�cantly diminished in the separation region.
Moreover, as seen in Figure 2.15, because intraglottal vortices form downstream of the
point of separation of the glottal jet, in order to ascertain the in�uence of intraglottal
vortices, the point on the medial surface of the vocal folds at which �ow separates must
be determined with relative accuracy. That is, the in�uence of intraglottal vortices, if at
all, is due to the presence of intraglottal vortical structures downstream separation.

The precise mechanism which incites the formation of intraglottal vortices has not
been identi�ed [65]. Early studies which suggested the presence of intraglottal vortices
were [107, 109]. More recently, shear layer instabilities in the supraglottal free jet leading
to supraglottal vortices has been observed in [53, 68, 70]. Vortices have been found in
computational studies of the glottal �ow. For example, supraglottal vortices have been
observed in the computational simulations in the investigation of the asymmetry of the
glottal jet in [110]. As well, intraglottal vortices were observed in [107, 108], in which
two-dimensional direct numerical simulations (DNS) of the governing equations for a rigid
channel with deforming obstruction with prescribed motion were performed. Intraglottal
vortices were also observed in unsteady �ow but with a static glottal con�guration in the
computational study [62]. Experimental work has also indicated the presence of coherent
vortical structures, for example, in physical models [28, 70], and, in excised canine laryn-
ges [1, 52, 53, 54, 68]. As has been mentioned, excised tissue is problematic because tissue
moisture does not re�ect in vivo moisture and muscular tension does not re�ect in vivo
tensions, but physical models su�er from the fact that the mechanical properties of the
model may or may not re�ect in vivo or even in vitro tissue properties or structures. How-
ever, physical models and their outcomes do serve to validate simulation codes, especially
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when the modelled behaviour corresponds to an analogous physical model in a meaningful
way.

Khosla et al. [53] performed PIV measurements in a supraglottal mid-membranous coro-
nal plane of excised canine larynges. They identi�ed starting vortices; Kelvin-Helmholtz
(KH) vortices, which are due to shear layer instabilities; and standing and advecting vor-
tices supraglottally with shape and point of origin determined by the instant in the phona-
tory cycle. More recently, in [72], a PIV study of the intraglottal vortices to determine
the parameters which in�uence the mechanism of intraglottal vortex formation have been
performed. Figure 2.16 displays a sequence of consecutive glottal con�gurations in the
closing phase of the phonatory cycle obtained therein. Figure 2.17 displays a simpli�ed
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Figure 2.16: PIV study of intraglottal vortex formation in excised canine larynges.
The PIV data was obtained at a mid-membranous coronal section of the glottis.
The images show a sequence three consecutive instants in the closing phase of the
phonatory cycle. The velocities suggest the formation of coherent vortical structures
in the separations region between the glottal jet and the medial vocal fold surface
near the glottal exit. (Reproduced from [72])

schematic of intraglottal �ow structures observed in their PIV studies in mid-membranous
coronal section of the glottis at some arbitrary instant of the closing phase of the phonatory
cycle. The schematic shows a diverging glottal con�guration, and vortical structures are
observed within the recirculation zones of the separation regions at or near the superior
medial edges of the vocal folds.

In terms of the importance of intraglottal vortices in the study of speech, in addition to
modi�cation of the pressure �eld within the glottis, and, therefore, potentially modifying
the vocal fold tissue response and thereby the glottal waveform [51, 52, 62], the intraglottal
vortices advect into the supraglottal region where they may amplify the e�ects of shear
layer instabilities or otherwise evolve into or interact with the glottal jet to yield vortical
structures in the supragralottal region. These supraglottal vortical �ow structures are able
to in�uence the trajectory of the glottal jet and are hypothesized to be a potential source of
vortex sound as they advect or interact with the tissues and cavities of the vocal tract [65].
In particular, vortices colliding with the walls of the vocal tract may produce a dipole
acoustical source [7].
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Figure 2.17: Schematic which shows intraglottal �ow structures observed in PIV
studies in a mid-membranous coronal section of the glottis shown for an arbitrary
instant in the closing phase of the phonatory cycle (Reproduced from [73]).

Of relevance to this thesis is that Khosla et al. have hypothesized that the presence
of vortical structures is of signi�cance in phonation, in particular, that the presence of
intraglottal vortices leads to a more rapid closing of the glottis reducing the duration of
the closing phase in the phonatory cycle. They have hypothesized that the low pressure
vortex core imparts a negative (gauge) pressure upon the medial surfaces of the vocal folds
inducing the medial surfaces of the vocal folds to be drawn together more rapidly. To
relate the derivative of the glottal waveform in the closing phase, in [36], Fant employs the
source �lter theory of voiced speech to demonstrate that the magnitude of the derivative
of the glottal volumetric �ow rate determines the amplitudes of the formants, peaks in the
frequency spectrum of the speech signal. The glottal area waveform is a strong correlate of
the volumetric �ow rate; the volumetric �ow rate is determined by glottal area together with
transglottal pressures, which may be perturbed by the acoustical �eld due to the presence
of the upper vocal tract coupled to the glottal air�ow. In [52], Khosla et al. correlate the
presence of intraglottal vortices with increased magnitude of high frequency content of the
glottal source. In particular, strong correlation of intraglottal vorticity and high frequency
acoustical energy is shown. Formants of higher amplitude enhance the intelligibility of
voiced speech [36, 92], consequently, there is interest in determining the factors which may
contribute to a more rapid closing phase of the phonatory cycle. If indeed the presence of
intraglottal vortices contributes to a more rapid closing of the glottis, then ensuring that
subsequent speech models incorporate or capture this e�ect would be of interest to improve
model �delity.

Most recently, in [37], a computational model is employed to study the hypothesis that
suction force due to the presence of the vortex is small compared to tissue recoil forces.
therein, a prescribed negative pressure is applied at the medial surface of the vocal fold,
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and the results suggest that intraglottal vortices might have merely a small e�ect on VF
tissue vibration. This is, in part, due to the experimental observations [73] that vortices
only appear for a small fraction of time and quite near the superior edge of the medial
VF surface close to the glottal exit.The results of the simulation suggest that, because
exposure of the medial surface of the VF tissues to the intraglottal vortex is �eeting, that
it does not impact the VF dynamics signi�cantly.

To test the hypothesis that intraglottal vortices in�uence the phonatory dynamics of the
vocal folds in the present thesis, a more physical approach is taken, rather than imposing
an ad hoc pressure correction to the pressure distribution at the medial VF surface. In
order to determine the e�ect of intraglottal vortices upon the dynamics of the vocal fold
tissues, a two dimensional �uid structure interaction problem is solved with a pair of
counter rotating advecting vortices which begin at an initial upstream station and advect
in the axial direction due to prevailing glottal velocity conditions and in�uenced by their
mutual induction. The behaviour of the vocal fold tissues is compared against an identical
case but in the absence of the vortices. The in�uence of the vortices is quanti�ed in terms
of pressure �uctuation on the medial vocal fold surfaces. The dynamical response of the
vocal folds is determined in simulation. The model is developed in Chapter 3, results
of the simulation are presented and discussed in Chapter 4, and recommendations and
conclusions in Chapter 5.
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3 | Model Development

As shown in the previous chapter, speech may be viewed as a system in which a source
of sound is modi�ed by the acoustics of the vocal tract. The act of producing voiced
speech is a complex coordination of thoracic musculature to control respiration, laryngeal
muscles to establish the con�guration and tension of the vocal folds, and the articulators
of the upper vocal tract to shape the glottal source to produce intelligible sound. Despite
the fact that the source mechanism of voiced speech, the elaborate interaction of glottal
�ow with the vocal fold tissues, is in�uenced by the acoustics of the vocal tract, the
phonatory mechanism may be viewed as the source of a fundamental frequency somewhat
independently. Therefore, the modelling and simulation e�ort herein focuses on the vocal
fold tissues together with a model of glottal air�ow subject to steady pressure and �ow
boundary conditions.

In particular, phonation, the primary mechanism of sound source generation in voiced
speech, is due to the modulation of the �ow of air from the lungs in the proximity of
the glottal constriction. The quasi-periodic modulation of the glottal area is due to the
excitation of the VF tissues by the glottal �ow. There are additional sound source mecha-
nisms at the glottis such as the generation of turbulence near a partial obstruction or the
generation of impulsive modulation of air pressure due to a sudden release of air pressure
as in a glottal stop. Nevertheless, it is the quasi-periodic self-sustaining oscillations of the
vocal folds and their potentially modi�ed behaviour in the presence of advecting vortices
which are the phenomena of principal interest herein. The primary thrust of this work is to
determine, in a simple and physiologically justi�able manner, whether intraglottal vortices
in�uence the dynamical behaviour of the vocal folds.

To address this research question, a potential �ow model allowing the superposition
of vortices is developed. This chapter details the formulation of the model as well as the
numerical implementation. In addition, the overall simulation architecture is summarized.
To remain consistent with the goal of rapid simulation enabled by a low-order dynamical
vocal fold tissue model, the loading of the vocal fold tissues due to the glottal �ow is
modelled as an incompressible potential �ow. The vocal fold tissue model employed is
the reduced-order bar-plate described in section 2.2.2 described in great detail in [99].
The 1-D potential �ow model proposed by Titze in [99], also described in section 2.2.2,
is extended to include advecting vortices. This 2-D model captures the variability of the
velocity �eld due to the presence of vortices, and, together with the unsteady Bernoulli
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equation, captures unsteady pressure variation on the medial surfaces of the vocal folds as
they pitch and heave and the velocity potential evolves temporally and spatially.

3.1 Problem Formulation

The self-sustaining oscillation of the vocal folds is due to a strongly coupled �uid-structure
interaction. Visco-elastic vocal fold tissues deform under loadings either due to their con-
tact at glottal closure or, when open, due to the aerodynamic loadings induced by the glot-
tal �ow. In their closed state, the vocal folds are subject to surface tractions of visco-elastic
origin due to their mechanical interaction and to wall-normal tractions due to subglottal
and epilaryngeal pressures. In their open state, GF induced loadings generate surface trac-
tions on the medial surfaces of the vocal folds due to viscosity and �uid pressure. The
vocal fold tissues respond to the surface loadings by deforming. Ultimately, the loadings
are determined by the instantaneous vocal fold geometry and local dynamical state, as well
as complex tissue structure and mechanical characteristics.

The problem is formulated as a two-dimensional �uid-structure interaction in which an
incompressible inviscid glottal �ow persists within a con�ned channel. The walls of the
channel are rigid superior to and inferior to the vocal folds, where they are allowed to
deform. The GF determines the pressure distribution on the medial surfaces of the vocal
folds, which are symmetrically disposed about the axis of the channel and permitted to
translate laterally as well as pitch about a fulcrum in order to approximate a mucosal wave.

The present section begins with a presentation of the VF tissue model in order to
frame the ensuing discussion of the glottal �ow model. The GF model follows from a gen-
eral perspective narrowing to the speci�c 2-D incompressible potential �ow model which
is ultimately solved. The contact model is presented in this section, whereas the presen-
tation of the separation model and vortex advection scheme are delayed until the solution
framework employing complex variable techniques is �rmly in place. There is a continual
e�ort to justify the assumptions of the framework in light of the anatomy and physiology
of the speech organs described in the preceding chapter.

3.1.1 The Vocal Fold Tissue Model

The Titze bar-plate model described in Section 2.1.2 has been selected. It captures the
body-cover structure of the vocal folds and the geometry of the glottis suitable to couple
to a 2-D �uid �ow domain. Figure 3.1 displays the planar dynamical model which is now
simply stated. The model captures the trajectories of the VF masses in one particular
mid-membranous coronal section. A coordinate system is imposed with the x-axis on the
glottal mid-plane and oriented in the inferior-superior direction. The y-axis is oriented in
the transverse direction as shown in Figure 3.1. The origin is placed at the axial position
to ensure that the nodal point is con�ned to the y-axis. The distance from the inferior
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Figure 3.1: Schematic of the vocal fold dynamical model. Body massM displaces yb
from equilibrium, plate m displaces y and pitches through angle θ measured counter-
clockwise from equilibrium. Vs is the subglottal velocity.

edge of the vocal fold to the nodal point is denoted by lnode, therefore, the axial coordinate
of the inferior edge of the vocal fold is −lnode. The vocal fold thickness is denoted tVF, and,
therefore, the axial coordinate of the superior edge of the vocal fold is tVF − lnode. These
geometric relations and parameters are reiterated in Section 3.1.2 subsequently.

The dynamical state of the VF tissues is given by y, the lateral displacement of the
node of the right VF from its equilibrium position, yb, the lateral displacement of the
corresponding body mass from its equilibrium position, θ, the angular displacement of the
plate from its equilibrium angular position, and their temporal derivatives, denoted using
the standard �dot� notation. y and yb are taken positive towards the glottal midplane, and
θ is taken positive counter-clockwise. The plate pitches about a fulcrum which coincides
with the nodal point, and the plate possesses a polar moment of inertia. The plate is
mechanically coupled to the node via a torsional spring and damper. It is con�ned to
translate transversely along the y-axis and is coupled to the body mass via linear spring
and damper. The parameters yng and θng locate the absolute neutral glottal translational
and angular positions, and, therefore, the absolute translational position of the nodal
point is y + yng and the angular position of the plate is determined by θ + θng measured
counter-clockwise from the negative x-axis (see Figure 3.5). The mechanical parameters
are gathered in Table 3.1 below. Note that the model is de�ned for the right vocal fold,
shown as the system on the right hand side of Figure 3.1, and a condition of symmetry
is imposed to determine the motion of the left VF; the behaviour of the left vocal fold is
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simply a re�ection of the right through the glottal midplane.

Table 3.1: Summary of model mechanical parameters.

parameter dimensions

M body mass M
m cover mass M
Ic moment of inertia of cover ML2

K translational sti�ness of body MT−2

k translational sti�ness of cover MT−2

κ torsional sti�ness of cover ML2T−2

B translational damping of body mass MT−1

b translational damping of cover MT−1

Bc torsional damping of cover ML2T−1

yng neutral glottal position of node L
θng neutral glottal convergence angle 1

For the system which models the behaviour of the right vocal fold tissues, conserva-
tion of linear momentum for the plate and mass together with conservation of angular
momentum for the plate yield the following equations of motion

m ÿ + b (ẏ − ẏb) + k (y − yb) = Fa, (3.1)
M ÿb +B ẏb + b (ẏb − ẏ) + k (yb − y) +K yb = 0, and (3.2)

Ic θ̈ +Bc θ̇ + κ θ = Ta, (3.3)

which may be cast in matrix form, as a �rst-order dynamical system, as

d

dt


θ

θ̇
y
ẏ
yb
ẏb

 =


0 1 0 0 0 0
−K
Ic
−Bc

Ic
0 0 0 0

0 0 0 1 0 0
0 0 − k

m
− b
m

k
m

b
m

0 0 0 0 0 1
0 0 k

M
b
M

−K+k
M

−B+b
M




θ

θ̇
y
ẏ
yb
ẏb

+


0
Ta
Ic

0
Fa
m

0
0

 (3.4)

in which Fa and Ta are aerodynamic loadings which vary temporally and are functions of
the geometry and boundary motions determined by the dynamical state of the VF tissues.
The forcing terms, Fa and Ta are integrated surface tractions which arise due to the glottal
�ow. In the absence of viscous forces, given that the plate is con�ned to translational
motion, the resultant force acting on the plate may be determined by

Fa =

∫∫
Σ(t)

P (~x, t) (−n̂) · ̂ dS (3.5)
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in which the pressure �eld at time t, P (~x, t), is de�ned for all positions ~x throughout the
�ow domain, and the integral is taken over the medial VF surface, denoted by Σ(t) at
instant t, with surface normal n̂ taken to be positive when oriented into the �ow domain.
The dot product with ̂ recovers the projection of the resultant force in the transverse
direction. In order to obtain the pitching moment about the nodal point, de�ne moment
arm ~r = ~x − (0, y + yng, 0) which gives the position ~x relative to the nodal point. The
pitching moment of the right medial vocal fold surface is therefore determined by

Ma =

∫∫
Σ(t)

~r ×
(
P (~x, t) (−n̂)

)
dS. (3.6)

Details of the determination of the glottal �ow and, therefore, equations (3.5) and (3.6)
follow subsequently.

3.1.2 The Glottal Flow

Broadly speaking, the glottal aerodynamics are determined by the properties of the �uid,
the geometry of the �ow domain, and the strain rate of the boundary of the �ow do-
main. The properties of the �uid are taken to be those of dry air at standard pressure and
temperature. These assumptions are valid insofar as glottal �ow is dry, steady, and incom-
pressible. This is not strictly the case, as air coming from the lungs is approximately at
37◦C and saturation relative humidity [49]. Nevertheless, the consequences of this assump-
tion are not dire because the forces due to the transglottal pressure gradient determined
by the di�erence of epilaryngeal pressure, Pe, and subglottal pressure, Ps, drive the glottal
�ow and dominate any body force or buoyancy e�ect arising from density variation. Body
forces due to gravity are discarded and, hence, body forces are not incorporated into the
expressions of the governing equations developed below. These parameters of the glottal
�ow, together with subglottal velocity, Vs, and vortex strength and spacing, Γ and a, of a
pair of symmetrically disposed advecting vortices are gathered in Table 3.2. The param-
eters and their roles in the simpli�ed model of glottal �ow shall be discussed in greater
detail subsequently.

The boundary ∂Ω (t) of the �ow domain Ω (t) is collocated with the �uid-solid interface
determined by the boundary between the cavities and tubes comprising the respiratory and
vocal tracts and the bodily tissues which de�ne them. Boundary conditions will be imposed
at ∂Ω (t) both in the glottal �ow model and in the vocal fold tissue model. To reiterate,
the GF determines the BCs for the dynamical VF tissue model and the dynamical state of
the VF tissue model feeds back to determine the BCs for the GF problem on the boundary
determined by the VF state. Finally, if �ow velocities are su�ciently small, the �ow may be
assumed to be incompressible. Maximal glottal �ow velocities are approximately an order
of magnitude smaller than the speed of sound in air at standard conditions. Furthermore,
whereas compressibility e�ects are necessary for acoustics, the glottal simulation presented
herein is uncoupled from the upper acoustical tract. Consequently, the compressibility of
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Table 3.2: Aerodynamic parameters and their dimensions

parameter dimension

ρ �uid density ML−3

Ps subglottal pressure ML−1T−2

Pe epilaryngeal pressure ML−1T−2

Q volumetric �ow rate M3T−1

Vs subglottal velocity LT−1

Γ circulation due to a vortex L2T−1

a vortical spacing of symmetric vortex pair L

the �ow shall be neglected in the present model. These assumptions combine to yield a
general description of the glottal �ow on domain Ω (t) embedded in R3 shown in Figure
3.2 subject to appropriate boundary conditions applied at ∂Ω (t) and governed by the
Navier-Stokes equations in the absence of body forces,

D~v

Dt
= −1

ρ
∇P + ν∇2~v and (3.7)

∇ · ~v = 0, (3.8)

in which ν is kinematic viscosity and ρ is �uid density. Both equations are de�ned on Ω (t)
at time t and are subject to the boundary condition, in which ~vΣ is the wall velocity,

~v · n̂ = ~vΣ · n̂ (3.9)

which holds on the portions of ∂Ω (t) corresponding to the wall, and subject to a far �eld
condition on the velocity,

~v = Vs (3.10)

which holds at the inlet. The governing equations together with the boundary conditions
determine an incompressible velocity �eld ~v and concomitant pressure �eld P for a particu-
lar con�guration and dynamical state of the boundary. Far �eld conditions on the pressure
�eld, Ps and Pe, to enable its determination will be discussed after the model is su�ciently
specialized.

The discussion has thus far framed a 3-D �uid-structure interaction problem in which
an appropriate material model is coupled to a �uid model, and the �uid generates tractions
which load the structure and cause it to displace with some velocity. The deformed struc-
ture, in turn, modi�es the con�guration of Ω (t), and, therefore, the �ow and subsequent
surface tractions which develop at the immersed solid boundary. Hence, the model has
signi�cant complexity due to the multi-physical nature of the problem. Additional com-
plexity arises from mismatch of temporal scales; �uid structures may evolve and advect at
rates which di�er signi�cantly from the natural frequencies corresponding to the dynamical
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Figure 3.2: The general 3-D FSI problem with an internal �ow on Ω (t) and deform-
ing boundary ∂Ω (t), both allowed to vary temporally. The boundary is decomposed
into patches Σinlet, Σoutlet, and Σwall which identify parts of the boundary of the �ow
domain where various conditions are applied.

behaviour of the tissues. The model is now specialized to the one ultimately employed in
simulation.

In the absence of viscosity, the tangential components and the viscous normal compo-
nents of the surface tractions vanish, and the sole loading of the solid surface is due to
pressures, which impart a component of the traction acting only in the wall-normal direc-
tion. This justi�es the determination of VF surface loadings given by equations (3.5) and
(3.6). Furthermore, this allows the governing equations of the glottal �ow to collapse to
Euler's equations (with no body force as before), namely

D~v

Dt
= −1

ρ
∇P (3.11)

on �ow domain Ω (t) subject to the same BCs as before.

Towards the goal of reducing the spatial complexity of the model for tractability, a
particular representative section in two dimensions of the overall three dimensional geom-
etry is selected. To this end, consider the supraglottal view of the vocal folds in Figure
3.3 below. The glottal geometry is highly complex and three-dimensional. The Reynolds
number of the �ow is not well de�ned at the ends of the vocal folds, and, even if it were, it
would be highly variable from point to point. Consequently, viscous e�ects become more
signi�cant in determining the �ow in these regions. Nevertheless, as was done in Chapter
2, in the development of the tissue model, it may be argued that, because the midsagittal
plane is a plane of symmetry, the variation of the �ow �eld at or near a mid-membranous
coronal section exhibits su�cient similarity from coronal section to coronal section, insofar
as viscous e�ects at the anterior and posterior ends where the vocal folds meet the car-
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Figure 3.3: Vocal folds in open state shown schematically from supraglottal per-
spective. Critical regions of the �ow domain are identi�ed. The glottal �ow may be
approximated as a 2-D �ow in a mid-membranous coronal section. This is due to
the large aspect ratio of the vocal fold geometry. However, this approximation bears
less validity near the critical regions distal to the mid-membrane due to signi�cant
spatial variation of geometry in these regions.

tilages do not account for signi�cant tissue loadings. Taking a mid-membranous coronal
section of the region of Figure 3.2 to be representative, the geometry of the �ow domain
collapses to that displayed schematically in Figure 3.4. The inlet is labelled Σ1, the outlet
Σ3, and the right and left walls are labelled Σ2 and Σ4 respectively. Σ1 and Σ3 are open to
the �ow, and inlet and outlet velocity and pressure conditions apply there. Boundaries Σ2

and Σ4 are rigid, except at the glottal constriction where the vocal folds may pitch about
some fulcrum and translate to and from the midplane of the glottis. Superior and inferior
surfaces of the vocal folds extend and contract transversely to accommodate this motion
but are otherwise �xed axially. With this, the simplicity of a 2-D �ow domain is achieved,
and, together with solution techniques for the computation of 2-D �ows governed by equa-
tions (3.11) and (3.8), this is a suitable simpli�cation from the physiological standpoint,
and, from a mathematical standpoint, highly desirable.
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Figure 3.4: The specialization of the FSI problem depicted in Figure 3.2 to the 2-D
case with an internal �ow on domain Ω with deforming boundary ∂Ω decomposed
into patches Σ. Inlet conditions are applied on Σ1, outlet conditions on Σ3, and
wall-normal relative velocity conditions are applied on Σ2 and Σ4.
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3.1.3 2-D Glottal Flow Model Geometry

To make the geometry of Figure 3.4 more concrete, Figure 3.5 displays the speci�c model
geometry employed in the simulations. The relevant geometric parameters identi�ed in the
�gure are also gathered in Table 3.3 below.

ϑ + ϑ ng

x

y

hs, As he, Ae

flow
y + yng

t  VF

l node

Figure 3.5: Schematic identifying geometric parameters which describe glottal con-
�guration.

The �ow domain is assumed to be 2-D as discussed, the depth into the page is determined
by the vocal fold length l, and is assumed to be constant along the section. Tracheal
geometry is assumed to be of constant width and determined by the subglottal channel
width hs. Consequently, the subglottal cross-sectional area is given by As = hsl. Similarly,
the supraglottal cross-sectional area, also called epilaryngeal area, is determined by the
epilaryngeal channel width he and depth into the page l as Ae = he l. The axial length of
the blockage is assumed to be of �xed length tV F , the vocal fold thickness, and assumed
to be arranged so that the nodal point of the mucosal wave, the fulcrum about which
the plate pitches, is constrained to the transverse axis of the global frame. The inferior
edge of the vocal fold is located at x = −lnode and the superior edge at x = tVF − lnode.
Finally, speci�cation of the neutral con�guration of the vocal folds allows coupling of the
dynamical model to the geometry of the �ow domain and therefore to the aerodynamics
of the glottal �ow. The neutral glottal area, Ang, and neutral glottal angular position,
θng, couple dynamics and geometry in the following way: the dynamics are de�ned in
terms of displacements from equilibrium, but the equilibrium positions are identi�able
geometric parameters, so the actual angular displacement of the medial surface of the
right vocal fold, taken positive counter-clockwise and measured from the negative x-axis,
is θ + θng, which is the equilibrium angular con�guration augmented by the displacement
from equilibrium. Similarly, the equilibrium y position of the nodal point of the right
vocal fold is yng = −hng/2 where hng is the neutral glottal width de�ned by hng = Ang/l,
where Ang. With the displacement from equilibrium, y, determined by the dynamical
equations of motion, the absolute position of the nodal point of the right vocal fold is
y + yng = y − hng/2 = y − Ang/(2l).
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Table 3.3: Geometric parameters and their dimensions

parameter dimension

tV F vocal fold thickness L
l vocal fold length (depth into page) L
As subglottal cross-sectional area L2

hs subglottal channel width, hs = As/l L
Ae epilaryngeal cross-sectional area L2

he epilaryngeal channel width, he = Ae/l L
Ang neutral glottal area L2

hng neutral glottal width, hng = Ang/l L
yng neutral glottal position of node, yng = −hng/2 L
θng neutral glottal angular displacement 1

3.1.4 Boundary Conditions for the 2-D Glottal Flow Model

For the planar �ow domain obtained for the glottal �ow, the governing equations remain
(3.11) and (3.8) but specialized to two dimensions. The boundary conditions must also be
speci�ed in particular for this model. The no-slip condition does not hold because the �ow
is inviscid; the wall-tangent components of velocity are non-vanishing except at stagnation
points; in fact, it is the non-zero velocity which contributes to the determination of the
local pressure �eld at the wall. The no wall-normal �ow condition expressed in equation
3.9 is a consequence of the impermeability of the tissues. We have

(~v − ~vΣ) · n̂ = 0 or ~v · n̂ = ~vΣ · n̂ (3.12)

which expresses the fact that the velocity of the �uid relative to the possibly moving
wall vanishes in the wall-normal direction. For a rigid wall which heaves and pitches,
~vΣ = ẏ̂+ θ̇~k × ~r in which, as before, ẏ is the velocity of the nodal point, θ̇ is the angular
velocity of the plate about its fulcrum, and ~r is simply the position vector relative to the
node of some point of interest along the medial VF surface. Consequently, (~v − ~vΣ) · n̂
becomes

(
~v −

(
ẏ̂+ θ̇~k × ~r

))
· n̂. This may be written ~v · n̂ = ẏ̂ · n̂+

(
θ̇~k × ~r

)
· n̂, which

collapses to ~v · n̂ = ẏ cos θ+
(
θ̇~k × ~r

)
· n̂ where θ is the angular displacement of the medial

VF surface. θ may be taken to be su�ciently close to zero so that cos θ is su�ciently
close to unity. Extreme values of angular displacement observed in simulation have an
approximate range from −5◦ to 20◦, so the assumption of small angles is not entirely
unreasonable. Furthermore, the component of velocity due to rotation is always oriented
in the wall-normal direction, hence, the above condition reduces further to ~v · n̂ ≈ ẏ + rθ̇.
Finally, the velocity of the VF tissue is at least two orders of magnitude smaller than ~v.
Physiologically, glottal �ows obtain a maximal velocity of approximately 40 m/s, whereas
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vocal folds with peak to peak displacement on the order of 1 mm travel on the order of
2 mm per phonatory cycle, and, at nominally 120 Hz, may have an average velocity of
0.25 m/s. The peak velocity may not be much higher. Consequently, a vanishing wall-
normal boundary condition holds approximately. This condition allows complex variable
techniques to be employed without much complication which would otherwise be introduced
by a non-homogeneous von Neumann condition.

Finally, for the geometry displayed in Figure 3.4, the fully simpli�ed glottal �ow prob-
lem requires the satisfaction of the governing equations at each instant of time, namely
Euler's equation for conservation of linear momentum, equation (3.11), and the incom-
pressible continuity equation, equation (3.8), which is a statement of the conservation of
mass appropriate to the assumptions. These equations determine �uid velocity and pres-
sure temporally and in two spatial variables. The boundary conditions on the velocity �eld
are summarized at each instant of time as

~v
∣∣
Σ1

= Vs ı̂ (3.13)

~v
∣∣
Σ3
· t̂Σ = 0, and (3.14)

~v · n̂
∣∣
Σk

= 0 on each immersed solid surface Σk (3.15)

where Vs is the subglottal velocity, that is, the velocity in the upstream far �eld, and t̂Σ
is any unit tangent to surface patch Σ at a point of the boundary. Boundary condition
(3.15) is exact on every rigid boundary and approximate on every moving boundary.

It is physiologically possible to start the �uid from rest. Because the �uid is inviscid
and there are no non-conservative body forces acting on the �uid, if the �uid is impulsively
started from rest, where there is no vorticity, the �ow will remain irrotational. For an ir-
rotational �ow, a velocity potential exists (and its harmonic conjugate, a stream function,
which, in a 2-D �ow, has components related to the potential by the Cauchy-Riemann
equations), and, additionally, because the �ow is incompressible, the divergence of the
gradient of the potential vanishes, that is, the continuity equation yields Laplace's equa-
tion for the velocity potential. Euler's equation, when integrated, will yield the unsteady
Bernoulli equation which may be employed to recover the pressure �eld once the velocity
has been determined from the potential. At each instant, the problem is one which is
amenable to solution via complex variable techniques. This fortuitous combination of out-
comes suggests a determination of the glottal �ow and vocal fold dynamics via temporal
marching where, at each instant, the geometry is determined from the dynamical state, the
�ow is obtained at the given instant via complex variable techniques, the �uidic loadings
of the VF surfaces are obtained from this solution and fed into the dynamical model which
responds over one timestep. The speci�cs of this approach are discussed in sections 3.2
and 3.3. Before proceeding, what follows is a brief discussion of pressure BCs and of the
VF contact model.
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3.1.5 Far-Field Pressure Conditions

For the quasi-steady process of phonation over short durations, lung pressure remains ap-
proximately constant. Consequently, the lungs are approximated as a constant source of
pressure. The trachea is assumed to be e�ectively lossless so that the conditions at the
glottal inlet are steady. Furthermore, because the �ow is inviscid, the upstream velocity
�eld may be assumed to be uniformly distributed and of some �xed magnitude Vs. Phys-
iologically, subglottal pressures are between the minimal pressure required for the onset
of VF vibration, 300 Pa, and some maximal subglottal pressure ultimately determined by
the maximal alveolar pressure of the lungs, possibly as high as 1.5 kPa. The subglottal
velocity, Vs and the subglottal pressure, Ps, furnish inlet boundary conditions for the model
presented above. The downstream boundary condition for pressure, i.e., the condition at
the glottal exit, is the epilaryngeal pressure Pe, which is taken to be atmospheric and sim-
ply set to 0 so that all model pressures are gauge pressures relative to Pe. Downstream
velocity conditions would over-determine the velocity �eld. In particular, equation (3.14)
does not stipulate the magnitude of the velocity �eld at the outlet. Physiologically, the
subglottal pressure and subglottal velocity are determined by the alveolar pressure, which
may be assumed to be the lung pressure PL. The lungs are a constant pressure zero velocity
source. The trachea, bronchi, and bronchioles are assumed to be somewhat lossless, so

PL = Ps +
1

2
ρV 2

s .

The outlet condition is set to Pe, but this would over-determine the pressure. Pe is only set
because it is employed as the pressure loading in the separation region downstream of the
point of separation in the separation model, see Section 3.2.4. It is also the pressure which
determines the �uidic force in the closed condition as well as the transglottal pressure and
the contact force in the collision model of the vocal folds.

3.1.6 The Contact Model

The vocal fold tissues are considered to be in a state of contact when the minimal glottal
area is achieved and remains below some small threshold, Lδ where δ is the minimal
inter-glottal distance between medial surfaces and L is the vocal fold length. In this
case, the glottal �ow is not active and the surface tractions on the VF medial surfaces are
determined by subglottal and epilaryngeal (supraglottal) pressures on the exposed portions
of the medial surfaces as well as a primitive contact model which simply applies a constant
contact force equal to half of the transglottal pressure over the area of contact. The contact
model may be summarized in terms of the pressure distribution over the VF surfaces

P (z) =


Ps, z ∈ Σ sub-contact

P closure, z ∈ Σ contact

Pe, z ∈ Σ supra-contact

(3.16)
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where Pclosure = Phydrostatic = Ps+Pe
2

and the surfaces Σ are shown corresponding to one
of the three possible con�gurations in Figure 3.6, complete closure, partial closure in a
converging glottis, and partial closure in a diverging glottal con�guration.

flow

(a) (b)

flow

(c)

flow

Σ contact

Σ sub-contact

Σ contact Σ contact

Σ supra-contact

Figure 3.6: Possible con�gurations of the vocal folds in contact, (a) complete clo-
sure, (b) partial closure in converging con�guration, and (c) partial closure in diverg-
ing con�guration. Contact pressure acts on the surface patch Σcontact. Subglottal
pressure acts on the part of Σ inferior to contact. Epilaryngeal pressure acts on the
part of Σ superior to closure.

3.2 Towards a Solution of the Problem

The simulation employs a temporal marching scheme in which, at each timestep, given the
current geometry, the �uidic loading is computed based on the solution of the GF problem
together with the current dynamical state, speci�cally wall velocities. The loading is
resolved as a pitching moment and translational force upon the medial VF surface. The
dynamical problem is solved for displacements and velocities of the wall to determine the
next VF con�guration and wall velocity of the con�ning boundary. The dynamics of the
vortices, if they are present, is also computed prior to the next iteration.

3.2.1 Obtaining the Glottal Flow

Due to the structure of the �ow problem, complex variable techniques may be employed.
These are described in Appendix A.

Given the vocal fold con�guration determined by the dynamical model of the VF tis-
sues, together with the velocities of the VF surfaces, tractions due to �uid �ow may be
determined. As discussed in previous sections, the tractions are due solely to pressure and
may be expressed as

P (z∗k) e
−iπ/2 zk+1 − zk

|zk+1 − zk|
(3.17)
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where P (z∗k) is the pressure at the k
th control point along the medial VF surface, i.e., at

z∗k =
zk + zk+1

2

where zk and zk+1 are the initial and terminal endpoints of the kth panel; hence
zk+1−zk
|zk+1−zk|

has
unit magnitude but real and imaginary parts which correspond to x and y components of a
vector parallel to the right medial VF surface and oriented in the downstream direction such
that e−iπ/2 zk+1−zk

|zk+1−zk|
is normal and directed outwards from the �ow domain. Consequently,

positive pressures correspond to a compression of the VF tissue, and negative �uid pressures
(gauge) correspond to a suction on the medial VF surfaces.

For a �ow �eld which is irrotational and satis�es (3.8), the velocity �eld is given by
~v = ∇Φ for an appropriate potential Φ. If the �ow is two-dimensional, complex variable
techniques may be employed to advantage. The rudiments of these techniques are furnished
in Appendix A. The main thrust of the argument follows from the fact that irrotational
�ows yield a velocity potential which allows us to represent the velocity �eld as the gradient
of a scalar �eld. Upon substitution into the incompressible continuity equation, we obtain
Laplace's equation for the potential Φ, namely

∇2Φ = 0.

For the boundary conditions given in (3.9), that ~v · n̂ = 0, we have ∇Φ · n̂ = 0 or simply
∂Φ/∂n = 0 at solid boundaries. At time t, this condition is instantaneously satis�ed on
boundaries of Ω(t) if they are modelled as streamlines of the �ow. The inlet conditions,
(3.10), are prescribed by a uniform velocity. When these conditions prevail, the mere
construction of a real potential is required. The potential has upstream velocity which
is uniformly Vs, the subglottal velocity, and has streamlines which adhere to the parts of
∂Ω(t) corresponding to the immersed solid boundaries of the VF tissues and respiratory
tract walls. This is achieved via conformal mapping techniques, in particular, via the
Schwarz-Christo�el mapping from a horizontal strip where the potential is easy to obtain
to the complicated physical plane.

To elaborate, if F̃ (ζ, t) is a complex potential, i.e., its real part, Re
(
F̃ (ζ, t)

)
= ϕ (ζ, t),

satis�es ∇ϕ = 0 and its imaginary part, Im
(
F̃ (ζ, t)

)
= ψ (ζ, t), is the harmonic conjugate

of ϕ, and, if, additionally, ft is a conformal mapping at time t which maps points ζ in the
auxiliary plane to points z in the physical plane according to z = f (ζ, t), then

F̃
(
f−1 (z, t) , t

)
(3.18)

is a complex potential on Ω (t) with the desired properties.

The temporal evolution of the GF and VF models may be summarized more abstractly.
Suppose U, V ⊆ C are open and X ⊆ U is closed. Construct two families of functions both
indexed by t ∈ [0,∞), namely

F = {ft : X → Ωt ⊆ V | t ∈ [0,∞)}
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and
G = {ϕt : U → R | t ∈ [0,∞)}

in which each Ωt is a closed subset of V , each ft is holomorphic on U with non-vanishing
derivative, each ϕt is the real part of some function which is holomorphic on U , and⋂

t∈[0,∞)

Ωt 6= Ø.

Finally, de�ne a function

Φ :

 ⋂
t∈[0,∞)

Ωt

× R→ R

by
Φ(z, t) =

(
ϕt ◦ f−1

t

)
(z) .

The problem of obtaining the temporal evolution of the velocity �eld may be thought of
as obtaining the families F and G so that Φ may be obtained at each instant of time and
its derivative may be computed as necessary.

f

ξ

η

X

y

x

ζ-plane z-plane

t

U
V

Φ =φt◦ ft
-1

φt

R

Ωt

Figure 3.7: Arrow diagram showing relations between mappings and regions at
instant of time t.

3.2.2 The Pressure Field

In computing the velocity �eld ~v = ∇Φ, where∇2Φ = 0 subject to the prescribed boundary
conditions, a velocity �eld which merely conserves mass has been determined. Equation
(3.11), conservation of linear momentum for an inviscid incompressible �ow in the absence

52



of body forces, is integrated along a curve in the �ow, C(t) at time t to obtain a relation
between the prevailing velocity �eld and concomitant pressure �eld necessitated by the
conservation of linear momentum. It is shown in Appendix B that, once the real velocity
potential is known, the pressure �eld may be obtained as equation (B.24), repeated here,
for global absolute position vector ~x and position vector in the moving frame ~̃x

P
(
~x, t
)

= P0 +
1

2
ρ
(
v2

0 − ‖∇xΦ‖2)− ρ( d

dt
Φ̃
(
~̃x, t
)
−∇xΦ ·

(
~vA + ~Ω× ~̃x

))
in which ‖ · ‖ gives the magnitude of a vector, ∇x is the gradient in the global frame, ~x is an
absolute position in the global frame, ~vA is the absolute velocity of the origin of a moving
frame which is rotating about A with angular velocity ~Ω, v0 and P0 are reference velocity
and pressure, Φ̃ is the velocity potential in the moving frame, and dΦ̃/dt is obtained as
in section B.2.4 likewise in Appendix B. The equation above may be re-written in terms
of the complex analytic framework in which vectors in the plane are geometric images of
corresponding complex numbers. The conjugate of the complex velocity, w, has real and
imaginary parts which correspond to the x and y components of the �uid velocity, the
square magnitude of the velocity is therefore ww, and, �nally, the dot product in terms of
complex variables which represent vectors, may be determined as1

z · w = Re (zw) (3.19)

hence, the pressure equation for the medial VF surfaces becomes

P
(
z, t
)

= Ps +
1

2
ρ
(
V 2
s − ww

)
− ρ

(
d

dt
Φ̃ (z̃, t)−Re (wvA)

)
(3.20)

where vA is a complex number with real and imaginary parts which correspond to the x
and y components of ~vA. Additionally, subglottal pressure, Ps, and subglottal velocity,
Vs, have been substituted for P0 and v0 respectively. Finally z̃ is simply a point along
the medial VF surface relative to a local frame a�xed to the nodal point of the medial
vocal fold surface, i.e., z̃ = z∗ − zfulcrum for some point z∗ on the medial VF surface.
An additional simpli�cation is possible because the �ow velocity is always tangential to
the wall and, therefore, perpendicular to the velocity of the wall due always to rotation,
and this is why the cross-product term has vanished. Thus, to obtain the resultants, the
pressure determined by equation (3.20) is evaluated control points z∗k and added (e�ectively
a midpoint rule to approximate the integral) to obtain the resultant force and similarly for
the pitching moment to be fed into the dynamical solver as described above.

1The dot product of vectors with components (z1, z2, 0) and (w1, w2, 0) is z1w1 + z2w2, and, for corre-
sponding complex numbers z1 + iz2 and w1 + iw2,

Re (zw) = Re ((z1 − iz2) (w1 + iw2)) = Re (z1w1 + z2w2 + i (z1w2 − z2w1)) = z1w1 + z2w2

as required.
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3.2.3 Obtaining the Dynamics of the Vocal Fold Tissues

The system of equations (3.1), (3.2), and (3.3) is solved numerically, given the forcing
functions Fa and Ta at time tk, assumed to be �xed over the short period δt(k), with initial
conditions determined by the state of the system at time tk. This is an explicit formulation
of the dynamical problem. The MATLAB ODE solver ode45 was employed; it is based
on an explicit and adaptive stepsize Runge-Kutta formulation which employs six function
evaluations to obtain 4th order accuracy [60].

To obtain the forcing terms, equations (3.5) and (3.6) are integrated numerically over
the medial VF surface. The surface is discretized into a number of panels of length δL
and width corresponding to the VF length. Control points are located at midpoints of the
panels. Pressure is obtained at the control points via equation (B.18) described in detail
in Appendix B. This integration scheme to obtain the resultant force at some instant is

Fa =

∫∫
Σ

P (~x) (−n̂) dS · ̂ =
N∑
k=1

P (z∗k) L δL (−n̂ · ̂) (3.21)

where N is the total number of panels, z∗k is the midpoint of the kth panel, i.e., the kth

control point, δL is the length of the kth panel, and L is the length of the vocal fold. It is
also worth noting that this tacitly assumes that the intraglottal pressure obtained at the
mid-membranous coronal plane is representative of the pressure obtained along the entire
length of the vocal fold. Recalling Figure 3.3 and corresponding discussion, this is not
actually the case, but a model simpli�cation. Now, when the components of the normal
vector are evaluated by employing the geometry of the complex plane, equation (3.21) may
be written

Fa = Im

(
N∑
k=1

P (z∗k) L δL e−iπ/2
zk+1 − zk
|zk+1 − zk|

)
(3.22)

because the rightmost factor is the negative normal vector, then taking the imaginary part
recovers the projection onto the imaginary axis, that is, the y component of the force. It is
clear that, because Fa is taken as the projection onto the transverse axis, the translational
motion of the VF is one dimensional.

Similarly, for the pitching moment,

Ma =

∫∫
Σ

~r × P (~x) (−n̂) dS =
N∑
k=1

P (z∗k) L δL (z∗k − zfulcrum)× (−n̂) (3.23)

where, zfulcrum is the location of the fulcrum of the plate at some speci�ed location on the
medial surface of the vocal fold, and, also, for two complex numbers which correspond to
vectors, the out of plane component of their cross-product is determined as2

z × w = Im (zw) (3.24)
2For vectors with components (z1, z2, 0) and (w1, w2, 0), their cross product is (0, 0, z1w2 − z2w1), and,
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From the dynamical response of the vocal folds, it is possible to obtain physiologically
relevant metrics such as plots of minimal glottal area, open and closed quotients, etc.. The
dynamical system describes transverse displacement of the system from equilibrium and
corresponding velocities. The velocities are in phase with the motion and are absolute, but
absolute displacements are obtained by superposing the displacements from equilibrium
to the neutral glottal transverse position and the neutral glottal angular displacement.
Absolute positions obtained in this manner determine the overall glottal geometry and the
velocities of points on the boundary of the �ow domain.

3.2.4 A Flow Separation Model

The glottal �ow model is extended in an ad hoc fashion to capture viscous e�ects, specif-
ically �ow separation and the consequent glottal jet structure, as well as the presence of
advecting vortical structures which are discussed in the following subsection.

A �ow separation model is introduced as a modi�ed �ow domain within the geometric
region determined by the tissue model. This is shown in Figure 3.8 as the shaded region.
Flow separation occurs on the medial vocal fold surfaces in the divergent con�guration due
to an adverse pressure gradient in a viscous �uid. The �ow model is inviscid, nevertheless,
an ad hoc determination of a point of separation may be incorporated so that the model
captures some e�ects due to viscosity which would otherwise not be included [59]. At the
point of separation, the structure of the wake is not modelled further, it is merely taken to
remain constant cross-section. The pressure applied to the vocal fold surface downstream
of separation is Pe. The �ow and concomitant pressure �eld in the attached region is
determined in the modi�ed polygonal region as it would be in an attached �ow.

3.2.5 A Vortex Advection Scheme

Appendices A and B furnish the details of the development of this section. The discussion
corresponds to the geometry displayed in Figure 3.9 of the horizontal strip in the auxiliary
plane and the �ow domain in the physical plane related by the Schwarz-Christo�el map
f . At time t, given strip S in the auxiliary plane and �ow domain Ω in the physical plane
with vortices located at z01 and z02 with strengths Γ oriented as shown in Figure 3.9 in
order to cause the induced velocity at one vortex due to the other to mutually advect them
downstream. Locations of vortices in S are determined as

ζ0k = f−1 (z0k) . (3.25)

for corresponding complex numbers z1 + iz2 and w1 + iw2,

Im (zw) = Im ((z1 − iz2) (w1 + iw2)) = Im (z1w1 + z2w2 + i (z1w2 − z2w1)) = z1w2 − z2w1

as required.
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flowflow

(a) (b)

Figure 3.8: A schematic of the separation model. The Schwarz-Christo�el map is
obtained for the shaded polygonal region which represents the separated �ow domain.
(a) shows trailing edge separation and a glottal jet extending downstream. (b) shows
a point of separation at some point on the medial vocal fold surface; the glottal jet
extends similarly downstream.

It can be shown that the complex velocity at ζ ∈ S due to vortices symmetrically disposed
in the channel at ζ01 and ζ02 is

w(ζ) =


Γ1

4
cot (π Im (ζ01)) + Γ2

4i

(
coth

(
π
2

(ζ01 − ζ02)
)
− coth

(
π
2

(
ζ01 − ζ02

)))
, ζ = ζ01

Γ2

4
cot (π Im (ζ02)) + Γ1

4i

(
coth

(
π
2

(ζ02 − ζ01)
)
− coth

(
π
2

(
ζ02 − ζ01

)))
, ζ = ζ02∑2

n=1
Γn
4i

(
coth

(
π
2

(ζ − ζn)
)
− coth

(
π
2

(
ζ − ζn

)))
, otherwise

If the complex potential F̃ (ζ) is known in the auxiliary plane, the complex velocity in the
physical plane may be determined as the z derivative of

F (z) = F̃
(
f−1 (z)

)
that is

w(z) =
dF

dz
=
d F̃

dζ

d f−1

dz
=
d F̃

dζ

1

f ′ (ζ)
= w(ζ)

1

f ′ (ζ)

where ζ = f−1 (z) so

w(z) =
w(ζ)

f ′ (ζ)

∣∣∣∣
ζ=f−1(z)

(3.26)

where w is de�ned casewise above and f is the Schwarz-Christo�el transform which corre-
sponds to the particular �ow domain. Note that the derivative of f is trivial to compute
because the Schwarz-Christo�el transform is de�ned as an integral.

Finally, the quantity of interest may be obtained: the velocity at z in the physical plane
due to vortices located at z01 and z02. The complex velocity at z in the physical plane due
to vortices located at z01 and z02 is w(z) de�ned in equation (3.26) where ζ01 and ζ02 in the
casewise de�nition for w are given by the pre-images of the vortices determined by equation
(3.25) above. The real and imaginary parts of the conjugate of the complex velocity yield
the x and y components of the velocity vector in the physical plane. Consequently, the
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velocities v0k = w(z0k) of the vortices may be obtained and the next positions determined
at time tn+1 according to

z
(n+1)
0k = z

(n)
0k + v0k δt

(n) (3.27)

in which δt(n) = tn+1 − tn.

ξ

η

ζ ζ02

i
Γζ01

flow

x

y

z02

Γz01z

f
Γ Γ

Figure 3.9: A schematic of the Schwarz-Christo�el mapping f between the hori-
zontal strip of the auxiliary plane on the left and the �ow domain within the physical
plane on the right. Points in these regions correspond via f .

3.3 Summary of Overall Simulation Architecture

The overall simulation architecture is shown in the �ow chart of Figure 3.10. A temporal
marching approach is taken in which geometry is obtained based on the current state of the
vocal folds. The geometry determines the glottal �ow, hence the �ow is determined based
upon current geometry, vortex positions, and the freestream. These, in turn, determine
the pressure distribution on the medial vocal fold surfaces. In a closed con�guration,
the contact model determines the pressure distribution on the medial vocal fold surfaces.
The pressures are integrated to obtain pitching moment and resultant forces. These are
the forcing terms of the dynamical model which are solved over one timestep with initial
conditions taken to be the current state. Vortices are advected in parallel. The new vortex
positions and the new dynamical state determine the geometry and velocity potential
become initial conditions for the next iteration. A check is performed to ensure that the
next position of the vortices remain within the next glottal con�guration. Speci�cally,
at each iteration, when the vortices are advected, the new positions are either interior to
the �ow domain or not. In the case the new positions of the vortices are within the �ow
domain, the simulation proceeds; however, if the vortices would end up outside of the �ow
domain at the current iteration, the entire iteration is repeated, but with a timestep of
half the size. This local iteration at the current instant of time is performed until the new
vortex positions lie within the �ow domain. At the beginning of each iteration, there is an
attempt to increase the timestep but not beyond its maximal value. The overall iteration
proceeds until the desired simulation duration has been attained.
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determine geometry of flow domain
from y and θ, t, z fulcrum, h s, and h e

compute pressure, force, and
pitching moment given the
geometry and the dynamics

obtained at the previous iteration,
y and θ, Φ ,  Φ  , and Φ(n) (n-1) (n-2)

advect vortices
over one timestep

to determine
new locations

solve dynamical
model to obtain
new vocal fold
configuration

is new vortex
position outside of new vocal

fold configuration?
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by current
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done
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no
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Figure 3.10: Flow chart of single iteration of simulation. To begin, �ow geometry
is determined from initial conditions and subsequently from values determined at
the previous time. The pressure, force, and pitching moment are computed and
supplied to the dynamical model. Vortex advection is computed in parallel after
geometry is determined. The new vortical positions are tested against the predicted
new geometry, and they must remain interior to �ow domain, otherwise the timestep
is cut in half and the problem iterates until this condition is satis�ed before ultimately
proceeding to the next timestep.
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3.3.1 An Adaptive Timestep

The purpose of an adaptive timestep is not merely for computational stability or for im-
proved runtime to the exclusion of other considerations, but, rather, to optimize runtime
while capturing relevant physical e�ects which occur at multiple timescales. In some sense,
this is similar to selecting a temporal step to ensure stability because larger timesteps
would allow too much motion, and the behaviour of the solution would deviate inaccu-
rately from the true motion of the system. The timestep is selected to be su�ciently small
so that small changes in �ow geometry do not cause large swings in aerodynamic response.
A computation is well conditioned, i.e., computationally stable if and only if small pertur-
bations of inputs do not cause large variability in outputs. The timestep, δt(n) = tn+1− tn,
employed at iteration n of the temporal marching adapts from one iteration to the next to
ensure that the simulation resolves the relevant modelled e�ects with su�cient accuracy.
The timestep is continually determined by mechanical and aerodynamic timescales. In par-
ticular, the timestep is scaled for the simulation to capture the dynamics of the motion of
the medial surface of the vocal folds, including pitching and heaving, and, also, to capture
the trajectories of vortices with su�cient spatial resolution. Because the body mass and
damping are large in comparison with the corresponding cover properties, the body mass,
in any reasonable physical sense, will respond more slowly than the pitching and heaving
of the cover or the displacement of vortices. The larger time constant of the body mass
suggests that resolution of its behaviour does not constrain the timestep; i.e., if the motion
of the vortices and the cover mass are resolved with su�cient accuracy, the motion of the
body mass is surely determined with enough accuracy.

Of concern are the displacements of the vortices and the medial surfaces of the vocal
folds over a single timestep δt. The scales of interest are the maximal speed of advection
of the vortices and the time constants of pitching and heaving of the cover masses. The
maximal vortex advection speed (with units [m/s]) at iteration n may be written as

max
j

v
(n)
vortex,j,

in which j indexes the set of vortices present in the �ow �eld and v(n)
vortex,j is the magnitude

of the velocity of the jth vortex at the nth iteration. The desired timestep must be some
submultiple of the sampling period which assures that a vortex does not advect more than
some fraction of glottal width tV F in a single timestep, and that twice the frequency of the
pitch and heave oscillation are captured. The following timestep (measured in seconds) at
the nth iteration is proposed

δt(n) = tn+1 − tn = C ·min

 t

max
j

v
(n)
vortex,j

, 2π

√
m

k
, 2π

√
Ic
κ

 (3.28)

in which C < 0.5 ensures that the motion of the medial surface is captured without aliasing
and that a vortex displaces at most (1/C)th of the vocal fold thickness from time tn to
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time tn+1. The value C · t

max
j

v
(n)
vortex,j

is the ratio of the allowable vortex advection speed to

the actual instantaneous vortex advection speed. Furthermore, by selecting the maximal
vortex advection speed for the denominator, the smallest possible value of the timestep is
determined to ensure that all vortical motions are captured with adequate resolution. The
remaining two arguments in (3.28) are characteristic periods of translational and angular
oscillation of the cover mass; hence the need for C < 0.5, it ensures that the Nyquist
criterion is satis�ed. The actual δt(n) must be strictly less than half of these values to
ensure that the simulation captures their trajectories unaliased. In simulations, a value of
C = 1/50 was selected. Also note that the value of time at iteration n is easily determined
as

tn = t0 +
n∑
k=1

δt(k). (3.29)

3.4 Non-dimensional Model Parameters

The parameters of the dynamical vocal fold model shown in Figure 3.1 and related by
dimensional equations of motion (3.1), (3.2), and (3.3) are gathered in Table 3.1. These are
subsequently combined with the geometric parameters and the �uid parameters to obtain
dimensionless groups such as mass ratios and frequency ratios which enable an overall
characterization and summary of the vocal fold model developed. Model parameters are
summarized in Table 3.4 below.

From these dimensional parameters, characteristic scales are selected and gathered in Table
3.5. Neutral glottal width is selected as the characteristic length scale because it ostensibly
determines the glottal �ow; since Vs is constant and volumetric �ow rate is the product of
velocity and cross-sectional area, Ang = hngl determines nominal glottal �ow. The velocity
scale is the vortex advection speed in absence of a free stream, Vc = Γ/a. The pressure
scale is proportional to a dynamic pressure determined by the characteristic velocity scale.
Finally, characteristic time is the ratio of characteristic length and velocity.

Table 3.5: Characteristic scales.

dimension characteristic scale interpretation

L lc = hng neutral glottal width, characterizes intraglottal �ow
LT−1 Vc = Γ/a characteristic velocity, due to vortex con�guration

ML−1T−2 Pc = ρΓ2/a2 a dynamic pressure
T tc = ahng/Γ characteristic time determined by lc/Vc

The dimensional equations of motion may be transformed via the change of variables
that time is replaced with the ratio of dimensional time and characteristic time, t∗ = t/tc,
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Table 3.4: Summary of model parameters.

parameter description

M body mass
m cover mass
Ic cover moment of inertia
K body translational sti�ness
k cover translational sti�ness
κ cover torsional sti�ness
B body mass translational damping
b cover translational damping
Bc torsional damping of cover
hs subglottal width of larynx
As subglottal sectional area
he epilaryngeal width of larynx
Ae epilaryngeal sectional area
tV F vocal fold thickness
l vocal fold length

lnode/tV F nodal position as fraction of vocal fold thickness
Ang neutral glottal area
hng neutral glottal channel width
θng neutral glottal convergence angle
ρ �uid density
PL lung pressure
Ps subglottal pressure
Pe epilaryngeal pressure
Q volumetric �ow rate
Vs subglottal velocity
Γ circulation due to vortex
a intra�vortex spacing
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and similarly that displacements are scaled with characteristic length as y∗ = y/lc, via
chain rule for the substitutions, the dimensionless form of (3.1) is then

mΓ2

a2hng

d2 y∗

dt∗2
+
bΓ

a

d

dt∗
(y∗ − y∗b ) + khng (y∗ − y∗b ) = P ∗ρ

Γ2

a2
ltV F

the right hand side of which follows by observing that the aerodynamic loading term Fa in
(3.1) may be written as a mean pressure over the projected area of the medial surface of
the vocal fold,

Fa = P l tV F = P ∗ρ
Γ2

a2
l tV F .

So, by dividing through by the coe�cient of the dimensionless pressure, ρ Γ2

a2 ltV F , we obtain
the dimensionless form of (3.1) given by

m

ρ l tV F hng

d2 y∗

dt∗2
+

b
Γ
a
ρ l tV F

d

dt∗
(y∗ − y∗b ) +

khng

ρ l tV F
Γ2

a2

(y∗ − y∗b ) = P ∗ (3.30)

The coe�cients of the terms in (3.30) determine dimensionless groups, a mass ratio, a
damping ratio, and a sti�ness ratio. To obtain a frequency ratio, if one recalls that the
natural frequency of a simple spring-mass system is ωn =

√
k/m, and that, after dividing

the di�erential equation through by the coe�cient of the second-order term, the coe�cient
of the zeroth-order term is the square of the natural frequency, one obtains a frequency
ratio as follows

khng

ρ l tV F
Γ2

a2

m
ρ l tV F hng

=
k
m
Γ2

a2h2
ng

=
ω2
n(

Γ
a hng

)2

So that a characteristic frequency is given by

fc =
Γ

2π a hng
(3.31)

however, notice that this is simply the reciprocal of the characteristic time. This yields an
interpretation of the characteristic time that it is a characteristic period.

A similar argument may be applied to (3.3). However, despite that θ is dimensionless,
upon dividing through by Ic,

θ̈ + 2ζωnθ̇ + ω2
nθ =

Ta
Ic

(3.32)

in which the damping ratio and natural frequency are given by

ζ =
Bc

2
√
κIc

and ωn =

√
κ

Ic
, (3.33)

equation (3.32) remains dimensional. However, as before, with t∗ = t/tc, application of
chain rule yields

dθ

dt
=

1

tc

dθ

dt∗
and

d2θ

dt2
=

1

tc
2

d2θ

dt∗2
,
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which, upon substitution into (3.32) yields

Γ2

a2hng
2

d2θ

dt∗2
+

2ζωnΓ

ahng

dθ

dt∗
+ ωn

2θ =
Ta
Ic

These frequency ratios, mass ratios, and various other useful dimensionless groups, are
summarized in Table 3.6.

Table 3.6: Dimensionless groups

dimensionless group characterizes
m

ρ l tV F hng
ratio of plate mass to �uid mass

b
Γ
a
ρ l tV F

damping ratio

k

ρ l tV F
Γ2

a2hng

sti�ness ratio

ωn
Γ

a hng

frequency ratio

a/hs geometry of vortex distribution

Γ/a
Vs

relative strength of vortex
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4 | Results

The simulation model developed in Chapter 3, with steady and unsteady versions of
Bernoulli's equation employed to obtain the pressure �eld, is validated against the bar-
plate body-cover model of Titze [99], which employs a 1-D steady potential �ow model of
the glottal �ow. This validation is discussed in Section 4.1. In order to address the ques-
tion of this thesis, whether intraglottal vortices in�uence the rate of closing of the vocal
folds, the vortex advection scheme is employed, and advecting vortex pairs are introduced
at some upstream position and allowed to advect into the glottis. In Section 4.2, the re-
sults of the study of the in�uence of advecting vortices are discussed. The 2-D glottal �ow
model employing trailing edge �ow separation together with the unsteady Bernoulli equa-
tion to determine the pressure �eld in the presence of the advecting vortices is employed
for the simulations. The advecting vortices account for the intraglottal vortices which are
shed from the medial surface of the vocal folds downstream of �ow separation in actual
glottal �ow. The simulation was performed with a trailing edge separation to ensure that
the pressure variation due to the presence of advecting vortices would be impressed upon
the medial surfaces of the vocal folds in a natural way regardless of their axial position.
Finally, Section 4.3 presents a discussion of the limitations of the model, whereas mention
of possible approaches to overcome the limitations of the model or to extend it shall be
postponed until Chapter 5.

4.1 Model Validation

To validate the two-dimensional glottal �ow simulation model developed in Chapter 3,
simulation results from the model are compared against the Titze bar-plate model proposed
and documented in [99]. The results of three simulations are compared herein, (1) Titze
bar-plate body-cover model with its 1-D GF model, (2) the same bar-plate VF tissue
model but coupled to the 2-D GF model developed herein with the same �ow separation
criterion and with pressure at the medial VF surface determined via the steady Bernoulli
equation, and (3) identical to (2) but, by tracking the temporal evolution of the velocity
potential, the pressure �eld is determined by the unsteady Bernoulli equation. All three
models employ Liljencrats's criterion [59] for �ow separation, that, in the closing phase of
the phonatory cycle when the vocal folds obtain a diverging con�guration, �ow separation
occurs at a point on the medial vocal fold surface at which the cross-sectional area is some
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multiple of the minimal glottal area. In these simulations, a value of 1.2 is employed for this
ratio. In all three cases, the simulations are performed with the no-tract condition, i.e., the
glottal �ow is not coupled to the acoustical �eld determined by a vocal tract model. In this
case, therefore, no perturbation of the glottal waveform occurs due to varying boundary
pressures because the transglottal pressure is e�ectively �xed.

For clarity, one example of each of the three cases is computed with the same set of
model parameters and from zero-state initial conditions, that is, the displacements and
velocities are initialized to zero. The set of simulation parameters employed is provided in
Table 4.1 below. These values are identical to the parameters employed by Titze in [99],

Table 4.1: Summary of simulation model parameters employed in simulations.

parameter value units

M body mass 1.0× 10−4 kg
m cover mass 1.0× 10−4 kg
Ic cover moment of inertia 1.0× 10−10 kgm2 rad−1

K body translational sti�ness 200 Nm−1

k cover translational sti�ness 50 Nm−1

κ cover torsional sti�ness 5.0× 10−5 Nmrad−1

B body mass translational damping 2.83× 10−2 kg s−1

b cover translational damping 1.41× 10−2 kg s−1

Bc torsional damping of cover 1.414× 10−8 kgm2 s−1 rad−1

As subglottal sectional area 3.0× 10−4 m2

Ae epilaryngeal sectional area 2× 10−5 m2

tV F vocal fold thickness 3.0× 10−3 m
l vocal fold length 1.5× 10−2 m

lnode/tV F nodal position 0.51 �
Ang neutral glottal area 0 m2

θng neutral glottal convergence angle 3.33× 10−2 rad
ρf �uid density 1.14 kgm−3

Vs subglottal velocity for 2-D model 1.05 ms−1

Ps subglottal pressure 625 kgm−1 s−2

Pe epilaryngeal pressure 0 kgm−1 s−2

and yield physiologically reasonable glottal waveforms. Consequently, this enables a direct
comparison between the simulation models developed herein and this well documented
Titze model. It is worth noting that the subglottal velocity is a parameter which is ne-
glected in the Titze 1-D potential �ow model of GF but is essential in the 2-D GF model.
A physiologically reasonable magnitude has been selected for subglottal velocity based
upon [99]. All simulations are performed over a period of one second.

One signi�cant determiner of the quality of a VF-GF model is that it achieves a self-
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sustaining oscillatory behaviour. This is a necessary condition for the validity of the models
because actual vocal folds achieve a relatively steady periodic motion in modal speech.
That the models exhibit this desirable behaviour is evident in the phase portraits shown
in Figure 4.1 for the three simulations. The phase portraits also exhibit many of the same
features and they occur at identical phases of the phonatory cycle. The steadiness of
the oscillatory behaviour is less apparent in the third set of plots because the amplitude
of oscillation exhibits signi�cantly greater variability than observed for the Titze model.
This variability manifests as a much wider annular region containing the phase portraits
of the angular position and velocity.

Now, to elucidate the behaviour of the model in the time domain, for comparison,
Figure 4.2 shows a single phonatory cycle for all three cases superimposed. To convey
the periodic behaviour, four or �ve consecutive phonatory cycles are displayed in the plots
of the temporal evolution of the dynamical system in Figures 4.3, 4.5, and 4.7. In all of
these plots, the uppermost series correspond to the glottal area waveform produced by
the respective simulation model. The glottal area is the minimal projected cross-sectional
area of the glottis in a transverse section at any instant. The glottal area waveform
records the temporal evolution of this quantity. The glottal area may at any instant
be computed from the dynamical state of the system, knowledge of the neutral glottal
con�guration, and the purely geometrical parameters such as nodal position and VF length
and thickness. Furthermore, in actual patients, glottal area may be clinically determined
with photoglottographic techniques, for example, see [6]. Finally, the glottal area waveform
is a strong correlate of the glottal sound source. For these reasons, the glottal area waveform
is amongst the signi�cant determiners of the physiological quality of a particular VF-GF
model, in particular, the wave shape and features may be directly compared to clinically
observed waveforms in order to assess the validity of a VF-GF model.

The glottal volumetric �ow rate is considered to be the primary source signal in phona-
tion, in fact, the volumetric �ow rate is the signal which acoustically excites the upper
vocal tract [92]. It is strongly correlated to the glottal area waveform, primarily because
the glottal area determines the mean volumetric �ow rate. Both of these signals may be
related to each other and to the acoustics generated by the glottal sound source. In par-
ticular, see [46] for a critical discussion of the way in which the shape and characteristics
of these waveforms determine the acoustical features of the sound signals with which these
waveforms are correlated. Because the glottal �ow rate is not merely a consequence of the
glottal area, but also of the prevailing acoustically determined transglottal pressures, and,
because the models examined herein are not coupled to the acoustical �eld determined by
the upper vocal tract, solely the area waveform is employed as a basis for comparison of
the models and as a basis for assessing the physiological validity of the models.

There are several conventional time domain numerical parameters which summarize
the wave shape and, in terms of speech, relevant characteristics of the glottal area wave-
form: the fundamental frequency f0 or fundamental phonatory period T0 = 1/f0, the open
quotient (OQ), speed quotient (SQ), and closing quotient (CQ), see, for example [92, 96].
The open quotient is a duty cycle which identi�es the fraction of a fundamental period
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Figure 4.1: Representative translational and rotational phase portraits for (1) Titze
simulation, (2) 2-D simulation with steady Bernoulli equation to compute pressure
distribution, and (3) with unsteady Bernoulli. For each, the �rst column displays
translational velocity vs. absolute position of the cover mass and the second column
displays angular velocity vs. absolute angular position. The trajectories exhibited in
these plots con�rm the self-sustaining oscillatory behaviour of the plate in translation
and rotation.
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throughout which the glottis is open; in particular, OQ is the ratio of the total time the
glottis remains open throughout a phonatory period to the fundamental phonatory period.
The speed quotient is the ratio of the time required, beginning from a closed state, for
the glottis to achieve its maximal area to the time required for the glottis to return to a
closed state where �ow is fully impeded. The SQ is close to 1 when the peaks of the glottal
waveform exhibit symmetry between the opening and closing phases of a phonatory cycle.
Values of SQ are less than unity whenever the peaks are skewed to the right, i.e., when
they exhibit slow rates of opening and rapid rates of closing. The closing quotient is a duty
cycle which identi�es the fraction of a fundamental period throughout which the glottis is
closing; in particular, CQ is the ratio of the time required, from the instant of maximal
glottal area, for the glottis to close to the fundamental period of phonation. On the basis
of these numerical summaries, the simulation results may be validated.

The numerical parameters are provided for the three models together with typical
ranges of the values in Table 4.2 below. The physiological range of CQ may be from 0.22
to 0.32 for pressed voice, between 0.26 and 0.36 for normal voice, and between 0.29 and
0.48 in breathy voice [3]. Other physical ranges are obtained from clinical investigations
of the glottal waveform presented and discussed in terms of their outcomes for voiced
speech in, for example, [6, 46]. These time domain parameters are easily determined
from clinically obtained photoglottographic data and, more robustly, via inverse analysis
of acoustical signals [3, 36, 78]. Table 4.2, in addition to the frequencies and quotients,
also lists maximal glottal width, which provides a measure of the amplitude of the glottal
waveform. In the case of the model, notwithstanding the discussion of glottal geometry in
Chapter 3 with reference to Figure 3.3, because a constant glottal cross section is assumed,
the maximal glottal width is simply the maximal glottal area divided by the fold length
parameter l.

Table 4.2: Comparison of glottal waveforms based upon physiologically relevant
numerical summaries which characterize their shape.

parameter and physiological range (1) Titze 1D (2) 2-D no ∂Φ/∂t (3) 2-D ∂Φ/∂t

f0 [Hz] 80�220 90.8 87.9 87.3
max glottal width [mm] ∼ 1 2.9 2.0 1.9

OQ 0.4�1.0 0.63 0.57 0.65
SQ 0.6�1.6 0.95 1.5 1.6
CQ 0.22�0.48 0.32 0.22 0.23

The glottal waveform for case (1), the Titze model, shown in Figure 4.3, together
with the waveforms corresponding to the aerodynamic loading, i.e., the resultant force
and pitching moment, exhibit strong qualitative agreement to the no-tract three-mass VF
model simulations discussed in [93]. Furthermore, based on the fact that the time domain
numerical summaries of the glottal area waveform provided in Table 4.2 are physiologically
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reasonable, it may be concluded that the waveform of (1) is physiologically representative.
Moreover, cases (2) and (3) exhibit glottal waveforms which are qualitatively similar to
case (1). Together with the numerical summaries in the table, cases (2) and (3) are also
placed within physiologically reasonable bounds. Consequently, it may be concluded that
glottal area waveforms in cases (2) and (3) are also physiologically representative. The
waveforms do di�er, but this is a consequence of model di�erences.

A direct comparison of the area, force, and pitching moment waveforms over a single
period for cases (1), (2), and (3) is provided in Figure 4.2. The area waveform of (1)
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Figure 4.2: Comparison of area waveforms and resultant force and pitching mo-
ment. Solid trace corresponds to model (1) Titze 1-D GF model, the hatched line
corresponds to (2) the 2-D GF model with steady Bernoulli, and the �nely dotted
trace corresponds to (3) 2-D model with unsteady Bernoulli.

is symmetric throughout the phonatory cycle, while those of (2) and (3) exhibit some
skewness. This is characterized by their SQ (Table 4.2) which, for (1), is close to unity but
greater than unity in the latter two cases. In cases (2) and (3), the angle of convergence
throughout the opening phase is of greater magnitude than the angle of divergence in
the closing phase of the phonatory cycle. The asymmetry between these phases is due to
the e�cacy of the �ow separation in models (2) and (3) which causes the magnitude of
the pitching moment in the closing phase of (2) and (3) to be much diminished from the
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pitching moment in the opening phases of these cases. This is in contrast to case (1), in
which the pitching moment is of approximately the same magnitude in the opening and in
the closing phases of the phonatory cycle. Because the pitching moment in (1) is never of
su�cient magnitude to cause the cover to pitch su�ciently for the point of �ow separation
to move very far inferiorly along the vocal fold surface, which only occurs brie�y at the tail
of the closing phase of the phonatory cycle, the e�ect of separation to induce an asymmetry
of the loading between the opening and closing phases of the phonatory cycle is almost
entirely absent in (1).

The use of the unsteady Bernoulli equation appears to advance opening and increase the
peak magnitude of the resultant force and decrease peak magnitude of pitching moment.
However, in the closing phase, force and pitching moment waveforms for (2) and (3) are
e�ectively identical. The change in peak values of resultant force and pitching moment is
due to a di�erence in the pressure distributions which arise during the opening phase of
the phonatory cycle in these two models. The tractions due to pressure are momentarily
higher in (3) than in (2) shortly after opening and the pressure distribution is more uniform,
consequently, the peak pitching moment is reduced in (3) relative to (2) while the overall
resultant force increases in (3).

There is notable disagreement between the pressure distributions in (1) and the pressure
distributions in the 2-D GF models. One signi�cant reason for this is that, in order to
determine the pitching moment in model (1), �rstly, two resultant forces are obtained, one
by integrating pressure over the portion of the medial VF surface above the nodal point
and one by integrating the pressure over the portion of the medial VF surface below the
nodal point. These resultant forces are then applied at the midpoints of their respective,
either superior or inferior, portions to develop a pitching moment. In model (1), this
computation e�ectively smoothes the pressure distribution and diminish the capacity of
any asymmetry of the pressure �eld to induce a strong pitching moment. In contrast,
in the 2-D GF models, signi�cant curvature of the streamlines entails signi�cant pressure
gradients developing in the wall-normal direction oriented inwards to the �ow domain at
the corners of the vocal folds. The pressure �elds thus developed have a strong inferior-
superior asymmetry because the upstream streamline curvature is a consequence of the
�ow trying to negotiate the glottal entrance at the interface between the inferior edge
of the vocal fold, but at glottal exit, the �ow is separated, and no signi�cant curvature
manifests. This causes a strong asymmetry in the pressure distributions on the medial
vocal fold surfaces, and, therefore, a strong pitching moment develops in models (2) and
(3). This is easily seen in the plots of pressure in Figures 4.6 and 4.8 where the pressure
variation at the inferior and superior margins is signi�cant. Moreover, models (1) and
(2) do not account for variation in pressure due to temporal variation of glottal geometry,
although, it is reassuring that models (2) and (3) are quite similar qualitatively. The
following paragraphs prior to closing out this section provide more detailed description of
Figures 4.4, 4.6, and 4.8 and corresponding pressure distributions, Figures 4.4, 4.6, and
4.8.

The characteristics in time and phase amongst the three models may be reconciled
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upon examination of the time series and the glottal con�gurations at various critical in-
stants and the concomitant medial VF pressure distributions. The transverse and angular
displacement of the cover and the forces which produce these responses are displayed in
Figures 4.3, 4.5, and 4.7. These plots also show the glottal con�gurations, streamlines, and
representative surface traction distributions (scaled by the traction of largest magnitude
at each instant) at critical instants in one particular period of the respective phonatory
cycle. The �uid pressures at the medial vocal fold surfaces which produce these surface
tractions corresponding to these con�gurations are provided in Figures 4.4, 4.6, and 4.8
respectively.

The plot in Figure 4.3 corresponds to (1) the Titze bar-plate VF tissue model with 1-D
ideal potential GF model. The only streamline determined by this model lies along the
centreline of the glottis and is shown in all frames when glottis is not closed. According
to equation (B.39), pressure at some locations along the medial VF surface is related to
the square of the ratio of the area at the location to the area at �ow detachment; this is
the reason for the curvature in the pressure pro�le in con�guration (c) of Figure 4.3, for
example. Pressures are obtained via the steady Bernoulli equation evaluated along the
glottal centreline and modi�ed to account for �ow separation and kinetic energy recovery.
These centreline pressures are impressed upon the medial surfaces of the vocal folds by
the 1-D assumption. The manner in which pressure is obtained is described in Appendix
B; pressures are e�ectively a function of the transglottal pressure, epilaryngeal area, and
quadratically with the areas at transverse cross sections at each axial station.

When the glottis is fully closed, a constant uniform contact stress determines a constant
resultant force and small but non-zero pitching moment. If the nodal point were located at
the midpoint of the plate such that the plate would be symmetrically disposed about the
nodal point, the pitching moment would indeed vanish. As it is, because the inferior medial
VF area below the nodal point is larger, the resultant moment tends to rotate the plate
positively, and, therefore, a small positive pitching moment prevails. The con�guration at
the �rst instant of interest, a fully closed glottal con�guration prior to opening, is shown
in Figure 4.3 con�guration (a). The tractions exhibited at this instant are due purely to
the contact stress model, which results in uniform applied loads, which tend to cause the
glottis to open.

Figure 4.3 con�guration (b) corresponds to partial closure in the opening phase of the
phonatory cycle, that is, the leading edge of the vocal folds have begun to open, while
the superior portion remains in contact. During the opening phase, the glottis obtains
a converging con�guration. The inferior portion of the vocal fold surfaces are exposed
to the subglottal pressure, which applies uniformly, and the contact patch continues to
experience the contact force. The surface pressure is consequently discontinuous. Because
the subglottal pressure is greater than the contact pressure, the resultant force increases
in magnitude. The glottis remains closed at this instant, so the glottal area waveform
is zero, but in the following instant, the glottal area waveform begins to increase as the
glottis opens. In Figure 4.3 con�guration (c), in early stages of the opening phase of the
phonatory cycle, glottal �ow through the narrow superior margin of the glottis is rapid
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Figure 4.3: Time series for Titze bar-plate model together with glottal con�gura-
tions, streamlines, and scaled surface tractions at various critical instants. The series
are, from top to bottom, glottal area waveform, resultant transverse force due to
pressure, and resultant pitching moment due to pressure. Figure 4.4 provides medial
VF pressures corresponding to con�gurations (a) � (f).

due to conservation of mass. The large velocity entails that the static gauge pressure is
large but negative in this region. This reduces the magnitude of the resultant force but
the strong asymmetry in the surface tractions imparts a strong positive resultant pitching
moment. This is the instant at which positive pitching moment is maximal and tends to
increase the convergence of the opening. Inertia dominates, however the glottis continues
to open.

At (d), the glottal area is maximal, the translational displacement of the plate is maxi-
mal, and the pressure distribution along the medial surface is nearly uniform. The pitching
of the cover is out of phase with the translation of the body. As the body begins to return
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Figure 4.4: Pressure distributions for Titze bar-plate model corresponding to con-
�gurations (a) � (f).

to its equilibrium position, the glottis will begin to obtain a diverging con�guration in
which the conditions for separation begin to manifest. The plots transition smoothly from
the instant of maximal glottal area to the instant of maximal negative pitching moment
and maximal positive resultant force immediately prior to closing. This smoothness is a
consequence of the fact that the plate does not pitch su�ciently throughout the closing
phase; separation only occurs near the end of the closing phase in model (1) and, then,
only brie�y.

Immediately prior to closing, the resultant force obtains its maximal positively oriented
magnitude. This is due to the tractions tending to draw the glottis closed due to the
Bernoulli e�ect. The pitching moment obtains its maximal magnitude oriented negatively,
meaning that it is causing the glottis to obtain a diverging con�guration, and this is due
to the strong asymmetry of the pressure distribution. Figure 4.3 con�guration (e) shows
this instant, immediately prior to closure. Con�guration (f) displays the instant at which
the glottis has fully closed at the termination of the closing phase of the phonatory cycle.
The body masses are moving towards each other at this instant and are decelerating due
to the contact force.

Figures 4.5 and 4.7 display time series and glottal con�gurations for (2) the 2-D GF
model with steady Bernoulli equation and (3) with unsteady Bernoulli, and Figures 4.6
and 4.8 provide the corresponding pressure distributions.

Because the �ow �eld is determined via a 2-D ideal potential �ow model, streamlines may
be obtained, and these are also displayed in the open glottis con�gurations in these plots.
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Figure 4.5: Time series for 2-D GF model with steady Bernoulli together with
glottal con�gurations, streamlines, and scaled surface tractions at various critical in-
stants. The series are, from top to bottom, glottal area waveform, resultant transverse
force, and resultant pitching moment due to pressure. Figure 4.6 provides medial VF
pressures corresponding to con�gurations (a) � (j).

As in the previous simulation, when the glottis is fully closed, a constant uniform contact
stress determines a constant resultant force and small but non-zero pitching moment. The
nodal point is located in the same position as before, so the surface area over which the
contact force is applied is di�erent inferior to the node and superior to it. This asymmetry
ensure that the pitching moment in the fully closed state will tend to open the glottis into
an initially convergent con�guration as before. The con�guration at the �rst instant of
time is a partially closed glottal con�guration. At the given instant, the inferior margin of
the glottis has separated and allowed subglottal pressure to prevail in this region. Because
this is greater than the contact pressure, the pitching moment is even greater.
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Figure 4.6: Pressure distributions for 2-D model with steady Bernoulli for con�g-
urations (a) � (j).

Figure 4.5 con�guration (b) and 4.7 con�guration (c) show the open glottis with �ow
through the narrow superior margin, which yields large velocities due to conservation of
mass. The corresponding pressure distributions are qualitatively similar in this region. The
unsteady term has not begun to contribute signi�cantly at this instant. The asymmetry
of the loading also causes a pitching moment as before, but the forces are short lived
and insu�cient to overcome the inertia of the body mass. The moment of inertia is only
brie�y overcome; the signi�cant pitching moment decelerates the pitching of the plate and
a noticeable change in the magnitude of θ is observed. Additionally, this is also one of
the points at which the phase portrait 4.1 (b) exhibits a small deviation from a purely
circular trajectory. The Titze model does not exhibit this behaviour, consequently the
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Figure 4.7: Time series for 2-D GF model with unsteady Bernoulli together with
glottal con�gurations, streamlines, and scaled surface tractions at various critical
instants. The series are, from top to bottom, glottal area waveform, resultant trans-
verse force due to pressure, and resultant pitching moment due to pressure. Figure
4.8 provides medial VF pressures corresponding to con�gurations (a) � (j).

phase portrait is more circular and the time series for the angular displacement is smoother.

At the next instant, Figure 4.5 con�guration (c) and 4.7 con�guration (d), the magni-
tudes of force obtain their negative value of greatest magnitude but pitching moment falls.
The vanishing pitching moment is due to the overall symmetry of the pressure distribu-
tion which gives rise to the surface tractions. At the same instant, there is a noticeable
di�erence in models (2) and (3) in the pressure distribution and, therefore, the resultant
forces in each. Due to the unsteady term, the forces which tend to open the glottis are
more signi�cant in (3). The con�guration rapidly evolves from one with large prevailing
velocities to one with lower velocities, so the temporal derivative of Φ goes negative, this
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Figure 4.8: Pressure distributions for 2-D model with unsteady Bernoulli for con-
�gurations (a) � (j).

augments the pressure at the medial VF surface at this instant.

As the cover mass returns from its extreme excursion towards the midplane, the pitch
angle is virtually 0, and this maximizes the cross-sectional area. As in the Titze simu-
lation, the pressure distribution is nearly uniform, and, therefore, the pitching moment
is vanishing. The pitching of the cover is out of phase with the translation of the body,
therefore, as the body begins to return to its equilibrium position, the glottis will begin to
obtain a diverging con�guration in which the conditions for separation begin to manifest.
The force and moment plots do not transition as smoothly as they do in the Titze model.
This is again due to the fact that the point of separation does not move far upstream along
the medial vocal fold surface in the Titze model, so the discontinuity of the pressure �eld
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which would yield a highly asymmetrical pressure distribution and therefore signi�cantly
modify the loadings does not occur in (1) as it does in cases (2) and (3). Flow separation
is shown in con�gurations (g) in Figure 4.5 and con�guration (h) in Figure 4.7. In both
cases, because epilaryngeal pressure, Pe = 0, is applied superior to the point of separation,
there is a discontinuity in the pressure distribution which entails a signi�cant asymmetry
in the pressure distribution. This asymmetry causes the plate to obtain a greater diver-
gent con�guration where the pitching moment is more severe. This process continues and
is augmented by the Bernoulli e�ect causing the glottis to close rapidly in con�gurations
(h) in Figure 4.5 and con�guration (i) in Figure 4.7. These are the instants of greatest
magnitude of the pitching moment. The glottis eventually returns to its closed state where
the contact stresses are uniformly applied over the entire contact patch and the phonatory
cycle repeats.

4.2 The Role of Intraglottal Vortices in VF Dynamics

To assess the in�uence of intraglottal vortices upon the dynamics of the vocal folds, speci�-
cally whether the presence of intraglottal vortices a�ects the rate of closure of the glottis in
the closing phase of the phonatory cycle, two sets of simulations are performed: with and
without advecting vortices. The case without vortices serves as a baseline, and comparison
of these cases shall enable the determination of the e�ect of the vortices. The simulations
are performed with a trailing edge separation model to ensure that, when the vortex advec-
tion scheme is employed, the disturbance of the �ow �eld due to the vortices is impressed
upon the boundaries of the �ow domain along the entire length of the medial surfaces of
the vocal folds. A schematic of the vortical positions just prior to exit from the glottis
is shown in Figure 4.9. This �gure also shows the trailing edge separation schematically.

flow

Γ
z1

Γ
z2

Figure 4.9: Schematic of intraglottal vortices by the time they have reached the
glottal exit. Trailing edge separation ensures that the presence of the vortices is
impressed upon the entire medial vocal fold surface.

The vortex advection scheme is employed in such a way that the vortex pair advects from
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its upstream station and arrives at the glottis at a physically reasonable moment of its
closing phase in the phonatory cycle. The pair quickly advect downstream, and is replaced
at its upstream position ready for the next phonatory cycle. In this manner, the glottal
waveform is perturbed in each cycle.

Firstly, the physiological validity of the baseline case with trailing edge separation is
discussed prior to proceeding with a presentation of the simulation results in the presence
of the advecting vortices. For the baseline study, the simulation parameters are identical
to those listed in Table 4.1, except for the di�erences summarized in Table 4.3 below. In
the simulations with trailing edge separation, the nodal point di�ers from the case with
separation at some upstream point on the medial vocal fold surface, in order to compensate
for the loss of inferior-superior �ow asymmetry due to a separation point which always
remains at the glottal exit. The subglottal pressure was reduced slightly and the damping
coe�cient was increased from 0.1 to 0.11; the new values of damping which correspond to
the modi�ed damping coe�cient are also listed in the table. The modi�ed set of parameters
was selected to ensure that a strong self-sustaining oscillatory behaviour would quickly be
established in the dynamical response of the vocal fold model.

Table 4.3: Summary of model parameters employed in simulation.

parameter value units

B body mass translational damping 3.11× 10−2 kg s−1

b cover translational damping 1.56× 10−2 kg s−1

Bc torsional damping of cover 1.556× 10−8 kgm2 s−1 rad−1

lnode/tV F nodal position 0.52 �
Ps subglottal pressure 600 kgm−1 s−2

The phase portraits shown in Figure 4.10 correspond to the case with no vortices, and
they exhibit remarkably uniform amplitudes and this manifests as narrow annuli occupied
by the trajectories of the motions in phase space. Additionally, they exhibit qualitative
features which possess strong similarity to the simulations discussed in the previous section.

Time series which correspond to several periods of the phonatory cycle of the baseline
(dotted trace) and the case with advecting vortices (solid trace), to be discussed, are shown
in Figure 4.12. Again, the waveforms exhibit remarkable similarity to those discussed in
the previous section. The numerical parameters which describe the shape of the glottal
waveform corresponding to the baseline case are summarized in Table 4.4 below. The
table shows that the values computed for the simulation are similar to the previously
validated model and are well within physiological range, that is, 80 < f0 < 220, the
maximal glottal width is on the appropriate order, 0.4 < OQ < 1.0, 0.6 < SQ < 1.6,
and 0.22 < CQ < 0.48. It may be concluded that this model generates physiologically
reasonable glottal area waveform.
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Figure 4.10: Representative translational and rotational phase portrait trailing
edge separation with unsteady Bernoulli and no vortex advection. Velocity and ab-
solute position plotted against each other, and angular velocity and absolute angular
position of the plate are plotted against each other. The trajectories exhibited in
these plots con�rm the strong self-sustaining oscillatory behaviour of the plate in
translation and rotation.

Table 4.4: Numerical summary of glottal area waveform for baseline case.

parameter value

f0 [Hz] 84.0
max glottal width [mm] 2.1

OQ 0.55
SQ 1.31
CQ 0.24

For the set of simulations with vortex advection, the additional parameters of vortex
strength and starting position are required. For a speci�c case discussed herein, these
values are provided in Table 4.5. These values were selected to ensure that the vortices
would advect in the manner described. Consequently, consideration of the rate of vortex
advection in the presence and absence of the free stream were required. Because the velocity
of the glottal �ow is an outcome of the model, many simulations were performed to obtain
a value of vortex strength, for a given vortex spacing, which would cause the vortices to
advect through the glottis at the necessary speed.

Speci�cally, the strength, Γ of the vortices is determined to be on the order of Γ which
satis�es the following relation (

Γ

a

)(
2π

√
m

k

)
= tVF (4.1)
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Table 4.5: Summary of vortex parameters employed in simulation.

parameter simulation value(s) units

Γ vortex strength ±8.4405× 10−4 m2 s−1

z0 initial vortical positions [−9.0± 4.0i]× 10−3 m

in which the factors on the left hand side are characteristic velocity of vortex advection,
Γ
a
, for vortices with vortex separation a, and period of undamped oscillation of the cover

mass in translation, 2π
√

m
k
. These quantities were discussed in Section 3.4. The right

hand side, tVF, is vocal fold thickness. The vortex strength which satis�es this relation
will yield a rate of vortex advection in the absence of a free stream which ensures that
they will advect in the axial direction approximately the length of one vocal fold thickness
in the time required for one period of the phonatory cycle to complete. This should give
an approximation for the order of magnitude of the vortex strength, but, because the rate
of advection of the vortices is also a strong function of the free stream, the intraglottal
velocity also determines the rate of advection of the vortices. For initial vortex spacing,
the value of vortex strength predicted by this relation is approximately 2.7× 10−3 [m2/s],
for the vortex spacing when the vortices are within the glottis, their spacing is as little as
7.427 × 10−4 [m], and this predicts a value of Γ of approximately 2.5 × 10−4 [m2/s]. The
actual value employed for the speci�c simulation discussed, was 8.4405 × 10−4 [m2/s], a
value intermediate between these.

Again, the vortex strength and vortex spacing are determined in order to provide a pair
of vortices advecting through the glottis in its divergent con�guration during the closing
phase of the phonatory cycle to emulate the vortex shedding which occurs in this phase of
the phonatory cycle of an actual glottal �ow. The perturbation due to the advecting vortex
is determined by such a pair of advecting singularities, and for the speci�c case discussed
herein, the perturbation of the pressure distribution on the medial VF surface is shown
as it corresponds to the axial position of the advecting vortex pair in Figure 4.11. This
�gure displays a sequence of consecutive instants of vortex advection and the attendant
pressure distribution on the medial vocal fold surfaces which prevails at the given instant.
The abscissa of the pressure distribution is the fraction of the vocal fold thickness at which
the vortex is located downstream from the glottal entrance. The vortices are initially near
the glottal entrance, they perturb the pressure distribution slightly. The vortices have
negligible downstream or upstream e�ect at any instant, they perturb the pressure locally.
The medial vocal fold pressure distribution is slightly augmented everywhere, but most
signi�cantly near the instantaneous axial position of the vortex. The vortex increases the
local pressure in the neighbourhood of its position, and this is because it tends to decrease
the wall velocity due to its orientation, and this, in turn, increases the static pressure in
the neighbourhood of the vortex.
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Figure 4.11: Con�gurations and pressure distributions corresponding to di�erent
axial positions of the intraglottal vortices. In the upper frame, positions of the
advecting vortex pair are shown at various axial stations. Simultaneously, two glottal
con�gurations and corresponding streamlines are displayed. The hatched VF outline
and set of streamlines corresponds to the geometry and �ow at the instant the vortices
enter the glottis. The solid VF con�guration and set of streamlines occurs at the
instant the vortices exit the glottis. The lower frame exhibits the medial vocal fold
surface pressures at the corresponding instants. Two additional pressure curves are
superimposed; the �nely hatched curve represents the medial VF pressure in the
baseline case at the �rst instant and the large hatched trace corresponds to the
medial VF pressure distribution of the baseline case at the �nal instant.

This situation is repeated in each phonatory cycle in the simulation, the vortices advect
through the glottis at a rate determined by the vortex strength and spacing of the vortex
pair as well as the free stream velocity within the glottis. Time series presenting outputs
for this simulation are shown in Figure 4.12. The �ve time series are, from top to bottom,
glottal area waveform, translational and angular displacements, translational force, and
pitching moment. The dotted trace corresponds to the baseline, and the solid trace corre-
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sponds to the case with advecting vortices. The plot shows that translational displacement
of the cover obtains a more stable amplitude with vortex advection. The pitching moment
is destabilized somewhat, and this contributes some variability to the glottal waveform.
Remarkably, the glottal waveform in the case of vortex advection is more regular, despite
that it is perturbed from the baseline. In fact, the closing phases of both baseline case and
case with advecting vortices are remarkably consistent and similar, whereas the opening
phases are signi�cantly di�erent in several of the cycles. To quantify this, Figure 4.13
combines the plots of the derivative of the glottal area waveforms of the baseline and the
case with vortex advection overlaid with the glottal area waveforms (greyed out) as a point
of reference.
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Figure 4.12: Time series with and without vortex advection plotted simultaneously.
The solid trace corresponds to the case with advecting vortices, and the dotted trace
corresponds to the baseline case.

The derivatives shown in Figure 4.13 are negative in the closing phase of the phonatory
cycle, they have qualitatively identical structure. Quantitatively, their magnitudes are
similar during the closing phase, in many cycles they are nearly identical, but in some
cycles they di�er by as much as 25% up or down. These plots show that the presence
of the intraglottal vortices does not present a mechanism which systematically causes the
vocal folds to close more rapidly in the closing phase of the phonatory cycle.
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Figure 4.13: In the upper frame, the glottal area waveforms are shown to provide a
reference for the instants shown in the plot of their derivatives exhibited in the lower
plot. In both frames, the solid traces correspond to the 2-D GF model with vortex
advection, and the dotted traces correspond to the baseline case, with no vortices.
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4.3 Model Limitations

As shown in Section 4.1, the predicted glottal area waveforms generated by the models
coincide with glottal waveforms which manifest physiologically. The agreement is strong
and suggests that the models emulate the self-oscillatory behaviour of the vocal fold tissues
driven by the glottal �ow at constant lung pressure, that is, the models are physiologically
representative in some meaningful sense. This is essential for the explanatory capacity of
any extension of the model which attempts to capture the in�uence of intraglottal vortices.
The purpose of this work is to answer a fundamental question: whether advecting vortices
a�ect the glottal waveform and, thereby, contribute to the character of voiced speech.
That there is a link between the features of the glottal waveform and the corresponding
features of voiced speech was established by Fant amongst others and has already been
discussed. Thus, in particular, this work addresses the speci�c question of whether the
glottal waveform is in�uenced by intraglottal vortices; speci�cally, whether the presence of
intraglottal vortices increase the speed at which the glottis closes in the closing phase of
the phonatory cycle. The simulation results presented in Section 4.2 do not con�rm the
conclusion that intraglottal vortices consistently increase the speed at which the glottis
closes. It may be concluded that the presence of intraglottal vortices do not contribute to
this aspect of voiced speech.

The fundamental limitation of the glottal �ow model developed in Chapter 3 is the
manner in which the pressure forces due to intraglottal vortices are impressed upon the
medial surfaces of the vocal folds and the mechanism by which the intraglottal vortices
arrive at their positions during the closing phase of the phonatory cycle. In particular,
the enforced trailing edge separation condition employed in order to transmit the in�uence
of the vortices to the boundaries of the �ow in a meaningful manner within the frame-
work of the model is not entirely satisfactory; it is neither physically nor physiologically
representative. In actual glottal �ows, the glottal jet forms aftwards of some point of sepa-
ration which occurs on the medial surface of the vocal folds in their divergent con�guration
during the closing phase of the phonatory cycle. The vortices are seen to roll up in the
separation region between the glottal jet and the medial VF surface within the glottis.
The vortices rapidly advect into the supraglottal region downstream of the glottal exit.
The region of vortex formation was shown schematically in Figure 2 of Chapter 2.17 and
repeated here in Figure 4.14. In contrast, the model developed merely captures the e�ect
of an advecting singularity which perturbs the pressure �eld, it does so in a conservative
manner compatible with the framework developed, but it does so ad hoc rather than in a
way which captures the �uid physics with greater �delity. Speci�cally, within the model,
the intraglottal vortex does not form in a region downstream of a purported separation
point as dictated by the �ow in this region; rather, the vortex merely advects through the
glottis from some initial upstream station. This was shown schematically in Figure 4.14 in
contrast to the schematic of Figure 4.14, which is more physically representative. In the
model, the vortex strengths and positions are not determined according to the mechanisms
of �uid physics which govern the formation of vortices within the separation region, they
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are determined in an ad hoc manner to ensure that the rate at which the vortices advect
through the glottis is somewhat matched to the rate at which the glottis oscillates and
therefore, proportional to the rate at which it closes. This is to ensure that the vortices
appear within the glottis in its diverging con�guration in the closing phase, and that the
in�uence of the advecting singularities is impressed on the boundaries throughout a phys-
ically reasonable period of time in the closing phase of the phonatory cycle in which they
enter the glottis.

flow
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Figure 4.14: Schematic of intraglottal vortices near glottal exit in separation region.

Despite the foregoing discussion, it may be argued that the conclusions drawn herein
are not invalidated by the shortcomings of the ad hoc representation. If the question is
simply framed to ask whether an advecting singularity which perturbs the pressure �eld at
the �ow domain boundary in a conservative and, therefore, physically reasonable manner,
then the conclusions are certainly not invalidated by the limitations of the model. In
fact, the conclusions are compatible with other ad hoc studies, such as [37], mentioned in
Section 2.2.4. Whereas it may be more satisfactory to have a model which exhibits the
observed �ow structure as an outcome of physical mechanisms which cause them rather
than an ad hoc imposition of a representative condition, this is di�cult within a potential
�ow framework, which does not account for viscous e�ects. The singularities are advected
within the framework of the model, they perturb the pressure �eld, the contribution of
the perturbation to the integrated pressure perturbs the dynamical vocal fold model, but
in some cases, causes it to close more rapidly and in other cases, causes it to close more
slowly. This conclusion remains �rm within the modelling framework. Possible extension
of the current model are discussed in Section 5.3 of the following chapter.
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5 | Conclusions,
Recommendations, and
Future Work

In this thesis, a two dimensional model of the glottal air�ow is developed and computed as
a two-dimensional inviscid incompressible potential �ow. This extended glottal �ow model
has been coupled to an existing low-order bar-plate body-cover model of the vocal fold
tissues which is well documented in the literature together with parameters which ensure
that the model self-oscillates in a physiologically reasonable manner. Irrotational vortices
placed at some upstream station are allowed to advect through the glottis at a rate which
ensures that they will arrive near the superior region of the glottis during the closing phase
of the phonatory cycle, when the glottis obtains its diverging con�guration. This is to
emulate the roll-up and shedding of intraglottal vortices which occurs in the closing phase
of the phonatory cycle when the glottis has obtained its diverging con�guration.

The two dimensional glottal �ow model employs a Schwarz-Christo�el mapping tech-
nique in which the geometry of the physical plane is mapped to an auxiliary plane in which
the pre-image geometry is an in�nite horizontal strip. The appropriate Schwarz-Christo�el
mapping is computed numerically. The �uid problem, including advecting vortices, is
rapidly computed in the auxiliary plane via analytical expressions derived herein which de-
termine the �uid behaviour, and the solution is easily mapped back to the physical plane to
yield the velocity �eld. The pressure �eld is subsequently computed using the framework
of complex analysis including an unsteady pressure term in the Bernoulli equation.

The extension of the glottal �ow model to a two-dimensional version is important, not
merely because it allows the model to capture the advection of point singularities within
the �ow domain, but the two-dimensional glottal �ow model captures the salient physics
of glottal �ow with improved �delity over the standard one-dimensional Bernoulli �ow
models employed in the past. Additionally, the pressure �eld, which is unsteady in glottal
�ow, is determined with the unsteady Bernoulli equation. The unsteady term signi�cantly
augments the pressure distribution, leading to greater inferior-superior asymmetry of the
glottal pressure distribution than predicted by standard one-dimensional models.

Within the model, once the glottal �ow �eld has been determined, the pressures on the
medial surfaces of the vocal folds are integrated to obtain resultant forces which drive the
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dynamical vocal fold model. The two-dimensional model captures signi�cant variation of
the velocity �eld near the glottal inlet and outlet, and these cause a signi�cant variation
near the inferior and superior margins of the medial vocal fold surfaces. Furthermore,
because these entail longer moment arms, larger pitching moments are obtained. It has
been shown that the mucosal wave, in the transverse motion of the vocal folds, as the
covers pitch about their respective nodal points, a greater amplitude of motion is observed
within the two-dimensional model. The resulting glottal area waveform obtains a more
skewed appearance, and this causes it qualitatively to appear more like clinically obtained
glottal waveforms than the standard one-dimensional models despite that the simulation
model is uncoupled from the acoustical �eld of the upper vocal tract which would modify
the wave shape.

5.1 Conclusions

The thrust of the development of the glottal �ow model coupled to a low-order vocal fold
model has been to address a speci�c question about the nature of the in�uence of the
intraglottal vortices upon the dynamics of the vocal folds; speci�cally, whether they would
increase the rate at which the vocal folds close in the closing phase of the phonatory cycle.
The vortices have been found to rapidly advect into the supraglottal space whence they
impart little upstream in�uence. The vortex strength determines two competing e�ects.
On one hand, as the strength of the vortices increases, the magnitude of the pressure
perturbation becomes more signi�cant, however, for a given vortex spacing, the vortices
will advect more rapidly into the supraglottal region, where their in�uence will rapidly
diminish. In fact, it may be argued that because the modi�ed pressure exists brie�y, it
does not impart su�cient impulse to overcome the inertia of the system. On the other hand,
a reduction in vortex strength allows the intraglottal vortices to remain within the glottal
space throughout a longer period of time. However, reduction of vortex strength reduces
the in�uence of these vortices; consequently, the magnitude of the pressure perturbation
is signi�cantly diminished. Again, the modi�ed pressure �eld does not impart su�cient
impulse to overcome the inertia of the dynamical system, and the system is relatively
unresponsive to this perturbation.

To recapitulate, in light of the outcome of the simulations presented in the previous
chapter, it may be concluded that intraglottal vortices, although they in�uence the dy-
namics of the vocal folds, do not in�uence the dynamics of the vocal folds in a way which
ensures that the vortices systematically a�ect the rate of closing of the vocal folds in the
closing phase of the phonatory cycle. Although the pressure distribution on the medial
surfaces of the vocal folds is perturbed by the presence of the advecting singularities, the
e�ect is either short lived, weak, or both. Also, depending upon the precise instant at
which the perturbation occurs in the phonatory cycle, the glottis may close slightly more
rapidly, slightly more slowly, or close at exactly the same rate as it would have in the
absence of an advecting vortex pair. Consequently, the shape of the glottal waveform is
not signi�cantly altered; speci�cally, the rate of closure of the glottis is not systematically

88



a�ected by this mechanism. Therefore, the intraglottal vortices do not have a signi�cant
impact on the intelligibility of voiced speech due to increased high frequency content from
a vocal tract excited by a more rapidly closing glottis.

5.2 Recommendations

Low-order speech models, especially those incorporating either potential �ow techniques
for glottal �ow or reduced DOF models for the VF tissue mechanics has signi�cant draw-
backs in terms of model �delity, speci�cally in terms of the capacity of the model to capture
signi�cant e�ects due to viscosity. Nevertheless, much is gained in terms of the computa-
tional tractability of these models. The model and model framework developed herein are
powerful and su�ciently �exible to incorporate various other extensions.

The modelling approach employing the Schwarz-Christo�el transform to relate a com-
plex potential in an auxiliary region where it may be easily determined to a harmonic
function in a �ow domain of arbitrary polygonal boundary is su�ciently general to accom-
modate more complicated tissue models which capture higher order vibrational modes of
the vocal fold tissues, i.e., multi-mass cases where di�erent parts of the medial surface of
the vocal fold translate with respect to each other non-rigidly.

With speci�c reference to the outcomes of the simulations performed in conjunction
with this thesis and presented in Chapter 4, in subsequent low-order or simpli�ed VF-GF
models, if desired, one may forego the e�ort to capture the e�ect of intraglottal vortices in
the modeling process. The presence of the intraglottal vortices negligibly perturbs glottal
volumetric �ow rate, open and closed quotients, and the evolution of minimal glottal area
waveform in time. The presence of intraglottal vortices has little to no e�ect on the
mechanism which sustains the oscillation of the vocal folds in phonation; rather, their
presence merely modi�es, to a slight extent, measurable �ow quantities. The interaction
of intraglottal vortices with more detailed models has not been determined herein. No
conclusion may be drawn regarding the inclusion of vortical modelling in conjunction with
higher order �uid solvers and more substantial vocal fold tissue models. Additionally, it
is quite possible that marginal e�ects of intraglottal vortices may be better modelled or
captured in a more accurate visco-elastic model of vocal-fold tissue and glottal �ow which
incorporates viscosity as well as three-dimensionality of the vocal fold tissue and glottal
�ow. The viscosity of the �uid is involved in the mechanism which generates vortical roll-
up in the separated shear layer of the glottal jet, and the pressure �eld which is modulated
by the downstream vocal tract structures. It is not known whether these e�ects may or
may not be discarded with higher �delity models.
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5.3 Future Work

Whereas the model was designed with one speci�c question in mind, the model framework
is powerful and �exible and lends itself to several possible extensions which would render
the model more useful in subsequent low-order modelling e�orts. Some extensions are
suggested herein. Also, a coupling to the acoustical �eld has been entirely skirted in this
thesis. The model may be extended to accommodate this extension as well because the
free stream may be allowed to evolve in time, and this may approximate disturbances
in the velocity �eld due to re�ected acoustical waves and similar phenomena. Also, the
epilaryngeal pressure, which would be perturbed by a coupling to the acoustical �eld, feeds
into the separation model, it is the pressure applied over the superior portion of the vocal
fold downstream of the point of separation. This modi�cation would reduce the pitching
moments in this phase of the phonatory cycle.

The question of biomedical application of this work has also been given marginal men-
tion. Nevertheless, it is the capacity of lower-order models to capture the fully coupled
aerodynamic, structural, and acoustical multi-physics of voiced speech in a computation-
ally tractable manner which lends such frameworks to scienti�c investigations of voiced
speech. There is much to be learned about pathological speech especially towards clinical
applications in the diagnosis and treatment of speech disorders. In particular, it is desir-
able to be able to predict normal and pathological speech performance with the goal of
supporting clinical and surgical decisions to mitigate or fully resolve medical issues a�ect-
ing a patient's speech. Signi�cant work remains to be done to relate model parameters to
clinical data corresponding to individual subjects in order that the outcomes of simulations
accurately characterize the subject's speech pathology [30].

5.3.1 Asymmetric GF-VF Interaction

The simulation model presented herein enforced various symmetries about the midsagittal
plane, a symmetric glottal con�guration, a symmetric vortex con�guration, and a symmet-
ric glottal jet. Many speech pathologies introduce asymmetry. For instance, asymmetric
glottal geometry due to polyps or similarly vocal fold defects induce an asymmetrical �ow
which leads to an asymmetrical glottal jet, both of which ultimately lead to an unequal
aerodynamic loading on the medial surfaces of the vocal folds. Other pathologies lead
to asymmetrical tissue properties, such as partial vocal fold paralysis. Asymmetrical me-
chanical properties lead to asymmetrical response of the vocal fold tissues which, in turn,
yield an asymmetrical geometry, and the same situation as outlined above prevails yielding
similar aerodynamic outcomes. The simulation model presented herein may be relatively
easily extended by relaxing the constraints which preserve symmetry together with compu-
tation of the VF dynamics of each fold separately. The geometry generation algorithm will
need to be modi�ed accordingly. As well, two sets of mechanical parameters and initial
conditions must be speci�ed. These modi�cations may be easily implemented, perhaps
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after some of the other extensions discussed amongst the recommendations of this section
have been validated with the symmetric model.

5.3.2 Contact Models & Higher-Order VF Tissue Models

Vocal fold contact remains poorly understood [30]. In the present work, a contact model
which consisted of a hydrostatic pressure of magnitude determined by the average trans-
glottal pressure was employed. There have been numerous criticisms of such a model. The
model is employed in the simulations merely due to its simplicity. Furthermore, the con-
tact mechanics were not the focus of the investigation, rather the e�ect of the intraglottal
vortices on the glottal dynamics were. What is essential for the model is that there is a
contact force, otherwise the asymmetry of the subglottal pressure applied over the area
of the vocal folds below the closure would impart an unmitigated pitching moment to the
plate which would cause the glottis to open rapidly.

The extent to which the use of a constant pressure contact model leads to inaccuracy
was not investigated. The use of more accurate, and therefore complicated, contact models
was not investigated. In the search to identify more general and accurate contact models
which would more accurately capture VF motion throughout contact., others have proposed
VF contact models such as simple elastic hard-wall contact models and linear or non-linear
spring based contact force models.

It may be speculated that the increasingly complicated contact models employed in con-
junction with low-order VF tissue models may not yield additional bene�t commensurate
to the increased computational burden imposed. Nevertheless, in the absence of compu-
tational studies, these questions are merely speculative. The computational framework
provided allows the simple extension of the model to incorporate a variable contact stress
and a simple determination of the area over which it is applied. It is recommended that
simulations be performed with several increasingly complicated but simple non-constant
non-uniform contact models in order to characterize the impact upon model accuracy and
simulation runtime. The purpose of pursuing such a study is the possibility that a justi-
�able balance may be stricken between the complexity of the contact model, in terms of
implementation and runtime, and the quality of simulation outcomes.

The marginal gains in �delity of models of the vocal source with increasing DOFs of the
VF tissue has been demonstrated for models which capture self-oscillatory e�ects. However,
the increasing tissue model �delity has not been quanti�ed in the presence of intraglottal
vortices. The interaction of glottal shape with advecting vortices was examined merely in
the case of a �at medial VF surface. For a VF tissue model which captures greater freedom
of motion along the length of the vocal fold, perhaps, however unlikely, the simulation
outcomes would demonstrate more signi�cant variation due to the presence of intraglottal
vortices than the present model suggests.
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5.3.3 Boundary Integral Methods

The �ow problem was approximated at each timestep with the assumption that the relative
velocity vector of the �uid at the boundary remains normal to the moving wall. The wall-
normal relative velocity condition may be restored to solve the Laplace equation with a wall-
oblique velocity condition at each timestep. However, this strengthening requires boundary
integral techniques in which the solution at any point within the �ow domain is expressed
as a contour integral in the complex plane around the boundary of the domain. This
approach would similarly yield analytic expressions for the solution of the �ow problem,
and would additionally enable methods to incorporate a facility to include sophisticated
wake models which would be implemented by integrating around the wake. These integrals
may be numerically evaluated, especially by employing SC techniques in which the integrals
are evaluated in an auxiliary domain and related back to the physical domain as was done
in the present approach.

The di�culty of employing wake models is that they are phenomenological, but their
description is based on ad hoc assumptions about pressure distributions which are not
known a priori. A parametric study would need to be performed to obtain a wake structure
which exhibits the same structure as the glottal jet which is observed at the glottal exit in
real �ows.

5.3.4 The Vortex Advection Scheme

The limitations discussed in Section 4.3 of the previous chapter suggested that the fun-
damental limitation of the vortex advection model with trailing edge separation is neither
physically nor physiologically representative. The approach to introduce vortices into the
model is more ad hoc than it is physical; the vortices are merely advected through the
intraglottal space from an upstream starting position to ensure that they arrive at the
diverging glottis at the appropriate moment. This is in contrast to a model in which the
vortex roll-up would be a consequence of physical mechanisms which a model captures.
Despite much work, practical characterization of vortices in terms of shedding frequency
of vortices, whether periodic or not, or their strengths have not been determined in real-
istic conditions [65]. The simulation model presented herein may be extended to obtain
physically reasonable vortex strengths which correlate to physically reasonable, i.e. ob-
served, rates of vortex advection. This would allow the shortcomings of the model to be
somewhat overcome by allowing the vortex to begin at some point near the medial VF
surface downstream of a predicted separation point. The strength may be determined by
a conservation principle. This is a non-trivial extension and it is not entirely clear how
this would be implemented or how the ultimate vortex strength would be determined. If
the vortex strength itself is not subject to ad hoc assumptions, the conclusions drawn from
such a model would be perceived to be stronger. However, it remains unclear whether such
an extension would yield signi�cant evidence against the conclusions drawn in this thesis,
that the intraglottal vortices do not systematically in�uence the rate of glottal closure in
the closing phase of the phonatory cycle.
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A | Complex Analysis, a Primer

The inclusion of this appendix is to gather important background in complex analysis
which is essential for the developments in the body of the thesis. It is intended to bring
the reader who is uninitiated in the geometry and analysis of complex numbers to a point
that either he or she would fruitfully be able to explore the development of analytical
potential �ow models pursued in Chapter 3 and the derivations in Appendix B. The idea
is that this thesis be somewhat self-contained, and, furthermore, it is the intention of the
inclusion of this appendix that the reader be motivated and the essential ideas be presented
inform the reader who is interested to continue the work begun in this thesis. It is this
humble author's belief that the conspicuous absence of this material from many engineering
curricula is unfortunate because complex analysis furnishes a language in which many
two-dimensional problems of mechanical engineering may be succinctly expressed and, in
many cases, rapidly solved. The analytical solutions of problems, when attainable, provide
unique physical insight and unity which may otherwise be obfuscated by purely numerical
solutions. The development is intended to be clear and aligned with the treatments of
complex analysis textbooks in current circulation. The scope is almost identical to that
presented as background in Milne-Thomson, [64], but, it is hoped, with greater emphasis on
geometric insight, and consistent with the notation employed throughout this document.

This appendix proceeds from a brief development of the algebraic �eld of complex
numbers, a discussion of modulus and argument, the relation to the polar form and the
complex exponential, and the geometry of complex numbers in the plane together with a
geometric interpretations. Several sections dealing with analysis follow. The sole requisite
of the reader is an acquaintance with the analysis of functions f : Rn → Rm, in particular,
mappings of the plane (i.e., mappings f with m = n = 2). The development of derivatives,
integrals, mappings, and series, with brief digression on point-set topology in the plane,
is realized in this familiar framework. The concepts of di�erentiability in the real sense
is related to complex di�erentiability of complex functions of a complex variable and the
ideas of holomorphy and analyticity. A discussion of harmonic functions and conformal
mapping is included as important background. A �nal section on integration of complex
functions of a complex variable follows together with a relation between contour integrals
in the real plane and the integral of complex functions of a complex variable.

The contents of this appendix are not original, save possibly the exposition itself. More-
over, the reader is encouraged to explore the following wonderful primary references from
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which this author has learned much. Complex numbers and their geometry without dis-
cussion of analysis or topology is the focus of the book of problems Complex Numbers from
A to ... Z, [5]. A geometrically motivated treatment, which inter-weaves topological and
analytical topics including the geometry of analytic functions, is Visual Complex Analy-
sis, [69]. Complex Variables and Applications by Churchill and Brown [14] builds intuition
about mappings and extensively discusses physical applications despite that the authors
don't preserve the distinction between holomorphy, di�erentiability, and analyticity. An
advanced and complete treatment of point set topology is contained in Rudin's Principles
of Mathematical Analysis, [79]. More advanced and encyclopædic treatments of complex
analysis are provided by Lang in [57], which takes the primacy of series as a unifying per-
spective, the volume by Greene and Krantz, [40], which emphasizes the geometric aspect,
and Rudin, [80], which provides exquisite detail in its development of real and complex
analysis perhaps far beyond the scope necessary for engineering treatment, emphasises the
analytic aspect in the framework of advanced analysis. These advanced treatments also
include extensive discussion of in�nite product expansions.

A.1 Complex Numbers and Their Geometry

A.1.1 The Algebraic Field C and Rectangular Form

The algebraic �eld of complex numbers is a set of objects C called complex numbers to-
gether with two binary operations, addition and multiplication, satisfying the �eld axioms;
i.e. the operations are closed in C, they are associative and commutative, multiplica-
tion distributes over addition, both operations have unique identity elements in C, every
complex number has a unique additive inverse, and every complex number di�erent from
the additive identity has a unique multiplicative inverse. More concretely, elements of C
are ordered pairs of real numbers (x, y). In fact, that complex numbers are generated by
combining simpler parts is the reason for the identi�er complex. Addition is de�ned com-
ponentwise as in the familiar addition of vectors in the plane R2. So we have, for complex
numbers z = (z1, z2) and w = (w1, w2),

z + w = (z1, z2) + (w1, w2) = (z1 + w1, z2 + w2) ,

but multiplication is de�ned according to

zw = (z1, z2) (w1, w2) = (z1w1 − z2w2, z1w2 + z2w1) .

We make the following observations

(0, 0) + (z1, z2) = (0 + z1, 0 + z2) = (z1, z2) = (z1 + 0, z2 + 0) = (z1, z2) + (0, 0) and
(1, 0)(z1, z2) = (1z1 − 0z2, 1z2 + 0z1) = (z1, z2) = (z11− z20, z10 + z21) = (z1, z2)(1, 0)
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and, also,

(z1, z2) + (−z1,−z2) = (z1 + (−z1), z2 + (−z2)) = (0, 0)

= ((−z1) + z1, (−z2) + z2) = (−z1,−z2) + (z1, z2)

so that it is immediately apparent that the additive and multiplicative identities are
(0, 0) and (1, 0), respectively, and to each element (z1, z2) corresponds the additive inverse
(−z1,−z2). The multiplicative inverse is more interesting and will be found subsequently.
Firstly, when we think about R2, the standard basis, written as row vectors, comprises
(1, 0) and (0, 1). We have found that, in the �eld of complex numbers, the former is the
multiplicative identity, but what role does the latter play? Consider the following decom-
position

(z1, 0)(1, 0) + (z2, 0)(0, 1) = (z1 · 1− 0 · 0, z1 · 0 + 0 · 1) + (z2 · 0− 0 · 1, z2 · 1 + 0 · 0)

= (z1, 0) + (0, z2) = (z1, z2).

Furthermore, that for any product of the form (α, 0)(z1, z2) for α ∈ R, we have (αz1, αz2)
allows the above decomposition to be written more compactly in the form of a linear
combination of vectors in R2 with real scalars z1 and z2,

z1(1, 0) + z2(0, 1) = (z1, 0) + (0, z2) = (z1, z2).

To introduce some additional notation, because (1, 0) is the multiplicative identity, it is
naturally denoted by 1, and we have 1z = z1 = z for any z ∈ C. Also, if (0, 1) is denoted i,
from the above decomposition, we may write any complex number (z1, z2) as z1 + iz2. This
is called the rectangular form of the complex number (z1, z2), the complex number i is called
the imaginary number, z1 is called the real part of (z1, z2), and z2 is called the imaginary
part of (z1, z2). Additionally, because (0, 0) is the additive identity, it is naturally denoted
by 0, and we have 0 + z = z + 0 = z. Furthermore, with the rectangular form, addition
and multiplication follow the approach taken in polynomial addition and multiplication
with i playing the role of x with the additional possibility of reinterpreting x2 as −1, e.g.,
(a+ bx) + (c+ dx) = (a+ c) + x(b+ d) and (a+ bx)(c+ dx) = ac+ bdx2 + x(ad+ bc) and,
with x taken as i, these become

(a+ ib) + (c+ id) = (a+ c) + i(b+ d) and
(a+ ib)(c+ id) = ac− bd+ i(ad+ bc).

These are precisely the forms expected when the de�nitions of addition and multiplication
are cast in rectangular form.

It is also worth stating that (z1, z2) is often called the geometric image of the complex
number z1 + iz2 because it is a point in the plane corresponding to the complex number;
this is the source of the interpretation of constructs of planar geometry in terms of complex
numbers and vice versa. Because the rectangular form is easier to manipulate, it, rather
than the vectorial form, is used persistently. This is unless one wishes to emphasize or to
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draw attention to the geometry, as is often desirable. We develop this idea further in the
subsection on geometry to which this is building.

Complex numbers admit an interesting operation which e�ectively reverses the sign of
the imaginary part. The conjugate, z, of a complex number, z = a + ib, is de�ned to be
a− ib, so

a+ ib = a− ib.

We also have an operation which measures complex numbers in some sense (but neverthe-
less does not yield a total ordering of C) and, as we will see, has an obvious geometric
interpretation. The modulus, |z|, of a complex number, z = a+ib, is de�ned to be

√
a2 + b2,

so
|a+ ib| =

√
a2 + b2.

We make the following observation for a complex number z = a+ ib,

zz = (a+ ib) (a+ ib) = (a+ ib) (a− ib) = a2 + b2

so
zz = |z|2.

With these additional operations, we are now in a position to discuss the multiplicative
inverses, z−1, of non-zero elements z ∈ C, i.e. elements z = z1 + iz2 with z1 and z2 not
both vanishing. Observe

z
z

|z|2
=

zz

|z|2
=
|z|2

|z|2
= 1

so
z−1 =

z

|z|2

is a suitable de�nition of the multiplicative inverse. Notice that it is perfectly well de�ned
when the denominator is not vanishing, that is, when z is non-zero. In case the reader �nds
this to be di�cult to remember, the process of dividing by a non-zero complex number in
rectangular form may be achieved by choosing to multiply the numerator and denominator
of the given quotient by the conjugate of the denominator as in

a+ ib

c+ id
=
a+ ib

c+ id
· c+ id

c+ id
=

(a+ ib) (c− id)

(c+ id) (c+ id)
=
ac+ bd+ i (bc− ad)

|c+ id|2
=

ac+ bd

|c+ id|2
+i

(bc− ad)

|c+ id|2
.

In particular, to obtain the multiplicative inverse of z = z1 + iz2, multiply numerator and
denominator by the conjugate to obtain

1

z
=

1

z1 + iz2

=
1

z1 + iz2

· z1 − iz2

z1 − iz2

=
z1 − iz2

|z1 + iz2|2
=

z

|z|2

as expected. Now, prior to exploring yet a third form of complex numbers and the corre-
sponding geometric interpretations, we introduce yet another important de�nition, func-
tions which retrieve real and imaginary parts of complex numbers in terms of the number
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and its conjugate. Observe the following for the complex number z = a+ ib,

z + z

2
=

(a+ ib) + (a+ ib)

2
=

(a+ ib) + (a− ib)
2

=
2a

2
= a,

the real part of z, and

z − z
2i

=
(a+ ib)− (a+ ib)

2i
=

(a+ ib)− (a− ib)
2i

=
2ib

2i
= b,

the imaginary part of z. These calculations lead to natural de�nitions for the functions
Re, Im : C→ R de�ned by

Re(z) =
z + z

2

and

Im(z) =
z − z

2i
which recover the real and imaginary parts of z, so that, to reiterate, for complex number
z = z1 + iz2, Re(z) = z1 and Im(z) = z2. It should also be apparent that a complex
number z ∈ C is purely real if and only if z = Re z and that z ∈ C is purely imaginary,
i.e. a non-zero real multiple of i, if and only if Re z = 0 but Im z 6= z.

We are now prepared to provide several more de�nitions, which are motivated by the
geometric properties of complex numbers. We begin with the polar form, and interpret the
algebraic properties and operations presented in this section in the geometric framework
inherent in the de�nition of the complex number as ordered pair.

A.1.2 Polar Form and the Geometry of C

Recall that a complex number z ∈ C with real part z1 and imaginary part z2 is de�ned
to be the ordered pair (z1, z2). This is clearly a point, the geometric image of z, in the
plane R2, as shown schematically in �gure A.1 below. Upon inspection of Figure A.1,
a geometric interpretation of modulus is immediate, it is simply the magnitude of the
corresponding vector, the corresponding geometric image. We de�ne the angle θ, measured
counter-clockwise from the positive real axis to the ray which extends from the origin to
the geometric image of the complex number, and call it the argument, denoted arg z. With
modulus and argument in hand, we may immediately de�ne a polar representation of the
complex number z; the quantities r and θ, with r > 0, completely and uniquely characterize
the polar form of the complex number. In particular, for the complex number z = z1 + iz2,
the relations between rectangular and polar co-ordinates are, of course,

r = |z| ,

tan θ =
z2

z1

,

z1 = r cos θ, and
z2 = r sin θ

106



z = z +i z

Im

Re

1 2

z 1

z 2

θ

r

z = z −i z1 2

− θ

‒−z 2

Figure A.1: This is a schematic of the geometric image (z1, z2) of the complex
number z = z1 + iz2 in the complex plane. The horizontal axis is the real axis and is
typically labelled by Re. Likewise, the vertical axis is known as the imaginary axis
and is labelled Im. The modulus, |z| is labelled as r, and the argument of z is the
angle θ taken positive counter-clockwise from the real axis to the ray which extends
from the origin to the geometric image. The conjugate, z, is the re�ection of z in the
real axis.

The relation tan θ = z2/z1 de�nes θ implicitly. There is a subtlety which arises because tan
is 2π-periodic, i.e., tan θ = tan (θ + 2π). Consequently, arg z is a multi-function, a function
which takes a complex number z in its domain but returns a set of possible outcomes. That
is to say that, for a given complex number z, arg z = {θ + 2πk | k ∈ Z} where θ is simply
an angle measured from the positive real axis to a ray which corresponds to the ray which
extends from the origin to the geometric image of z. The angle θ depicted in Figure A.1
is one amongst many possible such angles. Sometimes, to avoid this di�culty, a principal
argument is de�ned. We have, for complex number z with argument θ where θ is any
element of the set arg z, i.e., any angle which satis�es tan θ = z2/z1, the following. An
angle α measured from the positive real axis is selected and �xed. For this angle, de�ne
Argα z to be the element of arg z which falls into the interval [α, α + 2π). Arg z is known
as the principal argument of complex number z corresponding to the value of arg z which
satis�es α ≤ arg z < α + 2π. We will drop the subscript α but understand implicitly that
each time the principal argument is invoked, there is a particular range of values, known as
the branch of arg, to which it corresponds, and that, because Argα 6= Argβ when α 6= β, the
principal arguments with respect to di�erent branches may not be manipulated carelessly.

Before proceeding with geometric interpretations of the algebraic operations on C, we
introduce the complex exponential, which allows the most expeditious expression of the
polar form. Euler's formula, motivated by Maclaurin series for sin and cos but ultimately

107



taken as a de�nition, is
eiθ = cos θ + i sin θ. (A.1)

Again, it should be apparent due to the 2π periodicity of sin and cos that

eiθ = ei(θ+2πk)

for any θ ∈ R and any k ∈ Z. So, with the relations between polar and rectangular
components and with Euler's formula, we must have

z = z1 + iz2 = r cos θ + ir sin θ = r (cos θ + i sin θ) = reiθ (A.2)

where θ = arg z. Equation (A.2) will be taken as the polar form of the complex number z.
The complex exponential, a function exp : C→ C, is de�ned

exp z = ez = eRe(z)+i Im(z) = eRe(z)ei Im(z) = eRe(z) (cos (Im (z)) + i sin (Im (z))) . (A.3)

Further discussion of complex functions of a complex variable and their geometry, including
the geometry of the exponential function, follows in section A.3 subsequently. We are now
prepared to discuss the geometry of the algebraic operations in C.

We have seen that the set of complex numbers C coincides with R2 where the real
part of z is the x coordinate, the imaginary part of z is the y coordinate in the plane. It
should be clear that the addition of complex numbers, by the very de�nition, corresponds
to vectorial addition in the plane, multiplication of complex numbers by a real number
corresponds to a pure scaling as in scalar multiplication of vectors. We have seen that the
modulus of a complex number is simply the distance from the origin of the complex plane
to the geometric image of the complex number, and that the argument is simply one of
the many angles winding around the origin k ∈ C times, and measured from the real axis
to a ray which coincides with the ray generated by the geometric image. Again, θ is taken
positive counter-clockwise. The conjugate of a complex number is the geometric image of
a re�ection through the real axis of the number conjugated. What of multiplication and
division? Consider the following for z = z1 + iz2 = r1e

iθ1 and w = w1 + iw2 = r2e
iθ2 in C,

zw = r1e
iθ1r2e

iθ2 = r1r2e
iθ1eiθ2

= r1r2 (cos θ1 + i sin θ1) (cos θ2 + i sin θ2)

= r1r2

(
cos θ1 cos θ2 − sin θ1 sin θ2 + i (cos θ1 sin θ2 + sin θ1 cos θ2)

)
= r1r2

(
cos (θ1 + θ2) + i sin (θ1 + θ2)

)
= r1r2e

i(θ1+θ2)

= |z| |w| ei(arg z+argw)

So obtaining the relations

|zw| = |z| |w| and arg (zw) = arg z + argw.
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A similar argument entails for division that∣∣∣w
z

∣∣∣ =
|w|
|z|

and arg
(w
z

)
= argw − arg z.

It is worthwhile to note that these relations do not hold for principal arguments because the
sum of two principal arguments relative to the same branch of arg might actually fall outside
of the branch and similarly for di�erences of principal arguments. With these observations,
it is abundantly clear that multiplication of w by a complex number z corresponds to
rotation of the geometric image of w about an angle arg z and a scaling of w by an amount
|z|, whereas division of w by z corresponds to rotation of the geometric image of w about
an angle |arg z| but oriented oppositely to arg z and a scaling of w by an amount 1/|z|. In
particular, z−1 is an inversion in the unit circle, z/|z| together with a re�ection through
the real axis.

Now, prior to moving onwards to the discussion of complex functions of a complex
variable, their geometry and analysis, in subsequent sections, a number of results are
gathered and proven here. An important exercise is to keep the geometric interpretation
in mind at all times. The proofs are algebraic, but the results themselves have signi�cant
geometric content, i.e., that the relation is true should be apparent from the geometry
alone.

Theorem A.1.

1. z = z

2. Re (z) = Re (z)

3. Im (z) = − Im (z)

4. z ± w = z ± w

5. zw = z w

6.
(
z
w

)
= z/w

7. z−1 = 1/z = z−1

8. zz = |z|2

9. |z| = |z|

10. |zw| = |z| |w|

11.
∣∣ z
w

∣∣ = |z|
|w|

12. |z−1| = 1
|z| = |z|−1

13. Re z ≤ |Re z| ≤ |z|

14. Im z ≤ |Im z| ≤ |z|

15. |z ± w| ≤ |z|+ |w|

16. ||z| − |w|| ≤ |z ± w|

Several of these have been proven, nevertheless, all of these results are proven again.

Proof. In the following, we take z = z1 + iz2 = r1e
iθ1 and w = w1 + iw2 = r2e

iθ2

1. z = z1 + iz2 = z1 − iz2 = z1 + iz2 = z

2. Re (z) = Re
(
z1 + iz2

)
= Re (z1 − iz2) = z1 = Re (z)
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3. Im (z) = Im
(
z1 + iz2

)
= Im (z1 − iz2) = −z2 = − Im (z)

4.

z ± w = (z1 + iz2)± (w1 + iw2) = (z1 ± w1) + i (z2 ± w2)

= (z1 ± w1)− i (z2 ± w2) = (z1 − iz2)± (w1 − iw2)

= z ± w

5.

zw = (z1 + iz2) (w1 + iw2) = z1w1 − z2w2 + i (z1w2 + z2w1)

= z1w1 − z2w2 − i (z1w2 + z2w1) = (z1 − iz2) (w1 − iw2)

= zw

6. ( z
w

)
=

(
z1 + iz2

w1 + iw2

)
=
z1w1 + z2w2

|w1 + iw2|
+ i

z2w1 − z1w2

|w1 + iw2|

=
z1w1 + z2w2

|w1 + iw2|2
− iz2w1 − z1w2

|w1 + iw2|2
=
z1w1 + z2w2 − i (z2w1 − z1w2)

|w1 + iw2|2

=
z1w1 + z2w2 + i (z1w2 − z2w1)

|w1 + iw2|2
=

(z1 − iz2) (w1 + iw2)

|w1 + iw2|2

=
(z1 − iz2) (w1 − iw2)

|w1 + iw2|2
=
zw

ww
=
z

w

7. This result follows immediately from the previous by setting z to 1 and w to z.

8. zz = (z1 + iz2) (z1 + iz2) = (z1 + iz2) (z1 − iz2) = z2
1 + z2

2 = |z|2

9. |z|2 = zz = zz = zz = |z|2 and, because the expression to be squared is positive,
simply take square roots of both sides to obtain |z| = |z|, as required.

10. |zw|2 = (zw) (zw) = zwzw = zzww = |z|2 |w|2 and, because the expression to be
squared is positive, simply take square roots of both sides to obtain |zw| = |z| |w|,
as required.

11.
∣∣ z
w

∣∣2 =
(
z
w

) (
z
w

)
= z

w
· z
w

= zz
ww

= |z|2

|w|2 =
(
|z|
|w|

)2

and, because the expression to be

squared is positive, simply take square roots of both sides to obtain
∣∣ z
w

∣∣ = |z|
|w| , as

required.

12. This result follows immediately from the previous by setting z to 1 and w to z.

13. Re z ≤ |Re z| =
√

(Re z)2 ≤
√

(Re z)2 + (Im z)2 = |Re z + i Im z| = |z|
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14. Im z ≤ |Im z| =
√

(Im z)2 ≤
√

(Re z)2 + (Im z)2 = |Re z + i Im z| = |z|

15. This is the triangle inequality. Consider |z + w|2

|z + w|2 = (z + w) (z + w) = (z + w) (z + w) = zz + zw + wz + ww

= |z|2 +
(
zw + zw

)
+ |w|2 = |z|2 + 2Re (zw) + |w|2

≤ |z|2 + 2 |Re (zw)|+ |w|2

≤ |z|2 + 2 |zw|+ |w|2 = |z|2 + 2 |z| |w|+ |w|2 =
(
|z|+ |w|

)2

so obtain |z + w|2 ≤ (|z|+ |w|)2 and, because the expressions to be squared are
positive, obtain |z + w| ≤ |z|+ |w|. Replace w with its negative to obtain |z − w| ≤
|z|+ |w|.

16. This is a variation on the triangle inequality. Begin by considering |z| then simul-
taneously add and subtract w inside of the absolute values. |z| = |z − w + w| ≤
|z − w| + |w|, by triangle inequality, so |z| − |w| ≤ |z − w|. Now swap z and w to
obtain |w| − |z| ≤ |w − z| = |z − w| so − |z − w| ≤ |z| − |w|. Combining, obtain
− |z − w| ≤ |z| − |w| ≤ |z − w| so ||z| − |w|| ≤ |z − w| as required. Replace w with
its negative to obtain ||z| − |w|| ≤ |z + w|.

A.2 Some Topology

A.2.1 Open Disk Topology

De�nition (open disk). An open disk with centre z0 ∈ C of radius r > 0 is a subset
D(z0, r) of C de�ned according to

D(z0, r) =
{
z ∈ C

∣∣ |z − z0| < r
}
.

Sometimes D(z0, r) is called the disk about z0. It should be clear from the de�nition that
the boundary of the open disk D(z0, r) is the locus of points a �xed distance r from the
given point z0 in the plane, i.e., the circle of radius r centred at z0.

De�nition (open set). A subset U ∈ C is open if and only if, for every point z0 ∈ U , a
radius r > 0 exists and ensures that

D(z0, r) ⊆ U.
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This de�nition identi�es the open sets to be those subsets of the complex plane which have
the property that, for any point z0 of the set U , a stepsize r > 0 exists and ensures that,
whenever a step of size r is taken from z0 in any direction, the destination is also in U ,
i.e., stepsizes always exist so that boundaries are not overstepped. This may be written
formally, U is open if and only if, for any z0 ∈ U , a stepsize r > 0 exists and z0 + reiθ ∈ U
for any θ. This characteristic of open sets allows the formulation of de�nitions (of things
like di�erentiability and continuity) without regard to special boundary cases, and this
turns out to be extremely convenient.

Now, revisiting the �rst de�nition in light of the second, D(z0, r) surely is a disk in the
plane, but is it an open set? In other words, is it appropriate to call D(z0, r) the open disk
about z0? The answer is a�rmative, and stated in the following.

Theorem A.2. Open disks are open sets.

Proof. Let U be an open disk of radius r about a ∈ C. Let z0 ∈ U . Clearly |z0 − a| < r, so
by the de�nition of inequality there is a δ > 0 for which |z0 − a|+δ = r, i.e., δ = r−|z0 − a|.
Claim that D(z0, δ) is an open disk contained in U . This is proven by demonstrating that
D(z0, δ) ⊆ U simply by showing |w − a| < r for an arbitrarily selected w ∈ D(z0, δ). So,
begin by supposing w ∈ D(z0, δ). Then

|z0 − w| < δ = r − |z0 − a|

so
|z0 − w|+ |z0 − a| < r

but
|w − a| < |z0 − w|+ |z0 − a| ,

by the triangle inequality, so
|w − a| < r.

Consequently, w must be in U so D(z0, δ) ⊆ U as required.

So, open disk is indeed an appropriate appellation, it is compatible with the above theorem
which con�rms that open disks are in fact open. Another way to discuss open sets is in
terms of interior points.

De�nition (interior point and interior). A point z ∈ U is an interior point of U whenever
it is the centre of an open disk entirely contained in U . The interior of U , often denoted
int(U), is the set of all interior points of U . More formally,

z ∈ int(U) if and only if ∃r > 0 for which D(z, r) ⊆ U.

It should be clear from this de�nition that open sets are those which comprise only their
interior points, i.e., U is open if and only if U = int(U). The locution neighborhood of a
point is often used to identify an open region of arbitrary shape surrounding a given point.
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The concept of neighborhood is a useful abstraction which plays a central role in the study
of topological spaces, which are de�ned in terms of appropriate families of neighborhoods;
herein, however, a neighborhood of a point will simply refer to an open disk centred on
the given point. The utility of the notion of neighborhood, of open disks in particular, is
that they enable a description of relative closeness of points in the plane. Concretely, given
points z and w in the plane, consider D(z, δ). Either w ∈ D(z, δ) for all positive radii δ,
entailing that the distance between w and z is zero, or there is a minimal distance δ for
which w /∈ D(z, δ), entailing that w is located a distance at least δ from z.

With the notion of neighborhood in hand, the notion of the open disk in particular, there
are several other types of points referred to a given set which should be de�ned in order to
establish a more complete vocabulary for discussion of points, curves, and regions in the
plane. This is done to improve one's intuition of the spatial relation between points in the
plane described in terms of open sets, and it is done prior to proceeding with preliminary
classi�cation of curves and regions which rely on these notions, important when discussing
derivatives and integrals.

De�nition (isolated point). A point a ∈ A is an isolated point of A whenever a has a
neighborhood which contains a but no other point of A; in particular, a radius r > 0 exists
and ensures that

D(a, r) ∩ A = {a} .

The de�nition entails that isolated points of A are indeed elements of A. The de�nition
captures the notion of isolation from the rest of A by asserting that no other point of A is
within a certain distance r from a; to reiterate, if D(a, r) contains no point of A besides a
itself, the points of A must be at least r units from a, and, hence, a is isolated from the
rest of A. Now, to contrast the notion of isolation with that of arbitrary closeness, limit
points of a set are de�ned as those points which are arbitrarily close to points of the set;
a limit point of a set A is a point not necessarily within A itself, but proximal to other
points of A.

De�nition (limit point). A point z ∈ C is a limit point of A (in C) whenever every
neighborhood of z contains points of A di�erent from z, i.e.,

∀ε > 0,
(
D(z, ε)\{z}

)
∩ A 6= Ø.

The set of all limit points of A is sometimes denoted A′. It follows that, if z ∈ A, and
it is not an isolated point, it is a limit point. The de�nition is much more interesting
when the limit point z is not an element of A. A limit point z of A with z /∈ A is
arbitrarily close to points of A, that is, no matter what distance is established, there are
always points of A which are within that distance to z. From the geometry of open disks
D(z0, δ), it should be evident that all of the points on the bounding circle, the locus of
points satisfying |z − z0| = δ, are not on the disk but are limit points of the disk. This
leads to the de�nitions of boundary point and boundary of a set, and of closedness and
closure of a set.
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De�nition (boundary point and boundary). A point z ∈ C is a boundary point of a set
A whenever all open disks centred on z simultaneously contain points of A and points not
in A. The boundary of A, denoted ∂A, is the set of all boundary points of A.

Several things should be clear from this de�nition, that isolated points are always boundary
points and that, amongst limit points, those which are not interior points are boundary
points. This is completely compatible with our intuition about boundaries. Draw any
non-intersecting closed curve in the plane, there are points interior to the region contained
within the contour, there are points which lie within the interior of the region outside
of the contour, these may be termed exterior points, and the points on the contour lie
arbitrarily close to both the interior and the exterior of the region within the contour.
When a set contains its boundary, we say that it is closed. When a set, possibly not
closed, is augmented with its boundary points, we obtain its closure.

De�nition (closedness and the closure of a set). A set A ⊆ C is closed if and only if A{

is open. The closure of a set A, denoted cl(A), is the set A together with its limit points,
i.e.,

cl(A) = A ∪ A′.

It should be evident from the de�nition of closedness that a set A is closed if and only
if A = cl(A). An alternative de�nition for closure follows from the observation that, for
any given set A ⊆ C, A ∪ A′ = A ∪ ∂A, so either take a set together with its limit points
or together with its boundary points to obtain its closure. This is the case because the
boundary comprises isolated points and limit points which are not simultaneously interior
points. It is critical to note that any given set may be either open, closed, or neither
open nor closed. A set is neither open nor closed when it contains some but not all of
its boundary points; if a set contains any boundary point, it cannot be open, because
boundary points cannot be interior points; if a set does not contain all of its boundary
points, it cannot be closed.

A.2.2 Paths, Loops, and Continuous Regions of the Plane

De�nition (path and loop). A path in some open set U ⊆ C is a continuous mapping
γ : [α, β]→ U . A loop is a path with γ(α) = γ(β).

In other words, a loop is merely a closed path. Loops may have self intersections. When a
loop does not intersect itself, except at the initial point, it is called a simple closed curve.

De�nition (simple closed curve). A simple closed curve in U ⊆ C is a loop γ : [α, β]→ U
with γ(t1) 6= γ(t2) for any distinct t1, t2 ∈ (α, β).

Simple closed curves are also called Jordan curves. The obvious claim, which was tacitly
assumed in the discussion above, that a Jordan curve decomposes the complex plane into
two disconnected regions, the interior and the exterior of the curve, is known as the Jordan
Curve Theorem.

114



De�nition (path homotopy). Let γ1, γ2 : [α, β] → U ⊆ C be paths in U with coinciding
endpoints, i.e., γ1(α) = γ2(α) and γ1(β) = γ2(β). A homotopy between them is a con-
tinuous function F : [α, β] × [0, 1] → U with F (t, 0) = γ1(t), F (t, 1) = γ2(t), and, for all
s ∈ [0, 1], F (α, s) = γ1(α) = γ2(α), and F (β, s) = γ1(β) = γ2(β).

A homotopy is a continuous mapping between curves which share endpoints and are indexed
by the second parameter. One may think of a homotopy as being a continuous deformation
which continuously takes one path to another. It should be clear that any Jordan curve
may be obtained via a homotopy of the unit circled centred at the origin.

We now de�ne connected and simply connected regions of the plane.

De�nition (disconnected set). A set U ⊆ C is disconnected whenever a family of disjoint
open subsets of the plane, {Ui} with Ui ∩ Uj = Ø whenever i 6= j, exists and

U =
⋃
i

Ui.

Each Ui is called a component of U .

De�nition (connected set). A set U ⊆ C is connected whenever it is not disconnected.

A connected set is one which cannot be written as the union of disjoint open sets.

De�nition (path-connected set). A set U ⊆ C is path-connected whenever any pair of
points in U may be joined by a path in U .

That a region is path-connected entails that it is connected but counterexamples con�rm
that the converse is not true. Finally, de�ne the notion of a simply connected set.

De�nition (simply connected set). A connected set U is simply connected if and only if
any two simple closed curves in U are homotopic.

A.3 Complex Functions of a Complex Variable

Complex functions of a complex variable, f : C → C, are often de�ned by expressions of
the form f(ζ) = u(ζ)+ iv(ζ) where u and v are real valued functions of a complex variable,
u, v : C→ R. Slightly abusing notation, one often writes f(ζ) = u (ξ, η)+ iv (ξ, η) in which
ξ = Re (ζ) and η = Im (ζ) and u and v in this instance are scalar valued functions of
points in the plane, that is u, v : R2 → R. This abuse of notation is tolerated due to the
de�nition of complex numbers as their geometric images. In this manner, if z = x+ iy and
z = f(ζ) = u(ζ) + iv(ζ), with ζ = ξ + iη, then x = u(ξ, η) and y = v(ξ, η) immediately
provides a geometric interpretation of f : C→ C as a geometric mapping from R2 to itself.
Figure A.2 shows a schematic of a mapping from the ζ plane to the z-plane where the
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points in the z-plane are given by functions of the points in the ζ-plane as x = x (ξ, η) and
y = y (ξ, η).

f

ξ

η Dζ

ζ=ξ+iη z=x+iy

Dz
y

x
ζ-plane z-plane

Figure A.2: This schematic of the mapping f : Dζ ⊆ C→ C shows that it associates
points in region Dz in the z-plane with points in domain Dζ in the ζ-plane, i.e., that
points ζ ∈ Dζ are mapped to points z ∈ Dz. So that real and imaginary parts, x and
y, of the image are both functions of real and imaginary parts of ζ, i.e., x = x(ξ, η)
and y = y(ξ, η).

An underlying thread which runs through all of complex analysis is that the de�nitions
of the elementary complex functions of a complex variable are purely real when they are
restricted to the real line, and they are de�ned in such a way that, when they are restricted
to the real line, they behave identically to the corresponding elementary function de�ned
on R. So, for example, sin : C→ C is de�ned in such a way that, for z = x purely real, one
obtains sin z = sinx in which the right hand side is the familiar real valued function sin of
real variable x. The extensions of the familiar elementary functions to C are now provided
and their geometry, interpreted as mappings of the plane, is discussed subsequently.

A.3.1 Elementary Functions Extended to C

The complex exponential has already been de�ned in equation (A.3), the de�nition is
repeated here for z = x+ iy,

ez = ex
(

cos y + i sin y
)
. (A.4)

So, if z = x+ iy, z = f (ζ) = eζ entails that points in the ζ-plane under the mapping f are
mapped to points in the z-plane given by x = x(ξ, η) = e ξ cos η and y = y(ξ, η) = e ξ sin η.
The geometry of the exponential map is exhibited in Figure A.3, in which three lines are
mapped to the z-plane, a horizontal line, a vertical line, and a line inclined at slope α.
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f(ζ)=e

ξ

η y

x

ζ-plane z-plane

ζ =t+i η0
ζ =
ξ    
+

i t
0

ζ =
t(
1+
αi
)

ζ

η0

0ξ

Figure A.3: This schematic of the mapping f (ζ) = eζ applied to three di�erent
curves in the ζ-plane, one horizontal, one vertical, and one inclined at slope α. Their
images are displayed in the z-plane. It should be evident that the exponential sends
horizontal lines to concentric circles centred at the origin, vertical lines to open rays
extending form the origin, and other lines to spirals.

To obtain de�nitions for trigonometric sine and cosine, we look to Euler's formula. If
Euler's formula for z and for −z are added and subtracted, the following are obtained

cos z =
eiz + e−iz

2
(A.5)

sin z =
eiz − e−iz

2i
(A.6)

The tangent function is de�ned as the ratio of sine and cosine,

tan z =
eiz − e−iz

i (eiz + e−iz)
. (A.7)

The remaining trigonometric functions are obtained from the reciprocal identities. For the
hyperbolic sine and hyperbolic cosine, the de�nitions follow the standard de�nition, so it
is apparent that when z is purely real, the de�nitions collapse to the familiar hyperbolic
sin and hyperbolic cosine on R. The following hold

cosh z =
ez + e−z

2
(A.8)

sinh z =
ez − e−z

2
(A.9)
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The hyperbolic tangent is de�ned as the ratio of sinh to cosh as expected. The remaining
hyperbolic functions are obtained from the reciprocal identities, as expected. It is via these
expressions that we �nd relationships between the hyperbolic and trigonometric forms. In
particular, we have the following four identities.

sin iz = i sinh z (A.10)
sinh iz = i sin z (A.11)
cos iz = cosh z (A.12)
cosh iz = cos z (A.13)

To see, for example, that sin iz = i sinh z, with sinh z = ez−e−z
2

and sin z = eiz−e−iz
2i

de�ned,
set the argument to iz to obtain

sin iz =
ei

2z − e−i2z

2i
= −ie

−z − ez

2
= i

ez − e−z

2

and obtain
sin iz = i sinh z

as required. The remaining equations are developed in a similar manner. Equation (A.10)
is employed in the development of equation (B.3). The above four identities easily enable
the discovery of hyperbolic identies similar to the identities for trigonometric functions.
According to Osborn's Rule, one simply replaces cosines and sines in the trigonometric
identities with their hyperbolic counterparts, and, for each pair of sines which are multi-
plied, toggle the sign of the corresponding term. This is a consequence of the imaginary
number which appears in the four transformation formulae above. The hyperbolic identities
are listed and some of them are immediately developed in order to see this.

sinh(−z) = − sinh(z) (A.14)
cosh(−z) = cosh(z) (A.15)

cosh2(z)− sinh2(z) = 1 (A.16)
sinh(z1 + z2) = sinh(z1) cosh(z2) + cosh(z1) sinh(z2) (A.17)
cosh(z1 + z2) = cosh(z1) cosh(z2) + sinh(z1) sinh(z2) (A.18)

sinh(2z) = 2 sinh(z) cosh(z) (A.19)

cosh(2z) = cosh2(z) + sinh2(z) = 2 cosh2(z)− 1 = 1 + 2 sinh2(z) (A.20)

So, for example, to demonstrate (A.16), take cos2 z + sin2 z = 1 and replace z with iz to
obtain

cos2 iz + sin2 iz = 1

(cosh z)2 + (i sinh z)2 = 1
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from equations (A.10) and (A.12) above, so

cosh2 z − sinh2 z = 1

as required. It is apparent that the toggling of the sign on the product terms in Osborn's
Rule is a consequence of the fact that the product of an even number of imaginary numbers.
For angle sum identities, the process is similar. Take the known expression for sin(z1 + z2),
replace z1 and z2 with iz1 and iz2, and employ (A.10) and (A.12) as before.

sin (iz1 + iz2) = sin iz1 cos iz2 + cos iz1 sin iz2

sin (i (z1 + z2)) = i sinh z1 cosh z2 + i cosh z1 sinh z2

i sinh (z1 + z2) = i sinh z1 cosh z2 + i cosh z1 sinh z2

and, upon cancelling the imaginary number from both sides of the equation, obtain the
expression sinh (z1 + z2) = sinh z1 cosh z2 + cosh z1 sinh z2 as required. For cos(z1 + z2), the
process is similar,

cos (iz1 + iz2) = cos iz1 cos iz2 − sin iz1 sin iz2

cos (i (z1 + z2)) = cosh z1 cosh z2 − (i sinh z1) (i sinh z2)

cosh (z1 + z2) = cosh z1 cosh z2 + sinh z1 sinh z2

as expected. The remaining identities are obtained in identical manner.

A.3.2 The Complex Logarithm and Other Inverses

Consider the equation ζ = ez. We call z the logarithm of ζ. To determine an expression
for z, simply replace the variables with their rectangular or polar forms, equate real and
imaginary parts, and solve. We have

ζ =ez

ξ + iη =ex (cos y + i sin y)

ξ + iη =ex cos y + iex sin y

and, equating real and imaginary parts, obtain

ξ = ex cos y and η = ex sin y

and, by taking ratios of these expressions and the sum of the squares of these expressions,
obtain

η

ξ
=

sin y

cos y
= tan y and ξ2 + η2 = (ex)2

thus, ex = |ζ| and y = arg ζ, so z = ln |ζ| + i arg ζ and the de�nition of the complex
logarithm is immediate,

log ζ = ln |ζ|+ i arg ζ. (A.21)
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Because arg is a multifunction, the complex logarithm is also a multifunction. In particular,

log eζ = ζ + i2kπ

for any integer k. This leads to the de�nition of the principal logarithm,

Log ζ = ln |ζ|+ iArg ζ, (A.22)

de�ned for some speci�ed or understood branch of the principal argument function, Arg.

Exponentials may be de�ned in the following manner

ζβ = eβ log(ζ) (A.23)

where β ∈ C.
Inverses of trigonometric and hyperbolic functions may be written in terms of loga-

rithms. Consider the equation ζ = sin z, in which z is the inverse sine function, z = sin−1 ζ.

ζ = sin z

ζ =
eiz − e−iz

2i
2iζ = eiz − e−iz

then, multiplying through by eiz, obtain

2iζeiz = eizeiz − e−izeiz

or (
eiz
)2

+ 2iζeiz − 1 = 0

so
eiz = iζ +

(
1− ζ2

)1/2

where the root is multiple valued. Now, taking logarithms, obtain

iz = log
(
iζ +

(
1− ζ2

)1/2
)

so, upon multiplication of both sides of the equation by −i, obtain the de�nition for the
inverse sine function,

sin−1 ζ = −i log
(
iζ +

(
1− ζ2

)1/2
)
. (A.24)

One may similarly obtain the following expressions for some of the other inverse functions

cos−1 ζ = −i log
(
ζ + i

(
1− ζ2

)1/2
)

(A.25)

tan−1 ζ =
i

2
log

(
i+ z

i− z

)
(A.26)

sinh−1 ζ = log
(
ζ +

(
ζ2 + 1

)1/2
)

(A.27)

cosh−1 ζ = log
(
ζ +

(
ζ2 − 1

)1/2
)

(A.28)

tanh−1 ζ =
1

2
log

(
1 + ζ

1− ζ

)
(A.29)

as well as similar expressions for the inverses of the reciprocal functions.
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A.3.3 An In�nite Product for sinc

The demonstration that sinπx
πx

=
∏∞

n=1

(
1− x2

n2

)
for x ∈ (0, 1) ⊆ R is provided in the

exquisite analysis textbook by Courant and John, Introduction to Calculus and Analysis,
[16], via the integral of a series representation for cotx which is obtained via a Fourier
series of cosµx. In the case of complex argument z, the demonstration involves theorems of
Mittag-Le�er and Weierstrass discussed in Rudin Real and Complex Analysis 3rd ed., [80],
and Greene and Krantz Function Theory of One Complex Variable 3rd ed., [40], and also
obtained in Lang Complex Analysis 4th ed., [57], in which the expression is derived from
in�nite series representations of the Gamma function together with the identity Γ(z)Γ(1−
z) = π

sinπz
demonstrated therein. The equation for sinc πz is provided in equation (A.30)

below. We have
sin (πz)

πz
=
∞∏
n=1

(
1− z2

n2

)
(A.30)

for all z ∈ C.

A.4 Holomorphy, Harmonicity, and Conformality

A.4.1 Complex Di�erentiability, Holomorphy, Analyticity

Because complex functions of a complex variable represent mappings from R2 to itself, it
is best to frame the notion of the derivative in terms of multivariable derivatives. Some
important de�nitions and theorems from calculus of several variables are now stated.

De�nition (di�erentiable at a point in the plane). f : R2 → R2 is di�erentiable at some
point a ∈ R2 if and only if a matrix Df(a) exists and

lim
x→a

‖R(x)‖
‖x− a‖

where R(x) = f(x)−(f(a) +Df(a) (x− a)). The matrix Df(a) is called the real derivative
matrix or the real total derivative of f at a.

De�nition (di�erentiable on a region of the plane). For some open set U ⊆ R2, f : U → R2

is di�erentiable on U if and only if f is di�erentiable at every point of U .

It can be shown that di�erentiability entails that the structure ofDf(a) obtains a particular
form. So that, if

f(x, y) =

(
u(x, y)
v(x, y)

)
is di�erentiable at a, then

Df(a) =

( ∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
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De�nition (continuous of order n). For an open set U ⊆ R2, f : U → R2 is continuous
of order n on U , written

f ∈ Cn (U)

if and only if all partial derivatives of f of order up to and including n exist and are
continuous. In particular, f ∈ C(U), i.e., f is continuous of order zero, if and only if f is
continuous on U ; f ∈ C1(U) if and only if all partials ∂fi/∂xj, for i, j ∈ {1, 2}, exist and
are continuous on U .

It can be shown that f ∈ C1 entails that f is di�erentiable. It can also be shown that
di�erentiability implies continuity, i.e. that f ∈ C, but that the derivative exists but is
not necessarily continuous. Finally, we simply write down the inverse function theorem
without proof,

Theorem A.3. For a function f : U ⊆ R2 → R2 with f ∈ C1 and Df(a) invertible at
a, the domain of f may be restricted to some open set V ⊆ U with a ∈ V so that f is
invertible, f−1 ∈ C1, and Df−1(f(a)) = Df(a)−1

With these concepts in hand, it is fruitful to interpret complex function of a complex
variable as derivatives of real functions from the plane to the plane. This is the source of
di�erent expressions used to discuss the di�erentiability of such functions. These notions
turn out to be equivalent via several theorems, nevertheless, the distinctions should be
preserved so that the appropriate language is employed when one aspect over another is
to be emphasized in any given situation.

A function f : U ⊆ C → C, is di�erentiable, or, more speci�cally, real di�erentiable,
whenever, taken as a function from R2 to R2, it is real di�erentiable as de�ned above.
In this case, the matrix Df(a) exists and is de�ned as discussed above. Several partial
derivatives are now proposed in a natural way and employed in the discussion of complex
di�erentiability and holomorphy.

De�nition. For f : U ⊆ C→ C given by f(z) = u(z) + iv(z), de�ne the following

∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
(A.31)

∂f

∂y
=
∂u

∂y
+ i

∂v

∂y
. (A.32)

Thus, these partials are simply corresponding columns of the derivative matrix Df(a).
Now, if x = (z + z)/2 and y = (z − z)/2i, take partial derivatives of f with respect to z
and z via chain rule. Obtain the following

∂f

∂z
=
∂f

∂x

∂x

∂z
+
∂f

∂y

∂y

∂z

=
1

2

∂f

∂x
+

1

2i

∂f

∂y
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so

∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
and, for derivative with respect to the conjugate of z,

∂f

∂z
=
∂f

∂x

∂x

∂z
+
∂f

∂y

∂y

∂z

=
1

2

∂f

∂x
− 1

2i

∂f

∂y

so

∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
which motivates the following de�nition for partial derivatives of f with respect to z and
with respect to z,

De�nition. For f : U ⊆ C→ C given by f(z) = u(z) + iv(z), de�ne the following partial
derivatives

∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
(A.33)

∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
. (A.34)

Multiples of equations (A.31), (A.32), (A.33), and (A.34) may be added and subtracted to
obtain

∂f

∂x
=
∂f

∂z
+
∂f

∂z
, (A.35)

∂f

∂y
= i

(
∂f

∂z
− ∂f

∂z

)
, (A.36)

∂f

∂z
=

1

2

(
∂u

∂x
+
∂v

∂y
+ i

(
∂v

∂x
− ∂u

∂y

))
, and (A.37)

∂f

∂z
=

1

2

(
∂u

∂x
− ∂v

∂y
+ i

(
∂v

∂x
+
∂u

∂y

))
. (A.38)

Also, from these de�nitions, the following natural formulae also hold, ∂z
∂z

= 1, ∂z
∂z

= 1,
∂z
∂z

= 0, ∂z
∂z

= 0, and, for any constant a ∈ C, ∂c
∂z

= ∂a
∂z

= 0.

De�nition (complex di�erentiable). f : U ⊆ C→ C is complex di�erentiable at a ∈ C if
and only if the limit

df

dz

∣∣∣
a

= lim
z→a

f(z)− f(a)

z − a
(A.39)

exists and we say that the limit, df
dz

∣∣
a
, sometimes written f ′(a), is the derivative of f at a.
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De�nition (holomorphic). f : U ⊆ C → C is holomorphic on U if and only if f is
complex di�erentiable at every point of U .

Sometimes, instead of complex di�erentiable, some authors will say that the function is
holomorphic at a point. Here, holomorphy refers to complex di�erentiability on an open
set which is the domain of the function. Some authors use analytic instead of these, but,
f is analytic at a point z ∈ C if and only if the Taylor series of f converges to f on a
neighborhood of z. It turns out that wherever f is holomorphic, derivatives of every order
of f exist, and consequently that f is analytic there. So, via a theorem, these notions are
equivalent, however, they are employed when di�erent aspects of di�erentiability are to be
emphasized.

De�nition (anti-holomorphic). For f : U ⊆ C→ C, when the limit

df

dz

∣∣∣
a

= lim
z→a

f(z)− f(a)

z − a
(A.40)

exists for every point a ∈ U , and we say that f is anti-holomorphic on U .

Theorem A.4. For an open set U ⊆ C and function f : U → C, the following are
equivalent:

1. f is holomorphic on U ,

2. f is di�erentiable (in the real sense) but ∂f
∂z

= 0, and

3. ∂u
∂x

= ∂v
∂y

and ∂u
∂y

= − ∂v
∂x

consequently, if any one of the above hold, we may write

df

dz
=
∂f

∂z

by the de�nitions of partials above.

Theorem A.5. For an open set U ⊆ C and function f : U → C, the following are
equivalent:

1. f is anti-holomorphic on U ,

2. f is di�erentiable (in the real sense) but ∂f
∂z

= 0, and

3. ∂u
∂x

= −∂v
∂y

and ∂u
∂y

= ∂v
∂x

consequently, if any ones of these hold, we may write

df

dz
=
∂f

∂z

by the de�nitions of partials above.
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The equations in (3) in theorem A.4 are known as the Cauchy-Riemann Equations and
turn out to be extremely important in the subsequent discussion of harmonic functions,
they are repeated here in rectangular form for convenience

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= −∂u

∂y
(A.41)

Finally, the complex form of the inverse function theorem is stated here without proof, the
proof follows from the result for real functions on the plane.

Theorem A.6 (Inverse Function Theorem). f : U ⊆ C → C holomorphic in U and
f ′(a) 6= 0 for some a ∈ U entails that f is invertible on a restriction of its domain, and
the inverse f−1 will be holomorphic near f(a) with

d

dz
f−1

∣∣∣∣∣
f(z)

=
1

f ′(z)

on a neighborhood of f(a).

A.4.2 Conformal Mapping and Harmonic Functions

A mapping f : U ⊆ C → C preserves orientation whenever detDf(a) is strictly positive,
and reverses orientation whenever the determinant of the derivative matrix is strictly neg-
ative. It should be apparent, by the Cauchy-Riemann equations that holomorphic maps
preserve orientation and antiholomorphic maps reverse it. In other words, antiholomor-
phic maps entail some sort of re�ection whereas holomorphic maps disallow re�ection.
f is an isometry whenever it preserves distance, that is |f(b)− f(a)| = |b− a| for all
a, b ∈ U , when this doesn't hold, but when some �xed k > 0 exists and, for all a, b ∈ U ,
|f(b)− f(a)| = k |b− a|, f is a similarity transform or a scaling of factor k. Finally, a map
is conformal when it preserves angles. This preservation of angles is illustrated in Figure
A.4 in which the angles at intersections of gridlines remain identical at corresponding in-
tersections in the pre-image and in the image. The notion of conformal is valid for real
functions between spaces, and stated in general.

De�nition (conformal). A mapping f : U ⊆ Rn → Rm is conformal at a ∈ Rn if and only
if f preserves angles between curves at a, i.e. whenever

Df~u ·Df~v
‖Df~u‖ ‖Df~v‖

=
~u · ~v
‖~u‖ ‖~v‖

for all vectors u, v ∈ Rn. f is said to be conformal on U or simply conformal whenever f
is conformal on its domain, i.e, at every a ∈ U .

For complex functions of a complex variable, we have the special case wherem = n = 2. So,
complex functions of a complex variable are conformal at a point whenever paths through
the point have tangent vectors which are orthogonal.
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f

ξ

η
Dζ

ζ
z

Dz

y

x

ζ-plane z-plane

Figure A.4: This schematic of the conformal mapping f : Dζ ⊆ C → C shows
that it associates points in region Dz in the z-plane with points in domain Dζ in the
ζ-plane, i.e., that points ζ ∈ Dζ are mapped to points z ∈ Dz. Paying close attention
to the ruling of the regions with paths, where they intersect at ζ and at z, the angle
between the curves remains �xed under the mapping.

Theorem A.7. f is conformal at a if and only if either f is holomorphic or antiholo-
morphic at a with non-vanishing derivative at a. If U is connected, f is conformal in U
if and only if either f is either holomorphic or antiholomorphic on U with non-vanishing
derivative there.

Proof. f is conformal at a point if and only if Df(a) is a positive scalar multiple of an
orthogonal matrix. Holomorphy and antiholomorphy ensure that the derivative matrix
is a multiple of some orthogonal matrix. For the second part, because f ∈ C2 and U is
connected and the derivative does not vanish on U , the determinant of Df is continuous
and either always positive or always negative. That is, because it is continuous on a
connected set where it doesn't obtain the value zero, it must be always positive or always
negative.

De�nition (harmonic). h : U ⊆ C → C. The two-dimensional Laplacian ∇2 is the
di�erential operator given by

∇2h =
∂2h

∂x2
+
∂2h

∂y2

in rectangular form. The mapping h is called harmonic if and only if

∇2h = 0

∇2h = 0 is a second-order partial di�erential equation know as Laplace's Equation.

Theorem A.8. f(z) = u(z) + iv(z) holomorphic on U , then u and v are both harmonic
functions.
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v is known as the harmonic conjugate of u. The proof follows.

Proof. By CRE,

∂2u

∂x2
=

∂

∂x

(
∂u

∂x

)
=

∂

∂x

(
∂v

∂y

)
=

∂2v

∂x∂y
=

∂2v

∂y∂x
=

∂

∂y

(
∂v

∂x

)
=

∂

∂y

(
−∂u
∂y

)
= −∂

2u

∂y2

where the equivalence of the mixed partials is a consequence of the fact that f ∈ C2, so

∂2u

∂x2
= −∂

2u

∂y2
or

∂2u

∂x2
+
∂2u

∂y2
= 0

as required.

Theorem A.9. If h : U ⊆ C→ C is harmonic and if f : V ⊆ C→ U ⊆ C is holomorphic,
then h ◦ f is harmonic on V .

Proof. Write x + iy = f(s + it), h = h(x + iy), and v = h ◦ f . Chain rule entails that
vs = hxxs + hyys and vt = hxxt + hyyt. Di�erentiating again via chain rule and product
rule, obtain

vss = (hxxxs + hxyys)xs + hxxss + (hyxxs + hyyys)ys + hyyss and
vtt = (hxxxt + hxyyt)xt + hxxtt + (hyxxt + hyyyt)yt + hyytt

and, adding, together with equality of mixed partials because h ∈ C1, obtain

vss + vtt = (hxxxs + hxyys)xs + hxxss + (hyxxs + hyyys)ys + hyyss+

(hxxxt + hxyyt)xt + hxxtt + (hyxxt + hyyyt)yt + hyytt

= hxx(x
2
s + x2

t ) + hxy(ysxs + ytxt) + hx(xss + xtt)+

hyx(xsys + xtyt) + hyy(y
2
s + y2

t ) + hy(yss + ytt)

= hxx(x
2
s + x2

t ) + 2hxy(xsys + xtyt) + hyy(y
2
s + y2

t ) + hx(xss + xtt) + hy(yss + ytt)

the �nal two terms vanish because f is holomorphic, i.e. x and y are harmonic conjugates,
so

vss + vtt = hxx(x
2
s + x2

t ) + 2hxy(xsys + xtyt) + hyy(y
2
s + y2

t )

and, again by holomorphy of f ,

= hxx(x
2
s + y2

s) + 2hxy((yt)ys + (−ys)yt) + hyy((−xt)2 + y2
t )

so
vss + vtt = (hxx + hyy)(x

2
s + y2

s).

Finally, h is harmonic, so the right hand side vanishes, and we obtain

vss + vtt = 0

and conclude that v satis�es Laplace's equation, i.e. v is harmonic, as required.
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A.5 The Complex Integral and Laurent Series

A.5.1 The Complex Integral

Complex integrals are path integrals de�ned in the complex plane. Complex integrals are
de�ned in such a way that, when the path is restricted to the real axis, the path integral
collapses to the familiar Riemann-Stieltjes integral in R.

De�nition (path integral). For an open set U ∈ C, a path in U , γ : [t1, t2] → U , and a
function f : U → C continuous on U , de�ne the path integral of f along γ by∫

γ

f(z) dz =

∫ t2

t1

f(γ(t)) γ′(t) dt.

The complex integral de�ned above has several properties which follow from the real coun-
terparts.

Theorem A.10 (linearity). Let γ be a path in an open set U ⊆ C. Suppose f, g : U → C
are continuous functions on U and c ∈ C, then the following hold∫

γ

c f(z) dz = c

∫
γ

f(z) dz and

∫
γ

f(z) + g(z) dz =

∫
γ

f(z) dz +

∫
γ

g(z) dz. (A.42)

Theorem A.11 (additivity). for f : U → C continuous,∫
γ

f(z) dz =
n∑
k=1

∫
γk

f(z) dz

where γk is the restriction of γ to the ith interval.

The complex integral is independent of parameter. This is usually summarized as a
change of parameter theorem. What this entails is that the same curve traversed in the
same direction, yields an integral which is independent of the rate at which the curve is
traversed. To see this, suppose σ : [t1, t2] ⊆ R → [s1, s2] ⊆ R invertible, increasing, and
piecewise C1, γ : [s1, s2] → U ⊆ C a path in U , β : [s1, s2] → U ⊆ C a path in U de�ned
by β(t) = γ(σ(t)) for t1 ≤ t ≤ t2, f : U → C continuous, then∫

β

f =

∫
γ

f
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to see this, ∫
β

f(z) dz =

∫ t2

t1

f(β(t))β′(t) dt

=

∫ t2

t1

f(γ(σ(t))) (γ(σ(t)))′ dt

=

∫ t2

t1

f(γ(σ(t)))γ′(σ(t))σ′(t) dt

with the substitution s = σ(t), ds = σ′(t) dt, so

=

∫ s2

s1

f(γ(s))γ′(s) ds

=

∫
γ

f(z) dz

as required.

Additivity and change of parameter theorems are employed when integration is per-
formed along a path which is formed from existing contiguous paths and the integral along
each part is de�ned.

De�nition (arclength). The arclength L (γ) of a path γ : [t1, t2]→ U ⊆ C is

L (γ) =

∫ t2

t1

|γ′(t)| dt.

When a curve has an arclength computable by an integral of this form, it is called recti�able.
Path integrals are recti�able because paths are piecewise continuous. In other words, the
nature of paths γ, by their de�nition, ensure that integrals of the form L exist.

Theorem A.12 (estimation). Let γ : [t1, t2]→ U be a path in an open set U ⊆ C. Suppose
L = L(γ) and M = maxz∈γ ||, then∣∣∣∣∣∣

∫
γ

f(z) dz

∣∣∣∣∣∣ ≤
∫ t2

t1

|f(γ(t))γ′(t)| dt ≤ML

De�nition (antiderivative). f, g : U ⊆ C → C, g′(z) = f(z) for all z ∈ U , then g =
∫
f .

In this case, we call g the antiderivative of f on U .

Theorem A.13. Let U ⊆ C be a non-empty connected open set, f, g : U ⊆ C → C be
holomorphic with f ′ = g′ in U . Then there exists a C ∈ C so that f = g + C in U .
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The theorem e�ectively states that antiderivatives are unique up to an additive constant.

Theorem A.14 (fundamental theorem of calculus). γ : [t1, t2] → U ⊆ C a path in U ,
f, g : U ⊆ C→ C, f continuous, g holomorphic with g′ = f on U , then

∫
γ

f = g(z)

∣∣∣∣∣
γ(t2)

γ(t1)

and, if γ is a loop, ∫
γ

f = 0.

De�nition (winding number). For a path γ : [t1, t2] → U ⊆ C and a point a ∈ C not on
γ, the winding number, sometimes called the index and denoted by Ind(γ, a), of γ about
a is the net angular displacement as a point trajects along γ from γ(t1) to γ(t2). This is
made precise by writing γ(t) = a + r(t)eiθ(t) in which r(t) = |γ(t)− a| and θ(t) is selected
so that it is a continuum of angles, 0 ≤ θ(t1) ≤ 2π, and de�ned by θ(t) = arg(γ(t) − a).
In this case,

Ind(γ, a) =
θ(t2)− θ(t1)

2π
.

It can be shown that, for a path γ(t) = a+ r(t)eiθ(t) as above,∫
γ

dz

z − a
= ln

r(t2)

r(t1)
+ 2πi Ind(γ, a)

and, for a loop γ, this collapses to

Ind(γ, a) =
1

2πi

∫
γ

dz

z − a
.

A.5.2 Cauchy's Integral Theorem

Theorem A.15. For an open subset of the plane U ⊆ C and function f : U → C
holomorphic on U , if C1 and C2 are homotopic paths in U ,∫

C1

f (z) dz =

∫
C2

f (z) dz.

The proof of this is found in the standard texts mentioned at the beginning of this appendix,
in particular, [40, 57, 80] furnish particularly rigorous and complete proofs. This result
immediately entails the remarkable result for closed curves. We have the following in
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simply open connected sets U and functions f : U → C holomorphic on U , and simply
connected curves C which lie in U , ∮

C

f (z) dz = 0.

A.5.3 Laurent Series and the Residue Theorem

Theorem A.16 (Taylor Series). Whenever f(z) is holomorphic on a disk of radius R <∞
about a point c ∈ C, obtain

f(z) =
∞∑
n=0

an (z − c)n

where

an =
f (n) (c)

n!
=

1

2πi

∮
C

f (z)

(z − c)n+1 dz

where C is taken to be the circular positively oriented path within the disk, i.e. with r < R,
given by parameterization z(t) = c+ reit for t ∈ [0, 2π].

Proof. Before proceeding with the bulk of the proof, observe the following about �nite
geometric series

1 + r + r2 + · · ·+ rN−1 +
rN

1− r
=
(
1 + r + r2 + · · ·+ rN−1

)
+

rN

1− r

=
rN − 1

r − 1
+

rN

1− r
=

1− rN

1− r
+

rN

1− r
=

1− rN + rN

1− r

=
1

1− r
.

We begin the proof of the main result. The proof follows for the case in which c = 0;
however, the result for non-zero c follows simply by a geometric translation of the origin by
c. Firstly, �x z within the disk of radius R centred at the origin. Select r with |z| < r < R
so that C is on the disk but contains z. By Cauchy's integral formula, obtain

f(z) =
1

2πi

∮
C

f(s)

s− z
ds =

1

2πi

∮
C

f(s)

s

1

1− z
s

ds

=
1

2πi

∮
C

f(s)

s

(
1 +

z

s
+
(z
s

)2

+ · · ·+
(z
s

)N−1

+

(
z
s

)N
1−

(
z
s

)) ds
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and, with r replaced with z/s in the result about �nite geometric series demonstrated
earlier, this becomes

=
N−1∑
n=0

1

2πi

∮
C

f(s)

s

(z
s

)n
ds+

1

2πi

∮
C

f(s)

s

(
z
s

)N
1−

(
z
s

) ds
so

f(z) =
N−1∑
n=0

1

2πi

∮
C

f(s)

sn+1
ds zn +

1

2πi

∮
C

f(s)

s

(
z
s

)N
1−

(
z
s

) ds.
Now, we try to bound the second term so that it vanishes as N −→∞. SetM = max

s∈C
f(s),

consequently, ∣∣∣∣∣∣ 1

2πi

∮
C

f(s)

s

(
z
s

)N
1−

(
z
s

) ds
∣∣∣∣∣∣ ≤ 1

2π

M

r

(
|z|
r

)N
1−

(
|z|
r

) · 2πr
but C contains z so |z| < r, so the expression vanishes in the limit. So we take limits as
N −→∞ and obtain

f(z) =
∞∑
n=0

1

2πi

∮
C

f(s)

sn+1
ds zn =

∞∑
n=0

f (n)(0)

n!
zn

where the second equality follows from the generalized Cauchy integral, and the desired
result is obtained.

Theorem A.17 (Laurent1 Series). Whenever f(z) is holomorphic on an annulus 0 < r <
|z − c| < R <∞ about a point c ∈ C, obtain

f(z) =
∞∑

n=−∞

an (z − c)n

where

an =
1

2πi

∮
C

f (z)

(z − c)n+1 dz

where C is a closed recti�able curve with no self-intersection and encloses c, but lies in the
annulus as shown in Figure A.5.

1Pierre Alphonse Laurent (1813�1854), a French mathematician, discovered this result in 1843.
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Figure A.5: Annular region in C about c with inner radius r and outer radius R
with curve C lying in the annulus and surrounding the centre.

De�nition (residue). A residue of f at c ∈ C, denoted by Res (f, c), is the coe�cient of
a−1 in the Laurent series for f about c.

Theorem A.18 (Residue Theorem). Let U ⊆ C be an open set. Suppose f is holomorphic
on U\{a1, a2, . . . , aN} where f is singular at each ak. For a closed recti�able curve C in U
which does not pass through any ak,∮

C

f(z) dz = 2πi
N∑
k=1

Ind (C, ak) · Res (f, ak)

where Ind (C, ak) is the winding number of C about ak.

A.6 Schwarz-Christo�el Mapping

Consult Schwarz-Christo�el Mapping, [24], for detailed discussion of the MATLAB pack-
age, implementation and numerics, history, and motivation. Here, we work through an
argument which shows how the map takes the upper half plane, H+ = {ζ ∈ C | Im ζ > 0},
to the interior of a polygon P , then suggest how a strip S = {ζ ∈ C | 0 < Im ζ < 1} in the
auxiliary plane is mapped to a channel with constriction in the physical plane. Consider the
conformal mapping of upper half plane to the interior of some polygon, f : H+ → P ⊆ C,
de�ned by

f(ζ) = A+ C

∫ ζ n−1∏
k=1

(s− ζk)αk−1 ds (A.43)

and de�ne pre-vertices ζk and corresponding vertices zk of polygon P according to the
relation zk = f(ζk) for ζk restricted to the real axis for all k = 1, 2, . . . , n− 1 and taken in
order so that ζl < ζm whenever l < m. De�ne zn = f(∞). We now study the behaviour of
this map on the boundary of the domain. The derivative of (A.43) is

f ′(ζ) = C
n−1∏
k=1

(ζ − ζk)αk−1
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so the argument of the derivative, which gives insight into the orientation of the image, is

arg (f ′(ζ)) = argC +
n−1∑
k=1

arg
(
(ζ − ζk)αk−1) = argC +

n−1∑
k=1

(αk − 1) arg (ζ − ζk) .

So, when ζ ∈ R, either ζ < ζk or ζ > ζk. Note that arg (ζ − ζk) = π in the former case
and vanishes in the latter. Hence, the sum of arguments is the sum of step functions with
steps at ζk. The sum simply accumulates the jumps and remains constant on each interval
between. In particular, for ζ ∈ R,

arg (ζ − ζk) =

{
(αk − 1) π, if ζ < ζk;
0, if ζk < ζ

(A.44)

Consider the kth vertex and its image as displayed in Figure A.6. De�ne βk = 1 − αk.
Observe that the jump in the argument at the kth is by an angle βkπ. This is evident
because the argument of f ′ is

argC + π
k−1∑
l=1

βl

but as the pre-vertex ζk is crossed, the argument of f ′ jumps by πβk to

argC + π
k−1∑
l=1

βl + πβk.

From this, it is evident that the αs give interior angles at the vertices of the polygon,
whereas the βs give angles through which the edges are rotated at each vertex. It should
also be evident that H+ is mapped to the interior of the polygon and the real axis to its
boundary.

Reζk
z k

βk
αk

f

Figure A.6: The image on the left is a segment of the real axis in the ζ plane and
contains pre-vertex ζk. The image on the right is around vertex zk. The argument
of f ′ remains constant along the edge leading up to zk. The argument jumps by an
amount βk at the vertex, and the argument remains constant until the next vertex is
reached, where there will be a similar �nite jump in the argument of the derivative.
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A.6.1 Mapping from the Horizontal Strip of Unit Width

From [24], the mapping from the horizontal strip S = {ζ ∈ C | 0 < Im ζ < 1} to the
interior of a polygon P is given by

f (ζ) = A+ C

∫ ζ

exp
(π

2
(α− − α+) s

) n∏
k=1

(
sinh

(π
2

(s− ζk)
))βk

ds (A.45)

The general scheme is that the hyperbolic sine maps S to a slit half plane. The ends of
the strip map to ∞. exp

(
π
2

(α− − α+) s
)
is inserted to account for the divergence angle at

each end.

A.7 Connections to 2-D Potential Flow

For an incompressible �ow, the continuity equation is

∇ · ~v = 0 (A.46)

in which ~v is the Eulerian velocity �eld of the �ow. Furthermore, if the �ow is inviscid,
conservation of momentum is governed by Euler's equations for momentum,

D

Dt
~v = −1

ρ
∇P + ~f (A.47)

in which ρ is the density of the �ow, P is the Eulerian pressure �eld, ~f is a �eld of
conservative body forces per unit mass, and D/Dt is the material derivative, de�ned for a
scalar quantity α as

D

Dt
α =

∂α

∂t
+ ~v · ∇α, (A.48)

so the material derivative of a vector is taken componentwise. One would normally solve
equations (A.46) and (A.47) together with appropriate boundary conditions on the velocity
and pressure �elds to obtain these �elds, but, if the �ow is irrotational, i.e., ∇×~v vanishes,
then ~v may be written as the gradient of a scalar �eld Φ, the velocity potential, as ~v = ∇Φ.
When this expression is substituted into equation (A.46),

0 = ∇ · ~v = ∇ · ∇Φ = ∇2Φ,

one obtains Laplace's equation for the velocity potential Φ,

∇2Φ = 0. (A.49)

Equation (A.49) may be solved with corresponding boundary conditions, and the velocity
�eld may be recovered simply by taking the gradient of Φ once it is known.
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If, in addition to the above simplifying assumptions, if the �ow is also two-dimensional,
complex variables may be employed. The complex potential is de�ned by

F (z) = Φ(z) + iΨ(z) (A.50)

in which Φ(z) = Φ(x, y) is the velocity potential for a given �ow and Ψ(z) = Ψ(x, y), the
harmonic conjugate of Φ, is the corresponding streamfunction. It turns out that a quantity
called the complex velocity,

w(z) =
dF

dz
, (A.51)

has the property that its conjugate corresponds to the velocity �eld of the �ow, i.e.,

~v =
(
Re (w) , Im (w)

)
. (A.52)

To see that this is so, observe that, via the discussion of di�erentiation in section A.4
above,

w(z) =
dF

dz
=

d

dz

(
Φ(z) + iΨ(z)

)
=
∂Φ

∂x
+ i

∂Ψ

∂x
,

but, by the Cauchy-Riemann eqations, (3),

∂Ψ

∂x
= −∂Φ

∂y
,

the complex velocity becomes

w(z) =
∂Φ

∂x
− i∂Φ

∂y
.

Consequently,

w =
∂Φ

∂x
+ i

∂Φ

∂y

and

~v =
(∂Φ

∂x
,
∂Φ

∂y

)
so

~v =
(
Re (w) , Im (w)

)
as expected.

Because Laplace's equation is a linear PDE, a superposition of harmonic functions is
also harmonic, so superpositions of complex potentials are complex potentials of �ows
which are due to a superposition of potentials. Consequently, one may build up solutions
in a region of simple geometry if one knows the potentials due to which the �ow arises.
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This is process of building up potential functions due to known potentials is further
enriched by conformal mappings and harmonicity already discussed. That is, if one has a
complex potential de�ned in a region which corresponds to a �ow, and additionally, one
has a conformal mapping which maps that domain to another domain, the composition of
the complex potential with the inverse of the conformal mapping is a complex potential on
a region which is the range of the conformal mapping. This is the principal way in which
complex potentials in new regions are obtained; they are related by conformal mappings
between the regions.
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B | Derivations

Complete derivations of results pertaining to the potentials and derivatives are supplied
in this Appendix. The �rst half presents results pertaining to irrotational vortices in the
unbounded plane and con�ned to the horizontal strip S = {ζ ∈ C | 0 < Im (ζ) < 1}. The
second half presents a derivation of the pressure equation evaluated via a frame a�xed to
the moving �uid-solid interface.

B.1 The Point Vortex and its Complex Potential

B.1.1 The Irrotational Vortex Model

It is possible to think of an irrotational vortex as inducing a velocity v which is identical
at all points located at �xed distance r from the centre of the vortex. The velocity may
be taken as having no radial component and the positive sense may be de�ned when the
velocity is oriented counter-clockwise. Suppose ~v is the velocity induced at distance r by
a positively oriented irrotational vortex located at the origin of the plane. The circulation
Γ on a contour equidistant at r may be computed as

Γ =

∮
C

~v · d~r = 2πrv

so
v =

Γ

2πr

That is, the magnitude of the velocity induced by the vortex at �xed distance r from its
centre is directly proportional to the circulation but inversely proportional to the distance
from its centre. A single vortex alone and distant from any solid surface in a quiescent
�uid has no velocity. Near a wall, in disturbed �uid, or in proximity to other vortices,
motion is induced at the centre of the vortex, and it advects at this rate. Exactly how this
happens is the thrust of the �rst major section of this Appendix.
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The Complex Potential of the Irrotational Vortex

External to the vortex core, for a vortex located at the origin of the complex plane and
taken in the positive sense, at distance r from the origin, obtain velocity

w =
Γ

2πr
ei(θ+π/2)

This is a velocity oriented counter-clockwise and tangential at all points on a circle of
radius r centred at the origin. Rearranging, obtain

w =
Γ

2πr
ieiθ

w = −i Γ

2πr
e−iθ = −i Γ

2πreiθ

w = −i Γ

2πz

and, taking the anti-derivative, obtain the complex potential for the vortex at the origin

Γ

2πi
log z.

Consequently, obtain the complex potential at z ∈ C of a vortex with centre at z0 ∈ C
inducing circulation Γ is

F (z) =
Γ

2πi
log (z − z0) (B.1)

B.1.2 Complex Potential Due to Vortex Con�ned in Channel

To determine the complex potential due to a lone vortex of strength Γ (taken positive
counter-clockwise) located at ζ0 con�ned within the horizontal strip 0 ≤ Im (ζ0) ≤ 1
in the pre-image plane, to ensure that the upper and lower walls of the channel remain
streamlines, the method of images must be employed. The vortex at ζ0 must be re�ected
and the re�ections re�ected ad in�nitum. Consequently, the complex potential at ζ due to
the vortex at ζ0 is the accumulation of the contribution from the vortex and its in�nitely
many re�ected images.

Figure B.1 shows a vortex of strength Γ at ζ0. The location of the vortex re�ected in
the real axis is simply the conjugate of ζ0. This pair may then be translated upwards or
downwards by integer multiples of 2i in order to recover the locations of the remaining
re�ected vortices.

The contribution to the complex potential at ζ due to the vortex with strength Γ at ζ0 is
given by the expression for complex velocity, equation (B.1),

Γ

2πi
log (ζ − ζ0) ,
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ζ = ξ+iη
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−i

O

Figure B.1: For a vortex of strength Γ located at ζ0 con�ned in the horizontal strip
0 ≤ η ≤ 1, the method of images, whereby the vortex at ζ0 is re�ected above and
below the strip in�nitely many times, ensures that the boundaries are modelled by
streamlines of the �ow. The vortex and its re�ections together contribute additively
to the complex potential at ζ.

and, together with its re�ection at ζ0 with strength −Γ, by

Γ

2πi

(
log (ζ − ζ0)− log

(
ζ − ζ0

))
.

Contributions from translates of this pair obtain the form

Γ

2πi

(
log
(
ζ − (ζ0 + 2ni)

)
− log

(
ζ −

(
ζ0 − 2ni

) ))
for n ∈ Z representing the nth re�ection upwards or downwards depending on whether n is
positive or negative respectively. We may therefore write the complex potential at ζ due
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to the in�nity of vortices as

f(ζ) =
Γ

2πi

(
log
(
ζ − ζ0

)
− log

(
ζ − ζ0

)
+

log
(
ζ − (ζ0 + 2i)

)
− log

(
ζ −

(
ζ0 − 2i

) )
+

log
(
ζ − (ζ0 + 4i)

)
− log

(
ζ −

(
ζ0 − 4i

) )
+ · · ·

+ log
(
ζ − (ζ0 − 2i)

)
− log

(
ζ −

(
ζ0 + 2i

) )
+

log
(
ζ − (ζ0 − 4i)

)
− log

(
ζ −

(
ζ0 + 4i

) )
+ · · ·

)
or, more compactly,

f(ζ) =
Γ

2πi

∞∑
n=−∞

log
ζ − (ζ0 − 2ni)

ζ −
(
ζ0 − 2ni

)
=

Γ

2πi
log

∞∏
n=−∞

(ζ − ζ0)− 2ni(
ζ − ζ0

)
+ 2ni

where the second line follows from the previous because the sum of logarithms is the
logarithm of the product. Simplifying the product,

∞∏
n=−∞

(ζ − ζ0)− 2ni(
ζ − ζ0

)
+ 2ni

=
(ζ − ζ0)(
ζ − ζ0

) ∞∏
n=1

(ζ − ζ0) + 2ni(
ζ − ζ0

)
+ 2ni

· (ζ − ζ0)− 2ni(
ζ − ζ0

)
− 2ni

=
(ζ − ζ0)(
ζ − ζ0

) ∞∏
n=1

(ζ − ζ0)2 − (2ni)2(
ζ − ζ0

)2 − (2ni)2

=
(ζ − ζ0)(
ζ − ζ0

) ∞∏
n=1

− (2ni)2

(
1− ( ζ−ζ02i )

2

n2

)
− (2ni)2

(
1−

(
ζ−ζ0

2i

)2

n2

)

=
(ζ − ζ0)(
ζ − ζ0

) ·
∏∞

n=1

(
1− (i ζ−ζ02 )

2

n2

)
∏∞

n=1

(
1−

(
i
ζ−ζ0

2

)2

n2

) ,
so obtain

f(ζ) =
Γ

2πi
log

(ζ − ζ0)(
ζ − ζ0

) ·
∏∞

n=1

(
1− (i ζ−ζ02 )

2

n2

)
∏∞

n=1

(
1−

(
i
ζ−ζ0

2

)2

n2

) .
This is a succinct expression for the complex potential, but it is not clear that it may be
easily di�erentiable to obtain the complex velocity in the strip. The in�nite products might
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pose some di�culty; fortuitously, they have a familiar form. The Weierstrass product for
sincπz = sin(πz)

πz
, equation (A.30) discussed in appendix A, which holds for all z ∈ C, is

sin (πz)

πz
=
∞∏
n=1

(
1− z2

n2

)
(B.2)

so
∞∏
n=1

(
1−

(
i ζ−ζ0

2

)2

n2

)
=

sin
(
πi ζ−ζ0

2

)
πi ζ−ζ0

2

and
∞∏
n=1

1−

(
i ζ−ζ0

2

)2

n2

 =
sin
(
πi ζ−ζ0

2

)
πi ζ−ζ0

2

thus

f(ζ) =
Γ

2πi
log

(ζ − ζ0)(
ζ − ζ0

) · sin
(
πi ζ−ζ0

2

)
/πi ζ−ζ0

2

sin
(
πi ζ−ζ0

2

)
/πi ζ−ζ0

2

=
Γ

2πi
log

sin
(
πi ζ−ζ0

2

)
sin
(
πi ζ−ζ0

2

) .
Finally, via the relation (A.10), sin iz = i sinh z, obtain

f(ζ) =
Γ

2πi
log

sinh
(
π
2

(ζ − ζ0)
)

sinh
(
π
2

(
ζ − ζ0

)) . (B.3)

B.1.3 Complex Velocity Due to Vortex Con�ned in Channel

Complex Velocity at Non-Singular Points

Complex velocity w (ζ) is the complex derivative of the complex potential f (ζ), equation
(A.51),

w(ζ) =
d

dζ
f(ζ) .

The complex velocity has the fortuitous property that the real velocity �eld due to the
complex potential is given by (

Re
(
w (ζ)

)
, Im

(
w (ζ)

))
(B.4)

in which w(ζ) is merely the conjugate of the complex velocity. In other words, the real
vector �eld associated with the conjugate of the complex velocity is the velocity �eld we
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are ultimately seeking. Consequently, because the real velocity �eld for the �ow con�ned
to the channel due to arbitrary vortices is of interest, the complex velocity for this �ow at
an arbitrary point ζ is obtained simply via the derivative of the complex potential (B.3)
with respect to ζ. In the case of a lone vortex at ζ0, �rstly simplify (B.3), the complex
potential due to a lone vortex, and subsequently obtain its derivative.

f(ζ) =
Γ

2πi
log

sinh
(
π
2

(ζ − ζ0)
)

sinh
(
π
2

(
ζ − ζ0

)) =
Γ

2πi

(
log sinh

(π
2

(ζ − ζ0)
)
− log sinh

(π
2

(
ζ − ζ0

)))
and, naturally,

w(ζ) =
df

dζ
=

d

dζ

Γ

2πi

(
log sinh

(π
2

(ζ − ζ0)
)
− log sinh

(π
2

(
ζ − ζ0

)))
=

Γ

2πi

(
1

sinh
(
π
2

(ζ − ζ0)
) π

2
cosh

(π
2

(ζ − ζ0)
)
− 1

sinh
(
π
2

(
ζ − ζ0

)) π
2

cosh
(π

2

(
ζ − ζ0

)))
so the complex velocity at ζ of the �ow due to a vortex of strength Γ at ζ0 con�ned to a
channel is given by

w(ζ) =
Γ

4i

(
coth

(π
2

(ζ − ζ0)
)
− coth

(π
2

(
ζ − ζ0

)))
(B.5)

de�ned for all ζ within the strip 0 ≤ Im (ζ) ≤ 1 with ζ 6= ζ0 because the complex potential
and, consequently, the complex velocity are singular at ζ0. To obtain the real velocity �eld,
simply evaluate (B.4) with w (ζ) as given in (B.5).

In the case of N vortices in the channel, as shown in Figure B.2, the complex potential
at ζ is the superposition of the complex potentials due to each of the N vortices, a super-
position of expressions of the form of (B.3) with ζ0 replaced with ζk for the contribution
of the kth vortex at ζ,

f (ζ) =
N∑
k=1

Γ

2πi
log

sinh
(
π
2

(ζ − ζk)
)

sinh
(
π
2

(
ζ − ζk

)) . (B.6)

Where, again, ζ 6= ζk for k ∈ {1, 2, . . . , N} because the kth term in the summation is
singular at the location of the kth vortex. The complex velocity due to N vortices is the
derivative of (B.6), a superposition of expressions of the form of (B.5) with ζ0 replaced
with ζk for the contribution of the kth vortex,

w (ζ) =
N∑
k=1

Γ

4i

(
coth

(π
2

(ζ − ζk)
)
− coth

(π
2

(
ζ − ζk

)))
. (B.7)

Because expression (B.5) for the complex velocity due to a lone vortex is singular at ζ0 and
expression (B.7) for the complex velocity due to N vortices is singular at each ζk, one must
ask, what of the velocities at the locations of the singularities? It should be apparent that
the vortical velocities bear some relation to the velocities of the singular points. This is
indeed the case, and expressions for these velocities, the vortical velocity for a lone vortex
and the vortical velocities of the vortices of a system of N vortices con�ned in the channel,
are derived below.

143



ξ

η

ζ

ζ1

Γ

i

O

1

Γn
Γk

Γ2ζ2

ζn

ζk

Figure B.2: N vortices arranged in the horizontal strip. The velocity at ζ is due
to the contribution from each vortex. When ζ coincides with ζk, the desingularized
complex velocity at the kth vortex is employed to recover the complex velocity there.

Complex Velocity at Singular Points

The complex velocity of a vortex is slightly more involved than the expressions derived
for the velocities of non-singular points of the �ow �eld. Various equations of motion of
singular points and generalizations are described in the survey How do singularities move
in potential �ow? [86]. The point vortex equation (PVE) described therein by Llewellyn
Smith is the equation of motion of the point vortices within a potential �ow. The PVE
suggests that the velocity of a vortex is the desingularized velocity at the given point,

w̃ (ζ0) = lim
ζ→ζ0

(
w (ζ)− Γ

2πi

1

ζ − ζ0

)
. (B.8)

In (B.8), w is the complex potential due to vortices, including one at ζ0, but possibly also
the superposition of other sources which are non-singular at ζ0. Consequently, there is a
choice when computing the desingularized complex velocity. Suppose the total complex
velocity is due, in addition to the vortex at ζ0, to M sources, sinks, doublets, and vortices,
with each contributing complex velocity wm but all non-singular at ζ0. We have

w̃ (ζ0) = lim
ζ→ζ0

w (ζ)− Γ

2πi

1

ζ − ζ0

=
M∑
m=1

wm (ζ) + lim
ζ→ζ0

(
wsing (ζ)− Γ

2πi

1

ζ − ζ0

)
in which w (ζ) is the total complex velocity which is then decomposed into the superpo-
sition of M complex potentials which are non-singular at ζ0, together with wsing which is
singular there. This decomposition allows the determination of complex velocity by �rst
determining the vortical velocity of a lone vortex, and any additional contributions due to
non-singular complex potentials will be incorporated into the sum. So, for a single vortex
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con�ned in the strip at ζ0, given the complex potential in the strip f (ζ) provided in equa-
tion (B.3), the complex velocity is given by (B.5), so the complex velocity at ζ0 is given by
the desingularized velocity de�ned in (B.8),

w̃ (ζ0) = lim
ζ→ζ0

(
w (ζ)− Γ

2πi

1

ζ − ζ0

)
= lim

ζ→ζ0

(
Γ

4i

(
coth

(π
2

(ζ − ζ0)
)
− coth

(π
2

(
ζ − ζ0

)))
− Γ

2πi

1

ζ − ζ0

)
= lim

ζ→ζ0

−Γ

4i
coth

(π
2

(
ζ − ζ0

))
+ lim

ζ→ζ0

(
Γ

4i
coth

(π
2

(ζ − ζ0)
)
− Γ

2πi

1

ζ − ζ0

)
=
−Γ

4i
coth

(
πi

(
ζ0 − ζ0

2i

))
+

Γ

2i
lim
ζ→ζ0

(
1

2
coth

(π
2

(ζ − ζ0)
)
− 1

π (ζ − ζ0)

)
but coth (iζ) = cosh (iζ) / sinh (iζ) = cos (ζ) /i sin (ζ) = −i cos (ζ) / sin (ζ) = −i cot (ζ) so

w̃ (ζ0) =
−Γ

4i
(−i) cot

(
π Im (ζ0)

)
+

Γ

4i
lim
ζ→ζ0

(
coth

(π
2

(ζ − ζ0)
)
− 1

π
2

(ζ − ζ0)

)
=

Γ

4
cot
(
π Im (ζ0)

)
+

Γ

4i
lim
ζ→ζ0

(
coth

(π
2

(ζ − ζ0)
)
− 1

π
2

(ζ − ζ0)

)
where the limit has the form limz→0

(
coth z − 1

z

)
. Because coth is the ratio of hyperbolic

cosine to hyperbolic sine, the zero of hyperbolic sine at the origin contributes a simple
pole to the hyperbolic cotangent there. Thus, the Laurent series expansion for hyperbolic
cotangent,

coth z =
1

z
+

1

3
z − 1

45
z3 + · · · ,

may simply be obtained by doing a long division of the power series representations of
cosh z by sinh z. Because the zero of hyperbolic sine at the origin is a �rst order zero, we
expect that the hyperbolic cotangent has a simple pole at the origin, and this is manifested
by the appearance of the 1/z term in the above series. So

lim
z→0

(
coth z − 1

z

)
= lim

z→0

((
1

z
+

1

3
z − 1

45
z3 + · · ·

)
− 1

z

)
= lim

z→0

(
1

3
z − 1

45
z3 + · · ·

)
= 0.

Consequently,

w̃ (ζ0) =
Γ

4
cot
(
π Im (ζ0)

)
(B.9)

is the desingularized complex velocity of a vortex at ζ0. Figure B.3 displays a plot of the
desingularized complex velocity of a single vortex con�ned to a horizontal strip exhibited
in equation (B.9). The complex velocity is purely real, and this entails that the velocity
of a sole vortex is purely horizontal. Furthermore, vortices of positive strength equidistant
to the channel walls remain stationary, they obtain negative velocity when closer to the
upper wall and positive velocity when they are closer to the lower wall. The situation is
reversed when the vortex strength is negative.
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Figure B.3: The branch of Γ/4 cot
(
π Im (ζ0)

)
which lies on the interval (0, 1). The

function is periodic with period 1 with zeros at 1/2+k and asymptotes at 1+k for all
k ∈ Z, but it is the restriction to (0, 1) which is of interest here because these values
correspond to the possible vertical locations of a solitary vortex in the horizontal
strip of width 1. This plot of the desingularized velocity con�rms that vortices with
positive circulation Γ will move to the right when they are near to the lower wall,
will remain stationary when their vertical position is equidistant to the upper and
lower walls, and will obtain a negative velocity and move leftwards when closer to
the upper wall.

Streamlines corresponding to a single vortex located at the origin and o�set towards the
upper wall are shown in Figure B.4. When the vortex is disposed symmetrically between
the upper and lower channel walls, the streamlines are symmetrical; however, proximity
to one wall causes the streamlines to deform because the walls must remain streamlines of
the �ow.

Now, for a system of N vortices arranged arbitrarily at positions {ζn}Nn=1 with strengths
{Γn}Nn=1 (oriented positive counter-clockwise), as shown schematically in Figure B.2, the
complex velocity at ζk due to vortices at {ζn}Nn=1\{ζk}, i.e., at all locations but ζk, is the
superposition

N∑
n=1
n6=k

Γn
4i

(
coth

(π
2

(ζk − ζn)
)
− coth

(π
2

(
ζk − ζn

)))
.
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Figure B.4: Streamlines due to lone vortex con�ned in channel: (a) centred in
channel, and (b) centred in upper half of channel.

The desingularized velocity at ζk is

Γk
4

cot
(
π Im (ζk)

)
.

Hence, the complex velocity at ζk due to the system of N vortices is the superposition of
the preceding two expressions, i.e.,

w̃ (ζk) =
Γk
4

cot
(
π Im (ζk)

)
+

N∑
n=1
n6=k

Γn
4i

(
coth

(π
2

(ζk − ζn)
)
−coth

(π
2

(
ζk − ζn

)))
. (B.10)

Equation (B.10) enables the computation of vortical velocity of the kth vortex in a system
of N vortices. If additional potentials in�uence its motion, such as a free stream or some
source, the complex potentials due to these may be superimposed on this expression as
well.

From the form of (B.8), it is evident that a vortex in an uncon�ned �ow has no self-
induced velocity; i.e., a lone vortex in an uncon�ned �ow with no other contribution to the
potential remains stationary. That is because the complex velocity of a vortex located at
ζ0 is the derivative of its complex potential, provided in equation (B.1). This is precisely
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the expression subtracted from w in (B.8), so that the expression for w̃ vanishes when w
is due to one vortex alone. In contrast, when a single vortex is con�ned to a channel,
the vortex will move because the potential of a vortex con�ned in a channel is due to the
vortex and its in�nitely many re�ections. That is, unless the vortex lies along the centreline
disposed symmetrically between two parallel walls. In this case, the walls have equal and
opposite e�ects on the vortex, regardless of the sense of its strength, whether clockwise or
counter-clockwise. Figure B.5 displays a plot of streamlines due to four vortices con�ned
in a channel with no free stream.

−1.5 −1 -0.5 0 0.5 1 1.5

0.2i
0.4i
0.6i
0.8i
i

ξ

η

Figure B.5: Streamlines due to four arbitrary vortices con�ned to a channel.

B.2 An Unsteady Frame-Invariant Bernoulli Equation

The typical expression of the inviscid incompressible irrotational unsteady Bernoulli equa-
tion for pressure in the presence of conservative body force per unit mass f = ∇F (see,
for example, [8, 56, 64], or, more recently, [50]) is

∂Φ

∂t
+
P

ρ
+

1

2
v2 + F = K(t), (B.11)

where P is pressure, ρ is �uid density, Φ is velocity potential so ~v = ∇Φ, v = ‖~v‖2, andK(t)
is an arbitrary but �xed function of time, is not invariant under Galilean transformation,
i.e., in a frame of reference translating with uniform velocity with respect to immersed
solids, their surfaces perform work on the �uid [67]. Consequently, additional terms are
required to be included to extend the validity of the Bernoulli equation for pressure in
translating, and even to non-inertial frames of reference. This is essential in computing the
force due to pressure on the immersed surfaces of moving boundaries of the �ow domain.
A frame-independent form of the incompressible and inviscid unsteady Bernoulli equation
is obtained herein. The result is immediately specialized to the case of irrotational �uid,
especially in the case in which the velocity potential is obtained via conformal mapping
from an auxiliary plane where the temporal variation of the potential ϕ is easily tracked.
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B.2.1 The Inviscid Incompressible Unsteady Bernoulli Equation

In the case that the Mach number,

Ma =
V

c
,

in which V is a characteristic velocity scale and c is the speed of sound in the �uid medium,
satis�es Ma < 0.3, the �ow may be considered to be incompressible. The governing equa-
tions of such a �ow, together with the assumption that the �uid medium is a homogeneous
constant viscosity Newtonian �uid, are stated as

D~v

Dt
= −1

ρ
∇P + ν∇2~v + ~f (B.12)

∇ · ~v = 0 (B.13)

which are de�ned on �ow domain Ω(t) and in which ~v is the Eulerian velocity �eld with
respect to an inertial frame, P is the pressure �eld, ν is the kinematic viscosity of the
�uid, ρ is the density of the �uid, and ~f represents the aggregate, on a per unit mass
basis, of all conservative body forces acting in the �ow domain. ~f is often simply due
to gravitational force in �at earth, namely ~f = ~g = −gK̂. Equations (B.12) and (B.13)
are conservation of momentum, the Navier-Stokes equation, cast per unit mass, and the
incompressible continuity equation respectively. Given appropriate boundary conditions
for P and ~v on ∂Ω(t), they provide constraints for the unknown velocity �eld and pressure
�eld, both de�ned in an inertial frame of reference. These equations may be specialized
immediately. If the Reynolds number,

Re =
V L

ν
,

in which V is a characteristic velocity scale, V = ‖~v‖ at some point in the �ow, often
in the far �eld, and L is a characteristic length scale, satis�es Re � 1, the viscous term
in (B.12) is dominated by the inertia of the �ow and may be discarded. In this case, we
obtain Euler's equation of motion,

D~v

Dt
= −1

ρ
∇P + ~f, (B.14)

which governs conservation of momentum of incompressible and inviscid Newtonian �uids.
This may be transformed by employing the vector identity

∇
(
~A · ~B

)
=
(
~A · ∇

)
~B +

(
~B · ∇

)
~A+ ~A×

(
∇× ~B

)
+ ~B ×

(
∇× ~A

)
,

with ~A = ~B = ~v, to obtain

∇ (~v · ~v) = (~v · ∇)~v + (~v · ∇)~v + ~v × (∇× ~v) + ~v × (∇× ~v)

or

(~v · ∇)~v = ∇
(

1

2
v2

)
− ~v × (∇× ~v) = ∇

(
1

2
v2

)
− ~v × ~ω,
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where the second equality follows from the de�nition of vorticity, ∇×~v = ~ω. This enables
the material derivative to be recast in the following form

D~v

Dt
=
∂~v

∂t
+ (~v · ∇)~v =

∂~v

∂t
+∇

(
1

2
v2

)
− ~v × ~ω,

so (B.14) becomes
∂~v

∂t
+∇

(
1

2
v2

)
− ~v × ~ω = −1

ρ
∇P + ~f (B.15)

or, if density is constant in the �ow,

∂~v

∂t
+∇

(
1

2
v2

)
− ~v × ~ω = −∇

(
P

ρ

)
+ ~f. (B.16)

Various forms of the Bernoulli equation are obtained via integration of equation (B.16)
along streamlines of the �ow and may be further specialized for irrotational �uids, etc..
Equation (B.16) holds at any interior point of the �ow domain Ω(t) when the quantities
are measured with respect to an inertial frame of reference. Equation (B.16) even holds
on the boundary ∂Ω(t) at points at which the boundary is stationary with respect to
the same inertial frame. In order to obtain pressures at points on a moving boundary, two
approaches are possible. In one approach, equation (B.16) may be extended to non-inertial
frames prior to integrating along a streamline of the �ow which happens to be �xed when
observed relative to the moving frame of reference. Alternatively, (B.16) may be integrated
along a streamline of the �ow to obtain B.11, and this, via relations which hold between
derivatives of scalar quantities observed in frames of reference which are in motion relative
to each other, obtain a form independent of frame. In the present development, equation
(B.16) is integrated and specialized to obtain (B.11).

Both sides of (B.16) are integrated along a curve C(t) which is observed within the
global inertial frame,∫

C

(
∂~v

∂t
+∇

(
1

2
v2

)
− ~v × ~ω

)
· d~r =

∫
C

(
−1

ρ
∇P + ~f

)
· d~r

or ∫
C

(
∂~v

∂t
+∇

(
1

2
v2

)
− ~v × ~ω +

1

ρ
∇P − ~f

)
· d~r = 0.

Now, if density is constant, 1/ρ∇P = ∇P/ρ, and, because ~f is conservative, it may be
written ~f = −∇F where F is an appropriate scalar potential, obtain∫

C

(
∂~v

∂t
+∇

(
1

2
v2

)
− ~v × ~ω +∇P

ρ
+∇F

)
· d~r = 0

or ∫
C

(
∂~v

∂t
− ~v × ~ω +∇

(
1

2
v2 +

P

ρ
+ F

))
· d~r = 0.
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which, if ~X and ~X0 are endpoints of C in the global frame, collapses to

∫
C

(
∂~v

∂t
− ~v × ~ω

)
· d~r +

(
1

2
v2 +

P

ρ
+ F

)~X
~X0

= 0

because the gradient of a scalar �eld is conservative so the integral is independent of path.
Finally, if C is taken to be a streamline of the �ow observed in the global frame, ~v × ~ω
being orthogonal to ~v entails that the cross product term is everywhere orthogonal to the
streamline, the cross product term vanishes, and we obtain

∫
C

∂~v

∂t
· d~r +

(
1

2
v2 +

P

ρ
+ F

)~X
~X0

= 0 (B.17)

Equation (B.17) is the incompressible inviscid unsteady Bernoulli equation. However, if
the �ow is irrotational, additional simpli�cation is possible.

When, in addition, ~v is irrotational in the region which contains C, ~v = ∇Φ for an
appropriate scalar potential Φ, and, thus, ~ω = ∇ × ~v = ∇ ×∇Φ = 0 because the curl of
the gradient of a scalar �eld vanishes,

∫
C
~v × ~ω · d~r vanishes along a streamline because ~v

is parallel to the streamline while ~v × ~ω ⊥ ~v and, hence, perpendicular to d~r), and ∂~v/∂t
becomes ∇∂Φ/∂t under continuity assumptions, so obtain from the original integral∫

C

∇
(
∂Φ

∂t
+

1

2
v2 +

P

ρ
+ F

)
· d~r = 0.

Because the argument of this integral is the gradient of some scalar �eld, it is irrotational.
Because the integral is identically zero, the integrand must be the gradient of some function
of time, K(t), hence equation (B.11) follows as desired. However, more may be said, the
integral is independent of path, i.e., we may integrate along any path between ~X0 and
~X. Furthermore, because the contour of integration C is not necessarily a streamline, we
obtain

∂Φ

∂t
+

1

2
v2 +

P

ρ
+ F

∣∣∣∣∣
~X

=
∂Φ

∂t
+

1

2
v2 +

P

ρ
+ F

∣∣∣∣∣
~X0

for any pair of points ~X0 and ~X, not required to be on the same streamline, within the
�ow �eld Ω(t). If ~X0 is taken as a point far upstream, where Φ remains constant and P
obtains constant value P0, ∂Φ

∂t
vanishes and v = v0 there. So, in the further absence of

conservative body force, obtain

P
(
~X, t
)

= P0 +
1

2
ρ
(
v2

0 − ‖∇Φ‖2)− ρ ∂
∂t

Φ
(
~X, t
)
. (B.18)

The �nal term in (B.18) is evaluated at an inertial spatial location within the �ow domain
not at an accelerating non-inertial point. Consequently, equation (B.18) merely applies in
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an inertial frame of reference. We seek to �nd an expression for the pressure when the
quantity is evaluated within an accelerating frame of reference. The temporal derivative
of Φ is evaluated at a �xed point in the �ow domain, but, it is desirable to compute this
within some moving frame.

B.2.2 Temporal Derivatives of Scalars Observed in Moving Frames

Consider the spatial relations between an inertial frame and translating and rotating frame
exhibited schematically in Figure B.6 below. The XY Z frame with origin O is an inertial
frame of reference. The �ow domain Ω(t) deforms in time relative to the global frame. The
boundary of the �ow domain, ∂Ω(t), is the interface between the deformable solid domain
and the �ow domain. Translating and rotating xyz frame of reference has origin a�xed
to the boundary at A. A theorem due to Chasles1 states that any rigid-body motion may
be completely decomposed into a rotation of that body about some axis and a translation
of the axis relative to the global frame. In fact, this section demonstrates the manner in
which this decomposition may be carried out and determines the attendant velocities and
accelerations with respect to frames of reference which exhibit relative motion. Note that,
if P is a�xed in the xyz frame, it has zero velocity measured with respect to A despite
that it might exhibit absolute motion measured in the global frame.

The position of A and its translational velocity, measured in the global XY Z are ~RA/O

and ~vA/O respectively. ~vA/O will typically be written ~vA, and it will be understood that the
velocity of A is then measured with respect to the global frame. The position of P is either
~RP/O or ~RP/A as measured in the global and local frames respectively. Consequently, the
position of P may be decomposed according to the following

~RP/O = ~RA/O + ~RP/A

or simply
~RP = ~RA + ~RP/A (B.19)

where we may write the resolutions of these vectors with respect to Cartesian {Î , Ĵ , K̂}
and {ı̂, ̂, k̂} coordinate vectors a�xed to XY Z and xyz frames respectively

~R XY Z
P = XÎ + Y Ĵ + ZK̂ and ~R xyz

P/A = x�̂ + y�̂ + zk̂

when ~RP and ~RA/P are resolved relative to the global coordinate system and relative to
the local coordinate system respectively. The resolved quantities will simply be denoted
~X and ~x.

Di�erentiation of equation (B.19) yields

~vP = ~vA + ~vP/A + ~Ω× ~RP/A (B.20)

1attributed to Michel Chasles (1793�1880)
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Figure B.6: The shaded part represents the solid with moving boundary ∂Ω(t).
The schematic shows the kinematic relation between the inertial XY Z frame, which
is �xed, and the boundary-�xed xyz frame which rotates with angular velocity ~Ω and
with origin A located by ~RA/O. The relative position of point P within �ow domain

Ω(t) is ~RP/A referred to the boundary-�xed xyz frame or at ~RP/O referred to the
global inertial XY Z frame.

due to the angular velocity ~Ω of the xyz frame about A. The cross product is well de�ned
as long as both vectors of the product are resolved within the same coordinate system. Not
germane to the current section, but for the sake of completeness, the temporal derivative
of (B.20) for the acceleration is

~aP = ~aA + ~aP/A + ~Ω× ~vP/A + ~̇Ω× ~RP/A + ~Ω×
(
~vP/A + ~Ω× ~RP/A

)
or

~aP = ~aA + ~aP/A + 2 ~Ω× ~vP/A + ~̇Ω× ~RP/A + ~Ω×
(
~Ω× ~RP/A

)
. (B.21)

Now, within this framework, given some Galilean-invariant scalar quantity f observed in
the inertial frame as f( ~X, t) and observed in the non-inertial frame as f̃(~x, t), we must have
f( ~X, t) = f̃(~x, t) when ~X is the position of some point P measured in the global frame and
~x is the position of P in the local frame, but, because the observers are in relative motion,
the equation which relates the temporal derivatives of these quantities must have terms to
account for this relative motion. The temporal derivatives of f either as measured with
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respect to the inertial frame or as measured with respect to the moving frame are related
according to the following theorem.

Theorem B.1. Suppose f is some scalar quantity f = f
(
~RP , t

)
= f̃

(
~RP/A, t

)
where

f
(
~RP , t

)
and f̃

(
~RP/A, t

)
are observations of f at some point P within the inertial and

the moving frames respectively. The temporal derivatives of f in the inertial frame and f̃
in the moving frame are related by

∇xf̃ ·
(
~vP − ~vA − ~Ω× ~RP/A

)
+
∂f̃

∂t
= ∇Xf · ~vP +

∂f

∂t
(B.22)

where ∇x is the del operator resolved in the xyz frame and ∇X is the del operator resolved
in the XY Z.

Proof. Obtain the temporal derivative of both sides of f̃
(
~RB/A, t

)
= f

(
~RB, t

)
by applying

the chain rule,

∂f̃

∂x

∂x

∂t
+
∂f̃

∂y

∂y

∂t
+
∂f̃

∂z

∂z

∂t
+
∂f̃

∂t
=

∂f

∂X

∂X

∂t
+
∂f

∂Y

∂Y

∂t
+
∂f

∂Z

∂Z

∂t
+
∂f

∂t

∇xf̃ ·
d~RP/A

dt
+
∂f̃

∂t
= ∇Xf ·

d~RP

dt
+
∂f

∂t

In which the temporal partial derivatives are computed while holding the spatial variables
�xed within their respective frames. Now, the temporal derivatives of ~RP and ~RP/A are
merely velocities ~vP and ~vP/A, and the latter may be obtained by rearranging equation
(B.20),

~vP/A = ~vP − ~vA − ~Ω× ~RP/A

Upon substitution, we obtain

∇xf̃ ·
(
~vP − ~vA − ~Ω× ~RP/A

)
+
∂f̃

∂t
= ∇Xf · ~vP +

∂f

∂t

as required.

Two interesting cases follow. If P is a �xed point within the global frame, ~vP vanishes,
and equation (B.22) becomes

∂f

∂t
=
∂f̃

∂t
−
(
~vA + ~Ω× ~RP/A

)
· ∇xf̃

in which the temporal derivative on the left-hand side is the derivative of f in the inertial
frame and the temporal derivative of f̃ on the right-hand side is the temporal derivative of
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f written in the moving frame. Alternatively, if P is �xed within the moving frame, ~vP/A
vanishes, and, hence, ~vP − ~vA − ~Ω× ~RP/A vanishes, and we obtain

∂f̃

∂t
=
∂f

∂t
+ ~vP · ∇Xf

This is useful because pressure is Galilean-invariant because forces and areas are measured
to be identical when observed from frames which are moving with constant velocity relative
to one another [67]. These relations furnish a method to recover the potential observed
�xed in a non-inertial frame to the corresponding point which is observed to be moving
relative to the global frame. Consequently, we may recast the Bernoulli equation to account
for the motions of bounding walls of the �ow domain.

B.2.3 Frame-Invariant Unsteady Bernoulli Equation

Employing the machinery of the previous sub-sections and with reference to Figure B.6,
the frame-invariant unsteady Bernoulli equation may be stated. This is an extension of
the unsteady Bernoulli equation, equation (B.18), which allows the determination of the
pressure at a �xed point in the �ow domain subject to the assumptions of its derivation but
employing quantities in a moving frame of reference at the moment a point in the moving
frame of reference coincides with the identical point in the �ow domain. Of speci�c interest
is the situation in which pressure is obtained at a point on the moving boundary of the
�ow domain in terms of quantities measured within a frame of reference a�xed to the
boundary. The temporal derivative of Φ must be obtained and cast in appropriate form,
and the expression for pressure may thus be obtained.

The velocity potential Φ may be written in the inertial frame as Φ(X, Y, Z, t) or in the
moving frame as Φ̃(x, y, z, t). At an instant at which ~X and ~x correspond to the same
point, Φ and Φ̃ are equal to each other. Nevertheless, temporal derivatives of Φ̃ and Φ are
not identical. By the discussion in preceding sub-sections, we have the temporal derivative
of Φ at a point P in the �ow domain,

∂

∂t
Φ
(
~RP , t

) )
~RP

= ∇xΦ̃ · ~vP/A +
∂

∂t
Φ̃
(
~RP/A, t

))
~RP/A

−∇XΦ · ~vP ,

or, with ~vP in terms of quantities measured in the moving frame, obtain

∂

∂t
Φ
(
~RP , t

) )
~RP

= ∇xΦ̃ · ~vP/A +
∂

∂t
Φ̃
(
~RP/A, t

))
~RP/A

−∇XΦ ·
(
~vA + ~vP/A + ~Ω× ~RP/A

)
.

Recognizing that the �rst two terms on the right hand side collapse to the total temporal
derivative of Φ̃ observed in the moving frame, i.e.,

∇xΦ̃ · ~vP/A +
∂

∂t
Φ̃
(
~RP/A, t

))
~RP/A

=
d

dt
Φ̃
(
~RP/A, t

)
,
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we may write

∂

∂t
Φ
(
~RP , t

) )
~RP

=
d

dt
Φ̃
(
~RP/A, t

)
−∇XΦ ·

(
~vA + ~vP/A + ~Ω× ~RP/A

)
.

Finally, if the point P is �xed within the moving frame, ~vP/A vanishes and we have

∂

∂t
Φ
(
~RP , t

) )
~RP

=
d

dt
Φ̃
(
~RP/A, t

)
−∇XΦ ·

(
~vA + ~Ω× ~RP/A

)
(B.23)

where, in the case of stationary ~RP/A,

d

dt
Φ̃
(
~RP/A, t

)
=

∂

∂t
Φ̃
(
~RP/A, t

))
~RP/A

.

Equation (B.23) gives an expression for the temporal derivative of Φ at point P within
the �ow domain entirely in terms of quantities which are observed at a point �xed within
a non-inertial frame a�xed to the boundary of the �ow domain at the instant that �xed
point coincides with spatial point P . The right hand side of (B.23) may be substituted into
equation (B.18) to obtain the desired unsteady frame-independent form of the Bernoulli
equation as follows.

P
(
~X, t
)

= P0 +
1

2
ρ
(
v2

0 − ‖∇XΦ‖2)− ρ( d

dt
Φ̃ (~x, t)−∇XΦ ·

(
~vA + ~Ω× ~x

))
. (B.24)

Equation (B.24) is the appropriate form of the frame-invariant unsteady Bernoulli equation.
It has the appropriate simplicity and will enable the computation of the pressure along
the moving boundary of a �ow domain as is required in the computation of the pressure
along the medial surface of the vocal folds. Within equation (B.24), all of the terms are
known from the solution of the �ow problem at time t except the temporal derivative
of Φ̃ The following sub-section shows, given the temporal evolution of the potential in
the auxiliary plane and the temporal evolution of conformal mappings between auxiliary
plane and physical plane corresponding to the time history of states of the evolving glottal
con�guration, the approach to the evaluation of the temporal derivative of Φ̃.

B.2.4 Temporal Derivative of Φ̃

A second-order backward di�erence scheme for the numerical evaluation of the temporal
derivative of Φ̃ at a �xed point z in a frame a�xed to the moving boundary of the �ow
domain, speci�cally a�xed to the medial surface of the vocal fold, is developed in this sub-
section. Figure B.7 exhibits an overlay of three successive con�gurations of the medial VF
surface and the corresponding con�gurations of the auxiliary plane. z is �xed in xy, but
at time tk, coincides with points Zk of the global frame. At time tk, because the potential
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Φ̃ observed within the moving frame at position z coincides with the potential Φ observed
within the global frame at position Zk at the same instant of time, the following hold,

Φ̃ (z, tk) = Φ (Zk, tk) ,

Φ̃ (z, tk−1) = Φ (Zk−1, tk−1) , and

Φ̃ (z, tk−2) = Φ (Zk−2, tk−2) .

When these expressions are substituted into the expression for the second-order backward
di�erence, the desired expression is obtained.

To brie�y digress, Lagrange's interpolation formula,

P (x) =
n∑
j=0

f(xj)Lj(x) (B.25)

where

Lj(x) =
(x− x0) (x− x1) · · · (x− xj−1) (x− xj+1) · · · (x− xn)

(xj − x0) (xj − x1) · · · (xj − xj−1) (xj − xj+1) · · · (xj − xn)

is an nth degree polynomial which passes through (xj, f(xj)) and smoothly interpolates
between them. On three points, we have

P (x) =
3∑
j=0

f(xj)Lj(x) = f(x0)L0(x) + f(x1)L1(x) + f(x2)L2(x)

so

P (x) = f(x0)
(x− x1) (x− x2)

(x0 − x1) (x0 − x2)
+ f(x1)

(x− x0) (x− x2)

(x1 − x0) (x1 − x2)
+ f(x2)

(x− x0) (x− x1)

(x2 − x0) (x2 − x1)
.

The idea is that this is a suitable approximation of f on the interval [x0, x2] so that P ′ is
a suitable approximation of the derivative of f on the same interval. So, obtain

P ′(x) = f(x0)
(x− x1) + (x− x2)

(x0 − x1) (x0 − x2)
+ f(x1)

(x− x0) + (x− x2)

(x1 − x0) (x1 − x2)
+ f(x2)

(x− x0) + (x− x1)

(x2 − x0) (x2 − x1)
,

and, when x = x2, this is a suitable approximation of f ′(x2) given knowledge of f at x2

and at two preceding points, x1 and x0. So

f ′(x2) ≈ f(x0)
x2 − x1

(x0 − x1) (x0 − x2)
+f(x1)

x2 − x0

(x1 − x0) (x1 − x2)
+f(x2)

(x2 − x0) + (x2 − x1)

(x2 − x0) (x2 − x1)
.

When we take consecutive points xn−2, xn−1, and xn equally spaced, so that xn − xn−1 =
xn−1 − xn−2 = h, this collapses to the second order backward di�erence on equally spaced
intervals,

f ′(xn) ≈ f(xn−2)
h

(−h) (−2h)
+ f(xn−1)

2h

(h) (−h)
+ f(xn)

2h+ h

(2h) (h)

=
3f(xn)− 4f(xn−1) + f(xn−2)

2h
.
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Figure B.7: Schematic of a single VF overlaid in the physical plane at three suc-
cessive instants. XY is the global frame in the physical plane, and the xy frame is
a�xed to the medial VF surface and pitches and heaves with it. z is a �xed point in
the translating xy frame, so that z remains constant in xy frame but obtains coordi-
nates Zk with respect to the global frame at each time tk. The auxiliary ξη plane is
shown separately at the corresponding successive instants of time. Conformal map-
pings fk which generate these con�gurations are shown to map ζk from the boundary
of the auxiliary plane to Zk in the physical plane. Vortex pairs Z01,k and Z02,k are
overlaid at the corresponding successive instants together with their pre-images ζ01,k

and ζ02,k at time tk in each corresponding instance of the ξη plane. By obtaining
the complex potential at each instant in the auxiliary plane, depending on vortical
positions and free stream, and consequently corresponding complex potential in the
physical plane via the conformal mapping fk which generates the kth con�guration,
temporal derivatives may be computed at z �xed in the moving frame.
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Keeping unequal spacing, but denoting the interval widths according to xn − xn−1 = h1,
xn−1 − xn−2 = h2, and xn − xn−2 = h, obtain a backward di�erence estimate on three
unequally spaced points,

f(xn)
h+ h1

hh1

− f(xn−1)
h

h1 h2

+ f(xn−2)
h1

hh2

. (B.26)

Consequently, the backward di�erence estimate for Φ̃ at time t on equally spaced in-
tervals is

d

dt
Φ̃(z, t) ≈ 3 Φ (Zn, t)− 4 Φ (Zn−1, t− δt) + Φ (Zn−2, t− 2 δt)

2 δt
(B.27)

and on unequally spaced intervals,

d

dt
Φ̃(z, t) ≈ Φ (Zn, t)

2 δt(1) + δt(2)

δt(tot) δt(1)

− Φ
(
Zn−1, t− δt(1)

) δt(tot)

δt(1) δt(2)

+ Φ
(
Zn−2, t−

(
δt(2) + δt(1)

)) δt(1)

δt(tot) δt(2)
(B.28)

where δt(tot) = δt(1) + δt(2), and z, �xed on the medial surface of the vocal fold, occupies
position Zn at time t, Zn−1 at time t−δt(1), and occupies position Zn−2 at time t−δt(1)−δt(2).

Finally, if fk : S → DZ is the conformal mapping which takes the in�nite horizontal
strip in the auxiliary plane to the glottal con�guration at time tk and F (ζ, t) is the com-
plex potential due to vortices at positions ζ0 = f−1

k (Z0) together with free stream, then
F (f−1

k (Z), t) is the complex potential in the physical plane at time tk. Consequently, in
equation (B.27) or (B.28), the Φ s may be written as the real parts of the complex poten-
tials. Because the solver tracks the vortices, the conformal maps fk, and the positions Zk
for the control points along the medial VF surface at each time tk, the temporal derivative
of Φ̃ may be computed at each instant of time along the vocal fold as required by employing
(B.27), even as the timesteps vary from iteration to iteration by employing (B.28).

B.3 Pressure Distribution in the Titze Model

To obtain the intraglottal pressure along the centreline of the glottis, Titze employs
Bernoulli's equation to relate subglottal conditions to any point along the centreline at
axial station x (equation (A7) in [99])

Ps +
1

2
ρVs

2 = P (x) +
1

2
ρ
Q2

A2(x)
(B.29)

in which ρ is the �uid density, Ps is subglottal pressure and Vs is sublgottal velocity, Q
is glottal mean volumetric �ow rate, A(x) is cross-sectional area of the glottis at axial
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station x, and P (x) is the pressure in the entire transverse section at x, therefore it is the
projected pressure at the point on the medial vocal fold surface at axial station x as well.
In other words, it is taken to be the vertical, i.e. y, component of the surface traction on
the medial surface at axial station x. By a one dimensional conservation of mass, assuming
incompressibility, we have

Q = VsAs = V (x)A(x) = VdAd = VeAe (B.30)

in which Vs and As are subglottal velocity and area, V (x) and A(x) are velocity and area at
axial position x, Vd and Ad are velocity and area at the point of detachment or separation,
Ve and Ae are epilaryngeal velocity and area, and mean volumetric �ow rate Q is equivalent
to any one of the products. Each of the products in (B.30) assumes uniform axial velocity
at each streamwise station, therefore, Ve must be taken far upstream after the glottal jet
has reattached where Ve may be assumed to be uniform over epilaryngeal cross-sectional
area Ae. Substituting the volumetric �ow rate at separation from (B.30) for Q in (B.29),

Ps +
1

2
ρVs

2 = P (x) +
1

2
ρ
Vd

2Ad
2

A2(x)
= P (x) +

1

2
ρVd

2 Ad
2

A2(x)
, (B.31)

and rearranging to obtain (equation (A10) in [99])

P (x) = Ps + Pks − Pkd
Ad

2

A2(x)
(B.32)

where, Pks and Pkd are subglottal dynamic pressure and dynamic pressure at separation.
Titze argues in [99] that, for typical subglottal pressures, between 500 and 1000 [Pa],
and typical subglottal velocities, approximately 0.7 [m/s], subglottal dynamic pressure is
three orders of magnitude smaller than the subglottal static pressure, and therefore that
subglottal dynamic pressure is to be neglected.

In order to obtain the dynamic pressure at separation, the kinetic energy recovery
coe�cient proposed by Ishizaka and Flanagan in [48] is employed. Consider the glottal
con�guration shown in Figure B.8 below with control volume as shown. Supposing that
reattachment and pressure recovery are far downstream and that jet pressure is constant
along the centreline, which enables the equating of centreline pressure at glottal exit with
the jet pressure, and applying conservation of momentum in the x direction, obtain

PdAe − PeAe = −ρVd 2Ad + ρVe
2Ae

Pd = Pe −
1

2
ρ2Vd

2Ad
Ae

+
1

2
ρ2Ve

2

and, casting Ve in terms of Vd by equation (B.30),

Pd = Pe − 2

(
1

2
ρVd

2Ad
Ae
− 1

2
ρVd

2Ad
2

Ae 2

)
= Pe −

1

2
ρVd

2

(
2
Ad
Ae

)(
1− Ad

Ae

)
.
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Figure B.8: The control volume employed to justify the kinetic energy recovery
coe�cient ke on the basis of conservation of momentum.

Thus, we have (equivalent to equation (7) in [48]) which determines centreline pressures,

Pd = Pe − Pkd
[
2
Ad
Ae

(
1− Ad

Ae

)]
. (B.33)

The coe�cient of the dynamic pressure at separation is ke, the kinetic energy recovery
coe�cient. That is (equation (A23) in [99])

ke = 2
Ad
Ae

(
1− Ad

Ae

)
. (B.34)

Thus, equation (B.33) may be written (equation (A22) in [99])

Pd = Pe − ke Pkd (B.35)

Finally, applying Bernoulli between the subglottal region and the point of separation,

Ps +
1

2
ρVs

2 = Pd +
1

2
ρVd

2 = Pd + Pkd

and, neglecting subglottal dynamic pressure Pks as before, obtain (equation (A24) in [99])

Ps = Pd + Pkd (B.36)

which, upon substitution of (B.35) becomes

Ps = Pe − ke Pkd + Pkd (B.37)

or (equation (A25) in [99]),

Pkd =
Ps − Pe
1− ke

. (B.38)

161



Therefore, the pressure distribution along the glottal centreline, due to the one-dimensional
Bernoulli equation and accounting for pressure recovery, is

P (x) =

{
Ps − Ps−Pe

1−ke
Ad

2

A2(x)
, x < xd

Pe−ke Ps
1−ke , xd < x

(B.39)

where xd is the axial location of the point of separation and ke is as de�ned in (B.34).
Equation (B.39), assuming constant jet pressure, takes the centreline pressure after the
point of separation simply to be the static pressure at separation, Pd. Titze takes these
pressures to determine the y components of forces along the medial surface of the vocal
folds, therefore, P (x) de�ned here is merely the y component of the wall normal surface
traction along the medial surface of the vocal folds. The actual wall normal component of
surface traction at the medial vocal fold surface is

P (x)

cos (θng + θ)
(B.40)

where θng + θ decomposes the absolute angular displacement of the right vocal fold into a
mean angular displacement θng determined by neutral glottal con�guration, and a �uctu-
ation or displacement from equilibrium position θ determined by the dynamical response
of the vocal folds.
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C | Simulation Code User's Manual

This appendix furnishes what is e�ectvely a user's manual for the simulation code devel-
oped in conjunction with this research project. The codes are written in MATLAB [60].
The simulation code for the 2-D potential channel �ow extensively employs the freely avail-
able MATLAB package for manipulation of Schwarz-Christo�el mappings, the SC Toolbox,
written by Trefethen and Driscoll. The package is documented extensively in the book
by Trefethen and Driscoll, [24], and also in the online documentation for the toolbox [23].
The toolbox is available on Driscoll's website at http://www.math.udel.edu/~driscoll/SC/
(accessed at the time of writing).

The �rst section of this appendix furnishes a brief description of the SC toolbox, with
a speci�c example of its use for generating an in�nite polygonal region. The second sec-
tion describes the scripts and functions of the implementation of the two-mass bar-plate
dynamical model of the vocal folds together with the 1-D aerodynamic loadind model of
glottal �ow which provides the forcing of the dynamical model. The third section describes
the scripts and functions of the fully 2-D unsteady ideal potential �ow simulation code.

Descriptions of functions, including preconditions and postconditions, are provided.
It must be strongly emphasized that, because MATLAB is a weakly typed language, in
many cases it is essential that the parameters which are passed to functions be tested
by the function to ensure that they conform to the expectations of the function. This
is not always done, consequently, prior to runtime, the user is expected exercise extreme
caution in ensuring that the variables passed are of the correct type. Especially when this
veri�cation is not performed by the function, the user must be aware of the types and
ranges of values the function expects, the order of arguments the function expects, and the
types and ranges of values the function produces as return values.

C.1 SC Toolbox

The SC tooblox for manipulation of Schwarz-Christo�el mappings in MATLAB is freely
available at http://www.math.udel.edu/~driscoll/SC/ (accessed at the time of writing).
The book [24] and package documentation [23] are tremendous resources and enable one to
take full advantage of the package in a variety of polygonal con�gurations. Nevertheless,
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a description of how to achieve various desirable outcomes with vertices at in�nity are
described below, including some pitfalls.

C.1.1 Functions

Overall, the SC package for MATLAB is employed in the following sequence

1. create a polygon with a call to polygon

2. create a map by calling the function which numerically solves for the required pa-
rameters (speci�c functions for di�erent pre-images are enumerated in Table C.1
below)

3. parameters may be extracted by accessing the map object produced in 2. The map
object may be used to visualize, compute forward transforms, inverse transforms,
and derivatives of the transform.

polygon takes a pair of arguments, the �rst one is a vector of vertices, the second is a
vector of interior angles. The various SC maps listed in table C.1 obtain the required
parameters for di�ering pre-image regions and whether the range is the interior or exterior
of some speci�ed polygonal region.

Table C.1: Available SC mappings with di�erent domains.

SC map domain of pre-image image

diskmap D(0, 1), the unit disk about the origin interior of polygon
hplmap H+, the upper half plane interior of polygon
stripmap in�nite horizontal strip interior of polygon
extermap disk exterior of polygon

Functions such as plot and evalf have been overridden to provide the functionality re-
quired in item 3.

C.1.2 An Example

In this example, a polygonal region in the physical plane will be speci�ed and its pre-image
will be determined. In order to specify an unbounded polygon, i.e., one with vertices
at in�nity, the interior angles must also be speci�ed. Function polygon requires two
parameters in this case, a list of vertices in the complex plane and a corresponding list of
interior angles. For the polygon to fold back on itself at in�nity, the interior angles there
are zero. In particular, the polygon generated by the snippet of code
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VERT = [ -1 - 1i, -1 - 0.5i, 1 - 0.3237i, 1 - 1i, Inf, ...

1 + 1i, 1 + 0.3237i, -1 + 0.5i, -1 + 1i, Inf ];

alpha = Arg(VERT(2)-VERT(3));

ALPHA =[ 1/2, 3/2+alpha/pi, 3/2-alpha/pi, 1/2, 0, ...

1/2, 3/2-alpha/pi, 3/2+alpha/pi, 1/2, 0];

p = polygon(VERT,ALPHA)

plot(p)

is shown in Figure C.1.
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Figure C.1: Desired polygonal region.

Subsequently, the map object corresponding to the Schwarz-Christo�el map from the
strip to this polygonal region may be obtained with a call to stripmap. Because the
polygon has in�nite vertices, the indices of the in�nite vertices in the speci�cation must
be provided. The vertex at −∞ as the vertex at index 10 in both vertex list VERT and
corresponding list of interior angles ALPHA. The vertex at ∞ is the vertex at index 5. A
call to stripmap determines the parameters corresponding to the SC mapping from the
horizontal strip to the desired region. The following snippet of code,

ENDPOINTS = [10, 5];

f1 = stripmap(p,ENDPOINTS);

plot(f1)

generates the map object which may be plotted, and is shown in Figure C.2 (b). Figure C.2
(a), generaged by plot(prevertex(f1),'.k'), shows the pre-image of the SC mapping,
(a) displays the horizontal strip together with the pre-images of the �nite vertices.
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Figure C.2: Visualization of resulting SC map.

C.2 1-D Simulation Code

The 1-D simulation code replicates the 3 DOF body-cover model described in Titze [99]
with loading due to 1-D incompressible potential �ow with separation.

C.2.1 Scripts and Functions

Scripts and functions are enumerated in Table C.2. Script Script_glottal_simulation
is the main script which speci�es values of the parameters for each simulation and calls
glottal_simulation for each set of parameters. The script also saves simulation results
for each run. Various scripts for visualization have also been provided, and these may
be modi�ed as necessary. Functions employed by the 1-D simulation code which are not
mentioned here are described in the section for the 2-D simulation code, Section C.3.

Table C.2: List of functions for 1-D simulation code.

functions and scripts

glottal_simulation

Script_glottal_simulation

166



C.2.1.1 Script_glottal_simulation

Within this script, a number of values which determine overall behaviour are set prior
to calling glottal_simulation. CORES is the number of cores and is an integer between
1 and 4, but ultimately determined by the machines employed for simulation. The real
duration of the simulation is established by setting duration to some positive �oating
point number, usually around 1 second. Variable flow_model is set to either `attached'
or `separation' depending upon whether an attached �ow or separated �ow model is
desired.

The simulation number set in simulation_num is an arbitrary integer between 0 and
9999 and determines the directory where the outputs of the run are stored. Similarly, the
annotation set in annotation is a string which supplies an additional annotation to label
the subdirectory where data �les are stored. The script fails to execute if the number
corresponds to a number which already exists. The output directory is

[ `simulations\backslash' simulation_num_str `_' annotation ]

In each run, glottal_simulation is called with parameters determined by a structure of
parameters, simulation_parameters. This is an array of structures, and, the structure at
each index corresponds to a speci�c set of parameters for one run of the simulation. The
�elds of simulation_parameters is shown in Table C.3. Outputs are stored in a structure
with �elds `index', `simulation_parameters', `time', and `dynamics'. The output is
stored in the subdirectory created at the outset in a �le named

[ `glottal_simulation_at_index_' index_str `.mat' ]

in which index_str is a string which corresponds to the index of the simulation parameters
for the run. The �elds of structure dynamics are given in Table C.4.

C.2.1.2 glottal_simulation

Function glottal_simulation returns time and dynamics and takes simulation parame-
ters as input. This function computes the time-domain simulation of the glottal �ow and
dynamics of the tissue model in the 1-D case. It is an implementation of the two-mass
body-cover model presented in [99]. Structure simulation_parameters is unpacked im-
mediately beginning with the dynamic parameters, then geometric parameters, equilibrium
positions, initial conditions, �ow parameters, and, �nally timing. The simulation performs
a temporal marching and returns a structure, dynamics, which contains the temporal
evolution of the state of the dynamical system as well as the driving forces and pitching
moments determined by the glottal �ow model. Again, the �elds of this return structure
are listed in Table C.4. Return variable time is an array of times which align with the
instants at which the entries in dynamics are obtained.
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Table C.3: Fields of simulation parameter structure.

parameter meaning

`max_iter' maximal number of iterations is a hard limit
`duration' overall duration of simulation [seconds]
`t_nought' nominal initial time
`delta_t' time step, if empty, set by temporal scales

`M' body mass
`m' cover mass

`I_c' moment of inertia of cover
`K' translational sti�ness of body
`k' translational sti�ness of cover

`kappa' torsional sti�ness of cover
`B' translational damping of body mass
`b' translational damping of cover

`B_c' torsional damping of cover
`A_s' subglottal cross sectional area
`A_e' epilaryngeal cross sectional area
`t' vocal fold thickness

`fold_length' vocal fold length (depth into page)
`z_n' nodal point with respect to bottom of fold
`A_ng' neutral glottal cross sectional area

`theta_ng' neutral glottal angle of convergence
`rho' �uid density
`P_L' lung pressure
`P_s' subglottal pressure
`P_e' epilaryngeal pressure

`P_contact' contact pressure � hydrostatic pressure
`Q' volumetric �ow rate within glottis

`V_s' subglottal velocity
`theta_nought' initial angular displacement from equilibrium & velocity
`xi_nought' initial translational position & velocity of cover and body
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Table C.4: Fields of dynamics output structure.

parameter meaning

`theta' absolute angular position of cover
`theta_dot' angular velocity of cover

`eta' absolute lateral displacement of cover from equilibrium
`eta_dot' translational velocity of cover
`eta_b' displacement of body mass from equilibrium

`eta_b_dot' velocity of body mass from equilibrium
`Force' resultant translational force
`Torque' resultant pitching moment

C.3 2-D Simulation Code

The 2-D simulation code is an implementation of the simulation model developed in Chap-
ter 3. The 3 DOF body-cover tissue model described in Titze [99] is coupled to a 2-D
inviscid potential �ow model of the glottal �ow which is computed via conformal mapping
techniques. The �ow may be attached, it may separate from some point on the medial
surface of the vocal folds, or it may separate at the trailing edge. The unsteady term in
the pressure determination may or may not be included.

C.3.1 Scripts and Functions

Table C.5 lists the functions employed in the 2-D simulation code.

C.3.1.1 num2zero_padded_str

num2zero_padded_str takes a number and a number of digits and returns a string corre-
sponding to the given number with an appropriate number of zeros prepended so that the
length of the string is maximum of the desired number of digits and the length of the given
number.

C.3.1.2 Arg

This function returns the principal argument, within numerical limits, of the input argu-
ment. Basically, this function packages atan2, i.e., it returns atan2(imag(z),real(z)).
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Table C.5: List of functions for 2-D simulation code.

functions and scripts

Arg

complex_potential_at_zeta

geometry_gen

geometry_sep

geometry_sep_trailing_edge

glottal_simulation

log_output_to_disk

meet

minimal_glottal_area

num2zero_padded_str

pressure_force_and_pitching_moment

real_potential_at_z

symmetric_pair_update

velocity_at_z

vortical_velocity

Script_glottal_simulations

Script_visualization_plots_phase

Script_visualization_plots_series

Script_visualization_sync

Script_visualization_video

C.3.1.3 Script_glottal_simulations

This function is essentially identical to the one described for the 1-D simulation above.
However, in the computation of the pressure �eld, the unsteady term may or may not be
computed, this is established by setting boolean d_PHI_dt_ON to either true or false.
The separation model is also one of separated �ow which separates at some point on the
medial vocal fold surfaces, always separates at the trailing edge, or reamins attached. This
behaviour is established by setting flow_model to either `separation', `attached', or
`trailing_edge'. Finally, initial vortex positions and strengths must also be provided to
glottal_simulation, so simulation_parameters has two additional �elds: `z_0' and
`Gamma'. These are row vectors of initial positions and circulations arranged upper vortex
� lower vortex.

C.3.1.4 log_output_to_disk

This function is a wrapper for save called inside of the parfor loop within the main script
Script_glottal_simulations. save cannot be called within parfor, and, consequently
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this function wraps save functionality so that data may be saved after each iteration of
parfor. The function takes a string which identi�es the �lename of the output �le, and,
as a second parameter, the data which is to be saved.

C.3.1.5 glottal_simulation

The primary function called by Script_glottal_simulations for each set of simulation
parameters. The function takes the structure of parameters, simulation_parameters,
and two other variables which set the behaviour of the simulation: d_PHI_dt_ON, which is
boolean and determines whether the unsteady term is computed in the determination of the
pressure �eld; and flow_model which may be set, in Script_glottal_simulations, to ei-
ther `attached' or `separation' or `trailing_edge' depending upon which separation
model is desired. The function returns time, geometry, dynamics, force_distribution,
and vortices. The �rst return variable is an array of times at which the state of the
dynamical system was computed. The remaining structures contain geometric state, dy-
namical state, corresponding force and pitching moment distributions, and positions and
strengths of vortices at each instant in time.

C.3.1.6 pressure_force_and_pitching_moment

Function pressure_force_and_pitching_moment computes pressures at control points
along the medial surface of one vocal fold via the unsteady Bernoulli equation. The func-
tion obtains the resultant force and pitching moment and returns these along with the
distributions from which they were obtained.

C.3.1.7 geometry_sep and others

The functions geometry_gen, geometry_sep, and geometry_sep_trailing_edge generate
polygonal regions and corresponding map objects which correspond to a �ow domain which
is either attached, separating at some point on the medial vocal fold surfaces, or always
separating at the trailing edge. The functions are speci�ed as the following:

function [ P, CORNERS, CONTACT, VALID, MAP_OBJ ] = geometry_gen( ...

h_1, h_2, t, node, delta, eta, theta, return_value, domain )

function [ P, VALID, MAP_OBJ ] = geometry_sep( ...

h_1, h_2, delta, eta, theta, p, CORNERS, CONTACT, VALID )

function [ P, MAP_OBJ ] = geometry_sep_trailing_edge( ...

h_1, h_2, p, CORNERS, CONTACT )
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The functions require parameters h_1 and h_2, which specify the upstream and down-
stream channel widths. In some cases other parameters, such as t, delta, eta, and theta,
which completely specify the geometry are required. In geometry_gen return_value and
domain, which specify whether a Schwarz-Christo�el map object will be returned and the
structure of its domain are also required. These parameters de�ne the geometry and the
nature of the return values of the function call. The geometry dispalyed in Figures C.3 and
C.4 show the de�nitions of and relations amongst the parameters. The �rst two function
arguments specify inlet and outlet channel width for the horizontal channel symmetrically
disposed about the horizontal axis. t speci�es the glottal thickness, the horizontal di-
mension of the blockage as shown in Figure C.3. The blockage is disposed from −lnode to
tV F − lnode in the axial direction. delta is the minimal transverse glottal spacing for glottal
�ow; the �ow is e�ectively shut o� by the simulation in case the medial surfaces are in
contact, and this condition is �agged by boolean return value CONTACT. delta is shown in
Figure C.4 (b) and, in the same �gure, delta is also the transverse spacing of the surfaces
in (e) and (f) in the region of contact between vertices 3 and 4 in (f) and between vertices
2 and 3 in (f). Parameters eta and theta correspond to the y coordinate and angular dis-
placement of the medial surface of the wall of the lower blockage as shown in Figure C.3.
It is expected that eta is a value between −(h1 + h2)/4 and −δ/2 and theta is expected
to be −π/2 < θ < π/2 when measured counter-clockwise from negative horizontal-axis.
return_value is a string, either `map' or `polygon', which determines whether or not a
map object is returned. The �nal function argument is not necessary when a map is not
requested. In the case return_value is set to `map', domain is required. domain speci�es
the type of Schwarz-Christo�el transform which is returned as SC map object, MAP_OBJ.
domain is a string, either `strip' or `hp' depending on whether the desired domain for
the SC object is a horizontal strip or the upper half plane.

The return values are polygon P, array CORNERS, boolean CONTACT. Also, when in-
put argument return_value is set to `map', MAP_OB, which corresponds to the Schwarz-
Christo�el map which maps from domain of type domain to the polygon P. CONTACT is
boolean true if contact of surfaces occurs, i.e., when any part of the medial surfaces are
within distance delta of each other, as shown in Figure C.4 (b), (e), and (f). CONTACT is
false otherwise.

Function return value CORNERS is an array of indices of polygon P which correspond
to the indices of the right medial vocal fold surface. In Figure C.4, the vertices along
the lower surface are numbered. In (a), the fully open con�guration, the indices of the
right medial surface are 1 and 2. In (b), (c), (d), (g), and (h), the medial surface has
indices 2 and 3. In (e) and (f), the medial surface comprises three vertices, 2, 3, and 4.
CORNERS is important because it speci�es the region of integration for the determination of
the aerodynamic loading on the medial surface which is required for the force and torque
inputs to the dynamical simulation of the vocal fold motion.

Due to the crowding problem for the numerical computation of the SC map object
discussed in reference [24], the fully closed case is only computed once and persists in
memory. This is achieved within the function by declaring several variables to be persisi-
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Figure C.3: Parameters of geometry_gen function explained. h_1 and h_2 deter-
mine inlet and outlet channel widths. eta determines y coordinate of the fulcrum of
medial surface of the right vocal fold, and theta, the pitch angle measured counter
clockwise from the negative horizontal axis. The width of the blockage is determined
by t. The vertices of the polygonal region are numbered in the order shown with
vertices 5 and 10 at ∞ and −∞ respectively.

tent. Speci�cally, the inner corners of the right vocal fold (the lower surface) together with
a map object which corresponds to a fully closed position, which is only computed the �rst
time it arises. This prevents computation of the fully closed con�guration, which is time
consuming due to the crowding problem, but merely delays the simulations once.

Many distinct types of con�gurations have been identi�ed as a consequence of partic-
ular choices of theta and eta; however, only a small number of these con�gurations will
correspond to physically valid positions of the medial surface of the vocal fold. The re-
maining cases are required to mitigate the crowding problem if the simulation enters a
situation in which it would occur, this is to prevent slowing of the simulation or its abrupt
termination. The simulation code is capable of detecting and �agging the validity of the
geometry.

Figure C.4 displays several possible glottal geometries. (a) shows a fully open case,
which is the geometry which is returned whenever the medial surface determined by eta

is below this region. (b) shows the fully closed case which typically occurs whenever
theta is nearly zero while eta is greater than −δ/2. (c) and (d) display diverging and
converging glottal con�gurations respectively. (e) and (f) display cases of partial glottal
closure. Finally, (g) and (h) exhibit the results of two calls to the geometry_ gen function,
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one to determine the glottal geometry and one to determine the �ow domain of a separated
�ow. In case (e), subglottal pressure is applied over the right medial vocal fold between
vertices 1 and 2. In (f), epilaryngeal pressure is employed in the computation of force due
to pressure between vertices 3 and 4. A �xed contact stress is applied over the medial
surface where the vocal folds are in contact. In (g), separation exists at the trailing edge of
the medial glottal surfaces, and, in (h), separation exists at some intermediate point along
the medial glottal surfaces.

C.3.1.8 meet

meet returns either the real or the imaginary part of the point of intersection of two lines,
one de�ned in terms of a point and slope, de�ned as the angle measured counter clockwise
from positive real axis, and another line de�ned by a pair of points in the plane, given as
complex numbers. The return values are NaN if no intersection exists, and the code warns
of conditioning because it calls MATLAB's built in linear system solver. The �nal input
argument speci�es the part to be returned, by passing the string either `real' or `imag'.

C.3.1.9 real_potential_at_z & complex_potential_at_zeta

Function real_potential_at_z computes the potential at some point in the physical
plane. The function obtains the pre-image of the desired point and the pre-images of
the vortices and computes the complex potential at the pre-image of the desired point
and returns the real part. Function complex_potential_at_zeta computes the complex
potential some point within the horizontal strip

S = {ζ ∈ C | 0 < Im ζ < i}

The potential at a given point on the strip is due to free stream and vortices. The coordi-
nates of the vortices in the physical plane are passed to the function, so the function must
obtain the pre-images of the vortices, which is why it also requires the geometry structure
which contains the SC map object. The potential is computed according to the equations
developed in Appendix B. A complex number representing the complex potential at the
point is returned.

C.3.1.10 minimal_glottal_area

Glottal area, which is de�ned as the minimal projected transverse area of the glottis at
any instant, is the most important correlate of voiced speech which is computed in these
simulations. This function determines glottal area given the geometry of the vocal fold
con�gurations. minimal_glottal_area takes the array of geometry structures and the
vocal fold length and determines the minimal glottal area at each instant and returns an
array of corresponding minimal areas. The function assumes the channel is symmetric,
hence only the lower wall is traversed.
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Figure C.4: (a) fully open, (b) fully closed, (c) diverging glottal, (d) converging
glottal, and (e and f) partially closed con�gurations. Ps is applied between 2 and 3
in (e), Pe is applied between 3 and 4 in (f), and Pcontact is applied at contact. (g) and
(h) correspond to separated �ow domains, where separation is either at the trailing
edge, as in (g), or, in (h), at an intermediate point along the medial glottal surfaces.
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C.3.1.11 symmetric_pair_update

Function symmetric_pair_update takes a lower vortex of a vortex pair and solves the
vortex motion problem on the �ow domain de�ned in map object and updates the position
of the lower vortex. The position of the upper vortex is simply the complex conjugate of
this point in the physical plane. In computing in this manner, a condition of symmetry
about the midplane of the glottis is enforced.

C.3.1.12 velocity_at_z

velocity_at_z returns a single complex number which represents the velocity at a speci�ed
point in the physical plane due to upstream velocity and symmetric vortex pair. The
function computes the pre-images of the given point and the given vortex centres, computes
velocity at the pre-image, then scales the velocity by the conformal mapping to yield the
velocity at the desired point in the physical domain.

C.3.1.13 vortical_velocity

Function vortical_velocity speci�ed by

function [ velocity ] = vortical_velocity( ...

z_0, Gamma, U_infinity, MAP_OBJ )

returns an array of complex numbers of the same size as z_0, and the values in the array
represent the velocities of the vortices speci�ed in z_0 speci�ed in the image plane due to
the vortices and the free stream U_infinity. Vortices are located at points of z_0 with
strengths in corresponding positions in array Gamma The domain of the SC transformation
is assumed to be an in�nite horizontal strip between 0 and i. Circulation is taken positive
counter-clockwise. MAP_OBJ contains the geometric information for the SC transformation.
The function takes the pre-images of vortices speci�ed in z_0 to obtain zeta_0, then
computes velocity of each vortex by using the point singularity equation (PSE) described in
Stefan G. Llewellyn Smith How do singularities move in potential �ow? [86], these velocities
are scaled by the conformal mapping to yield the velocities at the original locations z_0.
The exact formulation is derived in Appendix B.

C.3.1.14 Post Processing & Visualization

Several scripts are employed to post process the data to obtain phase portraits and plots of
the temporal evolution. Script_visualization_plots_phase generates phase portraits
and Script_visualization_plots_series generates plots of the temporal evolution of
the dynamics. Other scripts generate video of the evolution of the geometry, such as
Script_visualization_sync and Script_visualization_video. In all cases, within
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the scripts, data_directory must be set to a string which identi�es the directory where
simulation results are stored, sub_dir must be set to a string which identi�es the subdi-
rectory in which the speci�c batch of simulations was saved, and index must be set to an
array of indices corresponding to speci�c cases which are desired to be visualized.
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